Add debuginfod support to GDB
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "bfd.h"
41 #include "elf-bfd.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "objfiles.h"
45 #include "dwarf2.h"
46 #include "buildsym.h"
47 #include "demangle.h"
48 #include "gdb-demangle.h"
49 #include "filenames.h" /* for DOSish file names */
50 #include "macrotab.h"
51 #include "language.h"
52 #include "complaints.h"
53 #include "dwarf2/expr.h"
54 #include "dwarf2/loc.h"
55 #include "cp-support.h"
56 #include "hashtab.h"
57 #include "command.h"
58 #include "gdbcmd.h"
59 #include "block.h"
60 #include "addrmap.h"
61 #include "typeprint.h"
62 #include "psympriv.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "build-id.h"
72 #include "namespace.h"
73 #include "gdbsupport/function-view.h"
74 #include "gdbsupport/gdb_optional.h"
75 #include "gdbsupport/underlying.h"
76 #include "gdbsupport/hash_enum.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <algorithm>
81 #include <unordered_map>
82 #include "gdbsupport/selftest.h"
83 #include "rust-lang.h"
84 #include "gdbsupport/pathstuff.h"
85 #include "count-one-bits.h"
86 #include "debuginfod-support.h"
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 unsigned int dwarf_line_debug = 0;
98
99 /* When true, cross-check physname against demangler. */
100 static bool check_physname = false;
101
102 /* When true, do not reject deprecated .gdb_index sections. */
103 static bool use_deprecated_index_sections = false;
104
105 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* An index into a (C++) symbol name component in a symbol name as
115 recorded in the mapped_index's symbol table. For each C++ symbol
116 in the symbol table, we record one entry for the start of each
117 component in the symbol in a table of name components, and then
118 sort the table, in order to be able to binary search symbol names,
119 ignoring leading namespaces, both completion and regular look up.
120 For example, for symbol "A::B::C", we'll have an entry that points
121 to "A::B::C", another that points to "B::C", and another for "C".
122 Note that function symbols in GDB index have no parameter
123 information, just the function/method names. You can convert a
124 name_component to a "const char *" using the
125 'mapped_index::symbol_name_at(offset_type)' method. */
126
127 struct name_component
128 {
129 /* Offset in the symbol name where the component starts. Stored as
130 a (32-bit) offset instead of a pointer to save memory and improve
131 locality on 64-bit architectures. */
132 offset_type name_offset;
133
134 /* The symbol's index in the symbol and constant pool tables of a
135 mapped_index. */
136 offset_type idx;
137 };
138
139 /* Base class containing bits shared by both .gdb_index and
140 .debug_name indexes. */
141
142 struct mapped_index_base
143 {
144 mapped_index_base () = default;
145 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
146
147 /* The name_component table (a sorted vector). See name_component's
148 description above. */
149 std::vector<name_component> name_components;
150
151 /* How NAME_COMPONENTS is sorted. */
152 enum case_sensitivity name_components_casing;
153
154 /* Return the number of names in the symbol table. */
155 virtual size_t symbol_name_count () const = 0;
156
157 /* Get the name of the symbol at IDX in the symbol table. */
158 virtual const char *symbol_name_at (offset_type idx) const = 0;
159
160 /* Return whether the name at IDX in the symbol table should be
161 ignored. */
162 virtual bool symbol_name_slot_invalid (offset_type idx) const
163 {
164 return false;
165 }
166
167 /* Build the symbol name component sorted vector, if we haven't
168 yet. */
169 void build_name_components ();
170
171 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
172 possible matches for LN_NO_PARAMS in the name component
173 vector. */
174 std::pair<std::vector<name_component>::const_iterator,
175 std::vector<name_component>::const_iterator>
176 find_name_components_bounds (const lookup_name_info &ln_no_params,
177 enum language lang) const;
178
179 /* Prevent deleting/destroying via a base class pointer. */
180 protected:
181 ~mapped_index_base() = default;
182 };
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index final : public mapped_index_base
187 {
188 /* A slot/bucket in the symbol table hash. */
189 struct symbol_table_slot
190 {
191 const offset_type name;
192 const offset_type vec;
193 };
194
195 /* Index data format version. */
196 int version = 0;
197
198 /* The address table data. */
199 gdb::array_view<const gdb_byte> address_table;
200
201 /* The symbol table, implemented as a hash table. */
202 gdb::array_view<symbol_table_slot> symbol_table;
203
204 /* A pointer to the constant pool. */
205 const char *constant_pool = nullptr;
206
207 bool symbol_name_slot_invalid (offset_type idx) const override
208 {
209 const auto &bucket = this->symbol_table[idx];
210 return bucket.name == 0 && bucket.vec == 0;
211 }
212
213 /* Convenience method to get at the name of the symbol at IDX in the
214 symbol table. */
215 const char *symbol_name_at (offset_type idx) const override
216 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
217
218 size_t symbol_name_count () const override
219 { return this->symbol_table.size (); }
220 };
221
222 /* A description of the mapped .debug_names.
223 Uninitialized map has CU_COUNT 0. */
224 struct mapped_debug_names final : public mapped_index_base
225 {
226 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
227 : dwarf2_per_objfile (dwarf2_per_objfile_)
228 {}
229
230 struct dwarf2_per_objfile *dwarf2_per_objfile;
231 bfd_endian dwarf5_byte_order;
232 bool dwarf5_is_dwarf64;
233 bool augmentation_is_gdb;
234 uint8_t offset_size;
235 uint32_t cu_count = 0;
236 uint32_t tu_count, bucket_count, name_count;
237 const gdb_byte *cu_table_reordered, *tu_table_reordered;
238 const uint32_t *bucket_table_reordered, *hash_table_reordered;
239 const gdb_byte *name_table_string_offs_reordered;
240 const gdb_byte *name_table_entry_offs_reordered;
241 const gdb_byte *entry_pool;
242
243 struct index_val
244 {
245 ULONGEST dwarf_tag;
246 struct attr
247 {
248 /* Attribute name DW_IDX_*. */
249 ULONGEST dw_idx;
250
251 /* Attribute form DW_FORM_*. */
252 ULONGEST form;
253
254 /* Value if FORM is DW_FORM_implicit_const. */
255 LONGEST implicit_const;
256 };
257 std::vector<attr> attr_vec;
258 };
259
260 std::unordered_map<ULONGEST, index_val> abbrev_map;
261
262 const char *namei_to_name (uint32_t namei) const;
263
264 /* Implementation of the mapped_index_base virtual interface, for
265 the name_components cache. */
266
267 const char *symbol_name_at (offset_type idx) const override
268 { return namei_to_name (idx); }
269
270 size_t symbol_name_count () const override
271 { return this->name_count; }
272 };
273
274 /* See dwarf2read.h. */
275
276 dwarf2_per_objfile *
277 get_dwarf2_per_objfile (struct objfile *objfile)
278 {
279 return dwarf2_objfile_data_key.get (objfile);
280 }
281
282 /* Default names of the debugging sections. */
283
284 /* Note that if the debugging section has been compressed, it might
285 have a name like .zdebug_info. */
286
287 static const struct dwarf2_debug_sections dwarf2_elf_names =
288 {
289 { ".debug_info", ".zdebug_info" },
290 { ".debug_abbrev", ".zdebug_abbrev" },
291 { ".debug_line", ".zdebug_line" },
292 { ".debug_loc", ".zdebug_loc" },
293 { ".debug_loclists", ".zdebug_loclists" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_str_offsets", ".zdebug_str_offsets" },
298 { ".debug_line_str", ".zdebug_line_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_rnglists", ".zdebug_rnglists" },
301 { ".debug_types", ".zdebug_types" },
302 { ".debug_addr", ".zdebug_addr" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
305 { ".gdb_index", ".zgdb_index" },
306 { ".debug_names", ".zdebug_names" },
307 { ".debug_aranges", ".zdebug_aranges" },
308 23
309 };
310
311 /* List of DWO/DWP sections. */
312
313 static const struct dwop_section_names
314 {
315 struct dwarf2_section_names abbrev_dwo;
316 struct dwarf2_section_names info_dwo;
317 struct dwarf2_section_names line_dwo;
318 struct dwarf2_section_names loc_dwo;
319 struct dwarf2_section_names loclists_dwo;
320 struct dwarf2_section_names macinfo_dwo;
321 struct dwarf2_section_names macro_dwo;
322 struct dwarf2_section_names str_dwo;
323 struct dwarf2_section_names str_offsets_dwo;
324 struct dwarf2_section_names types_dwo;
325 struct dwarf2_section_names cu_index;
326 struct dwarf2_section_names tu_index;
327 }
328 dwop_section_names =
329 {
330 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
331 { ".debug_info.dwo", ".zdebug_info.dwo" },
332 { ".debug_line.dwo", ".zdebug_line.dwo" },
333 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
334 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
335 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
336 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
337 { ".debug_str.dwo", ".zdebug_str.dwo" },
338 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
339 { ".debug_types.dwo", ".zdebug_types.dwo" },
340 { ".debug_cu_index", ".zdebug_cu_index" },
341 { ".debug_tu_index", ".zdebug_tu_index" },
342 };
343
344 /* local data types */
345
346 /* Type used for delaying computation of method physnames.
347 See comments for compute_delayed_physnames. */
348 struct delayed_method_info
349 {
350 /* The type to which the method is attached, i.e., its parent class. */
351 struct type *type;
352
353 /* The index of the method in the type's function fieldlists. */
354 int fnfield_index;
355
356 /* The index of the method in the fieldlist. */
357 int index;
358
359 /* The name of the DIE. */
360 const char *name;
361
362 /* The DIE associated with this method. */
363 struct die_info *die;
364 };
365
366 /* Internal state when decoding a particular compilation unit. */
367 struct dwarf2_cu
368 {
369 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
370 ~dwarf2_cu ();
371
372 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
373
374 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
375 Create the set of symtabs used by this TU, or if this TU is sharing
376 symtabs with another TU and the symtabs have already been created
377 then restore those symtabs in the line header.
378 We don't need the pc/line-number mapping for type units. */
379 void setup_type_unit_groups (struct die_info *die);
380
381 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
382 buildsym_compunit constructor. */
383 struct compunit_symtab *start_symtab (const char *name,
384 const char *comp_dir,
385 CORE_ADDR low_pc);
386
387 /* Reset the builder. */
388 void reset_builder () { m_builder.reset (); }
389
390 /* The header of the compilation unit. */
391 struct comp_unit_head header {};
392
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address = 0;
395
396 /* Non-zero if base_address has been set. */
397 int base_known = 0;
398
399 /* The language we are debugging. */
400 enum language language = language_unknown;
401 const struct language_defn *language_defn = nullptr;
402
403 const char *producer = nullptr;
404
405 private:
406 /* The symtab builder for this CU. This is only non-NULL when full
407 symbols are being read. */
408 std::unique_ptr<buildsym_compunit> m_builder;
409
410 public:
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
415
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope = nullptr;
421
422 /* Hash table holding all the loaded partial DIEs
423 with partial_die->offset.SECT_OFF as hash. */
424 htab_t partial_dies = nullptr;
425
426 /* Storage for things with the same lifetime as this read-in compilation
427 unit, including partial DIEs. */
428 auto_obstack comp_unit_obstack;
429
430 /* When multiple dwarf2_cu structures are living in memory, this field
431 chains them all together, so that they can be released efficiently.
432 We will probably also want a generation counter so that most-recently-used
433 compilation units are cached... */
434 struct dwarf2_per_cu_data *read_in_chain = nullptr;
435
436 /* Backlink to our per_cu entry. */
437 struct dwarf2_per_cu_data *per_cu;
438
439 /* How many compilation units ago was this CU last referenced? */
440 int last_used = 0;
441
442 /* A hash table of DIE cu_offset for following references with
443 die_info->offset.sect_off as hash. */
444 htab_t die_hash = nullptr;
445
446 /* Full DIEs if read in. */
447 struct die_info *dies = nullptr;
448
449 /* A set of pointers to dwarf2_per_cu_data objects for compilation
450 units referenced by this one. Only set during full symbol processing;
451 partial symbol tables do not have dependencies. */
452 htab_t dependencies = nullptr;
453
454 /* Header data from the line table, during full symbol processing. */
455 struct line_header *line_header = nullptr;
456 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
457 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
458 this is the DW_TAG_compile_unit die for this CU. We'll hold on
459 to the line header as long as this DIE is being processed. See
460 process_die_scope. */
461 die_info *line_header_die_owner = nullptr;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 std::vector<delayed_method_info> method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab = nullptr;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit = nullptr;
480
481 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
482 Note this value comes from the Fission stub CU/TU's DIE. */
483 gdb::optional<ULONGEST> addr_base;
484
485 /* The DW_AT_rnglists_base attribute if present.
486 Note this value comes from the Fission stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base = 0;
495
496 /* When reading debug info generated by older versions of rustc, we
497 have to rewrite some union types to be struct types with a
498 variant part. This rewriting must be done after the CU is fully
499 read in, because otherwise at the point of rewriting some struct
500 type might not have been fully processed. So, we keep a list of
501 all such types here and process them after expansion. */
502 std::vector<struct type *> rust_unions;
503
504 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
505 files, the value is implicitly zero. For DWARF 5 version DWO files, the
506 value is often implicit and is the size of the header of
507 .debug_str_offsets section (8 or 4, depending on the address size). */
508 gdb::optional<ULONGEST> str_offsets_base;
509
510 /* Mark used when releasing cached dies. */
511 bool mark : 1;
512
513 /* This CU references .debug_loc. See the symtab->locations_valid field.
514 This test is imperfect as there may exist optimized debug code not using
515 any location list and still facing inlining issues if handled as
516 unoptimized code. For a future better test see GCC PR other/32998. */
517 bool has_loclist : 1;
518
519 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
520 if all the producer_is_* fields are valid. This information is cached
521 because profiling CU expansion showed excessive time spent in
522 producer_is_gxx_lt_4_6. */
523 bool checked_producer : 1;
524 bool producer_is_gxx_lt_4_6 : 1;
525 bool producer_is_gcc_lt_4_3 : 1;
526 bool producer_is_icc : 1;
527 bool producer_is_icc_lt_14 : 1;
528 bool producer_is_codewarrior : 1;
529
530 /* When true, the file that we're processing is known to have
531 debugging info for C++ namespaces. GCC 3.3.x did not produce
532 this information, but later versions do. */
533
534 bool processing_has_namespace_info : 1;
535
536 struct partial_die_info *find_partial_die (sect_offset sect_off);
537
538 /* If this CU was inherited by another CU (via specification,
539 abstract_origin, etc), this is the ancestor CU. */
540 dwarf2_cu *ancestor;
541
542 /* Get the buildsym_compunit for this CU. */
543 buildsym_compunit *get_builder ()
544 {
545 /* If this CU has a builder associated with it, use that. */
546 if (m_builder != nullptr)
547 return m_builder.get ();
548
549 /* Otherwise, search ancestors for a valid builder. */
550 if (ancestor != nullptr)
551 return ancestor->get_builder ();
552
553 return nullptr;
554 }
555 };
556
557 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
558 This includes type_unit_group and quick_file_names. */
559
560 struct stmt_list_hash
561 {
562 /* The DWO unit this table is from or NULL if there is none. */
563 struct dwo_unit *dwo_unit;
564
565 /* Offset in .debug_line or .debug_line.dwo. */
566 sect_offset line_sect_off;
567 };
568
569 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
570 an object of this type. */
571
572 struct type_unit_group
573 {
574 /* dwarf2read.c's main "handle" on a TU symtab.
575 To simplify things we create an artificial CU that "includes" all the
576 type units using this stmt_list so that the rest of the code still has
577 a "per_cu" handle on the symtab. */
578 struct dwarf2_per_cu_data per_cu;
579
580 /* The TUs that share this DW_AT_stmt_list entry.
581 This is added to while parsing type units to build partial symtabs,
582 and is deleted afterwards and not used again. */
583 std::vector<signatured_type *> *tus;
584
585 /* The compunit symtab.
586 Type units in a group needn't all be defined in the same source file,
587 so we create an essentially anonymous symtab as the compunit symtab. */
588 struct compunit_symtab *compunit_symtab;
589
590 /* The data used to construct the hash key. */
591 struct stmt_list_hash hash;
592
593 /* The symbol tables for this TU (obtained from the files listed in
594 DW_AT_stmt_list).
595 WARNING: The order of entries here must match the order of entries
596 in the line header. After the first TU using this type_unit_group, the
597 line header for the subsequent TUs is recreated from this. This is done
598 because we need to use the same symtabs for each TU using the same
599 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
600 there's no guarantee the line header doesn't have duplicate entries. */
601 struct symtab **symtabs;
602 };
603
604 /* These sections are what may appear in a (real or virtual) DWO file. */
605
606 struct dwo_sections
607 {
608 struct dwarf2_section_info abbrev;
609 struct dwarf2_section_info line;
610 struct dwarf2_section_info loc;
611 struct dwarf2_section_info loclists;
612 struct dwarf2_section_info macinfo;
613 struct dwarf2_section_info macro;
614 struct dwarf2_section_info str;
615 struct dwarf2_section_info str_offsets;
616 /* In the case of a virtual DWO file, these two are unused. */
617 struct dwarf2_section_info info;
618 std::vector<dwarf2_section_info> types;
619 };
620
621 /* CUs/TUs in DWP/DWO files. */
622
623 struct dwo_unit
624 {
625 /* Backlink to the containing struct dwo_file. */
626 struct dwo_file *dwo_file;
627
628 /* The "id" that distinguishes this CU/TU.
629 .debug_info calls this "dwo_id", .debug_types calls this "signature".
630 Since signatures came first, we stick with it for consistency. */
631 ULONGEST signature;
632
633 /* The section this CU/TU lives in, in the DWO file. */
634 struct dwarf2_section_info *section;
635
636 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
637 sect_offset sect_off;
638 unsigned int length;
639
640 /* For types, offset in the type's DIE of the type defined by this TU. */
641 cu_offset type_offset_in_tu;
642 };
643
644 /* include/dwarf2.h defines the DWP section codes.
645 It defines a max value but it doesn't define a min value, which we
646 use for error checking, so provide one. */
647
648 enum dwp_v2_section_ids
649 {
650 DW_SECT_MIN = 1
651 };
652
653 /* Data for one DWO file.
654
655 This includes virtual DWO files (a virtual DWO file is a DWO file as it
656 appears in a DWP file). DWP files don't really have DWO files per se -
657 comdat folding of types "loses" the DWO file they came from, and from
658 a high level view DWP files appear to contain a mass of random types.
659 However, to maintain consistency with the non-DWP case we pretend DWP
660 files contain virtual DWO files, and we assign each TU with one virtual
661 DWO file (generally based on the line and abbrev section offsets -
662 a heuristic that seems to work in practice). */
663
664 struct dwo_file
665 {
666 dwo_file () = default;
667 DISABLE_COPY_AND_ASSIGN (dwo_file);
668
669 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
670 For virtual DWO files the name is constructed from the section offsets
671 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
672 from related CU+TUs. */
673 const char *dwo_name = nullptr;
674
675 /* The DW_AT_comp_dir attribute. */
676 const char *comp_dir = nullptr;
677
678 /* The bfd, when the file is open. Otherwise this is NULL.
679 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
680 gdb_bfd_ref_ptr dbfd;
681
682 /* The sections that make up this DWO file.
683 Remember that for virtual DWO files in DWP V2, these are virtual
684 sections (for lack of a better name). */
685 struct dwo_sections sections {};
686
687 /* The CUs in the file.
688 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
689 an extension to handle LLVM's Link Time Optimization output (where
690 multiple source files may be compiled into a single object/dwo pair). */
691 htab_up cus;
692
693 /* Table of TUs in the file.
694 Each element is a struct dwo_unit. */
695 htab_up tus;
696 };
697
698 /* These sections are what may appear in a DWP file. */
699
700 struct dwp_sections
701 {
702 /* These are used by both DWP version 1 and 2. */
703 struct dwarf2_section_info str;
704 struct dwarf2_section_info cu_index;
705 struct dwarf2_section_info tu_index;
706
707 /* These are only used by DWP version 2 files.
708 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
709 sections are referenced by section number, and are not recorded here.
710 In DWP version 2 there is at most one copy of all these sections, each
711 section being (effectively) comprised of the concatenation of all of the
712 individual sections that exist in the version 1 format.
713 To keep the code simple we treat each of these concatenated pieces as a
714 section itself (a virtual section?). */
715 struct dwarf2_section_info abbrev;
716 struct dwarf2_section_info info;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str_offsets;
722 struct dwarf2_section_info types;
723 };
724
725 /* These sections are what may appear in a virtual DWO file in DWP version 1.
726 A virtual DWO file is a DWO file as it appears in a DWP file. */
727
728 struct virtual_v1_dwo_sections
729 {
730 struct dwarf2_section_info abbrev;
731 struct dwarf2_section_info line;
732 struct dwarf2_section_info loc;
733 struct dwarf2_section_info macinfo;
734 struct dwarf2_section_info macro;
735 struct dwarf2_section_info str_offsets;
736 /* Each DWP hash table entry records one CU or one TU.
737 That is recorded here, and copied to dwo_unit.section. */
738 struct dwarf2_section_info info_or_types;
739 };
740
741 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
742 In version 2, the sections of the DWO files are concatenated together
743 and stored in one section of that name. Thus each ELF section contains
744 several "virtual" sections. */
745
746 struct virtual_v2_dwo_sections
747 {
748 bfd_size_type abbrev_offset;
749 bfd_size_type abbrev_size;
750
751 bfd_size_type line_offset;
752 bfd_size_type line_size;
753
754 bfd_size_type loc_offset;
755 bfd_size_type loc_size;
756
757 bfd_size_type macinfo_offset;
758 bfd_size_type macinfo_size;
759
760 bfd_size_type macro_offset;
761 bfd_size_type macro_size;
762
763 bfd_size_type str_offsets_offset;
764 bfd_size_type str_offsets_size;
765
766 /* Each DWP hash table entry records one CU or one TU.
767 That is recorded here, and copied to dwo_unit.section. */
768 bfd_size_type info_or_types_offset;
769 bfd_size_type info_or_types_size;
770 };
771
772 /* Contents of DWP hash tables. */
773
774 struct dwp_hash_table
775 {
776 uint32_t version, nr_columns;
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table;
779 union
780 {
781 struct
782 {
783 const gdb_byte *indices;
784 } v1;
785 struct
786 {
787 /* This is indexed by column number and gives the id of the section
788 in that column. */
789 #define MAX_NR_V2_DWO_SECTIONS \
790 (1 /* .debug_info or .debug_types */ \
791 + 1 /* .debug_abbrev */ \
792 + 1 /* .debug_line */ \
793 + 1 /* .debug_loc */ \
794 + 1 /* .debug_str_offsets */ \
795 + 1 /* .debug_macro or .debug_macinfo */)
796 int section_ids[MAX_NR_V2_DWO_SECTIONS];
797 const gdb_byte *offsets;
798 const gdb_byte *sizes;
799 } v2;
800 } section_pool;
801 };
802
803 /* Data for one DWP file. */
804
805 struct dwp_file
806 {
807 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
808 : name (name_),
809 dbfd (std::move (abfd))
810 {
811 }
812
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version = 0;
818
819 /* The bfd. */
820 gdb_bfd_ref_ptr dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections {};
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus = nullptr;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus = nullptr;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_up loaded_cus;
833 htab_up loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections = 0;
838 asection **elf_sections = nullptr;
839 };
840
841 /* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
844 struct exists to abstract away the constant parameters of die reading. */
845
846 struct die_reader_specs
847 {
848 /* The bfd of die_section. */
849 bfd* abfd;
850
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
853
854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
855 struct dwo_file *dwo_file;
856
857 /* The section the die comes from.
858 This is either .debug_info or .debug_types, or the .dwo variants. */
859 struct dwarf2_section_info *die_section;
860
861 /* die_section->buffer. */
862 const gdb_byte *buffer;
863
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
866
867 /* The abbreviation table to use when reading the DIEs. */
868 struct abbrev_table *abbrev_table;
869 };
870
871 /* A subclass of die_reader_specs that holds storage and has complex
872 constructor and destructor behavior. */
873
874 class cutu_reader : public die_reader_specs
875 {
876 public:
877
878 cutu_reader (struct dwarf2_per_cu_data *this_cu,
879 struct abbrev_table *abbrev_table,
880 int use_existing_cu,
881 bool skip_partial);
882
883 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
884 struct dwarf2_cu *parent_cu = nullptr,
885 struct dwo_file *dwo_file = nullptr);
886
887 DISABLE_COPY_AND_ASSIGN (cutu_reader);
888
889 const gdb_byte *info_ptr = nullptr;
890 struct die_info *comp_unit_die = nullptr;
891 bool dummy_p = false;
892
893 /* Release the new CU, putting it on the chain. This cannot be done
894 for dummy CUs. */
895 void keep ();
896
897 private:
898 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
899 int use_existing_cu);
900
901 struct dwarf2_per_cu_data *m_this_cu;
902 std::unique_ptr<dwarf2_cu> m_new_cu;
903
904 /* The ordinary abbreviation table. */
905 abbrev_table_up m_abbrev_table_holder;
906
907 /* The DWO abbreviation table. */
908 abbrev_table_up m_dwo_abbrev_table;
909 };
910
911 /* When we construct a partial symbol table entry we only
912 need this much information. */
913 struct partial_die_info : public allocate_on_obstack
914 {
915 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
916
917 /* Disable assign but still keep copy ctor, which is needed
918 load_partial_dies. */
919 partial_die_info& operator=(const partial_die_info& rhs) = delete;
920
921 /* Adjust the partial die before generating a symbol for it. This
922 function may set the is_external flag or change the DIE's
923 name. */
924 void fixup (struct dwarf2_cu *cu);
925
926 /* Read a minimal amount of information into the minimal die
927 structure. */
928 const gdb_byte *read (const struct die_reader_specs *reader,
929 const struct abbrev_info &abbrev,
930 const gdb_byte *info_ptr);
931
932 /* Offset of this DIE. */
933 const sect_offset sect_off;
934
935 /* DWARF-2 tag for this DIE. */
936 const ENUM_BITFIELD(dwarf_tag) tag : 16;
937
938 /* Assorted flags describing the data found in this DIE. */
939 const unsigned int has_children : 1;
940
941 unsigned int is_external : 1;
942 unsigned int is_declaration : 1;
943 unsigned int has_type : 1;
944 unsigned int has_specification : 1;
945 unsigned int has_pc_info : 1;
946 unsigned int may_be_inlined : 1;
947
948 /* This DIE has been marked DW_AT_main_subprogram. */
949 unsigned int main_subprogram : 1;
950
951 /* Flag set if the SCOPE field of this structure has been
952 computed. */
953 unsigned int scope_set : 1;
954
955 /* Flag set if the DIE has a byte_size attribute. */
956 unsigned int has_byte_size : 1;
957
958 /* Flag set if the DIE has a DW_AT_const_value attribute. */
959 unsigned int has_const_value : 1;
960
961 /* Flag set if any of the DIE's children are template arguments. */
962 unsigned int has_template_arguments : 1;
963
964 /* Flag set if fixup has been called on this die. */
965 unsigned int fixup_called : 1;
966
967 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
968 unsigned int is_dwz : 1;
969
970 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
971 unsigned int spec_is_dwz : 1;
972
973 /* The name of this DIE. Normally the value of DW_AT_name, but
974 sometimes a default name for unnamed DIEs. */
975 const char *name = nullptr;
976
977 /* The linkage name, if present. */
978 const char *linkage_name = nullptr;
979
980 /* The scope to prepend to our children. This is generally
981 allocated on the comp_unit_obstack, so will disappear
982 when this compilation unit leaves the cache. */
983 const char *scope = nullptr;
984
985 /* Some data associated with the partial DIE. The tag determines
986 which field is live. */
987 union
988 {
989 /* The location description associated with this DIE, if any. */
990 struct dwarf_block *locdesc;
991 /* The offset of an import, for DW_TAG_imported_unit. */
992 sect_offset sect_off;
993 } d {};
994
995 /* If HAS_PC_INFO, the PC range associated with this DIE. */
996 CORE_ADDR lowpc = 0;
997 CORE_ADDR highpc = 0;
998
999 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1000 DW_AT_sibling, if any. */
1001 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1002 could return DW_AT_sibling values to its caller load_partial_dies. */
1003 const gdb_byte *sibling = nullptr;
1004
1005 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1006 DW_AT_specification (or DW_AT_abstract_origin or
1007 DW_AT_extension). */
1008 sect_offset spec_offset {};
1009
1010 /* Pointers to this DIE's parent, first child, and next sibling,
1011 if any. */
1012 struct partial_die_info *die_parent = nullptr;
1013 struct partial_die_info *die_child = nullptr;
1014 struct partial_die_info *die_sibling = nullptr;
1015
1016 friend struct partial_die_info *
1017 dwarf2_cu::find_partial_die (sect_offset sect_off);
1018
1019 private:
1020 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1021 partial_die_info (sect_offset sect_off)
1022 : partial_die_info (sect_off, DW_TAG_padding, 0)
1023 {
1024 }
1025
1026 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1027 int has_children_)
1028 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1029 {
1030 is_external = 0;
1031 is_declaration = 0;
1032 has_type = 0;
1033 has_specification = 0;
1034 has_pc_info = 0;
1035 may_be_inlined = 0;
1036 main_subprogram = 0;
1037 scope_set = 0;
1038 has_byte_size = 0;
1039 has_const_value = 0;
1040 has_template_arguments = 0;
1041 fixup_called = 0;
1042 is_dwz = 0;
1043 spec_is_dwz = 0;
1044 }
1045 };
1046
1047 /* This data structure holds a complete die structure. */
1048 struct die_info
1049 {
1050 /* DWARF-2 tag for this DIE. */
1051 ENUM_BITFIELD(dwarf_tag) tag : 16;
1052
1053 /* Number of attributes */
1054 unsigned char num_attrs;
1055
1056 /* True if we're presently building the full type name for the
1057 type derived from this DIE. */
1058 unsigned char building_fullname : 1;
1059
1060 /* True if this die is in process. PR 16581. */
1061 unsigned char in_process : 1;
1062
1063 /* True if this DIE has children. */
1064 unsigned char has_children : 1;
1065
1066 /* Abbrev number */
1067 unsigned int abbrev;
1068
1069 /* Offset in .debug_info or .debug_types section. */
1070 sect_offset sect_off;
1071
1072 /* The dies in a compilation unit form an n-ary tree. PARENT
1073 points to this die's parent; CHILD points to the first child of
1074 this node; and all the children of a given node are chained
1075 together via their SIBLING fields. */
1076 struct die_info *child; /* Its first child, if any. */
1077 struct die_info *sibling; /* Its next sibling, if any. */
1078 struct die_info *parent; /* Its parent, if any. */
1079
1080 /* An array of attributes, with NUM_ATTRS elements. There may be
1081 zero, but it's not common and zero-sized arrays are not
1082 sufficiently portable C. */
1083 struct attribute attrs[1];
1084 };
1085
1086 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1087 but this would require a corresponding change in unpack_field_as_long
1088 and friends. */
1089 static int bits_per_byte = 8;
1090
1091 /* When reading a variant or variant part, we track a bit more
1092 information about the field, and store it in an object of this
1093 type. */
1094
1095 struct variant_field
1096 {
1097 /* If we see a DW_TAG_variant, then this will be the discriminant
1098 value. */
1099 ULONGEST discriminant_value;
1100 /* If we see a DW_TAG_variant, then this will be set if this is the
1101 default branch. */
1102 bool default_branch;
1103 /* While reading a DW_TAG_variant_part, this will be set if this
1104 field is the discriminant. */
1105 bool is_discriminant;
1106 };
1107
1108 struct nextfield
1109 {
1110 int accessibility = 0;
1111 int virtuality = 0;
1112 /* Extra information to describe a variant or variant part. */
1113 struct variant_field variant {};
1114 struct field field {};
1115 };
1116
1117 struct fnfieldlist
1118 {
1119 const char *name = nullptr;
1120 std::vector<struct fn_field> fnfields;
1121 };
1122
1123 /* The routines that read and process dies for a C struct or C++ class
1124 pass lists of data member fields and lists of member function fields
1125 in an instance of a field_info structure, as defined below. */
1126 struct field_info
1127 {
1128 /* List of data member and baseclasses fields. */
1129 std::vector<struct nextfield> fields;
1130 std::vector<struct nextfield> baseclasses;
1131
1132 /* Number of fields (including baseclasses). */
1133 int nfields = 0;
1134
1135 /* Set if the accessibility of one of the fields is not public. */
1136 int non_public_fields = 0;
1137
1138 /* Member function fieldlist array, contains name of possibly overloaded
1139 member function, number of overloaded member functions and a pointer
1140 to the head of the member function field chain. */
1141 std::vector<struct fnfieldlist> fnfieldlists;
1142
1143 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1144 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1145 std::vector<struct decl_field> typedef_field_list;
1146
1147 /* Nested types defined by this class and the number of elements in this
1148 list. */
1149 std::vector<struct decl_field> nested_types_list;
1150 };
1151
1152 /* Loaded secondary compilation units are kept in memory until they
1153 have not been referenced for the processing of this many
1154 compilation units. Set this to zero to disable caching. Cache
1155 sizes of up to at least twenty will improve startup time for
1156 typical inter-CU-reference binaries, at an obvious memory cost. */
1157 static int dwarf_max_cache_age = 5;
1158 static void
1159 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1160 struct cmd_list_element *c, const char *value)
1161 {
1162 fprintf_filtered (file, _("The upper bound on the age of cached "
1163 "DWARF compilation units is %s.\n"),
1164 value);
1165 }
1166 \f
1167 /* local function prototypes */
1168
1169 static void dwarf2_find_base_address (struct die_info *die,
1170 struct dwarf2_cu *cu);
1171
1172 static dwarf2_psymtab *create_partial_symtab
1173 (struct dwarf2_per_cu_data *per_cu, const char *name);
1174
1175 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1176 const gdb_byte *info_ptr,
1177 struct die_info *type_unit_die);
1178
1179 static void dwarf2_build_psymtabs_hard
1180 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1181
1182 static void scan_partial_symbols (struct partial_die_info *,
1183 CORE_ADDR *, CORE_ADDR *,
1184 int, struct dwarf2_cu *);
1185
1186 static void add_partial_symbol (struct partial_die_info *,
1187 struct dwarf2_cu *);
1188
1189 static void add_partial_namespace (struct partial_die_info *pdi,
1190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1191 int set_addrmap, struct dwarf2_cu *cu);
1192
1193 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1194 CORE_ADDR *highpc, int set_addrmap,
1195 struct dwarf2_cu *cu);
1196
1197 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1198 struct dwarf2_cu *cu);
1199
1200 static void add_partial_subprogram (struct partial_die_info *pdi,
1201 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1202 int need_pc, struct dwarf2_cu *cu);
1203
1204 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1205
1206 static struct partial_die_info *load_partial_dies
1207 (const struct die_reader_specs *, const gdb_byte *, int);
1208
1209 /* A pair of partial_die_info and compilation unit. */
1210 struct cu_partial_die_info
1211 {
1212 /* The compilation unit of the partial_die_info. */
1213 struct dwarf2_cu *cu;
1214 /* A partial_die_info. */
1215 struct partial_die_info *pdi;
1216
1217 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1218 : cu (cu),
1219 pdi (pdi)
1220 { /* Nothing. */ }
1221
1222 private:
1223 cu_partial_die_info () = delete;
1224 };
1225
1226 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1227 struct dwarf2_cu *);
1228
1229 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1230 struct attribute *, struct attr_abbrev *,
1231 const gdb_byte *, bool *need_reprocess);
1232
1233 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1234 struct attribute *attr);
1235
1236 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1237
1238 static LONGEST read_checked_initial_length_and_offset
1239 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1240 unsigned int *, unsigned int *);
1241
1242 static sect_offset read_abbrev_offset
1243 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1244 struct dwarf2_section_info *, sect_offset);
1245
1246 static const char *read_indirect_string
1247 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1248 const struct comp_unit_head *, unsigned int *);
1249
1250 static const char *read_indirect_line_string
1251 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1252 const struct comp_unit_head *, unsigned int *);
1253
1254 static const char *read_indirect_string_at_offset
1255 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1256 LONGEST str_offset);
1257
1258 static const char *read_indirect_string_from_dwz
1259 (struct objfile *objfile, struct dwz_file *, LONGEST);
1260
1261 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1262 const gdb_byte *,
1263 unsigned int *);
1264
1265 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1266 ULONGEST str_index);
1267
1268 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1269 ULONGEST str_index);
1270
1271 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1272
1273 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1274 struct dwarf2_cu *);
1275
1276 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1277 unsigned int);
1278
1279 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1280 struct dwarf2_cu *cu);
1281
1282 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1283
1284 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1285 struct dwarf2_cu *cu);
1286
1287 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1288
1289 static struct die_info *die_specification (struct die_info *die,
1290 struct dwarf2_cu **);
1291
1292 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1293 struct dwarf2_cu *cu);
1294
1295 static void dwarf_decode_lines (struct line_header *, const char *,
1296 struct dwarf2_cu *, dwarf2_psymtab *,
1297 CORE_ADDR, int decode_mapping);
1298
1299 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1300 const char *);
1301
1302 static struct symbol *new_symbol (struct die_info *, struct type *,
1303 struct dwarf2_cu *, struct symbol * = NULL);
1304
1305 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1306 struct dwarf2_cu *);
1307
1308 static void dwarf2_const_value_attr (const struct attribute *attr,
1309 struct type *type,
1310 const char *name,
1311 struct obstack *obstack,
1312 struct dwarf2_cu *cu, LONGEST *value,
1313 const gdb_byte **bytes,
1314 struct dwarf2_locexpr_baton **baton);
1315
1316 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1317
1318 static int need_gnat_info (struct dwarf2_cu *);
1319
1320 static struct type *die_descriptive_type (struct die_info *,
1321 struct dwarf2_cu *);
1322
1323 static void set_descriptive_type (struct type *, struct die_info *,
1324 struct dwarf2_cu *);
1325
1326 static struct type *die_containing_type (struct die_info *,
1327 struct dwarf2_cu *);
1328
1329 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1330 struct dwarf2_cu *);
1331
1332 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1333
1334 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1335
1336 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1337
1338 static char *typename_concat (struct obstack *obs, const char *prefix,
1339 const char *suffix, int physname,
1340 struct dwarf2_cu *cu);
1341
1342 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1343
1344 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1345
1346 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1347
1348 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1349
1350 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1351
1352 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1353
1354 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1355 struct dwarf2_cu *, dwarf2_psymtab *);
1356
1357 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1358 values. Keep the items ordered with increasing constraints compliance. */
1359 enum pc_bounds_kind
1360 {
1361 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1362 PC_BOUNDS_NOT_PRESENT,
1363
1364 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1365 were present but they do not form a valid range of PC addresses. */
1366 PC_BOUNDS_INVALID,
1367
1368 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1369 PC_BOUNDS_RANGES,
1370
1371 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1372 PC_BOUNDS_HIGH_LOW,
1373 };
1374
1375 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1376 CORE_ADDR *, CORE_ADDR *,
1377 struct dwarf2_cu *,
1378 dwarf2_psymtab *);
1379
1380 static void get_scope_pc_bounds (struct die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 struct dwarf2_cu *);
1383
1384 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1385 CORE_ADDR, struct dwarf2_cu *);
1386
1387 static void dwarf2_add_field (struct field_info *, struct die_info *,
1388 struct dwarf2_cu *);
1389
1390 static void dwarf2_attach_fields_to_type (struct field_info *,
1391 struct type *, struct dwarf2_cu *);
1392
1393 static void dwarf2_add_member_fn (struct field_info *,
1394 struct die_info *, struct type *,
1395 struct dwarf2_cu *);
1396
1397 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1398 struct type *,
1399 struct dwarf2_cu *);
1400
1401 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1402
1403 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1404
1405 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1406
1407 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1408
1409 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1410
1411 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1412
1413 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1414
1415 static struct type *read_module_type (struct die_info *die,
1416 struct dwarf2_cu *cu);
1417
1418 static const char *namespace_name (struct die_info *die,
1419 int *is_anonymous, struct dwarf2_cu *);
1420
1421 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1422
1423 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1424
1425 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1426 struct dwarf2_cu *);
1427
1428 static struct die_info *read_die_and_siblings_1
1429 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1430 struct die_info *);
1431
1432 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1433 const gdb_byte *info_ptr,
1434 const gdb_byte **new_info_ptr,
1435 struct die_info *parent);
1436
1437 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1438 struct die_info **, const gdb_byte *,
1439 int);
1440
1441 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1442 struct die_info **, const gdb_byte *);
1443
1444 static void process_die (struct die_info *, struct dwarf2_cu *);
1445
1446 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1447 struct obstack *);
1448
1449 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1450
1451 static const char *dwarf2_full_name (const char *name,
1452 struct die_info *die,
1453 struct dwarf2_cu *cu);
1454
1455 static const char *dwarf2_physname (const char *name, struct die_info *die,
1456 struct dwarf2_cu *cu);
1457
1458 static struct die_info *dwarf2_extension (struct die_info *die,
1459 struct dwarf2_cu **);
1460
1461 static const char *dwarf_tag_name (unsigned int);
1462
1463 static const char *dwarf_attr_name (unsigned int);
1464
1465 static const char *dwarf_form_name (unsigned int);
1466
1467 static const char *dwarf_bool_name (unsigned int);
1468
1469 static const char *dwarf_type_encoding_name (unsigned int);
1470
1471 static struct die_info *sibling_die (struct die_info *);
1472
1473 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1474
1475 static void dump_die_for_error (struct die_info *);
1476
1477 static void dump_die_1 (struct ui_file *, int level, int max_level,
1478 struct die_info *);
1479
1480 /*static*/ void dump_die (struct die_info *, int max_level);
1481
1482 static void store_in_ref_table (struct die_info *,
1483 struct dwarf2_cu *);
1484
1485 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1486
1487 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1682 {
1683 complaint (_("statement list doesn't fit in .debug_line section"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_file_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line data without a file"));
1690 }
1691
1692 static void
1693 dwarf2_debug_line_missing_end_sequence_complaint (void)
1694 {
1695 complaint (_(".debug_line section has line "
1696 "program sequence without an end"));
1697 }
1698
1699 static void
1700 dwarf2_complex_location_expr_complaint (void)
1701 {
1702 complaint (_("location expression too complex"));
1703 }
1704
1705 static void
1706 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1707 int arg3)
1708 {
1709 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1710 arg1, arg2, arg3);
1711 }
1712
1713 static void
1714 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1715 {
1716 complaint (_("debug info runs off end of %s section"
1717 " [in module %s]"),
1718 section->get_name (),
1719 section->get_file_name ());
1720 }
1721
1722 static void
1723 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1724 {
1725 complaint (_("macro debug info contains a "
1726 "malformed macro definition:\n`%s'"),
1727 arg1);
1728 }
1729
1730 static void
1731 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1732 {
1733 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1734 arg1, arg2);
1735 }
1736
1737 /* Hash function for line_header_hash. */
1738
1739 static hashval_t
1740 line_header_hash (const struct line_header *ofs)
1741 {
1742 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1743 }
1744
1745 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1746
1747 static hashval_t
1748 line_header_hash_voidp (const void *item)
1749 {
1750 const struct line_header *ofs = (const struct line_header *) item;
1751
1752 return line_header_hash (ofs);
1753 }
1754
1755 /* Equality function for line_header_hash. */
1756
1757 static int
1758 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1759 {
1760 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1761 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1762
1763 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1764 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1765 }
1766
1767 \f
1768
1769 /* See declaration. */
1770
1771 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1772 const dwarf2_debug_sections *names,
1773 bool can_copy_)
1774 : objfile (objfile_),
1775 can_copy (can_copy_)
1776 {
1777 if (names == NULL)
1778 names = &dwarf2_elf_names;
1779
1780 bfd *obfd = objfile->obfd;
1781
1782 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1783 locate_sections (obfd, sec, *names);
1784 }
1785
1786 dwarf2_per_objfile::~dwarf2_per_objfile ()
1787 {
1788 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1789 free_cached_comp_units ();
1790
1791 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1792 per_cu->imported_symtabs_free ();
1793
1794 for (signatured_type *sig_type : all_type_units)
1795 sig_type->per_cu.imported_symtabs_free ();
1796
1797 /* Everything else should be on the objfile obstack. */
1798 }
1799
1800 /* See declaration. */
1801
1802 void
1803 dwarf2_per_objfile::free_cached_comp_units ()
1804 {
1805 dwarf2_per_cu_data *per_cu = read_in_chain;
1806 dwarf2_per_cu_data **last_chain = &read_in_chain;
1807 while (per_cu != NULL)
1808 {
1809 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1810
1811 delete per_cu->cu;
1812 *last_chain = next_cu;
1813 per_cu = next_cu;
1814 }
1815 }
1816
1817 /* A helper class that calls free_cached_comp_units on
1818 destruction. */
1819
1820 class free_cached_comp_units
1821 {
1822 public:
1823
1824 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1825 : m_per_objfile (per_objfile)
1826 {
1827 }
1828
1829 ~free_cached_comp_units ()
1830 {
1831 m_per_objfile->free_cached_comp_units ();
1832 }
1833
1834 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1835
1836 private:
1837
1838 dwarf2_per_objfile *m_per_objfile;
1839 };
1840
1841 /* Try to locate the sections we need for DWARF 2 debugging
1842 information and return true if we have enough to do something.
1843 NAMES points to the dwarf2 section names, or is NULL if the standard
1844 ELF names are used. CAN_COPY is true for formats where symbol
1845 interposition is possible and so symbol values must follow copy
1846 relocation rules. */
1847
1848 int
1849 dwarf2_has_info (struct objfile *objfile,
1850 const struct dwarf2_debug_sections *names,
1851 bool can_copy)
1852 {
1853 if (objfile->flags & OBJF_READNEVER)
1854 return 0;
1855
1856 struct dwarf2_per_objfile *dwarf2_per_objfile
1857 = get_dwarf2_per_objfile (objfile);
1858
1859 if (dwarf2_per_objfile == NULL)
1860 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1861 names,
1862 can_copy);
1863
1864 return (!dwarf2_per_objfile->info.is_virtual
1865 && dwarf2_per_objfile->info.s.section != NULL
1866 && !dwarf2_per_objfile->abbrev.is_virtual
1867 && dwarf2_per_objfile->abbrev.s.section != NULL);
1868 }
1869
1870 /* When loading sections, we look either for uncompressed section or for
1871 compressed section names. */
1872
1873 static int
1874 section_is_p (const char *section_name,
1875 const struct dwarf2_section_names *names)
1876 {
1877 if (names->normal != NULL
1878 && strcmp (section_name, names->normal) == 0)
1879 return 1;
1880 if (names->compressed != NULL
1881 && strcmp (section_name, names->compressed) == 0)
1882 return 1;
1883 return 0;
1884 }
1885
1886 /* See declaration. */
1887
1888 void
1889 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1890 const dwarf2_debug_sections &names)
1891 {
1892 flagword aflag = bfd_section_flags (sectp);
1893
1894 if ((aflag & SEC_HAS_CONTENTS) == 0)
1895 {
1896 }
1897 else if (elf_section_data (sectp)->this_hdr.sh_size
1898 > bfd_get_file_size (abfd))
1899 {
1900 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1901 warning (_("Discarding section %s which has a section size (%s"
1902 ") larger than the file size [in module %s]"),
1903 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1904 bfd_get_filename (abfd));
1905 }
1906 else if (section_is_p (sectp->name, &names.info))
1907 {
1908 this->info.s.section = sectp;
1909 this->info.size = bfd_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names.abbrev))
1912 {
1913 this->abbrev.s.section = sectp;
1914 this->abbrev.size = bfd_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names.line))
1917 {
1918 this->line.s.section = sectp;
1919 this->line.size = bfd_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names.loc))
1922 {
1923 this->loc.s.section = sectp;
1924 this->loc.size = bfd_section_size (sectp);
1925 }
1926 else if (section_is_p (sectp->name, &names.loclists))
1927 {
1928 this->loclists.s.section = sectp;
1929 this->loclists.size = bfd_section_size (sectp);
1930 }
1931 else if (section_is_p (sectp->name, &names.macinfo))
1932 {
1933 this->macinfo.s.section = sectp;
1934 this->macinfo.size = bfd_section_size (sectp);
1935 }
1936 else if (section_is_p (sectp->name, &names.macro))
1937 {
1938 this->macro.s.section = sectp;
1939 this->macro.size = bfd_section_size (sectp);
1940 }
1941 else if (section_is_p (sectp->name, &names.str))
1942 {
1943 this->str.s.section = sectp;
1944 this->str.size = bfd_section_size (sectp);
1945 }
1946 else if (section_is_p (sectp->name, &names.str_offsets))
1947 {
1948 this->str_offsets.s.section = sectp;
1949 this->str_offsets.size = bfd_section_size (sectp);
1950 }
1951 else if (section_is_p (sectp->name, &names.line_str))
1952 {
1953 this->line_str.s.section = sectp;
1954 this->line_str.size = bfd_section_size (sectp);
1955 }
1956 else if (section_is_p (sectp->name, &names.addr))
1957 {
1958 this->addr.s.section = sectp;
1959 this->addr.size = bfd_section_size (sectp);
1960 }
1961 else if (section_is_p (sectp->name, &names.frame))
1962 {
1963 this->frame.s.section = sectp;
1964 this->frame.size = bfd_section_size (sectp);
1965 }
1966 else if (section_is_p (sectp->name, &names.eh_frame))
1967 {
1968 this->eh_frame.s.section = sectp;
1969 this->eh_frame.size = bfd_section_size (sectp);
1970 }
1971 else if (section_is_p (sectp->name, &names.ranges))
1972 {
1973 this->ranges.s.section = sectp;
1974 this->ranges.size = bfd_section_size (sectp);
1975 }
1976 else if (section_is_p (sectp->name, &names.rnglists))
1977 {
1978 this->rnglists.s.section = sectp;
1979 this->rnglists.size = bfd_section_size (sectp);
1980 }
1981 else if (section_is_p (sectp->name, &names.types))
1982 {
1983 struct dwarf2_section_info type_section;
1984
1985 memset (&type_section, 0, sizeof (type_section));
1986 type_section.s.section = sectp;
1987 type_section.size = bfd_section_size (sectp);
1988
1989 this->types.push_back (type_section);
1990 }
1991 else if (section_is_p (sectp->name, &names.gdb_index))
1992 {
1993 this->gdb_index.s.section = sectp;
1994 this->gdb_index.size = bfd_section_size (sectp);
1995 }
1996 else if (section_is_p (sectp->name, &names.debug_names))
1997 {
1998 this->debug_names.s.section = sectp;
1999 this->debug_names.size = bfd_section_size (sectp);
2000 }
2001 else if (section_is_p (sectp->name, &names.debug_aranges))
2002 {
2003 this->debug_aranges.s.section = sectp;
2004 this->debug_aranges.size = bfd_section_size (sectp);
2005 }
2006
2007 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2008 && bfd_section_vma (sectp) == 0)
2009 this->has_section_at_zero = true;
2010 }
2011
2012 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2013 SECTION_NAME. */
2014
2015 void
2016 dwarf2_get_section_info (struct objfile *objfile,
2017 enum dwarf2_section_enum sect,
2018 asection **sectp, const gdb_byte **bufp,
2019 bfd_size_type *sizep)
2020 {
2021 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2022 struct dwarf2_section_info *info;
2023
2024 /* We may see an objfile without any DWARF, in which case we just
2025 return nothing. */
2026 if (data == NULL)
2027 {
2028 *sectp = NULL;
2029 *bufp = NULL;
2030 *sizep = 0;
2031 return;
2032 }
2033 switch (sect)
2034 {
2035 case DWARF2_DEBUG_FRAME:
2036 info = &data->frame;
2037 break;
2038 case DWARF2_EH_FRAME:
2039 info = &data->eh_frame;
2040 break;
2041 default:
2042 gdb_assert_not_reached ("unexpected section");
2043 }
2044
2045 info->read (objfile);
2046
2047 *sectp = info->get_bfd_section ();
2048 *bufp = info->buffer;
2049 *sizep = info->size;
2050 }
2051
2052 /* A helper function to find the sections for a .dwz file. */
2053
2054 static void
2055 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2056 {
2057 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2058
2059 /* Note that we only support the standard ELF names, because .dwz
2060 is ELF-only (at the time of writing). */
2061 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2062 {
2063 dwz_file->abbrev.s.section = sectp;
2064 dwz_file->abbrev.size = bfd_section_size (sectp);
2065 }
2066 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2067 {
2068 dwz_file->info.s.section = sectp;
2069 dwz_file->info.size = bfd_section_size (sectp);
2070 }
2071 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2072 {
2073 dwz_file->str.s.section = sectp;
2074 dwz_file->str.size = bfd_section_size (sectp);
2075 }
2076 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2077 {
2078 dwz_file->line.s.section = sectp;
2079 dwz_file->line.size = bfd_section_size (sectp);
2080 }
2081 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2082 {
2083 dwz_file->macro.s.section = sectp;
2084 dwz_file->macro.size = bfd_section_size (sectp);
2085 }
2086 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2087 {
2088 dwz_file->gdb_index.s.section = sectp;
2089 dwz_file->gdb_index.size = bfd_section_size (sectp);
2090 }
2091 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2092 {
2093 dwz_file->debug_names.s.section = sectp;
2094 dwz_file->debug_names.size = bfd_section_size (sectp);
2095 }
2096 }
2097
2098 /* See dwarf2read.h. */
2099
2100 struct dwz_file *
2101 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2102 {
2103 const char *filename;
2104 bfd_size_type buildid_len_arg;
2105 size_t buildid_len;
2106 bfd_byte *buildid;
2107
2108 if (dwarf2_per_objfile->dwz_file != NULL)
2109 return dwarf2_per_objfile->dwz_file.get ();
2110
2111 bfd_set_error (bfd_error_no_error);
2112 gdb::unique_xmalloc_ptr<char> data
2113 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2114 &buildid_len_arg, &buildid));
2115 if (data == NULL)
2116 {
2117 if (bfd_get_error () == bfd_error_no_error)
2118 return NULL;
2119 error (_("could not read '.gnu_debugaltlink' section: %s"),
2120 bfd_errmsg (bfd_get_error ()));
2121 }
2122
2123 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2124
2125 buildid_len = (size_t) buildid_len_arg;
2126
2127 filename = data.get ();
2128
2129 std::string abs_storage;
2130 if (!IS_ABSOLUTE_PATH (filename))
2131 {
2132 gdb::unique_xmalloc_ptr<char> abs
2133 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2134
2135 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2136 filename = abs_storage.c_str ();
2137 }
2138
2139 /* First try the file name given in the section. If that doesn't
2140 work, try to use the build-id instead. */
2141 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2142 if (dwz_bfd != NULL)
2143 {
2144 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2145 dwz_bfd.reset (nullptr);
2146 }
2147
2148 if (dwz_bfd == NULL)
2149 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2150
2151 if (dwz_bfd == nullptr)
2152 {
2153 gdb::unique_xmalloc_ptr<char> alt_filename;
2154 const char *origname = dwarf2_per_objfile->objfile->original_name;
2155
2156 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2157 buildid_len,
2158 origname,
2159 &alt_filename));
2160
2161 if (fd.get () >= 0)
2162 {
2163 /* File successfully retrieved from server. */
2164 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2165
2166 if (dwz_bfd == nullptr)
2167 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2168 alt_filename.get ());
2169 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2170 dwz_bfd.reset (nullptr);
2171 }
2172 }
2173
2174 if (dwz_bfd == NULL)
2175 error (_("could not find '.gnu_debugaltlink' file for %s"),
2176 objfile_name (dwarf2_per_objfile->objfile));
2177
2178 std::unique_ptr<struct dwz_file> result
2179 (new struct dwz_file (std::move (dwz_bfd)));
2180
2181 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2182 result.get ());
2183
2184 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2185 result->dwz_bfd.get ());
2186 dwarf2_per_objfile->dwz_file = std::move (result);
2187 return dwarf2_per_objfile->dwz_file.get ();
2188 }
2189 \f
2190 /* DWARF quick_symbols_functions support. */
2191
2192 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2193 unique line tables, so we maintain a separate table of all .debug_line
2194 derived entries to support the sharing.
2195 All the quick functions need is the list of file names. We discard the
2196 line_header when we're done and don't need to record it here. */
2197 struct quick_file_names
2198 {
2199 /* The data used to construct the hash key. */
2200 struct stmt_list_hash hash;
2201
2202 /* The number of entries in file_names, real_names. */
2203 unsigned int num_file_names;
2204
2205 /* The file names from the line table, after being run through
2206 file_full_name. */
2207 const char **file_names;
2208
2209 /* The file names from the line table after being run through
2210 gdb_realpath. These are computed lazily. */
2211 const char **real_names;
2212 };
2213
2214 /* When using the index (and thus not using psymtabs), each CU has an
2215 object of this type. This is used to hold information needed by
2216 the various "quick" methods. */
2217 struct dwarf2_per_cu_quick_data
2218 {
2219 /* The file table. This can be NULL if there was no file table
2220 or it's currently not read in.
2221 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2222 struct quick_file_names *file_names;
2223
2224 /* The corresponding symbol table. This is NULL if symbols for this
2225 CU have not yet been read. */
2226 struct compunit_symtab *compunit_symtab;
2227
2228 /* A temporary mark bit used when iterating over all CUs in
2229 expand_symtabs_matching. */
2230 unsigned int mark : 1;
2231
2232 /* True if we've tried to read the file table and found there isn't one.
2233 There will be no point in trying to read it again next time. */
2234 unsigned int no_file_data : 1;
2235 };
2236
2237 /* Utility hash function for a stmt_list_hash. */
2238
2239 static hashval_t
2240 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2241 {
2242 hashval_t v = 0;
2243
2244 if (stmt_list_hash->dwo_unit != NULL)
2245 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2246 v += to_underlying (stmt_list_hash->line_sect_off);
2247 return v;
2248 }
2249
2250 /* Utility equality function for a stmt_list_hash. */
2251
2252 static int
2253 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2254 const struct stmt_list_hash *rhs)
2255 {
2256 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2257 return 0;
2258 if (lhs->dwo_unit != NULL
2259 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2260 return 0;
2261
2262 return lhs->line_sect_off == rhs->line_sect_off;
2263 }
2264
2265 /* Hash function for a quick_file_names. */
2266
2267 static hashval_t
2268 hash_file_name_entry (const void *e)
2269 {
2270 const struct quick_file_names *file_data
2271 = (const struct quick_file_names *) e;
2272
2273 return hash_stmt_list_entry (&file_data->hash);
2274 }
2275
2276 /* Equality function for a quick_file_names. */
2277
2278 static int
2279 eq_file_name_entry (const void *a, const void *b)
2280 {
2281 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2282 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2283
2284 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2285 }
2286
2287 /* Delete function for a quick_file_names. */
2288
2289 static void
2290 delete_file_name_entry (void *e)
2291 {
2292 struct quick_file_names *file_data = (struct quick_file_names *) e;
2293 int i;
2294
2295 for (i = 0; i < file_data->num_file_names; ++i)
2296 {
2297 xfree ((void*) file_data->file_names[i]);
2298 if (file_data->real_names)
2299 xfree ((void*) file_data->real_names[i]);
2300 }
2301
2302 /* The space for the struct itself lives on objfile_obstack,
2303 so we don't free it here. */
2304 }
2305
2306 /* Create a quick_file_names hash table. */
2307
2308 static htab_up
2309 create_quick_file_names_table (unsigned int nr_initial_entries)
2310 {
2311 return htab_up (htab_create_alloc (nr_initial_entries,
2312 hash_file_name_entry, eq_file_name_entry,
2313 delete_file_name_entry, xcalloc, xfree));
2314 }
2315
2316 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2317 have to be created afterwards. You should call age_cached_comp_units after
2318 processing PER_CU->CU. dw2_setup must have been already called. */
2319
2320 static void
2321 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2322 {
2323 if (per_cu->is_debug_types)
2324 load_full_type_unit (per_cu);
2325 else
2326 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2327
2328 if (per_cu->cu == NULL)
2329 return; /* Dummy CU. */
2330
2331 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2332 }
2333
2334 /* Read in the symbols for PER_CU. */
2335
2336 static void
2337 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2338 {
2339 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2340
2341 /* Skip type_unit_groups, reading the type units they contain
2342 is handled elsewhere. */
2343 if (per_cu->type_unit_group_p ())
2344 return;
2345
2346 /* The destructor of dwarf2_queue_guard frees any entries left on
2347 the queue. After this point we're guaranteed to leave this function
2348 with the dwarf queue empty. */
2349 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2350
2351 if (dwarf2_per_objfile->using_index
2352 ? per_cu->v.quick->compunit_symtab == NULL
2353 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2354 {
2355 queue_comp_unit (per_cu, language_minimal);
2356 load_cu (per_cu, skip_partial);
2357
2358 /* If we just loaded a CU from a DWO, and we're working with an index
2359 that may badly handle TUs, load all the TUs in that DWO as well.
2360 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2361 if (!per_cu->is_debug_types
2362 && per_cu->cu != NULL
2363 && per_cu->cu->dwo_unit != NULL
2364 && dwarf2_per_objfile->index_table != NULL
2365 && dwarf2_per_objfile->index_table->version <= 7
2366 /* DWP files aren't supported yet. */
2367 && get_dwp_file (dwarf2_per_objfile) == NULL)
2368 queue_and_load_all_dwo_tus (per_cu);
2369 }
2370
2371 process_queue (dwarf2_per_objfile);
2372
2373 /* Age the cache, releasing compilation units that have not
2374 been used recently. */
2375 age_cached_comp_units (dwarf2_per_objfile);
2376 }
2377
2378 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2379 the objfile from which this CU came. Returns the resulting symbol
2380 table. */
2381
2382 static struct compunit_symtab *
2383 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2384 {
2385 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2386
2387 gdb_assert (dwarf2_per_objfile->using_index);
2388 if (!per_cu->v.quick->compunit_symtab)
2389 {
2390 free_cached_comp_units freer (dwarf2_per_objfile);
2391 scoped_restore decrementer = increment_reading_symtab ();
2392 dw2_do_instantiate_symtab (per_cu, skip_partial);
2393 process_cu_includes (dwarf2_per_objfile);
2394 }
2395
2396 return per_cu->v.quick->compunit_symtab;
2397 }
2398
2399 /* See declaration. */
2400
2401 dwarf2_per_cu_data *
2402 dwarf2_per_objfile::get_cutu (int index)
2403 {
2404 if (index >= this->all_comp_units.size ())
2405 {
2406 index -= this->all_comp_units.size ();
2407 gdb_assert (index < this->all_type_units.size ());
2408 return &this->all_type_units[index]->per_cu;
2409 }
2410
2411 return this->all_comp_units[index];
2412 }
2413
2414 /* See declaration. */
2415
2416 dwarf2_per_cu_data *
2417 dwarf2_per_objfile::get_cu (int index)
2418 {
2419 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2420
2421 return this->all_comp_units[index];
2422 }
2423
2424 /* See declaration. */
2425
2426 signatured_type *
2427 dwarf2_per_objfile::get_tu (int index)
2428 {
2429 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2430
2431 return this->all_type_units[index];
2432 }
2433
2434 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2435 objfile_obstack, and constructed with the specified field
2436 values. */
2437
2438 static dwarf2_per_cu_data *
2439 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 struct dwarf2_section_info *section,
2441 int is_dwz,
2442 sect_offset sect_off, ULONGEST length)
2443 {
2444 struct objfile *objfile = dwarf2_per_objfile->objfile;
2445 dwarf2_per_cu_data *the_cu
2446 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2447 struct dwarf2_per_cu_data);
2448 the_cu->sect_off = sect_off;
2449 the_cu->length = length;
2450 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2451 the_cu->section = section;
2452 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2453 struct dwarf2_per_cu_quick_data);
2454 the_cu->is_dwz = is_dwz;
2455 return the_cu;
2456 }
2457
2458 /* A helper for create_cus_from_index that handles a given list of
2459 CUs. */
2460
2461 static void
2462 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2463 const gdb_byte *cu_list, offset_type n_elements,
2464 struct dwarf2_section_info *section,
2465 int is_dwz)
2466 {
2467 for (offset_type i = 0; i < n_elements; i += 2)
2468 {
2469 gdb_static_assert (sizeof (ULONGEST) >= 8);
2470
2471 sect_offset sect_off
2472 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2473 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2474 cu_list += 2 * 8;
2475
2476 dwarf2_per_cu_data *per_cu
2477 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2478 sect_off, length);
2479 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2480 }
2481 }
2482
2483 /* Read the CU list from the mapped index, and use it to create all
2484 the CU objects for this objfile. */
2485
2486 static void
2487 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 const gdb_byte *cu_list, offset_type cu_list_elements,
2489 const gdb_byte *dwz_list, offset_type dwz_elements)
2490 {
2491 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2492 dwarf2_per_objfile->all_comp_units.reserve
2493 ((cu_list_elements + dwz_elements) / 2);
2494
2495 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2496 &dwarf2_per_objfile->info, 0);
2497
2498 if (dwz_elements == 0)
2499 return;
2500
2501 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2502 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2503 &dwz->info, 1);
2504 }
2505
2506 /* Create the signatured type hash table from the index. */
2507
2508 static void
2509 create_signatured_type_table_from_index
2510 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2511 struct dwarf2_section_info *section,
2512 const gdb_byte *bytes,
2513 offset_type elements)
2514 {
2515 struct objfile *objfile = dwarf2_per_objfile->objfile;
2516
2517 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2518 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2519
2520 htab_up sig_types_hash = allocate_signatured_type_table ();
2521
2522 for (offset_type i = 0; i < elements; i += 3)
2523 {
2524 struct signatured_type *sig_type;
2525 ULONGEST signature;
2526 void **slot;
2527 cu_offset type_offset_in_tu;
2528
2529 gdb_static_assert (sizeof (ULONGEST) >= 8);
2530 sect_offset sect_off
2531 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2532 type_offset_in_tu
2533 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2534 BFD_ENDIAN_LITTLE);
2535 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2536 bytes += 3 * 8;
2537
2538 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2539 struct signatured_type);
2540 sig_type->signature = signature;
2541 sig_type->type_offset_in_tu = type_offset_in_tu;
2542 sig_type->per_cu.is_debug_types = 1;
2543 sig_type->per_cu.section = section;
2544 sig_type->per_cu.sect_off = sect_off;
2545 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2546 sig_type->per_cu.v.quick
2547 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2548 struct dwarf2_per_cu_quick_data);
2549
2550 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2551 *slot = sig_type;
2552
2553 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2554 }
2555
2556 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2557 }
2558
2559 /* Create the signatured type hash table from .debug_names. */
2560
2561 static void
2562 create_signatured_type_table_from_debug_names
2563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2564 const mapped_debug_names &map,
2565 struct dwarf2_section_info *section,
2566 struct dwarf2_section_info *abbrev_section)
2567 {
2568 struct objfile *objfile = dwarf2_per_objfile->objfile;
2569
2570 section->read (objfile);
2571 abbrev_section->read (objfile);
2572
2573 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2574 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2575
2576 htab_up sig_types_hash = allocate_signatured_type_table ();
2577
2578 for (uint32_t i = 0; i < map.tu_count; ++i)
2579 {
2580 struct signatured_type *sig_type;
2581 void **slot;
2582
2583 sect_offset sect_off
2584 = (sect_offset) (extract_unsigned_integer
2585 (map.tu_table_reordered + i * map.offset_size,
2586 map.offset_size,
2587 map.dwarf5_byte_order));
2588
2589 comp_unit_head cu_header;
2590 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2591 abbrev_section,
2592 section->buffer + to_underlying (sect_off),
2593 rcuh_kind::TYPE);
2594
2595 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2596 struct signatured_type);
2597 sig_type->signature = cu_header.signature;
2598 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2599 sig_type->per_cu.is_debug_types = 1;
2600 sig_type->per_cu.section = section;
2601 sig_type->per_cu.sect_off = sect_off;
2602 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2603 sig_type->per_cu.v.quick
2604 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2605 struct dwarf2_per_cu_quick_data);
2606
2607 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2608 *slot = sig_type;
2609
2610 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2611 }
2612
2613 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2614 }
2615
2616 /* Read the address map data from the mapped index, and use it to
2617 populate the objfile's psymtabs_addrmap. */
2618
2619 static void
2620 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2621 struct mapped_index *index)
2622 {
2623 struct objfile *objfile = dwarf2_per_objfile->objfile;
2624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2625 const gdb_byte *iter, *end;
2626 struct addrmap *mutable_map;
2627 CORE_ADDR baseaddr;
2628
2629 auto_obstack temp_obstack;
2630
2631 mutable_map = addrmap_create_mutable (&temp_obstack);
2632
2633 iter = index->address_table.data ();
2634 end = iter + index->address_table.size ();
2635
2636 baseaddr = objfile->text_section_offset ();
2637
2638 while (iter < end)
2639 {
2640 ULONGEST hi, lo, cu_index;
2641 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2642 iter += 8;
2643 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2644 iter += 8;
2645 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2646 iter += 4;
2647
2648 if (lo > hi)
2649 {
2650 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2651 hex_string (lo), hex_string (hi));
2652 continue;
2653 }
2654
2655 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2656 {
2657 complaint (_(".gdb_index address table has invalid CU number %u"),
2658 (unsigned) cu_index);
2659 continue;
2660 }
2661
2662 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2663 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2664 addrmap_set_empty (mutable_map, lo, hi - 1,
2665 dwarf2_per_objfile->get_cu (cu_index));
2666 }
2667
2668 objfile->partial_symtabs->psymtabs_addrmap
2669 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2670 }
2671
2672 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2673 populate the objfile's psymtabs_addrmap. */
2674
2675 static void
2676 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2677 struct dwarf2_section_info *section)
2678 {
2679 struct objfile *objfile = dwarf2_per_objfile->objfile;
2680 bfd *abfd = objfile->obfd;
2681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2682 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2683
2684 auto_obstack temp_obstack;
2685 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2686
2687 std::unordered_map<sect_offset,
2688 dwarf2_per_cu_data *,
2689 gdb::hash_enum<sect_offset>>
2690 debug_info_offset_to_per_cu;
2691 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2692 {
2693 const auto insertpair
2694 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2695 if (!insertpair.second)
2696 {
2697 warning (_("Section .debug_aranges in %s has duplicate "
2698 "debug_info_offset %s, ignoring .debug_aranges."),
2699 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2700 return;
2701 }
2702 }
2703
2704 section->read (objfile);
2705
2706 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2707
2708 const gdb_byte *addr = section->buffer;
2709
2710 while (addr < section->buffer + section->size)
2711 {
2712 const gdb_byte *const entry_addr = addr;
2713 unsigned int bytes_read;
2714
2715 const LONGEST entry_length = read_initial_length (abfd, addr,
2716 &bytes_read);
2717 addr += bytes_read;
2718
2719 const gdb_byte *const entry_end = addr + entry_length;
2720 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2721 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2722 if (addr + entry_length > section->buffer + section->size)
2723 {
2724 warning (_("Section .debug_aranges in %s entry at offset %s "
2725 "length %s exceeds section length %s, "
2726 "ignoring .debug_aranges."),
2727 objfile_name (objfile),
2728 plongest (entry_addr - section->buffer),
2729 plongest (bytes_read + entry_length),
2730 pulongest (section->size));
2731 return;
2732 }
2733
2734 /* The version number. */
2735 const uint16_t version = read_2_bytes (abfd, addr);
2736 addr += 2;
2737 if (version != 2)
2738 {
2739 warning (_("Section .debug_aranges in %s entry at offset %s "
2740 "has unsupported version %d, ignoring .debug_aranges."),
2741 objfile_name (objfile),
2742 plongest (entry_addr - section->buffer), version);
2743 return;
2744 }
2745
2746 const uint64_t debug_info_offset
2747 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2748 addr += offset_size;
2749 const auto per_cu_it
2750 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2751 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "debug_info_offset %s does not exists, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 pulongest (debug_info_offset));
2759 return;
2760 }
2761 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2762
2763 const uint8_t address_size = *addr++;
2764 if (address_size < 1 || address_size > 8)
2765 {
2766 warning (_("Section .debug_aranges in %s entry at offset %s "
2767 "address_size %u is invalid, ignoring .debug_aranges."),
2768 objfile_name (objfile),
2769 plongest (entry_addr - section->buffer), address_size);
2770 return;
2771 }
2772
2773 const uint8_t segment_selector_size = *addr++;
2774 if (segment_selector_size != 0)
2775 {
2776 warning (_("Section .debug_aranges in %s entry at offset %s "
2777 "segment_selector_size %u is not supported, "
2778 "ignoring .debug_aranges."),
2779 objfile_name (objfile),
2780 plongest (entry_addr - section->buffer),
2781 segment_selector_size);
2782 return;
2783 }
2784
2785 /* Must pad to an alignment boundary that is twice the address
2786 size. It is undocumented by the DWARF standard but GCC does
2787 use it. */
2788 for (size_t padding = ((-(addr - section->buffer))
2789 & (2 * address_size - 1));
2790 padding > 0; padding--)
2791 if (*addr++ != 0)
2792 {
2793 warning (_("Section .debug_aranges in %s entry at offset %s "
2794 "padding is not zero, ignoring .debug_aranges."),
2795 objfile_name (objfile),
2796 plongest (entry_addr - section->buffer));
2797 return;
2798 }
2799
2800 for (;;)
2801 {
2802 if (addr + 2 * address_size > entry_end)
2803 {
2804 warning (_("Section .debug_aranges in %s entry at offset %s "
2805 "address list is not properly terminated, "
2806 "ignoring .debug_aranges."),
2807 objfile_name (objfile),
2808 plongest (entry_addr - section->buffer));
2809 return;
2810 }
2811 ULONGEST start = extract_unsigned_integer (addr, address_size,
2812 dwarf5_byte_order);
2813 addr += address_size;
2814 ULONGEST length = extract_unsigned_integer (addr, address_size,
2815 dwarf5_byte_order);
2816 addr += address_size;
2817 if (start == 0 && length == 0)
2818 break;
2819 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2820 {
2821 /* Symbol was eliminated due to a COMDAT group. */
2822 continue;
2823 }
2824 ULONGEST end = start + length;
2825 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2826 - baseaddr);
2827 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2828 - baseaddr);
2829 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2830 }
2831 }
2832
2833 objfile->partial_symtabs->psymtabs_addrmap
2834 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2835 }
2836
2837 /* Find a slot in the mapped index INDEX for the object named NAME.
2838 If NAME is found, set *VEC_OUT to point to the CU vector in the
2839 constant pool and return true. If NAME cannot be found, return
2840 false. */
2841
2842 static bool
2843 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2844 offset_type **vec_out)
2845 {
2846 offset_type hash;
2847 offset_type slot, step;
2848 int (*cmp) (const char *, const char *);
2849
2850 gdb::unique_xmalloc_ptr<char> without_params;
2851 if (current_language->la_language == language_cplus
2852 || current_language->la_language == language_fortran
2853 || current_language->la_language == language_d)
2854 {
2855 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2856 not contain any. */
2857
2858 if (strchr (name, '(') != NULL)
2859 {
2860 without_params = cp_remove_params (name);
2861
2862 if (without_params != NULL)
2863 name = without_params.get ();
2864 }
2865 }
2866
2867 /* Index version 4 did not support case insensitive searches. But the
2868 indices for case insensitive languages are built in lowercase, therefore
2869 simulate our NAME being searched is also lowercased. */
2870 hash = mapped_index_string_hash ((index->version == 4
2871 && case_sensitivity == case_sensitive_off
2872 ? 5 : index->version),
2873 name);
2874
2875 slot = hash & (index->symbol_table.size () - 1);
2876 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2877 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2878
2879 for (;;)
2880 {
2881 const char *str;
2882
2883 const auto &bucket = index->symbol_table[slot];
2884 if (bucket.name == 0 && bucket.vec == 0)
2885 return false;
2886
2887 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2888 if (!cmp (name, str))
2889 {
2890 *vec_out = (offset_type *) (index->constant_pool
2891 + MAYBE_SWAP (bucket.vec));
2892 return true;
2893 }
2894
2895 slot = (slot + step) & (index->symbol_table.size () - 1);
2896 }
2897 }
2898
2899 /* A helper function that reads the .gdb_index from BUFFER and fills
2900 in MAP. FILENAME is the name of the file containing the data;
2901 it is used for error reporting. DEPRECATED_OK is true if it is
2902 ok to use deprecated sections.
2903
2904 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2905 out parameters that are filled in with information about the CU and
2906 TU lists in the section.
2907
2908 Returns true if all went well, false otherwise. */
2909
2910 static bool
2911 read_gdb_index_from_buffer (struct objfile *objfile,
2912 const char *filename,
2913 bool deprecated_ok,
2914 gdb::array_view<const gdb_byte> buffer,
2915 struct mapped_index *map,
2916 const gdb_byte **cu_list,
2917 offset_type *cu_list_elements,
2918 const gdb_byte **types_list,
2919 offset_type *types_list_elements)
2920 {
2921 const gdb_byte *addr = &buffer[0];
2922
2923 /* Version check. */
2924 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2925 /* Versions earlier than 3 emitted every copy of a psymbol. This
2926 causes the index to behave very poorly for certain requests. Version 3
2927 contained incomplete addrmap. So, it seems better to just ignore such
2928 indices. */
2929 if (version < 4)
2930 {
2931 static int warning_printed = 0;
2932 if (!warning_printed)
2933 {
2934 warning (_("Skipping obsolete .gdb_index section in %s."),
2935 filename);
2936 warning_printed = 1;
2937 }
2938 return 0;
2939 }
2940 /* Index version 4 uses a different hash function than index version
2941 5 and later.
2942
2943 Versions earlier than 6 did not emit psymbols for inlined
2944 functions. Using these files will cause GDB not to be able to
2945 set breakpoints on inlined functions by name, so we ignore these
2946 indices unless the user has done
2947 "set use-deprecated-index-sections on". */
2948 if (version < 6 && !deprecated_ok)
2949 {
2950 static int warning_printed = 0;
2951 if (!warning_printed)
2952 {
2953 warning (_("\
2954 Skipping deprecated .gdb_index section in %s.\n\
2955 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2956 to use the section anyway."),
2957 filename);
2958 warning_printed = 1;
2959 }
2960 return 0;
2961 }
2962 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2963 of the TU (for symbols coming from TUs),
2964 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2965 Plus gold-generated indices can have duplicate entries for global symbols,
2966 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2967 These are just performance bugs, and we can't distinguish gdb-generated
2968 indices from gold-generated ones, so issue no warning here. */
2969
2970 /* Indexes with higher version than the one supported by GDB may be no
2971 longer backward compatible. */
2972 if (version > 8)
2973 return 0;
2974
2975 map->version = version;
2976
2977 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2978
2979 int i = 0;
2980 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2981 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2982 / 8);
2983 ++i;
2984
2985 *types_list = addr + MAYBE_SWAP (metadata[i]);
2986 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2987 - MAYBE_SWAP (metadata[i]))
2988 / 8);
2989 ++i;
2990
2991 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2992 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2993 map->address_table
2994 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2995 ++i;
2996
2997 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2998 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2999 map->symbol_table
3000 = gdb::array_view<mapped_index::symbol_table_slot>
3001 ((mapped_index::symbol_table_slot *) symbol_table,
3002 (mapped_index::symbol_table_slot *) symbol_table_end);
3003
3004 ++i;
3005 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3006
3007 return 1;
3008 }
3009
3010 /* Callback types for dwarf2_read_gdb_index. */
3011
3012 typedef gdb::function_view
3013 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3014 get_gdb_index_contents_ftype;
3015 typedef gdb::function_view
3016 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3017 get_gdb_index_contents_dwz_ftype;
3018
3019 /* Read .gdb_index. If everything went ok, initialize the "quick"
3020 elements of all the CUs and return 1. Otherwise, return 0. */
3021
3022 static int
3023 dwarf2_read_gdb_index
3024 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3025 get_gdb_index_contents_ftype get_gdb_index_contents,
3026 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3027 {
3028 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3029 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3030 struct dwz_file *dwz;
3031 struct objfile *objfile = dwarf2_per_objfile->objfile;
3032
3033 gdb::array_view<const gdb_byte> main_index_contents
3034 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3035
3036 if (main_index_contents.empty ())
3037 return 0;
3038
3039 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3040 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3041 use_deprecated_index_sections,
3042 main_index_contents, map.get (), &cu_list,
3043 &cu_list_elements, &types_list,
3044 &types_list_elements))
3045 return 0;
3046
3047 /* Don't use the index if it's empty. */
3048 if (map->symbol_table.empty ())
3049 return 0;
3050
3051 /* If there is a .dwz file, read it so we can get its CU list as
3052 well. */
3053 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 if (dwz != NULL)
3055 {
3056 struct mapped_index dwz_map;
3057 const gdb_byte *dwz_types_ignore;
3058 offset_type dwz_types_elements_ignore;
3059
3060 gdb::array_view<const gdb_byte> dwz_index_content
3061 = get_gdb_index_contents_dwz (objfile, dwz);
3062
3063 if (dwz_index_content.empty ())
3064 return 0;
3065
3066 if (!read_gdb_index_from_buffer (objfile,
3067 bfd_get_filename (dwz->dwz_bfd.get ()),
3068 1, dwz_index_content, &dwz_map,
3069 &dwz_list, &dwz_list_elements,
3070 &dwz_types_ignore,
3071 &dwz_types_elements_ignore))
3072 {
3073 warning (_("could not read '.gdb_index' section from %s; skipping"),
3074 bfd_get_filename (dwz->dwz_bfd.get ()));
3075 return 0;
3076 }
3077 }
3078
3079 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3080 dwz_list, dwz_list_elements);
3081
3082 if (types_list_elements)
3083 {
3084 /* We can only handle a single .debug_types when we have an
3085 index. */
3086 if (dwarf2_per_objfile->types.size () != 1)
3087 return 0;
3088
3089 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3090
3091 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3092 types_list, types_list_elements);
3093 }
3094
3095 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3096
3097 dwarf2_per_objfile->index_table = std::move (map);
3098 dwarf2_per_objfile->using_index = 1;
3099 dwarf2_per_objfile->quick_file_names_table =
3100 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3101
3102 return 1;
3103 }
3104
3105 /* die_reader_func for dw2_get_file_names. */
3106
3107 static void
3108 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3109 const gdb_byte *info_ptr,
3110 struct die_info *comp_unit_die)
3111 {
3112 struct dwarf2_cu *cu = reader->cu;
3113 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3114 struct dwarf2_per_objfile *dwarf2_per_objfile
3115 = cu->per_cu->dwarf2_per_objfile;
3116 struct objfile *objfile = dwarf2_per_objfile->objfile;
3117 struct dwarf2_per_cu_data *lh_cu;
3118 struct attribute *attr;
3119 void **slot;
3120 struct quick_file_names *qfn;
3121
3122 gdb_assert (! this_cu->is_debug_types);
3123
3124 /* Our callers never want to match partial units -- instead they
3125 will match the enclosing full CU. */
3126 if (comp_unit_die->tag == DW_TAG_partial_unit)
3127 {
3128 this_cu->v.quick->no_file_data = 1;
3129 return;
3130 }
3131
3132 lh_cu = this_cu;
3133 slot = NULL;
3134
3135 line_header_up lh;
3136 sect_offset line_offset {};
3137
3138 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3139 if (attr != nullptr)
3140 {
3141 struct quick_file_names find_entry;
3142
3143 line_offset = (sect_offset) DW_UNSND (attr);
3144
3145 /* We may have already read in this line header (TU line header sharing).
3146 If we have we're done. */
3147 find_entry.hash.dwo_unit = cu->dwo_unit;
3148 find_entry.hash.line_sect_off = line_offset;
3149 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3150 &find_entry, INSERT);
3151 if (*slot != NULL)
3152 {
3153 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3154 return;
3155 }
3156
3157 lh = dwarf_decode_line_header (line_offset, cu);
3158 }
3159 if (lh == NULL)
3160 {
3161 lh_cu->v.quick->no_file_data = 1;
3162 return;
3163 }
3164
3165 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3166 qfn->hash.dwo_unit = cu->dwo_unit;
3167 qfn->hash.line_sect_off = line_offset;
3168 gdb_assert (slot != NULL);
3169 *slot = qfn;
3170
3171 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3172
3173 int offset = 0;
3174 if (strcmp (fnd.name, "<unknown>") != 0)
3175 ++offset;
3176
3177 qfn->num_file_names = offset + lh->file_names_size ();
3178 qfn->file_names =
3179 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3180 if (offset != 0)
3181 qfn->file_names[0] = xstrdup (fnd.name);
3182 for (int i = 0; i < lh->file_names_size (); ++i)
3183 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3184 fnd.comp_dir).release ();
3185 qfn->real_names = NULL;
3186
3187 lh_cu->v.quick->file_names = qfn;
3188 }
3189
3190 /* A helper for the "quick" functions which attempts to read the line
3191 table for THIS_CU. */
3192
3193 static struct quick_file_names *
3194 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3195 {
3196 /* This should never be called for TUs. */
3197 gdb_assert (! this_cu->is_debug_types);
3198 /* Nor type unit groups. */
3199 gdb_assert (! this_cu->type_unit_group_p ());
3200
3201 if (this_cu->v.quick->file_names != NULL)
3202 return this_cu->v.quick->file_names;
3203 /* If we know there is no line data, no point in looking again. */
3204 if (this_cu->v.quick->no_file_data)
3205 return NULL;
3206
3207 cutu_reader reader (this_cu);
3208 if (!reader.dummy_p)
3209 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3210
3211 if (this_cu->v.quick->no_file_data)
3212 return NULL;
3213 return this_cu->v.quick->file_names;
3214 }
3215
3216 /* A helper for the "quick" functions which computes and caches the
3217 real path for a given file name from the line table. */
3218
3219 static const char *
3220 dw2_get_real_path (struct objfile *objfile,
3221 struct quick_file_names *qfn, int index)
3222 {
3223 if (qfn->real_names == NULL)
3224 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3225 qfn->num_file_names, const char *);
3226
3227 if (qfn->real_names[index] == NULL)
3228 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3229
3230 return qfn->real_names[index];
3231 }
3232
3233 static struct symtab *
3234 dw2_find_last_source_symtab (struct objfile *objfile)
3235 {
3236 struct dwarf2_per_objfile *dwarf2_per_objfile
3237 = get_dwarf2_per_objfile (objfile);
3238 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3239 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3240
3241 if (cust == NULL)
3242 return NULL;
3243
3244 return compunit_primary_filetab (cust);
3245 }
3246
3247 /* Traversal function for dw2_forget_cached_source_info. */
3248
3249 static int
3250 dw2_free_cached_file_names (void **slot, void *info)
3251 {
3252 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3253
3254 if (file_data->real_names)
3255 {
3256 int i;
3257
3258 for (i = 0; i < file_data->num_file_names; ++i)
3259 {
3260 xfree ((void*) file_data->real_names[i]);
3261 file_data->real_names[i] = NULL;
3262 }
3263 }
3264
3265 return 1;
3266 }
3267
3268 static void
3269 dw2_forget_cached_source_info (struct objfile *objfile)
3270 {
3271 struct dwarf2_per_objfile *dwarf2_per_objfile
3272 = get_dwarf2_per_objfile (objfile);
3273
3274 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3275 dw2_free_cached_file_names, NULL);
3276 }
3277
3278 /* Helper function for dw2_map_symtabs_matching_filename that expands
3279 the symtabs and calls the iterator. */
3280
3281 static int
3282 dw2_map_expand_apply (struct objfile *objfile,
3283 struct dwarf2_per_cu_data *per_cu,
3284 const char *name, const char *real_path,
3285 gdb::function_view<bool (symtab *)> callback)
3286 {
3287 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3288
3289 /* Don't visit already-expanded CUs. */
3290 if (per_cu->v.quick->compunit_symtab)
3291 return 0;
3292
3293 /* This may expand more than one symtab, and we want to iterate over
3294 all of them. */
3295 dw2_instantiate_symtab (per_cu, false);
3296
3297 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3298 last_made, callback);
3299 }
3300
3301 /* Implementation of the map_symtabs_matching_filename method. */
3302
3303 static bool
3304 dw2_map_symtabs_matching_filename
3305 (struct objfile *objfile, const char *name, const char *real_path,
3306 gdb::function_view<bool (symtab *)> callback)
3307 {
3308 const char *name_basename = lbasename (name);
3309 struct dwarf2_per_objfile *dwarf2_per_objfile
3310 = get_dwarf2_per_objfile (objfile);
3311
3312 /* The rule is CUs specify all the files, including those used by
3313 any TU, so there's no need to scan TUs here. */
3314
3315 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3316 {
3317 /* We only need to look at symtabs not already expanded. */
3318 if (per_cu->v.quick->compunit_symtab)
3319 continue;
3320
3321 quick_file_names *file_data = dw2_get_file_names (per_cu);
3322 if (file_data == NULL)
3323 continue;
3324
3325 for (int j = 0; j < file_data->num_file_names; ++j)
3326 {
3327 const char *this_name = file_data->file_names[j];
3328 const char *this_real_name;
3329
3330 if (compare_filenames_for_search (this_name, name))
3331 {
3332 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3333 callback))
3334 return true;
3335 continue;
3336 }
3337
3338 /* Before we invoke realpath, which can get expensive when many
3339 files are involved, do a quick comparison of the basenames. */
3340 if (! basenames_may_differ
3341 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3342 continue;
3343
3344 this_real_name = dw2_get_real_path (objfile, file_data, j);
3345 if (compare_filenames_for_search (this_real_name, name))
3346 {
3347 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3348 callback))
3349 return true;
3350 continue;
3351 }
3352
3353 if (real_path != NULL)
3354 {
3355 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3356 gdb_assert (IS_ABSOLUTE_PATH (name));
3357 if (this_real_name != NULL
3358 && FILENAME_CMP (real_path, this_real_name) == 0)
3359 {
3360 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3361 callback))
3362 return true;
3363 continue;
3364 }
3365 }
3366 }
3367 }
3368
3369 return false;
3370 }
3371
3372 /* Struct used to manage iterating over all CUs looking for a symbol. */
3373
3374 struct dw2_symtab_iterator
3375 {
3376 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3377 struct dwarf2_per_objfile *dwarf2_per_objfile;
3378 /* If set, only look for symbols that match that block. Valid values are
3379 GLOBAL_BLOCK and STATIC_BLOCK. */
3380 gdb::optional<block_enum> block_index;
3381 /* The kind of symbol we're looking for. */
3382 domain_enum domain;
3383 /* The list of CUs from the index entry of the symbol,
3384 or NULL if not found. */
3385 offset_type *vec;
3386 /* The next element in VEC to look at. */
3387 int next;
3388 /* The number of elements in VEC, or zero if there is no match. */
3389 int length;
3390 /* Have we seen a global version of the symbol?
3391 If so we can ignore all further global instances.
3392 This is to work around gold/15646, inefficient gold-generated
3393 indices. */
3394 int global_seen;
3395 };
3396
3397 /* Initialize the index symtab iterator ITER. */
3398
3399 static void
3400 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3401 struct dwarf2_per_objfile *dwarf2_per_objfile,
3402 gdb::optional<block_enum> block_index,
3403 domain_enum domain,
3404 const char *name)
3405 {
3406 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3407 iter->block_index = block_index;
3408 iter->domain = domain;
3409 iter->next = 0;
3410 iter->global_seen = 0;
3411
3412 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3413
3414 /* index is NULL if OBJF_READNOW. */
3415 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3416 iter->length = MAYBE_SWAP (*iter->vec);
3417 else
3418 {
3419 iter->vec = NULL;
3420 iter->length = 0;
3421 }
3422 }
3423
3424 /* Return the next matching CU or NULL if there are no more. */
3425
3426 static struct dwarf2_per_cu_data *
3427 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3428 {
3429 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3430
3431 for ( ; iter->next < iter->length; ++iter->next)
3432 {
3433 offset_type cu_index_and_attrs =
3434 MAYBE_SWAP (iter->vec[iter->next + 1]);
3435 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3436 gdb_index_symbol_kind symbol_kind =
3437 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3438 /* Only check the symbol attributes if they're present.
3439 Indices prior to version 7 don't record them,
3440 and indices >= 7 may elide them for certain symbols
3441 (gold does this). */
3442 int attrs_valid =
3443 (dwarf2_per_objfile->index_table->version >= 7
3444 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3445
3446 /* Don't crash on bad data. */
3447 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3448 + dwarf2_per_objfile->all_type_units.size ()))
3449 {
3450 complaint (_(".gdb_index entry has bad CU index"
3451 " [in module %s]"),
3452 objfile_name (dwarf2_per_objfile->objfile));
3453 continue;
3454 }
3455
3456 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3457
3458 /* Skip if already read in. */
3459 if (per_cu->v.quick->compunit_symtab)
3460 continue;
3461
3462 /* Check static vs global. */
3463 if (attrs_valid)
3464 {
3465 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3466
3467 if (iter->block_index.has_value ())
3468 {
3469 bool want_static = *iter->block_index == STATIC_BLOCK;
3470
3471 if (is_static != want_static)
3472 continue;
3473 }
3474
3475 /* Work around gold/15646. */
3476 if (!is_static && iter->global_seen)
3477 continue;
3478 if (!is_static)
3479 iter->global_seen = 1;
3480 }
3481
3482 /* Only check the symbol's kind if it has one. */
3483 if (attrs_valid)
3484 {
3485 switch (iter->domain)
3486 {
3487 case VAR_DOMAIN:
3488 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3489 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3490 /* Some types are also in VAR_DOMAIN. */
3491 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3492 continue;
3493 break;
3494 case STRUCT_DOMAIN:
3495 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3496 continue;
3497 break;
3498 case LABEL_DOMAIN:
3499 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3500 continue;
3501 break;
3502 case MODULE_DOMAIN:
3503 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3504 continue;
3505 break;
3506 default:
3507 break;
3508 }
3509 }
3510
3511 ++iter->next;
3512 return per_cu;
3513 }
3514
3515 return NULL;
3516 }
3517
3518 static struct compunit_symtab *
3519 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3520 const char *name, domain_enum domain)
3521 {
3522 struct compunit_symtab *stab_best = NULL;
3523 struct dwarf2_per_objfile *dwarf2_per_objfile
3524 = get_dwarf2_per_objfile (objfile);
3525
3526 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3527
3528 struct dw2_symtab_iterator iter;
3529 struct dwarf2_per_cu_data *per_cu;
3530
3531 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3532
3533 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3534 {
3535 struct symbol *sym, *with_opaque = NULL;
3536 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3537 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3538 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3539
3540 sym = block_find_symbol (block, name, domain,
3541 block_find_non_opaque_type_preferred,
3542 &with_opaque);
3543
3544 /* Some caution must be observed with overloaded functions
3545 and methods, since the index will not contain any overload
3546 information (but NAME might contain it). */
3547
3548 if (sym != NULL
3549 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3550 return stab;
3551 if (with_opaque != NULL
3552 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3553 stab_best = stab;
3554
3555 /* Keep looking through other CUs. */
3556 }
3557
3558 return stab_best;
3559 }
3560
3561 static void
3562 dw2_print_stats (struct objfile *objfile)
3563 {
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566 int total = (dwarf2_per_objfile->all_comp_units.size ()
3567 + dwarf2_per_objfile->all_type_units.size ());
3568 int count = 0;
3569
3570 for (int i = 0; i < total; ++i)
3571 {
3572 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3573
3574 if (!per_cu->v.quick->compunit_symtab)
3575 ++count;
3576 }
3577 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3578 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3579 }
3580
3581 /* This dumps minimal information about the index.
3582 It is called via "mt print objfiles".
3583 One use is to verify .gdb_index has been loaded by the
3584 gdb.dwarf2/gdb-index.exp testcase. */
3585
3586 static void
3587 dw2_dump (struct objfile *objfile)
3588 {
3589 struct dwarf2_per_objfile *dwarf2_per_objfile
3590 = get_dwarf2_per_objfile (objfile);
3591
3592 gdb_assert (dwarf2_per_objfile->using_index);
3593 printf_filtered (".gdb_index:");
3594 if (dwarf2_per_objfile->index_table != NULL)
3595 {
3596 printf_filtered (" version %d\n",
3597 dwarf2_per_objfile->index_table->version);
3598 }
3599 else
3600 printf_filtered (" faked for \"readnow\"\n");
3601 printf_filtered ("\n");
3602 }
3603
3604 static void
3605 dw2_expand_symtabs_for_function (struct objfile *objfile,
3606 const char *func_name)
3607 {
3608 struct dwarf2_per_objfile *dwarf2_per_objfile
3609 = get_dwarf2_per_objfile (objfile);
3610
3611 struct dw2_symtab_iterator iter;
3612 struct dwarf2_per_cu_data *per_cu;
3613
3614 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3615
3616 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3617 dw2_instantiate_symtab (per_cu, false);
3618
3619 }
3620
3621 static void
3622 dw2_expand_all_symtabs (struct objfile *objfile)
3623 {
3624 struct dwarf2_per_objfile *dwarf2_per_objfile
3625 = get_dwarf2_per_objfile (objfile);
3626 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3627 + dwarf2_per_objfile->all_type_units.size ());
3628
3629 for (int i = 0; i < total_units; ++i)
3630 {
3631 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3632
3633 /* We don't want to directly expand a partial CU, because if we
3634 read it with the wrong language, then assertion failures can
3635 be triggered later on. See PR symtab/23010. So, tell
3636 dw2_instantiate_symtab to skip partial CUs -- any important
3637 partial CU will be read via DW_TAG_imported_unit anyway. */
3638 dw2_instantiate_symtab (per_cu, true);
3639 }
3640 }
3641
3642 static void
3643 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3644 const char *fullname)
3645 {
3646 struct dwarf2_per_objfile *dwarf2_per_objfile
3647 = get_dwarf2_per_objfile (objfile);
3648
3649 /* We don't need to consider type units here.
3650 This is only called for examining code, e.g. expand_line_sal.
3651 There can be an order of magnitude (or more) more type units
3652 than comp units, and we avoid them if we can. */
3653
3654 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3655 {
3656 /* We only need to look at symtabs not already expanded. */
3657 if (per_cu->v.quick->compunit_symtab)
3658 continue;
3659
3660 quick_file_names *file_data = dw2_get_file_names (per_cu);
3661 if (file_data == NULL)
3662 continue;
3663
3664 for (int j = 0; j < file_data->num_file_names; ++j)
3665 {
3666 const char *this_fullname = file_data->file_names[j];
3667
3668 if (filename_cmp (this_fullname, fullname) == 0)
3669 {
3670 dw2_instantiate_symtab (per_cu, false);
3671 break;
3672 }
3673 }
3674 }
3675 }
3676
3677 static void
3678 dw2_map_matching_symbols
3679 (struct objfile *objfile,
3680 const lookup_name_info &name, domain_enum domain,
3681 int global,
3682 gdb::function_view<symbol_found_callback_ftype> callback,
3683 symbol_compare_ftype *ordered_compare)
3684 {
3685 /* Currently unimplemented; used for Ada. The function can be called if the
3686 current language is Ada for a non-Ada objfile using GNU index. As Ada
3687 does not look for non-Ada symbols this function should just return. */
3688 }
3689
3690 /* Starting from a search name, return the string that finds the upper
3691 bound of all strings that start with SEARCH_NAME in a sorted name
3692 list. Returns the empty string to indicate that the upper bound is
3693 the end of the list. */
3694
3695 static std::string
3696 make_sort_after_prefix_name (const char *search_name)
3697 {
3698 /* When looking to complete "func", we find the upper bound of all
3699 symbols that start with "func" by looking for where we'd insert
3700 the closest string that would follow "func" in lexicographical
3701 order. Usually, that's "func"-with-last-character-incremented,
3702 i.e. "fund". Mind non-ASCII characters, though. Usually those
3703 will be UTF-8 multi-byte sequences, but we can't be certain.
3704 Especially mind the 0xff character, which is a valid character in
3705 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3706 rule out compilers allowing it in identifiers. Note that
3707 conveniently, strcmp/strcasecmp are specified to compare
3708 characters interpreted as unsigned char. So what we do is treat
3709 the whole string as a base 256 number composed of a sequence of
3710 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3711 to 0, and carries 1 to the following more-significant position.
3712 If the very first character in SEARCH_NAME ends up incremented
3713 and carries/overflows, then the upper bound is the end of the
3714 list. The string after the empty string is also the empty
3715 string.
3716
3717 Some examples of this operation:
3718
3719 SEARCH_NAME => "+1" RESULT
3720
3721 "abc" => "abd"
3722 "ab\xff" => "ac"
3723 "\xff" "a" "\xff" => "\xff" "b"
3724 "\xff" => ""
3725 "\xff\xff" => ""
3726 "" => ""
3727
3728 Then, with these symbols for example:
3729
3730 func
3731 func1
3732 fund
3733
3734 completing "func" looks for symbols between "func" and
3735 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3736 which finds "func" and "func1", but not "fund".
3737
3738 And with:
3739
3740 funcÿ (Latin1 'ÿ' [0xff])
3741 funcÿ1
3742 fund
3743
3744 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3745 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3746
3747 And with:
3748
3749 ÿÿ (Latin1 'ÿ' [0xff])
3750 ÿÿ1
3751
3752 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3753 the end of the list.
3754 */
3755 std::string after = search_name;
3756 while (!after.empty () && (unsigned char) after.back () == 0xff)
3757 after.pop_back ();
3758 if (!after.empty ())
3759 after.back () = (unsigned char) after.back () + 1;
3760 return after;
3761 }
3762
3763 /* See declaration. */
3764
3765 std::pair<std::vector<name_component>::const_iterator,
3766 std::vector<name_component>::const_iterator>
3767 mapped_index_base::find_name_components_bounds
3768 (const lookup_name_info &lookup_name_without_params, language lang) const
3769 {
3770 auto *name_cmp
3771 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3772
3773 const char *lang_name
3774 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3775
3776 /* Comparison function object for lower_bound that matches against a
3777 given symbol name. */
3778 auto lookup_compare_lower = [&] (const name_component &elem,
3779 const char *name)
3780 {
3781 const char *elem_qualified = this->symbol_name_at (elem.idx);
3782 const char *elem_name = elem_qualified + elem.name_offset;
3783 return name_cmp (elem_name, name) < 0;
3784 };
3785
3786 /* Comparison function object for upper_bound that matches against a
3787 given symbol name. */
3788 auto lookup_compare_upper = [&] (const char *name,
3789 const name_component &elem)
3790 {
3791 const char *elem_qualified = this->symbol_name_at (elem.idx);
3792 const char *elem_name = elem_qualified + elem.name_offset;
3793 return name_cmp (name, elem_name) < 0;
3794 };
3795
3796 auto begin = this->name_components.begin ();
3797 auto end = this->name_components.end ();
3798
3799 /* Find the lower bound. */
3800 auto lower = [&] ()
3801 {
3802 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3803 return begin;
3804 else
3805 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3806 } ();
3807
3808 /* Find the upper bound. */
3809 auto upper = [&] ()
3810 {
3811 if (lookup_name_without_params.completion_mode ())
3812 {
3813 /* In completion mode, we want UPPER to point past all
3814 symbols names that have the same prefix. I.e., with
3815 these symbols, and completing "func":
3816
3817 function << lower bound
3818 function1
3819 other_function << upper bound
3820
3821 We find the upper bound by looking for the insertion
3822 point of "func"-with-last-character-incremented,
3823 i.e. "fund". */
3824 std::string after = make_sort_after_prefix_name (lang_name);
3825 if (after.empty ())
3826 return end;
3827 return std::lower_bound (lower, end, after.c_str (),
3828 lookup_compare_lower);
3829 }
3830 else
3831 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3832 } ();
3833
3834 return {lower, upper};
3835 }
3836
3837 /* See declaration. */
3838
3839 void
3840 mapped_index_base::build_name_components ()
3841 {
3842 if (!this->name_components.empty ())
3843 return;
3844
3845 this->name_components_casing = case_sensitivity;
3846 auto *name_cmp
3847 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3848
3849 /* The code below only knows how to break apart components of C++
3850 symbol names (and other languages that use '::' as
3851 namespace/module separator) and Ada symbol names. */
3852 auto count = this->symbol_name_count ();
3853 for (offset_type idx = 0; idx < count; idx++)
3854 {
3855 if (this->symbol_name_slot_invalid (idx))
3856 continue;
3857
3858 const char *name = this->symbol_name_at (idx);
3859
3860 /* Add each name component to the name component table. */
3861 unsigned int previous_len = 0;
3862
3863 if (strstr (name, "::") != nullptr)
3864 {
3865 for (unsigned int current_len = cp_find_first_component (name);
3866 name[current_len] != '\0';
3867 current_len += cp_find_first_component (name + current_len))
3868 {
3869 gdb_assert (name[current_len] == ':');
3870 this->name_components.push_back ({previous_len, idx});
3871 /* Skip the '::'. */
3872 current_len += 2;
3873 previous_len = current_len;
3874 }
3875 }
3876 else
3877 {
3878 /* Handle the Ada encoded (aka mangled) form here. */
3879 for (const char *iter = strstr (name, "__");
3880 iter != nullptr;
3881 iter = strstr (iter, "__"))
3882 {
3883 this->name_components.push_back ({previous_len, idx});
3884 iter += 2;
3885 previous_len = iter - name;
3886 }
3887 }
3888
3889 this->name_components.push_back ({previous_len, idx});
3890 }
3891
3892 /* Sort name_components elements by name. */
3893 auto name_comp_compare = [&] (const name_component &left,
3894 const name_component &right)
3895 {
3896 const char *left_qualified = this->symbol_name_at (left.idx);
3897 const char *right_qualified = this->symbol_name_at (right.idx);
3898
3899 const char *left_name = left_qualified + left.name_offset;
3900 const char *right_name = right_qualified + right.name_offset;
3901
3902 return name_cmp (left_name, right_name) < 0;
3903 };
3904
3905 std::sort (this->name_components.begin (),
3906 this->name_components.end (),
3907 name_comp_compare);
3908 }
3909
3910 /* Helper for dw2_expand_symtabs_matching that works with a
3911 mapped_index_base instead of the containing objfile. This is split
3912 to a separate function in order to be able to unit test the
3913 name_components matching using a mock mapped_index_base. For each
3914 symbol name that matches, calls MATCH_CALLBACK, passing it the
3915 symbol's index in the mapped_index_base symbol table. */
3916
3917 static void
3918 dw2_expand_symtabs_matching_symbol
3919 (mapped_index_base &index,
3920 const lookup_name_info &lookup_name_in,
3921 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3922 enum search_domain kind,
3923 gdb::function_view<bool (offset_type)> match_callback)
3924 {
3925 lookup_name_info lookup_name_without_params
3926 = lookup_name_in.make_ignore_params ();
3927
3928 /* Build the symbol name component sorted vector, if we haven't
3929 yet. */
3930 index.build_name_components ();
3931
3932 /* The same symbol may appear more than once in the range though.
3933 E.g., if we're looking for symbols that complete "w", and we have
3934 a symbol named "w1::w2", we'll find the two name components for
3935 that same symbol in the range. To be sure we only call the
3936 callback once per symbol, we first collect the symbol name
3937 indexes that matched in a temporary vector and ignore
3938 duplicates. */
3939 std::vector<offset_type> matches;
3940
3941 struct name_and_matcher
3942 {
3943 symbol_name_matcher_ftype *matcher;
3944 const std::string &name;
3945
3946 bool operator== (const name_and_matcher &other) const
3947 {
3948 return matcher == other.matcher && name == other.name;
3949 }
3950 };
3951
3952 /* A vector holding all the different symbol name matchers, for all
3953 languages. */
3954 std::vector<name_and_matcher> matchers;
3955
3956 for (int i = 0; i < nr_languages; i++)
3957 {
3958 enum language lang_e = (enum language) i;
3959
3960 const language_defn *lang = language_def (lang_e);
3961 symbol_name_matcher_ftype *name_matcher
3962 = get_symbol_name_matcher (lang, lookup_name_without_params);
3963
3964 name_and_matcher key {
3965 name_matcher,
3966 lookup_name_without_params.language_lookup_name (lang_e)
3967 };
3968
3969 /* Don't insert the same comparison routine more than once.
3970 Note that we do this linear walk. This is not a problem in
3971 practice because the number of supported languages is
3972 low. */
3973 if (std::find (matchers.begin (), matchers.end (), key)
3974 != matchers.end ())
3975 continue;
3976 matchers.push_back (std::move (key));
3977
3978 auto bounds
3979 = index.find_name_components_bounds (lookup_name_without_params,
3980 lang_e);
3981
3982 /* Now for each symbol name in range, check to see if we have a name
3983 match, and if so, call the MATCH_CALLBACK callback. */
3984
3985 for (; bounds.first != bounds.second; ++bounds.first)
3986 {
3987 const char *qualified = index.symbol_name_at (bounds.first->idx);
3988
3989 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3990 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3991 continue;
3992
3993 matches.push_back (bounds.first->idx);
3994 }
3995 }
3996
3997 std::sort (matches.begin (), matches.end ());
3998
3999 /* Finally call the callback, once per match. */
4000 ULONGEST prev = -1;
4001 for (offset_type idx : matches)
4002 {
4003 if (prev != idx)
4004 {
4005 if (!match_callback (idx))
4006 break;
4007 prev = idx;
4008 }
4009 }
4010
4011 /* Above we use a type wider than idx's for 'prev', since 0 and
4012 (offset_type)-1 are both possible values. */
4013 static_assert (sizeof (prev) > sizeof (offset_type), "");
4014 }
4015
4016 #if GDB_SELF_TEST
4017
4018 namespace selftests { namespace dw2_expand_symtabs_matching {
4019
4020 /* A mock .gdb_index/.debug_names-like name index table, enough to
4021 exercise dw2_expand_symtabs_matching_symbol, which works with the
4022 mapped_index_base interface. Builds an index from the symbol list
4023 passed as parameter to the constructor. */
4024 class mock_mapped_index : public mapped_index_base
4025 {
4026 public:
4027 mock_mapped_index (gdb::array_view<const char *> symbols)
4028 : m_symbol_table (symbols)
4029 {}
4030
4031 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4032
4033 /* Return the number of names in the symbol table. */
4034 size_t symbol_name_count () const override
4035 {
4036 return m_symbol_table.size ();
4037 }
4038
4039 /* Get the name of the symbol at IDX in the symbol table. */
4040 const char *symbol_name_at (offset_type idx) const override
4041 {
4042 return m_symbol_table[idx];
4043 }
4044
4045 private:
4046 gdb::array_view<const char *> m_symbol_table;
4047 };
4048
4049 /* Convenience function that converts a NULL pointer to a "<null>"
4050 string, to pass to print routines. */
4051
4052 static const char *
4053 string_or_null (const char *str)
4054 {
4055 return str != NULL ? str : "<null>";
4056 }
4057
4058 /* Check if a lookup_name_info built from
4059 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4060 index. EXPECTED_LIST is the list of expected matches, in expected
4061 matching order. If no match expected, then an empty list is
4062 specified. Returns true on success. On failure prints a warning
4063 indicating the file:line that failed, and returns false. */
4064
4065 static bool
4066 check_match (const char *file, int line,
4067 mock_mapped_index &mock_index,
4068 const char *name, symbol_name_match_type match_type,
4069 bool completion_mode,
4070 std::initializer_list<const char *> expected_list)
4071 {
4072 lookup_name_info lookup_name (name, match_type, completion_mode);
4073
4074 bool matched = true;
4075
4076 auto mismatch = [&] (const char *expected_str,
4077 const char *got)
4078 {
4079 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4080 "expected=\"%s\", got=\"%s\"\n"),
4081 file, line,
4082 (match_type == symbol_name_match_type::FULL
4083 ? "FULL" : "WILD"),
4084 name, string_or_null (expected_str), string_or_null (got));
4085 matched = false;
4086 };
4087
4088 auto expected_it = expected_list.begin ();
4089 auto expected_end = expected_list.end ();
4090
4091 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4092 NULL, ALL_DOMAIN,
4093 [&] (offset_type idx)
4094 {
4095 const char *matched_name = mock_index.symbol_name_at (idx);
4096 const char *expected_str
4097 = expected_it == expected_end ? NULL : *expected_it++;
4098
4099 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4100 mismatch (expected_str, matched_name);
4101 return true;
4102 });
4103
4104 const char *expected_str
4105 = expected_it == expected_end ? NULL : *expected_it++;
4106 if (expected_str != NULL)
4107 mismatch (expected_str, NULL);
4108
4109 return matched;
4110 }
4111
4112 /* The symbols added to the mock mapped_index for testing (in
4113 canonical form). */
4114 static const char *test_symbols[] = {
4115 "function",
4116 "std::bar",
4117 "std::zfunction",
4118 "std::zfunction2",
4119 "w1::w2",
4120 "ns::foo<char*>",
4121 "ns::foo<int>",
4122 "ns::foo<long>",
4123 "ns2::tmpl<int>::foo2",
4124 "(anonymous namespace)::A::B::C",
4125
4126 /* These are used to check that the increment-last-char in the
4127 matching algorithm for completion doesn't match "t1_fund" when
4128 completing "t1_func". */
4129 "t1_func",
4130 "t1_func1",
4131 "t1_fund",
4132 "t1_fund1",
4133
4134 /* A UTF-8 name with multi-byte sequences to make sure that
4135 cp-name-parser understands this as a single identifier ("função"
4136 is "function" in PT). */
4137 u8"u8função",
4138
4139 /* \377 (0xff) is Latin1 'ÿ'. */
4140 "yfunc\377",
4141
4142 /* \377 (0xff) is Latin1 'ÿ'. */
4143 "\377",
4144 "\377\377123",
4145
4146 /* A name with all sorts of complications. Starts with "z" to make
4147 it easier for the completion tests below. */
4148 #define Z_SYM_NAME \
4149 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4150 "::tuple<(anonymous namespace)::ui*, " \
4151 "std::default_delete<(anonymous namespace)::ui>, void>"
4152
4153 Z_SYM_NAME
4154 };
4155
4156 /* Returns true if the mapped_index_base::find_name_component_bounds
4157 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4158 in completion mode. */
4159
4160 static bool
4161 check_find_bounds_finds (mapped_index_base &index,
4162 const char *search_name,
4163 gdb::array_view<const char *> expected_syms)
4164 {
4165 lookup_name_info lookup_name (search_name,
4166 symbol_name_match_type::FULL, true);
4167
4168 auto bounds = index.find_name_components_bounds (lookup_name,
4169 language_cplus);
4170
4171 size_t distance = std::distance (bounds.first, bounds.second);
4172 if (distance != expected_syms.size ())
4173 return false;
4174
4175 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4176 {
4177 auto nc_elem = bounds.first + exp_elem;
4178 const char *qualified = index.symbol_name_at (nc_elem->idx);
4179 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4180 return false;
4181 }
4182
4183 return true;
4184 }
4185
4186 /* Test the lower-level mapped_index::find_name_component_bounds
4187 method. */
4188
4189 static void
4190 test_mapped_index_find_name_component_bounds ()
4191 {
4192 mock_mapped_index mock_index (test_symbols);
4193
4194 mock_index.build_name_components ();
4195
4196 /* Test the lower-level mapped_index::find_name_component_bounds
4197 method in completion mode. */
4198 {
4199 static const char *expected_syms[] = {
4200 "t1_func",
4201 "t1_func1",
4202 };
4203
4204 SELF_CHECK (check_find_bounds_finds (mock_index,
4205 "t1_func", expected_syms));
4206 }
4207
4208 /* Check that the increment-last-char in the name matching algorithm
4209 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4210 {
4211 static const char *expected_syms1[] = {
4212 "\377",
4213 "\377\377123",
4214 };
4215 SELF_CHECK (check_find_bounds_finds (mock_index,
4216 "\377", expected_syms1));
4217
4218 static const char *expected_syms2[] = {
4219 "\377\377123",
4220 };
4221 SELF_CHECK (check_find_bounds_finds (mock_index,
4222 "\377\377", expected_syms2));
4223 }
4224 }
4225
4226 /* Test dw2_expand_symtabs_matching_symbol. */
4227
4228 static void
4229 test_dw2_expand_symtabs_matching_symbol ()
4230 {
4231 mock_mapped_index mock_index (test_symbols);
4232
4233 /* We let all tests run until the end even if some fails, for debug
4234 convenience. */
4235 bool any_mismatch = false;
4236
4237 /* Create the expected symbols list (an initializer_list). Needed
4238 because lists have commas, and we need to pass them to CHECK,
4239 which is a macro. */
4240 #define EXPECT(...) { __VA_ARGS__ }
4241
4242 /* Wrapper for check_match that passes down the current
4243 __FILE__/__LINE__. */
4244 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4245 any_mismatch |= !check_match (__FILE__, __LINE__, \
4246 mock_index, \
4247 NAME, MATCH_TYPE, COMPLETION_MODE, \
4248 EXPECTED_LIST)
4249
4250 /* Identity checks. */
4251 for (const char *sym : test_symbols)
4252 {
4253 /* Should be able to match all existing symbols. */
4254 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4255 EXPECT (sym));
4256
4257 /* Should be able to match all existing symbols with
4258 parameters. */
4259 std::string with_params = std::string (sym) + "(int)";
4260 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4261 EXPECT (sym));
4262
4263 /* Should be able to match all existing symbols with
4264 parameters and qualifiers. */
4265 with_params = std::string (sym) + " ( int ) const";
4266 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4267 EXPECT (sym));
4268
4269 /* This should really find sym, but cp-name-parser.y doesn't
4270 know about lvalue/rvalue qualifiers yet. */
4271 with_params = std::string (sym) + " ( int ) &&";
4272 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4273 {});
4274 }
4275
4276 /* Check that the name matching algorithm for completion doesn't get
4277 confused with Latin1 'ÿ' / 0xff. */
4278 {
4279 static const char str[] = "\377";
4280 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4281 EXPECT ("\377", "\377\377123"));
4282 }
4283
4284 /* Check that the increment-last-char in the matching algorithm for
4285 completion doesn't match "t1_fund" when completing "t1_func". */
4286 {
4287 static const char str[] = "t1_func";
4288 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4289 EXPECT ("t1_func", "t1_func1"));
4290 }
4291
4292 /* Check that completion mode works at each prefix of the expected
4293 symbol name. */
4294 {
4295 static const char str[] = "function(int)";
4296 size_t len = strlen (str);
4297 std::string lookup;
4298
4299 for (size_t i = 1; i < len; i++)
4300 {
4301 lookup.assign (str, i);
4302 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4303 EXPECT ("function"));
4304 }
4305 }
4306
4307 /* While "w" is a prefix of both components, the match function
4308 should still only be called once. */
4309 {
4310 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4311 EXPECT ("w1::w2"));
4312 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4313 EXPECT ("w1::w2"));
4314 }
4315
4316 /* Same, with a "complicated" symbol. */
4317 {
4318 static const char str[] = Z_SYM_NAME;
4319 size_t len = strlen (str);
4320 std::string lookup;
4321
4322 for (size_t i = 1; i < len; i++)
4323 {
4324 lookup.assign (str, i);
4325 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4326 EXPECT (Z_SYM_NAME));
4327 }
4328 }
4329
4330 /* In FULL mode, an incomplete symbol doesn't match. */
4331 {
4332 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4333 {});
4334 }
4335
4336 /* A complete symbol with parameters matches any overload, since the
4337 index has no overload info. */
4338 {
4339 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4340 EXPECT ("std::zfunction", "std::zfunction2"));
4341 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4342 EXPECT ("std::zfunction", "std::zfunction2"));
4343 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4344 EXPECT ("std::zfunction", "std::zfunction2"));
4345 }
4346
4347 /* Check that whitespace is ignored appropriately. A symbol with a
4348 template argument list. */
4349 {
4350 static const char expected[] = "ns::foo<int>";
4351 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4352 EXPECT (expected));
4353 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4354 EXPECT (expected));
4355 }
4356
4357 /* Check that whitespace is ignored appropriately. A symbol with a
4358 template argument list that includes a pointer. */
4359 {
4360 static const char expected[] = "ns::foo<char*>";
4361 /* Try both completion and non-completion modes. */
4362 static const bool completion_mode[2] = {false, true};
4363 for (size_t i = 0; i < 2; i++)
4364 {
4365 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4366 completion_mode[i], EXPECT (expected));
4367 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4368 completion_mode[i], EXPECT (expected));
4369
4370 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4371 completion_mode[i], EXPECT (expected));
4372 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4373 completion_mode[i], EXPECT (expected));
4374 }
4375 }
4376
4377 {
4378 /* Check method qualifiers are ignored. */
4379 static const char expected[] = "ns::foo<char*>";
4380 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4381 symbol_name_match_type::FULL, true, EXPECT (expected));
4382 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4383 symbol_name_match_type::FULL, true, EXPECT (expected));
4384 CHECK_MATCH ("foo < char * > ( int ) const",
4385 symbol_name_match_type::WILD, true, EXPECT (expected));
4386 CHECK_MATCH ("foo < char * > ( int ) &&",
4387 symbol_name_match_type::WILD, true, EXPECT (expected));
4388 }
4389
4390 /* Test lookup names that don't match anything. */
4391 {
4392 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4393 {});
4394
4395 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4396 {});
4397 }
4398
4399 /* Some wild matching tests, exercising "(anonymous namespace)",
4400 which should not be confused with a parameter list. */
4401 {
4402 static const char *syms[] = {
4403 "A::B::C",
4404 "B::C",
4405 "C",
4406 "A :: B :: C ( int )",
4407 "B :: C ( int )",
4408 "C ( int )",
4409 };
4410
4411 for (const char *s : syms)
4412 {
4413 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4414 EXPECT ("(anonymous namespace)::A::B::C"));
4415 }
4416 }
4417
4418 {
4419 static const char expected[] = "ns2::tmpl<int>::foo2";
4420 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4421 EXPECT (expected));
4422 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4423 EXPECT (expected));
4424 }
4425
4426 SELF_CHECK (!any_mismatch);
4427
4428 #undef EXPECT
4429 #undef CHECK_MATCH
4430 }
4431
4432 static void
4433 run_test ()
4434 {
4435 test_mapped_index_find_name_component_bounds ();
4436 test_dw2_expand_symtabs_matching_symbol ();
4437 }
4438
4439 }} // namespace selftests::dw2_expand_symtabs_matching
4440
4441 #endif /* GDB_SELF_TEST */
4442
4443 /* If FILE_MATCHER is NULL or if PER_CU has
4444 dwarf2_per_cu_quick_data::MARK set (see
4445 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4446 EXPANSION_NOTIFY on it. */
4447
4448 static void
4449 dw2_expand_symtabs_matching_one
4450 (struct dwarf2_per_cu_data *per_cu,
4451 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4452 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4453 {
4454 if (file_matcher == NULL || per_cu->v.quick->mark)
4455 {
4456 bool symtab_was_null
4457 = (per_cu->v.quick->compunit_symtab == NULL);
4458
4459 dw2_instantiate_symtab (per_cu, false);
4460
4461 if (expansion_notify != NULL
4462 && symtab_was_null
4463 && per_cu->v.quick->compunit_symtab != NULL)
4464 expansion_notify (per_cu->v.quick->compunit_symtab);
4465 }
4466 }
4467
4468 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4469 matched, to expand corresponding CUs that were marked. IDX is the
4470 index of the symbol name that matched. */
4471
4472 static void
4473 dw2_expand_marked_cus
4474 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4475 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4476 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4477 search_domain kind)
4478 {
4479 offset_type *vec, vec_len, vec_idx;
4480 bool global_seen = false;
4481 mapped_index &index = *dwarf2_per_objfile->index_table;
4482
4483 vec = (offset_type *) (index.constant_pool
4484 + MAYBE_SWAP (index.symbol_table[idx].vec));
4485 vec_len = MAYBE_SWAP (vec[0]);
4486 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4487 {
4488 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4489 /* This value is only valid for index versions >= 7. */
4490 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4491 gdb_index_symbol_kind symbol_kind =
4492 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4493 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4494 /* Only check the symbol attributes if they're present.
4495 Indices prior to version 7 don't record them,
4496 and indices >= 7 may elide them for certain symbols
4497 (gold does this). */
4498 int attrs_valid =
4499 (index.version >= 7
4500 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4501
4502 /* Work around gold/15646. */
4503 if (attrs_valid)
4504 {
4505 if (!is_static && global_seen)
4506 continue;
4507 if (!is_static)
4508 global_seen = true;
4509 }
4510
4511 /* Only check the symbol's kind if it has one. */
4512 if (attrs_valid)
4513 {
4514 switch (kind)
4515 {
4516 case VARIABLES_DOMAIN:
4517 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4518 continue;
4519 break;
4520 case FUNCTIONS_DOMAIN:
4521 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4522 continue;
4523 break;
4524 case TYPES_DOMAIN:
4525 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4526 continue;
4527 break;
4528 case MODULES_DOMAIN:
4529 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4530 continue;
4531 break;
4532 default:
4533 break;
4534 }
4535 }
4536
4537 /* Don't crash on bad data. */
4538 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4539 + dwarf2_per_objfile->all_type_units.size ()))
4540 {
4541 complaint (_(".gdb_index entry has bad CU index"
4542 " [in module %s]"),
4543 objfile_name (dwarf2_per_objfile->objfile));
4544 continue;
4545 }
4546
4547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4548 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4549 expansion_notify);
4550 }
4551 }
4552
4553 /* If FILE_MATCHER is non-NULL, set all the
4554 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4555 that match FILE_MATCHER. */
4556
4557 static void
4558 dw_expand_symtabs_matching_file_matcher
4559 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4560 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4561 {
4562 if (file_matcher == NULL)
4563 return;
4564
4565 objfile *const objfile = dwarf2_per_objfile->objfile;
4566
4567 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4568 htab_eq_pointer,
4569 NULL, xcalloc, xfree));
4570 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4571 htab_eq_pointer,
4572 NULL, xcalloc, xfree));
4573
4574 /* The rule is CUs specify all the files, including those used by
4575 any TU, so there's no need to scan TUs here. */
4576
4577 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4578 {
4579 QUIT;
4580
4581 per_cu->v.quick->mark = 0;
4582
4583 /* We only need to look at symtabs not already expanded. */
4584 if (per_cu->v.quick->compunit_symtab)
4585 continue;
4586
4587 quick_file_names *file_data = dw2_get_file_names (per_cu);
4588 if (file_data == NULL)
4589 continue;
4590
4591 if (htab_find (visited_not_found.get (), file_data) != NULL)
4592 continue;
4593 else if (htab_find (visited_found.get (), file_data) != NULL)
4594 {
4595 per_cu->v.quick->mark = 1;
4596 continue;
4597 }
4598
4599 for (int j = 0; j < file_data->num_file_names; ++j)
4600 {
4601 const char *this_real_name;
4602
4603 if (file_matcher (file_data->file_names[j], false))
4604 {
4605 per_cu->v.quick->mark = 1;
4606 break;
4607 }
4608
4609 /* Before we invoke realpath, which can get expensive when many
4610 files are involved, do a quick comparison of the basenames. */
4611 if (!basenames_may_differ
4612 && !file_matcher (lbasename (file_data->file_names[j]),
4613 true))
4614 continue;
4615
4616 this_real_name = dw2_get_real_path (objfile, file_data, j);
4617 if (file_matcher (this_real_name, false))
4618 {
4619 per_cu->v.quick->mark = 1;
4620 break;
4621 }
4622 }
4623
4624 void **slot = htab_find_slot (per_cu->v.quick->mark
4625 ? visited_found.get ()
4626 : visited_not_found.get (),
4627 file_data, INSERT);
4628 *slot = file_data;
4629 }
4630 }
4631
4632 static void
4633 dw2_expand_symtabs_matching
4634 (struct objfile *objfile,
4635 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4636 const lookup_name_info &lookup_name,
4637 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4638 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4639 enum search_domain kind)
4640 {
4641 struct dwarf2_per_objfile *dwarf2_per_objfile
4642 = get_dwarf2_per_objfile (objfile);
4643
4644 /* index_table is NULL if OBJF_READNOW. */
4645 if (!dwarf2_per_objfile->index_table)
4646 return;
4647
4648 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4649
4650 mapped_index &index = *dwarf2_per_objfile->index_table;
4651
4652 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4653 symbol_matcher,
4654 kind, [&] (offset_type idx)
4655 {
4656 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4657 expansion_notify, kind);
4658 return true;
4659 });
4660 }
4661
4662 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4663 symtab. */
4664
4665 static struct compunit_symtab *
4666 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4667 CORE_ADDR pc)
4668 {
4669 int i;
4670
4671 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4672 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4673 return cust;
4674
4675 if (cust->includes == NULL)
4676 return NULL;
4677
4678 for (i = 0; cust->includes[i]; ++i)
4679 {
4680 struct compunit_symtab *s = cust->includes[i];
4681
4682 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4683 if (s != NULL)
4684 return s;
4685 }
4686
4687 return NULL;
4688 }
4689
4690 static struct compunit_symtab *
4691 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4692 struct bound_minimal_symbol msymbol,
4693 CORE_ADDR pc,
4694 struct obj_section *section,
4695 int warn_if_readin)
4696 {
4697 struct dwarf2_per_cu_data *data;
4698 struct compunit_symtab *result;
4699
4700 if (!objfile->partial_symtabs->psymtabs_addrmap)
4701 return NULL;
4702
4703 CORE_ADDR baseaddr = objfile->text_section_offset ();
4704 data = (struct dwarf2_per_cu_data *) addrmap_find
4705 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4706 if (!data)
4707 return NULL;
4708
4709 if (warn_if_readin && data->v.quick->compunit_symtab)
4710 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4711 paddress (get_objfile_arch (objfile), pc));
4712
4713 result
4714 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4715 false),
4716 pc);
4717 gdb_assert (result != NULL);
4718 return result;
4719 }
4720
4721 static void
4722 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4723 void *data, int need_fullname)
4724 {
4725 struct dwarf2_per_objfile *dwarf2_per_objfile
4726 = get_dwarf2_per_objfile (objfile);
4727
4728 if (!dwarf2_per_objfile->filenames_cache)
4729 {
4730 dwarf2_per_objfile->filenames_cache.emplace ();
4731
4732 htab_up visited (htab_create_alloc (10,
4733 htab_hash_pointer, htab_eq_pointer,
4734 NULL, xcalloc, xfree));
4735
4736 /* The rule is CUs specify all the files, including those used
4737 by any TU, so there's no need to scan TUs here. We can
4738 ignore file names coming from already-expanded CUs. */
4739
4740 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4741 {
4742 if (per_cu->v.quick->compunit_symtab)
4743 {
4744 void **slot = htab_find_slot (visited.get (),
4745 per_cu->v.quick->file_names,
4746 INSERT);
4747
4748 *slot = per_cu->v.quick->file_names;
4749 }
4750 }
4751
4752 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4753 {
4754 /* We only need to look at symtabs not already expanded. */
4755 if (per_cu->v.quick->compunit_symtab)
4756 continue;
4757
4758 quick_file_names *file_data = dw2_get_file_names (per_cu);
4759 if (file_data == NULL)
4760 continue;
4761
4762 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4763 if (*slot)
4764 {
4765 /* Already visited. */
4766 continue;
4767 }
4768 *slot = file_data;
4769
4770 for (int j = 0; j < file_data->num_file_names; ++j)
4771 {
4772 const char *filename = file_data->file_names[j];
4773 dwarf2_per_objfile->filenames_cache->seen (filename);
4774 }
4775 }
4776 }
4777
4778 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4779 {
4780 gdb::unique_xmalloc_ptr<char> this_real_name;
4781
4782 if (need_fullname)
4783 this_real_name = gdb_realpath (filename);
4784 (*fun) (filename, this_real_name.get (), data);
4785 });
4786 }
4787
4788 static int
4789 dw2_has_symbols (struct objfile *objfile)
4790 {
4791 return 1;
4792 }
4793
4794 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4795 {
4796 dw2_has_symbols,
4797 dw2_find_last_source_symtab,
4798 dw2_forget_cached_source_info,
4799 dw2_map_symtabs_matching_filename,
4800 dw2_lookup_symbol,
4801 dw2_print_stats,
4802 dw2_dump,
4803 dw2_expand_symtabs_for_function,
4804 dw2_expand_all_symtabs,
4805 dw2_expand_symtabs_with_fullname,
4806 dw2_map_matching_symbols,
4807 dw2_expand_symtabs_matching,
4808 dw2_find_pc_sect_compunit_symtab,
4809 NULL,
4810 dw2_map_symbol_filenames
4811 };
4812
4813 /* DWARF-5 debug_names reader. */
4814
4815 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4816 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4817
4818 /* A helper function that reads the .debug_names section in SECTION
4819 and fills in MAP. FILENAME is the name of the file containing the
4820 section; it is used for error reporting.
4821
4822 Returns true if all went well, false otherwise. */
4823
4824 static bool
4825 read_debug_names_from_section (struct objfile *objfile,
4826 const char *filename,
4827 struct dwarf2_section_info *section,
4828 mapped_debug_names &map)
4829 {
4830 if (section->empty ())
4831 return false;
4832
4833 /* Older elfutils strip versions could keep the section in the main
4834 executable while splitting it for the separate debug info file. */
4835 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4836 return false;
4837
4838 section->read (objfile);
4839
4840 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
4841
4842 const gdb_byte *addr = section->buffer;
4843
4844 bfd *const abfd = section->get_bfd_owner ();
4845
4846 unsigned int bytes_read;
4847 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4848 addr += bytes_read;
4849
4850 map.dwarf5_is_dwarf64 = bytes_read != 4;
4851 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4852 if (bytes_read + length != section->size)
4853 {
4854 /* There may be multiple per-CU indices. */
4855 warning (_("Section .debug_names in %s length %s does not match "
4856 "section length %s, ignoring .debug_names."),
4857 filename, plongest (bytes_read + length),
4858 pulongest (section->size));
4859 return false;
4860 }
4861
4862 /* The version number. */
4863 uint16_t version = read_2_bytes (abfd, addr);
4864 addr += 2;
4865 if (version != 5)
4866 {
4867 warning (_("Section .debug_names in %s has unsupported version %d, "
4868 "ignoring .debug_names."),
4869 filename, version);
4870 return false;
4871 }
4872
4873 /* Padding. */
4874 uint16_t padding = read_2_bytes (abfd, addr);
4875 addr += 2;
4876 if (padding != 0)
4877 {
4878 warning (_("Section .debug_names in %s has unsupported padding %d, "
4879 "ignoring .debug_names."),
4880 filename, padding);
4881 return false;
4882 }
4883
4884 /* comp_unit_count - The number of CUs in the CU list. */
4885 map.cu_count = read_4_bytes (abfd, addr);
4886 addr += 4;
4887
4888 /* local_type_unit_count - The number of TUs in the local TU
4889 list. */
4890 map.tu_count = read_4_bytes (abfd, addr);
4891 addr += 4;
4892
4893 /* foreign_type_unit_count - The number of TUs in the foreign TU
4894 list. */
4895 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4896 addr += 4;
4897 if (foreign_tu_count != 0)
4898 {
4899 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4900 "ignoring .debug_names."),
4901 filename, static_cast<unsigned long> (foreign_tu_count));
4902 return false;
4903 }
4904
4905 /* bucket_count - The number of hash buckets in the hash lookup
4906 table. */
4907 map.bucket_count = read_4_bytes (abfd, addr);
4908 addr += 4;
4909
4910 /* name_count - The number of unique names in the index. */
4911 map.name_count = read_4_bytes (abfd, addr);
4912 addr += 4;
4913
4914 /* abbrev_table_size - The size in bytes of the abbreviations
4915 table. */
4916 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4917 addr += 4;
4918
4919 /* augmentation_string_size - The size in bytes of the augmentation
4920 string. This value is rounded up to a multiple of 4. */
4921 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4922 addr += 4;
4923 map.augmentation_is_gdb = ((augmentation_string_size
4924 == sizeof (dwarf5_augmentation))
4925 && memcmp (addr, dwarf5_augmentation,
4926 sizeof (dwarf5_augmentation)) == 0);
4927 augmentation_string_size += (-augmentation_string_size) & 3;
4928 addr += augmentation_string_size;
4929
4930 /* List of CUs */
4931 map.cu_table_reordered = addr;
4932 addr += map.cu_count * map.offset_size;
4933
4934 /* List of Local TUs */
4935 map.tu_table_reordered = addr;
4936 addr += map.tu_count * map.offset_size;
4937
4938 /* Hash Lookup Table */
4939 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4940 addr += map.bucket_count * 4;
4941 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4942 addr += map.name_count * 4;
4943
4944 /* Name Table */
4945 map.name_table_string_offs_reordered = addr;
4946 addr += map.name_count * map.offset_size;
4947 map.name_table_entry_offs_reordered = addr;
4948 addr += map.name_count * map.offset_size;
4949
4950 const gdb_byte *abbrev_table_start = addr;
4951 for (;;)
4952 {
4953 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4954 addr += bytes_read;
4955 if (index_num == 0)
4956 break;
4957
4958 const auto insertpair
4959 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4960 if (!insertpair.second)
4961 {
4962 warning (_("Section .debug_names in %s has duplicate index %s, "
4963 "ignoring .debug_names."),
4964 filename, pulongest (index_num));
4965 return false;
4966 }
4967 mapped_debug_names::index_val &indexval = insertpair.first->second;
4968 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4969 addr += bytes_read;
4970
4971 for (;;)
4972 {
4973 mapped_debug_names::index_val::attr attr;
4974 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4975 addr += bytes_read;
4976 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4977 addr += bytes_read;
4978 if (attr.form == DW_FORM_implicit_const)
4979 {
4980 attr.implicit_const = read_signed_leb128 (abfd, addr,
4981 &bytes_read);
4982 addr += bytes_read;
4983 }
4984 if (attr.dw_idx == 0 && attr.form == 0)
4985 break;
4986 indexval.attr_vec.push_back (std::move (attr));
4987 }
4988 }
4989 if (addr != abbrev_table_start + abbrev_table_size)
4990 {
4991 warning (_("Section .debug_names in %s has abbreviation_table "
4992 "of size %s vs. written as %u, ignoring .debug_names."),
4993 filename, plongest (addr - abbrev_table_start),
4994 abbrev_table_size);
4995 return false;
4996 }
4997 map.entry_pool = addr;
4998
4999 return true;
5000 }
5001
5002 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5003 list. */
5004
5005 static void
5006 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5007 const mapped_debug_names &map,
5008 dwarf2_section_info &section,
5009 bool is_dwz)
5010 {
5011 sect_offset sect_off_prev;
5012 for (uint32_t i = 0; i <= map.cu_count; ++i)
5013 {
5014 sect_offset sect_off_next;
5015 if (i < map.cu_count)
5016 {
5017 sect_off_next
5018 = (sect_offset) (extract_unsigned_integer
5019 (map.cu_table_reordered + i * map.offset_size,
5020 map.offset_size,
5021 map.dwarf5_byte_order));
5022 }
5023 else
5024 sect_off_next = (sect_offset) section.size;
5025 if (i >= 1)
5026 {
5027 const ULONGEST length = sect_off_next - sect_off_prev;
5028 dwarf2_per_cu_data *per_cu
5029 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5030 sect_off_prev, length);
5031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5032 }
5033 sect_off_prev = sect_off_next;
5034 }
5035 }
5036
5037 /* Read the CU list from the mapped index, and use it to create all
5038 the CU objects for this dwarf2_per_objfile. */
5039
5040 static void
5041 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5042 const mapped_debug_names &map,
5043 const mapped_debug_names &dwz_map)
5044 {
5045 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5046 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5047
5048 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5049 dwarf2_per_objfile->info,
5050 false /* is_dwz */);
5051
5052 if (dwz_map.cu_count == 0)
5053 return;
5054
5055 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5056 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5057 true /* is_dwz */);
5058 }
5059
5060 /* Read .debug_names. If everything went ok, initialize the "quick"
5061 elements of all the CUs and return true. Otherwise, return false. */
5062
5063 static bool
5064 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5065 {
5066 std::unique_ptr<mapped_debug_names> map
5067 (new mapped_debug_names (dwarf2_per_objfile));
5068 mapped_debug_names dwz_map (dwarf2_per_objfile);
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5070
5071 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5072 &dwarf2_per_objfile->debug_names,
5073 *map))
5074 return false;
5075
5076 /* Don't use the index if it's empty. */
5077 if (map->name_count == 0)
5078 return false;
5079
5080 /* If there is a .dwz file, read it so we can get its CU list as
5081 well. */
5082 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5083 if (dwz != NULL)
5084 {
5085 if (!read_debug_names_from_section (objfile,
5086 bfd_get_filename (dwz->dwz_bfd.get ()),
5087 &dwz->debug_names, dwz_map))
5088 {
5089 warning (_("could not read '.debug_names' section from %s; skipping"),
5090 bfd_get_filename (dwz->dwz_bfd.get ()));
5091 return false;
5092 }
5093 }
5094
5095 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5096
5097 if (map->tu_count != 0)
5098 {
5099 /* We can only handle a single .debug_types when we have an
5100 index. */
5101 if (dwarf2_per_objfile->types.size () != 1)
5102 return false;
5103
5104 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5105
5106 create_signatured_type_table_from_debug_names
5107 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5108 }
5109
5110 create_addrmap_from_aranges (dwarf2_per_objfile,
5111 &dwarf2_per_objfile->debug_aranges);
5112
5113 dwarf2_per_objfile->debug_names_table = std::move (map);
5114 dwarf2_per_objfile->using_index = 1;
5115 dwarf2_per_objfile->quick_file_names_table =
5116 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5117
5118 return true;
5119 }
5120
5121 /* Type used to manage iterating over all CUs looking for a symbol for
5122 .debug_names. */
5123
5124 class dw2_debug_names_iterator
5125 {
5126 public:
5127 dw2_debug_names_iterator (const mapped_debug_names &map,
5128 gdb::optional<block_enum> block_index,
5129 domain_enum domain,
5130 const char *name)
5131 : m_map (map), m_block_index (block_index), m_domain (domain),
5132 m_addr (find_vec_in_debug_names (map, name))
5133 {}
5134
5135 dw2_debug_names_iterator (const mapped_debug_names &map,
5136 search_domain search, uint32_t namei)
5137 : m_map (map),
5138 m_search (search),
5139 m_addr (find_vec_in_debug_names (map, namei))
5140 {}
5141
5142 dw2_debug_names_iterator (const mapped_debug_names &map,
5143 block_enum block_index, domain_enum domain,
5144 uint32_t namei)
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, namei))
5147 {}
5148
5149 /* Return the next matching CU or NULL if there are no more. */
5150 dwarf2_per_cu_data *next ();
5151
5152 private:
5153 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5154 const char *name);
5155 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5156 uint32_t namei);
5157
5158 /* The internalized form of .debug_names. */
5159 const mapped_debug_names &m_map;
5160
5161 /* If set, only look for symbols that match that block. Valid values are
5162 GLOBAL_BLOCK and STATIC_BLOCK. */
5163 const gdb::optional<block_enum> m_block_index;
5164
5165 /* The kind of symbol we're looking for. */
5166 const domain_enum m_domain = UNDEF_DOMAIN;
5167 const search_domain m_search = ALL_DOMAIN;
5168
5169 /* The list of CUs from the index entry of the symbol, or NULL if
5170 not found. */
5171 const gdb_byte *m_addr;
5172 };
5173
5174 const char *
5175 mapped_debug_names::namei_to_name (uint32_t namei) const
5176 {
5177 const ULONGEST namei_string_offs
5178 = extract_unsigned_integer ((name_table_string_offs_reordered
5179 + namei * offset_size),
5180 offset_size,
5181 dwarf5_byte_order);
5182 return read_indirect_string_at_offset
5183 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5184 }
5185
5186 /* Find a slot in .debug_names for the object named NAME. If NAME is
5187 found, return pointer to its pool data. If NAME cannot be found,
5188 return NULL. */
5189
5190 const gdb_byte *
5191 dw2_debug_names_iterator::find_vec_in_debug_names
5192 (const mapped_debug_names &map, const char *name)
5193 {
5194 int (*cmp) (const char *, const char *);
5195
5196 gdb::unique_xmalloc_ptr<char> without_params;
5197 if (current_language->la_language == language_cplus
5198 || current_language->la_language == language_fortran
5199 || current_language->la_language == language_d)
5200 {
5201 /* NAME is already canonical. Drop any qualifiers as
5202 .debug_names does not contain any. */
5203
5204 if (strchr (name, '(') != NULL)
5205 {
5206 without_params = cp_remove_params (name);
5207 if (without_params != NULL)
5208 name = without_params.get ();
5209 }
5210 }
5211
5212 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5213
5214 const uint32_t full_hash = dwarf5_djb_hash (name);
5215 uint32_t namei
5216 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5217 (map.bucket_table_reordered
5218 + (full_hash % map.bucket_count)), 4,
5219 map.dwarf5_byte_order);
5220 if (namei == 0)
5221 return NULL;
5222 --namei;
5223 if (namei >= map.name_count)
5224 {
5225 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5226 "[in module %s]"),
5227 namei, map.name_count,
5228 objfile_name (map.dwarf2_per_objfile->objfile));
5229 return NULL;
5230 }
5231
5232 for (;;)
5233 {
5234 const uint32_t namei_full_hash
5235 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5236 (map.hash_table_reordered + namei), 4,
5237 map.dwarf5_byte_order);
5238 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5239 return NULL;
5240
5241 if (full_hash == namei_full_hash)
5242 {
5243 const char *const namei_string = map.namei_to_name (namei);
5244
5245 #if 0 /* An expensive sanity check. */
5246 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5247 {
5248 complaint (_("Wrong .debug_names hash for string at index %u "
5249 "[in module %s]"),
5250 namei, objfile_name (dwarf2_per_objfile->objfile));
5251 return NULL;
5252 }
5253 #endif
5254
5255 if (cmp (namei_string, name) == 0)
5256 {
5257 const ULONGEST namei_entry_offs
5258 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5259 + namei * map.offset_size),
5260 map.offset_size, map.dwarf5_byte_order);
5261 return map.entry_pool + namei_entry_offs;
5262 }
5263 }
5264
5265 ++namei;
5266 if (namei >= map.name_count)
5267 return NULL;
5268 }
5269 }
5270
5271 const gdb_byte *
5272 dw2_debug_names_iterator::find_vec_in_debug_names
5273 (const mapped_debug_names &map, uint32_t namei)
5274 {
5275 if (namei >= map.name_count)
5276 {
5277 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5278 "[in module %s]"),
5279 namei, map.name_count,
5280 objfile_name (map.dwarf2_per_objfile->objfile));
5281 return NULL;
5282 }
5283
5284 const ULONGEST namei_entry_offs
5285 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5286 + namei * map.offset_size),
5287 map.offset_size, map.dwarf5_byte_order);
5288 return map.entry_pool + namei_entry_offs;
5289 }
5290
5291 /* See dw2_debug_names_iterator. */
5292
5293 dwarf2_per_cu_data *
5294 dw2_debug_names_iterator::next ()
5295 {
5296 if (m_addr == NULL)
5297 return NULL;
5298
5299 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5300 struct objfile *objfile = dwarf2_per_objfile->objfile;
5301 bfd *const abfd = objfile->obfd;
5302
5303 again:
5304
5305 unsigned int bytes_read;
5306 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5307 m_addr += bytes_read;
5308 if (abbrev == 0)
5309 return NULL;
5310
5311 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5312 if (indexval_it == m_map.abbrev_map.cend ())
5313 {
5314 complaint (_("Wrong .debug_names undefined abbrev code %s "
5315 "[in module %s]"),
5316 pulongest (abbrev), objfile_name (objfile));
5317 return NULL;
5318 }
5319 const mapped_debug_names::index_val &indexval = indexval_it->second;
5320 enum class symbol_linkage {
5321 unknown,
5322 static_,
5323 extern_,
5324 } symbol_linkage_ = symbol_linkage::unknown;
5325 dwarf2_per_cu_data *per_cu = NULL;
5326 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5327 {
5328 ULONGEST ull;
5329 switch (attr.form)
5330 {
5331 case DW_FORM_implicit_const:
5332 ull = attr.implicit_const;
5333 break;
5334 case DW_FORM_flag_present:
5335 ull = 1;
5336 break;
5337 case DW_FORM_udata:
5338 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5339 m_addr += bytes_read;
5340 break;
5341 default:
5342 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5343 dwarf_form_name (attr.form),
5344 objfile_name (objfile));
5345 return NULL;
5346 }
5347 switch (attr.dw_idx)
5348 {
5349 case DW_IDX_compile_unit:
5350 /* Don't crash on bad data. */
5351 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5352 {
5353 complaint (_(".debug_names entry has bad CU index %s"
5354 " [in module %s]"),
5355 pulongest (ull),
5356 objfile_name (dwarf2_per_objfile->objfile));
5357 continue;
5358 }
5359 per_cu = dwarf2_per_objfile->get_cutu (ull);
5360 break;
5361 case DW_IDX_type_unit:
5362 /* Don't crash on bad data. */
5363 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5364 {
5365 complaint (_(".debug_names entry has bad TU index %s"
5366 " [in module %s]"),
5367 pulongest (ull),
5368 objfile_name (dwarf2_per_objfile->objfile));
5369 continue;
5370 }
5371 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5372 break;
5373 case DW_IDX_GNU_internal:
5374 if (!m_map.augmentation_is_gdb)
5375 break;
5376 symbol_linkage_ = symbol_linkage::static_;
5377 break;
5378 case DW_IDX_GNU_external:
5379 if (!m_map.augmentation_is_gdb)
5380 break;
5381 symbol_linkage_ = symbol_linkage::extern_;
5382 break;
5383 }
5384 }
5385
5386 /* Skip if already read in. */
5387 if (per_cu->v.quick->compunit_symtab)
5388 goto again;
5389
5390 /* Check static vs global. */
5391 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5392 {
5393 const bool want_static = *m_block_index == STATIC_BLOCK;
5394 const bool symbol_is_static =
5395 symbol_linkage_ == symbol_linkage::static_;
5396 if (want_static != symbol_is_static)
5397 goto again;
5398 }
5399
5400 /* Match dw2_symtab_iter_next, symbol_kind
5401 and debug_names::psymbol_tag. */
5402 switch (m_domain)
5403 {
5404 case VAR_DOMAIN:
5405 switch (indexval.dwarf_tag)
5406 {
5407 case DW_TAG_variable:
5408 case DW_TAG_subprogram:
5409 /* Some types are also in VAR_DOMAIN. */
5410 case DW_TAG_typedef:
5411 case DW_TAG_structure_type:
5412 break;
5413 default:
5414 goto again;
5415 }
5416 break;
5417 case STRUCT_DOMAIN:
5418 switch (indexval.dwarf_tag)
5419 {
5420 case DW_TAG_typedef:
5421 case DW_TAG_structure_type:
5422 break;
5423 default:
5424 goto again;
5425 }
5426 break;
5427 case LABEL_DOMAIN:
5428 switch (indexval.dwarf_tag)
5429 {
5430 case 0:
5431 case DW_TAG_variable:
5432 break;
5433 default:
5434 goto again;
5435 }
5436 break;
5437 case MODULE_DOMAIN:
5438 switch (indexval.dwarf_tag)
5439 {
5440 case DW_TAG_module:
5441 break;
5442 default:
5443 goto again;
5444 }
5445 break;
5446 default:
5447 break;
5448 }
5449
5450 /* Match dw2_expand_symtabs_matching, symbol_kind and
5451 debug_names::psymbol_tag. */
5452 switch (m_search)
5453 {
5454 case VARIABLES_DOMAIN:
5455 switch (indexval.dwarf_tag)
5456 {
5457 case DW_TAG_variable:
5458 break;
5459 default:
5460 goto again;
5461 }
5462 break;
5463 case FUNCTIONS_DOMAIN:
5464 switch (indexval.dwarf_tag)
5465 {
5466 case DW_TAG_subprogram:
5467 break;
5468 default:
5469 goto again;
5470 }
5471 break;
5472 case TYPES_DOMAIN:
5473 switch (indexval.dwarf_tag)
5474 {
5475 case DW_TAG_typedef:
5476 case DW_TAG_structure_type:
5477 break;
5478 default:
5479 goto again;
5480 }
5481 break;
5482 case MODULES_DOMAIN:
5483 switch (indexval.dwarf_tag)
5484 {
5485 case DW_TAG_module:
5486 break;
5487 default:
5488 goto again;
5489 }
5490 default:
5491 break;
5492 }
5493
5494 return per_cu;
5495 }
5496
5497 static struct compunit_symtab *
5498 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5499 const char *name, domain_enum domain)
5500 {
5501 struct dwarf2_per_objfile *dwarf2_per_objfile
5502 = get_dwarf2_per_objfile (objfile);
5503
5504 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5505 if (!mapp)
5506 {
5507 /* index is NULL if OBJF_READNOW. */
5508 return NULL;
5509 }
5510 const auto &map = *mapp;
5511
5512 dw2_debug_names_iterator iter (map, block_index, domain, name);
5513
5514 struct compunit_symtab *stab_best = NULL;
5515 struct dwarf2_per_cu_data *per_cu;
5516 while ((per_cu = iter.next ()) != NULL)
5517 {
5518 struct symbol *sym, *with_opaque = NULL;
5519 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5520 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5521 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5522
5523 sym = block_find_symbol (block, name, domain,
5524 block_find_non_opaque_type_preferred,
5525 &with_opaque);
5526
5527 /* Some caution must be observed with overloaded functions and
5528 methods, since the index will not contain any overload
5529 information (but NAME might contain it). */
5530
5531 if (sym != NULL
5532 && strcmp_iw (sym->search_name (), name) == 0)
5533 return stab;
5534 if (with_opaque != NULL
5535 && strcmp_iw (with_opaque->search_name (), name) == 0)
5536 stab_best = stab;
5537
5538 /* Keep looking through other CUs. */
5539 }
5540
5541 return stab_best;
5542 }
5543
5544 /* This dumps minimal information about .debug_names. It is called
5545 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5546 uses this to verify that .debug_names has been loaded. */
5547
5548 static void
5549 dw2_debug_names_dump (struct objfile *objfile)
5550 {
5551 struct dwarf2_per_objfile *dwarf2_per_objfile
5552 = get_dwarf2_per_objfile (objfile);
5553
5554 gdb_assert (dwarf2_per_objfile->using_index);
5555 printf_filtered (".debug_names:");
5556 if (dwarf2_per_objfile->debug_names_table)
5557 printf_filtered (" exists\n");
5558 else
5559 printf_filtered (" faked for \"readnow\"\n");
5560 printf_filtered ("\n");
5561 }
5562
5563 static void
5564 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5565 const char *func_name)
5566 {
5567 struct dwarf2_per_objfile *dwarf2_per_objfile
5568 = get_dwarf2_per_objfile (objfile);
5569
5570 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5571 if (dwarf2_per_objfile->debug_names_table)
5572 {
5573 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5574
5575 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5576
5577 struct dwarf2_per_cu_data *per_cu;
5578 while ((per_cu = iter.next ()) != NULL)
5579 dw2_instantiate_symtab (per_cu, false);
5580 }
5581 }
5582
5583 static void
5584 dw2_debug_names_map_matching_symbols
5585 (struct objfile *objfile,
5586 const lookup_name_info &name, domain_enum domain,
5587 int global,
5588 gdb::function_view<symbol_found_callback_ftype> callback,
5589 symbol_compare_ftype *ordered_compare)
5590 {
5591 struct dwarf2_per_objfile *dwarf2_per_objfile
5592 = get_dwarf2_per_objfile (objfile);
5593
5594 /* debug_names_table is NULL if OBJF_READNOW. */
5595 if (!dwarf2_per_objfile->debug_names_table)
5596 return;
5597
5598 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5599 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5600
5601 const char *match_name = name.ada ().lookup_name ().c_str ();
5602 auto matcher = [&] (const char *symname)
5603 {
5604 if (ordered_compare == nullptr)
5605 return true;
5606 return ordered_compare (symname, match_name) == 0;
5607 };
5608
5609 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5610 [&] (offset_type namei)
5611 {
5612 /* The name was matched, now expand corresponding CUs that were
5613 marked. */
5614 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5615
5616 struct dwarf2_per_cu_data *per_cu;
5617 while ((per_cu = iter.next ()) != NULL)
5618 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5619 return true;
5620 });
5621
5622 /* It's a shame we couldn't do this inside the
5623 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5624 that have already been expanded. Instead, this loop matches what
5625 the psymtab code does. */
5626 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5627 {
5628 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5629 if (cust != nullptr)
5630 {
5631 const struct block *block
5632 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5633 if (!iterate_over_symbols_terminated (block, name,
5634 domain, callback))
5635 break;
5636 }
5637 }
5638 }
5639
5640 static void
5641 dw2_debug_names_expand_symtabs_matching
5642 (struct objfile *objfile,
5643 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5644 const lookup_name_info &lookup_name,
5645 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5646 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5647 enum search_domain kind)
5648 {
5649 struct dwarf2_per_objfile *dwarf2_per_objfile
5650 = get_dwarf2_per_objfile (objfile);
5651
5652 /* debug_names_table is NULL if OBJF_READNOW. */
5653 if (!dwarf2_per_objfile->debug_names_table)
5654 return;
5655
5656 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5657
5658 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5659
5660 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5661 symbol_matcher,
5662 kind, [&] (offset_type namei)
5663 {
5664 /* The name was matched, now expand corresponding CUs that were
5665 marked. */
5666 dw2_debug_names_iterator iter (map, kind, namei);
5667
5668 struct dwarf2_per_cu_data *per_cu;
5669 while ((per_cu = iter.next ()) != NULL)
5670 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5671 expansion_notify);
5672 return true;
5673 });
5674 }
5675
5676 const struct quick_symbol_functions dwarf2_debug_names_functions =
5677 {
5678 dw2_has_symbols,
5679 dw2_find_last_source_symtab,
5680 dw2_forget_cached_source_info,
5681 dw2_map_symtabs_matching_filename,
5682 dw2_debug_names_lookup_symbol,
5683 dw2_print_stats,
5684 dw2_debug_names_dump,
5685 dw2_debug_names_expand_symtabs_for_function,
5686 dw2_expand_all_symtabs,
5687 dw2_expand_symtabs_with_fullname,
5688 dw2_debug_names_map_matching_symbols,
5689 dw2_debug_names_expand_symtabs_matching,
5690 dw2_find_pc_sect_compunit_symtab,
5691 NULL,
5692 dw2_map_symbol_filenames
5693 };
5694
5695 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5696 to either a dwarf2_per_objfile or dwz_file object. */
5697
5698 template <typename T>
5699 static gdb::array_view<const gdb_byte>
5700 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5701 {
5702 dwarf2_section_info *section = &section_owner->gdb_index;
5703
5704 if (section->empty ())
5705 return {};
5706
5707 /* Older elfutils strip versions could keep the section in the main
5708 executable while splitting it for the separate debug info file. */
5709 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5710 return {};
5711
5712 section->read (obj);
5713
5714 /* dwarf2_section_info::size is a bfd_size_type, while
5715 gdb::array_view works with size_t. On 32-bit hosts, with
5716 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5717 is 32-bit. So we need an explicit narrowing conversion here.
5718 This is fine, because it's impossible to allocate or mmap an
5719 array/buffer larger than what size_t can represent. */
5720 return gdb::make_array_view (section->buffer, section->size);
5721 }
5722
5723 /* Lookup the index cache for the contents of the index associated to
5724 DWARF2_OBJ. */
5725
5726 static gdb::array_view<const gdb_byte>
5727 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5728 {
5729 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5730 if (build_id == nullptr)
5731 return {};
5732
5733 return global_index_cache.lookup_gdb_index (build_id,
5734 &dwarf2_obj->index_cache_res);
5735 }
5736
5737 /* Same as the above, but for DWZ. */
5738
5739 static gdb::array_view<const gdb_byte>
5740 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5741 {
5742 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5743 if (build_id == nullptr)
5744 return {};
5745
5746 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5747 }
5748
5749 /* See symfile.h. */
5750
5751 bool
5752 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5753 {
5754 struct dwarf2_per_objfile *dwarf2_per_objfile
5755 = get_dwarf2_per_objfile (objfile);
5756
5757 /* If we're about to read full symbols, don't bother with the
5758 indices. In this case we also don't care if some other debug
5759 format is making psymtabs, because they are all about to be
5760 expanded anyway. */
5761 if ((objfile->flags & OBJF_READNOW))
5762 {
5763 dwarf2_per_objfile->using_index = 1;
5764 create_all_comp_units (dwarf2_per_objfile);
5765 create_all_type_units (dwarf2_per_objfile);
5766 dwarf2_per_objfile->quick_file_names_table
5767 = create_quick_file_names_table
5768 (dwarf2_per_objfile->all_comp_units.size ());
5769
5770 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5771 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5772 {
5773 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5774
5775 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5776 struct dwarf2_per_cu_quick_data);
5777 }
5778
5779 /* Return 1 so that gdb sees the "quick" functions. However,
5780 these functions will be no-ops because we will have expanded
5781 all symtabs. */
5782 *index_kind = dw_index_kind::GDB_INDEX;
5783 return true;
5784 }
5785
5786 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5787 {
5788 *index_kind = dw_index_kind::DEBUG_NAMES;
5789 return true;
5790 }
5791
5792 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5793 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5794 get_gdb_index_contents_from_section<dwz_file>))
5795 {
5796 *index_kind = dw_index_kind::GDB_INDEX;
5797 return true;
5798 }
5799
5800 /* ... otherwise, try to find the index in the index cache. */
5801 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5802 get_gdb_index_contents_from_cache,
5803 get_gdb_index_contents_from_cache_dwz))
5804 {
5805 global_index_cache.hit ();
5806 *index_kind = dw_index_kind::GDB_INDEX;
5807 return true;
5808 }
5809
5810 global_index_cache.miss ();
5811 return false;
5812 }
5813
5814 \f
5815
5816 /* Build a partial symbol table. */
5817
5818 void
5819 dwarf2_build_psymtabs (struct objfile *objfile)
5820 {
5821 struct dwarf2_per_objfile *dwarf2_per_objfile
5822 = get_dwarf2_per_objfile (objfile);
5823
5824 init_psymbol_list (objfile, 1024);
5825
5826 try
5827 {
5828 /* This isn't really ideal: all the data we allocate on the
5829 objfile's obstack is still uselessly kept around. However,
5830 freeing it seems unsafe. */
5831 psymtab_discarder psymtabs (objfile);
5832 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5833 psymtabs.keep ();
5834
5835 /* (maybe) store an index in the cache. */
5836 global_index_cache.store (dwarf2_per_objfile);
5837 }
5838 catch (const gdb_exception_error &except)
5839 {
5840 exception_print (gdb_stderr, except);
5841 }
5842 }
5843
5844 /* Find the base address of the compilation unit for range lists and
5845 location lists. It will normally be specified by DW_AT_low_pc.
5846 In DWARF-3 draft 4, the base address could be overridden by
5847 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5848 compilation units with discontinuous ranges. */
5849
5850 static void
5851 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5852 {
5853 struct attribute *attr;
5854
5855 cu->base_known = 0;
5856 cu->base_address = 0;
5857
5858 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5859 if (attr != nullptr)
5860 {
5861 cu->base_address = attr->value_as_address ();
5862 cu->base_known = 1;
5863 }
5864 else
5865 {
5866 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5867 if (attr != nullptr)
5868 {
5869 cu->base_address = attr->value_as_address ();
5870 cu->base_known = 1;
5871 }
5872 }
5873 }
5874
5875 /* Helper function that returns the proper abbrev section for
5876 THIS_CU. */
5877
5878 static struct dwarf2_section_info *
5879 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5880 {
5881 struct dwarf2_section_info *abbrev;
5882 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5883
5884 if (this_cu->is_dwz)
5885 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5886 else
5887 abbrev = &dwarf2_per_objfile->abbrev;
5888
5889 return abbrev;
5890 }
5891
5892 /* Fetch the abbreviation table offset from a comp or type unit header. */
5893
5894 static sect_offset
5895 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5896 struct dwarf2_section_info *section,
5897 sect_offset sect_off)
5898 {
5899 bfd *abfd = section->get_bfd_owner ();
5900 const gdb_byte *info_ptr;
5901 unsigned int initial_length_size, offset_size;
5902 uint16_t version;
5903
5904 section->read (dwarf2_per_objfile->objfile);
5905 info_ptr = section->buffer + to_underlying (sect_off);
5906 read_initial_length (abfd, info_ptr, &initial_length_size);
5907 offset_size = initial_length_size == 4 ? 4 : 8;
5908 info_ptr += initial_length_size;
5909
5910 version = read_2_bytes (abfd, info_ptr);
5911 info_ptr += 2;
5912 if (version >= 5)
5913 {
5914 /* Skip unit type and address size. */
5915 info_ptr += 2;
5916 }
5917
5918 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5919 }
5920
5921 /* Allocate a new partial symtab for file named NAME and mark this new
5922 partial symtab as being an include of PST. */
5923
5924 static void
5925 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5926 struct objfile *objfile)
5927 {
5928 dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile);
5929
5930 if (!IS_ABSOLUTE_PATH (subpst->filename))
5931 {
5932 /* It shares objfile->objfile_obstack. */
5933 subpst->dirname = pst->dirname;
5934 }
5935
5936 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5937 subpst->dependencies[0] = pst;
5938 subpst->number_of_dependencies = 1;
5939
5940 /* No private part is necessary for include psymtabs. This property
5941 can be used to differentiate between such include psymtabs and
5942 the regular ones. */
5943 subpst->per_cu_data = nullptr;
5944 }
5945
5946 /* Read the Line Number Program data and extract the list of files
5947 included by the source file represented by PST. Build an include
5948 partial symtab for each of these included files. */
5949
5950 static void
5951 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5952 struct die_info *die,
5953 dwarf2_psymtab *pst)
5954 {
5955 line_header_up lh;
5956 struct attribute *attr;
5957
5958 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5959 if (attr != nullptr)
5960 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5961 if (lh == NULL)
5962 return; /* No linetable, so no includes. */
5963
5964 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
5965 that we pass in the raw text_low here; that is ok because we're
5966 only decoding the line table to make include partial symtabs, and
5967 so the addresses aren't really used. */
5968 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
5969 pst->raw_text_low (), 1);
5970 }
5971
5972 static hashval_t
5973 hash_signatured_type (const void *item)
5974 {
5975 const struct signatured_type *sig_type
5976 = (const struct signatured_type *) item;
5977
5978 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5979 return sig_type->signature;
5980 }
5981
5982 static int
5983 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5984 {
5985 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5986 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5987
5988 return lhs->signature == rhs->signature;
5989 }
5990
5991 /* Allocate a hash table for signatured types. */
5992
5993 static htab_up
5994 allocate_signatured_type_table ()
5995 {
5996 return htab_up (htab_create_alloc (41,
5997 hash_signatured_type,
5998 eq_signatured_type,
5999 NULL, xcalloc, xfree));
6000 }
6001
6002 /* A helper function to add a signatured type CU to a table. */
6003
6004 static int
6005 add_signatured_type_cu_to_table (void **slot, void *datum)
6006 {
6007 struct signatured_type *sigt = (struct signatured_type *) *slot;
6008 std::vector<signatured_type *> *all_type_units
6009 = (std::vector<signatured_type *> *) datum;
6010
6011 all_type_units->push_back (sigt);
6012
6013 return 1;
6014 }
6015
6016 /* A helper for create_debug_types_hash_table. Read types from SECTION
6017 and fill them into TYPES_HTAB. It will process only type units,
6018 therefore DW_UT_type. */
6019
6020 static void
6021 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6022 struct dwo_file *dwo_file,
6023 dwarf2_section_info *section, htab_up &types_htab,
6024 rcuh_kind section_kind)
6025 {
6026 struct objfile *objfile = dwarf2_per_objfile->objfile;
6027 struct dwarf2_section_info *abbrev_section;
6028 bfd *abfd;
6029 const gdb_byte *info_ptr, *end_ptr;
6030
6031 abbrev_section = (dwo_file != NULL
6032 ? &dwo_file->sections.abbrev
6033 : &dwarf2_per_objfile->abbrev);
6034
6035 if (dwarf_read_debug)
6036 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6037 section->get_name (),
6038 abbrev_section->get_file_name ());
6039
6040 section->read (objfile);
6041 info_ptr = section->buffer;
6042
6043 if (info_ptr == NULL)
6044 return;
6045
6046 /* We can't set abfd until now because the section may be empty or
6047 not present, in which case the bfd is unknown. */
6048 abfd = section->get_bfd_owner ();
6049
6050 /* We don't use cutu_reader here because we don't need to read
6051 any dies: the signature is in the header. */
6052
6053 end_ptr = info_ptr + section->size;
6054 while (info_ptr < end_ptr)
6055 {
6056 struct signatured_type *sig_type;
6057 struct dwo_unit *dwo_tu;
6058 void **slot;
6059 const gdb_byte *ptr = info_ptr;
6060 struct comp_unit_head header;
6061 unsigned int length;
6062
6063 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6064
6065 /* Initialize it due to a false compiler warning. */
6066 header.signature = -1;
6067 header.type_cu_offset_in_tu = (cu_offset) -1;
6068
6069 /* We need to read the type's signature in order to build the hash
6070 table, but we don't need anything else just yet. */
6071
6072 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6073 abbrev_section, ptr, section_kind);
6074
6075 length = header.get_length ();
6076
6077 /* Skip dummy type units. */
6078 if (ptr >= info_ptr + length
6079 || peek_abbrev_code (abfd, ptr) == 0
6080 || header.unit_type != DW_UT_type)
6081 {
6082 info_ptr += length;
6083 continue;
6084 }
6085
6086 if (types_htab == NULL)
6087 {
6088 if (dwo_file)
6089 types_htab = allocate_dwo_unit_table ();
6090 else
6091 types_htab = allocate_signatured_type_table ();
6092 }
6093
6094 if (dwo_file)
6095 {
6096 sig_type = NULL;
6097 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6098 struct dwo_unit);
6099 dwo_tu->dwo_file = dwo_file;
6100 dwo_tu->signature = header.signature;
6101 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6102 dwo_tu->section = section;
6103 dwo_tu->sect_off = sect_off;
6104 dwo_tu->length = length;
6105 }
6106 else
6107 {
6108 /* N.B.: type_offset is not usable if this type uses a DWO file.
6109 The real type_offset is in the DWO file. */
6110 dwo_tu = NULL;
6111 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6112 struct signatured_type);
6113 sig_type->signature = header.signature;
6114 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6116 sig_type->per_cu.is_debug_types = 1;
6117 sig_type->per_cu.section = section;
6118 sig_type->per_cu.sect_off = sect_off;
6119 sig_type->per_cu.length = length;
6120 }
6121
6122 slot = htab_find_slot (types_htab.get (),
6123 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6124 INSERT);
6125 gdb_assert (slot != NULL);
6126 if (*slot != NULL)
6127 {
6128 sect_offset dup_sect_off;
6129
6130 if (dwo_file)
6131 {
6132 const struct dwo_unit *dup_tu
6133 = (const struct dwo_unit *) *slot;
6134
6135 dup_sect_off = dup_tu->sect_off;
6136 }
6137 else
6138 {
6139 const struct signatured_type *dup_tu
6140 = (const struct signatured_type *) *slot;
6141
6142 dup_sect_off = dup_tu->per_cu.sect_off;
6143 }
6144
6145 complaint (_("debug type entry at offset %s is duplicate to"
6146 " the entry at offset %s, signature %s"),
6147 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6148 hex_string (header.signature));
6149 }
6150 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6151
6152 if (dwarf_read_debug > 1)
6153 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6154 sect_offset_str (sect_off),
6155 hex_string (header.signature));
6156
6157 info_ptr += length;
6158 }
6159 }
6160
6161 /* Create the hash table of all entries in the .debug_types
6162 (or .debug_types.dwo) section(s).
6163 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6164 otherwise it is NULL.
6165
6166 The result is a pointer to the hash table or NULL if there are no types.
6167
6168 Note: This function processes DWO files only, not DWP files. */
6169
6170 static void
6171 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6172 struct dwo_file *dwo_file,
6173 gdb::array_view<dwarf2_section_info> type_sections,
6174 htab_up &types_htab)
6175 {
6176 for (dwarf2_section_info &section : type_sections)
6177 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6178 types_htab, rcuh_kind::TYPE);
6179 }
6180
6181 /* Create the hash table of all entries in the .debug_types section,
6182 and initialize all_type_units.
6183 The result is zero if there is an error (e.g. missing .debug_types section),
6184 otherwise non-zero. */
6185
6186 static int
6187 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6188 {
6189 htab_up types_htab;
6190
6191 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6192 &dwarf2_per_objfile->info, types_htab,
6193 rcuh_kind::COMPILE);
6194 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6195 dwarf2_per_objfile->types, types_htab);
6196 if (types_htab == NULL)
6197 {
6198 dwarf2_per_objfile->signatured_types = NULL;
6199 return 0;
6200 }
6201
6202 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6203
6204 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6205 dwarf2_per_objfile->all_type_units.reserve
6206 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6207
6208 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6209 add_signatured_type_cu_to_table,
6210 &dwarf2_per_objfile->all_type_units);
6211
6212 return 1;
6213 }
6214
6215 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6216 If SLOT is non-NULL, it is the entry to use in the hash table.
6217 Otherwise we find one. */
6218
6219 static struct signatured_type *
6220 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6221 void **slot)
6222 {
6223 struct objfile *objfile = dwarf2_per_objfile->objfile;
6224
6225 if (dwarf2_per_objfile->all_type_units.size ()
6226 == dwarf2_per_objfile->all_type_units.capacity ())
6227 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6228
6229 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6230 struct signatured_type);
6231
6232 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6233 sig_type->signature = sig;
6234 sig_type->per_cu.is_debug_types = 1;
6235 if (dwarf2_per_objfile->using_index)
6236 {
6237 sig_type->per_cu.v.quick =
6238 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6239 struct dwarf2_per_cu_quick_data);
6240 }
6241
6242 if (slot == NULL)
6243 {
6244 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6245 sig_type, INSERT);
6246 }
6247 gdb_assert (*slot == NULL);
6248 *slot = sig_type;
6249 /* The rest of sig_type must be filled in by the caller. */
6250 return sig_type;
6251 }
6252
6253 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6254 Fill in SIG_ENTRY with DWO_ENTRY. */
6255
6256 static void
6257 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6258 struct signatured_type *sig_entry,
6259 struct dwo_unit *dwo_entry)
6260 {
6261 /* Make sure we're not clobbering something we don't expect to. */
6262 gdb_assert (! sig_entry->per_cu.queued);
6263 gdb_assert (sig_entry->per_cu.cu == NULL);
6264 if (dwarf2_per_objfile->using_index)
6265 {
6266 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6267 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6268 }
6269 else
6270 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6271 gdb_assert (sig_entry->signature == dwo_entry->signature);
6272 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6273 gdb_assert (sig_entry->type_unit_group == NULL);
6274 gdb_assert (sig_entry->dwo_unit == NULL);
6275
6276 sig_entry->per_cu.section = dwo_entry->section;
6277 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6278 sig_entry->per_cu.length = dwo_entry->length;
6279 sig_entry->per_cu.reading_dwo_directly = 1;
6280 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6281 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6282 sig_entry->dwo_unit = dwo_entry;
6283 }
6284
6285 /* Subroutine of lookup_signatured_type.
6286 If we haven't read the TU yet, create the signatured_type data structure
6287 for a TU to be read in directly from a DWO file, bypassing the stub.
6288 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6289 using .gdb_index, then when reading a CU we want to stay in the DWO file
6290 containing that CU. Otherwise we could end up reading several other DWO
6291 files (due to comdat folding) to process the transitive closure of all the
6292 mentioned TUs, and that can be slow. The current DWO file will have every
6293 type signature that it needs.
6294 We only do this for .gdb_index because in the psymtab case we already have
6295 to read all the DWOs to build the type unit groups. */
6296
6297 static struct signatured_type *
6298 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6299 {
6300 struct dwarf2_per_objfile *dwarf2_per_objfile
6301 = cu->per_cu->dwarf2_per_objfile;
6302 struct dwo_file *dwo_file;
6303 struct dwo_unit find_dwo_entry, *dwo_entry;
6304 struct signatured_type find_sig_entry, *sig_entry;
6305 void **slot;
6306
6307 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6308
6309 /* If TU skeletons have been removed then we may not have read in any
6310 TUs yet. */
6311 if (dwarf2_per_objfile->signatured_types == NULL)
6312 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6313
6314 /* We only ever need to read in one copy of a signatured type.
6315 Use the global signatured_types array to do our own comdat-folding
6316 of types. If this is the first time we're reading this TU, and
6317 the TU has an entry in .gdb_index, replace the recorded data from
6318 .gdb_index with this TU. */
6319
6320 find_sig_entry.signature = sig;
6321 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6322 &find_sig_entry, INSERT);
6323 sig_entry = (struct signatured_type *) *slot;
6324
6325 /* We can get here with the TU already read, *or* in the process of being
6326 read. Don't reassign the global entry to point to this DWO if that's
6327 the case. Also note that if the TU is already being read, it may not
6328 have come from a DWO, the program may be a mix of Fission-compiled
6329 code and non-Fission-compiled code. */
6330
6331 /* Have we already tried to read this TU?
6332 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6333 needn't exist in the global table yet). */
6334 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6335 return sig_entry;
6336
6337 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6338 dwo_unit of the TU itself. */
6339 dwo_file = cu->dwo_unit->dwo_file;
6340
6341 /* Ok, this is the first time we're reading this TU. */
6342 if (dwo_file->tus == NULL)
6343 return NULL;
6344 find_dwo_entry.signature = sig;
6345 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6346 &find_dwo_entry);
6347 if (dwo_entry == NULL)
6348 return NULL;
6349
6350 /* If the global table doesn't have an entry for this TU, add one. */
6351 if (sig_entry == NULL)
6352 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6353
6354 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6355 sig_entry->per_cu.tu_read = 1;
6356 return sig_entry;
6357 }
6358
6359 /* Subroutine of lookup_signatured_type.
6360 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6361 then try the DWP file. If the TU stub (skeleton) has been removed then
6362 it won't be in .gdb_index. */
6363
6364 static struct signatured_type *
6365 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6366 {
6367 struct dwarf2_per_objfile *dwarf2_per_objfile
6368 = cu->per_cu->dwarf2_per_objfile;
6369 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6370 struct dwo_unit *dwo_entry;
6371 struct signatured_type find_sig_entry, *sig_entry;
6372 void **slot;
6373
6374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6375 gdb_assert (dwp_file != NULL);
6376
6377 /* If TU skeletons have been removed then we may not have read in any
6378 TUs yet. */
6379 if (dwarf2_per_objfile->signatured_types == NULL)
6380 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6381
6382 find_sig_entry.signature = sig;
6383 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6384 &find_sig_entry, INSERT);
6385 sig_entry = (struct signatured_type *) *slot;
6386
6387 /* Have we already tried to read this TU?
6388 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6389 needn't exist in the global table yet). */
6390 if (sig_entry != NULL)
6391 return sig_entry;
6392
6393 if (dwp_file->tus == NULL)
6394 return NULL;
6395 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6396 sig, 1 /* is_debug_types */);
6397 if (dwo_entry == NULL)
6398 return NULL;
6399
6400 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6402
6403 return sig_entry;
6404 }
6405
6406 /* Lookup a signature based type for DW_FORM_ref_sig8.
6407 Returns NULL if signature SIG is not present in the table.
6408 It is up to the caller to complain about this. */
6409
6410 static struct signatured_type *
6411 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6412 {
6413 struct dwarf2_per_objfile *dwarf2_per_objfile
6414 = cu->per_cu->dwarf2_per_objfile;
6415
6416 if (cu->dwo_unit
6417 && dwarf2_per_objfile->using_index)
6418 {
6419 /* We're in a DWO/DWP file, and we're using .gdb_index.
6420 These cases require special processing. */
6421 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6422 return lookup_dwo_signatured_type (cu, sig);
6423 else
6424 return lookup_dwp_signatured_type (cu, sig);
6425 }
6426 else
6427 {
6428 struct signatured_type find_entry, *entry;
6429
6430 if (dwarf2_per_objfile->signatured_types == NULL)
6431 return NULL;
6432 find_entry.signature = sig;
6433 entry = ((struct signatured_type *)
6434 htab_find (dwarf2_per_objfile->signatured_types.get (),
6435 &find_entry));
6436 return entry;
6437 }
6438 }
6439
6440 /* Return the address base of the compile unit, which, if exists, is stored
6441 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6442 static gdb::optional<ULONGEST>
6443 lookup_addr_base (struct die_info *comp_unit_die)
6444 {
6445 struct attribute *attr;
6446 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6447 if (attr == nullptr)
6448 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6449 if (attr == nullptr)
6450 return gdb::optional<ULONGEST> ();
6451 return DW_UNSND (attr);
6452 }
6453
6454 /* Return range lists base of the compile unit, which, if exists, is stored
6455 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6456 static ULONGEST
6457 lookup_ranges_base (struct die_info *comp_unit_die)
6458 {
6459 struct attribute *attr;
6460 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6461 if (attr == nullptr)
6462 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6463 if (attr == nullptr)
6464 return 0;
6465 return DW_UNSND (attr);
6466 }
6467
6468 /* Low level DIE reading support. */
6469
6470 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6471
6472 static void
6473 init_cu_die_reader (struct die_reader_specs *reader,
6474 struct dwarf2_cu *cu,
6475 struct dwarf2_section_info *section,
6476 struct dwo_file *dwo_file,
6477 struct abbrev_table *abbrev_table)
6478 {
6479 gdb_assert (section->readin && section->buffer != NULL);
6480 reader->abfd = section->get_bfd_owner ();
6481 reader->cu = cu;
6482 reader->dwo_file = dwo_file;
6483 reader->die_section = section;
6484 reader->buffer = section->buffer;
6485 reader->buffer_end = section->buffer + section->size;
6486 reader->abbrev_table = abbrev_table;
6487 }
6488
6489 /* Subroutine of cutu_reader to simplify it.
6490 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6491 There's just a lot of work to do, and cutu_reader is big enough
6492 already.
6493
6494 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6495 from it to the DIE in the DWO. If NULL we are skipping the stub.
6496 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6497 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6498 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6499 STUB_COMP_DIR may be non-NULL.
6500 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6501 are filled in with the info of the DIE from the DWO file.
6502 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6503 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6504 kept around for at least as long as *RESULT_READER.
6505
6506 The result is non-zero if a valid (non-dummy) DIE was found. */
6507
6508 static int
6509 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6510 struct dwo_unit *dwo_unit,
6511 struct die_info *stub_comp_unit_die,
6512 const char *stub_comp_dir,
6513 struct die_reader_specs *result_reader,
6514 const gdb_byte **result_info_ptr,
6515 struct die_info **result_comp_unit_die,
6516 abbrev_table_up *result_dwo_abbrev_table)
6517 {
6518 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6519 struct objfile *objfile = dwarf2_per_objfile->objfile;
6520 struct dwarf2_cu *cu = this_cu->cu;
6521 bfd *abfd;
6522 const gdb_byte *begin_info_ptr, *info_ptr;
6523 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6524 int i,num_extra_attrs;
6525 struct dwarf2_section_info *dwo_abbrev_section;
6526 struct die_info *comp_unit_die;
6527
6528 /* At most one of these may be provided. */
6529 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6530
6531 /* These attributes aren't processed until later:
6532 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6533 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6534 referenced later. However, these attributes are found in the stub
6535 which we won't have later. In order to not impose this complication
6536 on the rest of the code, we read them here and copy them to the
6537 DWO CU/TU die. */
6538
6539 stmt_list = NULL;
6540 low_pc = NULL;
6541 high_pc = NULL;
6542 ranges = NULL;
6543 comp_dir = NULL;
6544
6545 if (stub_comp_unit_die != NULL)
6546 {
6547 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6548 DWO file. */
6549 if (! this_cu->is_debug_types)
6550 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6551 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6552 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6553 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6554 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6555
6556 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6557
6558 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6559 here (if needed). We need the value before we can process
6560 DW_AT_ranges. */
6561 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6562 }
6563 else if (stub_comp_dir != NULL)
6564 {
6565 /* Reconstruct the comp_dir attribute to simplify the code below. */
6566 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6567 comp_dir->name = DW_AT_comp_dir;
6568 comp_dir->form = DW_FORM_string;
6569 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6570 DW_STRING (comp_dir) = stub_comp_dir;
6571 }
6572
6573 /* Set up for reading the DWO CU/TU. */
6574 cu->dwo_unit = dwo_unit;
6575 dwarf2_section_info *section = dwo_unit->section;
6576 section->read (objfile);
6577 abfd = section->get_bfd_owner ();
6578 begin_info_ptr = info_ptr = (section->buffer
6579 + to_underlying (dwo_unit->sect_off));
6580 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6581
6582 if (this_cu->is_debug_types)
6583 {
6584 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6585
6586 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6587 &cu->header, section,
6588 dwo_abbrev_section,
6589 info_ptr, rcuh_kind::TYPE);
6590 /* This is not an assert because it can be caused by bad debug info. */
6591 if (sig_type->signature != cu->header.signature)
6592 {
6593 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6594 " TU at offset %s [in module %s]"),
6595 hex_string (sig_type->signature),
6596 hex_string (cu->header.signature),
6597 sect_offset_str (dwo_unit->sect_off),
6598 bfd_get_filename (abfd));
6599 }
6600 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6601 /* For DWOs coming from DWP files, we don't know the CU length
6602 nor the type's offset in the TU until now. */
6603 dwo_unit->length = cu->header.get_length ();
6604 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6605
6606 /* Establish the type offset that can be used to lookup the type.
6607 For DWO files, we don't know it until now. */
6608 sig_type->type_offset_in_section
6609 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6610 }
6611 else
6612 {
6613 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6614 &cu->header, section,
6615 dwo_abbrev_section,
6616 info_ptr, rcuh_kind::COMPILE);
6617 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6618 /* For DWOs coming from DWP files, we don't know the CU length
6619 until now. */
6620 dwo_unit->length = cu->header.get_length ();
6621 }
6622
6623 *result_dwo_abbrev_table
6624 = abbrev_table::read (objfile, dwo_abbrev_section,
6625 cu->header.abbrev_sect_off);
6626 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6627 result_dwo_abbrev_table->get ());
6628
6629 /* Read in the die, but leave space to copy over the attributes
6630 from the stub. This has the benefit of simplifying the rest of
6631 the code - all the work to maintain the illusion of a single
6632 DW_TAG_{compile,type}_unit DIE is done here. */
6633 num_extra_attrs = ((stmt_list != NULL)
6634 + (low_pc != NULL)
6635 + (high_pc != NULL)
6636 + (ranges != NULL)
6637 + (comp_dir != NULL));
6638 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6639 num_extra_attrs);
6640
6641 /* Copy over the attributes from the stub to the DIE we just read in. */
6642 comp_unit_die = *result_comp_unit_die;
6643 i = comp_unit_die->num_attrs;
6644 if (stmt_list != NULL)
6645 comp_unit_die->attrs[i++] = *stmt_list;
6646 if (low_pc != NULL)
6647 comp_unit_die->attrs[i++] = *low_pc;
6648 if (high_pc != NULL)
6649 comp_unit_die->attrs[i++] = *high_pc;
6650 if (ranges != NULL)
6651 comp_unit_die->attrs[i++] = *ranges;
6652 if (comp_dir != NULL)
6653 comp_unit_die->attrs[i++] = *comp_dir;
6654 comp_unit_die->num_attrs += num_extra_attrs;
6655
6656 if (dwarf_die_debug)
6657 {
6658 fprintf_unfiltered (gdb_stdlog,
6659 "Read die from %s@0x%x of %s:\n",
6660 section->get_name (),
6661 (unsigned) (begin_info_ptr - section->buffer),
6662 bfd_get_filename (abfd));
6663 dump_die (comp_unit_die, dwarf_die_debug);
6664 }
6665
6666 /* Skip dummy compilation units. */
6667 if (info_ptr >= begin_info_ptr + dwo_unit->length
6668 || peek_abbrev_code (abfd, info_ptr) == 0)
6669 return 0;
6670
6671 *result_info_ptr = info_ptr;
6672 return 1;
6673 }
6674
6675 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6676 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6677 signature is part of the header. */
6678 static gdb::optional<ULONGEST>
6679 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6680 {
6681 if (cu->header.version >= 5)
6682 return cu->header.signature;
6683 struct attribute *attr;
6684 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6685 if (attr == nullptr)
6686 return gdb::optional<ULONGEST> ();
6687 return DW_UNSND (attr);
6688 }
6689
6690 /* Subroutine of cutu_reader to simplify it.
6691 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6692 Returns NULL if the specified DWO unit cannot be found. */
6693
6694 static struct dwo_unit *
6695 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6696 struct die_info *comp_unit_die,
6697 const char *dwo_name)
6698 {
6699 struct dwarf2_cu *cu = this_cu->cu;
6700 struct dwo_unit *dwo_unit;
6701 const char *comp_dir;
6702
6703 gdb_assert (cu != NULL);
6704
6705 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6706 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6707 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6708
6709 if (this_cu->is_debug_types)
6710 {
6711 struct signatured_type *sig_type;
6712
6713 /* Since this_cu is the first member of struct signatured_type,
6714 we can go from a pointer to one to a pointer to the other. */
6715 sig_type = (struct signatured_type *) this_cu;
6716 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6717 }
6718 else
6719 {
6720 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6721 if (!signature.has_value ())
6722 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6723 " [in module %s]"),
6724 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6725 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6726 *signature);
6727 }
6728
6729 return dwo_unit;
6730 }
6731
6732 /* Subroutine of cutu_reader to simplify it.
6733 See it for a description of the parameters.
6734 Read a TU directly from a DWO file, bypassing the stub. */
6735
6736 void
6737 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6738 int use_existing_cu)
6739 {
6740 struct signatured_type *sig_type;
6741 struct die_reader_specs reader;
6742
6743 /* Verify we can do the following downcast, and that we have the
6744 data we need. */
6745 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6746 sig_type = (struct signatured_type *) this_cu;
6747 gdb_assert (sig_type->dwo_unit != NULL);
6748
6749 if (use_existing_cu && this_cu->cu != NULL)
6750 {
6751 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6752 /* There's no need to do the rereading_dwo_cu handling that
6753 cutu_reader does since we don't read the stub. */
6754 }
6755 else
6756 {
6757 /* If !use_existing_cu, this_cu->cu must be NULL. */
6758 gdb_assert (this_cu->cu == NULL);
6759 m_new_cu.reset (new dwarf2_cu (this_cu));
6760 }
6761
6762 /* A future optimization, if needed, would be to use an existing
6763 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6764 could share abbrev tables. */
6765
6766 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6767 NULL /* stub_comp_unit_die */,
6768 sig_type->dwo_unit->dwo_file->comp_dir,
6769 &reader, &info_ptr,
6770 &comp_unit_die,
6771 &m_dwo_abbrev_table) == 0)
6772 {
6773 /* Dummy die. */
6774 dummy_p = true;
6775 }
6776 }
6777
6778 /* Initialize a CU (or TU) and read its DIEs.
6779 If the CU defers to a DWO file, read the DWO file as well.
6780
6781 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6782 Otherwise the table specified in the comp unit header is read in and used.
6783 This is an optimization for when we already have the abbrev table.
6784
6785 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6786 Otherwise, a new CU is allocated with xmalloc. */
6787
6788 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6789 struct abbrev_table *abbrev_table,
6790 int use_existing_cu,
6791 bool skip_partial)
6792 : die_reader_specs {},
6793 m_this_cu (this_cu)
6794 {
6795 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6796 struct objfile *objfile = dwarf2_per_objfile->objfile;
6797 struct dwarf2_section_info *section = this_cu->section;
6798 bfd *abfd = section->get_bfd_owner ();
6799 struct dwarf2_cu *cu;
6800 const gdb_byte *begin_info_ptr;
6801 struct signatured_type *sig_type = NULL;
6802 struct dwarf2_section_info *abbrev_section;
6803 /* Non-zero if CU currently points to a DWO file and we need to
6804 reread it. When this happens we need to reread the skeleton die
6805 before we can reread the DWO file (this only applies to CUs, not TUs). */
6806 int rereading_dwo_cu = 0;
6807
6808 if (dwarf_die_debug)
6809 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6810 this_cu->is_debug_types ? "type" : "comp",
6811 sect_offset_str (this_cu->sect_off));
6812
6813 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6814 file (instead of going through the stub), short-circuit all of this. */
6815 if (this_cu->reading_dwo_directly)
6816 {
6817 /* Narrow down the scope of possibilities to have to understand. */
6818 gdb_assert (this_cu->is_debug_types);
6819 gdb_assert (abbrev_table == NULL);
6820 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6821 return;
6822 }
6823
6824 /* This is cheap if the section is already read in. */
6825 section->read (objfile);
6826
6827 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6828
6829 abbrev_section = get_abbrev_section_for_cu (this_cu);
6830
6831 if (use_existing_cu && this_cu->cu != NULL)
6832 {
6833 cu = this_cu->cu;
6834 /* If this CU is from a DWO file we need to start over, we need to
6835 refetch the attributes from the skeleton CU.
6836 This could be optimized by retrieving those attributes from when we
6837 were here the first time: the previous comp_unit_die was stored in
6838 comp_unit_obstack. But there's no data yet that we need this
6839 optimization. */
6840 if (cu->dwo_unit != NULL)
6841 rereading_dwo_cu = 1;
6842 }
6843 else
6844 {
6845 /* If !use_existing_cu, this_cu->cu must be NULL. */
6846 gdb_assert (this_cu->cu == NULL);
6847 m_new_cu.reset (new dwarf2_cu (this_cu));
6848 cu = m_new_cu.get ();
6849 }
6850
6851 /* Get the header. */
6852 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6853 {
6854 /* We already have the header, there's no need to read it in again. */
6855 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6856 }
6857 else
6858 {
6859 if (this_cu->is_debug_types)
6860 {
6861 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6862 &cu->header, section,
6863 abbrev_section, info_ptr,
6864 rcuh_kind::TYPE);
6865
6866 /* Since per_cu is the first member of struct signatured_type,
6867 we can go from a pointer to one to a pointer to the other. */
6868 sig_type = (struct signatured_type *) this_cu;
6869 gdb_assert (sig_type->signature == cu->header.signature);
6870 gdb_assert (sig_type->type_offset_in_tu
6871 == cu->header.type_cu_offset_in_tu);
6872 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6873
6874 /* LENGTH has not been set yet for type units if we're
6875 using .gdb_index. */
6876 this_cu->length = cu->header.get_length ();
6877
6878 /* Establish the type offset that can be used to lookup the type. */
6879 sig_type->type_offset_in_section =
6880 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6881
6882 this_cu->dwarf_version = cu->header.version;
6883 }
6884 else
6885 {
6886 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6887 &cu->header, section,
6888 abbrev_section,
6889 info_ptr,
6890 rcuh_kind::COMPILE);
6891
6892 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6893 gdb_assert (this_cu->length == cu->header.get_length ());
6894 this_cu->dwarf_version = cu->header.version;
6895 }
6896 }
6897
6898 /* Skip dummy compilation units. */
6899 if (info_ptr >= begin_info_ptr + this_cu->length
6900 || peek_abbrev_code (abfd, info_ptr) == 0)
6901 {
6902 dummy_p = true;
6903 return;
6904 }
6905
6906 /* If we don't have them yet, read the abbrevs for this compilation unit.
6907 And if we need to read them now, make sure they're freed when we're
6908 done. */
6909 if (abbrev_table != NULL)
6910 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6911 else
6912 {
6913 m_abbrev_table_holder
6914 = abbrev_table::read (objfile, abbrev_section,
6915 cu->header.abbrev_sect_off);
6916 abbrev_table = m_abbrev_table_holder.get ();
6917 }
6918
6919 /* Read the top level CU/TU die. */
6920 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6921 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6922
6923 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6924 {
6925 dummy_p = true;
6926 return;
6927 }
6928
6929 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6930 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6931 table from the DWO file and pass the ownership over to us. It will be
6932 referenced from READER, so we must make sure to free it after we're done
6933 with READER.
6934
6935 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6936 DWO CU, that this test will fail (the attribute will not be present). */
6937 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6938 if (dwo_name != nullptr)
6939 {
6940 struct dwo_unit *dwo_unit;
6941 struct die_info *dwo_comp_unit_die;
6942
6943 if (comp_unit_die->has_children)
6944 {
6945 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6946 " has children (offset %s) [in module %s]"),
6947 sect_offset_str (this_cu->sect_off),
6948 bfd_get_filename (abfd));
6949 }
6950 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6951 if (dwo_unit != NULL)
6952 {
6953 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6954 comp_unit_die, NULL,
6955 this, &info_ptr,
6956 &dwo_comp_unit_die,
6957 &m_dwo_abbrev_table) == 0)
6958 {
6959 /* Dummy die. */
6960 dummy_p = true;
6961 return;
6962 }
6963 comp_unit_die = dwo_comp_unit_die;
6964 }
6965 else
6966 {
6967 /* Yikes, we couldn't find the rest of the DIE, we only have
6968 the stub. A complaint has already been logged. There's
6969 not much more we can do except pass on the stub DIE to
6970 die_reader_func. We don't want to throw an error on bad
6971 debug info. */
6972 }
6973 }
6974 }
6975
6976 void
6977 cutu_reader::keep ()
6978 {
6979 /* Done, clean up. */
6980 gdb_assert (!dummy_p);
6981 if (m_new_cu != NULL)
6982 {
6983 struct dwarf2_per_objfile *dwarf2_per_objfile
6984 = m_this_cu->dwarf2_per_objfile;
6985 /* Link this CU into read_in_chain. */
6986 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6987 dwarf2_per_objfile->read_in_chain = m_this_cu;
6988 /* The chain owns it now. */
6989 m_new_cu.release ();
6990 }
6991 }
6992
6993 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
6994 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
6995 assumed to have already done the lookup to find the DWO file).
6996
6997 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6998 THIS_CU->is_debug_types, but nothing else.
6999
7000 We fill in THIS_CU->length.
7001
7002 THIS_CU->cu is always freed when done.
7003 This is done in order to not leave THIS_CU->cu in a state where we have
7004 to care whether it refers to the "main" CU or the DWO CU.
7005
7006 When parent_cu is passed, it is used to provide a default value for
7007 str_offsets_base and addr_base from the parent. */
7008
7009 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7010 struct dwarf2_cu *parent_cu,
7011 struct dwo_file *dwo_file)
7012 : die_reader_specs {},
7013 m_this_cu (this_cu)
7014 {
7015 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7016 struct objfile *objfile = dwarf2_per_objfile->objfile;
7017 struct dwarf2_section_info *section = this_cu->section;
7018 bfd *abfd = section->get_bfd_owner ();
7019 struct dwarf2_section_info *abbrev_section;
7020 const gdb_byte *begin_info_ptr, *info_ptr;
7021
7022 if (dwarf_die_debug)
7023 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7024 this_cu->is_debug_types ? "type" : "comp",
7025 sect_offset_str (this_cu->sect_off));
7026
7027 gdb_assert (this_cu->cu == NULL);
7028
7029 abbrev_section = (dwo_file != NULL
7030 ? &dwo_file->sections.abbrev
7031 : get_abbrev_section_for_cu (this_cu));
7032
7033 /* This is cheap if the section is already read in. */
7034 section->read (objfile);
7035
7036 m_new_cu.reset (new dwarf2_cu (this_cu));
7037
7038 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7039 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7040 &m_new_cu->header, section,
7041 abbrev_section, info_ptr,
7042 (this_cu->is_debug_types
7043 ? rcuh_kind::TYPE
7044 : rcuh_kind::COMPILE));
7045
7046 if (parent_cu != nullptr)
7047 {
7048 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7049 m_new_cu->addr_base = parent_cu->addr_base;
7050 }
7051 this_cu->length = m_new_cu->header.get_length ();
7052
7053 /* Skip dummy compilation units. */
7054 if (info_ptr >= begin_info_ptr + this_cu->length
7055 || peek_abbrev_code (abfd, info_ptr) == 0)
7056 {
7057 dummy_p = true;
7058 return;
7059 }
7060
7061 m_abbrev_table_holder
7062 = abbrev_table::read (objfile, abbrev_section,
7063 m_new_cu->header.abbrev_sect_off);
7064
7065 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7066 m_abbrev_table_holder.get ());
7067 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7068 }
7069
7070 \f
7071 /* Type Unit Groups.
7072
7073 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7074 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7075 so that all types coming from the same compilation (.o file) are grouped
7076 together. A future step could be to put the types in the same symtab as
7077 the CU the types ultimately came from. */
7078
7079 static hashval_t
7080 hash_type_unit_group (const void *item)
7081 {
7082 const struct type_unit_group *tu_group
7083 = (const struct type_unit_group *) item;
7084
7085 return hash_stmt_list_entry (&tu_group->hash);
7086 }
7087
7088 static int
7089 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7090 {
7091 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7092 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7093
7094 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7095 }
7096
7097 /* Allocate a hash table for type unit groups. */
7098
7099 static htab_up
7100 allocate_type_unit_groups_table ()
7101 {
7102 return htab_up (htab_create_alloc (3,
7103 hash_type_unit_group,
7104 eq_type_unit_group,
7105 NULL, xcalloc, xfree));
7106 }
7107
7108 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7109 partial symtabs. We combine several TUs per psymtab to not let the size
7110 of any one psymtab grow too big. */
7111 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7112 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7113
7114 /* Helper routine for get_type_unit_group.
7115 Create the type_unit_group object used to hold one or more TUs. */
7116
7117 static struct type_unit_group *
7118 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7119 {
7120 struct dwarf2_per_objfile *dwarf2_per_objfile
7121 = cu->per_cu->dwarf2_per_objfile;
7122 struct objfile *objfile = dwarf2_per_objfile->objfile;
7123 struct dwarf2_per_cu_data *per_cu;
7124 struct type_unit_group *tu_group;
7125
7126 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7127 struct type_unit_group);
7128 per_cu = &tu_group->per_cu;
7129 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7130
7131 if (dwarf2_per_objfile->using_index)
7132 {
7133 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7134 struct dwarf2_per_cu_quick_data);
7135 }
7136 else
7137 {
7138 unsigned int line_offset = to_underlying (line_offset_struct);
7139 dwarf2_psymtab *pst;
7140 std::string name;
7141
7142 /* Give the symtab a useful name for debug purposes. */
7143 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7144 name = string_printf ("<type_units_%d>",
7145 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7146 else
7147 name = string_printf ("<type_units_at_0x%x>", line_offset);
7148
7149 pst = create_partial_symtab (per_cu, name.c_str ());
7150 pst->anonymous = true;
7151 }
7152
7153 tu_group->hash.dwo_unit = cu->dwo_unit;
7154 tu_group->hash.line_sect_off = line_offset_struct;
7155
7156 return tu_group;
7157 }
7158
7159 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7160 STMT_LIST is a DW_AT_stmt_list attribute. */
7161
7162 static struct type_unit_group *
7163 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7164 {
7165 struct dwarf2_per_objfile *dwarf2_per_objfile
7166 = cu->per_cu->dwarf2_per_objfile;
7167 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7168 struct type_unit_group *tu_group;
7169 void **slot;
7170 unsigned int line_offset;
7171 struct type_unit_group type_unit_group_for_lookup;
7172
7173 if (dwarf2_per_objfile->type_unit_groups == NULL)
7174 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7175
7176 /* Do we need to create a new group, or can we use an existing one? */
7177
7178 if (stmt_list)
7179 {
7180 line_offset = DW_UNSND (stmt_list);
7181 ++tu_stats->nr_symtab_sharers;
7182 }
7183 else
7184 {
7185 /* Ugh, no stmt_list. Rare, but we have to handle it.
7186 We can do various things here like create one group per TU or
7187 spread them over multiple groups to split up the expansion work.
7188 To avoid worst case scenarios (too many groups or too large groups)
7189 we, umm, group them in bunches. */
7190 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7191 | (tu_stats->nr_stmt_less_type_units
7192 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7193 ++tu_stats->nr_stmt_less_type_units;
7194 }
7195
7196 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7197 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7198 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7199 &type_unit_group_for_lookup, INSERT);
7200 if (*slot != NULL)
7201 {
7202 tu_group = (struct type_unit_group *) *slot;
7203 gdb_assert (tu_group != NULL);
7204 }
7205 else
7206 {
7207 sect_offset line_offset_struct = (sect_offset) line_offset;
7208 tu_group = create_type_unit_group (cu, line_offset_struct);
7209 *slot = tu_group;
7210 ++tu_stats->nr_symtabs;
7211 }
7212
7213 return tu_group;
7214 }
7215 \f
7216 /* Partial symbol tables. */
7217
7218 /* Create a psymtab named NAME and assign it to PER_CU.
7219
7220 The caller must fill in the following details:
7221 dirname, textlow, texthigh. */
7222
7223 static dwarf2_psymtab *
7224 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7225 {
7226 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7227 dwarf2_psymtab *pst;
7228
7229 pst = new dwarf2_psymtab (name, objfile, 0);
7230
7231 pst->psymtabs_addrmap_supported = true;
7232
7233 /* This is the glue that links PST into GDB's symbol API. */
7234 pst->per_cu_data = per_cu;
7235 per_cu->v.psymtab = pst;
7236
7237 return pst;
7238 }
7239
7240 /* DIE reader function for process_psymtab_comp_unit. */
7241
7242 static void
7243 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7244 const gdb_byte *info_ptr,
7245 struct die_info *comp_unit_die,
7246 enum language pretend_language)
7247 {
7248 struct dwarf2_cu *cu = reader->cu;
7249 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7251 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7252 CORE_ADDR baseaddr;
7253 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7254 dwarf2_psymtab *pst;
7255 enum pc_bounds_kind cu_bounds_kind;
7256 const char *filename;
7257
7258 gdb_assert (! per_cu->is_debug_types);
7259
7260 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7261
7262 /* Allocate a new partial symbol table structure. */
7263 gdb::unique_xmalloc_ptr<char> debug_filename;
7264 static const char artificial[] = "<artificial>";
7265 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7266 if (filename == NULL)
7267 filename = "";
7268 else if (strcmp (filename, artificial) == 0)
7269 {
7270 debug_filename.reset (concat (artificial, "@",
7271 sect_offset_str (per_cu->sect_off),
7272 (char *) NULL));
7273 filename = debug_filename.get ();
7274 }
7275
7276 pst = create_partial_symtab (per_cu, filename);
7277
7278 /* This must be done before calling dwarf2_build_include_psymtabs. */
7279 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7280
7281 baseaddr = objfile->text_section_offset ();
7282
7283 dwarf2_find_base_address (comp_unit_die, cu);
7284
7285 /* Possibly set the default values of LOWPC and HIGHPC from
7286 `DW_AT_ranges'. */
7287 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7288 &best_highpc, cu, pst);
7289 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7290 {
7291 CORE_ADDR low
7292 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7293 - baseaddr);
7294 CORE_ADDR high
7295 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7296 - baseaddr - 1);
7297 /* Store the contiguous range if it is not empty; it can be
7298 empty for CUs with no code. */
7299 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7300 low, high, pst);
7301 }
7302
7303 /* Check if comp unit has_children.
7304 If so, read the rest of the partial symbols from this comp unit.
7305 If not, there's no more debug_info for this comp unit. */
7306 if (comp_unit_die->has_children)
7307 {
7308 struct partial_die_info *first_die;
7309 CORE_ADDR lowpc, highpc;
7310
7311 lowpc = ((CORE_ADDR) -1);
7312 highpc = ((CORE_ADDR) 0);
7313
7314 first_die = load_partial_dies (reader, info_ptr, 1);
7315
7316 scan_partial_symbols (first_die, &lowpc, &highpc,
7317 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7318
7319 /* If we didn't find a lowpc, set it to highpc to avoid
7320 complaints from `maint check'. */
7321 if (lowpc == ((CORE_ADDR) -1))
7322 lowpc = highpc;
7323
7324 /* If the compilation unit didn't have an explicit address range,
7325 then use the information extracted from its child dies. */
7326 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7327 {
7328 best_lowpc = lowpc;
7329 best_highpc = highpc;
7330 }
7331 }
7332 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7333 best_lowpc + baseaddr)
7334 - baseaddr);
7335 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7336 best_highpc + baseaddr)
7337 - baseaddr);
7338
7339 end_psymtab_common (objfile, pst);
7340
7341 if (!cu->per_cu->imported_symtabs_empty ())
7342 {
7343 int i;
7344 int len = cu->per_cu->imported_symtabs_size ();
7345
7346 /* Fill in 'dependencies' here; we fill in 'users' in a
7347 post-pass. */
7348 pst->number_of_dependencies = len;
7349 pst->dependencies
7350 = objfile->partial_symtabs->allocate_dependencies (len);
7351 for (i = 0; i < len; ++i)
7352 {
7353 pst->dependencies[i]
7354 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7355 }
7356
7357 cu->per_cu->imported_symtabs_free ();
7358 }
7359
7360 /* Get the list of files included in the current compilation unit,
7361 and build a psymtab for each of them. */
7362 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7363
7364 if (dwarf_read_debug)
7365 fprintf_unfiltered (gdb_stdlog,
7366 "Psymtab for %s unit @%s: %s - %s"
7367 ", %d global, %d static syms\n",
7368 per_cu->is_debug_types ? "type" : "comp",
7369 sect_offset_str (per_cu->sect_off),
7370 paddress (gdbarch, pst->text_low (objfile)),
7371 paddress (gdbarch, pst->text_high (objfile)),
7372 pst->n_global_syms, pst->n_static_syms);
7373 }
7374
7375 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7376 Process compilation unit THIS_CU for a psymtab. */
7377
7378 static void
7379 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7380 bool want_partial_unit,
7381 enum language pretend_language)
7382 {
7383 /* If this compilation unit was already read in, free the
7384 cached copy in order to read it in again. This is
7385 necessary because we skipped some symbols when we first
7386 read in the compilation unit (see load_partial_dies).
7387 This problem could be avoided, but the benefit is unclear. */
7388 if (this_cu->cu != NULL)
7389 free_one_cached_comp_unit (this_cu);
7390
7391 cutu_reader reader (this_cu, NULL, 0, false);
7392
7393 if (reader.dummy_p)
7394 {
7395 /* Nothing. */
7396 }
7397 else if (this_cu->is_debug_types)
7398 build_type_psymtabs_reader (&reader, reader.info_ptr,
7399 reader.comp_unit_die);
7400 else if (want_partial_unit
7401 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7402 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7403 reader.comp_unit_die,
7404 pretend_language);
7405
7406 /* Age out any secondary CUs. */
7407 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7408 }
7409
7410 /* Reader function for build_type_psymtabs. */
7411
7412 static void
7413 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7414 const gdb_byte *info_ptr,
7415 struct die_info *type_unit_die)
7416 {
7417 struct dwarf2_per_objfile *dwarf2_per_objfile
7418 = reader->cu->per_cu->dwarf2_per_objfile;
7419 struct objfile *objfile = dwarf2_per_objfile->objfile;
7420 struct dwarf2_cu *cu = reader->cu;
7421 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7422 struct signatured_type *sig_type;
7423 struct type_unit_group *tu_group;
7424 struct attribute *attr;
7425 struct partial_die_info *first_die;
7426 CORE_ADDR lowpc, highpc;
7427 dwarf2_psymtab *pst;
7428
7429 gdb_assert (per_cu->is_debug_types);
7430 sig_type = (struct signatured_type *) per_cu;
7431
7432 if (! type_unit_die->has_children)
7433 return;
7434
7435 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7436 tu_group = get_type_unit_group (cu, attr);
7437
7438 if (tu_group->tus == nullptr)
7439 tu_group->tus = new std::vector<signatured_type *>;
7440 tu_group->tus->push_back (sig_type);
7441
7442 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7443 pst = create_partial_symtab (per_cu, "");
7444 pst->anonymous = true;
7445
7446 first_die = load_partial_dies (reader, info_ptr, 1);
7447
7448 lowpc = (CORE_ADDR) -1;
7449 highpc = (CORE_ADDR) 0;
7450 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7451
7452 end_psymtab_common (objfile, pst);
7453 }
7454
7455 /* Struct used to sort TUs by their abbreviation table offset. */
7456
7457 struct tu_abbrev_offset
7458 {
7459 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7460 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7461 {}
7462
7463 signatured_type *sig_type;
7464 sect_offset abbrev_offset;
7465 };
7466
7467 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7468
7469 static bool
7470 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7471 const struct tu_abbrev_offset &b)
7472 {
7473 return a.abbrev_offset < b.abbrev_offset;
7474 }
7475
7476 /* Efficiently read all the type units.
7477 This does the bulk of the work for build_type_psymtabs.
7478
7479 The efficiency is because we sort TUs by the abbrev table they use and
7480 only read each abbrev table once. In one program there are 200K TUs
7481 sharing 8K abbrev tables.
7482
7483 The main purpose of this function is to support building the
7484 dwarf2_per_objfile->type_unit_groups table.
7485 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7486 can collapse the search space by grouping them by stmt_list.
7487 The savings can be significant, in the same program from above the 200K TUs
7488 share 8K stmt_list tables.
7489
7490 FUNC is expected to call get_type_unit_group, which will create the
7491 struct type_unit_group if necessary and add it to
7492 dwarf2_per_objfile->type_unit_groups. */
7493
7494 static void
7495 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7496 {
7497 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7498 abbrev_table_up abbrev_table;
7499 sect_offset abbrev_offset;
7500
7501 /* It's up to the caller to not call us multiple times. */
7502 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7503
7504 if (dwarf2_per_objfile->all_type_units.empty ())
7505 return;
7506
7507 /* TUs typically share abbrev tables, and there can be way more TUs than
7508 abbrev tables. Sort by abbrev table to reduce the number of times we
7509 read each abbrev table in.
7510 Alternatives are to punt or to maintain a cache of abbrev tables.
7511 This is simpler and efficient enough for now.
7512
7513 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7514 symtab to use). Typically TUs with the same abbrev offset have the same
7515 stmt_list value too so in practice this should work well.
7516
7517 The basic algorithm here is:
7518
7519 sort TUs by abbrev table
7520 for each TU with same abbrev table:
7521 read abbrev table if first user
7522 read TU top level DIE
7523 [IWBN if DWO skeletons had DW_AT_stmt_list]
7524 call FUNC */
7525
7526 if (dwarf_read_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7528
7529 /* Sort in a separate table to maintain the order of all_type_units
7530 for .gdb_index: TU indices directly index all_type_units. */
7531 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7532 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7533
7534 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7535 sorted_by_abbrev.emplace_back
7536 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7537 sig_type->per_cu.section,
7538 sig_type->per_cu.sect_off));
7539
7540 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7541 sort_tu_by_abbrev_offset);
7542
7543 abbrev_offset = (sect_offset) ~(unsigned) 0;
7544
7545 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7546 {
7547 /* Switch to the next abbrev table if necessary. */
7548 if (abbrev_table == NULL
7549 || tu.abbrev_offset != abbrev_offset)
7550 {
7551 abbrev_offset = tu.abbrev_offset;
7552 abbrev_table =
7553 abbrev_table::read (dwarf2_per_objfile->objfile,
7554 &dwarf2_per_objfile->abbrev,
7555 abbrev_offset);
7556 ++tu_stats->nr_uniq_abbrev_tables;
7557 }
7558
7559 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7560 0, false);
7561 if (!reader.dummy_p)
7562 build_type_psymtabs_reader (&reader, reader.info_ptr,
7563 reader.comp_unit_die);
7564 }
7565 }
7566
7567 /* Print collected type unit statistics. */
7568
7569 static void
7570 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7571 {
7572 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7573
7574 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7575 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7576 dwarf2_per_objfile->all_type_units.size ());
7577 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7578 tu_stats->nr_uniq_abbrev_tables);
7579 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7580 tu_stats->nr_symtabs);
7581 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7582 tu_stats->nr_symtab_sharers);
7583 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7584 tu_stats->nr_stmt_less_type_units);
7585 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7586 tu_stats->nr_all_type_units_reallocs);
7587 }
7588
7589 /* Traversal function for build_type_psymtabs. */
7590
7591 static int
7592 build_type_psymtab_dependencies (void **slot, void *info)
7593 {
7594 struct dwarf2_per_objfile *dwarf2_per_objfile
7595 = (struct dwarf2_per_objfile *) info;
7596 struct objfile *objfile = dwarf2_per_objfile->objfile;
7597 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7598 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7599 dwarf2_psymtab *pst = per_cu->v.psymtab;
7600 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7601 int i;
7602
7603 gdb_assert (len > 0);
7604 gdb_assert (per_cu->type_unit_group_p ());
7605
7606 pst->number_of_dependencies = len;
7607 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7608 for (i = 0; i < len; ++i)
7609 {
7610 struct signatured_type *iter = tu_group->tus->at (i);
7611 gdb_assert (iter->per_cu.is_debug_types);
7612 pst->dependencies[i] = iter->per_cu.v.psymtab;
7613 iter->type_unit_group = tu_group;
7614 }
7615
7616 delete tu_group->tus;
7617 tu_group->tus = nullptr;
7618
7619 return 1;
7620 }
7621
7622 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7623 Build partial symbol tables for the .debug_types comp-units. */
7624
7625 static void
7626 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7627 {
7628 if (! create_all_type_units (dwarf2_per_objfile))
7629 return;
7630
7631 build_type_psymtabs_1 (dwarf2_per_objfile);
7632 }
7633
7634 /* Traversal function for process_skeletonless_type_unit.
7635 Read a TU in a DWO file and build partial symbols for it. */
7636
7637 static int
7638 process_skeletonless_type_unit (void **slot, void *info)
7639 {
7640 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7641 struct dwarf2_per_objfile *dwarf2_per_objfile
7642 = (struct dwarf2_per_objfile *) info;
7643 struct signatured_type find_entry, *entry;
7644
7645 /* If this TU doesn't exist in the global table, add it and read it in. */
7646
7647 if (dwarf2_per_objfile->signatured_types == NULL)
7648 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7649
7650 find_entry.signature = dwo_unit->signature;
7651 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7652 &find_entry, INSERT);
7653 /* If we've already seen this type there's nothing to do. What's happening
7654 is we're doing our own version of comdat-folding here. */
7655 if (*slot != NULL)
7656 return 1;
7657
7658 /* This does the job that create_all_type_units would have done for
7659 this TU. */
7660 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7661 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7662 *slot = entry;
7663
7664 /* This does the job that build_type_psymtabs_1 would have done. */
7665 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7666 if (!reader.dummy_p)
7667 build_type_psymtabs_reader (&reader, reader.info_ptr,
7668 reader.comp_unit_die);
7669
7670 return 1;
7671 }
7672
7673 /* Traversal function for process_skeletonless_type_units. */
7674
7675 static int
7676 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7677 {
7678 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7679
7680 if (dwo_file->tus != NULL)
7681 htab_traverse_noresize (dwo_file->tus.get (),
7682 process_skeletonless_type_unit, info);
7683
7684 return 1;
7685 }
7686
7687 /* Scan all TUs of DWO files, verifying we've processed them.
7688 This is needed in case a TU was emitted without its skeleton.
7689 Note: This can't be done until we know what all the DWO files are. */
7690
7691 static void
7692 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7693 {
7694 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7695 if (get_dwp_file (dwarf2_per_objfile) == NULL
7696 && dwarf2_per_objfile->dwo_files != NULL)
7697 {
7698 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7699 process_dwo_file_for_skeletonless_type_units,
7700 dwarf2_per_objfile);
7701 }
7702 }
7703
7704 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7705
7706 static void
7707 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7708 {
7709 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7710 {
7711 dwarf2_psymtab *pst = per_cu->v.psymtab;
7712
7713 if (pst == NULL)
7714 continue;
7715
7716 for (int j = 0; j < pst->number_of_dependencies; ++j)
7717 {
7718 /* Set the 'user' field only if it is not already set. */
7719 if (pst->dependencies[j]->user == NULL)
7720 pst->dependencies[j]->user = pst;
7721 }
7722 }
7723 }
7724
7725 /* Build the partial symbol table by doing a quick pass through the
7726 .debug_info and .debug_abbrev sections. */
7727
7728 static void
7729 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7730 {
7731 struct objfile *objfile = dwarf2_per_objfile->objfile;
7732
7733 if (dwarf_read_debug)
7734 {
7735 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7736 objfile_name (objfile));
7737 }
7738
7739 scoped_restore restore_reading_psyms
7740 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7741 true);
7742
7743 dwarf2_per_objfile->info.read (objfile);
7744
7745 /* Any cached compilation units will be linked by the per-objfile
7746 read_in_chain. Make sure to free them when we're done. */
7747 free_cached_comp_units freer (dwarf2_per_objfile);
7748
7749 build_type_psymtabs (dwarf2_per_objfile);
7750
7751 create_all_comp_units (dwarf2_per_objfile);
7752
7753 /* Create a temporary address map on a temporary obstack. We later
7754 copy this to the final obstack. */
7755 auto_obstack temp_obstack;
7756
7757 scoped_restore save_psymtabs_addrmap
7758 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7759 addrmap_create_mutable (&temp_obstack));
7760
7761 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7762 process_psymtab_comp_unit (per_cu, false, language_minimal);
7763
7764 /* This has to wait until we read the CUs, we need the list of DWOs. */
7765 process_skeletonless_type_units (dwarf2_per_objfile);
7766
7767 /* Now that all TUs have been processed we can fill in the dependencies. */
7768 if (dwarf2_per_objfile->type_unit_groups != NULL)
7769 {
7770 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7771 build_type_psymtab_dependencies, dwarf2_per_objfile);
7772 }
7773
7774 if (dwarf_read_debug)
7775 print_tu_stats (dwarf2_per_objfile);
7776
7777 set_partial_user (dwarf2_per_objfile);
7778
7779 objfile->partial_symtabs->psymtabs_addrmap
7780 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7781 objfile->partial_symtabs->obstack ());
7782 /* At this point we want to keep the address map. */
7783 save_psymtabs_addrmap.release ();
7784
7785 if (dwarf_read_debug)
7786 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7787 objfile_name (objfile));
7788 }
7789
7790 /* Load the partial DIEs for a secondary CU into memory.
7791 This is also used when rereading a primary CU with load_all_dies. */
7792
7793 static void
7794 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7795 {
7796 cutu_reader reader (this_cu, NULL, 1, false);
7797
7798 if (!reader.dummy_p)
7799 {
7800 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7801 language_minimal);
7802
7803 /* Check if comp unit has_children.
7804 If so, read the rest of the partial symbols from this comp unit.
7805 If not, there's no more debug_info for this comp unit. */
7806 if (reader.comp_unit_die->has_children)
7807 load_partial_dies (&reader, reader.info_ptr, 0);
7808
7809 reader.keep ();
7810 }
7811 }
7812
7813 static void
7814 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7815 struct dwarf2_section_info *section,
7816 struct dwarf2_section_info *abbrev_section,
7817 unsigned int is_dwz)
7818 {
7819 const gdb_byte *info_ptr;
7820 struct objfile *objfile = dwarf2_per_objfile->objfile;
7821
7822 if (dwarf_read_debug)
7823 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7824 section->get_name (),
7825 section->get_file_name ());
7826
7827 section->read (objfile);
7828
7829 info_ptr = section->buffer;
7830
7831 while (info_ptr < section->buffer + section->size)
7832 {
7833 struct dwarf2_per_cu_data *this_cu;
7834
7835 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7836
7837 comp_unit_head cu_header;
7838 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7839 abbrev_section, info_ptr,
7840 rcuh_kind::COMPILE);
7841
7842 /* Save the compilation unit for later lookup. */
7843 if (cu_header.unit_type != DW_UT_type)
7844 {
7845 this_cu = XOBNEW (&objfile->objfile_obstack,
7846 struct dwarf2_per_cu_data);
7847 memset (this_cu, 0, sizeof (*this_cu));
7848 }
7849 else
7850 {
7851 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7852 struct signatured_type);
7853 memset (sig_type, 0, sizeof (*sig_type));
7854 sig_type->signature = cu_header.signature;
7855 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7856 this_cu = &sig_type->per_cu;
7857 }
7858 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7859 this_cu->sect_off = sect_off;
7860 this_cu->length = cu_header.length + cu_header.initial_length_size;
7861 this_cu->is_dwz = is_dwz;
7862 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7863 this_cu->section = section;
7864
7865 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7866
7867 info_ptr = info_ptr + this_cu->length;
7868 }
7869 }
7870
7871 /* Create a list of all compilation units in OBJFILE.
7872 This is only done for -readnow and building partial symtabs. */
7873
7874 static void
7875 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7876 {
7877 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7878 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7879 &dwarf2_per_objfile->abbrev, 0);
7880
7881 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7882 if (dwz != NULL)
7883 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7884 1);
7885 }
7886
7887 /* Process all loaded DIEs for compilation unit CU, starting at
7888 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7889 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7890 DW_AT_ranges). See the comments of add_partial_subprogram on how
7891 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7892
7893 static void
7894 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7895 CORE_ADDR *highpc, int set_addrmap,
7896 struct dwarf2_cu *cu)
7897 {
7898 struct partial_die_info *pdi;
7899
7900 /* Now, march along the PDI's, descending into ones which have
7901 interesting children but skipping the children of the other ones,
7902 until we reach the end of the compilation unit. */
7903
7904 pdi = first_die;
7905
7906 while (pdi != NULL)
7907 {
7908 pdi->fixup (cu);
7909
7910 /* Anonymous namespaces or modules have no name but have interesting
7911 children, so we need to look at them. Ditto for anonymous
7912 enums. */
7913
7914 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7915 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7916 || pdi->tag == DW_TAG_imported_unit
7917 || pdi->tag == DW_TAG_inlined_subroutine)
7918 {
7919 switch (pdi->tag)
7920 {
7921 case DW_TAG_subprogram:
7922 case DW_TAG_inlined_subroutine:
7923 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7924 break;
7925 case DW_TAG_constant:
7926 case DW_TAG_variable:
7927 case DW_TAG_typedef:
7928 case DW_TAG_union_type:
7929 if (!pdi->is_declaration)
7930 {
7931 add_partial_symbol (pdi, cu);
7932 }
7933 break;
7934 case DW_TAG_class_type:
7935 case DW_TAG_interface_type:
7936 case DW_TAG_structure_type:
7937 if (!pdi->is_declaration)
7938 {
7939 add_partial_symbol (pdi, cu);
7940 }
7941 if ((cu->language == language_rust
7942 || cu->language == language_cplus) && pdi->has_children)
7943 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7944 set_addrmap, cu);
7945 break;
7946 case DW_TAG_enumeration_type:
7947 if (!pdi->is_declaration)
7948 add_partial_enumeration (pdi, cu);
7949 break;
7950 case DW_TAG_base_type:
7951 case DW_TAG_subrange_type:
7952 /* File scope base type definitions are added to the partial
7953 symbol table. */
7954 add_partial_symbol (pdi, cu);
7955 break;
7956 case DW_TAG_namespace:
7957 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7958 break;
7959 case DW_TAG_module:
7960 if (!pdi->is_declaration)
7961 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7962 break;
7963 case DW_TAG_imported_unit:
7964 {
7965 struct dwarf2_per_cu_data *per_cu;
7966
7967 /* For now we don't handle imported units in type units. */
7968 if (cu->per_cu->is_debug_types)
7969 {
7970 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7971 " supported in type units [in module %s]"),
7972 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7973 }
7974
7975 per_cu = dwarf2_find_containing_comp_unit
7976 (pdi->d.sect_off, pdi->is_dwz,
7977 cu->per_cu->dwarf2_per_objfile);
7978
7979 /* Go read the partial unit, if needed. */
7980 if (per_cu->v.psymtab == NULL)
7981 process_psymtab_comp_unit (per_cu, true, cu->language);
7982
7983 cu->per_cu->imported_symtabs_push (per_cu);
7984 }
7985 break;
7986 case DW_TAG_imported_declaration:
7987 add_partial_symbol (pdi, cu);
7988 break;
7989 default:
7990 break;
7991 }
7992 }
7993
7994 /* If the die has a sibling, skip to the sibling. */
7995
7996 pdi = pdi->die_sibling;
7997 }
7998 }
7999
8000 /* Functions used to compute the fully scoped name of a partial DIE.
8001
8002 Normally, this is simple. For C++, the parent DIE's fully scoped
8003 name is concatenated with "::" and the partial DIE's name.
8004 Enumerators are an exception; they use the scope of their parent
8005 enumeration type, i.e. the name of the enumeration type is not
8006 prepended to the enumerator.
8007
8008 There are two complexities. One is DW_AT_specification; in this
8009 case "parent" means the parent of the target of the specification,
8010 instead of the direct parent of the DIE. The other is compilers
8011 which do not emit DW_TAG_namespace; in this case we try to guess
8012 the fully qualified name of structure types from their members'
8013 linkage names. This must be done using the DIE's children rather
8014 than the children of any DW_AT_specification target. We only need
8015 to do this for structures at the top level, i.e. if the target of
8016 any DW_AT_specification (if any; otherwise the DIE itself) does not
8017 have a parent. */
8018
8019 /* Compute the scope prefix associated with PDI's parent, in
8020 compilation unit CU. The result will be allocated on CU's
8021 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8022 field. NULL is returned if no prefix is necessary. */
8023 static const char *
8024 partial_die_parent_scope (struct partial_die_info *pdi,
8025 struct dwarf2_cu *cu)
8026 {
8027 const char *grandparent_scope;
8028 struct partial_die_info *parent, *real_pdi;
8029
8030 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8031 then this means the parent of the specification DIE. */
8032
8033 real_pdi = pdi;
8034 while (real_pdi->has_specification)
8035 {
8036 auto res = find_partial_die (real_pdi->spec_offset,
8037 real_pdi->spec_is_dwz, cu);
8038 real_pdi = res.pdi;
8039 cu = res.cu;
8040 }
8041
8042 parent = real_pdi->die_parent;
8043 if (parent == NULL)
8044 return NULL;
8045
8046 if (parent->scope_set)
8047 return parent->scope;
8048
8049 parent->fixup (cu);
8050
8051 grandparent_scope = partial_die_parent_scope (parent, cu);
8052
8053 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8054 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8055 Work around this problem here. */
8056 if (cu->language == language_cplus
8057 && parent->tag == DW_TAG_namespace
8058 && strcmp (parent->name, "::") == 0
8059 && grandparent_scope == NULL)
8060 {
8061 parent->scope = NULL;
8062 parent->scope_set = 1;
8063 return NULL;
8064 }
8065
8066 /* Nested subroutines in Fortran get a prefix. */
8067 if (pdi->tag == DW_TAG_enumerator)
8068 /* Enumerators should not get the name of the enumeration as a prefix. */
8069 parent->scope = grandparent_scope;
8070 else if (parent->tag == DW_TAG_namespace
8071 || parent->tag == DW_TAG_module
8072 || parent->tag == DW_TAG_structure_type
8073 || parent->tag == DW_TAG_class_type
8074 || parent->tag == DW_TAG_interface_type
8075 || parent->tag == DW_TAG_union_type
8076 || parent->tag == DW_TAG_enumeration_type
8077 || (cu->language == language_fortran
8078 && parent->tag == DW_TAG_subprogram
8079 && pdi->tag == DW_TAG_subprogram))
8080 {
8081 if (grandparent_scope == NULL)
8082 parent->scope = parent->name;
8083 else
8084 parent->scope = typename_concat (&cu->comp_unit_obstack,
8085 grandparent_scope,
8086 parent->name, 0, cu);
8087 }
8088 else
8089 {
8090 /* FIXME drow/2004-04-01: What should we be doing with
8091 function-local names? For partial symbols, we should probably be
8092 ignoring them. */
8093 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8094 dwarf_tag_name (parent->tag),
8095 sect_offset_str (pdi->sect_off));
8096 parent->scope = grandparent_scope;
8097 }
8098
8099 parent->scope_set = 1;
8100 return parent->scope;
8101 }
8102
8103 /* Return the fully scoped name associated with PDI, from compilation unit
8104 CU. The result will be allocated with malloc. */
8105
8106 static gdb::unique_xmalloc_ptr<char>
8107 partial_die_full_name (struct partial_die_info *pdi,
8108 struct dwarf2_cu *cu)
8109 {
8110 const char *parent_scope;
8111
8112 /* If this is a template instantiation, we can not work out the
8113 template arguments from partial DIEs. So, unfortunately, we have
8114 to go through the full DIEs. At least any work we do building
8115 types here will be reused if full symbols are loaded later. */
8116 if (pdi->has_template_arguments)
8117 {
8118 pdi->fixup (cu);
8119
8120 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8121 {
8122 struct die_info *die;
8123 struct attribute attr;
8124 struct dwarf2_cu *ref_cu = cu;
8125
8126 /* DW_FORM_ref_addr is using section offset. */
8127 attr.name = (enum dwarf_attribute) 0;
8128 attr.form = DW_FORM_ref_addr;
8129 attr.u.unsnd = to_underlying (pdi->sect_off);
8130 die = follow_die_ref (NULL, &attr, &ref_cu);
8131
8132 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8133 }
8134 }
8135
8136 parent_scope = partial_die_parent_scope (pdi, cu);
8137 if (parent_scope == NULL)
8138 return NULL;
8139 else
8140 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8141 pdi->name, 0, cu));
8142 }
8143
8144 static void
8145 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8146 {
8147 struct dwarf2_per_objfile *dwarf2_per_objfile
8148 = cu->per_cu->dwarf2_per_objfile;
8149 struct objfile *objfile = dwarf2_per_objfile->objfile;
8150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8151 CORE_ADDR addr = 0;
8152 const char *actual_name = NULL;
8153 CORE_ADDR baseaddr;
8154
8155 baseaddr = objfile->text_section_offset ();
8156
8157 gdb::unique_xmalloc_ptr<char> built_actual_name
8158 = partial_die_full_name (pdi, cu);
8159 if (built_actual_name != NULL)
8160 actual_name = built_actual_name.get ();
8161
8162 if (actual_name == NULL)
8163 actual_name = pdi->name;
8164
8165 switch (pdi->tag)
8166 {
8167 case DW_TAG_inlined_subroutine:
8168 case DW_TAG_subprogram:
8169 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8170 - baseaddr);
8171 if (pdi->is_external
8172 || cu->language == language_ada
8173 || (cu->language == language_fortran
8174 && pdi->die_parent != NULL
8175 && pdi->die_parent->tag == DW_TAG_subprogram))
8176 {
8177 /* Normally, only "external" DIEs are part of the global scope.
8178 But in Ada and Fortran, we want to be able to access nested
8179 procedures globally. So all Ada and Fortran subprograms are
8180 stored in the global scope. */
8181 add_psymbol_to_list (actual_name,
8182 built_actual_name != NULL,
8183 VAR_DOMAIN, LOC_BLOCK,
8184 SECT_OFF_TEXT (objfile),
8185 psymbol_placement::GLOBAL,
8186 addr,
8187 cu->language, objfile);
8188 }
8189 else
8190 {
8191 add_psymbol_to_list (actual_name,
8192 built_actual_name != NULL,
8193 VAR_DOMAIN, LOC_BLOCK,
8194 SECT_OFF_TEXT (objfile),
8195 psymbol_placement::STATIC,
8196 addr, cu->language, objfile);
8197 }
8198
8199 if (pdi->main_subprogram && actual_name != NULL)
8200 set_objfile_main_name (objfile, actual_name, cu->language);
8201 break;
8202 case DW_TAG_constant:
8203 add_psymbol_to_list (actual_name,
8204 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8205 -1, (pdi->is_external
8206 ? psymbol_placement::GLOBAL
8207 : psymbol_placement::STATIC),
8208 0, cu->language, objfile);
8209 break;
8210 case DW_TAG_variable:
8211 if (pdi->d.locdesc)
8212 addr = decode_locdesc (pdi->d.locdesc, cu);
8213
8214 if (pdi->d.locdesc
8215 && addr == 0
8216 && !dwarf2_per_objfile->has_section_at_zero)
8217 {
8218 /* A global or static variable may also have been stripped
8219 out by the linker if unused, in which case its address
8220 will be nullified; do not add such variables into partial
8221 symbol table then. */
8222 }
8223 else if (pdi->is_external)
8224 {
8225 /* Global Variable.
8226 Don't enter into the minimal symbol tables as there is
8227 a minimal symbol table entry from the ELF symbols already.
8228 Enter into partial symbol table if it has a location
8229 descriptor or a type.
8230 If the location descriptor is missing, new_symbol will create
8231 a LOC_UNRESOLVED symbol, the address of the variable will then
8232 be determined from the minimal symbol table whenever the variable
8233 is referenced.
8234 The address for the partial symbol table entry is not
8235 used by GDB, but it comes in handy for debugging partial symbol
8236 table building. */
8237
8238 if (pdi->d.locdesc || pdi->has_type)
8239 add_psymbol_to_list (actual_name,
8240 built_actual_name != NULL,
8241 VAR_DOMAIN, LOC_STATIC,
8242 SECT_OFF_TEXT (objfile),
8243 psymbol_placement::GLOBAL,
8244 addr, cu->language, objfile);
8245 }
8246 else
8247 {
8248 int has_loc = pdi->d.locdesc != NULL;
8249
8250 /* Static Variable. Skip symbols whose value we cannot know (those
8251 without location descriptors or constant values). */
8252 if (!has_loc && !pdi->has_const_value)
8253 return;
8254
8255 add_psymbol_to_list (actual_name,
8256 built_actual_name != NULL,
8257 VAR_DOMAIN, LOC_STATIC,
8258 SECT_OFF_TEXT (objfile),
8259 psymbol_placement::STATIC,
8260 has_loc ? addr : 0,
8261 cu->language, objfile);
8262 }
8263 break;
8264 case DW_TAG_typedef:
8265 case DW_TAG_base_type:
8266 case DW_TAG_subrange_type:
8267 add_psymbol_to_list (actual_name,
8268 built_actual_name != NULL,
8269 VAR_DOMAIN, LOC_TYPEDEF, -1,
8270 psymbol_placement::STATIC,
8271 0, cu->language, objfile);
8272 break;
8273 case DW_TAG_imported_declaration:
8274 case DW_TAG_namespace:
8275 add_psymbol_to_list (actual_name,
8276 built_actual_name != NULL,
8277 VAR_DOMAIN, LOC_TYPEDEF, -1,
8278 psymbol_placement::GLOBAL,
8279 0, cu->language, objfile);
8280 break;
8281 case DW_TAG_module:
8282 /* With Fortran 77 there might be a "BLOCK DATA" module
8283 available without any name. If so, we skip the module as it
8284 doesn't bring any value. */
8285 if (actual_name != nullptr)
8286 add_psymbol_to_list (actual_name,
8287 built_actual_name != NULL,
8288 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8289 psymbol_placement::GLOBAL,
8290 0, cu->language, objfile);
8291 break;
8292 case DW_TAG_class_type:
8293 case DW_TAG_interface_type:
8294 case DW_TAG_structure_type:
8295 case DW_TAG_union_type:
8296 case DW_TAG_enumeration_type:
8297 /* Skip external references. The DWARF standard says in the section
8298 about "Structure, Union, and Class Type Entries": "An incomplete
8299 structure, union or class type is represented by a structure,
8300 union or class entry that does not have a byte size attribute
8301 and that has a DW_AT_declaration attribute." */
8302 if (!pdi->has_byte_size && pdi->is_declaration)
8303 return;
8304
8305 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8306 static vs. global. */
8307 add_psymbol_to_list (actual_name,
8308 built_actual_name != NULL,
8309 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8310 cu->language == language_cplus
8311 ? psymbol_placement::GLOBAL
8312 : psymbol_placement::STATIC,
8313 0, cu->language, objfile);
8314
8315 break;
8316 case DW_TAG_enumerator:
8317 add_psymbol_to_list (actual_name,
8318 built_actual_name != NULL,
8319 VAR_DOMAIN, LOC_CONST, -1,
8320 cu->language == language_cplus
8321 ? psymbol_placement::GLOBAL
8322 : psymbol_placement::STATIC,
8323 0, cu->language, objfile);
8324 break;
8325 default:
8326 break;
8327 }
8328 }
8329
8330 /* Read a partial die corresponding to a namespace; also, add a symbol
8331 corresponding to that namespace to the symbol table. NAMESPACE is
8332 the name of the enclosing namespace. */
8333
8334 static void
8335 add_partial_namespace (struct partial_die_info *pdi,
8336 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8337 int set_addrmap, struct dwarf2_cu *cu)
8338 {
8339 /* Add a symbol for the namespace. */
8340
8341 add_partial_symbol (pdi, cu);
8342
8343 /* Now scan partial symbols in that namespace. */
8344
8345 if (pdi->has_children)
8346 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8347 }
8348
8349 /* Read a partial die corresponding to a Fortran module. */
8350
8351 static void
8352 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8353 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8354 {
8355 /* Add a symbol for the namespace. */
8356
8357 add_partial_symbol (pdi, cu);
8358
8359 /* Now scan partial symbols in that module. */
8360
8361 if (pdi->has_children)
8362 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8363 }
8364
8365 /* Read a partial die corresponding to a subprogram or an inlined
8366 subprogram and create a partial symbol for that subprogram.
8367 When the CU language allows it, this routine also defines a partial
8368 symbol for each nested subprogram that this subprogram contains.
8369 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8370 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8371
8372 PDI may also be a lexical block, in which case we simply search
8373 recursively for subprograms defined inside that lexical block.
8374 Again, this is only performed when the CU language allows this
8375 type of definitions. */
8376
8377 static void
8378 add_partial_subprogram (struct partial_die_info *pdi,
8379 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8380 int set_addrmap, struct dwarf2_cu *cu)
8381 {
8382 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8383 {
8384 if (pdi->has_pc_info)
8385 {
8386 if (pdi->lowpc < *lowpc)
8387 *lowpc = pdi->lowpc;
8388 if (pdi->highpc > *highpc)
8389 *highpc = pdi->highpc;
8390 if (set_addrmap)
8391 {
8392 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8393 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8394 CORE_ADDR baseaddr;
8395 CORE_ADDR this_highpc;
8396 CORE_ADDR this_lowpc;
8397
8398 baseaddr = objfile->text_section_offset ();
8399 this_lowpc
8400 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8401 pdi->lowpc + baseaddr)
8402 - baseaddr);
8403 this_highpc
8404 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8405 pdi->highpc + baseaddr)
8406 - baseaddr);
8407 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8408 this_lowpc, this_highpc - 1,
8409 cu->per_cu->v.psymtab);
8410 }
8411 }
8412
8413 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8414 {
8415 if (!pdi->is_declaration)
8416 /* Ignore subprogram DIEs that do not have a name, they are
8417 illegal. Do not emit a complaint at this point, we will
8418 do so when we convert this psymtab into a symtab. */
8419 if (pdi->name)
8420 add_partial_symbol (pdi, cu);
8421 }
8422 }
8423
8424 if (! pdi->has_children)
8425 return;
8426
8427 if (cu->language == language_ada || cu->language == language_fortran)
8428 {
8429 pdi = pdi->die_child;
8430 while (pdi != NULL)
8431 {
8432 pdi->fixup (cu);
8433 if (pdi->tag == DW_TAG_subprogram
8434 || pdi->tag == DW_TAG_inlined_subroutine
8435 || pdi->tag == DW_TAG_lexical_block)
8436 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8437 pdi = pdi->die_sibling;
8438 }
8439 }
8440 }
8441
8442 /* Read a partial die corresponding to an enumeration type. */
8443
8444 static void
8445 add_partial_enumeration (struct partial_die_info *enum_pdi,
8446 struct dwarf2_cu *cu)
8447 {
8448 struct partial_die_info *pdi;
8449
8450 if (enum_pdi->name != NULL)
8451 add_partial_symbol (enum_pdi, cu);
8452
8453 pdi = enum_pdi->die_child;
8454 while (pdi)
8455 {
8456 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8457 complaint (_("malformed enumerator DIE ignored"));
8458 else
8459 add_partial_symbol (pdi, cu);
8460 pdi = pdi->die_sibling;
8461 }
8462 }
8463
8464 /* Return the initial uleb128 in the die at INFO_PTR. */
8465
8466 static unsigned int
8467 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8468 {
8469 unsigned int bytes_read;
8470
8471 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8472 }
8473
8474 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8475 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8476
8477 Return the corresponding abbrev, or NULL if the number is zero (indicating
8478 an empty DIE). In either case *BYTES_READ will be set to the length of
8479 the initial number. */
8480
8481 static struct abbrev_info *
8482 peek_die_abbrev (const die_reader_specs &reader,
8483 const gdb_byte *info_ptr, unsigned int *bytes_read)
8484 {
8485 dwarf2_cu *cu = reader.cu;
8486 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8487 unsigned int abbrev_number
8488 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8489
8490 if (abbrev_number == 0)
8491 return NULL;
8492
8493 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8494 if (!abbrev)
8495 {
8496 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8497 " at offset %s [in module %s]"),
8498 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8499 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8500 }
8501
8502 return abbrev;
8503 }
8504
8505 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8506 Returns a pointer to the end of a series of DIEs, terminated by an empty
8507 DIE. Any children of the skipped DIEs will also be skipped. */
8508
8509 static const gdb_byte *
8510 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8511 {
8512 while (1)
8513 {
8514 unsigned int bytes_read;
8515 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8516
8517 if (abbrev == NULL)
8518 return info_ptr + bytes_read;
8519 else
8520 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8521 }
8522 }
8523
8524 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8525 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8526 abbrev corresponding to that skipped uleb128 should be passed in
8527 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8528 children. */
8529
8530 static const gdb_byte *
8531 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8532 struct abbrev_info *abbrev)
8533 {
8534 unsigned int bytes_read;
8535 struct attribute attr;
8536 bfd *abfd = reader->abfd;
8537 struct dwarf2_cu *cu = reader->cu;
8538 const gdb_byte *buffer = reader->buffer;
8539 const gdb_byte *buffer_end = reader->buffer_end;
8540 unsigned int form, i;
8541
8542 for (i = 0; i < abbrev->num_attrs; i++)
8543 {
8544 /* The only abbrev we care about is DW_AT_sibling. */
8545 if (abbrev->attrs[i].name == DW_AT_sibling)
8546 {
8547 bool ignored;
8548 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8549 &ignored);
8550 if (attr.form == DW_FORM_ref_addr)
8551 complaint (_("ignoring absolute DW_AT_sibling"));
8552 else
8553 {
8554 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8555 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8556
8557 if (sibling_ptr < info_ptr)
8558 complaint (_("DW_AT_sibling points backwards"));
8559 else if (sibling_ptr > reader->buffer_end)
8560 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8561 else
8562 return sibling_ptr;
8563 }
8564 }
8565
8566 /* If it isn't DW_AT_sibling, skip this attribute. */
8567 form = abbrev->attrs[i].form;
8568 skip_attribute:
8569 switch (form)
8570 {
8571 case DW_FORM_ref_addr:
8572 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8573 and later it is offset sized. */
8574 if (cu->header.version == 2)
8575 info_ptr += cu->header.addr_size;
8576 else
8577 info_ptr += cu->header.offset_size;
8578 break;
8579 case DW_FORM_GNU_ref_alt:
8580 info_ptr += cu->header.offset_size;
8581 break;
8582 case DW_FORM_addr:
8583 info_ptr += cu->header.addr_size;
8584 break;
8585 case DW_FORM_data1:
8586 case DW_FORM_ref1:
8587 case DW_FORM_flag:
8588 case DW_FORM_strx1:
8589 info_ptr += 1;
8590 break;
8591 case DW_FORM_flag_present:
8592 case DW_FORM_implicit_const:
8593 break;
8594 case DW_FORM_data2:
8595 case DW_FORM_ref2:
8596 case DW_FORM_strx2:
8597 info_ptr += 2;
8598 break;
8599 case DW_FORM_strx3:
8600 info_ptr += 3;
8601 break;
8602 case DW_FORM_data4:
8603 case DW_FORM_ref4:
8604 case DW_FORM_strx4:
8605 info_ptr += 4;
8606 break;
8607 case DW_FORM_data8:
8608 case DW_FORM_ref8:
8609 case DW_FORM_ref_sig8:
8610 info_ptr += 8;
8611 break;
8612 case DW_FORM_data16:
8613 info_ptr += 16;
8614 break;
8615 case DW_FORM_string:
8616 read_direct_string (abfd, info_ptr, &bytes_read);
8617 info_ptr += bytes_read;
8618 break;
8619 case DW_FORM_sec_offset:
8620 case DW_FORM_strp:
8621 case DW_FORM_GNU_strp_alt:
8622 info_ptr += cu->header.offset_size;
8623 break;
8624 case DW_FORM_exprloc:
8625 case DW_FORM_block:
8626 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8627 info_ptr += bytes_read;
8628 break;
8629 case DW_FORM_block1:
8630 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8631 break;
8632 case DW_FORM_block2:
8633 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8634 break;
8635 case DW_FORM_block4:
8636 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8637 break;
8638 case DW_FORM_addrx:
8639 case DW_FORM_strx:
8640 case DW_FORM_sdata:
8641 case DW_FORM_udata:
8642 case DW_FORM_ref_udata:
8643 case DW_FORM_GNU_addr_index:
8644 case DW_FORM_GNU_str_index:
8645 case DW_FORM_rnglistx:
8646 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8647 break;
8648 case DW_FORM_indirect:
8649 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8650 info_ptr += bytes_read;
8651 /* We need to continue parsing from here, so just go back to
8652 the top. */
8653 goto skip_attribute;
8654
8655 default:
8656 error (_("Dwarf Error: Cannot handle %s "
8657 "in DWARF reader [in module %s]"),
8658 dwarf_form_name (form),
8659 bfd_get_filename (abfd));
8660 }
8661 }
8662
8663 if (abbrev->has_children)
8664 return skip_children (reader, info_ptr);
8665 else
8666 return info_ptr;
8667 }
8668
8669 /* Locate ORIG_PDI's sibling.
8670 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8671
8672 static const gdb_byte *
8673 locate_pdi_sibling (const struct die_reader_specs *reader,
8674 struct partial_die_info *orig_pdi,
8675 const gdb_byte *info_ptr)
8676 {
8677 /* Do we know the sibling already? */
8678
8679 if (orig_pdi->sibling)
8680 return orig_pdi->sibling;
8681
8682 /* Are there any children to deal with? */
8683
8684 if (!orig_pdi->has_children)
8685 return info_ptr;
8686
8687 /* Skip the children the long way. */
8688
8689 return skip_children (reader, info_ptr);
8690 }
8691
8692 /* Expand this partial symbol table into a full symbol table. SELF is
8693 not NULL. */
8694
8695 void
8696 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8697 {
8698 struct dwarf2_per_objfile *dwarf2_per_objfile
8699 = get_dwarf2_per_objfile (objfile);
8700
8701 gdb_assert (!readin);
8702 /* If this psymtab is constructed from a debug-only objfile, the
8703 has_section_at_zero flag will not necessarily be correct. We
8704 can get the correct value for this flag by looking at the data
8705 associated with the (presumably stripped) associated objfile. */
8706 if (objfile->separate_debug_objfile_backlink)
8707 {
8708 struct dwarf2_per_objfile *dpo_backlink
8709 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8710
8711 dwarf2_per_objfile->has_section_at_zero
8712 = dpo_backlink->has_section_at_zero;
8713 }
8714
8715 expand_psymtab (objfile);
8716
8717 process_cu_includes (dwarf2_per_objfile);
8718 }
8719 \f
8720 /* Reading in full CUs. */
8721
8722 /* Add PER_CU to the queue. */
8723
8724 static void
8725 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8726 enum language pretend_language)
8727 {
8728 per_cu->queued = 1;
8729 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8730 }
8731
8732 /* If PER_CU is not yet queued, add it to the queue.
8733 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8734 dependency.
8735 The result is non-zero if PER_CU was queued, otherwise the result is zero
8736 meaning either PER_CU is already queued or it is already loaded.
8737
8738 N.B. There is an invariant here that if a CU is queued then it is loaded.
8739 The caller is required to load PER_CU if we return non-zero. */
8740
8741 static int
8742 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8743 struct dwarf2_per_cu_data *per_cu,
8744 enum language pretend_language)
8745 {
8746 /* We may arrive here during partial symbol reading, if we need full
8747 DIEs to process an unusual case (e.g. template arguments). Do
8748 not queue PER_CU, just tell our caller to load its DIEs. */
8749 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8750 {
8751 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8752 return 1;
8753 return 0;
8754 }
8755
8756 /* Mark the dependence relation so that we don't flush PER_CU
8757 too early. */
8758 if (dependent_cu != NULL)
8759 dwarf2_add_dependence (dependent_cu, per_cu);
8760
8761 /* If it's already on the queue, we have nothing to do. */
8762 if (per_cu->queued)
8763 return 0;
8764
8765 /* If the compilation unit is already loaded, just mark it as
8766 used. */
8767 if (per_cu->cu != NULL)
8768 {
8769 per_cu->cu->last_used = 0;
8770 return 0;
8771 }
8772
8773 /* Add it to the queue. */
8774 queue_comp_unit (per_cu, pretend_language);
8775
8776 return 1;
8777 }
8778
8779 /* Process the queue. */
8780
8781 static void
8782 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8783 {
8784 if (dwarf_read_debug)
8785 {
8786 fprintf_unfiltered (gdb_stdlog,
8787 "Expanding one or more symtabs of objfile %s ...\n",
8788 objfile_name (dwarf2_per_objfile->objfile));
8789 }
8790
8791 /* The queue starts out with one item, but following a DIE reference
8792 may load a new CU, adding it to the end of the queue. */
8793 while (!dwarf2_per_objfile->queue.empty ())
8794 {
8795 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8796
8797 if ((dwarf2_per_objfile->using_index
8798 ? !item.per_cu->v.quick->compunit_symtab
8799 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8800 /* Skip dummy CUs. */
8801 && item.per_cu->cu != NULL)
8802 {
8803 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8804 unsigned int debug_print_threshold;
8805 char buf[100];
8806
8807 if (per_cu->is_debug_types)
8808 {
8809 struct signatured_type *sig_type =
8810 (struct signatured_type *) per_cu;
8811
8812 sprintf (buf, "TU %s at offset %s",
8813 hex_string (sig_type->signature),
8814 sect_offset_str (per_cu->sect_off));
8815 /* There can be 100s of TUs.
8816 Only print them in verbose mode. */
8817 debug_print_threshold = 2;
8818 }
8819 else
8820 {
8821 sprintf (buf, "CU at offset %s",
8822 sect_offset_str (per_cu->sect_off));
8823 debug_print_threshold = 1;
8824 }
8825
8826 if (dwarf_read_debug >= debug_print_threshold)
8827 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8828
8829 if (per_cu->is_debug_types)
8830 process_full_type_unit (per_cu, item.pretend_language);
8831 else
8832 process_full_comp_unit (per_cu, item.pretend_language);
8833
8834 if (dwarf_read_debug >= debug_print_threshold)
8835 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8836 }
8837
8838 item.per_cu->queued = 0;
8839 dwarf2_per_objfile->queue.pop ();
8840 }
8841
8842 if (dwarf_read_debug)
8843 {
8844 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8845 objfile_name (dwarf2_per_objfile->objfile));
8846 }
8847 }
8848
8849 /* Read in full symbols for PST, and anything it depends on. */
8850
8851 void
8852 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8853 {
8854 struct dwarf2_per_cu_data *per_cu;
8855
8856 if (readin)
8857 return;
8858
8859 read_dependencies (objfile);
8860
8861 per_cu = per_cu_data;
8862
8863 if (per_cu == NULL)
8864 {
8865 /* It's an include file, no symbols to read for it.
8866 Everything is in the parent symtab. */
8867 readin = true;
8868 return;
8869 }
8870
8871 dw2_do_instantiate_symtab (per_cu, false);
8872 }
8873
8874 /* Trivial hash function for die_info: the hash value of a DIE
8875 is its offset in .debug_info for this objfile. */
8876
8877 static hashval_t
8878 die_hash (const void *item)
8879 {
8880 const struct die_info *die = (const struct die_info *) item;
8881
8882 return to_underlying (die->sect_off);
8883 }
8884
8885 /* Trivial comparison function for die_info structures: two DIEs
8886 are equal if they have the same offset. */
8887
8888 static int
8889 die_eq (const void *item_lhs, const void *item_rhs)
8890 {
8891 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8892 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8893
8894 return die_lhs->sect_off == die_rhs->sect_off;
8895 }
8896
8897 /* Load the DIEs associated with PER_CU into memory. */
8898
8899 static void
8900 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8901 bool skip_partial,
8902 enum language pretend_language)
8903 {
8904 gdb_assert (! this_cu->is_debug_types);
8905
8906 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8907 if (reader.dummy_p)
8908 return;
8909
8910 struct dwarf2_cu *cu = reader.cu;
8911 const gdb_byte *info_ptr = reader.info_ptr;
8912
8913 gdb_assert (cu->die_hash == NULL);
8914 cu->die_hash =
8915 htab_create_alloc_ex (cu->header.length / 12,
8916 die_hash,
8917 die_eq,
8918 NULL,
8919 &cu->comp_unit_obstack,
8920 hashtab_obstack_allocate,
8921 dummy_obstack_deallocate);
8922
8923 if (reader.comp_unit_die->has_children)
8924 reader.comp_unit_die->child
8925 = read_die_and_siblings (&reader, reader.info_ptr,
8926 &info_ptr, reader.comp_unit_die);
8927 cu->dies = reader.comp_unit_die;
8928 /* comp_unit_die is not stored in die_hash, no need. */
8929
8930 /* We try not to read any attributes in this function, because not
8931 all CUs needed for references have been loaded yet, and symbol
8932 table processing isn't initialized. But we have to set the CU language,
8933 or we won't be able to build types correctly.
8934 Similarly, if we do not read the producer, we can not apply
8935 producer-specific interpretation. */
8936 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8937
8938 reader.keep ();
8939 }
8940
8941 /* Add a DIE to the delayed physname list. */
8942
8943 static void
8944 add_to_method_list (struct type *type, int fnfield_index, int index,
8945 const char *name, struct die_info *die,
8946 struct dwarf2_cu *cu)
8947 {
8948 struct delayed_method_info mi;
8949 mi.type = type;
8950 mi.fnfield_index = fnfield_index;
8951 mi.index = index;
8952 mi.name = name;
8953 mi.die = die;
8954 cu->method_list.push_back (mi);
8955 }
8956
8957 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8958 "const" / "volatile". If so, decrements LEN by the length of the
8959 modifier and return true. Otherwise return false. */
8960
8961 template<size_t N>
8962 static bool
8963 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8964 {
8965 size_t mod_len = sizeof (mod) - 1;
8966 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8967 {
8968 len -= mod_len;
8969 return true;
8970 }
8971 return false;
8972 }
8973
8974 /* Compute the physnames of any methods on the CU's method list.
8975
8976 The computation of method physnames is delayed in order to avoid the
8977 (bad) condition that one of the method's formal parameters is of an as yet
8978 incomplete type. */
8979
8980 static void
8981 compute_delayed_physnames (struct dwarf2_cu *cu)
8982 {
8983 /* Only C++ delays computing physnames. */
8984 if (cu->method_list.empty ())
8985 return;
8986 gdb_assert (cu->language == language_cplus);
8987
8988 for (const delayed_method_info &mi : cu->method_list)
8989 {
8990 const char *physname;
8991 struct fn_fieldlist *fn_flp
8992 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
8993 physname = dwarf2_physname (mi.name, mi.die, cu);
8994 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
8995 = physname ? physname : "";
8996
8997 /* Since there's no tag to indicate whether a method is a
8998 const/volatile overload, extract that information out of the
8999 demangled name. */
9000 if (physname != NULL)
9001 {
9002 size_t len = strlen (physname);
9003
9004 while (1)
9005 {
9006 if (physname[len] == ')') /* shortcut */
9007 break;
9008 else if (check_modifier (physname, len, " const"))
9009 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9010 else if (check_modifier (physname, len, " volatile"))
9011 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9012 else
9013 break;
9014 }
9015 }
9016 }
9017
9018 /* The list is no longer needed. */
9019 cu->method_list.clear ();
9020 }
9021
9022 /* Go objects should be embedded in a DW_TAG_module DIE,
9023 and it's not clear if/how imported objects will appear.
9024 To keep Go support simple until that's worked out,
9025 go back through what we've read and create something usable.
9026 We could do this while processing each DIE, and feels kinda cleaner,
9027 but that way is more invasive.
9028 This is to, for example, allow the user to type "p var" or "b main"
9029 without having to specify the package name, and allow lookups
9030 of module.object to work in contexts that use the expression
9031 parser. */
9032
9033 static void
9034 fixup_go_packaging (struct dwarf2_cu *cu)
9035 {
9036 gdb::unique_xmalloc_ptr<char> package_name;
9037 struct pending *list;
9038 int i;
9039
9040 for (list = *cu->get_builder ()->get_global_symbols ();
9041 list != NULL;
9042 list = list->next)
9043 {
9044 for (i = 0; i < list->nsyms; ++i)
9045 {
9046 struct symbol *sym = list->symbol[i];
9047
9048 if (sym->language () == language_go
9049 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9050 {
9051 gdb::unique_xmalloc_ptr<char> this_package_name
9052 (go_symbol_package_name (sym));
9053
9054 if (this_package_name == NULL)
9055 continue;
9056 if (package_name == NULL)
9057 package_name = std::move (this_package_name);
9058 else
9059 {
9060 struct objfile *objfile
9061 = cu->per_cu->dwarf2_per_objfile->objfile;
9062 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9063 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9064 (symbol_symtab (sym) != NULL
9065 ? symtab_to_filename_for_display
9066 (symbol_symtab (sym))
9067 : objfile_name (objfile)),
9068 this_package_name.get (), package_name.get ());
9069 }
9070 }
9071 }
9072 }
9073
9074 if (package_name != NULL)
9075 {
9076 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9077 const char *saved_package_name
9078 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9079 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9080 saved_package_name);
9081 struct symbol *sym;
9082
9083 sym = allocate_symbol (objfile);
9084 sym->set_language (language_go, &objfile->objfile_obstack);
9085 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9086 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9087 e.g., "main" finds the "main" module and not C's main(). */
9088 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9089 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9090 SYMBOL_TYPE (sym) = type;
9091
9092 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9093 }
9094 }
9095
9096 /* Allocate a fully-qualified name consisting of the two parts on the
9097 obstack. */
9098
9099 static const char *
9100 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9101 {
9102 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9103 }
9104
9105 /* A helper that allocates a struct discriminant_info to attach to a
9106 union type. */
9107
9108 static struct discriminant_info *
9109 alloc_discriminant_info (struct type *type, int discriminant_index,
9110 int default_index)
9111 {
9112 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9113 gdb_assert (discriminant_index == -1
9114 || (discriminant_index >= 0
9115 && discriminant_index < TYPE_NFIELDS (type)));
9116 gdb_assert (default_index == -1
9117 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9118
9119 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9120
9121 struct discriminant_info *disc
9122 = ((struct discriminant_info *)
9123 TYPE_ZALLOC (type,
9124 offsetof (struct discriminant_info, discriminants)
9125 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9126 disc->default_index = default_index;
9127 disc->discriminant_index = discriminant_index;
9128
9129 struct dynamic_prop prop;
9130 prop.kind = PROP_UNDEFINED;
9131 prop.data.baton = disc;
9132
9133 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9134
9135 return disc;
9136 }
9137
9138 /* Some versions of rustc emitted enums in an unusual way.
9139
9140 Ordinary enums were emitted as unions. The first element of each
9141 structure in the union was named "RUST$ENUM$DISR". This element
9142 held the discriminant.
9143
9144 These versions of Rust also implemented the "non-zero"
9145 optimization. When the enum had two values, and one is empty and
9146 the other holds a pointer that cannot be zero, the pointer is used
9147 as the discriminant, with a zero value meaning the empty variant.
9148 Here, the union's first member is of the form
9149 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9150 where the fieldnos are the indices of the fields that should be
9151 traversed in order to find the field (which may be several fields deep)
9152 and the variantname is the name of the variant of the case when the
9153 field is zero.
9154
9155 This function recognizes whether TYPE is of one of these forms,
9156 and, if so, smashes it to be a variant type. */
9157
9158 static void
9159 quirk_rust_enum (struct type *type, struct objfile *objfile)
9160 {
9161 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9162
9163 /* We don't need to deal with empty enums. */
9164 if (TYPE_NFIELDS (type) == 0)
9165 return;
9166
9167 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9168 if (TYPE_NFIELDS (type) == 1
9169 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9170 {
9171 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9172
9173 /* Decode the field name to find the offset of the
9174 discriminant. */
9175 ULONGEST bit_offset = 0;
9176 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9177 while (name[0] >= '0' && name[0] <= '9')
9178 {
9179 char *tail;
9180 unsigned long index = strtoul (name, &tail, 10);
9181 name = tail;
9182 if (*name != '$'
9183 || index >= TYPE_NFIELDS (field_type)
9184 || (TYPE_FIELD_LOC_KIND (field_type, index)
9185 != FIELD_LOC_KIND_BITPOS))
9186 {
9187 complaint (_("Could not parse Rust enum encoding string \"%s\""
9188 "[in module %s]"),
9189 TYPE_FIELD_NAME (type, 0),
9190 objfile_name (objfile));
9191 return;
9192 }
9193 ++name;
9194
9195 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9196 field_type = TYPE_FIELD_TYPE (field_type, index);
9197 }
9198
9199 /* Make a union to hold the variants. */
9200 struct type *union_type = alloc_type (objfile);
9201 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9202 TYPE_NFIELDS (union_type) = 3;
9203 TYPE_FIELDS (union_type)
9204 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9205 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9206 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9207
9208 /* Put the discriminant must at index 0. */
9209 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9210 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9211 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9212 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9213
9214 /* The order of fields doesn't really matter, so put the real
9215 field at index 1 and the data-less field at index 2. */
9216 struct discriminant_info *disc
9217 = alloc_discriminant_info (union_type, 0, 1);
9218 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9219 TYPE_FIELD_NAME (union_type, 1)
9220 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9221 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9222 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9223 TYPE_FIELD_NAME (union_type, 1));
9224
9225 const char *dataless_name
9226 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9227 name);
9228 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9229 dataless_name);
9230 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9231 /* NAME points into the original discriminant name, which
9232 already has the correct lifetime. */
9233 TYPE_FIELD_NAME (union_type, 2) = name;
9234 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9235 disc->discriminants[2] = 0;
9236
9237 /* Smash this type to be a structure type. We have to do this
9238 because the type has already been recorded. */
9239 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9240 TYPE_NFIELDS (type) = 1;
9241 TYPE_FIELDS (type)
9242 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9243
9244 /* Install the variant part. */
9245 TYPE_FIELD_TYPE (type, 0) = union_type;
9246 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9247 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9248 }
9249 /* A union with a single anonymous field is probably an old-style
9250 univariant enum. */
9251 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9252 {
9253 /* Smash this type to be a structure type. We have to do this
9254 because the type has already been recorded. */
9255 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9256
9257 /* Make a union to hold the variants. */
9258 struct type *union_type = alloc_type (objfile);
9259 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9260 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9261 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9262 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9263 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9264
9265 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9266 const char *variant_name
9267 = rust_last_path_segment (TYPE_NAME (field_type));
9268 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9269 TYPE_NAME (field_type)
9270 = rust_fully_qualify (&objfile->objfile_obstack,
9271 TYPE_NAME (type), variant_name);
9272
9273 /* Install the union in the outer struct type. */
9274 TYPE_NFIELDS (type) = 1;
9275 TYPE_FIELDS (type)
9276 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9277 TYPE_FIELD_TYPE (type, 0) = union_type;
9278 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9279 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9280
9281 alloc_discriminant_info (union_type, -1, 0);
9282 }
9283 else
9284 {
9285 struct type *disr_type = nullptr;
9286 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9287 {
9288 disr_type = TYPE_FIELD_TYPE (type, i);
9289
9290 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9291 {
9292 /* All fields of a true enum will be structs. */
9293 return;
9294 }
9295 else if (TYPE_NFIELDS (disr_type) == 0)
9296 {
9297 /* Could be data-less variant, so keep going. */
9298 disr_type = nullptr;
9299 }
9300 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9301 "RUST$ENUM$DISR") != 0)
9302 {
9303 /* Not a Rust enum. */
9304 return;
9305 }
9306 else
9307 {
9308 /* Found one. */
9309 break;
9310 }
9311 }
9312
9313 /* If we got here without a discriminant, then it's probably
9314 just a union. */
9315 if (disr_type == nullptr)
9316 return;
9317
9318 /* Smash this type to be a structure type. We have to do this
9319 because the type has already been recorded. */
9320 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9321
9322 /* Make a union to hold the variants. */
9323 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9324 struct type *union_type = alloc_type (objfile);
9325 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9326 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9327 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9328 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9329 TYPE_FIELDS (union_type)
9330 = (struct field *) TYPE_ZALLOC (union_type,
9331 (TYPE_NFIELDS (union_type)
9332 * sizeof (struct field)));
9333
9334 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9335 TYPE_NFIELDS (type) * sizeof (struct field));
9336
9337 /* Install the discriminant at index 0 in the union. */
9338 TYPE_FIELD (union_type, 0) = *disr_field;
9339 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9340 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9341
9342 /* Install the union in the outer struct type. */
9343 TYPE_FIELD_TYPE (type, 0) = union_type;
9344 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9345 TYPE_NFIELDS (type) = 1;
9346
9347 /* Set the size and offset of the union type. */
9348 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9349
9350 /* We need a way to find the correct discriminant given a
9351 variant name. For convenience we build a map here. */
9352 struct type *enum_type = FIELD_TYPE (*disr_field);
9353 std::unordered_map<std::string, ULONGEST> discriminant_map;
9354 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9355 {
9356 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9357 {
9358 const char *name
9359 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9360 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9361 }
9362 }
9363
9364 int n_fields = TYPE_NFIELDS (union_type);
9365 struct discriminant_info *disc
9366 = alloc_discriminant_info (union_type, 0, -1);
9367 /* Skip the discriminant here. */
9368 for (int i = 1; i < n_fields; ++i)
9369 {
9370 /* Find the final word in the name of this variant's type.
9371 That name can be used to look up the correct
9372 discriminant. */
9373 const char *variant_name
9374 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9375 i)));
9376
9377 auto iter = discriminant_map.find (variant_name);
9378 if (iter != discriminant_map.end ())
9379 disc->discriminants[i] = iter->second;
9380
9381 /* Remove the discriminant field, if it exists. */
9382 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9383 if (TYPE_NFIELDS (sub_type) > 0)
9384 {
9385 --TYPE_NFIELDS (sub_type);
9386 ++TYPE_FIELDS (sub_type);
9387 }
9388 TYPE_FIELD_NAME (union_type, i) = variant_name;
9389 TYPE_NAME (sub_type)
9390 = rust_fully_qualify (&objfile->objfile_obstack,
9391 TYPE_NAME (type), variant_name);
9392 }
9393 }
9394 }
9395
9396 /* Rewrite some Rust unions to be structures with variants parts. */
9397
9398 static void
9399 rust_union_quirks (struct dwarf2_cu *cu)
9400 {
9401 gdb_assert (cu->language == language_rust);
9402 for (type *type_ : cu->rust_unions)
9403 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9404 /* We don't need this any more. */
9405 cu->rust_unions.clear ();
9406 }
9407
9408 /* Return the symtab for PER_CU. This works properly regardless of
9409 whether we're using the index or psymtabs. */
9410
9411 static struct compunit_symtab *
9412 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9413 {
9414 return (per_cu->dwarf2_per_objfile->using_index
9415 ? per_cu->v.quick->compunit_symtab
9416 : per_cu->v.psymtab->compunit_symtab);
9417 }
9418
9419 /* A helper function for computing the list of all symbol tables
9420 included by PER_CU. */
9421
9422 static void
9423 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9424 htab_t all_children, htab_t all_type_symtabs,
9425 struct dwarf2_per_cu_data *per_cu,
9426 struct compunit_symtab *immediate_parent)
9427 {
9428 void **slot;
9429 struct compunit_symtab *cust;
9430
9431 slot = htab_find_slot (all_children, per_cu, INSERT);
9432 if (*slot != NULL)
9433 {
9434 /* This inclusion and its children have been processed. */
9435 return;
9436 }
9437
9438 *slot = per_cu;
9439 /* Only add a CU if it has a symbol table. */
9440 cust = get_compunit_symtab (per_cu);
9441 if (cust != NULL)
9442 {
9443 /* If this is a type unit only add its symbol table if we haven't
9444 seen it yet (type unit per_cu's can share symtabs). */
9445 if (per_cu->is_debug_types)
9446 {
9447 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9448 if (*slot == NULL)
9449 {
9450 *slot = cust;
9451 result->push_back (cust);
9452 if (cust->user == NULL)
9453 cust->user = immediate_parent;
9454 }
9455 }
9456 else
9457 {
9458 result->push_back (cust);
9459 if (cust->user == NULL)
9460 cust->user = immediate_parent;
9461 }
9462 }
9463
9464 if (!per_cu->imported_symtabs_empty ())
9465 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9466 {
9467 recursively_compute_inclusions (result, all_children,
9468 all_type_symtabs, ptr, cust);
9469 }
9470 }
9471
9472 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9473 PER_CU. */
9474
9475 static void
9476 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9477 {
9478 gdb_assert (! per_cu->is_debug_types);
9479
9480 if (!per_cu->imported_symtabs_empty ())
9481 {
9482 int len;
9483 std::vector<compunit_symtab *> result_symtabs;
9484 htab_t all_children, all_type_symtabs;
9485 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9486
9487 /* If we don't have a symtab, we can just skip this case. */
9488 if (cust == NULL)
9489 return;
9490
9491 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9492 NULL, xcalloc, xfree);
9493 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9494 NULL, xcalloc, xfree);
9495
9496 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9497 {
9498 recursively_compute_inclusions (&result_symtabs, all_children,
9499 all_type_symtabs, ptr, cust);
9500 }
9501
9502 /* Now we have a transitive closure of all the included symtabs. */
9503 len = result_symtabs.size ();
9504 cust->includes
9505 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9506 struct compunit_symtab *, len + 1);
9507 memcpy (cust->includes, result_symtabs.data (),
9508 len * sizeof (compunit_symtab *));
9509 cust->includes[len] = NULL;
9510
9511 htab_delete (all_children);
9512 htab_delete (all_type_symtabs);
9513 }
9514 }
9515
9516 /* Compute the 'includes' field for the symtabs of all the CUs we just
9517 read. */
9518
9519 static void
9520 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9521 {
9522 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9523 {
9524 if (! iter->is_debug_types)
9525 compute_compunit_symtab_includes (iter);
9526 }
9527
9528 dwarf2_per_objfile->just_read_cus.clear ();
9529 }
9530
9531 /* Generate full symbol information for PER_CU, whose DIEs have
9532 already been loaded into memory. */
9533
9534 static void
9535 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9536 enum language pretend_language)
9537 {
9538 struct dwarf2_cu *cu = per_cu->cu;
9539 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9540 struct objfile *objfile = dwarf2_per_objfile->objfile;
9541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9542 CORE_ADDR lowpc, highpc;
9543 struct compunit_symtab *cust;
9544 CORE_ADDR baseaddr;
9545 struct block *static_block;
9546 CORE_ADDR addr;
9547
9548 baseaddr = objfile->text_section_offset ();
9549
9550 /* Clear the list here in case something was left over. */
9551 cu->method_list.clear ();
9552
9553 cu->language = pretend_language;
9554 cu->language_defn = language_def (cu->language);
9555
9556 /* Do line number decoding in read_file_scope () */
9557 process_die (cu->dies, cu);
9558
9559 /* For now fudge the Go package. */
9560 if (cu->language == language_go)
9561 fixup_go_packaging (cu);
9562
9563 /* Now that we have processed all the DIEs in the CU, all the types
9564 should be complete, and it should now be safe to compute all of the
9565 physnames. */
9566 compute_delayed_physnames (cu);
9567
9568 if (cu->language == language_rust)
9569 rust_union_quirks (cu);
9570
9571 /* Some compilers don't define a DW_AT_high_pc attribute for the
9572 compilation unit. If the DW_AT_high_pc is missing, synthesize
9573 it, by scanning the DIE's below the compilation unit. */
9574 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9575
9576 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9577 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9578
9579 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9580 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9581 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9582 addrmap to help ensure it has an accurate map of pc values belonging to
9583 this comp unit. */
9584 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9585
9586 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9587 SECT_OFF_TEXT (objfile),
9588 0);
9589
9590 if (cust != NULL)
9591 {
9592 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9593
9594 /* Set symtab language to language from DW_AT_language. If the
9595 compilation is from a C file generated by language preprocessors, do
9596 not set the language if it was already deduced by start_subfile. */
9597 if (!(cu->language == language_c
9598 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9599 COMPUNIT_FILETABS (cust)->language = cu->language;
9600
9601 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9602 produce DW_AT_location with location lists but it can be possibly
9603 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9604 there were bugs in prologue debug info, fixed later in GCC-4.5
9605 by "unwind info for epilogues" patch (which is not directly related).
9606
9607 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9608 needed, it would be wrong due to missing DW_AT_producer there.
9609
9610 Still one can confuse GDB by using non-standard GCC compilation
9611 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9612 */
9613 if (cu->has_loclist && gcc_4_minor >= 5)
9614 cust->locations_valid = 1;
9615
9616 if (gcc_4_minor >= 5)
9617 cust->epilogue_unwind_valid = 1;
9618
9619 cust->call_site_htab = cu->call_site_htab;
9620 }
9621
9622 if (dwarf2_per_objfile->using_index)
9623 per_cu->v.quick->compunit_symtab = cust;
9624 else
9625 {
9626 dwarf2_psymtab *pst = per_cu->v.psymtab;
9627 pst->compunit_symtab = cust;
9628 pst->readin = true;
9629 }
9630
9631 /* Push it for inclusion processing later. */
9632 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9633
9634 /* Not needed any more. */
9635 cu->reset_builder ();
9636 }
9637
9638 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9639 already been loaded into memory. */
9640
9641 static void
9642 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9643 enum language pretend_language)
9644 {
9645 struct dwarf2_cu *cu = per_cu->cu;
9646 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9647 struct objfile *objfile = dwarf2_per_objfile->objfile;
9648 struct compunit_symtab *cust;
9649 struct signatured_type *sig_type;
9650
9651 gdb_assert (per_cu->is_debug_types);
9652 sig_type = (struct signatured_type *) per_cu;
9653
9654 /* Clear the list here in case something was left over. */
9655 cu->method_list.clear ();
9656
9657 cu->language = pretend_language;
9658 cu->language_defn = language_def (cu->language);
9659
9660 /* The symbol tables are set up in read_type_unit_scope. */
9661 process_die (cu->dies, cu);
9662
9663 /* For now fudge the Go package. */
9664 if (cu->language == language_go)
9665 fixup_go_packaging (cu);
9666
9667 /* Now that we have processed all the DIEs in the CU, all the types
9668 should be complete, and it should now be safe to compute all of the
9669 physnames. */
9670 compute_delayed_physnames (cu);
9671
9672 if (cu->language == language_rust)
9673 rust_union_quirks (cu);
9674
9675 /* TUs share symbol tables.
9676 If this is the first TU to use this symtab, complete the construction
9677 of it with end_expandable_symtab. Otherwise, complete the addition of
9678 this TU's symbols to the existing symtab. */
9679 if (sig_type->type_unit_group->compunit_symtab == NULL)
9680 {
9681 buildsym_compunit *builder = cu->get_builder ();
9682 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9683 sig_type->type_unit_group->compunit_symtab = cust;
9684
9685 if (cust != NULL)
9686 {
9687 /* Set symtab language to language from DW_AT_language. If the
9688 compilation is from a C file generated by language preprocessors,
9689 do not set the language if it was already deduced by
9690 start_subfile. */
9691 if (!(cu->language == language_c
9692 && COMPUNIT_FILETABS (cust)->language != language_c))
9693 COMPUNIT_FILETABS (cust)->language = cu->language;
9694 }
9695 }
9696 else
9697 {
9698 cu->get_builder ()->augment_type_symtab ();
9699 cust = sig_type->type_unit_group->compunit_symtab;
9700 }
9701
9702 if (dwarf2_per_objfile->using_index)
9703 per_cu->v.quick->compunit_symtab = cust;
9704 else
9705 {
9706 dwarf2_psymtab *pst = per_cu->v.psymtab;
9707 pst->compunit_symtab = cust;
9708 pst->readin = true;
9709 }
9710
9711 /* Not needed any more. */
9712 cu->reset_builder ();
9713 }
9714
9715 /* Process an imported unit DIE. */
9716
9717 static void
9718 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9719 {
9720 struct attribute *attr;
9721
9722 /* For now we don't handle imported units in type units. */
9723 if (cu->per_cu->is_debug_types)
9724 {
9725 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9726 " supported in type units [in module %s]"),
9727 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9728 }
9729
9730 attr = dwarf2_attr (die, DW_AT_import, cu);
9731 if (attr != NULL)
9732 {
9733 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9734 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9735 dwarf2_per_cu_data *per_cu
9736 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9737 cu->per_cu->dwarf2_per_objfile);
9738
9739 /* If necessary, add it to the queue and load its DIEs. */
9740 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9741 load_full_comp_unit (per_cu, false, cu->language);
9742
9743 cu->per_cu->imported_symtabs_push (per_cu);
9744 }
9745 }
9746
9747 /* RAII object that represents a process_die scope: i.e.,
9748 starts/finishes processing a DIE. */
9749 class process_die_scope
9750 {
9751 public:
9752 process_die_scope (die_info *die, dwarf2_cu *cu)
9753 : m_die (die), m_cu (cu)
9754 {
9755 /* We should only be processing DIEs not already in process. */
9756 gdb_assert (!m_die->in_process);
9757 m_die->in_process = true;
9758 }
9759
9760 ~process_die_scope ()
9761 {
9762 m_die->in_process = false;
9763
9764 /* If we're done processing the DIE for the CU that owns the line
9765 header, we don't need the line header anymore. */
9766 if (m_cu->line_header_die_owner == m_die)
9767 {
9768 delete m_cu->line_header;
9769 m_cu->line_header = NULL;
9770 m_cu->line_header_die_owner = NULL;
9771 }
9772 }
9773
9774 private:
9775 die_info *m_die;
9776 dwarf2_cu *m_cu;
9777 };
9778
9779 /* Process a die and its children. */
9780
9781 static void
9782 process_die (struct die_info *die, struct dwarf2_cu *cu)
9783 {
9784 process_die_scope scope (die, cu);
9785
9786 switch (die->tag)
9787 {
9788 case DW_TAG_padding:
9789 break;
9790 case DW_TAG_compile_unit:
9791 case DW_TAG_partial_unit:
9792 read_file_scope (die, cu);
9793 break;
9794 case DW_TAG_type_unit:
9795 read_type_unit_scope (die, cu);
9796 break;
9797 case DW_TAG_subprogram:
9798 /* Nested subprograms in Fortran get a prefix. */
9799 if (cu->language == language_fortran
9800 && die->parent != NULL
9801 && die->parent->tag == DW_TAG_subprogram)
9802 cu->processing_has_namespace_info = true;
9803 /* Fall through. */
9804 case DW_TAG_inlined_subroutine:
9805 read_func_scope (die, cu);
9806 break;
9807 case DW_TAG_lexical_block:
9808 case DW_TAG_try_block:
9809 case DW_TAG_catch_block:
9810 read_lexical_block_scope (die, cu);
9811 break;
9812 case DW_TAG_call_site:
9813 case DW_TAG_GNU_call_site:
9814 read_call_site_scope (die, cu);
9815 break;
9816 case DW_TAG_class_type:
9817 case DW_TAG_interface_type:
9818 case DW_TAG_structure_type:
9819 case DW_TAG_union_type:
9820 process_structure_scope (die, cu);
9821 break;
9822 case DW_TAG_enumeration_type:
9823 process_enumeration_scope (die, cu);
9824 break;
9825
9826 /* These dies have a type, but processing them does not create
9827 a symbol or recurse to process the children. Therefore we can
9828 read them on-demand through read_type_die. */
9829 case DW_TAG_subroutine_type:
9830 case DW_TAG_set_type:
9831 case DW_TAG_array_type:
9832 case DW_TAG_pointer_type:
9833 case DW_TAG_ptr_to_member_type:
9834 case DW_TAG_reference_type:
9835 case DW_TAG_rvalue_reference_type:
9836 case DW_TAG_string_type:
9837 break;
9838
9839 case DW_TAG_base_type:
9840 case DW_TAG_subrange_type:
9841 case DW_TAG_typedef:
9842 /* Add a typedef symbol for the type definition, if it has a
9843 DW_AT_name. */
9844 new_symbol (die, read_type_die (die, cu), cu);
9845 break;
9846 case DW_TAG_common_block:
9847 read_common_block (die, cu);
9848 break;
9849 case DW_TAG_common_inclusion:
9850 break;
9851 case DW_TAG_namespace:
9852 cu->processing_has_namespace_info = true;
9853 read_namespace (die, cu);
9854 break;
9855 case DW_TAG_module:
9856 cu->processing_has_namespace_info = true;
9857 read_module (die, cu);
9858 break;
9859 case DW_TAG_imported_declaration:
9860 cu->processing_has_namespace_info = true;
9861 if (read_namespace_alias (die, cu))
9862 break;
9863 /* The declaration is not a global namespace alias. */
9864 /* Fall through. */
9865 case DW_TAG_imported_module:
9866 cu->processing_has_namespace_info = true;
9867 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9868 || cu->language != language_fortran))
9869 complaint (_("Tag '%s' has unexpected children"),
9870 dwarf_tag_name (die->tag));
9871 read_import_statement (die, cu);
9872 break;
9873
9874 case DW_TAG_imported_unit:
9875 process_imported_unit_die (die, cu);
9876 break;
9877
9878 case DW_TAG_variable:
9879 read_variable (die, cu);
9880 break;
9881
9882 default:
9883 new_symbol (die, NULL, cu);
9884 break;
9885 }
9886 }
9887 \f
9888 /* DWARF name computation. */
9889
9890 /* A helper function for dwarf2_compute_name which determines whether DIE
9891 needs to have the name of the scope prepended to the name listed in the
9892 die. */
9893
9894 static int
9895 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9896 {
9897 struct attribute *attr;
9898
9899 switch (die->tag)
9900 {
9901 case DW_TAG_namespace:
9902 case DW_TAG_typedef:
9903 case DW_TAG_class_type:
9904 case DW_TAG_interface_type:
9905 case DW_TAG_structure_type:
9906 case DW_TAG_union_type:
9907 case DW_TAG_enumeration_type:
9908 case DW_TAG_enumerator:
9909 case DW_TAG_subprogram:
9910 case DW_TAG_inlined_subroutine:
9911 case DW_TAG_member:
9912 case DW_TAG_imported_declaration:
9913 return 1;
9914
9915 case DW_TAG_variable:
9916 case DW_TAG_constant:
9917 /* We only need to prefix "globally" visible variables. These include
9918 any variable marked with DW_AT_external or any variable that
9919 lives in a namespace. [Variables in anonymous namespaces
9920 require prefixing, but they are not DW_AT_external.] */
9921
9922 if (dwarf2_attr (die, DW_AT_specification, cu))
9923 {
9924 struct dwarf2_cu *spec_cu = cu;
9925
9926 return die_needs_namespace (die_specification (die, &spec_cu),
9927 spec_cu);
9928 }
9929
9930 attr = dwarf2_attr (die, DW_AT_external, cu);
9931 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9932 && die->parent->tag != DW_TAG_module)
9933 return 0;
9934 /* A variable in a lexical block of some kind does not need a
9935 namespace, even though in C++ such variables may be external
9936 and have a mangled name. */
9937 if (die->parent->tag == DW_TAG_lexical_block
9938 || die->parent->tag == DW_TAG_try_block
9939 || die->parent->tag == DW_TAG_catch_block
9940 || die->parent->tag == DW_TAG_subprogram)
9941 return 0;
9942 return 1;
9943
9944 default:
9945 return 0;
9946 }
9947 }
9948
9949 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9950 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9951 defined for the given DIE. */
9952
9953 static struct attribute *
9954 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9955 {
9956 struct attribute *attr;
9957
9958 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9959 if (attr == NULL)
9960 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9961
9962 return attr;
9963 }
9964
9965 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9966 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9967 defined for the given DIE. */
9968
9969 static const char *
9970 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9971 {
9972 const char *linkage_name;
9973
9974 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9975 if (linkage_name == NULL)
9976 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9977
9978 return linkage_name;
9979 }
9980
9981 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9982 compute the physname for the object, which include a method's:
9983 - formal parameters (C++),
9984 - receiver type (Go),
9985
9986 The term "physname" is a bit confusing.
9987 For C++, for example, it is the demangled name.
9988 For Go, for example, it's the mangled name.
9989
9990 For Ada, return the DIE's linkage name rather than the fully qualified
9991 name. PHYSNAME is ignored..
9992
9993 The result is allocated on the objfile_obstack and canonicalized. */
9994
9995 static const char *
9996 dwarf2_compute_name (const char *name,
9997 struct die_info *die, struct dwarf2_cu *cu,
9998 int physname)
9999 {
10000 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10001
10002 if (name == NULL)
10003 name = dwarf2_name (die, cu);
10004
10005 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10006 but otherwise compute it by typename_concat inside GDB.
10007 FIXME: Actually this is not really true, or at least not always true.
10008 It's all very confusing. compute_and_set_names doesn't try to demangle
10009 Fortran names because there is no mangling standard. So new_symbol
10010 will set the demangled name to the result of dwarf2_full_name, and it is
10011 the demangled name that GDB uses if it exists. */
10012 if (cu->language == language_ada
10013 || (cu->language == language_fortran && physname))
10014 {
10015 /* For Ada unit, we prefer the linkage name over the name, as
10016 the former contains the exported name, which the user expects
10017 to be able to reference. Ideally, we want the user to be able
10018 to reference this entity using either natural or linkage name,
10019 but we haven't started looking at this enhancement yet. */
10020 const char *linkage_name = dw2_linkage_name (die, cu);
10021
10022 if (linkage_name != NULL)
10023 return linkage_name;
10024 }
10025
10026 /* These are the only languages we know how to qualify names in. */
10027 if (name != NULL
10028 && (cu->language == language_cplus
10029 || cu->language == language_fortran || cu->language == language_d
10030 || cu->language == language_rust))
10031 {
10032 if (die_needs_namespace (die, cu))
10033 {
10034 const char *prefix;
10035 const char *canonical_name = NULL;
10036
10037 string_file buf;
10038
10039 prefix = determine_prefix (die, cu);
10040 if (*prefix != '\0')
10041 {
10042 gdb::unique_xmalloc_ptr<char> prefixed_name
10043 (typename_concat (NULL, prefix, name, physname, cu));
10044
10045 buf.puts (prefixed_name.get ());
10046 }
10047 else
10048 buf.puts (name);
10049
10050 /* Template parameters may be specified in the DIE's DW_AT_name, or
10051 as children with DW_TAG_template_type_param or
10052 DW_TAG_value_type_param. If the latter, add them to the name
10053 here. If the name already has template parameters, then
10054 skip this step; some versions of GCC emit both, and
10055 it is more efficient to use the pre-computed name.
10056
10057 Something to keep in mind about this process: it is very
10058 unlikely, or in some cases downright impossible, to produce
10059 something that will match the mangled name of a function.
10060 If the definition of the function has the same debug info,
10061 we should be able to match up with it anyway. But fallbacks
10062 using the minimal symbol, for instance to find a method
10063 implemented in a stripped copy of libstdc++, will not work.
10064 If we do not have debug info for the definition, we will have to
10065 match them up some other way.
10066
10067 When we do name matching there is a related problem with function
10068 templates; two instantiated function templates are allowed to
10069 differ only by their return types, which we do not add here. */
10070
10071 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10072 {
10073 struct attribute *attr;
10074 struct die_info *child;
10075 int first = 1;
10076
10077 die->building_fullname = 1;
10078
10079 for (child = die->child; child != NULL; child = child->sibling)
10080 {
10081 struct type *type;
10082 LONGEST value;
10083 const gdb_byte *bytes;
10084 struct dwarf2_locexpr_baton *baton;
10085 struct value *v;
10086
10087 if (child->tag != DW_TAG_template_type_param
10088 && child->tag != DW_TAG_template_value_param)
10089 continue;
10090
10091 if (first)
10092 {
10093 buf.puts ("<");
10094 first = 0;
10095 }
10096 else
10097 buf.puts (", ");
10098
10099 attr = dwarf2_attr (child, DW_AT_type, cu);
10100 if (attr == NULL)
10101 {
10102 complaint (_("template parameter missing DW_AT_type"));
10103 buf.puts ("UNKNOWN_TYPE");
10104 continue;
10105 }
10106 type = die_type (child, cu);
10107
10108 if (child->tag == DW_TAG_template_type_param)
10109 {
10110 c_print_type (type, "", &buf, -1, 0, cu->language,
10111 &type_print_raw_options);
10112 continue;
10113 }
10114
10115 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10116 if (attr == NULL)
10117 {
10118 complaint (_("template parameter missing "
10119 "DW_AT_const_value"));
10120 buf.puts ("UNKNOWN_VALUE");
10121 continue;
10122 }
10123
10124 dwarf2_const_value_attr (attr, type, name,
10125 &cu->comp_unit_obstack, cu,
10126 &value, &bytes, &baton);
10127
10128 if (TYPE_NOSIGN (type))
10129 /* GDB prints characters as NUMBER 'CHAR'. If that's
10130 changed, this can use value_print instead. */
10131 c_printchar (value, type, &buf);
10132 else
10133 {
10134 struct value_print_options opts;
10135
10136 if (baton != NULL)
10137 v = dwarf2_evaluate_loc_desc (type, NULL,
10138 baton->data,
10139 baton->size,
10140 baton->per_cu);
10141 else if (bytes != NULL)
10142 {
10143 v = allocate_value (type);
10144 memcpy (value_contents_writeable (v), bytes,
10145 TYPE_LENGTH (type));
10146 }
10147 else
10148 v = value_from_longest (type, value);
10149
10150 /* Specify decimal so that we do not depend on
10151 the radix. */
10152 get_formatted_print_options (&opts, 'd');
10153 opts.raw = 1;
10154 value_print (v, &buf, &opts);
10155 release_value (v);
10156 }
10157 }
10158
10159 die->building_fullname = 0;
10160
10161 if (!first)
10162 {
10163 /* Close the argument list, with a space if necessary
10164 (nested templates). */
10165 if (!buf.empty () && buf.string ().back () == '>')
10166 buf.puts (" >");
10167 else
10168 buf.puts (">");
10169 }
10170 }
10171
10172 /* For C++ methods, append formal parameter type
10173 information, if PHYSNAME. */
10174
10175 if (physname && die->tag == DW_TAG_subprogram
10176 && cu->language == language_cplus)
10177 {
10178 struct type *type = read_type_die (die, cu);
10179
10180 c_type_print_args (type, &buf, 1, cu->language,
10181 &type_print_raw_options);
10182
10183 if (cu->language == language_cplus)
10184 {
10185 /* Assume that an artificial first parameter is
10186 "this", but do not crash if it is not. RealView
10187 marks unnamed (and thus unused) parameters as
10188 artificial; there is no way to differentiate
10189 the two cases. */
10190 if (TYPE_NFIELDS (type) > 0
10191 && TYPE_FIELD_ARTIFICIAL (type, 0)
10192 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10193 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10194 0))))
10195 buf.puts (" const");
10196 }
10197 }
10198
10199 const std::string &intermediate_name = buf.string ();
10200
10201 if (cu->language == language_cplus)
10202 canonical_name
10203 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10204 &objfile->per_bfd->storage_obstack);
10205
10206 /* If we only computed INTERMEDIATE_NAME, or if
10207 INTERMEDIATE_NAME is already canonical, then we need to
10208 copy it to the appropriate obstack. */
10209 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10210 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10211 intermediate_name);
10212 else
10213 name = canonical_name;
10214 }
10215 }
10216
10217 return name;
10218 }
10219
10220 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10221 If scope qualifiers are appropriate they will be added. The result
10222 will be allocated on the storage_obstack, or NULL if the DIE does
10223 not have a name. NAME may either be from a previous call to
10224 dwarf2_name or NULL.
10225
10226 The output string will be canonicalized (if C++). */
10227
10228 static const char *
10229 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10230 {
10231 return dwarf2_compute_name (name, die, cu, 0);
10232 }
10233
10234 /* Construct a physname for the given DIE in CU. NAME may either be
10235 from a previous call to dwarf2_name or NULL. The result will be
10236 allocated on the objfile_objstack or NULL if the DIE does not have a
10237 name.
10238
10239 The output string will be canonicalized (if C++). */
10240
10241 static const char *
10242 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10243 {
10244 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10245 const char *retval, *mangled = NULL, *canon = NULL;
10246 int need_copy = 1;
10247
10248 /* In this case dwarf2_compute_name is just a shortcut not building anything
10249 on its own. */
10250 if (!die_needs_namespace (die, cu))
10251 return dwarf2_compute_name (name, die, cu, 1);
10252
10253 mangled = dw2_linkage_name (die, cu);
10254
10255 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10256 See https://github.com/rust-lang/rust/issues/32925. */
10257 if (cu->language == language_rust && mangled != NULL
10258 && strchr (mangled, '{') != NULL)
10259 mangled = NULL;
10260
10261 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10262 has computed. */
10263 gdb::unique_xmalloc_ptr<char> demangled;
10264 if (mangled != NULL)
10265 {
10266
10267 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10268 {
10269 /* Do nothing (do not demangle the symbol name). */
10270 }
10271 else if (cu->language == language_go)
10272 {
10273 /* This is a lie, but we already lie to the caller new_symbol.
10274 new_symbol assumes we return the mangled name.
10275 This just undoes that lie until things are cleaned up. */
10276 }
10277 else
10278 {
10279 /* Use DMGL_RET_DROP for C++ template functions to suppress
10280 their return type. It is easier for GDB users to search
10281 for such functions as `name(params)' than `long name(params)'.
10282 In such case the minimal symbol names do not match the full
10283 symbol names but for template functions there is never a need
10284 to look up their definition from their declaration so
10285 the only disadvantage remains the minimal symbol variant
10286 `long name(params)' does not have the proper inferior type. */
10287 demangled.reset (gdb_demangle (mangled,
10288 (DMGL_PARAMS | DMGL_ANSI
10289 | DMGL_RET_DROP)));
10290 }
10291 if (demangled)
10292 canon = demangled.get ();
10293 else
10294 {
10295 canon = mangled;
10296 need_copy = 0;
10297 }
10298 }
10299
10300 if (canon == NULL || check_physname)
10301 {
10302 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10303
10304 if (canon != NULL && strcmp (physname, canon) != 0)
10305 {
10306 /* It may not mean a bug in GDB. The compiler could also
10307 compute DW_AT_linkage_name incorrectly. But in such case
10308 GDB would need to be bug-to-bug compatible. */
10309
10310 complaint (_("Computed physname <%s> does not match demangled <%s> "
10311 "(from linkage <%s>) - DIE at %s [in module %s]"),
10312 physname, canon, mangled, sect_offset_str (die->sect_off),
10313 objfile_name (objfile));
10314
10315 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10316 is available here - over computed PHYSNAME. It is safer
10317 against both buggy GDB and buggy compilers. */
10318
10319 retval = canon;
10320 }
10321 else
10322 {
10323 retval = physname;
10324 need_copy = 0;
10325 }
10326 }
10327 else
10328 retval = canon;
10329
10330 if (need_copy)
10331 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10332
10333 return retval;
10334 }
10335
10336 /* Inspect DIE in CU for a namespace alias. If one exists, record
10337 a new symbol for it.
10338
10339 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10340
10341 static int
10342 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10343 {
10344 struct attribute *attr;
10345
10346 /* If the die does not have a name, this is not a namespace
10347 alias. */
10348 attr = dwarf2_attr (die, DW_AT_name, cu);
10349 if (attr != NULL)
10350 {
10351 int num;
10352 struct die_info *d = die;
10353 struct dwarf2_cu *imported_cu = cu;
10354
10355 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10356 keep inspecting DIEs until we hit the underlying import. */
10357 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10358 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10359 {
10360 attr = dwarf2_attr (d, DW_AT_import, cu);
10361 if (attr == NULL)
10362 break;
10363
10364 d = follow_die_ref (d, attr, &imported_cu);
10365 if (d->tag != DW_TAG_imported_declaration)
10366 break;
10367 }
10368
10369 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10370 {
10371 complaint (_("DIE at %s has too many recursively imported "
10372 "declarations"), sect_offset_str (d->sect_off));
10373 return 0;
10374 }
10375
10376 if (attr != NULL)
10377 {
10378 struct type *type;
10379 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10380
10381 type = get_die_type_at_offset (sect_off, cu->per_cu);
10382 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10383 {
10384 /* This declaration is a global namespace alias. Add
10385 a symbol for it whose type is the aliased namespace. */
10386 new_symbol (die, type, cu);
10387 return 1;
10388 }
10389 }
10390 }
10391
10392 return 0;
10393 }
10394
10395 /* Return the using directives repository (global or local?) to use in the
10396 current context for CU.
10397
10398 For Ada, imported declarations can materialize renamings, which *may* be
10399 global. However it is impossible (for now?) in DWARF to distinguish
10400 "external" imported declarations and "static" ones. As all imported
10401 declarations seem to be static in all other languages, make them all CU-wide
10402 global only in Ada. */
10403
10404 static struct using_direct **
10405 using_directives (struct dwarf2_cu *cu)
10406 {
10407 if (cu->language == language_ada
10408 && cu->get_builder ()->outermost_context_p ())
10409 return cu->get_builder ()->get_global_using_directives ();
10410 else
10411 return cu->get_builder ()->get_local_using_directives ();
10412 }
10413
10414 /* Read the import statement specified by the given die and record it. */
10415
10416 static void
10417 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10418 {
10419 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10420 struct attribute *import_attr;
10421 struct die_info *imported_die, *child_die;
10422 struct dwarf2_cu *imported_cu;
10423 const char *imported_name;
10424 const char *imported_name_prefix;
10425 const char *canonical_name;
10426 const char *import_alias;
10427 const char *imported_declaration = NULL;
10428 const char *import_prefix;
10429 std::vector<const char *> excludes;
10430
10431 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10432 if (import_attr == NULL)
10433 {
10434 complaint (_("Tag '%s' has no DW_AT_import"),
10435 dwarf_tag_name (die->tag));
10436 return;
10437 }
10438
10439 imported_cu = cu;
10440 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10441 imported_name = dwarf2_name (imported_die, imported_cu);
10442 if (imported_name == NULL)
10443 {
10444 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10445
10446 The import in the following code:
10447 namespace A
10448 {
10449 typedef int B;
10450 }
10451
10452 int main ()
10453 {
10454 using A::B;
10455 B b;
10456 return b;
10457 }
10458
10459 ...
10460 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10461 <52> DW_AT_decl_file : 1
10462 <53> DW_AT_decl_line : 6
10463 <54> DW_AT_import : <0x75>
10464 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10465 <59> DW_AT_name : B
10466 <5b> DW_AT_decl_file : 1
10467 <5c> DW_AT_decl_line : 2
10468 <5d> DW_AT_type : <0x6e>
10469 ...
10470 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10471 <76> DW_AT_byte_size : 4
10472 <77> DW_AT_encoding : 5 (signed)
10473
10474 imports the wrong die ( 0x75 instead of 0x58 ).
10475 This case will be ignored until the gcc bug is fixed. */
10476 return;
10477 }
10478
10479 /* Figure out the local name after import. */
10480 import_alias = dwarf2_name (die, cu);
10481
10482 /* Figure out where the statement is being imported to. */
10483 import_prefix = determine_prefix (die, cu);
10484
10485 /* Figure out what the scope of the imported die is and prepend it
10486 to the name of the imported die. */
10487 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10488
10489 if (imported_die->tag != DW_TAG_namespace
10490 && imported_die->tag != DW_TAG_module)
10491 {
10492 imported_declaration = imported_name;
10493 canonical_name = imported_name_prefix;
10494 }
10495 else if (strlen (imported_name_prefix) > 0)
10496 canonical_name = obconcat (&objfile->objfile_obstack,
10497 imported_name_prefix,
10498 (cu->language == language_d ? "." : "::"),
10499 imported_name, (char *) NULL);
10500 else
10501 canonical_name = imported_name;
10502
10503 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10504 for (child_die = die->child; child_die && child_die->tag;
10505 child_die = sibling_die (child_die))
10506 {
10507 /* DWARF-4: A Fortran use statement with a “rename list” may be
10508 represented by an imported module entry with an import attribute
10509 referring to the module and owned entries corresponding to those
10510 entities that are renamed as part of being imported. */
10511
10512 if (child_die->tag != DW_TAG_imported_declaration)
10513 {
10514 complaint (_("child DW_TAG_imported_declaration expected "
10515 "- DIE at %s [in module %s]"),
10516 sect_offset_str (child_die->sect_off),
10517 objfile_name (objfile));
10518 continue;
10519 }
10520
10521 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10522 if (import_attr == NULL)
10523 {
10524 complaint (_("Tag '%s' has no DW_AT_import"),
10525 dwarf_tag_name (child_die->tag));
10526 continue;
10527 }
10528
10529 imported_cu = cu;
10530 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10531 &imported_cu);
10532 imported_name = dwarf2_name (imported_die, imported_cu);
10533 if (imported_name == NULL)
10534 {
10535 complaint (_("child DW_TAG_imported_declaration has unknown "
10536 "imported name - DIE at %s [in module %s]"),
10537 sect_offset_str (child_die->sect_off),
10538 objfile_name (objfile));
10539 continue;
10540 }
10541
10542 excludes.push_back (imported_name);
10543
10544 process_die (child_die, cu);
10545 }
10546
10547 add_using_directive (using_directives (cu),
10548 import_prefix,
10549 canonical_name,
10550 import_alias,
10551 imported_declaration,
10552 excludes,
10553 0,
10554 &objfile->objfile_obstack);
10555 }
10556
10557 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10558 types, but gives them a size of zero. Starting with version 14,
10559 ICC is compatible with GCC. */
10560
10561 static bool
10562 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10563 {
10564 if (!cu->checked_producer)
10565 check_producer (cu);
10566
10567 return cu->producer_is_icc_lt_14;
10568 }
10569
10570 /* ICC generates a DW_AT_type for C void functions. This was observed on
10571 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10572 which says that void functions should not have a DW_AT_type. */
10573
10574 static bool
10575 producer_is_icc (struct dwarf2_cu *cu)
10576 {
10577 if (!cu->checked_producer)
10578 check_producer (cu);
10579
10580 return cu->producer_is_icc;
10581 }
10582
10583 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10584 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10585 this, it was first present in GCC release 4.3.0. */
10586
10587 static bool
10588 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10589 {
10590 if (!cu->checked_producer)
10591 check_producer (cu);
10592
10593 return cu->producer_is_gcc_lt_4_3;
10594 }
10595
10596 static file_and_directory
10597 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10598 {
10599 file_and_directory res;
10600
10601 /* Find the filename. Do not use dwarf2_name here, since the filename
10602 is not a source language identifier. */
10603 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10604 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10605
10606 if (res.comp_dir == NULL
10607 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10608 && IS_ABSOLUTE_PATH (res.name))
10609 {
10610 res.comp_dir_storage = ldirname (res.name);
10611 if (!res.comp_dir_storage.empty ())
10612 res.comp_dir = res.comp_dir_storage.c_str ();
10613 }
10614 if (res.comp_dir != NULL)
10615 {
10616 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10617 directory, get rid of it. */
10618 const char *cp = strchr (res.comp_dir, ':');
10619
10620 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10621 res.comp_dir = cp + 1;
10622 }
10623
10624 if (res.name == NULL)
10625 res.name = "<unknown>";
10626
10627 return res;
10628 }
10629
10630 /* Handle DW_AT_stmt_list for a compilation unit.
10631 DIE is the DW_TAG_compile_unit die for CU.
10632 COMP_DIR is the compilation directory. LOWPC is passed to
10633 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10634
10635 static void
10636 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10637 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10638 {
10639 struct dwarf2_per_objfile *dwarf2_per_objfile
10640 = cu->per_cu->dwarf2_per_objfile;
10641 struct attribute *attr;
10642 struct line_header line_header_local;
10643 hashval_t line_header_local_hash;
10644 void **slot;
10645 int decode_mapping;
10646
10647 gdb_assert (! cu->per_cu->is_debug_types);
10648
10649 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10650 if (attr == NULL)
10651 return;
10652
10653 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10654
10655 /* The line header hash table is only created if needed (it exists to
10656 prevent redundant reading of the line table for partial_units).
10657 If we're given a partial_unit, we'll need it. If we're given a
10658 compile_unit, then use the line header hash table if it's already
10659 created, but don't create one just yet. */
10660
10661 if (dwarf2_per_objfile->line_header_hash == NULL
10662 && die->tag == DW_TAG_partial_unit)
10663 {
10664 dwarf2_per_objfile->line_header_hash
10665 .reset (htab_create_alloc (127, line_header_hash_voidp,
10666 line_header_eq_voidp,
10667 free_line_header_voidp,
10668 xcalloc, xfree));
10669 }
10670
10671 line_header_local.sect_off = line_offset;
10672 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10673 line_header_local_hash = line_header_hash (&line_header_local);
10674 if (dwarf2_per_objfile->line_header_hash != NULL)
10675 {
10676 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10677 &line_header_local,
10678 line_header_local_hash, NO_INSERT);
10679
10680 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10681 is not present in *SLOT (since if there is something in *SLOT then
10682 it will be for a partial_unit). */
10683 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10684 {
10685 gdb_assert (*slot != NULL);
10686 cu->line_header = (struct line_header *) *slot;
10687 return;
10688 }
10689 }
10690
10691 /* dwarf_decode_line_header does not yet provide sufficient information.
10692 We always have to call also dwarf_decode_lines for it. */
10693 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10694 if (lh == NULL)
10695 return;
10696
10697 cu->line_header = lh.release ();
10698 cu->line_header_die_owner = die;
10699
10700 if (dwarf2_per_objfile->line_header_hash == NULL)
10701 slot = NULL;
10702 else
10703 {
10704 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10705 &line_header_local,
10706 line_header_local_hash, INSERT);
10707 gdb_assert (slot != NULL);
10708 }
10709 if (slot != NULL && *slot == NULL)
10710 {
10711 /* This newly decoded line number information unit will be owned
10712 by line_header_hash hash table. */
10713 *slot = cu->line_header;
10714 cu->line_header_die_owner = NULL;
10715 }
10716 else
10717 {
10718 /* We cannot free any current entry in (*slot) as that struct line_header
10719 may be already used by multiple CUs. Create only temporary decoded
10720 line_header for this CU - it may happen at most once for each line
10721 number information unit. And if we're not using line_header_hash
10722 then this is what we want as well. */
10723 gdb_assert (die->tag != DW_TAG_partial_unit);
10724 }
10725 decode_mapping = (die->tag != DW_TAG_partial_unit);
10726 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10727 decode_mapping);
10728
10729 }
10730
10731 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10732
10733 static void
10734 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10735 {
10736 struct dwarf2_per_objfile *dwarf2_per_objfile
10737 = cu->per_cu->dwarf2_per_objfile;
10738 struct objfile *objfile = dwarf2_per_objfile->objfile;
10739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10740 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10741 CORE_ADDR highpc = ((CORE_ADDR) 0);
10742 struct attribute *attr;
10743 struct die_info *child_die;
10744 CORE_ADDR baseaddr;
10745
10746 prepare_one_comp_unit (cu, die, cu->language);
10747 baseaddr = objfile->text_section_offset ();
10748
10749 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10750
10751 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10752 from finish_block. */
10753 if (lowpc == ((CORE_ADDR) -1))
10754 lowpc = highpc;
10755 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10756
10757 file_and_directory fnd = find_file_and_directory (die, cu);
10758
10759 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10760 standardised yet. As a workaround for the language detection we fall
10761 back to the DW_AT_producer string. */
10762 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10763 cu->language = language_opencl;
10764
10765 /* Similar hack for Go. */
10766 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10767 set_cu_language (DW_LANG_Go, cu);
10768
10769 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10770
10771 /* Decode line number information if present. We do this before
10772 processing child DIEs, so that the line header table is available
10773 for DW_AT_decl_file. */
10774 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10775
10776 /* Process all dies in compilation unit. */
10777 if (die->child != NULL)
10778 {
10779 child_die = die->child;
10780 while (child_die && child_die->tag)
10781 {
10782 process_die (child_die, cu);
10783 child_die = sibling_die (child_die);
10784 }
10785 }
10786
10787 /* Decode macro information, if present. Dwarf 2 macro information
10788 refers to information in the line number info statement program
10789 header, so we can only read it if we've read the header
10790 successfully. */
10791 attr = dwarf2_attr (die, DW_AT_macros, cu);
10792 if (attr == NULL)
10793 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10794 if (attr && cu->line_header)
10795 {
10796 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10797 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10798
10799 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10800 }
10801 else
10802 {
10803 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10804 if (attr && cu->line_header)
10805 {
10806 unsigned int macro_offset = DW_UNSND (attr);
10807
10808 dwarf_decode_macros (cu, macro_offset, 0);
10809 }
10810 }
10811 }
10812
10813 void
10814 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10815 {
10816 struct type_unit_group *tu_group;
10817 int first_time;
10818 struct attribute *attr;
10819 unsigned int i;
10820 struct signatured_type *sig_type;
10821
10822 gdb_assert (per_cu->is_debug_types);
10823 sig_type = (struct signatured_type *) per_cu;
10824
10825 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10826
10827 /* If we're using .gdb_index (includes -readnow) then
10828 per_cu->type_unit_group may not have been set up yet. */
10829 if (sig_type->type_unit_group == NULL)
10830 sig_type->type_unit_group = get_type_unit_group (this, attr);
10831 tu_group = sig_type->type_unit_group;
10832
10833 /* If we've already processed this stmt_list there's no real need to
10834 do it again, we could fake it and just recreate the part we need
10835 (file name,index -> symtab mapping). If data shows this optimization
10836 is useful we can do it then. */
10837 first_time = tu_group->compunit_symtab == NULL;
10838
10839 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10840 debug info. */
10841 line_header_up lh;
10842 if (attr != NULL)
10843 {
10844 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10845 lh = dwarf_decode_line_header (line_offset, this);
10846 }
10847 if (lh == NULL)
10848 {
10849 if (first_time)
10850 start_symtab ("", NULL, 0);
10851 else
10852 {
10853 gdb_assert (tu_group->symtabs == NULL);
10854 gdb_assert (m_builder == nullptr);
10855 struct compunit_symtab *cust = tu_group->compunit_symtab;
10856 m_builder.reset (new struct buildsym_compunit
10857 (COMPUNIT_OBJFILE (cust), "",
10858 COMPUNIT_DIRNAME (cust),
10859 compunit_language (cust),
10860 0, cust));
10861 }
10862 return;
10863 }
10864
10865 line_header = lh.release ();
10866 line_header_die_owner = die;
10867
10868 if (first_time)
10869 {
10870 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10871
10872 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10873 still initializing it, and our caller (a few levels up)
10874 process_full_type_unit still needs to know if this is the first
10875 time. */
10876
10877 tu_group->symtabs
10878 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10879 struct symtab *, line_header->file_names_size ());
10880
10881 auto &file_names = line_header->file_names ();
10882 for (i = 0; i < file_names.size (); ++i)
10883 {
10884 file_entry &fe = file_names[i];
10885 dwarf2_start_subfile (this, fe.name,
10886 fe.include_dir (line_header));
10887 buildsym_compunit *b = get_builder ();
10888 if (b->get_current_subfile ()->symtab == NULL)
10889 {
10890 /* NOTE: start_subfile will recognize when it's been
10891 passed a file it has already seen. So we can't
10892 assume there's a simple mapping from
10893 cu->line_header->file_names to subfiles, plus
10894 cu->line_header->file_names may contain dups. */
10895 b->get_current_subfile ()->symtab
10896 = allocate_symtab (cust, b->get_current_subfile ()->name);
10897 }
10898
10899 fe.symtab = b->get_current_subfile ()->symtab;
10900 tu_group->symtabs[i] = fe.symtab;
10901 }
10902 }
10903 else
10904 {
10905 gdb_assert (m_builder == nullptr);
10906 struct compunit_symtab *cust = tu_group->compunit_symtab;
10907 m_builder.reset (new struct buildsym_compunit
10908 (COMPUNIT_OBJFILE (cust), "",
10909 COMPUNIT_DIRNAME (cust),
10910 compunit_language (cust),
10911 0, cust));
10912
10913 auto &file_names = line_header->file_names ();
10914 for (i = 0; i < file_names.size (); ++i)
10915 {
10916 file_entry &fe = file_names[i];
10917 fe.symtab = tu_group->symtabs[i];
10918 }
10919 }
10920
10921 /* The main symtab is allocated last. Type units don't have DW_AT_name
10922 so they don't have a "real" (so to speak) symtab anyway.
10923 There is later code that will assign the main symtab to all symbols
10924 that don't have one. We need to handle the case of a symbol with a
10925 missing symtab (DW_AT_decl_file) anyway. */
10926 }
10927
10928 /* Process DW_TAG_type_unit.
10929 For TUs we want to skip the first top level sibling if it's not the
10930 actual type being defined by this TU. In this case the first top
10931 level sibling is there to provide context only. */
10932
10933 static void
10934 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10935 {
10936 struct die_info *child_die;
10937
10938 prepare_one_comp_unit (cu, die, language_minimal);
10939
10940 /* Initialize (or reinitialize) the machinery for building symtabs.
10941 We do this before processing child DIEs, so that the line header table
10942 is available for DW_AT_decl_file. */
10943 cu->setup_type_unit_groups (die);
10944
10945 if (die->child != NULL)
10946 {
10947 child_die = die->child;
10948 while (child_die && child_die->tag)
10949 {
10950 process_die (child_die, cu);
10951 child_die = sibling_die (child_die);
10952 }
10953 }
10954 }
10955 \f
10956 /* DWO/DWP files.
10957
10958 http://gcc.gnu.org/wiki/DebugFission
10959 http://gcc.gnu.org/wiki/DebugFissionDWP
10960
10961 To simplify handling of both DWO files ("object" files with the DWARF info)
10962 and DWP files (a file with the DWOs packaged up into one file), we treat
10963 DWP files as having a collection of virtual DWO files. */
10964
10965 static hashval_t
10966 hash_dwo_file (const void *item)
10967 {
10968 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10969 hashval_t hash;
10970
10971 hash = htab_hash_string (dwo_file->dwo_name);
10972 if (dwo_file->comp_dir != NULL)
10973 hash += htab_hash_string (dwo_file->comp_dir);
10974 return hash;
10975 }
10976
10977 static int
10978 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10979 {
10980 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10981 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10982
10983 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10984 return 0;
10985 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10986 return lhs->comp_dir == rhs->comp_dir;
10987 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10988 }
10989
10990 /* Allocate a hash table for DWO files. */
10991
10992 static htab_up
10993 allocate_dwo_file_hash_table ()
10994 {
10995 auto delete_dwo_file = [] (void *item)
10996 {
10997 struct dwo_file *dwo_file = (struct dwo_file *) item;
10998
10999 delete dwo_file;
11000 };
11001
11002 return htab_up (htab_create_alloc (41,
11003 hash_dwo_file,
11004 eq_dwo_file,
11005 delete_dwo_file,
11006 xcalloc, xfree));
11007 }
11008
11009 /* Lookup DWO file DWO_NAME. */
11010
11011 static void **
11012 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11013 const char *dwo_name,
11014 const char *comp_dir)
11015 {
11016 struct dwo_file find_entry;
11017 void **slot;
11018
11019 if (dwarf2_per_objfile->dwo_files == NULL)
11020 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11021
11022 find_entry.dwo_name = dwo_name;
11023 find_entry.comp_dir = comp_dir;
11024 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11025 INSERT);
11026
11027 return slot;
11028 }
11029
11030 static hashval_t
11031 hash_dwo_unit (const void *item)
11032 {
11033 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11034
11035 /* This drops the top 32 bits of the id, but is ok for a hash. */
11036 return dwo_unit->signature;
11037 }
11038
11039 static int
11040 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11041 {
11042 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11043 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11044
11045 /* The signature is assumed to be unique within the DWO file.
11046 So while object file CU dwo_id's always have the value zero,
11047 that's OK, assuming each object file DWO file has only one CU,
11048 and that's the rule for now. */
11049 return lhs->signature == rhs->signature;
11050 }
11051
11052 /* Allocate a hash table for DWO CUs,TUs.
11053 There is one of these tables for each of CUs,TUs for each DWO file. */
11054
11055 static htab_up
11056 allocate_dwo_unit_table ()
11057 {
11058 /* Start out with a pretty small number.
11059 Generally DWO files contain only one CU and maybe some TUs. */
11060 return htab_up (htab_create_alloc (3,
11061 hash_dwo_unit,
11062 eq_dwo_unit,
11063 NULL, xcalloc, xfree));
11064 }
11065
11066 /* die_reader_func for create_dwo_cu. */
11067
11068 static void
11069 create_dwo_cu_reader (const struct die_reader_specs *reader,
11070 const gdb_byte *info_ptr,
11071 struct die_info *comp_unit_die,
11072 struct dwo_file *dwo_file,
11073 struct dwo_unit *dwo_unit)
11074 {
11075 struct dwarf2_cu *cu = reader->cu;
11076 sect_offset sect_off = cu->per_cu->sect_off;
11077 struct dwarf2_section_info *section = cu->per_cu->section;
11078
11079 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11080 if (!signature.has_value ())
11081 {
11082 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11083 " its dwo_id [in module %s]"),
11084 sect_offset_str (sect_off), dwo_file->dwo_name);
11085 return;
11086 }
11087
11088 dwo_unit->dwo_file = dwo_file;
11089 dwo_unit->signature = *signature;
11090 dwo_unit->section = section;
11091 dwo_unit->sect_off = sect_off;
11092 dwo_unit->length = cu->per_cu->length;
11093
11094 if (dwarf_read_debug)
11095 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11096 sect_offset_str (sect_off),
11097 hex_string (dwo_unit->signature));
11098 }
11099
11100 /* Create the dwo_units for the CUs in a DWO_FILE.
11101 Note: This function processes DWO files only, not DWP files. */
11102
11103 static void
11104 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11105 dwarf2_cu *cu, struct dwo_file &dwo_file,
11106 dwarf2_section_info &section, htab_up &cus_htab)
11107 {
11108 struct objfile *objfile = dwarf2_per_objfile->objfile;
11109 const gdb_byte *info_ptr, *end_ptr;
11110
11111 section.read (objfile);
11112 info_ptr = section.buffer;
11113
11114 if (info_ptr == NULL)
11115 return;
11116
11117 if (dwarf_read_debug)
11118 {
11119 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11120 section.get_name (),
11121 section.get_file_name ());
11122 }
11123
11124 end_ptr = info_ptr + section.size;
11125 while (info_ptr < end_ptr)
11126 {
11127 struct dwarf2_per_cu_data per_cu;
11128 struct dwo_unit read_unit {};
11129 struct dwo_unit *dwo_unit;
11130 void **slot;
11131 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11132
11133 memset (&per_cu, 0, sizeof (per_cu));
11134 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11135 per_cu.is_debug_types = 0;
11136 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11137 per_cu.section = &section;
11138
11139 cutu_reader reader (&per_cu, cu, &dwo_file);
11140 if (!reader.dummy_p)
11141 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11142 &dwo_file, &read_unit);
11143 info_ptr += per_cu.length;
11144
11145 // If the unit could not be parsed, skip it.
11146 if (read_unit.dwo_file == NULL)
11147 continue;
11148
11149 if (cus_htab == NULL)
11150 cus_htab = allocate_dwo_unit_table ();
11151
11152 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11153 *dwo_unit = read_unit;
11154 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11155 gdb_assert (slot != NULL);
11156 if (*slot != NULL)
11157 {
11158 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11159 sect_offset dup_sect_off = dup_cu->sect_off;
11160
11161 complaint (_("debug cu entry at offset %s is duplicate to"
11162 " the entry at offset %s, signature %s"),
11163 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11164 hex_string (dwo_unit->signature));
11165 }
11166 *slot = (void *)dwo_unit;
11167 }
11168 }
11169
11170 /* DWP file .debug_{cu,tu}_index section format:
11171 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11172
11173 DWP Version 1:
11174
11175 Both index sections have the same format, and serve to map a 64-bit
11176 signature to a set of section numbers. Each section begins with a header,
11177 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11178 indexes, and a pool of 32-bit section numbers. The index sections will be
11179 aligned at 8-byte boundaries in the file.
11180
11181 The index section header consists of:
11182
11183 V, 32 bit version number
11184 -, 32 bits unused
11185 N, 32 bit number of compilation units or type units in the index
11186 M, 32 bit number of slots in the hash table
11187
11188 Numbers are recorded using the byte order of the application binary.
11189
11190 The hash table begins at offset 16 in the section, and consists of an array
11191 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11192 order of the application binary). Unused slots in the hash table are 0.
11193 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11194
11195 The parallel table begins immediately after the hash table
11196 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11197 array of 32-bit indexes (using the byte order of the application binary),
11198 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11199 table contains a 32-bit index into the pool of section numbers. For unused
11200 hash table slots, the corresponding entry in the parallel table will be 0.
11201
11202 The pool of section numbers begins immediately following the hash table
11203 (at offset 16 + 12 * M from the beginning of the section). The pool of
11204 section numbers consists of an array of 32-bit words (using the byte order
11205 of the application binary). Each item in the array is indexed starting
11206 from 0. The hash table entry provides the index of the first section
11207 number in the set. Additional section numbers in the set follow, and the
11208 set is terminated by a 0 entry (section number 0 is not used in ELF).
11209
11210 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11211 section must be the first entry in the set, and the .debug_abbrev.dwo must
11212 be the second entry. Other members of the set may follow in any order.
11213
11214 ---
11215
11216 DWP Version 2:
11217
11218 DWP Version 2 combines all the .debug_info, etc. sections into one,
11219 and the entries in the index tables are now offsets into these sections.
11220 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11221 section.
11222
11223 Index Section Contents:
11224 Header
11225 Hash Table of Signatures dwp_hash_table.hash_table
11226 Parallel Table of Indices dwp_hash_table.unit_table
11227 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11228 Table of Section Sizes dwp_hash_table.v2.sizes
11229
11230 The index section header consists of:
11231
11232 V, 32 bit version number
11233 L, 32 bit number of columns in the table of section offsets
11234 N, 32 bit number of compilation units or type units in the index
11235 M, 32 bit number of slots in the hash table
11236
11237 Numbers are recorded using the byte order of the application binary.
11238
11239 The hash table has the same format as version 1.
11240 The parallel table of indices has the same format as version 1,
11241 except that the entries are origin-1 indices into the table of sections
11242 offsets and the table of section sizes.
11243
11244 The table of offsets begins immediately following the parallel table
11245 (at offset 16 + 12 * M from the beginning of the section). The table is
11246 a two-dimensional array of 32-bit words (using the byte order of the
11247 application binary), with L columns and N+1 rows, in row-major order.
11248 Each row in the array is indexed starting from 0. The first row provides
11249 a key to the remaining rows: each column in this row provides an identifier
11250 for a debug section, and the offsets in the same column of subsequent rows
11251 refer to that section. The section identifiers are:
11252
11253 DW_SECT_INFO 1 .debug_info.dwo
11254 DW_SECT_TYPES 2 .debug_types.dwo
11255 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11256 DW_SECT_LINE 4 .debug_line.dwo
11257 DW_SECT_LOC 5 .debug_loc.dwo
11258 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11259 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11260 DW_SECT_MACRO 8 .debug_macro.dwo
11261
11262 The offsets provided by the CU and TU index sections are the base offsets
11263 for the contributions made by each CU or TU to the corresponding section
11264 in the package file. Each CU and TU header contains an abbrev_offset
11265 field, used to find the abbreviations table for that CU or TU within the
11266 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11267 be interpreted as relative to the base offset given in the index section.
11268 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11269 should be interpreted as relative to the base offset for .debug_line.dwo,
11270 and offsets into other debug sections obtained from DWARF attributes should
11271 also be interpreted as relative to the corresponding base offset.
11272
11273 The table of sizes begins immediately following the table of offsets.
11274 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11275 with L columns and N rows, in row-major order. Each row in the array is
11276 indexed starting from 1 (row 0 is shared by the two tables).
11277
11278 ---
11279
11280 Hash table lookup is handled the same in version 1 and 2:
11281
11282 We assume that N and M will not exceed 2^32 - 1.
11283 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11284
11285 Given a 64-bit compilation unit signature or a type signature S, an entry
11286 in the hash table is located as follows:
11287
11288 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11289 the low-order k bits all set to 1.
11290
11291 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11292
11293 3) If the hash table entry at index H matches the signature, use that
11294 entry. If the hash table entry at index H is unused (all zeroes),
11295 terminate the search: the signature is not present in the table.
11296
11297 4) Let H = (H + H') modulo M. Repeat at Step 3.
11298
11299 Because M > N and H' and M are relatively prime, the search is guaranteed
11300 to stop at an unused slot or find the match. */
11301
11302 /* Create a hash table to map DWO IDs to their CU/TU entry in
11303 .debug_{info,types}.dwo in DWP_FILE.
11304 Returns NULL if there isn't one.
11305 Note: This function processes DWP files only, not DWO files. */
11306
11307 static struct dwp_hash_table *
11308 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11309 struct dwp_file *dwp_file, int is_debug_types)
11310 {
11311 struct objfile *objfile = dwarf2_per_objfile->objfile;
11312 bfd *dbfd = dwp_file->dbfd.get ();
11313 const gdb_byte *index_ptr, *index_end;
11314 struct dwarf2_section_info *index;
11315 uint32_t version, nr_columns, nr_units, nr_slots;
11316 struct dwp_hash_table *htab;
11317
11318 if (is_debug_types)
11319 index = &dwp_file->sections.tu_index;
11320 else
11321 index = &dwp_file->sections.cu_index;
11322
11323 if (index->empty ())
11324 return NULL;
11325 index->read (objfile);
11326
11327 index_ptr = index->buffer;
11328 index_end = index_ptr + index->size;
11329
11330 version = read_4_bytes (dbfd, index_ptr);
11331 index_ptr += 4;
11332 if (version == 2)
11333 nr_columns = read_4_bytes (dbfd, index_ptr);
11334 else
11335 nr_columns = 0;
11336 index_ptr += 4;
11337 nr_units = read_4_bytes (dbfd, index_ptr);
11338 index_ptr += 4;
11339 nr_slots = read_4_bytes (dbfd, index_ptr);
11340 index_ptr += 4;
11341
11342 if (version != 1 && version != 2)
11343 {
11344 error (_("Dwarf Error: unsupported DWP file version (%s)"
11345 " [in module %s]"),
11346 pulongest (version), dwp_file->name);
11347 }
11348 if (nr_slots != (nr_slots & -nr_slots))
11349 {
11350 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11351 " is not power of 2 [in module %s]"),
11352 pulongest (nr_slots), dwp_file->name);
11353 }
11354
11355 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11356 htab->version = version;
11357 htab->nr_columns = nr_columns;
11358 htab->nr_units = nr_units;
11359 htab->nr_slots = nr_slots;
11360 htab->hash_table = index_ptr;
11361 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11362
11363 /* Exit early if the table is empty. */
11364 if (nr_slots == 0 || nr_units == 0
11365 || (version == 2 && nr_columns == 0))
11366 {
11367 /* All must be zero. */
11368 if (nr_slots != 0 || nr_units != 0
11369 || (version == 2 && nr_columns != 0))
11370 {
11371 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11372 " all zero [in modules %s]"),
11373 dwp_file->name);
11374 }
11375 return htab;
11376 }
11377
11378 if (version == 1)
11379 {
11380 htab->section_pool.v1.indices =
11381 htab->unit_table + sizeof (uint32_t) * nr_slots;
11382 /* It's harder to decide whether the section is too small in v1.
11383 V1 is deprecated anyway so we punt. */
11384 }
11385 else
11386 {
11387 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11388 int *ids = htab->section_pool.v2.section_ids;
11389 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11390 /* Reverse map for error checking. */
11391 int ids_seen[DW_SECT_MAX + 1];
11392 int i;
11393
11394 if (nr_columns < 2)
11395 {
11396 error (_("Dwarf Error: bad DWP hash table, too few columns"
11397 " in section table [in module %s]"),
11398 dwp_file->name);
11399 }
11400 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11401 {
11402 error (_("Dwarf Error: bad DWP hash table, too many columns"
11403 " in section table [in module %s]"),
11404 dwp_file->name);
11405 }
11406 memset (ids, 255, sizeof_ids);
11407 memset (ids_seen, 255, sizeof (ids_seen));
11408 for (i = 0; i < nr_columns; ++i)
11409 {
11410 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11411
11412 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11413 {
11414 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11415 " in section table [in module %s]"),
11416 id, dwp_file->name);
11417 }
11418 if (ids_seen[id] != -1)
11419 {
11420 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11421 " id %d in section table [in module %s]"),
11422 id, dwp_file->name);
11423 }
11424 ids_seen[id] = i;
11425 ids[i] = id;
11426 }
11427 /* Must have exactly one info or types section. */
11428 if (((ids_seen[DW_SECT_INFO] != -1)
11429 + (ids_seen[DW_SECT_TYPES] != -1))
11430 != 1)
11431 {
11432 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11433 " DWO info/types section [in module %s]"),
11434 dwp_file->name);
11435 }
11436 /* Must have an abbrev section. */
11437 if (ids_seen[DW_SECT_ABBREV] == -1)
11438 {
11439 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11440 " section [in module %s]"),
11441 dwp_file->name);
11442 }
11443 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11444 htab->section_pool.v2.sizes =
11445 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11446 * nr_units * nr_columns);
11447 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11448 * nr_units * nr_columns))
11449 > index_end)
11450 {
11451 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11452 " [in module %s]"),
11453 dwp_file->name);
11454 }
11455 }
11456
11457 return htab;
11458 }
11459
11460 /* Update SECTIONS with the data from SECTP.
11461
11462 This function is like the other "locate" section routines that are
11463 passed to bfd_map_over_sections, but in this context the sections to
11464 read comes from the DWP V1 hash table, not the full ELF section table.
11465
11466 The result is non-zero for success, or zero if an error was found. */
11467
11468 static int
11469 locate_v1_virtual_dwo_sections (asection *sectp,
11470 struct virtual_v1_dwo_sections *sections)
11471 {
11472 const struct dwop_section_names *names = &dwop_section_names;
11473
11474 if (section_is_p (sectp->name, &names->abbrev_dwo))
11475 {
11476 /* There can be only one. */
11477 if (sections->abbrev.s.section != NULL)
11478 return 0;
11479 sections->abbrev.s.section = sectp;
11480 sections->abbrev.size = bfd_section_size (sectp);
11481 }
11482 else if (section_is_p (sectp->name, &names->info_dwo)
11483 || section_is_p (sectp->name, &names->types_dwo))
11484 {
11485 /* There can be only one. */
11486 if (sections->info_or_types.s.section != NULL)
11487 return 0;
11488 sections->info_or_types.s.section = sectp;
11489 sections->info_or_types.size = bfd_section_size (sectp);
11490 }
11491 else if (section_is_p (sectp->name, &names->line_dwo))
11492 {
11493 /* There can be only one. */
11494 if (sections->line.s.section != NULL)
11495 return 0;
11496 sections->line.s.section = sectp;
11497 sections->line.size = bfd_section_size (sectp);
11498 }
11499 else if (section_is_p (sectp->name, &names->loc_dwo))
11500 {
11501 /* There can be only one. */
11502 if (sections->loc.s.section != NULL)
11503 return 0;
11504 sections->loc.s.section = sectp;
11505 sections->loc.size = bfd_section_size (sectp);
11506 }
11507 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11508 {
11509 /* There can be only one. */
11510 if (sections->macinfo.s.section != NULL)
11511 return 0;
11512 sections->macinfo.s.section = sectp;
11513 sections->macinfo.size = bfd_section_size (sectp);
11514 }
11515 else if (section_is_p (sectp->name, &names->macro_dwo))
11516 {
11517 /* There can be only one. */
11518 if (sections->macro.s.section != NULL)
11519 return 0;
11520 sections->macro.s.section = sectp;
11521 sections->macro.size = bfd_section_size (sectp);
11522 }
11523 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11524 {
11525 /* There can be only one. */
11526 if (sections->str_offsets.s.section != NULL)
11527 return 0;
11528 sections->str_offsets.s.section = sectp;
11529 sections->str_offsets.size = bfd_section_size (sectp);
11530 }
11531 else
11532 {
11533 /* No other kind of section is valid. */
11534 return 0;
11535 }
11536
11537 return 1;
11538 }
11539
11540 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11541 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11542 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11543 This is for DWP version 1 files. */
11544
11545 static struct dwo_unit *
11546 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11547 struct dwp_file *dwp_file,
11548 uint32_t unit_index,
11549 const char *comp_dir,
11550 ULONGEST signature, int is_debug_types)
11551 {
11552 struct objfile *objfile = dwarf2_per_objfile->objfile;
11553 const struct dwp_hash_table *dwp_htab =
11554 is_debug_types ? dwp_file->tus : dwp_file->cus;
11555 bfd *dbfd = dwp_file->dbfd.get ();
11556 const char *kind = is_debug_types ? "TU" : "CU";
11557 struct dwo_file *dwo_file;
11558 struct dwo_unit *dwo_unit;
11559 struct virtual_v1_dwo_sections sections;
11560 void **dwo_file_slot;
11561 int i;
11562
11563 gdb_assert (dwp_file->version == 1);
11564
11565 if (dwarf_read_debug)
11566 {
11567 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11568 kind,
11569 pulongest (unit_index), hex_string (signature),
11570 dwp_file->name);
11571 }
11572
11573 /* Fetch the sections of this DWO unit.
11574 Put a limit on the number of sections we look for so that bad data
11575 doesn't cause us to loop forever. */
11576
11577 #define MAX_NR_V1_DWO_SECTIONS \
11578 (1 /* .debug_info or .debug_types */ \
11579 + 1 /* .debug_abbrev */ \
11580 + 1 /* .debug_line */ \
11581 + 1 /* .debug_loc */ \
11582 + 1 /* .debug_str_offsets */ \
11583 + 1 /* .debug_macro or .debug_macinfo */ \
11584 + 1 /* trailing zero */)
11585
11586 memset (&sections, 0, sizeof (sections));
11587
11588 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11589 {
11590 asection *sectp;
11591 uint32_t section_nr =
11592 read_4_bytes (dbfd,
11593 dwp_htab->section_pool.v1.indices
11594 + (unit_index + i) * sizeof (uint32_t));
11595
11596 if (section_nr == 0)
11597 break;
11598 if (section_nr >= dwp_file->num_sections)
11599 {
11600 error (_("Dwarf Error: bad DWP hash table, section number too large"
11601 " [in module %s]"),
11602 dwp_file->name);
11603 }
11604
11605 sectp = dwp_file->elf_sections[section_nr];
11606 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11607 {
11608 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11609 " [in module %s]"),
11610 dwp_file->name);
11611 }
11612 }
11613
11614 if (i < 2
11615 || sections.info_or_types.empty ()
11616 || sections.abbrev.empty ())
11617 {
11618 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11619 " [in module %s]"),
11620 dwp_file->name);
11621 }
11622 if (i == MAX_NR_V1_DWO_SECTIONS)
11623 {
11624 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11625 " [in module %s]"),
11626 dwp_file->name);
11627 }
11628
11629 /* It's easier for the rest of the code if we fake a struct dwo_file and
11630 have dwo_unit "live" in that. At least for now.
11631
11632 The DWP file can be made up of a random collection of CUs and TUs.
11633 However, for each CU + set of TUs that came from the same original DWO
11634 file, we can combine them back into a virtual DWO file to save space
11635 (fewer struct dwo_file objects to allocate). Remember that for really
11636 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11637
11638 std::string virtual_dwo_name =
11639 string_printf ("virtual-dwo/%d-%d-%d-%d",
11640 sections.abbrev.get_id (),
11641 sections.line.get_id (),
11642 sections.loc.get_id (),
11643 sections.str_offsets.get_id ());
11644 /* Can we use an existing virtual DWO file? */
11645 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11646 virtual_dwo_name.c_str (),
11647 comp_dir);
11648 /* Create one if necessary. */
11649 if (*dwo_file_slot == NULL)
11650 {
11651 if (dwarf_read_debug)
11652 {
11653 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11654 virtual_dwo_name.c_str ());
11655 }
11656 dwo_file = new struct dwo_file;
11657 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11658 virtual_dwo_name);
11659 dwo_file->comp_dir = comp_dir;
11660 dwo_file->sections.abbrev = sections.abbrev;
11661 dwo_file->sections.line = sections.line;
11662 dwo_file->sections.loc = sections.loc;
11663 dwo_file->sections.macinfo = sections.macinfo;
11664 dwo_file->sections.macro = sections.macro;
11665 dwo_file->sections.str_offsets = sections.str_offsets;
11666 /* The "str" section is global to the entire DWP file. */
11667 dwo_file->sections.str = dwp_file->sections.str;
11668 /* The info or types section is assigned below to dwo_unit,
11669 there's no need to record it in dwo_file.
11670 Also, we can't simply record type sections in dwo_file because
11671 we record a pointer into the vector in dwo_unit. As we collect more
11672 types we'll grow the vector and eventually have to reallocate space
11673 for it, invalidating all copies of pointers into the previous
11674 contents. */
11675 *dwo_file_slot = dwo_file;
11676 }
11677 else
11678 {
11679 if (dwarf_read_debug)
11680 {
11681 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11682 virtual_dwo_name.c_str ());
11683 }
11684 dwo_file = (struct dwo_file *) *dwo_file_slot;
11685 }
11686
11687 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11688 dwo_unit->dwo_file = dwo_file;
11689 dwo_unit->signature = signature;
11690 dwo_unit->section =
11691 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11692 *dwo_unit->section = sections.info_or_types;
11693 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11694
11695 return dwo_unit;
11696 }
11697
11698 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11699 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11700 piece within that section used by a TU/CU, return a virtual section
11701 of just that piece. */
11702
11703 static struct dwarf2_section_info
11704 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11705 struct dwarf2_section_info *section,
11706 bfd_size_type offset, bfd_size_type size)
11707 {
11708 struct dwarf2_section_info result;
11709 asection *sectp;
11710
11711 gdb_assert (section != NULL);
11712 gdb_assert (!section->is_virtual);
11713
11714 memset (&result, 0, sizeof (result));
11715 result.s.containing_section = section;
11716 result.is_virtual = true;
11717
11718 if (size == 0)
11719 return result;
11720
11721 sectp = section->get_bfd_section ();
11722
11723 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11724 bounds of the real section. This is a pretty-rare event, so just
11725 flag an error (easier) instead of a warning and trying to cope. */
11726 if (sectp == NULL
11727 || offset + size > bfd_section_size (sectp))
11728 {
11729 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11730 " in section %s [in module %s]"),
11731 sectp ? bfd_section_name (sectp) : "<unknown>",
11732 objfile_name (dwarf2_per_objfile->objfile));
11733 }
11734
11735 result.virtual_offset = offset;
11736 result.size = size;
11737 return result;
11738 }
11739
11740 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11741 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11742 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11743 This is for DWP version 2 files. */
11744
11745 static struct dwo_unit *
11746 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11747 struct dwp_file *dwp_file,
11748 uint32_t unit_index,
11749 const char *comp_dir,
11750 ULONGEST signature, int is_debug_types)
11751 {
11752 struct objfile *objfile = dwarf2_per_objfile->objfile;
11753 const struct dwp_hash_table *dwp_htab =
11754 is_debug_types ? dwp_file->tus : dwp_file->cus;
11755 bfd *dbfd = dwp_file->dbfd.get ();
11756 const char *kind = is_debug_types ? "TU" : "CU";
11757 struct dwo_file *dwo_file;
11758 struct dwo_unit *dwo_unit;
11759 struct virtual_v2_dwo_sections sections;
11760 void **dwo_file_slot;
11761 int i;
11762
11763 gdb_assert (dwp_file->version == 2);
11764
11765 if (dwarf_read_debug)
11766 {
11767 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11768 kind,
11769 pulongest (unit_index), hex_string (signature),
11770 dwp_file->name);
11771 }
11772
11773 /* Fetch the section offsets of this DWO unit. */
11774
11775 memset (&sections, 0, sizeof (sections));
11776
11777 for (i = 0; i < dwp_htab->nr_columns; ++i)
11778 {
11779 uint32_t offset = read_4_bytes (dbfd,
11780 dwp_htab->section_pool.v2.offsets
11781 + (((unit_index - 1) * dwp_htab->nr_columns
11782 + i)
11783 * sizeof (uint32_t)));
11784 uint32_t size = read_4_bytes (dbfd,
11785 dwp_htab->section_pool.v2.sizes
11786 + (((unit_index - 1) * dwp_htab->nr_columns
11787 + i)
11788 * sizeof (uint32_t)));
11789
11790 switch (dwp_htab->section_pool.v2.section_ids[i])
11791 {
11792 case DW_SECT_INFO:
11793 case DW_SECT_TYPES:
11794 sections.info_or_types_offset = offset;
11795 sections.info_or_types_size = size;
11796 break;
11797 case DW_SECT_ABBREV:
11798 sections.abbrev_offset = offset;
11799 sections.abbrev_size = size;
11800 break;
11801 case DW_SECT_LINE:
11802 sections.line_offset = offset;
11803 sections.line_size = size;
11804 break;
11805 case DW_SECT_LOC:
11806 sections.loc_offset = offset;
11807 sections.loc_size = size;
11808 break;
11809 case DW_SECT_STR_OFFSETS:
11810 sections.str_offsets_offset = offset;
11811 sections.str_offsets_size = size;
11812 break;
11813 case DW_SECT_MACINFO:
11814 sections.macinfo_offset = offset;
11815 sections.macinfo_size = size;
11816 break;
11817 case DW_SECT_MACRO:
11818 sections.macro_offset = offset;
11819 sections.macro_size = size;
11820 break;
11821 }
11822 }
11823
11824 /* It's easier for the rest of the code if we fake a struct dwo_file and
11825 have dwo_unit "live" in that. At least for now.
11826
11827 The DWP file can be made up of a random collection of CUs and TUs.
11828 However, for each CU + set of TUs that came from the same original DWO
11829 file, we can combine them back into a virtual DWO file to save space
11830 (fewer struct dwo_file objects to allocate). Remember that for really
11831 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11832
11833 std::string virtual_dwo_name =
11834 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11835 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11836 (long) (sections.line_size ? sections.line_offset : 0),
11837 (long) (sections.loc_size ? sections.loc_offset : 0),
11838 (long) (sections.str_offsets_size
11839 ? sections.str_offsets_offset : 0));
11840 /* Can we use an existing virtual DWO file? */
11841 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11842 virtual_dwo_name.c_str (),
11843 comp_dir);
11844 /* Create one if necessary. */
11845 if (*dwo_file_slot == NULL)
11846 {
11847 if (dwarf_read_debug)
11848 {
11849 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11850 virtual_dwo_name.c_str ());
11851 }
11852 dwo_file = new struct dwo_file;
11853 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11854 virtual_dwo_name);
11855 dwo_file->comp_dir = comp_dir;
11856 dwo_file->sections.abbrev =
11857 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11858 sections.abbrev_offset, sections.abbrev_size);
11859 dwo_file->sections.line =
11860 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11861 sections.line_offset, sections.line_size);
11862 dwo_file->sections.loc =
11863 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11864 sections.loc_offset, sections.loc_size);
11865 dwo_file->sections.macinfo =
11866 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11867 sections.macinfo_offset, sections.macinfo_size);
11868 dwo_file->sections.macro =
11869 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11870 sections.macro_offset, sections.macro_size);
11871 dwo_file->sections.str_offsets =
11872 create_dwp_v2_section (dwarf2_per_objfile,
11873 &dwp_file->sections.str_offsets,
11874 sections.str_offsets_offset,
11875 sections.str_offsets_size);
11876 /* The "str" section is global to the entire DWP file. */
11877 dwo_file->sections.str = dwp_file->sections.str;
11878 /* The info or types section is assigned below to dwo_unit,
11879 there's no need to record it in dwo_file.
11880 Also, we can't simply record type sections in dwo_file because
11881 we record a pointer into the vector in dwo_unit. As we collect more
11882 types we'll grow the vector and eventually have to reallocate space
11883 for it, invalidating all copies of pointers into the previous
11884 contents. */
11885 *dwo_file_slot = dwo_file;
11886 }
11887 else
11888 {
11889 if (dwarf_read_debug)
11890 {
11891 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11892 virtual_dwo_name.c_str ());
11893 }
11894 dwo_file = (struct dwo_file *) *dwo_file_slot;
11895 }
11896
11897 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11898 dwo_unit->dwo_file = dwo_file;
11899 dwo_unit->signature = signature;
11900 dwo_unit->section =
11901 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11902 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11903 is_debug_types
11904 ? &dwp_file->sections.types
11905 : &dwp_file->sections.info,
11906 sections.info_or_types_offset,
11907 sections.info_or_types_size);
11908 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11909
11910 return dwo_unit;
11911 }
11912
11913 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11914 Returns NULL if the signature isn't found. */
11915
11916 static struct dwo_unit *
11917 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11918 struct dwp_file *dwp_file, const char *comp_dir,
11919 ULONGEST signature, int is_debug_types)
11920 {
11921 const struct dwp_hash_table *dwp_htab =
11922 is_debug_types ? dwp_file->tus : dwp_file->cus;
11923 bfd *dbfd = dwp_file->dbfd.get ();
11924 uint32_t mask = dwp_htab->nr_slots - 1;
11925 uint32_t hash = signature & mask;
11926 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11927 unsigned int i;
11928 void **slot;
11929 struct dwo_unit find_dwo_cu;
11930
11931 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11932 find_dwo_cu.signature = signature;
11933 slot = htab_find_slot (is_debug_types
11934 ? dwp_file->loaded_tus.get ()
11935 : dwp_file->loaded_cus.get (),
11936 &find_dwo_cu, INSERT);
11937
11938 if (*slot != NULL)
11939 return (struct dwo_unit *) *slot;
11940
11941 /* Use a for loop so that we don't loop forever on bad debug info. */
11942 for (i = 0; i < dwp_htab->nr_slots; ++i)
11943 {
11944 ULONGEST signature_in_table;
11945
11946 signature_in_table =
11947 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11948 if (signature_in_table == signature)
11949 {
11950 uint32_t unit_index =
11951 read_4_bytes (dbfd,
11952 dwp_htab->unit_table + hash * sizeof (uint32_t));
11953
11954 if (dwp_file->version == 1)
11955 {
11956 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11957 dwp_file, unit_index,
11958 comp_dir, signature,
11959 is_debug_types);
11960 }
11961 else
11962 {
11963 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11964 dwp_file, unit_index,
11965 comp_dir, signature,
11966 is_debug_types);
11967 }
11968 return (struct dwo_unit *) *slot;
11969 }
11970 if (signature_in_table == 0)
11971 return NULL;
11972 hash = (hash + hash2) & mask;
11973 }
11974
11975 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11976 " [in module %s]"),
11977 dwp_file->name);
11978 }
11979
11980 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11981 Open the file specified by FILE_NAME and hand it off to BFD for
11982 preliminary analysis. Return a newly initialized bfd *, which
11983 includes a canonicalized copy of FILE_NAME.
11984 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11985 SEARCH_CWD is true if the current directory is to be searched.
11986 It will be searched before debug-file-directory.
11987 If successful, the file is added to the bfd include table of the
11988 objfile's bfd (see gdb_bfd_record_inclusion).
11989 If unable to find/open the file, return NULL.
11990 NOTE: This function is derived from symfile_bfd_open. */
11991
11992 static gdb_bfd_ref_ptr
11993 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
11994 const char *file_name, int is_dwp, int search_cwd)
11995 {
11996 int desc;
11997 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11998 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11999 to debug_file_directory. */
12000 const char *search_path;
12001 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12002
12003 gdb::unique_xmalloc_ptr<char> search_path_holder;
12004 if (search_cwd)
12005 {
12006 if (*debug_file_directory != '\0')
12007 {
12008 search_path_holder.reset (concat (".", dirname_separator_string,
12009 debug_file_directory,
12010 (char *) NULL));
12011 search_path = search_path_holder.get ();
12012 }
12013 else
12014 search_path = ".";
12015 }
12016 else
12017 search_path = debug_file_directory;
12018
12019 openp_flags flags = OPF_RETURN_REALPATH;
12020 if (is_dwp)
12021 flags |= OPF_SEARCH_IN_PATH;
12022
12023 gdb::unique_xmalloc_ptr<char> absolute_name;
12024 desc = openp (search_path, flags, file_name,
12025 O_RDONLY | O_BINARY, &absolute_name);
12026 if (desc < 0)
12027 return NULL;
12028
12029 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12030 gnutarget, desc));
12031 if (sym_bfd == NULL)
12032 return NULL;
12033 bfd_set_cacheable (sym_bfd.get (), 1);
12034
12035 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12036 return NULL;
12037
12038 /* Success. Record the bfd as having been included by the objfile's bfd.
12039 This is important because things like demangled_names_hash lives in the
12040 objfile's per_bfd space and may have references to things like symbol
12041 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12042 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12043
12044 return sym_bfd;
12045 }
12046
12047 /* Try to open DWO file FILE_NAME.
12048 COMP_DIR is the DW_AT_comp_dir attribute.
12049 The result is the bfd handle of the file.
12050 If there is a problem finding or opening the file, return NULL.
12051 Upon success, the canonicalized path of the file is stored in the bfd,
12052 same as symfile_bfd_open. */
12053
12054 static gdb_bfd_ref_ptr
12055 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12056 const char *file_name, const char *comp_dir)
12057 {
12058 if (IS_ABSOLUTE_PATH (file_name))
12059 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12060 0 /*is_dwp*/, 0 /*search_cwd*/);
12061
12062 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12063
12064 if (comp_dir != NULL)
12065 {
12066 gdb::unique_xmalloc_ptr<char> path_to_try
12067 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12068
12069 /* NOTE: If comp_dir is a relative path, this will also try the
12070 search path, which seems useful. */
12071 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12072 path_to_try.get (),
12073 0 /*is_dwp*/,
12074 1 /*search_cwd*/));
12075 if (abfd != NULL)
12076 return abfd;
12077 }
12078
12079 /* That didn't work, try debug-file-directory, which, despite its name,
12080 is a list of paths. */
12081
12082 if (*debug_file_directory == '\0')
12083 return NULL;
12084
12085 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12086 0 /*is_dwp*/, 1 /*search_cwd*/);
12087 }
12088
12089 /* This function is mapped across the sections and remembers the offset and
12090 size of each of the DWO debugging sections we are interested in. */
12091
12092 static void
12093 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12094 {
12095 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12096 const struct dwop_section_names *names = &dwop_section_names;
12097
12098 if (section_is_p (sectp->name, &names->abbrev_dwo))
12099 {
12100 dwo_sections->abbrev.s.section = sectp;
12101 dwo_sections->abbrev.size = bfd_section_size (sectp);
12102 }
12103 else if (section_is_p (sectp->name, &names->info_dwo))
12104 {
12105 dwo_sections->info.s.section = sectp;
12106 dwo_sections->info.size = bfd_section_size (sectp);
12107 }
12108 else if (section_is_p (sectp->name, &names->line_dwo))
12109 {
12110 dwo_sections->line.s.section = sectp;
12111 dwo_sections->line.size = bfd_section_size (sectp);
12112 }
12113 else if (section_is_p (sectp->name, &names->loc_dwo))
12114 {
12115 dwo_sections->loc.s.section = sectp;
12116 dwo_sections->loc.size = bfd_section_size (sectp);
12117 }
12118 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12119 {
12120 dwo_sections->macinfo.s.section = sectp;
12121 dwo_sections->macinfo.size = bfd_section_size (sectp);
12122 }
12123 else if (section_is_p (sectp->name, &names->macro_dwo))
12124 {
12125 dwo_sections->macro.s.section = sectp;
12126 dwo_sections->macro.size = bfd_section_size (sectp);
12127 }
12128 else if (section_is_p (sectp->name, &names->str_dwo))
12129 {
12130 dwo_sections->str.s.section = sectp;
12131 dwo_sections->str.size = bfd_section_size (sectp);
12132 }
12133 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12134 {
12135 dwo_sections->str_offsets.s.section = sectp;
12136 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12137 }
12138 else if (section_is_p (sectp->name, &names->types_dwo))
12139 {
12140 struct dwarf2_section_info type_section;
12141
12142 memset (&type_section, 0, sizeof (type_section));
12143 type_section.s.section = sectp;
12144 type_section.size = bfd_section_size (sectp);
12145 dwo_sections->types.push_back (type_section);
12146 }
12147 }
12148
12149 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12150 by PER_CU. This is for the non-DWP case.
12151 The result is NULL if DWO_NAME can't be found. */
12152
12153 static struct dwo_file *
12154 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12155 const char *dwo_name, const char *comp_dir)
12156 {
12157 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12158
12159 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12160 if (dbfd == NULL)
12161 {
12162 if (dwarf_read_debug)
12163 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12164 return NULL;
12165 }
12166
12167 dwo_file_up dwo_file (new struct dwo_file);
12168 dwo_file->dwo_name = dwo_name;
12169 dwo_file->comp_dir = comp_dir;
12170 dwo_file->dbfd = std::move (dbfd);
12171
12172 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12173 &dwo_file->sections);
12174
12175 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12176 dwo_file->sections.info, dwo_file->cus);
12177
12178 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12179 dwo_file->sections.types, dwo_file->tus);
12180
12181 if (dwarf_read_debug)
12182 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12183
12184 return dwo_file.release ();
12185 }
12186
12187 /* This function is mapped across the sections and remembers the offset and
12188 size of each of the DWP debugging sections common to version 1 and 2 that
12189 we are interested in. */
12190
12191 static void
12192 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12193 void *dwp_file_ptr)
12194 {
12195 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12196 const struct dwop_section_names *names = &dwop_section_names;
12197 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12198
12199 /* Record the ELF section number for later lookup: this is what the
12200 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12201 gdb_assert (elf_section_nr < dwp_file->num_sections);
12202 dwp_file->elf_sections[elf_section_nr] = sectp;
12203
12204 /* Look for specific sections that we need. */
12205 if (section_is_p (sectp->name, &names->str_dwo))
12206 {
12207 dwp_file->sections.str.s.section = sectp;
12208 dwp_file->sections.str.size = bfd_section_size (sectp);
12209 }
12210 else if (section_is_p (sectp->name, &names->cu_index))
12211 {
12212 dwp_file->sections.cu_index.s.section = sectp;
12213 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12214 }
12215 else if (section_is_p (sectp->name, &names->tu_index))
12216 {
12217 dwp_file->sections.tu_index.s.section = sectp;
12218 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12219 }
12220 }
12221
12222 /* This function is mapped across the sections and remembers the offset and
12223 size of each of the DWP version 2 debugging sections that we are interested
12224 in. This is split into a separate function because we don't know if we
12225 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12226
12227 static void
12228 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12229 {
12230 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12231 const struct dwop_section_names *names = &dwop_section_names;
12232 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12233
12234 /* Record the ELF section number for later lookup: this is what the
12235 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12236 gdb_assert (elf_section_nr < dwp_file->num_sections);
12237 dwp_file->elf_sections[elf_section_nr] = sectp;
12238
12239 /* Look for specific sections that we need. */
12240 if (section_is_p (sectp->name, &names->abbrev_dwo))
12241 {
12242 dwp_file->sections.abbrev.s.section = sectp;
12243 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12244 }
12245 else if (section_is_p (sectp->name, &names->info_dwo))
12246 {
12247 dwp_file->sections.info.s.section = sectp;
12248 dwp_file->sections.info.size = bfd_section_size (sectp);
12249 }
12250 else if (section_is_p (sectp->name, &names->line_dwo))
12251 {
12252 dwp_file->sections.line.s.section = sectp;
12253 dwp_file->sections.line.size = bfd_section_size (sectp);
12254 }
12255 else if (section_is_p (sectp->name, &names->loc_dwo))
12256 {
12257 dwp_file->sections.loc.s.section = sectp;
12258 dwp_file->sections.loc.size = bfd_section_size (sectp);
12259 }
12260 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12261 {
12262 dwp_file->sections.macinfo.s.section = sectp;
12263 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12264 }
12265 else if (section_is_p (sectp->name, &names->macro_dwo))
12266 {
12267 dwp_file->sections.macro.s.section = sectp;
12268 dwp_file->sections.macro.size = bfd_section_size (sectp);
12269 }
12270 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12271 {
12272 dwp_file->sections.str_offsets.s.section = sectp;
12273 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12274 }
12275 else if (section_is_p (sectp->name, &names->types_dwo))
12276 {
12277 dwp_file->sections.types.s.section = sectp;
12278 dwp_file->sections.types.size = bfd_section_size (sectp);
12279 }
12280 }
12281
12282 /* Hash function for dwp_file loaded CUs/TUs. */
12283
12284 static hashval_t
12285 hash_dwp_loaded_cutus (const void *item)
12286 {
12287 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12288
12289 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12290 return dwo_unit->signature;
12291 }
12292
12293 /* Equality function for dwp_file loaded CUs/TUs. */
12294
12295 static int
12296 eq_dwp_loaded_cutus (const void *a, const void *b)
12297 {
12298 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12299 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12300
12301 return dua->signature == dub->signature;
12302 }
12303
12304 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12305
12306 static htab_up
12307 allocate_dwp_loaded_cutus_table ()
12308 {
12309 return htab_up (htab_create_alloc (3,
12310 hash_dwp_loaded_cutus,
12311 eq_dwp_loaded_cutus,
12312 NULL, xcalloc, xfree));
12313 }
12314
12315 /* Try to open DWP file FILE_NAME.
12316 The result is the bfd handle of the file.
12317 If there is a problem finding or opening the file, return NULL.
12318 Upon success, the canonicalized path of the file is stored in the bfd,
12319 same as symfile_bfd_open. */
12320
12321 static gdb_bfd_ref_ptr
12322 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12323 const char *file_name)
12324 {
12325 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12326 1 /*is_dwp*/,
12327 1 /*search_cwd*/));
12328 if (abfd != NULL)
12329 return abfd;
12330
12331 /* Work around upstream bug 15652.
12332 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12333 [Whether that's a "bug" is debatable, but it is getting in our way.]
12334 We have no real idea where the dwp file is, because gdb's realpath-ing
12335 of the executable's path may have discarded the needed info.
12336 [IWBN if the dwp file name was recorded in the executable, akin to
12337 .gnu_debuglink, but that doesn't exist yet.]
12338 Strip the directory from FILE_NAME and search again. */
12339 if (*debug_file_directory != '\0')
12340 {
12341 /* Don't implicitly search the current directory here.
12342 If the user wants to search "." to handle this case,
12343 it must be added to debug-file-directory. */
12344 return try_open_dwop_file (dwarf2_per_objfile,
12345 lbasename (file_name), 1 /*is_dwp*/,
12346 0 /*search_cwd*/);
12347 }
12348
12349 return NULL;
12350 }
12351
12352 /* Initialize the use of the DWP file for the current objfile.
12353 By convention the name of the DWP file is ${objfile}.dwp.
12354 The result is NULL if it can't be found. */
12355
12356 static std::unique_ptr<struct dwp_file>
12357 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12358 {
12359 struct objfile *objfile = dwarf2_per_objfile->objfile;
12360
12361 /* Try to find first .dwp for the binary file before any symbolic links
12362 resolving. */
12363
12364 /* If the objfile is a debug file, find the name of the real binary
12365 file and get the name of dwp file from there. */
12366 std::string dwp_name;
12367 if (objfile->separate_debug_objfile_backlink != NULL)
12368 {
12369 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12370 const char *backlink_basename = lbasename (backlink->original_name);
12371
12372 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12373 }
12374 else
12375 dwp_name = objfile->original_name;
12376
12377 dwp_name += ".dwp";
12378
12379 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12380 if (dbfd == NULL
12381 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12382 {
12383 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12384 dwp_name = objfile_name (objfile);
12385 dwp_name += ".dwp";
12386 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12387 }
12388
12389 if (dbfd == NULL)
12390 {
12391 if (dwarf_read_debug)
12392 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12393 return std::unique_ptr<dwp_file> ();
12394 }
12395
12396 const char *name = bfd_get_filename (dbfd.get ());
12397 std::unique_ptr<struct dwp_file> dwp_file
12398 (new struct dwp_file (name, std::move (dbfd)));
12399
12400 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12401 dwp_file->elf_sections =
12402 OBSTACK_CALLOC (&objfile->objfile_obstack,
12403 dwp_file->num_sections, asection *);
12404
12405 bfd_map_over_sections (dwp_file->dbfd.get (),
12406 dwarf2_locate_common_dwp_sections,
12407 dwp_file.get ());
12408
12409 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12410 0);
12411
12412 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12413 1);
12414
12415 /* The DWP file version is stored in the hash table. Oh well. */
12416 if (dwp_file->cus && dwp_file->tus
12417 && dwp_file->cus->version != dwp_file->tus->version)
12418 {
12419 /* Technically speaking, we should try to limp along, but this is
12420 pretty bizarre. We use pulongest here because that's the established
12421 portability solution (e.g, we cannot use %u for uint32_t). */
12422 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12423 " TU version %s [in DWP file %s]"),
12424 pulongest (dwp_file->cus->version),
12425 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12426 }
12427
12428 if (dwp_file->cus)
12429 dwp_file->version = dwp_file->cus->version;
12430 else if (dwp_file->tus)
12431 dwp_file->version = dwp_file->tus->version;
12432 else
12433 dwp_file->version = 2;
12434
12435 if (dwp_file->version == 2)
12436 bfd_map_over_sections (dwp_file->dbfd.get (),
12437 dwarf2_locate_v2_dwp_sections,
12438 dwp_file.get ());
12439
12440 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12441 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12442
12443 if (dwarf_read_debug)
12444 {
12445 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12446 fprintf_unfiltered (gdb_stdlog,
12447 " %s CUs, %s TUs\n",
12448 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12449 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12450 }
12451
12452 return dwp_file;
12453 }
12454
12455 /* Wrapper around open_and_init_dwp_file, only open it once. */
12456
12457 static struct dwp_file *
12458 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12459 {
12460 if (! dwarf2_per_objfile->dwp_checked)
12461 {
12462 dwarf2_per_objfile->dwp_file
12463 = open_and_init_dwp_file (dwarf2_per_objfile);
12464 dwarf2_per_objfile->dwp_checked = 1;
12465 }
12466 return dwarf2_per_objfile->dwp_file.get ();
12467 }
12468
12469 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12470 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12471 or in the DWP file for the objfile, referenced by THIS_UNIT.
12472 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12473 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12474
12475 This is called, for example, when wanting to read a variable with a
12476 complex location. Therefore we don't want to do file i/o for every call.
12477 Therefore we don't want to look for a DWO file on every call.
12478 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12479 then we check if we've already seen DWO_NAME, and only THEN do we check
12480 for a DWO file.
12481
12482 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12483 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12484
12485 static struct dwo_unit *
12486 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12487 const char *dwo_name, const char *comp_dir,
12488 ULONGEST signature, int is_debug_types)
12489 {
12490 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12491 struct objfile *objfile = dwarf2_per_objfile->objfile;
12492 const char *kind = is_debug_types ? "TU" : "CU";
12493 void **dwo_file_slot;
12494 struct dwo_file *dwo_file;
12495 struct dwp_file *dwp_file;
12496
12497 /* First see if there's a DWP file.
12498 If we have a DWP file but didn't find the DWO inside it, don't
12499 look for the original DWO file. It makes gdb behave differently
12500 depending on whether one is debugging in the build tree. */
12501
12502 dwp_file = get_dwp_file (dwarf2_per_objfile);
12503 if (dwp_file != NULL)
12504 {
12505 const struct dwp_hash_table *dwp_htab =
12506 is_debug_types ? dwp_file->tus : dwp_file->cus;
12507
12508 if (dwp_htab != NULL)
12509 {
12510 struct dwo_unit *dwo_cutu =
12511 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12512 signature, is_debug_types);
12513
12514 if (dwo_cutu != NULL)
12515 {
12516 if (dwarf_read_debug)
12517 {
12518 fprintf_unfiltered (gdb_stdlog,
12519 "Virtual DWO %s %s found: @%s\n",
12520 kind, hex_string (signature),
12521 host_address_to_string (dwo_cutu));
12522 }
12523 return dwo_cutu;
12524 }
12525 }
12526 }
12527 else
12528 {
12529 /* No DWP file, look for the DWO file. */
12530
12531 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12532 dwo_name, comp_dir);
12533 if (*dwo_file_slot == NULL)
12534 {
12535 /* Read in the file and build a table of the CUs/TUs it contains. */
12536 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12537 }
12538 /* NOTE: This will be NULL if unable to open the file. */
12539 dwo_file = (struct dwo_file *) *dwo_file_slot;
12540
12541 if (dwo_file != NULL)
12542 {
12543 struct dwo_unit *dwo_cutu = NULL;
12544
12545 if (is_debug_types && dwo_file->tus)
12546 {
12547 struct dwo_unit find_dwo_cutu;
12548
12549 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12550 find_dwo_cutu.signature = signature;
12551 dwo_cutu
12552 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12553 &find_dwo_cutu);
12554 }
12555 else if (!is_debug_types && dwo_file->cus)
12556 {
12557 struct dwo_unit find_dwo_cutu;
12558
12559 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12560 find_dwo_cutu.signature = signature;
12561 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12562 &find_dwo_cutu);
12563 }
12564
12565 if (dwo_cutu != NULL)
12566 {
12567 if (dwarf_read_debug)
12568 {
12569 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12570 kind, dwo_name, hex_string (signature),
12571 host_address_to_string (dwo_cutu));
12572 }
12573 return dwo_cutu;
12574 }
12575 }
12576 }
12577
12578 /* We didn't find it. This could mean a dwo_id mismatch, or
12579 someone deleted the DWO/DWP file, or the search path isn't set up
12580 correctly to find the file. */
12581
12582 if (dwarf_read_debug)
12583 {
12584 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12585 kind, dwo_name, hex_string (signature));
12586 }
12587
12588 /* This is a warning and not a complaint because it can be caused by
12589 pilot error (e.g., user accidentally deleting the DWO). */
12590 {
12591 /* Print the name of the DWP file if we looked there, helps the user
12592 better diagnose the problem. */
12593 std::string dwp_text;
12594
12595 if (dwp_file != NULL)
12596 dwp_text = string_printf (" [in DWP file %s]",
12597 lbasename (dwp_file->name));
12598
12599 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12600 " [in module %s]"),
12601 kind, dwo_name, hex_string (signature),
12602 dwp_text.c_str (),
12603 this_unit->is_debug_types ? "TU" : "CU",
12604 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12605 }
12606 return NULL;
12607 }
12608
12609 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12610 See lookup_dwo_cutu_unit for details. */
12611
12612 static struct dwo_unit *
12613 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12614 const char *dwo_name, const char *comp_dir,
12615 ULONGEST signature)
12616 {
12617 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12618 }
12619
12620 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12621 See lookup_dwo_cutu_unit for details. */
12622
12623 static struct dwo_unit *
12624 lookup_dwo_type_unit (struct signatured_type *this_tu,
12625 const char *dwo_name, const char *comp_dir)
12626 {
12627 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12628 }
12629
12630 /* Traversal function for queue_and_load_all_dwo_tus. */
12631
12632 static int
12633 queue_and_load_dwo_tu (void **slot, void *info)
12634 {
12635 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12636 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12637 ULONGEST signature = dwo_unit->signature;
12638 struct signatured_type *sig_type =
12639 lookup_dwo_signatured_type (per_cu->cu, signature);
12640
12641 if (sig_type != NULL)
12642 {
12643 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12644
12645 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12646 a real dependency of PER_CU on SIG_TYPE. That is detected later
12647 while processing PER_CU. */
12648 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12649 load_full_type_unit (sig_cu);
12650 per_cu->imported_symtabs_push (sig_cu);
12651 }
12652
12653 return 1;
12654 }
12655
12656 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12657 The DWO may have the only definition of the type, though it may not be
12658 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12659 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12660
12661 static void
12662 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12663 {
12664 struct dwo_unit *dwo_unit;
12665 struct dwo_file *dwo_file;
12666
12667 gdb_assert (!per_cu->is_debug_types);
12668 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12669 gdb_assert (per_cu->cu != NULL);
12670
12671 dwo_unit = per_cu->cu->dwo_unit;
12672 gdb_assert (dwo_unit != NULL);
12673
12674 dwo_file = dwo_unit->dwo_file;
12675 if (dwo_file->tus != NULL)
12676 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12677 per_cu);
12678 }
12679
12680 /* Read in various DIEs. */
12681
12682 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12683 Inherit only the children of the DW_AT_abstract_origin DIE not being
12684 already referenced by DW_AT_abstract_origin from the children of the
12685 current DIE. */
12686
12687 static void
12688 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12689 {
12690 struct die_info *child_die;
12691 sect_offset *offsetp;
12692 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12693 struct die_info *origin_die;
12694 /* Iterator of the ORIGIN_DIE children. */
12695 struct die_info *origin_child_die;
12696 struct attribute *attr;
12697 struct dwarf2_cu *origin_cu;
12698 struct pending **origin_previous_list_in_scope;
12699
12700 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12701 if (!attr)
12702 return;
12703
12704 /* Note that following die references may follow to a die in a
12705 different cu. */
12706
12707 origin_cu = cu;
12708 origin_die = follow_die_ref (die, attr, &origin_cu);
12709
12710 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12711 symbols in. */
12712 origin_previous_list_in_scope = origin_cu->list_in_scope;
12713 origin_cu->list_in_scope = cu->list_in_scope;
12714
12715 if (die->tag != origin_die->tag
12716 && !(die->tag == DW_TAG_inlined_subroutine
12717 && origin_die->tag == DW_TAG_subprogram))
12718 complaint (_("DIE %s and its abstract origin %s have different tags"),
12719 sect_offset_str (die->sect_off),
12720 sect_offset_str (origin_die->sect_off));
12721
12722 std::vector<sect_offset> offsets;
12723
12724 for (child_die = die->child;
12725 child_die && child_die->tag;
12726 child_die = sibling_die (child_die))
12727 {
12728 struct die_info *child_origin_die;
12729 struct dwarf2_cu *child_origin_cu;
12730
12731 /* We are trying to process concrete instance entries:
12732 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12733 it's not relevant to our analysis here. i.e. detecting DIEs that are
12734 present in the abstract instance but not referenced in the concrete
12735 one. */
12736 if (child_die->tag == DW_TAG_call_site
12737 || child_die->tag == DW_TAG_GNU_call_site)
12738 continue;
12739
12740 /* For each CHILD_DIE, find the corresponding child of
12741 ORIGIN_DIE. If there is more than one layer of
12742 DW_AT_abstract_origin, follow them all; there shouldn't be,
12743 but GCC versions at least through 4.4 generate this (GCC PR
12744 40573). */
12745 child_origin_die = child_die;
12746 child_origin_cu = cu;
12747 while (1)
12748 {
12749 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12750 child_origin_cu);
12751 if (attr == NULL)
12752 break;
12753 child_origin_die = follow_die_ref (child_origin_die, attr,
12754 &child_origin_cu);
12755 }
12756
12757 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12758 counterpart may exist. */
12759 if (child_origin_die != child_die)
12760 {
12761 if (child_die->tag != child_origin_die->tag
12762 && !(child_die->tag == DW_TAG_inlined_subroutine
12763 && child_origin_die->tag == DW_TAG_subprogram))
12764 complaint (_("Child DIE %s and its abstract origin %s have "
12765 "different tags"),
12766 sect_offset_str (child_die->sect_off),
12767 sect_offset_str (child_origin_die->sect_off));
12768 if (child_origin_die->parent != origin_die)
12769 complaint (_("Child DIE %s and its abstract origin %s have "
12770 "different parents"),
12771 sect_offset_str (child_die->sect_off),
12772 sect_offset_str (child_origin_die->sect_off));
12773 else
12774 offsets.push_back (child_origin_die->sect_off);
12775 }
12776 }
12777 std::sort (offsets.begin (), offsets.end ());
12778 sect_offset *offsets_end = offsets.data () + offsets.size ();
12779 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12780 if (offsetp[-1] == *offsetp)
12781 complaint (_("Multiple children of DIE %s refer "
12782 "to DIE %s as their abstract origin"),
12783 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12784
12785 offsetp = offsets.data ();
12786 origin_child_die = origin_die->child;
12787 while (origin_child_die && origin_child_die->tag)
12788 {
12789 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12790 while (offsetp < offsets_end
12791 && *offsetp < origin_child_die->sect_off)
12792 offsetp++;
12793 if (offsetp >= offsets_end
12794 || *offsetp > origin_child_die->sect_off)
12795 {
12796 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12797 Check whether we're already processing ORIGIN_CHILD_DIE.
12798 This can happen with mutually referenced abstract_origins.
12799 PR 16581. */
12800 if (!origin_child_die->in_process)
12801 process_die (origin_child_die, origin_cu);
12802 }
12803 origin_child_die = sibling_die (origin_child_die);
12804 }
12805 origin_cu->list_in_scope = origin_previous_list_in_scope;
12806
12807 if (cu != origin_cu)
12808 compute_delayed_physnames (origin_cu);
12809 }
12810
12811 static void
12812 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12813 {
12814 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12815 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12816 struct context_stack *newobj;
12817 CORE_ADDR lowpc;
12818 CORE_ADDR highpc;
12819 struct die_info *child_die;
12820 struct attribute *attr, *call_line, *call_file;
12821 const char *name;
12822 CORE_ADDR baseaddr;
12823 struct block *block;
12824 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12825 std::vector<struct symbol *> template_args;
12826 struct template_symbol *templ_func = NULL;
12827
12828 if (inlined_func)
12829 {
12830 /* If we do not have call site information, we can't show the
12831 caller of this inlined function. That's too confusing, so
12832 only use the scope for local variables. */
12833 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12834 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12835 if (call_line == NULL || call_file == NULL)
12836 {
12837 read_lexical_block_scope (die, cu);
12838 return;
12839 }
12840 }
12841
12842 baseaddr = objfile->text_section_offset ();
12843
12844 name = dwarf2_name (die, cu);
12845
12846 /* Ignore functions with missing or empty names. These are actually
12847 illegal according to the DWARF standard. */
12848 if (name == NULL)
12849 {
12850 complaint (_("missing name for subprogram DIE at %s"),
12851 sect_offset_str (die->sect_off));
12852 return;
12853 }
12854
12855 /* Ignore functions with missing or invalid low and high pc attributes. */
12856 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12857 <= PC_BOUNDS_INVALID)
12858 {
12859 attr = dwarf2_attr (die, DW_AT_external, cu);
12860 if (!attr || !DW_UNSND (attr))
12861 complaint (_("cannot get low and high bounds "
12862 "for subprogram DIE at %s"),
12863 sect_offset_str (die->sect_off));
12864 return;
12865 }
12866
12867 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12868 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12869
12870 /* If we have any template arguments, then we must allocate a
12871 different sort of symbol. */
12872 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12873 {
12874 if (child_die->tag == DW_TAG_template_type_param
12875 || child_die->tag == DW_TAG_template_value_param)
12876 {
12877 templ_func = allocate_template_symbol (objfile);
12878 templ_func->subclass = SYMBOL_TEMPLATE;
12879 break;
12880 }
12881 }
12882
12883 newobj = cu->get_builder ()->push_context (0, lowpc);
12884 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12885 (struct symbol *) templ_func);
12886
12887 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12888 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12889 cu->language);
12890
12891 /* If there is a location expression for DW_AT_frame_base, record
12892 it. */
12893 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12894 if (attr != nullptr)
12895 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12896
12897 /* If there is a location for the static link, record it. */
12898 newobj->static_link = NULL;
12899 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12900 if (attr != nullptr)
12901 {
12902 newobj->static_link
12903 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12904 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12905 cu->per_cu->addr_type ());
12906 }
12907
12908 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12909
12910 if (die->child != NULL)
12911 {
12912 child_die = die->child;
12913 while (child_die && child_die->tag)
12914 {
12915 if (child_die->tag == DW_TAG_template_type_param
12916 || child_die->tag == DW_TAG_template_value_param)
12917 {
12918 struct symbol *arg = new_symbol (child_die, NULL, cu);
12919
12920 if (arg != NULL)
12921 template_args.push_back (arg);
12922 }
12923 else
12924 process_die (child_die, cu);
12925 child_die = sibling_die (child_die);
12926 }
12927 }
12928
12929 inherit_abstract_dies (die, cu);
12930
12931 /* If we have a DW_AT_specification, we might need to import using
12932 directives from the context of the specification DIE. See the
12933 comment in determine_prefix. */
12934 if (cu->language == language_cplus
12935 && dwarf2_attr (die, DW_AT_specification, cu))
12936 {
12937 struct dwarf2_cu *spec_cu = cu;
12938 struct die_info *spec_die = die_specification (die, &spec_cu);
12939
12940 while (spec_die)
12941 {
12942 child_die = spec_die->child;
12943 while (child_die && child_die->tag)
12944 {
12945 if (child_die->tag == DW_TAG_imported_module)
12946 process_die (child_die, spec_cu);
12947 child_die = sibling_die (child_die);
12948 }
12949
12950 /* In some cases, GCC generates specification DIEs that
12951 themselves contain DW_AT_specification attributes. */
12952 spec_die = die_specification (spec_die, &spec_cu);
12953 }
12954 }
12955
12956 struct context_stack cstk = cu->get_builder ()->pop_context ();
12957 /* Make a block for the local symbols within. */
12958 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12959 cstk.static_link, lowpc, highpc);
12960
12961 /* For C++, set the block's scope. */
12962 if ((cu->language == language_cplus
12963 || cu->language == language_fortran
12964 || cu->language == language_d
12965 || cu->language == language_rust)
12966 && cu->processing_has_namespace_info)
12967 block_set_scope (block, determine_prefix (die, cu),
12968 &objfile->objfile_obstack);
12969
12970 /* If we have address ranges, record them. */
12971 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12972
12973 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12974
12975 /* Attach template arguments to function. */
12976 if (!template_args.empty ())
12977 {
12978 gdb_assert (templ_func != NULL);
12979
12980 templ_func->n_template_arguments = template_args.size ();
12981 templ_func->template_arguments
12982 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12983 templ_func->n_template_arguments);
12984 memcpy (templ_func->template_arguments,
12985 template_args.data (),
12986 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12987
12988 /* Make sure that the symtab is set on the new symbols. Even
12989 though they don't appear in this symtab directly, other parts
12990 of gdb assume that symbols do, and this is reasonably
12991 true. */
12992 for (symbol *sym : template_args)
12993 symbol_set_symtab (sym, symbol_symtab (templ_func));
12994 }
12995
12996 /* In C++, we can have functions nested inside functions (e.g., when
12997 a function declares a class that has methods). This means that
12998 when we finish processing a function scope, we may need to go
12999 back to building a containing block's symbol lists. */
13000 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13001 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13002
13003 /* If we've finished processing a top-level function, subsequent
13004 symbols go in the file symbol list. */
13005 if (cu->get_builder ()->outermost_context_p ())
13006 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13007 }
13008
13009 /* Process all the DIES contained within a lexical block scope. Start
13010 a new scope, process the dies, and then close the scope. */
13011
13012 static void
13013 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13014 {
13015 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13016 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13017 CORE_ADDR lowpc, highpc;
13018 struct die_info *child_die;
13019 CORE_ADDR baseaddr;
13020
13021 baseaddr = objfile->text_section_offset ();
13022
13023 /* Ignore blocks with missing or invalid low and high pc attributes. */
13024 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13025 as multiple lexical blocks? Handling children in a sane way would
13026 be nasty. Might be easier to properly extend generic blocks to
13027 describe ranges. */
13028 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13029 {
13030 case PC_BOUNDS_NOT_PRESENT:
13031 /* DW_TAG_lexical_block has no attributes, process its children as if
13032 there was no wrapping by that DW_TAG_lexical_block.
13033 GCC does no longer produces such DWARF since GCC r224161. */
13034 for (child_die = die->child;
13035 child_die != NULL && child_die->tag;
13036 child_die = sibling_die (child_die))
13037 process_die (child_die, cu);
13038 return;
13039 case PC_BOUNDS_INVALID:
13040 return;
13041 }
13042 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13043 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13044
13045 cu->get_builder ()->push_context (0, lowpc);
13046 if (die->child != NULL)
13047 {
13048 child_die = die->child;
13049 while (child_die && child_die->tag)
13050 {
13051 process_die (child_die, cu);
13052 child_die = sibling_die (child_die);
13053 }
13054 }
13055 inherit_abstract_dies (die, cu);
13056 struct context_stack cstk = cu->get_builder ()->pop_context ();
13057
13058 if (*cu->get_builder ()->get_local_symbols () != NULL
13059 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13060 {
13061 struct block *block
13062 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13063 cstk.start_addr, highpc);
13064
13065 /* Note that recording ranges after traversing children, as we
13066 do here, means that recording a parent's ranges entails
13067 walking across all its children's ranges as they appear in
13068 the address map, which is quadratic behavior.
13069
13070 It would be nicer to record the parent's ranges before
13071 traversing its children, simply overriding whatever you find
13072 there. But since we don't even decide whether to create a
13073 block until after we've traversed its children, that's hard
13074 to do. */
13075 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13076 }
13077 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13078 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13079 }
13080
13081 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13082
13083 static void
13084 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13085 {
13086 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13087 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13088 CORE_ADDR pc, baseaddr;
13089 struct attribute *attr;
13090 struct call_site *call_site, call_site_local;
13091 void **slot;
13092 int nparams;
13093 struct die_info *child_die;
13094
13095 baseaddr = objfile->text_section_offset ();
13096
13097 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13098 if (attr == NULL)
13099 {
13100 /* This was a pre-DWARF-5 GNU extension alias
13101 for DW_AT_call_return_pc. */
13102 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13103 }
13104 if (!attr)
13105 {
13106 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13107 "DIE %s [in module %s]"),
13108 sect_offset_str (die->sect_off), objfile_name (objfile));
13109 return;
13110 }
13111 pc = attr->value_as_address () + baseaddr;
13112 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13113
13114 if (cu->call_site_htab == NULL)
13115 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13116 NULL, &objfile->objfile_obstack,
13117 hashtab_obstack_allocate, NULL);
13118 call_site_local.pc = pc;
13119 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13120 if (*slot != NULL)
13121 {
13122 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13123 "DIE %s [in module %s]"),
13124 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13125 objfile_name (objfile));
13126 return;
13127 }
13128
13129 /* Count parameters at the caller. */
13130
13131 nparams = 0;
13132 for (child_die = die->child; child_die && child_die->tag;
13133 child_die = sibling_die (child_die))
13134 {
13135 if (child_die->tag != DW_TAG_call_site_parameter
13136 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13137 {
13138 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13139 "DW_TAG_call_site child DIE %s [in module %s]"),
13140 child_die->tag, sect_offset_str (child_die->sect_off),
13141 objfile_name (objfile));
13142 continue;
13143 }
13144
13145 nparams++;
13146 }
13147
13148 call_site
13149 = ((struct call_site *)
13150 obstack_alloc (&objfile->objfile_obstack,
13151 sizeof (*call_site)
13152 + (sizeof (*call_site->parameter) * (nparams - 1))));
13153 *slot = call_site;
13154 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13155 call_site->pc = pc;
13156
13157 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13158 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13159 {
13160 struct die_info *func_die;
13161
13162 /* Skip also over DW_TAG_inlined_subroutine. */
13163 for (func_die = die->parent;
13164 func_die && func_die->tag != DW_TAG_subprogram
13165 && func_die->tag != DW_TAG_subroutine_type;
13166 func_die = func_die->parent);
13167
13168 /* DW_AT_call_all_calls is a superset
13169 of DW_AT_call_all_tail_calls. */
13170 if (func_die
13171 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13172 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13173 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13174 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13175 {
13176 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13177 not complete. But keep CALL_SITE for look ups via call_site_htab,
13178 both the initial caller containing the real return address PC and
13179 the final callee containing the current PC of a chain of tail
13180 calls do not need to have the tail call list complete. But any
13181 function candidate for a virtual tail call frame searched via
13182 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13183 determined unambiguously. */
13184 }
13185 else
13186 {
13187 struct type *func_type = NULL;
13188
13189 if (func_die)
13190 func_type = get_die_type (func_die, cu);
13191 if (func_type != NULL)
13192 {
13193 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13194
13195 /* Enlist this call site to the function. */
13196 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13197 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13198 }
13199 else
13200 complaint (_("Cannot find function owning DW_TAG_call_site "
13201 "DIE %s [in module %s]"),
13202 sect_offset_str (die->sect_off), objfile_name (objfile));
13203 }
13204 }
13205
13206 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13207 if (attr == NULL)
13208 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13209 if (attr == NULL)
13210 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13211 if (attr == NULL)
13212 {
13213 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13215 }
13216 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13217 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13218 /* Keep NULL DWARF_BLOCK. */;
13219 else if (attr->form_is_block ())
13220 {
13221 struct dwarf2_locexpr_baton *dlbaton;
13222
13223 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13224 dlbaton->data = DW_BLOCK (attr)->data;
13225 dlbaton->size = DW_BLOCK (attr)->size;
13226 dlbaton->per_cu = cu->per_cu;
13227
13228 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13229 }
13230 else if (attr->form_is_ref ())
13231 {
13232 struct dwarf2_cu *target_cu = cu;
13233 struct die_info *target_die;
13234
13235 target_die = follow_die_ref (die, attr, &target_cu);
13236 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13237 if (die_is_declaration (target_die, target_cu))
13238 {
13239 const char *target_physname;
13240
13241 /* Prefer the mangled name; otherwise compute the demangled one. */
13242 target_physname = dw2_linkage_name (target_die, target_cu);
13243 if (target_physname == NULL)
13244 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13245 if (target_physname == NULL)
13246 complaint (_("DW_AT_call_target target DIE has invalid "
13247 "physname, for referencing DIE %s [in module %s]"),
13248 sect_offset_str (die->sect_off), objfile_name (objfile));
13249 else
13250 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13251 }
13252 else
13253 {
13254 CORE_ADDR lowpc;
13255
13256 /* DW_AT_entry_pc should be preferred. */
13257 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13258 <= PC_BOUNDS_INVALID)
13259 complaint (_("DW_AT_call_target target DIE has invalid "
13260 "low pc, for referencing DIE %s [in module %s]"),
13261 sect_offset_str (die->sect_off), objfile_name (objfile));
13262 else
13263 {
13264 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13265 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13266 }
13267 }
13268 }
13269 else
13270 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13271 "block nor reference, for DIE %s [in module %s]"),
13272 sect_offset_str (die->sect_off), objfile_name (objfile));
13273
13274 call_site->per_cu = cu->per_cu;
13275
13276 for (child_die = die->child;
13277 child_die && child_die->tag;
13278 child_die = sibling_die (child_die))
13279 {
13280 struct call_site_parameter *parameter;
13281 struct attribute *loc, *origin;
13282
13283 if (child_die->tag != DW_TAG_call_site_parameter
13284 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13285 {
13286 /* Already printed the complaint above. */
13287 continue;
13288 }
13289
13290 gdb_assert (call_site->parameter_count < nparams);
13291 parameter = &call_site->parameter[call_site->parameter_count];
13292
13293 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13294 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13295 register is contained in DW_AT_call_value. */
13296
13297 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13298 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13299 if (origin == NULL)
13300 {
13301 /* This was a pre-DWARF-5 GNU extension alias
13302 for DW_AT_call_parameter. */
13303 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13304 }
13305 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13306 {
13307 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13308
13309 sect_offset sect_off
13310 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13311 if (!cu->header.offset_in_cu_p (sect_off))
13312 {
13313 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13314 binding can be done only inside one CU. Such referenced DIE
13315 therefore cannot be even moved to DW_TAG_partial_unit. */
13316 complaint (_("DW_AT_call_parameter offset is not in CU for "
13317 "DW_TAG_call_site child DIE %s [in module %s]"),
13318 sect_offset_str (child_die->sect_off),
13319 objfile_name (objfile));
13320 continue;
13321 }
13322 parameter->u.param_cu_off
13323 = (cu_offset) (sect_off - cu->header.sect_off);
13324 }
13325 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13326 {
13327 complaint (_("No DW_FORM_block* DW_AT_location for "
13328 "DW_TAG_call_site child DIE %s [in module %s]"),
13329 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13330 continue;
13331 }
13332 else
13333 {
13334 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13335 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13336 if (parameter->u.dwarf_reg != -1)
13337 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13338 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13339 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13340 &parameter->u.fb_offset))
13341 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13342 else
13343 {
13344 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13345 "for DW_FORM_block* DW_AT_location is supported for "
13346 "DW_TAG_call_site child DIE %s "
13347 "[in module %s]"),
13348 sect_offset_str (child_die->sect_off),
13349 objfile_name (objfile));
13350 continue;
13351 }
13352 }
13353
13354 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13355 if (attr == NULL)
13356 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13357 if (attr == NULL || !attr->form_is_block ())
13358 {
13359 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13360 "DW_TAG_call_site child DIE %s [in module %s]"),
13361 sect_offset_str (child_die->sect_off),
13362 objfile_name (objfile));
13363 continue;
13364 }
13365 parameter->value = DW_BLOCK (attr)->data;
13366 parameter->value_size = DW_BLOCK (attr)->size;
13367
13368 /* Parameters are not pre-cleared by memset above. */
13369 parameter->data_value = NULL;
13370 parameter->data_value_size = 0;
13371 call_site->parameter_count++;
13372
13373 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13374 if (attr == NULL)
13375 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13376 if (attr != nullptr)
13377 {
13378 if (!attr->form_is_block ())
13379 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13380 "DW_TAG_call_site child DIE %s [in module %s]"),
13381 sect_offset_str (child_die->sect_off),
13382 objfile_name (objfile));
13383 else
13384 {
13385 parameter->data_value = DW_BLOCK (attr)->data;
13386 parameter->data_value_size = DW_BLOCK (attr)->size;
13387 }
13388 }
13389 }
13390 }
13391
13392 /* Helper function for read_variable. If DIE represents a virtual
13393 table, then return the type of the concrete object that is
13394 associated with the virtual table. Otherwise, return NULL. */
13395
13396 static struct type *
13397 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13398 {
13399 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13400 if (attr == NULL)
13401 return NULL;
13402
13403 /* Find the type DIE. */
13404 struct die_info *type_die = NULL;
13405 struct dwarf2_cu *type_cu = cu;
13406
13407 if (attr->form_is_ref ())
13408 type_die = follow_die_ref (die, attr, &type_cu);
13409 if (type_die == NULL)
13410 return NULL;
13411
13412 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13413 return NULL;
13414 return die_containing_type (type_die, type_cu);
13415 }
13416
13417 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13418
13419 static void
13420 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13421 {
13422 struct rust_vtable_symbol *storage = NULL;
13423
13424 if (cu->language == language_rust)
13425 {
13426 struct type *containing_type = rust_containing_type (die, cu);
13427
13428 if (containing_type != NULL)
13429 {
13430 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13431
13432 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13433 initialize_objfile_symbol (storage);
13434 storage->concrete_type = containing_type;
13435 storage->subclass = SYMBOL_RUST_VTABLE;
13436 }
13437 }
13438
13439 struct symbol *res = new_symbol (die, NULL, cu, storage);
13440 struct attribute *abstract_origin
13441 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13442 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13443 if (res == NULL && loc && abstract_origin)
13444 {
13445 /* We have a variable without a name, but with a location and an abstract
13446 origin. This may be a concrete instance of an abstract variable
13447 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13448 later. */
13449 struct dwarf2_cu *origin_cu = cu;
13450 struct die_info *origin_die
13451 = follow_die_ref (die, abstract_origin, &origin_cu);
13452 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13453 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13454 }
13455 }
13456
13457 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13458 reading .debug_rnglists.
13459 Callback's type should be:
13460 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13461 Return true if the attributes are present and valid, otherwise,
13462 return false. */
13463
13464 template <typename Callback>
13465 static bool
13466 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13467 Callback &&callback)
13468 {
13469 struct dwarf2_per_objfile *dwarf2_per_objfile
13470 = cu->per_cu->dwarf2_per_objfile;
13471 struct objfile *objfile = dwarf2_per_objfile->objfile;
13472 bfd *obfd = objfile->obfd;
13473 /* Base address selection entry. */
13474 CORE_ADDR base;
13475 int found_base;
13476 const gdb_byte *buffer;
13477 CORE_ADDR baseaddr;
13478 bool overflow = false;
13479
13480 found_base = cu->base_known;
13481 base = cu->base_address;
13482
13483 dwarf2_per_objfile->rnglists.read (objfile);
13484 if (offset >= dwarf2_per_objfile->rnglists.size)
13485 {
13486 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13487 offset);
13488 return false;
13489 }
13490 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13491
13492 baseaddr = objfile->text_section_offset ();
13493
13494 while (1)
13495 {
13496 /* Initialize it due to a false compiler warning. */
13497 CORE_ADDR range_beginning = 0, range_end = 0;
13498 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13499 + dwarf2_per_objfile->rnglists.size);
13500 unsigned int bytes_read;
13501
13502 if (buffer == buf_end)
13503 {
13504 overflow = true;
13505 break;
13506 }
13507 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13508 switch (rlet)
13509 {
13510 case DW_RLE_end_of_list:
13511 break;
13512 case DW_RLE_base_address:
13513 if (buffer + cu->header.addr_size > buf_end)
13514 {
13515 overflow = true;
13516 break;
13517 }
13518 base = cu->header.read_address (obfd, buffer, &bytes_read);
13519 found_base = 1;
13520 buffer += bytes_read;
13521 break;
13522 case DW_RLE_start_length:
13523 if (buffer + cu->header.addr_size > buf_end)
13524 {
13525 overflow = true;
13526 break;
13527 }
13528 range_beginning = cu->header.read_address (obfd, buffer,
13529 &bytes_read);
13530 buffer += bytes_read;
13531 range_end = (range_beginning
13532 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13533 buffer += bytes_read;
13534 if (buffer > buf_end)
13535 {
13536 overflow = true;
13537 break;
13538 }
13539 break;
13540 case DW_RLE_offset_pair:
13541 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13542 buffer += bytes_read;
13543 if (buffer > buf_end)
13544 {
13545 overflow = true;
13546 break;
13547 }
13548 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13549 buffer += bytes_read;
13550 if (buffer > buf_end)
13551 {
13552 overflow = true;
13553 break;
13554 }
13555 break;
13556 case DW_RLE_start_end:
13557 if (buffer + 2 * cu->header.addr_size > buf_end)
13558 {
13559 overflow = true;
13560 break;
13561 }
13562 range_beginning = cu->header.read_address (obfd, buffer,
13563 &bytes_read);
13564 buffer += bytes_read;
13565 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13566 buffer += bytes_read;
13567 break;
13568 default:
13569 complaint (_("Invalid .debug_rnglists data (no base address)"));
13570 return false;
13571 }
13572 if (rlet == DW_RLE_end_of_list || overflow)
13573 break;
13574 if (rlet == DW_RLE_base_address)
13575 continue;
13576
13577 if (!found_base)
13578 {
13579 /* We have no valid base address for the ranges
13580 data. */
13581 complaint (_("Invalid .debug_rnglists data (no base address)"));
13582 return false;
13583 }
13584
13585 if (range_beginning > range_end)
13586 {
13587 /* Inverted range entries are invalid. */
13588 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13589 return false;
13590 }
13591
13592 /* Empty range entries have no effect. */
13593 if (range_beginning == range_end)
13594 continue;
13595
13596 range_beginning += base;
13597 range_end += base;
13598
13599 /* A not-uncommon case of bad debug info.
13600 Don't pollute the addrmap with bad data. */
13601 if (range_beginning + baseaddr == 0
13602 && !dwarf2_per_objfile->has_section_at_zero)
13603 {
13604 complaint (_(".debug_rnglists entry has start address of zero"
13605 " [in module %s]"), objfile_name (objfile));
13606 continue;
13607 }
13608
13609 callback (range_beginning, range_end);
13610 }
13611
13612 if (overflow)
13613 {
13614 complaint (_("Offset %d is not terminated "
13615 "for DW_AT_ranges attribute"),
13616 offset);
13617 return false;
13618 }
13619
13620 return true;
13621 }
13622
13623 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13624 Callback's type should be:
13625 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13626 Return 1 if the attributes are present and valid, otherwise, return 0. */
13627
13628 template <typename Callback>
13629 static int
13630 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13631 Callback &&callback)
13632 {
13633 struct dwarf2_per_objfile *dwarf2_per_objfile
13634 = cu->per_cu->dwarf2_per_objfile;
13635 struct objfile *objfile = dwarf2_per_objfile->objfile;
13636 struct comp_unit_head *cu_header = &cu->header;
13637 bfd *obfd = objfile->obfd;
13638 unsigned int addr_size = cu_header->addr_size;
13639 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13640 /* Base address selection entry. */
13641 CORE_ADDR base;
13642 int found_base;
13643 unsigned int dummy;
13644 const gdb_byte *buffer;
13645 CORE_ADDR baseaddr;
13646
13647 if (cu_header->version >= 5)
13648 return dwarf2_rnglists_process (offset, cu, callback);
13649
13650 found_base = cu->base_known;
13651 base = cu->base_address;
13652
13653 dwarf2_per_objfile->ranges.read (objfile);
13654 if (offset >= dwarf2_per_objfile->ranges.size)
13655 {
13656 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13657 offset);
13658 return 0;
13659 }
13660 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13661
13662 baseaddr = objfile->text_section_offset ();
13663
13664 while (1)
13665 {
13666 CORE_ADDR range_beginning, range_end;
13667
13668 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13669 buffer += addr_size;
13670 range_end = cu->header.read_address (obfd, buffer, &dummy);
13671 buffer += addr_size;
13672 offset += 2 * addr_size;
13673
13674 /* An end of list marker is a pair of zero addresses. */
13675 if (range_beginning == 0 && range_end == 0)
13676 /* Found the end of list entry. */
13677 break;
13678
13679 /* Each base address selection entry is a pair of 2 values.
13680 The first is the largest possible address, the second is
13681 the base address. Check for a base address here. */
13682 if ((range_beginning & mask) == mask)
13683 {
13684 /* If we found the largest possible address, then we already
13685 have the base address in range_end. */
13686 base = range_end;
13687 found_base = 1;
13688 continue;
13689 }
13690
13691 if (!found_base)
13692 {
13693 /* We have no valid base address for the ranges
13694 data. */
13695 complaint (_("Invalid .debug_ranges data (no base address)"));
13696 return 0;
13697 }
13698
13699 if (range_beginning > range_end)
13700 {
13701 /* Inverted range entries are invalid. */
13702 complaint (_("Invalid .debug_ranges data (inverted range)"));
13703 return 0;
13704 }
13705
13706 /* Empty range entries have no effect. */
13707 if (range_beginning == range_end)
13708 continue;
13709
13710 range_beginning += base;
13711 range_end += base;
13712
13713 /* A not-uncommon case of bad debug info.
13714 Don't pollute the addrmap with bad data. */
13715 if (range_beginning + baseaddr == 0
13716 && !dwarf2_per_objfile->has_section_at_zero)
13717 {
13718 complaint (_(".debug_ranges entry has start address of zero"
13719 " [in module %s]"), objfile_name (objfile));
13720 continue;
13721 }
13722
13723 callback (range_beginning, range_end);
13724 }
13725
13726 return 1;
13727 }
13728
13729 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13730 Return 1 if the attributes are present and valid, otherwise, return 0.
13731 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13732
13733 static int
13734 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13735 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13736 dwarf2_psymtab *ranges_pst)
13737 {
13738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13740 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13741 int low_set = 0;
13742 CORE_ADDR low = 0;
13743 CORE_ADDR high = 0;
13744 int retval;
13745
13746 retval = dwarf2_ranges_process (offset, cu,
13747 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13748 {
13749 if (ranges_pst != NULL)
13750 {
13751 CORE_ADDR lowpc;
13752 CORE_ADDR highpc;
13753
13754 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13755 range_beginning + baseaddr)
13756 - baseaddr);
13757 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13758 range_end + baseaddr)
13759 - baseaddr);
13760 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13761 lowpc, highpc - 1, ranges_pst);
13762 }
13763
13764 /* FIXME: This is recording everything as a low-high
13765 segment of consecutive addresses. We should have a
13766 data structure for discontiguous block ranges
13767 instead. */
13768 if (! low_set)
13769 {
13770 low = range_beginning;
13771 high = range_end;
13772 low_set = 1;
13773 }
13774 else
13775 {
13776 if (range_beginning < low)
13777 low = range_beginning;
13778 if (range_end > high)
13779 high = range_end;
13780 }
13781 });
13782 if (!retval)
13783 return 0;
13784
13785 if (! low_set)
13786 /* If the first entry is an end-of-list marker, the range
13787 describes an empty scope, i.e. no instructions. */
13788 return 0;
13789
13790 if (low_return)
13791 *low_return = low;
13792 if (high_return)
13793 *high_return = high;
13794 return 1;
13795 }
13796
13797 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13798 definition for the return value. *LOWPC and *HIGHPC are set iff
13799 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13800
13801 static enum pc_bounds_kind
13802 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13803 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13804 dwarf2_psymtab *pst)
13805 {
13806 struct dwarf2_per_objfile *dwarf2_per_objfile
13807 = cu->per_cu->dwarf2_per_objfile;
13808 struct attribute *attr;
13809 struct attribute *attr_high;
13810 CORE_ADDR low = 0;
13811 CORE_ADDR high = 0;
13812 enum pc_bounds_kind ret;
13813
13814 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13815 if (attr_high)
13816 {
13817 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13818 if (attr != nullptr)
13819 {
13820 low = attr->value_as_address ();
13821 high = attr_high->value_as_address ();
13822 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13823 high += low;
13824 }
13825 else
13826 /* Found high w/o low attribute. */
13827 return PC_BOUNDS_INVALID;
13828
13829 /* Found consecutive range of addresses. */
13830 ret = PC_BOUNDS_HIGH_LOW;
13831 }
13832 else
13833 {
13834 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13835 if (attr != NULL)
13836 {
13837 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13838 We take advantage of the fact that DW_AT_ranges does not appear
13839 in DW_TAG_compile_unit of DWO files. */
13840 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13841 unsigned int ranges_offset = (DW_UNSND (attr)
13842 + (need_ranges_base
13843 ? cu->ranges_base
13844 : 0));
13845
13846 /* Value of the DW_AT_ranges attribute is the offset in the
13847 .debug_ranges section. */
13848 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13849 return PC_BOUNDS_INVALID;
13850 /* Found discontinuous range of addresses. */
13851 ret = PC_BOUNDS_RANGES;
13852 }
13853 else
13854 return PC_BOUNDS_NOT_PRESENT;
13855 }
13856
13857 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13858 if (high <= low)
13859 return PC_BOUNDS_INVALID;
13860
13861 /* When using the GNU linker, .gnu.linkonce. sections are used to
13862 eliminate duplicate copies of functions and vtables and such.
13863 The linker will arbitrarily choose one and discard the others.
13864 The AT_*_pc values for such functions refer to local labels in
13865 these sections. If the section from that file was discarded, the
13866 labels are not in the output, so the relocs get a value of 0.
13867 If this is a discarded function, mark the pc bounds as invalid,
13868 so that GDB will ignore it. */
13869 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13870 return PC_BOUNDS_INVALID;
13871
13872 *lowpc = low;
13873 if (highpc)
13874 *highpc = high;
13875 return ret;
13876 }
13877
13878 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13879 its low and high PC addresses. Do nothing if these addresses could not
13880 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13881 and HIGHPC to the high address if greater than HIGHPC. */
13882
13883 static void
13884 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13885 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13886 struct dwarf2_cu *cu)
13887 {
13888 CORE_ADDR low, high;
13889 struct die_info *child = die->child;
13890
13891 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13892 {
13893 *lowpc = std::min (*lowpc, low);
13894 *highpc = std::max (*highpc, high);
13895 }
13896
13897 /* If the language does not allow nested subprograms (either inside
13898 subprograms or lexical blocks), we're done. */
13899 if (cu->language != language_ada)
13900 return;
13901
13902 /* Check all the children of the given DIE. If it contains nested
13903 subprograms, then check their pc bounds. Likewise, we need to
13904 check lexical blocks as well, as they may also contain subprogram
13905 definitions. */
13906 while (child && child->tag)
13907 {
13908 if (child->tag == DW_TAG_subprogram
13909 || child->tag == DW_TAG_lexical_block)
13910 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13911 child = sibling_die (child);
13912 }
13913 }
13914
13915 /* Get the low and high pc's represented by the scope DIE, and store
13916 them in *LOWPC and *HIGHPC. If the correct values can't be
13917 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13918
13919 static void
13920 get_scope_pc_bounds (struct die_info *die,
13921 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13922 struct dwarf2_cu *cu)
13923 {
13924 CORE_ADDR best_low = (CORE_ADDR) -1;
13925 CORE_ADDR best_high = (CORE_ADDR) 0;
13926 CORE_ADDR current_low, current_high;
13927
13928 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13929 >= PC_BOUNDS_RANGES)
13930 {
13931 best_low = current_low;
13932 best_high = current_high;
13933 }
13934 else
13935 {
13936 struct die_info *child = die->child;
13937
13938 while (child && child->tag)
13939 {
13940 switch (child->tag) {
13941 case DW_TAG_subprogram:
13942 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13943 break;
13944 case DW_TAG_namespace:
13945 case DW_TAG_module:
13946 /* FIXME: carlton/2004-01-16: Should we do this for
13947 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13948 that current GCC's always emit the DIEs corresponding
13949 to definitions of methods of classes as children of a
13950 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13951 the DIEs giving the declarations, which could be
13952 anywhere). But I don't see any reason why the
13953 standards says that they have to be there. */
13954 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13955
13956 if (current_low != ((CORE_ADDR) -1))
13957 {
13958 best_low = std::min (best_low, current_low);
13959 best_high = std::max (best_high, current_high);
13960 }
13961 break;
13962 default:
13963 /* Ignore. */
13964 break;
13965 }
13966
13967 child = sibling_die (child);
13968 }
13969 }
13970
13971 *lowpc = best_low;
13972 *highpc = best_high;
13973 }
13974
13975 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13976 in DIE. */
13977
13978 static void
13979 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13980 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13981 {
13982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13984 struct attribute *attr;
13985 struct attribute *attr_high;
13986
13987 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13988 if (attr_high)
13989 {
13990 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13991 if (attr != nullptr)
13992 {
13993 CORE_ADDR low = attr->value_as_address ();
13994 CORE_ADDR high = attr_high->value_as_address ();
13995
13996 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13997 high += low;
13998
13999 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14000 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14001 cu->get_builder ()->record_block_range (block, low, high - 1);
14002 }
14003 }
14004
14005 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14006 if (attr != nullptr)
14007 {
14008 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14009 We take advantage of the fact that DW_AT_ranges does not appear
14010 in DW_TAG_compile_unit of DWO files. */
14011 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14012
14013 /* The value of the DW_AT_ranges attribute is the offset of the
14014 address range list in the .debug_ranges section. */
14015 unsigned long offset = (DW_UNSND (attr)
14016 + (need_ranges_base ? cu->ranges_base : 0));
14017
14018 std::vector<blockrange> blockvec;
14019 dwarf2_ranges_process (offset, cu,
14020 [&] (CORE_ADDR start, CORE_ADDR end)
14021 {
14022 start += baseaddr;
14023 end += baseaddr;
14024 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14025 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14026 cu->get_builder ()->record_block_range (block, start, end - 1);
14027 blockvec.emplace_back (start, end);
14028 });
14029
14030 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14031 }
14032 }
14033
14034 /* Check whether the producer field indicates either of GCC < 4.6, or the
14035 Intel C/C++ compiler, and cache the result in CU. */
14036
14037 static void
14038 check_producer (struct dwarf2_cu *cu)
14039 {
14040 int major, minor;
14041
14042 if (cu->producer == NULL)
14043 {
14044 /* For unknown compilers expect their behavior is DWARF version
14045 compliant.
14046
14047 GCC started to support .debug_types sections by -gdwarf-4 since
14048 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14049 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14050 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14051 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14052 }
14053 else if (producer_is_gcc (cu->producer, &major, &minor))
14054 {
14055 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14056 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14057 }
14058 else if (producer_is_icc (cu->producer, &major, &minor))
14059 {
14060 cu->producer_is_icc = true;
14061 cu->producer_is_icc_lt_14 = major < 14;
14062 }
14063 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14064 cu->producer_is_codewarrior = true;
14065 else
14066 {
14067 /* For other non-GCC compilers, expect their behavior is DWARF version
14068 compliant. */
14069 }
14070
14071 cu->checked_producer = true;
14072 }
14073
14074 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14075 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14076 during 4.6.0 experimental. */
14077
14078 static bool
14079 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14080 {
14081 if (!cu->checked_producer)
14082 check_producer (cu);
14083
14084 return cu->producer_is_gxx_lt_4_6;
14085 }
14086
14087
14088 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14089 with incorrect is_stmt attributes. */
14090
14091 static bool
14092 producer_is_codewarrior (struct dwarf2_cu *cu)
14093 {
14094 if (!cu->checked_producer)
14095 check_producer (cu);
14096
14097 return cu->producer_is_codewarrior;
14098 }
14099
14100 /* Return the default accessibility type if it is not overridden by
14101 DW_AT_accessibility. */
14102
14103 static enum dwarf_access_attribute
14104 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14105 {
14106 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14107 {
14108 /* The default DWARF 2 accessibility for members is public, the default
14109 accessibility for inheritance is private. */
14110
14111 if (die->tag != DW_TAG_inheritance)
14112 return DW_ACCESS_public;
14113 else
14114 return DW_ACCESS_private;
14115 }
14116 else
14117 {
14118 /* DWARF 3+ defines the default accessibility a different way. The same
14119 rules apply now for DW_TAG_inheritance as for the members and it only
14120 depends on the container kind. */
14121
14122 if (die->parent->tag == DW_TAG_class_type)
14123 return DW_ACCESS_private;
14124 else
14125 return DW_ACCESS_public;
14126 }
14127 }
14128
14129 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14130 offset. If the attribute was not found return 0, otherwise return
14131 1. If it was found but could not properly be handled, set *OFFSET
14132 to 0. */
14133
14134 static int
14135 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14136 LONGEST *offset)
14137 {
14138 struct attribute *attr;
14139
14140 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14141 if (attr != NULL)
14142 {
14143 *offset = 0;
14144
14145 /* Note that we do not check for a section offset first here.
14146 This is because DW_AT_data_member_location is new in DWARF 4,
14147 so if we see it, we can assume that a constant form is really
14148 a constant and not a section offset. */
14149 if (attr->form_is_constant ())
14150 *offset = dwarf2_get_attr_constant_value (attr, 0);
14151 else if (attr->form_is_section_offset ())
14152 dwarf2_complex_location_expr_complaint ();
14153 else if (attr->form_is_block ())
14154 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14155 else
14156 dwarf2_complex_location_expr_complaint ();
14157
14158 return 1;
14159 }
14160
14161 return 0;
14162 }
14163
14164 /* Add an aggregate field to the field list. */
14165
14166 static void
14167 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14168 struct dwarf2_cu *cu)
14169 {
14170 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14171 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14172 struct nextfield *new_field;
14173 struct attribute *attr;
14174 struct field *fp;
14175 const char *fieldname = "";
14176
14177 if (die->tag == DW_TAG_inheritance)
14178 {
14179 fip->baseclasses.emplace_back ();
14180 new_field = &fip->baseclasses.back ();
14181 }
14182 else
14183 {
14184 fip->fields.emplace_back ();
14185 new_field = &fip->fields.back ();
14186 }
14187
14188 fip->nfields++;
14189
14190 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14191 if (attr != nullptr)
14192 new_field->accessibility = DW_UNSND (attr);
14193 else
14194 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14195 if (new_field->accessibility != DW_ACCESS_public)
14196 fip->non_public_fields = 1;
14197
14198 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14199 if (attr != nullptr)
14200 new_field->virtuality = DW_UNSND (attr);
14201 else
14202 new_field->virtuality = DW_VIRTUALITY_none;
14203
14204 fp = &new_field->field;
14205
14206 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14207 {
14208 LONGEST offset;
14209
14210 /* Data member other than a C++ static data member. */
14211
14212 /* Get type of field. */
14213 fp->type = die_type (die, cu);
14214
14215 SET_FIELD_BITPOS (*fp, 0);
14216
14217 /* Get bit size of field (zero if none). */
14218 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14219 if (attr != nullptr)
14220 {
14221 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14222 }
14223 else
14224 {
14225 FIELD_BITSIZE (*fp) = 0;
14226 }
14227
14228 /* Get bit offset of field. */
14229 if (handle_data_member_location (die, cu, &offset))
14230 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14231 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14232 if (attr != nullptr)
14233 {
14234 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14235 {
14236 /* For big endian bits, the DW_AT_bit_offset gives the
14237 additional bit offset from the MSB of the containing
14238 anonymous object to the MSB of the field. We don't
14239 have to do anything special since we don't need to
14240 know the size of the anonymous object. */
14241 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14242 }
14243 else
14244 {
14245 /* For little endian bits, compute the bit offset to the
14246 MSB of the anonymous object, subtract off the number of
14247 bits from the MSB of the field to the MSB of the
14248 object, and then subtract off the number of bits of
14249 the field itself. The result is the bit offset of
14250 the LSB of the field. */
14251 int anonymous_size;
14252 int bit_offset = DW_UNSND (attr);
14253
14254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14255 if (attr != nullptr)
14256 {
14257 /* The size of the anonymous object containing
14258 the bit field is explicit, so use the
14259 indicated size (in bytes). */
14260 anonymous_size = DW_UNSND (attr);
14261 }
14262 else
14263 {
14264 /* The size of the anonymous object containing
14265 the bit field must be inferred from the type
14266 attribute of the data member containing the
14267 bit field. */
14268 anonymous_size = TYPE_LENGTH (fp->type);
14269 }
14270 SET_FIELD_BITPOS (*fp,
14271 (FIELD_BITPOS (*fp)
14272 + anonymous_size * bits_per_byte
14273 - bit_offset - FIELD_BITSIZE (*fp)));
14274 }
14275 }
14276 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14277 if (attr != NULL)
14278 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14279 + dwarf2_get_attr_constant_value (attr, 0)));
14280
14281 /* Get name of field. */
14282 fieldname = dwarf2_name (die, cu);
14283 if (fieldname == NULL)
14284 fieldname = "";
14285
14286 /* The name is already allocated along with this objfile, so we don't
14287 need to duplicate it for the type. */
14288 fp->name = fieldname;
14289
14290 /* Change accessibility for artificial fields (e.g. virtual table
14291 pointer or virtual base class pointer) to private. */
14292 if (dwarf2_attr (die, DW_AT_artificial, cu))
14293 {
14294 FIELD_ARTIFICIAL (*fp) = 1;
14295 new_field->accessibility = DW_ACCESS_private;
14296 fip->non_public_fields = 1;
14297 }
14298 }
14299 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14300 {
14301 /* C++ static member. */
14302
14303 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14304 is a declaration, but all versions of G++ as of this writing
14305 (so through at least 3.2.1) incorrectly generate
14306 DW_TAG_variable tags. */
14307
14308 const char *physname;
14309
14310 /* Get name of field. */
14311 fieldname = dwarf2_name (die, cu);
14312 if (fieldname == NULL)
14313 return;
14314
14315 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14316 if (attr
14317 /* Only create a symbol if this is an external value.
14318 new_symbol checks this and puts the value in the global symbol
14319 table, which we want. If it is not external, new_symbol
14320 will try to put the value in cu->list_in_scope which is wrong. */
14321 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14322 {
14323 /* A static const member, not much different than an enum as far as
14324 we're concerned, except that we can support more types. */
14325 new_symbol (die, NULL, cu);
14326 }
14327
14328 /* Get physical name. */
14329 physname = dwarf2_physname (fieldname, die, cu);
14330
14331 /* The name is already allocated along with this objfile, so we don't
14332 need to duplicate it for the type. */
14333 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14334 FIELD_TYPE (*fp) = die_type (die, cu);
14335 FIELD_NAME (*fp) = fieldname;
14336 }
14337 else if (die->tag == DW_TAG_inheritance)
14338 {
14339 LONGEST offset;
14340
14341 /* C++ base class field. */
14342 if (handle_data_member_location (die, cu, &offset))
14343 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14344 FIELD_BITSIZE (*fp) = 0;
14345 FIELD_TYPE (*fp) = die_type (die, cu);
14346 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14347 }
14348 else if (die->tag == DW_TAG_variant_part)
14349 {
14350 /* process_structure_scope will treat this DIE as a union. */
14351 process_structure_scope (die, cu);
14352
14353 /* The variant part is relative to the start of the enclosing
14354 structure. */
14355 SET_FIELD_BITPOS (*fp, 0);
14356 fp->type = get_die_type (die, cu);
14357 fp->artificial = 1;
14358 fp->name = "<<variant>>";
14359
14360 /* Normally a DW_TAG_variant_part won't have a size, but our
14361 representation requires one, so set it to the maximum of the
14362 child sizes, being sure to account for the offset at which
14363 each child is seen. */
14364 if (TYPE_LENGTH (fp->type) == 0)
14365 {
14366 unsigned max = 0;
14367 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14368 {
14369 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14370 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14371 if (len > max)
14372 max = len;
14373 }
14374 TYPE_LENGTH (fp->type) = max;
14375 }
14376 }
14377 else
14378 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14379 }
14380
14381 /* Can the type given by DIE define another type? */
14382
14383 static bool
14384 type_can_define_types (const struct die_info *die)
14385 {
14386 switch (die->tag)
14387 {
14388 case DW_TAG_typedef:
14389 case DW_TAG_class_type:
14390 case DW_TAG_structure_type:
14391 case DW_TAG_union_type:
14392 case DW_TAG_enumeration_type:
14393 return true;
14394
14395 default:
14396 return false;
14397 }
14398 }
14399
14400 /* Add a type definition defined in the scope of the FIP's class. */
14401
14402 static void
14403 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14404 struct dwarf2_cu *cu)
14405 {
14406 struct decl_field fp;
14407 memset (&fp, 0, sizeof (fp));
14408
14409 gdb_assert (type_can_define_types (die));
14410
14411 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14412 fp.name = dwarf2_name (die, cu);
14413 fp.type = read_type_die (die, cu);
14414
14415 /* Save accessibility. */
14416 enum dwarf_access_attribute accessibility;
14417 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14418 if (attr != NULL)
14419 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14420 else
14421 accessibility = dwarf2_default_access_attribute (die, cu);
14422 switch (accessibility)
14423 {
14424 case DW_ACCESS_public:
14425 /* The assumed value if neither private nor protected. */
14426 break;
14427 case DW_ACCESS_private:
14428 fp.is_private = 1;
14429 break;
14430 case DW_ACCESS_protected:
14431 fp.is_protected = 1;
14432 break;
14433 default:
14434 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14435 }
14436
14437 if (die->tag == DW_TAG_typedef)
14438 fip->typedef_field_list.push_back (fp);
14439 else
14440 fip->nested_types_list.push_back (fp);
14441 }
14442
14443 /* Create the vector of fields, and attach it to the type. */
14444
14445 static void
14446 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14447 struct dwarf2_cu *cu)
14448 {
14449 int nfields = fip->nfields;
14450
14451 /* Record the field count, allocate space for the array of fields,
14452 and create blank accessibility bitfields if necessary. */
14453 TYPE_NFIELDS (type) = nfields;
14454 TYPE_FIELDS (type) = (struct field *)
14455 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14456
14457 if (fip->non_public_fields && cu->language != language_ada)
14458 {
14459 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14460
14461 TYPE_FIELD_PRIVATE_BITS (type) =
14462 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14463 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14464
14465 TYPE_FIELD_PROTECTED_BITS (type) =
14466 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14467 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14468
14469 TYPE_FIELD_IGNORE_BITS (type) =
14470 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14471 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14472 }
14473
14474 /* If the type has baseclasses, allocate and clear a bit vector for
14475 TYPE_FIELD_VIRTUAL_BITS. */
14476 if (!fip->baseclasses.empty () && cu->language != language_ada)
14477 {
14478 int num_bytes = B_BYTES (fip->baseclasses.size ());
14479 unsigned char *pointer;
14480
14481 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14482 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14483 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14484 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14485 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14486 }
14487
14488 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14489 {
14490 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14491
14492 for (int index = 0; index < nfields; ++index)
14493 {
14494 struct nextfield &field = fip->fields[index];
14495
14496 if (field.variant.is_discriminant)
14497 di->discriminant_index = index;
14498 else if (field.variant.default_branch)
14499 di->default_index = index;
14500 else
14501 di->discriminants[index] = field.variant.discriminant_value;
14502 }
14503 }
14504
14505 /* Copy the saved-up fields into the field vector. */
14506 for (int i = 0; i < nfields; ++i)
14507 {
14508 struct nextfield &field
14509 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14510 : fip->fields[i - fip->baseclasses.size ()]);
14511
14512 TYPE_FIELD (type, i) = field.field;
14513 switch (field.accessibility)
14514 {
14515 case DW_ACCESS_private:
14516 if (cu->language != language_ada)
14517 SET_TYPE_FIELD_PRIVATE (type, i);
14518 break;
14519
14520 case DW_ACCESS_protected:
14521 if (cu->language != language_ada)
14522 SET_TYPE_FIELD_PROTECTED (type, i);
14523 break;
14524
14525 case DW_ACCESS_public:
14526 break;
14527
14528 default:
14529 /* Unknown accessibility. Complain and treat it as public. */
14530 {
14531 complaint (_("unsupported accessibility %d"),
14532 field.accessibility);
14533 }
14534 break;
14535 }
14536 if (i < fip->baseclasses.size ())
14537 {
14538 switch (field.virtuality)
14539 {
14540 case DW_VIRTUALITY_virtual:
14541 case DW_VIRTUALITY_pure_virtual:
14542 if (cu->language == language_ada)
14543 error (_("unexpected virtuality in component of Ada type"));
14544 SET_TYPE_FIELD_VIRTUAL (type, i);
14545 break;
14546 }
14547 }
14548 }
14549 }
14550
14551 /* Return true if this member function is a constructor, false
14552 otherwise. */
14553
14554 static int
14555 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14556 {
14557 const char *fieldname;
14558 const char *type_name;
14559 int len;
14560
14561 if (die->parent == NULL)
14562 return 0;
14563
14564 if (die->parent->tag != DW_TAG_structure_type
14565 && die->parent->tag != DW_TAG_union_type
14566 && die->parent->tag != DW_TAG_class_type)
14567 return 0;
14568
14569 fieldname = dwarf2_name (die, cu);
14570 type_name = dwarf2_name (die->parent, cu);
14571 if (fieldname == NULL || type_name == NULL)
14572 return 0;
14573
14574 len = strlen (fieldname);
14575 return (strncmp (fieldname, type_name, len) == 0
14576 && (type_name[len] == '\0' || type_name[len] == '<'));
14577 }
14578
14579 /* Check if the given VALUE is a recognized enum
14580 dwarf_defaulted_attribute constant according to DWARF5 spec,
14581 Table 7.24. */
14582
14583 static bool
14584 is_valid_DW_AT_defaulted (ULONGEST value)
14585 {
14586 switch (value)
14587 {
14588 case DW_DEFAULTED_no:
14589 case DW_DEFAULTED_in_class:
14590 case DW_DEFAULTED_out_of_class:
14591 return true;
14592 }
14593
14594 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14595 return false;
14596 }
14597
14598 /* Add a member function to the proper fieldlist. */
14599
14600 static void
14601 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14602 struct type *type, struct dwarf2_cu *cu)
14603 {
14604 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14605 struct attribute *attr;
14606 int i;
14607 struct fnfieldlist *flp = nullptr;
14608 struct fn_field *fnp;
14609 const char *fieldname;
14610 struct type *this_type;
14611 enum dwarf_access_attribute accessibility;
14612
14613 if (cu->language == language_ada)
14614 error (_("unexpected member function in Ada type"));
14615
14616 /* Get name of member function. */
14617 fieldname = dwarf2_name (die, cu);
14618 if (fieldname == NULL)
14619 return;
14620
14621 /* Look up member function name in fieldlist. */
14622 for (i = 0; i < fip->fnfieldlists.size (); i++)
14623 {
14624 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14625 {
14626 flp = &fip->fnfieldlists[i];
14627 break;
14628 }
14629 }
14630
14631 /* Create a new fnfieldlist if necessary. */
14632 if (flp == nullptr)
14633 {
14634 fip->fnfieldlists.emplace_back ();
14635 flp = &fip->fnfieldlists.back ();
14636 flp->name = fieldname;
14637 i = fip->fnfieldlists.size () - 1;
14638 }
14639
14640 /* Create a new member function field and add it to the vector of
14641 fnfieldlists. */
14642 flp->fnfields.emplace_back ();
14643 fnp = &flp->fnfields.back ();
14644
14645 /* Delay processing of the physname until later. */
14646 if (cu->language == language_cplus)
14647 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14648 die, cu);
14649 else
14650 {
14651 const char *physname = dwarf2_physname (fieldname, die, cu);
14652 fnp->physname = physname ? physname : "";
14653 }
14654
14655 fnp->type = alloc_type (objfile);
14656 this_type = read_type_die (die, cu);
14657 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14658 {
14659 int nparams = TYPE_NFIELDS (this_type);
14660
14661 /* TYPE is the domain of this method, and THIS_TYPE is the type
14662 of the method itself (TYPE_CODE_METHOD). */
14663 smash_to_method_type (fnp->type, type,
14664 TYPE_TARGET_TYPE (this_type),
14665 TYPE_FIELDS (this_type),
14666 TYPE_NFIELDS (this_type),
14667 TYPE_VARARGS (this_type));
14668
14669 /* Handle static member functions.
14670 Dwarf2 has no clean way to discern C++ static and non-static
14671 member functions. G++ helps GDB by marking the first
14672 parameter for non-static member functions (which is the this
14673 pointer) as artificial. We obtain this information from
14674 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14675 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14676 fnp->voffset = VOFFSET_STATIC;
14677 }
14678 else
14679 complaint (_("member function type missing for '%s'"),
14680 dwarf2_full_name (fieldname, die, cu));
14681
14682 /* Get fcontext from DW_AT_containing_type if present. */
14683 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14684 fnp->fcontext = die_containing_type (die, cu);
14685
14686 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14687 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14688
14689 /* Get accessibility. */
14690 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14691 if (attr != nullptr)
14692 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14693 else
14694 accessibility = dwarf2_default_access_attribute (die, cu);
14695 switch (accessibility)
14696 {
14697 case DW_ACCESS_private:
14698 fnp->is_private = 1;
14699 break;
14700 case DW_ACCESS_protected:
14701 fnp->is_protected = 1;
14702 break;
14703 }
14704
14705 /* Check for artificial methods. */
14706 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14707 if (attr && DW_UNSND (attr) != 0)
14708 fnp->is_artificial = 1;
14709
14710 /* Check for defaulted methods. */
14711 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14712 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14713 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14714
14715 /* Check for deleted methods. */
14716 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14717 if (attr != nullptr && DW_UNSND (attr) != 0)
14718 fnp->is_deleted = 1;
14719
14720 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14721
14722 /* Get index in virtual function table if it is a virtual member
14723 function. For older versions of GCC, this is an offset in the
14724 appropriate virtual table, as specified by DW_AT_containing_type.
14725 For everyone else, it is an expression to be evaluated relative
14726 to the object address. */
14727
14728 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14729 if (attr != nullptr)
14730 {
14731 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14732 {
14733 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14734 {
14735 /* Old-style GCC. */
14736 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14737 }
14738 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14739 || (DW_BLOCK (attr)->size > 1
14740 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14741 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14742 {
14743 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14744 if ((fnp->voffset % cu->header.addr_size) != 0)
14745 dwarf2_complex_location_expr_complaint ();
14746 else
14747 fnp->voffset /= cu->header.addr_size;
14748 fnp->voffset += 2;
14749 }
14750 else
14751 dwarf2_complex_location_expr_complaint ();
14752
14753 if (!fnp->fcontext)
14754 {
14755 /* If there is no `this' field and no DW_AT_containing_type,
14756 we cannot actually find a base class context for the
14757 vtable! */
14758 if (TYPE_NFIELDS (this_type) == 0
14759 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14760 {
14761 complaint (_("cannot determine context for virtual member "
14762 "function \"%s\" (offset %s)"),
14763 fieldname, sect_offset_str (die->sect_off));
14764 }
14765 else
14766 {
14767 fnp->fcontext
14768 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14769 }
14770 }
14771 }
14772 else if (attr->form_is_section_offset ())
14773 {
14774 dwarf2_complex_location_expr_complaint ();
14775 }
14776 else
14777 {
14778 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14779 fieldname);
14780 }
14781 }
14782 else
14783 {
14784 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14785 if (attr && DW_UNSND (attr))
14786 {
14787 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14788 complaint (_("Member function \"%s\" (offset %s) is virtual "
14789 "but the vtable offset is not specified"),
14790 fieldname, sect_offset_str (die->sect_off));
14791 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14792 TYPE_CPLUS_DYNAMIC (type) = 1;
14793 }
14794 }
14795 }
14796
14797 /* Create the vector of member function fields, and attach it to the type. */
14798
14799 static void
14800 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14801 struct dwarf2_cu *cu)
14802 {
14803 if (cu->language == language_ada)
14804 error (_("unexpected member functions in Ada type"));
14805
14806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14807 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14808 TYPE_ALLOC (type,
14809 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14810
14811 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14812 {
14813 struct fnfieldlist &nf = fip->fnfieldlists[i];
14814 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14815
14816 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14817 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14818 fn_flp->fn_fields = (struct fn_field *)
14819 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14820
14821 for (int k = 0; k < nf.fnfields.size (); ++k)
14822 fn_flp->fn_fields[k] = nf.fnfields[k];
14823 }
14824
14825 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14826 }
14827
14828 /* Returns non-zero if NAME is the name of a vtable member in CU's
14829 language, zero otherwise. */
14830 static int
14831 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14832 {
14833 static const char vptr[] = "_vptr";
14834
14835 /* Look for the C++ form of the vtable. */
14836 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14837 return 1;
14838
14839 return 0;
14840 }
14841
14842 /* GCC outputs unnamed structures that are really pointers to member
14843 functions, with the ABI-specified layout. If TYPE describes
14844 such a structure, smash it into a member function type.
14845
14846 GCC shouldn't do this; it should just output pointer to member DIEs.
14847 This is GCC PR debug/28767. */
14848
14849 static void
14850 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14851 {
14852 struct type *pfn_type, *self_type, *new_type;
14853
14854 /* Check for a structure with no name and two children. */
14855 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14856 return;
14857
14858 /* Check for __pfn and __delta members. */
14859 if (TYPE_FIELD_NAME (type, 0) == NULL
14860 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14861 || TYPE_FIELD_NAME (type, 1) == NULL
14862 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14863 return;
14864
14865 /* Find the type of the method. */
14866 pfn_type = TYPE_FIELD_TYPE (type, 0);
14867 if (pfn_type == NULL
14868 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14869 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14870 return;
14871
14872 /* Look for the "this" argument. */
14873 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14874 if (TYPE_NFIELDS (pfn_type) == 0
14875 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14876 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14877 return;
14878
14879 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14880 new_type = alloc_type (objfile);
14881 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14882 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14883 TYPE_VARARGS (pfn_type));
14884 smash_to_methodptr_type (type, new_type);
14885 }
14886
14887 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
14888 appropriate error checking and issuing complaints if there is a
14889 problem. */
14890
14891 static ULONGEST
14892 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14893 {
14894 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14895
14896 if (attr == nullptr)
14897 return 0;
14898
14899 if (!attr->form_is_constant ())
14900 {
14901 complaint (_("DW_AT_alignment must have constant form"
14902 " - DIE at %s [in module %s]"),
14903 sect_offset_str (die->sect_off),
14904 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14905 return 0;
14906 }
14907
14908 ULONGEST align;
14909 if (attr->form == DW_FORM_sdata)
14910 {
14911 LONGEST val = DW_SND (attr);
14912 if (val < 0)
14913 {
14914 complaint (_("DW_AT_alignment value must not be negative"
14915 " - DIE at %s [in module %s]"),
14916 sect_offset_str (die->sect_off),
14917 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14918 return 0;
14919 }
14920 align = val;
14921 }
14922 else
14923 align = DW_UNSND (attr);
14924
14925 if (align == 0)
14926 {
14927 complaint (_("DW_AT_alignment value must not be zero"
14928 " - DIE at %s [in module %s]"),
14929 sect_offset_str (die->sect_off),
14930 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14931 return 0;
14932 }
14933 if ((align & (align - 1)) != 0)
14934 {
14935 complaint (_("DW_AT_alignment value must be a power of 2"
14936 " - DIE at %s [in module %s]"),
14937 sect_offset_str (die->sect_off),
14938 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14939 return 0;
14940 }
14941
14942 return align;
14943 }
14944
14945 /* If the DIE has a DW_AT_alignment attribute, use its value to set
14946 the alignment for TYPE. */
14947
14948 static void
14949 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14950 struct type *type)
14951 {
14952 if (!set_type_align (type, get_alignment (cu, die)))
14953 complaint (_("DW_AT_alignment value too large"
14954 " - DIE at %s [in module %s]"),
14955 sect_offset_str (die->sect_off),
14956 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14957 }
14958
14959 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14960 constant for a type, according to DWARF5 spec, Table 5.5. */
14961
14962 static bool
14963 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14964 {
14965 switch (value)
14966 {
14967 case DW_CC_normal:
14968 case DW_CC_pass_by_reference:
14969 case DW_CC_pass_by_value:
14970 return true;
14971
14972 default:
14973 complaint (_("unrecognized DW_AT_calling_convention value "
14974 "(%s) for a type"), pulongest (value));
14975 return false;
14976 }
14977 }
14978
14979 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14980 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
14981 also according to GNU-specific values (see include/dwarf2.h). */
14982
14983 static bool
14984 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
14985 {
14986 switch (value)
14987 {
14988 case DW_CC_normal:
14989 case DW_CC_program:
14990 case DW_CC_nocall:
14991 return true;
14992
14993 case DW_CC_GNU_renesas_sh:
14994 case DW_CC_GNU_borland_fastcall_i386:
14995 case DW_CC_GDB_IBM_OpenCL:
14996 return true;
14997
14998 default:
14999 complaint (_("unrecognized DW_AT_calling_convention value "
15000 "(%s) for a subroutine"), pulongest (value));
15001 return false;
15002 }
15003 }
15004
15005 /* Called when we find the DIE that starts a structure or union scope
15006 (definition) to create a type for the structure or union. Fill in
15007 the type's name and general properties; the members will not be
15008 processed until process_structure_scope. A symbol table entry for
15009 the type will also not be done until process_structure_scope (assuming
15010 the type has a name).
15011
15012 NOTE: we need to call these functions regardless of whether or not the
15013 DIE has a DW_AT_name attribute, since it might be an anonymous
15014 structure or union. This gets the type entered into our set of
15015 user defined types. */
15016
15017 static struct type *
15018 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15019 {
15020 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15021 struct type *type;
15022 struct attribute *attr;
15023 const char *name;
15024
15025 /* If the definition of this type lives in .debug_types, read that type.
15026 Don't follow DW_AT_specification though, that will take us back up
15027 the chain and we want to go down. */
15028 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15029 if (attr != nullptr)
15030 {
15031 type = get_DW_AT_signature_type (die, attr, cu);
15032
15033 /* The type's CU may not be the same as CU.
15034 Ensure TYPE is recorded with CU in die_type_hash. */
15035 return set_die_type (die, type, cu);
15036 }
15037
15038 type = alloc_type (objfile);
15039 INIT_CPLUS_SPECIFIC (type);
15040
15041 name = dwarf2_name (die, cu);
15042 if (name != NULL)
15043 {
15044 if (cu->language == language_cplus
15045 || cu->language == language_d
15046 || cu->language == language_rust)
15047 {
15048 const char *full_name = dwarf2_full_name (name, die, cu);
15049
15050 /* dwarf2_full_name might have already finished building the DIE's
15051 type. If so, there is no need to continue. */
15052 if (get_die_type (die, cu) != NULL)
15053 return get_die_type (die, cu);
15054
15055 TYPE_NAME (type) = full_name;
15056 }
15057 else
15058 {
15059 /* The name is already allocated along with this objfile, so
15060 we don't need to duplicate it for the type. */
15061 TYPE_NAME (type) = name;
15062 }
15063 }
15064
15065 if (die->tag == DW_TAG_structure_type)
15066 {
15067 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15068 }
15069 else if (die->tag == DW_TAG_union_type)
15070 {
15071 TYPE_CODE (type) = TYPE_CODE_UNION;
15072 }
15073 else if (die->tag == DW_TAG_variant_part)
15074 {
15075 TYPE_CODE (type) = TYPE_CODE_UNION;
15076 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15077 }
15078 else
15079 {
15080 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15081 }
15082
15083 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15084 TYPE_DECLARED_CLASS (type) = 1;
15085
15086 /* Store the calling convention in the type if it's available in
15087 the die. Otherwise the calling convention remains set to
15088 the default value DW_CC_normal. */
15089 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15090 if (attr != nullptr
15091 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15092 {
15093 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15094 TYPE_CPLUS_CALLING_CONVENTION (type)
15095 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15096 }
15097
15098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15099 if (attr != nullptr)
15100 {
15101 if (attr->form_is_constant ())
15102 TYPE_LENGTH (type) = DW_UNSND (attr);
15103 else
15104 {
15105 /* For the moment, dynamic type sizes are not supported
15106 by GDB's struct type. The actual size is determined
15107 on-demand when resolving the type of a given object,
15108 so set the type's length to zero for now. Otherwise,
15109 we record an expression as the length, and that expression
15110 could lead to a very large value, which could eventually
15111 lead to us trying to allocate that much memory when creating
15112 a value of that type. */
15113 TYPE_LENGTH (type) = 0;
15114 }
15115 }
15116 else
15117 {
15118 TYPE_LENGTH (type) = 0;
15119 }
15120
15121 maybe_set_alignment (cu, die, type);
15122
15123 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15124 {
15125 /* ICC<14 does not output the required DW_AT_declaration on
15126 incomplete types, but gives them a size of zero. */
15127 TYPE_STUB (type) = 1;
15128 }
15129 else
15130 TYPE_STUB_SUPPORTED (type) = 1;
15131
15132 if (die_is_declaration (die, cu))
15133 TYPE_STUB (type) = 1;
15134 else if (attr == NULL && die->child == NULL
15135 && producer_is_realview (cu->producer))
15136 /* RealView does not output the required DW_AT_declaration
15137 on incomplete types. */
15138 TYPE_STUB (type) = 1;
15139
15140 /* We need to add the type field to the die immediately so we don't
15141 infinitely recurse when dealing with pointers to the structure
15142 type within the structure itself. */
15143 set_die_type (die, type, cu);
15144
15145 /* set_die_type should be already done. */
15146 set_descriptive_type (type, die, cu);
15147
15148 return type;
15149 }
15150
15151 /* A helper for process_structure_scope that handles a single member
15152 DIE. */
15153
15154 static void
15155 handle_struct_member_die (struct die_info *child_die, struct type *type,
15156 struct field_info *fi,
15157 std::vector<struct symbol *> *template_args,
15158 struct dwarf2_cu *cu)
15159 {
15160 if (child_die->tag == DW_TAG_member
15161 || child_die->tag == DW_TAG_variable
15162 || child_die->tag == DW_TAG_variant_part)
15163 {
15164 /* NOTE: carlton/2002-11-05: A C++ static data member
15165 should be a DW_TAG_member that is a declaration, but
15166 all versions of G++ as of this writing (so through at
15167 least 3.2.1) incorrectly generate DW_TAG_variable
15168 tags for them instead. */
15169 dwarf2_add_field (fi, child_die, cu);
15170 }
15171 else if (child_die->tag == DW_TAG_subprogram)
15172 {
15173 /* Rust doesn't have member functions in the C++ sense.
15174 However, it does emit ordinary functions as children
15175 of a struct DIE. */
15176 if (cu->language == language_rust)
15177 read_func_scope (child_die, cu);
15178 else
15179 {
15180 /* C++ member function. */
15181 dwarf2_add_member_fn (fi, child_die, type, cu);
15182 }
15183 }
15184 else if (child_die->tag == DW_TAG_inheritance)
15185 {
15186 /* C++ base class field. */
15187 dwarf2_add_field (fi, child_die, cu);
15188 }
15189 else if (type_can_define_types (child_die))
15190 dwarf2_add_type_defn (fi, child_die, cu);
15191 else if (child_die->tag == DW_TAG_template_type_param
15192 || child_die->tag == DW_TAG_template_value_param)
15193 {
15194 struct symbol *arg = new_symbol (child_die, NULL, cu);
15195
15196 if (arg != NULL)
15197 template_args->push_back (arg);
15198 }
15199 else if (child_die->tag == DW_TAG_variant)
15200 {
15201 /* In a variant we want to get the discriminant and also add a
15202 field for our sole member child. */
15203 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15204
15205 for (die_info *variant_child = child_die->child;
15206 variant_child != NULL;
15207 variant_child = sibling_die (variant_child))
15208 {
15209 if (variant_child->tag == DW_TAG_member)
15210 {
15211 handle_struct_member_die (variant_child, type, fi,
15212 template_args, cu);
15213 /* Only handle the one. */
15214 break;
15215 }
15216 }
15217
15218 /* We don't handle this but we might as well report it if we see
15219 it. */
15220 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15221 complaint (_("DW_AT_discr_list is not supported yet"
15222 " - DIE at %s [in module %s]"),
15223 sect_offset_str (child_die->sect_off),
15224 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15225
15226 /* The first field was just added, so we can stash the
15227 discriminant there. */
15228 gdb_assert (!fi->fields.empty ());
15229 if (discr == NULL)
15230 fi->fields.back ().variant.default_branch = true;
15231 else
15232 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15233 }
15234 }
15235
15236 /* Finish creating a structure or union type, including filling in
15237 its members and creating a symbol for it. */
15238
15239 static void
15240 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15241 {
15242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15243 struct die_info *child_die;
15244 struct type *type;
15245
15246 type = get_die_type (die, cu);
15247 if (type == NULL)
15248 type = read_structure_type (die, cu);
15249
15250 /* When reading a DW_TAG_variant_part, we need to notice when we
15251 read the discriminant member, so we can record it later in the
15252 discriminant_info. */
15253 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15254 sect_offset discr_offset {};
15255 bool has_template_parameters = false;
15256
15257 if (is_variant_part)
15258 {
15259 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15260 if (discr == NULL)
15261 {
15262 /* Maybe it's a univariant form, an extension we support.
15263 In this case arrange not to check the offset. */
15264 is_variant_part = false;
15265 }
15266 else if (discr->form_is_ref ())
15267 {
15268 struct dwarf2_cu *target_cu = cu;
15269 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15270
15271 discr_offset = target_die->sect_off;
15272 }
15273 else
15274 {
15275 complaint (_("DW_AT_discr does not have DIE reference form"
15276 " - DIE at %s [in module %s]"),
15277 sect_offset_str (die->sect_off),
15278 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15279 is_variant_part = false;
15280 }
15281 }
15282
15283 if (die->child != NULL && ! die_is_declaration (die, cu))
15284 {
15285 struct field_info fi;
15286 std::vector<struct symbol *> template_args;
15287
15288 child_die = die->child;
15289
15290 while (child_die && child_die->tag)
15291 {
15292 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15293
15294 if (is_variant_part && discr_offset == child_die->sect_off)
15295 fi.fields.back ().variant.is_discriminant = true;
15296
15297 child_die = sibling_die (child_die);
15298 }
15299
15300 /* Attach template arguments to type. */
15301 if (!template_args.empty ())
15302 {
15303 has_template_parameters = true;
15304 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15305 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15306 TYPE_TEMPLATE_ARGUMENTS (type)
15307 = XOBNEWVEC (&objfile->objfile_obstack,
15308 struct symbol *,
15309 TYPE_N_TEMPLATE_ARGUMENTS (type));
15310 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15311 template_args.data (),
15312 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15313 * sizeof (struct symbol *)));
15314 }
15315
15316 /* Attach fields and member functions to the type. */
15317 if (fi.nfields)
15318 dwarf2_attach_fields_to_type (&fi, type, cu);
15319 if (!fi.fnfieldlists.empty ())
15320 {
15321 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15322
15323 /* Get the type which refers to the base class (possibly this
15324 class itself) which contains the vtable pointer for the current
15325 class from the DW_AT_containing_type attribute. This use of
15326 DW_AT_containing_type is a GNU extension. */
15327
15328 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15329 {
15330 struct type *t = die_containing_type (die, cu);
15331
15332 set_type_vptr_basetype (type, t);
15333 if (type == t)
15334 {
15335 int i;
15336
15337 /* Our own class provides vtbl ptr. */
15338 for (i = TYPE_NFIELDS (t) - 1;
15339 i >= TYPE_N_BASECLASSES (t);
15340 --i)
15341 {
15342 const char *fieldname = TYPE_FIELD_NAME (t, i);
15343
15344 if (is_vtable_name (fieldname, cu))
15345 {
15346 set_type_vptr_fieldno (type, i);
15347 break;
15348 }
15349 }
15350
15351 /* Complain if virtual function table field not found. */
15352 if (i < TYPE_N_BASECLASSES (t))
15353 complaint (_("virtual function table pointer "
15354 "not found when defining class '%s'"),
15355 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15356 }
15357 else
15358 {
15359 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15360 }
15361 }
15362 else if (cu->producer
15363 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15364 {
15365 /* The IBM XLC compiler does not provide direct indication
15366 of the containing type, but the vtable pointer is
15367 always named __vfp. */
15368
15369 int i;
15370
15371 for (i = TYPE_NFIELDS (type) - 1;
15372 i >= TYPE_N_BASECLASSES (type);
15373 --i)
15374 {
15375 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15376 {
15377 set_type_vptr_fieldno (type, i);
15378 set_type_vptr_basetype (type, type);
15379 break;
15380 }
15381 }
15382 }
15383 }
15384
15385 /* Copy fi.typedef_field_list linked list elements content into the
15386 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15387 if (!fi.typedef_field_list.empty ())
15388 {
15389 int count = fi.typedef_field_list.size ();
15390
15391 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15392 TYPE_TYPEDEF_FIELD_ARRAY (type)
15393 = ((struct decl_field *)
15394 TYPE_ALLOC (type,
15395 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15396 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15397
15398 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15399 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15400 }
15401
15402 /* Copy fi.nested_types_list linked list elements content into the
15403 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15404 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15405 {
15406 int count = fi.nested_types_list.size ();
15407
15408 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15409 TYPE_NESTED_TYPES_ARRAY (type)
15410 = ((struct decl_field *)
15411 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15412 TYPE_NESTED_TYPES_COUNT (type) = count;
15413
15414 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15415 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15416 }
15417 }
15418
15419 quirk_gcc_member_function_pointer (type, objfile);
15420 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15421 cu->rust_unions.push_back (type);
15422
15423 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15424 snapshots) has been known to create a die giving a declaration
15425 for a class that has, as a child, a die giving a definition for a
15426 nested class. So we have to process our children even if the
15427 current die is a declaration. Normally, of course, a declaration
15428 won't have any children at all. */
15429
15430 child_die = die->child;
15431
15432 while (child_die != NULL && child_die->tag)
15433 {
15434 if (child_die->tag == DW_TAG_member
15435 || child_die->tag == DW_TAG_variable
15436 || child_die->tag == DW_TAG_inheritance
15437 || child_die->tag == DW_TAG_template_value_param
15438 || child_die->tag == DW_TAG_template_type_param)
15439 {
15440 /* Do nothing. */
15441 }
15442 else
15443 process_die (child_die, cu);
15444
15445 child_die = sibling_die (child_die);
15446 }
15447
15448 /* Do not consider external references. According to the DWARF standard,
15449 these DIEs are identified by the fact that they have no byte_size
15450 attribute, and a declaration attribute. */
15451 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15452 || !die_is_declaration (die, cu))
15453 {
15454 struct symbol *sym = new_symbol (die, type, cu);
15455
15456 if (has_template_parameters)
15457 {
15458 struct symtab *symtab;
15459 if (sym != nullptr)
15460 symtab = symbol_symtab (sym);
15461 else if (cu->line_header != nullptr)
15462 {
15463 /* Any related symtab will do. */
15464 symtab
15465 = cu->line_header->file_names ()[0].symtab;
15466 }
15467 else
15468 {
15469 symtab = nullptr;
15470 complaint (_("could not find suitable "
15471 "symtab for template parameter"
15472 " - DIE at %s [in module %s]"),
15473 sect_offset_str (die->sect_off),
15474 objfile_name (objfile));
15475 }
15476
15477 if (symtab != nullptr)
15478 {
15479 /* Make sure that the symtab is set on the new symbols.
15480 Even though they don't appear in this symtab directly,
15481 other parts of gdb assume that symbols do, and this is
15482 reasonably true. */
15483 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15484 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15485 }
15486 }
15487 }
15488 }
15489
15490 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15491 update TYPE using some information only available in DIE's children. */
15492
15493 static void
15494 update_enumeration_type_from_children (struct die_info *die,
15495 struct type *type,
15496 struct dwarf2_cu *cu)
15497 {
15498 struct die_info *child_die;
15499 int unsigned_enum = 1;
15500 int flag_enum = 1;
15501
15502 auto_obstack obstack;
15503
15504 for (child_die = die->child;
15505 child_die != NULL && child_die->tag;
15506 child_die = sibling_die (child_die))
15507 {
15508 struct attribute *attr;
15509 LONGEST value;
15510 const gdb_byte *bytes;
15511 struct dwarf2_locexpr_baton *baton;
15512 const char *name;
15513
15514 if (child_die->tag != DW_TAG_enumerator)
15515 continue;
15516
15517 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15518 if (attr == NULL)
15519 continue;
15520
15521 name = dwarf2_name (child_die, cu);
15522 if (name == NULL)
15523 name = "<anonymous enumerator>";
15524
15525 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15526 &value, &bytes, &baton);
15527 if (value < 0)
15528 {
15529 unsigned_enum = 0;
15530 flag_enum = 0;
15531 }
15532 else
15533 {
15534 if (count_one_bits_ll (value) >= 2)
15535 flag_enum = 0;
15536 }
15537
15538 /* If we already know that the enum type is neither unsigned, nor
15539 a flag type, no need to look at the rest of the enumerates. */
15540 if (!unsigned_enum && !flag_enum)
15541 break;
15542 }
15543
15544 if (unsigned_enum)
15545 TYPE_UNSIGNED (type) = 1;
15546 if (flag_enum)
15547 TYPE_FLAG_ENUM (type) = 1;
15548 }
15549
15550 /* Given a DW_AT_enumeration_type die, set its type. We do not
15551 complete the type's fields yet, or create any symbols. */
15552
15553 static struct type *
15554 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15555 {
15556 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15557 struct type *type;
15558 struct attribute *attr;
15559 const char *name;
15560
15561 /* If the definition of this type lives in .debug_types, read that type.
15562 Don't follow DW_AT_specification though, that will take us back up
15563 the chain and we want to go down. */
15564 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15565 if (attr != nullptr)
15566 {
15567 type = get_DW_AT_signature_type (die, attr, cu);
15568
15569 /* The type's CU may not be the same as CU.
15570 Ensure TYPE is recorded with CU in die_type_hash. */
15571 return set_die_type (die, type, cu);
15572 }
15573
15574 type = alloc_type (objfile);
15575
15576 TYPE_CODE (type) = TYPE_CODE_ENUM;
15577 name = dwarf2_full_name (NULL, die, cu);
15578 if (name != NULL)
15579 TYPE_NAME (type) = name;
15580
15581 attr = dwarf2_attr (die, DW_AT_type, cu);
15582 if (attr != NULL)
15583 {
15584 struct type *underlying_type = die_type (die, cu);
15585
15586 TYPE_TARGET_TYPE (type) = underlying_type;
15587 }
15588
15589 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15590 if (attr != nullptr)
15591 {
15592 TYPE_LENGTH (type) = DW_UNSND (attr);
15593 }
15594 else
15595 {
15596 TYPE_LENGTH (type) = 0;
15597 }
15598
15599 maybe_set_alignment (cu, die, type);
15600
15601 /* The enumeration DIE can be incomplete. In Ada, any type can be
15602 declared as private in the package spec, and then defined only
15603 inside the package body. Such types are known as Taft Amendment
15604 Types. When another package uses such a type, an incomplete DIE
15605 may be generated by the compiler. */
15606 if (die_is_declaration (die, cu))
15607 TYPE_STUB (type) = 1;
15608
15609 /* Finish the creation of this type by using the enum's children.
15610 We must call this even when the underlying type has been provided
15611 so that we can determine if we're looking at a "flag" enum. */
15612 update_enumeration_type_from_children (die, type, cu);
15613
15614 /* If this type has an underlying type that is not a stub, then we
15615 may use its attributes. We always use the "unsigned" attribute
15616 in this situation, because ordinarily we guess whether the type
15617 is unsigned -- but the guess can be wrong and the underlying type
15618 can tell us the reality. However, we defer to a local size
15619 attribute if one exists, because this lets the compiler override
15620 the underlying type if needed. */
15621 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15622 {
15623 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
15624 if (TYPE_LENGTH (type) == 0)
15625 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
15626 if (TYPE_RAW_ALIGN (type) == 0
15627 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
15628 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
15629 }
15630
15631 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15632
15633 return set_die_type (die, type, cu);
15634 }
15635
15636 /* Given a pointer to a die which begins an enumeration, process all
15637 the dies that define the members of the enumeration, and create the
15638 symbol for the enumeration type.
15639
15640 NOTE: We reverse the order of the element list. */
15641
15642 static void
15643 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15644 {
15645 struct type *this_type;
15646
15647 this_type = get_die_type (die, cu);
15648 if (this_type == NULL)
15649 this_type = read_enumeration_type (die, cu);
15650
15651 if (die->child != NULL)
15652 {
15653 struct die_info *child_die;
15654 struct symbol *sym;
15655 std::vector<struct field> fields;
15656 const char *name;
15657
15658 child_die = die->child;
15659 while (child_die && child_die->tag)
15660 {
15661 if (child_die->tag != DW_TAG_enumerator)
15662 {
15663 process_die (child_die, cu);
15664 }
15665 else
15666 {
15667 name = dwarf2_name (child_die, cu);
15668 if (name)
15669 {
15670 sym = new_symbol (child_die, this_type, cu);
15671
15672 fields.emplace_back ();
15673 struct field &field = fields.back ();
15674
15675 FIELD_NAME (field) = sym->linkage_name ();
15676 FIELD_TYPE (field) = NULL;
15677 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15678 FIELD_BITSIZE (field) = 0;
15679 }
15680 }
15681
15682 child_die = sibling_die (child_die);
15683 }
15684
15685 if (!fields.empty ())
15686 {
15687 TYPE_NFIELDS (this_type) = fields.size ();
15688 TYPE_FIELDS (this_type) = (struct field *)
15689 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15690 memcpy (TYPE_FIELDS (this_type), fields.data (),
15691 sizeof (struct field) * fields.size ());
15692 }
15693 }
15694
15695 /* If we are reading an enum from a .debug_types unit, and the enum
15696 is a declaration, and the enum is not the signatured type in the
15697 unit, then we do not want to add a symbol for it. Adding a
15698 symbol would in some cases obscure the true definition of the
15699 enum, giving users an incomplete type when the definition is
15700 actually available. Note that we do not want to do this for all
15701 enums which are just declarations, because C++0x allows forward
15702 enum declarations. */
15703 if (cu->per_cu->is_debug_types
15704 && die_is_declaration (die, cu))
15705 {
15706 struct signatured_type *sig_type;
15707
15708 sig_type = (struct signatured_type *) cu->per_cu;
15709 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15710 if (sig_type->type_offset_in_section != die->sect_off)
15711 return;
15712 }
15713
15714 new_symbol (die, this_type, cu);
15715 }
15716
15717 /* Extract all information from a DW_TAG_array_type DIE and put it in
15718 the DIE's type field. For now, this only handles one dimensional
15719 arrays. */
15720
15721 static struct type *
15722 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15723 {
15724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15725 struct die_info *child_die;
15726 struct type *type;
15727 struct type *element_type, *range_type, *index_type;
15728 struct attribute *attr;
15729 const char *name;
15730 struct dynamic_prop *byte_stride_prop = NULL;
15731 unsigned int bit_stride = 0;
15732
15733 element_type = die_type (die, cu);
15734
15735 /* The die_type call above may have already set the type for this DIE. */
15736 type = get_die_type (die, cu);
15737 if (type)
15738 return type;
15739
15740 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15741 if (attr != NULL)
15742 {
15743 int stride_ok;
15744 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15745
15746 byte_stride_prop
15747 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15748 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15749 prop_type);
15750 if (!stride_ok)
15751 {
15752 complaint (_("unable to read array DW_AT_byte_stride "
15753 " - DIE at %s [in module %s]"),
15754 sect_offset_str (die->sect_off),
15755 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15756 /* Ignore this attribute. We will likely not be able to print
15757 arrays of this type correctly, but there is little we can do
15758 to help if we cannot read the attribute's value. */
15759 byte_stride_prop = NULL;
15760 }
15761 }
15762
15763 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15764 if (attr != NULL)
15765 bit_stride = DW_UNSND (attr);
15766
15767 /* Irix 6.2 native cc creates array types without children for
15768 arrays with unspecified length. */
15769 if (die->child == NULL)
15770 {
15771 index_type = objfile_type (objfile)->builtin_int;
15772 range_type = create_static_range_type (NULL, index_type, 0, -1);
15773 type = create_array_type_with_stride (NULL, element_type, range_type,
15774 byte_stride_prop, bit_stride);
15775 return set_die_type (die, type, cu);
15776 }
15777
15778 std::vector<struct type *> range_types;
15779 child_die = die->child;
15780 while (child_die && child_die->tag)
15781 {
15782 if (child_die->tag == DW_TAG_subrange_type)
15783 {
15784 struct type *child_type = read_type_die (child_die, cu);
15785
15786 if (child_type != NULL)
15787 {
15788 /* The range type was succesfully read. Save it for the
15789 array type creation. */
15790 range_types.push_back (child_type);
15791 }
15792 }
15793 child_die = sibling_die (child_die);
15794 }
15795
15796 /* Dwarf2 dimensions are output from left to right, create the
15797 necessary array types in backwards order. */
15798
15799 type = element_type;
15800
15801 if (read_array_order (die, cu) == DW_ORD_col_major)
15802 {
15803 int i = 0;
15804
15805 while (i < range_types.size ())
15806 type = create_array_type_with_stride (NULL, type, range_types[i++],
15807 byte_stride_prop, bit_stride);
15808 }
15809 else
15810 {
15811 size_t ndim = range_types.size ();
15812 while (ndim-- > 0)
15813 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15814 byte_stride_prop, bit_stride);
15815 }
15816
15817 /* Understand Dwarf2 support for vector types (like they occur on
15818 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15819 array type. This is not part of the Dwarf2/3 standard yet, but a
15820 custom vendor extension. The main difference between a regular
15821 array and the vector variant is that vectors are passed by value
15822 to functions. */
15823 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15824 if (attr != nullptr)
15825 make_vector_type (type);
15826
15827 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15828 implementation may choose to implement triple vectors using this
15829 attribute. */
15830 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15831 if (attr != nullptr)
15832 {
15833 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15834 TYPE_LENGTH (type) = DW_UNSND (attr);
15835 else
15836 complaint (_("DW_AT_byte_size for array type smaller "
15837 "than the total size of elements"));
15838 }
15839
15840 name = dwarf2_name (die, cu);
15841 if (name)
15842 TYPE_NAME (type) = name;
15843
15844 maybe_set_alignment (cu, die, type);
15845
15846 /* Install the type in the die. */
15847 set_die_type (die, type, cu);
15848
15849 /* set_die_type should be already done. */
15850 set_descriptive_type (type, die, cu);
15851
15852 return type;
15853 }
15854
15855 static enum dwarf_array_dim_ordering
15856 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15857 {
15858 struct attribute *attr;
15859
15860 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15861
15862 if (attr != nullptr)
15863 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15864
15865 /* GNU F77 is a special case, as at 08/2004 array type info is the
15866 opposite order to the dwarf2 specification, but data is still
15867 laid out as per normal fortran.
15868
15869 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15870 version checking. */
15871
15872 if (cu->language == language_fortran
15873 && cu->producer && strstr (cu->producer, "GNU F77"))
15874 {
15875 return DW_ORD_row_major;
15876 }
15877
15878 switch (cu->language_defn->la_array_ordering)
15879 {
15880 case array_column_major:
15881 return DW_ORD_col_major;
15882 case array_row_major:
15883 default:
15884 return DW_ORD_row_major;
15885 };
15886 }
15887
15888 /* Extract all information from a DW_TAG_set_type DIE and put it in
15889 the DIE's type field. */
15890
15891 static struct type *
15892 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15893 {
15894 struct type *domain_type, *set_type;
15895 struct attribute *attr;
15896
15897 domain_type = die_type (die, cu);
15898
15899 /* The die_type call above may have already set the type for this DIE. */
15900 set_type = get_die_type (die, cu);
15901 if (set_type)
15902 return set_type;
15903
15904 set_type = create_set_type (NULL, domain_type);
15905
15906 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15907 if (attr != nullptr)
15908 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15909
15910 maybe_set_alignment (cu, die, set_type);
15911
15912 return set_die_type (die, set_type, cu);
15913 }
15914
15915 /* A helper for read_common_block that creates a locexpr baton.
15916 SYM is the symbol which we are marking as computed.
15917 COMMON_DIE is the DIE for the common block.
15918 COMMON_LOC is the location expression attribute for the common
15919 block itself.
15920 MEMBER_LOC is the location expression attribute for the particular
15921 member of the common block that we are processing.
15922 CU is the CU from which the above come. */
15923
15924 static void
15925 mark_common_block_symbol_computed (struct symbol *sym,
15926 struct die_info *common_die,
15927 struct attribute *common_loc,
15928 struct attribute *member_loc,
15929 struct dwarf2_cu *cu)
15930 {
15931 struct dwarf2_per_objfile *dwarf2_per_objfile
15932 = cu->per_cu->dwarf2_per_objfile;
15933 struct objfile *objfile = dwarf2_per_objfile->objfile;
15934 struct dwarf2_locexpr_baton *baton;
15935 gdb_byte *ptr;
15936 unsigned int cu_off;
15937 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15938 LONGEST offset = 0;
15939
15940 gdb_assert (common_loc && member_loc);
15941 gdb_assert (common_loc->form_is_block ());
15942 gdb_assert (member_loc->form_is_block ()
15943 || member_loc->form_is_constant ());
15944
15945 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15946 baton->per_cu = cu->per_cu;
15947 gdb_assert (baton->per_cu);
15948
15949 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15950
15951 if (member_loc->form_is_constant ())
15952 {
15953 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15954 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15955 }
15956 else
15957 baton->size += DW_BLOCK (member_loc)->size;
15958
15959 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15960 baton->data = ptr;
15961
15962 *ptr++ = DW_OP_call4;
15963 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15964 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15965 ptr += 4;
15966
15967 if (member_loc->form_is_constant ())
15968 {
15969 *ptr++ = DW_OP_addr;
15970 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15971 ptr += cu->header.addr_size;
15972 }
15973 else
15974 {
15975 /* We have to copy the data here, because DW_OP_call4 will only
15976 use a DW_AT_location attribute. */
15977 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15978 ptr += DW_BLOCK (member_loc)->size;
15979 }
15980
15981 *ptr++ = DW_OP_plus;
15982 gdb_assert (ptr - baton->data == baton->size);
15983
15984 SYMBOL_LOCATION_BATON (sym) = baton;
15985 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
15986 }
15987
15988 /* Create appropriate locally-scoped variables for all the
15989 DW_TAG_common_block entries. Also create a struct common_block
15990 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
15991 is used to separate the common blocks name namespace from regular
15992 variable names. */
15993
15994 static void
15995 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
15996 {
15997 struct attribute *attr;
15998
15999 attr = dwarf2_attr (die, DW_AT_location, cu);
16000 if (attr != nullptr)
16001 {
16002 /* Support the .debug_loc offsets. */
16003 if (attr->form_is_block ())
16004 {
16005 /* Ok. */
16006 }
16007 else if (attr->form_is_section_offset ())
16008 {
16009 dwarf2_complex_location_expr_complaint ();
16010 attr = NULL;
16011 }
16012 else
16013 {
16014 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16015 "common block member");
16016 attr = NULL;
16017 }
16018 }
16019
16020 if (die->child != NULL)
16021 {
16022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16023 struct die_info *child_die;
16024 size_t n_entries = 0, size;
16025 struct common_block *common_block;
16026 struct symbol *sym;
16027
16028 for (child_die = die->child;
16029 child_die && child_die->tag;
16030 child_die = sibling_die (child_die))
16031 ++n_entries;
16032
16033 size = (sizeof (struct common_block)
16034 + (n_entries - 1) * sizeof (struct symbol *));
16035 common_block
16036 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16037 size);
16038 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16039 common_block->n_entries = 0;
16040
16041 for (child_die = die->child;
16042 child_die && child_die->tag;
16043 child_die = sibling_die (child_die))
16044 {
16045 /* Create the symbol in the DW_TAG_common_block block in the current
16046 symbol scope. */
16047 sym = new_symbol (child_die, NULL, cu);
16048 if (sym != NULL)
16049 {
16050 struct attribute *member_loc;
16051
16052 common_block->contents[common_block->n_entries++] = sym;
16053
16054 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16055 cu);
16056 if (member_loc)
16057 {
16058 /* GDB has handled this for a long time, but it is
16059 not specified by DWARF. It seems to have been
16060 emitted by gfortran at least as recently as:
16061 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16062 complaint (_("Variable in common block has "
16063 "DW_AT_data_member_location "
16064 "- DIE at %s [in module %s]"),
16065 sect_offset_str (child_die->sect_off),
16066 objfile_name (objfile));
16067
16068 if (member_loc->form_is_section_offset ())
16069 dwarf2_complex_location_expr_complaint ();
16070 else if (member_loc->form_is_constant ()
16071 || member_loc->form_is_block ())
16072 {
16073 if (attr != nullptr)
16074 mark_common_block_symbol_computed (sym, die, attr,
16075 member_loc, cu);
16076 }
16077 else
16078 dwarf2_complex_location_expr_complaint ();
16079 }
16080 }
16081 }
16082
16083 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16084 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16085 }
16086 }
16087
16088 /* Create a type for a C++ namespace. */
16089
16090 static struct type *
16091 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16092 {
16093 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16094 const char *previous_prefix, *name;
16095 int is_anonymous;
16096 struct type *type;
16097
16098 /* For extensions, reuse the type of the original namespace. */
16099 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16100 {
16101 struct die_info *ext_die;
16102 struct dwarf2_cu *ext_cu = cu;
16103
16104 ext_die = dwarf2_extension (die, &ext_cu);
16105 type = read_type_die (ext_die, ext_cu);
16106
16107 /* EXT_CU may not be the same as CU.
16108 Ensure TYPE is recorded with CU in die_type_hash. */
16109 return set_die_type (die, type, cu);
16110 }
16111
16112 name = namespace_name (die, &is_anonymous, cu);
16113
16114 /* Now build the name of the current namespace. */
16115
16116 previous_prefix = determine_prefix (die, cu);
16117 if (previous_prefix[0] != '\0')
16118 name = typename_concat (&objfile->objfile_obstack,
16119 previous_prefix, name, 0, cu);
16120
16121 /* Create the type. */
16122 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16123
16124 return set_die_type (die, type, cu);
16125 }
16126
16127 /* Read a namespace scope. */
16128
16129 static void
16130 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16131 {
16132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16133 int is_anonymous;
16134
16135 /* Add a symbol associated to this if we haven't seen the namespace
16136 before. Also, add a using directive if it's an anonymous
16137 namespace. */
16138
16139 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16140 {
16141 struct type *type;
16142
16143 type = read_type_die (die, cu);
16144 new_symbol (die, type, cu);
16145
16146 namespace_name (die, &is_anonymous, cu);
16147 if (is_anonymous)
16148 {
16149 const char *previous_prefix = determine_prefix (die, cu);
16150
16151 std::vector<const char *> excludes;
16152 add_using_directive (using_directives (cu),
16153 previous_prefix, TYPE_NAME (type), NULL,
16154 NULL, excludes, 0, &objfile->objfile_obstack);
16155 }
16156 }
16157
16158 if (die->child != NULL)
16159 {
16160 struct die_info *child_die = die->child;
16161
16162 while (child_die && child_die->tag)
16163 {
16164 process_die (child_die, cu);
16165 child_die = sibling_die (child_die);
16166 }
16167 }
16168 }
16169
16170 /* Read a Fortran module as type. This DIE can be only a declaration used for
16171 imported module. Still we need that type as local Fortran "use ... only"
16172 declaration imports depend on the created type in determine_prefix. */
16173
16174 static struct type *
16175 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16176 {
16177 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16178 const char *module_name;
16179 struct type *type;
16180
16181 module_name = dwarf2_name (die, cu);
16182 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16183
16184 return set_die_type (die, type, cu);
16185 }
16186
16187 /* Read a Fortran module. */
16188
16189 static void
16190 read_module (struct die_info *die, struct dwarf2_cu *cu)
16191 {
16192 struct die_info *child_die = die->child;
16193 struct type *type;
16194
16195 type = read_type_die (die, cu);
16196 new_symbol (die, type, cu);
16197
16198 while (child_die && child_die->tag)
16199 {
16200 process_die (child_die, cu);
16201 child_die = sibling_die (child_die);
16202 }
16203 }
16204
16205 /* Return the name of the namespace represented by DIE. Set
16206 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16207 namespace. */
16208
16209 static const char *
16210 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16211 {
16212 struct die_info *current_die;
16213 const char *name = NULL;
16214
16215 /* Loop through the extensions until we find a name. */
16216
16217 for (current_die = die;
16218 current_die != NULL;
16219 current_die = dwarf2_extension (die, &cu))
16220 {
16221 /* We don't use dwarf2_name here so that we can detect the absence
16222 of a name -> anonymous namespace. */
16223 name = dwarf2_string_attr (die, DW_AT_name, cu);
16224
16225 if (name != NULL)
16226 break;
16227 }
16228
16229 /* Is it an anonymous namespace? */
16230
16231 *is_anonymous = (name == NULL);
16232 if (*is_anonymous)
16233 name = CP_ANONYMOUS_NAMESPACE_STR;
16234
16235 return name;
16236 }
16237
16238 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16239 the user defined type vector. */
16240
16241 static struct type *
16242 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16243 {
16244 struct gdbarch *gdbarch
16245 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16246 struct comp_unit_head *cu_header = &cu->header;
16247 struct type *type;
16248 struct attribute *attr_byte_size;
16249 struct attribute *attr_address_class;
16250 int byte_size, addr_class;
16251 struct type *target_type;
16252
16253 target_type = die_type (die, cu);
16254
16255 /* The die_type call above may have already set the type for this DIE. */
16256 type = get_die_type (die, cu);
16257 if (type)
16258 return type;
16259
16260 type = lookup_pointer_type (target_type);
16261
16262 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16263 if (attr_byte_size)
16264 byte_size = DW_UNSND (attr_byte_size);
16265 else
16266 byte_size = cu_header->addr_size;
16267
16268 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16269 if (attr_address_class)
16270 addr_class = DW_UNSND (attr_address_class);
16271 else
16272 addr_class = DW_ADDR_none;
16273
16274 ULONGEST alignment = get_alignment (cu, die);
16275
16276 /* If the pointer size, alignment, or address class is different
16277 than the default, create a type variant marked as such and set
16278 the length accordingly. */
16279 if (TYPE_LENGTH (type) != byte_size
16280 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16281 && alignment != TYPE_RAW_ALIGN (type))
16282 || addr_class != DW_ADDR_none)
16283 {
16284 if (gdbarch_address_class_type_flags_p (gdbarch))
16285 {
16286 int type_flags;
16287
16288 type_flags = gdbarch_address_class_type_flags
16289 (gdbarch, byte_size, addr_class);
16290 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16291 == 0);
16292 type = make_type_with_address_space (type, type_flags);
16293 }
16294 else if (TYPE_LENGTH (type) != byte_size)
16295 {
16296 complaint (_("invalid pointer size %d"), byte_size);
16297 }
16298 else if (TYPE_RAW_ALIGN (type) != alignment)
16299 {
16300 complaint (_("Invalid DW_AT_alignment"
16301 " - DIE at %s [in module %s]"),
16302 sect_offset_str (die->sect_off),
16303 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16304 }
16305 else
16306 {
16307 /* Should we also complain about unhandled address classes? */
16308 }
16309 }
16310
16311 TYPE_LENGTH (type) = byte_size;
16312 set_type_align (type, alignment);
16313 return set_die_type (die, type, cu);
16314 }
16315
16316 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16317 the user defined type vector. */
16318
16319 static struct type *
16320 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16321 {
16322 struct type *type;
16323 struct type *to_type;
16324 struct type *domain;
16325
16326 to_type = die_type (die, cu);
16327 domain = die_containing_type (die, cu);
16328
16329 /* The calls above may have already set the type for this DIE. */
16330 type = get_die_type (die, cu);
16331 if (type)
16332 return type;
16333
16334 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16335 type = lookup_methodptr_type (to_type);
16336 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16337 {
16338 struct type *new_type
16339 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16340
16341 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16342 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16343 TYPE_VARARGS (to_type));
16344 type = lookup_methodptr_type (new_type);
16345 }
16346 else
16347 type = lookup_memberptr_type (to_type, domain);
16348
16349 return set_die_type (die, type, cu);
16350 }
16351
16352 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16353 the user defined type vector. */
16354
16355 static struct type *
16356 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16357 enum type_code refcode)
16358 {
16359 struct comp_unit_head *cu_header = &cu->header;
16360 struct type *type, *target_type;
16361 struct attribute *attr;
16362
16363 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16364
16365 target_type = die_type (die, cu);
16366
16367 /* The die_type call above may have already set the type for this DIE. */
16368 type = get_die_type (die, cu);
16369 if (type)
16370 return type;
16371
16372 type = lookup_reference_type (target_type, refcode);
16373 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16374 if (attr != nullptr)
16375 {
16376 TYPE_LENGTH (type) = DW_UNSND (attr);
16377 }
16378 else
16379 {
16380 TYPE_LENGTH (type) = cu_header->addr_size;
16381 }
16382 maybe_set_alignment (cu, die, type);
16383 return set_die_type (die, type, cu);
16384 }
16385
16386 /* Add the given cv-qualifiers to the element type of the array. GCC
16387 outputs DWARF type qualifiers that apply to an array, not the
16388 element type. But GDB relies on the array element type to carry
16389 the cv-qualifiers. This mimics section 6.7.3 of the C99
16390 specification. */
16391
16392 static struct type *
16393 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16394 struct type *base_type, int cnst, int voltl)
16395 {
16396 struct type *el_type, *inner_array;
16397
16398 base_type = copy_type (base_type);
16399 inner_array = base_type;
16400
16401 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16402 {
16403 TYPE_TARGET_TYPE (inner_array) =
16404 copy_type (TYPE_TARGET_TYPE (inner_array));
16405 inner_array = TYPE_TARGET_TYPE (inner_array);
16406 }
16407
16408 el_type = TYPE_TARGET_TYPE (inner_array);
16409 cnst |= TYPE_CONST (el_type);
16410 voltl |= TYPE_VOLATILE (el_type);
16411 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16412
16413 return set_die_type (die, base_type, cu);
16414 }
16415
16416 static struct type *
16417 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16418 {
16419 struct type *base_type, *cv_type;
16420
16421 base_type = die_type (die, cu);
16422
16423 /* The die_type call above may have already set the type for this DIE. */
16424 cv_type = get_die_type (die, cu);
16425 if (cv_type)
16426 return cv_type;
16427
16428 /* In case the const qualifier is applied to an array type, the element type
16429 is so qualified, not the array type (section 6.7.3 of C99). */
16430 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16431 return add_array_cv_type (die, cu, base_type, 1, 0);
16432
16433 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16434 return set_die_type (die, cv_type, cu);
16435 }
16436
16437 static struct type *
16438 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16439 {
16440 struct type *base_type, *cv_type;
16441
16442 base_type = die_type (die, cu);
16443
16444 /* The die_type call above may have already set the type for this DIE. */
16445 cv_type = get_die_type (die, cu);
16446 if (cv_type)
16447 return cv_type;
16448
16449 /* In case the volatile qualifier is applied to an array type, the
16450 element type is so qualified, not the array type (section 6.7.3
16451 of C99). */
16452 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16453 return add_array_cv_type (die, cu, base_type, 0, 1);
16454
16455 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16456 return set_die_type (die, cv_type, cu);
16457 }
16458
16459 /* Handle DW_TAG_restrict_type. */
16460
16461 static struct type *
16462 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16463 {
16464 struct type *base_type, *cv_type;
16465
16466 base_type = die_type (die, cu);
16467
16468 /* The die_type call above may have already set the type for this DIE. */
16469 cv_type = get_die_type (die, cu);
16470 if (cv_type)
16471 return cv_type;
16472
16473 cv_type = make_restrict_type (base_type);
16474 return set_die_type (die, cv_type, cu);
16475 }
16476
16477 /* Handle DW_TAG_atomic_type. */
16478
16479 static struct type *
16480 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16481 {
16482 struct type *base_type, *cv_type;
16483
16484 base_type = die_type (die, cu);
16485
16486 /* The die_type call above may have already set the type for this DIE. */
16487 cv_type = get_die_type (die, cu);
16488 if (cv_type)
16489 return cv_type;
16490
16491 cv_type = make_atomic_type (base_type);
16492 return set_die_type (die, cv_type, cu);
16493 }
16494
16495 /* Extract all information from a DW_TAG_string_type DIE and add to
16496 the user defined type vector. It isn't really a user defined type,
16497 but it behaves like one, with other DIE's using an AT_user_def_type
16498 attribute to reference it. */
16499
16500 static struct type *
16501 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16502 {
16503 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16504 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16505 struct type *type, *range_type, *index_type, *char_type;
16506 struct attribute *attr;
16507 struct dynamic_prop prop;
16508 bool length_is_constant = true;
16509 LONGEST length;
16510
16511 /* There are a couple of places where bit sizes might be made use of
16512 when parsing a DW_TAG_string_type, however, no producer that we know
16513 of make use of these. Handling bit sizes that are a multiple of the
16514 byte size is easy enough, but what about other bit sizes? Lets deal
16515 with that problem when we have to. Warn about these attributes being
16516 unsupported, then parse the type and ignore them like we always
16517 have. */
16518 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16519 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16520 {
16521 static bool warning_printed = false;
16522 if (!warning_printed)
16523 {
16524 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16525 "currently supported on DW_TAG_string_type."));
16526 warning_printed = true;
16527 }
16528 }
16529
16530 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16531 if (attr != nullptr && !attr->form_is_constant ())
16532 {
16533 /* The string length describes the location at which the length of
16534 the string can be found. The size of the length field can be
16535 specified with one of the attributes below. */
16536 struct type *prop_type;
16537 struct attribute *len
16538 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16539 if (len == nullptr)
16540 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16541 if (len != nullptr && len->form_is_constant ())
16542 {
16543 /* Pass 0 as the default as we know this attribute is constant
16544 and the default value will not be returned. */
16545 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16546 prop_type = cu->per_cu->int_type (sz, true);
16547 }
16548 else
16549 {
16550 /* If the size is not specified then we assume it is the size of
16551 an address on this target. */
16552 prop_type = cu->per_cu->addr_sized_int_type (true);
16553 }
16554
16555 /* Convert the attribute into a dynamic property. */
16556 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16557 length = 1;
16558 else
16559 length_is_constant = false;
16560 }
16561 else if (attr != nullptr)
16562 {
16563 /* This DW_AT_string_length just contains the length with no
16564 indirection. There's no need to create a dynamic property in this
16565 case. Pass 0 for the default value as we know it will not be
16566 returned in this case. */
16567 length = dwarf2_get_attr_constant_value (attr, 0);
16568 }
16569 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16570 {
16571 /* We don't currently support non-constant byte sizes for strings. */
16572 length = dwarf2_get_attr_constant_value (attr, 1);
16573 }
16574 else
16575 {
16576 /* Use 1 as a fallback length if we have nothing else. */
16577 length = 1;
16578 }
16579
16580 index_type = objfile_type (objfile)->builtin_int;
16581 if (length_is_constant)
16582 range_type = create_static_range_type (NULL, index_type, 1, length);
16583 else
16584 {
16585 struct dynamic_prop low_bound;
16586
16587 low_bound.kind = PROP_CONST;
16588 low_bound.data.const_val = 1;
16589 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16590 }
16591 char_type = language_string_char_type (cu->language_defn, gdbarch);
16592 type = create_string_type (NULL, char_type, range_type);
16593
16594 return set_die_type (die, type, cu);
16595 }
16596
16597 /* Assuming that DIE corresponds to a function, returns nonzero
16598 if the function is prototyped. */
16599
16600 static int
16601 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16602 {
16603 struct attribute *attr;
16604
16605 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16606 if (attr && (DW_UNSND (attr) != 0))
16607 return 1;
16608
16609 /* The DWARF standard implies that the DW_AT_prototyped attribute
16610 is only meaningful for C, but the concept also extends to other
16611 languages that allow unprototyped functions (Eg: Objective C).
16612 For all other languages, assume that functions are always
16613 prototyped. */
16614 if (cu->language != language_c
16615 && cu->language != language_objc
16616 && cu->language != language_opencl)
16617 return 1;
16618
16619 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16620 prototyped and unprototyped functions; default to prototyped,
16621 since that is more common in modern code (and RealView warns
16622 about unprototyped functions). */
16623 if (producer_is_realview (cu->producer))
16624 return 1;
16625
16626 return 0;
16627 }
16628
16629 /* Handle DIES due to C code like:
16630
16631 struct foo
16632 {
16633 int (*funcp)(int a, long l);
16634 int b;
16635 };
16636
16637 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16638
16639 static struct type *
16640 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16641 {
16642 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16643 struct type *type; /* Type that this function returns. */
16644 struct type *ftype; /* Function that returns above type. */
16645 struct attribute *attr;
16646
16647 type = die_type (die, cu);
16648
16649 /* The die_type call above may have already set the type for this DIE. */
16650 ftype = get_die_type (die, cu);
16651 if (ftype)
16652 return ftype;
16653
16654 ftype = lookup_function_type (type);
16655
16656 if (prototyped_function_p (die, cu))
16657 TYPE_PROTOTYPED (ftype) = 1;
16658
16659 /* Store the calling convention in the type if it's available in
16660 the subroutine die. Otherwise set the calling convention to
16661 the default value DW_CC_normal. */
16662 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16663 if (attr != nullptr
16664 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16665 TYPE_CALLING_CONVENTION (ftype)
16666 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16667 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16668 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16669 else
16670 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16671
16672 /* Record whether the function returns normally to its caller or not
16673 if the DWARF producer set that information. */
16674 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16675 if (attr && (DW_UNSND (attr) != 0))
16676 TYPE_NO_RETURN (ftype) = 1;
16677
16678 /* We need to add the subroutine type to the die immediately so
16679 we don't infinitely recurse when dealing with parameters
16680 declared as the same subroutine type. */
16681 set_die_type (die, ftype, cu);
16682
16683 if (die->child != NULL)
16684 {
16685 struct type *void_type = objfile_type (objfile)->builtin_void;
16686 struct die_info *child_die;
16687 int nparams, iparams;
16688
16689 /* Count the number of parameters.
16690 FIXME: GDB currently ignores vararg functions, but knows about
16691 vararg member functions. */
16692 nparams = 0;
16693 child_die = die->child;
16694 while (child_die && child_die->tag)
16695 {
16696 if (child_die->tag == DW_TAG_formal_parameter)
16697 nparams++;
16698 else if (child_die->tag == DW_TAG_unspecified_parameters)
16699 TYPE_VARARGS (ftype) = 1;
16700 child_die = sibling_die (child_die);
16701 }
16702
16703 /* Allocate storage for parameters and fill them in. */
16704 TYPE_NFIELDS (ftype) = nparams;
16705 TYPE_FIELDS (ftype) = (struct field *)
16706 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16707
16708 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16709 even if we error out during the parameters reading below. */
16710 for (iparams = 0; iparams < nparams; iparams++)
16711 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16712
16713 iparams = 0;
16714 child_die = die->child;
16715 while (child_die && child_die->tag)
16716 {
16717 if (child_die->tag == DW_TAG_formal_parameter)
16718 {
16719 struct type *arg_type;
16720
16721 /* DWARF version 2 has no clean way to discern C++
16722 static and non-static member functions. G++ helps
16723 GDB by marking the first parameter for non-static
16724 member functions (which is the this pointer) as
16725 artificial. We pass this information to
16726 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16727
16728 DWARF version 3 added DW_AT_object_pointer, which GCC
16729 4.5 does not yet generate. */
16730 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16731 if (attr != nullptr)
16732 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16733 else
16734 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16735 arg_type = die_type (child_die, cu);
16736
16737 /* RealView does not mark THIS as const, which the testsuite
16738 expects. GCC marks THIS as const in method definitions,
16739 but not in the class specifications (GCC PR 43053). */
16740 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16741 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16742 {
16743 int is_this = 0;
16744 struct dwarf2_cu *arg_cu = cu;
16745 const char *name = dwarf2_name (child_die, cu);
16746
16747 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16748 if (attr != nullptr)
16749 {
16750 /* If the compiler emits this, use it. */
16751 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16752 is_this = 1;
16753 }
16754 else if (name && strcmp (name, "this") == 0)
16755 /* Function definitions will have the argument names. */
16756 is_this = 1;
16757 else if (name == NULL && iparams == 0)
16758 /* Declarations may not have the names, so like
16759 elsewhere in GDB, assume an artificial first
16760 argument is "this". */
16761 is_this = 1;
16762
16763 if (is_this)
16764 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16765 arg_type, 0);
16766 }
16767
16768 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16769 iparams++;
16770 }
16771 child_die = sibling_die (child_die);
16772 }
16773 }
16774
16775 return ftype;
16776 }
16777
16778 static struct type *
16779 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16780 {
16781 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16782 const char *name = NULL;
16783 struct type *this_type, *target_type;
16784
16785 name = dwarf2_full_name (NULL, die, cu);
16786 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16787 TYPE_TARGET_STUB (this_type) = 1;
16788 set_die_type (die, this_type, cu);
16789 target_type = die_type (die, cu);
16790 if (target_type != this_type)
16791 TYPE_TARGET_TYPE (this_type) = target_type;
16792 else
16793 {
16794 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16795 spec and cause infinite loops in GDB. */
16796 complaint (_("Self-referential DW_TAG_typedef "
16797 "- DIE at %s [in module %s]"),
16798 sect_offset_str (die->sect_off), objfile_name (objfile));
16799 TYPE_TARGET_TYPE (this_type) = NULL;
16800 }
16801 return this_type;
16802 }
16803
16804 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16805 (which may be different from NAME) to the architecture back-end to allow
16806 it to guess the correct format if necessary. */
16807
16808 static struct type *
16809 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16810 const char *name_hint, enum bfd_endian byte_order)
16811 {
16812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16813 const struct floatformat **format;
16814 struct type *type;
16815
16816 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16817 if (format)
16818 type = init_float_type (objfile, bits, name, format, byte_order);
16819 else
16820 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16821
16822 return type;
16823 }
16824
16825 /* Allocate an integer type of size BITS and name NAME. */
16826
16827 static struct type *
16828 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16829 int bits, int unsigned_p, const char *name)
16830 {
16831 struct type *type;
16832
16833 /* Versions of Intel's C Compiler generate an integer type called "void"
16834 instead of using DW_TAG_unspecified_type. This has been seen on
16835 at least versions 14, 17, and 18. */
16836 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16837 && strcmp (name, "void") == 0)
16838 type = objfile_type (objfile)->builtin_void;
16839 else
16840 type = init_integer_type (objfile, bits, unsigned_p, name);
16841
16842 return type;
16843 }
16844
16845 /* Initialise and return a floating point type of size BITS suitable for
16846 use as a component of a complex number. The NAME_HINT is passed through
16847 when initialising the floating point type and is the name of the complex
16848 type.
16849
16850 As DWARF doesn't currently provide an explicit name for the components
16851 of a complex number, but it can be helpful to have these components
16852 named, we try to select a suitable name based on the size of the
16853 component. */
16854 static struct type *
16855 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16856 struct objfile *objfile,
16857 int bits, const char *name_hint,
16858 enum bfd_endian byte_order)
16859 {
16860 gdbarch *gdbarch = get_objfile_arch (objfile);
16861 struct type *tt = nullptr;
16862
16863 /* Try to find a suitable floating point builtin type of size BITS.
16864 We're going to use the name of this type as the name for the complex
16865 target type that we are about to create. */
16866 switch (cu->language)
16867 {
16868 case language_fortran:
16869 switch (bits)
16870 {
16871 case 32:
16872 tt = builtin_f_type (gdbarch)->builtin_real;
16873 break;
16874 case 64:
16875 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16876 break;
16877 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16878 case 128:
16879 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16880 break;
16881 }
16882 break;
16883 default:
16884 switch (bits)
16885 {
16886 case 32:
16887 tt = builtin_type (gdbarch)->builtin_float;
16888 break;
16889 case 64:
16890 tt = builtin_type (gdbarch)->builtin_double;
16891 break;
16892 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16893 case 128:
16894 tt = builtin_type (gdbarch)->builtin_long_double;
16895 break;
16896 }
16897 break;
16898 }
16899
16900 /* If the type we found doesn't match the size we were looking for, then
16901 pretend we didn't find a type at all, the complex target type we
16902 create will then be nameless. */
16903 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16904 tt = nullptr;
16905
16906 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16907 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16908 }
16909
16910 /* Find a representation of a given base type and install
16911 it in the TYPE field of the die. */
16912
16913 static struct type *
16914 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16915 {
16916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16917 struct type *type;
16918 struct attribute *attr;
16919 int encoding = 0, bits = 0;
16920 const char *name;
16921 gdbarch *arch;
16922
16923 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16924 if (attr != nullptr)
16925 encoding = DW_UNSND (attr);
16926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16927 if (attr != nullptr)
16928 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16929 name = dwarf2_name (die, cu);
16930 if (!name)
16931 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16932
16933 arch = get_objfile_arch (objfile);
16934 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16935
16936 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16937 if (attr)
16938 {
16939 int endianity = DW_UNSND (attr);
16940
16941 switch (endianity)
16942 {
16943 case DW_END_big:
16944 byte_order = BFD_ENDIAN_BIG;
16945 break;
16946 case DW_END_little:
16947 byte_order = BFD_ENDIAN_LITTLE;
16948 break;
16949 default:
16950 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16951 break;
16952 }
16953 }
16954
16955 switch (encoding)
16956 {
16957 case DW_ATE_address:
16958 /* Turn DW_ATE_address into a void * pointer. */
16959 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16960 type = init_pointer_type (objfile, bits, name, type);
16961 break;
16962 case DW_ATE_boolean:
16963 type = init_boolean_type (objfile, bits, 1, name);
16964 break;
16965 case DW_ATE_complex_float:
16966 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16967 byte_order);
16968 type = init_complex_type (objfile, name, type);
16969 break;
16970 case DW_ATE_decimal_float:
16971 type = init_decfloat_type (objfile, bits, name);
16972 break;
16973 case DW_ATE_float:
16974 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
16975 break;
16976 case DW_ATE_signed:
16977 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
16978 break;
16979 case DW_ATE_unsigned:
16980 if (cu->language == language_fortran
16981 && name
16982 && startswith (name, "character("))
16983 type = init_character_type (objfile, bits, 1, name);
16984 else
16985 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
16986 break;
16987 case DW_ATE_signed_char:
16988 if (cu->language == language_ada || cu->language == language_m2
16989 || cu->language == language_pascal
16990 || cu->language == language_fortran)
16991 type = init_character_type (objfile, bits, 0, name);
16992 else
16993 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
16994 break;
16995 case DW_ATE_unsigned_char:
16996 if (cu->language == language_ada || cu->language == language_m2
16997 || cu->language == language_pascal
16998 || cu->language == language_fortran
16999 || cu->language == language_rust)
17000 type = init_character_type (objfile, bits, 1, name);
17001 else
17002 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17003 break;
17004 case DW_ATE_UTF:
17005 {
17006 if (bits == 16)
17007 type = builtin_type (arch)->builtin_char16;
17008 else if (bits == 32)
17009 type = builtin_type (arch)->builtin_char32;
17010 else
17011 {
17012 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17013 bits);
17014 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17015 }
17016 return set_die_type (die, type, cu);
17017 }
17018 break;
17019
17020 default:
17021 complaint (_("unsupported DW_AT_encoding: '%s'"),
17022 dwarf_type_encoding_name (encoding));
17023 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17024 break;
17025 }
17026
17027 if (name && strcmp (name, "char") == 0)
17028 TYPE_NOSIGN (type) = 1;
17029
17030 maybe_set_alignment (cu, die, type);
17031
17032 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17033
17034 return set_die_type (die, type, cu);
17035 }
17036
17037 /* Parse dwarf attribute if it's a block, reference or constant and put the
17038 resulting value of the attribute into struct bound_prop.
17039 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17040
17041 static int
17042 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17043 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17044 struct type *default_type)
17045 {
17046 struct dwarf2_property_baton *baton;
17047 struct obstack *obstack
17048 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17049
17050 gdb_assert (default_type != NULL);
17051
17052 if (attr == NULL || prop == NULL)
17053 return 0;
17054
17055 if (attr->form_is_block ())
17056 {
17057 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17058 baton->property_type = default_type;
17059 baton->locexpr.per_cu = cu->per_cu;
17060 baton->locexpr.size = DW_BLOCK (attr)->size;
17061 baton->locexpr.data = DW_BLOCK (attr)->data;
17062 switch (attr->name)
17063 {
17064 case DW_AT_string_length:
17065 baton->locexpr.is_reference = true;
17066 break;
17067 default:
17068 baton->locexpr.is_reference = false;
17069 break;
17070 }
17071 prop->data.baton = baton;
17072 prop->kind = PROP_LOCEXPR;
17073 gdb_assert (prop->data.baton != NULL);
17074 }
17075 else if (attr->form_is_ref ())
17076 {
17077 struct dwarf2_cu *target_cu = cu;
17078 struct die_info *target_die;
17079 struct attribute *target_attr;
17080
17081 target_die = follow_die_ref (die, attr, &target_cu);
17082 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17083 if (target_attr == NULL)
17084 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17085 target_cu);
17086 if (target_attr == NULL)
17087 return 0;
17088
17089 switch (target_attr->name)
17090 {
17091 case DW_AT_location:
17092 if (target_attr->form_is_section_offset ())
17093 {
17094 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17095 baton->property_type = die_type (target_die, target_cu);
17096 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17097 prop->data.baton = baton;
17098 prop->kind = PROP_LOCLIST;
17099 gdb_assert (prop->data.baton != NULL);
17100 }
17101 else if (target_attr->form_is_block ())
17102 {
17103 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17104 baton->property_type = die_type (target_die, target_cu);
17105 baton->locexpr.per_cu = cu->per_cu;
17106 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17107 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17108 baton->locexpr.is_reference = true;
17109 prop->data.baton = baton;
17110 prop->kind = PROP_LOCEXPR;
17111 gdb_assert (prop->data.baton != NULL);
17112 }
17113 else
17114 {
17115 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17116 "dynamic property");
17117 return 0;
17118 }
17119 break;
17120 case DW_AT_data_member_location:
17121 {
17122 LONGEST offset;
17123
17124 if (!handle_data_member_location (target_die, target_cu,
17125 &offset))
17126 return 0;
17127
17128 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17129 baton->property_type = read_type_die (target_die->parent,
17130 target_cu);
17131 baton->offset_info.offset = offset;
17132 baton->offset_info.type = die_type (target_die, target_cu);
17133 prop->data.baton = baton;
17134 prop->kind = PROP_ADDR_OFFSET;
17135 break;
17136 }
17137 }
17138 }
17139 else if (attr->form_is_constant ())
17140 {
17141 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17142 prop->kind = PROP_CONST;
17143 }
17144 else
17145 {
17146 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17147 dwarf2_name (die, cu));
17148 return 0;
17149 }
17150
17151 return 1;
17152 }
17153
17154 /* See read.h. */
17155
17156 struct type *
17157 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17158 {
17159 struct objfile *objfile = dwarf2_per_objfile->objfile;
17160 struct type *int_type;
17161
17162 /* Helper macro to examine the various builtin types. */
17163 #define TRY_TYPE(F) \
17164 int_type = (unsigned_p \
17165 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17166 : objfile_type (objfile)->builtin_ ## F); \
17167 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17168 return int_type
17169
17170 TRY_TYPE (char);
17171 TRY_TYPE (short);
17172 TRY_TYPE (int);
17173 TRY_TYPE (long);
17174 TRY_TYPE (long_long);
17175
17176 #undef TRY_TYPE
17177
17178 gdb_assert_not_reached ("unable to find suitable integer type");
17179 }
17180
17181 /* See read.h. */
17182
17183 struct type *
17184 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17185 {
17186 int addr_size = this->addr_size ();
17187 return int_type (addr_size, unsigned_p);
17188 }
17189
17190 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17191 present (which is valid) then compute the default type based on the
17192 compilation units address size. */
17193
17194 static struct type *
17195 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17196 {
17197 struct type *index_type = die_type (die, cu);
17198
17199 /* Dwarf-2 specifications explicitly allows to create subrange types
17200 without specifying a base type.
17201 In that case, the base type must be set to the type of
17202 the lower bound, upper bound or count, in that order, if any of these
17203 three attributes references an object that has a type.
17204 If no base type is found, the Dwarf-2 specifications say that
17205 a signed integer type of size equal to the size of an address should
17206 be used.
17207 For the following C code: `extern char gdb_int [];'
17208 GCC produces an empty range DIE.
17209 FIXME: muller/2010-05-28: Possible references to object for low bound,
17210 high bound or count are not yet handled by this code. */
17211 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17212 index_type = cu->per_cu->addr_sized_int_type (false);
17213
17214 return index_type;
17215 }
17216
17217 /* Read the given DW_AT_subrange DIE. */
17218
17219 static struct type *
17220 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17221 {
17222 struct type *base_type, *orig_base_type;
17223 struct type *range_type;
17224 struct attribute *attr;
17225 struct dynamic_prop low, high;
17226 int low_default_is_valid;
17227 int high_bound_is_count = 0;
17228 const char *name;
17229 ULONGEST negative_mask;
17230
17231 orig_base_type = read_subrange_index_type (die, cu);
17232
17233 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17234 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17235 creating the range type, but we use the result of check_typedef
17236 when examining properties of the type. */
17237 base_type = check_typedef (orig_base_type);
17238
17239 /* The die_type call above may have already set the type for this DIE. */
17240 range_type = get_die_type (die, cu);
17241 if (range_type)
17242 return range_type;
17243
17244 low.kind = PROP_CONST;
17245 high.kind = PROP_CONST;
17246 high.data.const_val = 0;
17247
17248 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17249 omitting DW_AT_lower_bound. */
17250 switch (cu->language)
17251 {
17252 case language_c:
17253 case language_cplus:
17254 low.data.const_val = 0;
17255 low_default_is_valid = 1;
17256 break;
17257 case language_fortran:
17258 low.data.const_val = 1;
17259 low_default_is_valid = 1;
17260 break;
17261 case language_d:
17262 case language_objc:
17263 case language_rust:
17264 low.data.const_val = 0;
17265 low_default_is_valid = (cu->header.version >= 4);
17266 break;
17267 case language_ada:
17268 case language_m2:
17269 case language_pascal:
17270 low.data.const_val = 1;
17271 low_default_is_valid = (cu->header.version >= 4);
17272 break;
17273 default:
17274 low.data.const_val = 0;
17275 low_default_is_valid = 0;
17276 break;
17277 }
17278
17279 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17280 if (attr != nullptr)
17281 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17282 else if (!low_default_is_valid)
17283 complaint (_("Missing DW_AT_lower_bound "
17284 "- DIE at %s [in module %s]"),
17285 sect_offset_str (die->sect_off),
17286 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17287
17288 struct attribute *attr_ub, *attr_count;
17289 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17290 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17291 {
17292 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17293 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17294 {
17295 /* If bounds are constant do the final calculation here. */
17296 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17297 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17298 else
17299 high_bound_is_count = 1;
17300 }
17301 else
17302 {
17303 if (attr_ub != NULL)
17304 complaint (_("Unresolved DW_AT_upper_bound "
17305 "- DIE at %s [in module %s]"),
17306 sect_offset_str (die->sect_off),
17307 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17308 if (attr_count != NULL)
17309 complaint (_("Unresolved DW_AT_count "
17310 "- DIE at %s [in module %s]"),
17311 sect_offset_str (die->sect_off),
17312 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17313 }
17314 }
17315
17316 LONGEST bias = 0;
17317 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17318 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17319 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17320
17321 /* Normally, the DWARF producers are expected to use a signed
17322 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17323 But this is unfortunately not always the case, as witnessed
17324 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17325 is used instead. To work around that ambiguity, we treat
17326 the bounds as signed, and thus sign-extend their values, when
17327 the base type is signed. */
17328 negative_mask =
17329 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17330 if (low.kind == PROP_CONST
17331 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17332 low.data.const_val |= negative_mask;
17333 if (high.kind == PROP_CONST
17334 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17335 high.data.const_val |= negative_mask;
17336
17337 /* Check for bit and byte strides. */
17338 struct dynamic_prop byte_stride_prop;
17339 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17340 if (attr_byte_stride != nullptr)
17341 {
17342 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17343 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17344 prop_type);
17345 }
17346
17347 struct dynamic_prop bit_stride_prop;
17348 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17349 if (attr_bit_stride != nullptr)
17350 {
17351 /* It only makes sense to have either a bit or byte stride. */
17352 if (attr_byte_stride != nullptr)
17353 {
17354 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17355 "- DIE at %s [in module %s]"),
17356 sect_offset_str (die->sect_off),
17357 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17358 attr_bit_stride = nullptr;
17359 }
17360 else
17361 {
17362 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17363 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17364 prop_type);
17365 }
17366 }
17367
17368 if (attr_byte_stride != nullptr
17369 || attr_bit_stride != nullptr)
17370 {
17371 bool byte_stride_p = (attr_byte_stride != nullptr);
17372 struct dynamic_prop *stride
17373 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17374
17375 range_type
17376 = create_range_type_with_stride (NULL, orig_base_type, &low,
17377 &high, bias, stride, byte_stride_p);
17378 }
17379 else
17380 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17381
17382 if (high_bound_is_count)
17383 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17384
17385 /* Ada expects an empty array on no boundary attributes. */
17386 if (attr == NULL && cu->language != language_ada)
17387 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17388
17389 name = dwarf2_name (die, cu);
17390 if (name)
17391 TYPE_NAME (range_type) = name;
17392
17393 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17394 if (attr != nullptr)
17395 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17396
17397 maybe_set_alignment (cu, die, range_type);
17398
17399 set_die_type (die, range_type, cu);
17400
17401 /* set_die_type should be already done. */
17402 set_descriptive_type (range_type, die, cu);
17403
17404 return range_type;
17405 }
17406
17407 static struct type *
17408 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17409 {
17410 struct type *type;
17411
17412 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17413 NULL);
17414 TYPE_NAME (type) = dwarf2_name (die, cu);
17415
17416 /* In Ada, an unspecified type is typically used when the description
17417 of the type is deferred to a different unit. When encountering
17418 such a type, we treat it as a stub, and try to resolve it later on,
17419 when needed. */
17420 if (cu->language == language_ada)
17421 TYPE_STUB (type) = 1;
17422
17423 return set_die_type (die, type, cu);
17424 }
17425
17426 /* Read a single die and all its descendents. Set the die's sibling
17427 field to NULL; set other fields in the die correctly, and set all
17428 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17429 location of the info_ptr after reading all of those dies. PARENT
17430 is the parent of the die in question. */
17431
17432 static struct die_info *
17433 read_die_and_children (const struct die_reader_specs *reader,
17434 const gdb_byte *info_ptr,
17435 const gdb_byte **new_info_ptr,
17436 struct die_info *parent)
17437 {
17438 struct die_info *die;
17439 const gdb_byte *cur_ptr;
17440
17441 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17442 if (die == NULL)
17443 {
17444 *new_info_ptr = cur_ptr;
17445 return NULL;
17446 }
17447 store_in_ref_table (die, reader->cu);
17448
17449 if (die->has_children)
17450 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17451 else
17452 {
17453 die->child = NULL;
17454 *new_info_ptr = cur_ptr;
17455 }
17456
17457 die->sibling = NULL;
17458 die->parent = parent;
17459 return die;
17460 }
17461
17462 /* Read a die, all of its descendents, and all of its siblings; set
17463 all of the fields of all of the dies correctly. Arguments are as
17464 in read_die_and_children. */
17465
17466 static struct die_info *
17467 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17468 const gdb_byte *info_ptr,
17469 const gdb_byte **new_info_ptr,
17470 struct die_info *parent)
17471 {
17472 struct die_info *first_die, *last_sibling;
17473 const gdb_byte *cur_ptr;
17474
17475 cur_ptr = info_ptr;
17476 first_die = last_sibling = NULL;
17477
17478 while (1)
17479 {
17480 struct die_info *die
17481 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17482
17483 if (die == NULL)
17484 {
17485 *new_info_ptr = cur_ptr;
17486 return first_die;
17487 }
17488
17489 if (!first_die)
17490 first_die = die;
17491 else
17492 last_sibling->sibling = die;
17493
17494 last_sibling = die;
17495 }
17496 }
17497
17498 /* Read a die, all of its descendents, and all of its siblings; set
17499 all of the fields of all of the dies correctly. Arguments are as
17500 in read_die_and_children.
17501 This the main entry point for reading a DIE and all its children. */
17502
17503 static struct die_info *
17504 read_die_and_siblings (const struct die_reader_specs *reader,
17505 const gdb_byte *info_ptr,
17506 const gdb_byte **new_info_ptr,
17507 struct die_info *parent)
17508 {
17509 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17510 new_info_ptr, parent);
17511
17512 if (dwarf_die_debug)
17513 {
17514 fprintf_unfiltered (gdb_stdlog,
17515 "Read die from %s@0x%x of %s:\n",
17516 reader->die_section->get_name (),
17517 (unsigned) (info_ptr - reader->die_section->buffer),
17518 bfd_get_filename (reader->abfd));
17519 dump_die (die, dwarf_die_debug);
17520 }
17521
17522 return die;
17523 }
17524
17525 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17526 attributes.
17527 The caller is responsible for filling in the extra attributes
17528 and updating (*DIEP)->num_attrs.
17529 Set DIEP to point to a newly allocated die with its information,
17530 except for its child, sibling, and parent fields. */
17531
17532 static const gdb_byte *
17533 read_full_die_1 (const struct die_reader_specs *reader,
17534 struct die_info **diep, const gdb_byte *info_ptr,
17535 int num_extra_attrs)
17536 {
17537 unsigned int abbrev_number, bytes_read, i;
17538 struct abbrev_info *abbrev;
17539 struct die_info *die;
17540 struct dwarf2_cu *cu = reader->cu;
17541 bfd *abfd = reader->abfd;
17542
17543 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17544 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17545 info_ptr += bytes_read;
17546 if (!abbrev_number)
17547 {
17548 *diep = NULL;
17549 return info_ptr;
17550 }
17551
17552 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17553 if (!abbrev)
17554 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17555 abbrev_number,
17556 bfd_get_filename (abfd));
17557
17558 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17559 die->sect_off = sect_off;
17560 die->tag = abbrev->tag;
17561 die->abbrev = abbrev_number;
17562 die->has_children = abbrev->has_children;
17563
17564 /* Make the result usable.
17565 The caller needs to update num_attrs after adding the extra
17566 attributes. */
17567 die->num_attrs = abbrev->num_attrs;
17568
17569 std::vector<int> indexes_that_need_reprocess;
17570 for (i = 0; i < abbrev->num_attrs; ++i)
17571 {
17572 bool need_reprocess;
17573 info_ptr =
17574 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17575 info_ptr, &need_reprocess);
17576 if (need_reprocess)
17577 indexes_that_need_reprocess.push_back (i);
17578 }
17579
17580 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
17581 if (attr != nullptr)
17582 cu->str_offsets_base = DW_UNSND (attr);
17583
17584 auto maybe_addr_base = lookup_addr_base(die);
17585 if (maybe_addr_base.has_value ())
17586 cu->addr_base = *maybe_addr_base;
17587 for (int index : indexes_that_need_reprocess)
17588 read_attribute_reprocess (reader, &die->attrs[index]);
17589 *diep = die;
17590 return info_ptr;
17591 }
17592
17593 /* Read a die and all its attributes.
17594 Set DIEP to point to a newly allocated die with its information,
17595 except for its child, sibling, and parent fields. */
17596
17597 static const gdb_byte *
17598 read_full_die (const struct die_reader_specs *reader,
17599 struct die_info **diep, const gdb_byte *info_ptr)
17600 {
17601 const gdb_byte *result;
17602
17603 result = read_full_die_1 (reader, diep, info_ptr, 0);
17604
17605 if (dwarf_die_debug)
17606 {
17607 fprintf_unfiltered (gdb_stdlog,
17608 "Read die from %s@0x%x of %s:\n",
17609 reader->die_section->get_name (),
17610 (unsigned) (info_ptr - reader->die_section->buffer),
17611 bfd_get_filename (reader->abfd));
17612 dump_die (*diep, dwarf_die_debug);
17613 }
17614
17615 return result;
17616 }
17617 \f
17618
17619 /* Returns nonzero if TAG represents a type that we might generate a partial
17620 symbol for. */
17621
17622 static int
17623 is_type_tag_for_partial (int tag)
17624 {
17625 switch (tag)
17626 {
17627 #if 0
17628 /* Some types that would be reasonable to generate partial symbols for,
17629 that we don't at present. */
17630 case DW_TAG_array_type:
17631 case DW_TAG_file_type:
17632 case DW_TAG_ptr_to_member_type:
17633 case DW_TAG_set_type:
17634 case DW_TAG_string_type:
17635 case DW_TAG_subroutine_type:
17636 #endif
17637 case DW_TAG_base_type:
17638 case DW_TAG_class_type:
17639 case DW_TAG_interface_type:
17640 case DW_TAG_enumeration_type:
17641 case DW_TAG_structure_type:
17642 case DW_TAG_subrange_type:
17643 case DW_TAG_typedef:
17644 case DW_TAG_union_type:
17645 return 1;
17646 default:
17647 return 0;
17648 }
17649 }
17650
17651 /* Load all DIEs that are interesting for partial symbols into memory. */
17652
17653 static struct partial_die_info *
17654 load_partial_dies (const struct die_reader_specs *reader,
17655 const gdb_byte *info_ptr, int building_psymtab)
17656 {
17657 struct dwarf2_cu *cu = reader->cu;
17658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17659 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17660 unsigned int bytes_read;
17661 unsigned int load_all = 0;
17662 int nesting_level = 1;
17663
17664 parent_die = NULL;
17665 last_die = NULL;
17666
17667 gdb_assert (cu->per_cu != NULL);
17668 if (cu->per_cu->load_all_dies)
17669 load_all = 1;
17670
17671 cu->partial_dies
17672 = htab_create_alloc_ex (cu->header.length / 12,
17673 partial_die_hash,
17674 partial_die_eq,
17675 NULL,
17676 &cu->comp_unit_obstack,
17677 hashtab_obstack_allocate,
17678 dummy_obstack_deallocate);
17679
17680 while (1)
17681 {
17682 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17683
17684 /* A NULL abbrev means the end of a series of children. */
17685 if (abbrev == NULL)
17686 {
17687 if (--nesting_level == 0)
17688 return first_die;
17689
17690 info_ptr += bytes_read;
17691 last_die = parent_die;
17692 parent_die = parent_die->die_parent;
17693 continue;
17694 }
17695
17696 /* Check for template arguments. We never save these; if
17697 they're seen, we just mark the parent, and go on our way. */
17698 if (parent_die != NULL
17699 && cu->language == language_cplus
17700 && (abbrev->tag == DW_TAG_template_type_param
17701 || abbrev->tag == DW_TAG_template_value_param))
17702 {
17703 parent_die->has_template_arguments = 1;
17704
17705 if (!load_all)
17706 {
17707 /* We don't need a partial DIE for the template argument. */
17708 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17709 continue;
17710 }
17711 }
17712
17713 /* We only recurse into c++ subprograms looking for template arguments.
17714 Skip their other children. */
17715 if (!load_all
17716 && cu->language == language_cplus
17717 && parent_die != NULL
17718 && parent_die->tag == DW_TAG_subprogram)
17719 {
17720 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17721 continue;
17722 }
17723
17724 /* Check whether this DIE is interesting enough to save. Normally
17725 we would not be interested in members here, but there may be
17726 later variables referencing them via DW_AT_specification (for
17727 static members). */
17728 if (!load_all
17729 && !is_type_tag_for_partial (abbrev->tag)
17730 && abbrev->tag != DW_TAG_constant
17731 && abbrev->tag != DW_TAG_enumerator
17732 && abbrev->tag != DW_TAG_subprogram
17733 && abbrev->tag != DW_TAG_inlined_subroutine
17734 && abbrev->tag != DW_TAG_lexical_block
17735 && abbrev->tag != DW_TAG_variable
17736 && abbrev->tag != DW_TAG_namespace
17737 && abbrev->tag != DW_TAG_module
17738 && abbrev->tag != DW_TAG_member
17739 && abbrev->tag != DW_TAG_imported_unit
17740 && abbrev->tag != DW_TAG_imported_declaration)
17741 {
17742 /* Otherwise we skip to the next sibling, if any. */
17743 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17744 continue;
17745 }
17746
17747 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17748 abbrev);
17749
17750 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17751
17752 /* This two-pass algorithm for processing partial symbols has a
17753 high cost in cache pressure. Thus, handle some simple cases
17754 here which cover the majority of C partial symbols. DIEs
17755 which neither have specification tags in them, nor could have
17756 specification tags elsewhere pointing at them, can simply be
17757 processed and discarded.
17758
17759 This segment is also optional; scan_partial_symbols and
17760 add_partial_symbol will handle these DIEs if we chain
17761 them in normally. When compilers which do not emit large
17762 quantities of duplicate debug information are more common,
17763 this code can probably be removed. */
17764
17765 /* Any complete simple types at the top level (pretty much all
17766 of them, for a language without namespaces), can be processed
17767 directly. */
17768 if (parent_die == NULL
17769 && pdi.has_specification == 0
17770 && pdi.is_declaration == 0
17771 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17772 || pdi.tag == DW_TAG_base_type
17773 || pdi.tag == DW_TAG_subrange_type))
17774 {
17775 if (building_psymtab && pdi.name != NULL)
17776 add_psymbol_to_list (pdi.name, false,
17777 VAR_DOMAIN, LOC_TYPEDEF, -1,
17778 psymbol_placement::STATIC,
17779 0, cu->language, objfile);
17780 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17781 continue;
17782 }
17783
17784 /* The exception for DW_TAG_typedef with has_children above is
17785 a workaround of GCC PR debug/47510. In the case of this complaint
17786 type_name_or_error will error on such types later.
17787
17788 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17789 it could not find the child DIEs referenced later, this is checked
17790 above. In correct DWARF DW_TAG_typedef should have no children. */
17791
17792 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17793 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17794 "- DIE at %s [in module %s]"),
17795 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17796
17797 /* If we're at the second level, and we're an enumerator, and
17798 our parent has no specification (meaning possibly lives in a
17799 namespace elsewhere), then we can add the partial symbol now
17800 instead of queueing it. */
17801 if (pdi.tag == DW_TAG_enumerator
17802 && parent_die != NULL
17803 && parent_die->die_parent == NULL
17804 && parent_die->tag == DW_TAG_enumeration_type
17805 && parent_die->has_specification == 0)
17806 {
17807 if (pdi.name == NULL)
17808 complaint (_("malformed enumerator DIE ignored"));
17809 else if (building_psymtab)
17810 add_psymbol_to_list (pdi.name, false,
17811 VAR_DOMAIN, LOC_CONST, -1,
17812 cu->language == language_cplus
17813 ? psymbol_placement::GLOBAL
17814 : psymbol_placement::STATIC,
17815 0, cu->language, objfile);
17816
17817 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17818 continue;
17819 }
17820
17821 struct partial_die_info *part_die
17822 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17823
17824 /* We'll save this DIE so link it in. */
17825 part_die->die_parent = parent_die;
17826 part_die->die_sibling = NULL;
17827 part_die->die_child = NULL;
17828
17829 if (last_die && last_die == parent_die)
17830 last_die->die_child = part_die;
17831 else if (last_die)
17832 last_die->die_sibling = part_die;
17833
17834 last_die = part_die;
17835
17836 if (first_die == NULL)
17837 first_die = part_die;
17838
17839 /* Maybe add the DIE to the hash table. Not all DIEs that we
17840 find interesting need to be in the hash table, because we
17841 also have the parent/sibling/child chains; only those that we
17842 might refer to by offset later during partial symbol reading.
17843
17844 For now this means things that might have be the target of a
17845 DW_AT_specification, DW_AT_abstract_origin, or
17846 DW_AT_extension. DW_AT_extension will refer only to
17847 namespaces; DW_AT_abstract_origin refers to functions (and
17848 many things under the function DIE, but we do not recurse
17849 into function DIEs during partial symbol reading) and
17850 possibly variables as well; DW_AT_specification refers to
17851 declarations. Declarations ought to have the DW_AT_declaration
17852 flag. It happens that GCC forgets to put it in sometimes, but
17853 only for functions, not for types.
17854
17855 Adding more things than necessary to the hash table is harmless
17856 except for the performance cost. Adding too few will result in
17857 wasted time in find_partial_die, when we reread the compilation
17858 unit with load_all_dies set. */
17859
17860 if (load_all
17861 || abbrev->tag == DW_TAG_constant
17862 || abbrev->tag == DW_TAG_subprogram
17863 || abbrev->tag == DW_TAG_variable
17864 || abbrev->tag == DW_TAG_namespace
17865 || part_die->is_declaration)
17866 {
17867 void **slot;
17868
17869 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17870 to_underlying (part_die->sect_off),
17871 INSERT);
17872 *slot = part_die;
17873 }
17874
17875 /* For some DIEs we want to follow their children (if any). For C
17876 we have no reason to follow the children of structures; for other
17877 languages we have to, so that we can get at method physnames
17878 to infer fully qualified class names, for DW_AT_specification,
17879 and for C++ template arguments. For C++, we also look one level
17880 inside functions to find template arguments (if the name of the
17881 function does not already contain the template arguments).
17882
17883 For Ada and Fortran, we need to scan the children of subprograms
17884 and lexical blocks as well because these languages allow the
17885 definition of nested entities that could be interesting for the
17886 debugger, such as nested subprograms for instance. */
17887 if (last_die->has_children
17888 && (load_all
17889 || last_die->tag == DW_TAG_namespace
17890 || last_die->tag == DW_TAG_module
17891 || last_die->tag == DW_TAG_enumeration_type
17892 || (cu->language == language_cplus
17893 && last_die->tag == DW_TAG_subprogram
17894 && (last_die->name == NULL
17895 || strchr (last_die->name, '<') == NULL))
17896 || (cu->language != language_c
17897 && (last_die->tag == DW_TAG_class_type
17898 || last_die->tag == DW_TAG_interface_type
17899 || last_die->tag == DW_TAG_structure_type
17900 || last_die->tag == DW_TAG_union_type))
17901 || ((cu->language == language_ada
17902 || cu->language == language_fortran)
17903 && (last_die->tag == DW_TAG_subprogram
17904 || last_die->tag == DW_TAG_lexical_block))))
17905 {
17906 nesting_level++;
17907 parent_die = last_die;
17908 continue;
17909 }
17910
17911 /* Otherwise we skip to the next sibling, if any. */
17912 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17913
17914 /* Back to the top, do it again. */
17915 }
17916 }
17917
17918 partial_die_info::partial_die_info (sect_offset sect_off_,
17919 struct abbrev_info *abbrev)
17920 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17921 {
17922 }
17923
17924 /* Read a minimal amount of information into the minimal die structure.
17925 INFO_PTR should point just after the initial uleb128 of a DIE. */
17926
17927 const gdb_byte *
17928 partial_die_info::read (const struct die_reader_specs *reader,
17929 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17930 {
17931 struct dwarf2_cu *cu = reader->cu;
17932 struct dwarf2_per_objfile *dwarf2_per_objfile
17933 = cu->per_cu->dwarf2_per_objfile;
17934 unsigned int i;
17935 int has_low_pc_attr = 0;
17936 int has_high_pc_attr = 0;
17937 int high_pc_relative = 0;
17938
17939 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
17940 for (i = 0; i < abbrev.num_attrs; ++i)
17941 {
17942 bool need_reprocess;
17943 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
17944 info_ptr, &need_reprocess);
17945 /* String and address offsets that need to do the reprocessing have
17946 already been read at this point, so there is no need to wait until
17947 the loop terminates to do the reprocessing. */
17948 if (need_reprocess)
17949 read_attribute_reprocess (reader, &attr_vec[i]);
17950 attribute &attr = attr_vec[i];
17951 /* Store the data if it is of an attribute we want to keep in a
17952 partial symbol table. */
17953 switch (attr.name)
17954 {
17955 case DW_AT_name:
17956 switch (tag)
17957 {
17958 case DW_TAG_compile_unit:
17959 case DW_TAG_partial_unit:
17960 case DW_TAG_type_unit:
17961 /* Compilation units have a DW_AT_name that is a filename, not
17962 a source language identifier. */
17963 case DW_TAG_enumeration_type:
17964 case DW_TAG_enumerator:
17965 /* These tags always have simple identifiers already; no need
17966 to canonicalize them. */
17967 name = DW_STRING (&attr);
17968 break;
17969 default:
17970 {
17971 struct objfile *objfile = dwarf2_per_objfile->objfile;
17972
17973 name
17974 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17975 &objfile->per_bfd->storage_obstack);
17976 }
17977 break;
17978 }
17979 break;
17980 case DW_AT_linkage_name:
17981 case DW_AT_MIPS_linkage_name:
17982 /* Note that both forms of linkage name might appear. We
17983 assume they will be the same, and we only store the last
17984 one we see. */
17985 linkage_name = DW_STRING (&attr);
17986 break;
17987 case DW_AT_low_pc:
17988 has_low_pc_attr = 1;
17989 lowpc = attr.value_as_address ();
17990 break;
17991 case DW_AT_high_pc:
17992 has_high_pc_attr = 1;
17993 highpc = attr.value_as_address ();
17994 if (cu->header.version >= 4 && attr.form_is_constant ())
17995 high_pc_relative = 1;
17996 break;
17997 case DW_AT_location:
17998 /* Support the .debug_loc offsets. */
17999 if (attr.form_is_block ())
18000 {
18001 d.locdesc = DW_BLOCK (&attr);
18002 }
18003 else if (attr.form_is_section_offset ())
18004 {
18005 dwarf2_complex_location_expr_complaint ();
18006 }
18007 else
18008 {
18009 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18010 "partial symbol information");
18011 }
18012 break;
18013 case DW_AT_external:
18014 is_external = DW_UNSND (&attr);
18015 break;
18016 case DW_AT_declaration:
18017 is_declaration = DW_UNSND (&attr);
18018 break;
18019 case DW_AT_type:
18020 has_type = 1;
18021 break;
18022 case DW_AT_abstract_origin:
18023 case DW_AT_specification:
18024 case DW_AT_extension:
18025 has_specification = 1;
18026 spec_offset = dwarf2_get_ref_die_offset (&attr);
18027 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18028 || cu->per_cu->is_dwz);
18029 break;
18030 case DW_AT_sibling:
18031 /* Ignore absolute siblings, they might point outside of
18032 the current compile unit. */
18033 if (attr.form == DW_FORM_ref_addr)
18034 complaint (_("ignoring absolute DW_AT_sibling"));
18035 else
18036 {
18037 const gdb_byte *buffer = reader->buffer;
18038 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18039 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18040
18041 if (sibling_ptr < info_ptr)
18042 complaint (_("DW_AT_sibling points backwards"));
18043 else if (sibling_ptr > reader->buffer_end)
18044 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18045 else
18046 sibling = sibling_ptr;
18047 }
18048 break;
18049 case DW_AT_byte_size:
18050 has_byte_size = 1;
18051 break;
18052 case DW_AT_const_value:
18053 has_const_value = 1;
18054 break;
18055 case DW_AT_calling_convention:
18056 /* DWARF doesn't provide a way to identify a program's source-level
18057 entry point. DW_AT_calling_convention attributes are only meant
18058 to describe functions' calling conventions.
18059
18060 However, because it's a necessary piece of information in
18061 Fortran, and before DWARF 4 DW_CC_program was the only
18062 piece of debugging information whose definition refers to
18063 a 'main program' at all, several compilers marked Fortran
18064 main programs with DW_CC_program --- even when those
18065 functions use the standard calling conventions.
18066
18067 Although DWARF now specifies a way to provide this
18068 information, we support this practice for backward
18069 compatibility. */
18070 if (DW_UNSND (&attr) == DW_CC_program
18071 && cu->language == language_fortran)
18072 main_subprogram = 1;
18073 break;
18074 case DW_AT_inline:
18075 if (DW_UNSND (&attr) == DW_INL_inlined
18076 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18077 may_be_inlined = 1;
18078 break;
18079
18080 case DW_AT_import:
18081 if (tag == DW_TAG_imported_unit)
18082 {
18083 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18084 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18085 || cu->per_cu->is_dwz);
18086 }
18087 break;
18088
18089 case DW_AT_main_subprogram:
18090 main_subprogram = DW_UNSND (&attr);
18091 break;
18092
18093 case DW_AT_ranges:
18094 {
18095 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18096 but that requires a full DIE, so instead we just
18097 reimplement it. */
18098 int need_ranges_base = tag != DW_TAG_compile_unit;
18099 unsigned int ranges_offset = (DW_UNSND (&attr)
18100 + (need_ranges_base
18101 ? cu->ranges_base
18102 : 0));
18103
18104 /* Value of the DW_AT_ranges attribute is the offset in the
18105 .debug_ranges section. */
18106 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18107 nullptr))
18108 has_pc_info = 1;
18109 }
18110 break;
18111
18112 default:
18113 break;
18114 }
18115 }
18116
18117 /* For Ada, if both the name and the linkage name appear, we prefer
18118 the latter. This lets "catch exception" work better, regardless
18119 of the order in which the name and linkage name were emitted.
18120 Really, though, this is just a workaround for the fact that gdb
18121 doesn't store both the name and the linkage name. */
18122 if (cu->language == language_ada && linkage_name != nullptr)
18123 name = linkage_name;
18124
18125 if (high_pc_relative)
18126 highpc += lowpc;
18127
18128 if (has_low_pc_attr && has_high_pc_attr)
18129 {
18130 /* When using the GNU linker, .gnu.linkonce. sections are used to
18131 eliminate duplicate copies of functions and vtables and such.
18132 The linker will arbitrarily choose one and discard the others.
18133 The AT_*_pc values for such functions refer to local labels in
18134 these sections. If the section from that file was discarded, the
18135 labels are not in the output, so the relocs get a value of 0.
18136 If this is a discarded function, mark the pc bounds as invalid,
18137 so that GDB will ignore it. */
18138 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18139 {
18140 struct objfile *objfile = dwarf2_per_objfile->objfile;
18141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18142
18143 complaint (_("DW_AT_low_pc %s is zero "
18144 "for DIE at %s [in module %s]"),
18145 paddress (gdbarch, lowpc),
18146 sect_offset_str (sect_off),
18147 objfile_name (objfile));
18148 }
18149 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18150 else if (lowpc >= highpc)
18151 {
18152 struct objfile *objfile = dwarf2_per_objfile->objfile;
18153 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18154
18155 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18156 "for DIE at %s [in module %s]"),
18157 paddress (gdbarch, lowpc),
18158 paddress (gdbarch, highpc),
18159 sect_offset_str (sect_off),
18160 objfile_name (objfile));
18161 }
18162 else
18163 has_pc_info = 1;
18164 }
18165
18166 return info_ptr;
18167 }
18168
18169 /* Find a cached partial DIE at OFFSET in CU. */
18170
18171 struct partial_die_info *
18172 dwarf2_cu::find_partial_die (sect_offset sect_off)
18173 {
18174 struct partial_die_info *lookup_die = NULL;
18175 struct partial_die_info part_die (sect_off);
18176
18177 lookup_die = ((struct partial_die_info *)
18178 htab_find_with_hash (partial_dies, &part_die,
18179 to_underlying (sect_off)));
18180
18181 return lookup_die;
18182 }
18183
18184 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18185 except in the case of .debug_types DIEs which do not reference
18186 outside their CU (they do however referencing other types via
18187 DW_FORM_ref_sig8). */
18188
18189 static const struct cu_partial_die_info
18190 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18191 {
18192 struct dwarf2_per_objfile *dwarf2_per_objfile
18193 = cu->per_cu->dwarf2_per_objfile;
18194 struct objfile *objfile = dwarf2_per_objfile->objfile;
18195 struct dwarf2_per_cu_data *per_cu = NULL;
18196 struct partial_die_info *pd = NULL;
18197
18198 if (offset_in_dwz == cu->per_cu->is_dwz
18199 && cu->header.offset_in_cu_p (sect_off))
18200 {
18201 pd = cu->find_partial_die (sect_off);
18202 if (pd != NULL)
18203 return { cu, pd };
18204 /* We missed recording what we needed.
18205 Load all dies and try again. */
18206 per_cu = cu->per_cu;
18207 }
18208 else
18209 {
18210 /* TUs don't reference other CUs/TUs (except via type signatures). */
18211 if (cu->per_cu->is_debug_types)
18212 {
18213 error (_("Dwarf Error: Type Unit at offset %s contains"
18214 " external reference to offset %s [in module %s].\n"),
18215 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18216 bfd_get_filename (objfile->obfd));
18217 }
18218 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18219 dwarf2_per_objfile);
18220
18221 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18222 load_partial_comp_unit (per_cu);
18223
18224 per_cu->cu->last_used = 0;
18225 pd = per_cu->cu->find_partial_die (sect_off);
18226 }
18227
18228 /* If we didn't find it, and not all dies have been loaded,
18229 load them all and try again. */
18230
18231 if (pd == NULL && per_cu->load_all_dies == 0)
18232 {
18233 per_cu->load_all_dies = 1;
18234
18235 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18236 THIS_CU->cu may already be in use. So we can't just free it and
18237 replace its DIEs with the ones we read in. Instead, we leave those
18238 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18239 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18240 set. */
18241 load_partial_comp_unit (per_cu);
18242
18243 pd = per_cu->cu->find_partial_die (sect_off);
18244 }
18245
18246 if (pd == NULL)
18247 internal_error (__FILE__, __LINE__,
18248 _("could not find partial DIE %s "
18249 "in cache [from module %s]\n"),
18250 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18251 return { per_cu->cu, pd };
18252 }
18253
18254 /* See if we can figure out if the class lives in a namespace. We do
18255 this by looking for a member function; its demangled name will
18256 contain namespace info, if there is any. */
18257
18258 static void
18259 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18260 struct dwarf2_cu *cu)
18261 {
18262 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18263 what template types look like, because the demangler
18264 frequently doesn't give the same name as the debug info. We
18265 could fix this by only using the demangled name to get the
18266 prefix (but see comment in read_structure_type). */
18267
18268 struct partial_die_info *real_pdi;
18269 struct partial_die_info *child_pdi;
18270
18271 /* If this DIE (this DIE's specification, if any) has a parent, then
18272 we should not do this. We'll prepend the parent's fully qualified
18273 name when we create the partial symbol. */
18274
18275 real_pdi = struct_pdi;
18276 while (real_pdi->has_specification)
18277 {
18278 auto res = find_partial_die (real_pdi->spec_offset,
18279 real_pdi->spec_is_dwz, cu);
18280 real_pdi = res.pdi;
18281 cu = res.cu;
18282 }
18283
18284 if (real_pdi->die_parent != NULL)
18285 return;
18286
18287 for (child_pdi = struct_pdi->die_child;
18288 child_pdi != NULL;
18289 child_pdi = child_pdi->die_sibling)
18290 {
18291 if (child_pdi->tag == DW_TAG_subprogram
18292 && child_pdi->linkage_name != NULL)
18293 {
18294 gdb::unique_xmalloc_ptr<char> actual_class_name
18295 (language_class_name_from_physname (cu->language_defn,
18296 child_pdi->linkage_name));
18297 if (actual_class_name != NULL)
18298 {
18299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18300 struct_pdi->name
18301 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18302 actual_class_name.get ());
18303 }
18304 break;
18305 }
18306 }
18307 }
18308
18309 void
18310 partial_die_info::fixup (struct dwarf2_cu *cu)
18311 {
18312 /* Once we've fixed up a die, there's no point in doing so again.
18313 This also avoids a memory leak if we were to call
18314 guess_partial_die_structure_name multiple times. */
18315 if (fixup_called)
18316 return;
18317
18318 /* If we found a reference attribute and the DIE has no name, try
18319 to find a name in the referred to DIE. */
18320
18321 if (name == NULL && has_specification)
18322 {
18323 struct partial_die_info *spec_die;
18324
18325 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18326 spec_die = res.pdi;
18327 cu = res.cu;
18328
18329 spec_die->fixup (cu);
18330
18331 if (spec_die->name)
18332 {
18333 name = spec_die->name;
18334
18335 /* Copy DW_AT_external attribute if it is set. */
18336 if (spec_die->is_external)
18337 is_external = spec_die->is_external;
18338 }
18339 }
18340
18341 /* Set default names for some unnamed DIEs. */
18342
18343 if (name == NULL && tag == DW_TAG_namespace)
18344 name = CP_ANONYMOUS_NAMESPACE_STR;
18345
18346 /* If there is no parent die to provide a namespace, and there are
18347 children, see if we can determine the namespace from their linkage
18348 name. */
18349 if (cu->language == language_cplus
18350 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18351 && die_parent == NULL
18352 && has_children
18353 && (tag == DW_TAG_class_type
18354 || tag == DW_TAG_structure_type
18355 || tag == DW_TAG_union_type))
18356 guess_partial_die_structure_name (this, cu);
18357
18358 /* GCC might emit a nameless struct or union that has a linkage
18359 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18360 if (name == NULL
18361 && (tag == DW_TAG_class_type
18362 || tag == DW_TAG_interface_type
18363 || tag == DW_TAG_structure_type
18364 || tag == DW_TAG_union_type)
18365 && linkage_name != NULL)
18366 {
18367 gdb::unique_xmalloc_ptr<char> demangled
18368 (gdb_demangle (linkage_name, DMGL_TYPES));
18369 if (demangled != nullptr)
18370 {
18371 const char *base;
18372
18373 /* Strip any leading namespaces/classes, keep only the base name.
18374 DW_AT_name for named DIEs does not contain the prefixes. */
18375 base = strrchr (demangled.get (), ':');
18376 if (base && base > demangled.get () && base[-1] == ':')
18377 base++;
18378 else
18379 base = demangled.get ();
18380
18381 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18382 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18383 }
18384 }
18385
18386 fixup_called = 1;
18387 }
18388
18389 /* Process the attributes that had to be skipped in the first round. These
18390 attributes are the ones that need str_offsets_base or addr_base attributes.
18391 They could not have been processed in the first round, because at the time
18392 the values of str_offsets_base or addr_base may not have been known. */
18393 void read_attribute_reprocess (const struct die_reader_specs *reader,
18394 struct attribute *attr)
18395 {
18396 struct dwarf2_cu *cu = reader->cu;
18397 switch (attr->form)
18398 {
18399 case DW_FORM_addrx:
18400 case DW_FORM_GNU_addr_index:
18401 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18402 break;
18403 case DW_FORM_strx:
18404 case DW_FORM_strx1:
18405 case DW_FORM_strx2:
18406 case DW_FORM_strx3:
18407 case DW_FORM_strx4:
18408 case DW_FORM_GNU_str_index:
18409 {
18410 unsigned int str_index = DW_UNSND (attr);
18411 if (reader->dwo_file != NULL)
18412 {
18413 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18414 DW_STRING_IS_CANONICAL (attr) = 0;
18415 }
18416 else
18417 {
18418 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18419 DW_STRING_IS_CANONICAL (attr) = 0;
18420 }
18421 break;
18422 }
18423 default:
18424 gdb_assert_not_reached (_("Unexpected DWARF form."));
18425 }
18426 }
18427
18428 /* Read an attribute value described by an attribute form. */
18429
18430 static const gdb_byte *
18431 read_attribute_value (const struct die_reader_specs *reader,
18432 struct attribute *attr, unsigned form,
18433 LONGEST implicit_const, const gdb_byte *info_ptr,
18434 bool *need_reprocess)
18435 {
18436 struct dwarf2_cu *cu = reader->cu;
18437 struct dwarf2_per_objfile *dwarf2_per_objfile
18438 = cu->per_cu->dwarf2_per_objfile;
18439 struct objfile *objfile = dwarf2_per_objfile->objfile;
18440 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18441 bfd *abfd = reader->abfd;
18442 struct comp_unit_head *cu_header = &cu->header;
18443 unsigned int bytes_read;
18444 struct dwarf_block *blk;
18445 *need_reprocess = false;
18446
18447 attr->form = (enum dwarf_form) form;
18448 switch (form)
18449 {
18450 case DW_FORM_ref_addr:
18451 if (cu->header.version == 2)
18452 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18453 &bytes_read);
18454 else
18455 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18456 &bytes_read);
18457 info_ptr += bytes_read;
18458 break;
18459 case DW_FORM_GNU_ref_alt:
18460 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18461 info_ptr += bytes_read;
18462 break;
18463 case DW_FORM_addr:
18464 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18465 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18466 info_ptr += bytes_read;
18467 break;
18468 case DW_FORM_block2:
18469 blk = dwarf_alloc_block (cu);
18470 blk->size = read_2_bytes (abfd, info_ptr);
18471 info_ptr += 2;
18472 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18473 info_ptr += blk->size;
18474 DW_BLOCK (attr) = blk;
18475 break;
18476 case DW_FORM_block4:
18477 blk = dwarf_alloc_block (cu);
18478 blk->size = read_4_bytes (abfd, info_ptr);
18479 info_ptr += 4;
18480 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18481 info_ptr += blk->size;
18482 DW_BLOCK (attr) = blk;
18483 break;
18484 case DW_FORM_data2:
18485 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18486 info_ptr += 2;
18487 break;
18488 case DW_FORM_data4:
18489 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18490 info_ptr += 4;
18491 break;
18492 case DW_FORM_data8:
18493 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18494 info_ptr += 8;
18495 break;
18496 case DW_FORM_data16:
18497 blk = dwarf_alloc_block (cu);
18498 blk->size = 16;
18499 blk->data = read_n_bytes (abfd, info_ptr, 16);
18500 info_ptr += 16;
18501 DW_BLOCK (attr) = blk;
18502 break;
18503 case DW_FORM_sec_offset:
18504 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18505 info_ptr += bytes_read;
18506 break;
18507 case DW_FORM_string:
18508 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18509 DW_STRING_IS_CANONICAL (attr) = 0;
18510 info_ptr += bytes_read;
18511 break;
18512 case DW_FORM_strp:
18513 if (!cu->per_cu->is_dwz)
18514 {
18515 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18516 abfd, info_ptr, cu_header,
18517 &bytes_read);
18518 DW_STRING_IS_CANONICAL (attr) = 0;
18519 info_ptr += bytes_read;
18520 break;
18521 }
18522 /* FALLTHROUGH */
18523 case DW_FORM_line_strp:
18524 if (!cu->per_cu->is_dwz)
18525 {
18526 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18527 abfd, info_ptr,
18528 cu_header, &bytes_read);
18529 DW_STRING_IS_CANONICAL (attr) = 0;
18530 info_ptr += bytes_read;
18531 break;
18532 }
18533 /* FALLTHROUGH */
18534 case DW_FORM_GNU_strp_alt:
18535 {
18536 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18537 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18538 &bytes_read);
18539
18540 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18541 dwz, str_offset);
18542 DW_STRING_IS_CANONICAL (attr) = 0;
18543 info_ptr += bytes_read;
18544 }
18545 break;
18546 case DW_FORM_exprloc:
18547 case DW_FORM_block:
18548 blk = dwarf_alloc_block (cu);
18549 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18550 info_ptr += bytes_read;
18551 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18552 info_ptr += blk->size;
18553 DW_BLOCK (attr) = blk;
18554 break;
18555 case DW_FORM_block1:
18556 blk = dwarf_alloc_block (cu);
18557 blk->size = read_1_byte (abfd, info_ptr);
18558 info_ptr += 1;
18559 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18560 info_ptr += blk->size;
18561 DW_BLOCK (attr) = blk;
18562 break;
18563 case DW_FORM_data1:
18564 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18565 info_ptr += 1;
18566 break;
18567 case DW_FORM_flag:
18568 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18569 info_ptr += 1;
18570 break;
18571 case DW_FORM_flag_present:
18572 DW_UNSND (attr) = 1;
18573 break;
18574 case DW_FORM_sdata:
18575 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18576 info_ptr += bytes_read;
18577 break;
18578 case DW_FORM_udata:
18579 case DW_FORM_rnglistx:
18580 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18581 info_ptr += bytes_read;
18582 break;
18583 case DW_FORM_ref1:
18584 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18585 + read_1_byte (abfd, info_ptr));
18586 info_ptr += 1;
18587 break;
18588 case DW_FORM_ref2:
18589 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18590 + read_2_bytes (abfd, info_ptr));
18591 info_ptr += 2;
18592 break;
18593 case DW_FORM_ref4:
18594 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18595 + read_4_bytes (abfd, info_ptr));
18596 info_ptr += 4;
18597 break;
18598 case DW_FORM_ref8:
18599 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18600 + read_8_bytes (abfd, info_ptr));
18601 info_ptr += 8;
18602 break;
18603 case DW_FORM_ref_sig8:
18604 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18605 info_ptr += 8;
18606 break;
18607 case DW_FORM_ref_udata:
18608 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18609 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18610 info_ptr += bytes_read;
18611 break;
18612 case DW_FORM_indirect:
18613 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18614 info_ptr += bytes_read;
18615 if (form == DW_FORM_implicit_const)
18616 {
18617 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18618 info_ptr += bytes_read;
18619 }
18620 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18621 info_ptr, need_reprocess);
18622 break;
18623 case DW_FORM_implicit_const:
18624 DW_SND (attr) = implicit_const;
18625 break;
18626 case DW_FORM_addrx:
18627 case DW_FORM_GNU_addr_index:
18628 *need_reprocess = true;
18629 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18630 info_ptr += bytes_read;
18631 break;
18632 case DW_FORM_strx:
18633 case DW_FORM_strx1:
18634 case DW_FORM_strx2:
18635 case DW_FORM_strx3:
18636 case DW_FORM_strx4:
18637 case DW_FORM_GNU_str_index:
18638 {
18639 ULONGEST str_index;
18640 if (form == DW_FORM_strx1)
18641 {
18642 str_index = read_1_byte (abfd, info_ptr);
18643 info_ptr += 1;
18644 }
18645 else if (form == DW_FORM_strx2)
18646 {
18647 str_index = read_2_bytes (abfd, info_ptr);
18648 info_ptr += 2;
18649 }
18650 else if (form == DW_FORM_strx3)
18651 {
18652 str_index = read_3_bytes (abfd, info_ptr);
18653 info_ptr += 3;
18654 }
18655 else if (form == DW_FORM_strx4)
18656 {
18657 str_index = read_4_bytes (abfd, info_ptr);
18658 info_ptr += 4;
18659 }
18660 else
18661 {
18662 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18663 info_ptr += bytes_read;
18664 }
18665 *need_reprocess = true;
18666 DW_UNSND (attr) = str_index;
18667 }
18668 break;
18669 default:
18670 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18671 dwarf_form_name (form),
18672 bfd_get_filename (abfd));
18673 }
18674
18675 /* Super hack. */
18676 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18677 attr->form = DW_FORM_GNU_ref_alt;
18678
18679 /* We have seen instances where the compiler tried to emit a byte
18680 size attribute of -1 which ended up being encoded as an unsigned
18681 0xffffffff. Although 0xffffffff is technically a valid size value,
18682 an object of this size seems pretty unlikely so we can relatively
18683 safely treat these cases as if the size attribute was invalid and
18684 treat them as zero by default. */
18685 if (attr->name == DW_AT_byte_size
18686 && form == DW_FORM_data4
18687 && DW_UNSND (attr) >= 0xffffffff)
18688 {
18689 complaint
18690 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18691 hex_string (DW_UNSND (attr)));
18692 DW_UNSND (attr) = 0;
18693 }
18694
18695 return info_ptr;
18696 }
18697
18698 /* Read an attribute described by an abbreviated attribute. */
18699
18700 static const gdb_byte *
18701 read_attribute (const struct die_reader_specs *reader,
18702 struct attribute *attr, struct attr_abbrev *abbrev,
18703 const gdb_byte *info_ptr, bool *need_reprocess)
18704 {
18705 attr->name = abbrev->name;
18706 return read_attribute_value (reader, attr, abbrev->form,
18707 abbrev->implicit_const, info_ptr,
18708 need_reprocess);
18709 }
18710
18711 /* Cover function for read_initial_length.
18712 Returns the length of the object at BUF, and stores the size of the
18713 initial length in *BYTES_READ and stores the size that offsets will be in
18714 *OFFSET_SIZE.
18715 If the initial length size is not equivalent to that specified in
18716 CU_HEADER then issue a complaint.
18717 This is useful when reading non-comp-unit headers. */
18718
18719 static LONGEST
18720 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18721 const struct comp_unit_head *cu_header,
18722 unsigned int *bytes_read,
18723 unsigned int *offset_size)
18724 {
18725 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18726
18727 gdb_assert (cu_header->initial_length_size == 4
18728 || cu_header->initial_length_size == 8
18729 || cu_header->initial_length_size == 12);
18730
18731 if (cu_header->initial_length_size != *bytes_read)
18732 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
18733
18734 *offset_size = (*bytes_read == 4) ? 4 : 8;
18735 return length;
18736 }
18737
18738 /* Return pointer to string at section SECT offset STR_OFFSET with error
18739 reporting strings FORM_NAME and SECT_NAME. */
18740
18741 static const char *
18742 read_indirect_string_at_offset_from (struct objfile *objfile,
18743 bfd *abfd, LONGEST str_offset,
18744 struct dwarf2_section_info *sect,
18745 const char *form_name,
18746 const char *sect_name)
18747 {
18748 sect->read (objfile);
18749 if (sect->buffer == NULL)
18750 error (_("%s used without %s section [in module %s]"),
18751 form_name, sect_name, bfd_get_filename (abfd));
18752 if (str_offset >= sect->size)
18753 error (_("%s pointing outside of %s section [in module %s]"),
18754 form_name, sect_name, bfd_get_filename (abfd));
18755 gdb_assert (HOST_CHAR_BIT == 8);
18756 if (sect->buffer[str_offset] == '\0')
18757 return NULL;
18758 return (const char *) (sect->buffer + str_offset);
18759 }
18760
18761 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18762
18763 static const char *
18764 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18765 bfd *abfd, LONGEST str_offset)
18766 {
18767 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18768 abfd, str_offset,
18769 &dwarf2_per_objfile->str,
18770 "DW_FORM_strp", ".debug_str");
18771 }
18772
18773 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18774
18775 static const char *
18776 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18777 bfd *abfd, LONGEST str_offset)
18778 {
18779 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18780 abfd, str_offset,
18781 &dwarf2_per_objfile->line_str,
18782 "DW_FORM_line_strp",
18783 ".debug_line_str");
18784 }
18785
18786 /* Read a string at offset STR_OFFSET in the .debug_str section from
18787 the .dwz file DWZ. Throw an error if the offset is too large. If
18788 the string consists of a single NUL byte, return NULL; otherwise
18789 return a pointer to the string. */
18790
18791 static const char *
18792 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
18793 LONGEST str_offset)
18794 {
18795 dwz->str.read (objfile);
18796
18797 if (dwz->str.buffer == NULL)
18798 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18799 "section [in module %s]"),
18800 bfd_get_filename (dwz->dwz_bfd.get ()));
18801 if (str_offset >= dwz->str.size)
18802 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18803 ".debug_str section [in module %s]"),
18804 bfd_get_filename (dwz->dwz_bfd.get ()));
18805 gdb_assert (HOST_CHAR_BIT == 8);
18806 if (dwz->str.buffer[str_offset] == '\0')
18807 return NULL;
18808 return (const char *) (dwz->str.buffer + str_offset);
18809 }
18810
18811 /* Return pointer to string at .debug_str offset as read from BUF.
18812 BUF is assumed to be in a compilation unit described by CU_HEADER.
18813 Return *BYTES_READ_PTR count of bytes read from BUF. */
18814
18815 static const char *
18816 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18817 const gdb_byte *buf,
18818 const struct comp_unit_head *cu_header,
18819 unsigned int *bytes_read_ptr)
18820 {
18821 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18822
18823 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
18824 }
18825
18826 /* Return pointer to string at .debug_line_str offset as read from BUF.
18827 BUF is assumed to be in a compilation unit described by CU_HEADER.
18828 Return *BYTES_READ_PTR count of bytes read from BUF. */
18829
18830 static const char *
18831 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
18832 bfd *abfd, const gdb_byte *buf,
18833 const struct comp_unit_head *cu_header,
18834 unsigned int *bytes_read_ptr)
18835 {
18836 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18837
18838 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
18839 str_offset);
18840 }
18841
18842 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18843 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18844 ADDR_SIZE is the size of addresses from the CU header. */
18845
18846 static CORE_ADDR
18847 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18848 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18849 int addr_size)
18850 {
18851 struct objfile *objfile = dwarf2_per_objfile->objfile;
18852 bfd *abfd = objfile->obfd;
18853 const gdb_byte *info_ptr;
18854 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18855
18856 dwarf2_per_objfile->addr.read (objfile);
18857 if (dwarf2_per_objfile->addr.buffer == NULL)
18858 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18859 objfile_name (objfile));
18860 if (addr_base_or_zero + addr_index * addr_size
18861 >= dwarf2_per_objfile->addr.size)
18862 error (_("DW_FORM_addr_index pointing outside of "
18863 ".debug_addr section [in module %s]"),
18864 objfile_name (objfile));
18865 info_ptr = (dwarf2_per_objfile->addr.buffer
18866 + addr_base_or_zero + addr_index * addr_size);
18867 if (addr_size == 4)
18868 return bfd_get_32 (abfd, info_ptr);
18869 else
18870 return bfd_get_64 (abfd, info_ptr);
18871 }
18872
18873 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18874
18875 static CORE_ADDR
18876 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18877 {
18878 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18879 cu->addr_base, cu->header.addr_size);
18880 }
18881
18882 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18883
18884 static CORE_ADDR
18885 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18886 unsigned int *bytes_read)
18887 {
18888 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18889 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18890
18891 return read_addr_index (cu, addr_index);
18892 }
18893
18894 /* See read.h. */
18895
18896 CORE_ADDR
18897 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
18898 {
18899 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18900 struct dwarf2_cu *cu = per_cu->cu;
18901 gdb::optional<ULONGEST> addr_base;
18902 int addr_size;
18903
18904 /* We need addr_base and addr_size.
18905 If we don't have PER_CU->cu, we have to get it.
18906 Nasty, but the alternative is storing the needed info in PER_CU,
18907 which at this point doesn't seem justified: it's not clear how frequently
18908 it would get used and it would increase the size of every PER_CU.
18909 Entry points like dwarf2_per_cu_addr_size do a similar thing
18910 so we're not in uncharted territory here.
18911 Alas we need to be a bit more complicated as addr_base is contained
18912 in the DIE.
18913
18914 We don't need to read the entire CU(/TU).
18915 We just need the header and top level die.
18916
18917 IWBN to use the aging mechanism to let us lazily later discard the CU.
18918 For now we skip this optimization. */
18919
18920 if (cu != NULL)
18921 {
18922 addr_base = cu->addr_base;
18923 addr_size = cu->header.addr_size;
18924 }
18925 else
18926 {
18927 cutu_reader reader (per_cu, NULL, 0, false);
18928 addr_base = reader.cu->addr_base;
18929 addr_size = reader.cu->header.addr_size;
18930 }
18931
18932 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
18933 addr_size);
18934 }
18935
18936 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
18937 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
18938 DWO file. */
18939
18940 static const char *
18941 read_str_index (struct dwarf2_cu *cu,
18942 struct dwarf2_section_info *str_section,
18943 struct dwarf2_section_info *str_offsets_section,
18944 ULONGEST str_offsets_base, ULONGEST str_index)
18945 {
18946 struct dwarf2_per_objfile *dwarf2_per_objfile
18947 = cu->per_cu->dwarf2_per_objfile;
18948 struct objfile *objfile = dwarf2_per_objfile->objfile;
18949 const char *objf_name = objfile_name (objfile);
18950 bfd *abfd = objfile->obfd;
18951 const gdb_byte *info_ptr;
18952 ULONGEST str_offset;
18953 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
18954
18955 str_section->read (objfile);
18956 str_offsets_section->read (objfile);
18957 if (str_section->buffer == NULL)
18958 error (_("%s used without %s section"
18959 " in CU at offset %s [in module %s]"),
18960 form_name, str_section->get_name (),
18961 sect_offset_str (cu->header.sect_off), objf_name);
18962 if (str_offsets_section->buffer == NULL)
18963 error (_("%s used without %s section"
18964 " in CU at offset %s [in module %s]"),
18965 form_name, str_section->get_name (),
18966 sect_offset_str (cu->header.sect_off), objf_name);
18967 info_ptr = (str_offsets_section->buffer
18968 + str_offsets_base
18969 + str_index * cu->header.offset_size);
18970 if (cu->header.offset_size == 4)
18971 str_offset = bfd_get_32 (abfd, info_ptr);
18972 else
18973 str_offset = bfd_get_64 (abfd, info_ptr);
18974 if (str_offset >= str_section->size)
18975 error (_("Offset from %s pointing outside of"
18976 " .debug_str.dwo section in CU at offset %s [in module %s]"),
18977 form_name, sect_offset_str (cu->header.sect_off), objf_name);
18978 return (const char *) (str_section->buffer + str_offset);
18979 }
18980
18981 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
18982
18983 static const char *
18984 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
18985 {
18986 ULONGEST str_offsets_base = reader->cu->header.version >= 5
18987 ? reader->cu->header.addr_size : 0;
18988 return read_str_index (reader->cu,
18989 &reader->dwo_file->sections.str,
18990 &reader->dwo_file->sections.str_offsets,
18991 str_offsets_base, str_index);
18992 }
18993
18994 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
18995
18996 static const char *
18997 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
18998 {
18999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19000 const char *objf_name = objfile_name (objfile);
19001 static const char form_name[] = "DW_FORM_GNU_str_index";
19002 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19003
19004 if (!cu->str_offsets_base.has_value ())
19005 error (_("%s used in Fission stub without %s"
19006 " in CU at offset 0x%lx [in module %s]"),
19007 form_name, str_offsets_attr_name,
19008 (long) cu->header.offset_size, objf_name);
19009
19010 return read_str_index (cu,
19011 &cu->per_cu->dwarf2_per_objfile->str,
19012 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19013 *cu->str_offsets_base, str_index);
19014 }
19015
19016 /* Return the length of an LEB128 number in BUF. */
19017
19018 static int
19019 leb128_size (const gdb_byte *buf)
19020 {
19021 const gdb_byte *begin = buf;
19022 gdb_byte byte;
19023
19024 while (1)
19025 {
19026 byte = *buf++;
19027 if ((byte & 128) == 0)
19028 return buf - begin;
19029 }
19030 }
19031
19032 static void
19033 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19034 {
19035 switch (lang)
19036 {
19037 case DW_LANG_C89:
19038 case DW_LANG_C99:
19039 case DW_LANG_C11:
19040 case DW_LANG_C:
19041 case DW_LANG_UPC:
19042 cu->language = language_c;
19043 break;
19044 case DW_LANG_Java:
19045 case DW_LANG_C_plus_plus:
19046 case DW_LANG_C_plus_plus_11:
19047 case DW_LANG_C_plus_plus_14:
19048 cu->language = language_cplus;
19049 break;
19050 case DW_LANG_D:
19051 cu->language = language_d;
19052 break;
19053 case DW_LANG_Fortran77:
19054 case DW_LANG_Fortran90:
19055 case DW_LANG_Fortran95:
19056 case DW_LANG_Fortran03:
19057 case DW_LANG_Fortran08:
19058 cu->language = language_fortran;
19059 break;
19060 case DW_LANG_Go:
19061 cu->language = language_go;
19062 break;
19063 case DW_LANG_Mips_Assembler:
19064 cu->language = language_asm;
19065 break;
19066 case DW_LANG_Ada83:
19067 case DW_LANG_Ada95:
19068 cu->language = language_ada;
19069 break;
19070 case DW_LANG_Modula2:
19071 cu->language = language_m2;
19072 break;
19073 case DW_LANG_Pascal83:
19074 cu->language = language_pascal;
19075 break;
19076 case DW_LANG_ObjC:
19077 cu->language = language_objc;
19078 break;
19079 case DW_LANG_Rust:
19080 case DW_LANG_Rust_old:
19081 cu->language = language_rust;
19082 break;
19083 case DW_LANG_Cobol74:
19084 case DW_LANG_Cobol85:
19085 default:
19086 cu->language = language_minimal;
19087 break;
19088 }
19089 cu->language_defn = language_def (cu->language);
19090 }
19091
19092 /* Return the named attribute or NULL if not there. */
19093
19094 static struct attribute *
19095 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19096 {
19097 for (;;)
19098 {
19099 unsigned int i;
19100 struct attribute *spec = NULL;
19101
19102 for (i = 0; i < die->num_attrs; ++i)
19103 {
19104 if (die->attrs[i].name == name)
19105 return &die->attrs[i];
19106 if (die->attrs[i].name == DW_AT_specification
19107 || die->attrs[i].name == DW_AT_abstract_origin)
19108 spec = &die->attrs[i];
19109 }
19110
19111 if (!spec)
19112 break;
19113
19114 die = follow_die_ref (die, spec, &cu);
19115 }
19116
19117 return NULL;
19118 }
19119
19120 /* Return the named attribute or NULL if not there,
19121 but do not follow DW_AT_specification, etc.
19122 This is for use in contexts where we're reading .debug_types dies.
19123 Following DW_AT_specification, DW_AT_abstract_origin will take us
19124 back up the chain, and we want to go down. */
19125
19126 static struct attribute *
19127 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19128 {
19129 unsigned int i;
19130
19131 for (i = 0; i < die->num_attrs; ++i)
19132 if (die->attrs[i].name == name)
19133 return &die->attrs[i];
19134
19135 return NULL;
19136 }
19137
19138 /* Return the string associated with a string-typed attribute, or NULL if it
19139 is either not found or is of an incorrect type. */
19140
19141 static const char *
19142 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19143 {
19144 struct attribute *attr;
19145 const char *str = NULL;
19146
19147 attr = dwarf2_attr (die, name, cu);
19148
19149 if (attr != NULL)
19150 {
19151 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19152 || attr->form == DW_FORM_string
19153 || attr->form == DW_FORM_strx
19154 || attr->form == DW_FORM_strx1
19155 || attr->form == DW_FORM_strx2
19156 || attr->form == DW_FORM_strx3
19157 || attr->form == DW_FORM_strx4
19158 || attr->form == DW_FORM_GNU_str_index
19159 || attr->form == DW_FORM_GNU_strp_alt)
19160 str = DW_STRING (attr);
19161 else
19162 complaint (_("string type expected for attribute %s for "
19163 "DIE at %s in module %s"),
19164 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19165 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19166 }
19167
19168 return str;
19169 }
19170
19171 /* Return the dwo name or NULL if not present. If present, it is in either
19172 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19173 static const char *
19174 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19175 {
19176 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19177 if (dwo_name == nullptr)
19178 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19179 return dwo_name;
19180 }
19181
19182 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19183 and holds a non-zero value. This function should only be used for
19184 DW_FORM_flag or DW_FORM_flag_present attributes. */
19185
19186 static int
19187 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19188 {
19189 struct attribute *attr = dwarf2_attr (die, name, cu);
19190
19191 return (attr && DW_UNSND (attr));
19192 }
19193
19194 static int
19195 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19196 {
19197 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19198 which value is non-zero. However, we have to be careful with
19199 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19200 (via dwarf2_flag_true_p) follows this attribute. So we may
19201 end up accidently finding a declaration attribute that belongs
19202 to a different DIE referenced by the specification attribute,
19203 even though the given DIE does not have a declaration attribute. */
19204 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19205 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19206 }
19207
19208 /* Return the die giving the specification for DIE, if there is
19209 one. *SPEC_CU is the CU containing DIE on input, and the CU
19210 containing the return value on output. If there is no
19211 specification, but there is an abstract origin, that is
19212 returned. */
19213
19214 static struct die_info *
19215 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19216 {
19217 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19218 *spec_cu);
19219
19220 if (spec_attr == NULL)
19221 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19222
19223 if (spec_attr == NULL)
19224 return NULL;
19225 else
19226 return follow_die_ref (die, spec_attr, spec_cu);
19227 }
19228
19229 /* Stub for free_line_header to match void * callback types. */
19230
19231 static void
19232 free_line_header_voidp (void *arg)
19233 {
19234 struct line_header *lh = (struct line_header *) arg;
19235
19236 delete lh;
19237 }
19238
19239 /* A convenience function to find the proper .debug_line section for a CU. */
19240
19241 static struct dwarf2_section_info *
19242 get_debug_line_section (struct dwarf2_cu *cu)
19243 {
19244 struct dwarf2_section_info *section;
19245 struct dwarf2_per_objfile *dwarf2_per_objfile
19246 = cu->per_cu->dwarf2_per_objfile;
19247
19248 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19249 DWO file. */
19250 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19251 section = &cu->dwo_unit->dwo_file->sections.line;
19252 else if (cu->per_cu->is_dwz)
19253 {
19254 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19255
19256 section = &dwz->line;
19257 }
19258 else
19259 section = &dwarf2_per_objfile->line;
19260
19261 return section;
19262 }
19263
19264 /* Read directory or file name entry format, starting with byte of
19265 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19266 entries count and the entries themselves in the described entry
19267 format. */
19268
19269 static void
19270 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19271 bfd *abfd, const gdb_byte **bufp,
19272 struct line_header *lh,
19273 const struct comp_unit_head *cu_header,
19274 void (*callback) (struct line_header *lh,
19275 const char *name,
19276 dir_index d_index,
19277 unsigned int mod_time,
19278 unsigned int length))
19279 {
19280 gdb_byte format_count, formati;
19281 ULONGEST data_count, datai;
19282 const gdb_byte *buf = *bufp;
19283 const gdb_byte *format_header_data;
19284 unsigned int bytes_read;
19285
19286 format_count = read_1_byte (abfd, buf);
19287 buf += 1;
19288 format_header_data = buf;
19289 for (formati = 0; formati < format_count; formati++)
19290 {
19291 read_unsigned_leb128 (abfd, buf, &bytes_read);
19292 buf += bytes_read;
19293 read_unsigned_leb128 (abfd, buf, &bytes_read);
19294 buf += bytes_read;
19295 }
19296
19297 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19298 buf += bytes_read;
19299 for (datai = 0; datai < data_count; datai++)
19300 {
19301 const gdb_byte *format = format_header_data;
19302 struct file_entry fe;
19303
19304 for (formati = 0; formati < format_count; formati++)
19305 {
19306 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19307 format += bytes_read;
19308
19309 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19310 format += bytes_read;
19311
19312 gdb::optional<const char *> string;
19313 gdb::optional<unsigned int> uint;
19314
19315 switch (form)
19316 {
19317 case DW_FORM_string:
19318 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19319 buf += bytes_read;
19320 break;
19321
19322 case DW_FORM_line_strp:
19323 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19324 abfd, buf,
19325 cu_header,
19326 &bytes_read));
19327 buf += bytes_read;
19328 break;
19329
19330 case DW_FORM_data1:
19331 uint.emplace (read_1_byte (abfd, buf));
19332 buf += 1;
19333 break;
19334
19335 case DW_FORM_data2:
19336 uint.emplace (read_2_bytes (abfd, buf));
19337 buf += 2;
19338 break;
19339
19340 case DW_FORM_data4:
19341 uint.emplace (read_4_bytes (abfd, buf));
19342 buf += 4;
19343 break;
19344
19345 case DW_FORM_data8:
19346 uint.emplace (read_8_bytes (abfd, buf));
19347 buf += 8;
19348 break;
19349
19350 case DW_FORM_data16:
19351 /* This is used for MD5, but file_entry does not record MD5s. */
19352 buf += 16;
19353 break;
19354
19355 case DW_FORM_udata:
19356 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19357 buf += bytes_read;
19358 break;
19359
19360 case DW_FORM_block:
19361 /* It is valid only for DW_LNCT_timestamp which is ignored by
19362 current GDB. */
19363 break;
19364 }
19365
19366 switch (content_type)
19367 {
19368 case DW_LNCT_path:
19369 if (string.has_value ())
19370 fe.name = *string;
19371 break;
19372 case DW_LNCT_directory_index:
19373 if (uint.has_value ())
19374 fe.d_index = (dir_index) *uint;
19375 break;
19376 case DW_LNCT_timestamp:
19377 if (uint.has_value ())
19378 fe.mod_time = *uint;
19379 break;
19380 case DW_LNCT_size:
19381 if (uint.has_value ())
19382 fe.length = *uint;
19383 break;
19384 case DW_LNCT_MD5:
19385 break;
19386 default:
19387 complaint (_("Unknown format content type %s"),
19388 pulongest (content_type));
19389 }
19390 }
19391
19392 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
19393 }
19394
19395 *bufp = buf;
19396 }
19397
19398 /* Read the statement program header starting at OFFSET in
19399 .debug_line, or .debug_line.dwo. Return a pointer
19400 to a struct line_header, allocated using xmalloc.
19401 Returns NULL if there is a problem reading the header, e.g., if it
19402 has a version we don't understand.
19403
19404 NOTE: the strings in the include directory and file name tables of
19405 the returned object point into the dwarf line section buffer,
19406 and must not be freed. */
19407
19408 static line_header_up
19409 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19410 {
19411 const gdb_byte *line_ptr;
19412 unsigned int bytes_read, offset_size;
19413 int i;
19414 const char *cur_dir, *cur_file;
19415 struct dwarf2_section_info *section;
19416 bfd *abfd;
19417 struct dwarf2_per_objfile *dwarf2_per_objfile
19418 = cu->per_cu->dwarf2_per_objfile;
19419
19420 section = get_debug_line_section (cu);
19421 section->read (dwarf2_per_objfile->objfile);
19422 if (section->buffer == NULL)
19423 {
19424 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19425 complaint (_("missing .debug_line.dwo section"));
19426 else
19427 complaint (_("missing .debug_line section"));
19428 return 0;
19429 }
19430
19431 /* We can't do this until we know the section is non-empty.
19432 Only then do we know we have such a section. */
19433 abfd = section->get_bfd_owner ();
19434
19435 /* Make sure that at least there's room for the total_length field.
19436 That could be 12 bytes long, but we're just going to fudge that. */
19437 if (to_underlying (sect_off) + 4 >= section->size)
19438 {
19439 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19440 return 0;
19441 }
19442
19443 line_header_up lh (new line_header ());
19444
19445 lh->sect_off = sect_off;
19446 lh->offset_in_dwz = cu->per_cu->is_dwz;
19447
19448 line_ptr = section->buffer + to_underlying (sect_off);
19449
19450 /* Read in the header. */
19451 lh->total_length =
19452 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
19453 &bytes_read, &offset_size);
19454 line_ptr += bytes_read;
19455
19456 const gdb_byte *start_here = line_ptr;
19457
19458 if (line_ptr + lh->total_length > (section->buffer + section->size))
19459 {
19460 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19461 return 0;
19462 }
19463 lh->statement_program_end = start_here + lh->total_length;
19464 lh->version = read_2_bytes (abfd, line_ptr);
19465 line_ptr += 2;
19466 if (lh->version > 5)
19467 {
19468 /* This is a version we don't understand. The format could have
19469 changed in ways we don't handle properly so just punt. */
19470 complaint (_("unsupported version in .debug_line section"));
19471 return NULL;
19472 }
19473 if (lh->version >= 5)
19474 {
19475 gdb_byte segment_selector_size;
19476
19477 /* Skip address size. */
19478 read_1_byte (abfd, line_ptr);
19479 line_ptr += 1;
19480
19481 segment_selector_size = read_1_byte (abfd, line_ptr);
19482 line_ptr += 1;
19483 if (segment_selector_size != 0)
19484 {
19485 complaint (_("unsupported segment selector size %u "
19486 "in .debug_line section"),
19487 segment_selector_size);
19488 return NULL;
19489 }
19490 }
19491 lh->header_length = read_offset (abfd, line_ptr, offset_size);
19492 line_ptr += offset_size;
19493 lh->statement_program_start = line_ptr + lh->header_length;
19494 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
19495 line_ptr += 1;
19496 if (lh->version >= 4)
19497 {
19498 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
19499 line_ptr += 1;
19500 }
19501 else
19502 lh->maximum_ops_per_instruction = 1;
19503
19504 if (lh->maximum_ops_per_instruction == 0)
19505 {
19506 lh->maximum_ops_per_instruction = 1;
19507 complaint (_("invalid maximum_ops_per_instruction "
19508 "in `.debug_line' section"));
19509 }
19510
19511 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
19512 line_ptr += 1;
19513 lh->line_base = read_1_signed_byte (abfd, line_ptr);
19514 line_ptr += 1;
19515 lh->line_range = read_1_byte (abfd, line_ptr);
19516 line_ptr += 1;
19517 lh->opcode_base = read_1_byte (abfd, line_ptr);
19518 line_ptr += 1;
19519 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
19520
19521 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
19522 for (i = 1; i < lh->opcode_base; ++i)
19523 {
19524 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
19525 line_ptr += 1;
19526 }
19527
19528 if (lh->version >= 5)
19529 {
19530 /* Read directory table. */
19531 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19532 &cu->header,
19533 [] (struct line_header *header, const char *name,
19534 dir_index d_index, unsigned int mod_time,
19535 unsigned int length)
19536 {
19537 header->add_include_dir (name);
19538 });
19539
19540 /* Read file name table. */
19541 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19542 &cu->header,
19543 [] (struct line_header *header, const char *name,
19544 dir_index d_index, unsigned int mod_time,
19545 unsigned int length)
19546 {
19547 header->add_file_name (name, d_index, mod_time, length);
19548 });
19549 }
19550 else
19551 {
19552 /* Read directory table. */
19553 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19554 {
19555 line_ptr += bytes_read;
19556 lh->add_include_dir (cur_dir);
19557 }
19558 line_ptr += bytes_read;
19559
19560 /* Read file name table. */
19561 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19562 {
19563 unsigned int mod_time, length;
19564 dir_index d_index;
19565
19566 line_ptr += bytes_read;
19567 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19568 line_ptr += bytes_read;
19569 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19570 line_ptr += bytes_read;
19571 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19572 line_ptr += bytes_read;
19573
19574 lh->add_file_name (cur_file, d_index, mod_time, length);
19575 }
19576 line_ptr += bytes_read;
19577 }
19578
19579 if (line_ptr > (section->buffer + section->size))
19580 complaint (_("line number info header doesn't "
19581 "fit in `.debug_line' section"));
19582
19583 return lh;
19584 }
19585
19586 /* Subroutine of dwarf_decode_lines to simplify it.
19587 Return the file name of the psymtab for the given file_entry.
19588 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19589 If space for the result is malloc'd, *NAME_HOLDER will be set.
19590 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19591
19592 static const char *
19593 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19594 const dwarf2_psymtab *pst,
19595 const char *comp_dir,
19596 gdb::unique_xmalloc_ptr<char> *name_holder)
19597 {
19598 const char *include_name = fe.name;
19599 const char *include_name_to_compare = include_name;
19600 const char *pst_filename;
19601 int file_is_pst;
19602
19603 const char *dir_name = fe.include_dir (lh);
19604
19605 gdb::unique_xmalloc_ptr<char> hold_compare;
19606 if (!IS_ABSOLUTE_PATH (include_name)
19607 && (dir_name != NULL || comp_dir != NULL))
19608 {
19609 /* Avoid creating a duplicate psymtab for PST.
19610 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19611 Before we do the comparison, however, we need to account
19612 for DIR_NAME and COMP_DIR.
19613 First prepend dir_name (if non-NULL). If we still don't
19614 have an absolute path prepend comp_dir (if non-NULL).
19615 However, the directory we record in the include-file's
19616 psymtab does not contain COMP_DIR (to match the
19617 corresponding symtab(s)).
19618
19619 Example:
19620
19621 bash$ cd /tmp
19622 bash$ gcc -g ./hello.c
19623 include_name = "hello.c"
19624 dir_name = "."
19625 DW_AT_comp_dir = comp_dir = "/tmp"
19626 DW_AT_name = "./hello.c"
19627
19628 */
19629
19630 if (dir_name != NULL)
19631 {
19632 name_holder->reset (concat (dir_name, SLASH_STRING,
19633 include_name, (char *) NULL));
19634 include_name = name_holder->get ();
19635 include_name_to_compare = include_name;
19636 }
19637 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19638 {
19639 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19640 include_name, (char *) NULL));
19641 include_name_to_compare = hold_compare.get ();
19642 }
19643 }
19644
19645 pst_filename = pst->filename;
19646 gdb::unique_xmalloc_ptr<char> copied_name;
19647 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19648 {
19649 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19650 pst_filename, (char *) NULL));
19651 pst_filename = copied_name.get ();
19652 }
19653
19654 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19655
19656 if (file_is_pst)
19657 return NULL;
19658 return include_name;
19659 }
19660
19661 /* State machine to track the state of the line number program. */
19662
19663 class lnp_state_machine
19664 {
19665 public:
19666 /* Initialize a machine state for the start of a line number
19667 program. */
19668 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19669 bool record_lines_p);
19670
19671 file_entry *current_file ()
19672 {
19673 /* lh->file_names is 0-based, but the file name numbers in the
19674 statement program are 1-based. */
19675 return m_line_header->file_name_at (m_file);
19676 }
19677
19678 /* Record the line in the state machine. END_SEQUENCE is true if
19679 we're processing the end of a sequence. */
19680 void record_line (bool end_sequence);
19681
19682 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19683 nop-out rest of the lines in this sequence. */
19684 void check_line_address (struct dwarf2_cu *cu,
19685 const gdb_byte *line_ptr,
19686 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19687
19688 void handle_set_discriminator (unsigned int discriminator)
19689 {
19690 m_discriminator = discriminator;
19691 m_line_has_non_zero_discriminator |= discriminator != 0;
19692 }
19693
19694 /* Handle DW_LNE_set_address. */
19695 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19696 {
19697 m_op_index = 0;
19698 address += baseaddr;
19699 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19700 }
19701
19702 /* Handle DW_LNS_advance_pc. */
19703 void handle_advance_pc (CORE_ADDR adjust);
19704
19705 /* Handle a special opcode. */
19706 void handle_special_opcode (unsigned char op_code);
19707
19708 /* Handle DW_LNS_advance_line. */
19709 void handle_advance_line (int line_delta)
19710 {
19711 advance_line (line_delta);
19712 }
19713
19714 /* Handle DW_LNS_set_file. */
19715 void handle_set_file (file_name_index file);
19716
19717 /* Handle DW_LNS_negate_stmt. */
19718 void handle_negate_stmt ()
19719 {
19720 m_is_stmt = !m_is_stmt;
19721 }
19722
19723 /* Handle DW_LNS_const_add_pc. */
19724 void handle_const_add_pc ();
19725
19726 /* Handle DW_LNS_fixed_advance_pc. */
19727 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19728 {
19729 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19730 m_op_index = 0;
19731 }
19732
19733 /* Handle DW_LNS_copy. */
19734 void handle_copy ()
19735 {
19736 record_line (false);
19737 m_discriminator = 0;
19738 }
19739
19740 /* Handle DW_LNE_end_sequence. */
19741 void handle_end_sequence ()
19742 {
19743 m_currently_recording_lines = true;
19744 }
19745
19746 private:
19747 /* Advance the line by LINE_DELTA. */
19748 void advance_line (int line_delta)
19749 {
19750 m_line += line_delta;
19751
19752 if (line_delta != 0)
19753 m_line_has_non_zero_discriminator = m_discriminator != 0;
19754 }
19755
19756 struct dwarf2_cu *m_cu;
19757
19758 gdbarch *m_gdbarch;
19759
19760 /* True if we're recording lines.
19761 Otherwise we're building partial symtabs and are just interested in
19762 finding include files mentioned by the line number program. */
19763 bool m_record_lines_p;
19764
19765 /* The line number header. */
19766 line_header *m_line_header;
19767
19768 /* These are part of the standard DWARF line number state machine,
19769 and initialized according to the DWARF spec. */
19770
19771 unsigned char m_op_index = 0;
19772 /* The line table index of the current file. */
19773 file_name_index m_file = 1;
19774 unsigned int m_line = 1;
19775
19776 /* These are initialized in the constructor. */
19777
19778 CORE_ADDR m_address;
19779 bool m_is_stmt;
19780 unsigned int m_discriminator;
19781
19782 /* Additional bits of state we need to track. */
19783
19784 /* The last file that we called dwarf2_start_subfile for.
19785 This is only used for TLLs. */
19786 unsigned int m_last_file = 0;
19787 /* The last file a line number was recorded for. */
19788 struct subfile *m_last_subfile = NULL;
19789
19790 /* When true, record the lines we decode. */
19791 bool m_currently_recording_lines = false;
19792
19793 /* The last line number that was recorded, used to coalesce
19794 consecutive entries for the same line. This can happen, for
19795 example, when discriminators are present. PR 17276. */
19796 unsigned int m_last_line = 0;
19797 bool m_line_has_non_zero_discriminator = false;
19798 };
19799
19800 void
19801 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19802 {
19803 CORE_ADDR addr_adj = (((m_op_index + adjust)
19804 / m_line_header->maximum_ops_per_instruction)
19805 * m_line_header->minimum_instruction_length);
19806 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19807 m_op_index = ((m_op_index + adjust)
19808 % m_line_header->maximum_ops_per_instruction);
19809 }
19810
19811 void
19812 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19813 {
19814 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19815 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19816 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19817 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19818 / m_line_header->maximum_ops_per_instruction)
19819 * m_line_header->minimum_instruction_length);
19820 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19821 m_op_index = ((m_op_index + adj_opcode_d)
19822 % m_line_header->maximum_ops_per_instruction);
19823
19824 int line_delta = m_line_header->line_base + adj_opcode_r;
19825 advance_line (line_delta);
19826 record_line (false);
19827 m_discriminator = 0;
19828 }
19829
19830 void
19831 lnp_state_machine::handle_set_file (file_name_index file)
19832 {
19833 m_file = file;
19834
19835 const file_entry *fe = current_file ();
19836 if (fe == NULL)
19837 dwarf2_debug_line_missing_file_complaint ();
19838 else if (m_record_lines_p)
19839 {
19840 const char *dir = fe->include_dir (m_line_header);
19841
19842 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19843 m_line_has_non_zero_discriminator = m_discriminator != 0;
19844 dwarf2_start_subfile (m_cu, fe->name, dir);
19845 }
19846 }
19847
19848 void
19849 lnp_state_machine::handle_const_add_pc ()
19850 {
19851 CORE_ADDR adjust
19852 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19853
19854 CORE_ADDR addr_adj
19855 = (((m_op_index + adjust)
19856 / m_line_header->maximum_ops_per_instruction)
19857 * m_line_header->minimum_instruction_length);
19858
19859 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19860 m_op_index = ((m_op_index + adjust)
19861 % m_line_header->maximum_ops_per_instruction);
19862 }
19863
19864 /* Return non-zero if we should add LINE to the line number table.
19865 LINE is the line to add, LAST_LINE is the last line that was added,
19866 LAST_SUBFILE is the subfile for LAST_LINE.
19867 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19868 had a non-zero discriminator.
19869
19870 We have to be careful in the presence of discriminators.
19871 E.g., for this line:
19872
19873 for (i = 0; i < 100000; i++);
19874
19875 clang can emit four line number entries for that one line,
19876 each with a different discriminator.
19877 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19878
19879 However, we want gdb to coalesce all four entries into one.
19880 Otherwise the user could stepi into the middle of the line and
19881 gdb would get confused about whether the pc really was in the
19882 middle of the line.
19883
19884 Things are further complicated by the fact that two consecutive
19885 line number entries for the same line is a heuristic used by gcc
19886 to denote the end of the prologue. So we can't just discard duplicate
19887 entries, we have to be selective about it. The heuristic we use is
19888 that we only collapse consecutive entries for the same line if at least
19889 one of those entries has a non-zero discriminator. PR 17276.
19890
19891 Note: Addresses in the line number state machine can never go backwards
19892 within one sequence, thus this coalescing is ok. */
19893
19894 static int
19895 dwarf_record_line_p (struct dwarf2_cu *cu,
19896 unsigned int line, unsigned int last_line,
19897 int line_has_non_zero_discriminator,
19898 struct subfile *last_subfile)
19899 {
19900 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19901 return 1;
19902 if (line != last_line)
19903 return 1;
19904 /* Same line for the same file that we've seen already.
19905 As a last check, for pr 17276, only record the line if the line
19906 has never had a non-zero discriminator. */
19907 if (!line_has_non_zero_discriminator)
19908 return 1;
19909 return 0;
19910 }
19911
19912 /* Use the CU's builder to record line number LINE beginning at
19913 address ADDRESS in the line table of subfile SUBFILE. */
19914
19915 static void
19916 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19917 unsigned int line, CORE_ADDR address,
19918 struct dwarf2_cu *cu)
19919 {
19920 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19921
19922 if (dwarf_line_debug)
19923 {
19924 fprintf_unfiltered (gdb_stdlog,
19925 "Recording line %u, file %s, address %s\n",
19926 line, lbasename (subfile->name),
19927 paddress (gdbarch, address));
19928 }
19929
19930 if (cu != nullptr)
19931 cu->get_builder ()->record_line (subfile, line, addr);
19932 }
19933
19934 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19935 Mark the end of a set of line number records.
19936 The arguments are the same as for dwarf_record_line_1.
19937 If SUBFILE is NULL the request is ignored. */
19938
19939 static void
19940 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19941 CORE_ADDR address, struct dwarf2_cu *cu)
19942 {
19943 if (subfile == NULL)
19944 return;
19945
19946 if (dwarf_line_debug)
19947 {
19948 fprintf_unfiltered (gdb_stdlog,
19949 "Finishing current line, file %s, address %s\n",
19950 lbasename (subfile->name),
19951 paddress (gdbarch, address));
19952 }
19953
19954 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
19955 }
19956
19957 void
19958 lnp_state_machine::record_line (bool end_sequence)
19959 {
19960 if (dwarf_line_debug)
19961 {
19962 fprintf_unfiltered (gdb_stdlog,
19963 "Processing actual line %u: file %u,"
19964 " address %s, is_stmt %u, discrim %u%s\n",
19965 m_line, m_file,
19966 paddress (m_gdbarch, m_address),
19967 m_is_stmt, m_discriminator,
19968 (end_sequence ? "\t(end sequence)" : ""));
19969 }
19970
19971 file_entry *fe = current_file ();
19972
19973 if (fe == NULL)
19974 dwarf2_debug_line_missing_file_complaint ();
19975 /* For now we ignore lines not starting on an instruction boundary.
19976 But not when processing end_sequence for compatibility with the
19977 previous version of the code. */
19978 else if (m_op_index == 0 || end_sequence)
19979 {
19980 fe->included_p = 1;
19981 if (m_record_lines_p
19982 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
19983 {
19984 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
19985 || end_sequence)
19986 {
19987 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
19988 m_currently_recording_lines ? m_cu : nullptr);
19989 }
19990
19991 if (!end_sequence)
19992 {
19993 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
19994 m_line_has_non_zero_discriminator,
19995 m_last_subfile))
19996 {
19997 buildsym_compunit *builder = m_cu->get_builder ();
19998 dwarf_record_line_1 (m_gdbarch,
19999 builder->get_current_subfile (),
20000 m_line, m_address,
20001 m_currently_recording_lines ? m_cu : nullptr);
20002 }
20003 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20004 m_last_line = m_line;
20005 }
20006 }
20007 }
20008 }
20009
20010 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20011 line_header *lh, bool record_lines_p)
20012 {
20013 m_cu = cu;
20014 m_gdbarch = arch;
20015 m_record_lines_p = record_lines_p;
20016 m_line_header = lh;
20017
20018 m_currently_recording_lines = true;
20019
20020 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20021 was a line entry for it so that the backend has a chance to adjust it
20022 and also record it in case it needs it. This is currently used by MIPS
20023 code, cf. `mips_adjust_dwarf2_line'. */
20024 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20025 m_is_stmt = lh->default_is_stmt;
20026 m_discriminator = 0;
20027 }
20028
20029 void
20030 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20031 const gdb_byte *line_ptr,
20032 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20033 {
20034 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20035 the pc range of the CU. However, we restrict the test to only ADDRESS
20036 values of zero to preserve GDB's previous behaviour which is to handle
20037 the specific case of a function being GC'd by the linker. */
20038
20039 if (address == 0 && address < unrelocated_lowpc)
20040 {
20041 /* This line table is for a function which has been
20042 GCd by the linker. Ignore it. PR gdb/12528 */
20043
20044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20045 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20046
20047 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20048 line_offset, objfile_name (objfile));
20049 m_currently_recording_lines = false;
20050 /* Note: m_currently_recording_lines is left as false until we see
20051 DW_LNE_end_sequence. */
20052 }
20053 }
20054
20055 /* Subroutine of dwarf_decode_lines to simplify it.
20056 Process the line number information in LH.
20057 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20058 program in order to set included_p for every referenced header. */
20059
20060 static void
20061 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20062 const int decode_for_pst_p, CORE_ADDR lowpc)
20063 {
20064 const gdb_byte *line_ptr, *extended_end;
20065 const gdb_byte *line_end;
20066 unsigned int bytes_read, extended_len;
20067 unsigned char op_code, extended_op;
20068 CORE_ADDR baseaddr;
20069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20070 bfd *abfd = objfile->obfd;
20071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20072 /* True if we're recording line info (as opposed to building partial
20073 symtabs and just interested in finding include files mentioned by
20074 the line number program). */
20075 bool record_lines_p = !decode_for_pst_p;
20076
20077 baseaddr = objfile->text_section_offset ();
20078
20079 line_ptr = lh->statement_program_start;
20080 line_end = lh->statement_program_end;
20081
20082 /* Read the statement sequences until there's nothing left. */
20083 while (line_ptr < line_end)
20084 {
20085 /* The DWARF line number program state machine. Reset the state
20086 machine at the start of each sequence. */
20087 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20088 bool end_sequence = false;
20089
20090 if (record_lines_p)
20091 {
20092 /* Start a subfile for the current file of the state
20093 machine. */
20094 const file_entry *fe = state_machine.current_file ();
20095
20096 if (fe != NULL)
20097 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20098 }
20099
20100 /* Decode the table. */
20101 while (line_ptr < line_end && !end_sequence)
20102 {
20103 op_code = read_1_byte (abfd, line_ptr);
20104 line_ptr += 1;
20105
20106 if (op_code >= lh->opcode_base)
20107 {
20108 /* Special opcode. */
20109 state_machine.handle_special_opcode (op_code);
20110 }
20111 else switch (op_code)
20112 {
20113 case DW_LNS_extended_op:
20114 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20115 &bytes_read);
20116 line_ptr += bytes_read;
20117 extended_end = line_ptr + extended_len;
20118 extended_op = read_1_byte (abfd, line_ptr);
20119 line_ptr += 1;
20120 switch (extended_op)
20121 {
20122 case DW_LNE_end_sequence:
20123 state_machine.handle_end_sequence ();
20124 end_sequence = true;
20125 break;
20126 case DW_LNE_set_address:
20127 {
20128 CORE_ADDR address
20129 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20130 line_ptr += bytes_read;
20131
20132 state_machine.check_line_address (cu, line_ptr,
20133 lowpc - baseaddr, address);
20134 state_machine.handle_set_address (baseaddr, address);
20135 }
20136 break;
20137 case DW_LNE_define_file:
20138 {
20139 const char *cur_file;
20140 unsigned int mod_time, length;
20141 dir_index dindex;
20142
20143 cur_file = read_direct_string (abfd, line_ptr,
20144 &bytes_read);
20145 line_ptr += bytes_read;
20146 dindex = (dir_index)
20147 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20148 line_ptr += bytes_read;
20149 mod_time =
20150 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20151 line_ptr += bytes_read;
20152 length =
20153 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20154 line_ptr += bytes_read;
20155 lh->add_file_name (cur_file, dindex, mod_time, length);
20156 }
20157 break;
20158 case DW_LNE_set_discriminator:
20159 {
20160 /* The discriminator is not interesting to the
20161 debugger; just ignore it. We still need to
20162 check its value though:
20163 if there are consecutive entries for the same
20164 (non-prologue) line we want to coalesce them.
20165 PR 17276. */
20166 unsigned int discr
20167 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20168 line_ptr += bytes_read;
20169
20170 state_machine.handle_set_discriminator (discr);
20171 }
20172 break;
20173 default:
20174 complaint (_("mangled .debug_line section"));
20175 return;
20176 }
20177 /* Make sure that we parsed the extended op correctly. If e.g.
20178 we expected a different address size than the producer used,
20179 we may have read the wrong number of bytes. */
20180 if (line_ptr != extended_end)
20181 {
20182 complaint (_("mangled .debug_line section"));
20183 return;
20184 }
20185 break;
20186 case DW_LNS_copy:
20187 state_machine.handle_copy ();
20188 break;
20189 case DW_LNS_advance_pc:
20190 {
20191 CORE_ADDR adjust
20192 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20193 line_ptr += bytes_read;
20194
20195 state_machine.handle_advance_pc (adjust);
20196 }
20197 break;
20198 case DW_LNS_advance_line:
20199 {
20200 int line_delta
20201 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20202 line_ptr += bytes_read;
20203
20204 state_machine.handle_advance_line (line_delta);
20205 }
20206 break;
20207 case DW_LNS_set_file:
20208 {
20209 file_name_index file
20210 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20211 &bytes_read);
20212 line_ptr += bytes_read;
20213
20214 state_machine.handle_set_file (file);
20215 }
20216 break;
20217 case DW_LNS_set_column:
20218 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20219 line_ptr += bytes_read;
20220 break;
20221 case DW_LNS_negate_stmt:
20222 state_machine.handle_negate_stmt ();
20223 break;
20224 case DW_LNS_set_basic_block:
20225 break;
20226 /* Add to the address register of the state machine the
20227 address increment value corresponding to special opcode
20228 255. I.e., this value is scaled by the minimum
20229 instruction length since special opcode 255 would have
20230 scaled the increment. */
20231 case DW_LNS_const_add_pc:
20232 state_machine.handle_const_add_pc ();
20233 break;
20234 case DW_LNS_fixed_advance_pc:
20235 {
20236 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20237 line_ptr += 2;
20238
20239 state_machine.handle_fixed_advance_pc (addr_adj);
20240 }
20241 break;
20242 default:
20243 {
20244 /* Unknown standard opcode, ignore it. */
20245 int i;
20246
20247 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20248 {
20249 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20250 line_ptr += bytes_read;
20251 }
20252 }
20253 }
20254 }
20255
20256 if (!end_sequence)
20257 dwarf2_debug_line_missing_end_sequence_complaint ();
20258
20259 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20260 in which case we still finish recording the last line). */
20261 state_machine.record_line (true);
20262 }
20263 }
20264
20265 /* Decode the Line Number Program (LNP) for the given line_header
20266 structure and CU. The actual information extracted and the type
20267 of structures created from the LNP depends on the value of PST.
20268
20269 1. If PST is NULL, then this procedure uses the data from the program
20270 to create all necessary symbol tables, and their linetables.
20271
20272 2. If PST is not NULL, this procedure reads the program to determine
20273 the list of files included by the unit represented by PST, and
20274 builds all the associated partial symbol tables.
20275
20276 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20277 It is used for relative paths in the line table.
20278 NOTE: When processing partial symtabs (pst != NULL),
20279 comp_dir == pst->dirname.
20280
20281 NOTE: It is important that psymtabs have the same file name (via strcmp)
20282 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20283 symtab we don't use it in the name of the psymtabs we create.
20284 E.g. expand_line_sal requires this when finding psymtabs to expand.
20285 A good testcase for this is mb-inline.exp.
20286
20287 LOWPC is the lowest address in CU (or 0 if not known).
20288
20289 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20290 for its PC<->lines mapping information. Otherwise only the filename
20291 table is read in. */
20292
20293 static void
20294 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20295 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20296 CORE_ADDR lowpc, int decode_mapping)
20297 {
20298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20299 const int decode_for_pst_p = (pst != NULL);
20300
20301 if (decode_mapping)
20302 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20303
20304 if (decode_for_pst_p)
20305 {
20306 /* Now that we're done scanning the Line Header Program, we can
20307 create the psymtab of each included file. */
20308 for (auto &file_entry : lh->file_names ())
20309 if (file_entry.included_p == 1)
20310 {
20311 gdb::unique_xmalloc_ptr<char> name_holder;
20312 const char *include_name =
20313 psymtab_include_file_name (lh, file_entry, pst,
20314 comp_dir, &name_holder);
20315 if (include_name != NULL)
20316 dwarf2_create_include_psymtab (include_name, pst, objfile);
20317 }
20318 }
20319 else
20320 {
20321 /* Make sure a symtab is created for every file, even files
20322 which contain only variables (i.e. no code with associated
20323 line numbers). */
20324 buildsym_compunit *builder = cu->get_builder ();
20325 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20326
20327 for (auto &fe : lh->file_names ())
20328 {
20329 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20330 if (builder->get_current_subfile ()->symtab == NULL)
20331 {
20332 builder->get_current_subfile ()->symtab
20333 = allocate_symtab (cust,
20334 builder->get_current_subfile ()->name);
20335 }
20336 fe.symtab = builder->get_current_subfile ()->symtab;
20337 }
20338 }
20339 }
20340
20341 /* Start a subfile for DWARF. FILENAME is the name of the file and
20342 DIRNAME the name of the source directory which contains FILENAME
20343 or NULL if not known.
20344 This routine tries to keep line numbers from identical absolute and
20345 relative file names in a common subfile.
20346
20347 Using the `list' example from the GDB testsuite, which resides in
20348 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20349 of /srcdir/list0.c yields the following debugging information for list0.c:
20350
20351 DW_AT_name: /srcdir/list0.c
20352 DW_AT_comp_dir: /compdir
20353 files.files[0].name: list0.h
20354 files.files[0].dir: /srcdir
20355 files.files[1].name: list0.c
20356 files.files[1].dir: /srcdir
20357
20358 The line number information for list0.c has to end up in a single
20359 subfile, so that `break /srcdir/list0.c:1' works as expected.
20360 start_subfile will ensure that this happens provided that we pass the
20361 concatenation of files.files[1].dir and files.files[1].name as the
20362 subfile's name. */
20363
20364 static void
20365 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20366 const char *dirname)
20367 {
20368 gdb::unique_xmalloc_ptr<char> copy;
20369
20370 /* In order not to lose the line information directory,
20371 we concatenate it to the filename when it makes sense.
20372 Note that the Dwarf3 standard says (speaking of filenames in line
20373 information): ``The directory index is ignored for file names
20374 that represent full path names''. Thus ignoring dirname in the
20375 `else' branch below isn't an issue. */
20376
20377 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20378 {
20379 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20380 filename = copy.get ();
20381 }
20382
20383 cu->get_builder ()->start_subfile (filename);
20384 }
20385
20386 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20387 buildsym_compunit constructor. */
20388
20389 struct compunit_symtab *
20390 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20391 CORE_ADDR low_pc)
20392 {
20393 gdb_assert (m_builder == nullptr);
20394
20395 m_builder.reset (new struct buildsym_compunit
20396 (per_cu->dwarf2_per_objfile->objfile,
20397 name, comp_dir, language, low_pc));
20398
20399 list_in_scope = get_builder ()->get_file_symbols ();
20400
20401 get_builder ()->record_debugformat ("DWARF 2");
20402 get_builder ()->record_producer (producer);
20403
20404 processing_has_namespace_info = false;
20405
20406 return get_builder ()->get_compunit_symtab ();
20407 }
20408
20409 static void
20410 var_decode_location (struct attribute *attr, struct symbol *sym,
20411 struct dwarf2_cu *cu)
20412 {
20413 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20414 struct comp_unit_head *cu_header = &cu->header;
20415
20416 /* NOTE drow/2003-01-30: There used to be a comment and some special
20417 code here to turn a symbol with DW_AT_external and a
20418 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20419 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20420 with some versions of binutils) where shared libraries could have
20421 relocations against symbols in their debug information - the
20422 minimal symbol would have the right address, but the debug info
20423 would not. It's no longer necessary, because we will explicitly
20424 apply relocations when we read in the debug information now. */
20425
20426 /* A DW_AT_location attribute with no contents indicates that a
20427 variable has been optimized away. */
20428 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20429 {
20430 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20431 return;
20432 }
20433
20434 /* Handle one degenerate form of location expression specially, to
20435 preserve GDB's previous behavior when section offsets are
20436 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20437 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20438
20439 if (attr->form_is_block ()
20440 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20441 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20442 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20443 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20444 && (DW_BLOCK (attr)->size
20445 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20446 {
20447 unsigned int dummy;
20448
20449 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20450 SET_SYMBOL_VALUE_ADDRESS
20451 (sym, cu->header.read_address (objfile->obfd,
20452 DW_BLOCK (attr)->data + 1,
20453 &dummy));
20454 else
20455 SET_SYMBOL_VALUE_ADDRESS
20456 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20457 &dummy));
20458 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20459 fixup_symbol_section (sym, objfile);
20460 SET_SYMBOL_VALUE_ADDRESS
20461 (sym,
20462 SYMBOL_VALUE_ADDRESS (sym)
20463 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20464 return;
20465 }
20466
20467 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20468 expression evaluator, and use LOC_COMPUTED only when necessary
20469 (i.e. when the value of a register or memory location is
20470 referenced, or a thread-local block, etc.). Then again, it might
20471 not be worthwhile. I'm assuming that it isn't unless performance
20472 or memory numbers show me otherwise. */
20473
20474 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20475
20476 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20477 cu->has_loclist = true;
20478 }
20479
20480 /* Given a pointer to a DWARF information entry, figure out if we need
20481 to make a symbol table entry for it, and if so, create a new entry
20482 and return a pointer to it.
20483 If TYPE is NULL, determine symbol type from the die, otherwise
20484 used the passed type.
20485 If SPACE is not NULL, use it to hold the new symbol. If it is
20486 NULL, allocate a new symbol on the objfile's obstack. */
20487
20488 static struct symbol *
20489 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20490 struct symbol *space)
20491 {
20492 struct dwarf2_per_objfile *dwarf2_per_objfile
20493 = cu->per_cu->dwarf2_per_objfile;
20494 struct objfile *objfile = dwarf2_per_objfile->objfile;
20495 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20496 struct symbol *sym = NULL;
20497 const char *name;
20498 struct attribute *attr = NULL;
20499 struct attribute *attr2 = NULL;
20500 CORE_ADDR baseaddr;
20501 struct pending **list_to_add = NULL;
20502
20503 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20504
20505 baseaddr = objfile->text_section_offset ();
20506
20507 name = dwarf2_name (die, cu);
20508 if (name)
20509 {
20510 const char *linkagename;
20511 int suppress_add = 0;
20512
20513 if (space)
20514 sym = space;
20515 else
20516 sym = allocate_symbol (objfile);
20517 OBJSTAT (objfile, n_syms++);
20518
20519 /* Cache this symbol's name and the name's demangled form (if any). */
20520 sym->set_language (cu->language, &objfile->objfile_obstack);
20521 linkagename = dwarf2_physname (name, die, cu);
20522 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20523
20524 /* Fortran does not have mangling standard and the mangling does differ
20525 between gfortran, iFort etc. */
20526 if (cu->language == language_fortran
20527 && symbol_get_demangled_name (sym) == NULL)
20528 symbol_set_demangled_name (sym,
20529 dwarf2_full_name (name, die, cu),
20530 NULL);
20531
20532 /* Default assumptions.
20533 Use the passed type or decode it from the die. */
20534 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20535 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20536 if (type != NULL)
20537 SYMBOL_TYPE (sym) = type;
20538 else
20539 SYMBOL_TYPE (sym) = die_type (die, cu);
20540 attr = dwarf2_attr (die,
20541 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20542 cu);
20543 if (attr != nullptr)
20544 {
20545 SYMBOL_LINE (sym) = DW_UNSND (attr);
20546 }
20547
20548 attr = dwarf2_attr (die,
20549 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20550 cu);
20551 if (attr != nullptr)
20552 {
20553 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20554 struct file_entry *fe;
20555
20556 if (cu->line_header != NULL)
20557 fe = cu->line_header->file_name_at (file_index);
20558 else
20559 fe = NULL;
20560
20561 if (fe == NULL)
20562 complaint (_("file index out of range"));
20563 else
20564 symbol_set_symtab (sym, fe->symtab);
20565 }
20566
20567 switch (die->tag)
20568 {
20569 case DW_TAG_label:
20570 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20571 if (attr != nullptr)
20572 {
20573 CORE_ADDR addr;
20574
20575 addr = attr->value_as_address ();
20576 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20577 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20578 }
20579 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20580 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20581 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20582 add_symbol_to_list (sym, cu->list_in_scope);
20583 break;
20584 case DW_TAG_subprogram:
20585 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20586 finish_block. */
20587 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20588 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20589 if ((attr2 && (DW_UNSND (attr2) != 0))
20590 || cu->language == language_ada
20591 || cu->language == language_fortran)
20592 {
20593 /* Subprograms marked external are stored as a global symbol.
20594 Ada and Fortran subprograms, whether marked external or
20595 not, are always stored as a global symbol, because we want
20596 to be able to access them globally. For instance, we want
20597 to be able to break on a nested subprogram without having
20598 to specify the context. */
20599 list_to_add = cu->get_builder ()->get_global_symbols ();
20600 }
20601 else
20602 {
20603 list_to_add = cu->list_in_scope;
20604 }
20605 break;
20606 case DW_TAG_inlined_subroutine:
20607 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20608 finish_block. */
20609 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20610 SYMBOL_INLINED (sym) = 1;
20611 list_to_add = cu->list_in_scope;
20612 break;
20613 case DW_TAG_template_value_param:
20614 suppress_add = 1;
20615 /* Fall through. */
20616 case DW_TAG_constant:
20617 case DW_TAG_variable:
20618 case DW_TAG_member:
20619 /* Compilation with minimal debug info may result in
20620 variables with missing type entries. Change the
20621 misleading `void' type to something sensible. */
20622 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20623 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20624
20625 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20626 /* In the case of DW_TAG_member, we should only be called for
20627 static const members. */
20628 if (die->tag == DW_TAG_member)
20629 {
20630 /* dwarf2_add_field uses die_is_declaration,
20631 so we do the same. */
20632 gdb_assert (die_is_declaration (die, cu));
20633 gdb_assert (attr);
20634 }
20635 if (attr != nullptr)
20636 {
20637 dwarf2_const_value (attr, sym, cu);
20638 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20639 if (!suppress_add)
20640 {
20641 if (attr2 && (DW_UNSND (attr2) != 0))
20642 list_to_add = cu->get_builder ()->get_global_symbols ();
20643 else
20644 list_to_add = cu->list_in_scope;
20645 }
20646 break;
20647 }
20648 attr = dwarf2_attr (die, DW_AT_location, cu);
20649 if (attr != nullptr)
20650 {
20651 var_decode_location (attr, sym, cu);
20652 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20653
20654 /* Fortran explicitly imports any global symbols to the local
20655 scope by DW_TAG_common_block. */
20656 if (cu->language == language_fortran && die->parent
20657 && die->parent->tag == DW_TAG_common_block)
20658 attr2 = NULL;
20659
20660 if (SYMBOL_CLASS (sym) == LOC_STATIC
20661 && SYMBOL_VALUE_ADDRESS (sym) == 0
20662 && !dwarf2_per_objfile->has_section_at_zero)
20663 {
20664 /* When a static variable is eliminated by the linker,
20665 the corresponding debug information is not stripped
20666 out, but the variable address is set to null;
20667 do not add such variables into symbol table. */
20668 }
20669 else if (attr2 && (DW_UNSND (attr2) != 0))
20670 {
20671 if (SYMBOL_CLASS (sym) == LOC_STATIC
20672 && (objfile->flags & OBJF_MAINLINE) == 0
20673 && dwarf2_per_objfile->can_copy)
20674 {
20675 /* A global static variable might be subject to
20676 copy relocation. We first check for a local
20677 minsym, though, because maybe the symbol was
20678 marked hidden, in which case this would not
20679 apply. */
20680 bound_minimal_symbol found
20681 = (lookup_minimal_symbol_linkage
20682 (sym->linkage_name (), objfile));
20683 if (found.minsym != nullptr)
20684 sym->maybe_copied = 1;
20685 }
20686
20687 /* A variable with DW_AT_external is never static,
20688 but it may be block-scoped. */
20689 list_to_add
20690 = ((cu->list_in_scope
20691 == cu->get_builder ()->get_file_symbols ())
20692 ? cu->get_builder ()->get_global_symbols ()
20693 : cu->list_in_scope);
20694 }
20695 else
20696 list_to_add = cu->list_in_scope;
20697 }
20698 else
20699 {
20700 /* We do not know the address of this symbol.
20701 If it is an external symbol and we have type information
20702 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20703 The address of the variable will then be determined from
20704 the minimal symbol table whenever the variable is
20705 referenced. */
20706 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20707
20708 /* Fortran explicitly imports any global symbols to the local
20709 scope by DW_TAG_common_block. */
20710 if (cu->language == language_fortran && die->parent
20711 && die->parent->tag == DW_TAG_common_block)
20712 {
20713 /* SYMBOL_CLASS doesn't matter here because
20714 read_common_block is going to reset it. */
20715 if (!suppress_add)
20716 list_to_add = cu->list_in_scope;
20717 }
20718 else if (attr2 && (DW_UNSND (attr2) != 0)
20719 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20720 {
20721 /* A variable with DW_AT_external is never static, but it
20722 may be block-scoped. */
20723 list_to_add
20724 = ((cu->list_in_scope
20725 == cu->get_builder ()->get_file_symbols ())
20726 ? cu->get_builder ()->get_global_symbols ()
20727 : cu->list_in_scope);
20728
20729 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20730 }
20731 else if (!die_is_declaration (die, cu))
20732 {
20733 /* Use the default LOC_OPTIMIZED_OUT class. */
20734 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20735 if (!suppress_add)
20736 list_to_add = cu->list_in_scope;
20737 }
20738 }
20739 break;
20740 case DW_TAG_formal_parameter:
20741 {
20742 /* If we are inside a function, mark this as an argument. If
20743 not, we might be looking at an argument to an inlined function
20744 when we do not have enough information to show inlined frames;
20745 pretend it's a local variable in that case so that the user can
20746 still see it. */
20747 struct context_stack *curr
20748 = cu->get_builder ()->get_current_context_stack ();
20749 if (curr != nullptr && curr->name != nullptr)
20750 SYMBOL_IS_ARGUMENT (sym) = 1;
20751 attr = dwarf2_attr (die, DW_AT_location, cu);
20752 if (attr != nullptr)
20753 {
20754 var_decode_location (attr, sym, cu);
20755 }
20756 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20757 if (attr != nullptr)
20758 {
20759 dwarf2_const_value (attr, sym, cu);
20760 }
20761
20762 list_to_add = cu->list_in_scope;
20763 }
20764 break;
20765 case DW_TAG_unspecified_parameters:
20766 /* From varargs functions; gdb doesn't seem to have any
20767 interest in this information, so just ignore it for now.
20768 (FIXME?) */
20769 break;
20770 case DW_TAG_template_type_param:
20771 suppress_add = 1;
20772 /* Fall through. */
20773 case DW_TAG_class_type:
20774 case DW_TAG_interface_type:
20775 case DW_TAG_structure_type:
20776 case DW_TAG_union_type:
20777 case DW_TAG_set_type:
20778 case DW_TAG_enumeration_type:
20779 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20780 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20781
20782 {
20783 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20784 really ever be static objects: otherwise, if you try
20785 to, say, break of a class's method and you're in a file
20786 which doesn't mention that class, it won't work unless
20787 the check for all static symbols in lookup_symbol_aux
20788 saves you. See the OtherFileClass tests in
20789 gdb.c++/namespace.exp. */
20790
20791 if (!suppress_add)
20792 {
20793 buildsym_compunit *builder = cu->get_builder ();
20794 list_to_add
20795 = (cu->list_in_scope == builder->get_file_symbols ()
20796 && cu->language == language_cplus
20797 ? builder->get_global_symbols ()
20798 : cu->list_in_scope);
20799
20800 /* The semantics of C++ state that "struct foo {
20801 ... }" also defines a typedef for "foo". */
20802 if (cu->language == language_cplus
20803 || cu->language == language_ada
20804 || cu->language == language_d
20805 || cu->language == language_rust)
20806 {
20807 /* The symbol's name is already allocated along
20808 with this objfile, so we don't need to
20809 duplicate it for the type. */
20810 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20811 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20812 }
20813 }
20814 }
20815 break;
20816 case DW_TAG_typedef:
20817 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20818 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20819 list_to_add = cu->list_in_scope;
20820 break;
20821 case DW_TAG_base_type:
20822 case DW_TAG_subrange_type:
20823 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20825 list_to_add = cu->list_in_scope;
20826 break;
20827 case DW_TAG_enumerator:
20828 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20829 if (attr != nullptr)
20830 {
20831 dwarf2_const_value (attr, sym, cu);
20832 }
20833 {
20834 /* NOTE: carlton/2003-11-10: See comment above in the
20835 DW_TAG_class_type, etc. block. */
20836
20837 list_to_add
20838 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20839 && cu->language == language_cplus
20840 ? cu->get_builder ()->get_global_symbols ()
20841 : cu->list_in_scope);
20842 }
20843 break;
20844 case DW_TAG_imported_declaration:
20845 case DW_TAG_namespace:
20846 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20847 list_to_add = cu->get_builder ()->get_global_symbols ();
20848 break;
20849 case DW_TAG_module:
20850 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20851 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20852 list_to_add = cu->get_builder ()->get_global_symbols ();
20853 break;
20854 case DW_TAG_common_block:
20855 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20856 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20857 add_symbol_to_list (sym, cu->list_in_scope);
20858 break;
20859 default:
20860 /* Not a tag we recognize. Hopefully we aren't processing
20861 trash data, but since we must specifically ignore things
20862 we don't recognize, there is nothing else we should do at
20863 this point. */
20864 complaint (_("unsupported tag: '%s'"),
20865 dwarf_tag_name (die->tag));
20866 break;
20867 }
20868
20869 if (suppress_add)
20870 {
20871 sym->hash_next = objfile->template_symbols;
20872 objfile->template_symbols = sym;
20873 list_to_add = NULL;
20874 }
20875
20876 if (list_to_add != NULL)
20877 add_symbol_to_list (sym, list_to_add);
20878
20879 /* For the benefit of old versions of GCC, check for anonymous
20880 namespaces based on the demangled name. */
20881 if (!cu->processing_has_namespace_info
20882 && cu->language == language_cplus)
20883 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20884 }
20885 return (sym);
20886 }
20887
20888 /* Given an attr with a DW_FORM_dataN value in host byte order,
20889 zero-extend it as appropriate for the symbol's type. The DWARF
20890 standard (v4) is not entirely clear about the meaning of using
20891 DW_FORM_dataN for a constant with a signed type, where the type is
20892 wider than the data. The conclusion of a discussion on the DWARF
20893 list was that this is unspecified. We choose to always zero-extend
20894 because that is the interpretation long in use by GCC. */
20895
20896 static gdb_byte *
20897 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20898 struct dwarf2_cu *cu, LONGEST *value, int bits)
20899 {
20900 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20901 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20902 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20903 LONGEST l = DW_UNSND (attr);
20904
20905 if (bits < sizeof (*value) * 8)
20906 {
20907 l &= ((LONGEST) 1 << bits) - 1;
20908 *value = l;
20909 }
20910 else if (bits == sizeof (*value) * 8)
20911 *value = l;
20912 else
20913 {
20914 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20915 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20916 return bytes;
20917 }
20918
20919 return NULL;
20920 }
20921
20922 /* Read a constant value from an attribute. Either set *VALUE, or if
20923 the value does not fit in *VALUE, set *BYTES - either already
20924 allocated on the objfile obstack, or newly allocated on OBSTACK,
20925 or, set *BATON, if we translated the constant to a location
20926 expression. */
20927
20928 static void
20929 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20930 const char *name, struct obstack *obstack,
20931 struct dwarf2_cu *cu,
20932 LONGEST *value, const gdb_byte **bytes,
20933 struct dwarf2_locexpr_baton **baton)
20934 {
20935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20936 struct comp_unit_head *cu_header = &cu->header;
20937 struct dwarf_block *blk;
20938 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20939 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20940
20941 *value = 0;
20942 *bytes = NULL;
20943 *baton = NULL;
20944
20945 switch (attr->form)
20946 {
20947 case DW_FORM_addr:
20948 case DW_FORM_addrx:
20949 case DW_FORM_GNU_addr_index:
20950 {
20951 gdb_byte *data;
20952
20953 if (TYPE_LENGTH (type) != cu_header->addr_size)
20954 dwarf2_const_value_length_mismatch_complaint (name,
20955 cu_header->addr_size,
20956 TYPE_LENGTH (type));
20957 /* Symbols of this form are reasonably rare, so we just
20958 piggyback on the existing location code rather than writing
20959 a new implementation of symbol_computed_ops. */
20960 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20961 (*baton)->per_cu = cu->per_cu;
20962 gdb_assert ((*baton)->per_cu);
20963
20964 (*baton)->size = 2 + cu_header->addr_size;
20965 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20966 (*baton)->data = data;
20967
20968 data[0] = DW_OP_addr;
20969 store_unsigned_integer (&data[1], cu_header->addr_size,
20970 byte_order, DW_ADDR (attr));
20971 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20972 }
20973 break;
20974 case DW_FORM_string:
20975 case DW_FORM_strp:
20976 case DW_FORM_strx:
20977 case DW_FORM_GNU_str_index:
20978 case DW_FORM_GNU_strp_alt:
20979 /* DW_STRING is already allocated on the objfile obstack, point
20980 directly to it. */
20981 *bytes = (const gdb_byte *) DW_STRING (attr);
20982 break;
20983 case DW_FORM_block1:
20984 case DW_FORM_block2:
20985 case DW_FORM_block4:
20986 case DW_FORM_block:
20987 case DW_FORM_exprloc:
20988 case DW_FORM_data16:
20989 blk = DW_BLOCK (attr);
20990 if (TYPE_LENGTH (type) != blk->size)
20991 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20992 TYPE_LENGTH (type));
20993 *bytes = blk->data;
20994 break;
20995
20996 /* The DW_AT_const_value attributes are supposed to carry the
20997 symbol's value "represented as it would be on the target
20998 architecture." By the time we get here, it's already been
20999 converted to host endianness, so we just need to sign- or
21000 zero-extend it as appropriate. */
21001 case DW_FORM_data1:
21002 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21003 break;
21004 case DW_FORM_data2:
21005 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21006 break;
21007 case DW_FORM_data4:
21008 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21009 break;
21010 case DW_FORM_data8:
21011 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21012 break;
21013
21014 case DW_FORM_sdata:
21015 case DW_FORM_implicit_const:
21016 *value = DW_SND (attr);
21017 break;
21018
21019 case DW_FORM_udata:
21020 *value = DW_UNSND (attr);
21021 break;
21022
21023 default:
21024 complaint (_("unsupported const value attribute form: '%s'"),
21025 dwarf_form_name (attr->form));
21026 *value = 0;
21027 break;
21028 }
21029 }
21030
21031
21032 /* Copy constant value from an attribute to a symbol. */
21033
21034 static void
21035 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21036 struct dwarf2_cu *cu)
21037 {
21038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21039 LONGEST value;
21040 const gdb_byte *bytes;
21041 struct dwarf2_locexpr_baton *baton;
21042
21043 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21044 sym->print_name (),
21045 &objfile->objfile_obstack, cu,
21046 &value, &bytes, &baton);
21047
21048 if (baton != NULL)
21049 {
21050 SYMBOL_LOCATION_BATON (sym) = baton;
21051 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21052 }
21053 else if (bytes != NULL)
21054 {
21055 SYMBOL_VALUE_BYTES (sym) = bytes;
21056 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21057 }
21058 else
21059 {
21060 SYMBOL_VALUE (sym) = value;
21061 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21062 }
21063 }
21064
21065 /* Return the type of the die in question using its DW_AT_type attribute. */
21066
21067 static struct type *
21068 die_type (struct die_info *die, struct dwarf2_cu *cu)
21069 {
21070 struct attribute *type_attr;
21071
21072 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21073 if (!type_attr)
21074 {
21075 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21076 /* A missing DW_AT_type represents a void type. */
21077 return objfile_type (objfile)->builtin_void;
21078 }
21079
21080 return lookup_die_type (die, type_attr, cu);
21081 }
21082
21083 /* True iff CU's producer generates GNAT Ada auxiliary information
21084 that allows to find parallel types through that information instead
21085 of having to do expensive parallel lookups by type name. */
21086
21087 static int
21088 need_gnat_info (struct dwarf2_cu *cu)
21089 {
21090 /* Assume that the Ada compiler was GNAT, which always produces
21091 the auxiliary information. */
21092 return (cu->language == language_ada);
21093 }
21094
21095 /* Return the auxiliary type of the die in question using its
21096 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21097 attribute is not present. */
21098
21099 static struct type *
21100 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21101 {
21102 struct attribute *type_attr;
21103
21104 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21105 if (!type_attr)
21106 return NULL;
21107
21108 return lookup_die_type (die, type_attr, cu);
21109 }
21110
21111 /* If DIE has a descriptive_type attribute, then set the TYPE's
21112 descriptive type accordingly. */
21113
21114 static void
21115 set_descriptive_type (struct type *type, struct die_info *die,
21116 struct dwarf2_cu *cu)
21117 {
21118 struct type *descriptive_type = die_descriptive_type (die, cu);
21119
21120 if (descriptive_type)
21121 {
21122 ALLOCATE_GNAT_AUX_TYPE (type);
21123 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21124 }
21125 }
21126
21127 /* Return the containing type of the die in question using its
21128 DW_AT_containing_type attribute. */
21129
21130 static struct type *
21131 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21132 {
21133 struct attribute *type_attr;
21134 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21135
21136 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21137 if (!type_attr)
21138 error (_("Dwarf Error: Problem turning containing type into gdb type "
21139 "[in module %s]"), objfile_name (objfile));
21140
21141 return lookup_die_type (die, type_attr, cu);
21142 }
21143
21144 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21145
21146 static struct type *
21147 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21148 {
21149 struct dwarf2_per_objfile *dwarf2_per_objfile
21150 = cu->per_cu->dwarf2_per_objfile;
21151 struct objfile *objfile = dwarf2_per_objfile->objfile;
21152 char *saved;
21153
21154 std::string message
21155 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21156 objfile_name (objfile),
21157 sect_offset_str (cu->header.sect_off),
21158 sect_offset_str (die->sect_off));
21159 saved = obstack_strdup (&objfile->objfile_obstack, message);
21160
21161 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21162 }
21163
21164 /* Look up the type of DIE in CU using its type attribute ATTR.
21165 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21166 DW_AT_containing_type.
21167 If there is no type substitute an error marker. */
21168
21169 static struct type *
21170 lookup_die_type (struct die_info *die, const struct attribute *attr,
21171 struct dwarf2_cu *cu)
21172 {
21173 struct dwarf2_per_objfile *dwarf2_per_objfile
21174 = cu->per_cu->dwarf2_per_objfile;
21175 struct objfile *objfile = dwarf2_per_objfile->objfile;
21176 struct type *this_type;
21177
21178 gdb_assert (attr->name == DW_AT_type
21179 || attr->name == DW_AT_GNAT_descriptive_type
21180 || attr->name == DW_AT_containing_type);
21181
21182 /* First see if we have it cached. */
21183
21184 if (attr->form == DW_FORM_GNU_ref_alt)
21185 {
21186 struct dwarf2_per_cu_data *per_cu;
21187 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21188
21189 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21190 dwarf2_per_objfile);
21191 this_type = get_die_type_at_offset (sect_off, per_cu);
21192 }
21193 else if (attr->form_is_ref ())
21194 {
21195 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21196
21197 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21198 }
21199 else if (attr->form == DW_FORM_ref_sig8)
21200 {
21201 ULONGEST signature = DW_SIGNATURE (attr);
21202
21203 return get_signatured_type (die, signature, cu);
21204 }
21205 else
21206 {
21207 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21208 " at %s [in module %s]"),
21209 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21210 objfile_name (objfile));
21211 return build_error_marker_type (cu, die);
21212 }
21213
21214 /* If not cached we need to read it in. */
21215
21216 if (this_type == NULL)
21217 {
21218 struct die_info *type_die = NULL;
21219 struct dwarf2_cu *type_cu = cu;
21220
21221 if (attr->form_is_ref ())
21222 type_die = follow_die_ref (die, attr, &type_cu);
21223 if (type_die == NULL)
21224 return build_error_marker_type (cu, die);
21225 /* If we find the type now, it's probably because the type came
21226 from an inter-CU reference and the type's CU got expanded before
21227 ours. */
21228 this_type = read_type_die (type_die, type_cu);
21229 }
21230
21231 /* If we still don't have a type use an error marker. */
21232
21233 if (this_type == NULL)
21234 return build_error_marker_type (cu, die);
21235
21236 return this_type;
21237 }
21238
21239 /* Return the type in DIE, CU.
21240 Returns NULL for invalid types.
21241
21242 This first does a lookup in die_type_hash,
21243 and only reads the die in if necessary.
21244
21245 NOTE: This can be called when reading in partial or full symbols. */
21246
21247 static struct type *
21248 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21249 {
21250 struct type *this_type;
21251
21252 this_type = get_die_type (die, cu);
21253 if (this_type)
21254 return this_type;
21255
21256 return read_type_die_1 (die, cu);
21257 }
21258
21259 /* Read the type in DIE, CU.
21260 Returns NULL for invalid types. */
21261
21262 static struct type *
21263 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21264 {
21265 struct type *this_type = NULL;
21266
21267 switch (die->tag)
21268 {
21269 case DW_TAG_class_type:
21270 case DW_TAG_interface_type:
21271 case DW_TAG_structure_type:
21272 case DW_TAG_union_type:
21273 this_type = read_structure_type (die, cu);
21274 break;
21275 case DW_TAG_enumeration_type:
21276 this_type = read_enumeration_type (die, cu);
21277 break;
21278 case DW_TAG_subprogram:
21279 case DW_TAG_subroutine_type:
21280 case DW_TAG_inlined_subroutine:
21281 this_type = read_subroutine_type (die, cu);
21282 break;
21283 case DW_TAG_array_type:
21284 this_type = read_array_type (die, cu);
21285 break;
21286 case DW_TAG_set_type:
21287 this_type = read_set_type (die, cu);
21288 break;
21289 case DW_TAG_pointer_type:
21290 this_type = read_tag_pointer_type (die, cu);
21291 break;
21292 case DW_TAG_ptr_to_member_type:
21293 this_type = read_tag_ptr_to_member_type (die, cu);
21294 break;
21295 case DW_TAG_reference_type:
21296 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21297 break;
21298 case DW_TAG_rvalue_reference_type:
21299 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21300 break;
21301 case DW_TAG_const_type:
21302 this_type = read_tag_const_type (die, cu);
21303 break;
21304 case DW_TAG_volatile_type:
21305 this_type = read_tag_volatile_type (die, cu);
21306 break;
21307 case DW_TAG_restrict_type:
21308 this_type = read_tag_restrict_type (die, cu);
21309 break;
21310 case DW_TAG_string_type:
21311 this_type = read_tag_string_type (die, cu);
21312 break;
21313 case DW_TAG_typedef:
21314 this_type = read_typedef (die, cu);
21315 break;
21316 case DW_TAG_subrange_type:
21317 this_type = read_subrange_type (die, cu);
21318 break;
21319 case DW_TAG_base_type:
21320 this_type = read_base_type (die, cu);
21321 break;
21322 case DW_TAG_unspecified_type:
21323 this_type = read_unspecified_type (die, cu);
21324 break;
21325 case DW_TAG_namespace:
21326 this_type = read_namespace_type (die, cu);
21327 break;
21328 case DW_TAG_module:
21329 this_type = read_module_type (die, cu);
21330 break;
21331 case DW_TAG_atomic_type:
21332 this_type = read_tag_atomic_type (die, cu);
21333 break;
21334 default:
21335 complaint (_("unexpected tag in read_type_die: '%s'"),
21336 dwarf_tag_name (die->tag));
21337 break;
21338 }
21339
21340 return this_type;
21341 }
21342
21343 /* See if we can figure out if the class lives in a namespace. We do
21344 this by looking for a member function; its demangled name will
21345 contain namespace info, if there is any.
21346 Return the computed name or NULL.
21347 Space for the result is allocated on the objfile's obstack.
21348 This is the full-die version of guess_partial_die_structure_name.
21349 In this case we know DIE has no useful parent. */
21350
21351 static const char *
21352 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21353 {
21354 struct die_info *spec_die;
21355 struct dwarf2_cu *spec_cu;
21356 struct die_info *child;
21357 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21358
21359 spec_cu = cu;
21360 spec_die = die_specification (die, &spec_cu);
21361 if (spec_die != NULL)
21362 {
21363 die = spec_die;
21364 cu = spec_cu;
21365 }
21366
21367 for (child = die->child;
21368 child != NULL;
21369 child = child->sibling)
21370 {
21371 if (child->tag == DW_TAG_subprogram)
21372 {
21373 const char *linkage_name = dw2_linkage_name (child, cu);
21374
21375 if (linkage_name != NULL)
21376 {
21377 gdb::unique_xmalloc_ptr<char> actual_name
21378 (language_class_name_from_physname (cu->language_defn,
21379 linkage_name));
21380 const char *name = NULL;
21381
21382 if (actual_name != NULL)
21383 {
21384 const char *die_name = dwarf2_name (die, cu);
21385
21386 if (die_name != NULL
21387 && strcmp (die_name, actual_name.get ()) != 0)
21388 {
21389 /* Strip off the class name from the full name.
21390 We want the prefix. */
21391 int die_name_len = strlen (die_name);
21392 int actual_name_len = strlen (actual_name.get ());
21393 const char *ptr = actual_name.get ();
21394
21395 /* Test for '::' as a sanity check. */
21396 if (actual_name_len > die_name_len + 2
21397 && ptr[actual_name_len - die_name_len - 1] == ':')
21398 name = obstack_strndup (
21399 &objfile->per_bfd->storage_obstack,
21400 ptr, actual_name_len - die_name_len - 2);
21401 }
21402 }
21403 return name;
21404 }
21405 }
21406 }
21407
21408 return NULL;
21409 }
21410
21411 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21412 prefix part in such case. See
21413 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21414
21415 static const char *
21416 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21417 {
21418 struct attribute *attr;
21419 const char *base;
21420
21421 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21422 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21423 return NULL;
21424
21425 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21426 return NULL;
21427
21428 attr = dw2_linkage_name_attr (die, cu);
21429 if (attr == NULL || DW_STRING (attr) == NULL)
21430 return NULL;
21431
21432 /* dwarf2_name had to be already called. */
21433 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21434
21435 /* Strip the base name, keep any leading namespaces/classes. */
21436 base = strrchr (DW_STRING (attr), ':');
21437 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21438 return "";
21439
21440 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21441 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21442 DW_STRING (attr),
21443 &base[-1] - DW_STRING (attr));
21444 }
21445
21446 /* Return the name of the namespace/class that DIE is defined within,
21447 or "" if we can't tell. The caller should not xfree the result.
21448
21449 For example, if we're within the method foo() in the following
21450 code:
21451
21452 namespace N {
21453 class C {
21454 void foo () {
21455 }
21456 };
21457 }
21458
21459 then determine_prefix on foo's die will return "N::C". */
21460
21461 static const char *
21462 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21463 {
21464 struct dwarf2_per_objfile *dwarf2_per_objfile
21465 = cu->per_cu->dwarf2_per_objfile;
21466 struct die_info *parent, *spec_die;
21467 struct dwarf2_cu *spec_cu;
21468 struct type *parent_type;
21469 const char *retval;
21470
21471 if (cu->language != language_cplus
21472 && cu->language != language_fortran && cu->language != language_d
21473 && cu->language != language_rust)
21474 return "";
21475
21476 retval = anonymous_struct_prefix (die, cu);
21477 if (retval)
21478 return retval;
21479
21480 /* We have to be careful in the presence of DW_AT_specification.
21481 For example, with GCC 3.4, given the code
21482
21483 namespace N {
21484 void foo() {
21485 // Definition of N::foo.
21486 }
21487 }
21488
21489 then we'll have a tree of DIEs like this:
21490
21491 1: DW_TAG_compile_unit
21492 2: DW_TAG_namespace // N
21493 3: DW_TAG_subprogram // declaration of N::foo
21494 4: DW_TAG_subprogram // definition of N::foo
21495 DW_AT_specification // refers to die #3
21496
21497 Thus, when processing die #4, we have to pretend that we're in
21498 the context of its DW_AT_specification, namely the contex of die
21499 #3. */
21500 spec_cu = cu;
21501 spec_die = die_specification (die, &spec_cu);
21502 if (spec_die == NULL)
21503 parent = die->parent;
21504 else
21505 {
21506 parent = spec_die->parent;
21507 cu = spec_cu;
21508 }
21509
21510 if (parent == NULL)
21511 return "";
21512 else if (parent->building_fullname)
21513 {
21514 const char *name;
21515 const char *parent_name;
21516
21517 /* It has been seen on RealView 2.2 built binaries,
21518 DW_TAG_template_type_param types actually _defined_ as
21519 children of the parent class:
21520
21521 enum E {};
21522 template class <class Enum> Class{};
21523 Class<enum E> class_e;
21524
21525 1: DW_TAG_class_type (Class)
21526 2: DW_TAG_enumeration_type (E)
21527 3: DW_TAG_enumerator (enum1:0)
21528 3: DW_TAG_enumerator (enum2:1)
21529 ...
21530 2: DW_TAG_template_type_param
21531 DW_AT_type DW_FORM_ref_udata (E)
21532
21533 Besides being broken debug info, it can put GDB into an
21534 infinite loop. Consider:
21535
21536 When we're building the full name for Class<E>, we'll start
21537 at Class, and go look over its template type parameters,
21538 finding E. We'll then try to build the full name of E, and
21539 reach here. We're now trying to build the full name of E,
21540 and look over the parent DIE for containing scope. In the
21541 broken case, if we followed the parent DIE of E, we'd again
21542 find Class, and once again go look at its template type
21543 arguments, etc., etc. Simply don't consider such parent die
21544 as source-level parent of this die (it can't be, the language
21545 doesn't allow it), and break the loop here. */
21546 name = dwarf2_name (die, cu);
21547 parent_name = dwarf2_name (parent, cu);
21548 complaint (_("template param type '%s' defined within parent '%s'"),
21549 name ? name : "<unknown>",
21550 parent_name ? parent_name : "<unknown>");
21551 return "";
21552 }
21553 else
21554 switch (parent->tag)
21555 {
21556 case DW_TAG_namespace:
21557 parent_type = read_type_die (parent, cu);
21558 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21559 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21560 Work around this problem here. */
21561 if (cu->language == language_cplus
21562 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21563 return "";
21564 /* We give a name to even anonymous namespaces. */
21565 return TYPE_NAME (parent_type);
21566 case DW_TAG_class_type:
21567 case DW_TAG_interface_type:
21568 case DW_TAG_structure_type:
21569 case DW_TAG_union_type:
21570 case DW_TAG_module:
21571 parent_type = read_type_die (parent, cu);
21572 if (TYPE_NAME (parent_type) != NULL)
21573 return TYPE_NAME (parent_type);
21574 else
21575 /* An anonymous structure is only allowed non-static data
21576 members; no typedefs, no member functions, et cetera.
21577 So it does not need a prefix. */
21578 return "";
21579 case DW_TAG_compile_unit:
21580 case DW_TAG_partial_unit:
21581 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21582 if (cu->language == language_cplus
21583 && !dwarf2_per_objfile->types.empty ()
21584 && die->child != NULL
21585 && (die->tag == DW_TAG_class_type
21586 || die->tag == DW_TAG_structure_type
21587 || die->tag == DW_TAG_union_type))
21588 {
21589 const char *name = guess_full_die_structure_name (die, cu);
21590 if (name != NULL)
21591 return name;
21592 }
21593 return "";
21594 case DW_TAG_subprogram:
21595 /* Nested subroutines in Fortran get a prefix with the name
21596 of the parent's subroutine. */
21597 if (cu->language == language_fortran)
21598 {
21599 if ((die->tag == DW_TAG_subprogram)
21600 && (dwarf2_name (parent, cu) != NULL))
21601 return dwarf2_name (parent, cu);
21602 }
21603 return determine_prefix (parent, cu);
21604 case DW_TAG_enumeration_type:
21605 parent_type = read_type_die (parent, cu);
21606 if (TYPE_DECLARED_CLASS (parent_type))
21607 {
21608 if (TYPE_NAME (parent_type) != NULL)
21609 return TYPE_NAME (parent_type);
21610 return "";
21611 }
21612 /* Fall through. */
21613 default:
21614 return determine_prefix (parent, cu);
21615 }
21616 }
21617
21618 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21619 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21620 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21621 an obconcat, otherwise allocate storage for the result. The CU argument is
21622 used to determine the language and hence, the appropriate separator. */
21623
21624 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21625
21626 static char *
21627 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21628 int physname, struct dwarf2_cu *cu)
21629 {
21630 const char *lead = "";
21631 const char *sep;
21632
21633 if (suffix == NULL || suffix[0] == '\0'
21634 || prefix == NULL || prefix[0] == '\0')
21635 sep = "";
21636 else if (cu->language == language_d)
21637 {
21638 /* For D, the 'main' function could be defined in any module, but it
21639 should never be prefixed. */
21640 if (strcmp (suffix, "D main") == 0)
21641 {
21642 prefix = "";
21643 sep = "";
21644 }
21645 else
21646 sep = ".";
21647 }
21648 else if (cu->language == language_fortran && physname)
21649 {
21650 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21651 DW_AT_MIPS_linkage_name is preferred and used instead. */
21652
21653 lead = "__";
21654 sep = "_MOD_";
21655 }
21656 else
21657 sep = "::";
21658
21659 if (prefix == NULL)
21660 prefix = "";
21661 if (suffix == NULL)
21662 suffix = "";
21663
21664 if (obs == NULL)
21665 {
21666 char *retval
21667 = ((char *)
21668 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21669
21670 strcpy (retval, lead);
21671 strcat (retval, prefix);
21672 strcat (retval, sep);
21673 strcat (retval, suffix);
21674 return retval;
21675 }
21676 else
21677 {
21678 /* We have an obstack. */
21679 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21680 }
21681 }
21682
21683 /* Return sibling of die, NULL if no sibling. */
21684
21685 static struct die_info *
21686 sibling_die (struct die_info *die)
21687 {
21688 return die->sibling;
21689 }
21690
21691 /* Get name of a die, return NULL if not found. */
21692
21693 static const char *
21694 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21695 struct obstack *obstack)
21696 {
21697 if (name && cu->language == language_cplus)
21698 {
21699 std::string canon_name = cp_canonicalize_string (name);
21700
21701 if (!canon_name.empty ())
21702 {
21703 if (canon_name != name)
21704 name = obstack_strdup (obstack, canon_name);
21705 }
21706 }
21707
21708 return name;
21709 }
21710
21711 /* Get name of a die, return NULL if not found.
21712 Anonymous namespaces are converted to their magic string. */
21713
21714 static const char *
21715 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21716 {
21717 struct attribute *attr;
21718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21719
21720 attr = dwarf2_attr (die, DW_AT_name, cu);
21721 if ((!attr || !DW_STRING (attr))
21722 && die->tag != DW_TAG_namespace
21723 && die->tag != DW_TAG_class_type
21724 && die->tag != DW_TAG_interface_type
21725 && die->tag != DW_TAG_structure_type
21726 && die->tag != DW_TAG_union_type)
21727 return NULL;
21728
21729 switch (die->tag)
21730 {
21731 case DW_TAG_compile_unit:
21732 case DW_TAG_partial_unit:
21733 /* Compilation units have a DW_AT_name that is a filename, not
21734 a source language identifier. */
21735 case DW_TAG_enumeration_type:
21736 case DW_TAG_enumerator:
21737 /* These tags always have simple identifiers already; no need
21738 to canonicalize them. */
21739 return DW_STRING (attr);
21740
21741 case DW_TAG_namespace:
21742 if (attr != NULL && DW_STRING (attr) != NULL)
21743 return DW_STRING (attr);
21744 return CP_ANONYMOUS_NAMESPACE_STR;
21745
21746 case DW_TAG_class_type:
21747 case DW_TAG_interface_type:
21748 case DW_TAG_structure_type:
21749 case DW_TAG_union_type:
21750 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21751 structures or unions. These were of the form "._%d" in GCC 4.1,
21752 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21753 and GCC 4.4. We work around this problem by ignoring these. */
21754 if (attr && DW_STRING (attr)
21755 && (startswith (DW_STRING (attr), "._")
21756 || startswith (DW_STRING (attr), "<anonymous")))
21757 return NULL;
21758
21759 /* GCC might emit a nameless typedef that has a linkage name. See
21760 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21761 if (!attr || DW_STRING (attr) == NULL)
21762 {
21763 attr = dw2_linkage_name_attr (die, cu);
21764 if (attr == NULL || DW_STRING (attr) == NULL)
21765 return NULL;
21766
21767 /* Avoid demangling DW_STRING (attr) the second time on a second
21768 call for the same DIE. */
21769 if (!DW_STRING_IS_CANONICAL (attr))
21770 {
21771 gdb::unique_xmalloc_ptr<char> demangled
21772 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21773 if (demangled == nullptr)
21774 return nullptr;
21775
21776 const char *base;
21777
21778 /* FIXME: we already did this for the partial symbol... */
21779 DW_STRING (attr)
21780 = obstack_strdup (&objfile->per_bfd->storage_obstack,
21781 demangled.get ());
21782 DW_STRING_IS_CANONICAL (attr) = 1;
21783
21784 /* Strip any leading namespaces/classes, keep only the base name.
21785 DW_AT_name for named DIEs does not contain the prefixes. */
21786 base = strrchr (DW_STRING (attr), ':');
21787 if (base && base > DW_STRING (attr) && base[-1] == ':')
21788 return &base[1];
21789 else
21790 return DW_STRING (attr);
21791 }
21792 }
21793 break;
21794
21795 default:
21796 break;
21797 }
21798
21799 if (!DW_STRING_IS_CANONICAL (attr))
21800 {
21801 DW_STRING (attr)
21802 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21803 &objfile->per_bfd->storage_obstack);
21804 DW_STRING_IS_CANONICAL (attr) = 1;
21805 }
21806 return DW_STRING (attr);
21807 }
21808
21809 /* Return the die that this die in an extension of, or NULL if there
21810 is none. *EXT_CU is the CU containing DIE on input, and the CU
21811 containing the return value on output. */
21812
21813 static struct die_info *
21814 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21815 {
21816 struct attribute *attr;
21817
21818 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21819 if (attr == NULL)
21820 return NULL;
21821
21822 return follow_die_ref (die, attr, ext_cu);
21823 }
21824
21825 /* A convenience function that returns an "unknown" DWARF name,
21826 including the value of V. STR is the name of the entity being
21827 printed, e.g., "TAG". */
21828
21829 static const char *
21830 dwarf_unknown (const char *str, unsigned v)
21831 {
21832 char *cell = get_print_cell ();
21833 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
21834 return cell;
21835 }
21836
21837 /* Convert a DIE tag into its string name. */
21838
21839 static const char *
21840 dwarf_tag_name (unsigned tag)
21841 {
21842 const char *name = get_DW_TAG_name (tag);
21843
21844 if (name == NULL)
21845 return dwarf_unknown ("TAG", tag);
21846
21847 return name;
21848 }
21849
21850 /* Convert a DWARF attribute code into its string name. */
21851
21852 static const char *
21853 dwarf_attr_name (unsigned attr)
21854 {
21855 const char *name;
21856
21857 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21858 if (attr == DW_AT_MIPS_fde)
21859 return "DW_AT_MIPS_fde";
21860 #else
21861 if (attr == DW_AT_HP_block_index)
21862 return "DW_AT_HP_block_index";
21863 #endif
21864
21865 name = get_DW_AT_name (attr);
21866
21867 if (name == NULL)
21868 return dwarf_unknown ("AT", attr);
21869
21870 return name;
21871 }
21872
21873 /* Convert a DWARF value form code into its string name. */
21874
21875 static const char *
21876 dwarf_form_name (unsigned form)
21877 {
21878 const char *name = get_DW_FORM_name (form);
21879
21880 if (name == NULL)
21881 return dwarf_unknown ("FORM", form);
21882
21883 return name;
21884 }
21885
21886 static const char *
21887 dwarf_bool_name (unsigned mybool)
21888 {
21889 if (mybool)
21890 return "TRUE";
21891 else
21892 return "FALSE";
21893 }
21894
21895 /* Convert a DWARF type code into its string name. */
21896
21897 static const char *
21898 dwarf_type_encoding_name (unsigned enc)
21899 {
21900 const char *name = get_DW_ATE_name (enc);
21901
21902 if (name == NULL)
21903 return dwarf_unknown ("ATE", enc);
21904
21905 return name;
21906 }
21907
21908 static void
21909 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21910 {
21911 unsigned int i;
21912
21913 print_spaces (indent, f);
21914 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21915 dwarf_tag_name (die->tag), die->abbrev,
21916 sect_offset_str (die->sect_off));
21917
21918 if (die->parent != NULL)
21919 {
21920 print_spaces (indent, f);
21921 fprintf_unfiltered (f, " parent at offset: %s\n",
21922 sect_offset_str (die->parent->sect_off));
21923 }
21924
21925 print_spaces (indent, f);
21926 fprintf_unfiltered (f, " has children: %s\n",
21927 dwarf_bool_name (die->child != NULL));
21928
21929 print_spaces (indent, f);
21930 fprintf_unfiltered (f, " attributes:\n");
21931
21932 for (i = 0; i < die->num_attrs; ++i)
21933 {
21934 print_spaces (indent, f);
21935 fprintf_unfiltered (f, " %s (%s) ",
21936 dwarf_attr_name (die->attrs[i].name),
21937 dwarf_form_name (die->attrs[i].form));
21938
21939 switch (die->attrs[i].form)
21940 {
21941 case DW_FORM_addr:
21942 case DW_FORM_addrx:
21943 case DW_FORM_GNU_addr_index:
21944 fprintf_unfiltered (f, "address: ");
21945 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21946 break;
21947 case DW_FORM_block2:
21948 case DW_FORM_block4:
21949 case DW_FORM_block:
21950 case DW_FORM_block1:
21951 fprintf_unfiltered (f, "block: size %s",
21952 pulongest (DW_BLOCK (&die->attrs[i])->size));
21953 break;
21954 case DW_FORM_exprloc:
21955 fprintf_unfiltered (f, "expression: size %s",
21956 pulongest (DW_BLOCK (&die->attrs[i])->size));
21957 break;
21958 case DW_FORM_data16:
21959 fprintf_unfiltered (f, "constant of 16 bytes");
21960 break;
21961 case DW_FORM_ref_addr:
21962 fprintf_unfiltered (f, "ref address: ");
21963 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21964 break;
21965 case DW_FORM_GNU_ref_alt:
21966 fprintf_unfiltered (f, "alt ref address: ");
21967 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21968 break;
21969 case DW_FORM_ref1:
21970 case DW_FORM_ref2:
21971 case DW_FORM_ref4:
21972 case DW_FORM_ref8:
21973 case DW_FORM_ref_udata:
21974 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21975 (long) (DW_UNSND (&die->attrs[i])));
21976 break;
21977 case DW_FORM_data1:
21978 case DW_FORM_data2:
21979 case DW_FORM_data4:
21980 case DW_FORM_data8:
21981 case DW_FORM_udata:
21982 case DW_FORM_sdata:
21983 fprintf_unfiltered (f, "constant: %s",
21984 pulongest (DW_UNSND (&die->attrs[i])));
21985 break;
21986 case DW_FORM_sec_offset:
21987 fprintf_unfiltered (f, "section offset: %s",
21988 pulongest (DW_UNSND (&die->attrs[i])));
21989 break;
21990 case DW_FORM_ref_sig8:
21991 fprintf_unfiltered (f, "signature: %s",
21992 hex_string (DW_SIGNATURE (&die->attrs[i])));
21993 break;
21994 case DW_FORM_string:
21995 case DW_FORM_strp:
21996 case DW_FORM_line_strp:
21997 case DW_FORM_strx:
21998 case DW_FORM_GNU_str_index:
21999 case DW_FORM_GNU_strp_alt:
22000 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22001 DW_STRING (&die->attrs[i])
22002 ? DW_STRING (&die->attrs[i]) : "",
22003 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22004 break;
22005 case DW_FORM_flag:
22006 if (DW_UNSND (&die->attrs[i]))
22007 fprintf_unfiltered (f, "flag: TRUE");
22008 else
22009 fprintf_unfiltered (f, "flag: FALSE");
22010 break;
22011 case DW_FORM_flag_present:
22012 fprintf_unfiltered (f, "flag: TRUE");
22013 break;
22014 case DW_FORM_indirect:
22015 /* The reader will have reduced the indirect form to
22016 the "base form" so this form should not occur. */
22017 fprintf_unfiltered (f,
22018 "unexpected attribute form: DW_FORM_indirect");
22019 break;
22020 case DW_FORM_implicit_const:
22021 fprintf_unfiltered (f, "constant: %s",
22022 plongest (DW_SND (&die->attrs[i])));
22023 break;
22024 default:
22025 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22026 die->attrs[i].form);
22027 break;
22028 }
22029 fprintf_unfiltered (f, "\n");
22030 }
22031 }
22032
22033 static void
22034 dump_die_for_error (struct die_info *die)
22035 {
22036 dump_die_shallow (gdb_stderr, 0, die);
22037 }
22038
22039 static void
22040 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22041 {
22042 int indent = level * 4;
22043
22044 gdb_assert (die != NULL);
22045
22046 if (level >= max_level)
22047 return;
22048
22049 dump_die_shallow (f, indent, die);
22050
22051 if (die->child != NULL)
22052 {
22053 print_spaces (indent, f);
22054 fprintf_unfiltered (f, " Children:");
22055 if (level + 1 < max_level)
22056 {
22057 fprintf_unfiltered (f, "\n");
22058 dump_die_1 (f, level + 1, max_level, die->child);
22059 }
22060 else
22061 {
22062 fprintf_unfiltered (f,
22063 " [not printed, max nesting level reached]\n");
22064 }
22065 }
22066
22067 if (die->sibling != NULL && level > 0)
22068 {
22069 dump_die_1 (f, level, max_level, die->sibling);
22070 }
22071 }
22072
22073 /* This is called from the pdie macro in gdbinit.in.
22074 It's not static so gcc will keep a copy callable from gdb. */
22075
22076 void
22077 dump_die (struct die_info *die, int max_level)
22078 {
22079 dump_die_1 (gdb_stdlog, 0, max_level, die);
22080 }
22081
22082 static void
22083 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22084 {
22085 void **slot;
22086
22087 slot = htab_find_slot_with_hash (cu->die_hash, die,
22088 to_underlying (die->sect_off),
22089 INSERT);
22090
22091 *slot = die;
22092 }
22093
22094 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22095 required kind. */
22096
22097 static sect_offset
22098 dwarf2_get_ref_die_offset (const struct attribute *attr)
22099 {
22100 if (attr->form_is_ref ())
22101 return (sect_offset) DW_UNSND (attr);
22102
22103 complaint (_("unsupported die ref attribute form: '%s'"),
22104 dwarf_form_name (attr->form));
22105 return {};
22106 }
22107
22108 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22109 * the value held by the attribute is not constant. */
22110
22111 static LONGEST
22112 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22113 {
22114 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22115 return DW_SND (attr);
22116 else if (attr->form == DW_FORM_udata
22117 || attr->form == DW_FORM_data1
22118 || attr->form == DW_FORM_data2
22119 || attr->form == DW_FORM_data4
22120 || attr->form == DW_FORM_data8)
22121 return DW_UNSND (attr);
22122 else
22123 {
22124 /* For DW_FORM_data16 see attribute::form_is_constant. */
22125 complaint (_("Attribute value is not a constant (%s)"),
22126 dwarf_form_name (attr->form));
22127 return default_value;
22128 }
22129 }
22130
22131 /* Follow reference or signature attribute ATTR of SRC_DIE.
22132 On entry *REF_CU is the CU of SRC_DIE.
22133 On exit *REF_CU is the CU of the result. */
22134
22135 static struct die_info *
22136 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22137 struct dwarf2_cu **ref_cu)
22138 {
22139 struct die_info *die;
22140
22141 if (attr->form_is_ref ())
22142 die = follow_die_ref (src_die, attr, ref_cu);
22143 else if (attr->form == DW_FORM_ref_sig8)
22144 die = follow_die_sig (src_die, attr, ref_cu);
22145 else
22146 {
22147 dump_die_for_error (src_die);
22148 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22149 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22150 }
22151
22152 return die;
22153 }
22154
22155 /* Follow reference OFFSET.
22156 On entry *REF_CU is the CU of the source die referencing OFFSET.
22157 On exit *REF_CU is the CU of the result.
22158 Returns NULL if OFFSET is invalid. */
22159
22160 static struct die_info *
22161 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22162 struct dwarf2_cu **ref_cu)
22163 {
22164 struct die_info temp_die;
22165 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22166 struct dwarf2_per_objfile *dwarf2_per_objfile
22167 = cu->per_cu->dwarf2_per_objfile;
22168
22169 gdb_assert (cu->per_cu != NULL);
22170
22171 target_cu = cu;
22172
22173 if (cu->per_cu->is_debug_types)
22174 {
22175 /* .debug_types CUs cannot reference anything outside their CU.
22176 If they need to, they have to reference a signatured type via
22177 DW_FORM_ref_sig8. */
22178 if (!cu->header.offset_in_cu_p (sect_off))
22179 return NULL;
22180 }
22181 else if (offset_in_dwz != cu->per_cu->is_dwz
22182 || !cu->header.offset_in_cu_p (sect_off))
22183 {
22184 struct dwarf2_per_cu_data *per_cu;
22185
22186 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22187 dwarf2_per_objfile);
22188
22189 /* If necessary, add it to the queue and load its DIEs. */
22190 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22191 load_full_comp_unit (per_cu, false, cu->language);
22192
22193 target_cu = per_cu->cu;
22194 }
22195 else if (cu->dies == NULL)
22196 {
22197 /* We're loading full DIEs during partial symbol reading. */
22198 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22199 load_full_comp_unit (cu->per_cu, false, language_minimal);
22200 }
22201
22202 *ref_cu = target_cu;
22203 temp_die.sect_off = sect_off;
22204
22205 if (target_cu != cu)
22206 target_cu->ancestor = cu;
22207
22208 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22209 &temp_die,
22210 to_underlying (sect_off));
22211 }
22212
22213 /* Follow reference attribute ATTR of SRC_DIE.
22214 On entry *REF_CU is the CU of SRC_DIE.
22215 On exit *REF_CU is the CU of the result. */
22216
22217 static struct die_info *
22218 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22219 struct dwarf2_cu **ref_cu)
22220 {
22221 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22222 struct dwarf2_cu *cu = *ref_cu;
22223 struct die_info *die;
22224
22225 die = follow_die_offset (sect_off,
22226 (attr->form == DW_FORM_GNU_ref_alt
22227 || cu->per_cu->is_dwz),
22228 ref_cu);
22229 if (!die)
22230 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22231 "at %s [in module %s]"),
22232 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22233 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22234
22235 return die;
22236 }
22237
22238 /* See read.h. */
22239
22240 struct dwarf2_locexpr_baton
22241 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22242 dwarf2_per_cu_data *per_cu,
22243 CORE_ADDR (*get_frame_pc) (void *baton),
22244 void *baton, bool resolve_abstract_p)
22245 {
22246 struct dwarf2_cu *cu;
22247 struct die_info *die;
22248 struct attribute *attr;
22249 struct dwarf2_locexpr_baton retval;
22250 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22251 struct objfile *objfile = dwarf2_per_objfile->objfile;
22252
22253 if (per_cu->cu == NULL)
22254 load_cu (per_cu, false);
22255 cu = per_cu->cu;
22256 if (cu == NULL)
22257 {
22258 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22259 Instead just throw an error, not much else we can do. */
22260 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22261 sect_offset_str (sect_off), objfile_name (objfile));
22262 }
22263
22264 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22265 if (!die)
22266 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22267 sect_offset_str (sect_off), objfile_name (objfile));
22268
22269 attr = dwarf2_attr (die, DW_AT_location, cu);
22270 if (!attr && resolve_abstract_p
22271 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22272 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22273 {
22274 CORE_ADDR pc = (*get_frame_pc) (baton);
22275 CORE_ADDR baseaddr = objfile->text_section_offset ();
22276 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22277
22278 for (const auto &cand_off
22279 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22280 {
22281 struct dwarf2_cu *cand_cu = cu;
22282 struct die_info *cand
22283 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22284 if (!cand
22285 || !cand->parent
22286 || cand->parent->tag != DW_TAG_subprogram)
22287 continue;
22288
22289 CORE_ADDR pc_low, pc_high;
22290 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22291 if (pc_low == ((CORE_ADDR) -1))
22292 continue;
22293 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22294 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22295 if (!(pc_low <= pc && pc < pc_high))
22296 continue;
22297
22298 die = cand;
22299 attr = dwarf2_attr (die, DW_AT_location, cu);
22300 break;
22301 }
22302 }
22303
22304 if (!attr)
22305 {
22306 /* DWARF: "If there is no such attribute, then there is no effect.".
22307 DATA is ignored if SIZE is 0. */
22308
22309 retval.data = NULL;
22310 retval.size = 0;
22311 }
22312 else if (attr->form_is_section_offset ())
22313 {
22314 struct dwarf2_loclist_baton loclist_baton;
22315 CORE_ADDR pc = (*get_frame_pc) (baton);
22316 size_t size;
22317
22318 fill_in_loclist_baton (cu, &loclist_baton, attr);
22319
22320 retval.data = dwarf2_find_location_expression (&loclist_baton,
22321 &size, pc);
22322 retval.size = size;
22323 }
22324 else
22325 {
22326 if (!attr->form_is_block ())
22327 error (_("Dwarf Error: DIE at %s referenced in module %s "
22328 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22329 sect_offset_str (sect_off), objfile_name (objfile));
22330
22331 retval.data = DW_BLOCK (attr)->data;
22332 retval.size = DW_BLOCK (attr)->size;
22333 }
22334 retval.per_cu = cu->per_cu;
22335
22336 age_cached_comp_units (dwarf2_per_objfile);
22337
22338 return retval;
22339 }
22340
22341 /* See read.h. */
22342
22343 struct dwarf2_locexpr_baton
22344 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22345 dwarf2_per_cu_data *per_cu,
22346 CORE_ADDR (*get_frame_pc) (void *baton),
22347 void *baton)
22348 {
22349 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22350
22351 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22352 }
22353
22354 /* Write a constant of a given type as target-ordered bytes into
22355 OBSTACK. */
22356
22357 static const gdb_byte *
22358 write_constant_as_bytes (struct obstack *obstack,
22359 enum bfd_endian byte_order,
22360 struct type *type,
22361 ULONGEST value,
22362 LONGEST *len)
22363 {
22364 gdb_byte *result;
22365
22366 *len = TYPE_LENGTH (type);
22367 result = (gdb_byte *) obstack_alloc (obstack, *len);
22368 store_unsigned_integer (result, *len, byte_order, value);
22369
22370 return result;
22371 }
22372
22373 /* See read.h. */
22374
22375 const gdb_byte *
22376 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22377 dwarf2_per_cu_data *per_cu,
22378 obstack *obstack,
22379 LONGEST *len)
22380 {
22381 struct dwarf2_cu *cu;
22382 struct die_info *die;
22383 struct attribute *attr;
22384 const gdb_byte *result = NULL;
22385 struct type *type;
22386 LONGEST value;
22387 enum bfd_endian byte_order;
22388 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22389
22390 if (per_cu->cu == NULL)
22391 load_cu (per_cu, false);
22392 cu = per_cu->cu;
22393 if (cu == NULL)
22394 {
22395 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22396 Instead just throw an error, not much else we can do. */
22397 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22398 sect_offset_str (sect_off), objfile_name (objfile));
22399 }
22400
22401 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22402 if (!die)
22403 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22404 sect_offset_str (sect_off), objfile_name (objfile));
22405
22406 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22407 if (attr == NULL)
22408 return NULL;
22409
22410 byte_order = (bfd_big_endian (objfile->obfd)
22411 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22412
22413 switch (attr->form)
22414 {
22415 case DW_FORM_addr:
22416 case DW_FORM_addrx:
22417 case DW_FORM_GNU_addr_index:
22418 {
22419 gdb_byte *tem;
22420
22421 *len = cu->header.addr_size;
22422 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22423 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22424 result = tem;
22425 }
22426 break;
22427 case DW_FORM_string:
22428 case DW_FORM_strp:
22429 case DW_FORM_strx:
22430 case DW_FORM_GNU_str_index:
22431 case DW_FORM_GNU_strp_alt:
22432 /* DW_STRING is already allocated on the objfile obstack, point
22433 directly to it. */
22434 result = (const gdb_byte *) DW_STRING (attr);
22435 *len = strlen (DW_STRING (attr));
22436 break;
22437 case DW_FORM_block1:
22438 case DW_FORM_block2:
22439 case DW_FORM_block4:
22440 case DW_FORM_block:
22441 case DW_FORM_exprloc:
22442 case DW_FORM_data16:
22443 result = DW_BLOCK (attr)->data;
22444 *len = DW_BLOCK (attr)->size;
22445 break;
22446
22447 /* The DW_AT_const_value attributes are supposed to carry the
22448 symbol's value "represented as it would be on the target
22449 architecture." By the time we get here, it's already been
22450 converted to host endianness, so we just need to sign- or
22451 zero-extend it as appropriate. */
22452 case DW_FORM_data1:
22453 type = die_type (die, cu);
22454 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22455 if (result == NULL)
22456 result = write_constant_as_bytes (obstack, byte_order,
22457 type, value, len);
22458 break;
22459 case DW_FORM_data2:
22460 type = die_type (die, cu);
22461 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22462 if (result == NULL)
22463 result = write_constant_as_bytes (obstack, byte_order,
22464 type, value, len);
22465 break;
22466 case DW_FORM_data4:
22467 type = die_type (die, cu);
22468 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22469 if (result == NULL)
22470 result = write_constant_as_bytes (obstack, byte_order,
22471 type, value, len);
22472 break;
22473 case DW_FORM_data8:
22474 type = die_type (die, cu);
22475 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22476 if (result == NULL)
22477 result = write_constant_as_bytes (obstack, byte_order,
22478 type, value, len);
22479 break;
22480
22481 case DW_FORM_sdata:
22482 case DW_FORM_implicit_const:
22483 type = die_type (die, cu);
22484 result = write_constant_as_bytes (obstack, byte_order,
22485 type, DW_SND (attr), len);
22486 break;
22487
22488 case DW_FORM_udata:
22489 type = die_type (die, cu);
22490 result = write_constant_as_bytes (obstack, byte_order,
22491 type, DW_UNSND (attr), len);
22492 break;
22493
22494 default:
22495 complaint (_("unsupported const value attribute form: '%s'"),
22496 dwarf_form_name (attr->form));
22497 break;
22498 }
22499
22500 return result;
22501 }
22502
22503 /* See read.h. */
22504
22505 struct type *
22506 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22507 dwarf2_per_cu_data *per_cu)
22508 {
22509 struct dwarf2_cu *cu;
22510 struct die_info *die;
22511
22512 if (per_cu->cu == NULL)
22513 load_cu (per_cu, false);
22514 cu = per_cu->cu;
22515 if (!cu)
22516 return NULL;
22517
22518 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22519 if (!die)
22520 return NULL;
22521
22522 return die_type (die, cu);
22523 }
22524
22525 /* See read.h. */
22526
22527 struct type *
22528 dwarf2_get_die_type (cu_offset die_offset,
22529 struct dwarf2_per_cu_data *per_cu)
22530 {
22531 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22532 return get_die_type_at_offset (die_offset_sect, per_cu);
22533 }
22534
22535 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22536 On entry *REF_CU is the CU of SRC_DIE.
22537 On exit *REF_CU is the CU of the result.
22538 Returns NULL if the referenced DIE isn't found. */
22539
22540 static struct die_info *
22541 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22542 struct dwarf2_cu **ref_cu)
22543 {
22544 struct die_info temp_die;
22545 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22546 struct die_info *die;
22547
22548 /* While it might be nice to assert sig_type->type == NULL here,
22549 we can get here for DW_AT_imported_declaration where we need
22550 the DIE not the type. */
22551
22552 /* If necessary, add it to the queue and load its DIEs. */
22553
22554 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22555 read_signatured_type (sig_type);
22556
22557 sig_cu = sig_type->per_cu.cu;
22558 gdb_assert (sig_cu != NULL);
22559 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22560 temp_die.sect_off = sig_type->type_offset_in_section;
22561 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22562 to_underlying (temp_die.sect_off));
22563 if (die)
22564 {
22565 struct dwarf2_per_objfile *dwarf2_per_objfile
22566 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22567
22568 /* For .gdb_index version 7 keep track of included TUs.
22569 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22570 if (dwarf2_per_objfile->index_table != NULL
22571 && dwarf2_per_objfile->index_table->version <= 7)
22572 {
22573 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22574 }
22575
22576 *ref_cu = sig_cu;
22577 if (sig_cu != cu)
22578 sig_cu->ancestor = cu;
22579
22580 return die;
22581 }
22582
22583 return NULL;
22584 }
22585
22586 /* Follow signatured type referenced by ATTR in SRC_DIE.
22587 On entry *REF_CU is the CU of SRC_DIE.
22588 On exit *REF_CU is the CU of the result.
22589 The result is the DIE of the type.
22590 If the referenced type cannot be found an error is thrown. */
22591
22592 static struct die_info *
22593 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22594 struct dwarf2_cu **ref_cu)
22595 {
22596 ULONGEST signature = DW_SIGNATURE (attr);
22597 struct signatured_type *sig_type;
22598 struct die_info *die;
22599
22600 gdb_assert (attr->form == DW_FORM_ref_sig8);
22601
22602 sig_type = lookup_signatured_type (*ref_cu, signature);
22603 /* sig_type will be NULL if the signatured type is missing from
22604 the debug info. */
22605 if (sig_type == NULL)
22606 {
22607 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22608 " from DIE at %s [in module %s]"),
22609 hex_string (signature), sect_offset_str (src_die->sect_off),
22610 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22611 }
22612
22613 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22614 if (die == NULL)
22615 {
22616 dump_die_for_error (src_die);
22617 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22618 " from DIE at %s [in module %s]"),
22619 hex_string (signature), sect_offset_str (src_die->sect_off),
22620 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22621 }
22622
22623 return die;
22624 }
22625
22626 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22627 reading in and processing the type unit if necessary. */
22628
22629 static struct type *
22630 get_signatured_type (struct die_info *die, ULONGEST signature,
22631 struct dwarf2_cu *cu)
22632 {
22633 struct dwarf2_per_objfile *dwarf2_per_objfile
22634 = cu->per_cu->dwarf2_per_objfile;
22635 struct signatured_type *sig_type;
22636 struct dwarf2_cu *type_cu;
22637 struct die_info *type_die;
22638 struct type *type;
22639
22640 sig_type = lookup_signatured_type (cu, signature);
22641 /* sig_type will be NULL if the signatured type is missing from
22642 the debug info. */
22643 if (sig_type == NULL)
22644 {
22645 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22646 " from DIE at %s [in module %s]"),
22647 hex_string (signature), sect_offset_str (die->sect_off),
22648 objfile_name (dwarf2_per_objfile->objfile));
22649 return build_error_marker_type (cu, die);
22650 }
22651
22652 /* If we already know the type we're done. */
22653 if (sig_type->type != NULL)
22654 return sig_type->type;
22655
22656 type_cu = cu;
22657 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22658 if (type_die != NULL)
22659 {
22660 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22661 is created. This is important, for example, because for c++ classes
22662 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22663 type = read_type_die (type_die, type_cu);
22664 if (type == NULL)
22665 {
22666 complaint (_("Dwarf Error: Cannot build signatured type %s"
22667 " referenced from DIE at %s [in module %s]"),
22668 hex_string (signature), sect_offset_str (die->sect_off),
22669 objfile_name (dwarf2_per_objfile->objfile));
22670 type = build_error_marker_type (cu, die);
22671 }
22672 }
22673 else
22674 {
22675 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22676 " from DIE at %s [in module %s]"),
22677 hex_string (signature), sect_offset_str (die->sect_off),
22678 objfile_name (dwarf2_per_objfile->objfile));
22679 type = build_error_marker_type (cu, die);
22680 }
22681 sig_type->type = type;
22682
22683 return type;
22684 }
22685
22686 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22687 reading in and processing the type unit if necessary. */
22688
22689 static struct type *
22690 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22691 struct dwarf2_cu *cu) /* ARI: editCase function */
22692 {
22693 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22694 if (attr->form_is_ref ())
22695 {
22696 struct dwarf2_cu *type_cu = cu;
22697 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22698
22699 return read_type_die (type_die, type_cu);
22700 }
22701 else if (attr->form == DW_FORM_ref_sig8)
22702 {
22703 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22704 }
22705 else
22706 {
22707 struct dwarf2_per_objfile *dwarf2_per_objfile
22708 = cu->per_cu->dwarf2_per_objfile;
22709
22710 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22711 " at %s [in module %s]"),
22712 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22713 objfile_name (dwarf2_per_objfile->objfile));
22714 return build_error_marker_type (cu, die);
22715 }
22716 }
22717
22718 /* Load the DIEs associated with type unit PER_CU into memory. */
22719
22720 static void
22721 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22722 {
22723 struct signatured_type *sig_type;
22724
22725 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22726 gdb_assert (! per_cu->type_unit_group_p ());
22727
22728 /* We have the per_cu, but we need the signatured_type.
22729 Fortunately this is an easy translation. */
22730 gdb_assert (per_cu->is_debug_types);
22731 sig_type = (struct signatured_type *) per_cu;
22732
22733 gdb_assert (per_cu->cu == NULL);
22734
22735 read_signatured_type (sig_type);
22736
22737 gdb_assert (per_cu->cu != NULL);
22738 }
22739
22740 /* Read in a signatured type and build its CU and DIEs.
22741 If the type is a stub for the real type in a DWO file,
22742 read in the real type from the DWO file as well. */
22743
22744 static void
22745 read_signatured_type (struct signatured_type *sig_type)
22746 {
22747 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22748
22749 gdb_assert (per_cu->is_debug_types);
22750 gdb_assert (per_cu->cu == NULL);
22751
22752 cutu_reader reader (per_cu, NULL, 0, false);
22753
22754 if (!reader.dummy_p)
22755 {
22756 struct dwarf2_cu *cu = reader.cu;
22757 const gdb_byte *info_ptr = reader.info_ptr;
22758
22759 gdb_assert (cu->die_hash == NULL);
22760 cu->die_hash =
22761 htab_create_alloc_ex (cu->header.length / 12,
22762 die_hash,
22763 die_eq,
22764 NULL,
22765 &cu->comp_unit_obstack,
22766 hashtab_obstack_allocate,
22767 dummy_obstack_deallocate);
22768
22769 if (reader.comp_unit_die->has_children)
22770 reader.comp_unit_die->child
22771 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22772 reader.comp_unit_die);
22773 cu->dies = reader.comp_unit_die;
22774 /* comp_unit_die is not stored in die_hash, no need. */
22775
22776 /* We try not to read any attributes in this function, because
22777 not all CUs needed for references have been loaded yet, and
22778 symbol table processing isn't initialized. But we have to
22779 set the CU language, or we won't be able to build types
22780 correctly. Similarly, if we do not read the producer, we can
22781 not apply producer-specific interpretation. */
22782 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22783
22784 reader.keep ();
22785 }
22786
22787 sig_type->per_cu.tu_read = 1;
22788 }
22789
22790 /* Decode simple location descriptions.
22791 Given a pointer to a dwarf block that defines a location, compute
22792 the location and return the value.
22793
22794 NOTE drow/2003-11-18: This function is called in two situations
22795 now: for the address of static or global variables (partial symbols
22796 only) and for offsets into structures which are expected to be
22797 (more or less) constant. The partial symbol case should go away,
22798 and only the constant case should remain. That will let this
22799 function complain more accurately. A few special modes are allowed
22800 without complaint for global variables (for instance, global
22801 register values and thread-local values).
22802
22803 A location description containing no operations indicates that the
22804 object is optimized out. The return value is 0 for that case.
22805 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22806 callers will only want a very basic result and this can become a
22807 complaint.
22808
22809 Note that stack[0] is unused except as a default error return. */
22810
22811 static CORE_ADDR
22812 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22813 {
22814 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22815 size_t i;
22816 size_t size = blk->size;
22817 const gdb_byte *data = blk->data;
22818 CORE_ADDR stack[64];
22819 int stacki;
22820 unsigned int bytes_read, unsnd;
22821 gdb_byte op;
22822
22823 i = 0;
22824 stacki = 0;
22825 stack[stacki] = 0;
22826 stack[++stacki] = 0;
22827
22828 while (i < size)
22829 {
22830 op = data[i++];
22831 switch (op)
22832 {
22833 case DW_OP_lit0:
22834 case DW_OP_lit1:
22835 case DW_OP_lit2:
22836 case DW_OP_lit3:
22837 case DW_OP_lit4:
22838 case DW_OP_lit5:
22839 case DW_OP_lit6:
22840 case DW_OP_lit7:
22841 case DW_OP_lit8:
22842 case DW_OP_lit9:
22843 case DW_OP_lit10:
22844 case DW_OP_lit11:
22845 case DW_OP_lit12:
22846 case DW_OP_lit13:
22847 case DW_OP_lit14:
22848 case DW_OP_lit15:
22849 case DW_OP_lit16:
22850 case DW_OP_lit17:
22851 case DW_OP_lit18:
22852 case DW_OP_lit19:
22853 case DW_OP_lit20:
22854 case DW_OP_lit21:
22855 case DW_OP_lit22:
22856 case DW_OP_lit23:
22857 case DW_OP_lit24:
22858 case DW_OP_lit25:
22859 case DW_OP_lit26:
22860 case DW_OP_lit27:
22861 case DW_OP_lit28:
22862 case DW_OP_lit29:
22863 case DW_OP_lit30:
22864 case DW_OP_lit31:
22865 stack[++stacki] = op - DW_OP_lit0;
22866 break;
22867
22868 case DW_OP_reg0:
22869 case DW_OP_reg1:
22870 case DW_OP_reg2:
22871 case DW_OP_reg3:
22872 case DW_OP_reg4:
22873 case DW_OP_reg5:
22874 case DW_OP_reg6:
22875 case DW_OP_reg7:
22876 case DW_OP_reg8:
22877 case DW_OP_reg9:
22878 case DW_OP_reg10:
22879 case DW_OP_reg11:
22880 case DW_OP_reg12:
22881 case DW_OP_reg13:
22882 case DW_OP_reg14:
22883 case DW_OP_reg15:
22884 case DW_OP_reg16:
22885 case DW_OP_reg17:
22886 case DW_OP_reg18:
22887 case DW_OP_reg19:
22888 case DW_OP_reg20:
22889 case DW_OP_reg21:
22890 case DW_OP_reg22:
22891 case DW_OP_reg23:
22892 case DW_OP_reg24:
22893 case DW_OP_reg25:
22894 case DW_OP_reg26:
22895 case DW_OP_reg27:
22896 case DW_OP_reg28:
22897 case DW_OP_reg29:
22898 case DW_OP_reg30:
22899 case DW_OP_reg31:
22900 stack[++stacki] = op - DW_OP_reg0;
22901 if (i < size)
22902 dwarf2_complex_location_expr_complaint ();
22903 break;
22904
22905 case DW_OP_regx:
22906 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22907 i += bytes_read;
22908 stack[++stacki] = unsnd;
22909 if (i < size)
22910 dwarf2_complex_location_expr_complaint ();
22911 break;
22912
22913 case DW_OP_addr:
22914 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22915 &bytes_read);
22916 i += bytes_read;
22917 break;
22918
22919 case DW_OP_const1u:
22920 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22921 i += 1;
22922 break;
22923
22924 case DW_OP_const1s:
22925 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22926 i += 1;
22927 break;
22928
22929 case DW_OP_const2u:
22930 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22931 i += 2;
22932 break;
22933
22934 case DW_OP_const2s:
22935 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22936 i += 2;
22937 break;
22938
22939 case DW_OP_const4u:
22940 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22941 i += 4;
22942 break;
22943
22944 case DW_OP_const4s:
22945 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22946 i += 4;
22947 break;
22948
22949 case DW_OP_const8u:
22950 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22951 i += 8;
22952 break;
22953
22954 case DW_OP_constu:
22955 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22956 &bytes_read);
22957 i += bytes_read;
22958 break;
22959
22960 case DW_OP_consts:
22961 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22962 i += bytes_read;
22963 break;
22964
22965 case DW_OP_dup:
22966 stack[stacki + 1] = stack[stacki];
22967 stacki++;
22968 break;
22969
22970 case DW_OP_plus:
22971 stack[stacki - 1] += stack[stacki];
22972 stacki--;
22973 break;
22974
22975 case DW_OP_plus_uconst:
22976 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22977 &bytes_read);
22978 i += bytes_read;
22979 break;
22980
22981 case DW_OP_minus:
22982 stack[stacki - 1] -= stack[stacki];
22983 stacki--;
22984 break;
22985
22986 case DW_OP_deref:
22987 /* If we're not the last op, then we definitely can't encode
22988 this using GDB's address_class enum. This is valid for partial
22989 global symbols, although the variable's address will be bogus
22990 in the psymtab. */
22991 if (i < size)
22992 dwarf2_complex_location_expr_complaint ();
22993 break;
22994
22995 case DW_OP_GNU_push_tls_address:
22996 case DW_OP_form_tls_address:
22997 /* The top of the stack has the offset from the beginning
22998 of the thread control block at which the variable is located. */
22999 /* Nothing should follow this operator, so the top of stack would
23000 be returned. */
23001 /* This is valid for partial global symbols, but the variable's
23002 address will be bogus in the psymtab. Make it always at least
23003 non-zero to not look as a variable garbage collected by linker
23004 which have DW_OP_addr 0. */
23005 if (i < size)
23006 dwarf2_complex_location_expr_complaint ();
23007 stack[stacki]++;
23008 break;
23009
23010 case DW_OP_GNU_uninit:
23011 break;
23012
23013 case DW_OP_addrx:
23014 case DW_OP_GNU_addr_index:
23015 case DW_OP_GNU_const_index:
23016 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23017 &bytes_read);
23018 i += bytes_read;
23019 break;
23020
23021 default:
23022 {
23023 const char *name = get_DW_OP_name (op);
23024
23025 if (name)
23026 complaint (_("unsupported stack op: '%s'"),
23027 name);
23028 else
23029 complaint (_("unsupported stack op: '%02x'"),
23030 op);
23031 }
23032
23033 return (stack[stacki]);
23034 }
23035
23036 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23037 outside of the allocated space. Also enforce minimum>0. */
23038 if (stacki >= ARRAY_SIZE (stack) - 1)
23039 {
23040 complaint (_("location description stack overflow"));
23041 return 0;
23042 }
23043
23044 if (stacki <= 0)
23045 {
23046 complaint (_("location description stack underflow"));
23047 return 0;
23048 }
23049 }
23050 return (stack[stacki]);
23051 }
23052
23053 /* memory allocation interface */
23054
23055 static struct dwarf_block *
23056 dwarf_alloc_block (struct dwarf2_cu *cu)
23057 {
23058 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23059 }
23060
23061 static struct die_info *
23062 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23063 {
23064 struct die_info *die;
23065 size_t size = sizeof (struct die_info);
23066
23067 if (num_attrs > 1)
23068 size += (num_attrs - 1) * sizeof (struct attribute);
23069
23070 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23071 memset (die, 0, sizeof (struct die_info));
23072 return (die);
23073 }
23074
23075 \f
23076 /* Macro support. */
23077
23078 static struct macro_source_file *
23079 macro_start_file (struct dwarf2_cu *cu,
23080 int file, int line,
23081 struct macro_source_file *current_file,
23082 struct line_header *lh)
23083 {
23084 /* File name relative to the compilation directory of this source file. */
23085 gdb::unique_xmalloc_ptr<char> file_name = lh->file_file_name (file);
23086
23087 if (! current_file)
23088 {
23089 /* Note: We don't create a macro table for this compilation unit
23090 at all until we actually get a filename. */
23091 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23092
23093 /* If we have no current file, then this must be the start_file
23094 directive for the compilation unit's main source file. */
23095 current_file = macro_set_main (macro_table, file_name.get ());
23096 macro_define_special (macro_table);
23097 }
23098 else
23099 current_file = macro_include (current_file, line, file_name.get ());
23100
23101 return current_file;
23102 }
23103
23104 static const char *
23105 consume_improper_spaces (const char *p, const char *body)
23106 {
23107 if (*p == ' ')
23108 {
23109 complaint (_("macro definition contains spaces "
23110 "in formal argument list:\n`%s'"),
23111 body);
23112
23113 while (*p == ' ')
23114 p++;
23115 }
23116
23117 return p;
23118 }
23119
23120
23121 static void
23122 parse_macro_definition (struct macro_source_file *file, int line,
23123 const char *body)
23124 {
23125 const char *p;
23126
23127 /* The body string takes one of two forms. For object-like macro
23128 definitions, it should be:
23129
23130 <macro name> " " <definition>
23131
23132 For function-like macro definitions, it should be:
23133
23134 <macro name> "() " <definition>
23135 or
23136 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23137
23138 Spaces may appear only where explicitly indicated, and in the
23139 <definition>.
23140
23141 The Dwarf 2 spec says that an object-like macro's name is always
23142 followed by a space, but versions of GCC around March 2002 omit
23143 the space when the macro's definition is the empty string.
23144
23145 The Dwarf 2 spec says that there should be no spaces between the
23146 formal arguments in a function-like macro's formal argument list,
23147 but versions of GCC around March 2002 include spaces after the
23148 commas. */
23149
23150
23151 /* Find the extent of the macro name. The macro name is terminated
23152 by either a space or null character (for an object-like macro) or
23153 an opening paren (for a function-like macro). */
23154 for (p = body; *p; p++)
23155 if (*p == ' ' || *p == '(')
23156 break;
23157
23158 if (*p == ' ' || *p == '\0')
23159 {
23160 /* It's an object-like macro. */
23161 int name_len = p - body;
23162 std::string name (body, name_len);
23163 const char *replacement;
23164
23165 if (*p == ' ')
23166 replacement = body + name_len + 1;
23167 else
23168 {
23169 dwarf2_macro_malformed_definition_complaint (body);
23170 replacement = body + name_len;
23171 }
23172
23173 macro_define_object (file, line, name.c_str (), replacement);
23174 }
23175 else if (*p == '(')
23176 {
23177 /* It's a function-like macro. */
23178 std::string name (body, p - body);
23179 int argc = 0;
23180 int argv_size = 1;
23181 char **argv = XNEWVEC (char *, argv_size);
23182
23183 p++;
23184
23185 p = consume_improper_spaces (p, body);
23186
23187 /* Parse the formal argument list. */
23188 while (*p && *p != ')')
23189 {
23190 /* Find the extent of the current argument name. */
23191 const char *arg_start = p;
23192
23193 while (*p && *p != ',' && *p != ')' && *p != ' ')
23194 p++;
23195
23196 if (! *p || p == arg_start)
23197 dwarf2_macro_malformed_definition_complaint (body);
23198 else
23199 {
23200 /* Make sure argv has room for the new argument. */
23201 if (argc >= argv_size)
23202 {
23203 argv_size *= 2;
23204 argv = XRESIZEVEC (char *, argv, argv_size);
23205 }
23206
23207 argv[argc++] = savestring (arg_start, p - arg_start);
23208 }
23209
23210 p = consume_improper_spaces (p, body);
23211
23212 /* Consume the comma, if present. */
23213 if (*p == ',')
23214 {
23215 p++;
23216
23217 p = consume_improper_spaces (p, body);
23218 }
23219 }
23220
23221 if (*p == ')')
23222 {
23223 p++;
23224
23225 if (*p == ' ')
23226 /* Perfectly formed definition, no complaints. */
23227 macro_define_function (file, line, name.c_str (),
23228 argc, (const char **) argv,
23229 p + 1);
23230 else if (*p == '\0')
23231 {
23232 /* Complain, but do define it. */
23233 dwarf2_macro_malformed_definition_complaint (body);
23234 macro_define_function (file, line, name.c_str (),
23235 argc, (const char **) argv,
23236 p);
23237 }
23238 else
23239 /* Just complain. */
23240 dwarf2_macro_malformed_definition_complaint (body);
23241 }
23242 else
23243 /* Just complain. */
23244 dwarf2_macro_malformed_definition_complaint (body);
23245
23246 {
23247 int i;
23248
23249 for (i = 0; i < argc; i++)
23250 xfree (argv[i]);
23251 }
23252 xfree (argv);
23253 }
23254 else
23255 dwarf2_macro_malformed_definition_complaint (body);
23256 }
23257
23258 /* Skip some bytes from BYTES according to the form given in FORM.
23259 Returns the new pointer. */
23260
23261 static const gdb_byte *
23262 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23263 enum dwarf_form form,
23264 unsigned int offset_size,
23265 struct dwarf2_section_info *section)
23266 {
23267 unsigned int bytes_read;
23268
23269 switch (form)
23270 {
23271 case DW_FORM_data1:
23272 case DW_FORM_flag:
23273 ++bytes;
23274 break;
23275
23276 case DW_FORM_data2:
23277 bytes += 2;
23278 break;
23279
23280 case DW_FORM_data4:
23281 bytes += 4;
23282 break;
23283
23284 case DW_FORM_data8:
23285 bytes += 8;
23286 break;
23287
23288 case DW_FORM_data16:
23289 bytes += 16;
23290 break;
23291
23292 case DW_FORM_string:
23293 read_direct_string (abfd, bytes, &bytes_read);
23294 bytes += bytes_read;
23295 break;
23296
23297 case DW_FORM_sec_offset:
23298 case DW_FORM_strp:
23299 case DW_FORM_GNU_strp_alt:
23300 bytes += offset_size;
23301 break;
23302
23303 case DW_FORM_block:
23304 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23305 bytes += bytes_read;
23306 break;
23307
23308 case DW_FORM_block1:
23309 bytes += 1 + read_1_byte (abfd, bytes);
23310 break;
23311 case DW_FORM_block2:
23312 bytes += 2 + read_2_bytes (abfd, bytes);
23313 break;
23314 case DW_FORM_block4:
23315 bytes += 4 + read_4_bytes (abfd, bytes);
23316 break;
23317
23318 case DW_FORM_addrx:
23319 case DW_FORM_sdata:
23320 case DW_FORM_strx:
23321 case DW_FORM_udata:
23322 case DW_FORM_GNU_addr_index:
23323 case DW_FORM_GNU_str_index:
23324 bytes = gdb_skip_leb128 (bytes, buffer_end);
23325 if (bytes == NULL)
23326 {
23327 dwarf2_section_buffer_overflow_complaint (section);
23328 return NULL;
23329 }
23330 break;
23331
23332 case DW_FORM_implicit_const:
23333 break;
23334
23335 default:
23336 {
23337 complaint (_("invalid form 0x%x in `%s'"),
23338 form, section->get_name ());
23339 return NULL;
23340 }
23341 }
23342
23343 return bytes;
23344 }
23345
23346 /* A helper for dwarf_decode_macros that handles skipping an unknown
23347 opcode. Returns an updated pointer to the macro data buffer; or,
23348 on error, issues a complaint and returns NULL. */
23349
23350 static const gdb_byte *
23351 skip_unknown_opcode (unsigned int opcode,
23352 const gdb_byte **opcode_definitions,
23353 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23354 bfd *abfd,
23355 unsigned int offset_size,
23356 struct dwarf2_section_info *section)
23357 {
23358 unsigned int bytes_read, i;
23359 unsigned long arg;
23360 const gdb_byte *defn;
23361
23362 if (opcode_definitions[opcode] == NULL)
23363 {
23364 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23365 opcode);
23366 return NULL;
23367 }
23368
23369 defn = opcode_definitions[opcode];
23370 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23371 defn += bytes_read;
23372
23373 for (i = 0; i < arg; ++i)
23374 {
23375 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23376 (enum dwarf_form) defn[i], offset_size,
23377 section);
23378 if (mac_ptr == NULL)
23379 {
23380 /* skip_form_bytes already issued the complaint. */
23381 return NULL;
23382 }
23383 }
23384
23385 return mac_ptr;
23386 }
23387
23388 /* A helper function which parses the header of a macro section.
23389 If the macro section is the extended (for now called "GNU") type,
23390 then this updates *OFFSET_SIZE. Returns a pointer to just after
23391 the header, or issues a complaint and returns NULL on error. */
23392
23393 static const gdb_byte *
23394 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
23395 bfd *abfd,
23396 const gdb_byte *mac_ptr,
23397 unsigned int *offset_size,
23398 int section_is_gnu)
23399 {
23400 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
23401
23402 if (section_is_gnu)
23403 {
23404 unsigned int version, flags;
23405
23406 version = read_2_bytes (abfd, mac_ptr);
23407 if (version != 4 && version != 5)
23408 {
23409 complaint (_("unrecognized version `%d' in .debug_macro section"),
23410 version);
23411 return NULL;
23412 }
23413 mac_ptr += 2;
23414
23415 flags = read_1_byte (abfd, mac_ptr);
23416 ++mac_ptr;
23417 *offset_size = (flags & 1) ? 8 : 4;
23418
23419 if ((flags & 2) != 0)
23420 /* We don't need the line table offset. */
23421 mac_ptr += *offset_size;
23422
23423 /* Vendor opcode descriptions. */
23424 if ((flags & 4) != 0)
23425 {
23426 unsigned int i, count;
23427
23428 count = read_1_byte (abfd, mac_ptr);
23429 ++mac_ptr;
23430 for (i = 0; i < count; ++i)
23431 {
23432 unsigned int opcode, bytes_read;
23433 unsigned long arg;
23434
23435 opcode = read_1_byte (abfd, mac_ptr);
23436 ++mac_ptr;
23437 opcode_definitions[opcode] = mac_ptr;
23438 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23439 mac_ptr += bytes_read;
23440 mac_ptr += arg;
23441 }
23442 }
23443 }
23444
23445 return mac_ptr;
23446 }
23447
23448 /* A helper for dwarf_decode_macros that handles the GNU extensions,
23449 including DW_MACRO_import. */
23450
23451 static void
23452 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
23453 bfd *abfd,
23454 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23455 struct macro_source_file *current_file,
23456 struct line_header *lh,
23457 struct dwarf2_section_info *section,
23458 int section_is_gnu, int section_is_dwz,
23459 unsigned int offset_size,
23460 htab_t include_hash)
23461 {
23462 struct dwarf2_per_objfile *dwarf2_per_objfile
23463 = cu->per_cu->dwarf2_per_objfile;
23464 struct objfile *objfile = dwarf2_per_objfile->objfile;
23465 enum dwarf_macro_record_type macinfo_type;
23466 int at_commandline;
23467 const gdb_byte *opcode_definitions[256];
23468
23469 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23470 &offset_size, section_is_gnu);
23471 if (mac_ptr == NULL)
23472 {
23473 /* We already issued a complaint. */
23474 return;
23475 }
23476
23477 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
23478 GDB is still reading the definitions from command line. First
23479 DW_MACINFO_start_file will need to be ignored as it was already executed
23480 to create CURRENT_FILE for the main source holding also the command line
23481 definitions. On first met DW_MACINFO_start_file this flag is reset to
23482 normally execute all the remaining DW_MACINFO_start_file macinfos. */
23483
23484 at_commandline = 1;
23485
23486 do
23487 {
23488 /* Do we at least have room for a macinfo type byte? */
23489 if (mac_ptr >= mac_end)
23490 {
23491 dwarf2_section_buffer_overflow_complaint (section);
23492 break;
23493 }
23494
23495 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23496 mac_ptr++;
23497
23498 /* Note that we rely on the fact that the corresponding GNU and
23499 DWARF constants are the same. */
23500 DIAGNOSTIC_PUSH
23501 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23502 switch (macinfo_type)
23503 {
23504 /* A zero macinfo type indicates the end of the macro
23505 information. */
23506 case 0:
23507 break;
23508
23509 case DW_MACRO_define:
23510 case DW_MACRO_undef:
23511 case DW_MACRO_define_strp:
23512 case DW_MACRO_undef_strp:
23513 case DW_MACRO_define_sup:
23514 case DW_MACRO_undef_sup:
23515 {
23516 unsigned int bytes_read;
23517 int line;
23518 const char *body;
23519 int is_define;
23520
23521 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23522 mac_ptr += bytes_read;
23523
23524 if (macinfo_type == DW_MACRO_define
23525 || macinfo_type == DW_MACRO_undef)
23526 {
23527 body = read_direct_string (abfd, mac_ptr, &bytes_read);
23528 mac_ptr += bytes_read;
23529 }
23530 else
23531 {
23532 LONGEST str_offset;
23533
23534 str_offset = read_offset (abfd, mac_ptr, offset_size);
23535 mac_ptr += offset_size;
23536
23537 if (macinfo_type == DW_MACRO_define_sup
23538 || macinfo_type == DW_MACRO_undef_sup
23539 || section_is_dwz)
23540 {
23541 struct dwz_file *dwz
23542 = dwarf2_get_dwz_file (dwarf2_per_objfile);
23543
23544 body = read_indirect_string_from_dwz (objfile,
23545 dwz, str_offset);
23546 }
23547 else
23548 body = read_indirect_string_at_offset (dwarf2_per_objfile,
23549 abfd, str_offset);
23550 }
23551
23552 is_define = (macinfo_type == DW_MACRO_define
23553 || macinfo_type == DW_MACRO_define_strp
23554 || macinfo_type == DW_MACRO_define_sup);
23555 if (! current_file)
23556 {
23557 /* DWARF violation as no main source is present. */
23558 complaint (_("debug info with no main source gives macro %s "
23559 "on line %d: %s"),
23560 is_define ? _("definition") : _("undefinition"),
23561 line, body);
23562 break;
23563 }
23564 if ((line == 0 && !at_commandline)
23565 || (line != 0 && at_commandline))
23566 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
23567 at_commandline ? _("command-line") : _("in-file"),
23568 is_define ? _("definition") : _("undefinition"),
23569 line == 0 ? _("zero") : _("non-zero"), line, body);
23570
23571 if (body == NULL)
23572 {
23573 /* Fedora's rpm-build's "debugedit" binary
23574 corrupted .debug_macro sections.
23575
23576 For more info, see
23577 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
23578 complaint (_("debug info gives %s invalid macro %s "
23579 "without body (corrupted?) at line %d "
23580 "on file %s"),
23581 at_commandline ? _("command-line") : _("in-file"),
23582 is_define ? _("definition") : _("undefinition"),
23583 line, current_file->filename);
23584 }
23585 else if (is_define)
23586 parse_macro_definition (current_file, line, body);
23587 else
23588 {
23589 gdb_assert (macinfo_type == DW_MACRO_undef
23590 || macinfo_type == DW_MACRO_undef_strp
23591 || macinfo_type == DW_MACRO_undef_sup);
23592 macro_undef (current_file, line, body);
23593 }
23594 }
23595 break;
23596
23597 case DW_MACRO_start_file:
23598 {
23599 unsigned int bytes_read;
23600 int line, file;
23601
23602 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23603 mac_ptr += bytes_read;
23604 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23605 mac_ptr += bytes_read;
23606
23607 if ((line == 0 && !at_commandline)
23608 || (line != 0 && at_commandline))
23609 complaint (_("debug info gives source %d included "
23610 "from %s at %s line %d"),
23611 file, at_commandline ? _("command-line") : _("file"),
23612 line == 0 ? _("zero") : _("non-zero"), line);
23613
23614 if (at_commandline)
23615 {
23616 /* This DW_MACRO_start_file was executed in the
23617 pass one. */
23618 at_commandline = 0;
23619 }
23620 else
23621 current_file = macro_start_file (cu, file, line, current_file,
23622 lh);
23623 }
23624 break;
23625
23626 case DW_MACRO_end_file:
23627 if (! current_file)
23628 complaint (_("macro debug info has an unmatched "
23629 "`close_file' directive"));
23630 else
23631 {
23632 current_file = current_file->included_by;
23633 if (! current_file)
23634 {
23635 enum dwarf_macro_record_type next_type;
23636
23637 /* GCC circa March 2002 doesn't produce the zero
23638 type byte marking the end of the compilation
23639 unit. Complain if it's not there, but exit no
23640 matter what. */
23641
23642 /* Do we at least have room for a macinfo type byte? */
23643 if (mac_ptr >= mac_end)
23644 {
23645 dwarf2_section_buffer_overflow_complaint (section);
23646 return;
23647 }
23648
23649 /* We don't increment mac_ptr here, so this is just
23650 a look-ahead. */
23651 next_type
23652 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23653 mac_ptr);
23654 if (next_type != 0)
23655 complaint (_("no terminating 0-type entry for "
23656 "macros in `.debug_macinfo' section"));
23657
23658 return;
23659 }
23660 }
23661 break;
23662
23663 case DW_MACRO_import:
23664 case DW_MACRO_import_sup:
23665 {
23666 LONGEST offset;
23667 void **slot;
23668 bfd *include_bfd = abfd;
23669 struct dwarf2_section_info *include_section = section;
23670 const gdb_byte *include_mac_end = mac_end;
23671 int is_dwz = section_is_dwz;
23672 const gdb_byte *new_mac_ptr;
23673
23674 offset = read_offset (abfd, mac_ptr, offset_size);
23675 mac_ptr += offset_size;
23676
23677 if (macinfo_type == DW_MACRO_import_sup)
23678 {
23679 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
23680
23681 dwz->macro.read (objfile);
23682
23683 include_section = &dwz->macro;
23684 include_bfd = include_section->get_bfd_owner ();
23685 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23686 is_dwz = 1;
23687 }
23688
23689 new_mac_ptr = include_section->buffer + offset;
23690 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23691
23692 if (*slot != NULL)
23693 {
23694 /* This has actually happened; see
23695 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23696 complaint (_("recursive DW_MACRO_import in "
23697 ".debug_macro section"));
23698 }
23699 else
23700 {
23701 *slot = (void *) new_mac_ptr;
23702
23703 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
23704 include_mac_end, current_file, lh,
23705 section, section_is_gnu, is_dwz,
23706 offset_size, include_hash);
23707
23708 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23709 }
23710 }
23711 break;
23712
23713 case DW_MACINFO_vendor_ext:
23714 if (!section_is_gnu)
23715 {
23716 unsigned int bytes_read;
23717
23718 /* This reads the constant, but since we don't recognize
23719 any vendor extensions, we ignore it. */
23720 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23721 mac_ptr += bytes_read;
23722 read_direct_string (abfd, mac_ptr, &bytes_read);
23723 mac_ptr += bytes_read;
23724
23725 /* We don't recognize any vendor extensions. */
23726 break;
23727 }
23728 /* FALLTHROUGH */
23729
23730 default:
23731 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23732 mac_ptr, mac_end, abfd, offset_size,
23733 section);
23734 if (mac_ptr == NULL)
23735 return;
23736 break;
23737 }
23738 DIAGNOSTIC_POP
23739 } while (macinfo_type != 0);
23740 }
23741
23742 static void
23743 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23744 int section_is_gnu)
23745 {
23746 struct dwarf2_per_objfile *dwarf2_per_objfile
23747 = cu->per_cu->dwarf2_per_objfile;
23748 struct objfile *objfile = dwarf2_per_objfile->objfile;
23749 struct line_header *lh = cu->line_header;
23750 bfd *abfd;
23751 const gdb_byte *mac_ptr, *mac_end;
23752 struct macro_source_file *current_file = 0;
23753 enum dwarf_macro_record_type macinfo_type;
23754 unsigned int offset_size = cu->header.offset_size;
23755 const gdb_byte *opcode_definitions[256];
23756 void **slot;
23757 struct dwarf2_section_info *section;
23758 const char *section_name;
23759
23760 if (cu->dwo_unit != NULL)
23761 {
23762 if (section_is_gnu)
23763 {
23764 section = &cu->dwo_unit->dwo_file->sections.macro;
23765 section_name = ".debug_macro.dwo";
23766 }
23767 else
23768 {
23769 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23770 section_name = ".debug_macinfo.dwo";
23771 }
23772 }
23773 else
23774 {
23775 if (section_is_gnu)
23776 {
23777 section = &dwarf2_per_objfile->macro;
23778 section_name = ".debug_macro";
23779 }
23780 else
23781 {
23782 section = &dwarf2_per_objfile->macinfo;
23783 section_name = ".debug_macinfo";
23784 }
23785 }
23786
23787 section->read (objfile);
23788 if (section->buffer == NULL)
23789 {
23790 complaint (_("missing %s section"), section_name);
23791 return;
23792 }
23793 abfd = section->get_bfd_owner ();
23794
23795 /* First pass: Find the name of the base filename.
23796 This filename is needed in order to process all macros whose definition
23797 (or undefinition) comes from the command line. These macros are defined
23798 before the first DW_MACINFO_start_file entry, and yet still need to be
23799 associated to the base file.
23800
23801 To determine the base file name, we scan the macro definitions until we
23802 reach the first DW_MACINFO_start_file entry. We then initialize
23803 CURRENT_FILE accordingly so that any macro definition found before the
23804 first DW_MACINFO_start_file can still be associated to the base file. */
23805
23806 mac_ptr = section->buffer + offset;
23807 mac_end = section->buffer + section->size;
23808
23809 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23810 &offset_size, section_is_gnu);
23811 if (mac_ptr == NULL)
23812 {
23813 /* We already issued a complaint. */
23814 return;
23815 }
23816
23817 do
23818 {
23819 /* Do we at least have room for a macinfo type byte? */
23820 if (mac_ptr >= mac_end)
23821 {
23822 /* Complaint is printed during the second pass as GDB will probably
23823 stop the first pass earlier upon finding
23824 DW_MACINFO_start_file. */
23825 break;
23826 }
23827
23828 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23829 mac_ptr++;
23830
23831 /* Note that we rely on the fact that the corresponding GNU and
23832 DWARF constants are the same. */
23833 DIAGNOSTIC_PUSH
23834 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23835 switch (macinfo_type)
23836 {
23837 /* A zero macinfo type indicates the end of the macro
23838 information. */
23839 case 0:
23840 break;
23841
23842 case DW_MACRO_define:
23843 case DW_MACRO_undef:
23844 /* Only skip the data by MAC_PTR. */
23845 {
23846 unsigned int bytes_read;
23847
23848 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23849 mac_ptr += bytes_read;
23850 read_direct_string (abfd, mac_ptr, &bytes_read);
23851 mac_ptr += bytes_read;
23852 }
23853 break;
23854
23855 case DW_MACRO_start_file:
23856 {
23857 unsigned int bytes_read;
23858 int line, file;
23859
23860 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23861 mac_ptr += bytes_read;
23862 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23863 mac_ptr += bytes_read;
23864
23865 current_file = macro_start_file (cu, file, line, current_file, lh);
23866 }
23867 break;
23868
23869 case DW_MACRO_end_file:
23870 /* No data to skip by MAC_PTR. */
23871 break;
23872
23873 case DW_MACRO_define_strp:
23874 case DW_MACRO_undef_strp:
23875 case DW_MACRO_define_sup:
23876 case DW_MACRO_undef_sup:
23877 {
23878 unsigned int bytes_read;
23879
23880 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23881 mac_ptr += bytes_read;
23882 mac_ptr += offset_size;
23883 }
23884 break;
23885
23886 case DW_MACRO_import:
23887 case DW_MACRO_import_sup:
23888 /* Note that, according to the spec, a transparent include
23889 chain cannot call DW_MACRO_start_file. So, we can just
23890 skip this opcode. */
23891 mac_ptr += offset_size;
23892 break;
23893
23894 case DW_MACINFO_vendor_ext:
23895 /* Only skip the data by MAC_PTR. */
23896 if (!section_is_gnu)
23897 {
23898 unsigned int bytes_read;
23899
23900 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23901 mac_ptr += bytes_read;
23902 read_direct_string (abfd, mac_ptr, &bytes_read);
23903 mac_ptr += bytes_read;
23904 }
23905 /* FALLTHROUGH */
23906
23907 default:
23908 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23909 mac_ptr, mac_end, abfd, offset_size,
23910 section);
23911 if (mac_ptr == NULL)
23912 return;
23913 break;
23914 }
23915 DIAGNOSTIC_POP
23916 } while (macinfo_type != 0 && current_file == NULL);
23917
23918 /* Second pass: Process all entries.
23919
23920 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23921 command-line macro definitions/undefinitions. This flag is unset when we
23922 reach the first DW_MACINFO_start_file entry. */
23923
23924 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23925 htab_eq_pointer,
23926 NULL, xcalloc, xfree));
23927 mac_ptr = section->buffer + offset;
23928 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23929 *slot = (void *) mac_ptr;
23930 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
23931 current_file, lh, section,
23932 section_is_gnu, 0, offset_size,
23933 include_hash.get ());
23934 }
23935
23936 /* Return the .debug_loc section to use for CU.
23937 For DWO files use .debug_loc.dwo. */
23938
23939 static struct dwarf2_section_info *
23940 cu_debug_loc_section (struct dwarf2_cu *cu)
23941 {
23942 struct dwarf2_per_objfile *dwarf2_per_objfile
23943 = cu->per_cu->dwarf2_per_objfile;
23944
23945 if (cu->dwo_unit)
23946 {
23947 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23948
23949 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23950 }
23951 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23952 : &dwarf2_per_objfile->loc);
23953 }
23954
23955 /* A helper function that fills in a dwarf2_loclist_baton. */
23956
23957 static void
23958 fill_in_loclist_baton (struct dwarf2_cu *cu,
23959 struct dwarf2_loclist_baton *baton,
23960 const struct attribute *attr)
23961 {
23962 struct dwarf2_per_objfile *dwarf2_per_objfile
23963 = cu->per_cu->dwarf2_per_objfile;
23964 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23965
23966 section->read (dwarf2_per_objfile->objfile);
23967
23968 baton->per_cu = cu->per_cu;
23969 gdb_assert (baton->per_cu);
23970 /* We don't know how long the location list is, but make sure we
23971 don't run off the edge of the section. */
23972 baton->size = section->size - DW_UNSND (attr);
23973 baton->data = section->buffer + DW_UNSND (attr);
23974 baton->base_address = cu->base_address;
23975 baton->from_dwo = cu->dwo_unit != NULL;
23976 }
23977
23978 static void
23979 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23980 struct dwarf2_cu *cu, int is_block)
23981 {
23982 struct dwarf2_per_objfile *dwarf2_per_objfile
23983 = cu->per_cu->dwarf2_per_objfile;
23984 struct objfile *objfile = dwarf2_per_objfile->objfile;
23985 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23986
23987 if (attr->form_is_section_offset ()
23988 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23989 the section. If so, fall through to the complaint in the
23990 other branch. */
23991 && DW_UNSND (attr) < section->get_size (objfile))
23992 {
23993 struct dwarf2_loclist_baton *baton;
23994
23995 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23996
23997 fill_in_loclist_baton (cu, baton, attr);
23998
23999 if (cu->base_known == 0)
24000 complaint (_("Location list used without "
24001 "specifying the CU base address."));
24002
24003 SYMBOL_ACLASS_INDEX (sym) = (is_block
24004 ? dwarf2_loclist_block_index
24005 : dwarf2_loclist_index);
24006 SYMBOL_LOCATION_BATON (sym) = baton;
24007 }
24008 else
24009 {
24010 struct dwarf2_locexpr_baton *baton;
24011
24012 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24013 baton->per_cu = cu->per_cu;
24014 gdb_assert (baton->per_cu);
24015
24016 if (attr->form_is_block ())
24017 {
24018 /* Note that we're just copying the block's data pointer
24019 here, not the actual data. We're still pointing into the
24020 info_buffer for SYM's objfile; right now we never release
24021 that buffer, but when we do clean up properly this may
24022 need to change. */
24023 baton->size = DW_BLOCK (attr)->size;
24024 baton->data = DW_BLOCK (attr)->data;
24025 }
24026 else
24027 {
24028 dwarf2_invalid_attrib_class_complaint ("location description",
24029 sym->natural_name ());
24030 baton->size = 0;
24031 }
24032
24033 SYMBOL_ACLASS_INDEX (sym) = (is_block
24034 ? dwarf2_locexpr_block_index
24035 : dwarf2_locexpr_index);
24036 SYMBOL_LOCATION_BATON (sym) = baton;
24037 }
24038 }
24039
24040 /* See read.h. */
24041
24042 struct objfile *
24043 dwarf2_per_cu_data::objfile () const
24044 {
24045 struct objfile *objfile = dwarf2_per_objfile->objfile;
24046
24047 /* Return the master objfile, so that we can report and look up the
24048 correct file containing this variable. */
24049 if (objfile->separate_debug_objfile_backlink)
24050 objfile = objfile->separate_debug_objfile_backlink;
24051
24052 return objfile;
24053 }
24054
24055 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24056 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24057 CU_HEADERP first. */
24058
24059 static const struct comp_unit_head *
24060 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24061 const struct dwarf2_per_cu_data *per_cu)
24062 {
24063 const gdb_byte *info_ptr;
24064
24065 if (per_cu->cu)
24066 return &per_cu->cu->header;
24067
24068 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24069
24070 memset (cu_headerp, 0, sizeof (*cu_headerp));
24071 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24072 rcuh_kind::COMPILE);
24073
24074 return cu_headerp;
24075 }
24076
24077 /* See read.h. */
24078
24079 int
24080 dwarf2_per_cu_data::addr_size () const
24081 {
24082 struct comp_unit_head cu_header_local;
24083 const struct comp_unit_head *cu_headerp;
24084
24085 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24086
24087 return cu_headerp->addr_size;
24088 }
24089
24090 /* See read.h. */
24091
24092 int
24093 dwarf2_per_cu_data::offset_size () const
24094 {
24095 struct comp_unit_head cu_header_local;
24096 const struct comp_unit_head *cu_headerp;
24097
24098 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24099
24100 return cu_headerp->offset_size;
24101 }
24102
24103 /* See read.h. */
24104
24105 int
24106 dwarf2_per_cu_data::ref_addr_size () const
24107 {
24108 struct comp_unit_head cu_header_local;
24109 const struct comp_unit_head *cu_headerp;
24110
24111 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24112
24113 if (cu_headerp->version == 2)
24114 return cu_headerp->addr_size;
24115 else
24116 return cu_headerp->offset_size;
24117 }
24118
24119 /* See read.h. */
24120
24121 CORE_ADDR
24122 dwarf2_per_cu_data::text_offset () const
24123 {
24124 struct objfile *objfile = dwarf2_per_objfile->objfile;
24125
24126 return objfile->text_section_offset ();
24127 }
24128
24129 /* See read.h. */
24130
24131 struct type *
24132 dwarf2_per_cu_data::addr_type () const
24133 {
24134 struct objfile *objfile = dwarf2_per_objfile->objfile;
24135 struct type *void_type = objfile_type (objfile)->builtin_void;
24136 struct type *addr_type = lookup_pointer_type (void_type);
24137 int addr_size = this->addr_size ();
24138
24139 if (TYPE_LENGTH (addr_type) == addr_size)
24140 return addr_type;
24141
24142 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
24143 return addr_type;
24144 }
24145
24146 /* A helper function for dwarf2_find_containing_comp_unit that returns
24147 the index of the result, and that searches a vector. It will
24148 return a result even if the offset in question does not actually
24149 occur in any CU. This is separate so that it can be unit
24150 tested. */
24151
24152 static int
24153 dwarf2_find_containing_comp_unit
24154 (sect_offset sect_off,
24155 unsigned int offset_in_dwz,
24156 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24157 {
24158 int low, high;
24159
24160 low = 0;
24161 high = all_comp_units.size () - 1;
24162 while (high > low)
24163 {
24164 struct dwarf2_per_cu_data *mid_cu;
24165 int mid = low + (high - low) / 2;
24166
24167 mid_cu = all_comp_units[mid];
24168 if (mid_cu->is_dwz > offset_in_dwz
24169 || (mid_cu->is_dwz == offset_in_dwz
24170 && mid_cu->sect_off + mid_cu->length > sect_off))
24171 high = mid;
24172 else
24173 low = mid + 1;
24174 }
24175 gdb_assert (low == high);
24176 return low;
24177 }
24178
24179 /* Locate the .debug_info compilation unit from CU's objfile which contains
24180 the DIE at OFFSET. Raises an error on failure. */
24181
24182 static struct dwarf2_per_cu_data *
24183 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24184 unsigned int offset_in_dwz,
24185 struct dwarf2_per_objfile *dwarf2_per_objfile)
24186 {
24187 int low
24188 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
24189 dwarf2_per_objfile->all_comp_units);
24190 struct dwarf2_per_cu_data *this_cu
24191 = dwarf2_per_objfile->all_comp_units[low];
24192
24193 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24194 {
24195 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24196 error (_("Dwarf Error: could not find partial DIE containing "
24197 "offset %s [in module %s]"),
24198 sect_offset_str (sect_off),
24199 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24200
24201 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24202 <= sect_off);
24203 return dwarf2_per_objfile->all_comp_units[low-1];
24204 }
24205 else
24206 {
24207 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24208 && sect_off >= this_cu->sect_off + this_cu->length)
24209 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24210 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24211 return this_cu;
24212 }
24213 }
24214
24215 #if GDB_SELF_TEST
24216
24217 namespace selftests {
24218 namespace find_containing_comp_unit {
24219
24220 static void
24221 run_test ()
24222 {
24223 struct dwarf2_per_cu_data one {};
24224 struct dwarf2_per_cu_data two {};
24225 struct dwarf2_per_cu_data three {};
24226 struct dwarf2_per_cu_data four {};
24227
24228 one.length = 5;
24229 two.sect_off = sect_offset (one.length);
24230 two.length = 7;
24231
24232 three.length = 5;
24233 three.is_dwz = 1;
24234 four.sect_off = sect_offset (three.length);
24235 four.length = 7;
24236 four.is_dwz = 1;
24237
24238 std::vector<dwarf2_per_cu_data *> units;
24239 units.push_back (&one);
24240 units.push_back (&two);
24241 units.push_back (&three);
24242 units.push_back (&four);
24243
24244 int result;
24245
24246 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24247 SELF_CHECK (units[result] == &one);
24248 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24249 SELF_CHECK (units[result] == &one);
24250 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24251 SELF_CHECK (units[result] == &two);
24252
24253 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24254 SELF_CHECK (units[result] == &three);
24255 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24256 SELF_CHECK (units[result] == &three);
24257 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24258 SELF_CHECK (units[result] == &four);
24259 }
24260
24261 }
24262 }
24263
24264 #endif /* GDB_SELF_TEST */
24265
24266 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24267
24268 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24269 : per_cu (per_cu_),
24270 mark (false),
24271 has_loclist (false),
24272 checked_producer (false),
24273 producer_is_gxx_lt_4_6 (false),
24274 producer_is_gcc_lt_4_3 (false),
24275 producer_is_icc (false),
24276 producer_is_icc_lt_14 (false),
24277 producer_is_codewarrior (false),
24278 processing_has_namespace_info (false)
24279 {
24280 per_cu->cu = this;
24281 }
24282
24283 /* Destroy a dwarf2_cu. */
24284
24285 dwarf2_cu::~dwarf2_cu ()
24286 {
24287 per_cu->cu = NULL;
24288 }
24289
24290 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24291
24292 static void
24293 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24294 enum language pretend_language)
24295 {
24296 struct attribute *attr;
24297
24298 /* Set the language we're debugging. */
24299 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24300 if (attr != nullptr)
24301 set_cu_language (DW_UNSND (attr), cu);
24302 else
24303 {
24304 cu->language = pretend_language;
24305 cu->language_defn = language_def (cu->language);
24306 }
24307
24308 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24309 }
24310
24311 /* Increase the age counter on each cached compilation unit, and free
24312 any that are too old. */
24313
24314 static void
24315 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24316 {
24317 struct dwarf2_per_cu_data *per_cu, **last_chain;
24318
24319 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24320 per_cu = dwarf2_per_objfile->read_in_chain;
24321 while (per_cu != NULL)
24322 {
24323 per_cu->cu->last_used ++;
24324 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24325 dwarf2_mark (per_cu->cu);
24326 per_cu = per_cu->cu->read_in_chain;
24327 }
24328
24329 per_cu = dwarf2_per_objfile->read_in_chain;
24330 last_chain = &dwarf2_per_objfile->read_in_chain;
24331 while (per_cu != NULL)
24332 {
24333 struct dwarf2_per_cu_data *next_cu;
24334
24335 next_cu = per_cu->cu->read_in_chain;
24336
24337 if (!per_cu->cu->mark)
24338 {
24339 delete per_cu->cu;
24340 *last_chain = next_cu;
24341 }
24342 else
24343 last_chain = &per_cu->cu->read_in_chain;
24344
24345 per_cu = next_cu;
24346 }
24347 }
24348
24349 /* Remove a single compilation unit from the cache. */
24350
24351 static void
24352 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24353 {
24354 struct dwarf2_per_cu_data *per_cu, **last_chain;
24355 struct dwarf2_per_objfile *dwarf2_per_objfile
24356 = target_per_cu->dwarf2_per_objfile;
24357
24358 per_cu = dwarf2_per_objfile->read_in_chain;
24359 last_chain = &dwarf2_per_objfile->read_in_chain;
24360 while (per_cu != NULL)
24361 {
24362 struct dwarf2_per_cu_data *next_cu;
24363
24364 next_cu = per_cu->cu->read_in_chain;
24365
24366 if (per_cu == target_per_cu)
24367 {
24368 delete per_cu->cu;
24369 per_cu->cu = NULL;
24370 *last_chain = next_cu;
24371 break;
24372 }
24373 else
24374 last_chain = &per_cu->cu->read_in_chain;
24375
24376 per_cu = next_cu;
24377 }
24378 }
24379
24380 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24381 We store these in a hash table separate from the DIEs, and preserve them
24382 when the DIEs are flushed out of cache.
24383
24384 The CU "per_cu" pointer is needed because offset alone is not enough to
24385 uniquely identify the type. A file may have multiple .debug_types sections,
24386 or the type may come from a DWO file. Furthermore, while it's more logical
24387 to use per_cu->section+offset, with Fission the section with the data is in
24388 the DWO file but we don't know that section at the point we need it.
24389 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24390 because we can enter the lookup routine, get_die_type_at_offset, from
24391 outside this file, and thus won't necessarily have PER_CU->cu.
24392 Fortunately, PER_CU is stable for the life of the objfile. */
24393
24394 struct dwarf2_per_cu_offset_and_type
24395 {
24396 const struct dwarf2_per_cu_data *per_cu;
24397 sect_offset sect_off;
24398 struct type *type;
24399 };
24400
24401 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24402
24403 static hashval_t
24404 per_cu_offset_and_type_hash (const void *item)
24405 {
24406 const struct dwarf2_per_cu_offset_and_type *ofs
24407 = (const struct dwarf2_per_cu_offset_and_type *) item;
24408
24409 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24410 }
24411
24412 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24413
24414 static int
24415 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24416 {
24417 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24418 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24419 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24420 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24421
24422 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24423 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24424 }
24425
24426 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24427 table if necessary. For convenience, return TYPE.
24428
24429 The DIEs reading must have careful ordering to:
24430 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24431 reading current DIE.
24432 * Not trying to dereference contents of still incompletely read in types
24433 while reading in other DIEs.
24434 * Enable referencing still incompletely read in types just by a pointer to
24435 the type without accessing its fields.
24436
24437 Therefore caller should follow these rules:
24438 * Try to fetch any prerequisite types we may need to build this DIE type
24439 before building the type and calling set_die_type.
24440 * After building type call set_die_type for current DIE as soon as
24441 possible before fetching more types to complete the current type.
24442 * Make the type as complete as possible before fetching more types. */
24443
24444 static struct type *
24445 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24446 {
24447 struct dwarf2_per_objfile *dwarf2_per_objfile
24448 = cu->per_cu->dwarf2_per_objfile;
24449 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24450 struct objfile *objfile = dwarf2_per_objfile->objfile;
24451 struct attribute *attr;
24452 struct dynamic_prop prop;
24453
24454 /* For Ada types, make sure that the gnat-specific data is always
24455 initialized (if not already set). There are a few types where
24456 we should not be doing so, because the type-specific area is
24457 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24458 where the type-specific area is used to store the floatformat).
24459 But this is not a problem, because the gnat-specific information
24460 is actually not needed for these types. */
24461 if (need_gnat_info (cu)
24462 && TYPE_CODE (type) != TYPE_CODE_FUNC
24463 && TYPE_CODE (type) != TYPE_CODE_FLT
24464 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
24465 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
24466 && TYPE_CODE (type) != TYPE_CODE_METHOD
24467 && !HAVE_GNAT_AUX_INFO (type))
24468 INIT_GNAT_SPECIFIC (type);
24469
24470 /* Read DW_AT_allocated and set in type. */
24471 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24472 if (attr != NULL && attr->form_is_block ())
24473 {
24474 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24475 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24476 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
24477 }
24478 else if (attr != NULL)
24479 {
24480 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
24481 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24482 sect_offset_str (die->sect_off));
24483 }
24484
24485 /* Read DW_AT_associated and set in type. */
24486 attr = dwarf2_attr (die, DW_AT_associated, cu);
24487 if (attr != NULL && attr->form_is_block ())
24488 {
24489 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24490 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24491 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
24492 }
24493 else if (attr != NULL)
24494 {
24495 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
24496 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24497 sect_offset_str (die->sect_off));
24498 }
24499
24500 /* Read DW_AT_data_location and set in type. */
24501 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24502 if (attr_to_dynamic_prop (attr, die, cu, &prop,
24503 cu->per_cu->addr_type ()))
24504 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
24505
24506 if (dwarf2_per_objfile->die_type_hash == NULL)
24507 dwarf2_per_objfile->die_type_hash
24508 = htab_up (htab_create_alloc (127,
24509 per_cu_offset_and_type_hash,
24510 per_cu_offset_and_type_eq,
24511 NULL, xcalloc, xfree));
24512
24513 ofs.per_cu = cu->per_cu;
24514 ofs.sect_off = die->sect_off;
24515 ofs.type = type;
24516 slot = (struct dwarf2_per_cu_offset_and_type **)
24517 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
24518 if (*slot)
24519 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24520 sect_offset_str (die->sect_off));
24521 *slot = XOBNEW (&objfile->objfile_obstack,
24522 struct dwarf2_per_cu_offset_and_type);
24523 **slot = ofs;
24524 return type;
24525 }
24526
24527 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24528 or return NULL if the die does not have a saved type. */
24529
24530 static struct type *
24531 get_die_type_at_offset (sect_offset sect_off,
24532 struct dwarf2_per_cu_data *per_cu)
24533 {
24534 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24535 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
24536
24537 if (dwarf2_per_objfile->die_type_hash == NULL)
24538 return NULL;
24539
24540 ofs.per_cu = per_cu;
24541 ofs.sect_off = sect_off;
24542 slot = ((struct dwarf2_per_cu_offset_and_type *)
24543 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
24544 if (slot)
24545 return slot->type;
24546 else
24547 return NULL;
24548 }
24549
24550 /* Look up the type for DIE in CU in die_type_hash,
24551 or return NULL if DIE does not have a saved type. */
24552
24553 static struct type *
24554 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24555 {
24556 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24557 }
24558
24559 /* Add a dependence relationship from CU to REF_PER_CU. */
24560
24561 static void
24562 dwarf2_add_dependence (struct dwarf2_cu *cu,
24563 struct dwarf2_per_cu_data *ref_per_cu)
24564 {
24565 void **slot;
24566
24567 if (cu->dependencies == NULL)
24568 cu->dependencies
24569 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24570 NULL, &cu->comp_unit_obstack,
24571 hashtab_obstack_allocate,
24572 dummy_obstack_deallocate);
24573
24574 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24575 if (*slot == NULL)
24576 *slot = ref_per_cu;
24577 }
24578
24579 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24580 Set the mark field in every compilation unit in the
24581 cache that we must keep because we are keeping CU. */
24582
24583 static int
24584 dwarf2_mark_helper (void **slot, void *data)
24585 {
24586 struct dwarf2_per_cu_data *per_cu;
24587
24588 per_cu = (struct dwarf2_per_cu_data *) *slot;
24589
24590 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24591 reading of the chain. As such dependencies remain valid it is not much
24592 useful to track and undo them during QUIT cleanups. */
24593 if (per_cu->cu == NULL)
24594 return 1;
24595
24596 if (per_cu->cu->mark)
24597 return 1;
24598 per_cu->cu->mark = true;
24599
24600 if (per_cu->cu->dependencies != NULL)
24601 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24602
24603 return 1;
24604 }
24605
24606 /* Set the mark field in CU and in every other compilation unit in the
24607 cache that we must keep because we are keeping CU. */
24608
24609 static void
24610 dwarf2_mark (struct dwarf2_cu *cu)
24611 {
24612 if (cu->mark)
24613 return;
24614 cu->mark = true;
24615 if (cu->dependencies != NULL)
24616 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24617 }
24618
24619 static void
24620 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24621 {
24622 while (per_cu)
24623 {
24624 per_cu->cu->mark = false;
24625 per_cu = per_cu->cu->read_in_chain;
24626 }
24627 }
24628
24629 /* Trivial hash function for partial_die_info: the hash value of a DIE
24630 is its offset in .debug_info for this objfile. */
24631
24632 static hashval_t
24633 partial_die_hash (const void *item)
24634 {
24635 const struct partial_die_info *part_die
24636 = (const struct partial_die_info *) item;
24637
24638 return to_underlying (part_die->sect_off);
24639 }
24640
24641 /* Trivial comparison function for partial_die_info structures: two DIEs
24642 are equal if they have the same offset. */
24643
24644 static int
24645 partial_die_eq (const void *item_lhs, const void *item_rhs)
24646 {
24647 const struct partial_die_info *part_die_lhs
24648 = (const struct partial_die_info *) item_lhs;
24649 const struct partial_die_info *part_die_rhs
24650 = (const struct partial_die_info *) item_rhs;
24651
24652 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24653 }
24654
24655 struct cmd_list_element *set_dwarf_cmdlist;
24656 struct cmd_list_element *show_dwarf_cmdlist;
24657
24658 static void
24659 set_dwarf_cmd (const char *args, int from_tty)
24660 {
24661 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24662 gdb_stdout);
24663 }
24664
24665 static void
24666 show_dwarf_cmd (const char *args, int from_tty)
24667 {
24668 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24669 }
24670
24671 static void
24672 show_check_physname (struct ui_file *file, int from_tty,
24673 struct cmd_list_element *c, const char *value)
24674 {
24675 fprintf_filtered (file,
24676 _("Whether to check \"physname\" is %s.\n"),
24677 value);
24678 }
24679
24680 void _initialize_dwarf2_read ();
24681 void
24682 _initialize_dwarf2_read ()
24683 {
24684 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24685 Set DWARF specific variables.\n\
24686 Configure DWARF variables such as the cache size."),
24687 &set_dwarf_cmdlist, "maintenance set dwarf ",
24688 0/*allow-unknown*/, &maintenance_set_cmdlist);
24689
24690 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24691 Show DWARF specific variables.\n\
24692 Show DWARF variables such as the cache size."),
24693 &show_dwarf_cmdlist, "maintenance show dwarf ",
24694 0/*allow-unknown*/, &maintenance_show_cmdlist);
24695
24696 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24697 &dwarf_max_cache_age, _("\
24698 Set the upper bound on the age of cached DWARF compilation units."), _("\
24699 Show the upper bound on the age of cached DWARF compilation units."), _("\
24700 A higher limit means that cached compilation units will be stored\n\
24701 in memory longer, and more total memory will be used. Zero disables\n\
24702 caching, which can slow down startup."),
24703 NULL,
24704 show_dwarf_max_cache_age,
24705 &set_dwarf_cmdlist,
24706 &show_dwarf_cmdlist);
24707
24708 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24709 Set debugging of the DWARF reader."), _("\
24710 Show debugging of the DWARF reader."), _("\
24711 When enabled (non-zero), debugging messages are printed during DWARF\n\
24712 reading and symtab expansion. A value of 1 (one) provides basic\n\
24713 information. A value greater than 1 provides more verbose information."),
24714 NULL,
24715 NULL,
24716 &setdebuglist, &showdebuglist);
24717
24718 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24719 Set debugging of the DWARF DIE reader."), _("\
24720 Show debugging of the DWARF DIE reader."), _("\
24721 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24722 The value is the maximum depth to print."),
24723 NULL,
24724 NULL,
24725 &setdebuglist, &showdebuglist);
24726
24727 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24728 Set debugging of the dwarf line reader."), _("\
24729 Show debugging of the dwarf line reader."), _("\
24730 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24731 A value of 1 (one) provides basic information.\n\
24732 A value greater than 1 provides more verbose information."),
24733 NULL,
24734 NULL,
24735 &setdebuglist, &showdebuglist);
24736
24737 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24738 Set cross-checking of \"physname\" code against demangler."), _("\
24739 Show cross-checking of \"physname\" code against demangler."), _("\
24740 When enabled, GDB's internal \"physname\" code is checked against\n\
24741 the demangler."),
24742 NULL, show_check_physname,
24743 &setdebuglist, &showdebuglist);
24744
24745 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24746 no_class, &use_deprecated_index_sections, _("\
24747 Set whether to use deprecated gdb_index sections."), _("\
24748 Show whether to use deprecated gdb_index sections."), _("\
24749 When enabled, deprecated .gdb_index sections are used anyway.\n\
24750 Normally they are ignored either because of a missing feature or\n\
24751 performance issue.\n\
24752 Warning: This option must be enabled before gdb reads the file."),
24753 NULL,
24754 NULL,
24755 &setlist, &showlist);
24756
24757 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24758 &dwarf2_locexpr_funcs);
24759 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24760 &dwarf2_loclist_funcs);
24761
24762 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24763 &dwarf2_block_frame_base_locexpr_funcs);
24764 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24765 &dwarf2_block_frame_base_loclist_funcs);
24766
24767 #if GDB_SELF_TEST
24768 selftests::register_test ("dw2_expand_symtabs_matching",
24769 selftests::dw2_expand_symtabs_matching::run_test);
24770 selftests::register_test ("dwarf2_find_containing_comp_unit",
24771 selftests::find_containing_comp_unit::run_test);
24772 #endif
24773 }
This page took 0.515266 seconds and 5 git commands to generate.