[gdb/symtab] Read CU base address for enqueued CU
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 /* This is used to store the data that is always per objfile. */
109 static const objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
110
111 /* These are used to store the dwarf2_per_bfd objects.
112
113 objfiles having the same BFD, which doesn't require relocations, are going to
114 share a dwarf2_per_bfd object, which is held in the _bfd_data_key version.
115
116 Other objfiles are not going to share a dwarf2_per_bfd with any other
117 objfiles, so they'll have their own version kept in the _objfile_data_key
118 version. */
119 static const struct bfd_key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key;
120 static const struct objfile_key<dwarf2_per_bfd> dwarf2_per_bfd_objfile_data_key;
121
122 /* The "aclass" indices for various kinds of computed DWARF symbols. */
123
124 static int dwarf2_locexpr_index;
125 static int dwarf2_loclist_index;
126 static int dwarf2_locexpr_block_index;
127 static int dwarf2_loclist_block_index;
128
129 /* Size of .debug_loclists section header for 32-bit DWARF format. */
130 #define LOCLIST_HEADER_SIZE32 12
131
132 /* Size of .debug_loclists section header for 64-bit DWARF format. */
133 #define LOCLIST_HEADER_SIZE64 20
134
135 /* Size of .debug_rnglists section header for 32-bit DWARF format. */
136 #define RNGLIST_HEADER_SIZE32 12
137
138 /* Size of .debug_rnglists section header for 64-bit DWARF format. */
139 #define RNGLIST_HEADER_SIZE64 20
140
141 /* An index into a (C++) symbol name component in a symbol name as
142 recorded in the mapped_index's symbol table. For each C++ symbol
143 in the symbol table, we record one entry for the start of each
144 component in the symbol in a table of name components, and then
145 sort the table, in order to be able to binary search symbol names,
146 ignoring leading namespaces, both completion and regular look up.
147 For example, for symbol "A::B::C", we'll have an entry that points
148 to "A::B::C", another that points to "B::C", and another for "C".
149 Note that function symbols in GDB index have no parameter
150 information, just the function/method names. You can convert a
151 name_component to a "const char *" using the
152 'mapped_index::symbol_name_at(offset_type)' method. */
153
154 struct name_component
155 {
156 /* Offset in the symbol name where the component starts. Stored as
157 a (32-bit) offset instead of a pointer to save memory and improve
158 locality on 64-bit architectures. */
159 offset_type name_offset;
160
161 /* The symbol's index in the symbol and constant pool tables of a
162 mapped_index. */
163 offset_type idx;
164 };
165
166 /* Base class containing bits shared by both .gdb_index and
167 .debug_name indexes. */
168
169 struct mapped_index_base
170 {
171 mapped_index_base () = default;
172 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
173
174 /* The name_component table (a sorted vector). See name_component's
175 description above. */
176 std::vector<name_component> name_components;
177
178 /* How NAME_COMPONENTS is sorted. */
179 enum case_sensitivity name_components_casing;
180
181 /* Return the number of names in the symbol table. */
182 virtual size_t symbol_name_count () const = 0;
183
184 /* Get the name of the symbol at IDX in the symbol table. */
185 virtual const char *symbol_name_at
186 (offset_type idx, dwarf2_per_objfile *per_objfile) const = 0;
187
188 /* Return whether the name at IDX in the symbol table should be
189 ignored. */
190 virtual bool symbol_name_slot_invalid (offset_type idx) const
191 {
192 return false;
193 }
194
195 /* Build the symbol name component sorted vector, if we haven't
196 yet. */
197 void build_name_components (dwarf2_per_objfile *per_objfile);
198
199 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
200 possible matches for LN_NO_PARAMS in the name component
201 vector. */
202 std::pair<std::vector<name_component>::const_iterator,
203 std::vector<name_component>::const_iterator>
204 find_name_components_bounds (const lookup_name_info &ln_no_params,
205 enum language lang,
206 dwarf2_per_objfile *per_objfile) const;
207
208 /* Prevent deleting/destroying via a base class pointer. */
209 protected:
210 ~mapped_index_base() = default;
211 };
212
213 /* A description of the mapped index. The file format is described in
214 a comment by the code that writes the index. */
215 struct mapped_index final : public mapped_index_base
216 {
217 /* A slot/bucket in the symbol table hash. */
218 struct symbol_table_slot
219 {
220 const offset_type name;
221 const offset_type vec;
222 };
223
224 /* Index data format version. */
225 int version = 0;
226
227 /* The address table data. */
228 gdb::array_view<const gdb_byte> address_table;
229
230 /* The symbol table, implemented as a hash table. */
231 gdb::array_view<symbol_table_slot> symbol_table;
232
233 /* A pointer to the constant pool. */
234 const char *constant_pool = nullptr;
235
236 bool symbol_name_slot_invalid (offset_type idx) const override
237 {
238 const auto &bucket = this->symbol_table[idx];
239 return bucket.name == 0 && bucket.vec == 0;
240 }
241
242 /* Convenience method to get at the name of the symbol at IDX in the
243 symbol table. */
244 const char *symbol_name_at
245 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
246 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
247
248 size_t symbol_name_count () const override
249 { return this->symbol_table.size (); }
250 };
251
252 /* A description of the mapped .debug_names.
253 Uninitialized map has CU_COUNT 0. */
254 struct mapped_debug_names final : public mapped_index_base
255 {
256 bfd_endian dwarf5_byte_order;
257 bool dwarf5_is_dwarf64;
258 bool augmentation_is_gdb;
259 uint8_t offset_size;
260 uint32_t cu_count = 0;
261 uint32_t tu_count, bucket_count, name_count;
262 const gdb_byte *cu_table_reordered, *tu_table_reordered;
263 const uint32_t *bucket_table_reordered, *hash_table_reordered;
264 const gdb_byte *name_table_string_offs_reordered;
265 const gdb_byte *name_table_entry_offs_reordered;
266 const gdb_byte *entry_pool;
267
268 struct index_val
269 {
270 ULONGEST dwarf_tag;
271 struct attr
272 {
273 /* Attribute name DW_IDX_*. */
274 ULONGEST dw_idx;
275
276 /* Attribute form DW_FORM_*. */
277 ULONGEST form;
278
279 /* Value if FORM is DW_FORM_implicit_const. */
280 LONGEST implicit_const;
281 };
282 std::vector<attr> attr_vec;
283 };
284
285 std::unordered_map<ULONGEST, index_val> abbrev_map;
286
287 const char *namei_to_name
288 (uint32_t namei, dwarf2_per_objfile *per_objfile) const;
289
290 /* Implementation of the mapped_index_base virtual interface, for
291 the name_components cache. */
292
293 const char *symbol_name_at
294 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
295 { return namei_to_name (idx, per_objfile); }
296
297 size_t symbol_name_count () const override
298 { return this->name_count; }
299 };
300
301 /* See dwarf2read.h. */
302
303 dwarf2_per_objfile *
304 get_dwarf2_per_objfile (struct objfile *objfile)
305 {
306 return dwarf2_objfile_data_key.get (objfile);
307 }
308
309 /* Default names of the debugging sections. */
310
311 /* Note that if the debugging section has been compressed, it might
312 have a name like .zdebug_info. */
313
314 static const struct dwarf2_debug_sections dwarf2_elf_names =
315 {
316 { ".debug_info", ".zdebug_info" },
317 { ".debug_abbrev", ".zdebug_abbrev" },
318 { ".debug_line", ".zdebug_line" },
319 { ".debug_loc", ".zdebug_loc" },
320 { ".debug_loclists", ".zdebug_loclists" },
321 { ".debug_macinfo", ".zdebug_macinfo" },
322 { ".debug_macro", ".zdebug_macro" },
323 { ".debug_str", ".zdebug_str" },
324 { ".debug_str_offsets", ".zdebug_str_offsets" },
325 { ".debug_line_str", ".zdebug_line_str" },
326 { ".debug_ranges", ".zdebug_ranges" },
327 { ".debug_rnglists", ".zdebug_rnglists" },
328 { ".debug_types", ".zdebug_types" },
329 { ".debug_addr", ".zdebug_addr" },
330 { ".debug_frame", ".zdebug_frame" },
331 { ".eh_frame", NULL },
332 { ".gdb_index", ".zgdb_index" },
333 { ".debug_names", ".zdebug_names" },
334 { ".debug_aranges", ".zdebug_aranges" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names loclists_dwo;
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
349 struct dwarf2_section_names rnglists_dwo;
350 struct dwarf2_section_names str_dwo;
351 struct dwarf2_section_names str_offsets_dwo;
352 struct dwarf2_section_names types_dwo;
353 struct dwarf2_section_names cu_index;
354 struct dwarf2_section_names tu_index;
355 }
356 dwop_section_names =
357 {
358 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
359 { ".debug_info.dwo", ".zdebug_info.dwo" },
360 { ".debug_line.dwo", ".zdebug_line.dwo" },
361 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
362 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_rnglists.dwo", ".zdebug_rnglists.dwo" },
366 { ".debug_str.dwo", ".zdebug_str.dwo" },
367 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
368 { ".debug_types.dwo", ".zdebug_types.dwo" },
369 { ".debug_cu_index", ".zdebug_cu_index" },
370 { ".debug_tu_index", ".zdebug_tu_index" },
371 };
372
373 /* local data types */
374
375 /* The location list and range list sections (.debug_loclists & .debug_rnglists)
376 begin with a header, which contains the following information. */
377 struct loclists_rnglists_header
378 {
379 /* A 4-byte or 12-byte length containing the length of the
380 set of entries for this compilation unit, not including the
381 length field itself. */
382 unsigned int length;
383
384 /* A 2-byte version identifier. */
385 short version;
386
387 /* A 1-byte unsigned integer containing the size in bytes of an address on
388 the target system. */
389 unsigned char addr_size;
390
391 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
392 on the target system. */
393 unsigned char segment_collector_size;
394
395 /* A 4-byte count of the number of offsets that follow the header. */
396 unsigned int offset_entry_count;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 explicit dwarf2_cu (dwarf2_per_cu_data *per_cu,
423 dwarf2_per_objfile *per_objfile);
424
425 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
426
427 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
428 Create the set of symtabs used by this TU, or if this TU is sharing
429 symtabs with another TU and the symtabs have already been created
430 then restore those symtabs in the line header.
431 We don't need the pc/line-number mapping for type units. */
432 void setup_type_unit_groups (struct die_info *die);
433
434 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
435 buildsym_compunit constructor. */
436 struct compunit_symtab *start_symtab (const char *name,
437 const char *comp_dir,
438 CORE_ADDR low_pc);
439
440 /* Reset the builder. */
441 void reset_builder () { m_builder.reset (); }
442
443 /* Return a type that is a generic pointer type, the size of which
444 matches the address size given in the compilation unit header for
445 this CU. */
446 struct type *addr_type () const;
447
448 /* Find an integer type the same size as the address size given in
449 the compilation unit header for this CU. UNSIGNED_P controls if
450 the integer is unsigned or not. */
451 struct type *addr_sized_int_type (bool unsigned_p) const;
452
453 /* The header of the compilation unit. */
454 struct comp_unit_head header {};
455
456 /* Base address of this compilation unit. */
457 gdb::optional<CORE_ADDR> base_address;
458
459 /* The language we are debugging. */
460 enum language language = language_unknown;
461 const struct language_defn *language_defn = nullptr;
462
463 const char *producer = nullptr;
464
465 private:
466 /* The symtab builder for this CU. This is only non-NULL when full
467 symbols are being read. */
468 std::unique_ptr<buildsym_compunit> m_builder;
469
470 public:
471 /* The generic symbol table building routines have separate lists for
472 file scope symbols and all all other scopes (local scopes). So
473 we need to select the right one to pass to add_symbol_to_list().
474 We do it by keeping a pointer to the correct list in list_in_scope.
475
476 FIXME: The original dwarf code just treated the file scope as the
477 first local scope, and all other local scopes as nested local
478 scopes, and worked fine. Check to see if we really need to
479 distinguish these in buildsym.c. */
480 struct pending **list_in_scope = nullptr;
481
482 /* Hash table holding all the loaded partial DIEs
483 with partial_die->offset.SECT_OFF as hash. */
484 htab_t partial_dies = nullptr;
485
486 /* Storage for things with the same lifetime as this read-in compilation
487 unit, including partial DIEs. */
488 auto_obstack comp_unit_obstack;
489
490 /* Backlink to our per_cu entry. */
491 struct dwarf2_per_cu_data *per_cu;
492
493 /* The dwarf2_per_objfile that owns this. */
494 dwarf2_per_objfile *per_objfile;
495
496 /* How many compilation units ago was this CU last referenced? */
497 int last_used = 0;
498
499 /* A hash table of DIE cu_offset for following references with
500 die_info->offset.sect_off as hash. */
501 htab_t die_hash = nullptr;
502
503 /* Full DIEs if read in. */
504 struct die_info *dies = nullptr;
505
506 /* A set of pointers to dwarf2_per_cu_data objects for compilation
507 units referenced by this one. Only set during full symbol processing;
508 partial symbol tables do not have dependencies. */
509 htab_t dependencies = nullptr;
510
511 /* Header data from the line table, during full symbol processing. */
512 struct line_header *line_header = nullptr;
513 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
514 it's owned by dwarf2_per_bfd::line_header_hash. If non-NULL,
515 this is the DW_TAG_compile_unit die for this CU. We'll hold on
516 to the line header as long as this DIE is being processed. See
517 process_die_scope. */
518 die_info *line_header_die_owner = nullptr;
519
520 /* A list of methods which need to have physnames computed
521 after all type information has been read. */
522 std::vector<delayed_method_info> method_list;
523
524 /* To be copied to symtab->call_site_htab. */
525 htab_t call_site_htab = nullptr;
526
527 /* Non-NULL if this CU came from a DWO file.
528 There is an invariant here that is important to remember:
529 Except for attributes copied from the top level DIE in the "main"
530 (or "stub") file in preparation for reading the DWO file
531 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
532 Either there isn't a DWO file (in which case this is NULL and the point
533 is moot), or there is and either we're not going to read it (in which
534 case this is NULL) or there is and we are reading it (in which case this
535 is non-NULL). */
536 struct dwo_unit *dwo_unit = nullptr;
537
538 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
539 Note this value comes from the Fission stub CU/TU's DIE. */
540 gdb::optional<ULONGEST> addr_base;
541
542 /* The DW_AT_rnglists_base attribute if present.
543 Note this value comes from the Fission stub CU/TU's DIE.
544 Also note that the value is zero in the non-DWO case so this value can
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
551 ULONGEST ranges_base = 0;
552
553 /* The DW_AT_loclists_base attribute if present. */
554 ULONGEST loclist_base = 0;
555
556 /* When reading debug info generated by older versions of rustc, we
557 have to rewrite some union types to be struct types with a
558 variant part. This rewriting must be done after the CU is fully
559 read in, because otherwise at the point of rewriting some struct
560 type might not have been fully processed. So, we keep a list of
561 all such types here and process them after expansion. */
562 std::vector<struct type *> rust_unions;
563
564 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
565 files, the value is implicitly zero. For DWARF 5 version DWO files, the
566 value is often implicit and is the size of the header of
567 .debug_str_offsets section (8 or 4, depending on the address size). */
568 gdb::optional<ULONGEST> str_offsets_base;
569
570 /* Mark used when releasing cached dies. */
571 bool mark : 1;
572
573 /* This CU references .debug_loc. See the symtab->locations_valid field.
574 This test is imperfect as there may exist optimized debug code not using
575 any location list and still facing inlining issues if handled as
576 unoptimized code. For a future better test see GCC PR other/32998. */
577 bool has_loclist : 1;
578
579 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
580 if all the producer_is_* fields are valid. This information is cached
581 because profiling CU expansion showed excessive time spent in
582 producer_is_gxx_lt_4_6. */
583 bool checked_producer : 1;
584 bool producer_is_gxx_lt_4_6 : 1;
585 bool producer_is_gcc_lt_4_3 : 1;
586 bool producer_is_icc : 1;
587 bool producer_is_icc_lt_14 : 1;
588 bool producer_is_codewarrior : 1;
589
590 /* When true, the file that we're processing is known to have
591 debugging info for C++ namespaces. GCC 3.3.x did not produce
592 this information, but later versions do. */
593
594 bool processing_has_namespace_info : 1;
595
596 struct partial_die_info *find_partial_die (sect_offset sect_off);
597
598 /* If this CU was inherited by another CU (via specification,
599 abstract_origin, etc), this is the ancestor CU. */
600 dwarf2_cu *ancestor;
601
602 /* Get the buildsym_compunit for this CU. */
603 buildsym_compunit *get_builder ()
604 {
605 /* If this CU has a builder associated with it, use that. */
606 if (m_builder != nullptr)
607 return m_builder.get ();
608
609 /* Otherwise, search ancestors for a valid builder. */
610 if (ancestor != nullptr)
611 return ancestor->get_builder ();
612
613 return nullptr;
614 }
615 };
616
617 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
618 This includes type_unit_group and quick_file_names. */
619
620 struct stmt_list_hash
621 {
622 /* The DWO unit this table is from or NULL if there is none. */
623 struct dwo_unit *dwo_unit;
624
625 /* Offset in .debug_line or .debug_line.dwo. */
626 sect_offset line_sect_off;
627 };
628
629 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
630 an object of this type. This contains elements of type unit groups
631 that can be shared across objfiles. The non-shareable parts are in
632 type_unit_group_unshareable. */
633
634 struct type_unit_group
635 {
636 /* dwarf2read.c's main "handle" on a TU symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab. */
640 struct dwarf2_per_cu_data per_cu;
641
642 /* The TUs that share this DW_AT_stmt_list entry.
643 This is added to while parsing type units to build partial symtabs,
644 and is deleted afterwards and not used again. */
645 std::vector<signatured_type *> *tus;
646
647 /* The data used to construct the hash key. */
648 struct stmt_list_hash hash;
649 };
650
651 /* These sections are what may appear in a (real or virtual) DWO file. */
652
653 struct dwo_sections
654 {
655 struct dwarf2_section_info abbrev;
656 struct dwarf2_section_info line;
657 struct dwarf2_section_info loc;
658 struct dwarf2_section_info loclists;
659 struct dwarf2_section_info macinfo;
660 struct dwarf2_section_info macro;
661 struct dwarf2_section_info rnglists;
662 struct dwarf2_section_info str;
663 struct dwarf2_section_info str_offsets;
664 /* In the case of a virtual DWO file, these two are unused. */
665 struct dwarf2_section_info info;
666 std::vector<dwarf2_section_info> types;
667 };
668
669 /* CUs/TUs in DWP/DWO files. */
670
671 struct dwo_unit
672 {
673 /* Backlink to the containing struct dwo_file. */
674 struct dwo_file *dwo_file;
675
676 /* The "id" that distinguishes this CU/TU.
677 .debug_info calls this "dwo_id", .debug_types calls this "signature".
678 Since signatures came first, we stick with it for consistency. */
679 ULONGEST signature;
680
681 /* The section this CU/TU lives in, in the DWO file. */
682 struct dwarf2_section_info *section;
683
684 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
685 sect_offset sect_off;
686 unsigned int length;
687
688 /* For types, offset in the type's DIE of the type defined by this TU. */
689 cu_offset type_offset_in_tu;
690 };
691
692 /* include/dwarf2.h defines the DWP section codes.
693 It defines a max value but it doesn't define a min value, which we
694 use for error checking, so provide one. */
695
696 enum dwp_v2_section_ids
697 {
698 DW_SECT_MIN = 1
699 };
700
701 /* Data for one DWO file.
702
703 This includes virtual DWO files (a virtual DWO file is a DWO file as it
704 appears in a DWP file). DWP files don't really have DWO files per se -
705 comdat folding of types "loses" the DWO file they came from, and from
706 a high level view DWP files appear to contain a mass of random types.
707 However, to maintain consistency with the non-DWP case we pretend DWP
708 files contain virtual DWO files, and we assign each TU with one virtual
709 DWO file (generally based on the line and abbrev section offsets -
710 a heuristic that seems to work in practice). */
711
712 struct dwo_file
713 {
714 dwo_file () = default;
715 DISABLE_COPY_AND_ASSIGN (dwo_file);
716
717 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name = nullptr;
722
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir = nullptr;
725
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
728 gdb_bfd_ref_ptr dbfd;
729
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2 or DWP V5, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections {};
734
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
739 htab_up cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_up tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 /* These are used by all DWP versions (1, 2 and 5). */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754
755 /* These are only used by DWP version 2 and version 5 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 or 5 there is at most one copy of all these sections,
759 each section being (effectively) comprised of the concatenation of all of
760 the individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info loclists;
768 struct dwarf2_section_info macinfo;
769 struct dwarf2_section_info macro;
770 struct dwarf2_section_info rnglists;
771 struct dwarf2_section_info str_offsets;
772 struct dwarf2_section_info types;
773 };
774
775 /* These sections are what may appear in a virtual DWO file in DWP version 1.
776 A virtual DWO file is a DWO file as it appears in a DWP file. */
777
778 struct virtual_v1_dwo_sections
779 {
780 struct dwarf2_section_info abbrev;
781 struct dwarf2_section_info line;
782 struct dwarf2_section_info loc;
783 struct dwarf2_section_info macinfo;
784 struct dwarf2_section_info macro;
785 struct dwarf2_section_info str_offsets;
786 /* Each DWP hash table entry records one CU or one TU.
787 That is recorded here, and copied to dwo_unit.section. */
788 struct dwarf2_section_info info_or_types;
789 };
790
791 /* Similar to virtual_v1_dwo_sections, but for DWP version 2 or 5.
792 In version 2, the sections of the DWO files are concatenated together
793 and stored in one section of that name. Thus each ELF section contains
794 several "virtual" sections. */
795
796 struct virtual_v2_or_v5_dwo_sections
797 {
798 bfd_size_type abbrev_offset;
799 bfd_size_type abbrev_size;
800
801 bfd_size_type line_offset;
802 bfd_size_type line_size;
803
804 bfd_size_type loc_offset;
805 bfd_size_type loc_size;
806
807 bfd_size_type loclists_offset;
808 bfd_size_type loclists_size;
809
810 bfd_size_type macinfo_offset;
811 bfd_size_type macinfo_size;
812
813 bfd_size_type macro_offset;
814 bfd_size_type macro_size;
815
816 bfd_size_type rnglists_offset;
817 bfd_size_type rnglists_size;
818
819 bfd_size_type str_offsets_offset;
820 bfd_size_type str_offsets_size;
821
822 /* Each DWP hash table entry records one CU or one TU.
823 That is recorded here, and copied to dwo_unit.section. */
824 bfd_size_type info_or_types_offset;
825 bfd_size_type info_or_types_size;
826 };
827
828 /* Contents of DWP hash tables. */
829
830 struct dwp_hash_table
831 {
832 uint32_t version, nr_columns;
833 uint32_t nr_units, nr_slots;
834 const gdb_byte *hash_table, *unit_table;
835 union
836 {
837 struct
838 {
839 const gdb_byte *indices;
840 } v1;
841 struct
842 {
843 /* This is indexed by column number and gives the id of the section
844 in that column. */
845 #define MAX_NR_V2_DWO_SECTIONS \
846 (1 /* .debug_info or .debug_types */ \
847 + 1 /* .debug_abbrev */ \
848 + 1 /* .debug_line */ \
849 + 1 /* .debug_loc */ \
850 + 1 /* .debug_str_offsets */ \
851 + 1 /* .debug_macro or .debug_macinfo */)
852 int section_ids[MAX_NR_V2_DWO_SECTIONS];
853 const gdb_byte *offsets;
854 const gdb_byte *sizes;
855 } v2;
856 struct
857 {
858 /* This is indexed by column number and gives the id of the section
859 in that column. */
860 #define MAX_NR_V5_DWO_SECTIONS \
861 (1 /* .debug_info */ \
862 + 1 /* .debug_abbrev */ \
863 + 1 /* .debug_line */ \
864 + 1 /* .debug_loclists */ \
865 + 1 /* .debug_str_offsets */ \
866 + 1 /* .debug_macro */ \
867 + 1 /* .debug_rnglists */)
868 int section_ids[MAX_NR_V5_DWO_SECTIONS];
869 const gdb_byte *offsets;
870 const gdb_byte *sizes;
871 } v5;
872 } section_pool;
873 };
874
875 /* Data for one DWP file. */
876
877 struct dwp_file
878 {
879 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
880 : name (name_),
881 dbfd (std::move (abfd))
882 {
883 }
884
885 /* Name of the file. */
886 const char *name;
887
888 /* File format version. */
889 int version = 0;
890
891 /* The bfd. */
892 gdb_bfd_ref_ptr dbfd;
893
894 /* Section info for this file. */
895 struct dwp_sections sections {};
896
897 /* Table of CUs in the file. */
898 const struct dwp_hash_table *cus = nullptr;
899
900 /* Table of TUs in the file. */
901 const struct dwp_hash_table *tus = nullptr;
902
903 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
904 htab_up loaded_cus;
905 htab_up loaded_tus;
906
907 /* Table to map ELF section numbers to their sections.
908 This is only needed for the DWP V1 file format. */
909 unsigned int num_sections = 0;
910 asection **elf_sections = nullptr;
911 };
912
913 /* Struct used to pass misc. parameters to read_die_and_children, et
914 al. which are used for both .debug_info and .debug_types dies.
915 All parameters here are unchanging for the life of the call. This
916 struct exists to abstract away the constant parameters of die reading. */
917
918 struct die_reader_specs
919 {
920 /* The bfd of die_section. */
921 bfd* abfd;
922
923 /* The CU of the DIE we are parsing. */
924 struct dwarf2_cu *cu;
925
926 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
927 struct dwo_file *dwo_file;
928
929 /* The section the die comes from.
930 This is either .debug_info or .debug_types, or the .dwo variants. */
931 struct dwarf2_section_info *die_section;
932
933 /* die_section->buffer. */
934 const gdb_byte *buffer;
935
936 /* The end of the buffer. */
937 const gdb_byte *buffer_end;
938
939 /* The abbreviation table to use when reading the DIEs. */
940 struct abbrev_table *abbrev_table;
941 };
942
943 /* A subclass of die_reader_specs that holds storage and has complex
944 constructor and destructor behavior. */
945
946 class cutu_reader : public die_reader_specs
947 {
948 public:
949
950 cutu_reader (dwarf2_per_cu_data *this_cu,
951 dwarf2_per_objfile *per_objfile,
952 struct abbrev_table *abbrev_table,
953 dwarf2_cu *existing_cu,
954 bool skip_partial);
955
956 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
957 dwarf2_per_objfile *per_objfile,
958 struct dwarf2_cu *parent_cu = nullptr,
959 struct dwo_file *dwo_file = nullptr);
960
961 DISABLE_COPY_AND_ASSIGN (cutu_reader);
962
963 const gdb_byte *info_ptr = nullptr;
964 struct die_info *comp_unit_die = nullptr;
965 bool dummy_p = false;
966
967 /* Release the new CU, putting it on the chain. This cannot be done
968 for dummy CUs. */
969 void keep ();
970
971 private:
972 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
973 dwarf2_per_objfile *per_objfile,
974 dwarf2_cu *existing_cu);
975
976 struct dwarf2_per_cu_data *m_this_cu;
977 std::unique_ptr<dwarf2_cu> m_new_cu;
978
979 /* The ordinary abbreviation table. */
980 abbrev_table_up m_abbrev_table_holder;
981
982 /* The DWO abbreviation table. */
983 abbrev_table_up m_dwo_abbrev_table;
984 };
985
986 /* When we construct a partial symbol table entry we only
987 need this much information. */
988 struct partial_die_info : public allocate_on_obstack
989 {
990 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
991
992 /* Disable assign but still keep copy ctor, which is needed
993 load_partial_dies. */
994 partial_die_info& operator=(const partial_die_info& rhs) = delete;
995
996 /* Adjust the partial die before generating a symbol for it. This
997 function may set the is_external flag or change the DIE's
998 name. */
999 void fixup (struct dwarf2_cu *cu);
1000
1001 /* Read a minimal amount of information into the minimal die
1002 structure. */
1003 const gdb_byte *read (const struct die_reader_specs *reader,
1004 const struct abbrev_info &abbrev,
1005 const gdb_byte *info_ptr);
1006
1007 /* Compute the name of this partial DIE. This memoizes the
1008 result, so it is safe to call multiple times. */
1009 const char *name (dwarf2_cu *cu);
1010
1011 /* Offset of this DIE. */
1012 const sect_offset sect_off;
1013
1014 /* DWARF-2 tag for this DIE. */
1015 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1016
1017 /* Assorted flags describing the data found in this DIE. */
1018 const unsigned int has_children : 1;
1019
1020 unsigned int is_external : 1;
1021 unsigned int is_declaration : 1;
1022 unsigned int has_type : 1;
1023 unsigned int has_specification : 1;
1024 unsigned int has_pc_info : 1;
1025 unsigned int may_be_inlined : 1;
1026
1027 /* This DIE has been marked DW_AT_main_subprogram. */
1028 unsigned int main_subprogram : 1;
1029
1030 /* Flag set if the SCOPE field of this structure has been
1031 computed. */
1032 unsigned int scope_set : 1;
1033
1034 /* Flag set if the DIE has a byte_size attribute. */
1035 unsigned int has_byte_size : 1;
1036
1037 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1038 unsigned int has_const_value : 1;
1039
1040 /* Flag set if any of the DIE's children are template arguments. */
1041 unsigned int has_template_arguments : 1;
1042
1043 /* Flag set if fixup has been called on this die. */
1044 unsigned int fixup_called : 1;
1045
1046 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1047 unsigned int is_dwz : 1;
1048
1049 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1050 unsigned int spec_is_dwz : 1;
1051
1052 unsigned int canonical_name : 1;
1053
1054 /* The name of this DIE. Normally the value of DW_AT_name, but
1055 sometimes a default name for unnamed DIEs. */
1056 const char *raw_name = nullptr;
1057
1058 /* The linkage name, if present. */
1059 const char *linkage_name = nullptr;
1060
1061 /* The scope to prepend to our children. This is generally
1062 allocated on the comp_unit_obstack, so will disappear
1063 when this compilation unit leaves the cache. */
1064 const char *scope = nullptr;
1065
1066 /* Some data associated with the partial DIE. The tag determines
1067 which field is live. */
1068 union
1069 {
1070 /* The location description associated with this DIE, if any. */
1071 struct dwarf_block *locdesc;
1072 /* The offset of an import, for DW_TAG_imported_unit. */
1073 sect_offset sect_off;
1074 } d {};
1075
1076 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1077 CORE_ADDR lowpc = 0;
1078 CORE_ADDR highpc = 0;
1079
1080 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1081 DW_AT_sibling, if any. */
1082 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1083 could return DW_AT_sibling values to its caller load_partial_dies. */
1084 const gdb_byte *sibling = nullptr;
1085
1086 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1087 DW_AT_specification (or DW_AT_abstract_origin or
1088 DW_AT_extension). */
1089 sect_offset spec_offset {};
1090
1091 /* Pointers to this DIE's parent, first child, and next sibling,
1092 if any. */
1093 struct partial_die_info *die_parent = nullptr;
1094 struct partial_die_info *die_child = nullptr;
1095 struct partial_die_info *die_sibling = nullptr;
1096
1097 friend struct partial_die_info *
1098 dwarf2_cu::find_partial_die (sect_offset sect_off);
1099
1100 private:
1101 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1102 partial_die_info (sect_offset sect_off)
1103 : partial_die_info (sect_off, DW_TAG_padding, 0)
1104 {
1105 }
1106
1107 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1108 int has_children_)
1109 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1110 {
1111 is_external = 0;
1112 is_declaration = 0;
1113 has_type = 0;
1114 has_specification = 0;
1115 has_pc_info = 0;
1116 may_be_inlined = 0;
1117 main_subprogram = 0;
1118 scope_set = 0;
1119 has_byte_size = 0;
1120 has_const_value = 0;
1121 has_template_arguments = 0;
1122 fixup_called = 0;
1123 is_dwz = 0;
1124 spec_is_dwz = 0;
1125 canonical_name = 0;
1126 }
1127 };
1128
1129 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1130 but this would require a corresponding change in unpack_field_as_long
1131 and friends. */
1132 static int bits_per_byte = 8;
1133
1134 struct variant_part_builder;
1135
1136 /* When reading a variant, we track a bit more information about the
1137 field, and store it in an object of this type. */
1138
1139 struct variant_field
1140 {
1141 int first_field = -1;
1142 int last_field = -1;
1143
1144 /* A variant can contain other variant parts. */
1145 std::vector<variant_part_builder> variant_parts;
1146
1147 /* If we see a DW_TAG_variant, then this will be set if this is the
1148 default branch. */
1149 bool default_branch = false;
1150 /* If we see a DW_AT_discr_value, then this will be the discriminant
1151 value. */
1152 ULONGEST discriminant_value = 0;
1153 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1154 data. */
1155 struct dwarf_block *discr_list_data = nullptr;
1156 };
1157
1158 /* This represents a DW_TAG_variant_part. */
1159
1160 struct variant_part_builder
1161 {
1162 /* The offset of the discriminant field. */
1163 sect_offset discriminant_offset {};
1164
1165 /* Variants that are direct children of this variant part. */
1166 std::vector<variant_field> variants;
1167
1168 /* True if we're currently reading a variant. */
1169 bool processing_variant = false;
1170 };
1171
1172 struct nextfield
1173 {
1174 int accessibility = 0;
1175 int virtuality = 0;
1176 /* Variant parts need to find the discriminant, which is a DIE
1177 reference. We track the section offset of each field to make
1178 this link. */
1179 sect_offset offset;
1180 struct field field {};
1181 };
1182
1183 struct fnfieldlist
1184 {
1185 const char *name = nullptr;
1186 std::vector<struct fn_field> fnfields;
1187 };
1188
1189 /* The routines that read and process dies for a C struct or C++ class
1190 pass lists of data member fields and lists of member function fields
1191 in an instance of a field_info structure, as defined below. */
1192 struct field_info
1193 {
1194 /* List of data member and baseclasses fields. */
1195 std::vector<struct nextfield> fields;
1196 std::vector<struct nextfield> baseclasses;
1197
1198 /* Set if the accessibility of one of the fields is not public. */
1199 bool non_public_fields = false;
1200
1201 /* Member function fieldlist array, contains name of possibly overloaded
1202 member function, number of overloaded member functions and a pointer
1203 to the head of the member function field chain. */
1204 std::vector<struct fnfieldlist> fnfieldlists;
1205
1206 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1207 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1208 std::vector<struct decl_field> typedef_field_list;
1209
1210 /* Nested types defined by this class and the number of elements in this
1211 list. */
1212 std::vector<struct decl_field> nested_types_list;
1213
1214 /* If non-null, this is the variant part we are currently
1215 reading. */
1216 variant_part_builder *current_variant_part = nullptr;
1217 /* This holds all the top-level variant parts attached to the type
1218 we're reading. */
1219 std::vector<variant_part_builder> variant_parts;
1220
1221 /* Return the total number of fields (including baseclasses). */
1222 int nfields () const
1223 {
1224 return fields.size () + baseclasses.size ();
1225 }
1226 };
1227
1228 /* Loaded secondary compilation units are kept in memory until they
1229 have not been referenced for the processing of this many
1230 compilation units. Set this to zero to disable caching. Cache
1231 sizes of up to at least twenty will improve startup time for
1232 typical inter-CU-reference binaries, at an obvious memory cost. */
1233 static int dwarf_max_cache_age = 5;
1234 static void
1235 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1236 struct cmd_list_element *c, const char *value)
1237 {
1238 fprintf_filtered (file, _("The upper bound on the age of cached "
1239 "DWARF compilation units is %s.\n"),
1240 value);
1241 }
1242 \f
1243 /* local function prototypes */
1244
1245 static void dwarf2_find_base_address (struct die_info *die,
1246 struct dwarf2_cu *cu);
1247
1248 static dwarf2_psymtab *create_partial_symtab
1249 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1250 const char *name);
1251
1252 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1253 const gdb_byte *info_ptr,
1254 struct die_info *type_unit_die);
1255
1256 static void dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile);
1257
1258 static void scan_partial_symbols (struct partial_die_info *,
1259 CORE_ADDR *, CORE_ADDR *,
1260 int, struct dwarf2_cu *);
1261
1262 static void add_partial_symbol (struct partial_die_info *,
1263 struct dwarf2_cu *);
1264
1265 static void add_partial_namespace (struct partial_die_info *pdi,
1266 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1267 int set_addrmap, struct dwarf2_cu *cu);
1268
1269 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1270 CORE_ADDR *highpc, int set_addrmap,
1271 struct dwarf2_cu *cu);
1272
1273 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1274 struct dwarf2_cu *cu);
1275
1276 static void add_partial_subprogram (struct partial_die_info *pdi,
1277 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1278 int need_pc, struct dwarf2_cu *cu);
1279
1280 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1281
1282 static struct partial_die_info *load_partial_dies
1283 (const struct die_reader_specs *, const gdb_byte *, int);
1284
1285 /* A pair of partial_die_info and compilation unit. */
1286 struct cu_partial_die_info
1287 {
1288 /* The compilation unit of the partial_die_info. */
1289 struct dwarf2_cu *cu;
1290 /* A partial_die_info. */
1291 struct partial_die_info *pdi;
1292
1293 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1294 : cu (cu),
1295 pdi (pdi)
1296 { /* Nothing. */ }
1297
1298 private:
1299 cu_partial_die_info () = delete;
1300 };
1301
1302 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1303 struct dwarf2_cu *);
1304
1305 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1306 struct attribute *, struct attr_abbrev *,
1307 const gdb_byte *);
1308
1309 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1310 struct attribute *attr, dwarf_tag tag);
1311
1312 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1313
1314 static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile,
1315 dwarf2_section_info *, sect_offset);
1316
1317 static const char *read_indirect_string
1318 (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *,
1319 const struct comp_unit_head *, unsigned int *);
1320
1321 static const char *read_indirect_string_at_offset
1322 (dwarf2_per_objfile *per_objfile, LONGEST str_offset);
1323
1324 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1325 const gdb_byte *,
1326 unsigned int *);
1327
1328 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1329 ULONGEST str_index);
1330
1331 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1332 ULONGEST str_index);
1333
1334 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1335
1336 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1337 struct dwarf2_cu *);
1338
1339 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1340 struct dwarf2_cu *cu);
1341
1342 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1343
1344 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1345 struct dwarf2_cu *cu);
1346
1347 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1348
1349 static struct die_info *die_specification (struct die_info *die,
1350 struct dwarf2_cu **);
1351
1352 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1353 struct dwarf2_cu *cu);
1354
1355 static void dwarf_decode_lines (struct line_header *, const char *,
1356 struct dwarf2_cu *, dwarf2_psymtab *,
1357 CORE_ADDR, int decode_mapping);
1358
1359 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1360 const char *);
1361
1362 static struct symbol *new_symbol (struct die_info *, struct type *,
1363 struct dwarf2_cu *, struct symbol * = NULL);
1364
1365 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1366 struct dwarf2_cu *);
1367
1368 static void dwarf2_const_value_attr (const struct attribute *attr,
1369 struct type *type,
1370 const char *name,
1371 struct obstack *obstack,
1372 struct dwarf2_cu *cu, LONGEST *value,
1373 const gdb_byte **bytes,
1374 struct dwarf2_locexpr_baton **baton);
1375
1376 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1377
1378 static int need_gnat_info (struct dwarf2_cu *);
1379
1380 static struct type *die_descriptive_type (struct die_info *,
1381 struct dwarf2_cu *);
1382
1383 static void set_descriptive_type (struct type *, struct die_info *,
1384 struct dwarf2_cu *);
1385
1386 static struct type *die_containing_type (struct die_info *,
1387 struct dwarf2_cu *);
1388
1389 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1390 struct dwarf2_cu *);
1391
1392 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1393
1394 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1395
1396 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1397
1398 static char *typename_concat (struct obstack *obs, const char *prefix,
1399 const char *suffix, int physname,
1400 struct dwarf2_cu *cu);
1401
1402 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1403
1404 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1405
1406 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1407
1408 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1409
1410 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1411
1412 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1413
1414 /* Return the .debug_loclists section to use for cu. */
1415 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1416
1417 /* Return the .debug_rnglists section to use for cu. */
1418 static struct dwarf2_section_info *cu_debug_rnglists_section
1419 (struct dwarf2_cu *cu, dwarf_tag tag);
1420
1421 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1422 values. Keep the items ordered with increasing constraints compliance. */
1423 enum pc_bounds_kind
1424 {
1425 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1426 PC_BOUNDS_NOT_PRESENT,
1427
1428 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1429 were present but they do not form a valid range of PC addresses. */
1430 PC_BOUNDS_INVALID,
1431
1432 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1433 PC_BOUNDS_RANGES,
1434
1435 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1436 PC_BOUNDS_HIGH_LOW,
1437 };
1438
1439 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1440 CORE_ADDR *, CORE_ADDR *,
1441 struct dwarf2_cu *,
1442 dwarf2_psymtab *);
1443
1444 static void get_scope_pc_bounds (struct die_info *,
1445 CORE_ADDR *, CORE_ADDR *,
1446 struct dwarf2_cu *);
1447
1448 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1449 CORE_ADDR, struct dwarf2_cu *);
1450
1451 static void dwarf2_add_field (struct field_info *, struct die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void dwarf2_attach_fields_to_type (struct field_info *,
1455 struct type *, struct dwarf2_cu *);
1456
1457 static void dwarf2_add_member_fn (struct field_info *,
1458 struct die_info *, struct type *,
1459 struct dwarf2_cu *);
1460
1461 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1462 struct type *,
1463 struct dwarf2_cu *);
1464
1465 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1466
1467 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1468
1469 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1470
1471 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1472
1473 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1474
1475 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1476
1477 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1478
1479 static struct type *read_module_type (struct die_info *die,
1480 struct dwarf2_cu *cu);
1481
1482 static const char *namespace_name (struct die_info *die,
1483 int *is_anonymous, struct dwarf2_cu *);
1484
1485 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1486
1487 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1488 bool * = nullptr);
1489
1490 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1491 struct dwarf2_cu *);
1492
1493 static struct die_info *read_die_and_siblings_1
1494 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1495 struct die_info *);
1496
1497 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1498 const gdb_byte *info_ptr,
1499 const gdb_byte **new_info_ptr,
1500 struct die_info *parent);
1501
1502 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1503 struct die_info **, const gdb_byte *,
1504 int);
1505
1506 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1507 struct die_info **, const gdb_byte *);
1508
1509 static void process_die (struct die_info *, struct dwarf2_cu *);
1510
1511 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1512 struct objfile *);
1513
1514 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1515
1516 static const char *dwarf2_full_name (const char *name,
1517 struct die_info *die,
1518 struct dwarf2_cu *cu);
1519
1520 static const char *dwarf2_physname (const char *name, struct die_info *die,
1521 struct dwarf2_cu *cu);
1522
1523 static struct die_info *dwarf2_extension (struct die_info *die,
1524 struct dwarf2_cu **);
1525
1526 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1527
1528 static void dump_die_for_error (struct die_info *);
1529
1530 static void dump_die_1 (struct ui_file *, int level, int max_level,
1531 struct die_info *);
1532
1533 /*static*/ void dump_die (struct die_info *, int max_level);
1534
1535 static void store_in_ref_table (struct die_info *,
1536 struct dwarf2_cu *);
1537
1538 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1539 const struct attribute *,
1540 struct dwarf2_cu **);
1541
1542 static struct die_info *follow_die_ref (struct die_info *,
1543 const struct attribute *,
1544 struct dwarf2_cu **);
1545
1546 static struct die_info *follow_die_sig (struct die_info *,
1547 const struct attribute *,
1548 struct dwarf2_cu **);
1549
1550 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1551 struct dwarf2_cu *);
1552
1553 static struct type *get_DW_AT_signature_type (struct die_info *,
1554 const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1558 dwarf2_per_objfile *per_objfile);
1559
1560 static void read_signatured_type (signatured_type *sig_type,
1561 dwarf2_per_objfile *per_objfile);
1562
1563 static int attr_to_dynamic_prop (const struct attribute *attr,
1564 struct die_info *die, struct dwarf2_cu *cu,
1565 struct dynamic_prop *prop, struct type *type);
1566
1567 /* memory allocation interface */
1568
1569 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1570
1571 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1572
1573 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1574
1575 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1576 struct dwarf2_loclist_baton *baton,
1577 const struct attribute *attr);
1578
1579 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1580 struct symbol *sym,
1581 struct dwarf2_cu *cu,
1582 int is_block);
1583
1584 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1585 const gdb_byte *info_ptr,
1586 struct abbrev_info *abbrev);
1587
1588 static hashval_t partial_die_hash (const void *item);
1589
1590 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1591
1592 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1593 (sect_offset sect_off, unsigned int offset_in_dwz,
1594 dwarf2_per_objfile *per_objfile);
1595
1596 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1597 struct die_info *comp_unit_die,
1598 enum language pretend_language);
1599
1600 static struct type *set_die_type (struct die_info *, struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void create_all_comp_units (dwarf2_per_objfile *per_objfile);
1604
1605 static int create_all_type_units (dwarf2_per_objfile *per_objfile);
1606
1607 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1608 dwarf2_per_objfile *per_objfile,
1609 dwarf2_cu *existing_cu,
1610 bool skip_partial,
1611 enum language pretend_language);
1612
1613 static void process_full_comp_unit (dwarf2_cu *cu,
1614 enum language pretend_language);
1615
1616 static void process_full_type_unit (dwarf2_cu *cu,
1617 enum language pretend_language);
1618
1619 static void dwarf2_add_dependence (struct dwarf2_cu *,
1620 struct dwarf2_per_cu_data *);
1621
1622 static void dwarf2_mark (struct dwarf2_cu *);
1623
1624 static struct type *get_die_type_at_offset (sect_offset,
1625 dwarf2_per_cu_data *per_cu,
1626 dwarf2_per_objfile *per_objfile);
1627
1628 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1629
1630 static void queue_comp_unit (dwarf2_per_cu_data *per_cu,
1631 dwarf2_per_objfile *per_objfile,
1632 enum language pretend_language);
1633
1634 static void process_queue (dwarf2_per_objfile *per_objfile);
1635
1636 /* Class, the destructor of which frees all allocated queue entries. This
1637 will only have work to do if an error was thrown while processing the
1638 dwarf. If no error was thrown then the queue entries should have all
1639 been processed, and freed, as we went along. */
1640
1641 class dwarf2_queue_guard
1642 {
1643 public:
1644 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1645 : m_per_objfile (per_objfile)
1646 {
1647 }
1648
1649 /* Free any entries remaining on the queue. There should only be
1650 entries left if we hit an error while processing the dwarf. */
1651 ~dwarf2_queue_guard ()
1652 {
1653 /* Ensure that no memory is allocated by the queue. */
1654 std::queue<dwarf2_queue_item> empty;
1655 std::swap (m_per_objfile->per_bfd->queue, empty);
1656 }
1657
1658 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1659
1660 private:
1661 dwarf2_per_objfile *m_per_objfile;
1662 };
1663
1664 dwarf2_queue_item::~dwarf2_queue_item ()
1665 {
1666 /* Anything still marked queued is likely to be in an
1667 inconsistent state, so discard it. */
1668 if (per_cu->queued)
1669 {
1670 per_objfile->remove_cu (per_cu);
1671 per_cu->queued = 0;
1672 }
1673 }
1674
1675 /* The return type of find_file_and_directory. Note, the enclosed
1676 string pointers are only valid while this object is valid. */
1677
1678 struct file_and_directory
1679 {
1680 /* The filename. This is never NULL. */
1681 const char *name;
1682
1683 /* The compilation directory. NULL if not known. If we needed to
1684 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1685 points directly to the DW_AT_comp_dir string attribute owned by
1686 the obstack that owns the DIE. */
1687 const char *comp_dir;
1688
1689 /* If we needed to build a new string for comp_dir, this is what
1690 owns the storage. */
1691 std::string comp_dir_storage;
1692 };
1693
1694 static file_and_directory find_file_and_directory (struct die_info *die,
1695 struct dwarf2_cu *cu);
1696
1697 static htab_up allocate_signatured_type_table ();
1698
1699 static htab_up allocate_dwo_unit_table ();
1700
1701 static struct dwo_unit *lookup_dwo_unit_in_dwp
1702 (dwarf2_per_objfile *per_objfile, struct dwp_file *dwp_file,
1703 const char *comp_dir, ULONGEST signature, int is_debug_types);
1704
1705 static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile);
1706
1707 static struct dwo_unit *lookup_dwo_comp_unit
1708 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1709 ULONGEST signature);
1710
1711 static struct dwo_unit *lookup_dwo_type_unit
1712 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1713
1714 static void queue_and_load_all_dwo_tus (dwarf2_cu *cu);
1715
1716 /* A unique pointer to a dwo_file. */
1717
1718 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1719
1720 static void process_cu_includes (dwarf2_per_objfile *per_objfile);
1721
1722 static void check_producer (struct dwarf2_cu *cu);
1723
1724 static void free_line_header_voidp (void *arg);
1725 \f
1726 /* Various complaints about symbol reading that don't abort the process. */
1727
1728 static void
1729 dwarf2_debug_line_missing_file_complaint (void)
1730 {
1731 complaint (_(".debug_line section has line data without a file"));
1732 }
1733
1734 static void
1735 dwarf2_debug_line_missing_end_sequence_complaint (void)
1736 {
1737 complaint (_(".debug_line section has line "
1738 "program sequence without an end"));
1739 }
1740
1741 static void
1742 dwarf2_complex_location_expr_complaint (void)
1743 {
1744 complaint (_("location expression too complex"));
1745 }
1746
1747 static void
1748 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1749 int arg3)
1750 {
1751 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1752 arg1, arg2, arg3);
1753 }
1754
1755 static void
1756 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1757 {
1758 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1759 arg1, arg2);
1760 }
1761
1762 /* Hash function for line_header_hash. */
1763
1764 static hashval_t
1765 line_header_hash (const struct line_header *ofs)
1766 {
1767 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1768 }
1769
1770 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1771
1772 static hashval_t
1773 line_header_hash_voidp (const void *item)
1774 {
1775 const struct line_header *ofs = (const struct line_header *) item;
1776
1777 return line_header_hash (ofs);
1778 }
1779
1780 /* Equality function for line_header_hash. */
1781
1782 static int
1783 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1784 {
1785 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1786 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1787
1788 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1789 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1790 }
1791
1792 \f
1793
1794 /* See declaration. */
1795
1796 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1797 bool can_copy_)
1798 : obfd (obfd),
1799 can_copy (can_copy_)
1800 {
1801 if (names == NULL)
1802 names = &dwarf2_elf_names;
1803
1804 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1805 locate_sections (obfd, sec, *names);
1806 }
1807
1808 dwarf2_per_bfd::~dwarf2_per_bfd ()
1809 {
1810 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1811 per_cu->imported_symtabs_free ();
1812
1813 for (signatured_type *sig_type : all_type_units)
1814 sig_type->per_cu.imported_symtabs_free ();
1815
1816 /* Everything else should be on this->obstack. */
1817 }
1818
1819 /* See read.h. */
1820
1821 void
1822 dwarf2_per_objfile::remove_all_cus ()
1823 {
1824 for (auto pair : m_dwarf2_cus)
1825 delete pair.second;
1826
1827 m_dwarf2_cus.clear ();
1828 }
1829
1830 /* A helper class that calls free_cached_comp_units on
1831 destruction. */
1832
1833 class free_cached_comp_units
1834 {
1835 public:
1836
1837 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1838 : m_per_objfile (per_objfile)
1839 {
1840 }
1841
1842 ~free_cached_comp_units ()
1843 {
1844 m_per_objfile->remove_all_cus ();
1845 }
1846
1847 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1848
1849 private:
1850
1851 dwarf2_per_objfile *m_per_objfile;
1852 };
1853
1854 /* See read.h. */
1855
1856 bool
1857 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1858 {
1859 gdb_assert (per_cu->index < this->m_symtabs.size ());
1860
1861 return this->m_symtabs[per_cu->index] != nullptr;
1862 }
1863
1864 /* See read.h. */
1865
1866 compunit_symtab *
1867 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1868 {
1869 gdb_assert (per_cu->index < this->m_symtabs.size ());
1870
1871 return this->m_symtabs[per_cu->index];
1872 }
1873
1874 /* See read.h. */
1875
1876 void
1877 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1878 compunit_symtab *symtab)
1879 {
1880 gdb_assert (per_cu->index < this->m_symtabs.size ());
1881 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1882
1883 this->m_symtabs[per_cu->index] = symtab;
1884 }
1885
1886 /* Try to locate the sections we need for DWARF 2 debugging
1887 information and return true if we have enough to do something.
1888 NAMES points to the dwarf2 section names, or is NULL if the standard
1889 ELF names are used. CAN_COPY is true for formats where symbol
1890 interposition is possible and so symbol values must follow copy
1891 relocation rules. */
1892
1893 int
1894 dwarf2_has_info (struct objfile *objfile,
1895 const struct dwarf2_debug_sections *names,
1896 bool can_copy)
1897 {
1898 if (objfile->flags & OBJF_READNEVER)
1899 return 0;
1900
1901 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1902
1903 if (per_objfile == NULL)
1904 {
1905 dwarf2_per_bfd *per_bfd;
1906
1907 /* We can share a "dwarf2_per_bfd" with other objfiles if the BFD
1908 doesn't require relocations and if there aren't partial symbols
1909 from some other reader. */
1910 if (!objfile_has_partial_symbols (objfile)
1911 && !gdb_bfd_requires_relocations (objfile->obfd))
1912 {
1913 /* See if one has been created for this BFD yet. */
1914 per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd);
1915
1916 if (per_bfd == nullptr)
1917 {
1918 /* No, create it now. */
1919 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1920 dwarf2_per_bfd_bfd_data_key.set (objfile->obfd, per_bfd);
1921 }
1922 }
1923 else
1924 {
1925 /* No sharing possible, create one specifically for this objfile. */
1926 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1927 dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd);
1928 }
1929
1930 per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1931 }
1932
1933 return (!per_objfile->per_bfd->info.is_virtual
1934 && per_objfile->per_bfd->info.s.section != NULL
1935 && !per_objfile->per_bfd->abbrev.is_virtual
1936 && per_objfile->per_bfd->abbrev.s.section != NULL);
1937 }
1938
1939 /* When loading sections, we look either for uncompressed section or for
1940 compressed section names. */
1941
1942 static int
1943 section_is_p (const char *section_name,
1944 const struct dwarf2_section_names *names)
1945 {
1946 if (names->normal != NULL
1947 && strcmp (section_name, names->normal) == 0)
1948 return 1;
1949 if (names->compressed != NULL
1950 && strcmp (section_name, names->compressed) == 0)
1951 return 1;
1952 return 0;
1953 }
1954
1955 /* See declaration. */
1956
1957 void
1958 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1959 const dwarf2_debug_sections &names)
1960 {
1961 flagword aflag = bfd_section_flags (sectp);
1962
1963 if ((aflag & SEC_HAS_CONTENTS) == 0)
1964 {
1965 }
1966 else if (elf_section_data (sectp)->this_hdr.sh_size
1967 > bfd_get_file_size (abfd))
1968 {
1969 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1970 warning (_("Discarding section %s which has a section size (%s"
1971 ") larger than the file size [in module %s]"),
1972 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1973 bfd_get_filename (abfd));
1974 }
1975 else if (section_is_p (sectp->name, &names.info))
1976 {
1977 this->info.s.section = sectp;
1978 this->info.size = bfd_section_size (sectp);
1979 }
1980 else if (section_is_p (sectp->name, &names.abbrev))
1981 {
1982 this->abbrev.s.section = sectp;
1983 this->abbrev.size = bfd_section_size (sectp);
1984 }
1985 else if (section_is_p (sectp->name, &names.line))
1986 {
1987 this->line.s.section = sectp;
1988 this->line.size = bfd_section_size (sectp);
1989 }
1990 else if (section_is_p (sectp->name, &names.loc))
1991 {
1992 this->loc.s.section = sectp;
1993 this->loc.size = bfd_section_size (sectp);
1994 }
1995 else if (section_is_p (sectp->name, &names.loclists))
1996 {
1997 this->loclists.s.section = sectp;
1998 this->loclists.size = bfd_section_size (sectp);
1999 }
2000 else if (section_is_p (sectp->name, &names.macinfo))
2001 {
2002 this->macinfo.s.section = sectp;
2003 this->macinfo.size = bfd_section_size (sectp);
2004 }
2005 else if (section_is_p (sectp->name, &names.macro))
2006 {
2007 this->macro.s.section = sectp;
2008 this->macro.size = bfd_section_size (sectp);
2009 }
2010 else if (section_is_p (sectp->name, &names.str))
2011 {
2012 this->str.s.section = sectp;
2013 this->str.size = bfd_section_size (sectp);
2014 }
2015 else if (section_is_p (sectp->name, &names.str_offsets))
2016 {
2017 this->str_offsets.s.section = sectp;
2018 this->str_offsets.size = bfd_section_size (sectp);
2019 }
2020 else if (section_is_p (sectp->name, &names.line_str))
2021 {
2022 this->line_str.s.section = sectp;
2023 this->line_str.size = bfd_section_size (sectp);
2024 }
2025 else if (section_is_p (sectp->name, &names.addr))
2026 {
2027 this->addr.s.section = sectp;
2028 this->addr.size = bfd_section_size (sectp);
2029 }
2030 else if (section_is_p (sectp->name, &names.frame))
2031 {
2032 this->frame.s.section = sectp;
2033 this->frame.size = bfd_section_size (sectp);
2034 }
2035 else if (section_is_p (sectp->name, &names.eh_frame))
2036 {
2037 this->eh_frame.s.section = sectp;
2038 this->eh_frame.size = bfd_section_size (sectp);
2039 }
2040 else if (section_is_p (sectp->name, &names.ranges))
2041 {
2042 this->ranges.s.section = sectp;
2043 this->ranges.size = bfd_section_size (sectp);
2044 }
2045 else if (section_is_p (sectp->name, &names.rnglists))
2046 {
2047 this->rnglists.s.section = sectp;
2048 this->rnglists.size = bfd_section_size (sectp);
2049 }
2050 else if (section_is_p (sectp->name, &names.types))
2051 {
2052 struct dwarf2_section_info type_section;
2053
2054 memset (&type_section, 0, sizeof (type_section));
2055 type_section.s.section = sectp;
2056 type_section.size = bfd_section_size (sectp);
2057
2058 this->types.push_back (type_section);
2059 }
2060 else if (section_is_p (sectp->name, &names.gdb_index))
2061 {
2062 this->gdb_index.s.section = sectp;
2063 this->gdb_index.size = bfd_section_size (sectp);
2064 }
2065 else if (section_is_p (sectp->name, &names.debug_names))
2066 {
2067 this->debug_names.s.section = sectp;
2068 this->debug_names.size = bfd_section_size (sectp);
2069 }
2070 else if (section_is_p (sectp->name, &names.debug_aranges))
2071 {
2072 this->debug_aranges.s.section = sectp;
2073 this->debug_aranges.size = bfd_section_size (sectp);
2074 }
2075
2076 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2077 && bfd_section_vma (sectp) == 0)
2078 this->has_section_at_zero = true;
2079 }
2080
2081 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2082 SECTION_NAME. */
2083
2084 void
2085 dwarf2_get_section_info (struct objfile *objfile,
2086 enum dwarf2_section_enum sect,
2087 asection **sectp, const gdb_byte **bufp,
2088 bfd_size_type *sizep)
2089 {
2090 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
2091 struct dwarf2_section_info *info;
2092
2093 /* We may see an objfile without any DWARF, in which case we just
2094 return nothing. */
2095 if (per_objfile == NULL)
2096 {
2097 *sectp = NULL;
2098 *bufp = NULL;
2099 *sizep = 0;
2100 return;
2101 }
2102 switch (sect)
2103 {
2104 case DWARF2_DEBUG_FRAME:
2105 info = &per_objfile->per_bfd->frame;
2106 break;
2107 case DWARF2_EH_FRAME:
2108 info = &per_objfile->per_bfd->eh_frame;
2109 break;
2110 default:
2111 gdb_assert_not_reached ("unexpected section");
2112 }
2113
2114 info->read (objfile);
2115
2116 *sectp = info->get_bfd_section ();
2117 *bufp = info->buffer;
2118 *sizep = info->size;
2119 }
2120
2121 /* A helper function to find the sections for a .dwz file. */
2122
2123 static void
2124 locate_dwz_sections (bfd *abfd, asection *sectp, dwz_file *dwz_file)
2125 {
2126 /* Note that we only support the standard ELF names, because .dwz
2127 is ELF-only (at the time of writing). */
2128 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2129 {
2130 dwz_file->abbrev.s.section = sectp;
2131 dwz_file->abbrev.size = bfd_section_size (sectp);
2132 }
2133 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2134 {
2135 dwz_file->info.s.section = sectp;
2136 dwz_file->info.size = bfd_section_size (sectp);
2137 }
2138 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2139 {
2140 dwz_file->str.s.section = sectp;
2141 dwz_file->str.size = bfd_section_size (sectp);
2142 }
2143 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2144 {
2145 dwz_file->line.s.section = sectp;
2146 dwz_file->line.size = bfd_section_size (sectp);
2147 }
2148 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2149 {
2150 dwz_file->macro.s.section = sectp;
2151 dwz_file->macro.size = bfd_section_size (sectp);
2152 }
2153 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2154 {
2155 dwz_file->gdb_index.s.section = sectp;
2156 dwz_file->gdb_index.size = bfd_section_size (sectp);
2157 }
2158 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2159 {
2160 dwz_file->debug_names.s.section = sectp;
2161 dwz_file->debug_names.size = bfd_section_size (sectp);
2162 }
2163 }
2164
2165 /* See dwarf2read.h. */
2166
2167 struct dwz_file *
2168 dwarf2_get_dwz_file (dwarf2_per_bfd *per_bfd)
2169 {
2170 const char *filename;
2171 bfd_size_type buildid_len_arg;
2172 size_t buildid_len;
2173 bfd_byte *buildid;
2174
2175 if (per_bfd->dwz_file != NULL)
2176 return per_bfd->dwz_file.get ();
2177
2178 bfd_set_error (bfd_error_no_error);
2179 gdb::unique_xmalloc_ptr<char> data
2180 (bfd_get_alt_debug_link_info (per_bfd->obfd,
2181 &buildid_len_arg, &buildid));
2182 if (data == NULL)
2183 {
2184 if (bfd_get_error () == bfd_error_no_error)
2185 return NULL;
2186 error (_("could not read '.gnu_debugaltlink' section: %s"),
2187 bfd_errmsg (bfd_get_error ()));
2188 }
2189
2190 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2191
2192 buildid_len = (size_t) buildid_len_arg;
2193
2194 filename = data.get ();
2195
2196 std::string abs_storage;
2197 if (!IS_ABSOLUTE_PATH (filename))
2198 {
2199 gdb::unique_xmalloc_ptr<char> abs
2200 = gdb_realpath (bfd_get_filename (per_bfd->obfd));
2201
2202 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2203 filename = abs_storage.c_str ();
2204 }
2205
2206 /* First try the file name given in the section. If that doesn't
2207 work, try to use the build-id instead. */
2208 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget));
2209 if (dwz_bfd != NULL)
2210 {
2211 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2212 dwz_bfd.reset (nullptr);
2213 }
2214
2215 if (dwz_bfd == NULL)
2216 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2217
2218 if (dwz_bfd == nullptr)
2219 {
2220 gdb::unique_xmalloc_ptr<char> alt_filename;
2221 const char *origname = bfd_get_filename (per_bfd->obfd);
2222
2223 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2224 buildid_len,
2225 origname,
2226 &alt_filename));
2227
2228 if (fd.get () >= 0)
2229 {
2230 /* File successfully retrieved from server. */
2231 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget);
2232
2233 if (dwz_bfd == nullptr)
2234 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2235 alt_filename.get ());
2236 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2237 dwz_bfd.reset (nullptr);
2238 }
2239 }
2240
2241 if (dwz_bfd == NULL)
2242 error (_("could not find '.gnu_debugaltlink' file for %s"),
2243 bfd_get_filename (per_bfd->obfd));
2244
2245 std::unique_ptr<struct dwz_file> result
2246 (new struct dwz_file (std::move (dwz_bfd)));
2247
2248 for (asection *sec : gdb_bfd_sections (result->dwz_bfd))
2249 locate_dwz_sections (result->dwz_bfd.get (), sec, result.get ());
2250
2251 gdb_bfd_record_inclusion (per_bfd->obfd, result->dwz_bfd.get ());
2252 per_bfd->dwz_file = std::move (result);
2253 return per_bfd->dwz_file.get ();
2254 }
2255 \f
2256 /* DWARF quick_symbols_functions support. */
2257
2258 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2259 unique line tables, so we maintain a separate table of all .debug_line
2260 derived entries to support the sharing.
2261 All the quick functions need is the list of file names. We discard the
2262 line_header when we're done and don't need to record it here. */
2263 struct quick_file_names
2264 {
2265 /* The data used to construct the hash key. */
2266 struct stmt_list_hash hash;
2267
2268 /* The number of entries in file_names, real_names. */
2269 unsigned int num_file_names;
2270
2271 /* The file names from the line table, after being run through
2272 file_full_name. */
2273 const char **file_names;
2274
2275 /* The file names from the line table after being run through
2276 gdb_realpath. These are computed lazily. */
2277 const char **real_names;
2278 };
2279
2280 /* When using the index (and thus not using psymtabs), each CU has an
2281 object of this type. This is used to hold information needed by
2282 the various "quick" methods. */
2283 struct dwarf2_per_cu_quick_data
2284 {
2285 /* The file table. This can be NULL if there was no file table
2286 or it's currently not read in.
2287 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
2288 struct quick_file_names *file_names;
2289
2290 /* A temporary mark bit used when iterating over all CUs in
2291 expand_symtabs_matching. */
2292 unsigned int mark : 1;
2293
2294 /* True if we've tried to read the file table and found there isn't one.
2295 There will be no point in trying to read it again next time. */
2296 unsigned int no_file_data : 1;
2297 };
2298
2299 /* Utility hash function for a stmt_list_hash. */
2300
2301 static hashval_t
2302 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2303 {
2304 hashval_t v = 0;
2305
2306 if (stmt_list_hash->dwo_unit != NULL)
2307 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2308 v += to_underlying (stmt_list_hash->line_sect_off);
2309 return v;
2310 }
2311
2312 /* Utility equality function for a stmt_list_hash. */
2313
2314 static int
2315 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2316 const struct stmt_list_hash *rhs)
2317 {
2318 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2319 return 0;
2320 if (lhs->dwo_unit != NULL
2321 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2322 return 0;
2323
2324 return lhs->line_sect_off == rhs->line_sect_off;
2325 }
2326
2327 /* Hash function for a quick_file_names. */
2328
2329 static hashval_t
2330 hash_file_name_entry (const void *e)
2331 {
2332 const struct quick_file_names *file_data
2333 = (const struct quick_file_names *) e;
2334
2335 return hash_stmt_list_entry (&file_data->hash);
2336 }
2337
2338 /* Equality function for a quick_file_names. */
2339
2340 static int
2341 eq_file_name_entry (const void *a, const void *b)
2342 {
2343 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2344 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2345
2346 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2347 }
2348
2349 /* Delete function for a quick_file_names. */
2350
2351 static void
2352 delete_file_name_entry (void *e)
2353 {
2354 struct quick_file_names *file_data = (struct quick_file_names *) e;
2355 int i;
2356
2357 for (i = 0; i < file_data->num_file_names; ++i)
2358 {
2359 xfree ((void*) file_data->file_names[i]);
2360 if (file_data->real_names)
2361 xfree ((void*) file_data->real_names[i]);
2362 }
2363
2364 /* The space for the struct itself lives on the obstack, so we don't
2365 free it here. */
2366 }
2367
2368 /* Create a quick_file_names hash table. */
2369
2370 static htab_up
2371 create_quick_file_names_table (unsigned int nr_initial_entries)
2372 {
2373 return htab_up (htab_create_alloc (nr_initial_entries,
2374 hash_file_name_entry, eq_file_name_entry,
2375 delete_file_name_entry, xcalloc, xfree));
2376 }
2377
2378 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2379 function is unrelated to symtabs, symtab would have to be created afterwards.
2380 You should call age_cached_comp_units after processing the CU. */
2381
2382 static dwarf2_cu *
2383 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2384 bool skip_partial)
2385 {
2386 if (per_cu->is_debug_types)
2387 load_full_type_unit (per_cu, per_objfile);
2388 else
2389 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
2390 skip_partial, language_minimal);
2391
2392 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
2393 if (cu == nullptr)
2394 return nullptr; /* Dummy CU. */
2395
2396 dwarf2_find_base_address (cu->dies, cu);
2397
2398 return cu;
2399 }
2400
2401 /* Read in the symbols for PER_CU in the context of DWARF"_PER_OBJFILE. */
2402
2403 static void
2404 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2405 dwarf2_per_objfile *per_objfile, bool skip_partial)
2406 {
2407 /* Skip type_unit_groups, reading the type units they contain
2408 is handled elsewhere. */
2409 if (per_cu->type_unit_group_p ())
2410 return;
2411
2412 /* The destructor of dwarf2_queue_guard frees any entries left on
2413 the queue. After this point we're guaranteed to leave this function
2414 with the dwarf queue empty. */
2415 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2416
2417 if (!per_objfile->symtab_set_p (per_cu))
2418 {
2419 queue_comp_unit (per_cu, per_objfile, language_minimal);
2420 dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial);
2421
2422 /* If we just loaded a CU from a DWO, and we're working with an index
2423 that may badly handle TUs, load all the TUs in that DWO as well.
2424 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2425 if (!per_cu->is_debug_types
2426 && cu != NULL
2427 && cu->dwo_unit != NULL
2428 && per_objfile->per_bfd->index_table != NULL
2429 && per_objfile->per_bfd->index_table->version <= 7
2430 /* DWP files aren't supported yet. */
2431 && get_dwp_file (per_objfile) == NULL)
2432 queue_and_load_all_dwo_tus (cu);
2433 }
2434
2435 process_queue (per_objfile);
2436
2437 /* Age the cache, releasing compilation units that have not
2438 been used recently. */
2439 per_objfile->age_comp_units ();
2440 }
2441
2442 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2443 the per-objfile for which this symtab is instantiated.
2444
2445 Returns the resulting symbol table. */
2446
2447 static struct compunit_symtab *
2448 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2449 dwarf2_per_objfile *per_objfile,
2450 bool skip_partial)
2451 {
2452 gdb_assert (per_objfile->per_bfd->using_index);
2453
2454 if (!per_objfile->symtab_set_p (per_cu))
2455 {
2456 free_cached_comp_units freer (per_objfile);
2457 scoped_restore decrementer = increment_reading_symtab ();
2458 dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial);
2459 process_cu_includes (per_objfile);
2460 }
2461
2462 return per_objfile->get_symtab (per_cu);
2463 }
2464
2465 /* See declaration. */
2466
2467 dwarf2_per_cu_data *
2468 dwarf2_per_bfd::get_cutu (int index)
2469 {
2470 if (index >= this->all_comp_units.size ())
2471 {
2472 index -= this->all_comp_units.size ();
2473 gdb_assert (index < this->all_type_units.size ());
2474 return &this->all_type_units[index]->per_cu;
2475 }
2476
2477 return this->all_comp_units[index];
2478 }
2479
2480 /* See declaration. */
2481
2482 dwarf2_per_cu_data *
2483 dwarf2_per_bfd::get_cu (int index)
2484 {
2485 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2486
2487 return this->all_comp_units[index];
2488 }
2489
2490 /* See declaration. */
2491
2492 signatured_type *
2493 dwarf2_per_bfd::get_tu (int index)
2494 {
2495 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2496
2497 return this->all_type_units[index];
2498 }
2499
2500 /* See read.h. */
2501
2502 dwarf2_per_cu_data *
2503 dwarf2_per_bfd::allocate_per_cu ()
2504 {
2505 dwarf2_per_cu_data *result = OBSTACK_ZALLOC (&obstack, dwarf2_per_cu_data);
2506 result->per_bfd = this;
2507 result->index = m_num_psymtabs++;
2508 return result;
2509 }
2510
2511 /* See read.h. */
2512
2513 signatured_type *
2514 dwarf2_per_bfd::allocate_signatured_type ()
2515 {
2516 signatured_type *result = OBSTACK_ZALLOC (&obstack, signatured_type);
2517 result->per_cu.per_bfd = this;
2518 result->per_cu.index = m_num_psymtabs++;
2519 return result;
2520 }
2521
2522 /* Return a new dwarf2_per_cu_data allocated on the per-bfd
2523 obstack, and constructed with the specified field values. */
2524
2525 static dwarf2_per_cu_data *
2526 create_cu_from_index_list (dwarf2_per_bfd *per_bfd,
2527 struct dwarf2_section_info *section,
2528 int is_dwz,
2529 sect_offset sect_off, ULONGEST length)
2530 {
2531 dwarf2_per_cu_data *the_cu = per_bfd->allocate_per_cu ();
2532 the_cu->sect_off = sect_off;
2533 the_cu->length = length;
2534 the_cu->section = section;
2535 the_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
2536 struct dwarf2_per_cu_quick_data);
2537 the_cu->is_dwz = is_dwz;
2538 return the_cu;
2539 }
2540
2541 /* A helper for create_cus_from_index that handles a given list of
2542 CUs. */
2543
2544 static void
2545 create_cus_from_index_list (dwarf2_per_bfd *per_bfd,
2546 const gdb_byte *cu_list, offset_type n_elements,
2547 struct dwarf2_section_info *section,
2548 int is_dwz)
2549 {
2550 for (offset_type i = 0; i < n_elements; i += 2)
2551 {
2552 gdb_static_assert (sizeof (ULONGEST) >= 8);
2553
2554 sect_offset sect_off
2555 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2556 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2557 cu_list += 2 * 8;
2558
2559 dwarf2_per_cu_data *per_cu
2560 = create_cu_from_index_list (per_bfd, section, is_dwz, sect_off,
2561 length);
2562 per_bfd->all_comp_units.push_back (per_cu);
2563 }
2564 }
2565
2566 /* Read the CU list from the mapped index, and use it to create all
2567 the CU objects for PER_BFD. */
2568
2569 static void
2570 create_cus_from_index (dwarf2_per_bfd *per_bfd,
2571 const gdb_byte *cu_list, offset_type cu_list_elements,
2572 const gdb_byte *dwz_list, offset_type dwz_elements)
2573 {
2574 gdb_assert (per_bfd->all_comp_units.empty ());
2575 per_bfd->all_comp_units.reserve ((cu_list_elements + dwz_elements) / 2);
2576
2577 create_cus_from_index_list (per_bfd, cu_list, cu_list_elements,
2578 &per_bfd->info, 0);
2579
2580 if (dwz_elements == 0)
2581 return;
2582
2583 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
2584 create_cus_from_index_list (per_bfd, dwz_list, dwz_elements,
2585 &dwz->info, 1);
2586 }
2587
2588 /* Create the signatured type hash table from the index. */
2589
2590 static void
2591 create_signatured_type_table_from_index
2592 (dwarf2_per_bfd *per_bfd, struct dwarf2_section_info *section,
2593 const gdb_byte *bytes, offset_type elements)
2594 {
2595 gdb_assert (per_bfd->all_type_units.empty ());
2596 per_bfd->all_type_units.reserve (elements / 3);
2597
2598 htab_up sig_types_hash = allocate_signatured_type_table ();
2599
2600 for (offset_type i = 0; i < elements; i += 3)
2601 {
2602 struct signatured_type *sig_type;
2603 ULONGEST signature;
2604 void **slot;
2605 cu_offset type_offset_in_tu;
2606
2607 gdb_static_assert (sizeof (ULONGEST) >= 8);
2608 sect_offset sect_off
2609 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2610 type_offset_in_tu
2611 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2612 BFD_ENDIAN_LITTLE);
2613 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2614 bytes += 3 * 8;
2615
2616 sig_type = per_bfd->allocate_signatured_type ();
2617 sig_type->signature = signature;
2618 sig_type->type_offset_in_tu = type_offset_in_tu;
2619 sig_type->per_cu.is_debug_types = 1;
2620 sig_type->per_cu.section = section;
2621 sig_type->per_cu.sect_off = sect_off;
2622 sig_type->per_cu.v.quick
2623 = OBSTACK_ZALLOC (&per_bfd->obstack,
2624 struct dwarf2_per_cu_quick_data);
2625
2626 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2627 *slot = sig_type;
2628
2629 per_bfd->all_type_units.push_back (sig_type);
2630 }
2631
2632 per_bfd->signatured_types = std::move (sig_types_hash);
2633 }
2634
2635 /* Create the signatured type hash table from .debug_names. */
2636
2637 static void
2638 create_signatured_type_table_from_debug_names
2639 (dwarf2_per_objfile *per_objfile,
2640 const mapped_debug_names &map,
2641 struct dwarf2_section_info *section,
2642 struct dwarf2_section_info *abbrev_section)
2643 {
2644 struct objfile *objfile = per_objfile->objfile;
2645
2646 section->read (objfile);
2647 abbrev_section->read (objfile);
2648
2649 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
2650 per_objfile->per_bfd->all_type_units.reserve (map.tu_count);
2651
2652 htab_up sig_types_hash = allocate_signatured_type_table ();
2653
2654 for (uint32_t i = 0; i < map.tu_count; ++i)
2655 {
2656 struct signatured_type *sig_type;
2657 void **slot;
2658
2659 sect_offset sect_off
2660 = (sect_offset) (extract_unsigned_integer
2661 (map.tu_table_reordered + i * map.offset_size,
2662 map.offset_size,
2663 map.dwarf5_byte_order));
2664
2665 comp_unit_head cu_header;
2666 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
2667 abbrev_section,
2668 section->buffer + to_underlying (sect_off),
2669 rcuh_kind::TYPE);
2670
2671 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
2672 sig_type->signature = cu_header.signature;
2673 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2674 sig_type->per_cu.is_debug_types = 1;
2675 sig_type->per_cu.section = section;
2676 sig_type->per_cu.sect_off = sect_off;
2677 sig_type->per_cu.v.quick
2678 = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
2679 struct dwarf2_per_cu_quick_data);
2680
2681 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2682 *slot = sig_type;
2683
2684 per_objfile->per_bfd->all_type_units.push_back (sig_type);
2685 }
2686
2687 per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2688 }
2689
2690 /* Read the address map data from the mapped index, and use it to
2691 populate the objfile's psymtabs_addrmap. */
2692
2693 static void
2694 create_addrmap_from_index (dwarf2_per_objfile *per_objfile,
2695 struct mapped_index *index)
2696 {
2697 struct objfile *objfile = per_objfile->objfile;
2698 struct gdbarch *gdbarch = objfile->arch ();
2699 const gdb_byte *iter, *end;
2700 struct addrmap *mutable_map;
2701 CORE_ADDR baseaddr;
2702
2703 auto_obstack temp_obstack;
2704
2705 mutable_map = addrmap_create_mutable (&temp_obstack);
2706
2707 iter = index->address_table.data ();
2708 end = iter + index->address_table.size ();
2709
2710 baseaddr = objfile->text_section_offset ();
2711
2712 while (iter < end)
2713 {
2714 ULONGEST hi, lo, cu_index;
2715 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2716 iter += 8;
2717 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2718 iter += 8;
2719 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2720 iter += 4;
2721
2722 if (lo > hi)
2723 {
2724 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2725 hex_string (lo), hex_string (hi));
2726 continue;
2727 }
2728
2729 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
2730 {
2731 complaint (_(".gdb_index address table has invalid CU number %u"),
2732 (unsigned) cu_index);
2733 continue;
2734 }
2735
2736 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2737 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2738 addrmap_set_empty (mutable_map, lo, hi - 1,
2739 per_objfile->per_bfd->get_cu (cu_index));
2740 }
2741
2742 objfile->partial_symtabs->psymtabs_addrmap
2743 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2744 }
2745
2746 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2747 populate the objfile's psymtabs_addrmap. */
2748
2749 static void
2750 create_addrmap_from_aranges (dwarf2_per_objfile *per_objfile,
2751 struct dwarf2_section_info *section)
2752 {
2753 struct objfile *objfile = per_objfile->objfile;
2754 bfd *abfd = objfile->obfd;
2755 struct gdbarch *gdbarch = objfile->arch ();
2756 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2757
2758 auto_obstack temp_obstack;
2759 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2760
2761 std::unordered_map<sect_offset,
2762 dwarf2_per_cu_data *,
2763 gdb::hash_enum<sect_offset>>
2764 debug_info_offset_to_per_cu;
2765 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
2766 {
2767 const auto insertpair
2768 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2769 if (!insertpair.second)
2770 {
2771 warning (_("Section .debug_aranges in %s has duplicate "
2772 "debug_info_offset %s, ignoring .debug_aranges."),
2773 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2774 return;
2775 }
2776 }
2777
2778 section->read (objfile);
2779
2780 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2781
2782 const gdb_byte *addr = section->buffer;
2783
2784 while (addr < section->buffer + section->size)
2785 {
2786 const gdb_byte *const entry_addr = addr;
2787 unsigned int bytes_read;
2788
2789 const LONGEST entry_length = read_initial_length (abfd, addr,
2790 &bytes_read);
2791 addr += bytes_read;
2792
2793 const gdb_byte *const entry_end = addr + entry_length;
2794 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2795 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2796 if (addr + entry_length > section->buffer + section->size)
2797 {
2798 warning (_("Section .debug_aranges in %s entry at offset %s "
2799 "length %s exceeds section length %s, "
2800 "ignoring .debug_aranges."),
2801 objfile_name (objfile),
2802 plongest (entry_addr - section->buffer),
2803 plongest (bytes_read + entry_length),
2804 pulongest (section->size));
2805 return;
2806 }
2807
2808 /* The version number. */
2809 const uint16_t version = read_2_bytes (abfd, addr);
2810 addr += 2;
2811 if (version != 2)
2812 {
2813 warning (_("Section .debug_aranges in %s entry at offset %s "
2814 "has unsupported version %d, ignoring .debug_aranges."),
2815 objfile_name (objfile),
2816 plongest (entry_addr - section->buffer), version);
2817 return;
2818 }
2819
2820 const uint64_t debug_info_offset
2821 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2822 addr += offset_size;
2823 const auto per_cu_it
2824 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2825 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2826 {
2827 warning (_("Section .debug_aranges in %s entry at offset %s "
2828 "debug_info_offset %s does not exists, "
2829 "ignoring .debug_aranges."),
2830 objfile_name (objfile),
2831 plongest (entry_addr - section->buffer),
2832 pulongest (debug_info_offset));
2833 return;
2834 }
2835 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2836
2837 const uint8_t address_size = *addr++;
2838 if (address_size < 1 || address_size > 8)
2839 {
2840 warning (_("Section .debug_aranges in %s entry at offset %s "
2841 "address_size %u is invalid, ignoring .debug_aranges."),
2842 objfile_name (objfile),
2843 plongest (entry_addr - section->buffer), address_size);
2844 return;
2845 }
2846
2847 const uint8_t segment_selector_size = *addr++;
2848 if (segment_selector_size != 0)
2849 {
2850 warning (_("Section .debug_aranges in %s entry at offset %s "
2851 "segment_selector_size %u is not supported, "
2852 "ignoring .debug_aranges."),
2853 objfile_name (objfile),
2854 plongest (entry_addr - section->buffer),
2855 segment_selector_size);
2856 return;
2857 }
2858
2859 /* Must pad to an alignment boundary that is twice the address
2860 size. It is undocumented by the DWARF standard but GCC does
2861 use it. */
2862 for (size_t padding = ((-(addr - section->buffer))
2863 & (2 * address_size - 1));
2864 padding > 0; padding--)
2865 if (*addr++ != 0)
2866 {
2867 warning (_("Section .debug_aranges in %s entry at offset %s "
2868 "padding is not zero, ignoring .debug_aranges."),
2869 objfile_name (objfile),
2870 plongest (entry_addr - section->buffer));
2871 return;
2872 }
2873
2874 for (;;)
2875 {
2876 if (addr + 2 * address_size > entry_end)
2877 {
2878 warning (_("Section .debug_aranges in %s entry at offset %s "
2879 "address list is not properly terminated, "
2880 "ignoring .debug_aranges."),
2881 objfile_name (objfile),
2882 plongest (entry_addr - section->buffer));
2883 return;
2884 }
2885 ULONGEST start = extract_unsigned_integer (addr, address_size,
2886 dwarf5_byte_order);
2887 addr += address_size;
2888 ULONGEST length = extract_unsigned_integer (addr, address_size,
2889 dwarf5_byte_order);
2890 addr += address_size;
2891 if (start == 0 && length == 0)
2892 break;
2893 if (start == 0 && !per_objfile->per_bfd->has_section_at_zero)
2894 {
2895 /* Symbol was eliminated due to a COMDAT group. */
2896 continue;
2897 }
2898 ULONGEST end = start + length;
2899 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2900 - baseaddr);
2901 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2902 - baseaddr);
2903 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2904 }
2905 }
2906
2907 objfile->partial_symtabs->psymtabs_addrmap
2908 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2909 }
2910
2911 /* Find a slot in the mapped index INDEX for the object named NAME.
2912 If NAME is found, set *VEC_OUT to point to the CU vector in the
2913 constant pool and return true. If NAME cannot be found, return
2914 false. */
2915
2916 static bool
2917 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2918 offset_type **vec_out)
2919 {
2920 offset_type hash;
2921 offset_type slot, step;
2922 int (*cmp) (const char *, const char *);
2923
2924 gdb::unique_xmalloc_ptr<char> without_params;
2925 if (current_language->la_language == language_cplus
2926 || current_language->la_language == language_fortran
2927 || current_language->la_language == language_d)
2928 {
2929 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2930 not contain any. */
2931
2932 if (strchr (name, '(') != NULL)
2933 {
2934 without_params = cp_remove_params (name);
2935
2936 if (without_params != NULL)
2937 name = without_params.get ();
2938 }
2939 }
2940
2941 /* Index version 4 did not support case insensitive searches. But the
2942 indices for case insensitive languages are built in lowercase, therefore
2943 simulate our NAME being searched is also lowercased. */
2944 hash = mapped_index_string_hash ((index->version == 4
2945 && case_sensitivity == case_sensitive_off
2946 ? 5 : index->version),
2947 name);
2948
2949 slot = hash & (index->symbol_table.size () - 1);
2950 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2951 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2952
2953 for (;;)
2954 {
2955 const char *str;
2956
2957 const auto &bucket = index->symbol_table[slot];
2958 if (bucket.name == 0 && bucket.vec == 0)
2959 return false;
2960
2961 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2962 if (!cmp (name, str))
2963 {
2964 *vec_out = (offset_type *) (index->constant_pool
2965 + MAYBE_SWAP (bucket.vec));
2966 return true;
2967 }
2968
2969 slot = (slot + step) & (index->symbol_table.size () - 1);
2970 }
2971 }
2972
2973 /* A helper function that reads the .gdb_index from BUFFER and fills
2974 in MAP. FILENAME is the name of the file containing the data;
2975 it is used for error reporting. DEPRECATED_OK is true if it is
2976 ok to use deprecated sections.
2977
2978 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2979 out parameters that are filled in with information about the CU and
2980 TU lists in the section.
2981
2982 Returns true if all went well, false otherwise. */
2983
2984 static bool
2985 read_gdb_index_from_buffer (const char *filename,
2986 bool deprecated_ok,
2987 gdb::array_view<const gdb_byte> buffer,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
2993 {
2994 const gdb_byte *addr = &buffer[0];
2995
2996 /* Version check. */
2997 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2998 /* Versions earlier than 3 emitted every copy of a psymbol. This
2999 causes the index to behave very poorly for certain requests. Version 3
3000 contained incomplete addrmap. So, it seems better to just ignore such
3001 indices. */
3002 if (version < 4)
3003 {
3004 static int warning_printed = 0;
3005 if (!warning_printed)
3006 {
3007 warning (_("Skipping obsolete .gdb_index section in %s."),
3008 filename);
3009 warning_printed = 1;
3010 }
3011 return 0;
3012 }
3013 /* Index version 4 uses a different hash function than index version
3014 5 and later.
3015
3016 Versions earlier than 6 did not emit psymbols for inlined
3017 functions. Using these files will cause GDB not to be able to
3018 set breakpoints on inlined functions by name, so we ignore these
3019 indices unless the user has done
3020 "set use-deprecated-index-sections on". */
3021 if (version < 6 && !deprecated_ok)
3022 {
3023 static int warning_printed = 0;
3024 if (!warning_printed)
3025 {
3026 warning (_("\
3027 Skipping deprecated .gdb_index section in %s.\n\
3028 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3029 to use the section anyway."),
3030 filename);
3031 warning_printed = 1;
3032 }
3033 return 0;
3034 }
3035 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3036 of the TU (for symbols coming from TUs),
3037 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3038 Plus gold-generated indices can have duplicate entries for global symbols,
3039 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3040 These are just performance bugs, and we can't distinguish gdb-generated
3041 indices from gold-generated ones, so issue no warning here. */
3042
3043 /* Indexes with higher version than the one supported by GDB may be no
3044 longer backward compatible. */
3045 if (version > 8)
3046 return 0;
3047
3048 map->version = version;
3049
3050 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3051
3052 int i = 0;
3053 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3054 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3055 / 8);
3056 ++i;
3057
3058 *types_list = addr + MAYBE_SWAP (metadata[i]);
3059 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3060 - MAYBE_SWAP (metadata[i]))
3061 / 8);
3062 ++i;
3063
3064 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3065 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3066 map->address_table
3067 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3068 ++i;
3069
3070 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3071 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3072 map->symbol_table
3073 = gdb::array_view<mapped_index::symbol_table_slot>
3074 ((mapped_index::symbol_table_slot *) symbol_table,
3075 (mapped_index::symbol_table_slot *) symbol_table_end);
3076
3077 ++i;
3078 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3079
3080 return 1;
3081 }
3082
3083 /* Callback types for dwarf2_read_gdb_index. */
3084
3085 typedef gdb::function_view
3086 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
3087 get_gdb_index_contents_ftype;
3088 typedef gdb::function_view
3089 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3090 get_gdb_index_contents_dwz_ftype;
3091
3092 /* Read .gdb_index. If everything went ok, initialize the "quick"
3093 elements of all the CUs and return 1. Otherwise, return 0. */
3094
3095 static int
3096 dwarf2_read_gdb_index
3097 (dwarf2_per_objfile *per_objfile,
3098 get_gdb_index_contents_ftype get_gdb_index_contents,
3099 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3100 {
3101 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3102 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3103 struct dwz_file *dwz;
3104 struct objfile *objfile = per_objfile->objfile;
3105 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
3106
3107 gdb::array_view<const gdb_byte> main_index_contents
3108 = get_gdb_index_contents (objfile, per_bfd);
3109
3110 if (main_index_contents.empty ())
3111 return 0;
3112
3113 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3114 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3115 use_deprecated_index_sections,
3116 main_index_contents, map.get (), &cu_list,
3117 &cu_list_elements, &types_list,
3118 &types_list_elements))
3119 return 0;
3120
3121 /* Don't use the index if it's empty. */
3122 if (map->symbol_table.empty ())
3123 return 0;
3124
3125 /* If there is a .dwz file, read it so we can get its CU list as
3126 well. */
3127 dwz = dwarf2_get_dwz_file (per_bfd);
3128 if (dwz != NULL)
3129 {
3130 struct mapped_index dwz_map;
3131 const gdb_byte *dwz_types_ignore;
3132 offset_type dwz_types_elements_ignore;
3133
3134 gdb::array_view<const gdb_byte> dwz_index_content
3135 = get_gdb_index_contents_dwz (objfile, dwz);
3136
3137 if (dwz_index_content.empty ())
3138 return 0;
3139
3140 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3141 1, dwz_index_content, &dwz_map,
3142 &dwz_list, &dwz_list_elements,
3143 &dwz_types_ignore,
3144 &dwz_types_elements_ignore))
3145 {
3146 warning (_("could not read '.gdb_index' section from %s; skipping"),
3147 bfd_get_filename (dwz->dwz_bfd.get ()));
3148 return 0;
3149 }
3150 }
3151
3152 create_cus_from_index (per_bfd, cu_list, cu_list_elements, dwz_list,
3153 dwz_list_elements);
3154
3155 if (types_list_elements)
3156 {
3157 /* We can only handle a single .debug_types when we have an
3158 index. */
3159 if (per_bfd->types.size () != 1)
3160 return 0;
3161
3162 dwarf2_section_info *section = &per_bfd->types[0];
3163
3164 create_signatured_type_table_from_index (per_bfd, section, types_list,
3165 types_list_elements);
3166 }
3167
3168 create_addrmap_from_index (per_objfile, map.get ());
3169
3170 per_bfd->index_table = std::move (map);
3171 per_bfd->using_index = 1;
3172 per_bfd->quick_file_names_table =
3173 create_quick_file_names_table (per_bfd->all_comp_units.size ());
3174
3175 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
3176 objfiles using the same BFD. */
3177 gdb_assert (per_bfd->partial_symtabs == nullptr);
3178 per_bfd->partial_symtabs = objfile->partial_symtabs;
3179
3180 return 1;
3181 }
3182
3183 /* die_reader_func for dw2_get_file_names. */
3184
3185 static void
3186 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3187 const gdb_byte *info_ptr,
3188 struct die_info *comp_unit_die)
3189 {
3190 struct dwarf2_cu *cu = reader->cu;
3191 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3192 dwarf2_per_objfile *per_objfile = cu->per_objfile;
3193 struct dwarf2_per_cu_data *lh_cu;
3194 struct attribute *attr;
3195 void **slot;
3196 struct quick_file_names *qfn;
3197
3198 gdb_assert (! this_cu->is_debug_types);
3199
3200 /* Our callers never want to match partial units -- instead they
3201 will match the enclosing full CU. */
3202 if (comp_unit_die->tag == DW_TAG_partial_unit)
3203 {
3204 this_cu->v.quick->no_file_data = 1;
3205 return;
3206 }
3207
3208 lh_cu = this_cu;
3209 slot = NULL;
3210
3211 line_header_up lh;
3212 sect_offset line_offset {};
3213
3214 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3215 if (attr != nullptr && attr->form_is_unsigned ())
3216 {
3217 struct quick_file_names find_entry;
3218
3219 line_offset = (sect_offset) attr->as_unsigned ();
3220
3221 /* We may have already read in this line header (TU line header sharing).
3222 If we have we're done. */
3223 find_entry.hash.dwo_unit = cu->dwo_unit;
3224 find_entry.hash.line_sect_off = line_offset;
3225 slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (),
3226 &find_entry, INSERT);
3227 if (*slot != NULL)
3228 {
3229 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3230 return;
3231 }
3232
3233 lh = dwarf_decode_line_header (line_offset, cu);
3234 }
3235 if (lh == NULL)
3236 {
3237 lh_cu->v.quick->no_file_data = 1;
3238 return;
3239 }
3240
3241 qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names);
3242 qfn->hash.dwo_unit = cu->dwo_unit;
3243 qfn->hash.line_sect_off = line_offset;
3244 gdb_assert (slot != NULL);
3245 *slot = qfn;
3246
3247 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3248
3249 int offset = 0;
3250 if (strcmp (fnd.name, "<unknown>") != 0)
3251 ++offset;
3252
3253 qfn->num_file_names = offset + lh->file_names_size ();
3254 qfn->file_names =
3255 XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *,
3256 qfn->num_file_names);
3257 if (offset != 0)
3258 qfn->file_names[0] = xstrdup (fnd.name);
3259 for (int i = 0; i < lh->file_names_size (); ++i)
3260 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3261 fnd.comp_dir).release ();
3262 qfn->real_names = NULL;
3263
3264 lh_cu->v.quick->file_names = qfn;
3265 }
3266
3267 /* A helper for the "quick" functions which attempts to read the line
3268 table for THIS_CU. */
3269
3270 static struct quick_file_names *
3271 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
3272 dwarf2_per_objfile *per_objfile)
3273 {
3274 /* This should never be called for TUs. */
3275 gdb_assert (! this_cu->is_debug_types);
3276 /* Nor type unit groups. */
3277 gdb_assert (! this_cu->type_unit_group_p ());
3278
3279 if (this_cu->v.quick->file_names != NULL)
3280 return this_cu->v.quick->file_names;
3281 /* If we know there is no line data, no point in looking again. */
3282 if (this_cu->v.quick->no_file_data)
3283 return NULL;
3284
3285 cutu_reader reader (this_cu, per_objfile);
3286 if (!reader.dummy_p)
3287 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3288
3289 if (this_cu->v.quick->no_file_data)
3290 return NULL;
3291 return this_cu->v.quick->file_names;
3292 }
3293
3294 /* A helper for the "quick" functions which computes and caches the
3295 real path for a given file name from the line table. */
3296
3297 static const char *
3298 dw2_get_real_path (dwarf2_per_objfile *per_objfile,
3299 struct quick_file_names *qfn, int index)
3300 {
3301 if (qfn->real_names == NULL)
3302 qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
3303 qfn->num_file_names, const char *);
3304
3305 if (qfn->real_names[index] == NULL)
3306 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3307
3308 return qfn->real_names[index];
3309 }
3310
3311 static struct symtab *
3312 dw2_find_last_source_symtab (struct objfile *objfile)
3313 {
3314 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3315 dwarf2_per_cu_data *dwarf_cu = per_objfile->per_bfd->all_comp_units.back ();
3316 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false);
3317
3318 if (cust == NULL)
3319 return NULL;
3320
3321 return compunit_primary_filetab (cust);
3322 }
3323
3324 /* Traversal function for dw2_forget_cached_source_info. */
3325
3326 static int
3327 dw2_free_cached_file_names (void **slot, void *info)
3328 {
3329 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3330
3331 if (file_data->real_names)
3332 {
3333 int i;
3334
3335 for (i = 0; i < file_data->num_file_names; ++i)
3336 {
3337 xfree ((void*) file_data->real_names[i]);
3338 file_data->real_names[i] = NULL;
3339 }
3340 }
3341
3342 return 1;
3343 }
3344
3345 static void
3346 dw2_forget_cached_source_info (struct objfile *objfile)
3347 {
3348 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3349
3350 htab_traverse_noresize (per_objfile->per_bfd->quick_file_names_table.get (),
3351 dw2_free_cached_file_names, NULL);
3352 }
3353
3354 /* Helper function for dw2_map_symtabs_matching_filename that expands
3355 the symtabs and calls the iterator. */
3356
3357 static int
3358 dw2_map_expand_apply (struct objfile *objfile,
3359 struct dwarf2_per_cu_data *per_cu,
3360 const char *name, const char *real_path,
3361 gdb::function_view<bool (symtab *)> callback)
3362 {
3363 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3364
3365 /* Don't visit already-expanded CUs. */
3366 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3367 if (per_objfile->symtab_set_p (per_cu))
3368 return 0;
3369
3370 /* This may expand more than one symtab, and we want to iterate over
3371 all of them. */
3372 dw2_instantiate_symtab (per_cu, per_objfile, false);
3373
3374 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3375 last_made, callback);
3376 }
3377
3378 /* Implementation of the map_symtabs_matching_filename method. */
3379
3380 static bool
3381 dw2_map_symtabs_matching_filename
3382 (struct objfile *objfile, const char *name, const char *real_path,
3383 gdb::function_view<bool (symtab *)> callback)
3384 {
3385 const char *name_basename = lbasename (name);
3386 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3387
3388 /* The rule is CUs specify all the files, including those used by
3389 any TU, so there's no need to scan TUs here. */
3390
3391 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3392 {
3393 /* We only need to look at symtabs not already expanded. */
3394 if (per_objfile->symtab_set_p (per_cu))
3395 continue;
3396
3397 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3398 if (file_data == NULL)
3399 continue;
3400
3401 for (int j = 0; j < file_data->num_file_names; ++j)
3402 {
3403 const char *this_name = file_data->file_names[j];
3404 const char *this_real_name;
3405
3406 if (compare_filenames_for_search (this_name, name))
3407 {
3408 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3409 callback))
3410 return true;
3411 continue;
3412 }
3413
3414 /* Before we invoke realpath, which can get expensive when many
3415 files are involved, do a quick comparison of the basenames. */
3416 if (! basenames_may_differ
3417 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3418 continue;
3419
3420 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
3421 if (compare_filenames_for_search (this_real_name, name))
3422 {
3423 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3424 callback))
3425 return true;
3426 continue;
3427 }
3428
3429 if (real_path != NULL)
3430 {
3431 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3432 gdb_assert (IS_ABSOLUTE_PATH (name));
3433 if (this_real_name != NULL
3434 && FILENAME_CMP (real_path, this_real_name) == 0)
3435 {
3436 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3437 callback))
3438 return true;
3439 continue;
3440 }
3441 }
3442 }
3443 }
3444
3445 return false;
3446 }
3447
3448 /* Struct used to manage iterating over all CUs looking for a symbol. */
3449
3450 struct dw2_symtab_iterator
3451 {
3452 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3453 dwarf2_per_objfile *per_objfile;
3454 /* If set, only look for symbols that match that block. Valid values are
3455 GLOBAL_BLOCK and STATIC_BLOCK. */
3456 gdb::optional<block_enum> block_index;
3457 /* The kind of symbol we're looking for. */
3458 domain_enum domain;
3459 /* The list of CUs from the index entry of the symbol,
3460 or NULL if not found. */
3461 offset_type *vec;
3462 /* The next element in VEC to look at. */
3463 int next;
3464 /* The number of elements in VEC, or zero if there is no match. */
3465 int length;
3466 /* Have we seen a global version of the symbol?
3467 If so we can ignore all further global instances.
3468 This is to work around gold/15646, inefficient gold-generated
3469 indices. */
3470 int global_seen;
3471 };
3472
3473 /* Initialize the index symtab iterator ITER, common part. */
3474
3475 static void
3476 dw2_symtab_iter_init_common (struct dw2_symtab_iterator *iter,
3477 dwarf2_per_objfile *per_objfile,
3478 gdb::optional<block_enum> block_index,
3479 domain_enum domain)
3480 {
3481 iter->per_objfile = per_objfile;
3482 iter->block_index = block_index;
3483 iter->domain = domain;
3484 iter->next = 0;
3485 iter->global_seen = 0;
3486 iter->vec = NULL;
3487 iter->length = 0;
3488 }
3489
3490 /* Initialize the index symtab iterator ITER, const char *NAME variant. */
3491
3492 static void
3493 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3494 dwarf2_per_objfile *per_objfile,
3495 gdb::optional<block_enum> block_index,
3496 domain_enum domain,
3497 const char *name)
3498 {
3499 dw2_symtab_iter_init_common (iter, per_objfile, block_index, domain);
3500
3501 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3502 /* index is NULL if OBJF_READNOW. */
3503 if (index == NULL)
3504 return;
3505
3506 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3507 iter->length = MAYBE_SWAP (*iter->vec);
3508 }
3509
3510 /* Initialize the index symtab iterator ITER, offset_type NAMEI variant. */
3511
3512 static void
3513 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3514 dwarf2_per_objfile *per_objfile,
3515 gdb::optional<block_enum> block_index,
3516 domain_enum domain, offset_type namei)
3517 {
3518 dw2_symtab_iter_init_common (iter, per_objfile, block_index, domain);
3519
3520 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3521 /* index is NULL if OBJF_READNOW. */
3522 if (index == NULL)
3523 return;
3524
3525 gdb_assert (!index->symbol_name_slot_invalid (namei));
3526 const auto &bucket = index->symbol_table[namei];
3527
3528 iter->vec = (offset_type *) (index->constant_pool
3529 + MAYBE_SWAP (bucket.vec));
3530 iter->length = MAYBE_SWAP (*iter->vec);
3531 }
3532
3533 /* Return the next matching CU or NULL if there are no more. */
3534
3535 static struct dwarf2_per_cu_data *
3536 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3537 {
3538 dwarf2_per_objfile *per_objfile = iter->per_objfile;
3539
3540 for ( ; iter->next < iter->length; ++iter->next)
3541 {
3542 offset_type cu_index_and_attrs =
3543 MAYBE_SWAP (iter->vec[iter->next + 1]);
3544 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3545 gdb_index_symbol_kind symbol_kind =
3546 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3547 /* Only check the symbol attributes if they're present.
3548 Indices prior to version 7 don't record them,
3549 and indices >= 7 may elide them for certain symbols
3550 (gold does this). */
3551 int attrs_valid =
3552 (per_objfile->per_bfd->index_table->version >= 7
3553 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3554
3555 /* Don't crash on bad data. */
3556 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
3557 + per_objfile->per_bfd->all_type_units.size ()))
3558 {
3559 complaint (_(".gdb_index entry has bad CU index"
3560 " [in module %s]"), objfile_name (per_objfile->objfile));
3561 continue;
3562 }
3563
3564 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
3565
3566 /* Skip if already read in. */
3567 if (per_objfile->symtab_set_p (per_cu))
3568 continue;
3569
3570 /* Check static vs global. */
3571 if (attrs_valid)
3572 {
3573 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3574
3575 if (iter->block_index.has_value ())
3576 {
3577 bool want_static = *iter->block_index == STATIC_BLOCK;
3578
3579 if (is_static != want_static)
3580 continue;
3581 }
3582
3583 /* Work around gold/15646. */
3584 if (!is_static
3585 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
3586 {
3587 if (iter->global_seen)
3588 continue;
3589
3590 iter->global_seen = 1;
3591 }
3592 }
3593
3594 /* Only check the symbol's kind if it has one. */
3595 if (attrs_valid)
3596 {
3597 switch (iter->domain)
3598 {
3599 case VAR_DOMAIN:
3600 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3601 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3602 /* Some types are also in VAR_DOMAIN. */
3603 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3604 continue;
3605 break;
3606 case STRUCT_DOMAIN:
3607 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3608 continue;
3609 break;
3610 case LABEL_DOMAIN:
3611 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3612 continue;
3613 break;
3614 case MODULE_DOMAIN:
3615 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3616 continue;
3617 break;
3618 default:
3619 break;
3620 }
3621 }
3622
3623 ++iter->next;
3624 return per_cu;
3625 }
3626
3627 return NULL;
3628 }
3629
3630 static struct compunit_symtab *
3631 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3632 const char *name, domain_enum domain)
3633 {
3634 struct compunit_symtab *stab_best = NULL;
3635 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3636
3637 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3638
3639 struct dw2_symtab_iterator iter;
3640 struct dwarf2_per_cu_data *per_cu;
3641
3642 dw2_symtab_iter_init (&iter, per_objfile, block_index, domain, name);
3643
3644 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3645 {
3646 struct symbol *sym, *with_opaque = NULL;
3647 struct compunit_symtab *stab
3648 = dw2_instantiate_symtab (per_cu, per_objfile, false);
3649 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3650 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3651
3652 sym = block_find_symbol (block, name, domain,
3653 block_find_non_opaque_type_preferred,
3654 &with_opaque);
3655
3656 /* Some caution must be observed with overloaded functions
3657 and methods, since the index will not contain any overload
3658 information (but NAME might contain it). */
3659
3660 if (sym != NULL
3661 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3662 return stab;
3663 if (with_opaque != NULL
3664 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3665 stab_best = stab;
3666
3667 /* Keep looking through other CUs. */
3668 }
3669
3670 return stab_best;
3671 }
3672
3673 static void
3674 dw2_print_stats (struct objfile *objfile)
3675 {
3676 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3677 int total = (per_objfile->per_bfd->all_comp_units.size ()
3678 + per_objfile->per_bfd->all_type_units.size ());
3679 int count = 0;
3680
3681 for (int i = 0; i < total; ++i)
3682 {
3683 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3684
3685 if (!per_objfile->symtab_set_p (per_cu))
3686 ++count;
3687 }
3688 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3689 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3690 }
3691
3692 /* This dumps minimal information about the index.
3693 It is called via "mt print objfiles".
3694 One use is to verify .gdb_index has been loaded by the
3695 gdb.dwarf2/gdb-index.exp testcase. */
3696
3697 static void
3698 dw2_dump (struct objfile *objfile)
3699 {
3700 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3701
3702 gdb_assert (per_objfile->per_bfd->using_index);
3703 printf_filtered (".gdb_index:");
3704 if (per_objfile->per_bfd->index_table != NULL)
3705 {
3706 printf_filtered (" version %d\n",
3707 per_objfile->per_bfd->index_table->version);
3708 }
3709 else
3710 printf_filtered (" faked for \"readnow\"\n");
3711 printf_filtered ("\n");
3712 }
3713
3714 static void
3715 dw2_expand_symtabs_for_function (struct objfile *objfile,
3716 const char *func_name)
3717 {
3718 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3719
3720 struct dw2_symtab_iterator iter;
3721 struct dwarf2_per_cu_data *per_cu;
3722
3723 dw2_symtab_iter_init (&iter, per_objfile, {}, VAR_DOMAIN, func_name);
3724
3725 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3726 dw2_instantiate_symtab (per_cu, per_objfile, false);
3727
3728 }
3729
3730 static void
3731 dw2_expand_all_symtabs (struct objfile *objfile)
3732 {
3733 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3734 int total_units = (per_objfile->per_bfd->all_comp_units.size ()
3735 + per_objfile->per_bfd->all_type_units.size ());
3736
3737 for (int i = 0; i < total_units; ++i)
3738 {
3739 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3740
3741 /* We don't want to directly expand a partial CU, because if we
3742 read it with the wrong language, then assertion failures can
3743 be triggered later on. See PR symtab/23010. So, tell
3744 dw2_instantiate_symtab to skip partial CUs -- any important
3745 partial CU will be read via DW_TAG_imported_unit anyway. */
3746 dw2_instantiate_symtab (per_cu, per_objfile, true);
3747 }
3748 }
3749
3750 static void
3751 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3752 const char *fullname)
3753 {
3754 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3755
3756 /* We don't need to consider type units here.
3757 This is only called for examining code, e.g. expand_line_sal.
3758 There can be an order of magnitude (or more) more type units
3759 than comp units, and we avoid them if we can. */
3760
3761 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3762 {
3763 /* We only need to look at symtabs not already expanded. */
3764 if (per_objfile->symtab_set_p (per_cu))
3765 continue;
3766
3767 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3768 if (file_data == NULL)
3769 continue;
3770
3771 for (int j = 0; j < file_data->num_file_names; ++j)
3772 {
3773 const char *this_fullname = file_data->file_names[j];
3774
3775 if (filename_cmp (this_fullname, fullname) == 0)
3776 {
3777 dw2_instantiate_symtab (per_cu, per_objfile, false);
3778 break;
3779 }
3780 }
3781 }
3782 }
3783
3784 static void
3785 dw2_expand_symtabs_matching_symbol
3786 (mapped_index_base &index,
3787 const lookup_name_info &lookup_name_in,
3788 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3789 enum search_domain kind,
3790 gdb::function_view<bool (offset_type)> match_callback,
3791 dwarf2_per_objfile *per_objfile);
3792
3793 static void
3794 dw2_expand_symtabs_matching_one
3795 (dwarf2_per_cu_data *per_cu,
3796 dwarf2_per_objfile *per_objfile,
3797 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3798 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3799
3800 static void
3801 dw2_map_matching_symbols
3802 (struct objfile *objfile,
3803 const lookup_name_info &name, domain_enum domain,
3804 int global,
3805 gdb::function_view<symbol_found_callback_ftype> callback,
3806 symbol_compare_ftype *ordered_compare)
3807 {
3808 /* Used for Ada. */
3809 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3810
3811 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3812
3813 if (per_objfile->per_bfd->index_table != nullptr)
3814 {
3815 mapped_index &index = *per_objfile->per_bfd->index_table;
3816
3817 const char *match_name = name.ada ().lookup_name ().c_str ();
3818 auto matcher = [&] (const char *symname)
3819 {
3820 if (ordered_compare == nullptr)
3821 return true;
3822 return ordered_compare (symname, match_name) == 0;
3823 };
3824
3825 dw2_expand_symtabs_matching_symbol (index, name, matcher, ALL_DOMAIN,
3826 [&] (offset_type namei)
3827 {
3828 struct dw2_symtab_iterator iter;
3829 struct dwarf2_per_cu_data *per_cu;
3830
3831 dw2_symtab_iter_init (&iter, per_objfile, block_kind, domain,
3832 namei);
3833 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3834 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
3835 nullptr);
3836 return true;
3837 }, per_objfile);
3838 }
3839 else
3840 {
3841 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3842 proceed assuming all symtabs have been read in. */
3843 }
3844
3845 for (compunit_symtab *cust : objfile->compunits ())
3846 {
3847 const struct block *block;
3848
3849 if (cust == NULL)
3850 continue;
3851 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3852 if (!iterate_over_symbols_terminated (block, name,
3853 domain, callback))
3854 return;
3855 }
3856 }
3857
3858 /* Starting from a search name, return the string that finds the upper
3859 bound of all strings that start with SEARCH_NAME in a sorted name
3860 list. Returns the empty string to indicate that the upper bound is
3861 the end of the list. */
3862
3863 static std::string
3864 make_sort_after_prefix_name (const char *search_name)
3865 {
3866 /* When looking to complete "func", we find the upper bound of all
3867 symbols that start with "func" by looking for where we'd insert
3868 the closest string that would follow "func" in lexicographical
3869 order. Usually, that's "func"-with-last-character-incremented,
3870 i.e. "fund". Mind non-ASCII characters, though. Usually those
3871 will be UTF-8 multi-byte sequences, but we can't be certain.
3872 Especially mind the 0xff character, which is a valid character in
3873 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3874 rule out compilers allowing it in identifiers. Note that
3875 conveniently, strcmp/strcasecmp are specified to compare
3876 characters interpreted as unsigned char. So what we do is treat
3877 the whole string as a base 256 number composed of a sequence of
3878 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3879 to 0, and carries 1 to the following more-significant position.
3880 If the very first character in SEARCH_NAME ends up incremented
3881 and carries/overflows, then the upper bound is the end of the
3882 list. The string after the empty string is also the empty
3883 string.
3884
3885 Some examples of this operation:
3886
3887 SEARCH_NAME => "+1" RESULT
3888
3889 "abc" => "abd"
3890 "ab\xff" => "ac"
3891 "\xff" "a" "\xff" => "\xff" "b"
3892 "\xff" => ""
3893 "\xff\xff" => ""
3894 "" => ""
3895
3896 Then, with these symbols for example:
3897
3898 func
3899 func1
3900 fund
3901
3902 completing "func" looks for symbols between "func" and
3903 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3904 which finds "func" and "func1", but not "fund".
3905
3906 And with:
3907
3908 funcÿ (Latin1 'ÿ' [0xff])
3909 funcÿ1
3910 fund
3911
3912 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3913 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3914
3915 And with:
3916
3917 ÿÿ (Latin1 'ÿ' [0xff])
3918 ÿÿ1
3919
3920 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3921 the end of the list.
3922 */
3923 std::string after = search_name;
3924 while (!after.empty () && (unsigned char) after.back () == 0xff)
3925 after.pop_back ();
3926 if (!after.empty ())
3927 after.back () = (unsigned char) after.back () + 1;
3928 return after;
3929 }
3930
3931 /* See declaration. */
3932
3933 std::pair<std::vector<name_component>::const_iterator,
3934 std::vector<name_component>::const_iterator>
3935 mapped_index_base::find_name_components_bounds
3936 (const lookup_name_info &lookup_name_without_params, language lang,
3937 dwarf2_per_objfile *per_objfile) const
3938 {
3939 auto *name_cmp
3940 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3941
3942 const char *lang_name
3943 = lookup_name_without_params.language_lookup_name (lang);
3944
3945 /* Comparison function object for lower_bound that matches against a
3946 given symbol name. */
3947 auto lookup_compare_lower = [&] (const name_component &elem,
3948 const char *name)
3949 {
3950 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3951 const char *elem_name = elem_qualified + elem.name_offset;
3952 return name_cmp (elem_name, name) < 0;
3953 };
3954
3955 /* Comparison function object for upper_bound that matches against a
3956 given symbol name. */
3957 auto lookup_compare_upper = [&] (const char *name,
3958 const name_component &elem)
3959 {
3960 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3961 const char *elem_name = elem_qualified + elem.name_offset;
3962 return name_cmp (name, elem_name) < 0;
3963 };
3964
3965 auto begin = this->name_components.begin ();
3966 auto end = this->name_components.end ();
3967
3968 /* Find the lower bound. */
3969 auto lower = [&] ()
3970 {
3971 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3972 return begin;
3973 else
3974 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3975 } ();
3976
3977 /* Find the upper bound. */
3978 auto upper = [&] ()
3979 {
3980 if (lookup_name_without_params.completion_mode ())
3981 {
3982 /* In completion mode, we want UPPER to point past all
3983 symbols names that have the same prefix. I.e., with
3984 these symbols, and completing "func":
3985
3986 function << lower bound
3987 function1
3988 other_function << upper bound
3989
3990 We find the upper bound by looking for the insertion
3991 point of "func"-with-last-character-incremented,
3992 i.e. "fund". */
3993 std::string after = make_sort_after_prefix_name (lang_name);
3994 if (after.empty ())
3995 return end;
3996 return std::lower_bound (lower, end, after.c_str (),
3997 lookup_compare_lower);
3998 }
3999 else
4000 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4001 } ();
4002
4003 return {lower, upper};
4004 }
4005
4006 /* See declaration. */
4007
4008 void
4009 mapped_index_base::build_name_components (dwarf2_per_objfile *per_objfile)
4010 {
4011 if (!this->name_components.empty ())
4012 return;
4013
4014 this->name_components_casing = case_sensitivity;
4015 auto *name_cmp
4016 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4017
4018 /* The code below only knows how to break apart components of C++
4019 symbol names (and other languages that use '::' as
4020 namespace/module separator) and Ada symbol names. */
4021 auto count = this->symbol_name_count ();
4022 for (offset_type idx = 0; idx < count; idx++)
4023 {
4024 if (this->symbol_name_slot_invalid (idx))
4025 continue;
4026
4027 const char *name = this->symbol_name_at (idx, per_objfile);
4028
4029 /* Add each name component to the name component table. */
4030 unsigned int previous_len = 0;
4031
4032 if (strstr (name, "::") != nullptr)
4033 {
4034 for (unsigned int current_len = cp_find_first_component (name);
4035 name[current_len] != '\0';
4036 current_len += cp_find_first_component (name + current_len))
4037 {
4038 gdb_assert (name[current_len] == ':');
4039 this->name_components.push_back ({previous_len, idx});
4040 /* Skip the '::'. */
4041 current_len += 2;
4042 previous_len = current_len;
4043 }
4044 }
4045 else
4046 {
4047 /* Handle the Ada encoded (aka mangled) form here. */
4048 for (const char *iter = strstr (name, "__");
4049 iter != nullptr;
4050 iter = strstr (iter, "__"))
4051 {
4052 this->name_components.push_back ({previous_len, idx});
4053 iter += 2;
4054 previous_len = iter - name;
4055 }
4056 }
4057
4058 this->name_components.push_back ({previous_len, idx});
4059 }
4060
4061 /* Sort name_components elements by name. */
4062 auto name_comp_compare = [&] (const name_component &left,
4063 const name_component &right)
4064 {
4065 const char *left_qualified
4066 = this->symbol_name_at (left.idx, per_objfile);
4067 const char *right_qualified
4068 = this->symbol_name_at (right.idx, per_objfile);
4069
4070 const char *left_name = left_qualified + left.name_offset;
4071 const char *right_name = right_qualified + right.name_offset;
4072
4073 return name_cmp (left_name, right_name) < 0;
4074 };
4075
4076 std::sort (this->name_components.begin (),
4077 this->name_components.end (),
4078 name_comp_compare);
4079 }
4080
4081 /* Helper for dw2_expand_symtabs_matching that works with a
4082 mapped_index_base instead of the containing objfile. This is split
4083 to a separate function in order to be able to unit test the
4084 name_components matching using a mock mapped_index_base. For each
4085 symbol name that matches, calls MATCH_CALLBACK, passing it the
4086 symbol's index in the mapped_index_base symbol table. */
4087
4088 static void
4089 dw2_expand_symtabs_matching_symbol
4090 (mapped_index_base &index,
4091 const lookup_name_info &lookup_name_in,
4092 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4093 enum search_domain kind,
4094 gdb::function_view<bool (offset_type)> match_callback,
4095 dwarf2_per_objfile *per_objfile)
4096 {
4097 lookup_name_info lookup_name_without_params
4098 = lookup_name_in.make_ignore_params ();
4099
4100 /* Build the symbol name component sorted vector, if we haven't
4101 yet. */
4102 index.build_name_components (per_objfile);
4103
4104 /* The same symbol may appear more than once in the range though.
4105 E.g., if we're looking for symbols that complete "w", and we have
4106 a symbol named "w1::w2", we'll find the two name components for
4107 that same symbol in the range. To be sure we only call the
4108 callback once per symbol, we first collect the symbol name
4109 indexes that matched in a temporary vector and ignore
4110 duplicates. */
4111 std::vector<offset_type> matches;
4112
4113 struct name_and_matcher
4114 {
4115 symbol_name_matcher_ftype *matcher;
4116 const char *name;
4117
4118 bool operator== (const name_and_matcher &other) const
4119 {
4120 return matcher == other.matcher && strcmp (name, other.name) == 0;
4121 }
4122 };
4123
4124 /* A vector holding all the different symbol name matchers, for all
4125 languages. */
4126 std::vector<name_and_matcher> matchers;
4127
4128 for (int i = 0; i < nr_languages; i++)
4129 {
4130 enum language lang_e = (enum language) i;
4131
4132 const language_defn *lang = language_def (lang_e);
4133 symbol_name_matcher_ftype *name_matcher
4134 = lang->get_symbol_name_matcher (lookup_name_without_params);
4135
4136 name_and_matcher key {
4137 name_matcher,
4138 lookup_name_without_params.language_lookup_name (lang_e)
4139 };
4140
4141 /* Don't insert the same comparison routine more than once.
4142 Note that we do this linear walk. This is not a problem in
4143 practice because the number of supported languages is
4144 low. */
4145 if (std::find (matchers.begin (), matchers.end (), key)
4146 != matchers.end ())
4147 continue;
4148 matchers.push_back (std::move (key));
4149
4150 auto bounds
4151 = index.find_name_components_bounds (lookup_name_without_params,
4152 lang_e, per_objfile);
4153
4154 /* Now for each symbol name in range, check to see if we have a name
4155 match, and if so, call the MATCH_CALLBACK callback. */
4156
4157 for (; bounds.first != bounds.second; ++bounds.first)
4158 {
4159 const char *qualified
4160 = index.symbol_name_at (bounds.first->idx, per_objfile);
4161
4162 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4163 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4164 continue;
4165
4166 matches.push_back (bounds.first->idx);
4167 }
4168 }
4169
4170 std::sort (matches.begin (), matches.end ());
4171
4172 /* Finally call the callback, once per match. */
4173 ULONGEST prev = -1;
4174 for (offset_type idx : matches)
4175 {
4176 if (prev != idx)
4177 {
4178 if (!match_callback (idx))
4179 break;
4180 prev = idx;
4181 }
4182 }
4183
4184 /* Above we use a type wider than idx's for 'prev', since 0 and
4185 (offset_type)-1 are both possible values. */
4186 static_assert (sizeof (prev) > sizeof (offset_type), "");
4187 }
4188
4189 #if GDB_SELF_TEST
4190
4191 namespace selftests { namespace dw2_expand_symtabs_matching {
4192
4193 /* A mock .gdb_index/.debug_names-like name index table, enough to
4194 exercise dw2_expand_symtabs_matching_symbol, which works with the
4195 mapped_index_base interface. Builds an index from the symbol list
4196 passed as parameter to the constructor. */
4197 class mock_mapped_index : public mapped_index_base
4198 {
4199 public:
4200 mock_mapped_index (gdb::array_view<const char *> symbols)
4201 : m_symbol_table (symbols)
4202 {}
4203
4204 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4205
4206 /* Return the number of names in the symbol table. */
4207 size_t symbol_name_count () const override
4208 {
4209 return m_symbol_table.size ();
4210 }
4211
4212 /* Get the name of the symbol at IDX in the symbol table. */
4213 const char *symbol_name_at
4214 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
4215 {
4216 return m_symbol_table[idx];
4217 }
4218
4219 private:
4220 gdb::array_view<const char *> m_symbol_table;
4221 };
4222
4223 /* Convenience function that converts a NULL pointer to a "<null>"
4224 string, to pass to print routines. */
4225
4226 static const char *
4227 string_or_null (const char *str)
4228 {
4229 return str != NULL ? str : "<null>";
4230 }
4231
4232 /* Check if a lookup_name_info built from
4233 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4234 index. EXPECTED_LIST is the list of expected matches, in expected
4235 matching order. If no match expected, then an empty list is
4236 specified. Returns true on success. On failure prints a warning
4237 indicating the file:line that failed, and returns false. */
4238
4239 static bool
4240 check_match (const char *file, int line,
4241 mock_mapped_index &mock_index,
4242 const char *name, symbol_name_match_type match_type,
4243 bool completion_mode,
4244 std::initializer_list<const char *> expected_list,
4245 dwarf2_per_objfile *per_objfile)
4246 {
4247 lookup_name_info lookup_name (name, match_type, completion_mode);
4248
4249 bool matched = true;
4250
4251 auto mismatch = [&] (const char *expected_str,
4252 const char *got)
4253 {
4254 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4255 "expected=\"%s\", got=\"%s\"\n"),
4256 file, line,
4257 (match_type == symbol_name_match_type::FULL
4258 ? "FULL" : "WILD"),
4259 name, string_or_null (expected_str), string_or_null (got));
4260 matched = false;
4261 };
4262
4263 auto expected_it = expected_list.begin ();
4264 auto expected_end = expected_list.end ();
4265
4266 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4267 NULL, ALL_DOMAIN,
4268 [&] (offset_type idx)
4269 {
4270 const char *matched_name = mock_index.symbol_name_at (idx, per_objfile);
4271 const char *expected_str
4272 = expected_it == expected_end ? NULL : *expected_it++;
4273
4274 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4275 mismatch (expected_str, matched_name);
4276 return true;
4277 }, per_objfile);
4278
4279 const char *expected_str
4280 = expected_it == expected_end ? NULL : *expected_it++;
4281 if (expected_str != NULL)
4282 mismatch (expected_str, NULL);
4283
4284 return matched;
4285 }
4286
4287 /* The symbols added to the mock mapped_index for testing (in
4288 canonical form). */
4289 static const char *test_symbols[] = {
4290 "function",
4291 "std::bar",
4292 "std::zfunction",
4293 "std::zfunction2",
4294 "w1::w2",
4295 "ns::foo<char*>",
4296 "ns::foo<int>",
4297 "ns::foo<long>",
4298 "ns2::tmpl<int>::foo2",
4299 "(anonymous namespace)::A::B::C",
4300
4301 /* These are used to check that the increment-last-char in the
4302 matching algorithm for completion doesn't match "t1_fund" when
4303 completing "t1_func". */
4304 "t1_func",
4305 "t1_func1",
4306 "t1_fund",
4307 "t1_fund1",
4308
4309 /* A UTF-8 name with multi-byte sequences to make sure that
4310 cp-name-parser understands this as a single identifier ("função"
4311 is "function" in PT). */
4312 u8"u8função",
4313
4314 /* \377 (0xff) is Latin1 'ÿ'. */
4315 "yfunc\377",
4316
4317 /* \377 (0xff) is Latin1 'ÿ'. */
4318 "\377",
4319 "\377\377123",
4320
4321 /* A name with all sorts of complications. Starts with "z" to make
4322 it easier for the completion tests below. */
4323 #define Z_SYM_NAME \
4324 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4325 "::tuple<(anonymous namespace)::ui*, " \
4326 "std::default_delete<(anonymous namespace)::ui>, void>"
4327
4328 Z_SYM_NAME
4329 };
4330
4331 /* Returns true if the mapped_index_base::find_name_component_bounds
4332 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4333 in completion mode. */
4334
4335 static bool
4336 check_find_bounds_finds (mapped_index_base &index,
4337 const char *search_name,
4338 gdb::array_view<const char *> expected_syms,
4339 dwarf2_per_objfile *per_objfile)
4340 {
4341 lookup_name_info lookup_name (search_name,
4342 symbol_name_match_type::FULL, true);
4343
4344 auto bounds = index.find_name_components_bounds (lookup_name,
4345 language_cplus,
4346 per_objfile);
4347
4348 size_t distance = std::distance (bounds.first, bounds.second);
4349 if (distance != expected_syms.size ())
4350 return false;
4351
4352 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4353 {
4354 auto nc_elem = bounds.first + exp_elem;
4355 const char *qualified = index.symbol_name_at (nc_elem->idx, per_objfile);
4356 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4357 return false;
4358 }
4359
4360 return true;
4361 }
4362
4363 /* Test the lower-level mapped_index::find_name_component_bounds
4364 method. */
4365
4366 static void
4367 test_mapped_index_find_name_component_bounds ()
4368 {
4369 mock_mapped_index mock_index (test_symbols);
4370
4371 mock_index.build_name_components (NULL /* per_objfile */);
4372
4373 /* Test the lower-level mapped_index::find_name_component_bounds
4374 method in completion mode. */
4375 {
4376 static const char *expected_syms[] = {
4377 "t1_func",
4378 "t1_func1",
4379 };
4380
4381 SELF_CHECK (check_find_bounds_finds
4382 (mock_index, "t1_func", expected_syms,
4383 NULL /* per_objfile */));
4384 }
4385
4386 /* Check that the increment-last-char in the name matching algorithm
4387 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4388 {
4389 static const char *expected_syms1[] = {
4390 "\377",
4391 "\377\377123",
4392 };
4393 SELF_CHECK (check_find_bounds_finds
4394 (mock_index, "\377", expected_syms1, NULL /* per_objfile */));
4395
4396 static const char *expected_syms2[] = {
4397 "\377\377123",
4398 };
4399 SELF_CHECK (check_find_bounds_finds
4400 (mock_index, "\377\377", expected_syms2,
4401 NULL /* per_objfile */));
4402 }
4403 }
4404
4405 /* Test dw2_expand_symtabs_matching_symbol. */
4406
4407 static void
4408 test_dw2_expand_symtabs_matching_symbol ()
4409 {
4410 mock_mapped_index mock_index (test_symbols);
4411
4412 /* We let all tests run until the end even if some fails, for debug
4413 convenience. */
4414 bool any_mismatch = false;
4415
4416 /* Create the expected symbols list (an initializer_list). Needed
4417 because lists have commas, and we need to pass them to CHECK,
4418 which is a macro. */
4419 #define EXPECT(...) { __VA_ARGS__ }
4420
4421 /* Wrapper for check_match that passes down the current
4422 __FILE__/__LINE__. */
4423 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4424 any_mismatch |= !check_match (__FILE__, __LINE__, \
4425 mock_index, \
4426 NAME, MATCH_TYPE, COMPLETION_MODE, \
4427 EXPECTED_LIST, NULL)
4428
4429 /* Identity checks. */
4430 for (const char *sym : test_symbols)
4431 {
4432 /* Should be able to match all existing symbols. */
4433 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4434 EXPECT (sym));
4435
4436 /* Should be able to match all existing symbols with
4437 parameters. */
4438 std::string with_params = std::string (sym) + "(int)";
4439 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4440 EXPECT (sym));
4441
4442 /* Should be able to match all existing symbols with
4443 parameters and qualifiers. */
4444 with_params = std::string (sym) + " ( int ) const";
4445 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4446 EXPECT (sym));
4447
4448 /* This should really find sym, but cp-name-parser.y doesn't
4449 know about lvalue/rvalue qualifiers yet. */
4450 with_params = std::string (sym) + " ( int ) &&";
4451 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4452 {});
4453 }
4454
4455 /* Check that the name matching algorithm for completion doesn't get
4456 confused with Latin1 'ÿ' / 0xff. */
4457 {
4458 static const char str[] = "\377";
4459 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4460 EXPECT ("\377", "\377\377123"));
4461 }
4462
4463 /* Check that the increment-last-char in the matching algorithm for
4464 completion doesn't match "t1_fund" when completing "t1_func". */
4465 {
4466 static const char str[] = "t1_func";
4467 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4468 EXPECT ("t1_func", "t1_func1"));
4469 }
4470
4471 /* Check that completion mode works at each prefix of the expected
4472 symbol name. */
4473 {
4474 static const char str[] = "function(int)";
4475 size_t len = strlen (str);
4476 std::string lookup;
4477
4478 for (size_t i = 1; i < len; i++)
4479 {
4480 lookup.assign (str, i);
4481 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4482 EXPECT ("function"));
4483 }
4484 }
4485
4486 /* While "w" is a prefix of both components, the match function
4487 should still only be called once. */
4488 {
4489 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4490 EXPECT ("w1::w2"));
4491 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4492 EXPECT ("w1::w2"));
4493 }
4494
4495 /* Same, with a "complicated" symbol. */
4496 {
4497 static const char str[] = Z_SYM_NAME;
4498 size_t len = strlen (str);
4499 std::string lookup;
4500
4501 for (size_t i = 1; i < len; i++)
4502 {
4503 lookup.assign (str, i);
4504 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4505 EXPECT (Z_SYM_NAME));
4506 }
4507 }
4508
4509 /* In FULL mode, an incomplete symbol doesn't match. */
4510 {
4511 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4512 {});
4513 }
4514
4515 /* A complete symbol with parameters matches any overload, since the
4516 index has no overload info. */
4517 {
4518 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4519 EXPECT ("std::zfunction", "std::zfunction2"));
4520 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4521 EXPECT ("std::zfunction", "std::zfunction2"));
4522 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4523 EXPECT ("std::zfunction", "std::zfunction2"));
4524 }
4525
4526 /* Check that whitespace is ignored appropriately. A symbol with a
4527 template argument list. */
4528 {
4529 static const char expected[] = "ns::foo<int>";
4530 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4531 EXPECT (expected));
4532 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4533 EXPECT (expected));
4534 }
4535
4536 /* Check that whitespace is ignored appropriately. A symbol with a
4537 template argument list that includes a pointer. */
4538 {
4539 static const char expected[] = "ns::foo<char*>";
4540 /* Try both completion and non-completion modes. */
4541 static const bool completion_mode[2] = {false, true};
4542 for (size_t i = 0; i < 2; i++)
4543 {
4544 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4545 completion_mode[i], EXPECT (expected));
4546 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4547 completion_mode[i], EXPECT (expected));
4548
4549 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4550 completion_mode[i], EXPECT (expected));
4551 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4552 completion_mode[i], EXPECT (expected));
4553 }
4554 }
4555
4556 {
4557 /* Check method qualifiers are ignored. */
4558 static const char expected[] = "ns::foo<char*>";
4559 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4560 symbol_name_match_type::FULL, true, EXPECT (expected));
4561 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4562 symbol_name_match_type::FULL, true, EXPECT (expected));
4563 CHECK_MATCH ("foo < char * > ( int ) const",
4564 symbol_name_match_type::WILD, true, EXPECT (expected));
4565 CHECK_MATCH ("foo < char * > ( int ) &&",
4566 symbol_name_match_type::WILD, true, EXPECT (expected));
4567 }
4568
4569 /* Test lookup names that don't match anything. */
4570 {
4571 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4572 {});
4573
4574 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4575 {});
4576 }
4577
4578 /* Some wild matching tests, exercising "(anonymous namespace)",
4579 which should not be confused with a parameter list. */
4580 {
4581 static const char *syms[] = {
4582 "A::B::C",
4583 "B::C",
4584 "C",
4585 "A :: B :: C ( int )",
4586 "B :: C ( int )",
4587 "C ( int )",
4588 };
4589
4590 for (const char *s : syms)
4591 {
4592 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4593 EXPECT ("(anonymous namespace)::A::B::C"));
4594 }
4595 }
4596
4597 {
4598 static const char expected[] = "ns2::tmpl<int>::foo2";
4599 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4600 EXPECT (expected));
4601 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4602 EXPECT (expected));
4603 }
4604
4605 SELF_CHECK (!any_mismatch);
4606
4607 #undef EXPECT
4608 #undef CHECK_MATCH
4609 }
4610
4611 static void
4612 run_test ()
4613 {
4614 test_mapped_index_find_name_component_bounds ();
4615 test_dw2_expand_symtabs_matching_symbol ();
4616 }
4617
4618 }} // namespace selftests::dw2_expand_symtabs_matching
4619
4620 #endif /* GDB_SELF_TEST */
4621
4622 /* If FILE_MATCHER is NULL or if PER_CU has
4623 dwarf2_per_cu_quick_data::MARK set (see
4624 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4625 EXPANSION_NOTIFY on it. */
4626
4627 static void
4628 dw2_expand_symtabs_matching_one
4629 (dwarf2_per_cu_data *per_cu,
4630 dwarf2_per_objfile *per_objfile,
4631 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4632 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4633 {
4634 if (file_matcher == NULL || per_cu->v.quick->mark)
4635 {
4636 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4637
4638 compunit_symtab *symtab
4639 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4640 gdb_assert (symtab != nullptr);
4641
4642 if (expansion_notify != NULL && symtab_was_null)
4643 expansion_notify (symtab);
4644 }
4645 }
4646
4647 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4648 matched, to expand corresponding CUs that were marked. IDX is the
4649 index of the symbol name that matched. */
4650
4651 static void
4652 dw2_expand_marked_cus
4653 (dwarf2_per_objfile *per_objfile, offset_type idx,
4654 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4655 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4656 search_domain kind)
4657 {
4658 offset_type *vec, vec_len, vec_idx;
4659 bool global_seen = false;
4660 mapped_index &index = *per_objfile->per_bfd->index_table;
4661
4662 vec = (offset_type *) (index.constant_pool
4663 + MAYBE_SWAP (index.symbol_table[idx].vec));
4664 vec_len = MAYBE_SWAP (vec[0]);
4665 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4666 {
4667 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4668 /* This value is only valid for index versions >= 7. */
4669 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4670 gdb_index_symbol_kind symbol_kind =
4671 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4672 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4673 /* Only check the symbol attributes if they're present.
4674 Indices prior to version 7 don't record them,
4675 and indices >= 7 may elide them for certain symbols
4676 (gold does this). */
4677 int attrs_valid =
4678 (index.version >= 7
4679 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4680
4681 /* Work around gold/15646. */
4682 if (attrs_valid
4683 && !is_static
4684 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
4685 {
4686 if (global_seen)
4687 continue;
4688
4689 global_seen = true;
4690 }
4691
4692 /* Only check the symbol's kind if it has one. */
4693 if (attrs_valid)
4694 {
4695 switch (kind)
4696 {
4697 case VARIABLES_DOMAIN:
4698 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4699 continue;
4700 break;
4701 case FUNCTIONS_DOMAIN:
4702 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4703 continue;
4704 break;
4705 case TYPES_DOMAIN:
4706 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4707 continue;
4708 break;
4709 case MODULES_DOMAIN:
4710 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4711 continue;
4712 break;
4713 default:
4714 break;
4715 }
4716 }
4717
4718 /* Don't crash on bad data. */
4719 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
4720 + per_objfile->per_bfd->all_type_units.size ()))
4721 {
4722 complaint (_(".gdb_index entry has bad CU index"
4723 " [in module %s]"), objfile_name (per_objfile->objfile));
4724 continue;
4725 }
4726
4727 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
4728 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
4729 expansion_notify);
4730 }
4731 }
4732
4733 /* If FILE_MATCHER is non-NULL, set all the
4734 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4735 that match FILE_MATCHER. */
4736
4737 static void
4738 dw_expand_symtabs_matching_file_matcher
4739 (dwarf2_per_objfile *per_objfile,
4740 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4741 {
4742 if (file_matcher == NULL)
4743 return;
4744
4745 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4746 htab_eq_pointer,
4747 NULL, xcalloc, xfree));
4748 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4749 htab_eq_pointer,
4750 NULL, xcalloc, xfree));
4751
4752 /* The rule is CUs specify all the files, including those used by
4753 any TU, so there's no need to scan TUs here. */
4754
4755 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4756 {
4757 QUIT;
4758
4759 per_cu->v.quick->mark = 0;
4760
4761 /* We only need to look at symtabs not already expanded. */
4762 if (per_objfile->symtab_set_p (per_cu))
4763 continue;
4764
4765 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
4766 if (file_data == NULL)
4767 continue;
4768
4769 if (htab_find (visited_not_found.get (), file_data) != NULL)
4770 continue;
4771 else if (htab_find (visited_found.get (), file_data) != NULL)
4772 {
4773 per_cu->v.quick->mark = 1;
4774 continue;
4775 }
4776
4777 for (int j = 0; j < file_data->num_file_names; ++j)
4778 {
4779 const char *this_real_name;
4780
4781 if (file_matcher (file_data->file_names[j], false))
4782 {
4783 per_cu->v.quick->mark = 1;
4784 break;
4785 }
4786
4787 /* Before we invoke realpath, which can get expensive when many
4788 files are involved, do a quick comparison of the basenames. */
4789 if (!basenames_may_differ
4790 && !file_matcher (lbasename (file_data->file_names[j]),
4791 true))
4792 continue;
4793
4794 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
4795 if (file_matcher (this_real_name, false))
4796 {
4797 per_cu->v.quick->mark = 1;
4798 break;
4799 }
4800 }
4801
4802 void **slot = htab_find_slot (per_cu->v.quick->mark
4803 ? visited_found.get ()
4804 : visited_not_found.get (),
4805 file_data, INSERT);
4806 *slot = file_data;
4807 }
4808 }
4809
4810 static void
4811 dw2_expand_symtabs_matching
4812 (struct objfile *objfile,
4813 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4814 const lookup_name_info *lookup_name,
4815 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4816 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4817 enum search_domain kind)
4818 {
4819 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4820
4821 /* index_table is NULL if OBJF_READNOW. */
4822 if (!per_objfile->per_bfd->index_table)
4823 return;
4824
4825 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
4826
4827 if (symbol_matcher == NULL && lookup_name == NULL)
4828 {
4829 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4830 {
4831 QUIT;
4832
4833 dw2_expand_symtabs_matching_one (per_cu, per_objfile,
4834 file_matcher, expansion_notify);
4835 }
4836 return;
4837 }
4838
4839 mapped_index &index = *per_objfile->per_bfd->index_table;
4840
4841 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4842 symbol_matcher,
4843 kind, [&] (offset_type idx)
4844 {
4845 dw2_expand_marked_cus (per_objfile, idx, file_matcher, expansion_notify,
4846 kind);
4847 return true;
4848 }, per_objfile);
4849 }
4850
4851 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4852 symtab. */
4853
4854 static struct compunit_symtab *
4855 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4856 CORE_ADDR pc)
4857 {
4858 int i;
4859
4860 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4861 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4862 return cust;
4863
4864 if (cust->includes == NULL)
4865 return NULL;
4866
4867 for (i = 0; cust->includes[i]; ++i)
4868 {
4869 struct compunit_symtab *s = cust->includes[i];
4870
4871 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4872 if (s != NULL)
4873 return s;
4874 }
4875
4876 return NULL;
4877 }
4878
4879 static struct compunit_symtab *
4880 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4881 struct bound_minimal_symbol msymbol,
4882 CORE_ADDR pc,
4883 struct obj_section *section,
4884 int warn_if_readin)
4885 {
4886 struct dwarf2_per_cu_data *data;
4887 struct compunit_symtab *result;
4888
4889 if (!objfile->partial_symtabs->psymtabs_addrmap)
4890 return NULL;
4891
4892 CORE_ADDR baseaddr = objfile->text_section_offset ();
4893 data = (struct dwarf2_per_cu_data *) addrmap_find
4894 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4895 if (!data)
4896 return NULL;
4897
4898 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4899 if (warn_if_readin && per_objfile->symtab_set_p (data))
4900 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4901 paddress (objfile->arch (), pc));
4902
4903 result = recursively_find_pc_sect_compunit_symtab
4904 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4905
4906 gdb_assert (result != NULL);
4907 return result;
4908 }
4909
4910 static void
4911 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4912 void *data, int need_fullname)
4913 {
4914 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4915
4916 if (!per_objfile->per_bfd->filenames_cache)
4917 {
4918 per_objfile->per_bfd->filenames_cache.emplace ();
4919
4920 htab_up visited (htab_create_alloc (10,
4921 htab_hash_pointer, htab_eq_pointer,
4922 NULL, xcalloc, xfree));
4923
4924 /* The rule is CUs specify all the files, including those used
4925 by any TU, so there's no need to scan TUs here. We can
4926 ignore file names coming from already-expanded CUs. */
4927
4928 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4929 {
4930 if (per_objfile->symtab_set_p (per_cu))
4931 {
4932 void **slot = htab_find_slot (visited.get (),
4933 per_cu->v.quick->file_names,
4934 INSERT);
4935
4936 *slot = per_cu->v.quick->file_names;
4937 }
4938 }
4939
4940 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4941 {
4942 /* We only need to look at symtabs not already expanded. */
4943 if (per_objfile->symtab_set_p (per_cu))
4944 continue;
4945
4946 quick_file_names *file_data
4947 = dw2_get_file_names (per_cu, per_objfile);
4948 if (file_data == NULL)
4949 continue;
4950
4951 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4952 if (*slot)
4953 {
4954 /* Already visited. */
4955 continue;
4956 }
4957 *slot = file_data;
4958
4959 for (int j = 0; j < file_data->num_file_names; ++j)
4960 {
4961 const char *filename = file_data->file_names[j];
4962 per_objfile->per_bfd->filenames_cache->seen (filename);
4963 }
4964 }
4965 }
4966
4967 per_objfile->per_bfd->filenames_cache->traverse ([&] (const char *filename)
4968 {
4969 gdb::unique_xmalloc_ptr<char> this_real_name;
4970
4971 if (need_fullname)
4972 this_real_name = gdb_realpath (filename);
4973 (*fun) (filename, this_real_name.get (), data);
4974 });
4975 }
4976
4977 static int
4978 dw2_has_symbols (struct objfile *objfile)
4979 {
4980 return 1;
4981 }
4982
4983 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4984 {
4985 dw2_has_symbols,
4986 dw2_find_last_source_symtab,
4987 dw2_forget_cached_source_info,
4988 dw2_map_symtabs_matching_filename,
4989 dw2_lookup_symbol,
4990 NULL,
4991 dw2_print_stats,
4992 dw2_dump,
4993 dw2_expand_symtabs_for_function,
4994 dw2_expand_all_symtabs,
4995 dw2_expand_symtabs_with_fullname,
4996 dw2_map_matching_symbols,
4997 dw2_expand_symtabs_matching,
4998 dw2_find_pc_sect_compunit_symtab,
4999 NULL,
5000 dw2_map_symbol_filenames
5001 };
5002
5003 /* DWARF-5 debug_names reader. */
5004
5005 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5006 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5007
5008 /* A helper function that reads the .debug_names section in SECTION
5009 and fills in MAP. FILENAME is the name of the file containing the
5010 section; it is used for error reporting.
5011
5012 Returns true if all went well, false otherwise. */
5013
5014 static bool
5015 read_debug_names_from_section (struct objfile *objfile,
5016 const char *filename,
5017 struct dwarf2_section_info *section,
5018 mapped_debug_names &map)
5019 {
5020 if (section->empty ())
5021 return false;
5022
5023 /* Older elfutils strip versions could keep the section in the main
5024 executable while splitting it for the separate debug info file. */
5025 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5026 return false;
5027
5028 section->read (objfile);
5029
5030 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
5031
5032 const gdb_byte *addr = section->buffer;
5033
5034 bfd *const abfd = section->get_bfd_owner ();
5035
5036 unsigned int bytes_read;
5037 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5038 addr += bytes_read;
5039
5040 map.dwarf5_is_dwarf64 = bytes_read != 4;
5041 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5042 if (bytes_read + length != section->size)
5043 {
5044 /* There may be multiple per-CU indices. */
5045 warning (_("Section .debug_names in %s length %s does not match "
5046 "section length %s, ignoring .debug_names."),
5047 filename, plongest (bytes_read + length),
5048 pulongest (section->size));
5049 return false;
5050 }
5051
5052 /* The version number. */
5053 uint16_t version = read_2_bytes (abfd, addr);
5054 addr += 2;
5055 if (version != 5)
5056 {
5057 warning (_("Section .debug_names in %s has unsupported version %d, "
5058 "ignoring .debug_names."),
5059 filename, version);
5060 return false;
5061 }
5062
5063 /* Padding. */
5064 uint16_t padding = read_2_bytes (abfd, addr);
5065 addr += 2;
5066 if (padding != 0)
5067 {
5068 warning (_("Section .debug_names in %s has unsupported padding %d, "
5069 "ignoring .debug_names."),
5070 filename, padding);
5071 return false;
5072 }
5073
5074 /* comp_unit_count - The number of CUs in the CU list. */
5075 map.cu_count = read_4_bytes (abfd, addr);
5076 addr += 4;
5077
5078 /* local_type_unit_count - The number of TUs in the local TU
5079 list. */
5080 map.tu_count = read_4_bytes (abfd, addr);
5081 addr += 4;
5082
5083 /* foreign_type_unit_count - The number of TUs in the foreign TU
5084 list. */
5085 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5086 addr += 4;
5087 if (foreign_tu_count != 0)
5088 {
5089 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5090 "ignoring .debug_names."),
5091 filename, static_cast<unsigned long> (foreign_tu_count));
5092 return false;
5093 }
5094
5095 /* bucket_count - The number of hash buckets in the hash lookup
5096 table. */
5097 map.bucket_count = read_4_bytes (abfd, addr);
5098 addr += 4;
5099
5100 /* name_count - The number of unique names in the index. */
5101 map.name_count = read_4_bytes (abfd, addr);
5102 addr += 4;
5103
5104 /* abbrev_table_size - The size in bytes of the abbreviations
5105 table. */
5106 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5107 addr += 4;
5108
5109 /* augmentation_string_size - The size in bytes of the augmentation
5110 string. This value is rounded up to a multiple of 4. */
5111 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5112 addr += 4;
5113 map.augmentation_is_gdb = ((augmentation_string_size
5114 == sizeof (dwarf5_augmentation))
5115 && memcmp (addr, dwarf5_augmentation,
5116 sizeof (dwarf5_augmentation)) == 0);
5117 augmentation_string_size += (-augmentation_string_size) & 3;
5118 addr += augmentation_string_size;
5119
5120 /* List of CUs */
5121 map.cu_table_reordered = addr;
5122 addr += map.cu_count * map.offset_size;
5123
5124 /* List of Local TUs */
5125 map.tu_table_reordered = addr;
5126 addr += map.tu_count * map.offset_size;
5127
5128 /* Hash Lookup Table */
5129 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5130 addr += map.bucket_count * 4;
5131 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5132 addr += map.name_count * 4;
5133
5134 /* Name Table */
5135 map.name_table_string_offs_reordered = addr;
5136 addr += map.name_count * map.offset_size;
5137 map.name_table_entry_offs_reordered = addr;
5138 addr += map.name_count * map.offset_size;
5139
5140 const gdb_byte *abbrev_table_start = addr;
5141 for (;;)
5142 {
5143 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5144 addr += bytes_read;
5145 if (index_num == 0)
5146 break;
5147
5148 const auto insertpair
5149 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5150 if (!insertpair.second)
5151 {
5152 warning (_("Section .debug_names in %s has duplicate index %s, "
5153 "ignoring .debug_names."),
5154 filename, pulongest (index_num));
5155 return false;
5156 }
5157 mapped_debug_names::index_val &indexval = insertpair.first->second;
5158 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5159 addr += bytes_read;
5160
5161 for (;;)
5162 {
5163 mapped_debug_names::index_val::attr attr;
5164 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5165 addr += bytes_read;
5166 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5167 addr += bytes_read;
5168 if (attr.form == DW_FORM_implicit_const)
5169 {
5170 attr.implicit_const = read_signed_leb128 (abfd, addr,
5171 &bytes_read);
5172 addr += bytes_read;
5173 }
5174 if (attr.dw_idx == 0 && attr.form == 0)
5175 break;
5176 indexval.attr_vec.push_back (std::move (attr));
5177 }
5178 }
5179 if (addr != abbrev_table_start + abbrev_table_size)
5180 {
5181 warning (_("Section .debug_names in %s has abbreviation_table "
5182 "of size %s vs. written as %u, ignoring .debug_names."),
5183 filename, plongest (addr - abbrev_table_start),
5184 abbrev_table_size);
5185 return false;
5186 }
5187 map.entry_pool = addr;
5188
5189 return true;
5190 }
5191
5192 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5193 list. */
5194
5195 static void
5196 create_cus_from_debug_names_list (dwarf2_per_bfd *per_bfd,
5197 const mapped_debug_names &map,
5198 dwarf2_section_info &section,
5199 bool is_dwz)
5200 {
5201 if (!map.augmentation_is_gdb)
5202 {
5203 for (uint32_t i = 0; i < map.cu_count; ++i)
5204 {
5205 sect_offset sect_off
5206 = (sect_offset) (extract_unsigned_integer
5207 (map.cu_table_reordered + i * map.offset_size,
5208 map.offset_size,
5209 map.dwarf5_byte_order));
5210 /* We don't know the length of the CU, because the CU list in a
5211 .debug_names index can be incomplete, so we can't use the start of
5212 the next CU as end of this CU. We create the CUs here with length 0,
5213 and in cutu_reader::cutu_reader we'll fill in the actual length. */
5214 dwarf2_per_cu_data *per_cu
5215 = create_cu_from_index_list (per_bfd, &section, is_dwz, sect_off, 0);
5216 per_bfd->all_comp_units.push_back (per_cu);
5217 }
5218 }
5219
5220 sect_offset sect_off_prev;
5221 for (uint32_t i = 0; i <= map.cu_count; ++i)
5222 {
5223 sect_offset sect_off_next;
5224 if (i < map.cu_count)
5225 {
5226 sect_off_next
5227 = (sect_offset) (extract_unsigned_integer
5228 (map.cu_table_reordered + i * map.offset_size,
5229 map.offset_size,
5230 map.dwarf5_byte_order));
5231 }
5232 else
5233 sect_off_next = (sect_offset) section.size;
5234 if (i >= 1)
5235 {
5236 const ULONGEST length = sect_off_next - sect_off_prev;
5237 dwarf2_per_cu_data *per_cu
5238 = create_cu_from_index_list (per_bfd, &section, is_dwz,
5239 sect_off_prev, length);
5240 per_bfd->all_comp_units.push_back (per_cu);
5241 }
5242 sect_off_prev = sect_off_next;
5243 }
5244 }
5245
5246 /* Read the CU list from the mapped index, and use it to create all
5247 the CU objects for this dwarf2_per_objfile. */
5248
5249 static void
5250 create_cus_from_debug_names (dwarf2_per_bfd *per_bfd,
5251 const mapped_debug_names &map,
5252 const mapped_debug_names &dwz_map)
5253 {
5254 gdb_assert (per_bfd->all_comp_units.empty ());
5255 per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5256
5257 create_cus_from_debug_names_list (per_bfd, map, per_bfd->info,
5258 false /* is_dwz */);
5259
5260 if (dwz_map.cu_count == 0)
5261 return;
5262
5263 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5264 create_cus_from_debug_names_list (per_bfd, dwz_map, dwz->info,
5265 true /* is_dwz */);
5266 }
5267
5268 /* Read .debug_names. If everything went ok, initialize the "quick"
5269 elements of all the CUs and return true. Otherwise, return false. */
5270
5271 static bool
5272 dwarf2_read_debug_names (dwarf2_per_objfile *per_objfile)
5273 {
5274 std::unique_ptr<mapped_debug_names> map (new mapped_debug_names);
5275 mapped_debug_names dwz_map;
5276 struct objfile *objfile = per_objfile->objfile;
5277 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5278
5279 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5280 &per_objfile->per_bfd->debug_names, *map))
5281 return false;
5282
5283 /* Don't use the index if it's empty. */
5284 if (map->name_count == 0)
5285 return false;
5286
5287 /* If there is a .dwz file, read it so we can get its CU list as
5288 well. */
5289 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5290 if (dwz != NULL)
5291 {
5292 if (!read_debug_names_from_section (objfile,
5293 bfd_get_filename (dwz->dwz_bfd.get ()),
5294 &dwz->debug_names, dwz_map))
5295 {
5296 warning (_("could not read '.debug_names' section from %s; skipping"),
5297 bfd_get_filename (dwz->dwz_bfd.get ()));
5298 return false;
5299 }
5300 }
5301
5302 create_cus_from_debug_names (per_bfd, *map, dwz_map);
5303
5304 if (map->tu_count != 0)
5305 {
5306 /* We can only handle a single .debug_types when we have an
5307 index. */
5308 if (per_bfd->types.size () != 1)
5309 return false;
5310
5311 dwarf2_section_info *section = &per_bfd->types[0];
5312
5313 create_signatured_type_table_from_debug_names
5314 (per_objfile, *map, section, &per_bfd->abbrev);
5315 }
5316
5317 create_addrmap_from_aranges (per_objfile, &per_bfd->debug_aranges);
5318
5319 per_bfd->debug_names_table = std::move (map);
5320 per_bfd->using_index = 1;
5321 per_bfd->quick_file_names_table =
5322 create_quick_file_names_table (per_objfile->per_bfd->all_comp_units.size ());
5323
5324 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
5325 objfiles using the same BFD. */
5326 gdb_assert (per_bfd->partial_symtabs == nullptr);
5327 per_bfd->partial_symtabs = objfile->partial_symtabs;
5328
5329 return true;
5330 }
5331
5332 /* Type used to manage iterating over all CUs looking for a symbol for
5333 .debug_names. */
5334
5335 class dw2_debug_names_iterator
5336 {
5337 public:
5338 dw2_debug_names_iterator (const mapped_debug_names &map,
5339 gdb::optional<block_enum> block_index,
5340 domain_enum domain,
5341 const char *name, dwarf2_per_objfile *per_objfile)
5342 : m_map (map), m_block_index (block_index), m_domain (domain),
5343 m_addr (find_vec_in_debug_names (map, name, per_objfile)),
5344 m_per_objfile (per_objfile)
5345 {}
5346
5347 dw2_debug_names_iterator (const mapped_debug_names &map,
5348 search_domain search, uint32_t namei, dwarf2_per_objfile *per_objfile)
5349 : m_map (map),
5350 m_search (search),
5351 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5352 m_per_objfile (per_objfile)
5353 {}
5354
5355 dw2_debug_names_iterator (const mapped_debug_names &map,
5356 block_enum block_index, domain_enum domain,
5357 uint32_t namei, dwarf2_per_objfile *per_objfile)
5358 : m_map (map), m_block_index (block_index), m_domain (domain),
5359 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5360 m_per_objfile (per_objfile)
5361 {}
5362
5363 /* Return the next matching CU or NULL if there are no more. */
5364 dwarf2_per_cu_data *next ();
5365
5366 private:
5367 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5368 const char *name,
5369 dwarf2_per_objfile *per_objfile);
5370 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5371 uint32_t namei,
5372 dwarf2_per_objfile *per_objfile);
5373
5374 /* The internalized form of .debug_names. */
5375 const mapped_debug_names &m_map;
5376
5377 /* If set, only look for symbols that match that block. Valid values are
5378 GLOBAL_BLOCK and STATIC_BLOCK. */
5379 const gdb::optional<block_enum> m_block_index;
5380
5381 /* The kind of symbol we're looking for. */
5382 const domain_enum m_domain = UNDEF_DOMAIN;
5383 const search_domain m_search = ALL_DOMAIN;
5384
5385 /* The list of CUs from the index entry of the symbol, or NULL if
5386 not found. */
5387 const gdb_byte *m_addr;
5388
5389 dwarf2_per_objfile *m_per_objfile;
5390 };
5391
5392 const char *
5393 mapped_debug_names::namei_to_name
5394 (uint32_t namei, dwarf2_per_objfile *per_objfile) const
5395 {
5396 const ULONGEST namei_string_offs
5397 = extract_unsigned_integer ((name_table_string_offs_reordered
5398 + namei * offset_size),
5399 offset_size,
5400 dwarf5_byte_order);
5401 return read_indirect_string_at_offset (per_objfile, namei_string_offs);
5402 }
5403
5404 /* Find a slot in .debug_names for the object named NAME. If NAME is
5405 found, return pointer to its pool data. If NAME cannot be found,
5406 return NULL. */
5407
5408 const gdb_byte *
5409 dw2_debug_names_iterator::find_vec_in_debug_names
5410 (const mapped_debug_names &map, const char *name,
5411 dwarf2_per_objfile *per_objfile)
5412 {
5413 int (*cmp) (const char *, const char *);
5414
5415 gdb::unique_xmalloc_ptr<char> without_params;
5416 if (current_language->la_language == language_cplus
5417 || current_language->la_language == language_fortran
5418 || current_language->la_language == language_d)
5419 {
5420 /* NAME is already canonical. Drop any qualifiers as
5421 .debug_names does not contain any. */
5422
5423 if (strchr (name, '(') != NULL)
5424 {
5425 without_params = cp_remove_params (name);
5426 if (without_params != NULL)
5427 name = without_params.get ();
5428 }
5429 }
5430
5431 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5432
5433 const uint32_t full_hash = dwarf5_djb_hash (name);
5434 uint32_t namei
5435 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5436 (map.bucket_table_reordered
5437 + (full_hash % map.bucket_count)), 4,
5438 map.dwarf5_byte_order);
5439 if (namei == 0)
5440 return NULL;
5441 --namei;
5442 if (namei >= map.name_count)
5443 {
5444 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5445 "[in module %s]"),
5446 namei, map.name_count,
5447 objfile_name (per_objfile->objfile));
5448 return NULL;
5449 }
5450
5451 for (;;)
5452 {
5453 const uint32_t namei_full_hash
5454 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5455 (map.hash_table_reordered + namei), 4,
5456 map.dwarf5_byte_order);
5457 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5458 return NULL;
5459
5460 if (full_hash == namei_full_hash)
5461 {
5462 const char *const namei_string = map.namei_to_name (namei, per_objfile);
5463
5464 #if 0 /* An expensive sanity check. */
5465 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5466 {
5467 complaint (_("Wrong .debug_names hash for string at index %u "
5468 "[in module %s]"),
5469 namei, objfile_name (dwarf2_per_objfile->objfile));
5470 return NULL;
5471 }
5472 #endif
5473
5474 if (cmp (namei_string, name) == 0)
5475 {
5476 const ULONGEST namei_entry_offs
5477 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5478 + namei * map.offset_size),
5479 map.offset_size, map.dwarf5_byte_order);
5480 return map.entry_pool + namei_entry_offs;
5481 }
5482 }
5483
5484 ++namei;
5485 if (namei >= map.name_count)
5486 return NULL;
5487 }
5488 }
5489
5490 const gdb_byte *
5491 dw2_debug_names_iterator::find_vec_in_debug_names
5492 (const mapped_debug_names &map, uint32_t namei, dwarf2_per_objfile *per_objfile)
5493 {
5494 if (namei >= map.name_count)
5495 {
5496 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5497 "[in module %s]"),
5498 namei, map.name_count,
5499 objfile_name (per_objfile->objfile));
5500 return NULL;
5501 }
5502
5503 const ULONGEST namei_entry_offs
5504 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5505 + namei * map.offset_size),
5506 map.offset_size, map.dwarf5_byte_order);
5507 return map.entry_pool + namei_entry_offs;
5508 }
5509
5510 /* See dw2_debug_names_iterator. */
5511
5512 dwarf2_per_cu_data *
5513 dw2_debug_names_iterator::next ()
5514 {
5515 if (m_addr == NULL)
5516 return NULL;
5517
5518 dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd;
5519 struct objfile *objfile = m_per_objfile->objfile;
5520 bfd *const abfd = objfile->obfd;
5521
5522 again:
5523
5524 unsigned int bytes_read;
5525 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5526 m_addr += bytes_read;
5527 if (abbrev == 0)
5528 return NULL;
5529
5530 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5531 if (indexval_it == m_map.abbrev_map.cend ())
5532 {
5533 complaint (_("Wrong .debug_names undefined abbrev code %s "
5534 "[in module %s]"),
5535 pulongest (abbrev), objfile_name (objfile));
5536 return NULL;
5537 }
5538 const mapped_debug_names::index_val &indexval = indexval_it->second;
5539 enum class symbol_linkage {
5540 unknown,
5541 static_,
5542 extern_,
5543 } symbol_linkage_ = symbol_linkage::unknown;
5544 dwarf2_per_cu_data *per_cu = NULL;
5545 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5546 {
5547 ULONGEST ull;
5548 switch (attr.form)
5549 {
5550 case DW_FORM_implicit_const:
5551 ull = attr.implicit_const;
5552 break;
5553 case DW_FORM_flag_present:
5554 ull = 1;
5555 break;
5556 case DW_FORM_udata:
5557 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5558 m_addr += bytes_read;
5559 break;
5560 case DW_FORM_ref4:
5561 ull = read_4_bytes (abfd, m_addr);
5562 m_addr += 4;
5563 break;
5564 case DW_FORM_ref8:
5565 ull = read_8_bytes (abfd, m_addr);
5566 m_addr += 8;
5567 break;
5568 case DW_FORM_ref_sig8:
5569 ull = read_8_bytes (abfd, m_addr);
5570 m_addr += 8;
5571 break;
5572 default:
5573 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5574 dwarf_form_name (attr.form),
5575 objfile_name (objfile));
5576 return NULL;
5577 }
5578 switch (attr.dw_idx)
5579 {
5580 case DW_IDX_compile_unit:
5581 /* Don't crash on bad data. */
5582 if (ull >= m_per_objfile->per_bfd->all_comp_units.size ())
5583 {
5584 complaint (_(".debug_names entry has bad CU index %s"
5585 " [in module %s]"),
5586 pulongest (ull),
5587 objfile_name (objfile));
5588 continue;
5589 }
5590 per_cu = per_bfd->get_cutu (ull);
5591 break;
5592 case DW_IDX_type_unit:
5593 /* Don't crash on bad data. */
5594 if (ull >= per_bfd->all_type_units.size ())
5595 {
5596 complaint (_(".debug_names entry has bad TU index %s"
5597 " [in module %s]"),
5598 pulongest (ull),
5599 objfile_name (objfile));
5600 continue;
5601 }
5602 per_cu = &per_bfd->get_tu (ull)->per_cu;
5603 break;
5604 case DW_IDX_die_offset:
5605 /* In a per-CU index (as opposed to a per-module index), index
5606 entries without CU attribute implicitly refer to the single CU. */
5607 if (per_cu == NULL)
5608 per_cu = per_bfd->get_cu (0);
5609 break;
5610 case DW_IDX_GNU_internal:
5611 if (!m_map.augmentation_is_gdb)
5612 break;
5613 symbol_linkage_ = symbol_linkage::static_;
5614 break;
5615 case DW_IDX_GNU_external:
5616 if (!m_map.augmentation_is_gdb)
5617 break;
5618 symbol_linkage_ = symbol_linkage::extern_;
5619 break;
5620 }
5621 }
5622
5623 /* Skip if already read in. */
5624 if (m_per_objfile->symtab_set_p (per_cu))
5625 goto again;
5626
5627 /* Check static vs global. */
5628 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5629 {
5630 const bool want_static = *m_block_index == STATIC_BLOCK;
5631 const bool symbol_is_static =
5632 symbol_linkage_ == symbol_linkage::static_;
5633 if (want_static != symbol_is_static)
5634 goto again;
5635 }
5636
5637 /* Match dw2_symtab_iter_next, symbol_kind
5638 and debug_names::psymbol_tag. */
5639 switch (m_domain)
5640 {
5641 case VAR_DOMAIN:
5642 switch (indexval.dwarf_tag)
5643 {
5644 case DW_TAG_variable:
5645 case DW_TAG_subprogram:
5646 /* Some types are also in VAR_DOMAIN. */
5647 case DW_TAG_typedef:
5648 case DW_TAG_structure_type:
5649 break;
5650 default:
5651 goto again;
5652 }
5653 break;
5654 case STRUCT_DOMAIN:
5655 switch (indexval.dwarf_tag)
5656 {
5657 case DW_TAG_typedef:
5658 case DW_TAG_structure_type:
5659 break;
5660 default:
5661 goto again;
5662 }
5663 break;
5664 case LABEL_DOMAIN:
5665 switch (indexval.dwarf_tag)
5666 {
5667 case 0:
5668 case DW_TAG_variable:
5669 break;
5670 default:
5671 goto again;
5672 }
5673 break;
5674 case MODULE_DOMAIN:
5675 switch (indexval.dwarf_tag)
5676 {
5677 case DW_TAG_module:
5678 break;
5679 default:
5680 goto again;
5681 }
5682 break;
5683 default:
5684 break;
5685 }
5686
5687 /* Match dw2_expand_symtabs_matching, symbol_kind and
5688 debug_names::psymbol_tag. */
5689 switch (m_search)
5690 {
5691 case VARIABLES_DOMAIN:
5692 switch (indexval.dwarf_tag)
5693 {
5694 case DW_TAG_variable:
5695 break;
5696 default:
5697 goto again;
5698 }
5699 break;
5700 case FUNCTIONS_DOMAIN:
5701 switch (indexval.dwarf_tag)
5702 {
5703 case DW_TAG_subprogram:
5704 break;
5705 default:
5706 goto again;
5707 }
5708 break;
5709 case TYPES_DOMAIN:
5710 switch (indexval.dwarf_tag)
5711 {
5712 case DW_TAG_typedef:
5713 case DW_TAG_structure_type:
5714 break;
5715 default:
5716 goto again;
5717 }
5718 break;
5719 case MODULES_DOMAIN:
5720 switch (indexval.dwarf_tag)
5721 {
5722 case DW_TAG_module:
5723 break;
5724 default:
5725 goto again;
5726 }
5727 default:
5728 break;
5729 }
5730
5731 return per_cu;
5732 }
5733
5734 static struct compunit_symtab *
5735 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5736 const char *name, domain_enum domain)
5737 {
5738 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5739
5740 const auto &mapp = per_objfile->per_bfd->debug_names_table;
5741 if (!mapp)
5742 {
5743 /* index is NULL if OBJF_READNOW. */
5744 return NULL;
5745 }
5746 const auto &map = *mapp;
5747
5748 dw2_debug_names_iterator iter (map, block_index, domain, name, per_objfile);
5749
5750 struct compunit_symtab *stab_best = NULL;
5751 struct dwarf2_per_cu_data *per_cu;
5752 while ((per_cu = iter.next ()) != NULL)
5753 {
5754 struct symbol *sym, *with_opaque = NULL;
5755 compunit_symtab *stab
5756 = dw2_instantiate_symtab (per_cu, per_objfile, false);
5757 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5758 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5759
5760 sym = block_find_symbol (block, name, domain,
5761 block_find_non_opaque_type_preferred,
5762 &with_opaque);
5763
5764 /* Some caution must be observed with overloaded functions and
5765 methods, since the index will not contain any overload
5766 information (but NAME might contain it). */
5767
5768 if (sym != NULL
5769 && strcmp_iw (sym->search_name (), name) == 0)
5770 return stab;
5771 if (with_opaque != NULL
5772 && strcmp_iw (with_opaque->search_name (), name) == 0)
5773 stab_best = stab;
5774
5775 /* Keep looking through other CUs. */
5776 }
5777
5778 return stab_best;
5779 }
5780
5781 /* This dumps minimal information about .debug_names. It is called
5782 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5783 uses this to verify that .debug_names has been loaded. */
5784
5785 static void
5786 dw2_debug_names_dump (struct objfile *objfile)
5787 {
5788 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5789
5790 gdb_assert (per_objfile->per_bfd->using_index);
5791 printf_filtered (".debug_names:");
5792 if (per_objfile->per_bfd->debug_names_table)
5793 printf_filtered (" exists\n");
5794 else
5795 printf_filtered (" faked for \"readnow\"\n");
5796 printf_filtered ("\n");
5797 }
5798
5799 static void
5800 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5801 const char *func_name)
5802 {
5803 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5804
5805 /* per_objfile->per_bfd->debug_names_table is NULL if OBJF_READNOW. */
5806 if (per_objfile->per_bfd->debug_names_table)
5807 {
5808 const mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5809
5810 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name,
5811 per_objfile);
5812
5813 struct dwarf2_per_cu_data *per_cu;
5814 while ((per_cu = iter.next ()) != NULL)
5815 dw2_instantiate_symtab (per_cu, per_objfile, false);
5816 }
5817 }
5818
5819 static void
5820 dw2_debug_names_map_matching_symbols
5821 (struct objfile *objfile,
5822 const lookup_name_info &name, domain_enum domain,
5823 int global,
5824 gdb::function_view<symbol_found_callback_ftype> callback,
5825 symbol_compare_ftype *ordered_compare)
5826 {
5827 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5828
5829 /* debug_names_table is NULL if OBJF_READNOW. */
5830 if (!per_objfile->per_bfd->debug_names_table)
5831 return;
5832
5833 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5834 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5835
5836 const char *match_name = name.ada ().lookup_name ().c_str ();
5837 auto matcher = [&] (const char *symname)
5838 {
5839 if (ordered_compare == nullptr)
5840 return true;
5841 return ordered_compare (symname, match_name) == 0;
5842 };
5843
5844 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5845 [&] (offset_type namei)
5846 {
5847 /* The name was matched, now expand corresponding CUs that were
5848 marked. */
5849 dw2_debug_names_iterator iter (map, block_kind, domain, namei,
5850 per_objfile);
5851
5852 struct dwarf2_per_cu_data *per_cu;
5853 while ((per_cu = iter.next ()) != NULL)
5854 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
5855 nullptr);
5856 return true;
5857 }, per_objfile);
5858
5859 /* It's a shame we couldn't do this inside the
5860 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5861 that have already been expanded. Instead, this loop matches what
5862 the psymtab code does. */
5863 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5864 {
5865 compunit_symtab *symtab = per_objfile->get_symtab (per_cu);
5866 if (symtab != nullptr)
5867 {
5868 const struct block *block
5869 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5870 if (!iterate_over_symbols_terminated (block, name,
5871 domain, callback))
5872 break;
5873 }
5874 }
5875 }
5876
5877 static void
5878 dw2_debug_names_expand_symtabs_matching
5879 (struct objfile *objfile,
5880 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5881 const lookup_name_info *lookup_name,
5882 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5883 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5884 enum search_domain kind)
5885 {
5886 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5887
5888 /* debug_names_table is NULL if OBJF_READNOW. */
5889 if (!per_objfile->per_bfd->debug_names_table)
5890 return;
5891
5892 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
5893
5894 if (symbol_matcher == NULL && lookup_name == NULL)
5895 {
5896 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5897 {
5898 QUIT;
5899
5900 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5901 expansion_notify);
5902 }
5903 return;
5904 }
5905
5906 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5907
5908 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5909 symbol_matcher,
5910 kind, [&] (offset_type namei)
5911 {
5912 /* The name was matched, now expand corresponding CUs that were
5913 marked. */
5914 dw2_debug_names_iterator iter (map, kind, namei, per_objfile);
5915
5916 struct dwarf2_per_cu_data *per_cu;
5917 while ((per_cu = iter.next ()) != NULL)
5918 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5919 expansion_notify);
5920 return true;
5921 }, per_objfile);
5922 }
5923
5924 const struct quick_symbol_functions dwarf2_debug_names_functions =
5925 {
5926 dw2_has_symbols,
5927 dw2_find_last_source_symtab,
5928 dw2_forget_cached_source_info,
5929 dw2_map_symtabs_matching_filename,
5930 dw2_debug_names_lookup_symbol,
5931 NULL,
5932 dw2_print_stats,
5933 dw2_debug_names_dump,
5934 dw2_debug_names_expand_symtabs_for_function,
5935 dw2_expand_all_symtabs,
5936 dw2_expand_symtabs_with_fullname,
5937 dw2_debug_names_map_matching_symbols,
5938 dw2_debug_names_expand_symtabs_matching,
5939 dw2_find_pc_sect_compunit_symtab,
5940 NULL,
5941 dw2_map_symbol_filenames
5942 };
5943
5944 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5945 to either a dwarf2_per_bfd or dwz_file object. */
5946
5947 template <typename T>
5948 static gdb::array_view<const gdb_byte>
5949 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5950 {
5951 dwarf2_section_info *section = &section_owner->gdb_index;
5952
5953 if (section->empty ())
5954 return {};
5955
5956 /* Older elfutils strip versions could keep the section in the main
5957 executable while splitting it for the separate debug info file. */
5958 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5959 return {};
5960
5961 section->read (obj);
5962
5963 /* dwarf2_section_info::size is a bfd_size_type, while
5964 gdb::array_view works with size_t. On 32-bit hosts, with
5965 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5966 is 32-bit. So we need an explicit narrowing conversion here.
5967 This is fine, because it's impossible to allocate or mmap an
5968 array/buffer larger than what size_t can represent. */
5969 return gdb::make_array_view (section->buffer, section->size);
5970 }
5971
5972 /* Lookup the index cache for the contents of the index associated to
5973 DWARF2_OBJ. */
5974
5975 static gdb::array_view<const gdb_byte>
5976 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5977 {
5978 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5979 if (build_id == nullptr)
5980 return {};
5981
5982 return global_index_cache.lookup_gdb_index (build_id,
5983 &dwarf2_per_bfd->index_cache_res);
5984 }
5985
5986 /* Same as the above, but for DWZ. */
5987
5988 static gdb::array_view<const gdb_byte>
5989 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5990 {
5991 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5992 if (build_id == nullptr)
5993 return {};
5994
5995 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5996 }
5997
5998 /* See symfile.h. */
5999
6000 bool
6001 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6002 {
6003 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
6004 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6005
6006 /* If we're about to read full symbols, don't bother with the
6007 indices. In this case we also don't care if some other debug
6008 format is making psymtabs, because they are all about to be
6009 expanded anyway. */
6010 if ((objfile->flags & OBJF_READNOW))
6011 {
6012 /* When using READNOW, the using_index flag (set below) indicates that
6013 PER_BFD was already initialized, when we loaded some other objfile. */
6014 if (per_bfd->using_index)
6015 {
6016 *index_kind = dw_index_kind::GDB_INDEX;
6017 per_objfile->resize_symtabs ();
6018 return true;
6019 }
6020
6021 per_bfd->using_index = 1;
6022 create_all_comp_units (per_objfile);
6023 create_all_type_units (per_objfile);
6024 per_bfd->quick_file_names_table
6025 = create_quick_file_names_table (per_bfd->all_comp_units.size ());
6026 per_objfile->resize_symtabs ();
6027
6028 for (int i = 0; i < (per_bfd->all_comp_units.size ()
6029 + per_bfd->all_type_units.size ()); ++i)
6030 {
6031 dwarf2_per_cu_data *per_cu = per_bfd->get_cutu (i);
6032
6033 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
6034 struct dwarf2_per_cu_quick_data);
6035 }
6036
6037 /* Return 1 so that gdb sees the "quick" functions. However,
6038 these functions will be no-ops because we will have expanded
6039 all symtabs. */
6040 *index_kind = dw_index_kind::GDB_INDEX;
6041 return true;
6042 }
6043
6044 /* Was a debug names index already read when we processed an objfile sharing
6045 PER_BFD? */
6046 if (per_bfd->debug_names_table != nullptr)
6047 {
6048 *index_kind = dw_index_kind::DEBUG_NAMES;
6049 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
6050 per_objfile->resize_symtabs ();
6051 return true;
6052 }
6053
6054 /* Was a GDB index already read when we processed an objfile sharing
6055 PER_BFD? */
6056 if (per_bfd->index_table != nullptr)
6057 {
6058 *index_kind = dw_index_kind::GDB_INDEX;
6059 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
6060 per_objfile->resize_symtabs ();
6061 return true;
6062 }
6063
6064 /* There might already be partial symtabs built for this BFD. This happens
6065 when loading the same binary twice with the index-cache enabled. If so,
6066 don't try to read an index. The objfile / per_objfile initialization will
6067 be completed in dwarf2_build_psymtabs, in the standard partial symtabs
6068 code path. */
6069 if (per_bfd->partial_symtabs != nullptr)
6070 return false;
6071
6072 if (dwarf2_read_debug_names (per_objfile))
6073 {
6074 *index_kind = dw_index_kind::DEBUG_NAMES;
6075 per_objfile->resize_symtabs ();
6076 return true;
6077 }
6078
6079 if (dwarf2_read_gdb_index (per_objfile,
6080 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
6081 get_gdb_index_contents_from_section<dwz_file>))
6082 {
6083 *index_kind = dw_index_kind::GDB_INDEX;
6084 per_objfile->resize_symtabs ();
6085 return true;
6086 }
6087
6088 /* ... otherwise, try to find the index in the index cache. */
6089 if (dwarf2_read_gdb_index (per_objfile,
6090 get_gdb_index_contents_from_cache,
6091 get_gdb_index_contents_from_cache_dwz))
6092 {
6093 global_index_cache.hit ();
6094 *index_kind = dw_index_kind::GDB_INDEX;
6095 per_objfile->resize_symtabs ();
6096 return true;
6097 }
6098
6099 global_index_cache.miss ();
6100 return false;
6101 }
6102
6103 \f
6104
6105 /* Build a partial symbol table. */
6106
6107 void
6108 dwarf2_build_psymtabs (struct objfile *objfile)
6109 {
6110 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
6111 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6112
6113 if (per_bfd->partial_symtabs != nullptr)
6114 {
6115 /* Partial symbols were already read, so now we can simply
6116 attach them. */
6117 objfile->partial_symtabs = per_bfd->partial_symtabs;
6118 per_objfile->resize_symtabs ();
6119 return;
6120 }
6121
6122 init_psymbol_list (objfile, 1024);
6123
6124 try
6125 {
6126 /* This isn't really ideal: all the data we allocate on the
6127 objfile's obstack is still uselessly kept around. However,
6128 freeing it seems unsafe. */
6129 psymtab_discarder psymtabs (objfile);
6130 dwarf2_build_psymtabs_hard (per_objfile);
6131 psymtabs.keep ();
6132
6133 per_objfile->resize_symtabs ();
6134
6135 /* (maybe) store an index in the cache. */
6136 global_index_cache.store (per_objfile);
6137 }
6138 catch (const gdb_exception_error &except)
6139 {
6140 exception_print (gdb_stderr, except);
6141 }
6142
6143 /* Finish by setting the local reference to partial symtabs, so that
6144 we don't try to read them again if reading another objfile with the same
6145 BFD. If we can't in fact share, this won't make a difference anyway as
6146 the dwarf2_per_bfd object won't be shared. */
6147 per_bfd->partial_symtabs = objfile->partial_symtabs;
6148 }
6149
6150 /* Find the base address of the compilation unit for range lists and
6151 location lists. It will normally be specified by DW_AT_low_pc.
6152 In DWARF-3 draft 4, the base address could be overridden by
6153 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6154 compilation units with discontinuous ranges. */
6155
6156 static void
6157 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6158 {
6159 struct attribute *attr;
6160
6161 cu->base_address.reset ();
6162
6163 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6164 if (attr != nullptr)
6165 cu->base_address = attr->as_address ();
6166 else
6167 {
6168 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6169 if (attr != nullptr)
6170 cu->base_address = attr->as_address ();
6171 }
6172 }
6173
6174 /* Helper function that returns the proper abbrev section for
6175 THIS_CU. */
6176
6177 static struct dwarf2_section_info *
6178 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6179 {
6180 struct dwarf2_section_info *abbrev;
6181 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
6182
6183 if (this_cu->is_dwz)
6184 abbrev = &dwarf2_get_dwz_file (per_bfd)->abbrev;
6185 else
6186 abbrev = &per_bfd->abbrev;
6187
6188 return abbrev;
6189 }
6190
6191 /* Fetch the abbreviation table offset from a comp or type unit header. */
6192
6193 static sect_offset
6194 read_abbrev_offset (dwarf2_per_objfile *per_objfile,
6195 struct dwarf2_section_info *section,
6196 sect_offset sect_off)
6197 {
6198 bfd *abfd = section->get_bfd_owner ();
6199 const gdb_byte *info_ptr;
6200 unsigned int initial_length_size, offset_size;
6201 uint16_t version;
6202
6203 section->read (per_objfile->objfile);
6204 info_ptr = section->buffer + to_underlying (sect_off);
6205 read_initial_length (abfd, info_ptr, &initial_length_size);
6206 offset_size = initial_length_size == 4 ? 4 : 8;
6207 info_ptr += initial_length_size;
6208
6209 version = read_2_bytes (abfd, info_ptr);
6210 info_ptr += 2;
6211 if (version >= 5)
6212 {
6213 /* Skip unit type and address size. */
6214 info_ptr += 2;
6215 }
6216
6217 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
6218 }
6219
6220 /* A partial symtab that is used only for include files. */
6221 struct dwarf2_include_psymtab : public partial_symtab
6222 {
6223 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
6224 : partial_symtab (filename, objfile)
6225 {
6226 }
6227
6228 void read_symtab (struct objfile *objfile) override
6229 {
6230 /* It's an include file, no symbols to read for it.
6231 Everything is in the includer symtab. */
6232
6233 /* The expansion of a dwarf2_include_psymtab is just a trigger for
6234 expansion of the includer psymtab. We use the dependencies[0] field to
6235 model the includer. But if we go the regular route of calling
6236 expand_psymtab here, and having expand_psymtab call expand_dependencies
6237 to expand the includer, we'll only use expand_psymtab on the includer
6238 (making it a non-toplevel psymtab), while if we expand the includer via
6239 another path, we'll use read_symtab (making it a toplevel psymtab).
6240 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
6241 psymtab, and trigger read_symtab on the includer here directly. */
6242 includer ()->read_symtab (objfile);
6243 }
6244
6245 void expand_psymtab (struct objfile *objfile) override
6246 {
6247 /* This is not called by read_symtab, and should not be called by any
6248 expand_dependencies. */
6249 gdb_assert (false);
6250 }
6251
6252 bool readin_p (struct objfile *objfile) const override
6253 {
6254 return includer ()->readin_p (objfile);
6255 }
6256
6257 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
6258 {
6259 return nullptr;
6260 }
6261
6262 private:
6263 partial_symtab *includer () const
6264 {
6265 /* An include psymtab has exactly one dependency: the psymtab that
6266 includes it. */
6267 gdb_assert (this->number_of_dependencies == 1);
6268 return this->dependencies[0];
6269 }
6270 };
6271
6272 /* Allocate a new partial symtab for file named NAME and mark this new
6273 partial symtab as being an include of PST. */
6274
6275 static void
6276 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6277 struct objfile *objfile)
6278 {
6279 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6280
6281 if (!IS_ABSOLUTE_PATH (subpst->filename))
6282 subpst->dirname = pst->dirname;
6283
6284 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6285 subpst->dependencies[0] = pst;
6286 subpst->number_of_dependencies = 1;
6287 }
6288
6289 /* Read the Line Number Program data and extract the list of files
6290 included by the source file represented by PST. Build an include
6291 partial symtab for each of these included files. */
6292
6293 static void
6294 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6295 struct die_info *die,
6296 dwarf2_psymtab *pst)
6297 {
6298 line_header_up lh;
6299 struct attribute *attr;
6300
6301 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6302 if (attr != nullptr && attr->form_is_unsigned ())
6303 lh = dwarf_decode_line_header ((sect_offset) attr->as_unsigned (), cu);
6304 if (lh == NULL)
6305 return; /* No linetable, so no includes. */
6306
6307 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6308 that we pass in the raw text_low here; that is ok because we're
6309 only decoding the line table to make include partial symtabs, and
6310 so the addresses aren't really used. */
6311 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6312 pst->raw_text_low (), 1);
6313 }
6314
6315 static hashval_t
6316 hash_signatured_type (const void *item)
6317 {
6318 const struct signatured_type *sig_type
6319 = (const struct signatured_type *) item;
6320
6321 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6322 return sig_type->signature;
6323 }
6324
6325 static int
6326 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6327 {
6328 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6329 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6330
6331 return lhs->signature == rhs->signature;
6332 }
6333
6334 /* Allocate a hash table for signatured types. */
6335
6336 static htab_up
6337 allocate_signatured_type_table ()
6338 {
6339 return htab_up (htab_create_alloc (41,
6340 hash_signatured_type,
6341 eq_signatured_type,
6342 NULL, xcalloc, xfree));
6343 }
6344
6345 /* A helper function to add a signatured type CU to a table. */
6346
6347 static int
6348 add_signatured_type_cu_to_table (void **slot, void *datum)
6349 {
6350 struct signatured_type *sigt = (struct signatured_type *) *slot;
6351 std::vector<signatured_type *> *all_type_units
6352 = (std::vector<signatured_type *> *) datum;
6353
6354 all_type_units->push_back (sigt);
6355
6356 return 1;
6357 }
6358
6359 /* A helper for create_debug_types_hash_table. Read types from SECTION
6360 and fill them into TYPES_HTAB. It will process only type units,
6361 therefore DW_UT_type. */
6362
6363 static void
6364 create_debug_type_hash_table (dwarf2_per_objfile *per_objfile,
6365 struct dwo_file *dwo_file,
6366 dwarf2_section_info *section, htab_up &types_htab,
6367 rcuh_kind section_kind)
6368 {
6369 struct objfile *objfile = per_objfile->objfile;
6370 struct dwarf2_section_info *abbrev_section;
6371 bfd *abfd;
6372 const gdb_byte *info_ptr, *end_ptr;
6373
6374 abbrev_section = (dwo_file != NULL
6375 ? &dwo_file->sections.abbrev
6376 : &per_objfile->per_bfd->abbrev);
6377
6378 if (dwarf_read_debug)
6379 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6380 section->get_name (),
6381 abbrev_section->get_file_name ());
6382
6383 section->read (objfile);
6384 info_ptr = section->buffer;
6385
6386 if (info_ptr == NULL)
6387 return;
6388
6389 /* We can't set abfd until now because the section may be empty or
6390 not present, in which case the bfd is unknown. */
6391 abfd = section->get_bfd_owner ();
6392
6393 /* We don't use cutu_reader here because we don't need to read
6394 any dies: the signature is in the header. */
6395
6396 end_ptr = info_ptr + section->size;
6397 while (info_ptr < end_ptr)
6398 {
6399 struct signatured_type *sig_type;
6400 struct dwo_unit *dwo_tu;
6401 void **slot;
6402 const gdb_byte *ptr = info_ptr;
6403 struct comp_unit_head header;
6404 unsigned int length;
6405
6406 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6407
6408 /* Initialize it due to a false compiler warning. */
6409 header.signature = -1;
6410 header.type_cu_offset_in_tu = (cu_offset) -1;
6411
6412 /* We need to read the type's signature in order to build the hash
6413 table, but we don't need anything else just yet. */
6414
6415 ptr = read_and_check_comp_unit_head (per_objfile, &header, section,
6416 abbrev_section, ptr, section_kind);
6417
6418 length = header.get_length ();
6419
6420 /* Skip dummy type units. */
6421 if (ptr >= info_ptr + length
6422 || peek_abbrev_code (abfd, ptr) == 0
6423 || (header.unit_type != DW_UT_type
6424 && header.unit_type != DW_UT_split_type))
6425 {
6426 info_ptr += length;
6427 continue;
6428 }
6429
6430 if (types_htab == NULL)
6431 {
6432 if (dwo_file)
6433 types_htab = allocate_dwo_unit_table ();
6434 else
6435 types_htab = allocate_signatured_type_table ();
6436 }
6437
6438 if (dwo_file)
6439 {
6440 sig_type = NULL;
6441 dwo_tu = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit);
6442 dwo_tu->dwo_file = dwo_file;
6443 dwo_tu->signature = header.signature;
6444 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6445 dwo_tu->section = section;
6446 dwo_tu->sect_off = sect_off;
6447 dwo_tu->length = length;
6448 }
6449 else
6450 {
6451 /* N.B.: type_offset is not usable if this type uses a DWO file.
6452 The real type_offset is in the DWO file. */
6453 dwo_tu = NULL;
6454 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6455 sig_type->signature = header.signature;
6456 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6457 sig_type->per_cu.is_debug_types = 1;
6458 sig_type->per_cu.section = section;
6459 sig_type->per_cu.sect_off = sect_off;
6460 sig_type->per_cu.length = length;
6461 }
6462
6463 slot = htab_find_slot (types_htab.get (),
6464 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6465 INSERT);
6466 gdb_assert (slot != NULL);
6467 if (*slot != NULL)
6468 {
6469 sect_offset dup_sect_off;
6470
6471 if (dwo_file)
6472 {
6473 const struct dwo_unit *dup_tu
6474 = (const struct dwo_unit *) *slot;
6475
6476 dup_sect_off = dup_tu->sect_off;
6477 }
6478 else
6479 {
6480 const struct signatured_type *dup_tu
6481 = (const struct signatured_type *) *slot;
6482
6483 dup_sect_off = dup_tu->per_cu.sect_off;
6484 }
6485
6486 complaint (_("debug type entry at offset %s is duplicate to"
6487 " the entry at offset %s, signature %s"),
6488 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6489 hex_string (header.signature));
6490 }
6491 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6492
6493 if (dwarf_read_debug > 1)
6494 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6495 sect_offset_str (sect_off),
6496 hex_string (header.signature));
6497
6498 info_ptr += length;
6499 }
6500 }
6501
6502 /* Create the hash table of all entries in the .debug_types
6503 (or .debug_types.dwo) section(s).
6504 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6505 otherwise it is NULL.
6506
6507 The result is a pointer to the hash table or NULL if there are no types.
6508
6509 Note: This function processes DWO files only, not DWP files. */
6510
6511 static void
6512 create_debug_types_hash_table (dwarf2_per_objfile *per_objfile,
6513 struct dwo_file *dwo_file,
6514 gdb::array_view<dwarf2_section_info> type_sections,
6515 htab_up &types_htab)
6516 {
6517 for (dwarf2_section_info &section : type_sections)
6518 create_debug_type_hash_table (per_objfile, dwo_file, &section, types_htab,
6519 rcuh_kind::TYPE);
6520 }
6521
6522 /* Create the hash table of all entries in the .debug_types section,
6523 and initialize all_type_units.
6524 The result is zero if there is an error (e.g. missing .debug_types section),
6525 otherwise non-zero. */
6526
6527 static int
6528 create_all_type_units (dwarf2_per_objfile *per_objfile)
6529 {
6530 htab_up types_htab;
6531
6532 create_debug_type_hash_table (per_objfile, NULL, &per_objfile->per_bfd->info,
6533 types_htab, rcuh_kind::COMPILE);
6534 create_debug_types_hash_table (per_objfile, NULL, per_objfile->per_bfd->types,
6535 types_htab);
6536 if (types_htab == NULL)
6537 {
6538 per_objfile->per_bfd->signatured_types = NULL;
6539 return 0;
6540 }
6541
6542 per_objfile->per_bfd->signatured_types = std::move (types_htab);
6543
6544 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
6545 per_objfile->per_bfd->all_type_units.reserve
6546 (htab_elements (per_objfile->per_bfd->signatured_types.get ()));
6547
6548 htab_traverse_noresize (per_objfile->per_bfd->signatured_types.get (),
6549 add_signatured_type_cu_to_table,
6550 &per_objfile->per_bfd->all_type_units);
6551
6552 return 1;
6553 }
6554
6555 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
6556 If SLOT is non-NULL, it is the entry to use in the hash table.
6557 Otherwise we find one. */
6558
6559 static struct signatured_type *
6560 add_type_unit (dwarf2_per_objfile *per_objfile, ULONGEST sig, void **slot)
6561 {
6562 if (per_objfile->per_bfd->all_type_units.size ()
6563 == per_objfile->per_bfd->all_type_units.capacity ())
6564 ++per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
6565
6566 signatured_type *sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6567
6568 per_objfile->resize_symtabs ();
6569
6570 per_objfile->per_bfd->all_type_units.push_back (sig_type);
6571 sig_type->signature = sig;
6572 sig_type->per_cu.is_debug_types = 1;
6573 if (per_objfile->per_bfd->using_index)
6574 {
6575 sig_type->per_cu.v.quick =
6576 OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
6577 struct dwarf2_per_cu_quick_data);
6578 }
6579
6580 if (slot == NULL)
6581 {
6582 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6583 sig_type, INSERT);
6584 }
6585 gdb_assert (*slot == NULL);
6586 *slot = sig_type;
6587 /* The rest of sig_type must be filled in by the caller. */
6588 return sig_type;
6589 }
6590
6591 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6592 Fill in SIG_ENTRY with DWO_ENTRY. */
6593
6594 static void
6595 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile,
6596 struct signatured_type *sig_entry,
6597 struct dwo_unit *dwo_entry)
6598 {
6599 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6600
6601 /* Make sure we're not clobbering something we don't expect to. */
6602 gdb_assert (! sig_entry->per_cu.queued);
6603 gdb_assert (per_objfile->get_cu (&sig_entry->per_cu) == NULL);
6604 if (per_bfd->using_index)
6605 {
6606 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6607 gdb_assert (!per_objfile->symtab_set_p (&sig_entry->per_cu));
6608 }
6609 else
6610 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6611 gdb_assert (sig_entry->signature == dwo_entry->signature);
6612 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6613 gdb_assert (sig_entry->type_unit_group == NULL);
6614 gdb_assert (sig_entry->dwo_unit == NULL);
6615
6616 sig_entry->per_cu.section = dwo_entry->section;
6617 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6618 sig_entry->per_cu.length = dwo_entry->length;
6619 sig_entry->per_cu.reading_dwo_directly = 1;
6620 sig_entry->per_cu.per_bfd = per_bfd;
6621 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6622 sig_entry->dwo_unit = dwo_entry;
6623 }
6624
6625 /* Subroutine of lookup_signatured_type.
6626 If we haven't read the TU yet, create the signatured_type data structure
6627 for a TU to be read in directly from a DWO file, bypassing the stub.
6628 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6629 using .gdb_index, then when reading a CU we want to stay in the DWO file
6630 containing that CU. Otherwise we could end up reading several other DWO
6631 files (due to comdat folding) to process the transitive closure of all the
6632 mentioned TUs, and that can be slow. The current DWO file will have every
6633 type signature that it needs.
6634 We only do this for .gdb_index because in the psymtab case we already have
6635 to read all the DWOs to build the type unit groups. */
6636
6637 static struct signatured_type *
6638 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6639 {
6640 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6641 struct dwo_file *dwo_file;
6642 struct dwo_unit find_dwo_entry, *dwo_entry;
6643 struct signatured_type find_sig_entry, *sig_entry;
6644 void **slot;
6645
6646 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6647
6648 /* If TU skeletons have been removed then we may not have read in any
6649 TUs yet. */
6650 if (per_objfile->per_bfd->signatured_types == NULL)
6651 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6652
6653 /* We only ever need to read in one copy of a signatured type.
6654 Use the global signatured_types array to do our own comdat-folding
6655 of types. If this is the first time we're reading this TU, and
6656 the TU has an entry in .gdb_index, replace the recorded data from
6657 .gdb_index with this TU. */
6658
6659 find_sig_entry.signature = sig;
6660 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6661 &find_sig_entry, INSERT);
6662 sig_entry = (struct signatured_type *) *slot;
6663
6664 /* We can get here with the TU already read, *or* in the process of being
6665 read. Don't reassign the global entry to point to this DWO if that's
6666 the case. Also note that if the TU is already being read, it may not
6667 have come from a DWO, the program may be a mix of Fission-compiled
6668 code and non-Fission-compiled code. */
6669
6670 /* Have we already tried to read this TU?
6671 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6672 needn't exist in the global table yet). */
6673 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6674 return sig_entry;
6675
6676 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6677 dwo_unit of the TU itself. */
6678 dwo_file = cu->dwo_unit->dwo_file;
6679
6680 /* Ok, this is the first time we're reading this TU. */
6681 if (dwo_file->tus == NULL)
6682 return NULL;
6683 find_dwo_entry.signature = sig;
6684 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6685 &find_dwo_entry);
6686 if (dwo_entry == NULL)
6687 return NULL;
6688
6689 /* If the global table doesn't have an entry for this TU, add one. */
6690 if (sig_entry == NULL)
6691 sig_entry = add_type_unit (per_objfile, sig, slot);
6692
6693 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6694 sig_entry->per_cu.tu_read = 1;
6695 return sig_entry;
6696 }
6697
6698 /* Subroutine of lookup_signatured_type.
6699 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6700 then try the DWP file. If the TU stub (skeleton) has been removed then
6701 it won't be in .gdb_index. */
6702
6703 static struct signatured_type *
6704 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6705 {
6706 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6707 struct dwp_file *dwp_file = get_dwp_file (per_objfile);
6708 struct dwo_unit *dwo_entry;
6709 struct signatured_type find_sig_entry, *sig_entry;
6710 void **slot;
6711
6712 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6713 gdb_assert (dwp_file != NULL);
6714
6715 /* If TU skeletons have been removed then we may not have read in any
6716 TUs yet. */
6717 if (per_objfile->per_bfd->signatured_types == NULL)
6718 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6719
6720 find_sig_entry.signature = sig;
6721 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6722 &find_sig_entry, INSERT);
6723 sig_entry = (struct signatured_type *) *slot;
6724
6725 /* Have we already tried to read this TU?
6726 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6727 needn't exist in the global table yet). */
6728 if (sig_entry != NULL)
6729 return sig_entry;
6730
6731 if (dwp_file->tus == NULL)
6732 return NULL;
6733 dwo_entry = lookup_dwo_unit_in_dwp (per_objfile, dwp_file, NULL, sig,
6734 1 /* is_debug_types */);
6735 if (dwo_entry == NULL)
6736 return NULL;
6737
6738 sig_entry = add_type_unit (per_objfile, sig, slot);
6739 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6740
6741 return sig_entry;
6742 }
6743
6744 /* Lookup a signature based type for DW_FORM_ref_sig8.
6745 Returns NULL if signature SIG is not present in the table.
6746 It is up to the caller to complain about this. */
6747
6748 static struct signatured_type *
6749 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6750 {
6751 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6752
6753 if (cu->dwo_unit && per_objfile->per_bfd->using_index)
6754 {
6755 /* We're in a DWO/DWP file, and we're using .gdb_index.
6756 These cases require special processing. */
6757 if (get_dwp_file (per_objfile) == NULL)
6758 return lookup_dwo_signatured_type (cu, sig);
6759 else
6760 return lookup_dwp_signatured_type (cu, sig);
6761 }
6762 else
6763 {
6764 struct signatured_type find_entry, *entry;
6765
6766 if (per_objfile->per_bfd->signatured_types == NULL)
6767 return NULL;
6768 find_entry.signature = sig;
6769 entry = ((struct signatured_type *)
6770 htab_find (per_objfile->per_bfd->signatured_types.get (),
6771 &find_entry));
6772 return entry;
6773 }
6774 }
6775
6776 /* Low level DIE reading support. */
6777
6778 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6779
6780 static void
6781 init_cu_die_reader (struct die_reader_specs *reader,
6782 struct dwarf2_cu *cu,
6783 struct dwarf2_section_info *section,
6784 struct dwo_file *dwo_file,
6785 struct abbrev_table *abbrev_table)
6786 {
6787 gdb_assert (section->readin && section->buffer != NULL);
6788 reader->abfd = section->get_bfd_owner ();
6789 reader->cu = cu;
6790 reader->dwo_file = dwo_file;
6791 reader->die_section = section;
6792 reader->buffer = section->buffer;
6793 reader->buffer_end = section->buffer + section->size;
6794 reader->abbrev_table = abbrev_table;
6795 }
6796
6797 /* Subroutine of cutu_reader to simplify it.
6798 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6799 There's just a lot of work to do, and cutu_reader is big enough
6800 already.
6801
6802 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6803 from it to the DIE in the DWO. If NULL we are skipping the stub.
6804 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6805 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6806 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6807 STUB_COMP_DIR may be non-NULL.
6808 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6809 are filled in with the info of the DIE from the DWO file.
6810 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6811 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6812 kept around for at least as long as *RESULT_READER.
6813
6814 The result is non-zero if a valid (non-dummy) DIE was found. */
6815
6816 static int
6817 read_cutu_die_from_dwo (dwarf2_cu *cu,
6818 struct dwo_unit *dwo_unit,
6819 struct die_info *stub_comp_unit_die,
6820 const char *stub_comp_dir,
6821 struct die_reader_specs *result_reader,
6822 const gdb_byte **result_info_ptr,
6823 struct die_info **result_comp_unit_die,
6824 abbrev_table_up *result_dwo_abbrev_table)
6825 {
6826 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6827 dwarf2_per_cu_data *per_cu = cu->per_cu;
6828 struct objfile *objfile = per_objfile->objfile;
6829 bfd *abfd;
6830 const gdb_byte *begin_info_ptr, *info_ptr;
6831 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6832 int i,num_extra_attrs;
6833 struct dwarf2_section_info *dwo_abbrev_section;
6834 struct die_info *comp_unit_die;
6835
6836 /* At most one of these may be provided. */
6837 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6838
6839 /* These attributes aren't processed until later:
6840 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6841 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6842 referenced later. However, these attributes are found in the stub
6843 which we won't have later. In order to not impose this complication
6844 on the rest of the code, we read them here and copy them to the
6845 DWO CU/TU die. */
6846
6847 stmt_list = NULL;
6848 low_pc = NULL;
6849 high_pc = NULL;
6850 ranges = NULL;
6851 comp_dir = NULL;
6852
6853 if (stub_comp_unit_die != NULL)
6854 {
6855 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6856 DWO file. */
6857 if (!per_cu->is_debug_types)
6858 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6859 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6860 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6861 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6862 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6863
6864 cu->addr_base = stub_comp_unit_die->addr_base ();
6865
6866 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6867 here (if needed). We need the value before we can process
6868 DW_AT_ranges. */
6869 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6870 }
6871 else if (stub_comp_dir != NULL)
6872 {
6873 /* Reconstruct the comp_dir attribute to simplify the code below. */
6874 comp_dir = OBSTACK_ZALLOC (&cu->comp_unit_obstack, struct attribute);
6875 comp_dir->name = DW_AT_comp_dir;
6876 comp_dir->form = DW_FORM_string;
6877 comp_dir->set_string_noncanonical (stub_comp_dir);
6878 }
6879
6880 /* Set up for reading the DWO CU/TU. */
6881 cu->dwo_unit = dwo_unit;
6882 dwarf2_section_info *section = dwo_unit->section;
6883 section->read (objfile);
6884 abfd = section->get_bfd_owner ();
6885 begin_info_ptr = info_ptr = (section->buffer
6886 + to_underlying (dwo_unit->sect_off));
6887 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6888
6889 if (per_cu->is_debug_types)
6890 {
6891 signatured_type *sig_type = (struct signatured_type *) per_cu;
6892
6893 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6894 section, dwo_abbrev_section,
6895 info_ptr, rcuh_kind::TYPE);
6896 /* This is not an assert because it can be caused by bad debug info. */
6897 if (sig_type->signature != cu->header.signature)
6898 {
6899 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6900 " TU at offset %s [in module %s]"),
6901 hex_string (sig_type->signature),
6902 hex_string (cu->header.signature),
6903 sect_offset_str (dwo_unit->sect_off),
6904 bfd_get_filename (abfd));
6905 }
6906 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6907 /* For DWOs coming from DWP files, we don't know the CU length
6908 nor the type's offset in the TU until now. */
6909 dwo_unit->length = cu->header.get_length ();
6910 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6911
6912 /* Establish the type offset that can be used to lookup the type.
6913 For DWO files, we don't know it until now. */
6914 sig_type->type_offset_in_section
6915 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6916 }
6917 else
6918 {
6919 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6920 section, dwo_abbrev_section,
6921 info_ptr, rcuh_kind::COMPILE);
6922 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6923 /* For DWOs coming from DWP files, we don't know the CU length
6924 until now. */
6925 dwo_unit->length = cu->header.get_length ();
6926 }
6927
6928 *result_dwo_abbrev_table
6929 = abbrev_table::read (objfile, dwo_abbrev_section,
6930 cu->header.abbrev_sect_off);
6931 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6932 result_dwo_abbrev_table->get ());
6933
6934 /* Read in the die, but leave space to copy over the attributes
6935 from the stub. This has the benefit of simplifying the rest of
6936 the code - all the work to maintain the illusion of a single
6937 DW_TAG_{compile,type}_unit DIE is done here. */
6938 num_extra_attrs = ((stmt_list != NULL)
6939 + (low_pc != NULL)
6940 + (high_pc != NULL)
6941 + (ranges != NULL)
6942 + (comp_dir != NULL));
6943 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6944 num_extra_attrs);
6945
6946 /* Copy over the attributes from the stub to the DIE we just read in. */
6947 comp_unit_die = *result_comp_unit_die;
6948 i = comp_unit_die->num_attrs;
6949 if (stmt_list != NULL)
6950 comp_unit_die->attrs[i++] = *stmt_list;
6951 if (low_pc != NULL)
6952 comp_unit_die->attrs[i++] = *low_pc;
6953 if (high_pc != NULL)
6954 comp_unit_die->attrs[i++] = *high_pc;
6955 if (ranges != NULL)
6956 comp_unit_die->attrs[i++] = *ranges;
6957 if (comp_dir != NULL)
6958 comp_unit_die->attrs[i++] = *comp_dir;
6959 comp_unit_die->num_attrs += num_extra_attrs;
6960
6961 if (dwarf_die_debug)
6962 {
6963 fprintf_unfiltered (gdb_stdlog,
6964 "Read die from %s@0x%x of %s:\n",
6965 section->get_name (),
6966 (unsigned) (begin_info_ptr - section->buffer),
6967 bfd_get_filename (abfd));
6968 dump_die (comp_unit_die, dwarf_die_debug);
6969 }
6970
6971 /* Skip dummy compilation units. */
6972 if (info_ptr >= begin_info_ptr + dwo_unit->length
6973 || peek_abbrev_code (abfd, info_ptr) == 0)
6974 return 0;
6975
6976 *result_info_ptr = info_ptr;
6977 return 1;
6978 }
6979
6980 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6981 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6982 signature is part of the header. */
6983 static gdb::optional<ULONGEST>
6984 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6985 {
6986 if (cu->header.version >= 5)
6987 return cu->header.signature;
6988 struct attribute *attr;
6989 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6990 if (attr == nullptr || !attr->form_is_unsigned ())
6991 return gdb::optional<ULONGEST> ();
6992 return attr->as_unsigned ();
6993 }
6994
6995 /* Subroutine of cutu_reader to simplify it.
6996 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6997 Returns NULL if the specified DWO unit cannot be found. */
6998
6999 static struct dwo_unit *
7000 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
7001 {
7002 dwarf2_per_cu_data *per_cu = cu->per_cu;
7003 struct dwo_unit *dwo_unit;
7004 const char *comp_dir;
7005
7006 gdb_assert (cu != NULL);
7007
7008 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7009 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7010 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7011
7012 if (per_cu->is_debug_types)
7013 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
7014 else
7015 {
7016 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7017
7018 if (!signature.has_value ())
7019 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7020 " [in module %s]"),
7021 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
7022
7023 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
7024 }
7025
7026 return dwo_unit;
7027 }
7028
7029 /* Subroutine of cutu_reader to simplify it.
7030 See it for a description of the parameters.
7031 Read a TU directly from a DWO file, bypassing the stub. */
7032
7033 void
7034 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
7035 dwarf2_per_objfile *per_objfile,
7036 dwarf2_cu *existing_cu)
7037 {
7038 struct signatured_type *sig_type;
7039
7040 /* Verify we can do the following downcast, and that we have the
7041 data we need. */
7042 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7043 sig_type = (struct signatured_type *) this_cu;
7044 gdb_assert (sig_type->dwo_unit != NULL);
7045
7046 dwarf2_cu *cu;
7047
7048 if (existing_cu != nullptr)
7049 {
7050 cu = existing_cu;
7051 gdb_assert (cu->dwo_unit == sig_type->dwo_unit);
7052 /* There's no need to do the rereading_dwo_cu handling that
7053 cutu_reader does since we don't read the stub. */
7054 }
7055 else
7056 {
7057 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
7058 in per_objfile yet. */
7059 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7060 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7061 cu = m_new_cu.get ();
7062 }
7063
7064 /* A future optimization, if needed, would be to use an existing
7065 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7066 could share abbrev tables. */
7067
7068 if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit,
7069 NULL /* stub_comp_unit_die */,
7070 sig_type->dwo_unit->dwo_file->comp_dir,
7071 this, &info_ptr,
7072 &comp_unit_die,
7073 &m_dwo_abbrev_table) == 0)
7074 {
7075 /* Dummy die. */
7076 dummy_p = true;
7077 }
7078 }
7079
7080 /* Initialize a CU (or TU) and read its DIEs.
7081 If the CU defers to a DWO file, read the DWO file as well.
7082
7083 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7084 Otherwise the table specified in the comp unit header is read in and used.
7085 This is an optimization for when we already have the abbrev table.
7086
7087 If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is
7088 allocated. */
7089
7090 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7091 dwarf2_per_objfile *per_objfile,
7092 struct abbrev_table *abbrev_table,
7093 dwarf2_cu *existing_cu,
7094 bool skip_partial)
7095 : die_reader_specs {},
7096 m_this_cu (this_cu)
7097 {
7098 struct objfile *objfile = per_objfile->objfile;
7099 struct dwarf2_section_info *section = this_cu->section;
7100 bfd *abfd = section->get_bfd_owner ();
7101 const gdb_byte *begin_info_ptr;
7102 struct signatured_type *sig_type = NULL;
7103 struct dwarf2_section_info *abbrev_section;
7104 /* Non-zero if CU currently points to a DWO file and we need to
7105 reread it. When this happens we need to reread the skeleton die
7106 before we can reread the DWO file (this only applies to CUs, not TUs). */
7107 int rereading_dwo_cu = 0;
7108
7109 if (dwarf_die_debug)
7110 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7111 this_cu->is_debug_types ? "type" : "comp",
7112 sect_offset_str (this_cu->sect_off));
7113
7114 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7115 file (instead of going through the stub), short-circuit all of this. */
7116 if (this_cu->reading_dwo_directly)
7117 {
7118 /* Narrow down the scope of possibilities to have to understand. */
7119 gdb_assert (this_cu->is_debug_types);
7120 gdb_assert (abbrev_table == NULL);
7121 init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu);
7122 return;
7123 }
7124
7125 /* This is cheap if the section is already read in. */
7126 section->read (objfile);
7127
7128 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7129
7130 abbrev_section = get_abbrev_section_for_cu (this_cu);
7131
7132 dwarf2_cu *cu;
7133
7134 if (existing_cu != nullptr)
7135 {
7136 cu = existing_cu;
7137 /* If this CU is from a DWO file we need to start over, we need to
7138 refetch the attributes from the skeleton CU.
7139 This could be optimized by retrieving those attributes from when we
7140 were here the first time: the previous comp_unit_die was stored in
7141 comp_unit_obstack. But there's no data yet that we need this
7142 optimization. */
7143 if (cu->dwo_unit != NULL)
7144 rereading_dwo_cu = 1;
7145 }
7146 else
7147 {
7148 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
7149 in per_objfile yet. */
7150 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7151 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7152 cu = m_new_cu.get ();
7153 }
7154
7155 /* Get the header. */
7156 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7157 {
7158 /* We already have the header, there's no need to read it in again. */
7159 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7160 }
7161 else
7162 {
7163 if (this_cu->is_debug_types)
7164 {
7165 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7166 section, abbrev_section,
7167 info_ptr, rcuh_kind::TYPE);
7168
7169 /* Since per_cu is the first member of struct signatured_type,
7170 we can go from a pointer to one to a pointer to the other. */
7171 sig_type = (struct signatured_type *) this_cu;
7172 gdb_assert (sig_type->signature == cu->header.signature);
7173 gdb_assert (sig_type->type_offset_in_tu
7174 == cu->header.type_cu_offset_in_tu);
7175 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7176
7177 /* LENGTH has not been set yet for type units if we're
7178 using .gdb_index. */
7179 this_cu->length = cu->header.get_length ();
7180
7181 /* Establish the type offset that can be used to lookup the type. */
7182 sig_type->type_offset_in_section =
7183 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7184
7185 this_cu->dwarf_version = cu->header.version;
7186 }
7187 else
7188 {
7189 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7190 section, abbrev_section,
7191 info_ptr,
7192 rcuh_kind::COMPILE);
7193
7194 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7195 if (this_cu->length == 0)
7196 this_cu->length = cu->header.get_length ();
7197 else
7198 gdb_assert (this_cu->length == cu->header.get_length ());
7199 this_cu->dwarf_version = cu->header.version;
7200 }
7201 }
7202
7203 /* Skip dummy compilation units. */
7204 if (info_ptr >= begin_info_ptr + this_cu->length
7205 || peek_abbrev_code (abfd, info_ptr) == 0)
7206 {
7207 dummy_p = true;
7208 return;
7209 }
7210
7211 /* If we don't have them yet, read the abbrevs for this compilation unit.
7212 And if we need to read them now, make sure they're freed when we're
7213 done. */
7214 if (abbrev_table != NULL)
7215 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7216 else
7217 {
7218 m_abbrev_table_holder
7219 = abbrev_table::read (objfile, abbrev_section,
7220 cu->header.abbrev_sect_off);
7221 abbrev_table = m_abbrev_table_holder.get ();
7222 }
7223
7224 /* Read the top level CU/TU die. */
7225 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7226 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7227
7228 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7229 {
7230 dummy_p = true;
7231 return;
7232 }
7233
7234 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7235 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7236 table from the DWO file and pass the ownership over to us. It will be
7237 referenced from READER, so we must make sure to free it after we're done
7238 with READER.
7239
7240 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7241 DWO CU, that this test will fail (the attribute will not be present). */
7242 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7243 if (dwo_name != nullptr)
7244 {
7245 struct dwo_unit *dwo_unit;
7246 struct die_info *dwo_comp_unit_die;
7247
7248 if (comp_unit_die->has_children)
7249 {
7250 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7251 " has children (offset %s) [in module %s]"),
7252 sect_offset_str (this_cu->sect_off),
7253 bfd_get_filename (abfd));
7254 }
7255 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
7256 if (dwo_unit != NULL)
7257 {
7258 if (read_cutu_die_from_dwo (cu, dwo_unit,
7259 comp_unit_die, NULL,
7260 this, &info_ptr,
7261 &dwo_comp_unit_die,
7262 &m_dwo_abbrev_table) == 0)
7263 {
7264 /* Dummy die. */
7265 dummy_p = true;
7266 return;
7267 }
7268 comp_unit_die = dwo_comp_unit_die;
7269 }
7270 else
7271 {
7272 /* Yikes, we couldn't find the rest of the DIE, we only have
7273 the stub. A complaint has already been logged. There's
7274 not much more we can do except pass on the stub DIE to
7275 die_reader_func. We don't want to throw an error on bad
7276 debug info. */
7277 }
7278 }
7279 }
7280
7281 void
7282 cutu_reader::keep ()
7283 {
7284 /* Done, clean up. */
7285 gdb_assert (!dummy_p);
7286 if (m_new_cu != NULL)
7287 {
7288 /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it
7289 now. */
7290 dwarf2_per_objfile *per_objfile = m_new_cu->per_objfile;
7291 per_objfile->set_cu (m_this_cu, m_new_cu.release ());
7292 }
7293 }
7294
7295 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7296 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7297 assumed to have already done the lookup to find the DWO file).
7298
7299 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7300 THIS_CU->is_debug_types, but nothing else.
7301
7302 We fill in THIS_CU->length.
7303
7304 THIS_CU->cu is always freed when done.
7305 This is done in order to not leave THIS_CU->cu in a state where we have
7306 to care whether it refers to the "main" CU or the DWO CU.
7307
7308 When parent_cu is passed, it is used to provide a default value for
7309 str_offsets_base and addr_base from the parent. */
7310
7311 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7312 dwarf2_per_objfile *per_objfile,
7313 struct dwarf2_cu *parent_cu,
7314 struct dwo_file *dwo_file)
7315 : die_reader_specs {},
7316 m_this_cu (this_cu)
7317 {
7318 struct objfile *objfile = per_objfile->objfile;
7319 struct dwarf2_section_info *section = this_cu->section;
7320 bfd *abfd = section->get_bfd_owner ();
7321 struct dwarf2_section_info *abbrev_section;
7322 const gdb_byte *begin_info_ptr, *info_ptr;
7323
7324 if (dwarf_die_debug)
7325 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7326 this_cu->is_debug_types ? "type" : "comp",
7327 sect_offset_str (this_cu->sect_off));
7328
7329 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7330
7331 abbrev_section = (dwo_file != NULL
7332 ? &dwo_file->sections.abbrev
7333 : get_abbrev_section_for_cu (this_cu));
7334
7335 /* This is cheap if the section is already read in. */
7336 section->read (objfile);
7337
7338 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7339
7340 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7341 info_ptr = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header,
7342 section, abbrev_section, info_ptr,
7343 (this_cu->is_debug_types
7344 ? rcuh_kind::TYPE
7345 : rcuh_kind::COMPILE));
7346
7347 if (parent_cu != nullptr)
7348 {
7349 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7350 m_new_cu->addr_base = parent_cu->addr_base;
7351 }
7352 this_cu->length = m_new_cu->header.get_length ();
7353
7354 /* Skip dummy compilation units. */
7355 if (info_ptr >= begin_info_ptr + this_cu->length
7356 || peek_abbrev_code (abfd, info_ptr) == 0)
7357 {
7358 dummy_p = true;
7359 return;
7360 }
7361
7362 m_abbrev_table_holder
7363 = abbrev_table::read (objfile, abbrev_section,
7364 m_new_cu->header.abbrev_sect_off);
7365
7366 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7367 m_abbrev_table_holder.get ());
7368 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7369 }
7370
7371 \f
7372 /* Type Unit Groups.
7373
7374 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7375 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7376 so that all types coming from the same compilation (.o file) are grouped
7377 together. A future step could be to put the types in the same symtab as
7378 the CU the types ultimately came from. */
7379
7380 static hashval_t
7381 hash_type_unit_group (const void *item)
7382 {
7383 const struct type_unit_group *tu_group
7384 = (const struct type_unit_group *) item;
7385
7386 return hash_stmt_list_entry (&tu_group->hash);
7387 }
7388
7389 static int
7390 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7391 {
7392 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7393 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7394
7395 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7396 }
7397
7398 /* Allocate a hash table for type unit groups. */
7399
7400 static htab_up
7401 allocate_type_unit_groups_table ()
7402 {
7403 return htab_up (htab_create_alloc (3,
7404 hash_type_unit_group,
7405 eq_type_unit_group,
7406 NULL, xcalloc, xfree));
7407 }
7408
7409 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7410 partial symtabs. We combine several TUs per psymtab to not let the size
7411 of any one psymtab grow too big. */
7412 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7413 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7414
7415 /* Helper routine for get_type_unit_group.
7416 Create the type_unit_group object used to hold one or more TUs. */
7417
7418 static struct type_unit_group *
7419 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7420 {
7421 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7422 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7423 struct dwarf2_per_cu_data *per_cu;
7424 struct type_unit_group *tu_group;
7425
7426 tu_group = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, type_unit_group);
7427 per_cu = &tu_group->per_cu;
7428 per_cu->per_bfd = per_bfd;
7429
7430 if (per_bfd->using_index)
7431 {
7432 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
7433 struct dwarf2_per_cu_quick_data);
7434 }
7435 else
7436 {
7437 unsigned int line_offset = to_underlying (line_offset_struct);
7438 dwarf2_psymtab *pst;
7439 std::string name;
7440
7441 /* Give the symtab a useful name for debug purposes. */
7442 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7443 name = string_printf ("<type_units_%d>",
7444 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7445 else
7446 name = string_printf ("<type_units_at_0x%x>", line_offset);
7447
7448 pst = create_partial_symtab (per_cu, per_objfile, name.c_str ());
7449 pst->anonymous = true;
7450 }
7451
7452 tu_group->hash.dwo_unit = cu->dwo_unit;
7453 tu_group->hash.line_sect_off = line_offset_struct;
7454
7455 return tu_group;
7456 }
7457
7458 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7459 STMT_LIST is a DW_AT_stmt_list attribute. */
7460
7461 static struct type_unit_group *
7462 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7463 {
7464 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7465 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7466 struct type_unit_group *tu_group;
7467 void **slot;
7468 unsigned int line_offset;
7469 struct type_unit_group type_unit_group_for_lookup;
7470
7471 if (per_objfile->per_bfd->type_unit_groups == NULL)
7472 per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
7473
7474 /* Do we need to create a new group, or can we use an existing one? */
7475
7476 if (stmt_list != nullptr && stmt_list->form_is_unsigned ())
7477 {
7478 line_offset = stmt_list->as_unsigned ();
7479 ++tu_stats->nr_symtab_sharers;
7480 }
7481 else
7482 {
7483 /* Ugh, no stmt_list. Rare, but we have to handle it.
7484 We can do various things here like create one group per TU or
7485 spread them over multiple groups to split up the expansion work.
7486 To avoid worst case scenarios (too many groups or too large groups)
7487 we, umm, group them in bunches. */
7488 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7489 | (tu_stats->nr_stmt_less_type_units
7490 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7491 ++tu_stats->nr_stmt_less_type_units;
7492 }
7493
7494 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7495 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7496 slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (),
7497 &type_unit_group_for_lookup, INSERT);
7498 if (*slot != NULL)
7499 {
7500 tu_group = (struct type_unit_group *) *slot;
7501 gdb_assert (tu_group != NULL);
7502 }
7503 else
7504 {
7505 sect_offset line_offset_struct = (sect_offset) line_offset;
7506 tu_group = create_type_unit_group (cu, line_offset_struct);
7507 *slot = tu_group;
7508 ++tu_stats->nr_symtabs;
7509 }
7510
7511 return tu_group;
7512 }
7513 \f
7514 /* Partial symbol tables. */
7515
7516 /* Create a psymtab named NAME and assign it to PER_CU.
7517
7518 The caller must fill in the following details:
7519 dirname, textlow, texthigh. */
7520
7521 static dwarf2_psymtab *
7522 create_partial_symtab (dwarf2_per_cu_data *per_cu,
7523 dwarf2_per_objfile *per_objfile,
7524 const char *name)
7525 {
7526 struct objfile *objfile = per_objfile->objfile;
7527 dwarf2_psymtab *pst;
7528
7529 pst = new dwarf2_psymtab (name, objfile, per_cu);
7530
7531 pst->psymtabs_addrmap_supported = true;
7532
7533 /* This is the glue that links PST into GDB's symbol API. */
7534 per_cu->v.psymtab = pst;
7535
7536 return pst;
7537 }
7538
7539 /* DIE reader function for process_psymtab_comp_unit. */
7540
7541 static void
7542 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7543 const gdb_byte *info_ptr,
7544 struct die_info *comp_unit_die,
7545 enum language pretend_language)
7546 {
7547 struct dwarf2_cu *cu = reader->cu;
7548 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7549 struct objfile *objfile = per_objfile->objfile;
7550 struct gdbarch *gdbarch = objfile->arch ();
7551 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7552 CORE_ADDR baseaddr;
7553 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7554 dwarf2_psymtab *pst;
7555 enum pc_bounds_kind cu_bounds_kind;
7556 const char *filename;
7557
7558 gdb_assert (! per_cu->is_debug_types);
7559
7560 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7561
7562 /* Allocate a new partial symbol table structure. */
7563 gdb::unique_xmalloc_ptr<char> debug_filename;
7564 static const char artificial[] = "<artificial>";
7565 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7566 if (filename == NULL)
7567 filename = "";
7568 else if (strcmp (filename, artificial) == 0)
7569 {
7570 debug_filename.reset (concat (artificial, "@",
7571 sect_offset_str (per_cu->sect_off),
7572 (char *) NULL));
7573 filename = debug_filename.get ();
7574 }
7575
7576 pst = create_partial_symtab (per_cu, per_objfile, filename);
7577
7578 /* This must be done before calling dwarf2_build_include_psymtabs. */
7579 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7580
7581 baseaddr = objfile->text_section_offset ();
7582
7583 dwarf2_find_base_address (comp_unit_die, cu);
7584
7585 /* Possibly set the default values of LOWPC and HIGHPC from
7586 `DW_AT_ranges'. */
7587 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7588 &best_highpc, cu, pst);
7589 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7590 {
7591 CORE_ADDR low
7592 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7593 - baseaddr);
7594 CORE_ADDR high
7595 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7596 - baseaddr - 1);
7597 /* Store the contiguous range if it is not empty; it can be
7598 empty for CUs with no code. */
7599 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7600 low, high, pst);
7601 }
7602
7603 /* Check if comp unit has_children.
7604 If so, read the rest of the partial symbols from this comp unit.
7605 If not, there's no more debug_info for this comp unit. */
7606 if (comp_unit_die->has_children)
7607 {
7608 struct partial_die_info *first_die;
7609 CORE_ADDR lowpc, highpc;
7610
7611 lowpc = ((CORE_ADDR) -1);
7612 highpc = ((CORE_ADDR) 0);
7613
7614 first_die = load_partial_dies (reader, info_ptr, 1);
7615
7616 scan_partial_symbols (first_die, &lowpc, &highpc,
7617 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7618
7619 /* If we didn't find a lowpc, set it to highpc to avoid
7620 complaints from `maint check'. */
7621 if (lowpc == ((CORE_ADDR) -1))
7622 lowpc = highpc;
7623
7624 /* If the compilation unit didn't have an explicit address range,
7625 then use the information extracted from its child dies. */
7626 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7627 {
7628 best_lowpc = lowpc;
7629 best_highpc = highpc;
7630 }
7631 }
7632 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7633 best_lowpc + baseaddr)
7634 - baseaddr);
7635 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7636 best_highpc + baseaddr)
7637 - baseaddr);
7638
7639 end_psymtab_common (objfile, pst);
7640
7641 if (!cu->per_cu->imported_symtabs_empty ())
7642 {
7643 int i;
7644 int len = cu->per_cu->imported_symtabs_size ();
7645
7646 /* Fill in 'dependencies' here; we fill in 'users' in a
7647 post-pass. */
7648 pst->number_of_dependencies = len;
7649 pst->dependencies
7650 = objfile->partial_symtabs->allocate_dependencies (len);
7651 for (i = 0; i < len; ++i)
7652 {
7653 pst->dependencies[i]
7654 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7655 }
7656
7657 cu->per_cu->imported_symtabs_free ();
7658 }
7659
7660 /* Get the list of files included in the current compilation unit,
7661 and build a psymtab for each of them. */
7662 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7663
7664 if (dwarf_read_debug)
7665 fprintf_unfiltered (gdb_stdlog,
7666 "Psymtab for %s unit @%s: %s - %s"
7667 ", %d global, %d static syms\n",
7668 per_cu->is_debug_types ? "type" : "comp",
7669 sect_offset_str (per_cu->sect_off),
7670 paddress (gdbarch, pst->text_low (objfile)),
7671 paddress (gdbarch, pst->text_high (objfile)),
7672 (int) pst->global_psymbols.size (),
7673 (int) pst->static_psymbols.size ());
7674 }
7675
7676 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7677 Process compilation unit THIS_CU for a psymtab. */
7678
7679 static void
7680 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7681 dwarf2_per_objfile *per_objfile,
7682 bool want_partial_unit,
7683 enum language pretend_language)
7684 {
7685 /* If this compilation unit was already read in, free the
7686 cached copy in order to read it in again. This is
7687 necessary because we skipped some symbols when we first
7688 read in the compilation unit (see load_partial_dies).
7689 This problem could be avoided, but the benefit is unclear. */
7690 per_objfile->remove_cu (this_cu);
7691
7692 cutu_reader reader (this_cu, per_objfile, nullptr, nullptr, false);
7693
7694 switch (reader.comp_unit_die->tag)
7695 {
7696 case DW_TAG_compile_unit:
7697 this_cu->unit_type = DW_UT_compile;
7698 break;
7699 case DW_TAG_partial_unit:
7700 this_cu->unit_type = DW_UT_partial;
7701 break;
7702 default:
7703 abort ();
7704 }
7705
7706 if (reader.dummy_p)
7707 {
7708 /* Nothing. */
7709 }
7710 else if (this_cu->is_debug_types)
7711 build_type_psymtabs_reader (&reader, reader.info_ptr,
7712 reader.comp_unit_die);
7713 else if (want_partial_unit
7714 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7715 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7716 reader.comp_unit_die,
7717 pretend_language);
7718
7719 this_cu->lang = reader.cu->language;
7720
7721 /* Age out any secondary CUs. */
7722 per_objfile->age_comp_units ();
7723 }
7724
7725 /* Reader function for build_type_psymtabs. */
7726
7727 static void
7728 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7729 const gdb_byte *info_ptr,
7730 struct die_info *type_unit_die)
7731 {
7732 dwarf2_per_objfile *per_objfile = reader->cu->per_objfile;
7733 struct objfile *objfile = per_objfile->objfile;
7734 struct dwarf2_cu *cu = reader->cu;
7735 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7736 struct signatured_type *sig_type;
7737 struct type_unit_group *tu_group;
7738 struct attribute *attr;
7739 struct partial_die_info *first_die;
7740 CORE_ADDR lowpc, highpc;
7741 dwarf2_psymtab *pst;
7742
7743 gdb_assert (per_cu->is_debug_types);
7744 sig_type = (struct signatured_type *) per_cu;
7745
7746 if (! type_unit_die->has_children)
7747 return;
7748
7749 attr = type_unit_die->attr (DW_AT_stmt_list);
7750 tu_group = get_type_unit_group (cu, attr);
7751
7752 if (tu_group->tus == nullptr)
7753 tu_group->tus = new std::vector<signatured_type *>;
7754 tu_group->tus->push_back (sig_type);
7755
7756 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7757 pst = create_partial_symtab (per_cu, per_objfile, "");
7758 pst->anonymous = true;
7759
7760 first_die = load_partial_dies (reader, info_ptr, 1);
7761
7762 lowpc = (CORE_ADDR) -1;
7763 highpc = (CORE_ADDR) 0;
7764 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7765
7766 end_psymtab_common (objfile, pst);
7767 }
7768
7769 /* Struct used to sort TUs by their abbreviation table offset. */
7770
7771 struct tu_abbrev_offset
7772 {
7773 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7774 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7775 {}
7776
7777 signatured_type *sig_type;
7778 sect_offset abbrev_offset;
7779 };
7780
7781 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7782
7783 static bool
7784 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7785 const struct tu_abbrev_offset &b)
7786 {
7787 return a.abbrev_offset < b.abbrev_offset;
7788 }
7789
7790 /* Efficiently read all the type units.
7791 This does the bulk of the work for build_type_psymtabs.
7792
7793 The efficiency is because we sort TUs by the abbrev table they use and
7794 only read each abbrev table once. In one program there are 200K TUs
7795 sharing 8K abbrev tables.
7796
7797 The main purpose of this function is to support building the
7798 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7799 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7800 can collapse the search space by grouping them by stmt_list.
7801 The savings can be significant, in the same program from above the 200K TUs
7802 share 8K stmt_list tables.
7803
7804 FUNC is expected to call get_type_unit_group, which will create the
7805 struct type_unit_group if necessary and add it to
7806 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7807
7808 static void
7809 build_type_psymtabs_1 (dwarf2_per_objfile *per_objfile)
7810 {
7811 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7812 abbrev_table_up abbrev_table;
7813 sect_offset abbrev_offset;
7814
7815 /* It's up to the caller to not call us multiple times. */
7816 gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL);
7817
7818 if (per_objfile->per_bfd->all_type_units.empty ())
7819 return;
7820
7821 /* TUs typically share abbrev tables, and there can be way more TUs than
7822 abbrev tables. Sort by abbrev table to reduce the number of times we
7823 read each abbrev table in.
7824 Alternatives are to punt or to maintain a cache of abbrev tables.
7825 This is simpler and efficient enough for now.
7826
7827 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7828 symtab to use). Typically TUs with the same abbrev offset have the same
7829 stmt_list value too so in practice this should work well.
7830
7831 The basic algorithm here is:
7832
7833 sort TUs by abbrev table
7834 for each TU with same abbrev table:
7835 read abbrev table if first user
7836 read TU top level DIE
7837 [IWBN if DWO skeletons had DW_AT_stmt_list]
7838 call FUNC */
7839
7840 if (dwarf_read_debug)
7841 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7842
7843 /* Sort in a separate table to maintain the order of all_type_units
7844 for .gdb_index: TU indices directly index all_type_units. */
7845 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7846 sorted_by_abbrev.reserve (per_objfile->per_bfd->all_type_units.size ());
7847
7848 for (signatured_type *sig_type : per_objfile->per_bfd->all_type_units)
7849 sorted_by_abbrev.emplace_back
7850 (sig_type, read_abbrev_offset (per_objfile, sig_type->per_cu.section,
7851 sig_type->per_cu.sect_off));
7852
7853 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7854 sort_tu_by_abbrev_offset);
7855
7856 abbrev_offset = (sect_offset) ~(unsigned) 0;
7857
7858 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7859 {
7860 /* Switch to the next abbrev table if necessary. */
7861 if (abbrev_table == NULL
7862 || tu.abbrev_offset != abbrev_offset)
7863 {
7864 abbrev_offset = tu.abbrev_offset;
7865 abbrev_table =
7866 abbrev_table::read (per_objfile->objfile,
7867 &per_objfile->per_bfd->abbrev, abbrev_offset);
7868 ++tu_stats->nr_uniq_abbrev_tables;
7869 }
7870
7871 cutu_reader reader (&tu.sig_type->per_cu, per_objfile,
7872 abbrev_table.get (), nullptr, false);
7873 if (!reader.dummy_p)
7874 build_type_psymtabs_reader (&reader, reader.info_ptr,
7875 reader.comp_unit_die);
7876 }
7877 }
7878
7879 /* Print collected type unit statistics. */
7880
7881 static void
7882 print_tu_stats (dwarf2_per_objfile *per_objfile)
7883 {
7884 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7885
7886 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7887 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7888 per_objfile->per_bfd->all_type_units.size ());
7889 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7890 tu_stats->nr_uniq_abbrev_tables);
7891 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7892 tu_stats->nr_symtabs);
7893 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7894 tu_stats->nr_symtab_sharers);
7895 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7896 tu_stats->nr_stmt_less_type_units);
7897 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7898 tu_stats->nr_all_type_units_reallocs);
7899 }
7900
7901 /* Traversal function for build_type_psymtabs. */
7902
7903 static int
7904 build_type_psymtab_dependencies (void **slot, void *info)
7905 {
7906 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7907 struct objfile *objfile = per_objfile->objfile;
7908 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7909 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7910 dwarf2_psymtab *pst = per_cu->v.psymtab;
7911 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7912 int i;
7913
7914 gdb_assert (len > 0);
7915 gdb_assert (per_cu->type_unit_group_p ());
7916
7917 pst->number_of_dependencies = len;
7918 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7919 for (i = 0; i < len; ++i)
7920 {
7921 struct signatured_type *iter = tu_group->tus->at (i);
7922 gdb_assert (iter->per_cu.is_debug_types);
7923 pst->dependencies[i] = iter->per_cu.v.psymtab;
7924 iter->type_unit_group = tu_group;
7925 }
7926
7927 delete tu_group->tus;
7928 tu_group->tus = nullptr;
7929
7930 return 1;
7931 }
7932
7933 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7934 Build partial symbol tables for the .debug_types comp-units. */
7935
7936 static void
7937 build_type_psymtabs (dwarf2_per_objfile *per_objfile)
7938 {
7939 if (! create_all_type_units (per_objfile))
7940 return;
7941
7942 build_type_psymtabs_1 (per_objfile);
7943 }
7944
7945 /* Traversal function for process_skeletonless_type_unit.
7946 Read a TU in a DWO file and build partial symbols for it. */
7947
7948 static int
7949 process_skeletonless_type_unit (void **slot, void *info)
7950 {
7951 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7952 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7953 struct signatured_type find_entry, *entry;
7954
7955 /* If this TU doesn't exist in the global table, add it and read it in. */
7956
7957 if (per_objfile->per_bfd->signatured_types == NULL)
7958 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7959
7960 find_entry.signature = dwo_unit->signature;
7961 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
7962 &find_entry, INSERT);
7963 /* If we've already seen this type there's nothing to do. What's happening
7964 is we're doing our own version of comdat-folding here. */
7965 if (*slot != NULL)
7966 return 1;
7967
7968 /* This does the job that create_all_type_units would have done for
7969 this TU. */
7970 entry = add_type_unit (per_objfile, dwo_unit->signature, slot);
7971 fill_in_sig_entry_from_dwo_entry (per_objfile, entry, dwo_unit);
7972 *slot = entry;
7973
7974 /* This does the job that build_type_psymtabs_1 would have done. */
7975 cutu_reader reader (&entry->per_cu, per_objfile, nullptr, nullptr, false);
7976 if (!reader.dummy_p)
7977 build_type_psymtabs_reader (&reader, reader.info_ptr,
7978 reader.comp_unit_die);
7979
7980 return 1;
7981 }
7982
7983 /* Traversal function for process_skeletonless_type_units. */
7984
7985 static int
7986 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7987 {
7988 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7989
7990 if (dwo_file->tus != NULL)
7991 htab_traverse_noresize (dwo_file->tus.get (),
7992 process_skeletonless_type_unit, info);
7993
7994 return 1;
7995 }
7996
7997 /* Scan all TUs of DWO files, verifying we've processed them.
7998 This is needed in case a TU was emitted without its skeleton.
7999 Note: This can't be done until we know what all the DWO files are. */
8000
8001 static void
8002 process_skeletonless_type_units (dwarf2_per_objfile *per_objfile)
8003 {
8004 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8005 if (get_dwp_file (per_objfile) == NULL
8006 && per_objfile->per_bfd->dwo_files != NULL)
8007 {
8008 htab_traverse_noresize (per_objfile->per_bfd->dwo_files.get (),
8009 process_dwo_file_for_skeletonless_type_units,
8010 per_objfile);
8011 }
8012 }
8013
8014 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8015
8016 static void
8017 set_partial_user (dwarf2_per_objfile *per_objfile)
8018 {
8019 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
8020 {
8021 dwarf2_psymtab *pst = per_cu->v.psymtab;
8022
8023 if (pst == NULL)
8024 continue;
8025
8026 for (int j = 0; j < pst->number_of_dependencies; ++j)
8027 {
8028 /* Set the 'user' field only if it is not already set. */
8029 if (pst->dependencies[j]->user == NULL)
8030 pst->dependencies[j]->user = pst;
8031 }
8032 }
8033 }
8034
8035 /* Build the partial symbol table by doing a quick pass through the
8036 .debug_info and .debug_abbrev sections. */
8037
8038 static void
8039 dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile)
8040 {
8041 struct objfile *objfile = per_objfile->objfile;
8042
8043 if (dwarf_read_debug)
8044 {
8045 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8046 objfile_name (objfile));
8047 }
8048
8049 scoped_restore restore_reading_psyms
8050 = make_scoped_restore (&per_objfile->per_bfd->reading_partial_symbols,
8051 true);
8052
8053 per_objfile->per_bfd->info.read (objfile);
8054
8055 /* Any cached compilation units will be linked by the per-objfile
8056 read_in_chain. Make sure to free them when we're done. */
8057 free_cached_comp_units freer (per_objfile);
8058
8059 build_type_psymtabs (per_objfile);
8060
8061 create_all_comp_units (per_objfile);
8062
8063 /* Create a temporary address map on a temporary obstack. We later
8064 copy this to the final obstack. */
8065 auto_obstack temp_obstack;
8066
8067 scoped_restore save_psymtabs_addrmap
8068 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8069 addrmap_create_mutable (&temp_obstack));
8070
8071 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
8072 {
8073 if (per_cu->v.psymtab != NULL)
8074 /* In case a forward DW_TAG_imported_unit has read the CU already. */
8075 continue;
8076 process_psymtab_comp_unit (per_cu, per_objfile, false,
8077 language_minimal);
8078 }
8079
8080 /* This has to wait until we read the CUs, we need the list of DWOs. */
8081 process_skeletonless_type_units (per_objfile);
8082
8083 /* Now that all TUs have been processed we can fill in the dependencies. */
8084 if (per_objfile->per_bfd->type_unit_groups != NULL)
8085 {
8086 htab_traverse_noresize (per_objfile->per_bfd->type_unit_groups.get (),
8087 build_type_psymtab_dependencies, per_objfile);
8088 }
8089
8090 if (dwarf_read_debug)
8091 print_tu_stats (per_objfile);
8092
8093 set_partial_user (per_objfile);
8094
8095 objfile->partial_symtabs->psymtabs_addrmap
8096 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8097 objfile->partial_symtabs->obstack ());
8098 /* At this point we want to keep the address map. */
8099 save_psymtabs_addrmap.release ();
8100
8101 if (dwarf_read_debug)
8102 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8103 objfile_name (objfile));
8104 }
8105
8106 /* Load the partial DIEs for a secondary CU into memory.
8107 This is also used when rereading a primary CU with load_all_dies. */
8108
8109 static void
8110 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
8111 dwarf2_per_objfile *per_objfile,
8112 dwarf2_cu *existing_cu)
8113 {
8114 cutu_reader reader (this_cu, per_objfile, nullptr, existing_cu, false);
8115
8116 if (!reader.dummy_p)
8117 {
8118 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8119 language_minimal);
8120
8121 /* Check if comp unit has_children.
8122 If so, read the rest of the partial symbols from this comp unit.
8123 If not, there's no more debug_info for this comp unit. */
8124 if (reader.comp_unit_die->has_children)
8125 load_partial_dies (&reader, reader.info_ptr, 0);
8126
8127 reader.keep ();
8128 }
8129 }
8130
8131 static void
8132 read_comp_units_from_section (dwarf2_per_objfile *per_objfile,
8133 struct dwarf2_section_info *section,
8134 struct dwarf2_section_info *abbrev_section,
8135 unsigned int is_dwz)
8136 {
8137 const gdb_byte *info_ptr;
8138 struct objfile *objfile = per_objfile->objfile;
8139
8140 if (dwarf_read_debug)
8141 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8142 section->get_name (),
8143 section->get_file_name ());
8144
8145 section->read (objfile);
8146
8147 info_ptr = section->buffer;
8148
8149 while (info_ptr < section->buffer + section->size)
8150 {
8151 struct dwarf2_per_cu_data *this_cu;
8152
8153 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8154
8155 comp_unit_head cu_header;
8156 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
8157 abbrev_section, info_ptr,
8158 rcuh_kind::COMPILE);
8159
8160 /* Save the compilation unit for later lookup. */
8161 if (cu_header.unit_type != DW_UT_type)
8162 this_cu = per_objfile->per_bfd->allocate_per_cu ();
8163 else
8164 {
8165 auto sig_type = per_objfile->per_bfd->allocate_signatured_type ();
8166 sig_type->signature = cu_header.signature;
8167 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8168 this_cu = &sig_type->per_cu;
8169 }
8170 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8171 this_cu->sect_off = sect_off;
8172 this_cu->length = cu_header.length + cu_header.initial_length_size;
8173 this_cu->is_dwz = is_dwz;
8174 this_cu->section = section;
8175
8176 per_objfile->per_bfd->all_comp_units.push_back (this_cu);
8177
8178 info_ptr = info_ptr + this_cu->length;
8179 }
8180 }
8181
8182 /* Create a list of all compilation units in OBJFILE.
8183 This is only done for -readnow and building partial symtabs. */
8184
8185 static void
8186 create_all_comp_units (dwarf2_per_objfile *per_objfile)
8187 {
8188 gdb_assert (per_objfile->per_bfd->all_comp_units.empty ());
8189 read_comp_units_from_section (per_objfile, &per_objfile->per_bfd->info,
8190 &per_objfile->per_bfd->abbrev, 0);
8191
8192 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
8193 if (dwz != NULL)
8194 read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1);
8195 }
8196
8197 /* Process all loaded DIEs for compilation unit CU, starting at
8198 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8199 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8200 DW_AT_ranges). See the comments of add_partial_subprogram on how
8201 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8202
8203 static void
8204 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8205 CORE_ADDR *highpc, int set_addrmap,
8206 struct dwarf2_cu *cu)
8207 {
8208 struct partial_die_info *pdi;
8209
8210 /* Now, march along the PDI's, descending into ones which have
8211 interesting children but skipping the children of the other ones,
8212 until we reach the end of the compilation unit. */
8213
8214 pdi = first_die;
8215
8216 while (pdi != NULL)
8217 {
8218 pdi->fixup (cu);
8219
8220 /* Anonymous namespaces or modules have no name but have interesting
8221 children, so we need to look at them. Ditto for anonymous
8222 enums. */
8223
8224 if (pdi->raw_name != NULL || pdi->tag == DW_TAG_namespace
8225 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8226 || pdi->tag == DW_TAG_imported_unit
8227 || pdi->tag == DW_TAG_inlined_subroutine)
8228 {
8229 switch (pdi->tag)
8230 {
8231 case DW_TAG_subprogram:
8232 case DW_TAG_inlined_subroutine:
8233 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8234 if (cu->language == language_cplus)
8235 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8236 set_addrmap, cu);
8237 break;
8238 case DW_TAG_constant:
8239 case DW_TAG_variable:
8240 case DW_TAG_typedef:
8241 case DW_TAG_union_type:
8242 if (!pdi->is_declaration
8243 || (pdi->tag == DW_TAG_variable && pdi->is_external))
8244 {
8245 add_partial_symbol (pdi, cu);
8246 }
8247 break;
8248 case DW_TAG_class_type:
8249 case DW_TAG_interface_type:
8250 case DW_TAG_structure_type:
8251 if (!pdi->is_declaration)
8252 {
8253 add_partial_symbol (pdi, cu);
8254 }
8255 if ((cu->language == language_rust
8256 || cu->language == language_cplus) && pdi->has_children)
8257 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8258 set_addrmap, cu);
8259 break;
8260 case DW_TAG_enumeration_type:
8261 if (!pdi->is_declaration)
8262 add_partial_enumeration (pdi, cu);
8263 break;
8264 case DW_TAG_base_type:
8265 case DW_TAG_subrange_type:
8266 /* File scope base type definitions are added to the partial
8267 symbol table. */
8268 add_partial_symbol (pdi, cu);
8269 break;
8270 case DW_TAG_namespace:
8271 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8272 break;
8273 case DW_TAG_module:
8274 if (!pdi->is_declaration)
8275 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8276 break;
8277 case DW_TAG_imported_unit:
8278 {
8279 struct dwarf2_per_cu_data *per_cu;
8280
8281 /* For now we don't handle imported units in type units. */
8282 if (cu->per_cu->is_debug_types)
8283 {
8284 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8285 " supported in type units [in module %s]"),
8286 objfile_name (cu->per_objfile->objfile));
8287 }
8288
8289 per_cu = dwarf2_find_containing_comp_unit
8290 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
8291
8292 /* Go read the partial unit, if needed. */
8293 if (per_cu->v.psymtab == NULL)
8294 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
8295 cu->language);
8296
8297 cu->per_cu->imported_symtabs_push (per_cu);
8298 }
8299 break;
8300 case DW_TAG_imported_declaration:
8301 add_partial_symbol (pdi, cu);
8302 break;
8303 default:
8304 break;
8305 }
8306 }
8307
8308 /* If the die has a sibling, skip to the sibling. */
8309
8310 pdi = pdi->die_sibling;
8311 }
8312 }
8313
8314 /* Functions used to compute the fully scoped name of a partial DIE.
8315
8316 Normally, this is simple. For C++, the parent DIE's fully scoped
8317 name is concatenated with "::" and the partial DIE's name.
8318 Enumerators are an exception; they use the scope of their parent
8319 enumeration type, i.e. the name of the enumeration type is not
8320 prepended to the enumerator.
8321
8322 There are two complexities. One is DW_AT_specification; in this
8323 case "parent" means the parent of the target of the specification,
8324 instead of the direct parent of the DIE. The other is compilers
8325 which do not emit DW_TAG_namespace; in this case we try to guess
8326 the fully qualified name of structure types from their members'
8327 linkage names. This must be done using the DIE's children rather
8328 than the children of any DW_AT_specification target. We only need
8329 to do this for structures at the top level, i.e. if the target of
8330 any DW_AT_specification (if any; otherwise the DIE itself) does not
8331 have a parent. */
8332
8333 /* Compute the scope prefix associated with PDI's parent, in
8334 compilation unit CU. The result will be allocated on CU's
8335 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8336 field. NULL is returned if no prefix is necessary. */
8337 static const char *
8338 partial_die_parent_scope (struct partial_die_info *pdi,
8339 struct dwarf2_cu *cu)
8340 {
8341 const char *grandparent_scope;
8342 struct partial_die_info *parent, *real_pdi;
8343
8344 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8345 then this means the parent of the specification DIE. */
8346
8347 real_pdi = pdi;
8348 while (real_pdi->has_specification)
8349 {
8350 auto res = find_partial_die (real_pdi->spec_offset,
8351 real_pdi->spec_is_dwz, cu);
8352 real_pdi = res.pdi;
8353 cu = res.cu;
8354 }
8355
8356 parent = real_pdi->die_parent;
8357 if (parent == NULL)
8358 return NULL;
8359
8360 if (parent->scope_set)
8361 return parent->scope;
8362
8363 parent->fixup (cu);
8364
8365 grandparent_scope = partial_die_parent_scope (parent, cu);
8366
8367 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8368 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8369 Work around this problem here. */
8370 if (cu->language == language_cplus
8371 && parent->tag == DW_TAG_namespace
8372 && strcmp (parent->name (cu), "::") == 0
8373 && grandparent_scope == NULL)
8374 {
8375 parent->scope = NULL;
8376 parent->scope_set = 1;
8377 return NULL;
8378 }
8379
8380 /* Nested subroutines in Fortran get a prefix. */
8381 if (pdi->tag == DW_TAG_enumerator)
8382 /* Enumerators should not get the name of the enumeration as a prefix. */
8383 parent->scope = grandparent_scope;
8384 else if (parent->tag == DW_TAG_namespace
8385 || parent->tag == DW_TAG_module
8386 || parent->tag == DW_TAG_structure_type
8387 || parent->tag == DW_TAG_class_type
8388 || parent->tag == DW_TAG_interface_type
8389 || parent->tag == DW_TAG_union_type
8390 || parent->tag == DW_TAG_enumeration_type
8391 || (cu->language == language_fortran
8392 && parent->tag == DW_TAG_subprogram
8393 && pdi->tag == DW_TAG_subprogram))
8394 {
8395 if (grandparent_scope == NULL)
8396 parent->scope = parent->name (cu);
8397 else
8398 parent->scope = typename_concat (&cu->comp_unit_obstack,
8399 grandparent_scope,
8400 parent->name (cu), 0, cu);
8401 }
8402 else
8403 {
8404 /* FIXME drow/2004-04-01: What should we be doing with
8405 function-local names? For partial symbols, we should probably be
8406 ignoring them. */
8407 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8408 dwarf_tag_name (parent->tag),
8409 sect_offset_str (pdi->sect_off));
8410 parent->scope = grandparent_scope;
8411 }
8412
8413 parent->scope_set = 1;
8414 return parent->scope;
8415 }
8416
8417 /* Return the fully scoped name associated with PDI, from compilation unit
8418 CU. The result will be allocated with malloc. */
8419
8420 static gdb::unique_xmalloc_ptr<char>
8421 partial_die_full_name (struct partial_die_info *pdi,
8422 struct dwarf2_cu *cu)
8423 {
8424 const char *parent_scope;
8425
8426 /* If this is a template instantiation, we can not work out the
8427 template arguments from partial DIEs. So, unfortunately, we have
8428 to go through the full DIEs. At least any work we do building
8429 types here will be reused if full symbols are loaded later. */
8430 if (pdi->has_template_arguments)
8431 {
8432 pdi->fixup (cu);
8433
8434 if (pdi->name (cu) != NULL && strchr (pdi->name (cu), '<') == NULL)
8435 {
8436 struct die_info *die;
8437 struct attribute attr;
8438 struct dwarf2_cu *ref_cu = cu;
8439
8440 /* DW_FORM_ref_addr is using section offset. */
8441 attr.name = (enum dwarf_attribute) 0;
8442 attr.form = DW_FORM_ref_addr;
8443 attr.u.unsnd = to_underlying (pdi->sect_off);
8444 die = follow_die_ref (NULL, &attr, &ref_cu);
8445
8446 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8447 }
8448 }
8449
8450 parent_scope = partial_die_parent_scope (pdi, cu);
8451 if (parent_scope == NULL)
8452 return NULL;
8453 else
8454 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8455 pdi->name (cu),
8456 0, cu));
8457 }
8458
8459 static void
8460 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8461 {
8462 dwarf2_per_objfile *per_objfile = cu->per_objfile;
8463 struct objfile *objfile = per_objfile->objfile;
8464 struct gdbarch *gdbarch = objfile->arch ();
8465 CORE_ADDR addr = 0;
8466 const char *actual_name = NULL;
8467 CORE_ADDR baseaddr;
8468
8469 baseaddr = objfile->text_section_offset ();
8470
8471 gdb::unique_xmalloc_ptr<char> built_actual_name
8472 = partial_die_full_name (pdi, cu);
8473 if (built_actual_name != NULL)
8474 actual_name = built_actual_name.get ();
8475
8476 if (actual_name == NULL)
8477 actual_name = pdi->name (cu);
8478
8479 partial_symbol psymbol;
8480 memset (&psymbol, 0, sizeof (psymbol));
8481 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8482 psymbol.ginfo.section = -1;
8483
8484 /* The code below indicates that the psymbol should be installed by
8485 setting this. */
8486 gdb::optional<psymbol_placement> where;
8487
8488 switch (pdi->tag)
8489 {
8490 case DW_TAG_inlined_subroutine:
8491 case DW_TAG_subprogram:
8492 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8493 - baseaddr);
8494 if (pdi->is_external
8495 || cu->language == language_ada
8496 || (cu->language == language_fortran
8497 && pdi->die_parent != NULL
8498 && pdi->die_parent->tag == DW_TAG_subprogram))
8499 {
8500 /* Normally, only "external" DIEs are part of the global scope.
8501 But in Ada and Fortran, we want to be able to access nested
8502 procedures globally. So all Ada and Fortran subprograms are
8503 stored in the global scope. */
8504 where = psymbol_placement::GLOBAL;
8505 }
8506 else
8507 where = psymbol_placement::STATIC;
8508
8509 psymbol.domain = VAR_DOMAIN;
8510 psymbol.aclass = LOC_BLOCK;
8511 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8512 psymbol.ginfo.value.address = addr;
8513
8514 if (pdi->main_subprogram && actual_name != NULL)
8515 set_objfile_main_name (objfile, actual_name, cu->language);
8516 break;
8517 case DW_TAG_constant:
8518 psymbol.domain = VAR_DOMAIN;
8519 psymbol.aclass = LOC_STATIC;
8520 where = (pdi->is_external
8521 ? psymbol_placement::GLOBAL
8522 : psymbol_placement::STATIC);
8523 break;
8524 case DW_TAG_variable:
8525 if (pdi->d.locdesc)
8526 addr = decode_locdesc (pdi->d.locdesc, cu);
8527
8528 if (pdi->d.locdesc
8529 && addr == 0
8530 && !per_objfile->per_bfd->has_section_at_zero)
8531 {
8532 /* A global or static variable may also have been stripped
8533 out by the linker if unused, in which case its address
8534 will be nullified; do not add such variables into partial
8535 symbol table then. */
8536 }
8537 else if (pdi->is_external)
8538 {
8539 /* Global Variable.
8540 Don't enter into the minimal symbol tables as there is
8541 a minimal symbol table entry from the ELF symbols already.
8542 Enter into partial symbol table if it has a location
8543 descriptor or a type.
8544 If the location descriptor is missing, new_symbol will create
8545 a LOC_UNRESOLVED symbol, the address of the variable will then
8546 be determined from the minimal symbol table whenever the variable
8547 is referenced.
8548 The address for the partial symbol table entry is not
8549 used by GDB, but it comes in handy for debugging partial symbol
8550 table building. */
8551
8552 if (pdi->d.locdesc || pdi->has_type)
8553 {
8554 psymbol.domain = VAR_DOMAIN;
8555 psymbol.aclass = LOC_STATIC;
8556 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8557 psymbol.ginfo.value.address = addr;
8558 where = psymbol_placement::GLOBAL;
8559 }
8560 }
8561 else
8562 {
8563 int has_loc = pdi->d.locdesc != NULL;
8564
8565 /* Static Variable. Skip symbols whose value we cannot know (those
8566 without location descriptors or constant values). */
8567 if (!has_loc && !pdi->has_const_value)
8568 return;
8569
8570 psymbol.domain = VAR_DOMAIN;
8571 psymbol.aclass = LOC_STATIC;
8572 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8573 if (has_loc)
8574 psymbol.ginfo.value.address = addr;
8575 where = psymbol_placement::STATIC;
8576 }
8577 break;
8578 case DW_TAG_typedef:
8579 case DW_TAG_base_type:
8580 case DW_TAG_subrange_type:
8581 psymbol.domain = VAR_DOMAIN;
8582 psymbol.aclass = LOC_TYPEDEF;
8583 where = psymbol_placement::STATIC;
8584 break;
8585 case DW_TAG_imported_declaration:
8586 case DW_TAG_namespace:
8587 psymbol.domain = VAR_DOMAIN;
8588 psymbol.aclass = LOC_TYPEDEF;
8589 where = psymbol_placement::GLOBAL;
8590 break;
8591 case DW_TAG_module:
8592 /* With Fortran 77 there might be a "BLOCK DATA" module
8593 available without any name. If so, we skip the module as it
8594 doesn't bring any value. */
8595 if (actual_name != nullptr)
8596 {
8597 psymbol.domain = MODULE_DOMAIN;
8598 psymbol.aclass = LOC_TYPEDEF;
8599 where = psymbol_placement::GLOBAL;
8600 }
8601 break;
8602 case DW_TAG_class_type:
8603 case DW_TAG_interface_type:
8604 case DW_TAG_structure_type:
8605 case DW_TAG_union_type:
8606 case DW_TAG_enumeration_type:
8607 /* Skip external references. The DWARF standard says in the section
8608 about "Structure, Union, and Class Type Entries": "An incomplete
8609 structure, union or class type is represented by a structure,
8610 union or class entry that does not have a byte size attribute
8611 and that has a DW_AT_declaration attribute." */
8612 if (!pdi->has_byte_size && pdi->is_declaration)
8613 return;
8614
8615 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8616 static vs. global. */
8617 psymbol.domain = STRUCT_DOMAIN;
8618 psymbol.aclass = LOC_TYPEDEF;
8619 where = (cu->language == language_cplus
8620 ? psymbol_placement::GLOBAL
8621 : psymbol_placement::STATIC);
8622 break;
8623 case DW_TAG_enumerator:
8624 psymbol.domain = VAR_DOMAIN;
8625 psymbol.aclass = LOC_CONST;
8626 where = (cu->language == language_cplus
8627 ? psymbol_placement::GLOBAL
8628 : psymbol_placement::STATIC);
8629 break;
8630 default:
8631 break;
8632 }
8633
8634 if (where.has_value ())
8635 {
8636 if (built_actual_name != nullptr)
8637 actual_name = objfile->intern (actual_name);
8638 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8639 psymbol.ginfo.set_linkage_name (actual_name);
8640 else
8641 {
8642 psymbol.ginfo.set_demangled_name (actual_name,
8643 &objfile->objfile_obstack);
8644 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8645 }
8646 cu->per_cu->v.psymtab->add_psymbol (psymbol, *where, objfile);
8647 }
8648 }
8649
8650 /* Read a partial die corresponding to a namespace; also, add a symbol
8651 corresponding to that namespace to the symbol table. NAMESPACE is
8652 the name of the enclosing namespace. */
8653
8654 static void
8655 add_partial_namespace (struct partial_die_info *pdi,
8656 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8657 int set_addrmap, struct dwarf2_cu *cu)
8658 {
8659 /* Add a symbol for the namespace. */
8660
8661 add_partial_symbol (pdi, cu);
8662
8663 /* Now scan partial symbols in that namespace. */
8664
8665 if (pdi->has_children)
8666 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8667 }
8668
8669 /* Read a partial die corresponding to a Fortran module. */
8670
8671 static void
8672 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8673 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8674 {
8675 /* Add a symbol for the namespace. */
8676
8677 add_partial_symbol (pdi, cu);
8678
8679 /* Now scan partial symbols in that module. */
8680
8681 if (pdi->has_children)
8682 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8683 }
8684
8685 /* Read a partial die corresponding to a subprogram or an inlined
8686 subprogram and create a partial symbol for that subprogram.
8687 When the CU language allows it, this routine also defines a partial
8688 symbol for each nested subprogram that this subprogram contains.
8689 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8690 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8691
8692 PDI may also be a lexical block, in which case we simply search
8693 recursively for subprograms defined inside that lexical block.
8694 Again, this is only performed when the CU language allows this
8695 type of definitions. */
8696
8697 static void
8698 add_partial_subprogram (struct partial_die_info *pdi,
8699 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8700 int set_addrmap, struct dwarf2_cu *cu)
8701 {
8702 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8703 {
8704 if (pdi->has_pc_info)
8705 {
8706 if (pdi->lowpc < *lowpc)
8707 *lowpc = pdi->lowpc;
8708 if (pdi->highpc > *highpc)
8709 *highpc = pdi->highpc;
8710 if (set_addrmap)
8711 {
8712 struct objfile *objfile = cu->per_objfile->objfile;
8713 struct gdbarch *gdbarch = objfile->arch ();
8714 CORE_ADDR baseaddr;
8715 CORE_ADDR this_highpc;
8716 CORE_ADDR this_lowpc;
8717
8718 baseaddr = objfile->text_section_offset ();
8719 this_lowpc
8720 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8721 pdi->lowpc + baseaddr)
8722 - baseaddr);
8723 this_highpc
8724 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8725 pdi->highpc + baseaddr)
8726 - baseaddr);
8727 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8728 this_lowpc, this_highpc - 1,
8729 cu->per_cu->v.psymtab);
8730 }
8731 }
8732
8733 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8734 {
8735 if (!pdi->is_declaration)
8736 /* Ignore subprogram DIEs that do not have a name, they are
8737 illegal. Do not emit a complaint at this point, we will
8738 do so when we convert this psymtab into a symtab. */
8739 if (pdi->name (cu))
8740 add_partial_symbol (pdi, cu);
8741 }
8742 }
8743
8744 if (! pdi->has_children)
8745 return;
8746
8747 if (cu->language == language_ada || cu->language == language_fortran)
8748 {
8749 pdi = pdi->die_child;
8750 while (pdi != NULL)
8751 {
8752 pdi->fixup (cu);
8753 if (pdi->tag == DW_TAG_subprogram
8754 || pdi->tag == DW_TAG_inlined_subroutine
8755 || pdi->tag == DW_TAG_lexical_block)
8756 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8757 pdi = pdi->die_sibling;
8758 }
8759 }
8760 }
8761
8762 /* Read a partial die corresponding to an enumeration type. */
8763
8764 static void
8765 add_partial_enumeration (struct partial_die_info *enum_pdi,
8766 struct dwarf2_cu *cu)
8767 {
8768 struct partial_die_info *pdi;
8769
8770 if (enum_pdi->name (cu) != NULL)
8771 add_partial_symbol (enum_pdi, cu);
8772
8773 pdi = enum_pdi->die_child;
8774 while (pdi)
8775 {
8776 if (pdi->tag != DW_TAG_enumerator || pdi->raw_name == NULL)
8777 complaint (_("malformed enumerator DIE ignored"));
8778 else
8779 add_partial_symbol (pdi, cu);
8780 pdi = pdi->die_sibling;
8781 }
8782 }
8783
8784 /* Return the initial uleb128 in the die at INFO_PTR. */
8785
8786 static unsigned int
8787 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8788 {
8789 unsigned int bytes_read;
8790
8791 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8792 }
8793
8794 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8795 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8796
8797 Return the corresponding abbrev, or NULL if the number is zero (indicating
8798 an empty DIE). In either case *BYTES_READ will be set to the length of
8799 the initial number. */
8800
8801 static struct abbrev_info *
8802 peek_die_abbrev (const die_reader_specs &reader,
8803 const gdb_byte *info_ptr, unsigned int *bytes_read)
8804 {
8805 dwarf2_cu *cu = reader.cu;
8806 bfd *abfd = cu->per_objfile->objfile->obfd;
8807 unsigned int abbrev_number
8808 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8809
8810 if (abbrev_number == 0)
8811 return NULL;
8812
8813 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8814 if (!abbrev)
8815 {
8816 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8817 " at offset %s [in module %s]"),
8818 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8819 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8820 }
8821
8822 return abbrev;
8823 }
8824
8825 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8826 Returns a pointer to the end of a series of DIEs, terminated by an empty
8827 DIE. Any children of the skipped DIEs will also be skipped. */
8828
8829 static const gdb_byte *
8830 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8831 {
8832 while (1)
8833 {
8834 unsigned int bytes_read;
8835 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8836
8837 if (abbrev == NULL)
8838 return info_ptr + bytes_read;
8839 else
8840 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8841 }
8842 }
8843
8844 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8845 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8846 abbrev corresponding to that skipped uleb128 should be passed in
8847 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8848 children. */
8849
8850 static const gdb_byte *
8851 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8852 struct abbrev_info *abbrev)
8853 {
8854 unsigned int bytes_read;
8855 struct attribute attr;
8856 bfd *abfd = reader->abfd;
8857 struct dwarf2_cu *cu = reader->cu;
8858 const gdb_byte *buffer = reader->buffer;
8859 const gdb_byte *buffer_end = reader->buffer_end;
8860 unsigned int form, i;
8861
8862 for (i = 0; i < abbrev->num_attrs; i++)
8863 {
8864 /* The only abbrev we care about is DW_AT_sibling. */
8865 if (abbrev->attrs[i].name == DW_AT_sibling)
8866 {
8867 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8868 if (attr.form == DW_FORM_ref_addr)
8869 complaint (_("ignoring absolute DW_AT_sibling"));
8870 else
8871 {
8872 sect_offset off = attr.get_ref_die_offset ();
8873 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8874
8875 if (sibling_ptr < info_ptr)
8876 complaint (_("DW_AT_sibling points backwards"));
8877 else if (sibling_ptr > reader->buffer_end)
8878 reader->die_section->overflow_complaint ();
8879 else
8880 return sibling_ptr;
8881 }
8882 }
8883
8884 /* If it isn't DW_AT_sibling, skip this attribute. */
8885 form = abbrev->attrs[i].form;
8886 skip_attribute:
8887 switch (form)
8888 {
8889 case DW_FORM_ref_addr:
8890 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8891 and later it is offset sized. */
8892 if (cu->header.version == 2)
8893 info_ptr += cu->header.addr_size;
8894 else
8895 info_ptr += cu->header.offset_size;
8896 break;
8897 case DW_FORM_GNU_ref_alt:
8898 info_ptr += cu->header.offset_size;
8899 break;
8900 case DW_FORM_addr:
8901 info_ptr += cu->header.addr_size;
8902 break;
8903 case DW_FORM_data1:
8904 case DW_FORM_ref1:
8905 case DW_FORM_flag:
8906 case DW_FORM_strx1:
8907 info_ptr += 1;
8908 break;
8909 case DW_FORM_flag_present:
8910 case DW_FORM_implicit_const:
8911 break;
8912 case DW_FORM_data2:
8913 case DW_FORM_ref2:
8914 case DW_FORM_strx2:
8915 info_ptr += 2;
8916 break;
8917 case DW_FORM_strx3:
8918 info_ptr += 3;
8919 break;
8920 case DW_FORM_data4:
8921 case DW_FORM_ref4:
8922 case DW_FORM_strx4:
8923 info_ptr += 4;
8924 break;
8925 case DW_FORM_data8:
8926 case DW_FORM_ref8:
8927 case DW_FORM_ref_sig8:
8928 info_ptr += 8;
8929 break;
8930 case DW_FORM_data16:
8931 info_ptr += 16;
8932 break;
8933 case DW_FORM_string:
8934 read_direct_string (abfd, info_ptr, &bytes_read);
8935 info_ptr += bytes_read;
8936 break;
8937 case DW_FORM_sec_offset:
8938 case DW_FORM_strp:
8939 case DW_FORM_GNU_strp_alt:
8940 info_ptr += cu->header.offset_size;
8941 break;
8942 case DW_FORM_exprloc:
8943 case DW_FORM_block:
8944 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8945 info_ptr += bytes_read;
8946 break;
8947 case DW_FORM_block1:
8948 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8949 break;
8950 case DW_FORM_block2:
8951 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8952 break;
8953 case DW_FORM_block4:
8954 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8955 break;
8956 case DW_FORM_addrx:
8957 case DW_FORM_strx:
8958 case DW_FORM_sdata:
8959 case DW_FORM_udata:
8960 case DW_FORM_ref_udata:
8961 case DW_FORM_GNU_addr_index:
8962 case DW_FORM_GNU_str_index:
8963 case DW_FORM_rnglistx:
8964 case DW_FORM_loclistx:
8965 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8966 break;
8967 case DW_FORM_indirect:
8968 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8969 info_ptr += bytes_read;
8970 /* We need to continue parsing from here, so just go back to
8971 the top. */
8972 goto skip_attribute;
8973
8974 default:
8975 error (_("Dwarf Error: Cannot handle %s "
8976 "in DWARF reader [in module %s]"),
8977 dwarf_form_name (form),
8978 bfd_get_filename (abfd));
8979 }
8980 }
8981
8982 if (abbrev->has_children)
8983 return skip_children (reader, info_ptr);
8984 else
8985 return info_ptr;
8986 }
8987
8988 /* Locate ORIG_PDI's sibling.
8989 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8990
8991 static const gdb_byte *
8992 locate_pdi_sibling (const struct die_reader_specs *reader,
8993 struct partial_die_info *orig_pdi,
8994 const gdb_byte *info_ptr)
8995 {
8996 /* Do we know the sibling already? */
8997
8998 if (orig_pdi->sibling)
8999 return orig_pdi->sibling;
9000
9001 /* Are there any children to deal with? */
9002
9003 if (!orig_pdi->has_children)
9004 return info_ptr;
9005
9006 /* Skip the children the long way. */
9007
9008 return skip_children (reader, info_ptr);
9009 }
9010
9011 /* Expand this partial symbol table into a full symbol table. SELF is
9012 not NULL. */
9013
9014 void
9015 dwarf2_psymtab::read_symtab (struct objfile *objfile)
9016 {
9017 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9018
9019 gdb_assert (!per_objfile->symtab_set_p (per_cu_data));
9020
9021 /* If this psymtab is constructed from a debug-only objfile, the
9022 has_section_at_zero flag will not necessarily be correct. We
9023 can get the correct value for this flag by looking at the data
9024 associated with the (presumably stripped) associated objfile. */
9025 if (objfile->separate_debug_objfile_backlink)
9026 {
9027 dwarf2_per_objfile *per_objfile_backlink
9028 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9029
9030 per_objfile->per_bfd->has_section_at_zero
9031 = per_objfile_backlink->per_bfd->has_section_at_zero;
9032 }
9033
9034 expand_psymtab (objfile);
9035
9036 process_cu_includes (per_objfile);
9037 }
9038 \f
9039 /* Reading in full CUs. */
9040
9041 /* Add PER_CU to the queue. */
9042
9043 static void
9044 queue_comp_unit (dwarf2_per_cu_data *per_cu,
9045 dwarf2_per_objfile *per_objfile,
9046 enum language pretend_language)
9047 {
9048 per_cu->queued = 1;
9049 per_cu->per_bfd->queue.emplace (per_cu, per_objfile, pretend_language);
9050 }
9051
9052 /* If PER_CU is not yet queued, add it to the queue.
9053 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9054 dependency.
9055 The result is non-zero if PER_CU was queued, otherwise the result is zero
9056 meaning either PER_CU is already queued or it is already loaded.
9057
9058 N.B. There is an invariant here that if a CU is queued then it is loaded.
9059 The caller is required to load PER_CU if we return non-zero. */
9060
9061 static int
9062 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9063 dwarf2_per_cu_data *per_cu,
9064 dwarf2_per_objfile *per_objfile,
9065 enum language pretend_language)
9066 {
9067 /* We may arrive here during partial symbol reading, if we need full
9068 DIEs to process an unusual case (e.g. template arguments). Do
9069 not queue PER_CU, just tell our caller to load its DIEs. */
9070 if (per_cu->per_bfd->reading_partial_symbols)
9071 {
9072 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9073
9074 if (cu == NULL || cu->dies == NULL)
9075 return 1;
9076 return 0;
9077 }
9078
9079 /* Mark the dependence relation so that we don't flush PER_CU
9080 too early. */
9081 if (dependent_cu != NULL)
9082 dwarf2_add_dependence (dependent_cu, per_cu);
9083
9084 /* If it's already on the queue, we have nothing to do. */
9085 if (per_cu->queued)
9086 return 0;
9087
9088 /* If the compilation unit is already loaded, just mark it as
9089 used. */
9090 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9091 if (cu != nullptr)
9092 {
9093 cu->last_used = 0;
9094 return 0;
9095 }
9096
9097 /* Add it to the queue. */
9098 queue_comp_unit (per_cu, per_objfile, pretend_language);
9099
9100 return 1;
9101 }
9102
9103 /* Process the queue. */
9104
9105 static void
9106 process_queue (dwarf2_per_objfile *per_objfile)
9107 {
9108 if (dwarf_read_debug)
9109 {
9110 fprintf_unfiltered (gdb_stdlog,
9111 "Expanding one or more symtabs of objfile %s ...\n",
9112 objfile_name (per_objfile->objfile));
9113 }
9114
9115 /* The queue starts out with one item, but following a DIE reference
9116 may load a new CU, adding it to the end of the queue. */
9117 while (!per_objfile->per_bfd->queue.empty ())
9118 {
9119 dwarf2_queue_item &item = per_objfile->per_bfd->queue.front ();
9120 dwarf2_per_cu_data *per_cu = item.per_cu;
9121
9122 if (!per_objfile->symtab_set_p (per_cu))
9123 {
9124 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9125
9126 /* Skip dummy CUs. */
9127 if (cu != nullptr)
9128 {
9129 unsigned int debug_print_threshold;
9130 char buf[100];
9131
9132 if (per_cu->is_debug_types)
9133 {
9134 struct signatured_type *sig_type =
9135 (struct signatured_type *) per_cu;
9136
9137 sprintf (buf, "TU %s at offset %s",
9138 hex_string (sig_type->signature),
9139 sect_offset_str (per_cu->sect_off));
9140 /* There can be 100s of TUs.
9141 Only print them in verbose mode. */
9142 debug_print_threshold = 2;
9143 }
9144 else
9145 {
9146 sprintf (buf, "CU at offset %s",
9147 sect_offset_str (per_cu->sect_off));
9148 debug_print_threshold = 1;
9149 }
9150
9151 if (dwarf_read_debug >= debug_print_threshold)
9152 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9153
9154 if (per_cu->is_debug_types)
9155 process_full_type_unit (cu, item.pretend_language);
9156 else
9157 process_full_comp_unit (cu, item.pretend_language);
9158
9159 if (dwarf_read_debug >= debug_print_threshold)
9160 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9161 }
9162 }
9163
9164 per_cu->queued = 0;
9165 per_objfile->per_bfd->queue.pop ();
9166 }
9167
9168 if (dwarf_read_debug)
9169 {
9170 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9171 objfile_name (per_objfile->objfile));
9172 }
9173 }
9174
9175 /* Read in full symbols for PST, and anything it depends on. */
9176
9177 void
9178 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9179 {
9180 gdb_assert (!readin_p (objfile));
9181
9182 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9183 free_cached_comp_units freer (per_objfile);
9184 expand_dependencies (objfile);
9185
9186 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
9187 gdb_assert (get_compunit_symtab (objfile) != nullptr);
9188 }
9189
9190 /* See psympriv.h. */
9191
9192 bool
9193 dwarf2_psymtab::readin_p (struct objfile *objfile) const
9194 {
9195 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9196 return per_objfile->symtab_set_p (per_cu_data);
9197 }
9198
9199 /* See psympriv.h. */
9200
9201 compunit_symtab *
9202 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
9203 {
9204 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9205 return per_objfile->get_symtab (per_cu_data);
9206 }
9207
9208 /* Trivial hash function for die_info: the hash value of a DIE
9209 is its offset in .debug_info for this objfile. */
9210
9211 static hashval_t
9212 die_hash (const void *item)
9213 {
9214 const struct die_info *die = (const struct die_info *) item;
9215
9216 return to_underlying (die->sect_off);
9217 }
9218
9219 /* Trivial comparison function for die_info structures: two DIEs
9220 are equal if they have the same offset. */
9221
9222 static int
9223 die_eq (const void *item_lhs, const void *item_rhs)
9224 {
9225 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9226 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9227
9228 return die_lhs->sect_off == die_rhs->sect_off;
9229 }
9230
9231 /* Load the DIEs associated with PER_CU into memory.
9232
9233 In some cases, the caller, while reading partial symbols, will need to load
9234 the full symbols for the CU for some reason. It will already have a
9235 dwarf2_cu object for THIS_CU and pass it as EXISTING_CU, so it can be re-used
9236 rather than creating a new one. */
9237
9238 static void
9239 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
9240 dwarf2_per_objfile *per_objfile,
9241 dwarf2_cu *existing_cu,
9242 bool skip_partial,
9243 enum language pretend_language)
9244 {
9245 gdb_assert (! this_cu->is_debug_types);
9246
9247 cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial);
9248 if (reader.dummy_p)
9249 return;
9250
9251 struct dwarf2_cu *cu = reader.cu;
9252 const gdb_byte *info_ptr = reader.info_ptr;
9253
9254 gdb_assert (cu->die_hash == NULL);
9255 cu->die_hash =
9256 htab_create_alloc_ex (cu->header.length / 12,
9257 die_hash,
9258 die_eq,
9259 NULL,
9260 &cu->comp_unit_obstack,
9261 hashtab_obstack_allocate,
9262 dummy_obstack_deallocate);
9263
9264 if (reader.comp_unit_die->has_children)
9265 reader.comp_unit_die->child
9266 = read_die_and_siblings (&reader, reader.info_ptr,
9267 &info_ptr, reader.comp_unit_die);
9268 cu->dies = reader.comp_unit_die;
9269 /* comp_unit_die is not stored in die_hash, no need. */
9270
9271 /* We try not to read any attributes in this function, because not
9272 all CUs needed for references have been loaded yet, and symbol
9273 table processing isn't initialized. But we have to set the CU language,
9274 or we won't be able to build types correctly.
9275 Similarly, if we do not read the producer, we can not apply
9276 producer-specific interpretation. */
9277 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9278
9279 reader.keep ();
9280 }
9281
9282 /* Add a DIE to the delayed physname list. */
9283
9284 static void
9285 add_to_method_list (struct type *type, int fnfield_index, int index,
9286 const char *name, struct die_info *die,
9287 struct dwarf2_cu *cu)
9288 {
9289 struct delayed_method_info mi;
9290 mi.type = type;
9291 mi.fnfield_index = fnfield_index;
9292 mi.index = index;
9293 mi.name = name;
9294 mi.die = die;
9295 cu->method_list.push_back (mi);
9296 }
9297
9298 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9299 "const" / "volatile". If so, decrements LEN by the length of the
9300 modifier and return true. Otherwise return false. */
9301
9302 template<size_t N>
9303 static bool
9304 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9305 {
9306 size_t mod_len = sizeof (mod) - 1;
9307 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9308 {
9309 len -= mod_len;
9310 return true;
9311 }
9312 return false;
9313 }
9314
9315 /* Compute the physnames of any methods on the CU's method list.
9316
9317 The computation of method physnames is delayed in order to avoid the
9318 (bad) condition that one of the method's formal parameters is of an as yet
9319 incomplete type. */
9320
9321 static void
9322 compute_delayed_physnames (struct dwarf2_cu *cu)
9323 {
9324 /* Only C++ delays computing physnames. */
9325 if (cu->method_list.empty ())
9326 return;
9327 gdb_assert (cu->language == language_cplus);
9328
9329 for (const delayed_method_info &mi : cu->method_list)
9330 {
9331 const char *physname;
9332 struct fn_fieldlist *fn_flp
9333 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9334 physname = dwarf2_physname (mi.name, mi.die, cu);
9335 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9336 = physname ? physname : "";
9337
9338 /* Since there's no tag to indicate whether a method is a
9339 const/volatile overload, extract that information out of the
9340 demangled name. */
9341 if (physname != NULL)
9342 {
9343 size_t len = strlen (physname);
9344
9345 while (1)
9346 {
9347 if (physname[len] == ')') /* shortcut */
9348 break;
9349 else if (check_modifier (physname, len, " const"))
9350 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9351 else if (check_modifier (physname, len, " volatile"))
9352 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9353 else
9354 break;
9355 }
9356 }
9357 }
9358
9359 /* The list is no longer needed. */
9360 cu->method_list.clear ();
9361 }
9362
9363 /* Go objects should be embedded in a DW_TAG_module DIE,
9364 and it's not clear if/how imported objects will appear.
9365 To keep Go support simple until that's worked out,
9366 go back through what we've read and create something usable.
9367 We could do this while processing each DIE, and feels kinda cleaner,
9368 but that way is more invasive.
9369 This is to, for example, allow the user to type "p var" or "b main"
9370 without having to specify the package name, and allow lookups
9371 of module.object to work in contexts that use the expression
9372 parser. */
9373
9374 static void
9375 fixup_go_packaging (struct dwarf2_cu *cu)
9376 {
9377 gdb::unique_xmalloc_ptr<char> package_name;
9378 struct pending *list;
9379 int i;
9380
9381 for (list = *cu->get_builder ()->get_global_symbols ();
9382 list != NULL;
9383 list = list->next)
9384 {
9385 for (i = 0; i < list->nsyms; ++i)
9386 {
9387 struct symbol *sym = list->symbol[i];
9388
9389 if (sym->language () == language_go
9390 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9391 {
9392 gdb::unique_xmalloc_ptr<char> this_package_name
9393 (go_symbol_package_name (sym));
9394
9395 if (this_package_name == NULL)
9396 continue;
9397 if (package_name == NULL)
9398 package_name = std::move (this_package_name);
9399 else
9400 {
9401 struct objfile *objfile = cu->per_objfile->objfile;
9402 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9403 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9404 (symbol_symtab (sym) != NULL
9405 ? symtab_to_filename_for_display
9406 (symbol_symtab (sym))
9407 : objfile_name (objfile)),
9408 this_package_name.get (), package_name.get ());
9409 }
9410 }
9411 }
9412 }
9413
9414 if (package_name != NULL)
9415 {
9416 struct objfile *objfile = cu->per_objfile->objfile;
9417 const char *saved_package_name = objfile->intern (package_name.get ());
9418 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9419 saved_package_name);
9420 struct symbol *sym;
9421
9422 sym = new (&objfile->objfile_obstack) symbol;
9423 sym->set_language (language_go, &objfile->objfile_obstack);
9424 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9425 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9426 e.g., "main" finds the "main" module and not C's main(). */
9427 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9428 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9429 SYMBOL_TYPE (sym) = type;
9430
9431 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9432 }
9433 }
9434
9435 /* Allocate a fully-qualified name consisting of the two parts on the
9436 obstack. */
9437
9438 static const char *
9439 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9440 {
9441 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9442 }
9443
9444 /* A helper that allocates a variant part to attach to a Rust enum
9445 type. OBSTACK is where the results should be allocated. TYPE is
9446 the type we're processing. DISCRIMINANT_INDEX is the index of the
9447 discriminant. It must be the index of one of the fields of TYPE,
9448 or -1 to mean there is no discriminant (univariant enum).
9449 DEFAULT_INDEX is the index of the default field; or -1 if there is
9450 no default. RANGES is indexed by "effective" field number (the
9451 field index, but omitting the discriminant and default fields) and
9452 must hold the discriminant values used by the variants. Note that
9453 RANGES must have a lifetime at least as long as OBSTACK -- either
9454 already allocated on it, or static. */
9455
9456 static void
9457 alloc_rust_variant (struct obstack *obstack, struct type *type,
9458 int discriminant_index, int default_index,
9459 gdb::array_view<discriminant_range> ranges)
9460 {
9461 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. */
9462 gdb_assert (discriminant_index == -1
9463 || (discriminant_index >= 0
9464 && discriminant_index < type->num_fields ()));
9465 gdb_assert (default_index == -1
9466 || (default_index >= 0 && default_index < type->num_fields ()));
9467
9468 /* We have one variant for each non-discriminant field. */
9469 int n_variants = type->num_fields ();
9470 if (discriminant_index != -1)
9471 --n_variants;
9472
9473 variant *variants = new (obstack) variant[n_variants];
9474 int var_idx = 0;
9475 int range_idx = 0;
9476 for (int i = 0; i < type->num_fields (); ++i)
9477 {
9478 if (i == discriminant_index)
9479 continue;
9480
9481 variants[var_idx].first_field = i;
9482 variants[var_idx].last_field = i + 1;
9483
9484 /* The default field does not need a range, but other fields do.
9485 We skipped the discriminant above. */
9486 if (i != default_index)
9487 {
9488 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9489 ++range_idx;
9490 }
9491
9492 ++var_idx;
9493 }
9494
9495 gdb_assert (range_idx == ranges.size ());
9496 gdb_assert (var_idx == n_variants);
9497
9498 variant_part *part = new (obstack) variant_part;
9499 part->discriminant_index = discriminant_index;
9500 /* If there is no discriminant, then whether it is signed is of no
9501 consequence. */
9502 part->is_unsigned
9503 = (discriminant_index == -1
9504 ? false
9505 : type->field (discriminant_index).type ()->is_unsigned ());
9506 part->variants = gdb::array_view<variant> (variants, n_variants);
9507
9508 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9509 gdb::array_view<variant_part> *prop_value
9510 = new (storage) gdb::array_view<variant_part> (part, 1);
9511
9512 struct dynamic_prop prop;
9513 prop.set_variant_parts (prop_value);
9514
9515 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9516 }
9517
9518 /* Some versions of rustc emitted enums in an unusual way.
9519
9520 Ordinary enums were emitted as unions. The first element of each
9521 structure in the union was named "RUST$ENUM$DISR". This element
9522 held the discriminant.
9523
9524 These versions of Rust also implemented the "non-zero"
9525 optimization. When the enum had two values, and one is empty and
9526 the other holds a pointer that cannot be zero, the pointer is used
9527 as the discriminant, with a zero value meaning the empty variant.
9528 Here, the union's first member is of the form
9529 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9530 where the fieldnos are the indices of the fields that should be
9531 traversed in order to find the field (which may be several fields deep)
9532 and the variantname is the name of the variant of the case when the
9533 field is zero.
9534
9535 This function recognizes whether TYPE is of one of these forms,
9536 and, if so, smashes it to be a variant type. */
9537
9538 static void
9539 quirk_rust_enum (struct type *type, struct objfile *objfile)
9540 {
9541 gdb_assert (type->code () == TYPE_CODE_UNION);
9542
9543 /* We don't need to deal with empty enums. */
9544 if (type->num_fields () == 0)
9545 return;
9546
9547 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9548 if (type->num_fields () == 1
9549 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9550 {
9551 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9552
9553 /* Decode the field name to find the offset of the
9554 discriminant. */
9555 ULONGEST bit_offset = 0;
9556 struct type *field_type = type->field (0).type ();
9557 while (name[0] >= '0' && name[0] <= '9')
9558 {
9559 char *tail;
9560 unsigned long index = strtoul (name, &tail, 10);
9561 name = tail;
9562 if (*name != '$'
9563 || index >= field_type->num_fields ()
9564 || (TYPE_FIELD_LOC_KIND (field_type, index)
9565 != FIELD_LOC_KIND_BITPOS))
9566 {
9567 complaint (_("Could not parse Rust enum encoding string \"%s\""
9568 "[in module %s]"),
9569 TYPE_FIELD_NAME (type, 0),
9570 objfile_name (objfile));
9571 return;
9572 }
9573 ++name;
9574
9575 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9576 field_type = field_type->field (index).type ();
9577 }
9578
9579 /* Smash this type to be a structure type. We have to do this
9580 because the type has already been recorded. */
9581 type->set_code (TYPE_CODE_STRUCT);
9582 type->set_num_fields (3);
9583 /* Save the field we care about. */
9584 struct field saved_field = type->field (0);
9585 type->set_fields
9586 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9587
9588 /* Put the discriminant at index 0. */
9589 type->field (0).set_type (field_type);
9590 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9591 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9592 SET_FIELD_BITPOS (type->field (0), bit_offset);
9593
9594 /* The order of fields doesn't really matter, so put the real
9595 field at index 1 and the data-less field at index 2. */
9596 type->field (1) = saved_field;
9597 TYPE_FIELD_NAME (type, 1)
9598 = rust_last_path_segment (type->field (1).type ()->name ());
9599 type->field (1).type ()->set_name
9600 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9601 TYPE_FIELD_NAME (type, 1)));
9602
9603 const char *dataless_name
9604 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9605 name);
9606 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9607 dataless_name);
9608 type->field (2).set_type (dataless_type);
9609 /* NAME points into the original discriminant name, which
9610 already has the correct lifetime. */
9611 TYPE_FIELD_NAME (type, 2) = name;
9612 SET_FIELD_BITPOS (type->field (2), 0);
9613
9614 /* Indicate that this is a variant type. */
9615 static discriminant_range ranges[1] = { { 0, 0 } };
9616 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9617 }
9618 /* A union with a single anonymous field is probably an old-style
9619 univariant enum. */
9620 else if (type->num_fields () == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9621 {
9622 /* Smash this type to be a structure type. We have to do this
9623 because the type has already been recorded. */
9624 type->set_code (TYPE_CODE_STRUCT);
9625
9626 struct type *field_type = type->field (0).type ();
9627 const char *variant_name
9628 = rust_last_path_segment (field_type->name ());
9629 TYPE_FIELD_NAME (type, 0) = variant_name;
9630 field_type->set_name
9631 (rust_fully_qualify (&objfile->objfile_obstack,
9632 type->name (), variant_name));
9633
9634 alloc_rust_variant (&objfile->objfile_obstack, type, -1, 0, {});
9635 }
9636 else
9637 {
9638 struct type *disr_type = nullptr;
9639 for (int i = 0; i < type->num_fields (); ++i)
9640 {
9641 disr_type = type->field (i).type ();
9642
9643 if (disr_type->code () != TYPE_CODE_STRUCT)
9644 {
9645 /* All fields of a true enum will be structs. */
9646 return;
9647 }
9648 else if (disr_type->num_fields () == 0)
9649 {
9650 /* Could be data-less variant, so keep going. */
9651 disr_type = nullptr;
9652 }
9653 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9654 "RUST$ENUM$DISR") != 0)
9655 {
9656 /* Not a Rust enum. */
9657 return;
9658 }
9659 else
9660 {
9661 /* Found one. */
9662 break;
9663 }
9664 }
9665
9666 /* If we got here without a discriminant, then it's probably
9667 just a union. */
9668 if (disr_type == nullptr)
9669 return;
9670
9671 /* Smash this type to be a structure type. We have to do this
9672 because the type has already been recorded. */
9673 type->set_code (TYPE_CODE_STRUCT);
9674
9675 /* Make space for the discriminant field. */
9676 struct field *disr_field = &disr_type->field (0);
9677 field *new_fields
9678 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9679 * sizeof (struct field)));
9680 memcpy (new_fields + 1, type->fields (),
9681 type->num_fields () * sizeof (struct field));
9682 type->set_fields (new_fields);
9683 type->set_num_fields (type->num_fields () + 1);
9684
9685 /* Install the discriminant at index 0 in the union. */
9686 type->field (0) = *disr_field;
9687 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9688 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9689
9690 /* We need a way to find the correct discriminant given a
9691 variant name. For convenience we build a map here. */
9692 struct type *enum_type = disr_field->type ();
9693 std::unordered_map<std::string, ULONGEST> discriminant_map;
9694 for (int i = 0; i < enum_type->num_fields (); ++i)
9695 {
9696 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9697 {
9698 const char *name
9699 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9700 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9701 }
9702 }
9703
9704 int n_fields = type->num_fields ();
9705 /* We don't need a range entry for the discriminant, but we do
9706 need one for every other field, as there is no default
9707 variant. */
9708 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9709 discriminant_range,
9710 n_fields - 1);
9711 /* Skip the discriminant here. */
9712 for (int i = 1; i < n_fields; ++i)
9713 {
9714 /* Find the final word in the name of this variant's type.
9715 That name can be used to look up the correct
9716 discriminant. */
9717 const char *variant_name
9718 = rust_last_path_segment (type->field (i).type ()->name ());
9719
9720 auto iter = discriminant_map.find (variant_name);
9721 if (iter != discriminant_map.end ())
9722 {
9723 ranges[i - 1].low = iter->second;
9724 ranges[i - 1].high = iter->second;
9725 }
9726
9727 /* In Rust, each element should have the size of the
9728 enclosing enum. */
9729 TYPE_LENGTH (type->field (i).type ()) = TYPE_LENGTH (type);
9730
9731 /* Remove the discriminant field, if it exists. */
9732 struct type *sub_type = type->field (i).type ();
9733 if (sub_type->num_fields () > 0)
9734 {
9735 sub_type->set_num_fields (sub_type->num_fields () - 1);
9736 sub_type->set_fields (sub_type->fields () + 1);
9737 }
9738 TYPE_FIELD_NAME (type, i) = variant_name;
9739 sub_type->set_name
9740 (rust_fully_qualify (&objfile->objfile_obstack,
9741 type->name (), variant_name));
9742 }
9743
9744 /* Indicate that this is a variant type. */
9745 alloc_rust_variant (&objfile->objfile_obstack, type, 0, -1,
9746 gdb::array_view<discriminant_range> (ranges,
9747 n_fields - 1));
9748 }
9749 }
9750
9751 /* Rewrite some Rust unions to be structures with variants parts. */
9752
9753 static void
9754 rust_union_quirks (struct dwarf2_cu *cu)
9755 {
9756 gdb_assert (cu->language == language_rust);
9757 for (type *type_ : cu->rust_unions)
9758 quirk_rust_enum (type_, cu->per_objfile->objfile);
9759 /* We don't need this any more. */
9760 cu->rust_unions.clear ();
9761 }
9762
9763 /* See read.h. */
9764
9765 type_unit_group_unshareable *
9766 dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group)
9767 {
9768 auto iter = this->m_type_units.find (tu_group);
9769 if (iter != this->m_type_units.end ())
9770 return iter->second.get ();
9771
9772 type_unit_group_unshareable_up uniq (new type_unit_group_unshareable);
9773 type_unit_group_unshareable *result = uniq.get ();
9774 this->m_type_units[tu_group] = std::move (uniq);
9775 return result;
9776 }
9777
9778 struct type *
9779 dwarf2_per_objfile::get_type_for_signatured_type
9780 (signatured_type *sig_type) const
9781 {
9782 auto iter = this->m_type_map.find (sig_type);
9783 if (iter == this->m_type_map.end ())
9784 return nullptr;
9785
9786 return iter->second;
9787 }
9788
9789 void dwarf2_per_objfile::set_type_for_signatured_type
9790 (signatured_type *sig_type, struct type *type)
9791 {
9792 gdb_assert (this->m_type_map.find (sig_type) == this->m_type_map.end ());
9793
9794 this->m_type_map[sig_type] = type;
9795 }
9796
9797 /* A helper function for computing the list of all symbol tables
9798 included by PER_CU. */
9799
9800 static void
9801 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9802 htab_t all_children, htab_t all_type_symtabs,
9803 dwarf2_per_cu_data *per_cu,
9804 dwarf2_per_objfile *per_objfile,
9805 struct compunit_symtab *immediate_parent)
9806 {
9807 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9808 if (*slot != NULL)
9809 {
9810 /* This inclusion and its children have been processed. */
9811 return;
9812 }
9813
9814 *slot = per_cu;
9815
9816 /* Only add a CU if it has a symbol table. */
9817 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9818 if (cust != NULL)
9819 {
9820 /* If this is a type unit only add its symbol table if we haven't
9821 seen it yet (type unit per_cu's can share symtabs). */
9822 if (per_cu->is_debug_types)
9823 {
9824 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9825 if (*slot == NULL)
9826 {
9827 *slot = cust;
9828 result->push_back (cust);
9829 if (cust->user == NULL)
9830 cust->user = immediate_parent;
9831 }
9832 }
9833 else
9834 {
9835 result->push_back (cust);
9836 if (cust->user == NULL)
9837 cust->user = immediate_parent;
9838 }
9839 }
9840
9841 if (!per_cu->imported_symtabs_empty ())
9842 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9843 {
9844 recursively_compute_inclusions (result, all_children,
9845 all_type_symtabs, ptr, per_objfile,
9846 cust);
9847 }
9848 }
9849
9850 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9851 PER_CU. */
9852
9853 static void
9854 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9855 dwarf2_per_objfile *per_objfile)
9856 {
9857 gdb_assert (! per_cu->is_debug_types);
9858
9859 if (!per_cu->imported_symtabs_empty ())
9860 {
9861 int len;
9862 std::vector<compunit_symtab *> result_symtabs;
9863 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9864
9865 /* If we don't have a symtab, we can just skip this case. */
9866 if (cust == NULL)
9867 return;
9868
9869 htab_up all_children (htab_create_alloc (1, htab_hash_pointer,
9870 htab_eq_pointer,
9871 NULL, xcalloc, xfree));
9872 htab_up all_type_symtabs (htab_create_alloc (1, htab_hash_pointer,
9873 htab_eq_pointer,
9874 NULL, xcalloc, xfree));
9875
9876 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9877 {
9878 recursively_compute_inclusions (&result_symtabs, all_children.get (),
9879 all_type_symtabs.get (), ptr,
9880 per_objfile, cust);
9881 }
9882
9883 /* Now we have a transitive closure of all the included symtabs. */
9884 len = result_symtabs.size ();
9885 cust->includes
9886 = XOBNEWVEC (&per_objfile->objfile->objfile_obstack,
9887 struct compunit_symtab *, len + 1);
9888 memcpy (cust->includes, result_symtabs.data (),
9889 len * sizeof (compunit_symtab *));
9890 cust->includes[len] = NULL;
9891 }
9892 }
9893
9894 /* Compute the 'includes' field for the symtabs of all the CUs we just
9895 read. */
9896
9897 static void
9898 process_cu_includes (dwarf2_per_objfile *per_objfile)
9899 {
9900 for (dwarf2_per_cu_data *iter : per_objfile->per_bfd->just_read_cus)
9901 {
9902 if (! iter->is_debug_types)
9903 compute_compunit_symtab_includes (iter, per_objfile);
9904 }
9905
9906 per_objfile->per_bfd->just_read_cus.clear ();
9907 }
9908
9909 /* Generate full symbol information for CU, whose DIEs have
9910 already been loaded into memory. */
9911
9912 static void
9913 process_full_comp_unit (dwarf2_cu *cu, enum language pretend_language)
9914 {
9915 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9916 struct objfile *objfile = per_objfile->objfile;
9917 struct gdbarch *gdbarch = objfile->arch ();
9918 CORE_ADDR lowpc, highpc;
9919 struct compunit_symtab *cust;
9920 CORE_ADDR baseaddr;
9921 struct block *static_block;
9922 CORE_ADDR addr;
9923
9924 baseaddr = objfile->text_section_offset ();
9925
9926 /* Clear the list here in case something was left over. */
9927 cu->method_list.clear ();
9928
9929 cu->language = pretend_language;
9930 cu->language_defn = language_def (cu->language);
9931
9932 dwarf2_find_base_address (cu->dies, cu);
9933
9934 /* Do line number decoding in read_file_scope () */
9935 process_die (cu->dies, cu);
9936
9937 /* For now fudge the Go package. */
9938 if (cu->language == language_go)
9939 fixup_go_packaging (cu);
9940
9941 /* Now that we have processed all the DIEs in the CU, all the types
9942 should be complete, and it should now be safe to compute all of the
9943 physnames. */
9944 compute_delayed_physnames (cu);
9945
9946 if (cu->language == language_rust)
9947 rust_union_quirks (cu);
9948
9949 /* Some compilers don't define a DW_AT_high_pc attribute for the
9950 compilation unit. If the DW_AT_high_pc is missing, synthesize
9951 it, by scanning the DIE's below the compilation unit. */
9952 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9953
9954 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9955 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9956
9957 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9958 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9959 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9960 addrmap to help ensure it has an accurate map of pc values belonging to
9961 this comp unit. */
9962 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9963
9964 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9965 SECT_OFF_TEXT (objfile),
9966 0);
9967
9968 if (cust != NULL)
9969 {
9970 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9971
9972 /* Set symtab language to language from DW_AT_language. If the
9973 compilation is from a C file generated by language preprocessors, do
9974 not set the language if it was already deduced by start_subfile. */
9975 if (!(cu->language == language_c
9976 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9977 COMPUNIT_FILETABS (cust)->language = cu->language;
9978
9979 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9980 produce DW_AT_location with location lists but it can be possibly
9981 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9982 there were bugs in prologue debug info, fixed later in GCC-4.5
9983 by "unwind info for epilogues" patch (which is not directly related).
9984
9985 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9986 needed, it would be wrong due to missing DW_AT_producer there.
9987
9988 Still one can confuse GDB by using non-standard GCC compilation
9989 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9990 */
9991 if (cu->has_loclist && gcc_4_minor >= 5)
9992 cust->locations_valid = 1;
9993
9994 if (gcc_4_minor >= 5)
9995 cust->epilogue_unwind_valid = 1;
9996
9997 cust->call_site_htab = cu->call_site_htab;
9998 }
9999
10000 per_objfile->set_symtab (cu->per_cu, cust);
10001
10002 /* Push it for inclusion processing later. */
10003 per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu);
10004
10005 /* Not needed any more. */
10006 cu->reset_builder ();
10007 }
10008
10009 /* Generate full symbol information for type unit CU, whose DIEs have
10010 already been loaded into memory. */
10011
10012 static void
10013 process_full_type_unit (dwarf2_cu *cu,
10014 enum language pretend_language)
10015 {
10016 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10017 struct objfile *objfile = per_objfile->objfile;
10018 struct compunit_symtab *cust;
10019 struct signatured_type *sig_type;
10020
10021 gdb_assert (cu->per_cu->is_debug_types);
10022 sig_type = (struct signatured_type *) cu->per_cu;
10023
10024 /* Clear the list here in case something was left over. */
10025 cu->method_list.clear ();
10026
10027 cu->language = pretend_language;
10028 cu->language_defn = language_def (cu->language);
10029
10030 /* The symbol tables are set up in read_type_unit_scope. */
10031 process_die (cu->dies, cu);
10032
10033 /* For now fudge the Go package. */
10034 if (cu->language == language_go)
10035 fixup_go_packaging (cu);
10036
10037 /* Now that we have processed all the DIEs in the CU, all the types
10038 should be complete, and it should now be safe to compute all of the
10039 physnames. */
10040 compute_delayed_physnames (cu);
10041
10042 if (cu->language == language_rust)
10043 rust_union_quirks (cu);
10044
10045 /* TUs share symbol tables.
10046 If this is the first TU to use this symtab, complete the construction
10047 of it with end_expandable_symtab. Otherwise, complete the addition of
10048 this TU's symbols to the existing symtab. */
10049 type_unit_group_unshareable *tug_unshare =
10050 per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group);
10051 if (tug_unshare->compunit_symtab == NULL)
10052 {
10053 buildsym_compunit *builder = cu->get_builder ();
10054 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10055 tug_unshare->compunit_symtab = cust;
10056
10057 if (cust != NULL)
10058 {
10059 /* Set symtab language to language from DW_AT_language. If the
10060 compilation is from a C file generated by language preprocessors,
10061 do not set the language if it was already deduced by
10062 start_subfile. */
10063 if (!(cu->language == language_c
10064 && COMPUNIT_FILETABS (cust)->language != language_c))
10065 COMPUNIT_FILETABS (cust)->language = cu->language;
10066 }
10067 }
10068 else
10069 {
10070 cu->get_builder ()->augment_type_symtab ();
10071 cust = tug_unshare->compunit_symtab;
10072 }
10073
10074 per_objfile->set_symtab (cu->per_cu, cust);
10075
10076 /* Not needed any more. */
10077 cu->reset_builder ();
10078 }
10079
10080 /* Process an imported unit DIE. */
10081
10082 static void
10083 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10084 {
10085 struct attribute *attr;
10086
10087 /* For now we don't handle imported units in type units. */
10088 if (cu->per_cu->is_debug_types)
10089 {
10090 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10091 " supported in type units [in module %s]"),
10092 objfile_name (cu->per_objfile->objfile));
10093 }
10094
10095 attr = dwarf2_attr (die, DW_AT_import, cu);
10096 if (attr != NULL)
10097 {
10098 sect_offset sect_off = attr->get_ref_die_offset ();
10099 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10100 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10101 dwarf2_per_cu_data *per_cu
10102 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
10103
10104 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
10105 into another compilation unit, at root level. Regard this as a hint,
10106 and ignore it. */
10107 if (die->parent && die->parent->parent == NULL
10108 && per_cu->unit_type == DW_UT_compile
10109 && per_cu->lang == language_cplus)
10110 return;
10111
10112 /* If necessary, add it to the queue and load its DIEs. */
10113 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
10114 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
10115 false, cu->language);
10116
10117 cu->per_cu->imported_symtabs_push (per_cu);
10118 }
10119 }
10120
10121 /* RAII object that represents a process_die scope: i.e.,
10122 starts/finishes processing a DIE. */
10123 class process_die_scope
10124 {
10125 public:
10126 process_die_scope (die_info *die, dwarf2_cu *cu)
10127 : m_die (die), m_cu (cu)
10128 {
10129 /* We should only be processing DIEs not already in process. */
10130 gdb_assert (!m_die->in_process);
10131 m_die->in_process = true;
10132 }
10133
10134 ~process_die_scope ()
10135 {
10136 m_die->in_process = false;
10137
10138 /* If we're done processing the DIE for the CU that owns the line
10139 header, we don't need the line header anymore. */
10140 if (m_cu->line_header_die_owner == m_die)
10141 {
10142 delete m_cu->line_header;
10143 m_cu->line_header = NULL;
10144 m_cu->line_header_die_owner = NULL;
10145 }
10146 }
10147
10148 private:
10149 die_info *m_die;
10150 dwarf2_cu *m_cu;
10151 };
10152
10153 /* Process a die and its children. */
10154
10155 static void
10156 process_die (struct die_info *die, struct dwarf2_cu *cu)
10157 {
10158 process_die_scope scope (die, cu);
10159
10160 switch (die->tag)
10161 {
10162 case DW_TAG_padding:
10163 break;
10164 case DW_TAG_compile_unit:
10165 case DW_TAG_partial_unit:
10166 read_file_scope (die, cu);
10167 break;
10168 case DW_TAG_type_unit:
10169 read_type_unit_scope (die, cu);
10170 break;
10171 case DW_TAG_subprogram:
10172 /* Nested subprograms in Fortran get a prefix. */
10173 if (cu->language == language_fortran
10174 && die->parent != NULL
10175 && die->parent->tag == DW_TAG_subprogram)
10176 cu->processing_has_namespace_info = true;
10177 /* Fall through. */
10178 case DW_TAG_inlined_subroutine:
10179 read_func_scope (die, cu);
10180 break;
10181 case DW_TAG_lexical_block:
10182 case DW_TAG_try_block:
10183 case DW_TAG_catch_block:
10184 read_lexical_block_scope (die, cu);
10185 break;
10186 case DW_TAG_call_site:
10187 case DW_TAG_GNU_call_site:
10188 read_call_site_scope (die, cu);
10189 break;
10190 case DW_TAG_class_type:
10191 case DW_TAG_interface_type:
10192 case DW_TAG_structure_type:
10193 case DW_TAG_union_type:
10194 process_structure_scope (die, cu);
10195 break;
10196 case DW_TAG_enumeration_type:
10197 process_enumeration_scope (die, cu);
10198 break;
10199
10200 /* These dies have a type, but processing them does not create
10201 a symbol or recurse to process the children. Therefore we can
10202 read them on-demand through read_type_die. */
10203 case DW_TAG_subroutine_type:
10204 case DW_TAG_set_type:
10205 case DW_TAG_array_type:
10206 case DW_TAG_pointer_type:
10207 case DW_TAG_ptr_to_member_type:
10208 case DW_TAG_reference_type:
10209 case DW_TAG_rvalue_reference_type:
10210 case DW_TAG_string_type:
10211 break;
10212
10213 case DW_TAG_base_type:
10214 case DW_TAG_subrange_type:
10215 case DW_TAG_typedef:
10216 /* Add a typedef symbol for the type definition, if it has a
10217 DW_AT_name. */
10218 new_symbol (die, read_type_die (die, cu), cu);
10219 break;
10220 case DW_TAG_common_block:
10221 read_common_block (die, cu);
10222 break;
10223 case DW_TAG_common_inclusion:
10224 break;
10225 case DW_TAG_namespace:
10226 cu->processing_has_namespace_info = true;
10227 read_namespace (die, cu);
10228 break;
10229 case DW_TAG_module:
10230 cu->processing_has_namespace_info = true;
10231 read_module (die, cu);
10232 break;
10233 case DW_TAG_imported_declaration:
10234 cu->processing_has_namespace_info = true;
10235 if (read_namespace_alias (die, cu))
10236 break;
10237 /* The declaration is not a global namespace alias. */
10238 /* Fall through. */
10239 case DW_TAG_imported_module:
10240 cu->processing_has_namespace_info = true;
10241 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10242 || cu->language != language_fortran))
10243 complaint (_("Tag '%s' has unexpected children"),
10244 dwarf_tag_name (die->tag));
10245 read_import_statement (die, cu);
10246 break;
10247
10248 case DW_TAG_imported_unit:
10249 process_imported_unit_die (die, cu);
10250 break;
10251
10252 case DW_TAG_variable:
10253 read_variable (die, cu);
10254 break;
10255
10256 default:
10257 new_symbol (die, NULL, cu);
10258 break;
10259 }
10260 }
10261 \f
10262 /* DWARF name computation. */
10263
10264 /* A helper function for dwarf2_compute_name which determines whether DIE
10265 needs to have the name of the scope prepended to the name listed in the
10266 die. */
10267
10268 static int
10269 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10270 {
10271 struct attribute *attr;
10272
10273 switch (die->tag)
10274 {
10275 case DW_TAG_namespace:
10276 case DW_TAG_typedef:
10277 case DW_TAG_class_type:
10278 case DW_TAG_interface_type:
10279 case DW_TAG_structure_type:
10280 case DW_TAG_union_type:
10281 case DW_TAG_enumeration_type:
10282 case DW_TAG_enumerator:
10283 case DW_TAG_subprogram:
10284 case DW_TAG_inlined_subroutine:
10285 case DW_TAG_member:
10286 case DW_TAG_imported_declaration:
10287 return 1;
10288
10289 case DW_TAG_variable:
10290 case DW_TAG_constant:
10291 /* We only need to prefix "globally" visible variables. These include
10292 any variable marked with DW_AT_external or any variable that
10293 lives in a namespace. [Variables in anonymous namespaces
10294 require prefixing, but they are not DW_AT_external.] */
10295
10296 if (dwarf2_attr (die, DW_AT_specification, cu))
10297 {
10298 struct dwarf2_cu *spec_cu = cu;
10299
10300 return die_needs_namespace (die_specification (die, &spec_cu),
10301 spec_cu);
10302 }
10303
10304 attr = dwarf2_attr (die, DW_AT_external, cu);
10305 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10306 && die->parent->tag != DW_TAG_module)
10307 return 0;
10308 /* A variable in a lexical block of some kind does not need a
10309 namespace, even though in C++ such variables may be external
10310 and have a mangled name. */
10311 if (die->parent->tag == DW_TAG_lexical_block
10312 || die->parent->tag == DW_TAG_try_block
10313 || die->parent->tag == DW_TAG_catch_block
10314 || die->parent->tag == DW_TAG_subprogram)
10315 return 0;
10316 return 1;
10317
10318 default:
10319 return 0;
10320 }
10321 }
10322
10323 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10324 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10325 defined for the given DIE. */
10326
10327 static struct attribute *
10328 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10329 {
10330 struct attribute *attr;
10331
10332 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10333 if (attr == NULL)
10334 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10335
10336 return attr;
10337 }
10338
10339 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10340 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10341 defined for the given DIE. */
10342
10343 static const char *
10344 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10345 {
10346 const char *linkage_name;
10347
10348 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10349 if (linkage_name == NULL)
10350 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10351
10352 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10353 See https://github.com/rust-lang/rust/issues/32925. */
10354 if (cu->language == language_rust && linkage_name != NULL
10355 && strchr (linkage_name, '{') != NULL)
10356 linkage_name = NULL;
10357
10358 return linkage_name;
10359 }
10360
10361 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10362 compute the physname for the object, which include a method's:
10363 - formal parameters (C++),
10364 - receiver type (Go),
10365
10366 The term "physname" is a bit confusing.
10367 For C++, for example, it is the demangled name.
10368 For Go, for example, it's the mangled name.
10369
10370 For Ada, return the DIE's linkage name rather than the fully qualified
10371 name. PHYSNAME is ignored..
10372
10373 The result is allocated on the objfile->per_bfd's obstack and
10374 canonicalized. */
10375
10376 static const char *
10377 dwarf2_compute_name (const char *name,
10378 struct die_info *die, struct dwarf2_cu *cu,
10379 int physname)
10380 {
10381 struct objfile *objfile = cu->per_objfile->objfile;
10382
10383 if (name == NULL)
10384 name = dwarf2_name (die, cu);
10385
10386 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10387 but otherwise compute it by typename_concat inside GDB.
10388 FIXME: Actually this is not really true, or at least not always true.
10389 It's all very confusing. compute_and_set_names doesn't try to demangle
10390 Fortran names because there is no mangling standard. So new_symbol
10391 will set the demangled name to the result of dwarf2_full_name, and it is
10392 the demangled name that GDB uses if it exists. */
10393 if (cu->language == language_ada
10394 || (cu->language == language_fortran && physname))
10395 {
10396 /* For Ada unit, we prefer the linkage name over the name, as
10397 the former contains the exported name, which the user expects
10398 to be able to reference. Ideally, we want the user to be able
10399 to reference this entity using either natural or linkage name,
10400 but we haven't started looking at this enhancement yet. */
10401 const char *linkage_name = dw2_linkage_name (die, cu);
10402
10403 if (linkage_name != NULL)
10404 return linkage_name;
10405 }
10406
10407 /* These are the only languages we know how to qualify names in. */
10408 if (name != NULL
10409 && (cu->language == language_cplus
10410 || cu->language == language_fortran || cu->language == language_d
10411 || cu->language == language_rust))
10412 {
10413 if (die_needs_namespace (die, cu))
10414 {
10415 const char *prefix;
10416 const char *canonical_name = NULL;
10417
10418 string_file buf;
10419
10420 prefix = determine_prefix (die, cu);
10421 if (*prefix != '\0')
10422 {
10423 gdb::unique_xmalloc_ptr<char> prefixed_name
10424 (typename_concat (NULL, prefix, name, physname, cu));
10425
10426 buf.puts (prefixed_name.get ());
10427 }
10428 else
10429 buf.puts (name);
10430
10431 /* Template parameters may be specified in the DIE's DW_AT_name, or
10432 as children with DW_TAG_template_type_param or
10433 DW_TAG_value_type_param. If the latter, add them to the name
10434 here. If the name already has template parameters, then
10435 skip this step; some versions of GCC emit both, and
10436 it is more efficient to use the pre-computed name.
10437
10438 Something to keep in mind about this process: it is very
10439 unlikely, or in some cases downright impossible, to produce
10440 something that will match the mangled name of a function.
10441 If the definition of the function has the same debug info,
10442 we should be able to match up with it anyway. But fallbacks
10443 using the minimal symbol, for instance to find a method
10444 implemented in a stripped copy of libstdc++, will not work.
10445 If we do not have debug info for the definition, we will have to
10446 match them up some other way.
10447
10448 When we do name matching there is a related problem with function
10449 templates; two instantiated function templates are allowed to
10450 differ only by their return types, which we do not add here. */
10451
10452 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10453 {
10454 struct attribute *attr;
10455 struct die_info *child;
10456 int first = 1;
10457
10458 die->building_fullname = 1;
10459
10460 for (child = die->child; child != NULL; child = child->sibling)
10461 {
10462 struct type *type;
10463 LONGEST value;
10464 const gdb_byte *bytes;
10465 struct dwarf2_locexpr_baton *baton;
10466 struct value *v;
10467
10468 if (child->tag != DW_TAG_template_type_param
10469 && child->tag != DW_TAG_template_value_param)
10470 continue;
10471
10472 if (first)
10473 {
10474 buf.puts ("<");
10475 first = 0;
10476 }
10477 else
10478 buf.puts (", ");
10479
10480 attr = dwarf2_attr (child, DW_AT_type, cu);
10481 if (attr == NULL)
10482 {
10483 complaint (_("template parameter missing DW_AT_type"));
10484 buf.puts ("UNKNOWN_TYPE");
10485 continue;
10486 }
10487 type = die_type (child, cu);
10488
10489 if (child->tag == DW_TAG_template_type_param)
10490 {
10491 c_print_type (type, "", &buf, -1, 0, cu->language,
10492 &type_print_raw_options);
10493 continue;
10494 }
10495
10496 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10497 if (attr == NULL)
10498 {
10499 complaint (_("template parameter missing "
10500 "DW_AT_const_value"));
10501 buf.puts ("UNKNOWN_VALUE");
10502 continue;
10503 }
10504
10505 dwarf2_const_value_attr (attr, type, name,
10506 &cu->comp_unit_obstack, cu,
10507 &value, &bytes, &baton);
10508
10509 if (type->has_no_signedness ())
10510 /* GDB prints characters as NUMBER 'CHAR'. If that's
10511 changed, this can use value_print instead. */
10512 c_printchar (value, type, &buf);
10513 else
10514 {
10515 struct value_print_options opts;
10516
10517 if (baton != NULL)
10518 v = dwarf2_evaluate_loc_desc (type, NULL,
10519 baton->data,
10520 baton->size,
10521 baton->per_cu,
10522 baton->per_objfile);
10523 else if (bytes != NULL)
10524 {
10525 v = allocate_value (type);
10526 memcpy (value_contents_writeable (v), bytes,
10527 TYPE_LENGTH (type));
10528 }
10529 else
10530 v = value_from_longest (type, value);
10531
10532 /* Specify decimal so that we do not depend on
10533 the radix. */
10534 get_formatted_print_options (&opts, 'd');
10535 opts.raw = 1;
10536 value_print (v, &buf, &opts);
10537 release_value (v);
10538 }
10539 }
10540
10541 die->building_fullname = 0;
10542
10543 if (!first)
10544 {
10545 /* Close the argument list, with a space if necessary
10546 (nested templates). */
10547 if (!buf.empty () && buf.string ().back () == '>')
10548 buf.puts (" >");
10549 else
10550 buf.puts (">");
10551 }
10552 }
10553
10554 /* For C++ methods, append formal parameter type
10555 information, if PHYSNAME. */
10556
10557 if (physname && die->tag == DW_TAG_subprogram
10558 && cu->language == language_cplus)
10559 {
10560 struct type *type = read_type_die (die, cu);
10561
10562 c_type_print_args (type, &buf, 1, cu->language,
10563 &type_print_raw_options);
10564
10565 if (cu->language == language_cplus)
10566 {
10567 /* Assume that an artificial first parameter is
10568 "this", but do not crash if it is not. RealView
10569 marks unnamed (and thus unused) parameters as
10570 artificial; there is no way to differentiate
10571 the two cases. */
10572 if (type->num_fields () > 0
10573 && TYPE_FIELD_ARTIFICIAL (type, 0)
10574 && type->field (0).type ()->code () == TYPE_CODE_PTR
10575 && TYPE_CONST (TYPE_TARGET_TYPE (type->field (0).type ())))
10576 buf.puts (" const");
10577 }
10578 }
10579
10580 const std::string &intermediate_name = buf.string ();
10581
10582 if (cu->language == language_cplus)
10583 canonical_name
10584 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10585 objfile);
10586
10587 /* If we only computed INTERMEDIATE_NAME, or if
10588 INTERMEDIATE_NAME is already canonical, then we need to
10589 intern it. */
10590 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10591 name = objfile->intern (intermediate_name);
10592 else
10593 name = canonical_name;
10594 }
10595 }
10596
10597 return name;
10598 }
10599
10600 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10601 If scope qualifiers are appropriate they will be added. The result
10602 will be allocated on the storage_obstack, or NULL if the DIE does
10603 not have a name. NAME may either be from a previous call to
10604 dwarf2_name or NULL.
10605
10606 The output string will be canonicalized (if C++). */
10607
10608 static const char *
10609 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10610 {
10611 return dwarf2_compute_name (name, die, cu, 0);
10612 }
10613
10614 /* Construct a physname for the given DIE in CU. NAME may either be
10615 from a previous call to dwarf2_name or NULL. The result will be
10616 allocated on the objfile_objstack or NULL if the DIE does not have a
10617 name.
10618
10619 The output string will be canonicalized (if C++). */
10620
10621 static const char *
10622 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10623 {
10624 struct objfile *objfile = cu->per_objfile->objfile;
10625 const char *retval, *mangled = NULL, *canon = NULL;
10626 int need_copy = 1;
10627
10628 /* In this case dwarf2_compute_name is just a shortcut not building anything
10629 on its own. */
10630 if (!die_needs_namespace (die, cu))
10631 return dwarf2_compute_name (name, die, cu, 1);
10632
10633 if (cu->language != language_rust)
10634 mangled = dw2_linkage_name (die, cu);
10635
10636 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10637 has computed. */
10638 gdb::unique_xmalloc_ptr<char> demangled;
10639 if (mangled != NULL)
10640 {
10641
10642 if (language_def (cu->language)->store_sym_names_in_linkage_form_p ())
10643 {
10644 /* Do nothing (do not demangle the symbol name). */
10645 }
10646 else
10647 {
10648 /* Use DMGL_RET_DROP for C++ template functions to suppress
10649 their return type. It is easier for GDB users to search
10650 for such functions as `name(params)' than `long name(params)'.
10651 In such case the minimal symbol names do not match the full
10652 symbol names but for template functions there is never a need
10653 to look up their definition from their declaration so
10654 the only disadvantage remains the minimal symbol variant
10655 `long name(params)' does not have the proper inferior type. */
10656 demangled.reset (gdb_demangle (mangled,
10657 (DMGL_PARAMS | DMGL_ANSI
10658 | DMGL_RET_DROP)));
10659 }
10660 if (demangled)
10661 canon = demangled.get ();
10662 else
10663 {
10664 canon = mangled;
10665 need_copy = 0;
10666 }
10667 }
10668
10669 if (canon == NULL || check_physname)
10670 {
10671 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10672
10673 if (canon != NULL && strcmp (physname, canon) != 0)
10674 {
10675 /* It may not mean a bug in GDB. The compiler could also
10676 compute DW_AT_linkage_name incorrectly. But in such case
10677 GDB would need to be bug-to-bug compatible. */
10678
10679 complaint (_("Computed physname <%s> does not match demangled <%s> "
10680 "(from linkage <%s>) - DIE at %s [in module %s]"),
10681 physname, canon, mangled, sect_offset_str (die->sect_off),
10682 objfile_name (objfile));
10683
10684 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10685 is available here - over computed PHYSNAME. It is safer
10686 against both buggy GDB and buggy compilers. */
10687
10688 retval = canon;
10689 }
10690 else
10691 {
10692 retval = physname;
10693 need_copy = 0;
10694 }
10695 }
10696 else
10697 retval = canon;
10698
10699 if (need_copy)
10700 retval = objfile->intern (retval);
10701
10702 return retval;
10703 }
10704
10705 /* Inspect DIE in CU for a namespace alias. If one exists, record
10706 a new symbol for it.
10707
10708 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10709
10710 static int
10711 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10712 {
10713 struct attribute *attr;
10714
10715 /* If the die does not have a name, this is not a namespace
10716 alias. */
10717 attr = dwarf2_attr (die, DW_AT_name, cu);
10718 if (attr != NULL)
10719 {
10720 int num;
10721 struct die_info *d = die;
10722 struct dwarf2_cu *imported_cu = cu;
10723
10724 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10725 keep inspecting DIEs until we hit the underlying import. */
10726 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10727 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10728 {
10729 attr = dwarf2_attr (d, DW_AT_import, cu);
10730 if (attr == NULL)
10731 break;
10732
10733 d = follow_die_ref (d, attr, &imported_cu);
10734 if (d->tag != DW_TAG_imported_declaration)
10735 break;
10736 }
10737
10738 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10739 {
10740 complaint (_("DIE at %s has too many recursively imported "
10741 "declarations"), sect_offset_str (d->sect_off));
10742 return 0;
10743 }
10744
10745 if (attr != NULL)
10746 {
10747 struct type *type;
10748 sect_offset sect_off = attr->get_ref_die_offset ();
10749
10750 type = get_die_type_at_offset (sect_off, cu->per_cu, cu->per_objfile);
10751 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10752 {
10753 /* This declaration is a global namespace alias. Add
10754 a symbol for it whose type is the aliased namespace. */
10755 new_symbol (die, type, cu);
10756 return 1;
10757 }
10758 }
10759 }
10760
10761 return 0;
10762 }
10763
10764 /* Return the using directives repository (global or local?) to use in the
10765 current context for CU.
10766
10767 For Ada, imported declarations can materialize renamings, which *may* be
10768 global. However it is impossible (for now?) in DWARF to distinguish
10769 "external" imported declarations and "static" ones. As all imported
10770 declarations seem to be static in all other languages, make them all CU-wide
10771 global only in Ada. */
10772
10773 static struct using_direct **
10774 using_directives (struct dwarf2_cu *cu)
10775 {
10776 if (cu->language == language_ada
10777 && cu->get_builder ()->outermost_context_p ())
10778 return cu->get_builder ()->get_global_using_directives ();
10779 else
10780 return cu->get_builder ()->get_local_using_directives ();
10781 }
10782
10783 /* Read the import statement specified by the given die and record it. */
10784
10785 static void
10786 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10787 {
10788 struct objfile *objfile = cu->per_objfile->objfile;
10789 struct attribute *import_attr;
10790 struct die_info *imported_die, *child_die;
10791 struct dwarf2_cu *imported_cu;
10792 const char *imported_name;
10793 const char *imported_name_prefix;
10794 const char *canonical_name;
10795 const char *import_alias;
10796 const char *imported_declaration = NULL;
10797 const char *import_prefix;
10798 std::vector<const char *> excludes;
10799
10800 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10801 if (import_attr == NULL)
10802 {
10803 complaint (_("Tag '%s' has no DW_AT_import"),
10804 dwarf_tag_name (die->tag));
10805 return;
10806 }
10807
10808 imported_cu = cu;
10809 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10810 imported_name = dwarf2_name (imported_die, imported_cu);
10811 if (imported_name == NULL)
10812 {
10813 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10814
10815 The import in the following code:
10816 namespace A
10817 {
10818 typedef int B;
10819 }
10820
10821 int main ()
10822 {
10823 using A::B;
10824 B b;
10825 return b;
10826 }
10827
10828 ...
10829 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10830 <52> DW_AT_decl_file : 1
10831 <53> DW_AT_decl_line : 6
10832 <54> DW_AT_import : <0x75>
10833 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10834 <59> DW_AT_name : B
10835 <5b> DW_AT_decl_file : 1
10836 <5c> DW_AT_decl_line : 2
10837 <5d> DW_AT_type : <0x6e>
10838 ...
10839 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10840 <76> DW_AT_byte_size : 4
10841 <77> DW_AT_encoding : 5 (signed)
10842
10843 imports the wrong die ( 0x75 instead of 0x58 ).
10844 This case will be ignored until the gcc bug is fixed. */
10845 return;
10846 }
10847
10848 /* Figure out the local name after import. */
10849 import_alias = dwarf2_name (die, cu);
10850
10851 /* Figure out where the statement is being imported to. */
10852 import_prefix = determine_prefix (die, cu);
10853
10854 /* Figure out what the scope of the imported die is and prepend it
10855 to the name of the imported die. */
10856 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10857
10858 if (imported_die->tag != DW_TAG_namespace
10859 && imported_die->tag != DW_TAG_module)
10860 {
10861 imported_declaration = imported_name;
10862 canonical_name = imported_name_prefix;
10863 }
10864 else if (strlen (imported_name_prefix) > 0)
10865 canonical_name = obconcat (&objfile->objfile_obstack,
10866 imported_name_prefix,
10867 (cu->language == language_d ? "." : "::"),
10868 imported_name, (char *) NULL);
10869 else
10870 canonical_name = imported_name;
10871
10872 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10873 for (child_die = die->child; child_die && child_die->tag;
10874 child_die = child_die->sibling)
10875 {
10876 /* DWARF-4: A Fortran use statement with a “rename list” may be
10877 represented by an imported module entry with an import attribute
10878 referring to the module and owned entries corresponding to those
10879 entities that are renamed as part of being imported. */
10880
10881 if (child_die->tag != DW_TAG_imported_declaration)
10882 {
10883 complaint (_("child DW_TAG_imported_declaration expected "
10884 "- DIE at %s [in module %s]"),
10885 sect_offset_str (child_die->sect_off),
10886 objfile_name (objfile));
10887 continue;
10888 }
10889
10890 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10891 if (import_attr == NULL)
10892 {
10893 complaint (_("Tag '%s' has no DW_AT_import"),
10894 dwarf_tag_name (child_die->tag));
10895 continue;
10896 }
10897
10898 imported_cu = cu;
10899 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10900 &imported_cu);
10901 imported_name = dwarf2_name (imported_die, imported_cu);
10902 if (imported_name == NULL)
10903 {
10904 complaint (_("child DW_TAG_imported_declaration has unknown "
10905 "imported name - DIE at %s [in module %s]"),
10906 sect_offset_str (child_die->sect_off),
10907 objfile_name (objfile));
10908 continue;
10909 }
10910
10911 excludes.push_back (imported_name);
10912
10913 process_die (child_die, cu);
10914 }
10915
10916 add_using_directive (using_directives (cu),
10917 import_prefix,
10918 canonical_name,
10919 import_alias,
10920 imported_declaration,
10921 excludes,
10922 0,
10923 &objfile->objfile_obstack);
10924 }
10925
10926 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10927 types, but gives them a size of zero. Starting with version 14,
10928 ICC is compatible with GCC. */
10929
10930 static bool
10931 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10932 {
10933 if (!cu->checked_producer)
10934 check_producer (cu);
10935
10936 return cu->producer_is_icc_lt_14;
10937 }
10938
10939 /* ICC generates a DW_AT_type for C void functions. This was observed on
10940 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10941 which says that void functions should not have a DW_AT_type. */
10942
10943 static bool
10944 producer_is_icc (struct dwarf2_cu *cu)
10945 {
10946 if (!cu->checked_producer)
10947 check_producer (cu);
10948
10949 return cu->producer_is_icc;
10950 }
10951
10952 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10953 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10954 this, it was first present in GCC release 4.3.0. */
10955
10956 static bool
10957 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10958 {
10959 if (!cu->checked_producer)
10960 check_producer (cu);
10961
10962 return cu->producer_is_gcc_lt_4_3;
10963 }
10964
10965 static file_and_directory
10966 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10967 {
10968 file_and_directory res;
10969
10970 /* Find the filename. Do not use dwarf2_name here, since the filename
10971 is not a source language identifier. */
10972 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10973 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10974
10975 if (res.comp_dir == NULL
10976 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10977 && IS_ABSOLUTE_PATH (res.name))
10978 {
10979 res.comp_dir_storage = ldirname (res.name);
10980 if (!res.comp_dir_storage.empty ())
10981 res.comp_dir = res.comp_dir_storage.c_str ();
10982 }
10983 if (res.comp_dir != NULL)
10984 {
10985 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10986 directory, get rid of it. */
10987 const char *cp = strchr (res.comp_dir, ':');
10988
10989 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10990 res.comp_dir = cp + 1;
10991 }
10992
10993 if (res.name == NULL)
10994 res.name = "<unknown>";
10995
10996 return res;
10997 }
10998
10999 /* Handle DW_AT_stmt_list for a compilation unit.
11000 DIE is the DW_TAG_compile_unit die for CU.
11001 COMP_DIR is the compilation directory. LOWPC is passed to
11002 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11003
11004 static void
11005 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11006 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11007 {
11008 dwarf2_per_objfile *per_objfile = cu->per_objfile;
11009 struct attribute *attr;
11010 struct line_header line_header_local;
11011 hashval_t line_header_local_hash;
11012 void **slot;
11013 int decode_mapping;
11014
11015 gdb_assert (! cu->per_cu->is_debug_types);
11016
11017 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11018 if (attr == NULL || !attr->form_is_unsigned ())
11019 return;
11020
11021 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
11022
11023 /* The line header hash table is only created if needed (it exists to
11024 prevent redundant reading of the line table for partial_units).
11025 If we're given a partial_unit, we'll need it. If we're given a
11026 compile_unit, then use the line header hash table if it's already
11027 created, but don't create one just yet. */
11028
11029 if (per_objfile->line_header_hash == NULL
11030 && die->tag == DW_TAG_partial_unit)
11031 {
11032 per_objfile->line_header_hash
11033 .reset (htab_create_alloc (127, line_header_hash_voidp,
11034 line_header_eq_voidp,
11035 free_line_header_voidp,
11036 xcalloc, xfree));
11037 }
11038
11039 line_header_local.sect_off = line_offset;
11040 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11041 line_header_local_hash = line_header_hash (&line_header_local);
11042 if (per_objfile->line_header_hash != NULL)
11043 {
11044 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
11045 &line_header_local,
11046 line_header_local_hash, NO_INSERT);
11047
11048 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11049 is not present in *SLOT (since if there is something in *SLOT then
11050 it will be for a partial_unit). */
11051 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11052 {
11053 gdb_assert (*slot != NULL);
11054 cu->line_header = (struct line_header *) *slot;
11055 return;
11056 }
11057 }
11058
11059 /* dwarf_decode_line_header does not yet provide sufficient information.
11060 We always have to call also dwarf_decode_lines for it. */
11061 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11062 if (lh == NULL)
11063 return;
11064
11065 cu->line_header = lh.release ();
11066 cu->line_header_die_owner = die;
11067
11068 if (per_objfile->line_header_hash == NULL)
11069 slot = NULL;
11070 else
11071 {
11072 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
11073 &line_header_local,
11074 line_header_local_hash, INSERT);
11075 gdb_assert (slot != NULL);
11076 }
11077 if (slot != NULL && *slot == NULL)
11078 {
11079 /* This newly decoded line number information unit will be owned
11080 by line_header_hash hash table. */
11081 *slot = cu->line_header;
11082 cu->line_header_die_owner = NULL;
11083 }
11084 else
11085 {
11086 /* We cannot free any current entry in (*slot) as that struct line_header
11087 may be already used by multiple CUs. Create only temporary decoded
11088 line_header for this CU - it may happen at most once for each line
11089 number information unit. And if we're not using line_header_hash
11090 then this is what we want as well. */
11091 gdb_assert (die->tag != DW_TAG_partial_unit);
11092 }
11093 decode_mapping = (die->tag != DW_TAG_partial_unit);
11094 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11095 decode_mapping);
11096
11097 }
11098
11099 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11100
11101 static void
11102 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11103 {
11104 dwarf2_per_objfile *per_objfile = cu->per_objfile;
11105 struct objfile *objfile = per_objfile->objfile;
11106 struct gdbarch *gdbarch = objfile->arch ();
11107 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11108 CORE_ADDR highpc = ((CORE_ADDR) 0);
11109 struct attribute *attr;
11110 struct die_info *child_die;
11111 CORE_ADDR baseaddr;
11112
11113 prepare_one_comp_unit (cu, die, cu->language);
11114 baseaddr = objfile->text_section_offset ();
11115
11116 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11117
11118 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11119 from finish_block. */
11120 if (lowpc == ((CORE_ADDR) -1))
11121 lowpc = highpc;
11122 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11123
11124 file_and_directory fnd = find_file_and_directory (die, cu);
11125
11126 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11127 standardised yet. As a workaround for the language detection we fall
11128 back to the DW_AT_producer string. */
11129 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11130 cu->language = language_opencl;
11131
11132 /* Similar hack for Go. */
11133 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11134 set_cu_language (DW_LANG_Go, cu);
11135
11136 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11137
11138 /* Decode line number information if present. We do this before
11139 processing child DIEs, so that the line header table is available
11140 for DW_AT_decl_file. */
11141 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11142
11143 /* Process all dies in compilation unit. */
11144 if (die->child != NULL)
11145 {
11146 child_die = die->child;
11147 while (child_die && child_die->tag)
11148 {
11149 process_die (child_die, cu);
11150 child_die = child_die->sibling;
11151 }
11152 }
11153
11154 /* Decode macro information, if present. Dwarf 2 macro information
11155 refers to information in the line number info statement program
11156 header, so we can only read it if we've read the header
11157 successfully. */
11158 attr = dwarf2_attr (die, DW_AT_macros, cu);
11159 if (attr == NULL)
11160 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11161 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
11162 {
11163 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11164 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11165
11166 dwarf_decode_macros (cu, attr->as_unsigned (), 1);
11167 }
11168 else
11169 {
11170 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11171 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
11172 {
11173 unsigned int macro_offset = attr->as_unsigned ();
11174
11175 dwarf_decode_macros (cu, macro_offset, 0);
11176 }
11177 }
11178 }
11179
11180 void
11181 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11182 {
11183 struct type_unit_group *tu_group;
11184 int first_time;
11185 struct attribute *attr;
11186 unsigned int i;
11187 struct signatured_type *sig_type;
11188
11189 gdb_assert (per_cu->is_debug_types);
11190 sig_type = (struct signatured_type *) per_cu;
11191
11192 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11193
11194 /* If we're using .gdb_index (includes -readnow) then
11195 per_cu->type_unit_group may not have been set up yet. */
11196 if (sig_type->type_unit_group == NULL)
11197 sig_type->type_unit_group = get_type_unit_group (this, attr);
11198 tu_group = sig_type->type_unit_group;
11199
11200 /* If we've already processed this stmt_list there's no real need to
11201 do it again, we could fake it and just recreate the part we need
11202 (file name,index -> symtab mapping). If data shows this optimization
11203 is useful we can do it then. */
11204 type_unit_group_unshareable *tug_unshare
11205 = per_objfile->get_type_unit_group_unshareable (tu_group);
11206 first_time = tug_unshare->compunit_symtab == NULL;
11207
11208 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11209 debug info. */
11210 line_header_up lh;
11211 if (attr != NULL && attr->form_is_unsigned ())
11212 {
11213 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
11214 lh = dwarf_decode_line_header (line_offset, this);
11215 }
11216 if (lh == NULL)
11217 {
11218 if (first_time)
11219 start_symtab ("", NULL, 0);
11220 else
11221 {
11222 gdb_assert (tug_unshare->symtabs == NULL);
11223 gdb_assert (m_builder == nullptr);
11224 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11225 m_builder.reset (new struct buildsym_compunit
11226 (COMPUNIT_OBJFILE (cust), "",
11227 COMPUNIT_DIRNAME (cust),
11228 compunit_language (cust),
11229 0, cust));
11230 list_in_scope = get_builder ()->get_file_symbols ();
11231 }
11232 return;
11233 }
11234
11235 line_header = lh.release ();
11236 line_header_die_owner = die;
11237
11238 if (first_time)
11239 {
11240 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11241
11242 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11243 still initializing it, and our caller (a few levels up)
11244 process_full_type_unit still needs to know if this is the first
11245 time. */
11246
11247 tug_unshare->symtabs
11248 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
11249 struct symtab *, line_header->file_names_size ());
11250
11251 auto &file_names = line_header->file_names ();
11252 for (i = 0; i < file_names.size (); ++i)
11253 {
11254 file_entry &fe = file_names[i];
11255 dwarf2_start_subfile (this, fe.name,
11256 fe.include_dir (line_header));
11257 buildsym_compunit *b = get_builder ();
11258 if (b->get_current_subfile ()->symtab == NULL)
11259 {
11260 /* NOTE: start_subfile will recognize when it's been
11261 passed a file it has already seen. So we can't
11262 assume there's a simple mapping from
11263 cu->line_header->file_names to subfiles, plus
11264 cu->line_header->file_names may contain dups. */
11265 b->get_current_subfile ()->symtab
11266 = allocate_symtab (cust, b->get_current_subfile ()->name);
11267 }
11268
11269 fe.symtab = b->get_current_subfile ()->symtab;
11270 tug_unshare->symtabs[i] = fe.symtab;
11271 }
11272 }
11273 else
11274 {
11275 gdb_assert (m_builder == nullptr);
11276 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11277 m_builder.reset (new struct buildsym_compunit
11278 (COMPUNIT_OBJFILE (cust), "",
11279 COMPUNIT_DIRNAME (cust),
11280 compunit_language (cust),
11281 0, cust));
11282 list_in_scope = get_builder ()->get_file_symbols ();
11283
11284 auto &file_names = line_header->file_names ();
11285 for (i = 0; i < file_names.size (); ++i)
11286 {
11287 file_entry &fe = file_names[i];
11288 fe.symtab = tug_unshare->symtabs[i];
11289 }
11290 }
11291
11292 /* The main symtab is allocated last. Type units don't have DW_AT_name
11293 so they don't have a "real" (so to speak) symtab anyway.
11294 There is later code that will assign the main symtab to all symbols
11295 that don't have one. We need to handle the case of a symbol with a
11296 missing symtab (DW_AT_decl_file) anyway. */
11297 }
11298
11299 /* Process DW_TAG_type_unit.
11300 For TUs we want to skip the first top level sibling if it's not the
11301 actual type being defined by this TU. In this case the first top
11302 level sibling is there to provide context only. */
11303
11304 static void
11305 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11306 {
11307 struct die_info *child_die;
11308
11309 prepare_one_comp_unit (cu, die, language_minimal);
11310
11311 /* Initialize (or reinitialize) the machinery for building symtabs.
11312 We do this before processing child DIEs, so that the line header table
11313 is available for DW_AT_decl_file. */
11314 cu->setup_type_unit_groups (die);
11315
11316 if (die->child != NULL)
11317 {
11318 child_die = die->child;
11319 while (child_die && child_die->tag)
11320 {
11321 process_die (child_die, cu);
11322 child_die = child_die->sibling;
11323 }
11324 }
11325 }
11326 \f
11327 /* DWO/DWP files.
11328
11329 http://gcc.gnu.org/wiki/DebugFission
11330 http://gcc.gnu.org/wiki/DebugFissionDWP
11331
11332 To simplify handling of both DWO files ("object" files with the DWARF info)
11333 and DWP files (a file with the DWOs packaged up into one file), we treat
11334 DWP files as having a collection of virtual DWO files. */
11335
11336 static hashval_t
11337 hash_dwo_file (const void *item)
11338 {
11339 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11340 hashval_t hash;
11341
11342 hash = htab_hash_string (dwo_file->dwo_name);
11343 if (dwo_file->comp_dir != NULL)
11344 hash += htab_hash_string (dwo_file->comp_dir);
11345 return hash;
11346 }
11347
11348 static int
11349 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11350 {
11351 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11352 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11353
11354 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11355 return 0;
11356 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11357 return lhs->comp_dir == rhs->comp_dir;
11358 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11359 }
11360
11361 /* Allocate a hash table for DWO files. */
11362
11363 static htab_up
11364 allocate_dwo_file_hash_table ()
11365 {
11366 auto delete_dwo_file = [] (void *item)
11367 {
11368 struct dwo_file *dwo_file = (struct dwo_file *) item;
11369
11370 delete dwo_file;
11371 };
11372
11373 return htab_up (htab_create_alloc (41,
11374 hash_dwo_file,
11375 eq_dwo_file,
11376 delete_dwo_file,
11377 xcalloc, xfree));
11378 }
11379
11380 /* Lookup DWO file DWO_NAME. */
11381
11382 static void **
11383 lookup_dwo_file_slot (dwarf2_per_objfile *per_objfile,
11384 const char *dwo_name,
11385 const char *comp_dir)
11386 {
11387 struct dwo_file find_entry;
11388 void **slot;
11389
11390 if (per_objfile->per_bfd->dwo_files == NULL)
11391 per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
11392
11393 find_entry.dwo_name = dwo_name;
11394 find_entry.comp_dir = comp_dir;
11395 slot = htab_find_slot (per_objfile->per_bfd->dwo_files.get (), &find_entry,
11396 INSERT);
11397
11398 return slot;
11399 }
11400
11401 static hashval_t
11402 hash_dwo_unit (const void *item)
11403 {
11404 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11405
11406 /* This drops the top 32 bits of the id, but is ok for a hash. */
11407 return dwo_unit->signature;
11408 }
11409
11410 static int
11411 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11412 {
11413 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11414 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11415
11416 /* The signature is assumed to be unique within the DWO file.
11417 So while object file CU dwo_id's always have the value zero,
11418 that's OK, assuming each object file DWO file has only one CU,
11419 and that's the rule for now. */
11420 return lhs->signature == rhs->signature;
11421 }
11422
11423 /* Allocate a hash table for DWO CUs,TUs.
11424 There is one of these tables for each of CUs,TUs for each DWO file. */
11425
11426 static htab_up
11427 allocate_dwo_unit_table ()
11428 {
11429 /* Start out with a pretty small number.
11430 Generally DWO files contain only one CU and maybe some TUs. */
11431 return htab_up (htab_create_alloc (3,
11432 hash_dwo_unit,
11433 eq_dwo_unit,
11434 NULL, xcalloc, xfree));
11435 }
11436
11437 /* die_reader_func for create_dwo_cu. */
11438
11439 static void
11440 create_dwo_cu_reader (const struct die_reader_specs *reader,
11441 const gdb_byte *info_ptr,
11442 struct die_info *comp_unit_die,
11443 struct dwo_file *dwo_file,
11444 struct dwo_unit *dwo_unit)
11445 {
11446 struct dwarf2_cu *cu = reader->cu;
11447 sect_offset sect_off = cu->per_cu->sect_off;
11448 struct dwarf2_section_info *section = cu->per_cu->section;
11449
11450 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11451 if (!signature.has_value ())
11452 {
11453 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11454 " its dwo_id [in module %s]"),
11455 sect_offset_str (sect_off), dwo_file->dwo_name);
11456 return;
11457 }
11458
11459 dwo_unit->dwo_file = dwo_file;
11460 dwo_unit->signature = *signature;
11461 dwo_unit->section = section;
11462 dwo_unit->sect_off = sect_off;
11463 dwo_unit->length = cu->per_cu->length;
11464
11465 if (dwarf_read_debug)
11466 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11467 sect_offset_str (sect_off),
11468 hex_string (dwo_unit->signature));
11469 }
11470
11471 /* Create the dwo_units for the CUs in a DWO_FILE.
11472 Note: This function processes DWO files only, not DWP files. */
11473
11474 static void
11475 create_cus_hash_table (dwarf2_per_objfile *per_objfile,
11476 dwarf2_cu *cu, struct dwo_file &dwo_file,
11477 dwarf2_section_info &section, htab_up &cus_htab)
11478 {
11479 struct objfile *objfile = per_objfile->objfile;
11480 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
11481 const gdb_byte *info_ptr, *end_ptr;
11482
11483 section.read (objfile);
11484 info_ptr = section.buffer;
11485
11486 if (info_ptr == NULL)
11487 return;
11488
11489 if (dwarf_read_debug)
11490 {
11491 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11492 section.get_name (),
11493 section.get_file_name ());
11494 }
11495
11496 end_ptr = info_ptr + section.size;
11497 while (info_ptr < end_ptr)
11498 {
11499 struct dwarf2_per_cu_data per_cu;
11500 struct dwo_unit read_unit {};
11501 struct dwo_unit *dwo_unit;
11502 void **slot;
11503 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11504
11505 memset (&per_cu, 0, sizeof (per_cu));
11506 per_cu.per_bfd = per_bfd;
11507 per_cu.is_debug_types = 0;
11508 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11509 per_cu.section = &section;
11510
11511 cutu_reader reader (&per_cu, per_objfile, cu, &dwo_file);
11512 if (!reader.dummy_p)
11513 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11514 &dwo_file, &read_unit);
11515 info_ptr += per_cu.length;
11516
11517 // If the unit could not be parsed, skip it.
11518 if (read_unit.dwo_file == NULL)
11519 continue;
11520
11521 if (cus_htab == NULL)
11522 cus_htab = allocate_dwo_unit_table ();
11523
11524 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
11525 struct dwo_unit);
11526 *dwo_unit = read_unit;
11527 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11528 gdb_assert (slot != NULL);
11529 if (*slot != NULL)
11530 {
11531 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11532 sect_offset dup_sect_off = dup_cu->sect_off;
11533
11534 complaint (_("debug cu entry at offset %s is duplicate to"
11535 " the entry at offset %s, signature %s"),
11536 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11537 hex_string (dwo_unit->signature));
11538 }
11539 *slot = (void *)dwo_unit;
11540 }
11541 }
11542
11543 /* DWP file .debug_{cu,tu}_index section format:
11544 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11545 [ref: http://dwarfstd.org/doc/DWARF5.pdf, sect 7.3.5 "DWARF Package Files"]
11546
11547 DWP Versions 1 & 2 are older, pre-standard format versions. The first
11548 officially standard DWP format was published with DWARF v5 and is called
11549 Version 5. There are no versions 3 or 4.
11550
11551 DWP Version 1:
11552
11553 Both index sections have the same format, and serve to map a 64-bit
11554 signature to a set of section numbers. Each section begins with a header,
11555 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11556 indexes, and a pool of 32-bit section numbers. The index sections will be
11557 aligned at 8-byte boundaries in the file.
11558
11559 The index section header consists of:
11560
11561 V, 32 bit version number
11562 -, 32 bits unused
11563 N, 32 bit number of compilation units or type units in the index
11564 M, 32 bit number of slots in the hash table
11565
11566 Numbers are recorded using the byte order of the application binary.
11567
11568 The hash table begins at offset 16 in the section, and consists of an array
11569 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11570 order of the application binary). Unused slots in the hash table are 0.
11571 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11572
11573 The parallel table begins immediately after the hash table
11574 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11575 array of 32-bit indexes (using the byte order of the application binary),
11576 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11577 table contains a 32-bit index into the pool of section numbers. For unused
11578 hash table slots, the corresponding entry in the parallel table will be 0.
11579
11580 The pool of section numbers begins immediately following the hash table
11581 (at offset 16 + 12 * M from the beginning of the section). The pool of
11582 section numbers consists of an array of 32-bit words (using the byte order
11583 of the application binary). Each item in the array is indexed starting
11584 from 0. The hash table entry provides the index of the first section
11585 number in the set. Additional section numbers in the set follow, and the
11586 set is terminated by a 0 entry (section number 0 is not used in ELF).
11587
11588 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11589 section must be the first entry in the set, and the .debug_abbrev.dwo must
11590 be the second entry. Other members of the set may follow in any order.
11591
11592 ---
11593
11594 DWP Versions 2 and 5:
11595
11596 DWP Versions 2 and 5 combine all the .debug_info, etc. sections into one,
11597 and the entries in the index tables are now offsets into these sections.
11598 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11599 section.
11600
11601 Index Section Contents:
11602 Header
11603 Hash Table of Signatures dwp_hash_table.hash_table
11604 Parallel Table of Indices dwp_hash_table.unit_table
11605 Table of Section Offsets dwp_hash_table.{v2|v5}.{section_ids,offsets}
11606 Table of Section Sizes dwp_hash_table.{v2|v5}.sizes
11607
11608 The index section header consists of:
11609
11610 V, 32 bit version number
11611 L, 32 bit number of columns in the table of section offsets
11612 N, 32 bit number of compilation units or type units in the index
11613 M, 32 bit number of slots in the hash table
11614
11615 Numbers are recorded using the byte order of the application binary.
11616
11617 The hash table has the same format as version 1.
11618 The parallel table of indices has the same format as version 1,
11619 except that the entries are origin-1 indices into the table of sections
11620 offsets and the table of section sizes.
11621
11622 The table of offsets begins immediately following the parallel table
11623 (at offset 16 + 12 * M from the beginning of the section). The table is
11624 a two-dimensional array of 32-bit words (using the byte order of the
11625 application binary), with L columns and N+1 rows, in row-major order.
11626 Each row in the array is indexed starting from 0. The first row provides
11627 a key to the remaining rows: each column in this row provides an identifier
11628 for a debug section, and the offsets in the same column of subsequent rows
11629 refer to that section. The section identifiers for Version 2 are:
11630
11631 DW_SECT_INFO 1 .debug_info.dwo
11632 DW_SECT_TYPES 2 .debug_types.dwo
11633 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11634 DW_SECT_LINE 4 .debug_line.dwo
11635 DW_SECT_LOC 5 .debug_loc.dwo
11636 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11637 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11638 DW_SECT_MACRO 8 .debug_macro.dwo
11639
11640 The section identifiers for Version 5 are:
11641
11642 DW_SECT_INFO_V5 1 .debug_info.dwo
11643 DW_SECT_RESERVED_V5 2 --
11644 DW_SECT_ABBREV_V5 3 .debug_abbrev.dwo
11645 DW_SECT_LINE_V5 4 .debug_line.dwo
11646 DW_SECT_LOCLISTS_V5 5 .debug_loclists.dwo
11647 DW_SECT_STR_OFFSETS_V5 6 .debug_str_offsets.dwo
11648 DW_SECT_MACRO_V5 7 .debug_macro.dwo
11649 DW_SECT_RNGLISTS_V5 8 .debug_rnglists.dwo
11650
11651 The offsets provided by the CU and TU index sections are the base offsets
11652 for the contributions made by each CU or TU to the corresponding section
11653 in the package file. Each CU and TU header contains an abbrev_offset
11654 field, used to find the abbreviations table for that CU or TU within the
11655 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11656 be interpreted as relative to the base offset given in the index section.
11657 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11658 should be interpreted as relative to the base offset for .debug_line.dwo,
11659 and offsets into other debug sections obtained from DWARF attributes should
11660 also be interpreted as relative to the corresponding base offset.
11661
11662 The table of sizes begins immediately following the table of offsets.
11663 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11664 with L columns and N rows, in row-major order. Each row in the array is
11665 indexed starting from 1 (row 0 is shared by the two tables).
11666
11667 ---
11668
11669 Hash table lookup is handled the same in version 1 and 2:
11670
11671 We assume that N and M will not exceed 2^32 - 1.
11672 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11673
11674 Given a 64-bit compilation unit signature or a type signature S, an entry
11675 in the hash table is located as follows:
11676
11677 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11678 the low-order k bits all set to 1.
11679
11680 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11681
11682 3) If the hash table entry at index H matches the signature, use that
11683 entry. If the hash table entry at index H is unused (all zeroes),
11684 terminate the search: the signature is not present in the table.
11685
11686 4) Let H = (H + H') modulo M. Repeat at Step 3.
11687
11688 Because M > N and H' and M are relatively prime, the search is guaranteed
11689 to stop at an unused slot or find the match. */
11690
11691 /* Create a hash table to map DWO IDs to their CU/TU entry in
11692 .debug_{info,types}.dwo in DWP_FILE.
11693 Returns NULL if there isn't one.
11694 Note: This function processes DWP files only, not DWO files. */
11695
11696 static struct dwp_hash_table *
11697 create_dwp_hash_table (dwarf2_per_objfile *per_objfile,
11698 struct dwp_file *dwp_file, int is_debug_types)
11699 {
11700 struct objfile *objfile = per_objfile->objfile;
11701 bfd *dbfd = dwp_file->dbfd.get ();
11702 const gdb_byte *index_ptr, *index_end;
11703 struct dwarf2_section_info *index;
11704 uint32_t version, nr_columns, nr_units, nr_slots;
11705 struct dwp_hash_table *htab;
11706
11707 if (is_debug_types)
11708 index = &dwp_file->sections.tu_index;
11709 else
11710 index = &dwp_file->sections.cu_index;
11711
11712 if (index->empty ())
11713 return NULL;
11714 index->read (objfile);
11715
11716 index_ptr = index->buffer;
11717 index_end = index_ptr + index->size;
11718
11719 /* For Version 5, the version is really 2 bytes of data & 2 bytes of padding.
11720 For now it's safe to just read 4 bytes (particularly as it's difficult to
11721 tell if you're dealing with Version 5 before you've read the version). */
11722 version = read_4_bytes (dbfd, index_ptr);
11723 index_ptr += 4;
11724 if (version == 2 || version == 5)
11725 nr_columns = read_4_bytes (dbfd, index_ptr);
11726 else
11727 nr_columns = 0;
11728 index_ptr += 4;
11729 nr_units = read_4_bytes (dbfd, index_ptr);
11730 index_ptr += 4;
11731 nr_slots = read_4_bytes (dbfd, index_ptr);
11732 index_ptr += 4;
11733
11734 if (version != 1 && version != 2 && version != 5)
11735 {
11736 error (_("Dwarf Error: unsupported DWP file version (%s)"
11737 " [in module %s]"),
11738 pulongest (version), dwp_file->name);
11739 }
11740 if (nr_slots != (nr_slots & -nr_slots))
11741 {
11742 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11743 " is not power of 2 [in module %s]"),
11744 pulongest (nr_slots), dwp_file->name);
11745 }
11746
11747 htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table);
11748 htab->version = version;
11749 htab->nr_columns = nr_columns;
11750 htab->nr_units = nr_units;
11751 htab->nr_slots = nr_slots;
11752 htab->hash_table = index_ptr;
11753 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11754
11755 /* Exit early if the table is empty. */
11756 if (nr_slots == 0 || nr_units == 0
11757 || (version == 2 && nr_columns == 0)
11758 || (version == 5 && nr_columns == 0))
11759 {
11760 /* All must be zero. */
11761 if (nr_slots != 0 || nr_units != 0
11762 || (version == 2 && nr_columns != 0)
11763 || (version == 5 && nr_columns != 0))
11764 {
11765 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11766 " all zero [in modules %s]"),
11767 dwp_file->name);
11768 }
11769 return htab;
11770 }
11771
11772 if (version == 1)
11773 {
11774 htab->section_pool.v1.indices =
11775 htab->unit_table + sizeof (uint32_t) * nr_slots;
11776 /* It's harder to decide whether the section is too small in v1.
11777 V1 is deprecated anyway so we punt. */
11778 }
11779 else if (version == 2)
11780 {
11781 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11782 int *ids = htab->section_pool.v2.section_ids;
11783 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11784 /* Reverse map for error checking. */
11785 int ids_seen[DW_SECT_MAX + 1];
11786 int i;
11787
11788 if (nr_columns < 2)
11789 {
11790 error (_("Dwarf Error: bad DWP hash table, too few columns"
11791 " in section table [in module %s]"),
11792 dwp_file->name);
11793 }
11794 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11795 {
11796 error (_("Dwarf Error: bad DWP hash table, too many columns"
11797 " in section table [in module %s]"),
11798 dwp_file->name);
11799 }
11800 memset (ids, 255, sizeof_ids);
11801 memset (ids_seen, 255, sizeof (ids_seen));
11802 for (i = 0; i < nr_columns; ++i)
11803 {
11804 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11805
11806 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11807 {
11808 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11809 " in section table [in module %s]"),
11810 id, dwp_file->name);
11811 }
11812 if (ids_seen[id] != -1)
11813 {
11814 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11815 " id %d in section table [in module %s]"),
11816 id, dwp_file->name);
11817 }
11818 ids_seen[id] = i;
11819 ids[i] = id;
11820 }
11821 /* Must have exactly one info or types section. */
11822 if (((ids_seen[DW_SECT_INFO] != -1)
11823 + (ids_seen[DW_SECT_TYPES] != -1))
11824 != 1)
11825 {
11826 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11827 " DWO info/types section [in module %s]"),
11828 dwp_file->name);
11829 }
11830 /* Must have an abbrev section. */
11831 if (ids_seen[DW_SECT_ABBREV] == -1)
11832 {
11833 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11834 " section [in module %s]"),
11835 dwp_file->name);
11836 }
11837 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11838 htab->section_pool.v2.sizes =
11839 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11840 * nr_units * nr_columns);
11841 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11842 * nr_units * nr_columns))
11843 > index_end)
11844 {
11845 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11846 " [in module %s]"),
11847 dwp_file->name);
11848 }
11849 }
11850 else /* version == 5 */
11851 {
11852 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11853 int *ids = htab->section_pool.v5.section_ids;
11854 size_t sizeof_ids = sizeof (htab->section_pool.v5.section_ids);
11855 /* Reverse map for error checking. */
11856 int ids_seen[DW_SECT_MAX_V5 + 1];
11857
11858 if (nr_columns < 2)
11859 {
11860 error (_("Dwarf Error: bad DWP hash table, too few columns"
11861 " in section table [in module %s]"),
11862 dwp_file->name);
11863 }
11864 if (nr_columns > MAX_NR_V5_DWO_SECTIONS)
11865 {
11866 error (_("Dwarf Error: bad DWP hash table, too many columns"
11867 " in section table [in module %s]"),
11868 dwp_file->name);
11869 }
11870 memset (ids, 255, sizeof_ids);
11871 memset (ids_seen, 255, sizeof (ids_seen));
11872 for (int i = 0; i < nr_columns; ++i)
11873 {
11874 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11875
11876 if (id < DW_SECT_MIN || id > DW_SECT_MAX_V5)
11877 {
11878 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11879 " in section table [in module %s]"),
11880 id, dwp_file->name);
11881 }
11882 if (ids_seen[id] != -1)
11883 {
11884 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11885 " id %d in section table [in module %s]"),
11886 id, dwp_file->name);
11887 }
11888 ids_seen[id] = i;
11889 ids[i] = id;
11890 }
11891 /* Must have seen an info section. */
11892 if (ids_seen[DW_SECT_INFO_V5] == -1)
11893 {
11894 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11895 " DWO info/types section [in module %s]"),
11896 dwp_file->name);
11897 }
11898 /* Must have an abbrev section. */
11899 if (ids_seen[DW_SECT_ABBREV_V5] == -1)
11900 {
11901 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11902 " section [in module %s]"),
11903 dwp_file->name);
11904 }
11905 htab->section_pool.v5.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11906 htab->section_pool.v5.sizes
11907 = htab->section_pool.v5.offsets + (sizeof (uint32_t)
11908 * nr_units * nr_columns);
11909 if ((htab->section_pool.v5.sizes + (sizeof (uint32_t)
11910 * nr_units * nr_columns))
11911 > index_end)
11912 {
11913 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11914 " [in module %s]"),
11915 dwp_file->name);
11916 }
11917 }
11918
11919 return htab;
11920 }
11921
11922 /* Update SECTIONS with the data from SECTP.
11923
11924 This function is like the other "locate" section routines, but in
11925 this context the sections to read comes from the DWP V1 hash table,
11926 not the full ELF section table.
11927
11928 The result is non-zero for success, or zero if an error was found. */
11929
11930 static int
11931 locate_v1_virtual_dwo_sections (asection *sectp,
11932 struct virtual_v1_dwo_sections *sections)
11933 {
11934 const struct dwop_section_names *names = &dwop_section_names;
11935
11936 if (section_is_p (sectp->name, &names->abbrev_dwo))
11937 {
11938 /* There can be only one. */
11939 if (sections->abbrev.s.section != NULL)
11940 return 0;
11941 sections->abbrev.s.section = sectp;
11942 sections->abbrev.size = bfd_section_size (sectp);
11943 }
11944 else if (section_is_p (sectp->name, &names->info_dwo)
11945 || section_is_p (sectp->name, &names->types_dwo))
11946 {
11947 /* There can be only one. */
11948 if (sections->info_or_types.s.section != NULL)
11949 return 0;
11950 sections->info_or_types.s.section = sectp;
11951 sections->info_or_types.size = bfd_section_size (sectp);
11952 }
11953 else if (section_is_p (sectp->name, &names->line_dwo))
11954 {
11955 /* There can be only one. */
11956 if (sections->line.s.section != NULL)
11957 return 0;
11958 sections->line.s.section = sectp;
11959 sections->line.size = bfd_section_size (sectp);
11960 }
11961 else if (section_is_p (sectp->name, &names->loc_dwo))
11962 {
11963 /* There can be only one. */
11964 if (sections->loc.s.section != NULL)
11965 return 0;
11966 sections->loc.s.section = sectp;
11967 sections->loc.size = bfd_section_size (sectp);
11968 }
11969 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11970 {
11971 /* There can be only one. */
11972 if (sections->macinfo.s.section != NULL)
11973 return 0;
11974 sections->macinfo.s.section = sectp;
11975 sections->macinfo.size = bfd_section_size (sectp);
11976 }
11977 else if (section_is_p (sectp->name, &names->macro_dwo))
11978 {
11979 /* There can be only one. */
11980 if (sections->macro.s.section != NULL)
11981 return 0;
11982 sections->macro.s.section = sectp;
11983 sections->macro.size = bfd_section_size (sectp);
11984 }
11985 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11986 {
11987 /* There can be only one. */
11988 if (sections->str_offsets.s.section != NULL)
11989 return 0;
11990 sections->str_offsets.s.section = sectp;
11991 sections->str_offsets.size = bfd_section_size (sectp);
11992 }
11993 else
11994 {
11995 /* No other kind of section is valid. */
11996 return 0;
11997 }
11998
11999 return 1;
12000 }
12001
12002 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12003 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12004 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12005 This is for DWP version 1 files. */
12006
12007 static struct dwo_unit *
12008 create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile *per_objfile,
12009 struct dwp_file *dwp_file,
12010 uint32_t unit_index,
12011 const char *comp_dir,
12012 ULONGEST signature, int is_debug_types)
12013 {
12014 const struct dwp_hash_table *dwp_htab =
12015 is_debug_types ? dwp_file->tus : dwp_file->cus;
12016 bfd *dbfd = dwp_file->dbfd.get ();
12017 const char *kind = is_debug_types ? "TU" : "CU";
12018 struct dwo_file *dwo_file;
12019 struct dwo_unit *dwo_unit;
12020 struct virtual_v1_dwo_sections sections;
12021 void **dwo_file_slot;
12022 int i;
12023
12024 gdb_assert (dwp_file->version == 1);
12025
12026 if (dwarf_read_debug)
12027 {
12028 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12029 kind,
12030 pulongest (unit_index), hex_string (signature),
12031 dwp_file->name);
12032 }
12033
12034 /* Fetch the sections of this DWO unit.
12035 Put a limit on the number of sections we look for so that bad data
12036 doesn't cause us to loop forever. */
12037
12038 #define MAX_NR_V1_DWO_SECTIONS \
12039 (1 /* .debug_info or .debug_types */ \
12040 + 1 /* .debug_abbrev */ \
12041 + 1 /* .debug_line */ \
12042 + 1 /* .debug_loc */ \
12043 + 1 /* .debug_str_offsets */ \
12044 + 1 /* .debug_macro or .debug_macinfo */ \
12045 + 1 /* trailing zero */)
12046
12047 memset (&sections, 0, sizeof (sections));
12048
12049 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12050 {
12051 asection *sectp;
12052 uint32_t section_nr =
12053 read_4_bytes (dbfd,
12054 dwp_htab->section_pool.v1.indices
12055 + (unit_index + i) * sizeof (uint32_t));
12056
12057 if (section_nr == 0)
12058 break;
12059 if (section_nr >= dwp_file->num_sections)
12060 {
12061 error (_("Dwarf Error: bad DWP hash table, section number too large"
12062 " [in module %s]"),
12063 dwp_file->name);
12064 }
12065
12066 sectp = dwp_file->elf_sections[section_nr];
12067 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12068 {
12069 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12070 " [in module %s]"),
12071 dwp_file->name);
12072 }
12073 }
12074
12075 if (i < 2
12076 || sections.info_or_types.empty ()
12077 || sections.abbrev.empty ())
12078 {
12079 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12080 " [in module %s]"),
12081 dwp_file->name);
12082 }
12083 if (i == MAX_NR_V1_DWO_SECTIONS)
12084 {
12085 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12086 " [in module %s]"),
12087 dwp_file->name);
12088 }
12089
12090 /* It's easier for the rest of the code if we fake a struct dwo_file and
12091 have dwo_unit "live" in that. At least for now.
12092
12093 The DWP file can be made up of a random collection of CUs and TUs.
12094 However, for each CU + set of TUs that came from the same original DWO
12095 file, we can combine them back into a virtual DWO file to save space
12096 (fewer struct dwo_file objects to allocate). Remember that for really
12097 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12098
12099 std::string virtual_dwo_name =
12100 string_printf ("virtual-dwo/%d-%d-%d-%d",
12101 sections.abbrev.get_id (),
12102 sections.line.get_id (),
12103 sections.loc.get_id (),
12104 sections.str_offsets.get_id ());
12105 /* Can we use an existing virtual DWO file? */
12106 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
12107 comp_dir);
12108 /* Create one if necessary. */
12109 if (*dwo_file_slot == NULL)
12110 {
12111 if (dwarf_read_debug)
12112 {
12113 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12114 virtual_dwo_name.c_str ());
12115 }
12116 dwo_file = new struct dwo_file;
12117 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12118 dwo_file->comp_dir = comp_dir;
12119 dwo_file->sections.abbrev = sections.abbrev;
12120 dwo_file->sections.line = sections.line;
12121 dwo_file->sections.loc = sections.loc;
12122 dwo_file->sections.macinfo = sections.macinfo;
12123 dwo_file->sections.macro = sections.macro;
12124 dwo_file->sections.str_offsets = sections.str_offsets;
12125 /* The "str" section is global to the entire DWP file. */
12126 dwo_file->sections.str = dwp_file->sections.str;
12127 /* The info or types section is assigned below to dwo_unit,
12128 there's no need to record it in dwo_file.
12129 Also, we can't simply record type sections in dwo_file because
12130 we record a pointer into the vector in dwo_unit. As we collect more
12131 types we'll grow the vector and eventually have to reallocate space
12132 for it, invalidating all copies of pointers into the previous
12133 contents. */
12134 *dwo_file_slot = dwo_file;
12135 }
12136 else
12137 {
12138 if (dwarf_read_debug)
12139 {
12140 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12141 virtual_dwo_name.c_str ());
12142 }
12143 dwo_file = (struct dwo_file *) *dwo_file_slot;
12144 }
12145
12146 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12147 dwo_unit->dwo_file = dwo_file;
12148 dwo_unit->signature = signature;
12149 dwo_unit->section =
12150 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12151 *dwo_unit->section = sections.info_or_types;
12152 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12153
12154 return dwo_unit;
12155 }
12156
12157 /* Subroutine of create_dwo_unit_in_dwp_v2 and create_dwo_unit_in_dwp_v5 to
12158 simplify them. Given a pointer to the containing section SECTION, and
12159 OFFSET,SIZE of the piece within that section used by a TU/CU, return a
12160 virtual section of just that piece. */
12161
12162 static struct dwarf2_section_info
12163 create_dwp_v2_or_v5_section (dwarf2_per_objfile *per_objfile,
12164 struct dwarf2_section_info *section,
12165 bfd_size_type offset, bfd_size_type size)
12166 {
12167 struct dwarf2_section_info result;
12168 asection *sectp;
12169
12170 gdb_assert (section != NULL);
12171 gdb_assert (!section->is_virtual);
12172
12173 memset (&result, 0, sizeof (result));
12174 result.s.containing_section = section;
12175 result.is_virtual = true;
12176
12177 if (size == 0)
12178 return result;
12179
12180 sectp = section->get_bfd_section ();
12181
12182 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12183 bounds of the real section. This is a pretty-rare event, so just
12184 flag an error (easier) instead of a warning and trying to cope. */
12185 if (sectp == NULL
12186 || offset + size > bfd_section_size (sectp))
12187 {
12188 error (_("Dwarf Error: Bad DWP V2 or V5 section info, doesn't fit"
12189 " in section %s [in module %s]"),
12190 sectp ? bfd_section_name (sectp) : "<unknown>",
12191 objfile_name (per_objfile->objfile));
12192 }
12193
12194 result.virtual_offset = offset;
12195 result.size = size;
12196 return result;
12197 }
12198
12199 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12200 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12201 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12202 This is for DWP version 2 files. */
12203
12204 static struct dwo_unit *
12205 create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile *per_objfile,
12206 struct dwp_file *dwp_file,
12207 uint32_t unit_index,
12208 const char *comp_dir,
12209 ULONGEST signature, int is_debug_types)
12210 {
12211 const struct dwp_hash_table *dwp_htab =
12212 is_debug_types ? dwp_file->tus : dwp_file->cus;
12213 bfd *dbfd = dwp_file->dbfd.get ();
12214 const char *kind = is_debug_types ? "TU" : "CU";
12215 struct dwo_file *dwo_file;
12216 struct dwo_unit *dwo_unit;
12217 struct virtual_v2_or_v5_dwo_sections sections;
12218 void **dwo_file_slot;
12219 int i;
12220
12221 gdb_assert (dwp_file->version == 2);
12222
12223 if (dwarf_read_debug)
12224 {
12225 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12226 kind,
12227 pulongest (unit_index), hex_string (signature),
12228 dwp_file->name);
12229 }
12230
12231 /* Fetch the section offsets of this DWO unit. */
12232
12233 memset (&sections, 0, sizeof (sections));
12234
12235 for (i = 0; i < dwp_htab->nr_columns; ++i)
12236 {
12237 uint32_t offset = read_4_bytes (dbfd,
12238 dwp_htab->section_pool.v2.offsets
12239 + (((unit_index - 1) * dwp_htab->nr_columns
12240 + i)
12241 * sizeof (uint32_t)));
12242 uint32_t size = read_4_bytes (dbfd,
12243 dwp_htab->section_pool.v2.sizes
12244 + (((unit_index - 1) * dwp_htab->nr_columns
12245 + i)
12246 * sizeof (uint32_t)));
12247
12248 switch (dwp_htab->section_pool.v2.section_ids[i])
12249 {
12250 case DW_SECT_INFO:
12251 case DW_SECT_TYPES:
12252 sections.info_or_types_offset = offset;
12253 sections.info_or_types_size = size;
12254 break;
12255 case DW_SECT_ABBREV:
12256 sections.abbrev_offset = offset;
12257 sections.abbrev_size = size;
12258 break;
12259 case DW_SECT_LINE:
12260 sections.line_offset = offset;
12261 sections.line_size = size;
12262 break;
12263 case DW_SECT_LOC:
12264 sections.loc_offset = offset;
12265 sections.loc_size = size;
12266 break;
12267 case DW_SECT_STR_OFFSETS:
12268 sections.str_offsets_offset = offset;
12269 sections.str_offsets_size = size;
12270 break;
12271 case DW_SECT_MACINFO:
12272 sections.macinfo_offset = offset;
12273 sections.macinfo_size = size;
12274 break;
12275 case DW_SECT_MACRO:
12276 sections.macro_offset = offset;
12277 sections.macro_size = size;
12278 break;
12279 }
12280 }
12281
12282 /* It's easier for the rest of the code if we fake a struct dwo_file and
12283 have dwo_unit "live" in that. At least for now.
12284
12285 The DWP file can be made up of a random collection of CUs and TUs.
12286 However, for each CU + set of TUs that came from the same original DWO
12287 file, we can combine them back into a virtual DWO file to save space
12288 (fewer struct dwo_file objects to allocate). Remember that for really
12289 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12290
12291 std::string virtual_dwo_name =
12292 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12293 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12294 (long) (sections.line_size ? sections.line_offset : 0),
12295 (long) (sections.loc_size ? sections.loc_offset : 0),
12296 (long) (sections.str_offsets_size
12297 ? sections.str_offsets_offset : 0));
12298 /* Can we use an existing virtual DWO file? */
12299 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
12300 comp_dir);
12301 /* Create one if necessary. */
12302 if (*dwo_file_slot == NULL)
12303 {
12304 if (dwarf_read_debug)
12305 {
12306 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12307 virtual_dwo_name.c_str ());
12308 }
12309 dwo_file = new struct dwo_file;
12310 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12311 dwo_file->comp_dir = comp_dir;
12312 dwo_file->sections.abbrev =
12313 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.abbrev,
12314 sections.abbrev_offset,
12315 sections.abbrev_size);
12316 dwo_file->sections.line =
12317 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.line,
12318 sections.line_offset,
12319 sections.line_size);
12320 dwo_file->sections.loc =
12321 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.loc,
12322 sections.loc_offset, sections.loc_size);
12323 dwo_file->sections.macinfo =
12324 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macinfo,
12325 sections.macinfo_offset,
12326 sections.macinfo_size);
12327 dwo_file->sections.macro =
12328 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macro,
12329 sections.macro_offset,
12330 sections.macro_size);
12331 dwo_file->sections.str_offsets =
12332 create_dwp_v2_or_v5_section (per_objfile,
12333 &dwp_file->sections.str_offsets,
12334 sections.str_offsets_offset,
12335 sections.str_offsets_size);
12336 /* The "str" section is global to the entire DWP file. */
12337 dwo_file->sections.str = dwp_file->sections.str;
12338 /* The info or types section is assigned below to dwo_unit,
12339 there's no need to record it in dwo_file.
12340 Also, we can't simply record type sections in dwo_file because
12341 we record a pointer into the vector in dwo_unit. As we collect more
12342 types we'll grow the vector and eventually have to reallocate space
12343 for it, invalidating all copies of pointers into the previous
12344 contents. */
12345 *dwo_file_slot = dwo_file;
12346 }
12347 else
12348 {
12349 if (dwarf_read_debug)
12350 {
12351 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12352 virtual_dwo_name.c_str ());
12353 }
12354 dwo_file = (struct dwo_file *) *dwo_file_slot;
12355 }
12356
12357 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12358 dwo_unit->dwo_file = dwo_file;
12359 dwo_unit->signature = signature;
12360 dwo_unit->section =
12361 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12362 *dwo_unit->section = create_dwp_v2_or_v5_section
12363 (per_objfile,
12364 is_debug_types
12365 ? &dwp_file->sections.types
12366 : &dwp_file->sections.info,
12367 sections.info_or_types_offset,
12368 sections.info_or_types_size);
12369 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12370
12371 return dwo_unit;
12372 }
12373
12374 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12375 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12376 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12377 This is for DWP version 5 files. */
12378
12379 static struct dwo_unit *
12380 create_dwo_unit_in_dwp_v5 (dwarf2_per_objfile *per_objfile,
12381 struct dwp_file *dwp_file,
12382 uint32_t unit_index,
12383 const char *comp_dir,
12384 ULONGEST signature, int is_debug_types)
12385 {
12386 const struct dwp_hash_table *dwp_htab
12387 = is_debug_types ? dwp_file->tus : dwp_file->cus;
12388 bfd *dbfd = dwp_file->dbfd.get ();
12389 const char *kind = is_debug_types ? "TU" : "CU";
12390 struct dwo_file *dwo_file;
12391 struct dwo_unit *dwo_unit;
12392 struct virtual_v2_or_v5_dwo_sections sections {};
12393 void **dwo_file_slot;
12394
12395 gdb_assert (dwp_file->version == 5);
12396
12397 if (dwarf_read_debug)
12398 {
12399 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V5 file: %s\n",
12400 kind,
12401 pulongest (unit_index), hex_string (signature),
12402 dwp_file->name);
12403 }
12404
12405 /* Fetch the section offsets of this DWO unit. */
12406
12407 /* memset (&sections, 0, sizeof (sections)); */
12408
12409 for (int i = 0; i < dwp_htab->nr_columns; ++i)
12410 {
12411 uint32_t offset = read_4_bytes (dbfd,
12412 dwp_htab->section_pool.v5.offsets
12413 + (((unit_index - 1)
12414 * dwp_htab->nr_columns
12415 + i)
12416 * sizeof (uint32_t)));
12417 uint32_t size = read_4_bytes (dbfd,
12418 dwp_htab->section_pool.v5.sizes
12419 + (((unit_index - 1) * dwp_htab->nr_columns
12420 + i)
12421 * sizeof (uint32_t)));
12422
12423 switch (dwp_htab->section_pool.v5.section_ids[i])
12424 {
12425 case DW_SECT_ABBREV_V5:
12426 sections.abbrev_offset = offset;
12427 sections.abbrev_size = size;
12428 break;
12429 case DW_SECT_INFO_V5:
12430 sections.info_or_types_offset = offset;
12431 sections.info_or_types_size = size;
12432 break;
12433 case DW_SECT_LINE_V5:
12434 sections.line_offset = offset;
12435 sections.line_size = size;
12436 break;
12437 case DW_SECT_LOCLISTS_V5:
12438 sections.loclists_offset = offset;
12439 sections.loclists_size = size;
12440 break;
12441 case DW_SECT_MACRO_V5:
12442 sections.macro_offset = offset;
12443 sections.macro_size = size;
12444 break;
12445 case DW_SECT_RNGLISTS_V5:
12446 sections.rnglists_offset = offset;
12447 sections.rnglists_size = size;
12448 break;
12449 case DW_SECT_STR_OFFSETS_V5:
12450 sections.str_offsets_offset = offset;
12451 sections.str_offsets_size = size;
12452 break;
12453 case DW_SECT_RESERVED_V5:
12454 default:
12455 break;
12456 }
12457 }
12458
12459 /* It's easier for the rest of the code if we fake a struct dwo_file and
12460 have dwo_unit "live" in that. At least for now.
12461
12462 The DWP file can be made up of a random collection of CUs and TUs.
12463 However, for each CU + set of TUs that came from the same original DWO
12464 file, we can combine them back into a virtual DWO file to save space
12465 (fewer struct dwo_file objects to allocate). Remember that for really
12466 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12467
12468 std::string virtual_dwo_name =
12469 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld-%ld-%ld",
12470 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12471 (long) (sections.line_size ? sections.line_offset : 0),
12472 (long) (sections.loclists_size ? sections.loclists_offset : 0),
12473 (long) (sections.str_offsets_size
12474 ? sections.str_offsets_offset : 0),
12475 (long) (sections.macro_size ? sections.macro_offset : 0),
12476 (long) (sections.rnglists_size ? sections.rnglists_offset: 0));
12477 /* Can we use an existing virtual DWO file? */
12478 dwo_file_slot = lookup_dwo_file_slot (per_objfile,
12479 virtual_dwo_name.c_str (),
12480 comp_dir);
12481 /* Create one if necessary. */
12482 if (*dwo_file_slot == NULL)
12483 {
12484 if (dwarf_read_debug)
12485 {
12486 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12487 virtual_dwo_name.c_str ());
12488 }
12489 dwo_file = new struct dwo_file;
12490 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12491 dwo_file->comp_dir = comp_dir;
12492 dwo_file->sections.abbrev =
12493 create_dwp_v2_or_v5_section (per_objfile,
12494 &dwp_file->sections.abbrev,
12495 sections.abbrev_offset,
12496 sections.abbrev_size);
12497 dwo_file->sections.line =
12498 create_dwp_v2_or_v5_section (per_objfile,
12499 &dwp_file->sections.line,
12500 sections.line_offset, sections.line_size);
12501 dwo_file->sections.macro =
12502 create_dwp_v2_or_v5_section (per_objfile,
12503 &dwp_file->sections.macro,
12504 sections.macro_offset,
12505 sections.macro_size);
12506 dwo_file->sections.loclists =
12507 create_dwp_v2_or_v5_section (per_objfile,
12508 &dwp_file->sections.loclists,
12509 sections.loclists_offset,
12510 sections.loclists_size);
12511 dwo_file->sections.rnglists =
12512 create_dwp_v2_or_v5_section (per_objfile,
12513 &dwp_file->sections.rnglists,
12514 sections.rnglists_offset,
12515 sections.rnglists_size);
12516 dwo_file->sections.str_offsets =
12517 create_dwp_v2_or_v5_section (per_objfile,
12518 &dwp_file->sections.str_offsets,
12519 sections.str_offsets_offset,
12520 sections.str_offsets_size);
12521 /* The "str" section is global to the entire DWP file. */
12522 dwo_file->sections.str = dwp_file->sections.str;
12523 /* The info or types section is assigned below to dwo_unit,
12524 there's no need to record it in dwo_file.
12525 Also, we can't simply record type sections in dwo_file because
12526 we record a pointer into the vector in dwo_unit. As we collect more
12527 types we'll grow the vector and eventually have to reallocate space
12528 for it, invalidating all copies of pointers into the previous
12529 contents. */
12530 *dwo_file_slot = dwo_file;
12531 }
12532 else
12533 {
12534 if (dwarf_read_debug)
12535 {
12536 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12537 virtual_dwo_name.c_str ());
12538 }
12539 dwo_file = (struct dwo_file *) *dwo_file_slot;
12540 }
12541
12542 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12543 dwo_unit->dwo_file = dwo_file;
12544 dwo_unit->signature = signature;
12545 dwo_unit->section
12546 = XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12547 *dwo_unit->section = create_dwp_v2_or_v5_section (per_objfile,
12548 &dwp_file->sections.info,
12549 sections.info_or_types_offset,
12550 sections.info_or_types_size);
12551 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12552
12553 return dwo_unit;
12554 }
12555
12556 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12557 Returns NULL if the signature isn't found. */
12558
12559 static struct dwo_unit *
12560 lookup_dwo_unit_in_dwp (dwarf2_per_objfile *per_objfile,
12561 struct dwp_file *dwp_file, const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12563 {
12564 const struct dwp_hash_table *dwp_htab =
12565 is_debug_types ? dwp_file->tus : dwp_file->cus;
12566 bfd *dbfd = dwp_file->dbfd.get ();
12567 uint32_t mask = dwp_htab->nr_slots - 1;
12568 uint32_t hash = signature & mask;
12569 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12570 unsigned int i;
12571 void **slot;
12572 struct dwo_unit find_dwo_cu;
12573
12574 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12575 find_dwo_cu.signature = signature;
12576 slot = htab_find_slot (is_debug_types
12577 ? dwp_file->loaded_tus.get ()
12578 : dwp_file->loaded_cus.get (),
12579 &find_dwo_cu, INSERT);
12580
12581 if (*slot != NULL)
12582 return (struct dwo_unit *) *slot;
12583
12584 /* Use a for loop so that we don't loop forever on bad debug info. */
12585 for (i = 0; i < dwp_htab->nr_slots; ++i)
12586 {
12587 ULONGEST signature_in_table;
12588
12589 signature_in_table =
12590 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12591 if (signature_in_table == signature)
12592 {
12593 uint32_t unit_index =
12594 read_4_bytes (dbfd,
12595 dwp_htab->unit_table + hash * sizeof (uint32_t));
12596
12597 if (dwp_file->version == 1)
12598 {
12599 *slot = create_dwo_unit_in_dwp_v1 (per_objfile, dwp_file,
12600 unit_index, comp_dir,
12601 signature, is_debug_types);
12602 }
12603 else if (dwp_file->version == 2)
12604 {
12605 *slot = create_dwo_unit_in_dwp_v2 (per_objfile, dwp_file,
12606 unit_index, comp_dir,
12607 signature, is_debug_types);
12608 }
12609 else /* version == 5 */
12610 {
12611 *slot = create_dwo_unit_in_dwp_v5 (per_objfile, dwp_file,
12612 unit_index, comp_dir,
12613 signature, is_debug_types);
12614 }
12615 return (struct dwo_unit *) *slot;
12616 }
12617 if (signature_in_table == 0)
12618 return NULL;
12619 hash = (hash + hash2) & mask;
12620 }
12621
12622 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12623 " [in module %s]"),
12624 dwp_file->name);
12625 }
12626
12627 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12628 Open the file specified by FILE_NAME and hand it off to BFD for
12629 preliminary analysis. Return a newly initialized bfd *, which
12630 includes a canonicalized copy of FILE_NAME.
12631 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12632 SEARCH_CWD is true if the current directory is to be searched.
12633 It will be searched before debug-file-directory.
12634 If successful, the file is added to the bfd include table of the
12635 objfile's bfd (see gdb_bfd_record_inclusion).
12636 If unable to find/open the file, return NULL.
12637 NOTE: This function is derived from symfile_bfd_open. */
12638
12639 static gdb_bfd_ref_ptr
12640 try_open_dwop_file (dwarf2_per_objfile *per_objfile,
12641 const char *file_name, int is_dwp, int search_cwd)
12642 {
12643 int desc;
12644 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12645 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12646 to debug_file_directory. */
12647 const char *search_path;
12648 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12649
12650 gdb::unique_xmalloc_ptr<char> search_path_holder;
12651 if (search_cwd)
12652 {
12653 if (*debug_file_directory != '\0')
12654 {
12655 search_path_holder.reset (concat (".", dirname_separator_string,
12656 debug_file_directory,
12657 (char *) NULL));
12658 search_path = search_path_holder.get ();
12659 }
12660 else
12661 search_path = ".";
12662 }
12663 else
12664 search_path = debug_file_directory;
12665
12666 openp_flags flags = OPF_RETURN_REALPATH;
12667 if (is_dwp)
12668 flags |= OPF_SEARCH_IN_PATH;
12669
12670 gdb::unique_xmalloc_ptr<char> absolute_name;
12671 desc = openp (search_path, flags, file_name,
12672 O_RDONLY | O_BINARY, &absolute_name);
12673 if (desc < 0)
12674 return NULL;
12675
12676 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12677 gnutarget, desc));
12678 if (sym_bfd == NULL)
12679 return NULL;
12680 bfd_set_cacheable (sym_bfd.get (), 1);
12681
12682 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12683 return NULL;
12684
12685 /* Success. Record the bfd as having been included by the objfile's bfd.
12686 This is important because things like demangled_names_hash lives in the
12687 objfile's per_bfd space and may have references to things like symbol
12688 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12689 gdb_bfd_record_inclusion (per_objfile->objfile->obfd, sym_bfd.get ());
12690
12691 return sym_bfd;
12692 }
12693
12694 /* Try to open DWO file FILE_NAME.
12695 COMP_DIR is the DW_AT_comp_dir attribute.
12696 The result is the bfd handle of the file.
12697 If there is a problem finding or opening the file, return NULL.
12698 Upon success, the canonicalized path of the file is stored in the bfd,
12699 same as symfile_bfd_open. */
12700
12701 static gdb_bfd_ref_ptr
12702 open_dwo_file (dwarf2_per_objfile *per_objfile,
12703 const char *file_name, const char *comp_dir)
12704 {
12705 if (IS_ABSOLUTE_PATH (file_name))
12706 return try_open_dwop_file (per_objfile, file_name,
12707 0 /*is_dwp*/, 0 /*search_cwd*/);
12708
12709 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12710
12711 if (comp_dir != NULL)
12712 {
12713 gdb::unique_xmalloc_ptr<char> path_to_try
12714 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12715
12716 /* NOTE: If comp_dir is a relative path, this will also try the
12717 search path, which seems useful. */
12718 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, path_to_try.get (),
12719 0 /*is_dwp*/,
12720 1 /*search_cwd*/));
12721 if (abfd != NULL)
12722 return abfd;
12723 }
12724
12725 /* That didn't work, try debug-file-directory, which, despite its name,
12726 is a list of paths. */
12727
12728 if (*debug_file_directory == '\0')
12729 return NULL;
12730
12731 return try_open_dwop_file (per_objfile, file_name,
12732 0 /*is_dwp*/, 1 /*search_cwd*/);
12733 }
12734
12735 /* This function is mapped across the sections and remembers the offset and
12736 size of each of the DWO debugging sections we are interested in. */
12737
12738 static void
12739 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp,
12740 dwo_sections *dwo_sections)
12741 {
12742 const struct dwop_section_names *names = &dwop_section_names;
12743
12744 if (section_is_p (sectp->name, &names->abbrev_dwo))
12745 {
12746 dwo_sections->abbrev.s.section = sectp;
12747 dwo_sections->abbrev.size = bfd_section_size (sectp);
12748 }
12749 else if (section_is_p (sectp->name, &names->info_dwo))
12750 {
12751 dwo_sections->info.s.section = sectp;
12752 dwo_sections->info.size = bfd_section_size (sectp);
12753 }
12754 else if (section_is_p (sectp->name, &names->line_dwo))
12755 {
12756 dwo_sections->line.s.section = sectp;
12757 dwo_sections->line.size = bfd_section_size (sectp);
12758 }
12759 else if (section_is_p (sectp->name, &names->loc_dwo))
12760 {
12761 dwo_sections->loc.s.section = sectp;
12762 dwo_sections->loc.size = bfd_section_size (sectp);
12763 }
12764 else if (section_is_p (sectp->name, &names->loclists_dwo))
12765 {
12766 dwo_sections->loclists.s.section = sectp;
12767 dwo_sections->loclists.size = bfd_section_size (sectp);
12768 }
12769 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12770 {
12771 dwo_sections->macinfo.s.section = sectp;
12772 dwo_sections->macinfo.size = bfd_section_size (sectp);
12773 }
12774 else if (section_is_p (sectp->name, &names->macro_dwo))
12775 {
12776 dwo_sections->macro.s.section = sectp;
12777 dwo_sections->macro.size = bfd_section_size (sectp);
12778 }
12779 else if (section_is_p (sectp->name, &names->rnglists_dwo))
12780 {
12781 dwo_sections->rnglists.s.section = sectp;
12782 dwo_sections->rnglists.size = bfd_section_size (sectp);
12783 }
12784 else if (section_is_p (sectp->name, &names->str_dwo))
12785 {
12786 dwo_sections->str.s.section = sectp;
12787 dwo_sections->str.size = bfd_section_size (sectp);
12788 }
12789 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12790 {
12791 dwo_sections->str_offsets.s.section = sectp;
12792 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12793 }
12794 else if (section_is_p (sectp->name, &names->types_dwo))
12795 {
12796 struct dwarf2_section_info type_section;
12797
12798 memset (&type_section, 0, sizeof (type_section));
12799 type_section.s.section = sectp;
12800 type_section.size = bfd_section_size (sectp);
12801 dwo_sections->types.push_back (type_section);
12802 }
12803 }
12804
12805 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12806 by PER_CU. This is for the non-DWP case.
12807 The result is NULL if DWO_NAME can't be found. */
12808
12809 static struct dwo_file *
12810 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12811 const char *comp_dir)
12812 {
12813 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12814
12815 gdb_bfd_ref_ptr dbfd = open_dwo_file (per_objfile, dwo_name, comp_dir);
12816 if (dbfd == NULL)
12817 {
12818 if (dwarf_read_debug)
12819 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12820 return NULL;
12821 }
12822
12823 dwo_file_up dwo_file (new struct dwo_file);
12824 dwo_file->dwo_name = dwo_name;
12825 dwo_file->comp_dir = comp_dir;
12826 dwo_file->dbfd = std::move (dbfd);
12827
12828 for (asection *sec : gdb_bfd_sections (dwo_file->dbfd))
12829 dwarf2_locate_dwo_sections (dwo_file->dbfd.get (), sec,
12830 &dwo_file->sections);
12831
12832 create_cus_hash_table (per_objfile, cu, *dwo_file, dwo_file->sections.info,
12833 dwo_file->cus);
12834
12835 if (cu->per_cu->dwarf_version < 5)
12836 {
12837 create_debug_types_hash_table (per_objfile, dwo_file.get (),
12838 dwo_file->sections.types, dwo_file->tus);
12839 }
12840 else
12841 {
12842 create_debug_type_hash_table (per_objfile, dwo_file.get (),
12843 &dwo_file->sections.info, dwo_file->tus,
12844 rcuh_kind::TYPE);
12845 }
12846
12847 if (dwarf_read_debug)
12848 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12849
12850 return dwo_file.release ();
12851 }
12852
12853 /* This function is mapped across the sections and remembers the offset and
12854 size of each of the DWP debugging sections common to version 1 and 2 that
12855 we are interested in. */
12856
12857 static void
12858 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12859 dwp_file *dwp_file)
12860 {
12861 const struct dwop_section_names *names = &dwop_section_names;
12862 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12863
12864 /* Record the ELF section number for later lookup: this is what the
12865 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12866 gdb_assert (elf_section_nr < dwp_file->num_sections);
12867 dwp_file->elf_sections[elf_section_nr] = sectp;
12868
12869 /* Look for specific sections that we need. */
12870 if (section_is_p (sectp->name, &names->str_dwo))
12871 {
12872 dwp_file->sections.str.s.section = sectp;
12873 dwp_file->sections.str.size = bfd_section_size (sectp);
12874 }
12875 else if (section_is_p (sectp->name, &names->cu_index))
12876 {
12877 dwp_file->sections.cu_index.s.section = sectp;
12878 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12879 }
12880 else if (section_is_p (sectp->name, &names->tu_index))
12881 {
12882 dwp_file->sections.tu_index.s.section = sectp;
12883 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12884 }
12885 }
12886
12887 /* This function is mapped across the sections and remembers the offset and
12888 size of each of the DWP version 2 debugging sections that we are interested
12889 in. This is split into a separate function because we don't know if we
12890 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12891
12892 static void
12893 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12894 {
12895 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12896 const struct dwop_section_names *names = &dwop_section_names;
12897 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12898
12899 /* Record the ELF section number for later lookup: this is what the
12900 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12901 gdb_assert (elf_section_nr < dwp_file->num_sections);
12902 dwp_file->elf_sections[elf_section_nr] = sectp;
12903
12904 /* Look for specific sections that we need. */
12905 if (section_is_p (sectp->name, &names->abbrev_dwo))
12906 {
12907 dwp_file->sections.abbrev.s.section = sectp;
12908 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12909 }
12910 else if (section_is_p (sectp->name, &names->info_dwo))
12911 {
12912 dwp_file->sections.info.s.section = sectp;
12913 dwp_file->sections.info.size = bfd_section_size (sectp);
12914 }
12915 else if (section_is_p (sectp->name, &names->line_dwo))
12916 {
12917 dwp_file->sections.line.s.section = sectp;
12918 dwp_file->sections.line.size = bfd_section_size (sectp);
12919 }
12920 else if (section_is_p (sectp->name, &names->loc_dwo))
12921 {
12922 dwp_file->sections.loc.s.section = sectp;
12923 dwp_file->sections.loc.size = bfd_section_size (sectp);
12924 }
12925 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12926 {
12927 dwp_file->sections.macinfo.s.section = sectp;
12928 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12929 }
12930 else if (section_is_p (sectp->name, &names->macro_dwo))
12931 {
12932 dwp_file->sections.macro.s.section = sectp;
12933 dwp_file->sections.macro.size = bfd_section_size (sectp);
12934 }
12935 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12936 {
12937 dwp_file->sections.str_offsets.s.section = sectp;
12938 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12939 }
12940 else if (section_is_p (sectp->name, &names->types_dwo))
12941 {
12942 dwp_file->sections.types.s.section = sectp;
12943 dwp_file->sections.types.size = bfd_section_size (sectp);
12944 }
12945 }
12946
12947 /* This function is mapped across the sections and remembers the offset and
12948 size of each of the DWP version 5 debugging sections that we are interested
12949 in. This is split into a separate function because we don't know if we
12950 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12951
12952 static void
12953 dwarf2_locate_v5_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12954 {
12955 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12956 const struct dwop_section_names *names = &dwop_section_names;
12957 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12958
12959 /* Record the ELF section number for later lookup: this is what the
12960 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12961 gdb_assert (elf_section_nr < dwp_file->num_sections);
12962 dwp_file->elf_sections[elf_section_nr] = sectp;
12963
12964 /* Look for specific sections that we need. */
12965 if (section_is_p (sectp->name, &names->abbrev_dwo))
12966 {
12967 dwp_file->sections.abbrev.s.section = sectp;
12968 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12969 }
12970 else if (section_is_p (sectp->name, &names->info_dwo))
12971 {
12972 dwp_file->sections.info.s.section = sectp;
12973 dwp_file->sections.info.size = bfd_section_size (sectp);
12974 }
12975 else if (section_is_p (sectp->name, &names->line_dwo))
12976 {
12977 dwp_file->sections.line.s.section = sectp;
12978 dwp_file->sections.line.size = bfd_section_size (sectp);
12979 }
12980 else if (section_is_p (sectp->name, &names->loclists_dwo))
12981 {
12982 dwp_file->sections.loclists.s.section = sectp;
12983 dwp_file->sections.loclists.size = bfd_section_size (sectp);
12984 }
12985 else if (section_is_p (sectp->name, &names->macro_dwo))
12986 {
12987 dwp_file->sections.macro.s.section = sectp;
12988 dwp_file->sections.macro.size = bfd_section_size (sectp);
12989 }
12990 else if (section_is_p (sectp->name, &names->rnglists_dwo))
12991 {
12992 dwp_file->sections.rnglists.s.section = sectp;
12993 dwp_file->sections.rnglists.size = bfd_section_size (sectp);
12994 }
12995 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12996 {
12997 dwp_file->sections.str_offsets.s.section = sectp;
12998 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12999 }
13000 }
13001
13002 /* Hash function for dwp_file loaded CUs/TUs. */
13003
13004 static hashval_t
13005 hash_dwp_loaded_cutus (const void *item)
13006 {
13007 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13008
13009 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13010 return dwo_unit->signature;
13011 }
13012
13013 /* Equality function for dwp_file loaded CUs/TUs. */
13014
13015 static int
13016 eq_dwp_loaded_cutus (const void *a, const void *b)
13017 {
13018 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13019 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13020
13021 return dua->signature == dub->signature;
13022 }
13023
13024 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13025
13026 static htab_up
13027 allocate_dwp_loaded_cutus_table ()
13028 {
13029 return htab_up (htab_create_alloc (3,
13030 hash_dwp_loaded_cutus,
13031 eq_dwp_loaded_cutus,
13032 NULL, xcalloc, xfree));
13033 }
13034
13035 /* Try to open DWP file FILE_NAME.
13036 The result is the bfd handle of the file.
13037 If there is a problem finding or opening the file, return NULL.
13038 Upon success, the canonicalized path of the file is stored in the bfd,
13039 same as symfile_bfd_open. */
13040
13041 static gdb_bfd_ref_ptr
13042 open_dwp_file (dwarf2_per_objfile *per_objfile, const char *file_name)
13043 {
13044 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, file_name,
13045 1 /*is_dwp*/,
13046 1 /*search_cwd*/));
13047 if (abfd != NULL)
13048 return abfd;
13049
13050 /* Work around upstream bug 15652.
13051 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13052 [Whether that's a "bug" is debatable, but it is getting in our way.]
13053 We have no real idea where the dwp file is, because gdb's realpath-ing
13054 of the executable's path may have discarded the needed info.
13055 [IWBN if the dwp file name was recorded in the executable, akin to
13056 .gnu_debuglink, but that doesn't exist yet.]
13057 Strip the directory from FILE_NAME and search again. */
13058 if (*debug_file_directory != '\0')
13059 {
13060 /* Don't implicitly search the current directory here.
13061 If the user wants to search "." to handle this case,
13062 it must be added to debug-file-directory. */
13063 return try_open_dwop_file (per_objfile, lbasename (file_name),
13064 1 /*is_dwp*/,
13065 0 /*search_cwd*/);
13066 }
13067
13068 return NULL;
13069 }
13070
13071 /* Initialize the use of the DWP file for the current objfile.
13072 By convention the name of the DWP file is ${objfile}.dwp.
13073 The result is NULL if it can't be found. */
13074
13075 static std::unique_ptr<struct dwp_file>
13076 open_and_init_dwp_file (dwarf2_per_objfile *per_objfile)
13077 {
13078 struct objfile *objfile = per_objfile->objfile;
13079
13080 /* Try to find first .dwp for the binary file before any symbolic links
13081 resolving. */
13082
13083 /* If the objfile is a debug file, find the name of the real binary
13084 file and get the name of dwp file from there. */
13085 std::string dwp_name;
13086 if (objfile->separate_debug_objfile_backlink != NULL)
13087 {
13088 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13089 const char *backlink_basename = lbasename (backlink->original_name);
13090
13091 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13092 }
13093 else
13094 dwp_name = objfile->original_name;
13095
13096 dwp_name += ".dwp";
13097
13098 gdb_bfd_ref_ptr dbfd (open_dwp_file (per_objfile, dwp_name.c_str ()));
13099 if (dbfd == NULL
13100 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13101 {
13102 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13103 dwp_name = objfile_name (objfile);
13104 dwp_name += ".dwp";
13105 dbfd = open_dwp_file (per_objfile, dwp_name.c_str ());
13106 }
13107
13108 if (dbfd == NULL)
13109 {
13110 if (dwarf_read_debug)
13111 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13112 return std::unique_ptr<dwp_file> ();
13113 }
13114
13115 const char *name = bfd_get_filename (dbfd.get ());
13116 std::unique_ptr<struct dwp_file> dwp_file
13117 (new struct dwp_file (name, std::move (dbfd)));
13118
13119 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13120 dwp_file->elf_sections =
13121 OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
13122 dwp_file->num_sections, asection *);
13123
13124 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
13125 dwarf2_locate_common_dwp_sections (dwp_file->dbfd.get (), sec,
13126 dwp_file.get ());
13127
13128 dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0);
13129
13130 dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1);
13131
13132 /* The DWP file version is stored in the hash table. Oh well. */
13133 if (dwp_file->cus && dwp_file->tus
13134 && dwp_file->cus->version != dwp_file->tus->version)
13135 {
13136 /* Technically speaking, we should try to limp along, but this is
13137 pretty bizarre. We use pulongest here because that's the established
13138 portability solution (e.g, we cannot use %u for uint32_t). */
13139 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13140 " TU version %s [in DWP file %s]"),
13141 pulongest (dwp_file->cus->version),
13142 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13143 }
13144
13145 if (dwp_file->cus)
13146 dwp_file->version = dwp_file->cus->version;
13147 else if (dwp_file->tus)
13148 dwp_file->version = dwp_file->tus->version;
13149 else
13150 dwp_file->version = 2;
13151
13152 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
13153 {
13154 if (dwp_file->version == 2)
13155 dwarf2_locate_v2_dwp_sections (dwp_file->dbfd.get (), sec,
13156 dwp_file.get ());
13157 else
13158 dwarf2_locate_v5_dwp_sections (dwp_file->dbfd.get (), sec,
13159 dwp_file.get ());
13160 }
13161
13162 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
13163 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
13164
13165 if (dwarf_read_debug)
13166 {
13167 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13168 fprintf_unfiltered (gdb_stdlog,
13169 " %s CUs, %s TUs\n",
13170 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13171 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13172 }
13173
13174 return dwp_file;
13175 }
13176
13177 /* Wrapper around open_and_init_dwp_file, only open it once. */
13178
13179 static struct dwp_file *
13180 get_dwp_file (dwarf2_per_objfile *per_objfile)
13181 {
13182 if (!per_objfile->per_bfd->dwp_checked)
13183 {
13184 per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile);
13185 per_objfile->per_bfd->dwp_checked = 1;
13186 }
13187 return per_objfile->per_bfd->dwp_file.get ();
13188 }
13189
13190 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13191 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13192 or in the DWP file for the objfile, referenced by THIS_UNIT.
13193 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13194 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13195
13196 This is called, for example, when wanting to read a variable with a
13197 complex location. Therefore we don't want to do file i/o for every call.
13198 Therefore we don't want to look for a DWO file on every call.
13199 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13200 then we check if we've already seen DWO_NAME, and only THEN do we check
13201 for a DWO file.
13202
13203 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13204 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13205
13206 static struct dwo_unit *
13207 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
13208 ULONGEST signature, int is_debug_types)
13209 {
13210 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13211 struct objfile *objfile = per_objfile->objfile;
13212 const char *kind = is_debug_types ? "TU" : "CU";
13213 void **dwo_file_slot;
13214 struct dwo_file *dwo_file;
13215 struct dwp_file *dwp_file;
13216
13217 /* First see if there's a DWP file.
13218 If we have a DWP file but didn't find the DWO inside it, don't
13219 look for the original DWO file. It makes gdb behave differently
13220 depending on whether one is debugging in the build tree. */
13221
13222 dwp_file = get_dwp_file (per_objfile);
13223 if (dwp_file != NULL)
13224 {
13225 const struct dwp_hash_table *dwp_htab =
13226 is_debug_types ? dwp_file->tus : dwp_file->cus;
13227
13228 if (dwp_htab != NULL)
13229 {
13230 struct dwo_unit *dwo_cutu =
13231 lookup_dwo_unit_in_dwp (per_objfile, dwp_file, comp_dir, signature,
13232 is_debug_types);
13233
13234 if (dwo_cutu != NULL)
13235 {
13236 if (dwarf_read_debug)
13237 {
13238 fprintf_unfiltered (gdb_stdlog,
13239 "Virtual DWO %s %s found: @%s\n",
13240 kind, hex_string (signature),
13241 host_address_to_string (dwo_cutu));
13242 }
13243 return dwo_cutu;
13244 }
13245 }
13246 }
13247 else
13248 {
13249 /* No DWP file, look for the DWO file. */
13250
13251 dwo_file_slot = lookup_dwo_file_slot (per_objfile, dwo_name, comp_dir);
13252 if (*dwo_file_slot == NULL)
13253 {
13254 /* Read in the file and build a table of the CUs/TUs it contains. */
13255 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
13256 }
13257 /* NOTE: This will be NULL if unable to open the file. */
13258 dwo_file = (struct dwo_file *) *dwo_file_slot;
13259
13260 if (dwo_file != NULL)
13261 {
13262 struct dwo_unit *dwo_cutu = NULL;
13263
13264 if (is_debug_types && dwo_file->tus)
13265 {
13266 struct dwo_unit find_dwo_cutu;
13267
13268 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13269 find_dwo_cutu.signature = signature;
13270 dwo_cutu
13271 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
13272 &find_dwo_cutu);
13273 }
13274 else if (!is_debug_types && dwo_file->cus)
13275 {
13276 struct dwo_unit find_dwo_cutu;
13277
13278 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13279 find_dwo_cutu.signature = signature;
13280 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
13281 &find_dwo_cutu);
13282 }
13283
13284 if (dwo_cutu != NULL)
13285 {
13286 if (dwarf_read_debug)
13287 {
13288 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13289 kind, dwo_name, hex_string (signature),
13290 host_address_to_string (dwo_cutu));
13291 }
13292 return dwo_cutu;
13293 }
13294 }
13295 }
13296
13297 /* We didn't find it. This could mean a dwo_id mismatch, or
13298 someone deleted the DWO/DWP file, or the search path isn't set up
13299 correctly to find the file. */
13300
13301 if (dwarf_read_debug)
13302 {
13303 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13304 kind, dwo_name, hex_string (signature));
13305 }
13306
13307 /* This is a warning and not a complaint because it can be caused by
13308 pilot error (e.g., user accidentally deleting the DWO). */
13309 {
13310 /* Print the name of the DWP file if we looked there, helps the user
13311 better diagnose the problem. */
13312 std::string dwp_text;
13313
13314 if (dwp_file != NULL)
13315 dwp_text = string_printf (" [in DWP file %s]",
13316 lbasename (dwp_file->name));
13317
13318 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13319 " [in module %s]"),
13320 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
13321 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
13322 }
13323 return NULL;
13324 }
13325
13326 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13327 See lookup_dwo_cutu_unit for details. */
13328
13329 static struct dwo_unit *
13330 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
13331 ULONGEST signature)
13332 {
13333 gdb_assert (!cu->per_cu->is_debug_types);
13334
13335 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
13336 }
13337
13338 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13339 See lookup_dwo_cutu_unit for details. */
13340
13341 static struct dwo_unit *
13342 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
13343 {
13344 gdb_assert (cu->per_cu->is_debug_types);
13345
13346 signatured_type *sig_type = (signatured_type *) cu->per_cu;
13347
13348 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
13349 }
13350
13351 /* Traversal function for queue_and_load_all_dwo_tus. */
13352
13353 static int
13354 queue_and_load_dwo_tu (void **slot, void *info)
13355 {
13356 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13357 dwarf2_cu *cu = (dwarf2_cu *) info;
13358 ULONGEST signature = dwo_unit->signature;
13359 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
13360
13361 if (sig_type != NULL)
13362 {
13363 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13364
13365 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13366 a real dependency of PER_CU on SIG_TYPE. That is detected later
13367 while processing PER_CU. */
13368 if (maybe_queue_comp_unit (NULL, sig_cu, cu->per_objfile, cu->language))
13369 load_full_type_unit (sig_cu, cu->per_objfile);
13370 cu->per_cu->imported_symtabs_push (sig_cu);
13371 }
13372
13373 return 1;
13374 }
13375
13376 /* Queue all TUs contained in the DWO of CU to be read in.
13377 The DWO may have the only definition of the type, though it may not be
13378 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13379 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13380
13381 static void
13382 queue_and_load_all_dwo_tus (dwarf2_cu *cu)
13383 {
13384 struct dwo_unit *dwo_unit;
13385 struct dwo_file *dwo_file;
13386
13387 gdb_assert (cu != nullptr);
13388 gdb_assert (!cu->per_cu->is_debug_types);
13389 gdb_assert (get_dwp_file (cu->per_objfile) == nullptr);
13390
13391 dwo_unit = cu->dwo_unit;
13392 gdb_assert (dwo_unit != NULL);
13393
13394 dwo_file = dwo_unit->dwo_file;
13395 if (dwo_file->tus != NULL)
13396 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, cu);
13397 }
13398
13399 /* Read in various DIEs. */
13400
13401 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13402 Inherit only the children of the DW_AT_abstract_origin DIE not being
13403 already referenced by DW_AT_abstract_origin from the children of the
13404 current DIE. */
13405
13406 static void
13407 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13408 {
13409 struct die_info *child_die;
13410 sect_offset *offsetp;
13411 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13412 struct die_info *origin_die;
13413 /* Iterator of the ORIGIN_DIE children. */
13414 struct die_info *origin_child_die;
13415 struct attribute *attr;
13416 struct dwarf2_cu *origin_cu;
13417 struct pending **origin_previous_list_in_scope;
13418
13419 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13420 if (!attr)
13421 return;
13422
13423 /* Note that following die references may follow to a die in a
13424 different cu. */
13425
13426 origin_cu = cu;
13427 origin_die = follow_die_ref (die, attr, &origin_cu);
13428
13429 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13430 symbols in. */
13431 origin_previous_list_in_scope = origin_cu->list_in_scope;
13432 origin_cu->list_in_scope = cu->list_in_scope;
13433
13434 if (die->tag != origin_die->tag
13435 && !(die->tag == DW_TAG_inlined_subroutine
13436 && origin_die->tag == DW_TAG_subprogram))
13437 complaint (_("DIE %s and its abstract origin %s have different tags"),
13438 sect_offset_str (die->sect_off),
13439 sect_offset_str (origin_die->sect_off));
13440
13441 std::vector<sect_offset> offsets;
13442
13443 for (child_die = die->child;
13444 child_die && child_die->tag;
13445 child_die = child_die->sibling)
13446 {
13447 struct die_info *child_origin_die;
13448 struct dwarf2_cu *child_origin_cu;
13449
13450 /* We are trying to process concrete instance entries:
13451 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13452 it's not relevant to our analysis here. i.e. detecting DIEs that are
13453 present in the abstract instance but not referenced in the concrete
13454 one. */
13455 if (child_die->tag == DW_TAG_call_site
13456 || child_die->tag == DW_TAG_GNU_call_site)
13457 continue;
13458
13459 /* For each CHILD_DIE, find the corresponding child of
13460 ORIGIN_DIE. If there is more than one layer of
13461 DW_AT_abstract_origin, follow them all; there shouldn't be,
13462 but GCC versions at least through 4.4 generate this (GCC PR
13463 40573). */
13464 child_origin_die = child_die;
13465 child_origin_cu = cu;
13466 while (1)
13467 {
13468 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13469 child_origin_cu);
13470 if (attr == NULL)
13471 break;
13472 child_origin_die = follow_die_ref (child_origin_die, attr,
13473 &child_origin_cu);
13474 }
13475
13476 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13477 counterpart may exist. */
13478 if (child_origin_die != child_die)
13479 {
13480 if (child_die->tag != child_origin_die->tag
13481 && !(child_die->tag == DW_TAG_inlined_subroutine
13482 && child_origin_die->tag == DW_TAG_subprogram))
13483 complaint (_("Child DIE %s and its abstract origin %s have "
13484 "different tags"),
13485 sect_offset_str (child_die->sect_off),
13486 sect_offset_str (child_origin_die->sect_off));
13487 if (child_origin_die->parent != origin_die)
13488 complaint (_("Child DIE %s and its abstract origin %s have "
13489 "different parents"),
13490 sect_offset_str (child_die->sect_off),
13491 sect_offset_str (child_origin_die->sect_off));
13492 else
13493 offsets.push_back (child_origin_die->sect_off);
13494 }
13495 }
13496 std::sort (offsets.begin (), offsets.end ());
13497 sect_offset *offsets_end = offsets.data () + offsets.size ();
13498 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13499 if (offsetp[-1] == *offsetp)
13500 complaint (_("Multiple children of DIE %s refer "
13501 "to DIE %s as their abstract origin"),
13502 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13503
13504 offsetp = offsets.data ();
13505 origin_child_die = origin_die->child;
13506 while (origin_child_die && origin_child_die->tag)
13507 {
13508 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13509 while (offsetp < offsets_end
13510 && *offsetp < origin_child_die->sect_off)
13511 offsetp++;
13512 if (offsetp >= offsets_end
13513 || *offsetp > origin_child_die->sect_off)
13514 {
13515 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13516 Check whether we're already processing ORIGIN_CHILD_DIE.
13517 This can happen with mutually referenced abstract_origins.
13518 PR 16581. */
13519 if (!origin_child_die->in_process)
13520 process_die (origin_child_die, origin_cu);
13521 }
13522 origin_child_die = origin_child_die->sibling;
13523 }
13524 origin_cu->list_in_scope = origin_previous_list_in_scope;
13525
13526 if (cu != origin_cu)
13527 compute_delayed_physnames (origin_cu);
13528 }
13529
13530 static void
13531 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13532 {
13533 struct objfile *objfile = cu->per_objfile->objfile;
13534 struct gdbarch *gdbarch = objfile->arch ();
13535 struct context_stack *newobj;
13536 CORE_ADDR lowpc;
13537 CORE_ADDR highpc;
13538 struct die_info *child_die;
13539 struct attribute *attr, *call_line, *call_file;
13540 const char *name;
13541 CORE_ADDR baseaddr;
13542 struct block *block;
13543 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13544 std::vector<struct symbol *> template_args;
13545 struct template_symbol *templ_func = NULL;
13546
13547 if (inlined_func)
13548 {
13549 /* If we do not have call site information, we can't show the
13550 caller of this inlined function. That's too confusing, so
13551 only use the scope for local variables. */
13552 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13553 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13554 if (call_line == NULL || call_file == NULL)
13555 {
13556 read_lexical_block_scope (die, cu);
13557 return;
13558 }
13559 }
13560
13561 baseaddr = objfile->text_section_offset ();
13562
13563 name = dwarf2_name (die, cu);
13564
13565 /* Ignore functions with missing or empty names. These are actually
13566 illegal according to the DWARF standard. */
13567 if (name == NULL)
13568 {
13569 complaint (_("missing name for subprogram DIE at %s"),
13570 sect_offset_str (die->sect_off));
13571 return;
13572 }
13573
13574 /* Ignore functions with missing or invalid low and high pc attributes. */
13575 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13576 <= PC_BOUNDS_INVALID)
13577 {
13578 attr = dwarf2_attr (die, DW_AT_external, cu);
13579 if (attr == nullptr || !attr->as_boolean ())
13580 complaint (_("cannot get low and high bounds "
13581 "for subprogram DIE at %s"),
13582 sect_offset_str (die->sect_off));
13583 return;
13584 }
13585
13586 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13587 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13588
13589 /* If we have any template arguments, then we must allocate a
13590 different sort of symbol. */
13591 for (child_die = die->child; child_die; child_die = child_die->sibling)
13592 {
13593 if (child_die->tag == DW_TAG_template_type_param
13594 || child_die->tag == DW_TAG_template_value_param)
13595 {
13596 templ_func = new (&objfile->objfile_obstack) template_symbol;
13597 templ_func->subclass = SYMBOL_TEMPLATE;
13598 break;
13599 }
13600 }
13601
13602 newobj = cu->get_builder ()->push_context (0, lowpc);
13603 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13604 (struct symbol *) templ_func);
13605
13606 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13607 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13608 cu->language);
13609
13610 /* If there is a location expression for DW_AT_frame_base, record
13611 it. */
13612 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13613 if (attr != nullptr)
13614 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13615
13616 /* If there is a location for the static link, record it. */
13617 newobj->static_link = NULL;
13618 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13619 if (attr != nullptr)
13620 {
13621 newobj->static_link
13622 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13623 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13624 cu->addr_type ());
13625 }
13626
13627 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13628
13629 if (die->child != NULL)
13630 {
13631 child_die = die->child;
13632 while (child_die && child_die->tag)
13633 {
13634 if (child_die->tag == DW_TAG_template_type_param
13635 || child_die->tag == DW_TAG_template_value_param)
13636 {
13637 struct symbol *arg = new_symbol (child_die, NULL, cu);
13638
13639 if (arg != NULL)
13640 template_args.push_back (arg);
13641 }
13642 else
13643 process_die (child_die, cu);
13644 child_die = child_die->sibling;
13645 }
13646 }
13647
13648 inherit_abstract_dies (die, cu);
13649
13650 /* If we have a DW_AT_specification, we might need to import using
13651 directives from the context of the specification DIE. See the
13652 comment in determine_prefix. */
13653 if (cu->language == language_cplus
13654 && dwarf2_attr (die, DW_AT_specification, cu))
13655 {
13656 struct dwarf2_cu *spec_cu = cu;
13657 struct die_info *spec_die = die_specification (die, &spec_cu);
13658
13659 while (spec_die)
13660 {
13661 child_die = spec_die->child;
13662 while (child_die && child_die->tag)
13663 {
13664 if (child_die->tag == DW_TAG_imported_module)
13665 process_die (child_die, spec_cu);
13666 child_die = child_die->sibling;
13667 }
13668
13669 /* In some cases, GCC generates specification DIEs that
13670 themselves contain DW_AT_specification attributes. */
13671 spec_die = die_specification (spec_die, &spec_cu);
13672 }
13673 }
13674
13675 struct context_stack cstk = cu->get_builder ()->pop_context ();
13676 /* Make a block for the local symbols within. */
13677 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13678 cstk.static_link, lowpc, highpc);
13679
13680 /* For C++, set the block's scope. */
13681 if ((cu->language == language_cplus
13682 || cu->language == language_fortran
13683 || cu->language == language_d
13684 || cu->language == language_rust)
13685 && cu->processing_has_namespace_info)
13686 block_set_scope (block, determine_prefix (die, cu),
13687 &objfile->objfile_obstack);
13688
13689 /* If we have address ranges, record them. */
13690 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13691
13692 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13693
13694 /* Attach template arguments to function. */
13695 if (!template_args.empty ())
13696 {
13697 gdb_assert (templ_func != NULL);
13698
13699 templ_func->n_template_arguments = template_args.size ();
13700 templ_func->template_arguments
13701 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13702 templ_func->n_template_arguments);
13703 memcpy (templ_func->template_arguments,
13704 template_args.data (),
13705 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13706
13707 /* Make sure that the symtab is set on the new symbols. Even
13708 though they don't appear in this symtab directly, other parts
13709 of gdb assume that symbols do, and this is reasonably
13710 true. */
13711 for (symbol *sym : template_args)
13712 symbol_set_symtab (sym, symbol_symtab (templ_func));
13713 }
13714
13715 /* In C++, we can have functions nested inside functions (e.g., when
13716 a function declares a class that has methods). This means that
13717 when we finish processing a function scope, we may need to go
13718 back to building a containing block's symbol lists. */
13719 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13720 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13721
13722 /* If we've finished processing a top-level function, subsequent
13723 symbols go in the file symbol list. */
13724 if (cu->get_builder ()->outermost_context_p ())
13725 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13726 }
13727
13728 /* Process all the DIES contained within a lexical block scope. Start
13729 a new scope, process the dies, and then close the scope. */
13730
13731 static void
13732 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13733 {
13734 struct objfile *objfile = cu->per_objfile->objfile;
13735 struct gdbarch *gdbarch = objfile->arch ();
13736 CORE_ADDR lowpc, highpc;
13737 struct die_info *child_die;
13738 CORE_ADDR baseaddr;
13739
13740 baseaddr = objfile->text_section_offset ();
13741
13742 /* Ignore blocks with missing or invalid low and high pc attributes. */
13743 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13744 as multiple lexical blocks? Handling children in a sane way would
13745 be nasty. Might be easier to properly extend generic blocks to
13746 describe ranges. */
13747 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13748 {
13749 case PC_BOUNDS_NOT_PRESENT:
13750 /* DW_TAG_lexical_block has no attributes, process its children as if
13751 there was no wrapping by that DW_TAG_lexical_block.
13752 GCC does no longer produces such DWARF since GCC r224161. */
13753 for (child_die = die->child;
13754 child_die != NULL && child_die->tag;
13755 child_die = child_die->sibling)
13756 {
13757 /* We might already be processing this DIE. This can happen
13758 in an unusual circumstance -- where a subroutine A
13759 appears lexically in another subroutine B, but A actually
13760 inlines B. The recursion is broken here, rather than in
13761 inherit_abstract_dies, because it seems better to simply
13762 drop concrete children here. */
13763 if (!child_die->in_process)
13764 process_die (child_die, cu);
13765 }
13766 return;
13767 case PC_BOUNDS_INVALID:
13768 return;
13769 }
13770 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13771 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13772
13773 cu->get_builder ()->push_context (0, lowpc);
13774 if (die->child != NULL)
13775 {
13776 child_die = die->child;
13777 while (child_die && child_die->tag)
13778 {
13779 process_die (child_die, cu);
13780 child_die = child_die->sibling;
13781 }
13782 }
13783 inherit_abstract_dies (die, cu);
13784 struct context_stack cstk = cu->get_builder ()->pop_context ();
13785
13786 if (*cu->get_builder ()->get_local_symbols () != NULL
13787 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13788 {
13789 struct block *block
13790 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13791 cstk.start_addr, highpc);
13792
13793 /* Note that recording ranges after traversing children, as we
13794 do here, means that recording a parent's ranges entails
13795 walking across all its children's ranges as they appear in
13796 the address map, which is quadratic behavior.
13797
13798 It would be nicer to record the parent's ranges before
13799 traversing its children, simply overriding whatever you find
13800 there. But since we don't even decide whether to create a
13801 block until after we've traversed its children, that's hard
13802 to do. */
13803 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13804 }
13805 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13806 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13807 }
13808
13809 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13810
13811 static void
13812 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13813 {
13814 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13815 struct objfile *objfile = per_objfile->objfile;
13816 struct gdbarch *gdbarch = objfile->arch ();
13817 CORE_ADDR pc, baseaddr;
13818 struct attribute *attr;
13819 struct call_site *call_site, call_site_local;
13820 void **slot;
13821 int nparams;
13822 struct die_info *child_die;
13823
13824 baseaddr = objfile->text_section_offset ();
13825
13826 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13827 if (attr == NULL)
13828 {
13829 /* This was a pre-DWARF-5 GNU extension alias
13830 for DW_AT_call_return_pc. */
13831 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13832 }
13833 if (!attr)
13834 {
13835 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13836 "DIE %s [in module %s]"),
13837 sect_offset_str (die->sect_off), objfile_name (objfile));
13838 return;
13839 }
13840 pc = attr->as_address () + baseaddr;
13841 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13842
13843 if (cu->call_site_htab == NULL)
13844 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13845 NULL, &objfile->objfile_obstack,
13846 hashtab_obstack_allocate, NULL);
13847 call_site_local.pc = pc;
13848 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13849 if (*slot != NULL)
13850 {
13851 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13852 "DIE %s [in module %s]"),
13853 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13854 objfile_name (objfile));
13855 return;
13856 }
13857
13858 /* Count parameters at the caller. */
13859
13860 nparams = 0;
13861 for (child_die = die->child; child_die && child_die->tag;
13862 child_die = child_die->sibling)
13863 {
13864 if (child_die->tag != DW_TAG_call_site_parameter
13865 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13866 {
13867 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13868 "DW_TAG_call_site child DIE %s [in module %s]"),
13869 child_die->tag, sect_offset_str (child_die->sect_off),
13870 objfile_name (objfile));
13871 continue;
13872 }
13873
13874 nparams++;
13875 }
13876
13877 call_site
13878 = ((struct call_site *)
13879 obstack_alloc (&objfile->objfile_obstack,
13880 sizeof (*call_site)
13881 + (sizeof (*call_site->parameter) * (nparams - 1))));
13882 *slot = call_site;
13883 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13884 call_site->pc = pc;
13885
13886 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13887 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13888 {
13889 struct die_info *func_die;
13890
13891 /* Skip also over DW_TAG_inlined_subroutine. */
13892 for (func_die = die->parent;
13893 func_die && func_die->tag != DW_TAG_subprogram
13894 && func_die->tag != DW_TAG_subroutine_type;
13895 func_die = func_die->parent);
13896
13897 /* DW_AT_call_all_calls is a superset
13898 of DW_AT_call_all_tail_calls. */
13899 if (func_die
13900 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13901 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13902 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13903 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13904 {
13905 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13906 not complete. But keep CALL_SITE for look ups via call_site_htab,
13907 both the initial caller containing the real return address PC and
13908 the final callee containing the current PC of a chain of tail
13909 calls do not need to have the tail call list complete. But any
13910 function candidate for a virtual tail call frame searched via
13911 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13912 determined unambiguously. */
13913 }
13914 else
13915 {
13916 struct type *func_type = NULL;
13917
13918 if (func_die)
13919 func_type = get_die_type (func_die, cu);
13920 if (func_type != NULL)
13921 {
13922 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13923
13924 /* Enlist this call site to the function. */
13925 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13926 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13927 }
13928 else
13929 complaint (_("Cannot find function owning DW_TAG_call_site "
13930 "DIE %s [in module %s]"),
13931 sect_offset_str (die->sect_off), objfile_name (objfile));
13932 }
13933 }
13934
13935 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13936 if (attr == NULL)
13937 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13938 if (attr == NULL)
13939 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13940 if (attr == NULL)
13941 {
13942 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13943 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13944 }
13945 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13946 if (!attr || (attr->form_is_block () && attr->as_block ()->size == 0))
13947 /* Keep NULL DWARF_BLOCK. */;
13948 else if (attr->form_is_block ())
13949 {
13950 struct dwarf2_locexpr_baton *dlbaton;
13951 struct dwarf_block *block = attr->as_block ();
13952
13953 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13954 dlbaton->data = block->data;
13955 dlbaton->size = block->size;
13956 dlbaton->per_objfile = per_objfile;
13957 dlbaton->per_cu = cu->per_cu;
13958
13959 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13960 }
13961 else if (attr->form_is_ref ())
13962 {
13963 struct dwarf2_cu *target_cu = cu;
13964 struct die_info *target_die;
13965
13966 target_die = follow_die_ref (die, attr, &target_cu);
13967 gdb_assert (target_cu->per_objfile->objfile == objfile);
13968 if (die_is_declaration (target_die, target_cu))
13969 {
13970 const char *target_physname;
13971
13972 /* Prefer the mangled name; otherwise compute the demangled one. */
13973 target_physname = dw2_linkage_name (target_die, target_cu);
13974 if (target_physname == NULL)
13975 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13976 if (target_physname == NULL)
13977 complaint (_("DW_AT_call_target target DIE has invalid "
13978 "physname, for referencing DIE %s [in module %s]"),
13979 sect_offset_str (die->sect_off), objfile_name (objfile));
13980 else
13981 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13982 }
13983 else
13984 {
13985 CORE_ADDR lowpc;
13986
13987 /* DW_AT_entry_pc should be preferred. */
13988 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13989 <= PC_BOUNDS_INVALID)
13990 complaint (_("DW_AT_call_target target DIE has invalid "
13991 "low pc, for referencing DIE %s [in module %s]"),
13992 sect_offset_str (die->sect_off), objfile_name (objfile));
13993 else
13994 {
13995 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13996 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13997 }
13998 }
13999 }
14000 else
14001 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14002 "block nor reference, for DIE %s [in module %s]"),
14003 sect_offset_str (die->sect_off), objfile_name (objfile));
14004
14005 call_site->per_cu = cu->per_cu;
14006 call_site->per_objfile = per_objfile;
14007
14008 for (child_die = die->child;
14009 child_die && child_die->tag;
14010 child_die = child_die->sibling)
14011 {
14012 struct call_site_parameter *parameter;
14013 struct attribute *loc, *origin;
14014
14015 if (child_die->tag != DW_TAG_call_site_parameter
14016 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14017 {
14018 /* Already printed the complaint above. */
14019 continue;
14020 }
14021
14022 gdb_assert (call_site->parameter_count < nparams);
14023 parameter = &call_site->parameter[call_site->parameter_count];
14024
14025 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14026 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14027 register is contained in DW_AT_call_value. */
14028
14029 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14030 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14031 if (origin == NULL)
14032 {
14033 /* This was a pre-DWARF-5 GNU extension alias
14034 for DW_AT_call_parameter. */
14035 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14036 }
14037 if (loc == NULL && origin != NULL && origin->form_is_ref ())
14038 {
14039 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14040
14041 sect_offset sect_off = origin->get_ref_die_offset ();
14042 if (!cu->header.offset_in_cu_p (sect_off))
14043 {
14044 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14045 binding can be done only inside one CU. Such referenced DIE
14046 therefore cannot be even moved to DW_TAG_partial_unit. */
14047 complaint (_("DW_AT_call_parameter offset is not in CU for "
14048 "DW_TAG_call_site child DIE %s [in module %s]"),
14049 sect_offset_str (child_die->sect_off),
14050 objfile_name (objfile));
14051 continue;
14052 }
14053 parameter->u.param_cu_off
14054 = (cu_offset) (sect_off - cu->header.sect_off);
14055 }
14056 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
14057 {
14058 complaint (_("No DW_FORM_block* DW_AT_location for "
14059 "DW_TAG_call_site child DIE %s [in module %s]"),
14060 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14061 continue;
14062 }
14063 else
14064 {
14065 struct dwarf_block *block = loc->as_block ();
14066
14067 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14068 (block->data, &block->data[block->size]);
14069 if (parameter->u.dwarf_reg != -1)
14070 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14071 else if (dwarf_block_to_sp_offset (gdbarch, block->data,
14072 &block->data[block->size],
14073 &parameter->u.fb_offset))
14074 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14075 else
14076 {
14077 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14078 "for DW_FORM_block* DW_AT_location is supported for "
14079 "DW_TAG_call_site child DIE %s "
14080 "[in module %s]"),
14081 sect_offset_str (child_die->sect_off),
14082 objfile_name (objfile));
14083 continue;
14084 }
14085 }
14086
14087 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14088 if (attr == NULL)
14089 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14090 if (attr == NULL || !attr->form_is_block ())
14091 {
14092 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14093 "DW_TAG_call_site child DIE %s [in module %s]"),
14094 sect_offset_str (child_die->sect_off),
14095 objfile_name (objfile));
14096 continue;
14097 }
14098
14099 struct dwarf_block *block = attr->as_block ();
14100 parameter->value = block->data;
14101 parameter->value_size = block->size;
14102
14103 /* Parameters are not pre-cleared by memset above. */
14104 parameter->data_value = NULL;
14105 parameter->data_value_size = 0;
14106 call_site->parameter_count++;
14107
14108 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14109 if (attr == NULL)
14110 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14111 if (attr != nullptr)
14112 {
14113 if (!attr->form_is_block ())
14114 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14115 "DW_TAG_call_site child DIE %s [in module %s]"),
14116 sect_offset_str (child_die->sect_off),
14117 objfile_name (objfile));
14118 else
14119 {
14120 block = attr->as_block ();
14121 parameter->data_value = block->data;
14122 parameter->data_value_size = block->size;
14123 }
14124 }
14125 }
14126 }
14127
14128 /* Helper function for read_variable. If DIE represents a virtual
14129 table, then return the type of the concrete object that is
14130 associated with the virtual table. Otherwise, return NULL. */
14131
14132 static struct type *
14133 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14134 {
14135 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14136 if (attr == NULL)
14137 return NULL;
14138
14139 /* Find the type DIE. */
14140 struct die_info *type_die = NULL;
14141 struct dwarf2_cu *type_cu = cu;
14142
14143 if (attr->form_is_ref ())
14144 type_die = follow_die_ref (die, attr, &type_cu);
14145 if (type_die == NULL)
14146 return NULL;
14147
14148 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14149 return NULL;
14150 return die_containing_type (type_die, type_cu);
14151 }
14152
14153 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14154
14155 static void
14156 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14157 {
14158 struct rust_vtable_symbol *storage = NULL;
14159
14160 if (cu->language == language_rust)
14161 {
14162 struct type *containing_type = rust_containing_type (die, cu);
14163
14164 if (containing_type != NULL)
14165 {
14166 struct objfile *objfile = cu->per_objfile->objfile;
14167
14168 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
14169 storage->concrete_type = containing_type;
14170 storage->subclass = SYMBOL_RUST_VTABLE;
14171 }
14172 }
14173
14174 struct symbol *res = new_symbol (die, NULL, cu, storage);
14175 struct attribute *abstract_origin
14176 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14177 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14178 if (res == NULL && loc && abstract_origin)
14179 {
14180 /* We have a variable without a name, but with a location and an abstract
14181 origin. This may be a concrete instance of an abstract variable
14182 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14183 later. */
14184 struct dwarf2_cu *origin_cu = cu;
14185 struct die_info *origin_die
14186 = follow_die_ref (die, abstract_origin, &origin_cu);
14187 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14188 per_objfile->per_bfd->abstract_to_concrete
14189 [origin_die->sect_off].push_back (die->sect_off);
14190 }
14191 }
14192
14193 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14194 reading .debug_rnglists.
14195 Callback's type should be:
14196 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14197 Return true if the attributes are present and valid, otherwise,
14198 return false. */
14199
14200 template <typename Callback>
14201 static bool
14202 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14203 dwarf_tag tag, Callback &&callback)
14204 {
14205 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14206 struct objfile *objfile = per_objfile->objfile;
14207 bfd *obfd = objfile->obfd;
14208 /* Base address selection entry. */
14209 gdb::optional<CORE_ADDR> base;
14210 const gdb_byte *buffer;
14211 CORE_ADDR baseaddr;
14212 bool overflow = false;
14213 ULONGEST addr_index;
14214 struct dwarf2_section_info *rnglists_section;
14215
14216 base = cu->base_address;
14217 rnglists_section = cu_debug_rnglists_section (cu, tag);
14218 rnglists_section->read (objfile);
14219
14220 if (offset >= rnglists_section->size)
14221 {
14222 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14223 offset);
14224 return false;
14225 }
14226 buffer = rnglists_section->buffer + offset;
14227
14228 baseaddr = objfile->text_section_offset ();
14229
14230 while (1)
14231 {
14232 /* Initialize it due to a false compiler warning. */
14233 CORE_ADDR range_beginning = 0, range_end = 0;
14234 const gdb_byte *buf_end = (rnglists_section->buffer
14235 + rnglists_section->size);
14236 unsigned int bytes_read;
14237
14238 if (buffer == buf_end)
14239 {
14240 overflow = true;
14241 break;
14242 }
14243 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14244 switch (rlet)
14245 {
14246 case DW_RLE_end_of_list:
14247 break;
14248 case DW_RLE_base_address:
14249 if (buffer + cu->header.addr_size > buf_end)
14250 {
14251 overflow = true;
14252 break;
14253 }
14254 base = cu->header.read_address (obfd, buffer, &bytes_read);
14255 buffer += bytes_read;
14256 break;
14257 case DW_RLE_base_addressx:
14258 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14259 buffer += bytes_read;
14260 base = read_addr_index (cu, addr_index);
14261 break;
14262 case DW_RLE_start_length:
14263 if (buffer + cu->header.addr_size > buf_end)
14264 {
14265 overflow = true;
14266 break;
14267 }
14268 range_beginning = cu->header.read_address (obfd, buffer,
14269 &bytes_read);
14270 buffer += bytes_read;
14271 range_end = (range_beginning
14272 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14273 buffer += bytes_read;
14274 if (buffer > buf_end)
14275 {
14276 overflow = true;
14277 break;
14278 }
14279 break;
14280 case DW_RLE_startx_length:
14281 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14282 buffer += bytes_read;
14283 range_beginning = read_addr_index (cu, addr_index);
14284 if (buffer > buf_end)
14285 {
14286 overflow = true;
14287 break;
14288 }
14289 range_end = (range_beginning
14290 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14291 buffer += bytes_read;
14292 break;
14293 case DW_RLE_offset_pair:
14294 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14295 buffer += bytes_read;
14296 if (buffer > buf_end)
14297 {
14298 overflow = true;
14299 break;
14300 }
14301 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14302 buffer += bytes_read;
14303 if (buffer > buf_end)
14304 {
14305 overflow = true;
14306 break;
14307 }
14308 break;
14309 case DW_RLE_start_end:
14310 if (buffer + 2 * cu->header.addr_size > buf_end)
14311 {
14312 overflow = true;
14313 break;
14314 }
14315 range_beginning = cu->header.read_address (obfd, buffer,
14316 &bytes_read);
14317 buffer += bytes_read;
14318 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
14319 buffer += bytes_read;
14320 break;
14321 case DW_RLE_startx_endx:
14322 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14323 buffer += bytes_read;
14324 range_beginning = read_addr_index (cu, addr_index);
14325 if (buffer > buf_end)
14326 {
14327 overflow = true;
14328 break;
14329 }
14330 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14331 buffer += bytes_read;
14332 range_end = read_addr_index (cu, addr_index);
14333 break;
14334 default:
14335 complaint (_("Invalid .debug_rnglists data (no base address)"));
14336 return false;
14337 }
14338 if (rlet == DW_RLE_end_of_list || overflow)
14339 break;
14340 if (rlet == DW_RLE_base_address)
14341 continue;
14342
14343 if (range_beginning > range_end)
14344 {
14345 /* Inverted range entries are invalid. */
14346 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14347 return false;
14348 }
14349
14350 /* Empty range entries have no effect. */
14351 if (range_beginning == range_end)
14352 continue;
14353
14354 /* Only DW_RLE_offset_pair needs the base address added. */
14355 if (rlet == DW_RLE_offset_pair)
14356 {
14357 if (!base.has_value ())
14358 {
14359 /* We have no valid base address for the DW_RLE_offset_pair. */
14360 complaint (_("Invalid .debug_rnglists data (no base address for "
14361 "DW_RLE_offset_pair)"));
14362 return false;
14363 }
14364
14365 range_beginning += *base;
14366 range_end += *base;
14367 }
14368
14369 /* A not-uncommon case of bad debug info.
14370 Don't pollute the addrmap with bad data. */
14371 if (range_beginning + baseaddr == 0
14372 && !per_objfile->per_bfd->has_section_at_zero)
14373 {
14374 complaint (_(".debug_rnglists entry has start address of zero"
14375 " [in module %s]"), objfile_name (objfile));
14376 continue;
14377 }
14378
14379 callback (range_beginning, range_end);
14380 }
14381
14382 if (overflow)
14383 {
14384 complaint (_("Offset %d is not terminated "
14385 "for DW_AT_ranges attribute"),
14386 offset);
14387 return false;
14388 }
14389
14390 return true;
14391 }
14392
14393 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14394 Callback's type should be:
14395 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14396 Return 1 if the attributes are present and valid, otherwise, return 0. */
14397
14398 template <typename Callback>
14399 static int
14400 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, dwarf_tag tag,
14401 Callback &&callback)
14402 {
14403 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14404 struct objfile *objfile = per_objfile->objfile;
14405 struct comp_unit_head *cu_header = &cu->header;
14406 bfd *obfd = objfile->obfd;
14407 unsigned int addr_size = cu_header->addr_size;
14408 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14409 /* Base address selection entry. */
14410 gdb::optional<CORE_ADDR> base;
14411 unsigned int dummy;
14412 const gdb_byte *buffer;
14413 CORE_ADDR baseaddr;
14414
14415 if (cu_header->version >= 5)
14416 return dwarf2_rnglists_process (offset, cu, tag, callback);
14417
14418 base = cu->base_address;
14419
14420 per_objfile->per_bfd->ranges.read (objfile);
14421 if (offset >= per_objfile->per_bfd->ranges.size)
14422 {
14423 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14424 offset);
14425 return 0;
14426 }
14427 buffer = per_objfile->per_bfd->ranges.buffer + offset;
14428
14429 baseaddr = objfile->text_section_offset ();
14430
14431 while (1)
14432 {
14433 CORE_ADDR range_beginning, range_end;
14434
14435 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
14436 buffer += addr_size;
14437 range_end = cu->header.read_address (obfd, buffer, &dummy);
14438 buffer += addr_size;
14439 offset += 2 * addr_size;
14440
14441 /* An end of list marker is a pair of zero addresses. */
14442 if (range_beginning == 0 && range_end == 0)
14443 /* Found the end of list entry. */
14444 break;
14445
14446 /* Each base address selection entry is a pair of 2 values.
14447 The first is the largest possible address, the second is
14448 the base address. Check for a base address here. */
14449 if ((range_beginning & mask) == mask)
14450 {
14451 /* If we found the largest possible address, then we already
14452 have the base address in range_end. */
14453 base = range_end;
14454 continue;
14455 }
14456
14457 if (!base.has_value ())
14458 {
14459 /* We have no valid base address for the ranges
14460 data. */
14461 complaint (_("Invalid .debug_ranges data (no base address)"));
14462 return 0;
14463 }
14464
14465 if (range_beginning > range_end)
14466 {
14467 /* Inverted range entries are invalid. */
14468 complaint (_("Invalid .debug_ranges data (inverted range)"));
14469 return 0;
14470 }
14471
14472 /* Empty range entries have no effect. */
14473 if (range_beginning == range_end)
14474 continue;
14475
14476 range_beginning += *base;
14477 range_end += *base;
14478
14479 /* A not-uncommon case of bad debug info.
14480 Don't pollute the addrmap with bad data. */
14481 if (range_beginning + baseaddr == 0
14482 && !per_objfile->per_bfd->has_section_at_zero)
14483 {
14484 complaint (_(".debug_ranges entry has start address of zero"
14485 " [in module %s]"), objfile_name (objfile));
14486 continue;
14487 }
14488
14489 callback (range_beginning, range_end);
14490 }
14491
14492 return 1;
14493 }
14494
14495 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14496 Return 1 if the attributes are present and valid, otherwise, return 0.
14497 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14498
14499 static int
14500 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14501 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14502 dwarf2_psymtab *ranges_pst, dwarf_tag tag)
14503 {
14504 struct objfile *objfile = cu->per_objfile->objfile;
14505 struct gdbarch *gdbarch = objfile->arch ();
14506 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14507 int low_set = 0;
14508 CORE_ADDR low = 0;
14509 CORE_ADDR high = 0;
14510 int retval;
14511
14512 retval = dwarf2_ranges_process (offset, cu, tag,
14513 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14514 {
14515 if (ranges_pst != NULL)
14516 {
14517 CORE_ADDR lowpc;
14518 CORE_ADDR highpc;
14519
14520 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14521 range_beginning + baseaddr)
14522 - baseaddr);
14523 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14524 range_end + baseaddr)
14525 - baseaddr);
14526 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14527 lowpc, highpc - 1, ranges_pst);
14528 }
14529
14530 /* FIXME: This is recording everything as a low-high
14531 segment of consecutive addresses. We should have a
14532 data structure for discontiguous block ranges
14533 instead. */
14534 if (! low_set)
14535 {
14536 low = range_beginning;
14537 high = range_end;
14538 low_set = 1;
14539 }
14540 else
14541 {
14542 if (range_beginning < low)
14543 low = range_beginning;
14544 if (range_end > high)
14545 high = range_end;
14546 }
14547 });
14548 if (!retval)
14549 return 0;
14550
14551 if (! low_set)
14552 /* If the first entry is an end-of-list marker, the range
14553 describes an empty scope, i.e. no instructions. */
14554 return 0;
14555
14556 if (low_return)
14557 *low_return = low;
14558 if (high_return)
14559 *high_return = high;
14560 return 1;
14561 }
14562
14563 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14564 definition for the return value. *LOWPC and *HIGHPC are set iff
14565 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14566
14567 static enum pc_bounds_kind
14568 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14569 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14570 dwarf2_psymtab *pst)
14571 {
14572 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14573 struct attribute *attr;
14574 struct attribute *attr_high;
14575 CORE_ADDR low = 0;
14576 CORE_ADDR high = 0;
14577 enum pc_bounds_kind ret;
14578
14579 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14580 if (attr_high)
14581 {
14582 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14583 if (attr != nullptr)
14584 {
14585 low = attr->as_address ();
14586 high = attr_high->as_address ();
14587 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14588 high += low;
14589 }
14590 else
14591 /* Found high w/o low attribute. */
14592 return PC_BOUNDS_INVALID;
14593
14594 /* Found consecutive range of addresses. */
14595 ret = PC_BOUNDS_HIGH_LOW;
14596 }
14597 else
14598 {
14599 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14600 if (attr != nullptr && attr->form_is_unsigned ())
14601 {
14602 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14603 We take advantage of the fact that DW_AT_ranges does not appear
14604 in DW_TAG_compile_unit of DWO files.
14605
14606 Attributes of the form DW_FORM_rnglistx have already had their
14607 value changed by read_rnglist_index and already include
14608 DW_AT_rnglists_base, so don't need to add the ranges base,
14609 either. */
14610 int need_ranges_base = (die->tag != DW_TAG_compile_unit
14611 && attr->form != DW_FORM_rnglistx);
14612 unsigned int ranges_offset = (attr->as_unsigned ()
14613 + (need_ranges_base
14614 ? cu->ranges_base
14615 : 0));
14616
14617 /* Value of the DW_AT_ranges attribute is the offset in the
14618 .debug_ranges section. */
14619 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst,
14620 die->tag))
14621 return PC_BOUNDS_INVALID;
14622 /* Found discontinuous range of addresses. */
14623 ret = PC_BOUNDS_RANGES;
14624 }
14625 else
14626 return PC_BOUNDS_NOT_PRESENT;
14627 }
14628
14629 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14630 if (high <= low)
14631 return PC_BOUNDS_INVALID;
14632
14633 /* When using the GNU linker, .gnu.linkonce. sections are used to
14634 eliminate duplicate copies of functions and vtables and such.
14635 The linker will arbitrarily choose one and discard the others.
14636 The AT_*_pc values for such functions refer to local labels in
14637 these sections. If the section from that file was discarded, the
14638 labels are not in the output, so the relocs get a value of 0.
14639 If this is a discarded function, mark the pc bounds as invalid,
14640 so that GDB will ignore it. */
14641 if (low == 0 && !per_objfile->per_bfd->has_section_at_zero)
14642 return PC_BOUNDS_INVALID;
14643
14644 *lowpc = low;
14645 if (highpc)
14646 *highpc = high;
14647 return ret;
14648 }
14649
14650 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14651 its low and high PC addresses. Do nothing if these addresses could not
14652 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14653 and HIGHPC to the high address if greater than HIGHPC. */
14654
14655 static void
14656 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14657 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14658 struct dwarf2_cu *cu)
14659 {
14660 CORE_ADDR low, high;
14661 struct die_info *child = die->child;
14662
14663 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14664 {
14665 *lowpc = std::min (*lowpc, low);
14666 *highpc = std::max (*highpc, high);
14667 }
14668
14669 /* If the language does not allow nested subprograms (either inside
14670 subprograms or lexical blocks), we're done. */
14671 if (cu->language != language_ada)
14672 return;
14673
14674 /* Check all the children of the given DIE. If it contains nested
14675 subprograms, then check their pc bounds. Likewise, we need to
14676 check lexical blocks as well, as they may also contain subprogram
14677 definitions. */
14678 while (child && child->tag)
14679 {
14680 if (child->tag == DW_TAG_subprogram
14681 || child->tag == DW_TAG_lexical_block)
14682 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14683 child = child->sibling;
14684 }
14685 }
14686
14687 /* Get the low and high pc's represented by the scope DIE, and store
14688 them in *LOWPC and *HIGHPC. If the correct values can't be
14689 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14690
14691 static void
14692 get_scope_pc_bounds (struct die_info *die,
14693 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14694 struct dwarf2_cu *cu)
14695 {
14696 CORE_ADDR best_low = (CORE_ADDR) -1;
14697 CORE_ADDR best_high = (CORE_ADDR) 0;
14698 CORE_ADDR current_low, current_high;
14699
14700 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14701 >= PC_BOUNDS_RANGES)
14702 {
14703 best_low = current_low;
14704 best_high = current_high;
14705 }
14706 else
14707 {
14708 struct die_info *child = die->child;
14709
14710 while (child && child->tag)
14711 {
14712 switch (child->tag) {
14713 case DW_TAG_subprogram:
14714 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14715 break;
14716 case DW_TAG_namespace:
14717 case DW_TAG_module:
14718 /* FIXME: carlton/2004-01-16: Should we do this for
14719 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14720 that current GCC's always emit the DIEs corresponding
14721 to definitions of methods of classes as children of a
14722 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14723 the DIEs giving the declarations, which could be
14724 anywhere). But I don't see any reason why the
14725 standards says that they have to be there. */
14726 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14727
14728 if (current_low != ((CORE_ADDR) -1))
14729 {
14730 best_low = std::min (best_low, current_low);
14731 best_high = std::max (best_high, current_high);
14732 }
14733 break;
14734 default:
14735 /* Ignore. */
14736 break;
14737 }
14738
14739 child = child->sibling;
14740 }
14741 }
14742
14743 *lowpc = best_low;
14744 *highpc = best_high;
14745 }
14746
14747 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14748 in DIE. */
14749
14750 static void
14751 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14752 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14753 {
14754 struct objfile *objfile = cu->per_objfile->objfile;
14755 struct gdbarch *gdbarch = objfile->arch ();
14756 struct attribute *attr;
14757 struct attribute *attr_high;
14758
14759 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14760 if (attr_high)
14761 {
14762 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14763 if (attr != nullptr)
14764 {
14765 CORE_ADDR low = attr->as_address ();
14766 CORE_ADDR high = attr_high->as_address ();
14767
14768 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14769 high += low;
14770
14771 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14772 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14773 cu->get_builder ()->record_block_range (block, low, high - 1);
14774 }
14775 }
14776
14777 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14778 if (attr != nullptr && attr->form_is_unsigned ())
14779 {
14780 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14781 We take advantage of the fact that DW_AT_ranges does not appear
14782 in DW_TAG_compile_unit of DWO files.
14783
14784 Attributes of the form DW_FORM_rnglistx have already had their
14785 value changed by read_rnglist_index and already include
14786 DW_AT_rnglists_base, so don't need to add the ranges base,
14787 either. */
14788 int need_ranges_base = (die->tag != DW_TAG_compile_unit
14789 && attr->form != DW_FORM_rnglistx);
14790
14791 /* The value of the DW_AT_ranges attribute is the offset of the
14792 address range list in the .debug_ranges section. */
14793 unsigned long offset = (attr->as_unsigned ()
14794 + (need_ranges_base ? cu->ranges_base : 0));
14795
14796 std::vector<blockrange> blockvec;
14797 dwarf2_ranges_process (offset, cu, die->tag,
14798 [&] (CORE_ADDR start, CORE_ADDR end)
14799 {
14800 start += baseaddr;
14801 end += baseaddr;
14802 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14803 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14804 cu->get_builder ()->record_block_range (block, start, end - 1);
14805 blockvec.emplace_back (start, end);
14806 });
14807
14808 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14809 }
14810 }
14811
14812 /* Check whether the producer field indicates either of GCC < 4.6, or the
14813 Intel C/C++ compiler, and cache the result in CU. */
14814
14815 static void
14816 check_producer (struct dwarf2_cu *cu)
14817 {
14818 int major, minor;
14819
14820 if (cu->producer == NULL)
14821 {
14822 /* For unknown compilers expect their behavior is DWARF version
14823 compliant.
14824
14825 GCC started to support .debug_types sections by -gdwarf-4 since
14826 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14827 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14828 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14829 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14830 }
14831 else if (producer_is_gcc (cu->producer, &major, &minor))
14832 {
14833 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14834 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14835 }
14836 else if (producer_is_icc (cu->producer, &major, &minor))
14837 {
14838 cu->producer_is_icc = true;
14839 cu->producer_is_icc_lt_14 = major < 14;
14840 }
14841 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14842 cu->producer_is_codewarrior = true;
14843 else
14844 {
14845 /* For other non-GCC compilers, expect their behavior is DWARF version
14846 compliant. */
14847 }
14848
14849 cu->checked_producer = true;
14850 }
14851
14852 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14853 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14854 during 4.6.0 experimental. */
14855
14856 static bool
14857 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14858 {
14859 if (!cu->checked_producer)
14860 check_producer (cu);
14861
14862 return cu->producer_is_gxx_lt_4_6;
14863 }
14864
14865
14866 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14867 with incorrect is_stmt attributes. */
14868
14869 static bool
14870 producer_is_codewarrior (struct dwarf2_cu *cu)
14871 {
14872 if (!cu->checked_producer)
14873 check_producer (cu);
14874
14875 return cu->producer_is_codewarrior;
14876 }
14877
14878 /* Return the accessibility of DIE, as given by DW_AT_accessibility.
14879 If that attribute is not available, return the appropriate
14880 default. */
14881
14882 static enum dwarf_access_attribute
14883 dwarf2_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14884 {
14885 attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14886 if (attr != nullptr)
14887 {
14888 LONGEST value = attr->constant_value (-1);
14889 if (value == DW_ACCESS_public
14890 || value == DW_ACCESS_protected
14891 || value == DW_ACCESS_private)
14892 return (dwarf_access_attribute) value;
14893 complaint (_("Unhandled DW_AT_accessibility value (%s)"),
14894 plongest (value));
14895 }
14896
14897 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14898 {
14899 /* The default DWARF 2 accessibility for members is public, the default
14900 accessibility for inheritance is private. */
14901
14902 if (die->tag != DW_TAG_inheritance)
14903 return DW_ACCESS_public;
14904 else
14905 return DW_ACCESS_private;
14906 }
14907 else
14908 {
14909 /* DWARF 3+ defines the default accessibility a different way. The same
14910 rules apply now for DW_TAG_inheritance as for the members and it only
14911 depends on the container kind. */
14912
14913 if (die->parent->tag == DW_TAG_class_type)
14914 return DW_ACCESS_private;
14915 else
14916 return DW_ACCESS_public;
14917 }
14918 }
14919
14920 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14921 offset. If the attribute was not found return 0, otherwise return
14922 1. If it was found but could not properly be handled, set *OFFSET
14923 to 0. */
14924
14925 static int
14926 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14927 LONGEST *offset)
14928 {
14929 struct attribute *attr;
14930
14931 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14932 if (attr != NULL)
14933 {
14934 *offset = 0;
14935
14936 /* Note that we do not check for a section offset first here.
14937 This is because DW_AT_data_member_location is new in DWARF 4,
14938 so if we see it, we can assume that a constant form is really
14939 a constant and not a section offset. */
14940 if (attr->form_is_constant ())
14941 *offset = attr->constant_value (0);
14942 else if (attr->form_is_section_offset ())
14943 dwarf2_complex_location_expr_complaint ();
14944 else if (attr->form_is_block ())
14945 *offset = decode_locdesc (attr->as_block (), cu);
14946 else
14947 dwarf2_complex_location_expr_complaint ();
14948
14949 return 1;
14950 }
14951
14952 return 0;
14953 }
14954
14955 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14956
14957 static void
14958 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14959 struct field *field)
14960 {
14961 struct attribute *attr;
14962
14963 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14964 if (attr != NULL)
14965 {
14966 if (attr->form_is_constant ())
14967 {
14968 LONGEST offset = attr->constant_value (0);
14969 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14970 }
14971 else if (attr->form_is_section_offset ())
14972 dwarf2_complex_location_expr_complaint ();
14973 else if (attr->form_is_block ())
14974 {
14975 bool handled;
14976 CORE_ADDR offset = decode_locdesc (attr->as_block (), cu, &handled);
14977 if (handled)
14978 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14979 else
14980 {
14981 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14982 struct objfile *objfile = per_objfile->objfile;
14983 struct dwarf2_locexpr_baton *dlbaton
14984 = XOBNEW (&objfile->objfile_obstack,
14985 struct dwarf2_locexpr_baton);
14986 dlbaton->data = attr->as_block ()->data;
14987 dlbaton->size = attr->as_block ()->size;
14988 /* When using this baton, we want to compute the address
14989 of the field, not the value. This is why
14990 is_reference is set to false here. */
14991 dlbaton->is_reference = false;
14992 dlbaton->per_objfile = per_objfile;
14993 dlbaton->per_cu = cu->per_cu;
14994
14995 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14996 }
14997 }
14998 else
14999 dwarf2_complex_location_expr_complaint ();
15000 }
15001 }
15002
15003 /* Add an aggregate field to the field list. */
15004
15005 static void
15006 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15007 struct dwarf2_cu *cu)
15008 {
15009 struct objfile *objfile = cu->per_objfile->objfile;
15010 struct gdbarch *gdbarch = objfile->arch ();
15011 struct nextfield *new_field;
15012 struct attribute *attr;
15013 struct field *fp;
15014 const char *fieldname = "";
15015
15016 if (die->tag == DW_TAG_inheritance)
15017 {
15018 fip->baseclasses.emplace_back ();
15019 new_field = &fip->baseclasses.back ();
15020 }
15021 else
15022 {
15023 fip->fields.emplace_back ();
15024 new_field = &fip->fields.back ();
15025 }
15026
15027 new_field->offset = die->sect_off;
15028
15029 new_field->accessibility = dwarf2_access_attribute (die, cu);
15030 if (new_field->accessibility != DW_ACCESS_public)
15031 fip->non_public_fields = true;
15032
15033 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15034 if (attr != nullptr)
15035 new_field->virtuality = attr->as_virtuality ();
15036 else
15037 new_field->virtuality = DW_VIRTUALITY_none;
15038
15039 fp = &new_field->field;
15040
15041 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15042 {
15043 /* Data member other than a C++ static data member. */
15044
15045 /* Get type of field. */
15046 fp->set_type (die_type (die, cu));
15047
15048 SET_FIELD_BITPOS (*fp, 0);
15049
15050 /* Get bit size of field (zero if none). */
15051 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15052 if (attr != nullptr)
15053 {
15054 FIELD_BITSIZE (*fp) = attr->constant_value (0);
15055 }
15056 else
15057 {
15058 FIELD_BITSIZE (*fp) = 0;
15059 }
15060
15061 /* Get bit offset of field. */
15062 handle_data_member_location (die, cu, fp);
15063 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15064 if (attr != nullptr && attr->form_is_constant ())
15065 {
15066 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
15067 {
15068 /* For big endian bits, the DW_AT_bit_offset gives the
15069 additional bit offset from the MSB of the containing
15070 anonymous object to the MSB of the field. We don't
15071 have to do anything special since we don't need to
15072 know the size of the anonymous object. */
15073 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15074 + attr->constant_value (0)));
15075 }
15076 else
15077 {
15078 /* For little endian bits, compute the bit offset to the
15079 MSB of the anonymous object, subtract off the number of
15080 bits from the MSB of the field to the MSB of the
15081 object, and then subtract off the number of bits of
15082 the field itself. The result is the bit offset of
15083 the LSB of the field. */
15084 int anonymous_size;
15085 int bit_offset = attr->constant_value (0);
15086
15087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15088 if (attr != nullptr && attr->form_is_constant ())
15089 {
15090 /* The size of the anonymous object containing
15091 the bit field is explicit, so use the
15092 indicated size (in bytes). */
15093 anonymous_size = attr->constant_value (0);
15094 }
15095 else
15096 {
15097 /* The size of the anonymous object containing
15098 the bit field must be inferred from the type
15099 attribute of the data member containing the
15100 bit field. */
15101 anonymous_size = TYPE_LENGTH (fp->type ());
15102 }
15103 SET_FIELD_BITPOS (*fp,
15104 (FIELD_BITPOS (*fp)
15105 + anonymous_size * bits_per_byte
15106 - bit_offset - FIELD_BITSIZE (*fp)));
15107 }
15108 }
15109 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15110 if (attr != NULL)
15111 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15112 + attr->constant_value (0)));
15113
15114 /* Get name of field. */
15115 fieldname = dwarf2_name (die, cu);
15116 if (fieldname == NULL)
15117 fieldname = "";
15118
15119 /* The name is already allocated along with this objfile, so we don't
15120 need to duplicate it for the type. */
15121 fp->name = fieldname;
15122
15123 /* Change accessibility for artificial fields (e.g. virtual table
15124 pointer or virtual base class pointer) to private. */
15125 if (dwarf2_attr (die, DW_AT_artificial, cu))
15126 {
15127 FIELD_ARTIFICIAL (*fp) = 1;
15128 new_field->accessibility = DW_ACCESS_private;
15129 fip->non_public_fields = true;
15130 }
15131 }
15132 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15133 {
15134 /* C++ static member. */
15135
15136 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15137 is a declaration, but all versions of G++ as of this writing
15138 (so through at least 3.2.1) incorrectly generate
15139 DW_TAG_variable tags. */
15140
15141 const char *physname;
15142
15143 /* Get name of field. */
15144 fieldname = dwarf2_name (die, cu);
15145 if (fieldname == NULL)
15146 return;
15147
15148 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15149 if (attr
15150 /* Only create a symbol if this is an external value.
15151 new_symbol checks this and puts the value in the global symbol
15152 table, which we want. If it is not external, new_symbol
15153 will try to put the value in cu->list_in_scope which is wrong. */
15154 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15155 {
15156 /* A static const member, not much different than an enum as far as
15157 we're concerned, except that we can support more types. */
15158 new_symbol (die, NULL, cu);
15159 }
15160
15161 /* Get physical name. */
15162 physname = dwarf2_physname (fieldname, die, cu);
15163
15164 /* The name is already allocated along with this objfile, so we don't
15165 need to duplicate it for the type. */
15166 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15167 fp->set_type (die_type (die, cu));
15168 FIELD_NAME (*fp) = fieldname;
15169 }
15170 else if (die->tag == DW_TAG_inheritance)
15171 {
15172 /* C++ base class field. */
15173 handle_data_member_location (die, cu, fp);
15174 FIELD_BITSIZE (*fp) = 0;
15175 fp->set_type (die_type (die, cu));
15176 FIELD_NAME (*fp) = fp->type ()->name ();
15177 }
15178 else
15179 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15180 }
15181
15182 /* Can the type given by DIE define another type? */
15183
15184 static bool
15185 type_can_define_types (const struct die_info *die)
15186 {
15187 switch (die->tag)
15188 {
15189 case DW_TAG_typedef:
15190 case DW_TAG_class_type:
15191 case DW_TAG_structure_type:
15192 case DW_TAG_union_type:
15193 case DW_TAG_enumeration_type:
15194 return true;
15195
15196 default:
15197 return false;
15198 }
15199 }
15200
15201 /* Add a type definition defined in the scope of the FIP's class. */
15202
15203 static void
15204 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15205 struct dwarf2_cu *cu)
15206 {
15207 struct decl_field fp;
15208 memset (&fp, 0, sizeof (fp));
15209
15210 gdb_assert (type_can_define_types (die));
15211
15212 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15213 fp.name = dwarf2_name (die, cu);
15214 fp.type = read_type_die (die, cu);
15215
15216 /* Save accessibility. */
15217 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15218 switch (accessibility)
15219 {
15220 case DW_ACCESS_public:
15221 /* The assumed value if neither private nor protected. */
15222 break;
15223 case DW_ACCESS_private:
15224 fp.is_private = 1;
15225 break;
15226 case DW_ACCESS_protected:
15227 fp.is_protected = 1;
15228 break;
15229 }
15230
15231 if (die->tag == DW_TAG_typedef)
15232 fip->typedef_field_list.push_back (fp);
15233 else
15234 fip->nested_types_list.push_back (fp);
15235 }
15236
15237 /* A convenience typedef that's used when finding the discriminant
15238 field for a variant part. */
15239 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
15240 offset_map_type;
15241
15242 /* Compute the discriminant range for a given variant. OBSTACK is
15243 where the results will be stored. VARIANT is the variant to
15244 process. IS_UNSIGNED indicates whether the discriminant is signed
15245 or unsigned. */
15246
15247 static const gdb::array_view<discriminant_range>
15248 convert_variant_range (struct obstack *obstack, const variant_field &variant,
15249 bool is_unsigned)
15250 {
15251 std::vector<discriminant_range> ranges;
15252
15253 if (variant.default_branch)
15254 return {};
15255
15256 if (variant.discr_list_data == nullptr)
15257 {
15258 discriminant_range r
15259 = {variant.discriminant_value, variant.discriminant_value};
15260 ranges.push_back (r);
15261 }
15262 else
15263 {
15264 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
15265 variant.discr_list_data->size);
15266 while (!data.empty ())
15267 {
15268 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
15269 {
15270 complaint (_("invalid discriminant marker: %d"), data[0]);
15271 break;
15272 }
15273 bool is_range = data[0] == DW_DSC_range;
15274 data = data.slice (1);
15275
15276 ULONGEST low, high;
15277 unsigned int bytes_read;
15278
15279 if (data.empty ())
15280 {
15281 complaint (_("DW_AT_discr_list missing low value"));
15282 break;
15283 }
15284 if (is_unsigned)
15285 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
15286 else
15287 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
15288 &bytes_read);
15289 data = data.slice (bytes_read);
15290
15291 if (is_range)
15292 {
15293 if (data.empty ())
15294 {
15295 complaint (_("DW_AT_discr_list missing high value"));
15296 break;
15297 }
15298 if (is_unsigned)
15299 high = read_unsigned_leb128 (nullptr, data.data (),
15300 &bytes_read);
15301 else
15302 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
15303 &bytes_read);
15304 data = data.slice (bytes_read);
15305 }
15306 else
15307 high = low;
15308
15309 ranges.push_back ({ low, high });
15310 }
15311 }
15312
15313 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
15314 ranges.size ());
15315 std::copy (ranges.begin (), ranges.end (), result);
15316 return gdb::array_view<discriminant_range> (result, ranges.size ());
15317 }
15318
15319 static const gdb::array_view<variant_part> create_variant_parts
15320 (struct obstack *obstack,
15321 const offset_map_type &offset_map,
15322 struct field_info *fi,
15323 const std::vector<variant_part_builder> &variant_parts);
15324
15325 /* Fill in a "struct variant" for a given variant field. RESULT is
15326 the variant to fill in. OBSTACK is where any needed allocations
15327 will be done. OFFSET_MAP holds the mapping from section offsets to
15328 fields for the type. FI describes the fields of the type we're
15329 processing. FIELD is the variant field we're converting. */
15330
15331 static void
15332 create_one_variant (variant &result, struct obstack *obstack,
15333 const offset_map_type &offset_map,
15334 struct field_info *fi, const variant_field &field)
15335 {
15336 result.discriminants = convert_variant_range (obstack, field, false);
15337 result.first_field = field.first_field + fi->baseclasses.size ();
15338 result.last_field = field.last_field + fi->baseclasses.size ();
15339 result.parts = create_variant_parts (obstack, offset_map, fi,
15340 field.variant_parts);
15341 }
15342
15343 /* Fill in a "struct variant_part" for a given variant part. RESULT
15344 is the variant part to fill in. OBSTACK is where any needed
15345 allocations will be done. OFFSET_MAP holds the mapping from
15346 section offsets to fields for the type. FI describes the fields of
15347 the type we're processing. BUILDER is the variant part to be
15348 converted. */
15349
15350 static void
15351 create_one_variant_part (variant_part &result,
15352 struct obstack *obstack,
15353 const offset_map_type &offset_map,
15354 struct field_info *fi,
15355 const variant_part_builder &builder)
15356 {
15357 auto iter = offset_map.find (builder.discriminant_offset);
15358 if (iter == offset_map.end ())
15359 {
15360 result.discriminant_index = -1;
15361 /* Doesn't matter. */
15362 result.is_unsigned = false;
15363 }
15364 else
15365 {
15366 result.discriminant_index = iter->second;
15367 result.is_unsigned
15368 = fi->fields[result.discriminant_index].field.type ()->is_unsigned ();
15369 }
15370
15371 size_t n = builder.variants.size ();
15372 variant *output = new (obstack) variant[n];
15373 for (size_t i = 0; i < n; ++i)
15374 create_one_variant (output[i], obstack, offset_map, fi,
15375 builder.variants[i]);
15376
15377 result.variants = gdb::array_view<variant> (output, n);
15378 }
15379
15380 /* Create a vector of variant parts that can be attached to a type.
15381 OBSTACK is where any needed allocations will be done. OFFSET_MAP
15382 holds the mapping from section offsets to fields for the type. FI
15383 describes the fields of the type we're processing. VARIANT_PARTS
15384 is the vector to convert. */
15385
15386 static const gdb::array_view<variant_part>
15387 create_variant_parts (struct obstack *obstack,
15388 const offset_map_type &offset_map,
15389 struct field_info *fi,
15390 const std::vector<variant_part_builder> &variant_parts)
15391 {
15392 if (variant_parts.empty ())
15393 return {};
15394
15395 size_t n = variant_parts.size ();
15396 variant_part *result = new (obstack) variant_part[n];
15397 for (size_t i = 0; i < n; ++i)
15398 create_one_variant_part (result[i], obstack, offset_map, fi,
15399 variant_parts[i]);
15400
15401 return gdb::array_view<variant_part> (result, n);
15402 }
15403
15404 /* Compute the variant part vector for FIP, attaching it to TYPE when
15405 done. */
15406
15407 static void
15408 add_variant_property (struct field_info *fip, struct type *type,
15409 struct dwarf2_cu *cu)
15410 {
15411 /* Map section offsets of fields to their field index. Note the
15412 field index here does not take the number of baseclasses into
15413 account. */
15414 offset_map_type offset_map;
15415 for (int i = 0; i < fip->fields.size (); ++i)
15416 offset_map[fip->fields[i].offset] = i;
15417
15418 struct objfile *objfile = cu->per_objfile->objfile;
15419 gdb::array_view<variant_part> parts
15420 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
15421 fip->variant_parts);
15422
15423 struct dynamic_prop prop;
15424 prop.set_variant_parts ((gdb::array_view<variant_part> *)
15425 obstack_copy (&objfile->objfile_obstack, &parts,
15426 sizeof (parts)));
15427
15428 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
15429 }
15430
15431 /* Create the vector of fields, and attach it to the type. */
15432
15433 static void
15434 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15435 struct dwarf2_cu *cu)
15436 {
15437 int nfields = fip->nfields ();
15438
15439 /* Record the field count, allocate space for the array of fields,
15440 and create blank accessibility bitfields if necessary. */
15441 type->set_num_fields (nfields);
15442 type->set_fields
15443 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
15444
15445 if (fip->non_public_fields && cu->language != language_ada)
15446 {
15447 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15448
15449 TYPE_FIELD_PRIVATE_BITS (type) =
15450 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15451 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15452
15453 TYPE_FIELD_PROTECTED_BITS (type) =
15454 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15455 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15456
15457 TYPE_FIELD_IGNORE_BITS (type) =
15458 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15459 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15460 }
15461
15462 /* If the type has baseclasses, allocate and clear a bit vector for
15463 TYPE_FIELD_VIRTUAL_BITS. */
15464 if (!fip->baseclasses.empty () && cu->language != language_ada)
15465 {
15466 int num_bytes = B_BYTES (fip->baseclasses.size ());
15467 unsigned char *pointer;
15468
15469 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15470 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15471 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15472 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15473 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15474 }
15475
15476 if (!fip->variant_parts.empty ())
15477 add_variant_property (fip, type, cu);
15478
15479 /* Copy the saved-up fields into the field vector. */
15480 for (int i = 0; i < nfields; ++i)
15481 {
15482 struct nextfield &field
15483 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15484 : fip->fields[i - fip->baseclasses.size ()]);
15485
15486 type->field (i) = field.field;
15487 switch (field.accessibility)
15488 {
15489 case DW_ACCESS_private:
15490 if (cu->language != language_ada)
15491 SET_TYPE_FIELD_PRIVATE (type, i);
15492 break;
15493
15494 case DW_ACCESS_protected:
15495 if (cu->language != language_ada)
15496 SET_TYPE_FIELD_PROTECTED (type, i);
15497 break;
15498
15499 case DW_ACCESS_public:
15500 break;
15501
15502 default:
15503 /* Unknown accessibility. Complain and treat it as public. */
15504 {
15505 complaint (_("unsupported accessibility %d"),
15506 field.accessibility);
15507 }
15508 break;
15509 }
15510 if (i < fip->baseclasses.size ())
15511 {
15512 switch (field.virtuality)
15513 {
15514 case DW_VIRTUALITY_virtual:
15515 case DW_VIRTUALITY_pure_virtual:
15516 if (cu->language == language_ada)
15517 error (_("unexpected virtuality in component of Ada type"));
15518 SET_TYPE_FIELD_VIRTUAL (type, i);
15519 break;
15520 }
15521 }
15522 }
15523 }
15524
15525 /* Return true if this member function is a constructor, false
15526 otherwise. */
15527
15528 static int
15529 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15530 {
15531 const char *fieldname;
15532 const char *type_name;
15533 int len;
15534
15535 if (die->parent == NULL)
15536 return 0;
15537
15538 if (die->parent->tag != DW_TAG_structure_type
15539 && die->parent->tag != DW_TAG_union_type
15540 && die->parent->tag != DW_TAG_class_type)
15541 return 0;
15542
15543 fieldname = dwarf2_name (die, cu);
15544 type_name = dwarf2_name (die->parent, cu);
15545 if (fieldname == NULL || type_name == NULL)
15546 return 0;
15547
15548 len = strlen (fieldname);
15549 return (strncmp (fieldname, type_name, len) == 0
15550 && (type_name[len] == '\0' || type_name[len] == '<'));
15551 }
15552
15553 /* Add a member function to the proper fieldlist. */
15554
15555 static void
15556 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15557 struct type *type, struct dwarf2_cu *cu)
15558 {
15559 struct objfile *objfile = cu->per_objfile->objfile;
15560 struct attribute *attr;
15561 int i;
15562 struct fnfieldlist *flp = nullptr;
15563 struct fn_field *fnp;
15564 const char *fieldname;
15565 struct type *this_type;
15566
15567 if (cu->language == language_ada)
15568 error (_("unexpected member function in Ada type"));
15569
15570 /* Get name of member function. */
15571 fieldname = dwarf2_name (die, cu);
15572 if (fieldname == NULL)
15573 return;
15574
15575 /* Look up member function name in fieldlist. */
15576 for (i = 0; i < fip->fnfieldlists.size (); i++)
15577 {
15578 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15579 {
15580 flp = &fip->fnfieldlists[i];
15581 break;
15582 }
15583 }
15584
15585 /* Create a new fnfieldlist if necessary. */
15586 if (flp == nullptr)
15587 {
15588 fip->fnfieldlists.emplace_back ();
15589 flp = &fip->fnfieldlists.back ();
15590 flp->name = fieldname;
15591 i = fip->fnfieldlists.size () - 1;
15592 }
15593
15594 /* Create a new member function field and add it to the vector of
15595 fnfieldlists. */
15596 flp->fnfields.emplace_back ();
15597 fnp = &flp->fnfields.back ();
15598
15599 /* Delay processing of the physname until later. */
15600 if (cu->language == language_cplus)
15601 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15602 die, cu);
15603 else
15604 {
15605 const char *physname = dwarf2_physname (fieldname, die, cu);
15606 fnp->physname = physname ? physname : "";
15607 }
15608
15609 fnp->type = alloc_type (objfile);
15610 this_type = read_type_die (die, cu);
15611 if (this_type && this_type->code () == TYPE_CODE_FUNC)
15612 {
15613 int nparams = this_type->num_fields ();
15614
15615 /* TYPE is the domain of this method, and THIS_TYPE is the type
15616 of the method itself (TYPE_CODE_METHOD). */
15617 smash_to_method_type (fnp->type, type,
15618 TYPE_TARGET_TYPE (this_type),
15619 this_type->fields (),
15620 this_type->num_fields (),
15621 this_type->has_varargs ());
15622
15623 /* Handle static member functions.
15624 Dwarf2 has no clean way to discern C++ static and non-static
15625 member functions. G++ helps GDB by marking the first
15626 parameter for non-static member functions (which is the this
15627 pointer) as artificial. We obtain this information from
15628 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15629 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15630 fnp->voffset = VOFFSET_STATIC;
15631 }
15632 else
15633 complaint (_("member function type missing for '%s'"),
15634 dwarf2_full_name (fieldname, die, cu));
15635
15636 /* Get fcontext from DW_AT_containing_type if present. */
15637 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15638 fnp->fcontext = die_containing_type (die, cu);
15639
15640 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15641 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15642
15643 /* Get accessibility. */
15644 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15645 switch (accessibility)
15646 {
15647 case DW_ACCESS_private:
15648 fnp->is_private = 1;
15649 break;
15650 case DW_ACCESS_protected:
15651 fnp->is_protected = 1;
15652 break;
15653 }
15654
15655 /* Check for artificial methods. */
15656 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15657 if (attr && attr->as_boolean ())
15658 fnp->is_artificial = 1;
15659
15660 /* Check for defaulted methods. */
15661 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15662 if (attr != nullptr)
15663 fnp->defaulted = attr->defaulted ();
15664
15665 /* Check for deleted methods. */
15666 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15667 if (attr != nullptr && attr->as_boolean ())
15668 fnp->is_deleted = 1;
15669
15670 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15671
15672 /* Get index in virtual function table if it is a virtual member
15673 function. For older versions of GCC, this is an offset in the
15674 appropriate virtual table, as specified by DW_AT_containing_type.
15675 For everyone else, it is an expression to be evaluated relative
15676 to the object address. */
15677
15678 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15679 if (attr != nullptr)
15680 {
15681 if (attr->form_is_block () && attr->as_block ()->size > 0)
15682 {
15683 struct dwarf_block *block = attr->as_block ();
15684
15685 if (block->data[0] == DW_OP_constu)
15686 {
15687 /* Old-style GCC. */
15688 fnp->voffset = decode_locdesc (block, cu) + 2;
15689 }
15690 else if (block->data[0] == DW_OP_deref
15691 || (block->size > 1
15692 && block->data[0] == DW_OP_deref_size
15693 && block->data[1] == cu->header.addr_size))
15694 {
15695 fnp->voffset = decode_locdesc (block, cu);
15696 if ((fnp->voffset % cu->header.addr_size) != 0)
15697 dwarf2_complex_location_expr_complaint ();
15698 else
15699 fnp->voffset /= cu->header.addr_size;
15700 fnp->voffset += 2;
15701 }
15702 else
15703 dwarf2_complex_location_expr_complaint ();
15704
15705 if (!fnp->fcontext)
15706 {
15707 /* If there is no `this' field and no DW_AT_containing_type,
15708 we cannot actually find a base class context for the
15709 vtable! */
15710 if (this_type->num_fields () == 0
15711 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15712 {
15713 complaint (_("cannot determine context for virtual member "
15714 "function \"%s\" (offset %s)"),
15715 fieldname, sect_offset_str (die->sect_off));
15716 }
15717 else
15718 {
15719 fnp->fcontext
15720 = TYPE_TARGET_TYPE (this_type->field (0).type ());
15721 }
15722 }
15723 }
15724 else if (attr->form_is_section_offset ())
15725 {
15726 dwarf2_complex_location_expr_complaint ();
15727 }
15728 else
15729 {
15730 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15731 fieldname);
15732 }
15733 }
15734 else
15735 {
15736 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15737 if (attr != nullptr && attr->as_virtuality () != DW_VIRTUALITY_none)
15738 {
15739 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15740 complaint (_("Member function \"%s\" (offset %s) is virtual "
15741 "but the vtable offset is not specified"),
15742 fieldname, sect_offset_str (die->sect_off));
15743 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15744 TYPE_CPLUS_DYNAMIC (type) = 1;
15745 }
15746 }
15747 }
15748
15749 /* Create the vector of member function fields, and attach it to the type. */
15750
15751 static void
15752 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15753 struct dwarf2_cu *cu)
15754 {
15755 if (cu->language == language_ada)
15756 error (_("unexpected member functions in Ada type"));
15757
15758 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15759 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15760 TYPE_ALLOC (type,
15761 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15762
15763 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15764 {
15765 struct fnfieldlist &nf = fip->fnfieldlists[i];
15766 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15767
15768 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15769 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15770 fn_flp->fn_fields = (struct fn_field *)
15771 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15772
15773 for (int k = 0; k < nf.fnfields.size (); ++k)
15774 fn_flp->fn_fields[k] = nf.fnfields[k];
15775 }
15776
15777 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15778 }
15779
15780 /* Returns non-zero if NAME is the name of a vtable member in CU's
15781 language, zero otherwise. */
15782 static int
15783 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15784 {
15785 static const char vptr[] = "_vptr";
15786
15787 /* Look for the C++ form of the vtable. */
15788 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15789 return 1;
15790
15791 return 0;
15792 }
15793
15794 /* GCC outputs unnamed structures that are really pointers to member
15795 functions, with the ABI-specified layout. If TYPE describes
15796 such a structure, smash it into a member function type.
15797
15798 GCC shouldn't do this; it should just output pointer to member DIEs.
15799 This is GCC PR debug/28767. */
15800
15801 static void
15802 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15803 {
15804 struct type *pfn_type, *self_type, *new_type;
15805
15806 /* Check for a structure with no name and two children. */
15807 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15808 return;
15809
15810 /* Check for __pfn and __delta members. */
15811 if (TYPE_FIELD_NAME (type, 0) == NULL
15812 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15813 || TYPE_FIELD_NAME (type, 1) == NULL
15814 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15815 return;
15816
15817 /* Find the type of the method. */
15818 pfn_type = type->field (0).type ();
15819 if (pfn_type == NULL
15820 || pfn_type->code () != TYPE_CODE_PTR
15821 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15822 return;
15823
15824 /* Look for the "this" argument. */
15825 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15826 if (pfn_type->num_fields () == 0
15827 /* || pfn_type->field (0).type () == NULL */
15828 || pfn_type->field (0).type ()->code () != TYPE_CODE_PTR)
15829 return;
15830
15831 self_type = TYPE_TARGET_TYPE (pfn_type->field (0).type ());
15832 new_type = alloc_type (objfile);
15833 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15834 pfn_type->fields (), pfn_type->num_fields (),
15835 pfn_type->has_varargs ());
15836 smash_to_methodptr_type (type, new_type);
15837 }
15838
15839 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15840 appropriate error checking and issuing complaints if there is a
15841 problem. */
15842
15843 static ULONGEST
15844 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15845 {
15846 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15847
15848 if (attr == nullptr)
15849 return 0;
15850
15851 if (!attr->form_is_constant ())
15852 {
15853 complaint (_("DW_AT_alignment must have constant form"
15854 " - DIE at %s [in module %s]"),
15855 sect_offset_str (die->sect_off),
15856 objfile_name (cu->per_objfile->objfile));
15857 return 0;
15858 }
15859
15860 LONGEST val = attr->constant_value (0);
15861 if (val < 0)
15862 {
15863 complaint (_("DW_AT_alignment value must not be negative"
15864 " - DIE at %s [in module %s]"),
15865 sect_offset_str (die->sect_off),
15866 objfile_name (cu->per_objfile->objfile));
15867 return 0;
15868 }
15869 ULONGEST align = val;
15870
15871 if (align == 0)
15872 {
15873 complaint (_("DW_AT_alignment value must not be zero"
15874 " - DIE at %s [in module %s]"),
15875 sect_offset_str (die->sect_off),
15876 objfile_name (cu->per_objfile->objfile));
15877 return 0;
15878 }
15879 if ((align & (align - 1)) != 0)
15880 {
15881 complaint (_("DW_AT_alignment value must be a power of 2"
15882 " - DIE at %s [in module %s]"),
15883 sect_offset_str (die->sect_off),
15884 objfile_name (cu->per_objfile->objfile));
15885 return 0;
15886 }
15887
15888 return align;
15889 }
15890
15891 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15892 the alignment for TYPE. */
15893
15894 static void
15895 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15896 struct type *type)
15897 {
15898 if (!set_type_align (type, get_alignment (cu, die)))
15899 complaint (_("DW_AT_alignment value too large"
15900 " - DIE at %s [in module %s]"),
15901 sect_offset_str (die->sect_off),
15902 objfile_name (cu->per_objfile->objfile));
15903 }
15904
15905 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15906 constant for a type, according to DWARF5 spec, Table 5.5. */
15907
15908 static bool
15909 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15910 {
15911 switch (value)
15912 {
15913 case DW_CC_normal:
15914 case DW_CC_pass_by_reference:
15915 case DW_CC_pass_by_value:
15916 return true;
15917
15918 default:
15919 complaint (_("unrecognized DW_AT_calling_convention value "
15920 "(%s) for a type"), pulongest (value));
15921 return false;
15922 }
15923 }
15924
15925 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15926 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15927 also according to GNU-specific values (see include/dwarf2.h). */
15928
15929 static bool
15930 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15931 {
15932 switch (value)
15933 {
15934 case DW_CC_normal:
15935 case DW_CC_program:
15936 case DW_CC_nocall:
15937 return true;
15938
15939 case DW_CC_GNU_renesas_sh:
15940 case DW_CC_GNU_borland_fastcall_i386:
15941 case DW_CC_GDB_IBM_OpenCL:
15942 return true;
15943
15944 default:
15945 complaint (_("unrecognized DW_AT_calling_convention value "
15946 "(%s) for a subroutine"), pulongest (value));
15947 return false;
15948 }
15949 }
15950
15951 /* Called when we find the DIE that starts a structure or union scope
15952 (definition) to create a type for the structure or union. Fill in
15953 the type's name and general properties; the members will not be
15954 processed until process_structure_scope. A symbol table entry for
15955 the type will also not be done until process_structure_scope (assuming
15956 the type has a name).
15957
15958 NOTE: we need to call these functions regardless of whether or not the
15959 DIE has a DW_AT_name attribute, since it might be an anonymous
15960 structure or union. This gets the type entered into our set of
15961 user defined types. */
15962
15963 static struct type *
15964 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15965 {
15966 struct objfile *objfile = cu->per_objfile->objfile;
15967 struct type *type;
15968 struct attribute *attr;
15969 const char *name;
15970
15971 /* If the definition of this type lives in .debug_types, read that type.
15972 Don't follow DW_AT_specification though, that will take us back up
15973 the chain and we want to go down. */
15974 attr = die->attr (DW_AT_signature);
15975 if (attr != nullptr)
15976 {
15977 type = get_DW_AT_signature_type (die, attr, cu);
15978
15979 /* The type's CU may not be the same as CU.
15980 Ensure TYPE is recorded with CU in die_type_hash. */
15981 return set_die_type (die, type, cu);
15982 }
15983
15984 type = alloc_type (objfile);
15985 INIT_CPLUS_SPECIFIC (type);
15986
15987 name = dwarf2_name (die, cu);
15988 if (name != NULL)
15989 {
15990 if (cu->language == language_cplus
15991 || cu->language == language_d
15992 || cu->language == language_rust)
15993 {
15994 const char *full_name = dwarf2_full_name (name, die, cu);
15995
15996 /* dwarf2_full_name might have already finished building the DIE's
15997 type. If so, there is no need to continue. */
15998 if (get_die_type (die, cu) != NULL)
15999 return get_die_type (die, cu);
16000
16001 type->set_name (full_name);
16002 }
16003 else
16004 {
16005 /* The name is already allocated along with this objfile, so
16006 we don't need to duplicate it for the type. */
16007 type->set_name (name);
16008 }
16009 }
16010
16011 if (die->tag == DW_TAG_structure_type)
16012 {
16013 type->set_code (TYPE_CODE_STRUCT);
16014 }
16015 else if (die->tag == DW_TAG_union_type)
16016 {
16017 type->set_code (TYPE_CODE_UNION);
16018 }
16019 else
16020 {
16021 type->set_code (TYPE_CODE_STRUCT);
16022 }
16023
16024 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
16025 TYPE_DECLARED_CLASS (type) = 1;
16026
16027 /* Store the calling convention in the type if it's available in
16028 the die. Otherwise the calling convention remains set to
16029 the default value DW_CC_normal. */
16030 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16031 if (attr != nullptr
16032 && is_valid_DW_AT_calling_convention_for_type (attr->constant_value (0)))
16033 {
16034 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16035 TYPE_CPLUS_CALLING_CONVENTION (type)
16036 = (enum dwarf_calling_convention) (attr->constant_value (0));
16037 }
16038
16039 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16040 if (attr != nullptr)
16041 {
16042 if (attr->form_is_constant ())
16043 TYPE_LENGTH (type) = attr->constant_value (0);
16044 else
16045 {
16046 struct dynamic_prop prop;
16047 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
16048 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
16049 TYPE_LENGTH (type) = 0;
16050 }
16051 }
16052 else
16053 {
16054 TYPE_LENGTH (type) = 0;
16055 }
16056
16057 maybe_set_alignment (cu, die, type);
16058
16059 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
16060 {
16061 /* ICC<14 does not output the required DW_AT_declaration on
16062 incomplete types, but gives them a size of zero. */
16063 type->set_is_stub (true);
16064 }
16065 else
16066 type->set_stub_is_supported (true);
16067
16068 if (die_is_declaration (die, cu))
16069 type->set_is_stub (true);
16070 else if (attr == NULL && die->child == NULL
16071 && producer_is_realview (cu->producer))
16072 /* RealView does not output the required DW_AT_declaration
16073 on incomplete types. */
16074 type->set_is_stub (true);
16075
16076 /* We need to add the type field to the die immediately so we don't
16077 infinitely recurse when dealing with pointers to the structure
16078 type within the structure itself. */
16079 set_die_type (die, type, cu);
16080
16081 /* set_die_type should be already done. */
16082 set_descriptive_type (type, die, cu);
16083
16084 return type;
16085 }
16086
16087 static void handle_struct_member_die
16088 (struct die_info *child_die,
16089 struct type *type,
16090 struct field_info *fi,
16091 std::vector<struct symbol *> *template_args,
16092 struct dwarf2_cu *cu);
16093
16094 /* A helper for handle_struct_member_die that handles
16095 DW_TAG_variant_part. */
16096
16097 static void
16098 handle_variant_part (struct die_info *die, struct type *type,
16099 struct field_info *fi,
16100 std::vector<struct symbol *> *template_args,
16101 struct dwarf2_cu *cu)
16102 {
16103 variant_part_builder *new_part;
16104 if (fi->current_variant_part == nullptr)
16105 {
16106 fi->variant_parts.emplace_back ();
16107 new_part = &fi->variant_parts.back ();
16108 }
16109 else if (!fi->current_variant_part->processing_variant)
16110 {
16111 complaint (_("nested DW_TAG_variant_part seen "
16112 "- DIE at %s [in module %s]"),
16113 sect_offset_str (die->sect_off),
16114 objfile_name (cu->per_objfile->objfile));
16115 return;
16116 }
16117 else
16118 {
16119 variant_field &current = fi->current_variant_part->variants.back ();
16120 current.variant_parts.emplace_back ();
16121 new_part = &current.variant_parts.back ();
16122 }
16123
16124 /* When we recurse, we want callees to add to this new variant
16125 part. */
16126 scoped_restore save_current_variant_part
16127 = make_scoped_restore (&fi->current_variant_part, new_part);
16128
16129 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16130 if (discr == NULL)
16131 {
16132 /* It's a univariant form, an extension we support. */
16133 }
16134 else if (discr->form_is_ref ())
16135 {
16136 struct dwarf2_cu *target_cu = cu;
16137 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16138
16139 new_part->discriminant_offset = target_die->sect_off;
16140 }
16141 else
16142 {
16143 complaint (_("DW_AT_discr does not have DIE reference form"
16144 " - DIE at %s [in module %s]"),
16145 sect_offset_str (die->sect_off),
16146 objfile_name (cu->per_objfile->objfile));
16147 }
16148
16149 for (die_info *child_die = die->child;
16150 child_die != NULL;
16151 child_die = child_die->sibling)
16152 handle_struct_member_die (child_die, type, fi, template_args, cu);
16153 }
16154
16155 /* A helper for handle_struct_member_die that handles
16156 DW_TAG_variant. */
16157
16158 static void
16159 handle_variant (struct die_info *die, struct type *type,
16160 struct field_info *fi,
16161 std::vector<struct symbol *> *template_args,
16162 struct dwarf2_cu *cu)
16163 {
16164 if (fi->current_variant_part == nullptr)
16165 {
16166 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
16167 "- DIE at %s [in module %s]"),
16168 sect_offset_str (die->sect_off),
16169 objfile_name (cu->per_objfile->objfile));
16170 return;
16171 }
16172 if (fi->current_variant_part->processing_variant)
16173 {
16174 complaint (_("nested DW_TAG_variant seen "
16175 "- DIE at %s [in module %s]"),
16176 sect_offset_str (die->sect_off),
16177 objfile_name (cu->per_objfile->objfile));
16178 return;
16179 }
16180
16181 scoped_restore save_processing_variant
16182 = make_scoped_restore (&fi->current_variant_part->processing_variant,
16183 true);
16184
16185 fi->current_variant_part->variants.emplace_back ();
16186 variant_field &variant = fi->current_variant_part->variants.back ();
16187 variant.first_field = fi->fields.size ();
16188
16189 /* In a variant we want to get the discriminant and also add a
16190 field for our sole member child. */
16191 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
16192 if (discr == nullptr || !discr->form_is_constant ())
16193 {
16194 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
16195 if (discr == nullptr || discr->as_block ()->size == 0)
16196 variant.default_branch = true;
16197 else
16198 variant.discr_list_data = discr->as_block ();
16199 }
16200 else
16201 variant.discriminant_value = discr->constant_value (0);
16202
16203 for (die_info *variant_child = die->child;
16204 variant_child != NULL;
16205 variant_child = variant_child->sibling)
16206 handle_struct_member_die (variant_child, type, fi, template_args, cu);
16207
16208 variant.last_field = fi->fields.size ();
16209 }
16210
16211 /* A helper for process_structure_scope that handles a single member
16212 DIE. */
16213
16214 static void
16215 handle_struct_member_die (struct die_info *child_die, struct type *type,
16216 struct field_info *fi,
16217 std::vector<struct symbol *> *template_args,
16218 struct dwarf2_cu *cu)
16219 {
16220 if (child_die->tag == DW_TAG_member
16221 || child_die->tag == DW_TAG_variable)
16222 {
16223 /* NOTE: carlton/2002-11-05: A C++ static data member
16224 should be a DW_TAG_member that is a declaration, but
16225 all versions of G++ as of this writing (so through at
16226 least 3.2.1) incorrectly generate DW_TAG_variable
16227 tags for them instead. */
16228 dwarf2_add_field (fi, child_die, cu);
16229 }
16230 else if (child_die->tag == DW_TAG_subprogram)
16231 {
16232 /* Rust doesn't have member functions in the C++ sense.
16233 However, it does emit ordinary functions as children
16234 of a struct DIE. */
16235 if (cu->language == language_rust)
16236 read_func_scope (child_die, cu);
16237 else
16238 {
16239 /* C++ member function. */
16240 dwarf2_add_member_fn (fi, child_die, type, cu);
16241 }
16242 }
16243 else if (child_die->tag == DW_TAG_inheritance)
16244 {
16245 /* C++ base class field. */
16246 dwarf2_add_field (fi, child_die, cu);
16247 }
16248 else if (type_can_define_types (child_die))
16249 dwarf2_add_type_defn (fi, child_die, cu);
16250 else if (child_die->tag == DW_TAG_template_type_param
16251 || child_die->tag == DW_TAG_template_value_param)
16252 {
16253 struct symbol *arg = new_symbol (child_die, NULL, cu);
16254
16255 if (arg != NULL)
16256 template_args->push_back (arg);
16257 }
16258 else if (child_die->tag == DW_TAG_variant_part)
16259 handle_variant_part (child_die, type, fi, template_args, cu);
16260 else if (child_die->tag == DW_TAG_variant)
16261 handle_variant (child_die, type, fi, template_args, cu);
16262 }
16263
16264 /* Finish creating a structure or union type, including filling in
16265 its members and creating a symbol for it. */
16266
16267 static void
16268 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16269 {
16270 struct objfile *objfile = cu->per_objfile->objfile;
16271 struct die_info *child_die;
16272 struct type *type;
16273
16274 type = get_die_type (die, cu);
16275 if (type == NULL)
16276 type = read_structure_type (die, cu);
16277
16278 bool has_template_parameters = false;
16279 if (die->child != NULL && ! die_is_declaration (die, cu))
16280 {
16281 struct field_info fi;
16282 std::vector<struct symbol *> template_args;
16283
16284 child_die = die->child;
16285
16286 while (child_die && child_die->tag)
16287 {
16288 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16289 child_die = child_die->sibling;
16290 }
16291
16292 /* Attach template arguments to type. */
16293 if (!template_args.empty ())
16294 {
16295 has_template_parameters = true;
16296 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16297 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16298 TYPE_TEMPLATE_ARGUMENTS (type)
16299 = XOBNEWVEC (&objfile->objfile_obstack,
16300 struct symbol *,
16301 TYPE_N_TEMPLATE_ARGUMENTS (type));
16302 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16303 template_args.data (),
16304 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16305 * sizeof (struct symbol *)));
16306 }
16307
16308 /* Attach fields and member functions to the type. */
16309 if (fi.nfields () > 0)
16310 dwarf2_attach_fields_to_type (&fi, type, cu);
16311 if (!fi.fnfieldlists.empty ())
16312 {
16313 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16314
16315 /* Get the type which refers to the base class (possibly this
16316 class itself) which contains the vtable pointer for the current
16317 class from the DW_AT_containing_type attribute. This use of
16318 DW_AT_containing_type is a GNU extension. */
16319
16320 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16321 {
16322 struct type *t = die_containing_type (die, cu);
16323
16324 set_type_vptr_basetype (type, t);
16325 if (type == t)
16326 {
16327 int i;
16328
16329 /* Our own class provides vtbl ptr. */
16330 for (i = t->num_fields () - 1;
16331 i >= TYPE_N_BASECLASSES (t);
16332 --i)
16333 {
16334 const char *fieldname = TYPE_FIELD_NAME (t, i);
16335
16336 if (is_vtable_name (fieldname, cu))
16337 {
16338 set_type_vptr_fieldno (type, i);
16339 break;
16340 }
16341 }
16342
16343 /* Complain if virtual function table field not found. */
16344 if (i < TYPE_N_BASECLASSES (t))
16345 complaint (_("virtual function table pointer "
16346 "not found when defining class '%s'"),
16347 type->name () ? type->name () : "");
16348 }
16349 else
16350 {
16351 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16352 }
16353 }
16354 else if (cu->producer
16355 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16356 {
16357 /* The IBM XLC compiler does not provide direct indication
16358 of the containing type, but the vtable pointer is
16359 always named __vfp. */
16360
16361 int i;
16362
16363 for (i = type->num_fields () - 1;
16364 i >= TYPE_N_BASECLASSES (type);
16365 --i)
16366 {
16367 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16368 {
16369 set_type_vptr_fieldno (type, i);
16370 set_type_vptr_basetype (type, type);
16371 break;
16372 }
16373 }
16374 }
16375 }
16376
16377 /* Copy fi.typedef_field_list linked list elements content into the
16378 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16379 if (!fi.typedef_field_list.empty ())
16380 {
16381 int count = fi.typedef_field_list.size ();
16382
16383 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16384 TYPE_TYPEDEF_FIELD_ARRAY (type)
16385 = ((struct decl_field *)
16386 TYPE_ALLOC (type,
16387 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16388 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16389
16390 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16391 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16392 }
16393
16394 /* Copy fi.nested_types_list linked list elements content into the
16395 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16396 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16397 {
16398 int count = fi.nested_types_list.size ();
16399
16400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16401 TYPE_NESTED_TYPES_ARRAY (type)
16402 = ((struct decl_field *)
16403 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16404 TYPE_NESTED_TYPES_COUNT (type) = count;
16405
16406 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16407 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16408 }
16409 }
16410
16411 quirk_gcc_member_function_pointer (type, objfile);
16412 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16413 cu->rust_unions.push_back (type);
16414
16415 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16416 snapshots) has been known to create a die giving a declaration
16417 for a class that has, as a child, a die giving a definition for a
16418 nested class. So we have to process our children even if the
16419 current die is a declaration. Normally, of course, a declaration
16420 won't have any children at all. */
16421
16422 child_die = die->child;
16423
16424 while (child_die != NULL && child_die->tag)
16425 {
16426 if (child_die->tag == DW_TAG_member
16427 || child_die->tag == DW_TAG_variable
16428 || child_die->tag == DW_TAG_inheritance
16429 || child_die->tag == DW_TAG_template_value_param
16430 || child_die->tag == DW_TAG_template_type_param)
16431 {
16432 /* Do nothing. */
16433 }
16434 else
16435 process_die (child_die, cu);
16436
16437 child_die = child_die->sibling;
16438 }
16439
16440 /* Do not consider external references. According to the DWARF standard,
16441 these DIEs are identified by the fact that they have no byte_size
16442 attribute, and a declaration attribute. */
16443 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16444 || !die_is_declaration (die, cu)
16445 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
16446 {
16447 struct symbol *sym = new_symbol (die, type, cu);
16448
16449 if (has_template_parameters)
16450 {
16451 struct symtab *symtab;
16452 if (sym != nullptr)
16453 symtab = symbol_symtab (sym);
16454 else if (cu->line_header != nullptr)
16455 {
16456 /* Any related symtab will do. */
16457 symtab
16458 = cu->line_header->file_names ()[0].symtab;
16459 }
16460 else
16461 {
16462 symtab = nullptr;
16463 complaint (_("could not find suitable "
16464 "symtab for template parameter"
16465 " - DIE at %s [in module %s]"),
16466 sect_offset_str (die->sect_off),
16467 objfile_name (objfile));
16468 }
16469
16470 if (symtab != nullptr)
16471 {
16472 /* Make sure that the symtab is set on the new symbols.
16473 Even though they don't appear in this symtab directly,
16474 other parts of gdb assume that symbols do, and this is
16475 reasonably true. */
16476 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16477 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16478 }
16479 }
16480 }
16481 }
16482
16483 /* Assuming DIE is an enumeration type, and TYPE is its associated
16484 type, update TYPE using some information only available in DIE's
16485 children. In particular, the fields are computed. */
16486
16487 static void
16488 update_enumeration_type_from_children (struct die_info *die,
16489 struct type *type,
16490 struct dwarf2_cu *cu)
16491 {
16492 struct die_info *child_die;
16493 int unsigned_enum = 1;
16494 int flag_enum = 1;
16495
16496 auto_obstack obstack;
16497 std::vector<struct field> fields;
16498
16499 for (child_die = die->child;
16500 child_die != NULL && child_die->tag;
16501 child_die = child_die->sibling)
16502 {
16503 struct attribute *attr;
16504 LONGEST value;
16505 const gdb_byte *bytes;
16506 struct dwarf2_locexpr_baton *baton;
16507 const char *name;
16508
16509 if (child_die->tag != DW_TAG_enumerator)
16510 continue;
16511
16512 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16513 if (attr == NULL)
16514 continue;
16515
16516 name = dwarf2_name (child_die, cu);
16517 if (name == NULL)
16518 name = "<anonymous enumerator>";
16519
16520 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16521 &value, &bytes, &baton);
16522 if (value < 0)
16523 {
16524 unsigned_enum = 0;
16525 flag_enum = 0;
16526 }
16527 else
16528 {
16529 if (count_one_bits_ll (value) >= 2)
16530 flag_enum = 0;
16531 }
16532
16533 fields.emplace_back ();
16534 struct field &field = fields.back ();
16535 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
16536 SET_FIELD_ENUMVAL (field, value);
16537 }
16538
16539 if (!fields.empty ())
16540 {
16541 type->set_num_fields (fields.size ());
16542 type->set_fields
16543 ((struct field *)
16544 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16545 memcpy (type->fields (), fields.data (),
16546 sizeof (struct field) * fields.size ());
16547 }
16548
16549 if (unsigned_enum)
16550 type->set_is_unsigned (true);
16551
16552 if (flag_enum)
16553 TYPE_FLAG_ENUM (type) = 1;
16554 }
16555
16556 /* Given a DW_AT_enumeration_type die, set its type. We do not
16557 complete the type's fields yet, or create any symbols. */
16558
16559 static struct type *
16560 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16561 {
16562 struct objfile *objfile = cu->per_objfile->objfile;
16563 struct type *type;
16564 struct attribute *attr;
16565 const char *name;
16566
16567 /* If the definition of this type lives in .debug_types, read that type.
16568 Don't follow DW_AT_specification though, that will take us back up
16569 the chain and we want to go down. */
16570 attr = die->attr (DW_AT_signature);
16571 if (attr != nullptr)
16572 {
16573 type = get_DW_AT_signature_type (die, attr, cu);
16574
16575 /* The type's CU may not be the same as CU.
16576 Ensure TYPE is recorded with CU in die_type_hash. */
16577 return set_die_type (die, type, cu);
16578 }
16579
16580 type = alloc_type (objfile);
16581
16582 type->set_code (TYPE_CODE_ENUM);
16583 name = dwarf2_full_name (NULL, die, cu);
16584 if (name != NULL)
16585 type->set_name (name);
16586
16587 attr = dwarf2_attr (die, DW_AT_type, cu);
16588 if (attr != NULL)
16589 {
16590 struct type *underlying_type = die_type (die, cu);
16591
16592 TYPE_TARGET_TYPE (type) = underlying_type;
16593 }
16594
16595 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16596 if (attr != nullptr)
16597 {
16598 TYPE_LENGTH (type) = attr->constant_value (0);
16599 }
16600 else
16601 {
16602 TYPE_LENGTH (type) = 0;
16603 }
16604
16605 maybe_set_alignment (cu, die, type);
16606
16607 /* The enumeration DIE can be incomplete. In Ada, any type can be
16608 declared as private in the package spec, and then defined only
16609 inside the package body. Such types are known as Taft Amendment
16610 Types. When another package uses such a type, an incomplete DIE
16611 may be generated by the compiler. */
16612 if (die_is_declaration (die, cu))
16613 type->set_is_stub (true);
16614
16615 /* If this type has an underlying type that is not a stub, then we
16616 may use its attributes. We always use the "unsigned" attribute
16617 in this situation, because ordinarily we guess whether the type
16618 is unsigned -- but the guess can be wrong and the underlying type
16619 can tell us the reality. However, we defer to a local size
16620 attribute if one exists, because this lets the compiler override
16621 the underlying type if needed. */
16622 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_TARGET_TYPE (type)->is_stub ())
16623 {
16624 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16625 underlying_type = check_typedef (underlying_type);
16626
16627 type->set_is_unsigned (underlying_type->is_unsigned ());
16628
16629 if (TYPE_LENGTH (type) == 0)
16630 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16631
16632 if (TYPE_RAW_ALIGN (type) == 0
16633 && TYPE_RAW_ALIGN (underlying_type) != 0)
16634 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16635 }
16636
16637 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16638
16639 set_die_type (die, type, cu);
16640
16641 /* Finish the creation of this type by using the enum's children.
16642 Note that, as usual, this must come after set_die_type to avoid
16643 infinite recursion when trying to compute the names of the
16644 enumerators. */
16645 update_enumeration_type_from_children (die, type, cu);
16646
16647 return type;
16648 }
16649
16650 /* Given a pointer to a die which begins an enumeration, process all
16651 the dies that define the members of the enumeration, and create the
16652 symbol for the enumeration type.
16653
16654 NOTE: We reverse the order of the element list. */
16655
16656 static void
16657 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16658 {
16659 struct type *this_type;
16660
16661 this_type = get_die_type (die, cu);
16662 if (this_type == NULL)
16663 this_type = read_enumeration_type (die, cu);
16664
16665 if (die->child != NULL)
16666 {
16667 struct die_info *child_die;
16668 const char *name;
16669
16670 child_die = die->child;
16671 while (child_die && child_die->tag)
16672 {
16673 if (child_die->tag != DW_TAG_enumerator)
16674 {
16675 process_die (child_die, cu);
16676 }
16677 else
16678 {
16679 name = dwarf2_name (child_die, cu);
16680 if (name)
16681 new_symbol (child_die, this_type, cu);
16682 }
16683
16684 child_die = child_die->sibling;
16685 }
16686 }
16687
16688 /* If we are reading an enum from a .debug_types unit, and the enum
16689 is a declaration, and the enum is not the signatured type in the
16690 unit, then we do not want to add a symbol for it. Adding a
16691 symbol would in some cases obscure the true definition of the
16692 enum, giving users an incomplete type when the definition is
16693 actually available. Note that we do not want to do this for all
16694 enums which are just declarations, because C++0x allows forward
16695 enum declarations. */
16696 if (cu->per_cu->is_debug_types
16697 && die_is_declaration (die, cu))
16698 {
16699 struct signatured_type *sig_type;
16700
16701 sig_type = (struct signatured_type *) cu->per_cu;
16702 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16703 if (sig_type->type_offset_in_section != die->sect_off)
16704 return;
16705 }
16706
16707 new_symbol (die, this_type, cu);
16708 }
16709
16710 /* Extract all information from a DW_TAG_array_type DIE and put it in
16711 the DIE's type field. For now, this only handles one dimensional
16712 arrays. */
16713
16714 static struct type *
16715 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16716 {
16717 struct objfile *objfile = cu->per_objfile->objfile;
16718 struct die_info *child_die;
16719 struct type *type;
16720 struct type *element_type, *range_type, *index_type;
16721 struct attribute *attr;
16722 const char *name;
16723 struct dynamic_prop *byte_stride_prop = NULL;
16724 unsigned int bit_stride = 0;
16725
16726 element_type = die_type (die, cu);
16727
16728 /* The die_type call above may have already set the type for this DIE. */
16729 type = get_die_type (die, cu);
16730 if (type)
16731 return type;
16732
16733 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16734 if (attr != NULL)
16735 {
16736 int stride_ok;
16737 struct type *prop_type = cu->addr_sized_int_type (false);
16738
16739 byte_stride_prop
16740 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16741 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16742 prop_type);
16743 if (!stride_ok)
16744 {
16745 complaint (_("unable to read array DW_AT_byte_stride "
16746 " - DIE at %s [in module %s]"),
16747 sect_offset_str (die->sect_off),
16748 objfile_name (cu->per_objfile->objfile));
16749 /* Ignore this attribute. We will likely not be able to print
16750 arrays of this type correctly, but there is little we can do
16751 to help if we cannot read the attribute's value. */
16752 byte_stride_prop = NULL;
16753 }
16754 }
16755
16756 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16757 if (attr != NULL)
16758 bit_stride = attr->constant_value (0);
16759
16760 /* Irix 6.2 native cc creates array types without children for
16761 arrays with unspecified length. */
16762 if (die->child == NULL)
16763 {
16764 index_type = objfile_type (objfile)->builtin_int;
16765 range_type = create_static_range_type (NULL, index_type, 0, -1);
16766 type = create_array_type_with_stride (NULL, element_type, range_type,
16767 byte_stride_prop, bit_stride);
16768 return set_die_type (die, type, cu);
16769 }
16770
16771 std::vector<struct type *> range_types;
16772 child_die = die->child;
16773 while (child_die && child_die->tag)
16774 {
16775 if (child_die->tag == DW_TAG_subrange_type)
16776 {
16777 struct type *child_type = read_type_die (child_die, cu);
16778
16779 if (child_type != NULL)
16780 {
16781 /* The range type was succesfully read. Save it for the
16782 array type creation. */
16783 range_types.push_back (child_type);
16784 }
16785 }
16786 child_die = child_die->sibling;
16787 }
16788
16789 /* Dwarf2 dimensions are output from left to right, create the
16790 necessary array types in backwards order. */
16791
16792 type = element_type;
16793
16794 if (read_array_order (die, cu) == DW_ORD_col_major)
16795 {
16796 int i = 0;
16797
16798 while (i < range_types.size ())
16799 type = create_array_type_with_stride (NULL, type, range_types[i++],
16800 byte_stride_prop, bit_stride);
16801 }
16802 else
16803 {
16804 size_t ndim = range_types.size ();
16805 while (ndim-- > 0)
16806 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16807 byte_stride_prop, bit_stride);
16808 }
16809
16810 /* Understand Dwarf2 support for vector types (like they occur on
16811 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16812 array type. This is not part of the Dwarf2/3 standard yet, but a
16813 custom vendor extension. The main difference between a regular
16814 array and the vector variant is that vectors are passed by value
16815 to functions. */
16816 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16817 if (attr != nullptr)
16818 make_vector_type (type);
16819
16820 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16821 implementation may choose to implement triple vectors using this
16822 attribute. */
16823 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16824 if (attr != nullptr && attr->form_is_unsigned ())
16825 {
16826 if (attr->as_unsigned () >= TYPE_LENGTH (type))
16827 TYPE_LENGTH (type) = attr->as_unsigned ();
16828 else
16829 complaint (_("DW_AT_byte_size for array type smaller "
16830 "than the total size of elements"));
16831 }
16832
16833 name = dwarf2_name (die, cu);
16834 if (name)
16835 type->set_name (name);
16836
16837 maybe_set_alignment (cu, die, type);
16838
16839 /* Install the type in the die. */
16840 set_die_type (die, type, cu);
16841
16842 /* set_die_type should be already done. */
16843 set_descriptive_type (type, die, cu);
16844
16845 return type;
16846 }
16847
16848 static enum dwarf_array_dim_ordering
16849 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16850 {
16851 struct attribute *attr;
16852
16853 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16854
16855 if (attr != nullptr)
16856 {
16857 LONGEST val = attr->constant_value (-1);
16858 if (val == DW_ORD_row_major || val == DW_ORD_col_major)
16859 return (enum dwarf_array_dim_ordering) val;
16860 }
16861
16862 /* GNU F77 is a special case, as at 08/2004 array type info is the
16863 opposite order to the dwarf2 specification, but data is still
16864 laid out as per normal fortran.
16865
16866 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16867 version checking. */
16868
16869 if (cu->language == language_fortran
16870 && cu->producer && strstr (cu->producer, "GNU F77"))
16871 {
16872 return DW_ORD_row_major;
16873 }
16874
16875 switch (cu->language_defn->array_ordering ())
16876 {
16877 case array_column_major:
16878 return DW_ORD_col_major;
16879 case array_row_major:
16880 default:
16881 return DW_ORD_row_major;
16882 };
16883 }
16884
16885 /* Extract all information from a DW_TAG_set_type DIE and put it in
16886 the DIE's type field. */
16887
16888 static struct type *
16889 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16890 {
16891 struct type *domain_type, *set_type;
16892 struct attribute *attr;
16893
16894 domain_type = die_type (die, cu);
16895
16896 /* The die_type call above may have already set the type for this DIE. */
16897 set_type = get_die_type (die, cu);
16898 if (set_type)
16899 return set_type;
16900
16901 set_type = create_set_type (NULL, domain_type);
16902
16903 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16904 if (attr != nullptr && attr->form_is_unsigned ())
16905 TYPE_LENGTH (set_type) = attr->as_unsigned ();
16906
16907 maybe_set_alignment (cu, die, set_type);
16908
16909 return set_die_type (die, set_type, cu);
16910 }
16911
16912 /* A helper for read_common_block that creates a locexpr baton.
16913 SYM is the symbol which we are marking as computed.
16914 COMMON_DIE is the DIE for the common block.
16915 COMMON_LOC is the location expression attribute for the common
16916 block itself.
16917 MEMBER_LOC is the location expression attribute for the particular
16918 member of the common block that we are processing.
16919 CU is the CU from which the above come. */
16920
16921 static void
16922 mark_common_block_symbol_computed (struct symbol *sym,
16923 struct die_info *common_die,
16924 struct attribute *common_loc,
16925 struct attribute *member_loc,
16926 struct dwarf2_cu *cu)
16927 {
16928 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16929 struct objfile *objfile = per_objfile->objfile;
16930 struct dwarf2_locexpr_baton *baton;
16931 gdb_byte *ptr;
16932 unsigned int cu_off;
16933 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16934 LONGEST offset = 0;
16935
16936 gdb_assert (common_loc && member_loc);
16937 gdb_assert (common_loc->form_is_block ());
16938 gdb_assert (member_loc->form_is_block ()
16939 || member_loc->form_is_constant ());
16940
16941 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16942 baton->per_objfile = per_objfile;
16943 baton->per_cu = cu->per_cu;
16944 gdb_assert (baton->per_cu);
16945
16946 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16947
16948 if (member_loc->form_is_constant ())
16949 {
16950 offset = member_loc->constant_value (0);
16951 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16952 }
16953 else
16954 baton->size += member_loc->as_block ()->size;
16955
16956 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16957 baton->data = ptr;
16958
16959 *ptr++ = DW_OP_call4;
16960 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16961 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16962 ptr += 4;
16963
16964 if (member_loc->form_is_constant ())
16965 {
16966 *ptr++ = DW_OP_addr;
16967 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16968 ptr += cu->header.addr_size;
16969 }
16970 else
16971 {
16972 /* We have to copy the data here, because DW_OP_call4 will only
16973 use a DW_AT_location attribute. */
16974 struct dwarf_block *block = member_loc->as_block ();
16975 memcpy (ptr, block->data, block->size);
16976 ptr += block->size;
16977 }
16978
16979 *ptr++ = DW_OP_plus;
16980 gdb_assert (ptr - baton->data == baton->size);
16981
16982 SYMBOL_LOCATION_BATON (sym) = baton;
16983 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16984 }
16985
16986 /* Create appropriate locally-scoped variables for all the
16987 DW_TAG_common_block entries. Also create a struct common_block
16988 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16989 is used to separate the common blocks name namespace from regular
16990 variable names. */
16991
16992 static void
16993 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16994 {
16995 struct attribute *attr;
16996
16997 attr = dwarf2_attr (die, DW_AT_location, cu);
16998 if (attr != nullptr)
16999 {
17000 /* Support the .debug_loc offsets. */
17001 if (attr->form_is_block ())
17002 {
17003 /* Ok. */
17004 }
17005 else if (attr->form_is_section_offset ())
17006 {
17007 dwarf2_complex_location_expr_complaint ();
17008 attr = NULL;
17009 }
17010 else
17011 {
17012 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17013 "common block member");
17014 attr = NULL;
17015 }
17016 }
17017
17018 if (die->child != NULL)
17019 {
17020 struct objfile *objfile = cu->per_objfile->objfile;
17021 struct die_info *child_die;
17022 size_t n_entries = 0, size;
17023 struct common_block *common_block;
17024 struct symbol *sym;
17025
17026 for (child_die = die->child;
17027 child_die && child_die->tag;
17028 child_die = child_die->sibling)
17029 ++n_entries;
17030
17031 size = (sizeof (struct common_block)
17032 + (n_entries - 1) * sizeof (struct symbol *));
17033 common_block
17034 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
17035 size);
17036 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
17037 common_block->n_entries = 0;
17038
17039 for (child_die = die->child;
17040 child_die && child_die->tag;
17041 child_die = child_die->sibling)
17042 {
17043 /* Create the symbol in the DW_TAG_common_block block in the current
17044 symbol scope. */
17045 sym = new_symbol (child_die, NULL, cu);
17046 if (sym != NULL)
17047 {
17048 struct attribute *member_loc;
17049
17050 common_block->contents[common_block->n_entries++] = sym;
17051
17052 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
17053 cu);
17054 if (member_loc)
17055 {
17056 /* GDB has handled this for a long time, but it is
17057 not specified by DWARF. It seems to have been
17058 emitted by gfortran at least as recently as:
17059 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
17060 complaint (_("Variable in common block has "
17061 "DW_AT_data_member_location "
17062 "- DIE at %s [in module %s]"),
17063 sect_offset_str (child_die->sect_off),
17064 objfile_name (objfile));
17065
17066 if (member_loc->form_is_section_offset ())
17067 dwarf2_complex_location_expr_complaint ();
17068 else if (member_loc->form_is_constant ()
17069 || member_loc->form_is_block ())
17070 {
17071 if (attr != nullptr)
17072 mark_common_block_symbol_computed (sym, die, attr,
17073 member_loc, cu);
17074 }
17075 else
17076 dwarf2_complex_location_expr_complaint ();
17077 }
17078 }
17079 }
17080
17081 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
17082 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
17083 }
17084 }
17085
17086 /* Create a type for a C++ namespace. */
17087
17088 static struct type *
17089 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
17090 {
17091 struct objfile *objfile = cu->per_objfile->objfile;
17092 const char *previous_prefix, *name;
17093 int is_anonymous;
17094 struct type *type;
17095
17096 /* For extensions, reuse the type of the original namespace. */
17097 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
17098 {
17099 struct die_info *ext_die;
17100 struct dwarf2_cu *ext_cu = cu;
17101
17102 ext_die = dwarf2_extension (die, &ext_cu);
17103 type = read_type_die (ext_die, ext_cu);
17104
17105 /* EXT_CU may not be the same as CU.
17106 Ensure TYPE is recorded with CU in die_type_hash. */
17107 return set_die_type (die, type, cu);
17108 }
17109
17110 name = namespace_name (die, &is_anonymous, cu);
17111
17112 /* Now build the name of the current namespace. */
17113
17114 previous_prefix = determine_prefix (die, cu);
17115 if (previous_prefix[0] != '\0')
17116 name = typename_concat (&objfile->objfile_obstack,
17117 previous_prefix, name, 0, cu);
17118
17119 /* Create the type. */
17120 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17121
17122 return set_die_type (die, type, cu);
17123 }
17124
17125 /* Read a namespace scope. */
17126
17127 static void
17128 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17129 {
17130 struct objfile *objfile = cu->per_objfile->objfile;
17131 int is_anonymous;
17132
17133 /* Add a symbol associated to this if we haven't seen the namespace
17134 before. Also, add a using directive if it's an anonymous
17135 namespace. */
17136
17137 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17138 {
17139 struct type *type;
17140
17141 type = read_type_die (die, cu);
17142 new_symbol (die, type, cu);
17143
17144 namespace_name (die, &is_anonymous, cu);
17145 if (is_anonymous)
17146 {
17147 const char *previous_prefix = determine_prefix (die, cu);
17148
17149 std::vector<const char *> excludes;
17150 add_using_directive (using_directives (cu),
17151 previous_prefix, type->name (), NULL,
17152 NULL, excludes, 0, &objfile->objfile_obstack);
17153 }
17154 }
17155
17156 if (die->child != NULL)
17157 {
17158 struct die_info *child_die = die->child;
17159
17160 while (child_die && child_die->tag)
17161 {
17162 process_die (child_die, cu);
17163 child_die = child_die->sibling;
17164 }
17165 }
17166 }
17167
17168 /* Read a Fortran module as type. This DIE can be only a declaration used for
17169 imported module. Still we need that type as local Fortran "use ... only"
17170 declaration imports depend on the created type in determine_prefix. */
17171
17172 static struct type *
17173 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17174 {
17175 struct objfile *objfile = cu->per_objfile->objfile;
17176 const char *module_name;
17177 struct type *type;
17178
17179 module_name = dwarf2_name (die, cu);
17180 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17181
17182 return set_die_type (die, type, cu);
17183 }
17184
17185 /* Read a Fortran module. */
17186
17187 static void
17188 read_module (struct die_info *die, struct dwarf2_cu *cu)
17189 {
17190 struct die_info *child_die = die->child;
17191 struct type *type;
17192
17193 type = read_type_die (die, cu);
17194 new_symbol (die, type, cu);
17195
17196 while (child_die && child_die->tag)
17197 {
17198 process_die (child_die, cu);
17199 child_die = child_die->sibling;
17200 }
17201 }
17202
17203 /* Return the name of the namespace represented by DIE. Set
17204 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17205 namespace. */
17206
17207 static const char *
17208 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17209 {
17210 struct die_info *current_die;
17211 const char *name = NULL;
17212
17213 /* Loop through the extensions until we find a name. */
17214
17215 for (current_die = die;
17216 current_die != NULL;
17217 current_die = dwarf2_extension (die, &cu))
17218 {
17219 /* We don't use dwarf2_name here so that we can detect the absence
17220 of a name -> anonymous namespace. */
17221 name = dwarf2_string_attr (die, DW_AT_name, cu);
17222
17223 if (name != NULL)
17224 break;
17225 }
17226
17227 /* Is it an anonymous namespace? */
17228
17229 *is_anonymous = (name == NULL);
17230 if (*is_anonymous)
17231 name = CP_ANONYMOUS_NAMESPACE_STR;
17232
17233 return name;
17234 }
17235
17236 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17237 the user defined type vector. */
17238
17239 static struct type *
17240 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17241 {
17242 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
17243 struct comp_unit_head *cu_header = &cu->header;
17244 struct type *type;
17245 struct attribute *attr_byte_size;
17246 struct attribute *attr_address_class;
17247 int byte_size, addr_class;
17248 struct type *target_type;
17249
17250 target_type = die_type (die, cu);
17251
17252 /* The die_type call above may have already set the type for this DIE. */
17253 type = get_die_type (die, cu);
17254 if (type)
17255 return type;
17256
17257 type = lookup_pointer_type (target_type);
17258
17259 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17260 if (attr_byte_size)
17261 byte_size = attr_byte_size->constant_value (cu_header->addr_size);
17262 else
17263 byte_size = cu_header->addr_size;
17264
17265 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17266 if (attr_address_class)
17267 addr_class = attr_address_class->constant_value (DW_ADDR_none);
17268 else
17269 addr_class = DW_ADDR_none;
17270
17271 ULONGEST alignment = get_alignment (cu, die);
17272
17273 /* If the pointer size, alignment, or address class is different
17274 than the default, create a type variant marked as such and set
17275 the length accordingly. */
17276 if (TYPE_LENGTH (type) != byte_size
17277 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17278 && alignment != TYPE_RAW_ALIGN (type))
17279 || addr_class != DW_ADDR_none)
17280 {
17281 if (gdbarch_address_class_type_flags_p (gdbarch))
17282 {
17283 type_instance_flags type_flags
17284 = gdbarch_address_class_type_flags (gdbarch, byte_size,
17285 addr_class);
17286 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17287 == 0);
17288 type = make_type_with_address_space (type, type_flags);
17289 }
17290 else if (TYPE_LENGTH (type) != byte_size)
17291 {
17292 complaint (_("invalid pointer size %d"), byte_size);
17293 }
17294 else if (TYPE_RAW_ALIGN (type) != alignment)
17295 {
17296 complaint (_("Invalid DW_AT_alignment"
17297 " - DIE at %s [in module %s]"),
17298 sect_offset_str (die->sect_off),
17299 objfile_name (cu->per_objfile->objfile));
17300 }
17301 else
17302 {
17303 /* Should we also complain about unhandled address classes? */
17304 }
17305 }
17306
17307 TYPE_LENGTH (type) = byte_size;
17308 set_type_align (type, alignment);
17309 return set_die_type (die, type, cu);
17310 }
17311
17312 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17313 the user defined type vector. */
17314
17315 static struct type *
17316 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17317 {
17318 struct type *type;
17319 struct type *to_type;
17320 struct type *domain;
17321
17322 to_type = die_type (die, cu);
17323 domain = die_containing_type (die, cu);
17324
17325 /* The calls above may have already set the type for this DIE. */
17326 type = get_die_type (die, cu);
17327 if (type)
17328 return type;
17329
17330 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
17331 type = lookup_methodptr_type (to_type);
17332 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
17333 {
17334 struct type *new_type = alloc_type (cu->per_objfile->objfile);
17335
17336 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17337 to_type->fields (), to_type->num_fields (),
17338 to_type->has_varargs ());
17339 type = lookup_methodptr_type (new_type);
17340 }
17341 else
17342 type = lookup_memberptr_type (to_type, domain);
17343
17344 return set_die_type (die, type, cu);
17345 }
17346
17347 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17348 the user defined type vector. */
17349
17350 static struct type *
17351 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17352 enum type_code refcode)
17353 {
17354 struct comp_unit_head *cu_header = &cu->header;
17355 struct type *type, *target_type;
17356 struct attribute *attr;
17357
17358 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17359
17360 target_type = die_type (die, cu);
17361
17362 /* The die_type call above may have already set the type for this DIE. */
17363 type = get_die_type (die, cu);
17364 if (type)
17365 return type;
17366
17367 type = lookup_reference_type (target_type, refcode);
17368 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17369 if (attr != nullptr)
17370 {
17371 TYPE_LENGTH (type) = attr->constant_value (cu_header->addr_size);
17372 }
17373 else
17374 {
17375 TYPE_LENGTH (type) = cu_header->addr_size;
17376 }
17377 maybe_set_alignment (cu, die, type);
17378 return set_die_type (die, type, cu);
17379 }
17380
17381 /* Add the given cv-qualifiers to the element type of the array. GCC
17382 outputs DWARF type qualifiers that apply to an array, not the
17383 element type. But GDB relies on the array element type to carry
17384 the cv-qualifiers. This mimics section 6.7.3 of the C99
17385 specification. */
17386
17387 static struct type *
17388 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17389 struct type *base_type, int cnst, int voltl)
17390 {
17391 struct type *el_type, *inner_array;
17392
17393 base_type = copy_type (base_type);
17394 inner_array = base_type;
17395
17396 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
17397 {
17398 TYPE_TARGET_TYPE (inner_array) =
17399 copy_type (TYPE_TARGET_TYPE (inner_array));
17400 inner_array = TYPE_TARGET_TYPE (inner_array);
17401 }
17402
17403 el_type = TYPE_TARGET_TYPE (inner_array);
17404 cnst |= TYPE_CONST (el_type);
17405 voltl |= TYPE_VOLATILE (el_type);
17406 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17407
17408 return set_die_type (die, base_type, cu);
17409 }
17410
17411 static struct type *
17412 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17413 {
17414 struct type *base_type, *cv_type;
17415
17416 base_type = die_type (die, cu);
17417
17418 /* The die_type call above may have already set the type for this DIE. */
17419 cv_type = get_die_type (die, cu);
17420 if (cv_type)
17421 return cv_type;
17422
17423 /* In case the const qualifier is applied to an array type, the element type
17424 is so qualified, not the array type (section 6.7.3 of C99). */
17425 if (base_type->code () == TYPE_CODE_ARRAY)
17426 return add_array_cv_type (die, cu, base_type, 1, 0);
17427
17428 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17429 return set_die_type (die, cv_type, cu);
17430 }
17431
17432 static struct type *
17433 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17434 {
17435 struct type *base_type, *cv_type;
17436
17437 base_type = die_type (die, cu);
17438
17439 /* The die_type call above may have already set the type for this DIE. */
17440 cv_type = get_die_type (die, cu);
17441 if (cv_type)
17442 return cv_type;
17443
17444 /* In case the volatile qualifier is applied to an array type, the
17445 element type is so qualified, not the array type (section 6.7.3
17446 of C99). */
17447 if (base_type->code () == TYPE_CODE_ARRAY)
17448 return add_array_cv_type (die, cu, base_type, 0, 1);
17449
17450 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17451 return set_die_type (die, cv_type, cu);
17452 }
17453
17454 /* Handle DW_TAG_restrict_type. */
17455
17456 static struct type *
17457 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17458 {
17459 struct type *base_type, *cv_type;
17460
17461 base_type = die_type (die, cu);
17462
17463 /* The die_type call above may have already set the type for this DIE. */
17464 cv_type = get_die_type (die, cu);
17465 if (cv_type)
17466 return cv_type;
17467
17468 cv_type = make_restrict_type (base_type);
17469 return set_die_type (die, cv_type, cu);
17470 }
17471
17472 /* Handle DW_TAG_atomic_type. */
17473
17474 static struct type *
17475 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17476 {
17477 struct type *base_type, *cv_type;
17478
17479 base_type = die_type (die, cu);
17480
17481 /* The die_type call above may have already set the type for this DIE. */
17482 cv_type = get_die_type (die, cu);
17483 if (cv_type)
17484 return cv_type;
17485
17486 cv_type = make_atomic_type (base_type);
17487 return set_die_type (die, cv_type, cu);
17488 }
17489
17490 /* Extract all information from a DW_TAG_string_type DIE and add to
17491 the user defined type vector. It isn't really a user defined type,
17492 but it behaves like one, with other DIE's using an AT_user_def_type
17493 attribute to reference it. */
17494
17495 static struct type *
17496 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17497 {
17498 struct objfile *objfile = cu->per_objfile->objfile;
17499 struct gdbarch *gdbarch = objfile->arch ();
17500 struct type *type, *range_type, *index_type, *char_type;
17501 struct attribute *attr;
17502 struct dynamic_prop prop;
17503 bool length_is_constant = true;
17504 LONGEST length;
17505
17506 /* There are a couple of places where bit sizes might be made use of
17507 when parsing a DW_TAG_string_type, however, no producer that we know
17508 of make use of these. Handling bit sizes that are a multiple of the
17509 byte size is easy enough, but what about other bit sizes? Lets deal
17510 with that problem when we have to. Warn about these attributes being
17511 unsupported, then parse the type and ignore them like we always
17512 have. */
17513 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17514 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17515 {
17516 static bool warning_printed = false;
17517 if (!warning_printed)
17518 {
17519 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17520 "currently supported on DW_TAG_string_type."));
17521 warning_printed = true;
17522 }
17523 }
17524
17525 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17526 if (attr != nullptr && !attr->form_is_constant ())
17527 {
17528 /* The string length describes the location at which the length of
17529 the string can be found. The size of the length field can be
17530 specified with one of the attributes below. */
17531 struct type *prop_type;
17532 struct attribute *len
17533 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17534 if (len == nullptr)
17535 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17536 if (len != nullptr && len->form_is_constant ())
17537 {
17538 /* Pass 0 as the default as we know this attribute is constant
17539 and the default value will not be returned. */
17540 LONGEST sz = len->constant_value (0);
17541 prop_type = cu->per_objfile->int_type (sz, true);
17542 }
17543 else
17544 {
17545 /* If the size is not specified then we assume it is the size of
17546 an address on this target. */
17547 prop_type = cu->addr_sized_int_type (true);
17548 }
17549
17550 /* Convert the attribute into a dynamic property. */
17551 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17552 length = 1;
17553 else
17554 length_is_constant = false;
17555 }
17556 else if (attr != nullptr)
17557 {
17558 /* This DW_AT_string_length just contains the length with no
17559 indirection. There's no need to create a dynamic property in this
17560 case. Pass 0 for the default value as we know it will not be
17561 returned in this case. */
17562 length = attr->constant_value (0);
17563 }
17564 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17565 {
17566 /* We don't currently support non-constant byte sizes for strings. */
17567 length = attr->constant_value (1);
17568 }
17569 else
17570 {
17571 /* Use 1 as a fallback length if we have nothing else. */
17572 length = 1;
17573 }
17574
17575 index_type = objfile_type (objfile)->builtin_int;
17576 if (length_is_constant)
17577 range_type = create_static_range_type (NULL, index_type, 1, length);
17578 else
17579 {
17580 struct dynamic_prop low_bound;
17581
17582 low_bound.set_const_val (1);
17583 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17584 }
17585 char_type = language_string_char_type (cu->language_defn, gdbarch);
17586 type = create_string_type (NULL, char_type, range_type);
17587
17588 return set_die_type (die, type, cu);
17589 }
17590
17591 /* Assuming that DIE corresponds to a function, returns nonzero
17592 if the function is prototyped. */
17593
17594 static int
17595 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17596 {
17597 struct attribute *attr;
17598
17599 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17600 if (attr && attr->as_boolean ())
17601 return 1;
17602
17603 /* The DWARF standard implies that the DW_AT_prototyped attribute
17604 is only meaningful for C, but the concept also extends to other
17605 languages that allow unprototyped functions (Eg: Objective C).
17606 For all other languages, assume that functions are always
17607 prototyped. */
17608 if (cu->language != language_c
17609 && cu->language != language_objc
17610 && cu->language != language_opencl)
17611 return 1;
17612
17613 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17614 prototyped and unprototyped functions; default to prototyped,
17615 since that is more common in modern code (and RealView warns
17616 about unprototyped functions). */
17617 if (producer_is_realview (cu->producer))
17618 return 1;
17619
17620 return 0;
17621 }
17622
17623 /* Handle DIES due to C code like:
17624
17625 struct foo
17626 {
17627 int (*funcp)(int a, long l);
17628 int b;
17629 };
17630
17631 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17632
17633 static struct type *
17634 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17635 {
17636 struct objfile *objfile = cu->per_objfile->objfile;
17637 struct type *type; /* Type that this function returns. */
17638 struct type *ftype; /* Function that returns above type. */
17639 struct attribute *attr;
17640
17641 type = die_type (die, cu);
17642
17643 /* The die_type call above may have already set the type for this DIE. */
17644 ftype = get_die_type (die, cu);
17645 if (ftype)
17646 return ftype;
17647
17648 ftype = lookup_function_type (type);
17649
17650 if (prototyped_function_p (die, cu))
17651 ftype->set_is_prototyped (true);
17652
17653 /* Store the calling convention in the type if it's available in
17654 the subroutine die. Otherwise set the calling convention to
17655 the default value DW_CC_normal. */
17656 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17657 if (attr != nullptr
17658 && is_valid_DW_AT_calling_convention_for_subroutine (attr->constant_value (0)))
17659 TYPE_CALLING_CONVENTION (ftype)
17660 = (enum dwarf_calling_convention) attr->constant_value (0);
17661 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17662 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17663 else
17664 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17665
17666 /* Record whether the function returns normally to its caller or not
17667 if the DWARF producer set that information. */
17668 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17669 if (attr && attr->as_boolean ())
17670 TYPE_NO_RETURN (ftype) = 1;
17671
17672 /* We need to add the subroutine type to the die immediately so
17673 we don't infinitely recurse when dealing with parameters
17674 declared as the same subroutine type. */
17675 set_die_type (die, ftype, cu);
17676
17677 if (die->child != NULL)
17678 {
17679 struct type *void_type = objfile_type (objfile)->builtin_void;
17680 struct die_info *child_die;
17681 int nparams, iparams;
17682
17683 /* Count the number of parameters.
17684 FIXME: GDB currently ignores vararg functions, but knows about
17685 vararg member functions. */
17686 nparams = 0;
17687 child_die = die->child;
17688 while (child_die && child_die->tag)
17689 {
17690 if (child_die->tag == DW_TAG_formal_parameter)
17691 nparams++;
17692 else if (child_die->tag == DW_TAG_unspecified_parameters)
17693 ftype->set_has_varargs (true);
17694
17695 child_die = child_die->sibling;
17696 }
17697
17698 /* Allocate storage for parameters and fill them in. */
17699 ftype->set_num_fields (nparams);
17700 ftype->set_fields
17701 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17702
17703 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17704 even if we error out during the parameters reading below. */
17705 for (iparams = 0; iparams < nparams; iparams++)
17706 ftype->field (iparams).set_type (void_type);
17707
17708 iparams = 0;
17709 child_die = die->child;
17710 while (child_die && child_die->tag)
17711 {
17712 if (child_die->tag == DW_TAG_formal_parameter)
17713 {
17714 struct type *arg_type;
17715
17716 /* DWARF version 2 has no clean way to discern C++
17717 static and non-static member functions. G++ helps
17718 GDB by marking the first parameter for non-static
17719 member functions (which is the this pointer) as
17720 artificial. We pass this information to
17721 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17722
17723 DWARF version 3 added DW_AT_object_pointer, which GCC
17724 4.5 does not yet generate. */
17725 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17726 if (attr != nullptr)
17727 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = attr->as_boolean ();
17728 else
17729 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17730 arg_type = die_type (child_die, cu);
17731
17732 /* RealView does not mark THIS as const, which the testsuite
17733 expects. GCC marks THIS as const in method definitions,
17734 but not in the class specifications (GCC PR 43053). */
17735 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17736 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17737 {
17738 int is_this = 0;
17739 struct dwarf2_cu *arg_cu = cu;
17740 const char *name = dwarf2_name (child_die, cu);
17741
17742 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17743 if (attr != nullptr)
17744 {
17745 /* If the compiler emits this, use it. */
17746 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17747 is_this = 1;
17748 }
17749 else if (name && strcmp (name, "this") == 0)
17750 /* Function definitions will have the argument names. */
17751 is_this = 1;
17752 else if (name == NULL && iparams == 0)
17753 /* Declarations may not have the names, so like
17754 elsewhere in GDB, assume an artificial first
17755 argument is "this". */
17756 is_this = 1;
17757
17758 if (is_this)
17759 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17760 arg_type, 0);
17761 }
17762
17763 ftype->field (iparams).set_type (arg_type);
17764 iparams++;
17765 }
17766 child_die = child_die->sibling;
17767 }
17768 }
17769
17770 return ftype;
17771 }
17772
17773 static struct type *
17774 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17775 {
17776 struct objfile *objfile = cu->per_objfile->objfile;
17777 const char *name = NULL;
17778 struct type *this_type, *target_type;
17779
17780 name = dwarf2_full_name (NULL, die, cu);
17781 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17782 this_type->set_target_is_stub (true);
17783 set_die_type (die, this_type, cu);
17784 target_type = die_type (die, cu);
17785 if (target_type != this_type)
17786 TYPE_TARGET_TYPE (this_type) = target_type;
17787 else
17788 {
17789 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17790 spec and cause infinite loops in GDB. */
17791 complaint (_("Self-referential DW_TAG_typedef "
17792 "- DIE at %s [in module %s]"),
17793 sect_offset_str (die->sect_off), objfile_name (objfile));
17794 TYPE_TARGET_TYPE (this_type) = NULL;
17795 }
17796 if (name == NULL)
17797 {
17798 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17799 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17800 Handle these by just returning the target type, rather than
17801 constructing an anonymous typedef type and trying to handle this
17802 elsewhere. */
17803 set_die_type (die, target_type, cu);
17804 return target_type;
17805 }
17806 return this_type;
17807 }
17808
17809 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17810 (which may be different from NAME) to the architecture back-end to allow
17811 it to guess the correct format if necessary. */
17812
17813 static struct type *
17814 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17815 const char *name_hint, enum bfd_endian byte_order)
17816 {
17817 struct gdbarch *gdbarch = objfile->arch ();
17818 const struct floatformat **format;
17819 struct type *type;
17820
17821 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17822 if (format)
17823 type = init_float_type (objfile, bits, name, format, byte_order);
17824 else
17825 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17826
17827 return type;
17828 }
17829
17830 /* Allocate an integer type of size BITS and name NAME. */
17831
17832 static struct type *
17833 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17834 int bits, int unsigned_p, const char *name)
17835 {
17836 struct type *type;
17837
17838 /* Versions of Intel's C Compiler generate an integer type called "void"
17839 instead of using DW_TAG_unspecified_type. This has been seen on
17840 at least versions 14, 17, and 18. */
17841 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17842 && strcmp (name, "void") == 0)
17843 type = objfile_type (objfile)->builtin_void;
17844 else
17845 type = init_integer_type (objfile, bits, unsigned_p, name);
17846
17847 return type;
17848 }
17849
17850 /* Initialise and return a floating point type of size BITS suitable for
17851 use as a component of a complex number. The NAME_HINT is passed through
17852 when initialising the floating point type and is the name of the complex
17853 type.
17854
17855 As DWARF doesn't currently provide an explicit name for the components
17856 of a complex number, but it can be helpful to have these components
17857 named, we try to select a suitable name based on the size of the
17858 component. */
17859 static struct type *
17860 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17861 struct objfile *objfile,
17862 int bits, const char *name_hint,
17863 enum bfd_endian byte_order)
17864 {
17865 gdbarch *gdbarch = objfile->arch ();
17866 struct type *tt = nullptr;
17867
17868 /* Try to find a suitable floating point builtin type of size BITS.
17869 We're going to use the name of this type as the name for the complex
17870 target type that we are about to create. */
17871 switch (cu->language)
17872 {
17873 case language_fortran:
17874 switch (bits)
17875 {
17876 case 32:
17877 tt = builtin_f_type (gdbarch)->builtin_real;
17878 break;
17879 case 64:
17880 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17881 break;
17882 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17883 case 128:
17884 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17885 break;
17886 }
17887 break;
17888 default:
17889 switch (bits)
17890 {
17891 case 32:
17892 tt = builtin_type (gdbarch)->builtin_float;
17893 break;
17894 case 64:
17895 tt = builtin_type (gdbarch)->builtin_double;
17896 break;
17897 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17898 case 128:
17899 tt = builtin_type (gdbarch)->builtin_long_double;
17900 break;
17901 }
17902 break;
17903 }
17904
17905 /* If the type we found doesn't match the size we were looking for, then
17906 pretend we didn't find a type at all, the complex target type we
17907 create will then be nameless. */
17908 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17909 tt = nullptr;
17910
17911 const char *name = (tt == nullptr) ? nullptr : tt->name ();
17912 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17913 }
17914
17915 /* Find a representation of a given base type and install
17916 it in the TYPE field of the die. */
17917
17918 static struct type *
17919 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17920 {
17921 struct objfile *objfile = cu->per_objfile->objfile;
17922 struct type *type;
17923 struct attribute *attr;
17924 int encoding = 0, bits = 0;
17925 const char *name;
17926 gdbarch *arch;
17927
17928 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17929 if (attr != nullptr && attr->form_is_constant ())
17930 encoding = attr->constant_value (0);
17931 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17932 if (attr != nullptr)
17933 bits = attr->constant_value (0) * TARGET_CHAR_BIT;
17934 name = dwarf2_name (die, cu);
17935 if (!name)
17936 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17937
17938 arch = objfile->arch ();
17939 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17940
17941 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17942 if (attr != nullptr && attr->form_is_constant ())
17943 {
17944 int endianity = attr->constant_value (0);
17945
17946 switch (endianity)
17947 {
17948 case DW_END_big:
17949 byte_order = BFD_ENDIAN_BIG;
17950 break;
17951 case DW_END_little:
17952 byte_order = BFD_ENDIAN_LITTLE;
17953 break;
17954 default:
17955 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17956 break;
17957 }
17958 }
17959
17960 switch (encoding)
17961 {
17962 case DW_ATE_address:
17963 /* Turn DW_ATE_address into a void * pointer. */
17964 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17965 type = init_pointer_type (objfile, bits, name, type);
17966 break;
17967 case DW_ATE_boolean:
17968 type = init_boolean_type (objfile, bits, 1, name);
17969 break;
17970 case DW_ATE_complex_float:
17971 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17972 byte_order);
17973 if (type->code () == TYPE_CODE_ERROR)
17974 {
17975 if (name == nullptr)
17976 {
17977 struct obstack *obstack
17978 = &cu->per_objfile->objfile->objfile_obstack;
17979 name = obconcat (obstack, "_Complex ", type->name (),
17980 nullptr);
17981 }
17982 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17983 }
17984 else
17985 type = init_complex_type (name, type);
17986 break;
17987 case DW_ATE_decimal_float:
17988 type = init_decfloat_type (objfile, bits, name);
17989 break;
17990 case DW_ATE_float:
17991 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17992 break;
17993 case DW_ATE_signed:
17994 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17995 break;
17996 case DW_ATE_unsigned:
17997 if (cu->language == language_fortran
17998 && name
17999 && startswith (name, "character("))
18000 type = init_character_type (objfile, bits, 1, name);
18001 else
18002 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18003 break;
18004 case DW_ATE_signed_char:
18005 if (cu->language == language_ada || cu->language == language_m2
18006 || cu->language == language_pascal
18007 || cu->language == language_fortran)
18008 type = init_character_type (objfile, bits, 0, name);
18009 else
18010 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18011 break;
18012 case DW_ATE_unsigned_char:
18013 if (cu->language == language_ada || cu->language == language_m2
18014 || cu->language == language_pascal
18015 || cu->language == language_fortran
18016 || cu->language == language_rust)
18017 type = init_character_type (objfile, bits, 1, name);
18018 else
18019 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18020 break;
18021 case DW_ATE_UTF:
18022 {
18023 if (bits == 16)
18024 type = builtin_type (arch)->builtin_char16;
18025 else if (bits == 32)
18026 type = builtin_type (arch)->builtin_char32;
18027 else
18028 {
18029 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
18030 bits);
18031 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18032 }
18033 return set_die_type (die, type, cu);
18034 }
18035 break;
18036
18037 default:
18038 complaint (_("unsupported DW_AT_encoding: '%s'"),
18039 dwarf_type_encoding_name (encoding));
18040 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18041 break;
18042 }
18043
18044 if (name && strcmp (name, "char") == 0)
18045 type->set_has_no_signedness (true);
18046
18047 maybe_set_alignment (cu, die, type);
18048
18049 type->set_endianity_is_not_default (gdbarch_byte_order (arch) != byte_order);
18050
18051 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_INT)
18052 {
18053 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
18054 if (attr != nullptr && attr->as_unsigned () <= 8 * TYPE_LENGTH (type))
18055 {
18056 unsigned real_bit_size = attr->as_unsigned ();
18057 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
18058 /* Only use the attributes if they make sense together. */
18059 if (attr == nullptr
18060 || (attr->as_unsigned () + real_bit_size
18061 <= 8 * TYPE_LENGTH (type)))
18062 {
18063 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_size
18064 = real_bit_size;
18065 if (attr != nullptr)
18066 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_offset
18067 = attr->as_unsigned ();
18068 }
18069 }
18070 }
18071
18072 return set_die_type (die, type, cu);
18073 }
18074
18075 /* Parse dwarf attribute if it's a block, reference or constant and put the
18076 resulting value of the attribute into struct bound_prop.
18077 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18078
18079 static int
18080 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18081 struct dwarf2_cu *cu, struct dynamic_prop *prop,
18082 struct type *default_type)
18083 {
18084 struct dwarf2_property_baton *baton;
18085 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18086 struct objfile *objfile = per_objfile->objfile;
18087 struct obstack *obstack = &objfile->objfile_obstack;
18088
18089 gdb_assert (default_type != NULL);
18090
18091 if (attr == NULL || prop == NULL)
18092 return 0;
18093
18094 if (attr->form_is_block ())
18095 {
18096 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18097 baton->property_type = default_type;
18098 baton->locexpr.per_cu = cu->per_cu;
18099 baton->locexpr.per_objfile = per_objfile;
18100
18101 struct dwarf_block *block = attr->as_block ();
18102 baton->locexpr.size = block->size;
18103 baton->locexpr.data = block->data;
18104 switch (attr->name)
18105 {
18106 case DW_AT_string_length:
18107 baton->locexpr.is_reference = true;
18108 break;
18109 default:
18110 baton->locexpr.is_reference = false;
18111 break;
18112 }
18113
18114 prop->set_locexpr (baton);
18115 gdb_assert (prop->baton () != NULL);
18116 }
18117 else if (attr->form_is_ref ())
18118 {
18119 struct dwarf2_cu *target_cu = cu;
18120 struct die_info *target_die;
18121 struct attribute *target_attr;
18122
18123 target_die = follow_die_ref (die, attr, &target_cu);
18124 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18125 if (target_attr == NULL)
18126 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18127 target_cu);
18128 if (target_attr == NULL)
18129 return 0;
18130
18131 switch (target_attr->name)
18132 {
18133 case DW_AT_location:
18134 if (target_attr->form_is_section_offset ())
18135 {
18136 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18137 baton->property_type = die_type (target_die, target_cu);
18138 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18139 prop->set_loclist (baton);
18140 gdb_assert (prop->baton () != NULL);
18141 }
18142 else if (target_attr->form_is_block ())
18143 {
18144 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18145 baton->property_type = die_type (target_die, target_cu);
18146 baton->locexpr.per_cu = cu->per_cu;
18147 baton->locexpr.per_objfile = per_objfile;
18148 struct dwarf_block *block = target_attr->as_block ();
18149 baton->locexpr.size = block->size;
18150 baton->locexpr.data = block->data;
18151 baton->locexpr.is_reference = true;
18152 prop->set_locexpr (baton);
18153 gdb_assert (prop->baton () != NULL);
18154 }
18155 else
18156 {
18157 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18158 "dynamic property");
18159 return 0;
18160 }
18161 break;
18162 case DW_AT_data_member_location:
18163 {
18164 LONGEST offset;
18165
18166 if (!handle_data_member_location (target_die, target_cu,
18167 &offset))
18168 return 0;
18169
18170 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18171 baton->property_type = read_type_die (target_die->parent,
18172 target_cu);
18173 baton->offset_info.offset = offset;
18174 baton->offset_info.type = die_type (target_die, target_cu);
18175 prop->set_addr_offset (baton);
18176 break;
18177 }
18178 }
18179 }
18180 else if (attr->form_is_constant ())
18181 prop->set_const_val (attr->constant_value (0));
18182 else
18183 {
18184 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18185 dwarf2_name (die, cu));
18186 return 0;
18187 }
18188
18189 return 1;
18190 }
18191
18192 /* See read.h. */
18193
18194 struct type *
18195 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
18196 {
18197 struct type *int_type;
18198
18199 /* Helper macro to examine the various builtin types. */
18200 #define TRY_TYPE(F) \
18201 int_type = (unsigned_p \
18202 ? objfile_type (objfile)->builtin_unsigned_ ## F \
18203 : objfile_type (objfile)->builtin_ ## F); \
18204 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
18205 return int_type
18206
18207 TRY_TYPE (char);
18208 TRY_TYPE (short);
18209 TRY_TYPE (int);
18210 TRY_TYPE (long);
18211 TRY_TYPE (long_long);
18212
18213 #undef TRY_TYPE
18214
18215 gdb_assert_not_reached ("unable to find suitable integer type");
18216 }
18217
18218 /* See read.h. */
18219
18220 struct type *
18221 dwarf2_cu::addr_sized_int_type (bool unsigned_p) const
18222 {
18223 int addr_size = this->per_cu->addr_size ();
18224 return this->per_objfile->int_type (addr_size, unsigned_p);
18225 }
18226
18227 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18228 present (which is valid) then compute the default type based on the
18229 compilation units address size. */
18230
18231 static struct type *
18232 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18233 {
18234 struct type *index_type = die_type (die, cu);
18235
18236 /* Dwarf-2 specifications explicitly allows to create subrange types
18237 without specifying a base type.
18238 In that case, the base type must be set to the type of
18239 the lower bound, upper bound or count, in that order, if any of these
18240 three attributes references an object that has a type.
18241 If no base type is found, the Dwarf-2 specifications say that
18242 a signed integer type of size equal to the size of an address should
18243 be used.
18244 For the following C code: `extern char gdb_int [];'
18245 GCC produces an empty range DIE.
18246 FIXME: muller/2010-05-28: Possible references to object for low bound,
18247 high bound or count are not yet handled by this code. */
18248 if (index_type->code () == TYPE_CODE_VOID)
18249 index_type = cu->addr_sized_int_type (false);
18250
18251 return index_type;
18252 }
18253
18254 /* Read the given DW_AT_subrange DIE. */
18255
18256 static struct type *
18257 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18258 {
18259 struct type *base_type, *orig_base_type;
18260 struct type *range_type;
18261 struct attribute *attr;
18262 struct dynamic_prop low, high;
18263 int low_default_is_valid;
18264 int high_bound_is_count = 0;
18265 const char *name;
18266 ULONGEST negative_mask;
18267
18268 orig_base_type = read_subrange_index_type (die, cu);
18269
18270 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18271 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18272 creating the range type, but we use the result of check_typedef
18273 when examining properties of the type. */
18274 base_type = check_typedef (orig_base_type);
18275
18276 /* The die_type call above may have already set the type for this DIE. */
18277 range_type = get_die_type (die, cu);
18278 if (range_type)
18279 return range_type;
18280
18281 high.set_const_val (0);
18282
18283 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18284 omitting DW_AT_lower_bound. */
18285 switch (cu->language)
18286 {
18287 case language_c:
18288 case language_cplus:
18289 low.set_const_val (0);
18290 low_default_is_valid = 1;
18291 break;
18292 case language_fortran:
18293 low.set_const_val (1);
18294 low_default_is_valid = 1;
18295 break;
18296 case language_d:
18297 case language_objc:
18298 case language_rust:
18299 low.set_const_val (0);
18300 low_default_is_valid = (cu->header.version >= 4);
18301 break;
18302 case language_ada:
18303 case language_m2:
18304 case language_pascal:
18305 low.set_const_val (1);
18306 low_default_is_valid = (cu->header.version >= 4);
18307 break;
18308 default:
18309 low.set_const_val (0);
18310 low_default_is_valid = 0;
18311 break;
18312 }
18313
18314 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18315 if (attr != nullptr)
18316 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18317 else if (!low_default_is_valid)
18318 complaint (_("Missing DW_AT_lower_bound "
18319 "- DIE at %s [in module %s]"),
18320 sect_offset_str (die->sect_off),
18321 objfile_name (cu->per_objfile->objfile));
18322
18323 struct attribute *attr_ub, *attr_count;
18324 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18325 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18326 {
18327 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18328 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18329 {
18330 /* If bounds are constant do the final calculation here. */
18331 if (low.kind () == PROP_CONST && high.kind () == PROP_CONST)
18332 high.set_const_val (low.const_val () + high.const_val () - 1);
18333 else
18334 high_bound_is_count = 1;
18335 }
18336 else
18337 {
18338 if (attr_ub != NULL)
18339 complaint (_("Unresolved DW_AT_upper_bound "
18340 "- DIE at %s [in module %s]"),
18341 sect_offset_str (die->sect_off),
18342 objfile_name (cu->per_objfile->objfile));
18343 if (attr_count != NULL)
18344 complaint (_("Unresolved DW_AT_count "
18345 "- DIE at %s [in module %s]"),
18346 sect_offset_str (die->sect_off),
18347 objfile_name (cu->per_objfile->objfile));
18348 }
18349 }
18350
18351 LONGEST bias = 0;
18352 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18353 if (bias_attr != nullptr && bias_attr->form_is_constant ())
18354 bias = bias_attr->constant_value (0);
18355
18356 /* Normally, the DWARF producers are expected to use a signed
18357 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18358 But this is unfortunately not always the case, as witnessed
18359 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18360 is used instead. To work around that ambiguity, we treat
18361 the bounds as signed, and thus sign-extend their values, when
18362 the base type is signed. */
18363 negative_mask =
18364 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18365 if (low.kind () == PROP_CONST
18366 && !base_type->is_unsigned () && (low.const_val () & negative_mask))
18367 low.set_const_val (low.const_val () | negative_mask);
18368 if (high.kind () == PROP_CONST
18369 && !base_type->is_unsigned () && (high.const_val () & negative_mask))
18370 high.set_const_val (high.const_val () | negative_mask);
18371
18372 /* Check for bit and byte strides. */
18373 struct dynamic_prop byte_stride_prop;
18374 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18375 if (attr_byte_stride != nullptr)
18376 {
18377 struct type *prop_type = cu->addr_sized_int_type (false);
18378 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18379 prop_type);
18380 }
18381
18382 struct dynamic_prop bit_stride_prop;
18383 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18384 if (attr_bit_stride != nullptr)
18385 {
18386 /* It only makes sense to have either a bit or byte stride. */
18387 if (attr_byte_stride != nullptr)
18388 {
18389 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18390 "- DIE at %s [in module %s]"),
18391 sect_offset_str (die->sect_off),
18392 objfile_name (cu->per_objfile->objfile));
18393 attr_bit_stride = nullptr;
18394 }
18395 else
18396 {
18397 struct type *prop_type = cu->addr_sized_int_type (false);
18398 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18399 prop_type);
18400 }
18401 }
18402
18403 if (attr_byte_stride != nullptr
18404 || attr_bit_stride != nullptr)
18405 {
18406 bool byte_stride_p = (attr_byte_stride != nullptr);
18407 struct dynamic_prop *stride
18408 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18409
18410 range_type
18411 = create_range_type_with_stride (NULL, orig_base_type, &low,
18412 &high, bias, stride, byte_stride_p);
18413 }
18414 else
18415 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18416
18417 if (high_bound_is_count)
18418 range_type->bounds ()->flag_upper_bound_is_count = 1;
18419
18420 /* Ada expects an empty array on no boundary attributes. */
18421 if (attr == NULL && cu->language != language_ada)
18422 range_type->bounds ()->high.set_undefined ();
18423
18424 name = dwarf2_name (die, cu);
18425 if (name)
18426 range_type->set_name (name);
18427
18428 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18429 if (attr != nullptr)
18430 TYPE_LENGTH (range_type) = attr->constant_value (0);
18431
18432 maybe_set_alignment (cu, die, range_type);
18433
18434 set_die_type (die, range_type, cu);
18435
18436 /* set_die_type should be already done. */
18437 set_descriptive_type (range_type, die, cu);
18438
18439 return range_type;
18440 }
18441
18442 static struct type *
18443 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18444 {
18445 struct type *type;
18446
18447 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
18448 type->set_name (dwarf2_name (die, cu));
18449
18450 /* In Ada, an unspecified type is typically used when the description
18451 of the type is deferred to a different unit. When encountering
18452 such a type, we treat it as a stub, and try to resolve it later on,
18453 when needed. */
18454 if (cu->language == language_ada)
18455 type->set_is_stub (true);
18456
18457 return set_die_type (die, type, cu);
18458 }
18459
18460 /* Read a single die and all its descendents. Set the die's sibling
18461 field to NULL; set other fields in the die correctly, and set all
18462 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18463 location of the info_ptr after reading all of those dies. PARENT
18464 is the parent of the die in question. */
18465
18466 static struct die_info *
18467 read_die_and_children (const struct die_reader_specs *reader,
18468 const gdb_byte *info_ptr,
18469 const gdb_byte **new_info_ptr,
18470 struct die_info *parent)
18471 {
18472 struct die_info *die;
18473 const gdb_byte *cur_ptr;
18474
18475 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
18476 if (die == NULL)
18477 {
18478 *new_info_ptr = cur_ptr;
18479 return NULL;
18480 }
18481 store_in_ref_table (die, reader->cu);
18482
18483 if (die->has_children)
18484 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18485 else
18486 {
18487 die->child = NULL;
18488 *new_info_ptr = cur_ptr;
18489 }
18490
18491 die->sibling = NULL;
18492 die->parent = parent;
18493 return die;
18494 }
18495
18496 /* Read a die, all of its descendents, and all of its siblings; set
18497 all of the fields of all of the dies correctly. Arguments are as
18498 in read_die_and_children. */
18499
18500 static struct die_info *
18501 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18502 const gdb_byte *info_ptr,
18503 const gdb_byte **new_info_ptr,
18504 struct die_info *parent)
18505 {
18506 struct die_info *first_die, *last_sibling;
18507 const gdb_byte *cur_ptr;
18508
18509 cur_ptr = info_ptr;
18510 first_die = last_sibling = NULL;
18511
18512 while (1)
18513 {
18514 struct die_info *die
18515 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18516
18517 if (die == NULL)
18518 {
18519 *new_info_ptr = cur_ptr;
18520 return first_die;
18521 }
18522
18523 if (!first_die)
18524 first_die = die;
18525 else
18526 last_sibling->sibling = die;
18527
18528 last_sibling = die;
18529 }
18530 }
18531
18532 /* Read a die, all of its descendents, and all of its siblings; set
18533 all of the fields of all of the dies correctly. Arguments are as
18534 in read_die_and_children.
18535 This the main entry point for reading a DIE and all its children. */
18536
18537 static struct die_info *
18538 read_die_and_siblings (const struct die_reader_specs *reader,
18539 const gdb_byte *info_ptr,
18540 const gdb_byte **new_info_ptr,
18541 struct die_info *parent)
18542 {
18543 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18544 new_info_ptr, parent);
18545
18546 if (dwarf_die_debug)
18547 {
18548 fprintf_unfiltered (gdb_stdlog,
18549 "Read die from %s@0x%x of %s:\n",
18550 reader->die_section->get_name (),
18551 (unsigned) (info_ptr - reader->die_section->buffer),
18552 bfd_get_filename (reader->abfd));
18553 dump_die (die, dwarf_die_debug);
18554 }
18555
18556 return die;
18557 }
18558
18559 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18560 attributes.
18561 The caller is responsible for filling in the extra attributes
18562 and updating (*DIEP)->num_attrs.
18563 Set DIEP to point to a newly allocated die with its information,
18564 except for its child, sibling, and parent fields. */
18565
18566 static const gdb_byte *
18567 read_full_die_1 (const struct die_reader_specs *reader,
18568 struct die_info **diep, const gdb_byte *info_ptr,
18569 int num_extra_attrs)
18570 {
18571 unsigned int abbrev_number, bytes_read, i;
18572 struct abbrev_info *abbrev;
18573 struct die_info *die;
18574 struct dwarf2_cu *cu = reader->cu;
18575 bfd *abfd = reader->abfd;
18576
18577 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18578 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18579 info_ptr += bytes_read;
18580 if (!abbrev_number)
18581 {
18582 *diep = NULL;
18583 return info_ptr;
18584 }
18585
18586 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18587 if (!abbrev)
18588 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18589 abbrev_number,
18590 bfd_get_filename (abfd));
18591
18592 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18593 die->sect_off = sect_off;
18594 die->tag = abbrev->tag;
18595 die->abbrev = abbrev_number;
18596 die->has_children = abbrev->has_children;
18597
18598 /* Make the result usable.
18599 The caller needs to update num_attrs after adding the extra
18600 attributes. */
18601 die->num_attrs = abbrev->num_attrs;
18602
18603 bool any_need_reprocess = false;
18604 for (i = 0; i < abbrev->num_attrs; ++i)
18605 {
18606 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18607 info_ptr);
18608 if (die->attrs[i].requires_reprocessing_p ())
18609 any_need_reprocess = true;
18610 }
18611
18612 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18613 if (attr != nullptr && attr->form_is_unsigned ())
18614 cu->str_offsets_base = attr->as_unsigned ();
18615
18616 attr = die->attr (DW_AT_loclists_base);
18617 if (attr != nullptr)
18618 cu->loclist_base = attr->as_unsigned ();
18619
18620 auto maybe_addr_base = die->addr_base ();
18621 if (maybe_addr_base.has_value ())
18622 cu->addr_base = *maybe_addr_base;
18623
18624 attr = die->attr (DW_AT_rnglists_base);
18625 if (attr != nullptr)
18626 cu->ranges_base = attr->as_unsigned ();
18627
18628 if (any_need_reprocess)
18629 {
18630 for (i = 0; i < abbrev->num_attrs; ++i)
18631 {
18632 if (die->attrs[i].requires_reprocessing_p ())
18633 read_attribute_reprocess (reader, &die->attrs[i], die->tag);
18634 }
18635 }
18636 *diep = die;
18637 return info_ptr;
18638 }
18639
18640 /* Read a die and all its attributes.
18641 Set DIEP to point to a newly allocated die with its information,
18642 except for its child, sibling, and parent fields. */
18643
18644 static const gdb_byte *
18645 read_full_die (const struct die_reader_specs *reader,
18646 struct die_info **diep, const gdb_byte *info_ptr)
18647 {
18648 const gdb_byte *result;
18649
18650 result = read_full_die_1 (reader, diep, info_ptr, 0);
18651
18652 if (dwarf_die_debug)
18653 {
18654 fprintf_unfiltered (gdb_stdlog,
18655 "Read die from %s@0x%x of %s:\n",
18656 reader->die_section->get_name (),
18657 (unsigned) (info_ptr - reader->die_section->buffer),
18658 bfd_get_filename (reader->abfd));
18659 dump_die (*diep, dwarf_die_debug);
18660 }
18661
18662 return result;
18663 }
18664 \f
18665
18666 /* Returns nonzero if TAG represents a type that we might generate a partial
18667 symbol for. */
18668
18669 static int
18670 is_type_tag_for_partial (int tag)
18671 {
18672 switch (tag)
18673 {
18674 #if 0
18675 /* Some types that would be reasonable to generate partial symbols for,
18676 that we don't at present. */
18677 case DW_TAG_array_type:
18678 case DW_TAG_file_type:
18679 case DW_TAG_ptr_to_member_type:
18680 case DW_TAG_set_type:
18681 case DW_TAG_string_type:
18682 case DW_TAG_subroutine_type:
18683 #endif
18684 case DW_TAG_base_type:
18685 case DW_TAG_class_type:
18686 case DW_TAG_interface_type:
18687 case DW_TAG_enumeration_type:
18688 case DW_TAG_structure_type:
18689 case DW_TAG_subrange_type:
18690 case DW_TAG_typedef:
18691 case DW_TAG_union_type:
18692 return 1;
18693 default:
18694 return 0;
18695 }
18696 }
18697
18698 /* Load all DIEs that are interesting for partial symbols into memory. */
18699
18700 static struct partial_die_info *
18701 load_partial_dies (const struct die_reader_specs *reader,
18702 const gdb_byte *info_ptr, int building_psymtab)
18703 {
18704 struct dwarf2_cu *cu = reader->cu;
18705 struct objfile *objfile = cu->per_objfile->objfile;
18706 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18707 unsigned int bytes_read;
18708 unsigned int load_all = 0;
18709 int nesting_level = 1;
18710
18711 parent_die = NULL;
18712 last_die = NULL;
18713
18714 gdb_assert (cu->per_cu != NULL);
18715 if (cu->per_cu->load_all_dies)
18716 load_all = 1;
18717
18718 cu->partial_dies
18719 = htab_create_alloc_ex (cu->header.length / 12,
18720 partial_die_hash,
18721 partial_die_eq,
18722 NULL,
18723 &cu->comp_unit_obstack,
18724 hashtab_obstack_allocate,
18725 dummy_obstack_deallocate);
18726
18727 while (1)
18728 {
18729 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18730
18731 /* A NULL abbrev means the end of a series of children. */
18732 if (abbrev == NULL)
18733 {
18734 if (--nesting_level == 0)
18735 return first_die;
18736
18737 info_ptr += bytes_read;
18738 last_die = parent_die;
18739 parent_die = parent_die->die_parent;
18740 continue;
18741 }
18742
18743 /* Check for template arguments. We never save these; if
18744 they're seen, we just mark the parent, and go on our way. */
18745 if (parent_die != NULL
18746 && cu->language == language_cplus
18747 && (abbrev->tag == DW_TAG_template_type_param
18748 || abbrev->tag == DW_TAG_template_value_param))
18749 {
18750 parent_die->has_template_arguments = 1;
18751
18752 if (!load_all)
18753 {
18754 /* We don't need a partial DIE for the template argument. */
18755 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18756 continue;
18757 }
18758 }
18759
18760 /* We only recurse into c++ subprograms looking for template arguments.
18761 Skip their other children. */
18762 if (!load_all
18763 && cu->language == language_cplus
18764 && parent_die != NULL
18765 && parent_die->tag == DW_TAG_subprogram
18766 && abbrev->tag != DW_TAG_inlined_subroutine)
18767 {
18768 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18769 continue;
18770 }
18771
18772 /* Check whether this DIE is interesting enough to save. Normally
18773 we would not be interested in members here, but there may be
18774 later variables referencing them via DW_AT_specification (for
18775 static members). */
18776 if (!load_all
18777 && !is_type_tag_for_partial (abbrev->tag)
18778 && abbrev->tag != DW_TAG_constant
18779 && abbrev->tag != DW_TAG_enumerator
18780 && abbrev->tag != DW_TAG_subprogram
18781 && abbrev->tag != DW_TAG_inlined_subroutine
18782 && abbrev->tag != DW_TAG_lexical_block
18783 && abbrev->tag != DW_TAG_variable
18784 && abbrev->tag != DW_TAG_namespace
18785 && abbrev->tag != DW_TAG_module
18786 && abbrev->tag != DW_TAG_member
18787 && abbrev->tag != DW_TAG_imported_unit
18788 && abbrev->tag != DW_TAG_imported_declaration)
18789 {
18790 /* Otherwise we skip to the next sibling, if any. */
18791 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18792 continue;
18793 }
18794
18795 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18796 abbrev);
18797
18798 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18799
18800 /* This two-pass algorithm for processing partial symbols has a
18801 high cost in cache pressure. Thus, handle some simple cases
18802 here which cover the majority of C partial symbols. DIEs
18803 which neither have specification tags in them, nor could have
18804 specification tags elsewhere pointing at them, can simply be
18805 processed and discarded.
18806
18807 This segment is also optional; scan_partial_symbols and
18808 add_partial_symbol will handle these DIEs if we chain
18809 them in normally. When compilers which do not emit large
18810 quantities of duplicate debug information are more common,
18811 this code can probably be removed. */
18812
18813 /* Any complete simple types at the top level (pretty much all
18814 of them, for a language without namespaces), can be processed
18815 directly. */
18816 if (parent_die == NULL
18817 && pdi.has_specification == 0
18818 && pdi.is_declaration == 0
18819 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18820 || pdi.tag == DW_TAG_base_type
18821 || pdi.tag == DW_TAG_subrange_type))
18822 {
18823 if (building_psymtab && pdi.raw_name != NULL)
18824 add_partial_symbol (&pdi, cu);
18825
18826 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18827 continue;
18828 }
18829
18830 /* The exception for DW_TAG_typedef with has_children above is
18831 a workaround of GCC PR debug/47510. In the case of this complaint
18832 type_name_or_error will error on such types later.
18833
18834 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18835 it could not find the child DIEs referenced later, this is checked
18836 above. In correct DWARF DW_TAG_typedef should have no children. */
18837
18838 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18839 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18840 "- DIE at %s [in module %s]"),
18841 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18842
18843 /* If we're at the second level, and we're an enumerator, and
18844 our parent has no specification (meaning possibly lives in a
18845 namespace elsewhere), then we can add the partial symbol now
18846 instead of queueing it. */
18847 if (pdi.tag == DW_TAG_enumerator
18848 && parent_die != NULL
18849 && parent_die->die_parent == NULL
18850 && parent_die->tag == DW_TAG_enumeration_type
18851 && parent_die->has_specification == 0)
18852 {
18853 if (pdi.raw_name == NULL)
18854 complaint (_("malformed enumerator DIE ignored"));
18855 else if (building_psymtab)
18856 add_partial_symbol (&pdi, cu);
18857
18858 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18859 continue;
18860 }
18861
18862 struct partial_die_info *part_die
18863 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18864
18865 /* We'll save this DIE so link it in. */
18866 part_die->die_parent = parent_die;
18867 part_die->die_sibling = NULL;
18868 part_die->die_child = NULL;
18869
18870 if (last_die && last_die == parent_die)
18871 last_die->die_child = part_die;
18872 else if (last_die)
18873 last_die->die_sibling = part_die;
18874
18875 last_die = part_die;
18876
18877 if (first_die == NULL)
18878 first_die = part_die;
18879
18880 /* Maybe add the DIE to the hash table. Not all DIEs that we
18881 find interesting need to be in the hash table, because we
18882 also have the parent/sibling/child chains; only those that we
18883 might refer to by offset later during partial symbol reading.
18884
18885 For now this means things that might have be the target of a
18886 DW_AT_specification, DW_AT_abstract_origin, or
18887 DW_AT_extension. DW_AT_extension will refer only to
18888 namespaces; DW_AT_abstract_origin refers to functions (and
18889 many things under the function DIE, but we do not recurse
18890 into function DIEs during partial symbol reading) and
18891 possibly variables as well; DW_AT_specification refers to
18892 declarations. Declarations ought to have the DW_AT_declaration
18893 flag. It happens that GCC forgets to put it in sometimes, but
18894 only for functions, not for types.
18895
18896 Adding more things than necessary to the hash table is harmless
18897 except for the performance cost. Adding too few will result in
18898 wasted time in find_partial_die, when we reread the compilation
18899 unit with load_all_dies set. */
18900
18901 if (load_all
18902 || abbrev->tag == DW_TAG_constant
18903 || abbrev->tag == DW_TAG_subprogram
18904 || abbrev->tag == DW_TAG_variable
18905 || abbrev->tag == DW_TAG_namespace
18906 || part_die->is_declaration)
18907 {
18908 void **slot;
18909
18910 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18911 to_underlying (part_die->sect_off),
18912 INSERT);
18913 *slot = part_die;
18914 }
18915
18916 /* For some DIEs we want to follow their children (if any). For C
18917 we have no reason to follow the children of structures; for other
18918 languages we have to, so that we can get at method physnames
18919 to infer fully qualified class names, for DW_AT_specification,
18920 and for C++ template arguments. For C++, we also look one level
18921 inside functions to find template arguments (if the name of the
18922 function does not already contain the template arguments).
18923
18924 For Ada and Fortran, we need to scan the children of subprograms
18925 and lexical blocks as well because these languages allow the
18926 definition of nested entities that could be interesting for the
18927 debugger, such as nested subprograms for instance. */
18928 if (last_die->has_children
18929 && (load_all
18930 || last_die->tag == DW_TAG_namespace
18931 || last_die->tag == DW_TAG_module
18932 || last_die->tag == DW_TAG_enumeration_type
18933 || (cu->language == language_cplus
18934 && last_die->tag == DW_TAG_subprogram
18935 && (last_die->raw_name == NULL
18936 || strchr (last_die->raw_name, '<') == NULL))
18937 || (cu->language != language_c
18938 && (last_die->tag == DW_TAG_class_type
18939 || last_die->tag == DW_TAG_interface_type
18940 || last_die->tag == DW_TAG_structure_type
18941 || last_die->tag == DW_TAG_union_type))
18942 || ((cu->language == language_ada
18943 || cu->language == language_fortran)
18944 && (last_die->tag == DW_TAG_subprogram
18945 || last_die->tag == DW_TAG_lexical_block))))
18946 {
18947 nesting_level++;
18948 parent_die = last_die;
18949 continue;
18950 }
18951
18952 /* Otherwise we skip to the next sibling, if any. */
18953 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18954
18955 /* Back to the top, do it again. */
18956 }
18957 }
18958
18959 partial_die_info::partial_die_info (sect_offset sect_off_,
18960 struct abbrev_info *abbrev)
18961 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18962 {
18963 }
18964
18965 /* See class definition. */
18966
18967 const char *
18968 partial_die_info::name (dwarf2_cu *cu)
18969 {
18970 if (!canonical_name && raw_name != nullptr)
18971 {
18972 struct objfile *objfile = cu->per_objfile->objfile;
18973 raw_name = dwarf2_canonicalize_name (raw_name, cu, objfile);
18974 canonical_name = 1;
18975 }
18976
18977 return raw_name;
18978 }
18979
18980 /* Read a minimal amount of information into the minimal die structure.
18981 INFO_PTR should point just after the initial uleb128 of a DIE. */
18982
18983 const gdb_byte *
18984 partial_die_info::read (const struct die_reader_specs *reader,
18985 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18986 {
18987 struct dwarf2_cu *cu = reader->cu;
18988 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18989 unsigned int i;
18990 int has_low_pc_attr = 0;
18991 int has_high_pc_attr = 0;
18992 int high_pc_relative = 0;
18993
18994 for (i = 0; i < abbrev.num_attrs; ++i)
18995 {
18996 attribute attr;
18997 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18998 /* String and address offsets that need to do the reprocessing have
18999 already been read at this point, so there is no need to wait until
19000 the loop terminates to do the reprocessing. */
19001 if (attr.requires_reprocessing_p ())
19002 read_attribute_reprocess (reader, &attr, tag);
19003 /* Store the data if it is of an attribute we want to keep in a
19004 partial symbol table. */
19005 switch (attr.name)
19006 {
19007 case DW_AT_name:
19008 switch (tag)
19009 {
19010 case DW_TAG_compile_unit:
19011 case DW_TAG_partial_unit:
19012 case DW_TAG_type_unit:
19013 /* Compilation units have a DW_AT_name that is a filename, not
19014 a source language identifier. */
19015 case DW_TAG_enumeration_type:
19016 case DW_TAG_enumerator:
19017 /* These tags always have simple identifiers already; no need
19018 to canonicalize them. */
19019 canonical_name = 1;
19020 raw_name = attr.as_string ();
19021 break;
19022 default:
19023 canonical_name = 0;
19024 raw_name = attr.as_string ();
19025 break;
19026 }
19027 break;
19028 case DW_AT_linkage_name:
19029 case DW_AT_MIPS_linkage_name:
19030 /* Note that both forms of linkage name might appear. We
19031 assume they will be the same, and we only store the last
19032 one we see. */
19033 linkage_name = attr.as_string ();
19034 break;
19035 case DW_AT_low_pc:
19036 has_low_pc_attr = 1;
19037 lowpc = attr.as_address ();
19038 break;
19039 case DW_AT_high_pc:
19040 has_high_pc_attr = 1;
19041 highpc = attr.as_address ();
19042 if (cu->header.version >= 4 && attr.form_is_constant ())
19043 high_pc_relative = 1;
19044 break;
19045 case DW_AT_location:
19046 /* Support the .debug_loc offsets. */
19047 if (attr.form_is_block ())
19048 {
19049 d.locdesc = attr.as_block ();
19050 }
19051 else if (attr.form_is_section_offset ())
19052 {
19053 dwarf2_complex_location_expr_complaint ();
19054 }
19055 else
19056 {
19057 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19058 "partial symbol information");
19059 }
19060 break;
19061 case DW_AT_external:
19062 is_external = attr.as_boolean ();
19063 break;
19064 case DW_AT_declaration:
19065 is_declaration = attr.as_boolean ();
19066 break;
19067 case DW_AT_type:
19068 has_type = 1;
19069 break;
19070 case DW_AT_abstract_origin:
19071 case DW_AT_specification:
19072 case DW_AT_extension:
19073 has_specification = 1;
19074 spec_offset = attr.get_ref_die_offset ();
19075 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19076 || cu->per_cu->is_dwz);
19077 break;
19078 case DW_AT_sibling:
19079 /* Ignore absolute siblings, they might point outside of
19080 the current compile unit. */
19081 if (attr.form == DW_FORM_ref_addr)
19082 complaint (_("ignoring absolute DW_AT_sibling"));
19083 else
19084 {
19085 const gdb_byte *buffer = reader->buffer;
19086 sect_offset off = attr.get_ref_die_offset ();
19087 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19088
19089 if (sibling_ptr < info_ptr)
19090 complaint (_("DW_AT_sibling points backwards"));
19091 else if (sibling_ptr > reader->buffer_end)
19092 reader->die_section->overflow_complaint ();
19093 else
19094 sibling = sibling_ptr;
19095 }
19096 break;
19097 case DW_AT_byte_size:
19098 has_byte_size = 1;
19099 break;
19100 case DW_AT_const_value:
19101 has_const_value = 1;
19102 break;
19103 case DW_AT_calling_convention:
19104 /* DWARF doesn't provide a way to identify a program's source-level
19105 entry point. DW_AT_calling_convention attributes are only meant
19106 to describe functions' calling conventions.
19107
19108 However, because it's a necessary piece of information in
19109 Fortran, and before DWARF 4 DW_CC_program was the only
19110 piece of debugging information whose definition refers to
19111 a 'main program' at all, several compilers marked Fortran
19112 main programs with DW_CC_program --- even when those
19113 functions use the standard calling conventions.
19114
19115 Although DWARF now specifies a way to provide this
19116 information, we support this practice for backward
19117 compatibility. */
19118 if (attr.constant_value (0) == DW_CC_program
19119 && cu->language == language_fortran)
19120 main_subprogram = 1;
19121 break;
19122 case DW_AT_inline:
19123 {
19124 LONGEST value = attr.constant_value (-1);
19125 if (value == DW_INL_inlined
19126 || value == DW_INL_declared_inlined)
19127 may_be_inlined = 1;
19128 }
19129 break;
19130
19131 case DW_AT_import:
19132 if (tag == DW_TAG_imported_unit)
19133 {
19134 d.sect_off = attr.get_ref_die_offset ();
19135 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19136 || cu->per_cu->is_dwz);
19137 }
19138 break;
19139
19140 case DW_AT_main_subprogram:
19141 main_subprogram = attr.as_boolean ();
19142 break;
19143
19144 case DW_AT_ranges:
19145 {
19146 /* DW_AT_rnglists_base does not apply to DIEs from the DWO
19147 skeleton. We take advantage of the fact the DW_AT_ranges
19148 does not appear in DW_TAG_compile_unit of DWO files.
19149
19150 Attributes of the form DW_FORM_rnglistx have already had
19151 their value changed by read_rnglist_index and already
19152 include DW_AT_rnglists_base, so don't need to add the ranges
19153 base, either. */
19154 int need_ranges_base = (tag != DW_TAG_compile_unit
19155 && attr.form != DW_FORM_rnglistx);
19156 /* It would be nice to reuse dwarf2_get_pc_bounds here,
19157 but that requires a full DIE, so instead we just
19158 reimplement it. */
19159 unsigned int ranges_offset = (attr.constant_value (0)
19160 + (need_ranges_base
19161 ? cu->ranges_base
19162 : 0));
19163
19164 /* Value of the DW_AT_ranges attribute is the offset in the
19165 .debug_ranges section. */
19166 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
19167 nullptr, tag))
19168 has_pc_info = 1;
19169 }
19170 break;
19171
19172 default:
19173 break;
19174 }
19175 }
19176
19177 /* For Ada, if both the name and the linkage name appear, we prefer
19178 the latter. This lets "catch exception" work better, regardless
19179 of the order in which the name and linkage name were emitted.
19180 Really, though, this is just a workaround for the fact that gdb
19181 doesn't store both the name and the linkage name. */
19182 if (cu->language == language_ada && linkage_name != nullptr)
19183 raw_name = linkage_name;
19184
19185 if (high_pc_relative)
19186 highpc += lowpc;
19187
19188 if (has_low_pc_attr && has_high_pc_attr)
19189 {
19190 /* When using the GNU linker, .gnu.linkonce. sections are used to
19191 eliminate duplicate copies of functions and vtables and such.
19192 The linker will arbitrarily choose one and discard the others.
19193 The AT_*_pc values for such functions refer to local labels in
19194 these sections. If the section from that file was discarded, the
19195 labels are not in the output, so the relocs get a value of 0.
19196 If this is a discarded function, mark the pc bounds as invalid,
19197 so that GDB will ignore it. */
19198 if (lowpc == 0 && !per_objfile->per_bfd->has_section_at_zero)
19199 {
19200 struct objfile *objfile = per_objfile->objfile;
19201 struct gdbarch *gdbarch = objfile->arch ();
19202
19203 complaint (_("DW_AT_low_pc %s is zero "
19204 "for DIE at %s [in module %s]"),
19205 paddress (gdbarch, lowpc),
19206 sect_offset_str (sect_off),
19207 objfile_name (objfile));
19208 }
19209 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19210 else if (lowpc >= highpc)
19211 {
19212 struct objfile *objfile = per_objfile->objfile;
19213 struct gdbarch *gdbarch = objfile->arch ();
19214
19215 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19216 "for DIE at %s [in module %s]"),
19217 paddress (gdbarch, lowpc),
19218 paddress (gdbarch, highpc),
19219 sect_offset_str (sect_off),
19220 objfile_name (objfile));
19221 }
19222 else
19223 has_pc_info = 1;
19224 }
19225
19226 return info_ptr;
19227 }
19228
19229 /* Find a cached partial DIE at OFFSET in CU. */
19230
19231 struct partial_die_info *
19232 dwarf2_cu::find_partial_die (sect_offset sect_off)
19233 {
19234 struct partial_die_info *lookup_die = NULL;
19235 struct partial_die_info part_die (sect_off);
19236
19237 lookup_die = ((struct partial_die_info *)
19238 htab_find_with_hash (partial_dies, &part_die,
19239 to_underlying (sect_off)));
19240
19241 return lookup_die;
19242 }
19243
19244 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19245 except in the case of .debug_types DIEs which do not reference
19246 outside their CU (they do however referencing other types via
19247 DW_FORM_ref_sig8). */
19248
19249 static const struct cu_partial_die_info
19250 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19251 {
19252 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19253 struct objfile *objfile = per_objfile->objfile;
19254 struct partial_die_info *pd = NULL;
19255
19256 if (offset_in_dwz == cu->per_cu->is_dwz
19257 && cu->header.offset_in_cu_p (sect_off))
19258 {
19259 pd = cu->find_partial_die (sect_off);
19260 if (pd != NULL)
19261 return { cu, pd };
19262 /* We missed recording what we needed.
19263 Load all dies and try again. */
19264 }
19265 else
19266 {
19267 /* TUs don't reference other CUs/TUs (except via type signatures). */
19268 if (cu->per_cu->is_debug_types)
19269 {
19270 error (_("Dwarf Error: Type Unit at offset %s contains"
19271 " external reference to offset %s [in module %s].\n"),
19272 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19273 bfd_get_filename (objfile->obfd));
19274 }
19275 dwarf2_per_cu_data *per_cu
19276 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19277 per_objfile);
19278
19279 cu = per_objfile->get_cu (per_cu);
19280 if (cu == NULL || cu->partial_dies == NULL)
19281 load_partial_comp_unit (per_cu, per_objfile, nullptr);
19282
19283 cu = per_objfile->get_cu (per_cu);
19284
19285 cu->last_used = 0;
19286 pd = cu->find_partial_die (sect_off);
19287 }
19288
19289 /* If we didn't find it, and not all dies have been loaded,
19290 load them all and try again. */
19291
19292 if (pd == NULL && cu->per_cu->load_all_dies == 0)
19293 {
19294 cu->per_cu->load_all_dies = 1;
19295
19296 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19297 THIS_CU->cu may already be in use. So we can't just free it and
19298 replace its DIEs with the ones we read in. Instead, we leave those
19299 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19300 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19301 set. */
19302 load_partial_comp_unit (cu->per_cu, per_objfile, cu);
19303
19304 pd = cu->find_partial_die (sect_off);
19305 }
19306
19307 if (pd == NULL)
19308 error (_("Dwarf Error: Cannot not find DIE at %s [from module %s]\n"),
19309 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19310 return { cu, pd };
19311 }
19312
19313 /* See if we can figure out if the class lives in a namespace. We do
19314 this by looking for a member function; its demangled name will
19315 contain namespace info, if there is any. */
19316
19317 static void
19318 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19319 struct dwarf2_cu *cu)
19320 {
19321 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19322 what template types look like, because the demangler
19323 frequently doesn't give the same name as the debug info. We
19324 could fix this by only using the demangled name to get the
19325 prefix (but see comment in read_structure_type). */
19326
19327 struct partial_die_info *real_pdi;
19328 struct partial_die_info *child_pdi;
19329
19330 /* If this DIE (this DIE's specification, if any) has a parent, then
19331 we should not do this. We'll prepend the parent's fully qualified
19332 name when we create the partial symbol. */
19333
19334 real_pdi = struct_pdi;
19335 while (real_pdi->has_specification)
19336 {
19337 auto res = find_partial_die (real_pdi->spec_offset,
19338 real_pdi->spec_is_dwz, cu);
19339 real_pdi = res.pdi;
19340 cu = res.cu;
19341 }
19342
19343 if (real_pdi->die_parent != NULL)
19344 return;
19345
19346 for (child_pdi = struct_pdi->die_child;
19347 child_pdi != NULL;
19348 child_pdi = child_pdi->die_sibling)
19349 {
19350 if (child_pdi->tag == DW_TAG_subprogram
19351 && child_pdi->linkage_name != NULL)
19352 {
19353 gdb::unique_xmalloc_ptr<char> actual_class_name
19354 (cu->language_defn->class_name_from_physname
19355 (child_pdi->linkage_name));
19356 if (actual_class_name != NULL)
19357 {
19358 struct objfile *objfile = cu->per_objfile->objfile;
19359 struct_pdi->raw_name = objfile->intern (actual_class_name.get ());
19360 struct_pdi->canonical_name = 1;
19361 }
19362 break;
19363 }
19364 }
19365 }
19366
19367 /* Return true if a DIE with TAG may have the DW_AT_const_value
19368 attribute. */
19369
19370 static bool
19371 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
19372 {
19373 switch (tag)
19374 {
19375 case DW_TAG_constant:
19376 case DW_TAG_enumerator:
19377 case DW_TAG_formal_parameter:
19378 case DW_TAG_template_value_param:
19379 case DW_TAG_variable:
19380 return true;
19381 }
19382
19383 return false;
19384 }
19385
19386 void
19387 partial_die_info::fixup (struct dwarf2_cu *cu)
19388 {
19389 /* Once we've fixed up a die, there's no point in doing so again.
19390 This also avoids a memory leak if we were to call
19391 guess_partial_die_structure_name multiple times. */
19392 if (fixup_called)
19393 return;
19394
19395 /* If we found a reference attribute and the DIE has no name, try
19396 to find a name in the referred to DIE. */
19397
19398 if (raw_name == NULL && has_specification)
19399 {
19400 struct partial_die_info *spec_die;
19401
19402 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19403 spec_die = res.pdi;
19404 cu = res.cu;
19405
19406 spec_die->fixup (cu);
19407
19408 if (spec_die->raw_name)
19409 {
19410 raw_name = spec_die->raw_name;
19411 canonical_name = spec_die->canonical_name;
19412
19413 /* Copy DW_AT_external attribute if it is set. */
19414 if (spec_die->is_external)
19415 is_external = spec_die->is_external;
19416 }
19417 }
19418
19419 if (!has_const_value && has_specification
19420 && can_have_DW_AT_const_value_p (tag))
19421 {
19422 struct partial_die_info *spec_die;
19423
19424 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19425 spec_die = res.pdi;
19426 cu = res.cu;
19427
19428 spec_die->fixup (cu);
19429
19430 if (spec_die->has_const_value)
19431 {
19432 /* Copy DW_AT_const_value attribute if it is set. */
19433 has_const_value = spec_die->has_const_value;
19434 }
19435 }
19436
19437 /* Set default names for some unnamed DIEs. */
19438
19439 if (raw_name == NULL && tag == DW_TAG_namespace)
19440 {
19441 raw_name = CP_ANONYMOUS_NAMESPACE_STR;
19442 canonical_name = 1;
19443 }
19444
19445 /* If there is no parent die to provide a namespace, and there are
19446 children, see if we can determine the namespace from their linkage
19447 name. */
19448 if (cu->language == language_cplus
19449 && !cu->per_objfile->per_bfd->types.empty ()
19450 && die_parent == NULL
19451 && has_children
19452 && (tag == DW_TAG_class_type
19453 || tag == DW_TAG_structure_type
19454 || tag == DW_TAG_union_type))
19455 guess_partial_die_structure_name (this, cu);
19456
19457 /* GCC might emit a nameless struct or union that has a linkage
19458 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19459 if (raw_name == NULL
19460 && (tag == DW_TAG_class_type
19461 || tag == DW_TAG_interface_type
19462 || tag == DW_TAG_structure_type
19463 || tag == DW_TAG_union_type)
19464 && linkage_name != NULL)
19465 {
19466 gdb::unique_xmalloc_ptr<char> demangled
19467 (gdb_demangle (linkage_name, DMGL_TYPES));
19468 if (demangled != nullptr)
19469 {
19470 const char *base;
19471
19472 /* Strip any leading namespaces/classes, keep only the base name.
19473 DW_AT_name for named DIEs does not contain the prefixes. */
19474 base = strrchr (demangled.get (), ':');
19475 if (base && base > demangled.get () && base[-1] == ':')
19476 base++;
19477 else
19478 base = demangled.get ();
19479
19480 struct objfile *objfile = cu->per_objfile->objfile;
19481 raw_name = objfile->intern (base);
19482 canonical_name = 1;
19483 }
19484 }
19485
19486 fixup_called = 1;
19487 }
19488
19489 /* Read the .debug_loclists or .debug_rnglists header (they are the same format)
19490 contents from the given SECTION in the HEADER. */
19491 static void
19492 read_loclists_rnglists_header (struct loclists_rnglists_header *header,
19493 struct dwarf2_section_info *section)
19494 {
19495 unsigned int bytes_read;
19496 bfd *abfd = section->get_bfd_owner ();
19497 const gdb_byte *info_ptr = section->buffer;
19498 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
19499 info_ptr += bytes_read;
19500 header->version = read_2_bytes (abfd, info_ptr);
19501 info_ptr += 2;
19502 header->addr_size = read_1_byte (abfd, info_ptr);
19503 info_ptr += 1;
19504 header->segment_collector_size = read_1_byte (abfd, info_ptr);
19505 info_ptr += 1;
19506 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
19507 }
19508
19509 /* Return the DW_AT_loclists_base value for the CU. */
19510 static ULONGEST
19511 lookup_loclist_base (struct dwarf2_cu *cu)
19512 {
19513 /* For the .dwo unit, the loclist_base points to the first offset following
19514 the header. The header consists of the following entities-
19515 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
19516 bit format)
19517 2. version (2 bytes)
19518 3. address size (1 byte)
19519 4. segment selector size (1 byte)
19520 5. offset entry count (4 bytes)
19521 These sizes are derived as per the DWARFv5 standard. */
19522 if (cu->dwo_unit != nullptr)
19523 {
19524 if (cu->header.initial_length_size == 4)
19525 return LOCLIST_HEADER_SIZE32;
19526 return LOCLIST_HEADER_SIZE64;
19527 }
19528 return cu->loclist_base;
19529 }
19530
19531 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
19532 array of offsets in the .debug_loclists section. */
19533 static CORE_ADDR
19534 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
19535 {
19536 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19537 struct objfile *objfile = per_objfile->objfile;
19538 bfd *abfd = objfile->obfd;
19539 ULONGEST loclist_base = lookup_loclist_base (cu);
19540 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19541
19542 section->read (objfile);
19543 if (section->buffer == NULL)
19544 complaint (_("DW_FORM_loclistx used without .debug_loclists "
19545 "section [in module %s]"), objfile_name (objfile));
19546 struct loclists_rnglists_header header;
19547 read_loclists_rnglists_header (&header, section);
19548 if (loclist_index >= header.offset_entry_count)
19549 complaint (_("DW_FORM_loclistx pointing outside of "
19550 ".debug_loclists offset array [in module %s]"),
19551 objfile_name (objfile));
19552 if (loclist_base + loclist_index * cu->header.offset_size
19553 >= section->size)
19554 complaint (_("DW_FORM_loclistx pointing outside of "
19555 ".debug_loclists section [in module %s]"),
19556 objfile_name (objfile));
19557 const gdb_byte *info_ptr
19558 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
19559
19560 if (cu->header.offset_size == 4)
19561 return bfd_get_32 (abfd, info_ptr) + loclist_base;
19562 else
19563 return bfd_get_64 (abfd, info_ptr) + loclist_base;
19564 }
19565
19566 /* Given a DW_FORM_rnglistx value RNGLIST_INDEX, fetch the offset from the
19567 array of offsets in the .debug_rnglists section. */
19568 static CORE_ADDR
19569 read_rnglist_index (struct dwarf2_cu *cu, ULONGEST rnglist_index,
19570 dwarf_tag tag)
19571 {
19572 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19573 struct objfile *objfile = dwarf2_per_objfile->objfile;
19574 bfd *abfd = objfile->obfd;
19575 ULONGEST rnglist_header_size =
19576 (cu->header.initial_length_size == 4 ? RNGLIST_HEADER_SIZE32
19577 : RNGLIST_HEADER_SIZE64);
19578 ULONGEST rnglist_base =
19579 (cu->dwo_unit != nullptr) ? rnglist_header_size : cu->ranges_base;
19580 ULONGEST start_offset =
19581 rnglist_base + rnglist_index * cu->header.offset_size;
19582
19583 /* Get rnglists section. */
19584 struct dwarf2_section_info *section = cu_debug_rnglists_section (cu, tag);
19585
19586 /* Read the rnglists section content. */
19587 section->read (objfile);
19588 if (section->buffer == nullptr)
19589 error (_("DW_FORM_rnglistx used without .debug_rnglists section "
19590 "[in module %s]"),
19591 objfile_name (objfile));
19592
19593 /* Verify the rnglist index is valid. */
19594 struct loclists_rnglists_header header;
19595 read_loclists_rnglists_header (&header, section);
19596 if (rnglist_index >= header.offset_entry_count)
19597 error (_("DW_FORM_rnglistx index pointing outside of "
19598 ".debug_rnglists offset array [in module %s]"),
19599 objfile_name (objfile));
19600
19601 /* Validate that the offset is within the section's range. */
19602 if (start_offset >= section->size)
19603 error (_("DW_FORM_rnglistx pointing outside of "
19604 ".debug_rnglists section [in module %s]"),
19605 objfile_name (objfile));
19606
19607 /* Validate that reading won't go beyond the end of the section. */
19608 if (start_offset + cu->header.offset_size > rnglist_base + section->size)
19609 error (_("Reading DW_FORM_rnglistx index beyond end of"
19610 ".debug_rnglists section [in module %s]"),
19611 objfile_name (objfile));
19612
19613 const gdb_byte *info_ptr = section->buffer + start_offset;
19614
19615 if (cu->header.offset_size == 4)
19616 return read_4_bytes (abfd, info_ptr) + rnglist_base;
19617 else
19618 return read_8_bytes (abfd, info_ptr) + rnglist_base;
19619 }
19620
19621 /* Process the attributes that had to be skipped in the first round. These
19622 attributes are the ones that need str_offsets_base or addr_base attributes.
19623 They could not have been processed in the first round, because at the time
19624 the values of str_offsets_base or addr_base may not have been known. */
19625 static void
19626 read_attribute_reprocess (const struct die_reader_specs *reader,
19627 struct attribute *attr, dwarf_tag tag)
19628 {
19629 struct dwarf2_cu *cu = reader->cu;
19630 switch (attr->form)
19631 {
19632 case DW_FORM_addrx:
19633 case DW_FORM_GNU_addr_index:
19634 attr->set_address (read_addr_index (cu,
19635 attr->as_unsigned_reprocess ()));
19636 break;
19637 case DW_FORM_loclistx:
19638 attr->set_address (read_loclist_index (cu, attr->as_unsigned ()));
19639 break;
19640 case DW_FORM_rnglistx:
19641 attr->set_address (read_rnglist_index (cu, attr->as_unsigned (), tag));
19642 break;
19643 case DW_FORM_strx:
19644 case DW_FORM_strx1:
19645 case DW_FORM_strx2:
19646 case DW_FORM_strx3:
19647 case DW_FORM_strx4:
19648 case DW_FORM_GNU_str_index:
19649 {
19650 unsigned int str_index = attr->as_unsigned_reprocess ();
19651 gdb_assert (!attr->canonical_string_p ());
19652 if (reader->dwo_file != NULL)
19653 attr->set_string_noncanonical (read_dwo_str_index (reader,
19654 str_index));
19655 else
19656 attr->set_string_noncanonical (read_stub_str_index (cu,
19657 str_index));
19658 break;
19659 }
19660 default:
19661 gdb_assert_not_reached (_("Unexpected DWARF form."));
19662 }
19663 }
19664
19665 /* Read an attribute value described by an attribute form. */
19666
19667 static const gdb_byte *
19668 read_attribute_value (const struct die_reader_specs *reader,
19669 struct attribute *attr, unsigned form,
19670 LONGEST implicit_const, const gdb_byte *info_ptr)
19671 {
19672 struct dwarf2_cu *cu = reader->cu;
19673 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19674 struct objfile *objfile = per_objfile->objfile;
19675 bfd *abfd = reader->abfd;
19676 struct comp_unit_head *cu_header = &cu->header;
19677 unsigned int bytes_read;
19678 struct dwarf_block *blk;
19679
19680 attr->form = (enum dwarf_form) form;
19681 switch (form)
19682 {
19683 case DW_FORM_ref_addr:
19684 if (cu->header.version == 2)
19685 attr->set_unsigned (cu->header.read_address (abfd, info_ptr,
19686 &bytes_read));
19687 else
19688 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19689 &bytes_read));
19690 info_ptr += bytes_read;
19691 break;
19692 case DW_FORM_GNU_ref_alt:
19693 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19694 &bytes_read));
19695 info_ptr += bytes_read;
19696 break;
19697 case DW_FORM_addr:
19698 {
19699 struct gdbarch *gdbarch = objfile->arch ();
19700 CORE_ADDR addr = cu->header.read_address (abfd, info_ptr, &bytes_read);
19701 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
19702 attr->set_address (addr);
19703 info_ptr += bytes_read;
19704 }
19705 break;
19706 case DW_FORM_block2:
19707 blk = dwarf_alloc_block (cu);
19708 blk->size = read_2_bytes (abfd, info_ptr);
19709 info_ptr += 2;
19710 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19711 info_ptr += blk->size;
19712 attr->set_block (blk);
19713 break;
19714 case DW_FORM_block4:
19715 blk = dwarf_alloc_block (cu);
19716 blk->size = read_4_bytes (abfd, info_ptr);
19717 info_ptr += 4;
19718 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19719 info_ptr += blk->size;
19720 attr->set_block (blk);
19721 break;
19722 case DW_FORM_data2:
19723 attr->set_unsigned (read_2_bytes (abfd, info_ptr));
19724 info_ptr += 2;
19725 break;
19726 case DW_FORM_data4:
19727 attr->set_unsigned (read_4_bytes (abfd, info_ptr));
19728 info_ptr += 4;
19729 break;
19730 case DW_FORM_data8:
19731 attr->set_unsigned (read_8_bytes (abfd, info_ptr));
19732 info_ptr += 8;
19733 break;
19734 case DW_FORM_data16:
19735 blk = dwarf_alloc_block (cu);
19736 blk->size = 16;
19737 blk->data = read_n_bytes (abfd, info_ptr, 16);
19738 info_ptr += 16;
19739 attr->set_block (blk);
19740 break;
19741 case DW_FORM_sec_offset:
19742 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19743 &bytes_read));
19744 info_ptr += bytes_read;
19745 break;
19746 case DW_FORM_loclistx:
19747 {
19748 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19749 &bytes_read));
19750 info_ptr += bytes_read;
19751 }
19752 break;
19753 case DW_FORM_string:
19754 attr->set_string_noncanonical (read_direct_string (abfd, info_ptr,
19755 &bytes_read));
19756 info_ptr += bytes_read;
19757 break;
19758 case DW_FORM_strp:
19759 if (!cu->per_cu->is_dwz)
19760 {
19761 attr->set_string_noncanonical
19762 (read_indirect_string (per_objfile,
19763 abfd, info_ptr, cu_header,
19764 &bytes_read));
19765 info_ptr += bytes_read;
19766 break;
19767 }
19768 /* FALLTHROUGH */
19769 case DW_FORM_line_strp:
19770 if (!cu->per_cu->is_dwz)
19771 {
19772 attr->set_string_noncanonical
19773 (per_objfile->read_line_string (info_ptr, cu_header,
19774 &bytes_read));
19775 info_ptr += bytes_read;
19776 break;
19777 }
19778 /* FALLTHROUGH */
19779 case DW_FORM_GNU_strp_alt:
19780 {
19781 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
19782 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19783 &bytes_read);
19784
19785 attr->set_string_noncanonical
19786 (dwz->read_string (objfile, str_offset));
19787 info_ptr += bytes_read;
19788 }
19789 break;
19790 case DW_FORM_exprloc:
19791 case DW_FORM_block:
19792 blk = dwarf_alloc_block (cu);
19793 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19794 info_ptr += bytes_read;
19795 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19796 info_ptr += blk->size;
19797 attr->set_block (blk);
19798 break;
19799 case DW_FORM_block1:
19800 blk = dwarf_alloc_block (cu);
19801 blk->size = read_1_byte (abfd, info_ptr);
19802 info_ptr += 1;
19803 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19804 info_ptr += blk->size;
19805 attr->set_block (blk);
19806 break;
19807 case DW_FORM_data1:
19808 case DW_FORM_flag:
19809 attr->set_unsigned (read_1_byte (abfd, info_ptr));
19810 info_ptr += 1;
19811 break;
19812 case DW_FORM_flag_present:
19813 attr->set_unsigned (1);
19814 break;
19815 case DW_FORM_sdata:
19816 attr->set_signed (read_signed_leb128 (abfd, info_ptr, &bytes_read));
19817 info_ptr += bytes_read;
19818 break;
19819 case DW_FORM_rnglistx:
19820 {
19821 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19822 &bytes_read));
19823 info_ptr += bytes_read;
19824 }
19825 break;
19826 case DW_FORM_udata:
19827 attr->set_unsigned (read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19828 info_ptr += bytes_read;
19829 break;
19830 case DW_FORM_ref1:
19831 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19832 + read_1_byte (abfd, info_ptr)));
19833 info_ptr += 1;
19834 break;
19835 case DW_FORM_ref2:
19836 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19837 + read_2_bytes (abfd, info_ptr)));
19838 info_ptr += 2;
19839 break;
19840 case DW_FORM_ref4:
19841 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19842 + read_4_bytes (abfd, info_ptr)));
19843 info_ptr += 4;
19844 break;
19845 case DW_FORM_ref8:
19846 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19847 + read_8_bytes (abfd, info_ptr)));
19848 info_ptr += 8;
19849 break;
19850 case DW_FORM_ref_sig8:
19851 attr->set_signature (read_8_bytes (abfd, info_ptr));
19852 info_ptr += 8;
19853 break;
19854 case DW_FORM_ref_udata:
19855 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19856 + read_unsigned_leb128 (abfd, info_ptr,
19857 &bytes_read)));
19858 info_ptr += bytes_read;
19859 break;
19860 case DW_FORM_indirect:
19861 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19862 info_ptr += bytes_read;
19863 if (form == DW_FORM_implicit_const)
19864 {
19865 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19866 info_ptr += bytes_read;
19867 }
19868 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19869 info_ptr);
19870 break;
19871 case DW_FORM_implicit_const:
19872 attr->set_signed (implicit_const);
19873 break;
19874 case DW_FORM_addrx:
19875 case DW_FORM_GNU_addr_index:
19876 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19877 &bytes_read));
19878 info_ptr += bytes_read;
19879 break;
19880 case DW_FORM_strx:
19881 case DW_FORM_strx1:
19882 case DW_FORM_strx2:
19883 case DW_FORM_strx3:
19884 case DW_FORM_strx4:
19885 case DW_FORM_GNU_str_index:
19886 {
19887 ULONGEST str_index;
19888 if (form == DW_FORM_strx1)
19889 {
19890 str_index = read_1_byte (abfd, info_ptr);
19891 info_ptr += 1;
19892 }
19893 else if (form == DW_FORM_strx2)
19894 {
19895 str_index = read_2_bytes (abfd, info_ptr);
19896 info_ptr += 2;
19897 }
19898 else if (form == DW_FORM_strx3)
19899 {
19900 str_index = read_3_bytes (abfd, info_ptr);
19901 info_ptr += 3;
19902 }
19903 else if (form == DW_FORM_strx4)
19904 {
19905 str_index = read_4_bytes (abfd, info_ptr);
19906 info_ptr += 4;
19907 }
19908 else
19909 {
19910 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19911 info_ptr += bytes_read;
19912 }
19913 attr->set_unsigned_reprocess (str_index);
19914 }
19915 break;
19916 default:
19917 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19918 dwarf_form_name (form),
19919 bfd_get_filename (abfd));
19920 }
19921
19922 /* Super hack. */
19923 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19924 attr->form = DW_FORM_GNU_ref_alt;
19925
19926 /* We have seen instances where the compiler tried to emit a byte
19927 size attribute of -1 which ended up being encoded as an unsigned
19928 0xffffffff. Although 0xffffffff is technically a valid size value,
19929 an object of this size seems pretty unlikely so we can relatively
19930 safely treat these cases as if the size attribute was invalid and
19931 treat them as zero by default. */
19932 if (attr->name == DW_AT_byte_size
19933 && form == DW_FORM_data4
19934 && attr->as_unsigned () >= 0xffffffff)
19935 {
19936 complaint
19937 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19938 hex_string (attr->as_unsigned ()));
19939 attr->set_unsigned (0);
19940 }
19941
19942 return info_ptr;
19943 }
19944
19945 /* Read an attribute described by an abbreviated attribute. */
19946
19947 static const gdb_byte *
19948 read_attribute (const struct die_reader_specs *reader,
19949 struct attribute *attr, struct attr_abbrev *abbrev,
19950 const gdb_byte *info_ptr)
19951 {
19952 attr->name = abbrev->name;
19953 attr->string_is_canonical = 0;
19954 attr->requires_reprocessing = 0;
19955 return read_attribute_value (reader, attr, abbrev->form,
19956 abbrev->implicit_const, info_ptr);
19957 }
19958
19959 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19960
19961 static const char *
19962 read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile,
19963 LONGEST str_offset)
19964 {
19965 return per_objfile->per_bfd->str.read_string (per_objfile->objfile,
19966 str_offset, "DW_FORM_strp");
19967 }
19968
19969 /* Return pointer to string at .debug_str offset as read from BUF.
19970 BUF is assumed to be in a compilation unit described by CU_HEADER.
19971 Return *BYTES_READ_PTR count of bytes read from BUF. */
19972
19973 static const char *
19974 read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd,
19975 const gdb_byte *buf,
19976 const struct comp_unit_head *cu_header,
19977 unsigned int *bytes_read_ptr)
19978 {
19979 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19980
19981 return read_indirect_string_at_offset (per_objfile, str_offset);
19982 }
19983
19984 /* See read.h. */
19985
19986 const char *
19987 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19988 const struct comp_unit_head *cu_header,
19989 unsigned int *bytes_read_ptr)
19990 {
19991 bfd *abfd = objfile->obfd;
19992 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19993
19994 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19995 }
19996
19997 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19998 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19999 ADDR_SIZE is the size of addresses from the CU header. */
20000
20001 static CORE_ADDR
20002 read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index,
20003 gdb::optional<ULONGEST> addr_base, int addr_size)
20004 {
20005 struct objfile *objfile = per_objfile->objfile;
20006 bfd *abfd = objfile->obfd;
20007 const gdb_byte *info_ptr;
20008 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
20009
20010 per_objfile->per_bfd->addr.read (objfile);
20011 if (per_objfile->per_bfd->addr.buffer == NULL)
20012 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20013 objfile_name (objfile));
20014 if (addr_base_or_zero + addr_index * addr_size
20015 >= per_objfile->per_bfd->addr.size)
20016 error (_("DW_FORM_addr_index pointing outside of "
20017 ".debug_addr section [in module %s]"),
20018 objfile_name (objfile));
20019 info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero
20020 + addr_index * addr_size);
20021 if (addr_size == 4)
20022 return bfd_get_32 (abfd, info_ptr);
20023 else
20024 return bfd_get_64 (abfd, info_ptr);
20025 }
20026
20027 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20028
20029 static CORE_ADDR
20030 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20031 {
20032 return read_addr_index_1 (cu->per_objfile, addr_index,
20033 cu->addr_base, cu->header.addr_size);
20034 }
20035
20036 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20037
20038 static CORE_ADDR
20039 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20040 unsigned int *bytes_read)
20041 {
20042 bfd *abfd = cu->per_objfile->objfile->obfd;
20043 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20044
20045 return read_addr_index (cu, addr_index);
20046 }
20047
20048 /* See read.h. */
20049
20050 CORE_ADDR
20051 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu,
20052 dwarf2_per_objfile *per_objfile,
20053 unsigned int addr_index)
20054 {
20055 struct dwarf2_cu *cu = per_objfile->get_cu (per_cu);
20056 gdb::optional<ULONGEST> addr_base;
20057 int addr_size;
20058
20059 /* We need addr_base and addr_size.
20060 If we don't have PER_CU->cu, we have to get it.
20061 Nasty, but the alternative is storing the needed info in PER_CU,
20062 which at this point doesn't seem justified: it's not clear how frequently
20063 it would get used and it would increase the size of every PER_CU.
20064 Entry points like dwarf2_per_cu_addr_size do a similar thing
20065 so we're not in uncharted territory here.
20066 Alas we need to be a bit more complicated as addr_base is contained
20067 in the DIE.
20068
20069 We don't need to read the entire CU(/TU).
20070 We just need the header and top level die.
20071
20072 IWBN to use the aging mechanism to let us lazily later discard the CU.
20073 For now we skip this optimization. */
20074
20075 if (cu != NULL)
20076 {
20077 addr_base = cu->addr_base;
20078 addr_size = cu->header.addr_size;
20079 }
20080 else
20081 {
20082 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
20083 addr_base = reader.cu->addr_base;
20084 addr_size = reader.cu->header.addr_size;
20085 }
20086
20087 return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size);
20088 }
20089
20090 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
20091 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
20092 DWO file. */
20093
20094 static const char *
20095 read_str_index (struct dwarf2_cu *cu,
20096 struct dwarf2_section_info *str_section,
20097 struct dwarf2_section_info *str_offsets_section,
20098 ULONGEST str_offsets_base, ULONGEST str_index)
20099 {
20100 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20101 struct objfile *objfile = per_objfile->objfile;
20102 const char *objf_name = objfile_name (objfile);
20103 bfd *abfd = objfile->obfd;
20104 const gdb_byte *info_ptr;
20105 ULONGEST str_offset;
20106 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20107
20108 str_section->read (objfile);
20109 str_offsets_section->read (objfile);
20110 if (str_section->buffer == NULL)
20111 error (_("%s used without %s section"
20112 " in CU at offset %s [in module %s]"),
20113 form_name, str_section->get_name (),
20114 sect_offset_str (cu->header.sect_off), objf_name);
20115 if (str_offsets_section->buffer == NULL)
20116 error (_("%s used without %s section"
20117 " in CU at offset %s [in module %s]"),
20118 form_name, str_section->get_name (),
20119 sect_offset_str (cu->header.sect_off), objf_name);
20120 info_ptr = (str_offsets_section->buffer
20121 + str_offsets_base
20122 + str_index * cu->header.offset_size);
20123 if (cu->header.offset_size == 4)
20124 str_offset = bfd_get_32 (abfd, info_ptr);
20125 else
20126 str_offset = bfd_get_64 (abfd, info_ptr);
20127 if (str_offset >= str_section->size)
20128 error (_("Offset from %s pointing outside of"
20129 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20130 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20131 return (const char *) (str_section->buffer + str_offset);
20132 }
20133
20134 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
20135
20136 static const char *
20137 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20138 {
20139 ULONGEST str_offsets_base = reader->cu->header.version >= 5
20140 ? reader->cu->header.addr_size : 0;
20141 return read_str_index (reader->cu,
20142 &reader->dwo_file->sections.str,
20143 &reader->dwo_file->sections.str_offsets,
20144 str_offsets_base, str_index);
20145 }
20146
20147 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
20148
20149 static const char *
20150 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
20151 {
20152 struct objfile *objfile = cu->per_objfile->objfile;
20153 const char *objf_name = objfile_name (objfile);
20154 static const char form_name[] = "DW_FORM_GNU_str_index";
20155 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
20156
20157 if (!cu->str_offsets_base.has_value ())
20158 error (_("%s used in Fission stub without %s"
20159 " in CU at offset 0x%lx [in module %s]"),
20160 form_name, str_offsets_attr_name,
20161 (long) cu->header.offset_size, objf_name);
20162
20163 return read_str_index (cu,
20164 &cu->per_objfile->per_bfd->str,
20165 &cu->per_objfile->per_bfd->str_offsets,
20166 *cu->str_offsets_base, str_index);
20167 }
20168
20169 /* Return the length of an LEB128 number in BUF. */
20170
20171 static int
20172 leb128_size (const gdb_byte *buf)
20173 {
20174 const gdb_byte *begin = buf;
20175 gdb_byte byte;
20176
20177 while (1)
20178 {
20179 byte = *buf++;
20180 if ((byte & 128) == 0)
20181 return buf - begin;
20182 }
20183 }
20184
20185 static void
20186 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20187 {
20188 switch (lang)
20189 {
20190 case DW_LANG_C89:
20191 case DW_LANG_C99:
20192 case DW_LANG_C11:
20193 case DW_LANG_C:
20194 case DW_LANG_UPC:
20195 cu->language = language_c;
20196 break;
20197 case DW_LANG_Java:
20198 case DW_LANG_C_plus_plus:
20199 case DW_LANG_C_plus_plus_11:
20200 case DW_LANG_C_plus_plus_14:
20201 cu->language = language_cplus;
20202 break;
20203 case DW_LANG_D:
20204 cu->language = language_d;
20205 break;
20206 case DW_LANG_Fortran77:
20207 case DW_LANG_Fortran90:
20208 case DW_LANG_Fortran95:
20209 case DW_LANG_Fortran03:
20210 case DW_LANG_Fortran08:
20211 cu->language = language_fortran;
20212 break;
20213 case DW_LANG_Go:
20214 cu->language = language_go;
20215 break;
20216 case DW_LANG_Mips_Assembler:
20217 cu->language = language_asm;
20218 break;
20219 case DW_LANG_Ada83:
20220 case DW_LANG_Ada95:
20221 cu->language = language_ada;
20222 break;
20223 case DW_LANG_Modula2:
20224 cu->language = language_m2;
20225 break;
20226 case DW_LANG_Pascal83:
20227 cu->language = language_pascal;
20228 break;
20229 case DW_LANG_ObjC:
20230 cu->language = language_objc;
20231 break;
20232 case DW_LANG_Rust:
20233 case DW_LANG_Rust_old:
20234 cu->language = language_rust;
20235 break;
20236 case DW_LANG_Cobol74:
20237 case DW_LANG_Cobol85:
20238 default:
20239 cu->language = language_minimal;
20240 break;
20241 }
20242 cu->language_defn = language_def (cu->language);
20243 }
20244
20245 /* Return the named attribute or NULL if not there. */
20246
20247 static struct attribute *
20248 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20249 {
20250 for (;;)
20251 {
20252 unsigned int i;
20253 struct attribute *spec = NULL;
20254
20255 for (i = 0; i < die->num_attrs; ++i)
20256 {
20257 if (die->attrs[i].name == name)
20258 return &die->attrs[i];
20259 if (die->attrs[i].name == DW_AT_specification
20260 || die->attrs[i].name == DW_AT_abstract_origin)
20261 spec = &die->attrs[i];
20262 }
20263
20264 if (!spec)
20265 break;
20266
20267 die = follow_die_ref (die, spec, &cu);
20268 }
20269
20270 return NULL;
20271 }
20272
20273 /* Return the string associated with a string-typed attribute, or NULL if it
20274 is either not found or is of an incorrect type. */
20275
20276 static const char *
20277 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20278 {
20279 struct attribute *attr;
20280 const char *str = NULL;
20281
20282 attr = dwarf2_attr (die, name, cu);
20283
20284 if (attr != NULL)
20285 {
20286 str = attr->as_string ();
20287 if (str == nullptr)
20288 complaint (_("string type expected for attribute %s for "
20289 "DIE at %s in module %s"),
20290 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20291 objfile_name (cu->per_objfile->objfile));
20292 }
20293
20294 return str;
20295 }
20296
20297 /* Return the dwo name or NULL if not present. If present, it is in either
20298 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20299 static const char *
20300 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20301 {
20302 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20303 if (dwo_name == nullptr)
20304 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20305 return dwo_name;
20306 }
20307
20308 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20309 and holds a non-zero value. This function should only be used for
20310 DW_FORM_flag or DW_FORM_flag_present attributes. */
20311
20312 static int
20313 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20314 {
20315 struct attribute *attr = dwarf2_attr (die, name, cu);
20316
20317 return attr != nullptr && attr->as_boolean ();
20318 }
20319
20320 static int
20321 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20322 {
20323 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20324 which value is non-zero. However, we have to be careful with
20325 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20326 (via dwarf2_flag_true_p) follows this attribute. So we may
20327 end up accidently finding a declaration attribute that belongs
20328 to a different DIE referenced by the specification attribute,
20329 even though the given DIE does not have a declaration attribute. */
20330 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20331 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20332 }
20333
20334 /* Return the die giving the specification for DIE, if there is
20335 one. *SPEC_CU is the CU containing DIE on input, and the CU
20336 containing the return value on output. If there is no
20337 specification, but there is an abstract origin, that is
20338 returned. */
20339
20340 static struct die_info *
20341 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20342 {
20343 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20344 *spec_cu);
20345
20346 if (spec_attr == NULL)
20347 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20348
20349 if (spec_attr == NULL)
20350 return NULL;
20351 else
20352 return follow_die_ref (die, spec_attr, spec_cu);
20353 }
20354
20355 /* Stub for free_line_header to match void * callback types. */
20356
20357 static void
20358 free_line_header_voidp (void *arg)
20359 {
20360 struct line_header *lh = (struct line_header *) arg;
20361
20362 delete lh;
20363 }
20364
20365 /* A convenience function to find the proper .debug_line section for a CU. */
20366
20367 static struct dwarf2_section_info *
20368 get_debug_line_section (struct dwarf2_cu *cu)
20369 {
20370 struct dwarf2_section_info *section;
20371 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20372
20373 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20374 DWO file. */
20375 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20376 section = &cu->dwo_unit->dwo_file->sections.line;
20377 else if (cu->per_cu->is_dwz)
20378 {
20379 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
20380
20381 section = &dwz->line;
20382 }
20383 else
20384 section = &per_objfile->per_bfd->line;
20385
20386 return section;
20387 }
20388
20389 /* Read the statement program header starting at OFFSET in
20390 .debug_line, or .debug_line.dwo. Return a pointer
20391 to a struct line_header, allocated using xmalloc.
20392 Returns NULL if there is a problem reading the header, e.g., if it
20393 has a version we don't understand.
20394
20395 NOTE: the strings in the include directory and file name tables of
20396 the returned object point into the dwarf line section buffer,
20397 and must not be freed. */
20398
20399 static line_header_up
20400 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20401 {
20402 struct dwarf2_section_info *section;
20403 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20404
20405 section = get_debug_line_section (cu);
20406 section->read (per_objfile->objfile);
20407 if (section->buffer == NULL)
20408 {
20409 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20410 complaint (_("missing .debug_line.dwo section"));
20411 else
20412 complaint (_("missing .debug_line section"));
20413 return 0;
20414 }
20415
20416 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
20417 per_objfile, section, &cu->header);
20418 }
20419
20420 /* Subroutine of dwarf_decode_lines to simplify it.
20421 Return the file name of the psymtab for the given file_entry.
20422 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20423 If space for the result is malloc'd, *NAME_HOLDER will be set.
20424 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20425
20426 static const char *
20427 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20428 const dwarf2_psymtab *pst,
20429 const char *comp_dir,
20430 gdb::unique_xmalloc_ptr<char> *name_holder)
20431 {
20432 const char *include_name = fe.name;
20433 const char *include_name_to_compare = include_name;
20434 const char *pst_filename;
20435 int file_is_pst;
20436
20437 const char *dir_name = fe.include_dir (lh);
20438
20439 gdb::unique_xmalloc_ptr<char> hold_compare;
20440 if (!IS_ABSOLUTE_PATH (include_name)
20441 && (dir_name != NULL || comp_dir != NULL))
20442 {
20443 /* Avoid creating a duplicate psymtab for PST.
20444 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20445 Before we do the comparison, however, we need to account
20446 for DIR_NAME and COMP_DIR.
20447 First prepend dir_name (if non-NULL). If we still don't
20448 have an absolute path prepend comp_dir (if non-NULL).
20449 However, the directory we record in the include-file's
20450 psymtab does not contain COMP_DIR (to match the
20451 corresponding symtab(s)).
20452
20453 Example:
20454
20455 bash$ cd /tmp
20456 bash$ gcc -g ./hello.c
20457 include_name = "hello.c"
20458 dir_name = "."
20459 DW_AT_comp_dir = comp_dir = "/tmp"
20460 DW_AT_name = "./hello.c"
20461
20462 */
20463
20464 if (dir_name != NULL)
20465 {
20466 name_holder->reset (concat (dir_name, SLASH_STRING,
20467 include_name, (char *) NULL));
20468 include_name = name_holder->get ();
20469 include_name_to_compare = include_name;
20470 }
20471 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20472 {
20473 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20474 include_name, (char *) NULL));
20475 include_name_to_compare = hold_compare.get ();
20476 }
20477 }
20478
20479 pst_filename = pst->filename;
20480 gdb::unique_xmalloc_ptr<char> copied_name;
20481 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20482 {
20483 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20484 pst_filename, (char *) NULL));
20485 pst_filename = copied_name.get ();
20486 }
20487
20488 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20489
20490 if (file_is_pst)
20491 return NULL;
20492 return include_name;
20493 }
20494
20495 /* State machine to track the state of the line number program. */
20496
20497 class lnp_state_machine
20498 {
20499 public:
20500 /* Initialize a machine state for the start of a line number
20501 program. */
20502 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20503 bool record_lines_p);
20504
20505 file_entry *current_file ()
20506 {
20507 /* lh->file_names is 0-based, but the file name numbers in the
20508 statement program are 1-based. */
20509 return m_line_header->file_name_at (m_file);
20510 }
20511
20512 /* Record the line in the state machine. END_SEQUENCE is true if
20513 we're processing the end of a sequence. */
20514 void record_line (bool end_sequence);
20515
20516 /* Check ADDRESS is -1, or zero and less than UNRELOCATED_LOWPC, and if true
20517 nop-out rest of the lines in this sequence. */
20518 void check_line_address (struct dwarf2_cu *cu,
20519 const gdb_byte *line_ptr,
20520 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20521
20522 void handle_set_discriminator (unsigned int discriminator)
20523 {
20524 m_discriminator = discriminator;
20525 m_line_has_non_zero_discriminator |= discriminator != 0;
20526 }
20527
20528 /* Handle DW_LNE_set_address. */
20529 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20530 {
20531 m_op_index = 0;
20532 address += baseaddr;
20533 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20534 }
20535
20536 /* Handle DW_LNS_advance_pc. */
20537 void handle_advance_pc (CORE_ADDR adjust);
20538
20539 /* Handle a special opcode. */
20540 void handle_special_opcode (unsigned char op_code);
20541
20542 /* Handle DW_LNS_advance_line. */
20543 void handle_advance_line (int line_delta)
20544 {
20545 advance_line (line_delta);
20546 }
20547
20548 /* Handle DW_LNS_set_file. */
20549 void handle_set_file (file_name_index file);
20550
20551 /* Handle DW_LNS_negate_stmt. */
20552 void handle_negate_stmt ()
20553 {
20554 m_is_stmt = !m_is_stmt;
20555 }
20556
20557 /* Handle DW_LNS_const_add_pc. */
20558 void handle_const_add_pc ();
20559
20560 /* Handle DW_LNS_fixed_advance_pc. */
20561 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20562 {
20563 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20564 m_op_index = 0;
20565 }
20566
20567 /* Handle DW_LNS_copy. */
20568 void handle_copy ()
20569 {
20570 record_line (false);
20571 m_discriminator = 0;
20572 }
20573
20574 /* Handle DW_LNE_end_sequence. */
20575 void handle_end_sequence ()
20576 {
20577 m_currently_recording_lines = true;
20578 }
20579
20580 private:
20581 /* Advance the line by LINE_DELTA. */
20582 void advance_line (int line_delta)
20583 {
20584 m_line += line_delta;
20585
20586 if (line_delta != 0)
20587 m_line_has_non_zero_discriminator = m_discriminator != 0;
20588 }
20589
20590 struct dwarf2_cu *m_cu;
20591
20592 gdbarch *m_gdbarch;
20593
20594 /* True if we're recording lines.
20595 Otherwise we're building partial symtabs and are just interested in
20596 finding include files mentioned by the line number program. */
20597 bool m_record_lines_p;
20598
20599 /* The line number header. */
20600 line_header *m_line_header;
20601
20602 /* These are part of the standard DWARF line number state machine,
20603 and initialized according to the DWARF spec. */
20604
20605 unsigned char m_op_index = 0;
20606 /* The line table index of the current file. */
20607 file_name_index m_file = 1;
20608 unsigned int m_line = 1;
20609
20610 /* These are initialized in the constructor. */
20611
20612 CORE_ADDR m_address;
20613 bool m_is_stmt;
20614 unsigned int m_discriminator;
20615
20616 /* Additional bits of state we need to track. */
20617
20618 /* The last file that we called dwarf2_start_subfile for.
20619 This is only used for TLLs. */
20620 unsigned int m_last_file = 0;
20621 /* The last file a line number was recorded for. */
20622 struct subfile *m_last_subfile = NULL;
20623
20624 /* The address of the last line entry. */
20625 CORE_ADDR m_last_address;
20626
20627 /* Set to true when a previous line at the same address (using
20628 m_last_address) had m_is_stmt true. This is reset to false when a
20629 line entry at a new address (m_address different to m_last_address) is
20630 processed. */
20631 bool m_stmt_at_address = false;
20632
20633 /* When true, record the lines we decode. */
20634 bool m_currently_recording_lines = false;
20635
20636 /* The last line number that was recorded, used to coalesce
20637 consecutive entries for the same line. This can happen, for
20638 example, when discriminators are present. PR 17276. */
20639 unsigned int m_last_line = 0;
20640 bool m_line_has_non_zero_discriminator = false;
20641 };
20642
20643 void
20644 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20645 {
20646 CORE_ADDR addr_adj = (((m_op_index + adjust)
20647 / m_line_header->maximum_ops_per_instruction)
20648 * m_line_header->minimum_instruction_length);
20649 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20650 m_op_index = ((m_op_index + adjust)
20651 % m_line_header->maximum_ops_per_instruction);
20652 }
20653
20654 void
20655 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20656 {
20657 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20658 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20659 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20660 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20661 / m_line_header->maximum_ops_per_instruction)
20662 * m_line_header->minimum_instruction_length);
20663 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20664 m_op_index = ((m_op_index + adj_opcode_d)
20665 % m_line_header->maximum_ops_per_instruction);
20666
20667 int line_delta = m_line_header->line_base + adj_opcode_r;
20668 advance_line (line_delta);
20669 record_line (false);
20670 m_discriminator = 0;
20671 }
20672
20673 void
20674 lnp_state_machine::handle_set_file (file_name_index file)
20675 {
20676 m_file = file;
20677
20678 const file_entry *fe = current_file ();
20679 if (fe == NULL)
20680 dwarf2_debug_line_missing_file_complaint ();
20681 else if (m_record_lines_p)
20682 {
20683 const char *dir = fe->include_dir (m_line_header);
20684
20685 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20686 m_line_has_non_zero_discriminator = m_discriminator != 0;
20687 dwarf2_start_subfile (m_cu, fe->name, dir);
20688 }
20689 }
20690
20691 void
20692 lnp_state_machine::handle_const_add_pc ()
20693 {
20694 CORE_ADDR adjust
20695 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20696
20697 CORE_ADDR addr_adj
20698 = (((m_op_index + adjust)
20699 / m_line_header->maximum_ops_per_instruction)
20700 * m_line_header->minimum_instruction_length);
20701
20702 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20703 m_op_index = ((m_op_index + adjust)
20704 % m_line_header->maximum_ops_per_instruction);
20705 }
20706
20707 /* Return non-zero if we should add LINE to the line number table.
20708 LINE is the line to add, LAST_LINE is the last line that was added,
20709 LAST_SUBFILE is the subfile for LAST_LINE.
20710 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20711 had a non-zero discriminator.
20712
20713 We have to be careful in the presence of discriminators.
20714 E.g., for this line:
20715
20716 for (i = 0; i < 100000; i++);
20717
20718 clang can emit four line number entries for that one line,
20719 each with a different discriminator.
20720 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20721
20722 However, we want gdb to coalesce all four entries into one.
20723 Otherwise the user could stepi into the middle of the line and
20724 gdb would get confused about whether the pc really was in the
20725 middle of the line.
20726
20727 Things are further complicated by the fact that two consecutive
20728 line number entries for the same line is a heuristic used by gcc
20729 to denote the end of the prologue. So we can't just discard duplicate
20730 entries, we have to be selective about it. The heuristic we use is
20731 that we only collapse consecutive entries for the same line if at least
20732 one of those entries has a non-zero discriminator. PR 17276.
20733
20734 Note: Addresses in the line number state machine can never go backwards
20735 within one sequence, thus this coalescing is ok. */
20736
20737 static int
20738 dwarf_record_line_p (struct dwarf2_cu *cu,
20739 unsigned int line, unsigned int last_line,
20740 int line_has_non_zero_discriminator,
20741 struct subfile *last_subfile)
20742 {
20743 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20744 return 1;
20745 if (line != last_line)
20746 return 1;
20747 /* Same line for the same file that we've seen already.
20748 As a last check, for pr 17276, only record the line if the line
20749 has never had a non-zero discriminator. */
20750 if (!line_has_non_zero_discriminator)
20751 return 1;
20752 return 0;
20753 }
20754
20755 /* Use the CU's builder to record line number LINE beginning at
20756 address ADDRESS in the line table of subfile SUBFILE. */
20757
20758 static void
20759 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20760 unsigned int line, CORE_ADDR address, bool is_stmt,
20761 struct dwarf2_cu *cu)
20762 {
20763 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20764
20765 if (dwarf_line_debug)
20766 {
20767 fprintf_unfiltered (gdb_stdlog,
20768 "Recording line %u, file %s, address %s\n",
20769 line, lbasename (subfile->name),
20770 paddress (gdbarch, address));
20771 }
20772
20773 if (cu != nullptr)
20774 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20775 }
20776
20777 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20778 Mark the end of a set of line number records.
20779 The arguments are the same as for dwarf_record_line_1.
20780 If SUBFILE is NULL the request is ignored. */
20781
20782 static void
20783 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20784 CORE_ADDR address, struct dwarf2_cu *cu)
20785 {
20786 if (subfile == NULL)
20787 return;
20788
20789 if (dwarf_line_debug)
20790 {
20791 fprintf_unfiltered (gdb_stdlog,
20792 "Finishing current line, file %s, address %s\n",
20793 lbasename (subfile->name),
20794 paddress (gdbarch, address));
20795 }
20796
20797 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20798 }
20799
20800 void
20801 lnp_state_machine::record_line (bool end_sequence)
20802 {
20803 if (dwarf_line_debug)
20804 {
20805 fprintf_unfiltered (gdb_stdlog,
20806 "Processing actual line %u: file %u,"
20807 " address %s, is_stmt %u, discrim %u%s\n",
20808 m_line, m_file,
20809 paddress (m_gdbarch, m_address),
20810 m_is_stmt, m_discriminator,
20811 (end_sequence ? "\t(end sequence)" : ""));
20812 }
20813
20814 file_entry *fe = current_file ();
20815
20816 if (fe == NULL)
20817 dwarf2_debug_line_missing_file_complaint ();
20818 /* For now we ignore lines not starting on an instruction boundary.
20819 But not when processing end_sequence for compatibility with the
20820 previous version of the code. */
20821 else if (m_op_index == 0 || end_sequence)
20822 {
20823 fe->included_p = 1;
20824 if (m_record_lines_p)
20825 {
20826 /* When we switch files we insert an end maker in the first file,
20827 switch to the second file and add a new line entry. The
20828 problem is that the end marker inserted in the first file will
20829 discard any previous line entries at the same address. If the
20830 line entries in the first file are marked as is-stmt, while
20831 the new line in the second file is non-stmt, then this means
20832 the end marker will discard is-stmt lines so we can have a
20833 non-stmt line. This means that there are less addresses at
20834 which the user can insert a breakpoint.
20835
20836 To improve this we track the last address in m_last_address,
20837 and whether we have seen an is-stmt at this address. Then
20838 when switching files, if we have seen a stmt at the current
20839 address, and we are switching to create a non-stmt line, then
20840 discard the new line. */
20841 bool file_changed
20842 = m_last_subfile != m_cu->get_builder ()->get_current_subfile ();
20843 bool ignore_this_line
20844 = ((file_changed && !end_sequence && m_last_address == m_address
20845 && !m_is_stmt && m_stmt_at_address)
20846 || (!end_sequence && m_line == 0));
20847
20848 if ((file_changed && !ignore_this_line) || end_sequence)
20849 {
20850 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20851 m_currently_recording_lines ? m_cu : nullptr);
20852 }
20853
20854 if (!end_sequence && !ignore_this_line)
20855 {
20856 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20857
20858 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20859 m_line_has_non_zero_discriminator,
20860 m_last_subfile))
20861 {
20862 buildsym_compunit *builder = m_cu->get_builder ();
20863 dwarf_record_line_1 (m_gdbarch,
20864 builder->get_current_subfile (),
20865 m_line, m_address, is_stmt,
20866 m_currently_recording_lines ? m_cu : nullptr);
20867 }
20868 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20869 m_last_line = m_line;
20870 }
20871 }
20872 }
20873
20874 /* Track whether we have seen any m_is_stmt true at m_address in case we
20875 have multiple line table entries all at m_address. */
20876 if (m_last_address != m_address)
20877 {
20878 m_stmt_at_address = false;
20879 m_last_address = m_address;
20880 }
20881 m_stmt_at_address |= m_is_stmt;
20882 }
20883
20884 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20885 line_header *lh, bool record_lines_p)
20886 {
20887 m_cu = cu;
20888 m_gdbarch = arch;
20889 m_record_lines_p = record_lines_p;
20890 m_line_header = lh;
20891
20892 m_currently_recording_lines = true;
20893
20894 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20895 was a line entry for it so that the backend has a chance to adjust it
20896 and also record it in case it needs it. This is currently used by MIPS
20897 code, cf. `mips_adjust_dwarf2_line'. */
20898 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20899 m_is_stmt = lh->default_is_stmt;
20900 m_discriminator = 0;
20901
20902 m_last_address = m_address;
20903 m_stmt_at_address = false;
20904 }
20905
20906 void
20907 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20908 const gdb_byte *line_ptr,
20909 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20910 {
20911 /* Linkers resolve a symbolic relocation referencing a GC'd function to 0 or
20912 -1. If ADDRESS is 0, ignoring the opcode will err if the text section is
20913 located at 0x0. In this case, additionally check that if
20914 ADDRESS < UNRELOCATED_LOWPC. */
20915
20916 if ((address == 0 && address < unrelocated_lowpc)
20917 || address == (CORE_ADDR) -1)
20918 {
20919 /* This line table is for a function which has been
20920 GCd by the linker. Ignore it. PR gdb/12528 */
20921
20922 struct objfile *objfile = cu->per_objfile->objfile;
20923 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20924
20925 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20926 line_offset, objfile_name (objfile));
20927 m_currently_recording_lines = false;
20928 /* Note: m_currently_recording_lines is left as false until we see
20929 DW_LNE_end_sequence. */
20930 }
20931 }
20932
20933 /* Subroutine of dwarf_decode_lines to simplify it.
20934 Process the line number information in LH.
20935 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20936 program in order to set included_p for every referenced header. */
20937
20938 static void
20939 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20940 const int decode_for_pst_p, CORE_ADDR lowpc)
20941 {
20942 const gdb_byte *line_ptr, *extended_end;
20943 const gdb_byte *line_end;
20944 unsigned int bytes_read, extended_len;
20945 unsigned char op_code, extended_op;
20946 CORE_ADDR baseaddr;
20947 struct objfile *objfile = cu->per_objfile->objfile;
20948 bfd *abfd = objfile->obfd;
20949 struct gdbarch *gdbarch = objfile->arch ();
20950 /* True if we're recording line info (as opposed to building partial
20951 symtabs and just interested in finding include files mentioned by
20952 the line number program). */
20953 bool record_lines_p = !decode_for_pst_p;
20954
20955 baseaddr = objfile->text_section_offset ();
20956
20957 line_ptr = lh->statement_program_start;
20958 line_end = lh->statement_program_end;
20959
20960 /* Read the statement sequences until there's nothing left. */
20961 while (line_ptr < line_end)
20962 {
20963 /* The DWARF line number program state machine. Reset the state
20964 machine at the start of each sequence. */
20965 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20966 bool end_sequence = false;
20967
20968 if (record_lines_p)
20969 {
20970 /* Start a subfile for the current file of the state
20971 machine. */
20972 const file_entry *fe = state_machine.current_file ();
20973
20974 if (fe != NULL)
20975 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20976 }
20977
20978 /* Decode the table. */
20979 while (line_ptr < line_end && !end_sequence)
20980 {
20981 op_code = read_1_byte (abfd, line_ptr);
20982 line_ptr += 1;
20983
20984 if (op_code >= lh->opcode_base)
20985 {
20986 /* Special opcode. */
20987 state_machine.handle_special_opcode (op_code);
20988 }
20989 else switch (op_code)
20990 {
20991 case DW_LNS_extended_op:
20992 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20993 &bytes_read);
20994 line_ptr += bytes_read;
20995 extended_end = line_ptr + extended_len;
20996 extended_op = read_1_byte (abfd, line_ptr);
20997 line_ptr += 1;
20998 if (DW_LNE_lo_user <= extended_op
20999 && extended_op <= DW_LNE_hi_user)
21000 {
21001 /* Vendor extension, ignore. */
21002 line_ptr = extended_end;
21003 break;
21004 }
21005 switch (extended_op)
21006 {
21007 case DW_LNE_end_sequence:
21008 state_machine.handle_end_sequence ();
21009 end_sequence = true;
21010 break;
21011 case DW_LNE_set_address:
21012 {
21013 CORE_ADDR address
21014 = cu->header.read_address (abfd, line_ptr, &bytes_read);
21015 line_ptr += bytes_read;
21016
21017 state_machine.check_line_address (cu, line_ptr,
21018 lowpc - baseaddr, address);
21019 state_machine.handle_set_address (baseaddr, address);
21020 }
21021 break;
21022 case DW_LNE_define_file:
21023 {
21024 const char *cur_file;
21025 unsigned int mod_time, length;
21026 dir_index dindex;
21027
21028 cur_file = read_direct_string (abfd, line_ptr,
21029 &bytes_read);
21030 line_ptr += bytes_read;
21031 dindex = (dir_index)
21032 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21033 line_ptr += bytes_read;
21034 mod_time =
21035 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21036 line_ptr += bytes_read;
21037 length =
21038 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21039 line_ptr += bytes_read;
21040 lh->add_file_name (cur_file, dindex, mod_time, length);
21041 }
21042 break;
21043 case DW_LNE_set_discriminator:
21044 {
21045 /* The discriminator is not interesting to the
21046 debugger; just ignore it. We still need to
21047 check its value though:
21048 if there are consecutive entries for the same
21049 (non-prologue) line we want to coalesce them.
21050 PR 17276. */
21051 unsigned int discr
21052 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21053 line_ptr += bytes_read;
21054
21055 state_machine.handle_set_discriminator (discr);
21056 }
21057 break;
21058 default:
21059 complaint (_("mangled .debug_line section"));
21060 return;
21061 }
21062 /* Make sure that we parsed the extended op correctly. If e.g.
21063 we expected a different address size than the producer used,
21064 we may have read the wrong number of bytes. */
21065 if (line_ptr != extended_end)
21066 {
21067 complaint (_("mangled .debug_line section"));
21068 return;
21069 }
21070 break;
21071 case DW_LNS_copy:
21072 state_machine.handle_copy ();
21073 break;
21074 case DW_LNS_advance_pc:
21075 {
21076 CORE_ADDR adjust
21077 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21078 line_ptr += bytes_read;
21079
21080 state_machine.handle_advance_pc (adjust);
21081 }
21082 break;
21083 case DW_LNS_advance_line:
21084 {
21085 int line_delta
21086 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21087 line_ptr += bytes_read;
21088
21089 state_machine.handle_advance_line (line_delta);
21090 }
21091 break;
21092 case DW_LNS_set_file:
21093 {
21094 file_name_index file
21095 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21096 &bytes_read);
21097 line_ptr += bytes_read;
21098
21099 state_machine.handle_set_file (file);
21100 }
21101 break;
21102 case DW_LNS_set_column:
21103 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21104 line_ptr += bytes_read;
21105 break;
21106 case DW_LNS_negate_stmt:
21107 state_machine.handle_negate_stmt ();
21108 break;
21109 case DW_LNS_set_basic_block:
21110 break;
21111 /* Add to the address register of the state machine the
21112 address increment value corresponding to special opcode
21113 255. I.e., this value is scaled by the minimum
21114 instruction length since special opcode 255 would have
21115 scaled the increment. */
21116 case DW_LNS_const_add_pc:
21117 state_machine.handle_const_add_pc ();
21118 break;
21119 case DW_LNS_fixed_advance_pc:
21120 {
21121 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21122 line_ptr += 2;
21123
21124 state_machine.handle_fixed_advance_pc (addr_adj);
21125 }
21126 break;
21127 default:
21128 {
21129 /* Unknown standard opcode, ignore it. */
21130 int i;
21131
21132 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21133 {
21134 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21135 line_ptr += bytes_read;
21136 }
21137 }
21138 }
21139 }
21140
21141 if (!end_sequence)
21142 dwarf2_debug_line_missing_end_sequence_complaint ();
21143
21144 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21145 in which case we still finish recording the last line). */
21146 state_machine.record_line (true);
21147 }
21148 }
21149
21150 /* Decode the Line Number Program (LNP) for the given line_header
21151 structure and CU. The actual information extracted and the type
21152 of structures created from the LNP depends on the value of PST.
21153
21154 1. If PST is NULL, then this procedure uses the data from the program
21155 to create all necessary symbol tables, and their linetables.
21156
21157 2. If PST is not NULL, this procedure reads the program to determine
21158 the list of files included by the unit represented by PST, and
21159 builds all the associated partial symbol tables.
21160
21161 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21162 It is used for relative paths in the line table.
21163 NOTE: When processing partial symtabs (pst != NULL),
21164 comp_dir == pst->dirname.
21165
21166 NOTE: It is important that psymtabs have the same file name (via strcmp)
21167 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21168 symtab we don't use it in the name of the psymtabs we create.
21169 E.g. expand_line_sal requires this when finding psymtabs to expand.
21170 A good testcase for this is mb-inline.exp.
21171
21172 LOWPC is the lowest address in CU (or 0 if not known).
21173
21174 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21175 for its PC<->lines mapping information. Otherwise only the filename
21176 table is read in. */
21177
21178 static void
21179 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21180 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
21181 CORE_ADDR lowpc, int decode_mapping)
21182 {
21183 struct objfile *objfile = cu->per_objfile->objfile;
21184 const int decode_for_pst_p = (pst != NULL);
21185
21186 if (decode_mapping)
21187 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21188
21189 if (decode_for_pst_p)
21190 {
21191 /* Now that we're done scanning the Line Header Program, we can
21192 create the psymtab of each included file. */
21193 for (auto &file_entry : lh->file_names ())
21194 if (file_entry.included_p == 1)
21195 {
21196 gdb::unique_xmalloc_ptr<char> name_holder;
21197 const char *include_name =
21198 psymtab_include_file_name (lh, file_entry, pst,
21199 comp_dir, &name_holder);
21200 if (include_name != NULL)
21201 dwarf2_create_include_psymtab (include_name, pst, objfile);
21202 }
21203 }
21204 else
21205 {
21206 /* Make sure a symtab is created for every file, even files
21207 which contain only variables (i.e. no code with associated
21208 line numbers). */
21209 buildsym_compunit *builder = cu->get_builder ();
21210 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21211
21212 for (auto &fe : lh->file_names ())
21213 {
21214 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21215 if (builder->get_current_subfile ()->symtab == NULL)
21216 {
21217 builder->get_current_subfile ()->symtab
21218 = allocate_symtab (cust,
21219 builder->get_current_subfile ()->name);
21220 }
21221 fe.symtab = builder->get_current_subfile ()->symtab;
21222 }
21223 }
21224 }
21225
21226 /* Start a subfile for DWARF. FILENAME is the name of the file and
21227 DIRNAME the name of the source directory which contains FILENAME
21228 or NULL if not known.
21229 This routine tries to keep line numbers from identical absolute and
21230 relative file names in a common subfile.
21231
21232 Using the `list' example from the GDB testsuite, which resides in
21233 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21234 of /srcdir/list0.c yields the following debugging information for list0.c:
21235
21236 DW_AT_name: /srcdir/list0.c
21237 DW_AT_comp_dir: /compdir
21238 files.files[0].name: list0.h
21239 files.files[0].dir: /srcdir
21240 files.files[1].name: list0.c
21241 files.files[1].dir: /srcdir
21242
21243 The line number information for list0.c has to end up in a single
21244 subfile, so that `break /srcdir/list0.c:1' works as expected.
21245 start_subfile will ensure that this happens provided that we pass the
21246 concatenation of files.files[1].dir and files.files[1].name as the
21247 subfile's name. */
21248
21249 static void
21250 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21251 const char *dirname)
21252 {
21253 gdb::unique_xmalloc_ptr<char> copy;
21254
21255 /* In order not to lose the line information directory,
21256 we concatenate it to the filename when it makes sense.
21257 Note that the Dwarf3 standard says (speaking of filenames in line
21258 information): ``The directory index is ignored for file names
21259 that represent full path names''. Thus ignoring dirname in the
21260 `else' branch below isn't an issue. */
21261
21262 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21263 {
21264 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21265 filename = copy.get ();
21266 }
21267
21268 cu->get_builder ()->start_subfile (filename);
21269 }
21270
21271 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21272 buildsym_compunit constructor. */
21273
21274 struct compunit_symtab *
21275 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21276 CORE_ADDR low_pc)
21277 {
21278 gdb_assert (m_builder == nullptr);
21279
21280 m_builder.reset (new struct buildsym_compunit
21281 (this->per_objfile->objfile,
21282 name, comp_dir, language, low_pc));
21283
21284 list_in_scope = get_builder ()->get_file_symbols ();
21285
21286 get_builder ()->record_debugformat ("DWARF 2");
21287 get_builder ()->record_producer (producer);
21288
21289 processing_has_namespace_info = false;
21290
21291 return get_builder ()->get_compunit_symtab ();
21292 }
21293
21294 static void
21295 var_decode_location (struct attribute *attr, struct symbol *sym,
21296 struct dwarf2_cu *cu)
21297 {
21298 struct objfile *objfile = cu->per_objfile->objfile;
21299 struct comp_unit_head *cu_header = &cu->header;
21300
21301 /* NOTE drow/2003-01-30: There used to be a comment and some special
21302 code here to turn a symbol with DW_AT_external and a
21303 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21304 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21305 with some versions of binutils) where shared libraries could have
21306 relocations against symbols in their debug information - the
21307 minimal symbol would have the right address, but the debug info
21308 would not. It's no longer necessary, because we will explicitly
21309 apply relocations when we read in the debug information now. */
21310
21311 /* A DW_AT_location attribute with no contents indicates that a
21312 variable has been optimized away. */
21313 if (attr->form_is_block () && attr->as_block ()->size == 0)
21314 {
21315 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21316 return;
21317 }
21318
21319 /* Handle one degenerate form of location expression specially, to
21320 preserve GDB's previous behavior when section offsets are
21321 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21322 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21323
21324 if (attr->form_is_block ())
21325 {
21326 struct dwarf_block *block = attr->as_block ();
21327
21328 if ((block->data[0] == DW_OP_addr
21329 && block->size == 1 + cu_header->addr_size)
21330 || ((block->data[0] == DW_OP_GNU_addr_index
21331 || block->data[0] == DW_OP_addrx)
21332 && (block->size
21333 == 1 + leb128_size (&block->data[1]))))
21334 {
21335 unsigned int dummy;
21336
21337 if (block->data[0] == DW_OP_addr)
21338 SET_SYMBOL_VALUE_ADDRESS
21339 (sym, cu->header.read_address (objfile->obfd,
21340 block->data + 1,
21341 &dummy));
21342 else
21343 SET_SYMBOL_VALUE_ADDRESS
21344 (sym, read_addr_index_from_leb128 (cu, block->data + 1,
21345 &dummy));
21346 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21347 fixup_symbol_section (sym, objfile);
21348 SET_SYMBOL_VALUE_ADDRESS
21349 (sym,
21350 SYMBOL_VALUE_ADDRESS (sym)
21351 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
21352 return;
21353 }
21354 }
21355
21356 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21357 expression evaluator, and use LOC_COMPUTED only when necessary
21358 (i.e. when the value of a register or memory location is
21359 referenced, or a thread-local block, etc.). Then again, it might
21360 not be worthwhile. I'm assuming that it isn't unless performance
21361 or memory numbers show me otherwise. */
21362
21363 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21364
21365 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21366 cu->has_loclist = true;
21367 }
21368
21369 /* Given a pointer to a DWARF information entry, figure out if we need
21370 to make a symbol table entry for it, and if so, create a new entry
21371 and return a pointer to it.
21372 If TYPE is NULL, determine symbol type from the die, otherwise
21373 used the passed type.
21374 If SPACE is not NULL, use it to hold the new symbol. If it is
21375 NULL, allocate a new symbol on the objfile's obstack. */
21376
21377 static struct symbol *
21378 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21379 struct symbol *space)
21380 {
21381 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21382 struct objfile *objfile = per_objfile->objfile;
21383 struct gdbarch *gdbarch = objfile->arch ();
21384 struct symbol *sym = NULL;
21385 const char *name;
21386 struct attribute *attr = NULL;
21387 struct attribute *attr2 = NULL;
21388 CORE_ADDR baseaddr;
21389 struct pending **list_to_add = NULL;
21390
21391 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21392
21393 baseaddr = objfile->text_section_offset ();
21394
21395 name = dwarf2_name (die, cu);
21396 if (name)
21397 {
21398 int suppress_add = 0;
21399
21400 if (space)
21401 sym = space;
21402 else
21403 sym = new (&objfile->objfile_obstack) symbol;
21404 OBJSTAT (objfile, n_syms++);
21405
21406 /* Cache this symbol's name and the name's demangled form (if any). */
21407 sym->set_language (cu->language, &objfile->objfile_obstack);
21408 /* Fortran does not have mangling standard and the mangling does differ
21409 between gfortran, iFort etc. */
21410 const char *physname
21411 = (cu->language == language_fortran
21412 ? dwarf2_full_name (name, die, cu)
21413 : dwarf2_physname (name, die, cu));
21414 const char *linkagename = dw2_linkage_name (die, cu);
21415
21416 if (linkagename == nullptr || cu->language == language_ada)
21417 sym->set_linkage_name (physname);
21418 else
21419 {
21420 sym->set_demangled_name (physname, &objfile->objfile_obstack);
21421 sym->set_linkage_name (linkagename);
21422 }
21423
21424 /* Default assumptions.
21425 Use the passed type or decode it from the die. */
21426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21428 if (type != NULL)
21429 SYMBOL_TYPE (sym) = type;
21430 else
21431 SYMBOL_TYPE (sym) = die_type (die, cu);
21432 attr = dwarf2_attr (die,
21433 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21434 cu);
21435 if (attr != nullptr)
21436 SYMBOL_LINE (sym) = attr->constant_value (0);
21437
21438 attr = dwarf2_attr (die,
21439 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21440 cu);
21441 if (attr != nullptr && attr->form_is_unsigned ())
21442 {
21443 file_name_index file_index
21444 = (file_name_index) attr->as_unsigned ();
21445 struct file_entry *fe;
21446
21447 if (cu->line_header != NULL)
21448 fe = cu->line_header->file_name_at (file_index);
21449 else
21450 fe = NULL;
21451
21452 if (fe == NULL)
21453 complaint (_("file index out of range"));
21454 else
21455 symbol_set_symtab (sym, fe->symtab);
21456 }
21457
21458 switch (die->tag)
21459 {
21460 case DW_TAG_label:
21461 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21462 if (attr != nullptr)
21463 {
21464 CORE_ADDR addr;
21465
21466 addr = attr->as_address ();
21467 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21468 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21469 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21470 }
21471 else
21472 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21473 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21474 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21475 add_symbol_to_list (sym, cu->list_in_scope);
21476 break;
21477 case DW_TAG_subprogram:
21478 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21479 finish_block. */
21480 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21481 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21482 if ((attr2 != nullptr && attr2->as_boolean ())
21483 || cu->language == language_ada
21484 || cu->language == language_fortran)
21485 {
21486 /* Subprograms marked external are stored as a global symbol.
21487 Ada and Fortran subprograms, whether marked external or
21488 not, are always stored as a global symbol, because we want
21489 to be able to access them globally. For instance, we want
21490 to be able to break on a nested subprogram without having
21491 to specify the context. */
21492 list_to_add = cu->get_builder ()->get_global_symbols ();
21493 }
21494 else
21495 {
21496 list_to_add = cu->list_in_scope;
21497 }
21498 break;
21499 case DW_TAG_inlined_subroutine:
21500 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21501 finish_block. */
21502 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21503 SYMBOL_INLINED (sym) = 1;
21504 list_to_add = cu->list_in_scope;
21505 break;
21506 case DW_TAG_template_value_param:
21507 suppress_add = 1;
21508 /* Fall through. */
21509 case DW_TAG_constant:
21510 case DW_TAG_variable:
21511 case DW_TAG_member:
21512 /* Compilation with minimal debug info may result in
21513 variables with missing type entries. Change the
21514 misleading `void' type to something sensible. */
21515 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
21516 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21517
21518 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21519 /* In the case of DW_TAG_member, we should only be called for
21520 static const members. */
21521 if (die->tag == DW_TAG_member)
21522 {
21523 /* dwarf2_add_field uses die_is_declaration,
21524 so we do the same. */
21525 gdb_assert (die_is_declaration (die, cu));
21526 gdb_assert (attr);
21527 }
21528 if (attr != nullptr)
21529 {
21530 dwarf2_const_value (attr, sym, cu);
21531 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21532 if (!suppress_add)
21533 {
21534 if (attr2 != nullptr && attr2->as_boolean ())
21535 list_to_add = cu->get_builder ()->get_global_symbols ();
21536 else
21537 list_to_add = cu->list_in_scope;
21538 }
21539 break;
21540 }
21541 attr = dwarf2_attr (die, DW_AT_location, cu);
21542 if (attr != nullptr)
21543 {
21544 var_decode_location (attr, sym, cu);
21545 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21546
21547 /* Fortran explicitly imports any global symbols to the local
21548 scope by DW_TAG_common_block. */
21549 if (cu->language == language_fortran && die->parent
21550 && die->parent->tag == DW_TAG_common_block)
21551 attr2 = NULL;
21552
21553 if (SYMBOL_CLASS (sym) == LOC_STATIC
21554 && SYMBOL_VALUE_ADDRESS (sym) == 0
21555 && !per_objfile->per_bfd->has_section_at_zero)
21556 {
21557 /* When a static variable is eliminated by the linker,
21558 the corresponding debug information is not stripped
21559 out, but the variable address is set to null;
21560 do not add such variables into symbol table. */
21561 }
21562 else if (attr2 != nullptr && attr2->as_boolean ())
21563 {
21564 if (SYMBOL_CLASS (sym) == LOC_STATIC
21565 && (objfile->flags & OBJF_MAINLINE) == 0
21566 && per_objfile->per_bfd->can_copy)
21567 {
21568 /* A global static variable might be subject to
21569 copy relocation. We first check for a local
21570 minsym, though, because maybe the symbol was
21571 marked hidden, in which case this would not
21572 apply. */
21573 bound_minimal_symbol found
21574 = (lookup_minimal_symbol_linkage
21575 (sym->linkage_name (), objfile));
21576 if (found.minsym != nullptr)
21577 sym->maybe_copied = 1;
21578 }
21579
21580 /* A variable with DW_AT_external is never static,
21581 but it may be block-scoped. */
21582 list_to_add
21583 = ((cu->list_in_scope
21584 == cu->get_builder ()->get_file_symbols ())
21585 ? cu->get_builder ()->get_global_symbols ()
21586 : cu->list_in_scope);
21587 }
21588 else
21589 list_to_add = cu->list_in_scope;
21590 }
21591 else
21592 {
21593 /* We do not know the address of this symbol.
21594 If it is an external symbol and we have type information
21595 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21596 The address of the variable will then be determined from
21597 the minimal symbol table whenever the variable is
21598 referenced. */
21599 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21600
21601 /* Fortran explicitly imports any global symbols to the local
21602 scope by DW_TAG_common_block. */
21603 if (cu->language == language_fortran && die->parent
21604 && die->parent->tag == DW_TAG_common_block)
21605 {
21606 /* SYMBOL_CLASS doesn't matter here because
21607 read_common_block is going to reset it. */
21608 if (!suppress_add)
21609 list_to_add = cu->list_in_scope;
21610 }
21611 else if (attr2 != nullptr && attr2->as_boolean ()
21612 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21613 {
21614 /* A variable with DW_AT_external is never static, but it
21615 may be block-scoped. */
21616 list_to_add
21617 = ((cu->list_in_scope
21618 == cu->get_builder ()->get_file_symbols ())
21619 ? cu->get_builder ()->get_global_symbols ()
21620 : cu->list_in_scope);
21621
21622 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21623 }
21624 else if (!die_is_declaration (die, cu))
21625 {
21626 /* Use the default LOC_OPTIMIZED_OUT class. */
21627 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21628 if (!suppress_add)
21629 list_to_add = cu->list_in_scope;
21630 }
21631 }
21632 break;
21633 case DW_TAG_formal_parameter:
21634 {
21635 /* If we are inside a function, mark this as an argument. If
21636 not, we might be looking at an argument to an inlined function
21637 when we do not have enough information to show inlined frames;
21638 pretend it's a local variable in that case so that the user can
21639 still see it. */
21640 struct context_stack *curr
21641 = cu->get_builder ()->get_current_context_stack ();
21642 if (curr != nullptr && curr->name != nullptr)
21643 SYMBOL_IS_ARGUMENT (sym) = 1;
21644 attr = dwarf2_attr (die, DW_AT_location, cu);
21645 if (attr != nullptr)
21646 {
21647 var_decode_location (attr, sym, cu);
21648 }
21649 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21650 if (attr != nullptr)
21651 {
21652 dwarf2_const_value (attr, sym, cu);
21653 }
21654
21655 list_to_add = cu->list_in_scope;
21656 }
21657 break;
21658 case DW_TAG_unspecified_parameters:
21659 /* From varargs functions; gdb doesn't seem to have any
21660 interest in this information, so just ignore it for now.
21661 (FIXME?) */
21662 break;
21663 case DW_TAG_template_type_param:
21664 suppress_add = 1;
21665 /* Fall through. */
21666 case DW_TAG_class_type:
21667 case DW_TAG_interface_type:
21668 case DW_TAG_structure_type:
21669 case DW_TAG_union_type:
21670 case DW_TAG_set_type:
21671 case DW_TAG_enumeration_type:
21672 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21673 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21674
21675 {
21676 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21677 really ever be static objects: otherwise, if you try
21678 to, say, break of a class's method and you're in a file
21679 which doesn't mention that class, it won't work unless
21680 the check for all static symbols in lookup_symbol_aux
21681 saves you. See the OtherFileClass tests in
21682 gdb.c++/namespace.exp. */
21683
21684 if (!suppress_add)
21685 {
21686 buildsym_compunit *builder = cu->get_builder ();
21687 list_to_add
21688 = (cu->list_in_scope == builder->get_file_symbols ()
21689 && cu->language == language_cplus
21690 ? builder->get_global_symbols ()
21691 : cu->list_in_scope);
21692
21693 /* The semantics of C++ state that "struct foo {
21694 ... }" also defines a typedef for "foo". */
21695 if (cu->language == language_cplus
21696 || cu->language == language_ada
21697 || cu->language == language_d
21698 || cu->language == language_rust)
21699 {
21700 /* The symbol's name is already allocated along
21701 with this objfile, so we don't need to
21702 duplicate it for the type. */
21703 if (SYMBOL_TYPE (sym)->name () == 0)
21704 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
21705 }
21706 }
21707 }
21708 break;
21709 case DW_TAG_typedef:
21710 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21711 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21712 list_to_add = cu->list_in_scope;
21713 break;
21714 case DW_TAG_base_type:
21715 case DW_TAG_subrange_type:
21716 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21717 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21718 list_to_add = cu->list_in_scope;
21719 break;
21720 case DW_TAG_enumerator:
21721 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21722 if (attr != nullptr)
21723 {
21724 dwarf2_const_value (attr, sym, cu);
21725 }
21726 {
21727 /* NOTE: carlton/2003-11-10: See comment above in the
21728 DW_TAG_class_type, etc. block. */
21729
21730 list_to_add
21731 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21732 && cu->language == language_cplus
21733 ? cu->get_builder ()->get_global_symbols ()
21734 : cu->list_in_scope);
21735 }
21736 break;
21737 case DW_TAG_imported_declaration:
21738 case DW_TAG_namespace:
21739 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21740 list_to_add = cu->get_builder ()->get_global_symbols ();
21741 break;
21742 case DW_TAG_module:
21743 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21744 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21745 list_to_add = cu->get_builder ()->get_global_symbols ();
21746 break;
21747 case DW_TAG_common_block:
21748 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21749 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21750 add_symbol_to_list (sym, cu->list_in_scope);
21751 break;
21752 default:
21753 /* Not a tag we recognize. Hopefully we aren't processing
21754 trash data, but since we must specifically ignore things
21755 we don't recognize, there is nothing else we should do at
21756 this point. */
21757 complaint (_("unsupported tag: '%s'"),
21758 dwarf_tag_name (die->tag));
21759 break;
21760 }
21761
21762 if (suppress_add)
21763 {
21764 sym->hash_next = objfile->template_symbols;
21765 objfile->template_symbols = sym;
21766 list_to_add = NULL;
21767 }
21768
21769 if (list_to_add != NULL)
21770 add_symbol_to_list (sym, list_to_add);
21771
21772 /* For the benefit of old versions of GCC, check for anonymous
21773 namespaces based on the demangled name. */
21774 if (!cu->processing_has_namespace_info
21775 && cu->language == language_cplus)
21776 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21777 }
21778 return (sym);
21779 }
21780
21781 /* Given an attr with a DW_FORM_dataN value in host byte order,
21782 zero-extend it as appropriate for the symbol's type. The DWARF
21783 standard (v4) is not entirely clear about the meaning of using
21784 DW_FORM_dataN for a constant with a signed type, where the type is
21785 wider than the data. The conclusion of a discussion on the DWARF
21786 list was that this is unspecified. We choose to always zero-extend
21787 because that is the interpretation long in use by GCC. */
21788
21789 static gdb_byte *
21790 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21791 struct dwarf2_cu *cu, LONGEST *value, int bits)
21792 {
21793 struct objfile *objfile = cu->per_objfile->objfile;
21794 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21795 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21796 LONGEST l = attr->constant_value (0);
21797
21798 if (bits < sizeof (*value) * 8)
21799 {
21800 l &= ((LONGEST) 1 << bits) - 1;
21801 *value = l;
21802 }
21803 else if (bits == sizeof (*value) * 8)
21804 *value = l;
21805 else
21806 {
21807 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21808 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21809 return bytes;
21810 }
21811
21812 return NULL;
21813 }
21814
21815 /* Read a constant value from an attribute. Either set *VALUE, or if
21816 the value does not fit in *VALUE, set *BYTES - either already
21817 allocated on the objfile obstack, or newly allocated on OBSTACK,
21818 or, set *BATON, if we translated the constant to a location
21819 expression. */
21820
21821 static void
21822 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21823 const char *name, struct obstack *obstack,
21824 struct dwarf2_cu *cu,
21825 LONGEST *value, const gdb_byte **bytes,
21826 struct dwarf2_locexpr_baton **baton)
21827 {
21828 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21829 struct objfile *objfile = per_objfile->objfile;
21830 struct comp_unit_head *cu_header = &cu->header;
21831 struct dwarf_block *blk;
21832 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21833 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21834
21835 *value = 0;
21836 *bytes = NULL;
21837 *baton = NULL;
21838
21839 switch (attr->form)
21840 {
21841 case DW_FORM_addr:
21842 case DW_FORM_addrx:
21843 case DW_FORM_GNU_addr_index:
21844 {
21845 gdb_byte *data;
21846
21847 if (TYPE_LENGTH (type) != cu_header->addr_size)
21848 dwarf2_const_value_length_mismatch_complaint (name,
21849 cu_header->addr_size,
21850 TYPE_LENGTH (type));
21851 /* Symbols of this form are reasonably rare, so we just
21852 piggyback on the existing location code rather than writing
21853 a new implementation of symbol_computed_ops. */
21854 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21855 (*baton)->per_objfile = per_objfile;
21856 (*baton)->per_cu = cu->per_cu;
21857 gdb_assert ((*baton)->per_cu);
21858
21859 (*baton)->size = 2 + cu_header->addr_size;
21860 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21861 (*baton)->data = data;
21862
21863 data[0] = DW_OP_addr;
21864 store_unsigned_integer (&data[1], cu_header->addr_size,
21865 byte_order, attr->as_address ());
21866 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21867 }
21868 break;
21869 case DW_FORM_string:
21870 case DW_FORM_strp:
21871 case DW_FORM_strx:
21872 case DW_FORM_GNU_str_index:
21873 case DW_FORM_GNU_strp_alt:
21874 /* The string is already allocated on the objfile obstack, point
21875 directly to it. */
21876 *bytes = (const gdb_byte *) attr->as_string ();
21877 break;
21878 case DW_FORM_block1:
21879 case DW_FORM_block2:
21880 case DW_FORM_block4:
21881 case DW_FORM_block:
21882 case DW_FORM_exprloc:
21883 case DW_FORM_data16:
21884 blk = attr->as_block ();
21885 if (TYPE_LENGTH (type) != blk->size)
21886 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21887 TYPE_LENGTH (type));
21888 *bytes = blk->data;
21889 break;
21890
21891 /* The DW_AT_const_value attributes are supposed to carry the
21892 symbol's value "represented as it would be on the target
21893 architecture." By the time we get here, it's already been
21894 converted to host endianness, so we just need to sign- or
21895 zero-extend it as appropriate. */
21896 case DW_FORM_data1:
21897 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21898 break;
21899 case DW_FORM_data2:
21900 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21901 break;
21902 case DW_FORM_data4:
21903 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21904 break;
21905 case DW_FORM_data8:
21906 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21907 break;
21908
21909 case DW_FORM_sdata:
21910 case DW_FORM_implicit_const:
21911 *value = attr->as_signed ();
21912 break;
21913
21914 case DW_FORM_udata:
21915 *value = attr->as_unsigned ();
21916 break;
21917
21918 default:
21919 complaint (_("unsupported const value attribute form: '%s'"),
21920 dwarf_form_name (attr->form));
21921 *value = 0;
21922 break;
21923 }
21924 }
21925
21926
21927 /* Copy constant value from an attribute to a symbol. */
21928
21929 static void
21930 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21931 struct dwarf2_cu *cu)
21932 {
21933 struct objfile *objfile = cu->per_objfile->objfile;
21934 LONGEST value;
21935 const gdb_byte *bytes;
21936 struct dwarf2_locexpr_baton *baton;
21937
21938 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21939 sym->print_name (),
21940 &objfile->objfile_obstack, cu,
21941 &value, &bytes, &baton);
21942
21943 if (baton != NULL)
21944 {
21945 SYMBOL_LOCATION_BATON (sym) = baton;
21946 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21947 }
21948 else if (bytes != NULL)
21949 {
21950 SYMBOL_VALUE_BYTES (sym) = bytes;
21951 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21952 }
21953 else
21954 {
21955 SYMBOL_VALUE (sym) = value;
21956 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21957 }
21958 }
21959
21960 /* Return the type of the die in question using its DW_AT_type attribute. */
21961
21962 static struct type *
21963 die_type (struct die_info *die, struct dwarf2_cu *cu)
21964 {
21965 struct attribute *type_attr;
21966
21967 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21968 if (!type_attr)
21969 {
21970 struct objfile *objfile = cu->per_objfile->objfile;
21971 /* A missing DW_AT_type represents a void type. */
21972 return objfile_type (objfile)->builtin_void;
21973 }
21974
21975 return lookup_die_type (die, type_attr, cu);
21976 }
21977
21978 /* True iff CU's producer generates GNAT Ada auxiliary information
21979 that allows to find parallel types through that information instead
21980 of having to do expensive parallel lookups by type name. */
21981
21982 static int
21983 need_gnat_info (struct dwarf2_cu *cu)
21984 {
21985 /* Assume that the Ada compiler was GNAT, which always produces
21986 the auxiliary information. */
21987 return (cu->language == language_ada);
21988 }
21989
21990 /* Return the auxiliary type of the die in question using its
21991 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21992 attribute is not present. */
21993
21994 static struct type *
21995 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21996 {
21997 struct attribute *type_attr;
21998
21999 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22000 if (!type_attr)
22001 return NULL;
22002
22003 return lookup_die_type (die, type_attr, cu);
22004 }
22005
22006 /* If DIE has a descriptive_type attribute, then set the TYPE's
22007 descriptive type accordingly. */
22008
22009 static void
22010 set_descriptive_type (struct type *type, struct die_info *die,
22011 struct dwarf2_cu *cu)
22012 {
22013 struct type *descriptive_type = die_descriptive_type (die, cu);
22014
22015 if (descriptive_type)
22016 {
22017 ALLOCATE_GNAT_AUX_TYPE (type);
22018 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22019 }
22020 }
22021
22022 /* Return the containing type of the die in question using its
22023 DW_AT_containing_type attribute. */
22024
22025 static struct type *
22026 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22027 {
22028 struct attribute *type_attr;
22029 struct objfile *objfile = cu->per_objfile->objfile;
22030
22031 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22032 if (!type_attr)
22033 error (_("Dwarf Error: Problem turning containing type into gdb type "
22034 "[in module %s]"), objfile_name (objfile));
22035
22036 return lookup_die_type (die, type_attr, cu);
22037 }
22038
22039 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22040
22041 static struct type *
22042 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22043 {
22044 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22045 struct objfile *objfile = per_objfile->objfile;
22046 char *saved;
22047
22048 std::string message
22049 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22050 objfile_name (objfile),
22051 sect_offset_str (cu->header.sect_off),
22052 sect_offset_str (die->sect_off));
22053 saved = obstack_strdup (&objfile->objfile_obstack, message);
22054
22055 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22056 }
22057
22058 /* Look up the type of DIE in CU using its type attribute ATTR.
22059 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22060 DW_AT_containing_type.
22061 If there is no type substitute an error marker. */
22062
22063 static struct type *
22064 lookup_die_type (struct die_info *die, const struct attribute *attr,
22065 struct dwarf2_cu *cu)
22066 {
22067 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22068 struct objfile *objfile = per_objfile->objfile;
22069 struct type *this_type;
22070
22071 gdb_assert (attr->name == DW_AT_type
22072 || attr->name == DW_AT_GNAT_descriptive_type
22073 || attr->name == DW_AT_containing_type);
22074
22075 /* First see if we have it cached. */
22076
22077 if (attr->form == DW_FORM_GNU_ref_alt)
22078 {
22079 struct dwarf2_per_cu_data *per_cu;
22080 sect_offset sect_off = attr->get_ref_die_offset ();
22081
22082 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile);
22083 this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile);
22084 }
22085 else if (attr->form_is_ref ())
22086 {
22087 sect_offset sect_off = attr->get_ref_die_offset ();
22088
22089 this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile);
22090 }
22091 else if (attr->form == DW_FORM_ref_sig8)
22092 {
22093 ULONGEST signature = attr->as_signature ();
22094
22095 return get_signatured_type (die, signature, cu);
22096 }
22097 else
22098 {
22099 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22100 " at %s [in module %s]"),
22101 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22102 objfile_name (objfile));
22103 return build_error_marker_type (cu, die);
22104 }
22105
22106 /* If not cached we need to read it in. */
22107
22108 if (this_type == NULL)
22109 {
22110 struct die_info *type_die = NULL;
22111 struct dwarf2_cu *type_cu = cu;
22112
22113 if (attr->form_is_ref ())
22114 type_die = follow_die_ref (die, attr, &type_cu);
22115 if (type_die == NULL)
22116 return build_error_marker_type (cu, die);
22117 /* If we find the type now, it's probably because the type came
22118 from an inter-CU reference and the type's CU got expanded before
22119 ours. */
22120 this_type = read_type_die (type_die, type_cu);
22121 }
22122
22123 /* If we still don't have a type use an error marker. */
22124
22125 if (this_type == NULL)
22126 return build_error_marker_type (cu, die);
22127
22128 return this_type;
22129 }
22130
22131 /* Return the type in DIE, CU.
22132 Returns NULL for invalid types.
22133
22134 This first does a lookup in die_type_hash,
22135 and only reads the die in if necessary.
22136
22137 NOTE: This can be called when reading in partial or full symbols. */
22138
22139 static struct type *
22140 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22141 {
22142 struct type *this_type;
22143
22144 this_type = get_die_type (die, cu);
22145 if (this_type)
22146 return this_type;
22147
22148 return read_type_die_1 (die, cu);
22149 }
22150
22151 /* Read the type in DIE, CU.
22152 Returns NULL for invalid types. */
22153
22154 static struct type *
22155 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22156 {
22157 struct type *this_type = NULL;
22158
22159 switch (die->tag)
22160 {
22161 case DW_TAG_class_type:
22162 case DW_TAG_interface_type:
22163 case DW_TAG_structure_type:
22164 case DW_TAG_union_type:
22165 this_type = read_structure_type (die, cu);
22166 break;
22167 case DW_TAG_enumeration_type:
22168 this_type = read_enumeration_type (die, cu);
22169 break;
22170 case DW_TAG_subprogram:
22171 case DW_TAG_subroutine_type:
22172 case DW_TAG_inlined_subroutine:
22173 this_type = read_subroutine_type (die, cu);
22174 break;
22175 case DW_TAG_array_type:
22176 this_type = read_array_type (die, cu);
22177 break;
22178 case DW_TAG_set_type:
22179 this_type = read_set_type (die, cu);
22180 break;
22181 case DW_TAG_pointer_type:
22182 this_type = read_tag_pointer_type (die, cu);
22183 break;
22184 case DW_TAG_ptr_to_member_type:
22185 this_type = read_tag_ptr_to_member_type (die, cu);
22186 break;
22187 case DW_TAG_reference_type:
22188 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22189 break;
22190 case DW_TAG_rvalue_reference_type:
22191 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22192 break;
22193 case DW_TAG_const_type:
22194 this_type = read_tag_const_type (die, cu);
22195 break;
22196 case DW_TAG_volatile_type:
22197 this_type = read_tag_volatile_type (die, cu);
22198 break;
22199 case DW_TAG_restrict_type:
22200 this_type = read_tag_restrict_type (die, cu);
22201 break;
22202 case DW_TAG_string_type:
22203 this_type = read_tag_string_type (die, cu);
22204 break;
22205 case DW_TAG_typedef:
22206 this_type = read_typedef (die, cu);
22207 break;
22208 case DW_TAG_subrange_type:
22209 this_type = read_subrange_type (die, cu);
22210 break;
22211 case DW_TAG_base_type:
22212 this_type = read_base_type (die, cu);
22213 break;
22214 case DW_TAG_unspecified_type:
22215 this_type = read_unspecified_type (die, cu);
22216 break;
22217 case DW_TAG_namespace:
22218 this_type = read_namespace_type (die, cu);
22219 break;
22220 case DW_TAG_module:
22221 this_type = read_module_type (die, cu);
22222 break;
22223 case DW_TAG_atomic_type:
22224 this_type = read_tag_atomic_type (die, cu);
22225 break;
22226 default:
22227 complaint (_("unexpected tag in read_type_die: '%s'"),
22228 dwarf_tag_name (die->tag));
22229 break;
22230 }
22231
22232 return this_type;
22233 }
22234
22235 /* See if we can figure out if the class lives in a namespace. We do
22236 this by looking for a member function; its demangled name will
22237 contain namespace info, if there is any.
22238 Return the computed name or NULL.
22239 Space for the result is allocated on the objfile's obstack.
22240 This is the full-die version of guess_partial_die_structure_name.
22241 In this case we know DIE has no useful parent. */
22242
22243 static const char *
22244 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22245 {
22246 struct die_info *spec_die;
22247 struct dwarf2_cu *spec_cu;
22248 struct die_info *child;
22249 struct objfile *objfile = cu->per_objfile->objfile;
22250
22251 spec_cu = cu;
22252 spec_die = die_specification (die, &spec_cu);
22253 if (spec_die != NULL)
22254 {
22255 die = spec_die;
22256 cu = spec_cu;
22257 }
22258
22259 for (child = die->child;
22260 child != NULL;
22261 child = child->sibling)
22262 {
22263 if (child->tag == DW_TAG_subprogram)
22264 {
22265 const char *linkage_name = dw2_linkage_name (child, cu);
22266
22267 if (linkage_name != NULL)
22268 {
22269 gdb::unique_xmalloc_ptr<char> actual_name
22270 (cu->language_defn->class_name_from_physname (linkage_name));
22271 const char *name = NULL;
22272
22273 if (actual_name != NULL)
22274 {
22275 const char *die_name = dwarf2_name (die, cu);
22276
22277 if (die_name != NULL
22278 && strcmp (die_name, actual_name.get ()) != 0)
22279 {
22280 /* Strip off the class name from the full name.
22281 We want the prefix. */
22282 int die_name_len = strlen (die_name);
22283 int actual_name_len = strlen (actual_name.get ());
22284 const char *ptr = actual_name.get ();
22285
22286 /* Test for '::' as a sanity check. */
22287 if (actual_name_len > die_name_len + 2
22288 && ptr[actual_name_len - die_name_len - 1] == ':')
22289 name = obstack_strndup (
22290 &objfile->per_bfd->storage_obstack,
22291 ptr, actual_name_len - die_name_len - 2);
22292 }
22293 }
22294 return name;
22295 }
22296 }
22297 }
22298
22299 return NULL;
22300 }
22301
22302 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22303 prefix part in such case. See
22304 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22305
22306 static const char *
22307 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22308 {
22309 struct attribute *attr;
22310 const char *base;
22311
22312 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22313 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22314 return NULL;
22315
22316 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22317 return NULL;
22318
22319 attr = dw2_linkage_name_attr (die, cu);
22320 const char *attr_name = attr->as_string ();
22321 if (attr == NULL || attr_name == NULL)
22322 return NULL;
22323
22324 /* dwarf2_name had to be already called. */
22325 gdb_assert (attr->canonical_string_p ());
22326
22327 /* Strip the base name, keep any leading namespaces/classes. */
22328 base = strrchr (attr_name, ':');
22329 if (base == NULL || base == attr_name || base[-1] != ':')
22330 return "";
22331
22332 struct objfile *objfile = cu->per_objfile->objfile;
22333 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22334 attr_name,
22335 &base[-1] - attr_name);
22336 }
22337
22338 /* Return the name of the namespace/class that DIE is defined within,
22339 or "" if we can't tell. The caller should not xfree the result.
22340
22341 For example, if we're within the method foo() in the following
22342 code:
22343
22344 namespace N {
22345 class C {
22346 void foo () {
22347 }
22348 };
22349 }
22350
22351 then determine_prefix on foo's die will return "N::C". */
22352
22353 static const char *
22354 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22355 {
22356 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22357 struct die_info *parent, *spec_die;
22358 struct dwarf2_cu *spec_cu;
22359 struct type *parent_type;
22360 const char *retval;
22361
22362 if (cu->language != language_cplus
22363 && cu->language != language_fortran && cu->language != language_d
22364 && cu->language != language_rust)
22365 return "";
22366
22367 retval = anonymous_struct_prefix (die, cu);
22368 if (retval)
22369 return retval;
22370
22371 /* We have to be careful in the presence of DW_AT_specification.
22372 For example, with GCC 3.4, given the code
22373
22374 namespace N {
22375 void foo() {
22376 // Definition of N::foo.
22377 }
22378 }
22379
22380 then we'll have a tree of DIEs like this:
22381
22382 1: DW_TAG_compile_unit
22383 2: DW_TAG_namespace // N
22384 3: DW_TAG_subprogram // declaration of N::foo
22385 4: DW_TAG_subprogram // definition of N::foo
22386 DW_AT_specification // refers to die #3
22387
22388 Thus, when processing die #4, we have to pretend that we're in
22389 the context of its DW_AT_specification, namely the contex of die
22390 #3. */
22391 spec_cu = cu;
22392 spec_die = die_specification (die, &spec_cu);
22393 if (spec_die == NULL)
22394 parent = die->parent;
22395 else
22396 {
22397 parent = spec_die->parent;
22398 cu = spec_cu;
22399 }
22400
22401 if (parent == NULL)
22402 return "";
22403 else if (parent->building_fullname)
22404 {
22405 const char *name;
22406 const char *parent_name;
22407
22408 /* It has been seen on RealView 2.2 built binaries,
22409 DW_TAG_template_type_param types actually _defined_ as
22410 children of the parent class:
22411
22412 enum E {};
22413 template class <class Enum> Class{};
22414 Class<enum E> class_e;
22415
22416 1: DW_TAG_class_type (Class)
22417 2: DW_TAG_enumeration_type (E)
22418 3: DW_TAG_enumerator (enum1:0)
22419 3: DW_TAG_enumerator (enum2:1)
22420 ...
22421 2: DW_TAG_template_type_param
22422 DW_AT_type DW_FORM_ref_udata (E)
22423
22424 Besides being broken debug info, it can put GDB into an
22425 infinite loop. Consider:
22426
22427 When we're building the full name for Class<E>, we'll start
22428 at Class, and go look over its template type parameters,
22429 finding E. We'll then try to build the full name of E, and
22430 reach here. We're now trying to build the full name of E,
22431 and look over the parent DIE for containing scope. In the
22432 broken case, if we followed the parent DIE of E, we'd again
22433 find Class, and once again go look at its template type
22434 arguments, etc., etc. Simply don't consider such parent die
22435 as source-level parent of this die (it can't be, the language
22436 doesn't allow it), and break the loop here. */
22437 name = dwarf2_name (die, cu);
22438 parent_name = dwarf2_name (parent, cu);
22439 complaint (_("template param type '%s' defined within parent '%s'"),
22440 name ? name : "<unknown>",
22441 parent_name ? parent_name : "<unknown>");
22442 return "";
22443 }
22444 else
22445 switch (parent->tag)
22446 {
22447 case DW_TAG_namespace:
22448 parent_type = read_type_die (parent, cu);
22449 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22450 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22451 Work around this problem here. */
22452 if (cu->language == language_cplus
22453 && strcmp (parent_type->name (), "::") == 0)
22454 return "";
22455 /* We give a name to even anonymous namespaces. */
22456 return parent_type->name ();
22457 case DW_TAG_class_type:
22458 case DW_TAG_interface_type:
22459 case DW_TAG_structure_type:
22460 case DW_TAG_union_type:
22461 case DW_TAG_module:
22462 parent_type = read_type_die (parent, cu);
22463 if (parent_type->name () != NULL)
22464 return parent_type->name ();
22465 else
22466 /* An anonymous structure is only allowed non-static data
22467 members; no typedefs, no member functions, et cetera.
22468 So it does not need a prefix. */
22469 return "";
22470 case DW_TAG_compile_unit:
22471 case DW_TAG_partial_unit:
22472 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22473 if (cu->language == language_cplus
22474 && !per_objfile->per_bfd->types.empty ()
22475 && die->child != NULL
22476 && (die->tag == DW_TAG_class_type
22477 || die->tag == DW_TAG_structure_type
22478 || die->tag == DW_TAG_union_type))
22479 {
22480 const char *name = guess_full_die_structure_name (die, cu);
22481 if (name != NULL)
22482 return name;
22483 }
22484 return "";
22485 case DW_TAG_subprogram:
22486 /* Nested subroutines in Fortran get a prefix with the name
22487 of the parent's subroutine. */
22488 if (cu->language == language_fortran)
22489 {
22490 if ((die->tag == DW_TAG_subprogram)
22491 && (dwarf2_name (parent, cu) != NULL))
22492 return dwarf2_name (parent, cu);
22493 }
22494 return determine_prefix (parent, cu);
22495 case DW_TAG_enumeration_type:
22496 parent_type = read_type_die (parent, cu);
22497 if (TYPE_DECLARED_CLASS (parent_type))
22498 {
22499 if (parent_type->name () != NULL)
22500 return parent_type->name ();
22501 return "";
22502 }
22503 /* Fall through. */
22504 default:
22505 return determine_prefix (parent, cu);
22506 }
22507 }
22508
22509 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22510 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22511 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22512 an obconcat, otherwise allocate storage for the result. The CU argument is
22513 used to determine the language and hence, the appropriate separator. */
22514
22515 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22516
22517 static char *
22518 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22519 int physname, struct dwarf2_cu *cu)
22520 {
22521 const char *lead = "";
22522 const char *sep;
22523
22524 if (suffix == NULL || suffix[0] == '\0'
22525 || prefix == NULL || prefix[0] == '\0')
22526 sep = "";
22527 else if (cu->language == language_d)
22528 {
22529 /* For D, the 'main' function could be defined in any module, but it
22530 should never be prefixed. */
22531 if (strcmp (suffix, "D main") == 0)
22532 {
22533 prefix = "";
22534 sep = "";
22535 }
22536 else
22537 sep = ".";
22538 }
22539 else if (cu->language == language_fortran && physname)
22540 {
22541 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22542 DW_AT_MIPS_linkage_name is preferred and used instead. */
22543
22544 lead = "__";
22545 sep = "_MOD_";
22546 }
22547 else
22548 sep = "::";
22549
22550 if (prefix == NULL)
22551 prefix = "";
22552 if (suffix == NULL)
22553 suffix = "";
22554
22555 if (obs == NULL)
22556 {
22557 char *retval
22558 = ((char *)
22559 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22560
22561 strcpy (retval, lead);
22562 strcat (retval, prefix);
22563 strcat (retval, sep);
22564 strcat (retval, suffix);
22565 return retval;
22566 }
22567 else
22568 {
22569 /* We have an obstack. */
22570 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22571 }
22572 }
22573
22574 /* Get name of a die, return NULL if not found. */
22575
22576 static const char *
22577 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22578 struct objfile *objfile)
22579 {
22580 if (name && cu->language == language_cplus)
22581 {
22582 gdb::unique_xmalloc_ptr<char> canon_name
22583 = cp_canonicalize_string (name);
22584
22585 if (canon_name != nullptr)
22586 name = objfile->intern (canon_name.get ());
22587 }
22588
22589 return name;
22590 }
22591
22592 /* Get name of a die, return NULL if not found.
22593 Anonymous namespaces are converted to their magic string. */
22594
22595 static const char *
22596 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22597 {
22598 struct attribute *attr;
22599 struct objfile *objfile = cu->per_objfile->objfile;
22600
22601 attr = dwarf2_attr (die, DW_AT_name, cu);
22602 const char *attr_name = attr == nullptr ? nullptr : attr->as_string ();
22603 if (attr_name == nullptr
22604 && die->tag != DW_TAG_namespace
22605 && die->tag != DW_TAG_class_type
22606 && die->tag != DW_TAG_interface_type
22607 && die->tag != DW_TAG_structure_type
22608 && die->tag != DW_TAG_union_type)
22609 return NULL;
22610
22611 switch (die->tag)
22612 {
22613 case DW_TAG_compile_unit:
22614 case DW_TAG_partial_unit:
22615 /* Compilation units have a DW_AT_name that is a filename, not
22616 a source language identifier. */
22617 case DW_TAG_enumeration_type:
22618 case DW_TAG_enumerator:
22619 /* These tags always have simple identifiers already; no need
22620 to canonicalize them. */
22621 return attr_name;
22622
22623 case DW_TAG_namespace:
22624 if (attr_name != nullptr)
22625 return attr_name;
22626 return CP_ANONYMOUS_NAMESPACE_STR;
22627
22628 case DW_TAG_class_type:
22629 case DW_TAG_interface_type:
22630 case DW_TAG_structure_type:
22631 case DW_TAG_union_type:
22632 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22633 structures or unions. These were of the form "._%d" in GCC 4.1,
22634 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22635 and GCC 4.4. We work around this problem by ignoring these. */
22636 if (attr_name != nullptr
22637 && (startswith (attr_name, "._")
22638 || startswith (attr_name, "<anonymous")))
22639 return NULL;
22640
22641 /* GCC might emit a nameless typedef that has a linkage name. See
22642 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22643 if (!attr || attr_name == NULL)
22644 {
22645 attr = dw2_linkage_name_attr (die, cu);
22646 attr_name = attr == nullptr ? nullptr : attr->as_string ();
22647 if (attr == NULL || attr_name == NULL)
22648 return NULL;
22649
22650 /* Avoid demangling attr_name the second time on a second
22651 call for the same DIE. */
22652 if (!attr->canonical_string_p ())
22653 {
22654 gdb::unique_xmalloc_ptr<char> demangled
22655 (gdb_demangle (attr_name, DMGL_TYPES));
22656 if (demangled == nullptr)
22657 return nullptr;
22658
22659 attr->set_string_canonical (objfile->intern (demangled.get ()));
22660 attr_name = attr->as_string ();
22661 }
22662
22663 /* Strip any leading namespaces/classes, keep only the
22664 base name. DW_AT_name for named DIEs does not
22665 contain the prefixes. */
22666 const char *base = strrchr (attr_name, ':');
22667 if (base && base > attr_name && base[-1] == ':')
22668 return &base[1];
22669 else
22670 return attr_name;
22671 }
22672 break;
22673
22674 default:
22675 break;
22676 }
22677
22678 if (!attr->canonical_string_p ())
22679 attr->set_string_canonical (dwarf2_canonicalize_name (attr_name, cu,
22680 objfile));
22681 return attr->as_string ();
22682 }
22683
22684 /* Return the die that this die in an extension of, or NULL if there
22685 is none. *EXT_CU is the CU containing DIE on input, and the CU
22686 containing the return value on output. */
22687
22688 static struct die_info *
22689 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22690 {
22691 struct attribute *attr;
22692
22693 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22694 if (attr == NULL)
22695 return NULL;
22696
22697 return follow_die_ref (die, attr, ext_cu);
22698 }
22699
22700 static void
22701 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22702 {
22703 unsigned int i;
22704
22705 print_spaces (indent, f);
22706 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22707 dwarf_tag_name (die->tag), die->abbrev,
22708 sect_offset_str (die->sect_off));
22709
22710 if (die->parent != NULL)
22711 {
22712 print_spaces (indent, f);
22713 fprintf_unfiltered (f, " parent at offset: %s\n",
22714 sect_offset_str (die->parent->sect_off));
22715 }
22716
22717 print_spaces (indent, f);
22718 fprintf_unfiltered (f, " has children: %s\n",
22719 dwarf_bool_name (die->child != NULL));
22720
22721 print_spaces (indent, f);
22722 fprintf_unfiltered (f, " attributes:\n");
22723
22724 for (i = 0; i < die->num_attrs; ++i)
22725 {
22726 print_spaces (indent, f);
22727 fprintf_unfiltered (f, " %s (%s) ",
22728 dwarf_attr_name (die->attrs[i].name),
22729 dwarf_form_name (die->attrs[i].form));
22730
22731 switch (die->attrs[i].form)
22732 {
22733 case DW_FORM_addr:
22734 case DW_FORM_addrx:
22735 case DW_FORM_GNU_addr_index:
22736 fprintf_unfiltered (f, "address: ");
22737 fputs_filtered (hex_string (die->attrs[i].as_address ()), f);
22738 break;
22739 case DW_FORM_block2:
22740 case DW_FORM_block4:
22741 case DW_FORM_block:
22742 case DW_FORM_block1:
22743 fprintf_unfiltered (f, "block: size %s",
22744 pulongest (die->attrs[i].as_block ()->size));
22745 break;
22746 case DW_FORM_exprloc:
22747 fprintf_unfiltered (f, "expression: size %s",
22748 pulongest (die->attrs[i].as_block ()->size));
22749 break;
22750 case DW_FORM_data16:
22751 fprintf_unfiltered (f, "constant of 16 bytes");
22752 break;
22753 case DW_FORM_ref_addr:
22754 fprintf_unfiltered (f, "ref address: ");
22755 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
22756 break;
22757 case DW_FORM_GNU_ref_alt:
22758 fprintf_unfiltered (f, "alt ref address: ");
22759 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
22760 break;
22761 case DW_FORM_ref1:
22762 case DW_FORM_ref2:
22763 case DW_FORM_ref4:
22764 case DW_FORM_ref8:
22765 case DW_FORM_ref_udata:
22766 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22767 (long) (die->attrs[i].as_unsigned ()));
22768 break;
22769 case DW_FORM_data1:
22770 case DW_FORM_data2:
22771 case DW_FORM_data4:
22772 case DW_FORM_data8:
22773 case DW_FORM_udata:
22774 fprintf_unfiltered (f, "constant: %s",
22775 pulongest (die->attrs[i].as_unsigned ()));
22776 break;
22777 case DW_FORM_sec_offset:
22778 fprintf_unfiltered (f, "section offset: %s",
22779 pulongest (die->attrs[i].as_unsigned ()));
22780 break;
22781 case DW_FORM_ref_sig8:
22782 fprintf_unfiltered (f, "signature: %s",
22783 hex_string (die->attrs[i].as_signature ()));
22784 break;
22785 case DW_FORM_string:
22786 case DW_FORM_strp:
22787 case DW_FORM_line_strp:
22788 case DW_FORM_strx:
22789 case DW_FORM_GNU_str_index:
22790 case DW_FORM_GNU_strp_alt:
22791 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22792 die->attrs[i].as_string ()
22793 ? die->attrs[i].as_string () : "",
22794 die->attrs[i].canonical_string_p () ? "is" : "not");
22795 break;
22796 case DW_FORM_flag:
22797 if (die->attrs[i].as_boolean ())
22798 fprintf_unfiltered (f, "flag: TRUE");
22799 else
22800 fprintf_unfiltered (f, "flag: FALSE");
22801 break;
22802 case DW_FORM_flag_present:
22803 fprintf_unfiltered (f, "flag: TRUE");
22804 break;
22805 case DW_FORM_indirect:
22806 /* The reader will have reduced the indirect form to
22807 the "base form" so this form should not occur. */
22808 fprintf_unfiltered (f,
22809 "unexpected attribute form: DW_FORM_indirect");
22810 break;
22811 case DW_FORM_sdata:
22812 case DW_FORM_implicit_const:
22813 fprintf_unfiltered (f, "constant: %s",
22814 plongest (die->attrs[i].as_signed ()));
22815 break;
22816 default:
22817 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22818 die->attrs[i].form);
22819 break;
22820 }
22821 fprintf_unfiltered (f, "\n");
22822 }
22823 }
22824
22825 static void
22826 dump_die_for_error (struct die_info *die)
22827 {
22828 dump_die_shallow (gdb_stderr, 0, die);
22829 }
22830
22831 static void
22832 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22833 {
22834 int indent = level * 4;
22835
22836 gdb_assert (die != NULL);
22837
22838 if (level >= max_level)
22839 return;
22840
22841 dump_die_shallow (f, indent, die);
22842
22843 if (die->child != NULL)
22844 {
22845 print_spaces (indent, f);
22846 fprintf_unfiltered (f, " Children:");
22847 if (level + 1 < max_level)
22848 {
22849 fprintf_unfiltered (f, "\n");
22850 dump_die_1 (f, level + 1, max_level, die->child);
22851 }
22852 else
22853 {
22854 fprintf_unfiltered (f,
22855 " [not printed, max nesting level reached]\n");
22856 }
22857 }
22858
22859 if (die->sibling != NULL && level > 0)
22860 {
22861 dump_die_1 (f, level, max_level, die->sibling);
22862 }
22863 }
22864
22865 /* This is called from the pdie macro in gdbinit.in.
22866 It's not static so gcc will keep a copy callable from gdb. */
22867
22868 void
22869 dump_die (struct die_info *die, int max_level)
22870 {
22871 dump_die_1 (gdb_stdlog, 0, max_level, die);
22872 }
22873
22874 static void
22875 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22876 {
22877 void **slot;
22878
22879 slot = htab_find_slot_with_hash (cu->die_hash, die,
22880 to_underlying (die->sect_off),
22881 INSERT);
22882
22883 *slot = die;
22884 }
22885
22886 /* Follow reference or signature attribute ATTR of SRC_DIE.
22887 On entry *REF_CU is the CU of SRC_DIE.
22888 On exit *REF_CU is the CU of the result. */
22889
22890 static struct die_info *
22891 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22892 struct dwarf2_cu **ref_cu)
22893 {
22894 struct die_info *die;
22895
22896 if (attr->form_is_ref ())
22897 die = follow_die_ref (src_die, attr, ref_cu);
22898 else if (attr->form == DW_FORM_ref_sig8)
22899 die = follow_die_sig (src_die, attr, ref_cu);
22900 else
22901 {
22902 dump_die_for_error (src_die);
22903 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22904 objfile_name ((*ref_cu)->per_objfile->objfile));
22905 }
22906
22907 return die;
22908 }
22909
22910 /* Follow reference OFFSET.
22911 On entry *REF_CU is the CU of the source die referencing OFFSET.
22912 On exit *REF_CU is the CU of the result.
22913 Returns NULL if OFFSET is invalid. */
22914
22915 static struct die_info *
22916 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22917 struct dwarf2_cu **ref_cu)
22918 {
22919 struct die_info temp_die;
22920 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22921 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22922
22923 gdb_assert (cu->per_cu != NULL);
22924
22925 target_cu = cu;
22926
22927 if (cu->per_cu->is_debug_types)
22928 {
22929 /* .debug_types CUs cannot reference anything outside their CU.
22930 If they need to, they have to reference a signatured type via
22931 DW_FORM_ref_sig8. */
22932 if (!cu->header.offset_in_cu_p (sect_off))
22933 return NULL;
22934 }
22935 else if (offset_in_dwz != cu->per_cu->is_dwz
22936 || !cu->header.offset_in_cu_p (sect_off))
22937 {
22938 struct dwarf2_per_cu_data *per_cu;
22939
22940 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22941 per_objfile);
22942
22943 /* If necessary, add it to the queue and load its DIEs. */
22944 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
22945 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
22946 false, cu->language);
22947
22948 target_cu = per_objfile->get_cu (per_cu);
22949 }
22950 else if (cu->dies == NULL)
22951 {
22952 /* We're loading full DIEs during partial symbol reading. */
22953 gdb_assert (per_objfile->per_bfd->reading_partial_symbols);
22954 load_full_comp_unit (cu->per_cu, per_objfile, cu, false,
22955 language_minimal);
22956 }
22957
22958 *ref_cu = target_cu;
22959 temp_die.sect_off = sect_off;
22960
22961 if (target_cu != cu)
22962 target_cu->ancestor = cu;
22963
22964 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22965 &temp_die,
22966 to_underlying (sect_off));
22967 }
22968
22969 /* Follow reference attribute ATTR of SRC_DIE.
22970 On entry *REF_CU is the CU of SRC_DIE.
22971 On exit *REF_CU is the CU of the result. */
22972
22973 static struct die_info *
22974 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22975 struct dwarf2_cu **ref_cu)
22976 {
22977 sect_offset sect_off = attr->get_ref_die_offset ();
22978 struct dwarf2_cu *cu = *ref_cu;
22979 struct die_info *die;
22980
22981 die = follow_die_offset (sect_off,
22982 (attr->form == DW_FORM_GNU_ref_alt
22983 || cu->per_cu->is_dwz),
22984 ref_cu);
22985 if (!die)
22986 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22987 "at %s [in module %s]"),
22988 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22989 objfile_name (cu->per_objfile->objfile));
22990
22991 return die;
22992 }
22993
22994 /* See read.h. */
22995
22996 struct dwarf2_locexpr_baton
22997 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22998 dwarf2_per_cu_data *per_cu,
22999 dwarf2_per_objfile *per_objfile,
23000 gdb::function_view<CORE_ADDR ()> get_frame_pc,
23001 bool resolve_abstract_p)
23002 {
23003 struct die_info *die;
23004 struct attribute *attr;
23005 struct dwarf2_locexpr_baton retval;
23006 struct objfile *objfile = per_objfile->objfile;
23007
23008 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23009 if (cu == nullptr)
23010 cu = load_cu (per_cu, per_objfile, false);
23011
23012 if (cu == nullptr)
23013 {
23014 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23015 Instead just throw an error, not much else we can do. */
23016 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23017 sect_offset_str (sect_off), objfile_name (objfile));
23018 }
23019
23020 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23021 if (!die)
23022 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23023 sect_offset_str (sect_off), objfile_name (objfile));
23024
23025 attr = dwarf2_attr (die, DW_AT_location, cu);
23026 if (!attr && resolve_abstract_p
23027 && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
23028 != per_objfile->per_bfd->abstract_to_concrete.end ()))
23029 {
23030 CORE_ADDR pc = get_frame_pc ();
23031 CORE_ADDR baseaddr = objfile->text_section_offset ();
23032 struct gdbarch *gdbarch = objfile->arch ();
23033
23034 for (const auto &cand_off
23035 : per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
23036 {
23037 struct dwarf2_cu *cand_cu = cu;
23038 struct die_info *cand
23039 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23040 if (!cand
23041 || !cand->parent
23042 || cand->parent->tag != DW_TAG_subprogram)
23043 continue;
23044
23045 CORE_ADDR pc_low, pc_high;
23046 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23047 if (pc_low == ((CORE_ADDR) -1))
23048 continue;
23049 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23050 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23051 if (!(pc_low <= pc && pc < pc_high))
23052 continue;
23053
23054 die = cand;
23055 attr = dwarf2_attr (die, DW_AT_location, cu);
23056 break;
23057 }
23058 }
23059
23060 if (!attr)
23061 {
23062 /* DWARF: "If there is no such attribute, then there is no effect.".
23063 DATA is ignored if SIZE is 0. */
23064
23065 retval.data = NULL;
23066 retval.size = 0;
23067 }
23068 else if (attr->form_is_section_offset ())
23069 {
23070 struct dwarf2_loclist_baton loclist_baton;
23071 CORE_ADDR pc = get_frame_pc ();
23072 size_t size;
23073
23074 fill_in_loclist_baton (cu, &loclist_baton, attr);
23075
23076 retval.data = dwarf2_find_location_expression (&loclist_baton,
23077 &size, pc);
23078 retval.size = size;
23079 }
23080 else
23081 {
23082 if (!attr->form_is_block ())
23083 error (_("Dwarf Error: DIE at %s referenced in module %s "
23084 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23085 sect_offset_str (sect_off), objfile_name (objfile));
23086
23087 struct dwarf_block *block = attr->as_block ();
23088 retval.data = block->data;
23089 retval.size = block->size;
23090 }
23091 retval.per_objfile = per_objfile;
23092 retval.per_cu = cu->per_cu;
23093
23094 per_objfile->age_comp_units ();
23095
23096 return retval;
23097 }
23098
23099 /* See read.h. */
23100
23101 struct dwarf2_locexpr_baton
23102 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23103 dwarf2_per_cu_data *per_cu,
23104 dwarf2_per_objfile *per_objfile,
23105 gdb::function_view<CORE_ADDR ()> get_frame_pc)
23106 {
23107 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23108
23109 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile,
23110 get_frame_pc);
23111 }
23112
23113 /* Write a constant of a given type as target-ordered bytes into
23114 OBSTACK. */
23115
23116 static const gdb_byte *
23117 write_constant_as_bytes (struct obstack *obstack,
23118 enum bfd_endian byte_order,
23119 struct type *type,
23120 ULONGEST value,
23121 LONGEST *len)
23122 {
23123 gdb_byte *result;
23124
23125 *len = TYPE_LENGTH (type);
23126 result = (gdb_byte *) obstack_alloc (obstack, *len);
23127 store_unsigned_integer (result, *len, byte_order, value);
23128
23129 return result;
23130 }
23131
23132 /* See read.h. */
23133
23134 const gdb_byte *
23135 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23136 dwarf2_per_cu_data *per_cu,
23137 dwarf2_per_objfile *per_objfile,
23138 obstack *obstack,
23139 LONGEST *len)
23140 {
23141 struct die_info *die;
23142 struct attribute *attr;
23143 const gdb_byte *result = NULL;
23144 struct type *type;
23145 LONGEST value;
23146 enum bfd_endian byte_order;
23147 struct objfile *objfile = per_objfile->objfile;
23148
23149 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23150 if (cu == nullptr)
23151 cu = load_cu (per_cu, per_objfile, false);
23152
23153 if (cu == nullptr)
23154 {
23155 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23156 Instead just throw an error, not much else we can do. */
23157 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23158 sect_offset_str (sect_off), objfile_name (objfile));
23159 }
23160
23161 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23162 if (!die)
23163 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23164 sect_offset_str (sect_off), objfile_name (objfile));
23165
23166 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23167 if (attr == NULL)
23168 return NULL;
23169
23170 byte_order = (bfd_big_endian (objfile->obfd)
23171 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23172
23173 switch (attr->form)
23174 {
23175 case DW_FORM_addr:
23176 case DW_FORM_addrx:
23177 case DW_FORM_GNU_addr_index:
23178 {
23179 gdb_byte *tem;
23180
23181 *len = cu->header.addr_size;
23182 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23183 store_unsigned_integer (tem, *len, byte_order, attr->as_address ());
23184 result = tem;
23185 }
23186 break;
23187 case DW_FORM_string:
23188 case DW_FORM_strp:
23189 case DW_FORM_strx:
23190 case DW_FORM_GNU_str_index:
23191 case DW_FORM_GNU_strp_alt:
23192 /* The string is already allocated on the objfile obstack, point
23193 directly to it. */
23194 {
23195 const char *attr_name = attr->as_string ();
23196 result = (const gdb_byte *) attr_name;
23197 *len = strlen (attr_name);
23198 }
23199 break;
23200 case DW_FORM_block1:
23201 case DW_FORM_block2:
23202 case DW_FORM_block4:
23203 case DW_FORM_block:
23204 case DW_FORM_exprloc:
23205 case DW_FORM_data16:
23206 {
23207 struct dwarf_block *block = attr->as_block ();
23208 result = block->data;
23209 *len = block->size;
23210 }
23211 break;
23212
23213 /* The DW_AT_const_value attributes are supposed to carry the
23214 symbol's value "represented as it would be on the target
23215 architecture." By the time we get here, it's already been
23216 converted to host endianness, so we just need to sign- or
23217 zero-extend it as appropriate. */
23218 case DW_FORM_data1:
23219 type = die_type (die, cu);
23220 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23221 if (result == NULL)
23222 result = write_constant_as_bytes (obstack, byte_order,
23223 type, value, len);
23224 break;
23225 case DW_FORM_data2:
23226 type = die_type (die, cu);
23227 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23228 if (result == NULL)
23229 result = write_constant_as_bytes (obstack, byte_order,
23230 type, value, len);
23231 break;
23232 case DW_FORM_data4:
23233 type = die_type (die, cu);
23234 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23235 if (result == NULL)
23236 result = write_constant_as_bytes (obstack, byte_order,
23237 type, value, len);
23238 break;
23239 case DW_FORM_data8:
23240 type = die_type (die, cu);
23241 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23242 if (result == NULL)
23243 result = write_constant_as_bytes (obstack, byte_order,
23244 type, value, len);
23245 break;
23246
23247 case DW_FORM_sdata:
23248 case DW_FORM_implicit_const:
23249 type = die_type (die, cu);
23250 result = write_constant_as_bytes (obstack, byte_order,
23251 type, attr->as_signed (), len);
23252 break;
23253
23254 case DW_FORM_udata:
23255 type = die_type (die, cu);
23256 result = write_constant_as_bytes (obstack, byte_order,
23257 type, attr->as_unsigned (), len);
23258 break;
23259
23260 default:
23261 complaint (_("unsupported const value attribute form: '%s'"),
23262 dwarf_form_name (attr->form));
23263 break;
23264 }
23265
23266 return result;
23267 }
23268
23269 /* See read.h. */
23270
23271 struct type *
23272 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23273 dwarf2_per_cu_data *per_cu,
23274 dwarf2_per_objfile *per_objfile)
23275 {
23276 struct die_info *die;
23277
23278 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23279 if (cu == nullptr)
23280 cu = load_cu (per_cu, per_objfile, false);
23281
23282 if (cu == nullptr)
23283 return nullptr;
23284
23285 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23286 if (!die)
23287 return NULL;
23288
23289 return die_type (die, cu);
23290 }
23291
23292 /* See read.h. */
23293
23294 struct type *
23295 dwarf2_get_die_type (cu_offset die_offset,
23296 dwarf2_per_cu_data *per_cu,
23297 dwarf2_per_objfile *per_objfile)
23298 {
23299 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23300 return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile);
23301 }
23302
23303 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23304 On entry *REF_CU is the CU of SRC_DIE.
23305 On exit *REF_CU is the CU of the result.
23306 Returns NULL if the referenced DIE isn't found. */
23307
23308 static struct die_info *
23309 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23310 struct dwarf2_cu **ref_cu)
23311 {
23312 struct die_info temp_die;
23313 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23314 struct die_info *die;
23315 dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile;
23316
23317
23318 /* While it might be nice to assert sig_type->type == NULL here,
23319 we can get here for DW_AT_imported_declaration where we need
23320 the DIE not the type. */
23321
23322 /* If necessary, add it to the queue and load its DIEs. */
23323
23324 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, per_objfile,
23325 language_minimal))
23326 read_signatured_type (sig_type, per_objfile);
23327
23328 sig_cu = per_objfile->get_cu (&sig_type->per_cu);
23329 gdb_assert (sig_cu != NULL);
23330 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23331 temp_die.sect_off = sig_type->type_offset_in_section;
23332 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23333 to_underlying (temp_die.sect_off));
23334 if (die)
23335 {
23336 /* For .gdb_index version 7 keep track of included TUs.
23337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23338 if (per_objfile->per_bfd->index_table != NULL
23339 && per_objfile->per_bfd->index_table->version <= 7)
23340 {
23341 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23342 }
23343
23344 *ref_cu = sig_cu;
23345 if (sig_cu != cu)
23346 sig_cu->ancestor = cu;
23347
23348 return die;
23349 }
23350
23351 return NULL;
23352 }
23353
23354 /* Follow signatured type referenced by ATTR in SRC_DIE.
23355 On entry *REF_CU is the CU of SRC_DIE.
23356 On exit *REF_CU is the CU of the result.
23357 The result is the DIE of the type.
23358 If the referenced type cannot be found an error is thrown. */
23359
23360 static struct die_info *
23361 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23362 struct dwarf2_cu **ref_cu)
23363 {
23364 ULONGEST signature = attr->as_signature ();
23365 struct signatured_type *sig_type;
23366 struct die_info *die;
23367
23368 gdb_assert (attr->form == DW_FORM_ref_sig8);
23369
23370 sig_type = lookup_signatured_type (*ref_cu, signature);
23371 /* sig_type will be NULL if the signatured type is missing from
23372 the debug info. */
23373 if (sig_type == NULL)
23374 {
23375 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23376 " from DIE at %s [in module %s]"),
23377 hex_string (signature), sect_offset_str (src_die->sect_off),
23378 objfile_name ((*ref_cu)->per_objfile->objfile));
23379 }
23380
23381 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23382 if (die == NULL)
23383 {
23384 dump_die_for_error (src_die);
23385 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23386 " from DIE at %s [in module %s]"),
23387 hex_string (signature), sect_offset_str (src_die->sect_off),
23388 objfile_name ((*ref_cu)->per_objfile->objfile));
23389 }
23390
23391 return die;
23392 }
23393
23394 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23395 reading in and processing the type unit if necessary. */
23396
23397 static struct type *
23398 get_signatured_type (struct die_info *die, ULONGEST signature,
23399 struct dwarf2_cu *cu)
23400 {
23401 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23402 struct signatured_type *sig_type;
23403 struct dwarf2_cu *type_cu;
23404 struct die_info *type_die;
23405 struct type *type;
23406
23407 sig_type = lookup_signatured_type (cu, signature);
23408 /* sig_type will be NULL if the signatured type is missing from
23409 the debug info. */
23410 if (sig_type == NULL)
23411 {
23412 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23413 " from DIE at %s [in module %s]"),
23414 hex_string (signature), sect_offset_str (die->sect_off),
23415 objfile_name (per_objfile->objfile));
23416 return build_error_marker_type (cu, die);
23417 }
23418
23419 /* If we already know the type we're done. */
23420 type = per_objfile->get_type_for_signatured_type (sig_type);
23421 if (type != nullptr)
23422 return type;
23423
23424 type_cu = cu;
23425 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23426 if (type_die != NULL)
23427 {
23428 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23429 is created. This is important, for example, because for c++ classes
23430 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23431 type = read_type_die (type_die, type_cu);
23432 if (type == NULL)
23433 {
23434 complaint (_("Dwarf Error: Cannot build signatured type %s"
23435 " referenced from DIE at %s [in module %s]"),
23436 hex_string (signature), sect_offset_str (die->sect_off),
23437 objfile_name (per_objfile->objfile));
23438 type = build_error_marker_type (cu, die);
23439 }
23440 }
23441 else
23442 {
23443 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23444 " from DIE at %s [in module %s]"),
23445 hex_string (signature), sect_offset_str (die->sect_off),
23446 objfile_name (per_objfile->objfile));
23447 type = build_error_marker_type (cu, die);
23448 }
23449
23450 per_objfile->set_type_for_signatured_type (sig_type, type);
23451
23452 return type;
23453 }
23454
23455 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23456 reading in and processing the type unit if necessary. */
23457
23458 static struct type *
23459 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23460 struct dwarf2_cu *cu) /* ARI: editCase function */
23461 {
23462 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23463 if (attr->form_is_ref ())
23464 {
23465 struct dwarf2_cu *type_cu = cu;
23466 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23467
23468 return read_type_die (type_die, type_cu);
23469 }
23470 else if (attr->form == DW_FORM_ref_sig8)
23471 {
23472 return get_signatured_type (die, attr->as_signature (), cu);
23473 }
23474 else
23475 {
23476 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23477
23478 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23479 " at %s [in module %s]"),
23480 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23481 objfile_name (per_objfile->objfile));
23482 return build_error_marker_type (cu, die);
23483 }
23484 }
23485
23486 /* Load the DIEs associated with type unit PER_CU into memory. */
23487
23488 static void
23489 load_full_type_unit (dwarf2_per_cu_data *per_cu,
23490 dwarf2_per_objfile *per_objfile)
23491 {
23492 struct signatured_type *sig_type;
23493
23494 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23495 gdb_assert (! per_cu->type_unit_group_p ());
23496
23497 /* We have the per_cu, but we need the signatured_type.
23498 Fortunately this is an easy translation. */
23499 gdb_assert (per_cu->is_debug_types);
23500 sig_type = (struct signatured_type *) per_cu;
23501
23502 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23503
23504 read_signatured_type (sig_type, per_objfile);
23505
23506 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
23507 }
23508
23509 /* Read in a signatured type and build its CU and DIEs.
23510 If the type is a stub for the real type in a DWO file,
23511 read in the real type from the DWO file as well. */
23512
23513 static void
23514 read_signatured_type (signatured_type *sig_type,
23515 dwarf2_per_objfile *per_objfile)
23516 {
23517 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23518
23519 gdb_assert (per_cu->is_debug_types);
23520 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23521
23522 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
23523
23524 if (!reader.dummy_p)
23525 {
23526 struct dwarf2_cu *cu = reader.cu;
23527 const gdb_byte *info_ptr = reader.info_ptr;
23528
23529 gdb_assert (cu->die_hash == NULL);
23530 cu->die_hash =
23531 htab_create_alloc_ex (cu->header.length / 12,
23532 die_hash,
23533 die_eq,
23534 NULL,
23535 &cu->comp_unit_obstack,
23536 hashtab_obstack_allocate,
23537 dummy_obstack_deallocate);
23538
23539 if (reader.comp_unit_die->has_children)
23540 reader.comp_unit_die->child
23541 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23542 reader.comp_unit_die);
23543 cu->dies = reader.comp_unit_die;
23544 /* comp_unit_die is not stored in die_hash, no need. */
23545
23546 /* We try not to read any attributes in this function, because
23547 not all CUs needed for references have been loaded yet, and
23548 symbol table processing isn't initialized. But we have to
23549 set the CU language, or we won't be able to build types
23550 correctly. Similarly, if we do not read the producer, we can
23551 not apply producer-specific interpretation. */
23552 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23553
23554 reader.keep ();
23555 }
23556
23557 sig_type->per_cu.tu_read = 1;
23558 }
23559
23560 /* Decode simple location descriptions.
23561 Given a pointer to a dwarf block that defines a location, compute
23562 the location and return the value. If COMPUTED is non-null, it is
23563 set to true to indicate that decoding was successful, and false
23564 otherwise. If COMPUTED is null, then this function may emit a
23565 complaint. */
23566
23567 static CORE_ADDR
23568 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
23569 {
23570 struct objfile *objfile = cu->per_objfile->objfile;
23571 size_t i;
23572 size_t size = blk->size;
23573 const gdb_byte *data = blk->data;
23574 CORE_ADDR stack[64];
23575 int stacki;
23576 unsigned int bytes_read, unsnd;
23577 gdb_byte op;
23578
23579 if (computed != nullptr)
23580 *computed = false;
23581
23582 i = 0;
23583 stacki = 0;
23584 stack[stacki] = 0;
23585 stack[++stacki] = 0;
23586
23587 while (i < size)
23588 {
23589 op = data[i++];
23590 switch (op)
23591 {
23592 case DW_OP_lit0:
23593 case DW_OP_lit1:
23594 case DW_OP_lit2:
23595 case DW_OP_lit3:
23596 case DW_OP_lit4:
23597 case DW_OP_lit5:
23598 case DW_OP_lit6:
23599 case DW_OP_lit7:
23600 case DW_OP_lit8:
23601 case DW_OP_lit9:
23602 case DW_OP_lit10:
23603 case DW_OP_lit11:
23604 case DW_OP_lit12:
23605 case DW_OP_lit13:
23606 case DW_OP_lit14:
23607 case DW_OP_lit15:
23608 case DW_OP_lit16:
23609 case DW_OP_lit17:
23610 case DW_OP_lit18:
23611 case DW_OP_lit19:
23612 case DW_OP_lit20:
23613 case DW_OP_lit21:
23614 case DW_OP_lit22:
23615 case DW_OP_lit23:
23616 case DW_OP_lit24:
23617 case DW_OP_lit25:
23618 case DW_OP_lit26:
23619 case DW_OP_lit27:
23620 case DW_OP_lit28:
23621 case DW_OP_lit29:
23622 case DW_OP_lit30:
23623 case DW_OP_lit31:
23624 stack[++stacki] = op - DW_OP_lit0;
23625 break;
23626
23627 case DW_OP_reg0:
23628 case DW_OP_reg1:
23629 case DW_OP_reg2:
23630 case DW_OP_reg3:
23631 case DW_OP_reg4:
23632 case DW_OP_reg5:
23633 case DW_OP_reg6:
23634 case DW_OP_reg7:
23635 case DW_OP_reg8:
23636 case DW_OP_reg9:
23637 case DW_OP_reg10:
23638 case DW_OP_reg11:
23639 case DW_OP_reg12:
23640 case DW_OP_reg13:
23641 case DW_OP_reg14:
23642 case DW_OP_reg15:
23643 case DW_OP_reg16:
23644 case DW_OP_reg17:
23645 case DW_OP_reg18:
23646 case DW_OP_reg19:
23647 case DW_OP_reg20:
23648 case DW_OP_reg21:
23649 case DW_OP_reg22:
23650 case DW_OP_reg23:
23651 case DW_OP_reg24:
23652 case DW_OP_reg25:
23653 case DW_OP_reg26:
23654 case DW_OP_reg27:
23655 case DW_OP_reg28:
23656 case DW_OP_reg29:
23657 case DW_OP_reg30:
23658 case DW_OP_reg31:
23659 stack[++stacki] = op - DW_OP_reg0;
23660 if (i < size)
23661 {
23662 if (computed == nullptr)
23663 dwarf2_complex_location_expr_complaint ();
23664 else
23665 return 0;
23666 }
23667 break;
23668
23669 case DW_OP_regx:
23670 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23671 i += bytes_read;
23672 stack[++stacki] = unsnd;
23673 if (i < size)
23674 {
23675 if (computed == nullptr)
23676 dwarf2_complex_location_expr_complaint ();
23677 else
23678 return 0;
23679 }
23680 break;
23681
23682 case DW_OP_addr:
23683 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
23684 &bytes_read);
23685 i += bytes_read;
23686 break;
23687
23688 case DW_OP_const1u:
23689 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23690 i += 1;
23691 break;
23692
23693 case DW_OP_const1s:
23694 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23695 i += 1;
23696 break;
23697
23698 case DW_OP_const2u:
23699 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23700 i += 2;
23701 break;
23702
23703 case DW_OP_const2s:
23704 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23705 i += 2;
23706 break;
23707
23708 case DW_OP_const4u:
23709 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23710 i += 4;
23711 break;
23712
23713 case DW_OP_const4s:
23714 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23715 i += 4;
23716 break;
23717
23718 case DW_OP_const8u:
23719 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23720 i += 8;
23721 break;
23722
23723 case DW_OP_constu:
23724 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23725 &bytes_read);
23726 i += bytes_read;
23727 break;
23728
23729 case DW_OP_consts:
23730 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23731 i += bytes_read;
23732 break;
23733
23734 case DW_OP_dup:
23735 stack[stacki + 1] = stack[stacki];
23736 stacki++;
23737 break;
23738
23739 case DW_OP_plus:
23740 stack[stacki - 1] += stack[stacki];
23741 stacki--;
23742 break;
23743
23744 case DW_OP_plus_uconst:
23745 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23746 &bytes_read);
23747 i += bytes_read;
23748 break;
23749
23750 case DW_OP_minus:
23751 stack[stacki - 1] -= stack[stacki];
23752 stacki--;
23753 break;
23754
23755 case DW_OP_deref:
23756 /* If we're not the last op, then we definitely can't encode
23757 this using GDB's address_class enum. This is valid for partial
23758 global symbols, although the variable's address will be bogus
23759 in the psymtab. */
23760 if (i < size)
23761 {
23762 if (computed == nullptr)
23763 dwarf2_complex_location_expr_complaint ();
23764 else
23765 return 0;
23766 }
23767 break;
23768
23769 case DW_OP_GNU_push_tls_address:
23770 case DW_OP_form_tls_address:
23771 /* The top of the stack has the offset from the beginning
23772 of the thread control block at which the variable is located. */
23773 /* Nothing should follow this operator, so the top of stack would
23774 be returned. */
23775 /* This is valid for partial global symbols, but the variable's
23776 address will be bogus in the psymtab. Make it always at least
23777 non-zero to not look as a variable garbage collected by linker
23778 which have DW_OP_addr 0. */
23779 if (i < size)
23780 {
23781 if (computed == nullptr)
23782 dwarf2_complex_location_expr_complaint ();
23783 else
23784 return 0;
23785 }
23786 stack[stacki]++;
23787 break;
23788
23789 case DW_OP_GNU_uninit:
23790 if (computed != nullptr)
23791 return 0;
23792 break;
23793
23794 case DW_OP_addrx:
23795 case DW_OP_GNU_addr_index:
23796 case DW_OP_GNU_const_index:
23797 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23798 &bytes_read);
23799 i += bytes_read;
23800 break;
23801
23802 default:
23803 if (computed == nullptr)
23804 {
23805 const char *name = get_DW_OP_name (op);
23806
23807 if (name)
23808 complaint (_("unsupported stack op: '%s'"),
23809 name);
23810 else
23811 complaint (_("unsupported stack op: '%02x'"),
23812 op);
23813 }
23814
23815 return (stack[stacki]);
23816 }
23817
23818 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23819 outside of the allocated space. Also enforce minimum>0. */
23820 if (stacki >= ARRAY_SIZE (stack) - 1)
23821 {
23822 if (computed == nullptr)
23823 complaint (_("location description stack overflow"));
23824 return 0;
23825 }
23826
23827 if (stacki <= 0)
23828 {
23829 if (computed == nullptr)
23830 complaint (_("location description stack underflow"));
23831 return 0;
23832 }
23833 }
23834
23835 if (computed != nullptr)
23836 *computed = true;
23837 return (stack[stacki]);
23838 }
23839
23840 /* memory allocation interface */
23841
23842 static struct dwarf_block *
23843 dwarf_alloc_block (struct dwarf2_cu *cu)
23844 {
23845 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23846 }
23847
23848 static struct die_info *
23849 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23850 {
23851 struct die_info *die;
23852 size_t size = sizeof (struct die_info);
23853
23854 if (num_attrs > 1)
23855 size += (num_attrs - 1) * sizeof (struct attribute);
23856
23857 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23858 memset (die, 0, sizeof (struct die_info));
23859 return (die);
23860 }
23861
23862 \f
23863
23864 /* Macro support. */
23865
23866 /* An overload of dwarf_decode_macros that finds the correct section
23867 and ensures it is read in before calling the other overload. */
23868
23869 static void
23870 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23871 int section_is_gnu)
23872 {
23873 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23874 struct objfile *objfile = per_objfile->objfile;
23875 const struct line_header *lh = cu->line_header;
23876 unsigned int offset_size = cu->header.offset_size;
23877 struct dwarf2_section_info *section;
23878 const char *section_name;
23879
23880 if (cu->dwo_unit != nullptr)
23881 {
23882 if (section_is_gnu)
23883 {
23884 section = &cu->dwo_unit->dwo_file->sections.macro;
23885 section_name = ".debug_macro.dwo";
23886 }
23887 else
23888 {
23889 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23890 section_name = ".debug_macinfo.dwo";
23891 }
23892 }
23893 else
23894 {
23895 if (section_is_gnu)
23896 {
23897 section = &per_objfile->per_bfd->macro;
23898 section_name = ".debug_macro";
23899 }
23900 else
23901 {
23902 section = &per_objfile->per_bfd->macinfo;
23903 section_name = ".debug_macinfo";
23904 }
23905 }
23906
23907 section->read (objfile);
23908 if (section->buffer == nullptr)
23909 {
23910 complaint (_("missing %s section"), section_name);
23911 return;
23912 }
23913
23914 buildsym_compunit *builder = cu->get_builder ();
23915
23916 struct dwarf2_section_info *str_offsets_section;
23917 struct dwarf2_section_info *str_section;
23918 ULONGEST str_offsets_base;
23919
23920 if (cu->dwo_unit != nullptr)
23921 {
23922 str_offsets_section = &cu->dwo_unit->dwo_file
23923 ->sections.str_offsets;
23924 str_section = &cu->dwo_unit->dwo_file->sections.str;
23925 str_offsets_base = cu->header.addr_size;
23926 }
23927 else
23928 {
23929 str_offsets_section = &per_objfile->per_bfd->str_offsets;
23930 str_section = &per_objfile->per_bfd->str;
23931 str_offsets_base = *cu->str_offsets_base;
23932 }
23933
23934 dwarf_decode_macros (per_objfile, builder, section, lh,
23935 offset_size, offset, str_section, str_offsets_section,
23936 str_offsets_base, section_is_gnu);
23937 }
23938
23939 /* Return the .debug_loc section to use for CU.
23940 For DWO files use .debug_loc.dwo. */
23941
23942 static struct dwarf2_section_info *
23943 cu_debug_loc_section (struct dwarf2_cu *cu)
23944 {
23945 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23946
23947 if (cu->dwo_unit)
23948 {
23949 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23950
23951 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23952 }
23953 return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists
23954 : &per_objfile->per_bfd->loc);
23955 }
23956
23957 /* Return the .debug_rnglists section to use for CU. */
23958 static struct dwarf2_section_info *
23959 cu_debug_rnglists_section (struct dwarf2_cu *cu, dwarf_tag tag)
23960 {
23961 if (cu->header.version < 5)
23962 error (_(".debug_rnglists section cannot be used in DWARF %d"),
23963 cu->header.version);
23964 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23965
23966 /* Make sure we read the .debug_rnglists section from the file that
23967 contains the DW_AT_ranges attribute we are reading. Normally that
23968 would be the .dwo file, if there is one. However for DW_TAG_compile_unit
23969 or DW_TAG_skeleton unit, we always want to read from objfile/linked
23970 program. */
23971 if (cu->dwo_unit != nullptr
23972 && tag != DW_TAG_compile_unit
23973 && tag != DW_TAG_skeleton_unit)
23974 {
23975 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23976
23977 if (sections->rnglists.size > 0)
23978 return &sections->rnglists;
23979 else
23980 error (_(".debug_rnglists section is missing from .dwo file."));
23981 }
23982 return &dwarf2_per_objfile->per_bfd->rnglists;
23983 }
23984
23985 /* A helper function that fills in a dwarf2_loclist_baton. */
23986
23987 static void
23988 fill_in_loclist_baton (struct dwarf2_cu *cu,
23989 struct dwarf2_loclist_baton *baton,
23990 const struct attribute *attr)
23991 {
23992 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23993 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23994
23995 section->read (per_objfile->objfile);
23996
23997 baton->per_objfile = per_objfile;
23998 baton->per_cu = cu->per_cu;
23999 gdb_assert (baton->per_cu);
24000 /* We don't know how long the location list is, but make sure we
24001 don't run off the edge of the section. */
24002 baton->size = section->size - attr->as_unsigned ();
24003 baton->data = section->buffer + attr->as_unsigned ();
24004 if (cu->base_address.has_value ())
24005 baton->base_address = *cu->base_address;
24006 else
24007 baton->base_address = 0;
24008 baton->from_dwo = cu->dwo_unit != NULL;
24009 }
24010
24011 static void
24012 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24013 struct dwarf2_cu *cu, int is_block)
24014 {
24015 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24016 struct objfile *objfile = per_objfile->objfile;
24017 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24018
24019 if (attr->form_is_section_offset ()
24020 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24021 the section. If so, fall through to the complaint in the
24022 other branch. */
24023 && attr->as_unsigned () < section->get_size (objfile))
24024 {
24025 struct dwarf2_loclist_baton *baton;
24026
24027 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24028
24029 fill_in_loclist_baton (cu, baton, attr);
24030
24031 if (!cu->base_address.has_value ())
24032 complaint (_("Location list used without "
24033 "specifying the CU base address."));
24034
24035 SYMBOL_ACLASS_INDEX (sym) = (is_block
24036 ? dwarf2_loclist_block_index
24037 : dwarf2_loclist_index);
24038 SYMBOL_LOCATION_BATON (sym) = baton;
24039 }
24040 else
24041 {
24042 struct dwarf2_locexpr_baton *baton;
24043
24044 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24045 baton->per_objfile = per_objfile;
24046 baton->per_cu = cu->per_cu;
24047 gdb_assert (baton->per_cu);
24048
24049 if (attr->form_is_block ())
24050 {
24051 /* Note that we're just copying the block's data pointer
24052 here, not the actual data. We're still pointing into the
24053 info_buffer for SYM's objfile; right now we never release
24054 that buffer, but when we do clean up properly this may
24055 need to change. */
24056 struct dwarf_block *block = attr->as_block ();
24057 baton->size = block->size;
24058 baton->data = block->data;
24059 }
24060 else
24061 {
24062 dwarf2_invalid_attrib_class_complaint ("location description",
24063 sym->natural_name ());
24064 baton->size = 0;
24065 }
24066
24067 SYMBOL_ACLASS_INDEX (sym) = (is_block
24068 ? dwarf2_locexpr_block_index
24069 : dwarf2_locexpr_index);
24070 SYMBOL_LOCATION_BATON (sym) = baton;
24071 }
24072 }
24073
24074 /* See read.h. */
24075
24076 const comp_unit_head *
24077 dwarf2_per_cu_data::get_header () const
24078 {
24079 if (!m_header_read_in)
24080 {
24081 const gdb_byte *info_ptr
24082 = this->section->buffer + to_underlying (this->sect_off);
24083
24084 memset (&m_header, 0, sizeof (m_header));
24085
24086 read_comp_unit_head (&m_header, info_ptr, this->section,
24087 rcuh_kind::COMPILE);
24088 }
24089
24090 return &m_header;
24091 }
24092
24093 /* See read.h. */
24094
24095 int
24096 dwarf2_per_cu_data::addr_size () const
24097 {
24098 return this->get_header ()->addr_size;
24099 }
24100
24101 /* See read.h. */
24102
24103 int
24104 dwarf2_per_cu_data::offset_size () const
24105 {
24106 return this->get_header ()->offset_size;
24107 }
24108
24109 /* See read.h. */
24110
24111 int
24112 dwarf2_per_cu_data::ref_addr_size () const
24113 {
24114 const comp_unit_head *header = this->get_header ();
24115
24116 if (header->version == 2)
24117 return header->addr_size;
24118 else
24119 return header->offset_size;
24120 }
24121
24122 /* See read.h. */
24123
24124 struct type *
24125 dwarf2_cu::addr_type () const
24126 {
24127 struct objfile *objfile = this->per_objfile->objfile;
24128 struct type *void_type = objfile_type (objfile)->builtin_void;
24129 struct type *addr_type = lookup_pointer_type (void_type);
24130 int addr_size = this->per_cu->addr_size ();
24131
24132 if (TYPE_LENGTH (addr_type) == addr_size)
24133 return addr_type;
24134
24135 addr_type = addr_sized_int_type (addr_type->is_unsigned ());
24136 return addr_type;
24137 }
24138
24139 /* A helper function for dwarf2_find_containing_comp_unit that returns
24140 the index of the result, and that searches a vector. It will
24141 return a result even if the offset in question does not actually
24142 occur in any CU. This is separate so that it can be unit
24143 tested. */
24144
24145 static int
24146 dwarf2_find_containing_comp_unit
24147 (sect_offset sect_off,
24148 unsigned int offset_in_dwz,
24149 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24150 {
24151 int low, high;
24152
24153 low = 0;
24154 high = all_comp_units.size () - 1;
24155 while (high > low)
24156 {
24157 struct dwarf2_per_cu_data *mid_cu;
24158 int mid = low + (high - low) / 2;
24159
24160 mid_cu = all_comp_units[mid];
24161 if (mid_cu->is_dwz > offset_in_dwz
24162 || (mid_cu->is_dwz == offset_in_dwz
24163 && mid_cu->sect_off + mid_cu->length > sect_off))
24164 high = mid;
24165 else
24166 low = mid + 1;
24167 }
24168 gdb_assert (low == high);
24169 return low;
24170 }
24171
24172 /* Locate the .debug_info compilation unit from CU's objfile which contains
24173 the DIE at OFFSET. Raises an error on failure. */
24174
24175 static struct dwarf2_per_cu_data *
24176 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24177 unsigned int offset_in_dwz,
24178 dwarf2_per_objfile *per_objfile)
24179 {
24180 int low = dwarf2_find_containing_comp_unit
24181 (sect_off, offset_in_dwz, per_objfile->per_bfd->all_comp_units);
24182 dwarf2_per_cu_data *this_cu = per_objfile->per_bfd->all_comp_units[low];
24183
24184 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24185 {
24186 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24187 error (_("Dwarf Error: could not find partial DIE containing "
24188 "offset %s [in module %s]"),
24189 sect_offset_str (sect_off),
24190 bfd_get_filename (per_objfile->objfile->obfd));
24191
24192 gdb_assert (per_objfile->per_bfd->all_comp_units[low-1]->sect_off
24193 <= sect_off);
24194 return per_objfile->per_bfd->all_comp_units[low-1];
24195 }
24196 else
24197 {
24198 if (low == per_objfile->per_bfd->all_comp_units.size () - 1
24199 && sect_off >= this_cu->sect_off + this_cu->length)
24200 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24201 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24202 return this_cu;
24203 }
24204 }
24205
24206 #if GDB_SELF_TEST
24207
24208 namespace selftests {
24209 namespace find_containing_comp_unit {
24210
24211 static void
24212 run_test ()
24213 {
24214 struct dwarf2_per_cu_data one {};
24215 struct dwarf2_per_cu_data two {};
24216 struct dwarf2_per_cu_data three {};
24217 struct dwarf2_per_cu_data four {};
24218
24219 one.length = 5;
24220 two.sect_off = sect_offset (one.length);
24221 two.length = 7;
24222
24223 three.length = 5;
24224 three.is_dwz = 1;
24225 four.sect_off = sect_offset (three.length);
24226 four.length = 7;
24227 four.is_dwz = 1;
24228
24229 std::vector<dwarf2_per_cu_data *> units;
24230 units.push_back (&one);
24231 units.push_back (&two);
24232 units.push_back (&three);
24233 units.push_back (&four);
24234
24235 int result;
24236
24237 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24238 SELF_CHECK (units[result] == &one);
24239 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24240 SELF_CHECK (units[result] == &one);
24241 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24242 SELF_CHECK (units[result] == &two);
24243
24244 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24245 SELF_CHECK (units[result] == &three);
24246 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24247 SELF_CHECK (units[result] == &three);
24248 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24249 SELF_CHECK (units[result] == &four);
24250 }
24251
24252 }
24253 }
24254
24255 #endif /* GDB_SELF_TEST */
24256
24257 /* Initialize dwarf2_cu to read PER_CU, in the context of PER_OBJFILE. */
24258
24259 dwarf2_cu::dwarf2_cu (dwarf2_per_cu_data *per_cu,
24260 dwarf2_per_objfile *per_objfile)
24261 : per_cu (per_cu),
24262 per_objfile (per_objfile),
24263 mark (false),
24264 has_loclist (false),
24265 checked_producer (false),
24266 producer_is_gxx_lt_4_6 (false),
24267 producer_is_gcc_lt_4_3 (false),
24268 producer_is_icc (false),
24269 producer_is_icc_lt_14 (false),
24270 producer_is_codewarrior (false),
24271 processing_has_namespace_info (false)
24272 {
24273 }
24274
24275 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24276
24277 static void
24278 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24279 enum language pretend_language)
24280 {
24281 struct attribute *attr;
24282
24283 /* Set the language we're debugging. */
24284 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24285 if (attr != nullptr)
24286 set_cu_language (attr->constant_value (0), cu);
24287 else
24288 {
24289 cu->language = pretend_language;
24290 cu->language_defn = language_def (cu->language);
24291 }
24292
24293 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24294 }
24295
24296 /* See read.h. */
24297
24298 dwarf2_cu *
24299 dwarf2_per_objfile::get_cu (dwarf2_per_cu_data *per_cu)
24300 {
24301 auto it = m_dwarf2_cus.find (per_cu);
24302 if (it == m_dwarf2_cus.end ())
24303 return nullptr;
24304
24305 return it->second;
24306 }
24307
24308 /* See read.h. */
24309
24310 void
24311 dwarf2_per_objfile::set_cu (dwarf2_per_cu_data *per_cu, dwarf2_cu *cu)
24312 {
24313 gdb_assert (this->get_cu (per_cu) == nullptr);
24314
24315 m_dwarf2_cus[per_cu] = cu;
24316 }
24317
24318 /* See read.h. */
24319
24320 void
24321 dwarf2_per_objfile::age_comp_units ()
24322 {
24323 /* Start by clearing all marks. */
24324 for (auto pair : m_dwarf2_cus)
24325 pair.second->mark = false;
24326
24327 /* Traverse all CUs, mark them and their dependencies if used recently
24328 enough. */
24329 for (auto pair : m_dwarf2_cus)
24330 {
24331 dwarf2_cu *cu = pair.second;
24332
24333 cu->last_used++;
24334 if (cu->last_used <= dwarf_max_cache_age)
24335 dwarf2_mark (cu);
24336 }
24337
24338 /* Delete all CUs still not marked. */
24339 for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();)
24340 {
24341 dwarf2_cu *cu = it->second;
24342
24343 if (!cu->mark)
24344 {
24345 delete cu;
24346 it = m_dwarf2_cus.erase (it);
24347 }
24348 else
24349 it++;
24350 }
24351 }
24352
24353 /* See read.h. */
24354
24355 void
24356 dwarf2_per_objfile::remove_cu (dwarf2_per_cu_data *per_cu)
24357 {
24358 auto it = m_dwarf2_cus.find (per_cu);
24359 if (it == m_dwarf2_cus.end ())
24360 return;
24361
24362 delete it->second;
24363
24364 m_dwarf2_cus.erase (it);
24365 }
24366
24367 dwarf2_per_objfile::~dwarf2_per_objfile ()
24368 {
24369 remove_all_cus ();
24370 }
24371
24372 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24373 We store these in a hash table separate from the DIEs, and preserve them
24374 when the DIEs are flushed out of cache.
24375
24376 The CU "per_cu" pointer is needed because offset alone is not enough to
24377 uniquely identify the type. A file may have multiple .debug_types sections,
24378 or the type may come from a DWO file. Furthermore, while it's more logical
24379 to use per_cu->section+offset, with Fission the section with the data is in
24380 the DWO file but we don't know that section at the point we need it.
24381 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24382 because we can enter the lookup routine, get_die_type_at_offset, from
24383 outside this file, and thus won't necessarily have PER_CU->cu.
24384 Fortunately, PER_CU is stable for the life of the objfile. */
24385
24386 struct dwarf2_per_cu_offset_and_type
24387 {
24388 const struct dwarf2_per_cu_data *per_cu;
24389 sect_offset sect_off;
24390 struct type *type;
24391 };
24392
24393 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24394
24395 static hashval_t
24396 per_cu_offset_and_type_hash (const void *item)
24397 {
24398 const struct dwarf2_per_cu_offset_and_type *ofs
24399 = (const struct dwarf2_per_cu_offset_and_type *) item;
24400
24401 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24402 }
24403
24404 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24405
24406 static int
24407 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24408 {
24409 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24410 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24411 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24412 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24413
24414 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24415 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24416 }
24417
24418 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24419 table if necessary. For convenience, return TYPE.
24420
24421 The DIEs reading must have careful ordering to:
24422 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24423 reading current DIE.
24424 * Not trying to dereference contents of still incompletely read in types
24425 while reading in other DIEs.
24426 * Enable referencing still incompletely read in types just by a pointer to
24427 the type without accessing its fields.
24428
24429 Therefore caller should follow these rules:
24430 * Try to fetch any prerequisite types we may need to build this DIE type
24431 before building the type and calling set_die_type.
24432 * After building type call set_die_type for current DIE as soon as
24433 possible before fetching more types to complete the current type.
24434 * Make the type as complete as possible before fetching more types. */
24435
24436 static struct type *
24437 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24438 {
24439 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24440 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24441 struct objfile *objfile = per_objfile->objfile;
24442 struct attribute *attr;
24443 struct dynamic_prop prop;
24444
24445 /* For Ada types, make sure that the gnat-specific data is always
24446 initialized (if not already set). There are a few types where
24447 we should not be doing so, because the type-specific area is
24448 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24449 where the type-specific area is used to store the floatformat).
24450 But this is not a problem, because the gnat-specific information
24451 is actually not needed for these types. */
24452 if (need_gnat_info (cu)
24453 && type->code () != TYPE_CODE_FUNC
24454 && type->code () != TYPE_CODE_FLT
24455 && type->code () != TYPE_CODE_METHODPTR
24456 && type->code () != TYPE_CODE_MEMBERPTR
24457 && type->code () != TYPE_CODE_METHOD
24458 && !HAVE_GNAT_AUX_INFO (type))
24459 INIT_GNAT_SPECIFIC (type);
24460
24461 /* Read DW_AT_allocated and set in type. */
24462 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24463 if (attr != NULL)
24464 {
24465 struct type *prop_type = cu->addr_sized_int_type (false);
24466 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24467 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
24468 }
24469
24470 /* Read DW_AT_associated and set in type. */
24471 attr = dwarf2_attr (die, DW_AT_associated, cu);
24472 if (attr != NULL)
24473 {
24474 struct type *prop_type = cu->addr_sized_int_type (false);
24475 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24476 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
24477 }
24478
24479 /* Read DW_AT_data_location and set in type. */
24480 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24481 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
24482 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
24483
24484 if (per_objfile->die_type_hash == NULL)
24485 per_objfile->die_type_hash
24486 = htab_up (htab_create_alloc (127,
24487 per_cu_offset_and_type_hash,
24488 per_cu_offset_and_type_eq,
24489 NULL, xcalloc, xfree));
24490
24491 ofs.per_cu = cu->per_cu;
24492 ofs.sect_off = die->sect_off;
24493 ofs.type = type;
24494 slot = (struct dwarf2_per_cu_offset_and_type **)
24495 htab_find_slot (per_objfile->die_type_hash.get (), &ofs, INSERT);
24496 if (*slot)
24497 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24498 sect_offset_str (die->sect_off));
24499 *slot = XOBNEW (&objfile->objfile_obstack,
24500 struct dwarf2_per_cu_offset_and_type);
24501 **slot = ofs;
24502 return type;
24503 }
24504
24505 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24506 or return NULL if the die does not have a saved type. */
24507
24508 static struct type *
24509 get_die_type_at_offset (sect_offset sect_off,
24510 dwarf2_per_cu_data *per_cu,
24511 dwarf2_per_objfile *per_objfile)
24512 {
24513 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24514
24515 if (per_objfile->die_type_hash == NULL)
24516 return NULL;
24517
24518 ofs.per_cu = per_cu;
24519 ofs.sect_off = sect_off;
24520 slot = ((struct dwarf2_per_cu_offset_and_type *)
24521 htab_find (per_objfile->die_type_hash.get (), &ofs));
24522 if (slot)
24523 return slot->type;
24524 else
24525 return NULL;
24526 }
24527
24528 /* Look up the type for DIE in CU in die_type_hash,
24529 or return NULL if DIE does not have a saved type. */
24530
24531 static struct type *
24532 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24533 {
24534 return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile);
24535 }
24536
24537 /* Add a dependence relationship from CU to REF_PER_CU. */
24538
24539 static void
24540 dwarf2_add_dependence (struct dwarf2_cu *cu,
24541 struct dwarf2_per_cu_data *ref_per_cu)
24542 {
24543 void **slot;
24544
24545 if (cu->dependencies == NULL)
24546 cu->dependencies
24547 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24548 NULL, &cu->comp_unit_obstack,
24549 hashtab_obstack_allocate,
24550 dummy_obstack_deallocate);
24551
24552 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24553 if (*slot == NULL)
24554 *slot = ref_per_cu;
24555 }
24556
24557 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24558 Set the mark field in every compilation unit in the
24559 cache that we must keep because we are keeping CU.
24560
24561 DATA is the dwarf2_per_objfile object in which to look up CUs. */
24562
24563 static int
24564 dwarf2_mark_helper (void **slot, void *data)
24565 {
24566 dwarf2_per_cu_data *per_cu = (dwarf2_per_cu_data *) *slot;
24567 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) data;
24568 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
24569
24570 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24571 reading of the chain. As such dependencies remain valid it is not much
24572 useful to track and undo them during QUIT cleanups. */
24573 if (cu == nullptr)
24574 return 1;
24575
24576 if (cu->mark)
24577 return 1;
24578
24579 cu->mark = true;
24580
24581 if (cu->dependencies != nullptr)
24582 htab_traverse (cu->dependencies, dwarf2_mark_helper, per_objfile);
24583
24584 return 1;
24585 }
24586
24587 /* Set the mark field in CU and in every other compilation unit in the
24588 cache that we must keep because we are keeping CU. */
24589
24590 static void
24591 dwarf2_mark (struct dwarf2_cu *cu)
24592 {
24593 if (cu->mark)
24594 return;
24595
24596 cu->mark = true;
24597
24598 if (cu->dependencies != nullptr)
24599 htab_traverse (cu->dependencies, dwarf2_mark_helper, cu->per_objfile);
24600 }
24601
24602 /* Trivial hash function for partial_die_info: the hash value of a DIE
24603 is its offset in .debug_info for this objfile. */
24604
24605 static hashval_t
24606 partial_die_hash (const void *item)
24607 {
24608 const struct partial_die_info *part_die
24609 = (const struct partial_die_info *) item;
24610
24611 return to_underlying (part_die->sect_off);
24612 }
24613
24614 /* Trivial comparison function for partial_die_info structures: two DIEs
24615 are equal if they have the same offset. */
24616
24617 static int
24618 partial_die_eq (const void *item_lhs, const void *item_rhs)
24619 {
24620 const struct partial_die_info *part_die_lhs
24621 = (const struct partial_die_info *) item_lhs;
24622 const struct partial_die_info *part_die_rhs
24623 = (const struct partial_die_info *) item_rhs;
24624
24625 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24626 }
24627
24628 struct cmd_list_element *set_dwarf_cmdlist;
24629 struct cmd_list_element *show_dwarf_cmdlist;
24630
24631 static void
24632 show_check_physname (struct ui_file *file, int from_tty,
24633 struct cmd_list_element *c, const char *value)
24634 {
24635 fprintf_filtered (file,
24636 _("Whether to check \"physname\" is %s.\n"),
24637 value);
24638 }
24639
24640 void _initialize_dwarf2_read ();
24641 void
24642 _initialize_dwarf2_read ()
24643 {
24644 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
24645 Set DWARF specific variables.\n\
24646 Configure DWARF variables such as the cache size."),
24647 &set_dwarf_cmdlist, "maintenance set dwarf ",
24648 0/*allow-unknown*/, &maintenance_set_cmdlist);
24649
24650 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
24651 Show DWARF specific variables.\n\
24652 Show DWARF variables such as the cache size."),
24653 &show_dwarf_cmdlist, "maintenance show dwarf ",
24654 0/*allow-unknown*/, &maintenance_show_cmdlist);
24655
24656 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24657 &dwarf_max_cache_age, _("\
24658 Set the upper bound on the age of cached DWARF compilation units."), _("\
24659 Show the upper bound on the age of cached DWARF compilation units."), _("\
24660 A higher limit means that cached compilation units will be stored\n\
24661 in memory longer, and more total memory will be used. Zero disables\n\
24662 caching, which can slow down startup."),
24663 NULL,
24664 show_dwarf_max_cache_age,
24665 &set_dwarf_cmdlist,
24666 &show_dwarf_cmdlist);
24667
24668 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24669 Set debugging of the DWARF reader."), _("\
24670 Show debugging of the DWARF reader."), _("\
24671 When enabled (non-zero), debugging messages are printed during DWARF\n\
24672 reading and symtab expansion. A value of 1 (one) provides basic\n\
24673 information. A value greater than 1 provides more verbose information."),
24674 NULL,
24675 NULL,
24676 &setdebuglist, &showdebuglist);
24677
24678 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24679 Set debugging of the DWARF DIE reader."), _("\
24680 Show debugging of the DWARF DIE reader."), _("\
24681 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24682 The value is the maximum depth to print."),
24683 NULL,
24684 NULL,
24685 &setdebuglist, &showdebuglist);
24686
24687 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24688 Set debugging of the dwarf line reader."), _("\
24689 Show debugging of the dwarf line reader."), _("\
24690 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24691 A value of 1 (one) provides basic information.\n\
24692 A value greater than 1 provides more verbose information."),
24693 NULL,
24694 NULL,
24695 &setdebuglist, &showdebuglist);
24696
24697 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24698 Set cross-checking of \"physname\" code against demangler."), _("\
24699 Show cross-checking of \"physname\" code against demangler."), _("\
24700 When enabled, GDB's internal \"physname\" code is checked against\n\
24701 the demangler."),
24702 NULL, show_check_physname,
24703 &setdebuglist, &showdebuglist);
24704
24705 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24706 no_class, &use_deprecated_index_sections, _("\
24707 Set whether to use deprecated gdb_index sections."), _("\
24708 Show whether to use deprecated gdb_index sections."), _("\
24709 When enabled, deprecated .gdb_index sections are used anyway.\n\
24710 Normally they are ignored either because of a missing feature or\n\
24711 performance issue.\n\
24712 Warning: This option must be enabled before gdb reads the file."),
24713 NULL,
24714 NULL,
24715 &setlist, &showlist);
24716
24717 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24718 &dwarf2_locexpr_funcs);
24719 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24720 &dwarf2_loclist_funcs);
24721
24722 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24723 &dwarf2_block_frame_base_locexpr_funcs);
24724 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24725 &dwarf2_block_frame_base_loclist_funcs);
24726
24727 #if GDB_SELF_TEST
24728 selftests::register_test ("dw2_expand_symtabs_matching",
24729 selftests::dw2_expand_symtabs_matching::run_test);
24730 selftests::register_test ("dwarf2_find_containing_comp_unit",
24731 selftests::find_containing_comp_unit::run_test);
24732 #endif
24733 }
This page took 0.821854 seconds and 5 git commands to generate.