Check for null result from gdb_demangle
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "bfd.h"
41 #include "elf-bfd.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "objfiles.h"
45 #include "dwarf2.h"
46 #include "buildsym.h"
47 #include "demangle.h"
48 #include "gdb-demangle.h"
49 #include "filenames.h" /* for DOSish file names */
50 #include "macrotab.h"
51 #include "language.h"
52 #include "complaints.h"
53 #include "dwarf2/expr.h"
54 #include "dwarf2/loc.h"
55 #include "cp-support.h"
56 #include "hashtab.h"
57 #include "command.h"
58 #include "gdbcmd.h"
59 #include "block.h"
60 #include "addrmap.h"
61 #include "typeprint.h"
62 #include "psympriv.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "build-id.h"
72 #include "namespace.h"
73 #include "gdbsupport/function-view.h"
74 #include "gdbsupport/gdb_optional.h"
75 #include "gdbsupport/underlying.h"
76 #include "gdbsupport/hash_enum.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <algorithm>
81 #include <unordered_map>
82 #include "gdbsupport/selftest.h"
83 #include "rust-lang.h"
84 #include "gdbsupport/pathstuff.h"
85 #include "count-one-bits.h"
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 unsigned int dwarf_line_debug = 0;
97
98 /* When true, cross-check physname against demangler. */
99 static bool check_physname = false;
100
101 /* When true, do not reject deprecated .gdb_index sections. */
102 static bool use_deprecated_index_sections = false;
103
104 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* An index into a (C++) symbol name component in a symbol name as
114 recorded in the mapped_index's symbol table. For each C++ symbol
115 in the symbol table, we record one entry for the start of each
116 component in the symbol in a table of name components, and then
117 sort the table, in order to be able to binary search symbol names,
118 ignoring leading namespaces, both completion and regular look up.
119 For example, for symbol "A::B::C", we'll have an entry that points
120 to "A::B::C", another that points to "B::C", and another for "C".
121 Note that function symbols in GDB index have no parameter
122 information, just the function/method names. You can convert a
123 name_component to a "const char *" using the
124 'mapped_index::symbol_name_at(offset_type)' method. */
125
126 struct name_component
127 {
128 /* Offset in the symbol name where the component starts. Stored as
129 a (32-bit) offset instead of a pointer to save memory and improve
130 locality on 64-bit architectures. */
131 offset_type name_offset;
132
133 /* The symbol's index in the symbol and constant pool tables of a
134 mapped_index. */
135 offset_type idx;
136 };
137
138 /* Base class containing bits shared by both .gdb_index and
139 .debug_name indexes. */
140
141 struct mapped_index_base
142 {
143 mapped_index_base () = default;
144 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
145
146 /* The name_component table (a sorted vector). See name_component's
147 description above. */
148 std::vector<name_component> name_components;
149
150 /* How NAME_COMPONENTS is sorted. */
151 enum case_sensitivity name_components_casing;
152
153 /* Return the number of names in the symbol table. */
154 virtual size_t symbol_name_count () const = 0;
155
156 /* Get the name of the symbol at IDX in the symbol table. */
157 virtual const char *symbol_name_at (offset_type idx) const = 0;
158
159 /* Return whether the name at IDX in the symbol table should be
160 ignored. */
161 virtual bool symbol_name_slot_invalid (offset_type idx) const
162 {
163 return false;
164 }
165
166 /* Build the symbol name component sorted vector, if we haven't
167 yet. */
168 void build_name_components ();
169
170 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
171 possible matches for LN_NO_PARAMS in the name component
172 vector. */
173 std::pair<std::vector<name_component>::const_iterator,
174 std::vector<name_component>::const_iterator>
175 find_name_components_bounds (const lookup_name_info &ln_no_params,
176 enum language lang) const;
177
178 /* Prevent deleting/destroying via a base class pointer. */
179 protected:
180 ~mapped_index_base() = default;
181 };
182
183 /* A description of the mapped index. The file format is described in
184 a comment by the code that writes the index. */
185 struct mapped_index final : public mapped_index_base
186 {
187 /* A slot/bucket in the symbol table hash. */
188 struct symbol_table_slot
189 {
190 const offset_type name;
191 const offset_type vec;
192 };
193
194 /* Index data format version. */
195 int version = 0;
196
197 /* The address table data. */
198 gdb::array_view<const gdb_byte> address_table;
199
200 /* The symbol table, implemented as a hash table. */
201 gdb::array_view<symbol_table_slot> symbol_table;
202
203 /* A pointer to the constant pool. */
204 const char *constant_pool = nullptr;
205
206 bool symbol_name_slot_invalid (offset_type idx) const override
207 {
208 const auto &bucket = this->symbol_table[idx];
209 return bucket.name == 0 && bucket.vec == 0;
210 }
211
212 /* Convenience method to get at the name of the symbol at IDX in the
213 symbol table. */
214 const char *symbol_name_at (offset_type idx) const override
215 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
216
217 size_t symbol_name_count () const override
218 { return this->symbol_table.size (); }
219 };
220
221 /* A description of the mapped .debug_names.
222 Uninitialized map has CU_COUNT 0. */
223 struct mapped_debug_names final : public mapped_index_base
224 {
225 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
226 : dwarf2_per_objfile (dwarf2_per_objfile_)
227 {}
228
229 struct dwarf2_per_objfile *dwarf2_per_objfile;
230 bfd_endian dwarf5_byte_order;
231 bool dwarf5_is_dwarf64;
232 bool augmentation_is_gdb;
233 uint8_t offset_size;
234 uint32_t cu_count = 0;
235 uint32_t tu_count, bucket_count, name_count;
236 const gdb_byte *cu_table_reordered, *tu_table_reordered;
237 const uint32_t *bucket_table_reordered, *hash_table_reordered;
238 const gdb_byte *name_table_string_offs_reordered;
239 const gdb_byte *name_table_entry_offs_reordered;
240 const gdb_byte *entry_pool;
241
242 struct index_val
243 {
244 ULONGEST dwarf_tag;
245 struct attr
246 {
247 /* Attribute name DW_IDX_*. */
248 ULONGEST dw_idx;
249
250 /* Attribute form DW_FORM_*. */
251 ULONGEST form;
252
253 /* Value if FORM is DW_FORM_implicit_const. */
254 LONGEST implicit_const;
255 };
256 std::vector<attr> attr_vec;
257 };
258
259 std::unordered_map<ULONGEST, index_val> abbrev_map;
260
261 const char *namei_to_name (uint32_t namei) const;
262
263 /* Implementation of the mapped_index_base virtual interface, for
264 the name_components cache. */
265
266 const char *symbol_name_at (offset_type idx) const override
267 { return namei_to_name (idx); }
268
269 size_t symbol_name_count () const override
270 { return this->name_count; }
271 };
272
273 /* See dwarf2read.h. */
274
275 dwarf2_per_objfile *
276 get_dwarf2_per_objfile (struct objfile *objfile)
277 {
278 return dwarf2_objfile_data_key.get (objfile);
279 }
280
281 /* Default names of the debugging sections. */
282
283 /* Note that if the debugging section has been compressed, it might
284 have a name like .zdebug_info. */
285
286 static const struct dwarf2_debug_sections dwarf2_elf_names =
287 {
288 { ".debug_info", ".zdebug_info" },
289 { ".debug_abbrev", ".zdebug_abbrev" },
290 { ".debug_line", ".zdebug_line" },
291 { ".debug_loc", ".zdebug_loc" },
292 { ".debug_loclists", ".zdebug_loclists" },
293 { ".debug_macinfo", ".zdebug_macinfo" },
294 { ".debug_macro", ".zdebug_macro" },
295 { ".debug_str", ".zdebug_str" },
296 { ".debug_str_offsets", ".zdebug_str_offsets" },
297 { ".debug_line_str", ".zdebug_line_str" },
298 { ".debug_ranges", ".zdebug_ranges" },
299 { ".debug_rnglists", ".zdebug_rnglists" },
300 { ".debug_types", ".zdebug_types" },
301 { ".debug_addr", ".zdebug_addr" },
302 { ".debug_frame", ".zdebug_frame" },
303 { ".eh_frame", NULL },
304 { ".gdb_index", ".zgdb_index" },
305 { ".debug_names", ".zdebug_names" },
306 { ".debug_aranges", ".zdebug_aranges" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names loclists_dwo;
319 struct dwarf2_section_names macinfo_dwo;
320 struct dwarf2_section_names macro_dwo;
321 struct dwarf2_section_names str_dwo;
322 struct dwarf2_section_names str_offsets_dwo;
323 struct dwarf2_section_names types_dwo;
324 struct dwarf2_section_names cu_index;
325 struct dwarf2_section_names tu_index;
326 }
327 dwop_section_names =
328 {
329 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
330 { ".debug_info.dwo", ".zdebug_info.dwo" },
331 { ".debug_line.dwo", ".zdebug_line.dwo" },
332 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
333 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
334 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
335 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
336 { ".debug_str.dwo", ".zdebug_str.dwo" },
337 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
338 { ".debug_types.dwo", ".zdebug_types.dwo" },
339 { ".debug_cu_index", ".zdebug_cu_index" },
340 { ".debug_tu_index", ".zdebug_tu_index" },
341 };
342
343 /* local data types */
344
345 /* Type used for delaying computation of method physnames.
346 See comments for compute_delayed_physnames. */
347 struct delayed_method_info
348 {
349 /* The type to which the method is attached, i.e., its parent class. */
350 struct type *type;
351
352 /* The index of the method in the type's function fieldlists. */
353 int fnfield_index;
354
355 /* The index of the method in the fieldlist. */
356 int index;
357
358 /* The name of the DIE. */
359 const char *name;
360
361 /* The DIE associated with this method. */
362 struct die_info *die;
363 };
364
365 /* Internal state when decoding a particular compilation unit. */
366 struct dwarf2_cu
367 {
368 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
369 ~dwarf2_cu ();
370
371 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
372
373 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
374 Create the set of symtabs used by this TU, or if this TU is sharing
375 symtabs with another TU and the symtabs have already been created
376 then restore those symtabs in the line header.
377 We don't need the pc/line-number mapping for type units. */
378 void setup_type_unit_groups (struct die_info *die);
379
380 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
381 buildsym_compunit constructor. */
382 struct compunit_symtab *start_symtab (const char *name,
383 const char *comp_dir,
384 CORE_ADDR low_pc);
385
386 /* Reset the builder. */
387 void reset_builder () { m_builder.reset (); }
388
389 /* The header of the compilation unit. */
390 struct comp_unit_head header {};
391
392 /* Base address of this compilation unit. */
393 CORE_ADDR base_address = 0;
394
395 /* Non-zero if base_address has been set. */
396 int base_known = 0;
397
398 /* The language we are debugging. */
399 enum language language = language_unknown;
400 const struct language_defn *language_defn = nullptr;
401
402 const char *producer = nullptr;
403
404 private:
405 /* The symtab builder for this CU. This is only non-NULL when full
406 symbols are being read. */
407 std::unique_ptr<buildsym_compunit> m_builder;
408
409 public:
410 /* The generic symbol table building routines have separate lists for
411 file scope symbols and all all other scopes (local scopes). So
412 we need to select the right one to pass to add_symbol_to_list().
413 We do it by keeping a pointer to the correct list in list_in_scope.
414
415 FIXME: The original dwarf code just treated the file scope as the
416 first local scope, and all other local scopes as nested local
417 scopes, and worked fine. Check to see if we really need to
418 distinguish these in buildsym.c. */
419 struct pending **list_in_scope = nullptr;
420
421 /* Hash table holding all the loaded partial DIEs
422 with partial_die->offset.SECT_OFF as hash. */
423 htab_t partial_dies = nullptr;
424
425 /* Storage for things with the same lifetime as this read-in compilation
426 unit, including partial DIEs. */
427 auto_obstack comp_unit_obstack;
428
429 /* When multiple dwarf2_cu structures are living in memory, this field
430 chains them all together, so that they can be released efficiently.
431 We will probably also want a generation counter so that most-recently-used
432 compilation units are cached... */
433 struct dwarf2_per_cu_data *read_in_chain = nullptr;
434
435 /* Backlink to our per_cu entry. */
436 struct dwarf2_per_cu_data *per_cu;
437
438 /* How many compilation units ago was this CU last referenced? */
439 int last_used = 0;
440
441 /* A hash table of DIE cu_offset for following references with
442 die_info->offset.sect_off as hash. */
443 htab_t die_hash = nullptr;
444
445 /* Full DIEs if read in. */
446 struct die_info *dies = nullptr;
447
448 /* A set of pointers to dwarf2_per_cu_data objects for compilation
449 units referenced by this one. Only set during full symbol processing;
450 partial symbol tables do not have dependencies. */
451 htab_t dependencies = nullptr;
452
453 /* Header data from the line table, during full symbol processing. */
454 struct line_header *line_header = nullptr;
455 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
456 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
457 this is the DW_TAG_compile_unit die for this CU. We'll hold on
458 to the line header as long as this DIE is being processed. See
459 process_die_scope. */
460 die_info *line_header_die_owner = nullptr;
461
462 /* A list of methods which need to have physnames computed
463 after all type information has been read. */
464 std::vector<delayed_method_info> method_list;
465
466 /* To be copied to symtab->call_site_htab. */
467 htab_t call_site_htab = nullptr;
468
469 /* Non-NULL if this CU came from a DWO file.
470 There is an invariant here that is important to remember:
471 Except for attributes copied from the top level DIE in the "main"
472 (or "stub") file in preparation for reading the DWO file
473 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
474 Either there isn't a DWO file (in which case this is NULL and the point
475 is moot), or there is and either we're not going to read it (in which
476 case this is NULL) or there is and we are reading it (in which case this
477 is non-NULL). */
478 struct dwo_unit *dwo_unit = nullptr;
479
480 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
481 Note this value comes from the Fission stub CU/TU's DIE. */
482 gdb::optional<ULONGEST> addr_base;
483
484 /* The DW_AT_rnglists_base attribute if present.
485 Note this value comes from the Fission stub CU/TU's DIE.
486 Also note that the value is zero in the non-DWO case so this value can
487 be used without needing to know whether DWO files are in use or not.
488 N.B. This does not apply to DW_AT_ranges appearing in
489 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
490 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
491 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
492 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
493 ULONGEST ranges_base = 0;
494
495 /* When reading debug info generated by older versions of rustc, we
496 have to rewrite some union types to be struct types with a
497 variant part. This rewriting must be done after the CU is fully
498 read in, because otherwise at the point of rewriting some struct
499 type might not have been fully processed. So, we keep a list of
500 all such types here and process them after expansion. */
501 std::vector<struct type *> rust_unions;
502
503 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
504 files, the value is implicitly zero. For DWARF 5 version DWO files, the
505 value is often implicit and is the size of the header of
506 .debug_str_offsets section (8 or 4, depending on the address size). */
507 gdb::optional<ULONGEST> str_offsets_base;
508
509 /* Mark used when releasing cached dies. */
510 bool mark : 1;
511
512 /* This CU references .debug_loc. See the symtab->locations_valid field.
513 This test is imperfect as there may exist optimized debug code not using
514 any location list and still facing inlining issues if handled as
515 unoptimized code. For a future better test see GCC PR other/32998. */
516 bool has_loclist : 1;
517
518 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
519 if all the producer_is_* fields are valid. This information is cached
520 because profiling CU expansion showed excessive time spent in
521 producer_is_gxx_lt_4_6. */
522 bool checked_producer : 1;
523 bool producer_is_gxx_lt_4_6 : 1;
524 bool producer_is_gcc_lt_4_3 : 1;
525 bool producer_is_icc : 1;
526 bool producer_is_icc_lt_14 : 1;
527 bool producer_is_codewarrior : 1;
528
529 /* When true, the file that we're processing is known to have
530 debugging info for C++ namespaces. GCC 3.3.x did not produce
531 this information, but later versions do. */
532
533 bool processing_has_namespace_info : 1;
534
535 struct partial_die_info *find_partial_die (sect_offset sect_off);
536
537 /* If this CU was inherited by another CU (via specification,
538 abstract_origin, etc), this is the ancestor CU. */
539 dwarf2_cu *ancestor;
540
541 /* Get the buildsym_compunit for this CU. */
542 buildsym_compunit *get_builder ()
543 {
544 /* If this CU has a builder associated with it, use that. */
545 if (m_builder != nullptr)
546 return m_builder.get ();
547
548 /* Otherwise, search ancestors for a valid builder. */
549 if (ancestor != nullptr)
550 return ancestor->get_builder ();
551
552 return nullptr;
553 }
554 };
555
556 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
557 This includes type_unit_group and quick_file_names. */
558
559 struct stmt_list_hash
560 {
561 /* The DWO unit this table is from or NULL if there is none. */
562 struct dwo_unit *dwo_unit;
563
564 /* Offset in .debug_line or .debug_line.dwo. */
565 sect_offset line_sect_off;
566 };
567
568 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
569 an object of this type. */
570
571 struct type_unit_group
572 {
573 /* dwarf2read.c's main "handle" on a TU symtab.
574 To simplify things we create an artificial CU that "includes" all the
575 type units using this stmt_list so that the rest of the code still has
576 a "per_cu" handle on the symtab.
577 This PER_CU is recognized by having no section. */
578 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
579 struct dwarf2_per_cu_data per_cu;
580
581 /* The TUs that share this DW_AT_stmt_list entry.
582 This is added to while parsing type units to build partial symtabs,
583 and is deleted afterwards and not used again. */
584 std::vector<signatured_type *> *tus;
585
586 /* The compunit symtab.
587 Type units in a group needn't all be defined in the same source file,
588 so we create an essentially anonymous symtab as the compunit symtab. */
589 struct compunit_symtab *compunit_symtab;
590
591 /* The data used to construct the hash key. */
592 struct stmt_list_hash hash;
593
594 /* The number of symtabs from the line header.
595 The value here must match line_header.num_file_names. */
596 unsigned int num_symtabs;
597
598 /* The symbol tables for this TU (obtained from the files listed in
599 DW_AT_stmt_list).
600 WARNING: The order of entries here must match the order of entries
601 in the line header. After the first TU using this type_unit_group, the
602 line header for the subsequent TUs is recreated from this. This is done
603 because we need to use the same symtabs for each TU using the same
604 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
605 there's no guarantee the line header doesn't have duplicate entries. */
606 struct symtab **symtabs;
607 };
608
609 /* These sections are what may appear in a (real or virtual) DWO file. */
610
611 struct dwo_sections
612 {
613 struct dwarf2_section_info abbrev;
614 struct dwarf2_section_info line;
615 struct dwarf2_section_info loc;
616 struct dwarf2_section_info loclists;
617 struct dwarf2_section_info macinfo;
618 struct dwarf2_section_info macro;
619 struct dwarf2_section_info str;
620 struct dwarf2_section_info str_offsets;
621 /* In the case of a virtual DWO file, these two are unused. */
622 struct dwarf2_section_info info;
623 std::vector<dwarf2_section_info> types;
624 };
625
626 /* CUs/TUs in DWP/DWO files. */
627
628 struct dwo_unit
629 {
630 /* Backlink to the containing struct dwo_file. */
631 struct dwo_file *dwo_file;
632
633 /* The "id" that distinguishes this CU/TU.
634 .debug_info calls this "dwo_id", .debug_types calls this "signature".
635 Since signatures came first, we stick with it for consistency. */
636 ULONGEST signature;
637
638 /* The section this CU/TU lives in, in the DWO file. */
639 struct dwarf2_section_info *section;
640
641 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
642 sect_offset sect_off;
643 unsigned int length;
644
645 /* For types, offset in the type's DIE of the type defined by this TU. */
646 cu_offset type_offset_in_tu;
647 };
648
649 /* include/dwarf2.h defines the DWP section codes.
650 It defines a max value but it doesn't define a min value, which we
651 use for error checking, so provide one. */
652
653 enum dwp_v2_section_ids
654 {
655 DW_SECT_MIN = 1
656 };
657
658 /* Data for one DWO file.
659
660 This includes virtual DWO files (a virtual DWO file is a DWO file as it
661 appears in a DWP file). DWP files don't really have DWO files per se -
662 comdat folding of types "loses" the DWO file they came from, and from
663 a high level view DWP files appear to contain a mass of random types.
664 However, to maintain consistency with the non-DWP case we pretend DWP
665 files contain virtual DWO files, and we assign each TU with one virtual
666 DWO file (generally based on the line and abbrev section offsets -
667 a heuristic that seems to work in practice). */
668
669 struct dwo_file
670 {
671 dwo_file () = default;
672 DISABLE_COPY_AND_ASSIGN (dwo_file);
673
674 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
675 For virtual DWO files the name is constructed from the section offsets
676 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
677 from related CU+TUs. */
678 const char *dwo_name = nullptr;
679
680 /* The DW_AT_comp_dir attribute. */
681 const char *comp_dir = nullptr;
682
683 /* The bfd, when the file is open. Otherwise this is NULL.
684 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
685 gdb_bfd_ref_ptr dbfd;
686
687 /* The sections that make up this DWO file.
688 Remember that for virtual DWO files in DWP V2, these are virtual
689 sections (for lack of a better name). */
690 struct dwo_sections sections {};
691
692 /* The CUs in the file.
693 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
694 an extension to handle LLVM's Link Time Optimization output (where
695 multiple source files may be compiled into a single object/dwo pair). */
696 htab_up cus;
697
698 /* Table of TUs in the file.
699 Each element is a struct dwo_unit. */
700 htab_up tus;
701 };
702
703 /* These sections are what may appear in a DWP file. */
704
705 struct dwp_sections
706 {
707 /* These are used by both DWP version 1 and 2. */
708 struct dwarf2_section_info str;
709 struct dwarf2_section_info cu_index;
710 struct dwarf2_section_info tu_index;
711
712 /* These are only used by DWP version 2 files.
713 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
714 sections are referenced by section number, and are not recorded here.
715 In DWP version 2 there is at most one copy of all these sections, each
716 section being (effectively) comprised of the concatenation of all of the
717 individual sections that exist in the version 1 format.
718 To keep the code simple we treat each of these concatenated pieces as a
719 section itself (a virtual section?). */
720 struct dwarf2_section_info abbrev;
721 struct dwarf2_section_info info;
722 struct dwarf2_section_info line;
723 struct dwarf2_section_info loc;
724 struct dwarf2_section_info macinfo;
725 struct dwarf2_section_info macro;
726 struct dwarf2_section_info str_offsets;
727 struct dwarf2_section_info types;
728 };
729
730 /* These sections are what may appear in a virtual DWO file in DWP version 1.
731 A virtual DWO file is a DWO file as it appears in a DWP file. */
732
733 struct virtual_v1_dwo_sections
734 {
735 struct dwarf2_section_info abbrev;
736 struct dwarf2_section_info line;
737 struct dwarf2_section_info loc;
738 struct dwarf2_section_info macinfo;
739 struct dwarf2_section_info macro;
740 struct dwarf2_section_info str_offsets;
741 /* Each DWP hash table entry records one CU or one TU.
742 That is recorded here, and copied to dwo_unit.section. */
743 struct dwarf2_section_info info_or_types;
744 };
745
746 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
747 In version 2, the sections of the DWO files are concatenated together
748 and stored in one section of that name. Thus each ELF section contains
749 several "virtual" sections. */
750
751 struct virtual_v2_dwo_sections
752 {
753 bfd_size_type abbrev_offset;
754 bfd_size_type abbrev_size;
755
756 bfd_size_type line_offset;
757 bfd_size_type line_size;
758
759 bfd_size_type loc_offset;
760 bfd_size_type loc_size;
761
762 bfd_size_type macinfo_offset;
763 bfd_size_type macinfo_size;
764
765 bfd_size_type macro_offset;
766 bfd_size_type macro_size;
767
768 bfd_size_type str_offsets_offset;
769 bfd_size_type str_offsets_size;
770
771 /* Each DWP hash table entry records one CU or one TU.
772 That is recorded here, and copied to dwo_unit.section. */
773 bfd_size_type info_or_types_offset;
774 bfd_size_type info_or_types_size;
775 };
776
777 /* Contents of DWP hash tables. */
778
779 struct dwp_hash_table
780 {
781 uint32_t version, nr_columns;
782 uint32_t nr_units, nr_slots;
783 const gdb_byte *hash_table, *unit_table;
784 union
785 {
786 struct
787 {
788 const gdb_byte *indices;
789 } v1;
790 struct
791 {
792 /* This is indexed by column number and gives the id of the section
793 in that column. */
794 #define MAX_NR_V2_DWO_SECTIONS \
795 (1 /* .debug_info or .debug_types */ \
796 + 1 /* .debug_abbrev */ \
797 + 1 /* .debug_line */ \
798 + 1 /* .debug_loc */ \
799 + 1 /* .debug_str_offsets */ \
800 + 1 /* .debug_macro or .debug_macinfo */)
801 int section_ids[MAX_NR_V2_DWO_SECTIONS];
802 const gdb_byte *offsets;
803 const gdb_byte *sizes;
804 } v2;
805 } section_pool;
806 };
807
808 /* Data for one DWP file. */
809
810 struct dwp_file
811 {
812 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
813 : name (name_),
814 dbfd (std::move (abfd))
815 {
816 }
817
818 /* Name of the file. */
819 const char *name;
820
821 /* File format version. */
822 int version = 0;
823
824 /* The bfd. */
825 gdb_bfd_ref_ptr dbfd;
826
827 /* Section info for this file. */
828 struct dwp_sections sections {};
829
830 /* Table of CUs in the file. */
831 const struct dwp_hash_table *cus = nullptr;
832
833 /* Table of TUs in the file. */
834 const struct dwp_hash_table *tus = nullptr;
835
836 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
837 htab_up loaded_cus;
838 htab_up loaded_tus;
839
840 /* Table to map ELF section numbers to their sections.
841 This is only needed for the DWP V1 file format. */
842 unsigned int num_sections = 0;
843 asection **elf_sections = nullptr;
844 };
845
846 /* Struct used to pass misc. parameters to read_die_and_children, et
847 al. which are used for both .debug_info and .debug_types dies.
848 All parameters here are unchanging for the life of the call. This
849 struct exists to abstract away the constant parameters of die reading. */
850
851 struct die_reader_specs
852 {
853 /* The bfd of die_section. */
854 bfd* abfd;
855
856 /* The CU of the DIE we are parsing. */
857 struct dwarf2_cu *cu;
858
859 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
860 struct dwo_file *dwo_file;
861
862 /* The section the die comes from.
863 This is either .debug_info or .debug_types, or the .dwo variants. */
864 struct dwarf2_section_info *die_section;
865
866 /* die_section->buffer. */
867 const gdb_byte *buffer;
868
869 /* The end of the buffer. */
870 const gdb_byte *buffer_end;
871
872 /* The abbreviation table to use when reading the DIEs. */
873 struct abbrev_table *abbrev_table;
874 };
875
876 /* A subclass of die_reader_specs that holds storage and has complex
877 constructor and destructor behavior. */
878
879 class cutu_reader : public die_reader_specs
880 {
881 public:
882
883 cutu_reader (struct dwarf2_per_cu_data *this_cu,
884 struct abbrev_table *abbrev_table,
885 int use_existing_cu,
886 bool skip_partial);
887
888 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
889 struct dwarf2_cu *parent_cu = nullptr,
890 struct dwo_file *dwo_file = nullptr);
891
892 DISABLE_COPY_AND_ASSIGN (cutu_reader);
893
894 const gdb_byte *info_ptr = nullptr;
895 struct die_info *comp_unit_die = nullptr;
896 bool dummy_p = false;
897
898 /* Release the new CU, putting it on the chain. This cannot be done
899 for dummy CUs. */
900 void keep ();
901
902 private:
903 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
904 int use_existing_cu);
905
906 struct dwarf2_per_cu_data *m_this_cu;
907 std::unique_ptr<dwarf2_cu> m_new_cu;
908
909 /* The ordinary abbreviation table. */
910 abbrev_table_up m_abbrev_table_holder;
911
912 /* The DWO abbreviation table. */
913 abbrev_table_up m_dwo_abbrev_table;
914 };
915
916 /* When we construct a partial symbol table entry we only
917 need this much information. */
918 struct partial_die_info : public allocate_on_obstack
919 {
920 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
921
922 /* Disable assign but still keep copy ctor, which is needed
923 load_partial_dies. */
924 partial_die_info& operator=(const partial_die_info& rhs) = delete;
925
926 /* Adjust the partial die before generating a symbol for it. This
927 function may set the is_external flag or change the DIE's
928 name. */
929 void fixup (struct dwarf2_cu *cu);
930
931 /* Read a minimal amount of information into the minimal die
932 structure. */
933 const gdb_byte *read (const struct die_reader_specs *reader,
934 const struct abbrev_info &abbrev,
935 const gdb_byte *info_ptr);
936
937 /* Offset of this DIE. */
938 const sect_offset sect_off;
939
940 /* DWARF-2 tag for this DIE. */
941 const ENUM_BITFIELD(dwarf_tag) tag : 16;
942
943 /* Assorted flags describing the data found in this DIE. */
944 const unsigned int has_children : 1;
945
946 unsigned int is_external : 1;
947 unsigned int is_declaration : 1;
948 unsigned int has_type : 1;
949 unsigned int has_specification : 1;
950 unsigned int has_pc_info : 1;
951 unsigned int may_be_inlined : 1;
952
953 /* This DIE has been marked DW_AT_main_subprogram. */
954 unsigned int main_subprogram : 1;
955
956 /* Flag set if the SCOPE field of this structure has been
957 computed. */
958 unsigned int scope_set : 1;
959
960 /* Flag set if the DIE has a byte_size attribute. */
961 unsigned int has_byte_size : 1;
962
963 /* Flag set if the DIE has a DW_AT_const_value attribute. */
964 unsigned int has_const_value : 1;
965
966 /* Flag set if any of the DIE's children are template arguments. */
967 unsigned int has_template_arguments : 1;
968
969 /* Flag set if fixup has been called on this die. */
970 unsigned int fixup_called : 1;
971
972 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
973 unsigned int is_dwz : 1;
974
975 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
976 unsigned int spec_is_dwz : 1;
977
978 /* The name of this DIE. Normally the value of DW_AT_name, but
979 sometimes a default name for unnamed DIEs. */
980 const char *name = nullptr;
981
982 /* The linkage name, if present. */
983 const char *linkage_name = nullptr;
984
985 /* The scope to prepend to our children. This is generally
986 allocated on the comp_unit_obstack, so will disappear
987 when this compilation unit leaves the cache. */
988 const char *scope = nullptr;
989
990 /* Some data associated with the partial DIE. The tag determines
991 which field is live. */
992 union
993 {
994 /* The location description associated with this DIE, if any. */
995 struct dwarf_block *locdesc;
996 /* The offset of an import, for DW_TAG_imported_unit. */
997 sect_offset sect_off;
998 } d {};
999
1000 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1001 CORE_ADDR lowpc = 0;
1002 CORE_ADDR highpc = 0;
1003
1004 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1005 DW_AT_sibling, if any. */
1006 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1007 could return DW_AT_sibling values to its caller load_partial_dies. */
1008 const gdb_byte *sibling = nullptr;
1009
1010 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1011 DW_AT_specification (or DW_AT_abstract_origin or
1012 DW_AT_extension). */
1013 sect_offset spec_offset {};
1014
1015 /* Pointers to this DIE's parent, first child, and next sibling,
1016 if any. */
1017 struct partial_die_info *die_parent = nullptr;
1018 struct partial_die_info *die_child = nullptr;
1019 struct partial_die_info *die_sibling = nullptr;
1020
1021 friend struct partial_die_info *
1022 dwarf2_cu::find_partial_die (sect_offset sect_off);
1023
1024 private:
1025 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1026 partial_die_info (sect_offset sect_off)
1027 : partial_die_info (sect_off, DW_TAG_padding, 0)
1028 {
1029 }
1030
1031 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1032 int has_children_)
1033 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1034 {
1035 is_external = 0;
1036 is_declaration = 0;
1037 has_type = 0;
1038 has_specification = 0;
1039 has_pc_info = 0;
1040 may_be_inlined = 0;
1041 main_subprogram = 0;
1042 scope_set = 0;
1043 has_byte_size = 0;
1044 has_const_value = 0;
1045 has_template_arguments = 0;
1046 fixup_called = 0;
1047 is_dwz = 0;
1048 spec_is_dwz = 0;
1049 }
1050 };
1051
1052 /* This data structure holds a complete die structure. */
1053 struct die_info
1054 {
1055 /* DWARF-2 tag for this DIE. */
1056 ENUM_BITFIELD(dwarf_tag) tag : 16;
1057
1058 /* Number of attributes */
1059 unsigned char num_attrs;
1060
1061 /* True if we're presently building the full type name for the
1062 type derived from this DIE. */
1063 unsigned char building_fullname : 1;
1064
1065 /* True if this die is in process. PR 16581. */
1066 unsigned char in_process : 1;
1067
1068 /* True if this DIE has children. */
1069 unsigned char has_children : 1;
1070
1071 /* Abbrev number */
1072 unsigned int abbrev;
1073
1074 /* Offset in .debug_info or .debug_types section. */
1075 sect_offset sect_off;
1076
1077 /* The dies in a compilation unit form an n-ary tree. PARENT
1078 points to this die's parent; CHILD points to the first child of
1079 this node; and all the children of a given node are chained
1080 together via their SIBLING fields. */
1081 struct die_info *child; /* Its first child, if any. */
1082 struct die_info *sibling; /* Its next sibling, if any. */
1083 struct die_info *parent; /* Its parent, if any. */
1084
1085 /* An array of attributes, with NUM_ATTRS elements. There may be
1086 zero, but it's not common and zero-sized arrays are not
1087 sufficiently portable C. */
1088 struct attribute attrs[1];
1089 };
1090
1091 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1092 but this would require a corresponding change in unpack_field_as_long
1093 and friends. */
1094 static int bits_per_byte = 8;
1095
1096 /* When reading a variant or variant part, we track a bit more
1097 information about the field, and store it in an object of this
1098 type. */
1099
1100 struct variant_field
1101 {
1102 /* If we see a DW_TAG_variant, then this will be the discriminant
1103 value. */
1104 ULONGEST discriminant_value;
1105 /* If we see a DW_TAG_variant, then this will be set if this is the
1106 default branch. */
1107 bool default_branch;
1108 /* While reading a DW_TAG_variant_part, this will be set if this
1109 field is the discriminant. */
1110 bool is_discriminant;
1111 };
1112
1113 struct nextfield
1114 {
1115 int accessibility = 0;
1116 int virtuality = 0;
1117 /* Extra information to describe a variant or variant part. */
1118 struct variant_field variant {};
1119 struct field field {};
1120 };
1121
1122 struct fnfieldlist
1123 {
1124 const char *name = nullptr;
1125 std::vector<struct fn_field> fnfields;
1126 };
1127
1128 /* The routines that read and process dies for a C struct or C++ class
1129 pass lists of data member fields and lists of member function fields
1130 in an instance of a field_info structure, as defined below. */
1131 struct field_info
1132 {
1133 /* List of data member and baseclasses fields. */
1134 std::vector<struct nextfield> fields;
1135 std::vector<struct nextfield> baseclasses;
1136
1137 /* Number of fields (including baseclasses). */
1138 int nfields = 0;
1139
1140 /* Set if the accessibility of one of the fields is not public. */
1141 int non_public_fields = 0;
1142
1143 /* Member function fieldlist array, contains name of possibly overloaded
1144 member function, number of overloaded member functions and a pointer
1145 to the head of the member function field chain. */
1146 std::vector<struct fnfieldlist> fnfieldlists;
1147
1148 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1149 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1150 std::vector<struct decl_field> typedef_field_list;
1151
1152 /* Nested types defined by this class and the number of elements in this
1153 list. */
1154 std::vector<struct decl_field> nested_types_list;
1155 };
1156
1157 /* Loaded secondary compilation units are kept in memory until they
1158 have not been referenced for the processing of this many
1159 compilation units. Set this to zero to disable caching. Cache
1160 sizes of up to at least twenty will improve startup time for
1161 typical inter-CU-reference binaries, at an obvious memory cost. */
1162 static int dwarf_max_cache_age = 5;
1163 static void
1164 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1165 struct cmd_list_element *c, const char *value)
1166 {
1167 fprintf_filtered (file, _("The upper bound on the age of cached "
1168 "DWARF compilation units is %s.\n"),
1169 value);
1170 }
1171 \f
1172 /* local function prototypes */
1173
1174 static void dwarf2_find_base_address (struct die_info *die,
1175 struct dwarf2_cu *cu);
1176
1177 static dwarf2_psymtab *create_partial_symtab
1178 (struct dwarf2_per_cu_data *per_cu, const char *name);
1179
1180 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1181 const gdb_byte *info_ptr,
1182 struct die_info *type_unit_die);
1183
1184 static void dwarf2_build_psymtabs_hard
1185 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1186
1187 static void scan_partial_symbols (struct partial_die_info *,
1188 CORE_ADDR *, CORE_ADDR *,
1189 int, struct dwarf2_cu *);
1190
1191 static void add_partial_symbol (struct partial_die_info *,
1192 struct dwarf2_cu *);
1193
1194 static void add_partial_namespace (struct partial_die_info *pdi,
1195 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1196 int set_addrmap, struct dwarf2_cu *cu);
1197
1198 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1199 CORE_ADDR *highpc, int set_addrmap,
1200 struct dwarf2_cu *cu);
1201
1202 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1203 struct dwarf2_cu *cu);
1204
1205 static void add_partial_subprogram (struct partial_die_info *pdi,
1206 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1207 int need_pc, struct dwarf2_cu *cu);
1208
1209 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1210
1211 static struct partial_die_info *load_partial_dies
1212 (const struct die_reader_specs *, const gdb_byte *, int);
1213
1214 /* A pair of partial_die_info and compilation unit. */
1215 struct cu_partial_die_info
1216 {
1217 /* The compilation unit of the partial_die_info. */
1218 struct dwarf2_cu *cu;
1219 /* A partial_die_info. */
1220 struct partial_die_info *pdi;
1221
1222 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1223 : cu (cu),
1224 pdi (pdi)
1225 { /* Nothing. */ }
1226
1227 private:
1228 cu_partial_die_info () = delete;
1229 };
1230
1231 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1232 struct dwarf2_cu *);
1233
1234 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1235 struct attribute *, struct attr_abbrev *,
1236 const gdb_byte *, bool *need_reprocess);
1237
1238 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1239 struct attribute *attr);
1240
1241 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1242
1243 static LONGEST read_checked_initial_length_and_offset
1244 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1245 unsigned int *, unsigned int *);
1246
1247 static sect_offset read_abbrev_offset
1248 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1249 struct dwarf2_section_info *, sect_offset);
1250
1251 static const char *read_indirect_string
1252 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1253 const struct comp_unit_head *, unsigned int *);
1254
1255 static const char *read_indirect_line_string
1256 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1257 const struct comp_unit_head *, unsigned int *);
1258
1259 static const char *read_indirect_string_at_offset
1260 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1261 LONGEST str_offset);
1262
1263 static const char *read_indirect_string_from_dwz
1264 (struct objfile *objfile, struct dwz_file *, LONGEST);
1265
1266 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1267 const gdb_byte *,
1268 unsigned int *);
1269
1270 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1271 ULONGEST str_index);
1272
1273 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1274 ULONGEST str_index);
1275
1276 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1277
1278 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1279 struct dwarf2_cu *);
1280
1281 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1282 unsigned int);
1283
1284 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1285 struct dwarf2_cu *cu);
1286
1287 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1288
1289 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1290 struct dwarf2_cu *cu);
1291
1292 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1293
1294 static struct die_info *die_specification (struct die_info *die,
1295 struct dwarf2_cu **);
1296
1297 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1298 struct dwarf2_cu *cu);
1299
1300 static void dwarf_decode_lines (struct line_header *, const char *,
1301 struct dwarf2_cu *, dwarf2_psymtab *,
1302 CORE_ADDR, int decode_mapping);
1303
1304 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1305 const char *);
1306
1307 static struct symbol *new_symbol (struct die_info *, struct type *,
1308 struct dwarf2_cu *, struct symbol * = NULL);
1309
1310 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1311 struct dwarf2_cu *);
1312
1313 static void dwarf2_const_value_attr (const struct attribute *attr,
1314 struct type *type,
1315 const char *name,
1316 struct obstack *obstack,
1317 struct dwarf2_cu *cu, LONGEST *value,
1318 const gdb_byte **bytes,
1319 struct dwarf2_locexpr_baton **baton);
1320
1321 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1322
1323 static int need_gnat_info (struct dwarf2_cu *);
1324
1325 static struct type *die_descriptive_type (struct die_info *,
1326 struct dwarf2_cu *);
1327
1328 static void set_descriptive_type (struct type *, struct die_info *,
1329 struct dwarf2_cu *);
1330
1331 static struct type *die_containing_type (struct die_info *,
1332 struct dwarf2_cu *);
1333
1334 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1335 struct dwarf2_cu *);
1336
1337 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1338
1339 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1340
1341 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1342
1343 static char *typename_concat (struct obstack *obs, const char *prefix,
1344 const char *suffix, int physname,
1345 struct dwarf2_cu *cu);
1346
1347 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1348
1349 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1350
1351 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1352
1353 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1354
1355 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1356
1357 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1358
1359 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1360 struct dwarf2_cu *, dwarf2_psymtab *);
1361
1362 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1363 values. Keep the items ordered with increasing constraints compliance. */
1364 enum pc_bounds_kind
1365 {
1366 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1367 PC_BOUNDS_NOT_PRESENT,
1368
1369 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1370 were present but they do not form a valid range of PC addresses. */
1371 PC_BOUNDS_INVALID,
1372
1373 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1374 PC_BOUNDS_RANGES,
1375
1376 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1377 PC_BOUNDS_HIGH_LOW,
1378 };
1379
1380 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 struct dwarf2_cu *,
1383 dwarf2_psymtab *);
1384
1385 static void get_scope_pc_bounds (struct die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
1387 struct dwarf2_cu *);
1388
1389 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1390 CORE_ADDR, struct dwarf2_cu *);
1391
1392 static void dwarf2_add_field (struct field_info *, struct die_info *,
1393 struct dwarf2_cu *);
1394
1395 static void dwarf2_attach_fields_to_type (struct field_info *,
1396 struct type *, struct dwarf2_cu *);
1397
1398 static void dwarf2_add_member_fn (struct field_info *,
1399 struct die_info *, struct type *,
1400 struct dwarf2_cu *);
1401
1402 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1403 struct type *,
1404 struct dwarf2_cu *);
1405
1406 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1407
1408 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1409
1410 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1411
1412 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1413
1414 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1415
1416 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1417
1418 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1419
1420 static struct type *read_module_type (struct die_info *die,
1421 struct dwarf2_cu *cu);
1422
1423 static const char *namespace_name (struct die_info *die,
1424 int *is_anonymous, struct dwarf2_cu *);
1425
1426 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1427
1428 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1429
1430 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1431 struct dwarf2_cu *);
1432
1433 static struct die_info *read_die_and_siblings_1
1434 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1435 struct die_info *);
1436
1437 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1438 const gdb_byte *info_ptr,
1439 const gdb_byte **new_info_ptr,
1440 struct die_info *parent);
1441
1442 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1443 struct die_info **, const gdb_byte *,
1444 int);
1445
1446 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1447 struct die_info **, const gdb_byte *);
1448
1449 static void process_die (struct die_info *, struct dwarf2_cu *);
1450
1451 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1452 struct obstack *);
1453
1454 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1455
1456 static const char *dwarf2_full_name (const char *name,
1457 struct die_info *die,
1458 struct dwarf2_cu *cu);
1459
1460 static const char *dwarf2_physname (const char *name, struct die_info *die,
1461 struct dwarf2_cu *cu);
1462
1463 static struct die_info *dwarf2_extension (struct die_info *die,
1464 struct dwarf2_cu **);
1465
1466 static const char *dwarf_tag_name (unsigned int);
1467
1468 static const char *dwarf_attr_name (unsigned int);
1469
1470 static const char *dwarf_form_name (unsigned int);
1471
1472 static const char *dwarf_bool_name (unsigned int);
1473
1474 static const char *dwarf_type_encoding_name (unsigned int);
1475
1476 static struct die_info *sibling_die (struct die_info *);
1477
1478 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1479
1480 static void dump_die_for_error (struct die_info *);
1481
1482 static void dump_die_1 (struct ui_file *, int level, int max_level,
1483 struct die_info *);
1484
1485 /*static*/ void dump_die (struct die_info *, int max_level);
1486
1487 static void store_in_ref_table (struct die_info *,
1488 struct dwarf2_cu *);
1489
1490 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1491
1492 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1493
1494 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1495 const struct attribute *,
1496 struct dwarf2_cu **);
1497
1498 static struct die_info *follow_die_ref (struct die_info *,
1499 const struct attribute *,
1500 struct dwarf2_cu **);
1501
1502 static struct die_info *follow_die_sig (struct die_info *,
1503 const struct attribute *,
1504 struct dwarf2_cu **);
1505
1506 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1507 struct dwarf2_cu *);
1508
1509 static struct type *get_DW_AT_signature_type (struct die_info *,
1510 const struct attribute *,
1511 struct dwarf2_cu *);
1512
1513 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1514
1515 static void read_signatured_type (struct signatured_type *);
1516
1517 static int attr_to_dynamic_prop (const struct attribute *attr,
1518 struct die_info *die, struct dwarf2_cu *cu,
1519 struct dynamic_prop *prop, struct type *type);
1520
1521 /* memory allocation interface */
1522
1523 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1524
1525 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1526
1527 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1528
1529 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1530 struct dwarf2_loclist_baton *baton,
1531 const struct attribute *attr);
1532
1533 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1534 struct symbol *sym,
1535 struct dwarf2_cu *cu,
1536 int is_block);
1537
1538 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1539 const gdb_byte *info_ptr,
1540 struct abbrev_info *abbrev);
1541
1542 static hashval_t partial_die_hash (const void *item);
1543
1544 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1545
1546 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1547 (sect_offset sect_off, unsigned int offset_in_dwz,
1548 struct dwarf2_per_objfile *dwarf2_per_objfile);
1549
1550 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1551 struct die_info *comp_unit_die,
1552 enum language pretend_language);
1553
1554 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1555
1556 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1557
1558 static struct type *set_die_type (struct die_info *, struct type *,
1559 struct dwarf2_cu *);
1560
1561 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1562
1563 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1564
1565 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1566 enum language);
1567
1568 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1569 enum language);
1570
1571 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1572 enum language);
1573
1574 static void dwarf2_add_dependence (struct dwarf2_cu *,
1575 struct dwarf2_per_cu_data *);
1576
1577 static void dwarf2_mark (struct dwarf2_cu *);
1578
1579 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1580
1581 static struct type *get_die_type_at_offset (sect_offset,
1582 struct dwarf2_per_cu_data *);
1583
1584 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1585
1586 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1587 enum language pretend_language);
1588
1589 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1590
1591 /* Class, the destructor of which frees all allocated queue entries. This
1592 will only have work to do if an error was thrown while processing the
1593 dwarf. If no error was thrown then the queue entries should have all
1594 been processed, and freed, as we went along. */
1595
1596 class dwarf2_queue_guard
1597 {
1598 public:
1599 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1600 : m_per_objfile (per_objfile)
1601 {
1602 }
1603
1604 /* Free any entries remaining on the queue. There should only be
1605 entries left if we hit an error while processing the dwarf. */
1606 ~dwarf2_queue_guard ()
1607 {
1608 /* Ensure that no memory is allocated by the queue. */
1609 std::queue<dwarf2_queue_item> empty;
1610 std::swap (m_per_objfile->queue, empty);
1611 }
1612
1613 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1614
1615 private:
1616 dwarf2_per_objfile *m_per_objfile;
1617 };
1618
1619 dwarf2_queue_item::~dwarf2_queue_item ()
1620 {
1621 /* Anything still marked queued is likely to be in an
1622 inconsistent state, so discard it. */
1623 if (per_cu->queued)
1624 {
1625 if (per_cu->cu != NULL)
1626 free_one_cached_comp_unit (per_cu);
1627 per_cu->queued = 0;
1628 }
1629 }
1630
1631 /* The return type of find_file_and_directory. Note, the enclosed
1632 string pointers are only valid while this object is valid. */
1633
1634 struct file_and_directory
1635 {
1636 /* The filename. This is never NULL. */
1637 const char *name;
1638
1639 /* The compilation directory. NULL if not known. If we needed to
1640 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1641 points directly to the DW_AT_comp_dir string attribute owned by
1642 the obstack that owns the DIE. */
1643 const char *comp_dir;
1644
1645 /* If we needed to build a new string for comp_dir, this is what
1646 owns the storage. */
1647 std::string comp_dir_storage;
1648 };
1649
1650 static file_and_directory find_file_and_directory (struct die_info *die,
1651 struct dwarf2_cu *cu);
1652
1653 static htab_up allocate_signatured_type_table ();
1654
1655 static htab_up allocate_dwo_unit_table ();
1656
1657 static struct dwo_unit *lookup_dwo_unit_in_dwp
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1659 struct dwp_file *dwp_file, const char *comp_dir,
1660 ULONGEST signature, int is_debug_types);
1661
1662 static struct dwp_file *get_dwp_file
1663 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1664
1665 static struct dwo_unit *lookup_dwo_comp_unit
1666 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1667
1668 static struct dwo_unit *lookup_dwo_type_unit
1669 (struct signatured_type *, const char *, const char *);
1670
1671 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1672
1673 /* A unique pointer to a dwo_file. */
1674
1675 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1676
1677 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1678
1679 static void check_producer (struct dwarf2_cu *cu);
1680
1681 static void free_line_header_voidp (void *arg);
1682 \f
1683 /* Various complaints about symbol reading that don't abort the process. */
1684
1685 static void
1686 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1687 {
1688 complaint (_("statement list doesn't fit in .debug_line section"));
1689 }
1690
1691 static void
1692 dwarf2_debug_line_missing_file_complaint (void)
1693 {
1694 complaint (_(".debug_line section has line data without a file"));
1695 }
1696
1697 static void
1698 dwarf2_debug_line_missing_end_sequence_complaint (void)
1699 {
1700 complaint (_(".debug_line section has line "
1701 "program sequence without an end"));
1702 }
1703
1704 static void
1705 dwarf2_complex_location_expr_complaint (void)
1706 {
1707 complaint (_("location expression too complex"));
1708 }
1709
1710 static void
1711 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1712 int arg3)
1713 {
1714 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1715 arg1, arg2, arg3);
1716 }
1717
1718 static void
1719 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1720 {
1721 complaint (_("debug info runs off end of %s section"
1722 " [in module %s]"),
1723 section->get_name (),
1724 section->get_file_name ());
1725 }
1726
1727 static void
1728 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1729 {
1730 complaint (_("macro debug info contains a "
1731 "malformed macro definition:\n`%s'"),
1732 arg1);
1733 }
1734
1735 static void
1736 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1737 {
1738 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1739 arg1, arg2);
1740 }
1741
1742 /* Hash function for line_header_hash. */
1743
1744 static hashval_t
1745 line_header_hash (const struct line_header *ofs)
1746 {
1747 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1748 }
1749
1750 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1751
1752 static hashval_t
1753 line_header_hash_voidp (const void *item)
1754 {
1755 const struct line_header *ofs = (const struct line_header *) item;
1756
1757 return line_header_hash (ofs);
1758 }
1759
1760 /* Equality function for line_header_hash. */
1761
1762 static int
1763 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1764 {
1765 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1766 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1767
1768 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1769 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1770 }
1771
1772 \f
1773
1774 /* See declaration. */
1775
1776 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1777 const dwarf2_debug_sections *names,
1778 bool can_copy_)
1779 : objfile (objfile_),
1780 can_copy (can_copy_)
1781 {
1782 if (names == NULL)
1783 names = &dwarf2_elf_names;
1784
1785 bfd *obfd = objfile->obfd;
1786
1787 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1788 locate_sections (obfd, sec, *names);
1789 }
1790
1791 dwarf2_per_objfile::~dwarf2_per_objfile ()
1792 {
1793 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1794 free_cached_comp_units ();
1795
1796 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1797 per_cu->imported_symtabs_free ();
1798
1799 for (signatured_type *sig_type : all_type_units)
1800 sig_type->per_cu.imported_symtabs_free ();
1801
1802 /* Everything else should be on the objfile obstack. */
1803 }
1804
1805 /* See declaration. */
1806
1807 void
1808 dwarf2_per_objfile::free_cached_comp_units ()
1809 {
1810 dwarf2_per_cu_data *per_cu = read_in_chain;
1811 dwarf2_per_cu_data **last_chain = &read_in_chain;
1812 while (per_cu != NULL)
1813 {
1814 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1815
1816 delete per_cu->cu;
1817 *last_chain = next_cu;
1818 per_cu = next_cu;
1819 }
1820 }
1821
1822 /* A helper class that calls free_cached_comp_units on
1823 destruction. */
1824
1825 class free_cached_comp_units
1826 {
1827 public:
1828
1829 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1830 : m_per_objfile (per_objfile)
1831 {
1832 }
1833
1834 ~free_cached_comp_units ()
1835 {
1836 m_per_objfile->free_cached_comp_units ();
1837 }
1838
1839 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1840
1841 private:
1842
1843 dwarf2_per_objfile *m_per_objfile;
1844 };
1845
1846 /* Try to locate the sections we need for DWARF 2 debugging
1847 information and return true if we have enough to do something.
1848 NAMES points to the dwarf2 section names, or is NULL if the standard
1849 ELF names are used. CAN_COPY is true for formats where symbol
1850 interposition is possible and so symbol values must follow copy
1851 relocation rules. */
1852
1853 int
1854 dwarf2_has_info (struct objfile *objfile,
1855 const struct dwarf2_debug_sections *names,
1856 bool can_copy)
1857 {
1858 if (objfile->flags & OBJF_READNEVER)
1859 return 0;
1860
1861 struct dwarf2_per_objfile *dwarf2_per_objfile
1862 = get_dwarf2_per_objfile (objfile);
1863
1864 if (dwarf2_per_objfile == NULL)
1865 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1866 names,
1867 can_copy);
1868
1869 return (!dwarf2_per_objfile->info.is_virtual
1870 && dwarf2_per_objfile->info.s.section != NULL
1871 && !dwarf2_per_objfile->abbrev.is_virtual
1872 && dwarf2_per_objfile->abbrev.s.section != NULL);
1873 }
1874
1875 /* When loading sections, we look either for uncompressed section or for
1876 compressed section names. */
1877
1878 static int
1879 section_is_p (const char *section_name,
1880 const struct dwarf2_section_names *names)
1881 {
1882 if (names->normal != NULL
1883 && strcmp (section_name, names->normal) == 0)
1884 return 1;
1885 if (names->compressed != NULL
1886 && strcmp (section_name, names->compressed) == 0)
1887 return 1;
1888 return 0;
1889 }
1890
1891 /* See declaration. */
1892
1893 void
1894 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1895 const dwarf2_debug_sections &names)
1896 {
1897 flagword aflag = bfd_section_flags (sectp);
1898
1899 if ((aflag & SEC_HAS_CONTENTS) == 0)
1900 {
1901 }
1902 else if (elf_section_data (sectp)->this_hdr.sh_size
1903 > bfd_get_file_size (abfd))
1904 {
1905 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1906 warning (_("Discarding section %s which has a section size (%s"
1907 ") larger than the file size [in module %s]"),
1908 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1909 bfd_get_filename (abfd));
1910 }
1911 else if (section_is_p (sectp->name, &names.info))
1912 {
1913 this->info.s.section = sectp;
1914 this->info.size = bfd_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names.abbrev))
1917 {
1918 this->abbrev.s.section = sectp;
1919 this->abbrev.size = bfd_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names.line))
1922 {
1923 this->line.s.section = sectp;
1924 this->line.size = bfd_section_size (sectp);
1925 }
1926 else if (section_is_p (sectp->name, &names.loc))
1927 {
1928 this->loc.s.section = sectp;
1929 this->loc.size = bfd_section_size (sectp);
1930 }
1931 else if (section_is_p (sectp->name, &names.loclists))
1932 {
1933 this->loclists.s.section = sectp;
1934 this->loclists.size = bfd_section_size (sectp);
1935 }
1936 else if (section_is_p (sectp->name, &names.macinfo))
1937 {
1938 this->macinfo.s.section = sectp;
1939 this->macinfo.size = bfd_section_size (sectp);
1940 }
1941 else if (section_is_p (sectp->name, &names.macro))
1942 {
1943 this->macro.s.section = sectp;
1944 this->macro.size = bfd_section_size (sectp);
1945 }
1946 else if (section_is_p (sectp->name, &names.str))
1947 {
1948 this->str.s.section = sectp;
1949 this->str.size = bfd_section_size (sectp);
1950 }
1951 else if (section_is_p (sectp->name, &names.str_offsets))
1952 {
1953 this->str_offsets.s.section = sectp;
1954 this->str_offsets.size = bfd_section_size (sectp);
1955 }
1956 else if (section_is_p (sectp->name, &names.line_str))
1957 {
1958 this->line_str.s.section = sectp;
1959 this->line_str.size = bfd_section_size (sectp);
1960 }
1961 else if (section_is_p (sectp->name, &names.addr))
1962 {
1963 this->addr.s.section = sectp;
1964 this->addr.size = bfd_section_size (sectp);
1965 }
1966 else if (section_is_p (sectp->name, &names.frame))
1967 {
1968 this->frame.s.section = sectp;
1969 this->frame.size = bfd_section_size (sectp);
1970 }
1971 else if (section_is_p (sectp->name, &names.eh_frame))
1972 {
1973 this->eh_frame.s.section = sectp;
1974 this->eh_frame.size = bfd_section_size (sectp);
1975 }
1976 else if (section_is_p (sectp->name, &names.ranges))
1977 {
1978 this->ranges.s.section = sectp;
1979 this->ranges.size = bfd_section_size (sectp);
1980 }
1981 else if (section_is_p (sectp->name, &names.rnglists))
1982 {
1983 this->rnglists.s.section = sectp;
1984 this->rnglists.size = bfd_section_size (sectp);
1985 }
1986 else if (section_is_p (sectp->name, &names.types))
1987 {
1988 struct dwarf2_section_info type_section;
1989
1990 memset (&type_section, 0, sizeof (type_section));
1991 type_section.s.section = sectp;
1992 type_section.size = bfd_section_size (sectp);
1993
1994 this->types.push_back (type_section);
1995 }
1996 else if (section_is_p (sectp->name, &names.gdb_index))
1997 {
1998 this->gdb_index.s.section = sectp;
1999 this->gdb_index.size = bfd_section_size (sectp);
2000 }
2001 else if (section_is_p (sectp->name, &names.debug_names))
2002 {
2003 this->debug_names.s.section = sectp;
2004 this->debug_names.size = bfd_section_size (sectp);
2005 }
2006 else if (section_is_p (sectp->name, &names.debug_aranges))
2007 {
2008 this->debug_aranges.s.section = sectp;
2009 this->debug_aranges.size = bfd_section_size (sectp);
2010 }
2011
2012 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2013 && bfd_section_vma (sectp) == 0)
2014 this->has_section_at_zero = true;
2015 }
2016
2017 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2018 SECTION_NAME. */
2019
2020 void
2021 dwarf2_get_section_info (struct objfile *objfile,
2022 enum dwarf2_section_enum sect,
2023 asection **sectp, const gdb_byte **bufp,
2024 bfd_size_type *sizep)
2025 {
2026 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2027 struct dwarf2_section_info *info;
2028
2029 /* We may see an objfile without any DWARF, in which case we just
2030 return nothing. */
2031 if (data == NULL)
2032 {
2033 *sectp = NULL;
2034 *bufp = NULL;
2035 *sizep = 0;
2036 return;
2037 }
2038 switch (sect)
2039 {
2040 case DWARF2_DEBUG_FRAME:
2041 info = &data->frame;
2042 break;
2043 case DWARF2_EH_FRAME:
2044 info = &data->eh_frame;
2045 break;
2046 default:
2047 gdb_assert_not_reached ("unexpected section");
2048 }
2049
2050 info->read (objfile);
2051
2052 *sectp = info->get_bfd_section ();
2053 *bufp = info->buffer;
2054 *sizep = info->size;
2055 }
2056
2057 /* A helper function to find the sections for a .dwz file. */
2058
2059 static void
2060 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2061 {
2062 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2063
2064 /* Note that we only support the standard ELF names, because .dwz
2065 is ELF-only (at the time of writing). */
2066 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2067 {
2068 dwz_file->abbrev.s.section = sectp;
2069 dwz_file->abbrev.size = bfd_section_size (sectp);
2070 }
2071 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2072 {
2073 dwz_file->info.s.section = sectp;
2074 dwz_file->info.size = bfd_section_size (sectp);
2075 }
2076 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2077 {
2078 dwz_file->str.s.section = sectp;
2079 dwz_file->str.size = bfd_section_size (sectp);
2080 }
2081 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2082 {
2083 dwz_file->line.s.section = sectp;
2084 dwz_file->line.size = bfd_section_size (sectp);
2085 }
2086 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2087 {
2088 dwz_file->macro.s.section = sectp;
2089 dwz_file->macro.size = bfd_section_size (sectp);
2090 }
2091 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2092 {
2093 dwz_file->gdb_index.s.section = sectp;
2094 dwz_file->gdb_index.size = bfd_section_size (sectp);
2095 }
2096 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2097 {
2098 dwz_file->debug_names.s.section = sectp;
2099 dwz_file->debug_names.size = bfd_section_size (sectp);
2100 }
2101 }
2102
2103 /* See dwarf2read.h. */
2104
2105 struct dwz_file *
2106 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2107 {
2108 const char *filename;
2109 bfd_size_type buildid_len_arg;
2110 size_t buildid_len;
2111 bfd_byte *buildid;
2112
2113 if (dwarf2_per_objfile->dwz_file != NULL)
2114 return dwarf2_per_objfile->dwz_file.get ();
2115
2116 bfd_set_error (bfd_error_no_error);
2117 gdb::unique_xmalloc_ptr<char> data
2118 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2119 &buildid_len_arg, &buildid));
2120 if (data == NULL)
2121 {
2122 if (bfd_get_error () == bfd_error_no_error)
2123 return NULL;
2124 error (_("could not read '.gnu_debugaltlink' section: %s"),
2125 bfd_errmsg (bfd_get_error ()));
2126 }
2127
2128 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2129
2130 buildid_len = (size_t) buildid_len_arg;
2131
2132 filename = data.get ();
2133
2134 std::string abs_storage;
2135 if (!IS_ABSOLUTE_PATH (filename))
2136 {
2137 gdb::unique_xmalloc_ptr<char> abs
2138 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2139
2140 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2141 filename = abs_storage.c_str ();
2142 }
2143
2144 /* First try the file name given in the section. If that doesn't
2145 work, try to use the build-id instead. */
2146 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2147 if (dwz_bfd != NULL)
2148 {
2149 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2150 dwz_bfd.reset (nullptr);
2151 }
2152
2153 if (dwz_bfd == NULL)
2154 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2155
2156 if (dwz_bfd == NULL)
2157 error (_("could not find '.gnu_debugaltlink' file for %s"),
2158 objfile_name (dwarf2_per_objfile->objfile));
2159
2160 std::unique_ptr<struct dwz_file> result
2161 (new struct dwz_file (std::move (dwz_bfd)));
2162
2163 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2164 result.get ());
2165
2166 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2167 result->dwz_bfd.get ());
2168 dwarf2_per_objfile->dwz_file = std::move (result);
2169 return dwarf2_per_objfile->dwz_file.get ();
2170 }
2171 \f
2172 /* DWARF quick_symbols_functions support. */
2173
2174 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2175 unique line tables, so we maintain a separate table of all .debug_line
2176 derived entries to support the sharing.
2177 All the quick functions need is the list of file names. We discard the
2178 line_header when we're done and don't need to record it here. */
2179 struct quick_file_names
2180 {
2181 /* The data used to construct the hash key. */
2182 struct stmt_list_hash hash;
2183
2184 /* The number of entries in file_names, real_names. */
2185 unsigned int num_file_names;
2186
2187 /* The file names from the line table, after being run through
2188 file_full_name. */
2189 const char **file_names;
2190
2191 /* The file names from the line table after being run through
2192 gdb_realpath. These are computed lazily. */
2193 const char **real_names;
2194 };
2195
2196 /* When using the index (and thus not using psymtabs), each CU has an
2197 object of this type. This is used to hold information needed by
2198 the various "quick" methods. */
2199 struct dwarf2_per_cu_quick_data
2200 {
2201 /* The file table. This can be NULL if there was no file table
2202 or it's currently not read in.
2203 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2204 struct quick_file_names *file_names;
2205
2206 /* The corresponding symbol table. This is NULL if symbols for this
2207 CU have not yet been read. */
2208 struct compunit_symtab *compunit_symtab;
2209
2210 /* A temporary mark bit used when iterating over all CUs in
2211 expand_symtabs_matching. */
2212 unsigned int mark : 1;
2213
2214 /* True if we've tried to read the file table and found there isn't one.
2215 There will be no point in trying to read it again next time. */
2216 unsigned int no_file_data : 1;
2217 };
2218
2219 /* Utility hash function for a stmt_list_hash. */
2220
2221 static hashval_t
2222 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2223 {
2224 hashval_t v = 0;
2225
2226 if (stmt_list_hash->dwo_unit != NULL)
2227 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2228 v += to_underlying (stmt_list_hash->line_sect_off);
2229 return v;
2230 }
2231
2232 /* Utility equality function for a stmt_list_hash. */
2233
2234 static int
2235 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2236 const struct stmt_list_hash *rhs)
2237 {
2238 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2239 return 0;
2240 if (lhs->dwo_unit != NULL
2241 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2242 return 0;
2243
2244 return lhs->line_sect_off == rhs->line_sect_off;
2245 }
2246
2247 /* Hash function for a quick_file_names. */
2248
2249 static hashval_t
2250 hash_file_name_entry (const void *e)
2251 {
2252 const struct quick_file_names *file_data
2253 = (const struct quick_file_names *) e;
2254
2255 return hash_stmt_list_entry (&file_data->hash);
2256 }
2257
2258 /* Equality function for a quick_file_names. */
2259
2260 static int
2261 eq_file_name_entry (const void *a, const void *b)
2262 {
2263 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2264 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2265
2266 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2267 }
2268
2269 /* Delete function for a quick_file_names. */
2270
2271 static void
2272 delete_file_name_entry (void *e)
2273 {
2274 struct quick_file_names *file_data = (struct quick_file_names *) e;
2275 int i;
2276
2277 for (i = 0; i < file_data->num_file_names; ++i)
2278 {
2279 xfree ((void*) file_data->file_names[i]);
2280 if (file_data->real_names)
2281 xfree ((void*) file_data->real_names[i]);
2282 }
2283
2284 /* The space for the struct itself lives on objfile_obstack,
2285 so we don't free it here. */
2286 }
2287
2288 /* Create a quick_file_names hash table. */
2289
2290 static htab_up
2291 create_quick_file_names_table (unsigned int nr_initial_entries)
2292 {
2293 return htab_up (htab_create_alloc (nr_initial_entries,
2294 hash_file_name_entry, eq_file_name_entry,
2295 delete_file_name_entry, xcalloc, xfree));
2296 }
2297
2298 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2299 have to be created afterwards. You should call age_cached_comp_units after
2300 processing PER_CU->CU. dw2_setup must have been already called. */
2301
2302 static void
2303 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2304 {
2305 if (per_cu->is_debug_types)
2306 load_full_type_unit (per_cu);
2307 else
2308 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2309
2310 if (per_cu->cu == NULL)
2311 return; /* Dummy CU. */
2312
2313 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2314 }
2315
2316 /* Read in the symbols for PER_CU. */
2317
2318 static void
2319 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2320 {
2321 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2322
2323 /* Skip type_unit_groups, reading the type units they contain
2324 is handled elsewhere. */
2325 if (IS_TYPE_UNIT_GROUP (per_cu))
2326 return;
2327
2328 /* The destructor of dwarf2_queue_guard frees any entries left on
2329 the queue. After this point we're guaranteed to leave this function
2330 with the dwarf queue empty. */
2331 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2332
2333 if (dwarf2_per_objfile->using_index
2334 ? per_cu->v.quick->compunit_symtab == NULL
2335 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2336 {
2337 queue_comp_unit (per_cu, language_minimal);
2338 load_cu (per_cu, skip_partial);
2339
2340 /* If we just loaded a CU from a DWO, and we're working with an index
2341 that may badly handle TUs, load all the TUs in that DWO as well.
2342 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2343 if (!per_cu->is_debug_types
2344 && per_cu->cu != NULL
2345 && per_cu->cu->dwo_unit != NULL
2346 && dwarf2_per_objfile->index_table != NULL
2347 && dwarf2_per_objfile->index_table->version <= 7
2348 /* DWP files aren't supported yet. */
2349 && get_dwp_file (dwarf2_per_objfile) == NULL)
2350 queue_and_load_all_dwo_tus (per_cu);
2351 }
2352
2353 process_queue (dwarf2_per_objfile);
2354
2355 /* Age the cache, releasing compilation units that have not
2356 been used recently. */
2357 age_cached_comp_units (dwarf2_per_objfile);
2358 }
2359
2360 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2361 the objfile from which this CU came. Returns the resulting symbol
2362 table. */
2363
2364 static struct compunit_symtab *
2365 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2366 {
2367 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2368
2369 gdb_assert (dwarf2_per_objfile->using_index);
2370 if (!per_cu->v.quick->compunit_symtab)
2371 {
2372 free_cached_comp_units freer (dwarf2_per_objfile);
2373 scoped_restore decrementer = increment_reading_symtab ();
2374 dw2_do_instantiate_symtab (per_cu, skip_partial);
2375 process_cu_includes (dwarf2_per_objfile);
2376 }
2377
2378 return per_cu->v.quick->compunit_symtab;
2379 }
2380
2381 /* See declaration. */
2382
2383 dwarf2_per_cu_data *
2384 dwarf2_per_objfile::get_cutu (int index)
2385 {
2386 if (index >= this->all_comp_units.size ())
2387 {
2388 index -= this->all_comp_units.size ();
2389 gdb_assert (index < this->all_type_units.size ());
2390 return &this->all_type_units[index]->per_cu;
2391 }
2392
2393 return this->all_comp_units[index];
2394 }
2395
2396 /* See declaration. */
2397
2398 dwarf2_per_cu_data *
2399 dwarf2_per_objfile::get_cu (int index)
2400 {
2401 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2402
2403 return this->all_comp_units[index];
2404 }
2405
2406 /* See declaration. */
2407
2408 signatured_type *
2409 dwarf2_per_objfile::get_tu (int index)
2410 {
2411 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2412
2413 return this->all_type_units[index];
2414 }
2415
2416 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2417 objfile_obstack, and constructed with the specified field
2418 values. */
2419
2420 static dwarf2_per_cu_data *
2421 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2422 struct dwarf2_section_info *section,
2423 int is_dwz,
2424 sect_offset sect_off, ULONGEST length)
2425 {
2426 struct objfile *objfile = dwarf2_per_objfile->objfile;
2427 dwarf2_per_cu_data *the_cu
2428 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2429 struct dwarf2_per_cu_data);
2430 the_cu->sect_off = sect_off;
2431 the_cu->length = length;
2432 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2433 the_cu->section = section;
2434 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2435 struct dwarf2_per_cu_quick_data);
2436 the_cu->is_dwz = is_dwz;
2437 return the_cu;
2438 }
2439
2440 /* A helper for create_cus_from_index that handles a given list of
2441 CUs. */
2442
2443 static void
2444 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2445 const gdb_byte *cu_list, offset_type n_elements,
2446 struct dwarf2_section_info *section,
2447 int is_dwz)
2448 {
2449 for (offset_type i = 0; i < n_elements; i += 2)
2450 {
2451 gdb_static_assert (sizeof (ULONGEST) >= 8);
2452
2453 sect_offset sect_off
2454 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2455 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2456 cu_list += 2 * 8;
2457
2458 dwarf2_per_cu_data *per_cu
2459 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2460 sect_off, length);
2461 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2462 }
2463 }
2464
2465 /* Read the CU list from the mapped index, and use it to create all
2466 the CU objects for this objfile. */
2467
2468 static void
2469 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2470 const gdb_byte *cu_list, offset_type cu_list_elements,
2471 const gdb_byte *dwz_list, offset_type dwz_elements)
2472 {
2473 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2474 dwarf2_per_objfile->all_comp_units.reserve
2475 ((cu_list_elements + dwz_elements) / 2);
2476
2477 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2478 &dwarf2_per_objfile->info, 0);
2479
2480 if (dwz_elements == 0)
2481 return;
2482
2483 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2484 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2485 &dwz->info, 1);
2486 }
2487
2488 /* Create the signatured type hash table from the index. */
2489
2490 static void
2491 create_signatured_type_table_from_index
2492 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2493 struct dwarf2_section_info *section,
2494 const gdb_byte *bytes,
2495 offset_type elements)
2496 {
2497 struct objfile *objfile = dwarf2_per_objfile->objfile;
2498
2499 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2500 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2501
2502 htab_up sig_types_hash = allocate_signatured_type_table ();
2503
2504 for (offset_type i = 0; i < elements; i += 3)
2505 {
2506 struct signatured_type *sig_type;
2507 ULONGEST signature;
2508 void **slot;
2509 cu_offset type_offset_in_tu;
2510
2511 gdb_static_assert (sizeof (ULONGEST) >= 8);
2512 sect_offset sect_off
2513 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2514 type_offset_in_tu
2515 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2516 BFD_ENDIAN_LITTLE);
2517 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2518 bytes += 3 * 8;
2519
2520 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2521 struct signatured_type);
2522 sig_type->signature = signature;
2523 sig_type->type_offset_in_tu = type_offset_in_tu;
2524 sig_type->per_cu.is_debug_types = 1;
2525 sig_type->per_cu.section = section;
2526 sig_type->per_cu.sect_off = sect_off;
2527 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2528 sig_type->per_cu.v.quick
2529 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2530 struct dwarf2_per_cu_quick_data);
2531
2532 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2533 *slot = sig_type;
2534
2535 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2536 }
2537
2538 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2539 }
2540
2541 /* Create the signatured type hash table from .debug_names. */
2542
2543 static void
2544 create_signatured_type_table_from_debug_names
2545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2546 const mapped_debug_names &map,
2547 struct dwarf2_section_info *section,
2548 struct dwarf2_section_info *abbrev_section)
2549 {
2550 struct objfile *objfile = dwarf2_per_objfile->objfile;
2551
2552 section->read (objfile);
2553 abbrev_section->read (objfile);
2554
2555 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2556 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2557
2558 htab_up sig_types_hash = allocate_signatured_type_table ();
2559
2560 for (uint32_t i = 0; i < map.tu_count; ++i)
2561 {
2562 struct signatured_type *sig_type;
2563 void **slot;
2564
2565 sect_offset sect_off
2566 = (sect_offset) (extract_unsigned_integer
2567 (map.tu_table_reordered + i * map.offset_size,
2568 map.offset_size,
2569 map.dwarf5_byte_order));
2570
2571 comp_unit_head cu_header;
2572 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2573 abbrev_section,
2574 section->buffer + to_underlying (sect_off),
2575 rcuh_kind::TYPE);
2576
2577 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2578 struct signatured_type);
2579 sig_type->signature = cu_header.signature;
2580 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2581 sig_type->per_cu.is_debug_types = 1;
2582 sig_type->per_cu.section = section;
2583 sig_type->per_cu.sect_off = sect_off;
2584 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2585 sig_type->per_cu.v.quick
2586 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2587 struct dwarf2_per_cu_quick_data);
2588
2589 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2590 *slot = sig_type;
2591
2592 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2593 }
2594
2595 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2596 }
2597
2598 /* Read the address map data from the mapped index, and use it to
2599 populate the objfile's psymtabs_addrmap. */
2600
2601 static void
2602 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2603 struct mapped_index *index)
2604 {
2605 struct objfile *objfile = dwarf2_per_objfile->objfile;
2606 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2607 const gdb_byte *iter, *end;
2608 struct addrmap *mutable_map;
2609 CORE_ADDR baseaddr;
2610
2611 auto_obstack temp_obstack;
2612
2613 mutable_map = addrmap_create_mutable (&temp_obstack);
2614
2615 iter = index->address_table.data ();
2616 end = iter + index->address_table.size ();
2617
2618 baseaddr = objfile->text_section_offset ();
2619
2620 while (iter < end)
2621 {
2622 ULONGEST hi, lo, cu_index;
2623 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2624 iter += 8;
2625 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2626 iter += 8;
2627 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2628 iter += 4;
2629
2630 if (lo > hi)
2631 {
2632 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2633 hex_string (lo), hex_string (hi));
2634 continue;
2635 }
2636
2637 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2638 {
2639 complaint (_(".gdb_index address table has invalid CU number %u"),
2640 (unsigned) cu_index);
2641 continue;
2642 }
2643
2644 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2645 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2646 addrmap_set_empty (mutable_map, lo, hi - 1,
2647 dwarf2_per_objfile->get_cu (cu_index));
2648 }
2649
2650 objfile->partial_symtabs->psymtabs_addrmap
2651 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2652 }
2653
2654 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2655 populate the objfile's psymtabs_addrmap. */
2656
2657 static void
2658 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2659 struct dwarf2_section_info *section)
2660 {
2661 struct objfile *objfile = dwarf2_per_objfile->objfile;
2662 bfd *abfd = objfile->obfd;
2663 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2664 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2665
2666 auto_obstack temp_obstack;
2667 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2668
2669 std::unordered_map<sect_offset,
2670 dwarf2_per_cu_data *,
2671 gdb::hash_enum<sect_offset>>
2672 debug_info_offset_to_per_cu;
2673 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2674 {
2675 const auto insertpair
2676 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2677 if (!insertpair.second)
2678 {
2679 warning (_("Section .debug_aranges in %s has duplicate "
2680 "debug_info_offset %s, ignoring .debug_aranges."),
2681 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2682 return;
2683 }
2684 }
2685
2686 section->read (objfile);
2687
2688 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2689
2690 const gdb_byte *addr = section->buffer;
2691
2692 while (addr < section->buffer + section->size)
2693 {
2694 const gdb_byte *const entry_addr = addr;
2695 unsigned int bytes_read;
2696
2697 const LONGEST entry_length = read_initial_length (abfd, addr,
2698 &bytes_read);
2699 addr += bytes_read;
2700
2701 const gdb_byte *const entry_end = addr + entry_length;
2702 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2703 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2704 if (addr + entry_length > section->buffer + section->size)
2705 {
2706 warning (_("Section .debug_aranges in %s entry at offset %s "
2707 "length %s exceeds section length %s, "
2708 "ignoring .debug_aranges."),
2709 objfile_name (objfile),
2710 plongest (entry_addr - section->buffer),
2711 plongest (bytes_read + entry_length),
2712 pulongest (section->size));
2713 return;
2714 }
2715
2716 /* The version number. */
2717 const uint16_t version = read_2_bytes (abfd, addr);
2718 addr += 2;
2719 if (version != 2)
2720 {
2721 warning (_("Section .debug_aranges in %s entry at offset %s "
2722 "has unsupported version %d, ignoring .debug_aranges."),
2723 objfile_name (objfile),
2724 plongest (entry_addr - section->buffer), version);
2725 return;
2726 }
2727
2728 const uint64_t debug_info_offset
2729 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2730 addr += offset_size;
2731 const auto per_cu_it
2732 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2733 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2734 {
2735 warning (_("Section .debug_aranges in %s entry at offset %s "
2736 "debug_info_offset %s does not exists, "
2737 "ignoring .debug_aranges."),
2738 objfile_name (objfile),
2739 plongest (entry_addr - section->buffer),
2740 pulongest (debug_info_offset));
2741 return;
2742 }
2743 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2744
2745 const uint8_t address_size = *addr++;
2746 if (address_size < 1 || address_size > 8)
2747 {
2748 warning (_("Section .debug_aranges in %s entry at offset %s "
2749 "address_size %u is invalid, ignoring .debug_aranges."),
2750 objfile_name (objfile),
2751 plongest (entry_addr - section->buffer), address_size);
2752 return;
2753 }
2754
2755 const uint8_t segment_selector_size = *addr++;
2756 if (segment_selector_size != 0)
2757 {
2758 warning (_("Section .debug_aranges in %s entry at offset %s "
2759 "segment_selector_size %u is not supported, "
2760 "ignoring .debug_aranges."),
2761 objfile_name (objfile),
2762 plongest (entry_addr - section->buffer),
2763 segment_selector_size);
2764 return;
2765 }
2766
2767 /* Must pad to an alignment boundary that is twice the address
2768 size. It is undocumented by the DWARF standard but GCC does
2769 use it. */
2770 for (size_t padding = ((-(addr - section->buffer))
2771 & (2 * address_size - 1));
2772 padding > 0; padding--)
2773 if (*addr++ != 0)
2774 {
2775 warning (_("Section .debug_aranges in %s entry at offset %s "
2776 "padding is not zero, ignoring .debug_aranges."),
2777 objfile_name (objfile),
2778 plongest (entry_addr - section->buffer));
2779 return;
2780 }
2781
2782 for (;;)
2783 {
2784 if (addr + 2 * address_size > entry_end)
2785 {
2786 warning (_("Section .debug_aranges in %s entry at offset %s "
2787 "address list is not properly terminated, "
2788 "ignoring .debug_aranges."),
2789 objfile_name (objfile),
2790 plongest (entry_addr - section->buffer));
2791 return;
2792 }
2793 ULONGEST start = extract_unsigned_integer (addr, address_size,
2794 dwarf5_byte_order);
2795 addr += address_size;
2796 ULONGEST length = extract_unsigned_integer (addr, address_size,
2797 dwarf5_byte_order);
2798 addr += address_size;
2799 if (start == 0 && length == 0)
2800 break;
2801 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2802 {
2803 /* Symbol was eliminated due to a COMDAT group. */
2804 continue;
2805 }
2806 ULONGEST end = start + length;
2807 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2808 - baseaddr);
2809 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2810 - baseaddr);
2811 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2812 }
2813 }
2814
2815 objfile->partial_symtabs->psymtabs_addrmap
2816 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2817 }
2818
2819 /* Find a slot in the mapped index INDEX for the object named NAME.
2820 If NAME is found, set *VEC_OUT to point to the CU vector in the
2821 constant pool and return true. If NAME cannot be found, return
2822 false. */
2823
2824 static bool
2825 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2826 offset_type **vec_out)
2827 {
2828 offset_type hash;
2829 offset_type slot, step;
2830 int (*cmp) (const char *, const char *);
2831
2832 gdb::unique_xmalloc_ptr<char> without_params;
2833 if (current_language->la_language == language_cplus
2834 || current_language->la_language == language_fortran
2835 || current_language->la_language == language_d)
2836 {
2837 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2838 not contain any. */
2839
2840 if (strchr (name, '(') != NULL)
2841 {
2842 without_params = cp_remove_params (name);
2843
2844 if (without_params != NULL)
2845 name = without_params.get ();
2846 }
2847 }
2848
2849 /* Index version 4 did not support case insensitive searches. But the
2850 indices for case insensitive languages are built in lowercase, therefore
2851 simulate our NAME being searched is also lowercased. */
2852 hash = mapped_index_string_hash ((index->version == 4
2853 && case_sensitivity == case_sensitive_off
2854 ? 5 : index->version),
2855 name);
2856
2857 slot = hash & (index->symbol_table.size () - 1);
2858 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2859 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2860
2861 for (;;)
2862 {
2863 const char *str;
2864
2865 const auto &bucket = index->symbol_table[slot];
2866 if (bucket.name == 0 && bucket.vec == 0)
2867 return false;
2868
2869 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2870 if (!cmp (name, str))
2871 {
2872 *vec_out = (offset_type *) (index->constant_pool
2873 + MAYBE_SWAP (bucket.vec));
2874 return true;
2875 }
2876
2877 slot = (slot + step) & (index->symbol_table.size () - 1);
2878 }
2879 }
2880
2881 /* A helper function that reads the .gdb_index from BUFFER and fills
2882 in MAP. FILENAME is the name of the file containing the data;
2883 it is used for error reporting. DEPRECATED_OK is true if it is
2884 ok to use deprecated sections.
2885
2886 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2887 out parameters that are filled in with information about the CU and
2888 TU lists in the section.
2889
2890 Returns true if all went well, false otherwise. */
2891
2892 static bool
2893 read_gdb_index_from_buffer (struct objfile *objfile,
2894 const char *filename,
2895 bool deprecated_ok,
2896 gdb::array_view<const gdb_byte> buffer,
2897 struct mapped_index *map,
2898 const gdb_byte **cu_list,
2899 offset_type *cu_list_elements,
2900 const gdb_byte **types_list,
2901 offset_type *types_list_elements)
2902 {
2903 const gdb_byte *addr = &buffer[0];
2904
2905 /* Version check. */
2906 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2907 /* Versions earlier than 3 emitted every copy of a psymbol. This
2908 causes the index to behave very poorly for certain requests. Version 3
2909 contained incomplete addrmap. So, it seems better to just ignore such
2910 indices. */
2911 if (version < 4)
2912 {
2913 static int warning_printed = 0;
2914 if (!warning_printed)
2915 {
2916 warning (_("Skipping obsolete .gdb_index section in %s."),
2917 filename);
2918 warning_printed = 1;
2919 }
2920 return 0;
2921 }
2922 /* Index version 4 uses a different hash function than index version
2923 5 and later.
2924
2925 Versions earlier than 6 did not emit psymbols for inlined
2926 functions. Using these files will cause GDB not to be able to
2927 set breakpoints on inlined functions by name, so we ignore these
2928 indices unless the user has done
2929 "set use-deprecated-index-sections on". */
2930 if (version < 6 && !deprecated_ok)
2931 {
2932 static int warning_printed = 0;
2933 if (!warning_printed)
2934 {
2935 warning (_("\
2936 Skipping deprecated .gdb_index section in %s.\n\
2937 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2938 to use the section anyway."),
2939 filename);
2940 warning_printed = 1;
2941 }
2942 return 0;
2943 }
2944 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2945 of the TU (for symbols coming from TUs),
2946 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2947 Plus gold-generated indices can have duplicate entries for global symbols,
2948 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2949 These are just performance bugs, and we can't distinguish gdb-generated
2950 indices from gold-generated ones, so issue no warning here. */
2951
2952 /* Indexes with higher version than the one supported by GDB may be no
2953 longer backward compatible. */
2954 if (version > 8)
2955 return 0;
2956
2957 map->version = version;
2958
2959 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2960
2961 int i = 0;
2962 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2963 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2964 / 8);
2965 ++i;
2966
2967 *types_list = addr + MAYBE_SWAP (metadata[i]);
2968 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2969 - MAYBE_SWAP (metadata[i]))
2970 / 8);
2971 ++i;
2972
2973 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2974 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2975 map->address_table
2976 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2977 ++i;
2978
2979 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2980 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2981 map->symbol_table
2982 = gdb::array_view<mapped_index::symbol_table_slot>
2983 ((mapped_index::symbol_table_slot *) symbol_table,
2984 (mapped_index::symbol_table_slot *) symbol_table_end);
2985
2986 ++i;
2987 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2988
2989 return 1;
2990 }
2991
2992 /* Callback types for dwarf2_read_gdb_index. */
2993
2994 typedef gdb::function_view
2995 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2996 get_gdb_index_contents_ftype;
2997 typedef gdb::function_view
2998 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2999 get_gdb_index_contents_dwz_ftype;
3000
3001 /* Read .gdb_index. If everything went ok, initialize the "quick"
3002 elements of all the CUs and return 1. Otherwise, return 0. */
3003
3004 static int
3005 dwarf2_read_gdb_index
3006 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3007 get_gdb_index_contents_ftype get_gdb_index_contents,
3008 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3009 {
3010 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3011 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3012 struct dwz_file *dwz;
3013 struct objfile *objfile = dwarf2_per_objfile->objfile;
3014
3015 gdb::array_view<const gdb_byte> main_index_contents
3016 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3017
3018 if (main_index_contents.empty ())
3019 return 0;
3020
3021 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3022 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3023 use_deprecated_index_sections,
3024 main_index_contents, map.get (), &cu_list,
3025 &cu_list_elements, &types_list,
3026 &types_list_elements))
3027 return 0;
3028
3029 /* Don't use the index if it's empty. */
3030 if (map->symbol_table.empty ())
3031 return 0;
3032
3033 /* If there is a .dwz file, read it so we can get its CU list as
3034 well. */
3035 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3036 if (dwz != NULL)
3037 {
3038 struct mapped_index dwz_map;
3039 const gdb_byte *dwz_types_ignore;
3040 offset_type dwz_types_elements_ignore;
3041
3042 gdb::array_view<const gdb_byte> dwz_index_content
3043 = get_gdb_index_contents_dwz (objfile, dwz);
3044
3045 if (dwz_index_content.empty ())
3046 return 0;
3047
3048 if (!read_gdb_index_from_buffer (objfile,
3049 bfd_get_filename (dwz->dwz_bfd.get ()),
3050 1, dwz_index_content, &dwz_map,
3051 &dwz_list, &dwz_list_elements,
3052 &dwz_types_ignore,
3053 &dwz_types_elements_ignore))
3054 {
3055 warning (_("could not read '.gdb_index' section from %s; skipping"),
3056 bfd_get_filename (dwz->dwz_bfd.get ()));
3057 return 0;
3058 }
3059 }
3060
3061 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3062 dwz_list, dwz_list_elements);
3063
3064 if (types_list_elements)
3065 {
3066 /* We can only handle a single .debug_types when we have an
3067 index. */
3068 if (dwarf2_per_objfile->types.size () != 1)
3069 return 0;
3070
3071 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3072
3073 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3074 types_list, types_list_elements);
3075 }
3076
3077 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3078
3079 dwarf2_per_objfile->index_table = std::move (map);
3080 dwarf2_per_objfile->using_index = 1;
3081 dwarf2_per_objfile->quick_file_names_table =
3082 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3083
3084 return 1;
3085 }
3086
3087 /* die_reader_func for dw2_get_file_names. */
3088
3089 static void
3090 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3091 const gdb_byte *info_ptr,
3092 struct die_info *comp_unit_die)
3093 {
3094 struct dwarf2_cu *cu = reader->cu;
3095 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3096 struct dwarf2_per_objfile *dwarf2_per_objfile
3097 = cu->per_cu->dwarf2_per_objfile;
3098 struct objfile *objfile = dwarf2_per_objfile->objfile;
3099 struct dwarf2_per_cu_data *lh_cu;
3100 struct attribute *attr;
3101 void **slot;
3102 struct quick_file_names *qfn;
3103
3104 gdb_assert (! this_cu->is_debug_types);
3105
3106 /* Our callers never want to match partial units -- instead they
3107 will match the enclosing full CU. */
3108 if (comp_unit_die->tag == DW_TAG_partial_unit)
3109 {
3110 this_cu->v.quick->no_file_data = 1;
3111 return;
3112 }
3113
3114 lh_cu = this_cu;
3115 slot = NULL;
3116
3117 line_header_up lh;
3118 sect_offset line_offset {};
3119
3120 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3121 if (attr != nullptr)
3122 {
3123 struct quick_file_names find_entry;
3124
3125 line_offset = (sect_offset) DW_UNSND (attr);
3126
3127 /* We may have already read in this line header (TU line header sharing).
3128 If we have we're done. */
3129 find_entry.hash.dwo_unit = cu->dwo_unit;
3130 find_entry.hash.line_sect_off = line_offset;
3131 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3132 &find_entry, INSERT);
3133 if (*slot != NULL)
3134 {
3135 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3136 return;
3137 }
3138
3139 lh = dwarf_decode_line_header (line_offset, cu);
3140 }
3141 if (lh == NULL)
3142 {
3143 lh_cu->v.quick->no_file_data = 1;
3144 return;
3145 }
3146
3147 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3148 qfn->hash.dwo_unit = cu->dwo_unit;
3149 qfn->hash.line_sect_off = line_offset;
3150 gdb_assert (slot != NULL);
3151 *slot = qfn;
3152
3153 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3154
3155 int offset = 0;
3156 if (strcmp (fnd.name, "<unknown>") != 0)
3157 ++offset;
3158
3159 qfn->num_file_names = offset + lh->file_names_size ();
3160 qfn->file_names =
3161 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3162 if (offset != 0)
3163 qfn->file_names[0] = xstrdup (fnd.name);
3164 for (int i = 0; i < lh->file_names_size (); ++i)
3165 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3166 fnd.comp_dir).release ();
3167 qfn->real_names = NULL;
3168
3169 lh_cu->v.quick->file_names = qfn;
3170 }
3171
3172 /* A helper for the "quick" functions which attempts to read the line
3173 table for THIS_CU. */
3174
3175 static struct quick_file_names *
3176 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3177 {
3178 /* This should never be called for TUs. */
3179 gdb_assert (! this_cu->is_debug_types);
3180 /* Nor type unit groups. */
3181 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3182
3183 if (this_cu->v.quick->file_names != NULL)
3184 return this_cu->v.quick->file_names;
3185 /* If we know there is no line data, no point in looking again. */
3186 if (this_cu->v.quick->no_file_data)
3187 return NULL;
3188
3189 cutu_reader reader (this_cu);
3190 if (!reader.dummy_p)
3191 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3192
3193 if (this_cu->v.quick->no_file_data)
3194 return NULL;
3195 return this_cu->v.quick->file_names;
3196 }
3197
3198 /* A helper for the "quick" functions which computes and caches the
3199 real path for a given file name from the line table. */
3200
3201 static const char *
3202 dw2_get_real_path (struct objfile *objfile,
3203 struct quick_file_names *qfn, int index)
3204 {
3205 if (qfn->real_names == NULL)
3206 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3207 qfn->num_file_names, const char *);
3208
3209 if (qfn->real_names[index] == NULL)
3210 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3211
3212 return qfn->real_names[index];
3213 }
3214
3215 static struct symtab *
3216 dw2_find_last_source_symtab (struct objfile *objfile)
3217 {
3218 struct dwarf2_per_objfile *dwarf2_per_objfile
3219 = get_dwarf2_per_objfile (objfile);
3220 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3221 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3222
3223 if (cust == NULL)
3224 return NULL;
3225
3226 return compunit_primary_filetab (cust);
3227 }
3228
3229 /* Traversal function for dw2_forget_cached_source_info. */
3230
3231 static int
3232 dw2_free_cached_file_names (void **slot, void *info)
3233 {
3234 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3235
3236 if (file_data->real_names)
3237 {
3238 int i;
3239
3240 for (i = 0; i < file_data->num_file_names; ++i)
3241 {
3242 xfree ((void*) file_data->real_names[i]);
3243 file_data->real_names[i] = NULL;
3244 }
3245 }
3246
3247 return 1;
3248 }
3249
3250 static void
3251 dw2_forget_cached_source_info (struct objfile *objfile)
3252 {
3253 struct dwarf2_per_objfile *dwarf2_per_objfile
3254 = get_dwarf2_per_objfile (objfile);
3255
3256 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3257 dw2_free_cached_file_names, NULL);
3258 }
3259
3260 /* Helper function for dw2_map_symtabs_matching_filename that expands
3261 the symtabs and calls the iterator. */
3262
3263 static int
3264 dw2_map_expand_apply (struct objfile *objfile,
3265 struct dwarf2_per_cu_data *per_cu,
3266 const char *name, const char *real_path,
3267 gdb::function_view<bool (symtab *)> callback)
3268 {
3269 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3270
3271 /* Don't visit already-expanded CUs. */
3272 if (per_cu->v.quick->compunit_symtab)
3273 return 0;
3274
3275 /* This may expand more than one symtab, and we want to iterate over
3276 all of them. */
3277 dw2_instantiate_symtab (per_cu, false);
3278
3279 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3280 last_made, callback);
3281 }
3282
3283 /* Implementation of the map_symtabs_matching_filename method. */
3284
3285 static bool
3286 dw2_map_symtabs_matching_filename
3287 (struct objfile *objfile, const char *name, const char *real_path,
3288 gdb::function_view<bool (symtab *)> callback)
3289 {
3290 const char *name_basename = lbasename (name);
3291 struct dwarf2_per_objfile *dwarf2_per_objfile
3292 = get_dwarf2_per_objfile (objfile);
3293
3294 /* The rule is CUs specify all the files, including those used by
3295 any TU, so there's no need to scan TUs here. */
3296
3297 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3298 {
3299 /* We only need to look at symtabs not already expanded. */
3300 if (per_cu->v.quick->compunit_symtab)
3301 continue;
3302
3303 quick_file_names *file_data = dw2_get_file_names (per_cu);
3304 if (file_data == NULL)
3305 continue;
3306
3307 for (int j = 0; j < file_data->num_file_names; ++j)
3308 {
3309 const char *this_name = file_data->file_names[j];
3310 const char *this_real_name;
3311
3312 if (compare_filenames_for_search (this_name, name))
3313 {
3314 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3315 callback))
3316 return true;
3317 continue;
3318 }
3319
3320 /* Before we invoke realpath, which can get expensive when many
3321 files are involved, do a quick comparison of the basenames. */
3322 if (! basenames_may_differ
3323 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3324 continue;
3325
3326 this_real_name = dw2_get_real_path (objfile, file_data, j);
3327 if (compare_filenames_for_search (this_real_name, name))
3328 {
3329 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3330 callback))
3331 return true;
3332 continue;
3333 }
3334
3335 if (real_path != NULL)
3336 {
3337 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3338 gdb_assert (IS_ABSOLUTE_PATH (name));
3339 if (this_real_name != NULL
3340 && FILENAME_CMP (real_path, this_real_name) == 0)
3341 {
3342 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3343 callback))
3344 return true;
3345 continue;
3346 }
3347 }
3348 }
3349 }
3350
3351 return false;
3352 }
3353
3354 /* Struct used to manage iterating over all CUs looking for a symbol. */
3355
3356 struct dw2_symtab_iterator
3357 {
3358 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3359 struct dwarf2_per_objfile *dwarf2_per_objfile;
3360 /* If set, only look for symbols that match that block. Valid values are
3361 GLOBAL_BLOCK and STATIC_BLOCK. */
3362 gdb::optional<block_enum> block_index;
3363 /* The kind of symbol we're looking for. */
3364 domain_enum domain;
3365 /* The list of CUs from the index entry of the symbol,
3366 or NULL if not found. */
3367 offset_type *vec;
3368 /* The next element in VEC to look at. */
3369 int next;
3370 /* The number of elements in VEC, or zero if there is no match. */
3371 int length;
3372 /* Have we seen a global version of the symbol?
3373 If so we can ignore all further global instances.
3374 This is to work around gold/15646, inefficient gold-generated
3375 indices. */
3376 int global_seen;
3377 };
3378
3379 /* Initialize the index symtab iterator ITER. */
3380
3381 static void
3382 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3383 struct dwarf2_per_objfile *dwarf2_per_objfile,
3384 gdb::optional<block_enum> block_index,
3385 domain_enum domain,
3386 const char *name)
3387 {
3388 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3389 iter->block_index = block_index;
3390 iter->domain = domain;
3391 iter->next = 0;
3392 iter->global_seen = 0;
3393
3394 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3395
3396 /* index is NULL if OBJF_READNOW. */
3397 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3398 iter->length = MAYBE_SWAP (*iter->vec);
3399 else
3400 {
3401 iter->vec = NULL;
3402 iter->length = 0;
3403 }
3404 }
3405
3406 /* Return the next matching CU or NULL if there are no more. */
3407
3408 static struct dwarf2_per_cu_data *
3409 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3410 {
3411 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3412
3413 for ( ; iter->next < iter->length; ++iter->next)
3414 {
3415 offset_type cu_index_and_attrs =
3416 MAYBE_SWAP (iter->vec[iter->next + 1]);
3417 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3418 gdb_index_symbol_kind symbol_kind =
3419 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3420 /* Only check the symbol attributes if they're present.
3421 Indices prior to version 7 don't record them,
3422 and indices >= 7 may elide them for certain symbols
3423 (gold does this). */
3424 int attrs_valid =
3425 (dwarf2_per_objfile->index_table->version >= 7
3426 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3427
3428 /* Don't crash on bad data. */
3429 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3430 + dwarf2_per_objfile->all_type_units.size ()))
3431 {
3432 complaint (_(".gdb_index entry has bad CU index"
3433 " [in module %s]"),
3434 objfile_name (dwarf2_per_objfile->objfile));
3435 continue;
3436 }
3437
3438 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3439
3440 /* Skip if already read in. */
3441 if (per_cu->v.quick->compunit_symtab)
3442 continue;
3443
3444 /* Check static vs global. */
3445 if (attrs_valid)
3446 {
3447 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3448
3449 if (iter->block_index.has_value ())
3450 {
3451 bool want_static = *iter->block_index == STATIC_BLOCK;
3452
3453 if (is_static != want_static)
3454 continue;
3455 }
3456
3457 /* Work around gold/15646. */
3458 if (!is_static && iter->global_seen)
3459 continue;
3460 if (!is_static)
3461 iter->global_seen = 1;
3462 }
3463
3464 /* Only check the symbol's kind if it has one. */
3465 if (attrs_valid)
3466 {
3467 switch (iter->domain)
3468 {
3469 case VAR_DOMAIN:
3470 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3471 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3472 /* Some types are also in VAR_DOMAIN. */
3473 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3474 continue;
3475 break;
3476 case STRUCT_DOMAIN:
3477 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3478 continue;
3479 break;
3480 case LABEL_DOMAIN:
3481 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3482 continue;
3483 break;
3484 case MODULE_DOMAIN:
3485 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3486 continue;
3487 break;
3488 default:
3489 break;
3490 }
3491 }
3492
3493 ++iter->next;
3494 return per_cu;
3495 }
3496
3497 return NULL;
3498 }
3499
3500 static struct compunit_symtab *
3501 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3502 const char *name, domain_enum domain)
3503 {
3504 struct compunit_symtab *stab_best = NULL;
3505 struct dwarf2_per_objfile *dwarf2_per_objfile
3506 = get_dwarf2_per_objfile (objfile);
3507
3508 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3509
3510 struct dw2_symtab_iterator iter;
3511 struct dwarf2_per_cu_data *per_cu;
3512
3513 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3514
3515 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3516 {
3517 struct symbol *sym, *with_opaque = NULL;
3518 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3519 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3520 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3521
3522 sym = block_find_symbol (block, name, domain,
3523 block_find_non_opaque_type_preferred,
3524 &with_opaque);
3525
3526 /* Some caution must be observed with overloaded functions
3527 and methods, since the index will not contain any overload
3528 information (but NAME might contain it). */
3529
3530 if (sym != NULL
3531 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3532 return stab;
3533 if (with_opaque != NULL
3534 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3535 stab_best = stab;
3536
3537 /* Keep looking through other CUs. */
3538 }
3539
3540 return stab_best;
3541 }
3542
3543 static void
3544 dw2_print_stats (struct objfile *objfile)
3545 {
3546 struct dwarf2_per_objfile *dwarf2_per_objfile
3547 = get_dwarf2_per_objfile (objfile);
3548 int total = (dwarf2_per_objfile->all_comp_units.size ()
3549 + dwarf2_per_objfile->all_type_units.size ());
3550 int count = 0;
3551
3552 for (int i = 0; i < total; ++i)
3553 {
3554 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3555
3556 if (!per_cu->v.quick->compunit_symtab)
3557 ++count;
3558 }
3559 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3560 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3561 }
3562
3563 /* This dumps minimal information about the index.
3564 It is called via "mt print objfiles".
3565 One use is to verify .gdb_index has been loaded by the
3566 gdb.dwarf2/gdb-index.exp testcase. */
3567
3568 static void
3569 dw2_dump (struct objfile *objfile)
3570 {
3571 struct dwarf2_per_objfile *dwarf2_per_objfile
3572 = get_dwarf2_per_objfile (objfile);
3573
3574 gdb_assert (dwarf2_per_objfile->using_index);
3575 printf_filtered (".gdb_index:");
3576 if (dwarf2_per_objfile->index_table != NULL)
3577 {
3578 printf_filtered (" version %d\n",
3579 dwarf2_per_objfile->index_table->version);
3580 }
3581 else
3582 printf_filtered (" faked for \"readnow\"\n");
3583 printf_filtered ("\n");
3584 }
3585
3586 static void
3587 dw2_expand_symtabs_for_function (struct objfile *objfile,
3588 const char *func_name)
3589 {
3590 struct dwarf2_per_objfile *dwarf2_per_objfile
3591 = get_dwarf2_per_objfile (objfile);
3592
3593 struct dw2_symtab_iterator iter;
3594 struct dwarf2_per_cu_data *per_cu;
3595
3596 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3597
3598 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3599 dw2_instantiate_symtab (per_cu, false);
3600
3601 }
3602
3603 static void
3604 dw2_expand_all_symtabs (struct objfile *objfile)
3605 {
3606 struct dwarf2_per_objfile *dwarf2_per_objfile
3607 = get_dwarf2_per_objfile (objfile);
3608 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3609 + dwarf2_per_objfile->all_type_units.size ());
3610
3611 for (int i = 0; i < total_units; ++i)
3612 {
3613 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3614
3615 /* We don't want to directly expand a partial CU, because if we
3616 read it with the wrong language, then assertion failures can
3617 be triggered later on. See PR symtab/23010. So, tell
3618 dw2_instantiate_symtab to skip partial CUs -- any important
3619 partial CU will be read via DW_TAG_imported_unit anyway. */
3620 dw2_instantiate_symtab (per_cu, true);
3621 }
3622 }
3623
3624 static void
3625 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3626 const char *fullname)
3627 {
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = get_dwarf2_per_objfile (objfile);
3630
3631 /* We don't need to consider type units here.
3632 This is only called for examining code, e.g. expand_line_sal.
3633 There can be an order of magnitude (or more) more type units
3634 than comp units, and we avoid them if we can. */
3635
3636 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3637 {
3638 /* We only need to look at symtabs not already expanded. */
3639 if (per_cu->v.quick->compunit_symtab)
3640 continue;
3641
3642 quick_file_names *file_data = dw2_get_file_names (per_cu);
3643 if (file_data == NULL)
3644 continue;
3645
3646 for (int j = 0; j < file_data->num_file_names; ++j)
3647 {
3648 const char *this_fullname = file_data->file_names[j];
3649
3650 if (filename_cmp (this_fullname, fullname) == 0)
3651 {
3652 dw2_instantiate_symtab (per_cu, false);
3653 break;
3654 }
3655 }
3656 }
3657 }
3658
3659 static void
3660 dw2_map_matching_symbols
3661 (struct objfile *objfile,
3662 const lookup_name_info &name, domain_enum domain,
3663 int global,
3664 gdb::function_view<symbol_found_callback_ftype> callback,
3665 symbol_compare_ftype *ordered_compare)
3666 {
3667 /* Currently unimplemented; used for Ada. The function can be called if the
3668 current language is Ada for a non-Ada objfile using GNU index. As Ada
3669 does not look for non-Ada symbols this function should just return. */
3670 }
3671
3672 /* Starting from a search name, return the string that finds the upper
3673 bound of all strings that start with SEARCH_NAME in a sorted name
3674 list. Returns the empty string to indicate that the upper bound is
3675 the end of the list. */
3676
3677 static std::string
3678 make_sort_after_prefix_name (const char *search_name)
3679 {
3680 /* When looking to complete "func", we find the upper bound of all
3681 symbols that start with "func" by looking for where we'd insert
3682 the closest string that would follow "func" in lexicographical
3683 order. Usually, that's "func"-with-last-character-incremented,
3684 i.e. "fund". Mind non-ASCII characters, though. Usually those
3685 will be UTF-8 multi-byte sequences, but we can't be certain.
3686 Especially mind the 0xff character, which is a valid character in
3687 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3688 rule out compilers allowing it in identifiers. Note that
3689 conveniently, strcmp/strcasecmp are specified to compare
3690 characters interpreted as unsigned char. So what we do is treat
3691 the whole string as a base 256 number composed of a sequence of
3692 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3693 to 0, and carries 1 to the following more-significant position.
3694 If the very first character in SEARCH_NAME ends up incremented
3695 and carries/overflows, then the upper bound is the end of the
3696 list. The string after the empty string is also the empty
3697 string.
3698
3699 Some examples of this operation:
3700
3701 SEARCH_NAME => "+1" RESULT
3702
3703 "abc" => "abd"
3704 "ab\xff" => "ac"
3705 "\xff" "a" "\xff" => "\xff" "b"
3706 "\xff" => ""
3707 "\xff\xff" => ""
3708 "" => ""
3709
3710 Then, with these symbols for example:
3711
3712 func
3713 func1
3714 fund
3715
3716 completing "func" looks for symbols between "func" and
3717 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3718 which finds "func" and "func1", but not "fund".
3719
3720 And with:
3721
3722 funcÿ (Latin1 'ÿ' [0xff])
3723 funcÿ1
3724 fund
3725
3726 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3727 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3728
3729 And with:
3730
3731 ÿÿ (Latin1 'ÿ' [0xff])
3732 ÿÿ1
3733
3734 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3735 the end of the list.
3736 */
3737 std::string after = search_name;
3738 while (!after.empty () && (unsigned char) after.back () == 0xff)
3739 after.pop_back ();
3740 if (!after.empty ())
3741 after.back () = (unsigned char) after.back () + 1;
3742 return after;
3743 }
3744
3745 /* See declaration. */
3746
3747 std::pair<std::vector<name_component>::const_iterator,
3748 std::vector<name_component>::const_iterator>
3749 mapped_index_base::find_name_components_bounds
3750 (const lookup_name_info &lookup_name_without_params, language lang) const
3751 {
3752 auto *name_cmp
3753 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3754
3755 const char *lang_name
3756 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3757
3758 /* Comparison function object for lower_bound that matches against a
3759 given symbol name. */
3760 auto lookup_compare_lower = [&] (const name_component &elem,
3761 const char *name)
3762 {
3763 const char *elem_qualified = this->symbol_name_at (elem.idx);
3764 const char *elem_name = elem_qualified + elem.name_offset;
3765 return name_cmp (elem_name, name) < 0;
3766 };
3767
3768 /* Comparison function object for upper_bound that matches against a
3769 given symbol name. */
3770 auto lookup_compare_upper = [&] (const char *name,
3771 const name_component &elem)
3772 {
3773 const char *elem_qualified = this->symbol_name_at (elem.idx);
3774 const char *elem_name = elem_qualified + elem.name_offset;
3775 return name_cmp (name, elem_name) < 0;
3776 };
3777
3778 auto begin = this->name_components.begin ();
3779 auto end = this->name_components.end ();
3780
3781 /* Find the lower bound. */
3782 auto lower = [&] ()
3783 {
3784 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3785 return begin;
3786 else
3787 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3788 } ();
3789
3790 /* Find the upper bound. */
3791 auto upper = [&] ()
3792 {
3793 if (lookup_name_without_params.completion_mode ())
3794 {
3795 /* In completion mode, we want UPPER to point past all
3796 symbols names that have the same prefix. I.e., with
3797 these symbols, and completing "func":
3798
3799 function << lower bound
3800 function1
3801 other_function << upper bound
3802
3803 We find the upper bound by looking for the insertion
3804 point of "func"-with-last-character-incremented,
3805 i.e. "fund". */
3806 std::string after = make_sort_after_prefix_name (lang_name);
3807 if (after.empty ())
3808 return end;
3809 return std::lower_bound (lower, end, after.c_str (),
3810 lookup_compare_lower);
3811 }
3812 else
3813 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3814 } ();
3815
3816 return {lower, upper};
3817 }
3818
3819 /* See declaration. */
3820
3821 void
3822 mapped_index_base::build_name_components ()
3823 {
3824 if (!this->name_components.empty ())
3825 return;
3826
3827 this->name_components_casing = case_sensitivity;
3828 auto *name_cmp
3829 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3830
3831 /* The code below only knows how to break apart components of C++
3832 symbol names (and other languages that use '::' as
3833 namespace/module separator) and Ada symbol names. */
3834 auto count = this->symbol_name_count ();
3835 for (offset_type idx = 0; idx < count; idx++)
3836 {
3837 if (this->symbol_name_slot_invalid (idx))
3838 continue;
3839
3840 const char *name = this->symbol_name_at (idx);
3841
3842 /* Add each name component to the name component table. */
3843 unsigned int previous_len = 0;
3844
3845 if (strstr (name, "::") != nullptr)
3846 {
3847 for (unsigned int current_len = cp_find_first_component (name);
3848 name[current_len] != '\0';
3849 current_len += cp_find_first_component (name + current_len))
3850 {
3851 gdb_assert (name[current_len] == ':');
3852 this->name_components.push_back ({previous_len, idx});
3853 /* Skip the '::'. */
3854 current_len += 2;
3855 previous_len = current_len;
3856 }
3857 }
3858 else
3859 {
3860 /* Handle the Ada encoded (aka mangled) form here. */
3861 for (const char *iter = strstr (name, "__");
3862 iter != nullptr;
3863 iter = strstr (iter, "__"))
3864 {
3865 this->name_components.push_back ({previous_len, idx});
3866 iter += 2;
3867 previous_len = iter - name;
3868 }
3869 }
3870
3871 this->name_components.push_back ({previous_len, idx});
3872 }
3873
3874 /* Sort name_components elements by name. */
3875 auto name_comp_compare = [&] (const name_component &left,
3876 const name_component &right)
3877 {
3878 const char *left_qualified = this->symbol_name_at (left.idx);
3879 const char *right_qualified = this->symbol_name_at (right.idx);
3880
3881 const char *left_name = left_qualified + left.name_offset;
3882 const char *right_name = right_qualified + right.name_offset;
3883
3884 return name_cmp (left_name, right_name) < 0;
3885 };
3886
3887 std::sort (this->name_components.begin (),
3888 this->name_components.end (),
3889 name_comp_compare);
3890 }
3891
3892 /* Helper for dw2_expand_symtabs_matching that works with a
3893 mapped_index_base instead of the containing objfile. This is split
3894 to a separate function in order to be able to unit test the
3895 name_components matching using a mock mapped_index_base. For each
3896 symbol name that matches, calls MATCH_CALLBACK, passing it the
3897 symbol's index in the mapped_index_base symbol table. */
3898
3899 static void
3900 dw2_expand_symtabs_matching_symbol
3901 (mapped_index_base &index,
3902 const lookup_name_info &lookup_name_in,
3903 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3904 enum search_domain kind,
3905 gdb::function_view<bool (offset_type)> match_callback)
3906 {
3907 lookup_name_info lookup_name_without_params
3908 = lookup_name_in.make_ignore_params ();
3909
3910 /* Build the symbol name component sorted vector, if we haven't
3911 yet. */
3912 index.build_name_components ();
3913
3914 /* The same symbol may appear more than once in the range though.
3915 E.g., if we're looking for symbols that complete "w", and we have
3916 a symbol named "w1::w2", we'll find the two name components for
3917 that same symbol in the range. To be sure we only call the
3918 callback once per symbol, we first collect the symbol name
3919 indexes that matched in a temporary vector and ignore
3920 duplicates. */
3921 std::vector<offset_type> matches;
3922
3923 struct name_and_matcher
3924 {
3925 symbol_name_matcher_ftype *matcher;
3926 const std::string &name;
3927
3928 bool operator== (const name_and_matcher &other) const
3929 {
3930 return matcher == other.matcher && name == other.name;
3931 }
3932 };
3933
3934 /* A vector holding all the different symbol name matchers, for all
3935 languages. */
3936 std::vector<name_and_matcher> matchers;
3937
3938 for (int i = 0; i < nr_languages; i++)
3939 {
3940 enum language lang_e = (enum language) i;
3941
3942 const language_defn *lang = language_def (lang_e);
3943 symbol_name_matcher_ftype *name_matcher
3944 = get_symbol_name_matcher (lang, lookup_name_without_params);
3945
3946 name_and_matcher key {
3947 name_matcher,
3948 lookup_name_without_params.language_lookup_name (lang_e)
3949 };
3950
3951 /* Don't insert the same comparison routine more than once.
3952 Note that we do this linear walk. This is not a problem in
3953 practice because the number of supported languages is
3954 low. */
3955 if (std::find (matchers.begin (), matchers.end (), key)
3956 != matchers.end ())
3957 continue;
3958 matchers.push_back (std::move (key));
3959
3960 auto bounds
3961 = index.find_name_components_bounds (lookup_name_without_params,
3962 lang_e);
3963
3964 /* Now for each symbol name in range, check to see if we have a name
3965 match, and if so, call the MATCH_CALLBACK callback. */
3966
3967 for (; bounds.first != bounds.second; ++bounds.first)
3968 {
3969 const char *qualified = index.symbol_name_at (bounds.first->idx);
3970
3971 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3972 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3973 continue;
3974
3975 matches.push_back (bounds.first->idx);
3976 }
3977 }
3978
3979 std::sort (matches.begin (), matches.end ());
3980
3981 /* Finally call the callback, once per match. */
3982 ULONGEST prev = -1;
3983 for (offset_type idx : matches)
3984 {
3985 if (prev != idx)
3986 {
3987 if (!match_callback (idx))
3988 break;
3989 prev = idx;
3990 }
3991 }
3992
3993 /* Above we use a type wider than idx's for 'prev', since 0 and
3994 (offset_type)-1 are both possible values. */
3995 static_assert (sizeof (prev) > sizeof (offset_type), "");
3996 }
3997
3998 #if GDB_SELF_TEST
3999
4000 namespace selftests { namespace dw2_expand_symtabs_matching {
4001
4002 /* A mock .gdb_index/.debug_names-like name index table, enough to
4003 exercise dw2_expand_symtabs_matching_symbol, which works with the
4004 mapped_index_base interface. Builds an index from the symbol list
4005 passed as parameter to the constructor. */
4006 class mock_mapped_index : public mapped_index_base
4007 {
4008 public:
4009 mock_mapped_index (gdb::array_view<const char *> symbols)
4010 : m_symbol_table (symbols)
4011 {}
4012
4013 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4014
4015 /* Return the number of names in the symbol table. */
4016 size_t symbol_name_count () const override
4017 {
4018 return m_symbol_table.size ();
4019 }
4020
4021 /* Get the name of the symbol at IDX in the symbol table. */
4022 const char *symbol_name_at (offset_type idx) const override
4023 {
4024 return m_symbol_table[idx];
4025 }
4026
4027 private:
4028 gdb::array_view<const char *> m_symbol_table;
4029 };
4030
4031 /* Convenience function that converts a NULL pointer to a "<null>"
4032 string, to pass to print routines. */
4033
4034 static const char *
4035 string_or_null (const char *str)
4036 {
4037 return str != NULL ? str : "<null>";
4038 }
4039
4040 /* Check if a lookup_name_info built from
4041 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4042 index. EXPECTED_LIST is the list of expected matches, in expected
4043 matching order. If no match expected, then an empty list is
4044 specified. Returns true on success. On failure prints a warning
4045 indicating the file:line that failed, and returns false. */
4046
4047 static bool
4048 check_match (const char *file, int line,
4049 mock_mapped_index &mock_index,
4050 const char *name, symbol_name_match_type match_type,
4051 bool completion_mode,
4052 std::initializer_list<const char *> expected_list)
4053 {
4054 lookup_name_info lookup_name (name, match_type, completion_mode);
4055
4056 bool matched = true;
4057
4058 auto mismatch = [&] (const char *expected_str,
4059 const char *got)
4060 {
4061 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4062 "expected=\"%s\", got=\"%s\"\n"),
4063 file, line,
4064 (match_type == symbol_name_match_type::FULL
4065 ? "FULL" : "WILD"),
4066 name, string_or_null (expected_str), string_or_null (got));
4067 matched = false;
4068 };
4069
4070 auto expected_it = expected_list.begin ();
4071 auto expected_end = expected_list.end ();
4072
4073 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4074 NULL, ALL_DOMAIN,
4075 [&] (offset_type idx)
4076 {
4077 const char *matched_name = mock_index.symbol_name_at (idx);
4078 const char *expected_str
4079 = expected_it == expected_end ? NULL : *expected_it++;
4080
4081 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4082 mismatch (expected_str, matched_name);
4083 return true;
4084 });
4085
4086 const char *expected_str
4087 = expected_it == expected_end ? NULL : *expected_it++;
4088 if (expected_str != NULL)
4089 mismatch (expected_str, NULL);
4090
4091 return matched;
4092 }
4093
4094 /* The symbols added to the mock mapped_index for testing (in
4095 canonical form). */
4096 static const char *test_symbols[] = {
4097 "function",
4098 "std::bar",
4099 "std::zfunction",
4100 "std::zfunction2",
4101 "w1::w2",
4102 "ns::foo<char*>",
4103 "ns::foo<int>",
4104 "ns::foo<long>",
4105 "ns2::tmpl<int>::foo2",
4106 "(anonymous namespace)::A::B::C",
4107
4108 /* These are used to check that the increment-last-char in the
4109 matching algorithm for completion doesn't match "t1_fund" when
4110 completing "t1_func". */
4111 "t1_func",
4112 "t1_func1",
4113 "t1_fund",
4114 "t1_fund1",
4115
4116 /* A UTF-8 name with multi-byte sequences to make sure that
4117 cp-name-parser understands this as a single identifier ("função"
4118 is "function" in PT). */
4119 u8"u8função",
4120
4121 /* \377 (0xff) is Latin1 'ÿ'. */
4122 "yfunc\377",
4123
4124 /* \377 (0xff) is Latin1 'ÿ'. */
4125 "\377",
4126 "\377\377123",
4127
4128 /* A name with all sorts of complications. Starts with "z" to make
4129 it easier for the completion tests below. */
4130 #define Z_SYM_NAME \
4131 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4132 "::tuple<(anonymous namespace)::ui*, " \
4133 "std::default_delete<(anonymous namespace)::ui>, void>"
4134
4135 Z_SYM_NAME
4136 };
4137
4138 /* Returns true if the mapped_index_base::find_name_component_bounds
4139 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4140 in completion mode. */
4141
4142 static bool
4143 check_find_bounds_finds (mapped_index_base &index,
4144 const char *search_name,
4145 gdb::array_view<const char *> expected_syms)
4146 {
4147 lookup_name_info lookup_name (search_name,
4148 symbol_name_match_type::FULL, true);
4149
4150 auto bounds = index.find_name_components_bounds (lookup_name,
4151 language_cplus);
4152
4153 size_t distance = std::distance (bounds.first, bounds.second);
4154 if (distance != expected_syms.size ())
4155 return false;
4156
4157 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4158 {
4159 auto nc_elem = bounds.first + exp_elem;
4160 const char *qualified = index.symbol_name_at (nc_elem->idx);
4161 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4162 return false;
4163 }
4164
4165 return true;
4166 }
4167
4168 /* Test the lower-level mapped_index::find_name_component_bounds
4169 method. */
4170
4171 static void
4172 test_mapped_index_find_name_component_bounds ()
4173 {
4174 mock_mapped_index mock_index (test_symbols);
4175
4176 mock_index.build_name_components ();
4177
4178 /* Test the lower-level mapped_index::find_name_component_bounds
4179 method in completion mode. */
4180 {
4181 static const char *expected_syms[] = {
4182 "t1_func",
4183 "t1_func1",
4184 };
4185
4186 SELF_CHECK (check_find_bounds_finds (mock_index,
4187 "t1_func", expected_syms));
4188 }
4189
4190 /* Check that the increment-last-char in the name matching algorithm
4191 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4192 {
4193 static const char *expected_syms1[] = {
4194 "\377",
4195 "\377\377123",
4196 };
4197 SELF_CHECK (check_find_bounds_finds (mock_index,
4198 "\377", expected_syms1));
4199
4200 static const char *expected_syms2[] = {
4201 "\377\377123",
4202 };
4203 SELF_CHECK (check_find_bounds_finds (mock_index,
4204 "\377\377", expected_syms2));
4205 }
4206 }
4207
4208 /* Test dw2_expand_symtabs_matching_symbol. */
4209
4210 static void
4211 test_dw2_expand_symtabs_matching_symbol ()
4212 {
4213 mock_mapped_index mock_index (test_symbols);
4214
4215 /* We let all tests run until the end even if some fails, for debug
4216 convenience. */
4217 bool any_mismatch = false;
4218
4219 /* Create the expected symbols list (an initializer_list). Needed
4220 because lists have commas, and we need to pass them to CHECK,
4221 which is a macro. */
4222 #define EXPECT(...) { __VA_ARGS__ }
4223
4224 /* Wrapper for check_match that passes down the current
4225 __FILE__/__LINE__. */
4226 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4227 any_mismatch |= !check_match (__FILE__, __LINE__, \
4228 mock_index, \
4229 NAME, MATCH_TYPE, COMPLETION_MODE, \
4230 EXPECTED_LIST)
4231
4232 /* Identity checks. */
4233 for (const char *sym : test_symbols)
4234 {
4235 /* Should be able to match all existing symbols. */
4236 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4237 EXPECT (sym));
4238
4239 /* Should be able to match all existing symbols with
4240 parameters. */
4241 std::string with_params = std::string (sym) + "(int)";
4242 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4243 EXPECT (sym));
4244
4245 /* Should be able to match all existing symbols with
4246 parameters and qualifiers. */
4247 with_params = std::string (sym) + " ( int ) const";
4248 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4249 EXPECT (sym));
4250
4251 /* This should really find sym, but cp-name-parser.y doesn't
4252 know about lvalue/rvalue qualifiers yet. */
4253 with_params = std::string (sym) + " ( int ) &&";
4254 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4255 {});
4256 }
4257
4258 /* Check that the name matching algorithm for completion doesn't get
4259 confused with Latin1 'ÿ' / 0xff. */
4260 {
4261 static const char str[] = "\377";
4262 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4263 EXPECT ("\377", "\377\377123"));
4264 }
4265
4266 /* Check that the increment-last-char in the matching algorithm for
4267 completion doesn't match "t1_fund" when completing "t1_func". */
4268 {
4269 static const char str[] = "t1_func";
4270 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4271 EXPECT ("t1_func", "t1_func1"));
4272 }
4273
4274 /* Check that completion mode works at each prefix of the expected
4275 symbol name. */
4276 {
4277 static const char str[] = "function(int)";
4278 size_t len = strlen (str);
4279 std::string lookup;
4280
4281 for (size_t i = 1; i < len; i++)
4282 {
4283 lookup.assign (str, i);
4284 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4285 EXPECT ("function"));
4286 }
4287 }
4288
4289 /* While "w" is a prefix of both components, the match function
4290 should still only be called once. */
4291 {
4292 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4293 EXPECT ("w1::w2"));
4294 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4295 EXPECT ("w1::w2"));
4296 }
4297
4298 /* Same, with a "complicated" symbol. */
4299 {
4300 static const char str[] = Z_SYM_NAME;
4301 size_t len = strlen (str);
4302 std::string lookup;
4303
4304 for (size_t i = 1; i < len; i++)
4305 {
4306 lookup.assign (str, i);
4307 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4308 EXPECT (Z_SYM_NAME));
4309 }
4310 }
4311
4312 /* In FULL mode, an incomplete symbol doesn't match. */
4313 {
4314 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4315 {});
4316 }
4317
4318 /* A complete symbol with parameters matches any overload, since the
4319 index has no overload info. */
4320 {
4321 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4322 EXPECT ("std::zfunction", "std::zfunction2"));
4323 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4324 EXPECT ("std::zfunction", "std::zfunction2"));
4325 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4326 EXPECT ("std::zfunction", "std::zfunction2"));
4327 }
4328
4329 /* Check that whitespace is ignored appropriately. A symbol with a
4330 template argument list. */
4331 {
4332 static const char expected[] = "ns::foo<int>";
4333 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4334 EXPECT (expected));
4335 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4336 EXPECT (expected));
4337 }
4338
4339 /* Check that whitespace is ignored appropriately. A symbol with a
4340 template argument list that includes a pointer. */
4341 {
4342 static const char expected[] = "ns::foo<char*>";
4343 /* Try both completion and non-completion modes. */
4344 static const bool completion_mode[2] = {false, true};
4345 for (size_t i = 0; i < 2; i++)
4346 {
4347 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4348 completion_mode[i], EXPECT (expected));
4349 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4350 completion_mode[i], EXPECT (expected));
4351
4352 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4353 completion_mode[i], EXPECT (expected));
4354 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4355 completion_mode[i], EXPECT (expected));
4356 }
4357 }
4358
4359 {
4360 /* Check method qualifiers are ignored. */
4361 static const char expected[] = "ns::foo<char*>";
4362 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4363 symbol_name_match_type::FULL, true, EXPECT (expected));
4364 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4365 symbol_name_match_type::FULL, true, EXPECT (expected));
4366 CHECK_MATCH ("foo < char * > ( int ) const",
4367 symbol_name_match_type::WILD, true, EXPECT (expected));
4368 CHECK_MATCH ("foo < char * > ( int ) &&",
4369 symbol_name_match_type::WILD, true, EXPECT (expected));
4370 }
4371
4372 /* Test lookup names that don't match anything. */
4373 {
4374 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4375 {});
4376
4377 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4378 {});
4379 }
4380
4381 /* Some wild matching tests, exercising "(anonymous namespace)",
4382 which should not be confused with a parameter list. */
4383 {
4384 static const char *syms[] = {
4385 "A::B::C",
4386 "B::C",
4387 "C",
4388 "A :: B :: C ( int )",
4389 "B :: C ( int )",
4390 "C ( int )",
4391 };
4392
4393 for (const char *s : syms)
4394 {
4395 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4396 EXPECT ("(anonymous namespace)::A::B::C"));
4397 }
4398 }
4399
4400 {
4401 static const char expected[] = "ns2::tmpl<int>::foo2";
4402 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4403 EXPECT (expected));
4404 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4405 EXPECT (expected));
4406 }
4407
4408 SELF_CHECK (!any_mismatch);
4409
4410 #undef EXPECT
4411 #undef CHECK_MATCH
4412 }
4413
4414 static void
4415 run_test ()
4416 {
4417 test_mapped_index_find_name_component_bounds ();
4418 test_dw2_expand_symtabs_matching_symbol ();
4419 }
4420
4421 }} // namespace selftests::dw2_expand_symtabs_matching
4422
4423 #endif /* GDB_SELF_TEST */
4424
4425 /* If FILE_MATCHER is NULL or if PER_CU has
4426 dwarf2_per_cu_quick_data::MARK set (see
4427 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4428 EXPANSION_NOTIFY on it. */
4429
4430 static void
4431 dw2_expand_symtabs_matching_one
4432 (struct dwarf2_per_cu_data *per_cu,
4433 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4434 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4435 {
4436 if (file_matcher == NULL || per_cu->v.quick->mark)
4437 {
4438 bool symtab_was_null
4439 = (per_cu->v.quick->compunit_symtab == NULL);
4440
4441 dw2_instantiate_symtab (per_cu, false);
4442
4443 if (expansion_notify != NULL
4444 && symtab_was_null
4445 && per_cu->v.quick->compunit_symtab != NULL)
4446 expansion_notify (per_cu->v.quick->compunit_symtab);
4447 }
4448 }
4449
4450 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4451 matched, to expand corresponding CUs that were marked. IDX is the
4452 index of the symbol name that matched. */
4453
4454 static void
4455 dw2_expand_marked_cus
4456 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4457 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4458 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4459 search_domain kind)
4460 {
4461 offset_type *vec, vec_len, vec_idx;
4462 bool global_seen = false;
4463 mapped_index &index = *dwarf2_per_objfile->index_table;
4464
4465 vec = (offset_type *) (index.constant_pool
4466 + MAYBE_SWAP (index.symbol_table[idx].vec));
4467 vec_len = MAYBE_SWAP (vec[0]);
4468 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4469 {
4470 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4471 /* This value is only valid for index versions >= 7. */
4472 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4473 gdb_index_symbol_kind symbol_kind =
4474 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4475 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4476 /* Only check the symbol attributes if they're present.
4477 Indices prior to version 7 don't record them,
4478 and indices >= 7 may elide them for certain symbols
4479 (gold does this). */
4480 int attrs_valid =
4481 (index.version >= 7
4482 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4483
4484 /* Work around gold/15646. */
4485 if (attrs_valid)
4486 {
4487 if (!is_static && global_seen)
4488 continue;
4489 if (!is_static)
4490 global_seen = true;
4491 }
4492
4493 /* Only check the symbol's kind if it has one. */
4494 if (attrs_valid)
4495 {
4496 switch (kind)
4497 {
4498 case VARIABLES_DOMAIN:
4499 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4500 continue;
4501 break;
4502 case FUNCTIONS_DOMAIN:
4503 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4504 continue;
4505 break;
4506 case TYPES_DOMAIN:
4507 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4508 continue;
4509 break;
4510 case MODULES_DOMAIN:
4511 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4512 continue;
4513 break;
4514 default:
4515 break;
4516 }
4517 }
4518
4519 /* Don't crash on bad data. */
4520 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4521 + dwarf2_per_objfile->all_type_units.size ()))
4522 {
4523 complaint (_(".gdb_index entry has bad CU index"
4524 " [in module %s]"),
4525 objfile_name (dwarf2_per_objfile->objfile));
4526 continue;
4527 }
4528
4529 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4530 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4531 expansion_notify);
4532 }
4533 }
4534
4535 /* If FILE_MATCHER is non-NULL, set all the
4536 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4537 that match FILE_MATCHER. */
4538
4539 static void
4540 dw_expand_symtabs_matching_file_matcher
4541 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4542 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4543 {
4544 if (file_matcher == NULL)
4545 return;
4546
4547 objfile *const objfile = dwarf2_per_objfile->objfile;
4548
4549 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4550 htab_eq_pointer,
4551 NULL, xcalloc, xfree));
4552 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4553 htab_eq_pointer,
4554 NULL, xcalloc, xfree));
4555
4556 /* The rule is CUs specify all the files, including those used by
4557 any TU, so there's no need to scan TUs here. */
4558
4559 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4560 {
4561 QUIT;
4562
4563 per_cu->v.quick->mark = 0;
4564
4565 /* We only need to look at symtabs not already expanded. */
4566 if (per_cu->v.quick->compunit_symtab)
4567 continue;
4568
4569 quick_file_names *file_data = dw2_get_file_names (per_cu);
4570 if (file_data == NULL)
4571 continue;
4572
4573 if (htab_find (visited_not_found.get (), file_data) != NULL)
4574 continue;
4575 else if (htab_find (visited_found.get (), file_data) != NULL)
4576 {
4577 per_cu->v.quick->mark = 1;
4578 continue;
4579 }
4580
4581 for (int j = 0; j < file_data->num_file_names; ++j)
4582 {
4583 const char *this_real_name;
4584
4585 if (file_matcher (file_data->file_names[j], false))
4586 {
4587 per_cu->v.quick->mark = 1;
4588 break;
4589 }
4590
4591 /* Before we invoke realpath, which can get expensive when many
4592 files are involved, do a quick comparison of the basenames. */
4593 if (!basenames_may_differ
4594 && !file_matcher (lbasename (file_data->file_names[j]),
4595 true))
4596 continue;
4597
4598 this_real_name = dw2_get_real_path (objfile, file_data, j);
4599 if (file_matcher (this_real_name, false))
4600 {
4601 per_cu->v.quick->mark = 1;
4602 break;
4603 }
4604 }
4605
4606 void **slot = htab_find_slot (per_cu->v.quick->mark
4607 ? visited_found.get ()
4608 : visited_not_found.get (),
4609 file_data, INSERT);
4610 *slot = file_data;
4611 }
4612 }
4613
4614 static void
4615 dw2_expand_symtabs_matching
4616 (struct objfile *objfile,
4617 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4618 const lookup_name_info &lookup_name,
4619 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4620 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4621 enum search_domain kind)
4622 {
4623 struct dwarf2_per_objfile *dwarf2_per_objfile
4624 = get_dwarf2_per_objfile (objfile);
4625
4626 /* index_table is NULL if OBJF_READNOW. */
4627 if (!dwarf2_per_objfile->index_table)
4628 return;
4629
4630 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4631
4632 mapped_index &index = *dwarf2_per_objfile->index_table;
4633
4634 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4635 symbol_matcher,
4636 kind, [&] (offset_type idx)
4637 {
4638 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4639 expansion_notify, kind);
4640 return true;
4641 });
4642 }
4643
4644 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4645 symtab. */
4646
4647 static struct compunit_symtab *
4648 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4649 CORE_ADDR pc)
4650 {
4651 int i;
4652
4653 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4654 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4655 return cust;
4656
4657 if (cust->includes == NULL)
4658 return NULL;
4659
4660 for (i = 0; cust->includes[i]; ++i)
4661 {
4662 struct compunit_symtab *s = cust->includes[i];
4663
4664 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4665 if (s != NULL)
4666 return s;
4667 }
4668
4669 return NULL;
4670 }
4671
4672 static struct compunit_symtab *
4673 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4674 struct bound_minimal_symbol msymbol,
4675 CORE_ADDR pc,
4676 struct obj_section *section,
4677 int warn_if_readin)
4678 {
4679 struct dwarf2_per_cu_data *data;
4680 struct compunit_symtab *result;
4681
4682 if (!objfile->partial_symtabs->psymtabs_addrmap)
4683 return NULL;
4684
4685 CORE_ADDR baseaddr = objfile->text_section_offset ();
4686 data = (struct dwarf2_per_cu_data *) addrmap_find
4687 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4688 if (!data)
4689 return NULL;
4690
4691 if (warn_if_readin && data->v.quick->compunit_symtab)
4692 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4693 paddress (get_objfile_arch (objfile), pc));
4694
4695 result
4696 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4697 false),
4698 pc);
4699 gdb_assert (result != NULL);
4700 return result;
4701 }
4702
4703 static void
4704 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4705 void *data, int need_fullname)
4706 {
4707 struct dwarf2_per_objfile *dwarf2_per_objfile
4708 = get_dwarf2_per_objfile (objfile);
4709
4710 if (!dwarf2_per_objfile->filenames_cache)
4711 {
4712 dwarf2_per_objfile->filenames_cache.emplace ();
4713
4714 htab_up visited (htab_create_alloc (10,
4715 htab_hash_pointer, htab_eq_pointer,
4716 NULL, xcalloc, xfree));
4717
4718 /* The rule is CUs specify all the files, including those used
4719 by any TU, so there's no need to scan TUs here. We can
4720 ignore file names coming from already-expanded CUs. */
4721
4722 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4723 {
4724 if (per_cu->v.quick->compunit_symtab)
4725 {
4726 void **slot = htab_find_slot (visited.get (),
4727 per_cu->v.quick->file_names,
4728 INSERT);
4729
4730 *slot = per_cu->v.quick->file_names;
4731 }
4732 }
4733
4734 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4735 {
4736 /* We only need to look at symtabs not already expanded. */
4737 if (per_cu->v.quick->compunit_symtab)
4738 continue;
4739
4740 quick_file_names *file_data = dw2_get_file_names (per_cu);
4741 if (file_data == NULL)
4742 continue;
4743
4744 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4745 if (*slot)
4746 {
4747 /* Already visited. */
4748 continue;
4749 }
4750 *slot = file_data;
4751
4752 for (int j = 0; j < file_data->num_file_names; ++j)
4753 {
4754 const char *filename = file_data->file_names[j];
4755 dwarf2_per_objfile->filenames_cache->seen (filename);
4756 }
4757 }
4758 }
4759
4760 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4761 {
4762 gdb::unique_xmalloc_ptr<char> this_real_name;
4763
4764 if (need_fullname)
4765 this_real_name = gdb_realpath (filename);
4766 (*fun) (filename, this_real_name.get (), data);
4767 });
4768 }
4769
4770 static int
4771 dw2_has_symbols (struct objfile *objfile)
4772 {
4773 return 1;
4774 }
4775
4776 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4777 {
4778 dw2_has_symbols,
4779 dw2_find_last_source_symtab,
4780 dw2_forget_cached_source_info,
4781 dw2_map_symtabs_matching_filename,
4782 dw2_lookup_symbol,
4783 dw2_print_stats,
4784 dw2_dump,
4785 dw2_expand_symtabs_for_function,
4786 dw2_expand_all_symtabs,
4787 dw2_expand_symtabs_with_fullname,
4788 dw2_map_matching_symbols,
4789 dw2_expand_symtabs_matching,
4790 dw2_find_pc_sect_compunit_symtab,
4791 NULL,
4792 dw2_map_symbol_filenames
4793 };
4794
4795 /* DWARF-5 debug_names reader. */
4796
4797 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4798 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4799
4800 /* A helper function that reads the .debug_names section in SECTION
4801 and fills in MAP. FILENAME is the name of the file containing the
4802 section; it is used for error reporting.
4803
4804 Returns true if all went well, false otherwise. */
4805
4806 static bool
4807 read_debug_names_from_section (struct objfile *objfile,
4808 const char *filename,
4809 struct dwarf2_section_info *section,
4810 mapped_debug_names &map)
4811 {
4812 if (section->empty ())
4813 return false;
4814
4815 /* Older elfutils strip versions could keep the section in the main
4816 executable while splitting it for the separate debug info file. */
4817 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4818 return false;
4819
4820 section->read (objfile);
4821
4822 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
4823
4824 const gdb_byte *addr = section->buffer;
4825
4826 bfd *const abfd = section->get_bfd_owner ();
4827
4828 unsigned int bytes_read;
4829 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4830 addr += bytes_read;
4831
4832 map.dwarf5_is_dwarf64 = bytes_read != 4;
4833 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4834 if (bytes_read + length != section->size)
4835 {
4836 /* There may be multiple per-CU indices. */
4837 warning (_("Section .debug_names in %s length %s does not match "
4838 "section length %s, ignoring .debug_names."),
4839 filename, plongest (bytes_read + length),
4840 pulongest (section->size));
4841 return false;
4842 }
4843
4844 /* The version number. */
4845 uint16_t version = read_2_bytes (abfd, addr);
4846 addr += 2;
4847 if (version != 5)
4848 {
4849 warning (_("Section .debug_names in %s has unsupported version %d, "
4850 "ignoring .debug_names."),
4851 filename, version);
4852 return false;
4853 }
4854
4855 /* Padding. */
4856 uint16_t padding = read_2_bytes (abfd, addr);
4857 addr += 2;
4858 if (padding != 0)
4859 {
4860 warning (_("Section .debug_names in %s has unsupported padding %d, "
4861 "ignoring .debug_names."),
4862 filename, padding);
4863 return false;
4864 }
4865
4866 /* comp_unit_count - The number of CUs in the CU list. */
4867 map.cu_count = read_4_bytes (abfd, addr);
4868 addr += 4;
4869
4870 /* local_type_unit_count - The number of TUs in the local TU
4871 list. */
4872 map.tu_count = read_4_bytes (abfd, addr);
4873 addr += 4;
4874
4875 /* foreign_type_unit_count - The number of TUs in the foreign TU
4876 list. */
4877 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4878 addr += 4;
4879 if (foreign_tu_count != 0)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4882 "ignoring .debug_names."),
4883 filename, static_cast<unsigned long> (foreign_tu_count));
4884 return false;
4885 }
4886
4887 /* bucket_count - The number of hash buckets in the hash lookup
4888 table. */
4889 map.bucket_count = read_4_bytes (abfd, addr);
4890 addr += 4;
4891
4892 /* name_count - The number of unique names in the index. */
4893 map.name_count = read_4_bytes (abfd, addr);
4894 addr += 4;
4895
4896 /* abbrev_table_size - The size in bytes of the abbreviations
4897 table. */
4898 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4899 addr += 4;
4900
4901 /* augmentation_string_size - The size in bytes of the augmentation
4902 string. This value is rounded up to a multiple of 4. */
4903 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4904 addr += 4;
4905 map.augmentation_is_gdb = ((augmentation_string_size
4906 == sizeof (dwarf5_augmentation))
4907 && memcmp (addr, dwarf5_augmentation,
4908 sizeof (dwarf5_augmentation)) == 0);
4909 augmentation_string_size += (-augmentation_string_size) & 3;
4910 addr += augmentation_string_size;
4911
4912 /* List of CUs */
4913 map.cu_table_reordered = addr;
4914 addr += map.cu_count * map.offset_size;
4915
4916 /* List of Local TUs */
4917 map.tu_table_reordered = addr;
4918 addr += map.tu_count * map.offset_size;
4919
4920 /* Hash Lookup Table */
4921 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4922 addr += map.bucket_count * 4;
4923 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4924 addr += map.name_count * 4;
4925
4926 /* Name Table */
4927 map.name_table_string_offs_reordered = addr;
4928 addr += map.name_count * map.offset_size;
4929 map.name_table_entry_offs_reordered = addr;
4930 addr += map.name_count * map.offset_size;
4931
4932 const gdb_byte *abbrev_table_start = addr;
4933 for (;;)
4934 {
4935 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4936 addr += bytes_read;
4937 if (index_num == 0)
4938 break;
4939
4940 const auto insertpair
4941 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4942 if (!insertpair.second)
4943 {
4944 warning (_("Section .debug_names in %s has duplicate index %s, "
4945 "ignoring .debug_names."),
4946 filename, pulongest (index_num));
4947 return false;
4948 }
4949 mapped_debug_names::index_val &indexval = insertpair.first->second;
4950 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4951 addr += bytes_read;
4952
4953 for (;;)
4954 {
4955 mapped_debug_names::index_val::attr attr;
4956 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4957 addr += bytes_read;
4958 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4959 addr += bytes_read;
4960 if (attr.form == DW_FORM_implicit_const)
4961 {
4962 attr.implicit_const = read_signed_leb128 (abfd, addr,
4963 &bytes_read);
4964 addr += bytes_read;
4965 }
4966 if (attr.dw_idx == 0 && attr.form == 0)
4967 break;
4968 indexval.attr_vec.push_back (std::move (attr));
4969 }
4970 }
4971 if (addr != abbrev_table_start + abbrev_table_size)
4972 {
4973 warning (_("Section .debug_names in %s has abbreviation_table "
4974 "of size %s vs. written as %u, ignoring .debug_names."),
4975 filename, plongest (addr - abbrev_table_start),
4976 abbrev_table_size);
4977 return false;
4978 }
4979 map.entry_pool = addr;
4980
4981 return true;
4982 }
4983
4984 /* A helper for create_cus_from_debug_names that handles the MAP's CU
4985 list. */
4986
4987 static void
4988 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4989 const mapped_debug_names &map,
4990 dwarf2_section_info &section,
4991 bool is_dwz)
4992 {
4993 sect_offset sect_off_prev;
4994 for (uint32_t i = 0; i <= map.cu_count; ++i)
4995 {
4996 sect_offset sect_off_next;
4997 if (i < map.cu_count)
4998 {
4999 sect_off_next
5000 = (sect_offset) (extract_unsigned_integer
5001 (map.cu_table_reordered + i * map.offset_size,
5002 map.offset_size,
5003 map.dwarf5_byte_order));
5004 }
5005 else
5006 sect_off_next = (sect_offset) section.size;
5007 if (i >= 1)
5008 {
5009 const ULONGEST length = sect_off_next - sect_off_prev;
5010 dwarf2_per_cu_data *per_cu
5011 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5012 sect_off_prev, length);
5013 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5014 }
5015 sect_off_prev = sect_off_next;
5016 }
5017 }
5018
5019 /* Read the CU list from the mapped index, and use it to create all
5020 the CU objects for this dwarf2_per_objfile. */
5021
5022 static void
5023 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5024 const mapped_debug_names &map,
5025 const mapped_debug_names &dwz_map)
5026 {
5027 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5028 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5029
5030 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5031 dwarf2_per_objfile->info,
5032 false /* is_dwz */);
5033
5034 if (dwz_map.cu_count == 0)
5035 return;
5036
5037 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5038 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5039 true /* is_dwz */);
5040 }
5041
5042 /* Read .debug_names. If everything went ok, initialize the "quick"
5043 elements of all the CUs and return true. Otherwise, return false. */
5044
5045 static bool
5046 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5047 {
5048 std::unique_ptr<mapped_debug_names> map
5049 (new mapped_debug_names (dwarf2_per_objfile));
5050 mapped_debug_names dwz_map (dwarf2_per_objfile);
5051 struct objfile *objfile = dwarf2_per_objfile->objfile;
5052
5053 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5054 &dwarf2_per_objfile->debug_names,
5055 *map))
5056 return false;
5057
5058 /* Don't use the index if it's empty. */
5059 if (map->name_count == 0)
5060 return false;
5061
5062 /* If there is a .dwz file, read it so we can get its CU list as
5063 well. */
5064 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5065 if (dwz != NULL)
5066 {
5067 if (!read_debug_names_from_section (objfile,
5068 bfd_get_filename (dwz->dwz_bfd.get ()),
5069 &dwz->debug_names, dwz_map))
5070 {
5071 warning (_("could not read '.debug_names' section from %s; skipping"),
5072 bfd_get_filename (dwz->dwz_bfd.get ()));
5073 return false;
5074 }
5075 }
5076
5077 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5078
5079 if (map->tu_count != 0)
5080 {
5081 /* We can only handle a single .debug_types when we have an
5082 index. */
5083 if (dwarf2_per_objfile->types.size () != 1)
5084 return false;
5085
5086 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5087
5088 create_signatured_type_table_from_debug_names
5089 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5090 }
5091
5092 create_addrmap_from_aranges (dwarf2_per_objfile,
5093 &dwarf2_per_objfile->debug_aranges);
5094
5095 dwarf2_per_objfile->debug_names_table = std::move (map);
5096 dwarf2_per_objfile->using_index = 1;
5097 dwarf2_per_objfile->quick_file_names_table =
5098 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5099
5100 return true;
5101 }
5102
5103 /* Type used to manage iterating over all CUs looking for a symbol for
5104 .debug_names. */
5105
5106 class dw2_debug_names_iterator
5107 {
5108 public:
5109 dw2_debug_names_iterator (const mapped_debug_names &map,
5110 gdb::optional<block_enum> block_index,
5111 domain_enum domain,
5112 const char *name)
5113 : m_map (map), m_block_index (block_index), m_domain (domain),
5114 m_addr (find_vec_in_debug_names (map, name))
5115 {}
5116
5117 dw2_debug_names_iterator (const mapped_debug_names &map,
5118 search_domain search, uint32_t namei)
5119 : m_map (map),
5120 m_search (search),
5121 m_addr (find_vec_in_debug_names (map, namei))
5122 {}
5123
5124 dw2_debug_names_iterator (const mapped_debug_names &map,
5125 block_enum block_index, domain_enum domain,
5126 uint32_t namei)
5127 : m_map (map), m_block_index (block_index), m_domain (domain),
5128 m_addr (find_vec_in_debug_names (map, namei))
5129 {}
5130
5131 /* Return the next matching CU or NULL if there are no more. */
5132 dwarf2_per_cu_data *next ();
5133
5134 private:
5135 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5136 const char *name);
5137 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5138 uint32_t namei);
5139
5140 /* The internalized form of .debug_names. */
5141 const mapped_debug_names &m_map;
5142
5143 /* If set, only look for symbols that match that block. Valid values are
5144 GLOBAL_BLOCK and STATIC_BLOCK. */
5145 const gdb::optional<block_enum> m_block_index;
5146
5147 /* The kind of symbol we're looking for. */
5148 const domain_enum m_domain = UNDEF_DOMAIN;
5149 const search_domain m_search = ALL_DOMAIN;
5150
5151 /* The list of CUs from the index entry of the symbol, or NULL if
5152 not found. */
5153 const gdb_byte *m_addr;
5154 };
5155
5156 const char *
5157 mapped_debug_names::namei_to_name (uint32_t namei) const
5158 {
5159 const ULONGEST namei_string_offs
5160 = extract_unsigned_integer ((name_table_string_offs_reordered
5161 + namei * offset_size),
5162 offset_size,
5163 dwarf5_byte_order);
5164 return read_indirect_string_at_offset
5165 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5166 }
5167
5168 /* Find a slot in .debug_names for the object named NAME. If NAME is
5169 found, return pointer to its pool data. If NAME cannot be found,
5170 return NULL. */
5171
5172 const gdb_byte *
5173 dw2_debug_names_iterator::find_vec_in_debug_names
5174 (const mapped_debug_names &map, const char *name)
5175 {
5176 int (*cmp) (const char *, const char *);
5177
5178 gdb::unique_xmalloc_ptr<char> without_params;
5179 if (current_language->la_language == language_cplus
5180 || current_language->la_language == language_fortran
5181 || current_language->la_language == language_d)
5182 {
5183 /* NAME is already canonical. Drop any qualifiers as
5184 .debug_names does not contain any. */
5185
5186 if (strchr (name, '(') != NULL)
5187 {
5188 without_params = cp_remove_params (name);
5189 if (without_params != NULL)
5190 name = without_params.get ();
5191 }
5192 }
5193
5194 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5195
5196 const uint32_t full_hash = dwarf5_djb_hash (name);
5197 uint32_t namei
5198 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5199 (map.bucket_table_reordered
5200 + (full_hash % map.bucket_count)), 4,
5201 map.dwarf5_byte_order);
5202 if (namei == 0)
5203 return NULL;
5204 --namei;
5205 if (namei >= map.name_count)
5206 {
5207 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5208 "[in module %s]"),
5209 namei, map.name_count,
5210 objfile_name (map.dwarf2_per_objfile->objfile));
5211 return NULL;
5212 }
5213
5214 for (;;)
5215 {
5216 const uint32_t namei_full_hash
5217 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5218 (map.hash_table_reordered + namei), 4,
5219 map.dwarf5_byte_order);
5220 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5221 return NULL;
5222
5223 if (full_hash == namei_full_hash)
5224 {
5225 const char *const namei_string = map.namei_to_name (namei);
5226
5227 #if 0 /* An expensive sanity check. */
5228 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5229 {
5230 complaint (_("Wrong .debug_names hash for string at index %u "
5231 "[in module %s]"),
5232 namei, objfile_name (dwarf2_per_objfile->objfile));
5233 return NULL;
5234 }
5235 #endif
5236
5237 if (cmp (namei_string, name) == 0)
5238 {
5239 const ULONGEST namei_entry_offs
5240 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5241 + namei * map.offset_size),
5242 map.offset_size, map.dwarf5_byte_order);
5243 return map.entry_pool + namei_entry_offs;
5244 }
5245 }
5246
5247 ++namei;
5248 if (namei >= map.name_count)
5249 return NULL;
5250 }
5251 }
5252
5253 const gdb_byte *
5254 dw2_debug_names_iterator::find_vec_in_debug_names
5255 (const mapped_debug_names &map, uint32_t namei)
5256 {
5257 if (namei >= map.name_count)
5258 {
5259 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5260 "[in module %s]"),
5261 namei, map.name_count,
5262 objfile_name (map.dwarf2_per_objfile->objfile));
5263 return NULL;
5264 }
5265
5266 const ULONGEST namei_entry_offs
5267 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5268 + namei * map.offset_size),
5269 map.offset_size, map.dwarf5_byte_order);
5270 return map.entry_pool + namei_entry_offs;
5271 }
5272
5273 /* See dw2_debug_names_iterator. */
5274
5275 dwarf2_per_cu_data *
5276 dw2_debug_names_iterator::next ()
5277 {
5278 if (m_addr == NULL)
5279 return NULL;
5280
5281 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5282 struct objfile *objfile = dwarf2_per_objfile->objfile;
5283 bfd *const abfd = objfile->obfd;
5284
5285 again:
5286
5287 unsigned int bytes_read;
5288 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5289 m_addr += bytes_read;
5290 if (abbrev == 0)
5291 return NULL;
5292
5293 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5294 if (indexval_it == m_map.abbrev_map.cend ())
5295 {
5296 complaint (_("Wrong .debug_names undefined abbrev code %s "
5297 "[in module %s]"),
5298 pulongest (abbrev), objfile_name (objfile));
5299 return NULL;
5300 }
5301 const mapped_debug_names::index_val &indexval = indexval_it->second;
5302 enum class symbol_linkage {
5303 unknown,
5304 static_,
5305 extern_,
5306 } symbol_linkage_ = symbol_linkage::unknown;
5307 dwarf2_per_cu_data *per_cu = NULL;
5308 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5309 {
5310 ULONGEST ull;
5311 switch (attr.form)
5312 {
5313 case DW_FORM_implicit_const:
5314 ull = attr.implicit_const;
5315 break;
5316 case DW_FORM_flag_present:
5317 ull = 1;
5318 break;
5319 case DW_FORM_udata:
5320 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5321 m_addr += bytes_read;
5322 break;
5323 default:
5324 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5325 dwarf_form_name (attr.form),
5326 objfile_name (objfile));
5327 return NULL;
5328 }
5329 switch (attr.dw_idx)
5330 {
5331 case DW_IDX_compile_unit:
5332 /* Don't crash on bad data. */
5333 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5334 {
5335 complaint (_(".debug_names entry has bad CU index %s"
5336 " [in module %s]"),
5337 pulongest (ull),
5338 objfile_name (dwarf2_per_objfile->objfile));
5339 continue;
5340 }
5341 per_cu = dwarf2_per_objfile->get_cutu (ull);
5342 break;
5343 case DW_IDX_type_unit:
5344 /* Don't crash on bad data. */
5345 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5346 {
5347 complaint (_(".debug_names entry has bad TU index %s"
5348 " [in module %s]"),
5349 pulongest (ull),
5350 objfile_name (dwarf2_per_objfile->objfile));
5351 continue;
5352 }
5353 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5354 break;
5355 case DW_IDX_GNU_internal:
5356 if (!m_map.augmentation_is_gdb)
5357 break;
5358 symbol_linkage_ = symbol_linkage::static_;
5359 break;
5360 case DW_IDX_GNU_external:
5361 if (!m_map.augmentation_is_gdb)
5362 break;
5363 symbol_linkage_ = symbol_linkage::extern_;
5364 break;
5365 }
5366 }
5367
5368 /* Skip if already read in. */
5369 if (per_cu->v.quick->compunit_symtab)
5370 goto again;
5371
5372 /* Check static vs global. */
5373 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5374 {
5375 const bool want_static = *m_block_index == STATIC_BLOCK;
5376 const bool symbol_is_static =
5377 symbol_linkage_ == symbol_linkage::static_;
5378 if (want_static != symbol_is_static)
5379 goto again;
5380 }
5381
5382 /* Match dw2_symtab_iter_next, symbol_kind
5383 and debug_names::psymbol_tag. */
5384 switch (m_domain)
5385 {
5386 case VAR_DOMAIN:
5387 switch (indexval.dwarf_tag)
5388 {
5389 case DW_TAG_variable:
5390 case DW_TAG_subprogram:
5391 /* Some types are also in VAR_DOMAIN. */
5392 case DW_TAG_typedef:
5393 case DW_TAG_structure_type:
5394 break;
5395 default:
5396 goto again;
5397 }
5398 break;
5399 case STRUCT_DOMAIN:
5400 switch (indexval.dwarf_tag)
5401 {
5402 case DW_TAG_typedef:
5403 case DW_TAG_structure_type:
5404 break;
5405 default:
5406 goto again;
5407 }
5408 break;
5409 case LABEL_DOMAIN:
5410 switch (indexval.dwarf_tag)
5411 {
5412 case 0:
5413 case DW_TAG_variable:
5414 break;
5415 default:
5416 goto again;
5417 }
5418 break;
5419 case MODULE_DOMAIN:
5420 switch (indexval.dwarf_tag)
5421 {
5422 case DW_TAG_module:
5423 break;
5424 default:
5425 goto again;
5426 }
5427 break;
5428 default:
5429 break;
5430 }
5431
5432 /* Match dw2_expand_symtabs_matching, symbol_kind and
5433 debug_names::psymbol_tag. */
5434 switch (m_search)
5435 {
5436 case VARIABLES_DOMAIN:
5437 switch (indexval.dwarf_tag)
5438 {
5439 case DW_TAG_variable:
5440 break;
5441 default:
5442 goto again;
5443 }
5444 break;
5445 case FUNCTIONS_DOMAIN:
5446 switch (indexval.dwarf_tag)
5447 {
5448 case DW_TAG_subprogram:
5449 break;
5450 default:
5451 goto again;
5452 }
5453 break;
5454 case TYPES_DOMAIN:
5455 switch (indexval.dwarf_tag)
5456 {
5457 case DW_TAG_typedef:
5458 case DW_TAG_structure_type:
5459 break;
5460 default:
5461 goto again;
5462 }
5463 break;
5464 case MODULES_DOMAIN:
5465 switch (indexval.dwarf_tag)
5466 {
5467 case DW_TAG_module:
5468 break;
5469 default:
5470 goto again;
5471 }
5472 default:
5473 break;
5474 }
5475
5476 return per_cu;
5477 }
5478
5479 static struct compunit_symtab *
5480 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5481 const char *name, domain_enum domain)
5482 {
5483 struct dwarf2_per_objfile *dwarf2_per_objfile
5484 = get_dwarf2_per_objfile (objfile);
5485
5486 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5487 if (!mapp)
5488 {
5489 /* index is NULL if OBJF_READNOW. */
5490 return NULL;
5491 }
5492 const auto &map = *mapp;
5493
5494 dw2_debug_names_iterator iter (map, block_index, domain, name);
5495
5496 struct compunit_symtab *stab_best = NULL;
5497 struct dwarf2_per_cu_data *per_cu;
5498 while ((per_cu = iter.next ()) != NULL)
5499 {
5500 struct symbol *sym, *with_opaque = NULL;
5501 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5502 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5503 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5504
5505 sym = block_find_symbol (block, name, domain,
5506 block_find_non_opaque_type_preferred,
5507 &with_opaque);
5508
5509 /* Some caution must be observed with overloaded functions and
5510 methods, since the index will not contain any overload
5511 information (but NAME might contain it). */
5512
5513 if (sym != NULL
5514 && strcmp_iw (sym->search_name (), name) == 0)
5515 return stab;
5516 if (with_opaque != NULL
5517 && strcmp_iw (with_opaque->search_name (), name) == 0)
5518 stab_best = stab;
5519
5520 /* Keep looking through other CUs. */
5521 }
5522
5523 return stab_best;
5524 }
5525
5526 /* This dumps minimal information about .debug_names. It is called
5527 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5528 uses this to verify that .debug_names has been loaded. */
5529
5530 static void
5531 dw2_debug_names_dump (struct objfile *objfile)
5532 {
5533 struct dwarf2_per_objfile *dwarf2_per_objfile
5534 = get_dwarf2_per_objfile (objfile);
5535
5536 gdb_assert (dwarf2_per_objfile->using_index);
5537 printf_filtered (".debug_names:");
5538 if (dwarf2_per_objfile->debug_names_table)
5539 printf_filtered (" exists\n");
5540 else
5541 printf_filtered (" faked for \"readnow\"\n");
5542 printf_filtered ("\n");
5543 }
5544
5545 static void
5546 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5547 const char *func_name)
5548 {
5549 struct dwarf2_per_objfile *dwarf2_per_objfile
5550 = get_dwarf2_per_objfile (objfile);
5551
5552 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5553 if (dwarf2_per_objfile->debug_names_table)
5554 {
5555 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5556
5557 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5558
5559 struct dwarf2_per_cu_data *per_cu;
5560 while ((per_cu = iter.next ()) != NULL)
5561 dw2_instantiate_symtab (per_cu, false);
5562 }
5563 }
5564
5565 static void
5566 dw2_debug_names_map_matching_symbols
5567 (struct objfile *objfile,
5568 const lookup_name_info &name, domain_enum domain,
5569 int global,
5570 gdb::function_view<symbol_found_callback_ftype> callback,
5571 symbol_compare_ftype *ordered_compare)
5572 {
5573 struct dwarf2_per_objfile *dwarf2_per_objfile
5574 = get_dwarf2_per_objfile (objfile);
5575
5576 /* debug_names_table is NULL if OBJF_READNOW. */
5577 if (!dwarf2_per_objfile->debug_names_table)
5578 return;
5579
5580 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5581 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5582
5583 const char *match_name = name.ada ().lookup_name ().c_str ();
5584 auto matcher = [&] (const char *symname)
5585 {
5586 if (ordered_compare == nullptr)
5587 return true;
5588 return ordered_compare (symname, match_name) == 0;
5589 };
5590
5591 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5592 [&] (offset_type namei)
5593 {
5594 /* The name was matched, now expand corresponding CUs that were
5595 marked. */
5596 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5597
5598 struct dwarf2_per_cu_data *per_cu;
5599 while ((per_cu = iter.next ()) != NULL)
5600 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5601 return true;
5602 });
5603
5604 /* It's a shame we couldn't do this inside the
5605 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5606 that have already been expanded. Instead, this loop matches what
5607 the psymtab code does. */
5608 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5609 {
5610 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5611 if (cust != nullptr)
5612 {
5613 const struct block *block
5614 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5615 if (!iterate_over_symbols_terminated (block, name,
5616 domain, callback))
5617 break;
5618 }
5619 }
5620 }
5621
5622 static void
5623 dw2_debug_names_expand_symtabs_matching
5624 (struct objfile *objfile,
5625 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5626 const lookup_name_info &lookup_name,
5627 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5628 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5629 enum search_domain kind)
5630 {
5631 struct dwarf2_per_objfile *dwarf2_per_objfile
5632 = get_dwarf2_per_objfile (objfile);
5633
5634 /* debug_names_table is NULL if OBJF_READNOW. */
5635 if (!dwarf2_per_objfile->debug_names_table)
5636 return;
5637
5638 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5639
5640 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5641
5642 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5643 symbol_matcher,
5644 kind, [&] (offset_type namei)
5645 {
5646 /* The name was matched, now expand corresponding CUs that were
5647 marked. */
5648 dw2_debug_names_iterator iter (map, kind, namei);
5649
5650 struct dwarf2_per_cu_data *per_cu;
5651 while ((per_cu = iter.next ()) != NULL)
5652 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5653 expansion_notify);
5654 return true;
5655 });
5656 }
5657
5658 const struct quick_symbol_functions dwarf2_debug_names_functions =
5659 {
5660 dw2_has_symbols,
5661 dw2_find_last_source_symtab,
5662 dw2_forget_cached_source_info,
5663 dw2_map_symtabs_matching_filename,
5664 dw2_debug_names_lookup_symbol,
5665 dw2_print_stats,
5666 dw2_debug_names_dump,
5667 dw2_debug_names_expand_symtabs_for_function,
5668 dw2_expand_all_symtabs,
5669 dw2_expand_symtabs_with_fullname,
5670 dw2_debug_names_map_matching_symbols,
5671 dw2_debug_names_expand_symtabs_matching,
5672 dw2_find_pc_sect_compunit_symtab,
5673 NULL,
5674 dw2_map_symbol_filenames
5675 };
5676
5677 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5678 to either a dwarf2_per_objfile or dwz_file object. */
5679
5680 template <typename T>
5681 static gdb::array_view<const gdb_byte>
5682 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5683 {
5684 dwarf2_section_info *section = &section_owner->gdb_index;
5685
5686 if (section->empty ())
5687 return {};
5688
5689 /* Older elfutils strip versions could keep the section in the main
5690 executable while splitting it for the separate debug info file. */
5691 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5692 return {};
5693
5694 section->read (obj);
5695
5696 /* dwarf2_section_info::size is a bfd_size_type, while
5697 gdb::array_view works with size_t. On 32-bit hosts, with
5698 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5699 is 32-bit. So we need an explicit narrowing conversion here.
5700 This is fine, because it's impossible to allocate or mmap an
5701 array/buffer larger than what size_t can represent. */
5702 return gdb::make_array_view (section->buffer, section->size);
5703 }
5704
5705 /* Lookup the index cache for the contents of the index associated to
5706 DWARF2_OBJ. */
5707
5708 static gdb::array_view<const gdb_byte>
5709 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5710 {
5711 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5712 if (build_id == nullptr)
5713 return {};
5714
5715 return global_index_cache.lookup_gdb_index (build_id,
5716 &dwarf2_obj->index_cache_res);
5717 }
5718
5719 /* Same as the above, but for DWZ. */
5720
5721 static gdb::array_view<const gdb_byte>
5722 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5723 {
5724 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5725 if (build_id == nullptr)
5726 return {};
5727
5728 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5729 }
5730
5731 /* See symfile.h. */
5732
5733 bool
5734 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5735 {
5736 struct dwarf2_per_objfile *dwarf2_per_objfile
5737 = get_dwarf2_per_objfile (objfile);
5738
5739 /* If we're about to read full symbols, don't bother with the
5740 indices. In this case we also don't care if some other debug
5741 format is making psymtabs, because they are all about to be
5742 expanded anyway. */
5743 if ((objfile->flags & OBJF_READNOW))
5744 {
5745 dwarf2_per_objfile->using_index = 1;
5746 create_all_comp_units (dwarf2_per_objfile);
5747 create_all_type_units (dwarf2_per_objfile);
5748 dwarf2_per_objfile->quick_file_names_table
5749 = create_quick_file_names_table
5750 (dwarf2_per_objfile->all_comp_units.size ());
5751
5752 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5753 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5754 {
5755 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5756
5757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5758 struct dwarf2_per_cu_quick_data);
5759 }
5760
5761 /* Return 1 so that gdb sees the "quick" functions. However,
5762 these functions will be no-ops because we will have expanded
5763 all symtabs. */
5764 *index_kind = dw_index_kind::GDB_INDEX;
5765 return true;
5766 }
5767
5768 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5769 {
5770 *index_kind = dw_index_kind::DEBUG_NAMES;
5771 return true;
5772 }
5773
5774 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5775 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5776 get_gdb_index_contents_from_section<dwz_file>))
5777 {
5778 *index_kind = dw_index_kind::GDB_INDEX;
5779 return true;
5780 }
5781
5782 /* ... otherwise, try to find the index in the index cache. */
5783 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5784 get_gdb_index_contents_from_cache,
5785 get_gdb_index_contents_from_cache_dwz))
5786 {
5787 global_index_cache.hit ();
5788 *index_kind = dw_index_kind::GDB_INDEX;
5789 return true;
5790 }
5791
5792 global_index_cache.miss ();
5793 return false;
5794 }
5795
5796 \f
5797
5798 /* Build a partial symbol table. */
5799
5800 void
5801 dwarf2_build_psymtabs (struct objfile *objfile)
5802 {
5803 struct dwarf2_per_objfile *dwarf2_per_objfile
5804 = get_dwarf2_per_objfile (objfile);
5805
5806 init_psymbol_list (objfile, 1024);
5807
5808 try
5809 {
5810 /* This isn't really ideal: all the data we allocate on the
5811 objfile's obstack is still uselessly kept around. However,
5812 freeing it seems unsafe. */
5813 psymtab_discarder psymtabs (objfile);
5814 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5815 psymtabs.keep ();
5816
5817 /* (maybe) store an index in the cache. */
5818 global_index_cache.store (dwarf2_per_objfile);
5819 }
5820 catch (const gdb_exception_error &except)
5821 {
5822 exception_print (gdb_stderr, except);
5823 }
5824 }
5825
5826 /* Find the base address of the compilation unit for range lists and
5827 location lists. It will normally be specified by DW_AT_low_pc.
5828 In DWARF-3 draft 4, the base address could be overridden by
5829 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5830 compilation units with discontinuous ranges. */
5831
5832 static void
5833 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5834 {
5835 struct attribute *attr;
5836
5837 cu->base_known = 0;
5838 cu->base_address = 0;
5839
5840 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5841 if (attr != nullptr)
5842 {
5843 cu->base_address = attr->value_as_address ();
5844 cu->base_known = 1;
5845 }
5846 else
5847 {
5848 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5849 if (attr != nullptr)
5850 {
5851 cu->base_address = attr->value_as_address ();
5852 cu->base_known = 1;
5853 }
5854 }
5855 }
5856
5857 /* Helper function that returns the proper abbrev section for
5858 THIS_CU. */
5859
5860 static struct dwarf2_section_info *
5861 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5862 {
5863 struct dwarf2_section_info *abbrev;
5864 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5865
5866 if (this_cu->is_dwz)
5867 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5868 else
5869 abbrev = &dwarf2_per_objfile->abbrev;
5870
5871 return abbrev;
5872 }
5873
5874 /* Fetch the abbreviation table offset from a comp or type unit header. */
5875
5876 static sect_offset
5877 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5878 struct dwarf2_section_info *section,
5879 sect_offset sect_off)
5880 {
5881 bfd *abfd = section->get_bfd_owner ();
5882 const gdb_byte *info_ptr;
5883 unsigned int initial_length_size, offset_size;
5884 uint16_t version;
5885
5886 section->read (dwarf2_per_objfile->objfile);
5887 info_ptr = section->buffer + to_underlying (sect_off);
5888 read_initial_length (abfd, info_ptr, &initial_length_size);
5889 offset_size = initial_length_size == 4 ? 4 : 8;
5890 info_ptr += initial_length_size;
5891
5892 version = read_2_bytes (abfd, info_ptr);
5893 info_ptr += 2;
5894 if (version >= 5)
5895 {
5896 /* Skip unit type and address size. */
5897 info_ptr += 2;
5898 }
5899
5900 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5901 }
5902
5903 /* Allocate a new partial symtab for file named NAME and mark this new
5904 partial symtab as being an include of PST. */
5905
5906 static void
5907 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5908 struct objfile *objfile)
5909 {
5910 dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile);
5911
5912 if (!IS_ABSOLUTE_PATH (subpst->filename))
5913 {
5914 /* It shares objfile->objfile_obstack. */
5915 subpst->dirname = pst->dirname;
5916 }
5917
5918 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5919 subpst->dependencies[0] = pst;
5920 subpst->number_of_dependencies = 1;
5921
5922 /* No private part is necessary for include psymtabs. This property
5923 can be used to differentiate between such include psymtabs and
5924 the regular ones. */
5925 subpst->per_cu_data = nullptr;
5926 }
5927
5928 /* Read the Line Number Program data and extract the list of files
5929 included by the source file represented by PST. Build an include
5930 partial symtab for each of these included files. */
5931
5932 static void
5933 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5934 struct die_info *die,
5935 dwarf2_psymtab *pst)
5936 {
5937 line_header_up lh;
5938 struct attribute *attr;
5939
5940 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5941 if (attr != nullptr)
5942 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5943 if (lh == NULL)
5944 return; /* No linetable, so no includes. */
5945
5946 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
5947 that we pass in the raw text_low here; that is ok because we're
5948 only decoding the line table to make include partial symtabs, and
5949 so the addresses aren't really used. */
5950 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
5951 pst->raw_text_low (), 1);
5952 }
5953
5954 static hashval_t
5955 hash_signatured_type (const void *item)
5956 {
5957 const struct signatured_type *sig_type
5958 = (const struct signatured_type *) item;
5959
5960 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5961 return sig_type->signature;
5962 }
5963
5964 static int
5965 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5966 {
5967 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5968 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5969
5970 return lhs->signature == rhs->signature;
5971 }
5972
5973 /* Allocate a hash table for signatured types. */
5974
5975 static htab_up
5976 allocate_signatured_type_table ()
5977 {
5978 return htab_up (htab_create_alloc (41,
5979 hash_signatured_type,
5980 eq_signatured_type,
5981 NULL, xcalloc, xfree));
5982 }
5983
5984 /* A helper function to add a signatured type CU to a table. */
5985
5986 static int
5987 add_signatured_type_cu_to_table (void **slot, void *datum)
5988 {
5989 struct signatured_type *sigt = (struct signatured_type *) *slot;
5990 std::vector<signatured_type *> *all_type_units
5991 = (std::vector<signatured_type *> *) datum;
5992
5993 all_type_units->push_back (sigt);
5994
5995 return 1;
5996 }
5997
5998 /* A helper for create_debug_types_hash_table. Read types from SECTION
5999 and fill them into TYPES_HTAB. It will process only type units,
6000 therefore DW_UT_type. */
6001
6002 static void
6003 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6004 struct dwo_file *dwo_file,
6005 dwarf2_section_info *section, htab_up &types_htab,
6006 rcuh_kind section_kind)
6007 {
6008 struct objfile *objfile = dwarf2_per_objfile->objfile;
6009 struct dwarf2_section_info *abbrev_section;
6010 bfd *abfd;
6011 const gdb_byte *info_ptr, *end_ptr;
6012
6013 abbrev_section = (dwo_file != NULL
6014 ? &dwo_file->sections.abbrev
6015 : &dwarf2_per_objfile->abbrev);
6016
6017 if (dwarf_read_debug)
6018 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6019 section->get_name (),
6020 abbrev_section->get_file_name ());
6021
6022 section->read (objfile);
6023 info_ptr = section->buffer;
6024
6025 if (info_ptr == NULL)
6026 return;
6027
6028 /* We can't set abfd until now because the section may be empty or
6029 not present, in which case the bfd is unknown. */
6030 abfd = section->get_bfd_owner ();
6031
6032 /* We don't use cutu_reader here because we don't need to read
6033 any dies: the signature is in the header. */
6034
6035 end_ptr = info_ptr + section->size;
6036 while (info_ptr < end_ptr)
6037 {
6038 struct signatured_type *sig_type;
6039 struct dwo_unit *dwo_tu;
6040 void **slot;
6041 const gdb_byte *ptr = info_ptr;
6042 struct comp_unit_head header;
6043 unsigned int length;
6044
6045 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6046
6047 /* Initialize it due to a false compiler warning. */
6048 header.signature = -1;
6049 header.type_cu_offset_in_tu = (cu_offset) -1;
6050
6051 /* We need to read the type's signature in order to build the hash
6052 table, but we don't need anything else just yet. */
6053
6054 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6055 abbrev_section, ptr, section_kind);
6056
6057 length = header.get_length ();
6058
6059 /* Skip dummy type units. */
6060 if (ptr >= info_ptr + length
6061 || peek_abbrev_code (abfd, ptr) == 0
6062 || header.unit_type != DW_UT_type)
6063 {
6064 info_ptr += length;
6065 continue;
6066 }
6067
6068 if (types_htab == NULL)
6069 {
6070 if (dwo_file)
6071 types_htab = allocate_dwo_unit_table ();
6072 else
6073 types_htab = allocate_signatured_type_table ();
6074 }
6075
6076 if (dwo_file)
6077 {
6078 sig_type = NULL;
6079 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6080 struct dwo_unit);
6081 dwo_tu->dwo_file = dwo_file;
6082 dwo_tu->signature = header.signature;
6083 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6084 dwo_tu->section = section;
6085 dwo_tu->sect_off = sect_off;
6086 dwo_tu->length = length;
6087 }
6088 else
6089 {
6090 /* N.B.: type_offset is not usable if this type uses a DWO file.
6091 The real type_offset is in the DWO file. */
6092 dwo_tu = NULL;
6093 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6094 struct signatured_type);
6095 sig_type->signature = header.signature;
6096 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6098 sig_type->per_cu.is_debug_types = 1;
6099 sig_type->per_cu.section = section;
6100 sig_type->per_cu.sect_off = sect_off;
6101 sig_type->per_cu.length = length;
6102 }
6103
6104 slot = htab_find_slot (types_htab.get (),
6105 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6106 INSERT);
6107 gdb_assert (slot != NULL);
6108 if (*slot != NULL)
6109 {
6110 sect_offset dup_sect_off;
6111
6112 if (dwo_file)
6113 {
6114 const struct dwo_unit *dup_tu
6115 = (const struct dwo_unit *) *slot;
6116
6117 dup_sect_off = dup_tu->sect_off;
6118 }
6119 else
6120 {
6121 const struct signatured_type *dup_tu
6122 = (const struct signatured_type *) *slot;
6123
6124 dup_sect_off = dup_tu->per_cu.sect_off;
6125 }
6126
6127 complaint (_("debug type entry at offset %s is duplicate to"
6128 " the entry at offset %s, signature %s"),
6129 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6130 hex_string (header.signature));
6131 }
6132 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6133
6134 if (dwarf_read_debug > 1)
6135 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6136 sect_offset_str (sect_off),
6137 hex_string (header.signature));
6138
6139 info_ptr += length;
6140 }
6141 }
6142
6143 /* Create the hash table of all entries in the .debug_types
6144 (or .debug_types.dwo) section(s).
6145 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6146 otherwise it is NULL.
6147
6148 The result is a pointer to the hash table or NULL if there are no types.
6149
6150 Note: This function processes DWO files only, not DWP files. */
6151
6152 static void
6153 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6154 struct dwo_file *dwo_file,
6155 gdb::array_view<dwarf2_section_info> type_sections,
6156 htab_up &types_htab)
6157 {
6158 for (dwarf2_section_info &section : type_sections)
6159 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6160 types_htab, rcuh_kind::TYPE);
6161 }
6162
6163 /* Create the hash table of all entries in the .debug_types section,
6164 and initialize all_type_units.
6165 The result is zero if there is an error (e.g. missing .debug_types section),
6166 otherwise non-zero. */
6167
6168 static int
6169 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6170 {
6171 htab_up types_htab;
6172
6173 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6174 &dwarf2_per_objfile->info, types_htab,
6175 rcuh_kind::COMPILE);
6176 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6177 dwarf2_per_objfile->types, types_htab);
6178 if (types_htab == NULL)
6179 {
6180 dwarf2_per_objfile->signatured_types = NULL;
6181 return 0;
6182 }
6183
6184 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6185
6186 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6187 dwarf2_per_objfile->all_type_units.reserve
6188 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6189
6190 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6191 add_signatured_type_cu_to_table,
6192 &dwarf2_per_objfile->all_type_units);
6193
6194 return 1;
6195 }
6196
6197 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6198 If SLOT is non-NULL, it is the entry to use in the hash table.
6199 Otherwise we find one. */
6200
6201 static struct signatured_type *
6202 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6203 void **slot)
6204 {
6205 struct objfile *objfile = dwarf2_per_objfile->objfile;
6206
6207 if (dwarf2_per_objfile->all_type_units.size ()
6208 == dwarf2_per_objfile->all_type_units.capacity ())
6209 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6210
6211 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6212 struct signatured_type);
6213
6214 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6215 sig_type->signature = sig;
6216 sig_type->per_cu.is_debug_types = 1;
6217 if (dwarf2_per_objfile->using_index)
6218 {
6219 sig_type->per_cu.v.quick =
6220 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6221 struct dwarf2_per_cu_quick_data);
6222 }
6223
6224 if (slot == NULL)
6225 {
6226 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6227 sig_type, INSERT);
6228 }
6229 gdb_assert (*slot == NULL);
6230 *slot = sig_type;
6231 /* The rest of sig_type must be filled in by the caller. */
6232 return sig_type;
6233 }
6234
6235 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6236 Fill in SIG_ENTRY with DWO_ENTRY. */
6237
6238 static void
6239 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6240 struct signatured_type *sig_entry,
6241 struct dwo_unit *dwo_entry)
6242 {
6243 /* Make sure we're not clobbering something we don't expect to. */
6244 gdb_assert (! sig_entry->per_cu.queued);
6245 gdb_assert (sig_entry->per_cu.cu == NULL);
6246 if (dwarf2_per_objfile->using_index)
6247 {
6248 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6249 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6250 }
6251 else
6252 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6253 gdb_assert (sig_entry->signature == dwo_entry->signature);
6254 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6255 gdb_assert (sig_entry->type_unit_group == NULL);
6256 gdb_assert (sig_entry->dwo_unit == NULL);
6257
6258 sig_entry->per_cu.section = dwo_entry->section;
6259 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6260 sig_entry->per_cu.length = dwo_entry->length;
6261 sig_entry->per_cu.reading_dwo_directly = 1;
6262 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6263 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6264 sig_entry->dwo_unit = dwo_entry;
6265 }
6266
6267 /* Subroutine of lookup_signatured_type.
6268 If we haven't read the TU yet, create the signatured_type data structure
6269 for a TU to be read in directly from a DWO file, bypassing the stub.
6270 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6271 using .gdb_index, then when reading a CU we want to stay in the DWO file
6272 containing that CU. Otherwise we could end up reading several other DWO
6273 files (due to comdat folding) to process the transitive closure of all the
6274 mentioned TUs, and that can be slow. The current DWO file will have every
6275 type signature that it needs.
6276 We only do this for .gdb_index because in the psymtab case we already have
6277 to read all the DWOs to build the type unit groups. */
6278
6279 static struct signatured_type *
6280 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6281 {
6282 struct dwarf2_per_objfile *dwarf2_per_objfile
6283 = cu->per_cu->dwarf2_per_objfile;
6284 struct dwo_file *dwo_file;
6285 struct dwo_unit find_dwo_entry, *dwo_entry;
6286 struct signatured_type find_sig_entry, *sig_entry;
6287 void **slot;
6288
6289 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6290
6291 /* If TU skeletons have been removed then we may not have read in any
6292 TUs yet. */
6293 if (dwarf2_per_objfile->signatured_types == NULL)
6294 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6295
6296 /* We only ever need to read in one copy of a signatured type.
6297 Use the global signatured_types array to do our own comdat-folding
6298 of types. If this is the first time we're reading this TU, and
6299 the TU has an entry in .gdb_index, replace the recorded data from
6300 .gdb_index with this TU. */
6301
6302 find_sig_entry.signature = sig;
6303 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6304 &find_sig_entry, INSERT);
6305 sig_entry = (struct signatured_type *) *slot;
6306
6307 /* We can get here with the TU already read, *or* in the process of being
6308 read. Don't reassign the global entry to point to this DWO if that's
6309 the case. Also note that if the TU is already being read, it may not
6310 have come from a DWO, the program may be a mix of Fission-compiled
6311 code and non-Fission-compiled code. */
6312
6313 /* Have we already tried to read this TU?
6314 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6315 needn't exist in the global table yet). */
6316 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6317 return sig_entry;
6318
6319 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6320 dwo_unit of the TU itself. */
6321 dwo_file = cu->dwo_unit->dwo_file;
6322
6323 /* Ok, this is the first time we're reading this TU. */
6324 if (dwo_file->tus == NULL)
6325 return NULL;
6326 find_dwo_entry.signature = sig;
6327 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6328 &find_dwo_entry);
6329 if (dwo_entry == NULL)
6330 return NULL;
6331
6332 /* If the global table doesn't have an entry for this TU, add one. */
6333 if (sig_entry == NULL)
6334 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6335
6336 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6337 sig_entry->per_cu.tu_read = 1;
6338 return sig_entry;
6339 }
6340
6341 /* Subroutine of lookup_signatured_type.
6342 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6343 then try the DWP file. If the TU stub (skeleton) has been removed then
6344 it won't be in .gdb_index. */
6345
6346 static struct signatured_type *
6347 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6348 {
6349 struct dwarf2_per_objfile *dwarf2_per_objfile
6350 = cu->per_cu->dwarf2_per_objfile;
6351 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6352 struct dwo_unit *dwo_entry;
6353 struct signatured_type find_sig_entry, *sig_entry;
6354 void **slot;
6355
6356 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6357 gdb_assert (dwp_file != NULL);
6358
6359 /* If TU skeletons have been removed then we may not have read in any
6360 TUs yet. */
6361 if (dwarf2_per_objfile->signatured_types == NULL)
6362 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6363
6364 find_sig_entry.signature = sig;
6365 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6366 &find_sig_entry, INSERT);
6367 sig_entry = (struct signatured_type *) *slot;
6368
6369 /* Have we already tried to read this TU?
6370 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6371 needn't exist in the global table yet). */
6372 if (sig_entry != NULL)
6373 return sig_entry;
6374
6375 if (dwp_file->tus == NULL)
6376 return NULL;
6377 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6378 sig, 1 /* is_debug_types */);
6379 if (dwo_entry == NULL)
6380 return NULL;
6381
6382 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6383 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6384
6385 return sig_entry;
6386 }
6387
6388 /* Lookup a signature based type for DW_FORM_ref_sig8.
6389 Returns NULL if signature SIG is not present in the table.
6390 It is up to the caller to complain about this. */
6391
6392 static struct signatured_type *
6393 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6394 {
6395 struct dwarf2_per_objfile *dwarf2_per_objfile
6396 = cu->per_cu->dwarf2_per_objfile;
6397
6398 if (cu->dwo_unit
6399 && dwarf2_per_objfile->using_index)
6400 {
6401 /* We're in a DWO/DWP file, and we're using .gdb_index.
6402 These cases require special processing. */
6403 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6404 return lookup_dwo_signatured_type (cu, sig);
6405 else
6406 return lookup_dwp_signatured_type (cu, sig);
6407 }
6408 else
6409 {
6410 struct signatured_type find_entry, *entry;
6411
6412 if (dwarf2_per_objfile->signatured_types == NULL)
6413 return NULL;
6414 find_entry.signature = sig;
6415 entry = ((struct signatured_type *)
6416 htab_find (dwarf2_per_objfile->signatured_types.get (),
6417 &find_entry));
6418 return entry;
6419 }
6420 }
6421
6422 /* Return the address base of the compile unit, which, if exists, is stored
6423 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6424 static gdb::optional<ULONGEST>
6425 lookup_addr_base (struct die_info *comp_unit_die)
6426 {
6427 struct attribute *attr;
6428 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6429 if (attr == nullptr)
6430 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6431 if (attr == nullptr)
6432 return gdb::optional<ULONGEST> ();
6433 return DW_UNSND (attr);
6434 }
6435
6436 /* Return range lists base of the compile unit, which, if exists, is stored
6437 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6438 static ULONGEST
6439 lookup_ranges_base (struct die_info *comp_unit_die)
6440 {
6441 struct attribute *attr;
6442 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6443 if (attr == nullptr)
6444 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6445 if (attr == nullptr)
6446 return 0;
6447 return DW_UNSND (attr);
6448 }
6449
6450 /* Low level DIE reading support. */
6451
6452 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6453
6454 static void
6455 init_cu_die_reader (struct die_reader_specs *reader,
6456 struct dwarf2_cu *cu,
6457 struct dwarf2_section_info *section,
6458 struct dwo_file *dwo_file,
6459 struct abbrev_table *abbrev_table)
6460 {
6461 gdb_assert (section->readin && section->buffer != NULL);
6462 reader->abfd = section->get_bfd_owner ();
6463 reader->cu = cu;
6464 reader->dwo_file = dwo_file;
6465 reader->die_section = section;
6466 reader->buffer = section->buffer;
6467 reader->buffer_end = section->buffer + section->size;
6468 reader->abbrev_table = abbrev_table;
6469 }
6470
6471 /* Subroutine of cutu_reader to simplify it.
6472 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6473 There's just a lot of work to do, and cutu_reader is big enough
6474 already.
6475
6476 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6477 from it to the DIE in the DWO. If NULL we are skipping the stub.
6478 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6479 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6480 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6481 STUB_COMP_DIR may be non-NULL.
6482 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6483 are filled in with the info of the DIE from the DWO file.
6484 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6485 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6486 kept around for at least as long as *RESULT_READER.
6487
6488 The result is non-zero if a valid (non-dummy) DIE was found. */
6489
6490 static int
6491 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6492 struct dwo_unit *dwo_unit,
6493 struct die_info *stub_comp_unit_die,
6494 const char *stub_comp_dir,
6495 struct die_reader_specs *result_reader,
6496 const gdb_byte **result_info_ptr,
6497 struct die_info **result_comp_unit_die,
6498 abbrev_table_up *result_dwo_abbrev_table)
6499 {
6500 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6501 struct objfile *objfile = dwarf2_per_objfile->objfile;
6502 struct dwarf2_cu *cu = this_cu->cu;
6503 bfd *abfd;
6504 const gdb_byte *begin_info_ptr, *info_ptr;
6505 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6506 int i,num_extra_attrs;
6507 struct dwarf2_section_info *dwo_abbrev_section;
6508 struct die_info *comp_unit_die;
6509
6510 /* At most one of these may be provided. */
6511 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6512
6513 /* These attributes aren't processed until later:
6514 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6515 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6516 referenced later. However, these attributes are found in the stub
6517 which we won't have later. In order to not impose this complication
6518 on the rest of the code, we read them here and copy them to the
6519 DWO CU/TU die. */
6520
6521 stmt_list = NULL;
6522 low_pc = NULL;
6523 high_pc = NULL;
6524 ranges = NULL;
6525 comp_dir = NULL;
6526
6527 if (stub_comp_unit_die != NULL)
6528 {
6529 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6530 DWO file. */
6531 if (! this_cu->is_debug_types)
6532 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6533 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6534 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6535 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6536 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6537
6538 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6539
6540 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6541 here (if needed). We need the value before we can process
6542 DW_AT_ranges. */
6543 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6544 }
6545 else if (stub_comp_dir != NULL)
6546 {
6547 /* Reconstruct the comp_dir attribute to simplify the code below. */
6548 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6549 comp_dir->name = DW_AT_comp_dir;
6550 comp_dir->form = DW_FORM_string;
6551 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6552 DW_STRING (comp_dir) = stub_comp_dir;
6553 }
6554
6555 /* Set up for reading the DWO CU/TU. */
6556 cu->dwo_unit = dwo_unit;
6557 dwarf2_section_info *section = dwo_unit->section;
6558 section->read (objfile);
6559 abfd = section->get_bfd_owner ();
6560 begin_info_ptr = info_ptr = (section->buffer
6561 + to_underlying (dwo_unit->sect_off));
6562 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6563
6564 if (this_cu->is_debug_types)
6565 {
6566 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6567
6568 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6569 &cu->header, section,
6570 dwo_abbrev_section,
6571 info_ptr, rcuh_kind::TYPE);
6572 /* This is not an assert because it can be caused by bad debug info. */
6573 if (sig_type->signature != cu->header.signature)
6574 {
6575 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6576 " TU at offset %s [in module %s]"),
6577 hex_string (sig_type->signature),
6578 hex_string (cu->header.signature),
6579 sect_offset_str (dwo_unit->sect_off),
6580 bfd_get_filename (abfd));
6581 }
6582 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6583 /* For DWOs coming from DWP files, we don't know the CU length
6584 nor the type's offset in the TU until now. */
6585 dwo_unit->length = cu->header.get_length ();
6586 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6587
6588 /* Establish the type offset that can be used to lookup the type.
6589 For DWO files, we don't know it until now. */
6590 sig_type->type_offset_in_section
6591 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6592 }
6593 else
6594 {
6595 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6596 &cu->header, section,
6597 dwo_abbrev_section,
6598 info_ptr, rcuh_kind::COMPILE);
6599 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6600 /* For DWOs coming from DWP files, we don't know the CU length
6601 until now. */
6602 dwo_unit->length = cu->header.get_length ();
6603 }
6604
6605 *result_dwo_abbrev_table
6606 = abbrev_table::read (objfile, dwo_abbrev_section,
6607 cu->header.abbrev_sect_off);
6608 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6609 result_dwo_abbrev_table->get ());
6610
6611 /* Read in the die, but leave space to copy over the attributes
6612 from the stub. This has the benefit of simplifying the rest of
6613 the code - all the work to maintain the illusion of a single
6614 DW_TAG_{compile,type}_unit DIE is done here. */
6615 num_extra_attrs = ((stmt_list != NULL)
6616 + (low_pc != NULL)
6617 + (high_pc != NULL)
6618 + (ranges != NULL)
6619 + (comp_dir != NULL));
6620 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6621 num_extra_attrs);
6622
6623 /* Copy over the attributes from the stub to the DIE we just read in. */
6624 comp_unit_die = *result_comp_unit_die;
6625 i = comp_unit_die->num_attrs;
6626 if (stmt_list != NULL)
6627 comp_unit_die->attrs[i++] = *stmt_list;
6628 if (low_pc != NULL)
6629 comp_unit_die->attrs[i++] = *low_pc;
6630 if (high_pc != NULL)
6631 comp_unit_die->attrs[i++] = *high_pc;
6632 if (ranges != NULL)
6633 comp_unit_die->attrs[i++] = *ranges;
6634 if (comp_dir != NULL)
6635 comp_unit_die->attrs[i++] = *comp_dir;
6636 comp_unit_die->num_attrs += num_extra_attrs;
6637
6638 if (dwarf_die_debug)
6639 {
6640 fprintf_unfiltered (gdb_stdlog,
6641 "Read die from %s@0x%x of %s:\n",
6642 section->get_name (),
6643 (unsigned) (begin_info_ptr - section->buffer),
6644 bfd_get_filename (abfd));
6645 dump_die (comp_unit_die, dwarf_die_debug);
6646 }
6647
6648 /* Skip dummy compilation units. */
6649 if (info_ptr >= begin_info_ptr + dwo_unit->length
6650 || peek_abbrev_code (abfd, info_ptr) == 0)
6651 return 0;
6652
6653 *result_info_ptr = info_ptr;
6654 return 1;
6655 }
6656
6657 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6658 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6659 signature is part of the header. */
6660 static gdb::optional<ULONGEST>
6661 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6662 {
6663 if (cu->header.version >= 5)
6664 return cu->header.signature;
6665 struct attribute *attr;
6666 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6667 if (attr == nullptr)
6668 return gdb::optional<ULONGEST> ();
6669 return DW_UNSND (attr);
6670 }
6671
6672 /* Subroutine of cutu_reader to simplify it.
6673 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6674 Returns NULL if the specified DWO unit cannot be found. */
6675
6676 static struct dwo_unit *
6677 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6678 struct die_info *comp_unit_die,
6679 const char *dwo_name)
6680 {
6681 struct dwarf2_cu *cu = this_cu->cu;
6682 struct dwo_unit *dwo_unit;
6683 const char *comp_dir;
6684
6685 gdb_assert (cu != NULL);
6686
6687 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6688 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6689 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6690
6691 if (this_cu->is_debug_types)
6692 {
6693 struct signatured_type *sig_type;
6694
6695 /* Since this_cu is the first member of struct signatured_type,
6696 we can go from a pointer to one to a pointer to the other. */
6697 sig_type = (struct signatured_type *) this_cu;
6698 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6699 }
6700 else
6701 {
6702 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6703 if (!signature.has_value ())
6704 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6705 " [in module %s]"),
6706 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6707 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6708 *signature);
6709 }
6710
6711 return dwo_unit;
6712 }
6713
6714 /* Subroutine of cutu_reader to simplify it.
6715 See it for a description of the parameters.
6716 Read a TU directly from a DWO file, bypassing the stub. */
6717
6718 void
6719 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6720 int use_existing_cu)
6721 {
6722 struct signatured_type *sig_type;
6723 struct die_reader_specs reader;
6724
6725 /* Verify we can do the following downcast, and that we have the
6726 data we need. */
6727 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6728 sig_type = (struct signatured_type *) this_cu;
6729 gdb_assert (sig_type->dwo_unit != NULL);
6730
6731 if (use_existing_cu && this_cu->cu != NULL)
6732 {
6733 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6734 /* There's no need to do the rereading_dwo_cu handling that
6735 cutu_reader does since we don't read the stub. */
6736 }
6737 else
6738 {
6739 /* If !use_existing_cu, this_cu->cu must be NULL. */
6740 gdb_assert (this_cu->cu == NULL);
6741 m_new_cu.reset (new dwarf2_cu (this_cu));
6742 }
6743
6744 /* A future optimization, if needed, would be to use an existing
6745 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6746 could share abbrev tables. */
6747
6748 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6749 NULL /* stub_comp_unit_die */,
6750 sig_type->dwo_unit->dwo_file->comp_dir,
6751 &reader, &info_ptr,
6752 &comp_unit_die,
6753 &m_dwo_abbrev_table) == 0)
6754 {
6755 /* Dummy die. */
6756 dummy_p = true;
6757 }
6758 }
6759
6760 /* Initialize a CU (or TU) and read its DIEs.
6761 If the CU defers to a DWO file, read the DWO file as well.
6762
6763 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6764 Otherwise the table specified in the comp unit header is read in and used.
6765 This is an optimization for when we already have the abbrev table.
6766
6767 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6768 Otherwise, a new CU is allocated with xmalloc. */
6769
6770 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6771 struct abbrev_table *abbrev_table,
6772 int use_existing_cu,
6773 bool skip_partial)
6774 : die_reader_specs {},
6775 m_this_cu (this_cu)
6776 {
6777 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6778 struct objfile *objfile = dwarf2_per_objfile->objfile;
6779 struct dwarf2_section_info *section = this_cu->section;
6780 bfd *abfd = section->get_bfd_owner ();
6781 struct dwarf2_cu *cu;
6782 const gdb_byte *begin_info_ptr;
6783 struct signatured_type *sig_type = NULL;
6784 struct dwarf2_section_info *abbrev_section;
6785 /* Non-zero if CU currently points to a DWO file and we need to
6786 reread it. When this happens we need to reread the skeleton die
6787 before we can reread the DWO file (this only applies to CUs, not TUs). */
6788 int rereading_dwo_cu = 0;
6789
6790 if (dwarf_die_debug)
6791 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6792 this_cu->is_debug_types ? "type" : "comp",
6793 sect_offset_str (this_cu->sect_off));
6794
6795 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6796 file (instead of going through the stub), short-circuit all of this. */
6797 if (this_cu->reading_dwo_directly)
6798 {
6799 /* Narrow down the scope of possibilities to have to understand. */
6800 gdb_assert (this_cu->is_debug_types);
6801 gdb_assert (abbrev_table == NULL);
6802 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6803 return;
6804 }
6805
6806 /* This is cheap if the section is already read in. */
6807 section->read (objfile);
6808
6809 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6810
6811 abbrev_section = get_abbrev_section_for_cu (this_cu);
6812
6813 if (use_existing_cu && this_cu->cu != NULL)
6814 {
6815 cu = this_cu->cu;
6816 /* If this CU is from a DWO file we need to start over, we need to
6817 refetch the attributes from the skeleton CU.
6818 This could be optimized by retrieving those attributes from when we
6819 were here the first time: the previous comp_unit_die was stored in
6820 comp_unit_obstack. But there's no data yet that we need this
6821 optimization. */
6822 if (cu->dwo_unit != NULL)
6823 rereading_dwo_cu = 1;
6824 }
6825 else
6826 {
6827 /* If !use_existing_cu, this_cu->cu must be NULL. */
6828 gdb_assert (this_cu->cu == NULL);
6829 m_new_cu.reset (new dwarf2_cu (this_cu));
6830 cu = m_new_cu.get ();
6831 }
6832
6833 /* Get the header. */
6834 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6835 {
6836 /* We already have the header, there's no need to read it in again. */
6837 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6838 }
6839 else
6840 {
6841 if (this_cu->is_debug_types)
6842 {
6843 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6844 &cu->header, section,
6845 abbrev_section, info_ptr,
6846 rcuh_kind::TYPE);
6847
6848 /* Since per_cu is the first member of struct signatured_type,
6849 we can go from a pointer to one to a pointer to the other. */
6850 sig_type = (struct signatured_type *) this_cu;
6851 gdb_assert (sig_type->signature == cu->header.signature);
6852 gdb_assert (sig_type->type_offset_in_tu
6853 == cu->header.type_cu_offset_in_tu);
6854 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6855
6856 /* LENGTH has not been set yet for type units if we're
6857 using .gdb_index. */
6858 this_cu->length = cu->header.get_length ();
6859
6860 /* Establish the type offset that can be used to lookup the type. */
6861 sig_type->type_offset_in_section =
6862 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6863
6864 this_cu->dwarf_version = cu->header.version;
6865 }
6866 else
6867 {
6868 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6869 &cu->header, section,
6870 abbrev_section,
6871 info_ptr,
6872 rcuh_kind::COMPILE);
6873
6874 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6875 gdb_assert (this_cu->length == cu->header.get_length ());
6876 this_cu->dwarf_version = cu->header.version;
6877 }
6878 }
6879
6880 /* Skip dummy compilation units. */
6881 if (info_ptr >= begin_info_ptr + this_cu->length
6882 || peek_abbrev_code (abfd, info_ptr) == 0)
6883 {
6884 dummy_p = true;
6885 return;
6886 }
6887
6888 /* If we don't have them yet, read the abbrevs for this compilation unit.
6889 And if we need to read them now, make sure they're freed when we're
6890 done. */
6891 if (abbrev_table != NULL)
6892 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6893 else
6894 {
6895 m_abbrev_table_holder
6896 = abbrev_table::read (objfile, abbrev_section,
6897 cu->header.abbrev_sect_off);
6898 abbrev_table = m_abbrev_table_holder.get ();
6899 }
6900
6901 /* Read the top level CU/TU die. */
6902 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6903 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6904
6905 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6906 {
6907 dummy_p = true;
6908 return;
6909 }
6910
6911 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6912 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6913 table from the DWO file and pass the ownership over to us. It will be
6914 referenced from READER, so we must make sure to free it after we're done
6915 with READER.
6916
6917 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6918 DWO CU, that this test will fail (the attribute will not be present). */
6919 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6920 if (dwo_name != nullptr)
6921 {
6922 struct dwo_unit *dwo_unit;
6923 struct die_info *dwo_comp_unit_die;
6924
6925 if (comp_unit_die->has_children)
6926 {
6927 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6928 " has children (offset %s) [in module %s]"),
6929 sect_offset_str (this_cu->sect_off),
6930 bfd_get_filename (abfd));
6931 }
6932 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6933 if (dwo_unit != NULL)
6934 {
6935 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6936 comp_unit_die, NULL,
6937 this, &info_ptr,
6938 &dwo_comp_unit_die,
6939 &m_dwo_abbrev_table) == 0)
6940 {
6941 /* Dummy die. */
6942 dummy_p = true;
6943 return;
6944 }
6945 comp_unit_die = dwo_comp_unit_die;
6946 }
6947 else
6948 {
6949 /* Yikes, we couldn't find the rest of the DIE, we only have
6950 the stub. A complaint has already been logged. There's
6951 not much more we can do except pass on the stub DIE to
6952 die_reader_func. We don't want to throw an error on bad
6953 debug info. */
6954 }
6955 }
6956 }
6957
6958 void
6959 cutu_reader::keep ()
6960 {
6961 /* Done, clean up. */
6962 gdb_assert (!dummy_p);
6963 if (m_new_cu != NULL)
6964 {
6965 struct dwarf2_per_objfile *dwarf2_per_objfile
6966 = m_this_cu->dwarf2_per_objfile;
6967 /* Link this CU into read_in_chain. */
6968 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6969 dwarf2_per_objfile->read_in_chain = m_this_cu;
6970 /* The chain owns it now. */
6971 m_new_cu.release ();
6972 }
6973 }
6974
6975 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
6976 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
6977 assumed to have already done the lookup to find the DWO file).
6978
6979 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6980 THIS_CU->is_debug_types, but nothing else.
6981
6982 We fill in THIS_CU->length.
6983
6984 THIS_CU->cu is always freed when done.
6985 This is done in order to not leave THIS_CU->cu in a state where we have
6986 to care whether it refers to the "main" CU or the DWO CU.
6987
6988 When parent_cu is passed, it is used to provide a default value for
6989 str_offsets_base and addr_base from the parent. */
6990
6991 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6992 struct dwarf2_cu *parent_cu,
6993 struct dwo_file *dwo_file)
6994 : die_reader_specs {},
6995 m_this_cu (this_cu)
6996 {
6997 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6998 struct objfile *objfile = dwarf2_per_objfile->objfile;
6999 struct dwarf2_section_info *section = this_cu->section;
7000 bfd *abfd = section->get_bfd_owner ();
7001 struct dwarf2_section_info *abbrev_section;
7002 const gdb_byte *begin_info_ptr, *info_ptr;
7003
7004 if (dwarf_die_debug)
7005 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7006 this_cu->is_debug_types ? "type" : "comp",
7007 sect_offset_str (this_cu->sect_off));
7008
7009 gdb_assert (this_cu->cu == NULL);
7010
7011 abbrev_section = (dwo_file != NULL
7012 ? &dwo_file->sections.abbrev
7013 : get_abbrev_section_for_cu (this_cu));
7014
7015 /* This is cheap if the section is already read in. */
7016 section->read (objfile);
7017
7018 m_new_cu.reset (new dwarf2_cu (this_cu));
7019
7020 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7021 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7022 &m_new_cu->header, section,
7023 abbrev_section, info_ptr,
7024 (this_cu->is_debug_types
7025 ? rcuh_kind::TYPE
7026 : rcuh_kind::COMPILE));
7027
7028 if (parent_cu != nullptr)
7029 {
7030 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7031 m_new_cu->addr_base = parent_cu->addr_base;
7032 }
7033 this_cu->length = m_new_cu->header.get_length ();
7034
7035 /* Skip dummy compilation units. */
7036 if (info_ptr >= begin_info_ptr + this_cu->length
7037 || peek_abbrev_code (abfd, info_ptr) == 0)
7038 {
7039 dummy_p = true;
7040 return;
7041 }
7042
7043 m_abbrev_table_holder
7044 = abbrev_table::read (objfile, abbrev_section,
7045 m_new_cu->header.abbrev_sect_off);
7046
7047 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7048 m_abbrev_table_holder.get ());
7049 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7050 }
7051
7052 \f
7053 /* Type Unit Groups.
7054
7055 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7056 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7057 so that all types coming from the same compilation (.o file) are grouped
7058 together. A future step could be to put the types in the same symtab as
7059 the CU the types ultimately came from. */
7060
7061 static hashval_t
7062 hash_type_unit_group (const void *item)
7063 {
7064 const struct type_unit_group *tu_group
7065 = (const struct type_unit_group *) item;
7066
7067 return hash_stmt_list_entry (&tu_group->hash);
7068 }
7069
7070 static int
7071 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7072 {
7073 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7074 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7075
7076 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7077 }
7078
7079 /* Allocate a hash table for type unit groups. */
7080
7081 static htab_up
7082 allocate_type_unit_groups_table ()
7083 {
7084 return htab_up (htab_create_alloc (3,
7085 hash_type_unit_group,
7086 eq_type_unit_group,
7087 NULL, xcalloc, xfree));
7088 }
7089
7090 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7091 partial symtabs. We combine several TUs per psymtab to not let the size
7092 of any one psymtab grow too big. */
7093 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7094 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7095
7096 /* Helper routine for get_type_unit_group.
7097 Create the type_unit_group object used to hold one or more TUs. */
7098
7099 static struct type_unit_group *
7100 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7101 {
7102 struct dwarf2_per_objfile *dwarf2_per_objfile
7103 = cu->per_cu->dwarf2_per_objfile;
7104 struct objfile *objfile = dwarf2_per_objfile->objfile;
7105 struct dwarf2_per_cu_data *per_cu;
7106 struct type_unit_group *tu_group;
7107
7108 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7109 struct type_unit_group);
7110 per_cu = &tu_group->per_cu;
7111 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7112
7113 if (dwarf2_per_objfile->using_index)
7114 {
7115 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7116 struct dwarf2_per_cu_quick_data);
7117 }
7118 else
7119 {
7120 unsigned int line_offset = to_underlying (line_offset_struct);
7121 dwarf2_psymtab *pst;
7122 std::string name;
7123
7124 /* Give the symtab a useful name for debug purposes. */
7125 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7126 name = string_printf ("<type_units_%d>",
7127 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7128 else
7129 name = string_printf ("<type_units_at_0x%x>", line_offset);
7130
7131 pst = create_partial_symtab (per_cu, name.c_str ());
7132 pst->anonymous = true;
7133 }
7134
7135 tu_group->hash.dwo_unit = cu->dwo_unit;
7136 tu_group->hash.line_sect_off = line_offset_struct;
7137
7138 return tu_group;
7139 }
7140
7141 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7142 STMT_LIST is a DW_AT_stmt_list attribute. */
7143
7144 static struct type_unit_group *
7145 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7146 {
7147 struct dwarf2_per_objfile *dwarf2_per_objfile
7148 = cu->per_cu->dwarf2_per_objfile;
7149 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7150 struct type_unit_group *tu_group;
7151 void **slot;
7152 unsigned int line_offset;
7153 struct type_unit_group type_unit_group_for_lookup;
7154
7155 if (dwarf2_per_objfile->type_unit_groups == NULL)
7156 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7157
7158 /* Do we need to create a new group, or can we use an existing one? */
7159
7160 if (stmt_list)
7161 {
7162 line_offset = DW_UNSND (stmt_list);
7163 ++tu_stats->nr_symtab_sharers;
7164 }
7165 else
7166 {
7167 /* Ugh, no stmt_list. Rare, but we have to handle it.
7168 We can do various things here like create one group per TU or
7169 spread them over multiple groups to split up the expansion work.
7170 To avoid worst case scenarios (too many groups or too large groups)
7171 we, umm, group them in bunches. */
7172 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7173 | (tu_stats->nr_stmt_less_type_units
7174 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7175 ++tu_stats->nr_stmt_less_type_units;
7176 }
7177
7178 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7179 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7180 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7181 &type_unit_group_for_lookup, INSERT);
7182 if (*slot != NULL)
7183 {
7184 tu_group = (struct type_unit_group *) *slot;
7185 gdb_assert (tu_group != NULL);
7186 }
7187 else
7188 {
7189 sect_offset line_offset_struct = (sect_offset) line_offset;
7190 tu_group = create_type_unit_group (cu, line_offset_struct);
7191 *slot = tu_group;
7192 ++tu_stats->nr_symtabs;
7193 }
7194
7195 return tu_group;
7196 }
7197 \f
7198 /* Partial symbol tables. */
7199
7200 /* Create a psymtab named NAME and assign it to PER_CU.
7201
7202 The caller must fill in the following details:
7203 dirname, textlow, texthigh. */
7204
7205 static dwarf2_psymtab *
7206 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7207 {
7208 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7209 dwarf2_psymtab *pst;
7210
7211 pst = new dwarf2_psymtab (name, objfile, 0);
7212
7213 pst->psymtabs_addrmap_supported = true;
7214
7215 /* This is the glue that links PST into GDB's symbol API. */
7216 pst->per_cu_data = per_cu;
7217 per_cu->v.psymtab = pst;
7218
7219 return pst;
7220 }
7221
7222 /* DIE reader function for process_psymtab_comp_unit. */
7223
7224 static void
7225 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7226 const gdb_byte *info_ptr,
7227 struct die_info *comp_unit_die,
7228 enum language pretend_language)
7229 {
7230 struct dwarf2_cu *cu = reader->cu;
7231 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7233 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7234 CORE_ADDR baseaddr;
7235 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7236 dwarf2_psymtab *pst;
7237 enum pc_bounds_kind cu_bounds_kind;
7238 const char *filename;
7239
7240 gdb_assert (! per_cu->is_debug_types);
7241
7242 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7243
7244 /* Allocate a new partial symbol table structure. */
7245 gdb::unique_xmalloc_ptr<char> debug_filename;
7246 static const char artificial[] = "<artificial>";
7247 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7248 if (filename == NULL)
7249 filename = "";
7250 else if (strcmp (filename, artificial) == 0)
7251 {
7252 debug_filename.reset (concat (artificial, "@",
7253 sect_offset_str (per_cu->sect_off),
7254 (char *) NULL));
7255 filename = debug_filename.get ();
7256 }
7257
7258 pst = create_partial_symtab (per_cu, filename);
7259
7260 /* This must be done before calling dwarf2_build_include_psymtabs. */
7261 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7262
7263 baseaddr = objfile->text_section_offset ();
7264
7265 dwarf2_find_base_address (comp_unit_die, cu);
7266
7267 /* Possibly set the default values of LOWPC and HIGHPC from
7268 `DW_AT_ranges'. */
7269 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7270 &best_highpc, cu, pst);
7271 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7272 {
7273 CORE_ADDR low
7274 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7275 - baseaddr);
7276 CORE_ADDR high
7277 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7278 - baseaddr - 1);
7279 /* Store the contiguous range if it is not empty; it can be
7280 empty for CUs with no code. */
7281 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7282 low, high, pst);
7283 }
7284
7285 /* Check if comp unit has_children.
7286 If so, read the rest of the partial symbols from this comp unit.
7287 If not, there's no more debug_info for this comp unit. */
7288 if (comp_unit_die->has_children)
7289 {
7290 struct partial_die_info *first_die;
7291 CORE_ADDR lowpc, highpc;
7292
7293 lowpc = ((CORE_ADDR) -1);
7294 highpc = ((CORE_ADDR) 0);
7295
7296 first_die = load_partial_dies (reader, info_ptr, 1);
7297
7298 scan_partial_symbols (first_die, &lowpc, &highpc,
7299 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7300
7301 /* If we didn't find a lowpc, set it to highpc to avoid
7302 complaints from `maint check'. */
7303 if (lowpc == ((CORE_ADDR) -1))
7304 lowpc = highpc;
7305
7306 /* If the compilation unit didn't have an explicit address range,
7307 then use the information extracted from its child dies. */
7308 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7309 {
7310 best_lowpc = lowpc;
7311 best_highpc = highpc;
7312 }
7313 }
7314 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7315 best_lowpc + baseaddr)
7316 - baseaddr);
7317 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7318 best_highpc + baseaddr)
7319 - baseaddr);
7320
7321 end_psymtab_common (objfile, pst);
7322
7323 if (!cu->per_cu->imported_symtabs_empty ())
7324 {
7325 int i;
7326 int len = cu->per_cu->imported_symtabs_size ();
7327
7328 /* Fill in 'dependencies' here; we fill in 'users' in a
7329 post-pass. */
7330 pst->number_of_dependencies = len;
7331 pst->dependencies
7332 = objfile->partial_symtabs->allocate_dependencies (len);
7333 for (i = 0; i < len; ++i)
7334 {
7335 pst->dependencies[i]
7336 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7337 }
7338
7339 cu->per_cu->imported_symtabs_free ();
7340 }
7341
7342 /* Get the list of files included in the current compilation unit,
7343 and build a psymtab for each of them. */
7344 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7345
7346 if (dwarf_read_debug)
7347 fprintf_unfiltered (gdb_stdlog,
7348 "Psymtab for %s unit @%s: %s - %s"
7349 ", %d global, %d static syms\n",
7350 per_cu->is_debug_types ? "type" : "comp",
7351 sect_offset_str (per_cu->sect_off),
7352 paddress (gdbarch, pst->text_low (objfile)),
7353 paddress (gdbarch, pst->text_high (objfile)),
7354 pst->n_global_syms, pst->n_static_syms);
7355 }
7356
7357 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7358 Process compilation unit THIS_CU for a psymtab. */
7359
7360 static void
7361 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7362 bool want_partial_unit,
7363 enum language pretend_language)
7364 {
7365 /* If this compilation unit was already read in, free the
7366 cached copy in order to read it in again. This is
7367 necessary because we skipped some symbols when we first
7368 read in the compilation unit (see load_partial_dies).
7369 This problem could be avoided, but the benefit is unclear. */
7370 if (this_cu->cu != NULL)
7371 free_one_cached_comp_unit (this_cu);
7372
7373 cutu_reader reader (this_cu, NULL, 0, false);
7374
7375 if (reader.dummy_p)
7376 {
7377 /* Nothing. */
7378 }
7379 else if (this_cu->is_debug_types)
7380 build_type_psymtabs_reader (&reader, reader.info_ptr,
7381 reader.comp_unit_die);
7382 else if (want_partial_unit
7383 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7384 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7385 reader.comp_unit_die,
7386 pretend_language);
7387
7388 /* Age out any secondary CUs. */
7389 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7390 }
7391
7392 /* Reader function for build_type_psymtabs. */
7393
7394 static void
7395 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7396 const gdb_byte *info_ptr,
7397 struct die_info *type_unit_die)
7398 {
7399 struct dwarf2_per_objfile *dwarf2_per_objfile
7400 = reader->cu->per_cu->dwarf2_per_objfile;
7401 struct objfile *objfile = dwarf2_per_objfile->objfile;
7402 struct dwarf2_cu *cu = reader->cu;
7403 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7404 struct signatured_type *sig_type;
7405 struct type_unit_group *tu_group;
7406 struct attribute *attr;
7407 struct partial_die_info *first_die;
7408 CORE_ADDR lowpc, highpc;
7409 dwarf2_psymtab *pst;
7410
7411 gdb_assert (per_cu->is_debug_types);
7412 sig_type = (struct signatured_type *) per_cu;
7413
7414 if (! type_unit_die->has_children)
7415 return;
7416
7417 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7418 tu_group = get_type_unit_group (cu, attr);
7419
7420 if (tu_group->tus == nullptr)
7421 tu_group->tus = new std::vector<signatured_type *>;
7422 tu_group->tus->push_back (sig_type);
7423
7424 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7425 pst = create_partial_symtab (per_cu, "");
7426 pst->anonymous = true;
7427
7428 first_die = load_partial_dies (reader, info_ptr, 1);
7429
7430 lowpc = (CORE_ADDR) -1;
7431 highpc = (CORE_ADDR) 0;
7432 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7433
7434 end_psymtab_common (objfile, pst);
7435 }
7436
7437 /* Struct used to sort TUs by their abbreviation table offset. */
7438
7439 struct tu_abbrev_offset
7440 {
7441 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7442 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7443 {}
7444
7445 signatured_type *sig_type;
7446 sect_offset abbrev_offset;
7447 };
7448
7449 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7450
7451 static bool
7452 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7453 const struct tu_abbrev_offset &b)
7454 {
7455 return a.abbrev_offset < b.abbrev_offset;
7456 }
7457
7458 /* Efficiently read all the type units.
7459 This does the bulk of the work for build_type_psymtabs.
7460
7461 The efficiency is because we sort TUs by the abbrev table they use and
7462 only read each abbrev table once. In one program there are 200K TUs
7463 sharing 8K abbrev tables.
7464
7465 The main purpose of this function is to support building the
7466 dwarf2_per_objfile->type_unit_groups table.
7467 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7468 can collapse the search space by grouping them by stmt_list.
7469 The savings can be significant, in the same program from above the 200K TUs
7470 share 8K stmt_list tables.
7471
7472 FUNC is expected to call get_type_unit_group, which will create the
7473 struct type_unit_group if necessary and add it to
7474 dwarf2_per_objfile->type_unit_groups. */
7475
7476 static void
7477 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7478 {
7479 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7480 abbrev_table_up abbrev_table;
7481 sect_offset abbrev_offset;
7482
7483 /* It's up to the caller to not call us multiple times. */
7484 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7485
7486 if (dwarf2_per_objfile->all_type_units.empty ())
7487 return;
7488
7489 /* TUs typically share abbrev tables, and there can be way more TUs than
7490 abbrev tables. Sort by abbrev table to reduce the number of times we
7491 read each abbrev table in.
7492 Alternatives are to punt or to maintain a cache of abbrev tables.
7493 This is simpler and efficient enough for now.
7494
7495 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7496 symtab to use). Typically TUs with the same abbrev offset have the same
7497 stmt_list value too so in practice this should work well.
7498
7499 The basic algorithm here is:
7500
7501 sort TUs by abbrev table
7502 for each TU with same abbrev table:
7503 read abbrev table if first user
7504 read TU top level DIE
7505 [IWBN if DWO skeletons had DW_AT_stmt_list]
7506 call FUNC */
7507
7508 if (dwarf_read_debug)
7509 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7510
7511 /* Sort in a separate table to maintain the order of all_type_units
7512 for .gdb_index: TU indices directly index all_type_units. */
7513 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7514 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7515
7516 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7517 sorted_by_abbrev.emplace_back
7518 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7519 sig_type->per_cu.section,
7520 sig_type->per_cu.sect_off));
7521
7522 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7523 sort_tu_by_abbrev_offset);
7524
7525 abbrev_offset = (sect_offset) ~(unsigned) 0;
7526
7527 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7528 {
7529 /* Switch to the next abbrev table if necessary. */
7530 if (abbrev_table == NULL
7531 || tu.abbrev_offset != abbrev_offset)
7532 {
7533 abbrev_offset = tu.abbrev_offset;
7534 abbrev_table =
7535 abbrev_table::read (dwarf2_per_objfile->objfile,
7536 &dwarf2_per_objfile->abbrev,
7537 abbrev_offset);
7538 ++tu_stats->nr_uniq_abbrev_tables;
7539 }
7540
7541 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7542 0, false);
7543 if (!reader.dummy_p)
7544 build_type_psymtabs_reader (&reader, reader.info_ptr,
7545 reader.comp_unit_die);
7546 }
7547 }
7548
7549 /* Print collected type unit statistics. */
7550
7551 static void
7552 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7553 {
7554 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7555
7556 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7557 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7558 dwarf2_per_objfile->all_type_units.size ());
7559 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7560 tu_stats->nr_uniq_abbrev_tables);
7561 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7562 tu_stats->nr_symtabs);
7563 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7564 tu_stats->nr_symtab_sharers);
7565 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7566 tu_stats->nr_stmt_less_type_units);
7567 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7568 tu_stats->nr_all_type_units_reallocs);
7569 }
7570
7571 /* Traversal function for build_type_psymtabs. */
7572
7573 static int
7574 build_type_psymtab_dependencies (void **slot, void *info)
7575 {
7576 struct dwarf2_per_objfile *dwarf2_per_objfile
7577 = (struct dwarf2_per_objfile *) info;
7578 struct objfile *objfile = dwarf2_per_objfile->objfile;
7579 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7580 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7581 dwarf2_psymtab *pst = per_cu->v.psymtab;
7582 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7583 int i;
7584
7585 gdb_assert (len > 0);
7586 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
7587
7588 pst->number_of_dependencies = len;
7589 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7590 for (i = 0; i < len; ++i)
7591 {
7592 struct signatured_type *iter = tu_group->tus->at (i);
7593 gdb_assert (iter->per_cu.is_debug_types);
7594 pst->dependencies[i] = iter->per_cu.v.psymtab;
7595 iter->type_unit_group = tu_group;
7596 }
7597
7598 delete tu_group->tus;
7599 tu_group->tus = nullptr;
7600
7601 return 1;
7602 }
7603
7604 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7605 Build partial symbol tables for the .debug_types comp-units. */
7606
7607 static void
7608 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7609 {
7610 if (! create_all_type_units (dwarf2_per_objfile))
7611 return;
7612
7613 build_type_psymtabs_1 (dwarf2_per_objfile);
7614 }
7615
7616 /* Traversal function for process_skeletonless_type_unit.
7617 Read a TU in a DWO file and build partial symbols for it. */
7618
7619 static int
7620 process_skeletonless_type_unit (void **slot, void *info)
7621 {
7622 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7623 struct dwarf2_per_objfile *dwarf2_per_objfile
7624 = (struct dwarf2_per_objfile *) info;
7625 struct signatured_type find_entry, *entry;
7626
7627 /* If this TU doesn't exist in the global table, add it and read it in. */
7628
7629 if (dwarf2_per_objfile->signatured_types == NULL)
7630 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7631
7632 find_entry.signature = dwo_unit->signature;
7633 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7634 &find_entry, INSERT);
7635 /* If we've already seen this type there's nothing to do. What's happening
7636 is we're doing our own version of comdat-folding here. */
7637 if (*slot != NULL)
7638 return 1;
7639
7640 /* This does the job that create_all_type_units would have done for
7641 this TU. */
7642 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7643 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7644 *slot = entry;
7645
7646 /* This does the job that build_type_psymtabs_1 would have done. */
7647 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7648 if (!reader.dummy_p)
7649 build_type_psymtabs_reader (&reader, reader.info_ptr,
7650 reader.comp_unit_die);
7651
7652 return 1;
7653 }
7654
7655 /* Traversal function for process_skeletonless_type_units. */
7656
7657 static int
7658 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7659 {
7660 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7661
7662 if (dwo_file->tus != NULL)
7663 htab_traverse_noresize (dwo_file->tus.get (),
7664 process_skeletonless_type_unit, info);
7665
7666 return 1;
7667 }
7668
7669 /* Scan all TUs of DWO files, verifying we've processed them.
7670 This is needed in case a TU was emitted without its skeleton.
7671 Note: This can't be done until we know what all the DWO files are. */
7672
7673 static void
7674 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7675 {
7676 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7677 if (get_dwp_file (dwarf2_per_objfile) == NULL
7678 && dwarf2_per_objfile->dwo_files != NULL)
7679 {
7680 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7681 process_dwo_file_for_skeletonless_type_units,
7682 dwarf2_per_objfile);
7683 }
7684 }
7685
7686 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7687
7688 static void
7689 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7690 {
7691 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7692 {
7693 dwarf2_psymtab *pst = per_cu->v.psymtab;
7694
7695 if (pst == NULL)
7696 continue;
7697
7698 for (int j = 0; j < pst->number_of_dependencies; ++j)
7699 {
7700 /* Set the 'user' field only if it is not already set. */
7701 if (pst->dependencies[j]->user == NULL)
7702 pst->dependencies[j]->user = pst;
7703 }
7704 }
7705 }
7706
7707 /* Build the partial symbol table by doing a quick pass through the
7708 .debug_info and .debug_abbrev sections. */
7709
7710 static void
7711 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7712 {
7713 struct objfile *objfile = dwarf2_per_objfile->objfile;
7714
7715 if (dwarf_read_debug)
7716 {
7717 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7718 objfile_name (objfile));
7719 }
7720
7721 dwarf2_per_objfile->reading_partial_symbols = 1;
7722
7723 dwarf2_per_objfile->info.read (objfile);
7724
7725 /* Any cached compilation units will be linked by the per-objfile
7726 read_in_chain. Make sure to free them when we're done. */
7727 free_cached_comp_units freer (dwarf2_per_objfile);
7728
7729 build_type_psymtabs (dwarf2_per_objfile);
7730
7731 create_all_comp_units (dwarf2_per_objfile);
7732
7733 /* Create a temporary address map on a temporary obstack. We later
7734 copy this to the final obstack. */
7735 auto_obstack temp_obstack;
7736
7737 scoped_restore save_psymtabs_addrmap
7738 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7739 addrmap_create_mutable (&temp_obstack));
7740
7741 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7742 process_psymtab_comp_unit (per_cu, false, language_minimal);
7743
7744 /* This has to wait until we read the CUs, we need the list of DWOs. */
7745 process_skeletonless_type_units (dwarf2_per_objfile);
7746
7747 /* Now that all TUs have been processed we can fill in the dependencies. */
7748 if (dwarf2_per_objfile->type_unit_groups != NULL)
7749 {
7750 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7751 build_type_psymtab_dependencies, dwarf2_per_objfile);
7752 }
7753
7754 if (dwarf_read_debug)
7755 print_tu_stats (dwarf2_per_objfile);
7756
7757 set_partial_user (dwarf2_per_objfile);
7758
7759 objfile->partial_symtabs->psymtabs_addrmap
7760 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7761 objfile->partial_symtabs->obstack ());
7762 /* At this point we want to keep the address map. */
7763 save_psymtabs_addrmap.release ();
7764
7765 if (dwarf_read_debug)
7766 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7767 objfile_name (objfile));
7768 }
7769
7770 /* Load the partial DIEs for a secondary CU into memory.
7771 This is also used when rereading a primary CU with load_all_dies. */
7772
7773 static void
7774 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7775 {
7776 cutu_reader reader (this_cu, NULL, 1, false);
7777
7778 if (!reader.dummy_p)
7779 {
7780 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7781 language_minimal);
7782
7783 /* Check if comp unit has_children.
7784 If so, read the rest of the partial symbols from this comp unit.
7785 If not, there's no more debug_info for this comp unit. */
7786 if (reader.comp_unit_die->has_children)
7787 load_partial_dies (&reader, reader.info_ptr, 0);
7788
7789 reader.keep ();
7790 }
7791 }
7792
7793 static void
7794 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7795 struct dwarf2_section_info *section,
7796 struct dwarf2_section_info *abbrev_section,
7797 unsigned int is_dwz)
7798 {
7799 const gdb_byte *info_ptr;
7800 struct objfile *objfile = dwarf2_per_objfile->objfile;
7801
7802 if (dwarf_read_debug)
7803 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7804 section->get_name (),
7805 section->get_file_name ());
7806
7807 section->read (objfile);
7808
7809 info_ptr = section->buffer;
7810
7811 while (info_ptr < section->buffer + section->size)
7812 {
7813 struct dwarf2_per_cu_data *this_cu;
7814
7815 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7816
7817 comp_unit_head cu_header;
7818 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7819 abbrev_section, info_ptr,
7820 rcuh_kind::COMPILE);
7821
7822 /* Save the compilation unit for later lookup. */
7823 if (cu_header.unit_type != DW_UT_type)
7824 {
7825 this_cu = XOBNEW (&objfile->objfile_obstack,
7826 struct dwarf2_per_cu_data);
7827 memset (this_cu, 0, sizeof (*this_cu));
7828 }
7829 else
7830 {
7831 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7832 struct signatured_type);
7833 memset (sig_type, 0, sizeof (*sig_type));
7834 sig_type->signature = cu_header.signature;
7835 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7836 this_cu = &sig_type->per_cu;
7837 }
7838 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7839 this_cu->sect_off = sect_off;
7840 this_cu->length = cu_header.length + cu_header.initial_length_size;
7841 this_cu->is_dwz = is_dwz;
7842 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7843 this_cu->section = section;
7844
7845 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7846
7847 info_ptr = info_ptr + this_cu->length;
7848 }
7849 }
7850
7851 /* Create a list of all compilation units in OBJFILE.
7852 This is only done for -readnow and building partial symtabs. */
7853
7854 static void
7855 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7856 {
7857 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7858 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7859 &dwarf2_per_objfile->abbrev, 0);
7860
7861 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7862 if (dwz != NULL)
7863 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7864 1);
7865 }
7866
7867 /* Process all loaded DIEs for compilation unit CU, starting at
7868 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7869 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7870 DW_AT_ranges). See the comments of add_partial_subprogram on how
7871 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7872
7873 static void
7874 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7875 CORE_ADDR *highpc, int set_addrmap,
7876 struct dwarf2_cu *cu)
7877 {
7878 struct partial_die_info *pdi;
7879
7880 /* Now, march along the PDI's, descending into ones which have
7881 interesting children but skipping the children of the other ones,
7882 until we reach the end of the compilation unit. */
7883
7884 pdi = first_die;
7885
7886 while (pdi != NULL)
7887 {
7888 pdi->fixup (cu);
7889
7890 /* Anonymous namespaces or modules have no name but have interesting
7891 children, so we need to look at them. Ditto for anonymous
7892 enums. */
7893
7894 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7895 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7896 || pdi->tag == DW_TAG_imported_unit
7897 || pdi->tag == DW_TAG_inlined_subroutine)
7898 {
7899 switch (pdi->tag)
7900 {
7901 case DW_TAG_subprogram:
7902 case DW_TAG_inlined_subroutine:
7903 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7904 break;
7905 case DW_TAG_constant:
7906 case DW_TAG_variable:
7907 case DW_TAG_typedef:
7908 case DW_TAG_union_type:
7909 if (!pdi->is_declaration)
7910 {
7911 add_partial_symbol (pdi, cu);
7912 }
7913 break;
7914 case DW_TAG_class_type:
7915 case DW_TAG_interface_type:
7916 case DW_TAG_structure_type:
7917 if (!pdi->is_declaration)
7918 {
7919 add_partial_symbol (pdi, cu);
7920 }
7921 if ((cu->language == language_rust
7922 || cu->language == language_cplus) && pdi->has_children)
7923 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7924 set_addrmap, cu);
7925 break;
7926 case DW_TAG_enumeration_type:
7927 if (!pdi->is_declaration)
7928 add_partial_enumeration (pdi, cu);
7929 break;
7930 case DW_TAG_base_type:
7931 case DW_TAG_subrange_type:
7932 /* File scope base type definitions are added to the partial
7933 symbol table. */
7934 add_partial_symbol (pdi, cu);
7935 break;
7936 case DW_TAG_namespace:
7937 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7938 break;
7939 case DW_TAG_module:
7940 if (!pdi->is_declaration)
7941 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7942 break;
7943 case DW_TAG_imported_unit:
7944 {
7945 struct dwarf2_per_cu_data *per_cu;
7946
7947 /* For now we don't handle imported units in type units. */
7948 if (cu->per_cu->is_debug_types)
7949 {
7950 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7951 " supported in type units [in module %s]"),
7952 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7953 }
7954
7955 per_cu = dwarf2_find_containing_comp_unit
7956 (pdi->d.sect_off, pdi->is_dwz,
7957 cu->per_cu->dwarf2_per_objfile);
7958
7959 /* Go read the partial unit, if needed. */
7960 if (per_cu->v.psymtab == NULL)
7961 process_psymtab_comp_unit (per_cu, true, cu->language);
7962
7963 cu->per_cu->imported_symtabs_push (per_cu);
7964 }
7965 break;
7966 case DW_TAG_imported_declaration:
7967 add_partial_symbol (pdi, cu);
7968 break;
7969 default:
7970 break;
7971 }
7972 }
7973
7974 /* If the die has a sibling, skip to the sibling. */
7975
7976 pdi = pdi->die_sibling;
7977 }
7978 }
7979
7980 /* Functions used to compute the fully scoped name of a partial DIE.
7981
7982 Normally, this is simple. For C++, the parent DIE's fully scoped
7983 name is concatenated with "::" and the partial DIE's name.
7984 Enumerators are an exception; they use the scope of their parent
7985 enumeration type, i.e. the name of the enumeration type is not
7986 prepended to the enumerator.
7987
7988 There are two complexities. One is DW_AT_specification; in this
7989 case "parent" means the parent of the target of the specification,
7990 instead of the direct parent of the DIE. The other is compilers
7991 which do not emit DW_TAG_namespace; in this case we try to guess
7992 the fully qualified name of structure types from their members'
7993 linkage names. This must be done using the DIE's children rather
7994 than the children of any DW_AT_specification target. We only need
7995 to do this for structures at the top level, i.e. if the target of
7996 any DW_AT_specification (if any; otherwise the DIE itself) does not
7997 have a parent. */
7998
7999 /* Compute the scope prefix associated with PDI's parent, in
8000 compilation unit CU. The result will be allocated on CU's
8001 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8002 field. NULL is returned if no prefix is necessary. */
8003 static const char *
8004 partial_die_parent_scope (struct partial_die_info *pdi,
8005 struct dwarf2_cu *cu)
8006 {
8007 const char *grandparent_scope;
8008 struct partial_die_info *parent, *real_pdi;
8009
8010 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8011 then this means the parent of the specification DIE. */
8012
8013 real_pdi = pdi;
8014 while (real_pdi->has_specification)
8015 {
8016 auto res = find_partial_die (real_pdi->spec_offset,
8017 real_pdi->spec_is_dwz, cu);
8018 real_pdi = res.pdi;
8019 cu = res.cu;
8020 }
8021
8022 parent = real_pdi->die_parent;
8023 if (parent == NULL)
8024 return NULL;
8025
8026 if (parent->scope_set)
8027 return parent->scope;
8028
8029 parent->fixup (cu);
8030
8031 grandparent_scope = partial_die_parent_scope (parent, cu);
8032
8033 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8034 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8035 Work around this problem here. */
8036 if (cu->language == language_cplus
8037 && parent->tag == DW_TAG_namespace
8038 && strcmp (parent->name, "::") == 0
8039 && grandparent_scope == NULL)
8040 {
8041 parent->scope = NULL;
8042 parent->scope_set = 1;
8043 return NULL;
8044 }
8045
8046 /* Nested subroutines in Fortran get a prefix. */
8047 if (pdi->tag == DW_TAG_enumerator)
8048 /* Enumerators should not get the name of the enumeration as a prefix. */
8049 parent->scope = grandparent_scope;
8050 else if (parent->tag == DW_TAG_namespace
8051 || parent->tag == DW_TAG_module
8052 || parent->tag == DW_TAG_structure_type
8053 || parent->tag == DW_TAG_class_type
8054 || parent->tag == DW_TAG_interface_type
8055 || parent->tag == DW_TAG_union_type
8056 || parent->tag == DW_TAG_enumeration_type
8057 || (cu->language == language_fortran
8058 && parent->tag == DW_TAG_subprogram
8059 && pdi->tag == DW_TAG_subprogram))
8060 {
8061 if (grandparent_scope == NULL)
8062 parent->scope = parent->name;
8063 else
8064 parent->scope = typename_concat (&cu->comp_unit_obstack,
8065 grandparent_scope,
8066 parent->name, 0, cu);
8067 }
8068 else
8069 {
8070 /* FIXME drow/2004-04-01: What should we be doing with
8071 function-local names? For partial symbols, we should probably be
8072 ignoring them. */
8073 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8074 dwarf_tag_name (parent->tag),
8075 sect_offset_str (pdi->sect_off));
8076 parent->scope = grandparent_scope;
8077 }
8078
8079 parent->scope_set = 1;
8080 return parent->scope;
8081 }
8082
8083 /* Return the fully scoped name associated with PDI, from compilation unit
8084 CU. The result will be allocated with malloc. */
8085
8086 static gdb::unique_xmalloc_ptr<char>
8087 partial_die_full_name (struct partial_die_info *pdi,
8088 struct dwarf2_cu *cu)
8089 {
8090 const char *parent_scope;
8091
8092 /* If this is a template instantiation, we can not work out the
8093 template arguments from partial DIEs. So, unfortunately, we have
8094 to go through the full DIEs. At least any work we do building
8095 types here will be reused if full symbols are loaded later. */
8096 if (pdi->has_template_arguments)
8097 {
8098 pdi->fixup (cu);
8099
8100 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8101 {
8102 struct die_info *die;
8103 struct attribute attr;
8104 struct dwarf2_cu *ref_cu = cu;
8105
8106 /* DW_FORM_ref_addr is using section offset. */
8107 attr.name = (enum dwarf_attribute) 0;
8108 attr.form = DW_FORM_ref_addr;
8109 attr.u.unsnd = to_underlying (pdi->sect_off);
8110 die = follow_die_ref (NULL, &attr, &ref_cu);
8111
8112 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8113 }
8114 }
8115
8116 parent_scope = partial_die_parent_scope (pdi, cu);
8117 if (parent_scope == NULL)
8118 return NULL;
8119 else
8120 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8121 pdi->name, 0, cu));
8122 }
8123
8124 static void
8125 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8126 {
8127 struct dwarf2_per_objfile *dwarf2_per_objfile
8128 = cu->per_cu->dwarf2_per_objfile;
8129 struct objfile *objfile = dwarf2_per_objfile->objfile;
8130 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8131 CORE_ADDR addr = 0;
8132 const char *actual_name = NULL;
8133 CORE_ADDR baseaddr;
8134
8135 baseaddr = objfile->text_section_offset ();
8136
8137 gdb::unique_xmalloc_ptr<char> built_actual_name
8138 = partial_die_full_name (pdi, cu);
8139 if (built_actual_name != NULL)
8140 actual_name = built_actual_name.get ();
8141
8142 if (actual_name == NULL)
8143 actual_name = pdi->name;
8144
8145 switch (pdi->tag)
8146 {
8147 case DW_TAG_inlined_subroutine:
8148 case DW_TAG_subprogram:
8149 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8150 - baseaddr);
8151 if (pdi->is_external
8152 || cu->language == language_ada
8153 || (cu->language == language_fortran
8154 && pdi->die_parent != NULL
8155 && pdi->die_parent->tag == DW_TAG_subprogram))
8156 {
8157 /* Normally, only "external" DIEs are part of the global scope.
8158 But in Ada and Fortran, we want to be able to access nested
8159 procedures globally. So all Ada and Fortran subprograms are
8160 stored in the global scope. */
8161 add_psymbol_to_list (actual_name,
8162 built_actual_name != NULL,
8163 VAR_DOMAIN, LOC_BLOCK,
8164 SECT_OFF_TEXT (objfile),
8165 psymbol_placement::GLOBAL,
8166 addr,
8167 cu->language, objfile);
8168 }
8169 else
8170 {
8171 add_psymbol_to_list (actual_name,
8172 built_actual_name != NULL,
8173 VAR_DOMAIN, LOC_BLOCK,
8174 SECT_OFF_TEXT (objfile),
8175 psymbol_placement::STATIC,
8176 addr, cu->language, objfile);
8177 }
8178
8179 if (pdi->main_subprogram && actual_name != NULL)
8180 set_objfile_main_name (objfile, actual_name, cu->language);
8181 break;
8182 case DW_TAG_constant:
8183 add_psymbol_to_list (actual_name,
8184 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8185 -1, (pdi->is_external
8186 ? psymbol_placement::GLOBAL
8187 : psymbol_placement::STATIC),
8188 0, cu->language, objfile);
8189 break;
8190 case DW_TAG_variable:
8191 if (pdi->d.locdesc)
8192 addr = decode_locdesc (pdi->d.locdesc, cu);
8193
8194 if (pdi->d.locdesc
8195 && addr == 0
8196 && !dwarf2_per_objfile->has_section_at_zero)
8197 {
8198 /* A global or static variable may also have been stripped
8199 out by the linker if unused, in which case its address
8200 will be nullified; do not add such variables into partial
8201 symbol table then. */
8202 }
8203 else if (pdi->is_external)
8204 {
8205 /* Global Variable.
8206 Don't enter into the minimal symbol tables as there is
8207 a minimal symbol table entry from the ELF symbols already.
8208 Enter into partial symbol table if it has a location
8209 descriptor or a type.
8210 If the location descriptor is missing, new_symbol will create
8211 a LOC_UNRESOLVED symbol, the address of the variable will then
8212 be determined from the minimal symbol table whenever the variable
8213 is referenced.
8214 The address for the partial symbol table entry is not
8215 used by GDB, but it comes in handy for debugging partial symbol
8216 table building. */
8217
8218 if (pdi->d.locdesc || pdi->has_type)
8219 add_psymbol_to_list (actual_name,
8220 built_actual_name != NULL,
8221 VAR_DOMAIN, LOC_STATIC,
8222 SECT_OFF_TEXT (objfile),
8223 psymbol_placement::GLOBAL,
8224 addr, cu->language, objfile);
8225 }
8226 else
8227 {
8228 int has_loc = pdi->d.locdesc != NULL;
8229
8230 /* Static Variable. Skip symbols whose value we cannot know (those
8231 without location descriptors or constant values). */
8232 if (!has_loc && !pdi->has_const_value)
8233 return;
8234
8235 add_psymbol_to_list (actual_name,
8236 built_actual_name != NULL,
8237 VAR_DOMAIN, LOC_STATIC,
8238 SECT_OFF_TEXT (objfile),
8239 psymbol_placement::STATIC,
8240 has_loc ? addr : 0,
8241 cu->language, objfile);
8242 }
8243 break;
8244 case DW_TAG_typedef:
8245 case DW_TAG_base_type:
8246 case DW_TAG_subrange_type:
8247 add_psymbol_to_list (actual_name,
8248 built_actual_name != NULL,
8249 VAR_DOMAIN, LOC_TYPEDEF, -1,
8250 psymbol_placement::STATIC,
8251 0, cu->language, objfile);
8252 break;
8253 case DW_TAG_imported_declaration:
8254 case DW_TAG_namespace:
8255 add_psymbol_to_list (actual_name,
8256 built_actual_name != NULL,
8257 VAR_DOMAIN, LOC_TYPEDEF, -1,
8258 psymbol_placement::GLOBAL,
8259 0, cu->language, objfile);
8260 break;
8261 case DW_TAG_module:
8262 /* With Fortran 77 there might be a "BLOCK DATA" module
8263 available without any name. If so, we skip the module as it
8264 doesn't bring any value. */
8265 if (actual_name != nullptr)
8266 add_psymbol_to_list (actual_name,
8267 built_actual_name != NULL,
8268 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8269 psymbol_placement::GLOBAL,
8270 0, cu->language, objfile);
8271 break;
8272 case DW_TAG_class_type:
8273 case DW_TAG_interface_type:
8274 case DW_TAG_structure_type:
8275 case DW_TAG_union_type:
8276 case DW_TAG_enumeration_type:
8277 /* Skip external references. The DWARF standard says in the section
8278 about "Structure, Union, and Class Type Entries": "An incomplete
8279 structure, union or class type is represented by a structure,
8280 union or class entry that does not have a byte size attribute
8281 and that has a DW_AT_declaration attribute." */
8282 if (!pdi->has_byte_size && pdi->is_declaration)
8283 return;
8284
8285 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8286 static vs. global. */
8287 add_psymbol_to_list (actual_name,
8288 built_actual_name != NULL,
8289 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8290 cu->language == language_cplus
8291 ? psymbol_placement::GLOBAL
8292 : psymbol_placement::STATIC,
8293 0, cu->language, objfile);
8294
8295 break;
8296 case DW_TAG_enumerator:
8297 add_psymbol_to_list (actual_name,
8298 built_actual_name != NULL,
8299 VAR_DOMAIN, LOC_CONST, -1,
8300 cu->language == language_cplus
8301 ? psymbol_placement::GLOBAL
8302 : psymbol_placement::STATIC,
8303 0, cu->language, objfile);
8304 break;
8305 default:
8306 break;
8307 }
8308 }
8309
8310 /* Read a partial die corresponding to a namespace; also, add a symbol
8311 corresponding to that namespace to the symbol table. NAMESPACE is
8312 the name of the enclosing namespace. */
8313
8314 static void
8315 add_partial_namespace (struct partial_die_info *pdi,
8316 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8317 int set_addrmap, struct dwarf2_cu *cu)
8318 {
8319 /* Add a symbol for the namespace. */
8320
8321 add_partial_symbol (pdi, cu);
8322
8323 /* Now scan partial symbols in that namespace. */
8324
8325 if (pdi->has_children)
8326 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8327 }
8328
8329 /* Read a partial die corresponding to a Fortran module. */
8330
8331 static void
8332 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8333 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8334 {
8335 /* Add a symbol for the namespace. */
8336
8337 add_partial_symbol (pdi, cu);
8338
8339 /* Now scan partial symbols in that module. */
8340
8341 if (pdi->has_children)
8342 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8343 }
8344
8345 /* Read a partial die corresponding to a subprogram or an inlined
8346 subprogram and create a partial symbol for that subprogram.
8347 When the CU language allows it, this routine also defines a partial
8348 symbol for each nested subprogram that this subprogram contains.
8349 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8350 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8351
8352 PDI may also be a lexical block, in which case we simply search
8353 recursively for subprograms defined inside that lexical block.
8354 Again, this is only performed when the CU language allows this
8355 type of definitions. */
8356
8357 static void
8358 add_partial_subprogram (struct partial_die_info *pdi,
8359 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8360 int set_addrmap, struct dwarf2_cu *cu)
8361 {
8362 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8363 {
8364 if (pdi->has_pc_info)
8365 {
8366 if (pdi->lowpc < *lowpc)
8367 *lowpc = pdi->lowpc;
8368 if (pdi->highpc > *highpc)
8369 *highpc = pdi->highpc;
8370 if (set_addrmap)
8371 {
8372 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8374 CORE_ADDR baseaddr;
8375 CORE_ADDR this_highpc;
8376 CORE_ADDR this_lowpc;
8377
8378 baseaddr = objfile->text_section_offset ();
8379 this_lowpc
8380 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8381 pdi->lowpc + baseaddr)
8382 - baseaddr);
8383 this_highpc
8384 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8385 pdi->highpc + baseaddr)
8386 - baseaddr);
8387 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8388 this_lowpc, this_highpc - 1,
8389 cu->per_cu->v.psymtab);
8390 }
8391 }
8392
8393 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8394 {
8395 if (!pdi->is_declaration)
8396 /* Ignore subprogram DIEs that do not have a name, they are
8397 illegal. Do not emit a complaint at this point, we will
8398 do so when we convert this psymtab into a symtab. */
8399 if (pdi->name)
8400 add_partial_symbol (pdi, cu);
8401 }
8402 }
8403
8404 if (! pdi->has_children)
8405 return;
8406
8407 if (cu->language == language_ada || cu->language == language_fortran)
8408 {
8409 pdi = pdi->die_child;
8410 while (pdi != NULL)
8411 {
8412 pdi->fixup (cu);
8413 if (pdi->tag == DW_TAG_subprogram
8414 || pdi->tag == DW_TAG_inlined_subroutine
8415 || pdi->tag == DW_TAG_lexical_block)
8416 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8417 pdi = pdi->die_sibling;
8418 }
8419 }
8420 }
8421
8422 /* Read a partial die corresponding to an enumeration type. */
8423
8424 static void
8425 add_partial_enumeration (struct partial_die_info *enum_pdi,
8426 struct dwarf2_cu *cu)
8427 {
8428 struct partial_die_info *pdi;
8429
8430 if (enum_pdi->name != NULL)
8431 add_partial_symbol (enum_pdi, cu);
8432
8433 pdi = enum_pdi->die_child;
8434 while (pdi)
8435 {
8436 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8437 complaint (_("malformed enumerator DIE ignored"));
8438 else
8439 add_partial_symbol (pdi, cu);
8440 pdi = pdi->die_sibling;
8441 }
8442 }
8443
8444 /* Return the initial uleb128 in the die at INFO_PTR. */
8445
8446 static unsigned int
8447 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8448 {
8449 unsigned int bytes_read;
8450
8451 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8452 }
8453
8454 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8455 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8456
8457 Return the corresponding abbrev, or NULL if the number is zero (indicating
8458 an empty DIE). In either case *BYTES_READ will be set to the length of
8459 the initial number. */
8460
8461 static struct abbrev_info *
8462 peek_die_abbrev (const die_reader_specs &reader,
8463 const gdb_byte *info_ptr, unsigned int *bytes_read)
8464 {
8465 dwarf2_cu *cu = reader.cu;
8466 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8467 unsigned int abbrev_number
8468 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8469
8470 if (abbrev_number == 0)
8471 return NULL;
8472
8473 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8474 if (!abbrev)
8475 {
8476 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8477 " at offset %s [in module %s]"),
8478 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8479 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8480 }
8481
8482 return abbrev;
8483 }
8484
8485 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8486 Returns a pointer to the end of a series of DIEs, terminated by an empty
8487 DIE. Any children of the skipped DIEs will also be skipped. */
8488
8489 static const gdb_byte *
8490 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8491 {
8492 while (1)
8493 {
8494 unsigned int bytes_read;
8495 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8496
8497 if (abbrev == NULL)
8498 return info_ptr + bytes_read;
8499 else
8500 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8501 }
8502 }
8503
8504 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8505 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8506 abbrev corresponding to that skipped uleb128 should be passed in
8507 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8508 children. */
8509
8510 static const gdb_byte *
8511 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8512 struct abbrev_info *abbrev)
8513 {
8514 unsigned int bytes_read;
8515 struct attribute attr;
8516 bfd *abfd = reader->abfd;
8517 struct dwarf2_cu *cu = reader->cu;
8518 const gdb_byte *buffer = reader->buffer;
8519 const gdb_byte *buffer_end = reader->buffer_end;
8520 unsigned int form, i;
8521
8522 for (i = 0; i < abbrev->num_attrs; i++)
8523 {
8524 /* The only abbrev we care about is DW_AT_sibling. */
8525 if (abbrev->attrs[i].name == DW_AT_sibling)
8526 {
8527 bool ignored;
8528 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8529 &ignored);
8530 if (attr.form == DW_FORM_ref_addr)
8531 complaint (_("ignoring absolute DW_AT_sibling"));
8532 else
8533 {
8534 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8535 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8536
8537 if (sibling_ptr < info_ptr)
8538 complaint (_("DW_AT_sibling points backwards"));
8539 else if (sibling_ptr > reader->buffer_end)
8540 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8541 else
8542 return sibling_ptr;
8543 }
8544 }
8545
8546 /* If it isn't DW_AT_sibling, skip this attribute. */
8547 form = abbrev->attrs[i].form;
8548 skip_attribute:
8549 switch (form)
8550 {
8551 case DW_FORM_ref_addr:
8552 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8553 and later it is offset sized. */
8554 if (cu->header.version == 2)
8555 info_ptr += cu->header.addr_size;
8556 else
8557 info_ptr += cu->header.offset_size;
8558 break;
8559 case DW_FORM_GNU_ref_alt:
8560 info_ptr += cu->header.offset_size;
8561 break;
8562 case DW_FORM_addr:
8563 info_ptr += cu->header.addr_size;
8564 break;
8565 case DW_FORM_data1:
8566 case DW_FORM_ref1:
8567 case DW_FORM_flag:
8568 case DW_FORM_strx1:
8569 info_ptr += 1;
8570 break;
8571 case DW_FORM_flag_present:
8572 case DW_FORM_implicit_const:
8573 break;
8574 case DW_FORM_data2:
8575 case DW_FORM_ref2:
8576 case DW_FORM_strx2:
8577 info_ptr += 2;
8578 break;
8579 case DW_FORM_strx3:
8580 info_ptr += 3;
8581 break;
8582 case DW_FORM_data4:
8583 case DW_FORM_ref4:
8584 case DW_FORM_strx4:
8585 info_ptr += 4;
8586 break;
8587 case DW_FORM_data8:
8588 case DW_FORM_ref8:
8589 case DW_FORM_ref_sig8:
8590 info_ptr += 8;
8591 break;
8592 case DW_FORM_data16:
8593 info_ptr += 16;
8594 break;
8595 case DW_FORM_string:
8596 read_direct_string (abfd, info_ptr, &bytes_read);
8597 info_ptr += bytes_read;
8598 break;
8599 case DW_FORM_sec_offset:
8600 case DW_FORM_strp:
8601 case DW_FORM_GNU_strp_alt:
8602 info_ptr += cu->header.offset_size;
8603 break;
8604 case DW_FORM_exprloc:
8605 case DW_FORM_block:
8606 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8607 info_ptr += bytes_read;
8608 break;
8609 case DW_FORM_block1:
8610 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8611 break;
8612 case DW_FORM_block2:
8613 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8614 break;
8615 case DW_FORM_block4:
8616 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8617 break;
8618 case DW_FORM_addrx:
8619 case DW_FORM_strx:
8620 case DW_FORM_sdata:
8621 case DW_FORM_udata:
8622 case DW_FORM_ref_udata:
8623 case DW_FORM_GNU_addr_index:
8624 case DW_FORM_GNU_str_index:
8625 case DW_FORM_rnglistx:
8626 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8627 break;
8628 case DW_FORM_indirect:
8629 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8630 info_ptr += bytes_read;
8631 /* We need to continue parsing from here, so just go back to
8632 the top. */
8633 goto skip_attribute;
8634
8635 default:
8636 error (_("Dwarf Error: Cannot handle %s "
8637 "in DWARF reader [in module %s]"),
8638 dwarf_form_name (form),
8639 bfd_get_filename (abfd));
8640 }
8641 }
8642
8643 if (abbrev->has_children)
8644 return skip_children (reader, info_ptr);
8645 else
8646 return info_ptr;
8647 }
8648
8649 /* Locate ORIG_PDI's sibling.
8650 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8651
8652 static const gdb_byte *
8653 locate_pdi_sibling (const struct die_reader_specs *reader,
8654 struct partial_die_info *orig_pdi,
8655 const gdb_byte *info_ptr)
8656 {
8657 /* Do we know the sibling already? */
8658
8659 if (orig_pdi->sibling)
8660 return orig_pdi->sibling;
8661
8662 /* Are there any children to deal with? */
8663
8664 if (!orig_pdi->has_children)
8665 return info_ptr;
8666
8667 /* Skip the children the long way. */
8668
8669 return skip_children (reader, info_ptr);
8670 }
8671
8672 /* Expand this partial symbol table into a full symbol table. SELF is
8673 not NULL. */
8674
8675 void
8676 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8677 {
8678 struct dwarf2_per_objfile *dwarf2_per_objfile
8679 = get_dwarf2_per_objfile (objfile);
8680
8681 gdb_assert (!readin);
8682 /* If this psymtab is constructed from a debug-only objfile, the
8683 has_section_at_zero flag will not necessarily be correct. We
8684 can get the correct value for this flag by looking at the data
8685 associated with the (presumably stripped) associated objfile. */
8686 if (objfile->separate_debug_objfile_backlink)
8687 {
8688 struct dwarf2_per_objfile *dpo_backlink
8689 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8690
8691 dwarf2_per_objfile->has_section_at_zero
8692 = dpo_backlink->has_section_at_zero;
8693 }
8694
8695 dwarf2_per_objfile->reading_partial_symbols = 0;
8696
8697 expand_psymtab (objfile);
8698
8699 process_cu_includes (dwarf2_per_objfile);
8700 }
8701 \f
8702 /* Reading in full CUs. */
8703
8704 /* Add PER_CU to the queue. */
8705
8706 static void
8707 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8708 enum language pretend_language)
8709 {
8710 per_cu->queued = 1;
8711 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8712 }
8713
8714 /* If PER_CU is not yet queued, add it to the queue.
8715 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8716 dependency.
8717 The result is non-zero if PER_CU was queued, otherwise the result is zero
8718 meaning either PER_CU is already queued or it is already loaded.
8719
8720 N.B. There is an invariant here that if a CU is queued then it is loaded.
8721 The caller is required to load PER_CU if we return non-zero. */
8722
8723 static int
8724 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8725 struct dwarf2_per_cu_data *per_cu,
8726 enum language pretend_language)
8727 {
8728 /* We may arrive here during partial symbol reading, if we need full
8729 DIEs to process an unusual case (e.g. template arguments). Do
8730 not queue PER_CU, just tell our caller to load its DIEs. */
8731 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8732 {
8733 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8734 return 1;
8735 return 0;
8736 }
8737
8738 /* Mark the dependence relation so that we don't flush PER_CU
8739 too early. */
8740 if (dependent_cu != NULL)
8741 dwarf2_add_dependence (dependent_cu, per_cu);
8742
8743 /* If it's already on the queue, we have nothing to do. */
8744 if (per_cu->queued)
8745 return 0;
8746
8747 /* If the compilation unit is already loaded, just mark it as
8748 used. */
8749 if (per_cu->cu != NULL)
8750 {
8751 per_cu->cu->last_used = 0;
8752 return 0;
8753 }
8754
8755 /* Add it to the queue. */
8756 queue_comp_unit (per_cu, pretend_language);
8757
8758 return 1;
8759 }
8760
8761 /* Process the queue. */
8762
8763 static void
8764 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8765 {
8766 if (dwarf_read_debug)
8767 {
8768 fprintf_unfiltered (gdb_stdlog,
8769 "Expanding one or more symtabs of objfile %s ...\n",
8770 objfile_name (dwarf2_per_objfile->objfile));
8771 }
8772
8773 /* The queue starts out with one item, but following a DIE reference
8774 may load a new CU, adding it to the end of the queue. */
8775 while (!dwarf2_per_objfile->queue.empty ())
8776 {
8777 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8778
8779 if ((dwarf2_per_objfile->using_index
8780 ? !item.per_cu->v.quick->compunit_symtab
8781 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8782 /* Skip dummy CUs. */
8783 && item.per_cu->cu != NULL)
8784 {
8785 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8786 unsigned int debug_print_threshold;
8787 char buf[100];
8788
8789 if (per_cu->is_debug_types)
8790 {
8791 struct signatured_type *sig_type =
8792 (struct signatured_type *) per_cu;
8793
8794 sprintf (buf, "TU %s at offset %s",
8795 hex_string (sig_type->signature),
8796 sect_offset_str (per_cu->sect_off));
8797 /* There can be 100s of TUs.
8798 Only print them in verbose mode. */
8799 debug_print_threshold = 2;
8800 }
8801 else
8802 {
8803 sprintf (buf, "CU at offset %s",
8804 sect_offset_str (per_cu->sect_off));
8805 debug_print_threshold = 1;
8806 }
8807
8808 if (dwarf_read_debug >= debug_print_threshold)
8809 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8810
8811 if (per_cu->is_debug_types)
8812 process_full_type_unit (per_cu, item.pretend_language);
8813 else
8814 process_full_comp_unit (per_cu, item.pretend_language);
8815
8816 if (dwarf_read_debug >= debug_print_threshold)
8817 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8818 }
8819
8820 item.per_cu->queued = 0;
8821 dwarf2_per_objfile->queue.pop ();
8822 }
8823
8824 if (dwarf_read_debug)
8825 {
8826 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8827 objfile_name (dwarf2_per_objfile->objfile));
8828 }
8829 }
8830
8831 /* Read in full symbols for PST, and anything it depends on. */
8832
8833 void
8834 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8835 {
8836 struct dwarf2_per_cu_data *per_cu;
8837
8838 if (readin)
8839 return;
8840
8841 read_dependencies (objfile);
8842
8843 per_cu = per_cu_data;
8844
8845 if (per_cu == NULL)
8846 {
8847 /* It's an include file, no symbols to read for it.
8848 Everything is in the parent symtab. */
8849 readin = true;
8850 return;
8851 }
8852
8853 dw2_do_instantiate_symtab (per_cu, false);
8854 }
8855
8856 /* Trivial hash function for die_info: the hash value of a DIE
8857 is its offset in .debug_info for this objfile. */
8858
8859 static hashval_t
8860 die_hash (const void *item)
8861 {
8862 const struct die_info *die = (const struct die_info *) item;
8863
8864 return to_underlying (die->sect_off);
8865 }
8866
8867 /* Trivial comparison function for die_info structures: two DIEs
8868 are equal if they have the same offset. */
8869
8870 static int
8871 die_eq (const void *item_lhs, const void *item_rhs)
8872 {
8873 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8874 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8875
8876 return die_lhs->sect_off == die_rhs->sect_off;
8877 }
8878
8879 /* Load the DIEs associated with PER_CU into memory. */
8880
8881 static void
8882 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8883 bool skip_partial,
8884 enum language pretend_language)
8885 {
8886 gdb_assert (! this_cu->is_debug_types);
8887
8888 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8889 if (reader.dummy_p)
8890 return;
8891
8892 struct dwarf2_cu *cu = reader.cu;
8893 const gdb_byte *info_ptr = reader.info_ptr;
8894
8895 gdb_assert (cu->die_hash == NULL);
8896 cu->die_hash =
8897 htab_create_alloc_ex (cu->header.length / 12,
8898 die_hash,
8899 die_eq,
8900 NULL,
8901 &cu->comp_unit_obstack,
8902 hashtab_obstack_allocate,
8903 dummy_obstack_deallocate);
8904
8905 if (reader.comp_unit_die->has_children)
8906 reader.comp_unit_die->child
8907 = read_die_and_siblings (&reader, reader.info_ptr,
8908 &info_ptr, reader.comp_unit_die);
8909 cu->dies = reader.comp_unit_die;
8910 /* comp_unit_die is not stored in die_hash, no need. */
8911
8912 /* We try not to read any attributes in this function, because not
8913 all CUs needed for references have been loaded yet, and symbol
8914 table processing isn't initialized. But we have to set the CU language,
8915 or we won't be able to build types correctly.
8916 Similarly, if we do not read the producer, we can not apply
8917 producer-specific interpretation. */
8918 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8919
8920 reader.keep ();
8921 }
8922
8923 /* Add a DIE to the delayed physname list. */
8924
8925 static void
8926 add_to_method_list (struct type *type, int fnfield_index, int index,
8927 const char *name, struct die_info *die,
8928 struct dwarf2_cu *cu)
8929 {
8930 struct delayed_method_info mi;
8931 mi.type = type;
8932 mi.fnfield_index = fnfield_index;
8933 mi.index = index;
8934 mi.name = name;
8935 mi.die = die;
8936 cu->method_list.push_back (mi);
8937 }
8938
8939 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8940 "const" / "volatile". If so, decrements LEN by the length of the
8941 modifier and return true. Otherwise return false. */
8942
8943 template<size_t N>
8944 static bool
8945 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8946 {
8947 size_t mod_len = sizeof (mod) - 1;
8948 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8949 {
8950 len -= mod_len;
8951 return true;
8952 }
8953 return false;
8954 }
8955
8956 /* Compute the physnames of any methods on the CU's method list.
8957
8958 The computation of method physnames is delayed in order to avoid the
8959 (bad) condition that one of the method's formal parameters is of an as yet
8960 incomplete type. */
8961
8962 static void
8963 compute_delayed_physnames (struct dwarf2_cu *cu)
8964 {
8965 /* Only C++ delays computing physnames. */
8966 if (cu->method_list.empty ())
8967 return;
8968 gdb_assert (cu->language == language_cplus);
8969
8970 for (const delayed_method_info &mi : cu->method_list)
8971 {
8972 const char *physname;
8973 struct fn_fieldlist *fn_flp
8974 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
8975 physname = dwarf2_physname (mi.name, mi.die, cu);
8976 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
8977 = physname ? physname : "";
8978
8979 /* Since there's no tag to indicate whether a method is a
8980 const/volatile overload, extract that information out of the
8981 demangled name. */
8982 if (physname != NULL)
8983 {
8984 size_t len = strlen (physname);
8985
8986 while (1)
8987 {
8988 if (physname[len] == ')') /* shortcut */
8989 break;
8990 else if (check_modifier (physname, len, " const"))
8991 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
8992 else if (check_modifier (physname, len, " volatile"))
8993 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
8994 else
8995 break;
8996 }
8997 }
8998 }
8999
9000 /* The list is no longer needed. */
9001 cu->method_list.clear ();
9002 }
9003
9004 /* Go objects should be embedded in a DW_TAG_module DIE,
9005 and it's not clear if/how imported objects will appear.
9006 To keep Go support simple until that's worked out,
9007 go back through what we've read and create something usable.
9008 We could do this while processing each DIE, and feels kinda cleaner,
9009 but that way is more invasive.
9010 This is to, for example, allow the user to type "p var" or "b main"
9011 without having to specify the package name, and allow lookups
9012 of module.object to work in contexts that use the expression
9013 parser. */
9014
9015 static void
9016 fixup_go_packaging (struct dwarf2_cu *cu)
9017 {
9018 gdb::unique_xmalloc_ptr<char> package_name;
9019 struct pending *list;
9020 int i;
9021
9022 for (list = *cu->get_builder ()->get_global_symbols ();
9023 list != NULL;
9024 list = list->next)
9025 {
9026 for (i = 0; i < list->nsyms; ++i)
9027 {
9028 struct symbol *sym = list->symbol[i];
9029
9030 if (sym->language () == language_go
9031 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9032 {
9033 gdb::unique_xmalloc_ptr<char> this_package_name
9034 (go_symbol_package_name (sym));
9035
9036 if (this_package_name == NULL)
9037 continue;
9038 if (package_name == NULL)
9039 package_name = std::move (this_package_name);
9040 else
9041 {
9042 struct objfile *objfile
9043 = cu->per_cu->dwarf2_per_objfile->objfile;
9044 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9045 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9046 (symbol_symtab (sym) != NULL
9047 ? symtab_to_filename_for_display
9048 (symbol_symtab (sym))
9049 : objfile_name (objfile)),
9050 this_package_name.get (), package_name.get ());
9051 }
9052 }
9053 }
9054 }
9055
9056 if (package_name != NULL)
9057 {
9058 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9059 const char *saved_package_name
9060 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9061 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9062 saved_package_name);
9063 struct symbol *sym;
9064
9065 sym = allocate_symbol (objfile);
9066 sym->set_language (language_go, &objfile->objfile_obstack);
9067 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9068 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9069 e.g., "main" finds the "main" module and not C's main(). */
9070 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9071 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9072 SYMBOL_TYPE (sym) = type;
9073
9074 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9075 }
9076 }
9077
9078 /* Allocate a fully-qualified name consisting of the two parts on the
9079 obstack. */
9080
9081 static const char *
9082 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9083 {
9084 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9085 }
9086
9087 /* A helper that allocates a struct discriminant_info to attach to a
9088 union type. */
9089
9090 static struct discriminant_info *
9091 alloc_discriminant_info (struct type *type, int discriminant_index,
9092 int default_index)
9093 {
9094 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9095 gdb_assert (discriminant_index == -1
9096 || (discriminant_index >= 0
9097 && discriminant_index < TYPE_NFIELDS (type)));
9098 gdb_assert (default_index == -1
9099 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9100
9101 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9102
9103 struct discriminant_info *disc
9104 = ((struct discriminant_info *)
9105 TYPE_ZALLOC (type,
9106 offsetof (struct discriminant_info, discriminants)
9107 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9108 disc->default_index = default_index;
9109 disc->discriminant_index = discriminant_index;
9110
9111 struct dynamic_prop prop;
9112 prop.kind = PROP_UNDEFINED;
9113 prop.data.baton = disc;
9114
9115 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9116
9117 return disc;
9118 }
9119
9120 /* Some versions of rustc emitted enums in an unusual way.
9121
9122 Ordinary enums were emitted as unions. The first element of each
9123 structure in the union was named "RUST$ENUM$DISR". This element
9124 held the discriminant.
9125
9126 These versions of Rust also implemented the "non-zero"
9127 optimization. When the enum had two values, and one is empty and
9128 the other holds a pointer that cannot be zero, the pointer is used
9129 as the discriminant, with a zero value meaning the empty variant.
9130 Here, the union's first member is of the form
9131 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9132 where the fieldnos are the indices of the fields that should be
9133 traversed in order to find the field (which may be several fields deep)
9134 and the variantname is the name of the variant of the case when the
9135 field is zero.
9136
9137 This function recognizes whether TYPE is of one of these forms,
9138 and, if so, smashes it to be a variant type. */
9139
9140 static void
9141 quirk_rust_enum (struct type *type, struct objfile *objfile)
9142 {
9143 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9144
9145 /* We don't need to deal with empty enums. */
9146 if (TYPE_NFIELDS (type) == 0)
9147 return;
9148
9149 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9150 if (TYPE_NFIELDS (type) == 1
9151 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9152 {
9153 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9154
9155 /* Decode the field name to find the offset of the
9156 discriminant. */
9157 ULONGEST bit_offset = 0;
9158 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9159 while (name[0] >= '0' && name[0] <= '9')
9160 {
9161 char *tail;
9162 unsigned long index = strtoul (name, &tail, 10);
9163 name = tail;
9164 if (*name != '$'
9165 || index >= TYPE_NFIELDS (field_type)
9166 || (TYPE_FIELD_LOC_KIND (field_type, index)
9167 != FIELD_LOC_KIND_BITPOS))
9168 {
9169 complaint (_("Could not parse Rust enum encoding string \"%s\""
9170 "[in module %s]"),
9171 TYPE_FIELD_NAME (type, 0),
9172 objfile_name (objfile));
9173 return;
9174 }
9175 ++name;
9176
9177 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9178 field_type = TYPE_FIELD_TYPE (field_type, index);
9179 }
9180
9181 /* Make a union to hold the variants. */
9182 struct type *union_type = alloc_type (objfile);
9183 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9184 TYPE_NFIELDS (union_type) = 3;
9185 TYPE_FIELDS (union_type)
9186 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9187 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9188 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9189
9190 /* Put the discriminant must at index 0. */
9191 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9192 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9193 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9194 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9195
9196 /* The order of fields doesn't really matter, so put the real
9197 field at index 1 and the data-less field at index 2. */
9198 struct discriminant_info *disc
9199 = alloc_discriminant_info (union_type, 0, 1);
9200 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9201 TYPE_FIELD_NAME (union_type, 1)
9202 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9203 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9204 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9205 TYPE_FIELD_NAME (union_type, 1));
9206
9207 const char *dataless_name
9208 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9209 name);
9210 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9211 dataless_name);
9212 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9213 /* NAME points into the original discriminant name, which
9214 already has the correct lifetime. */
9215 TYPE_FIELD_NAME (union_type, 2) = name;
9216 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9217 disc->discriminants[2] = 0;
9218
9219 /* Smash this type to be a structure type. We have to do this
9220 because the type has already been recorded. */
9221 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9222 TYPE_NFIELDS (type) = 1;
9223 TYPE_FIELDS (type)
9224 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9225
9226 /* Install the variant part. */
9227 TYPE_FIELD_TYPE (type, 0) = union_type;
9228 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9229 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9230 }
9231 /* A union with a single anonymous field is probably an old-style
9232 univariant enum. */
9233 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9234 {
9235 /* Smash this type to be a structure type. We have to do this
9236 because the type has already been recorded. */
9237 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9238
9239 /* Make a union to hold the variants. */
9240 struct type *union_type = alloc_type (objfile);
9241 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9242 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9243 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9244 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9245 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9246
9247 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9248 const char *variant_name
9249 = rust_last_path_segment (TYPE_NAME (field_type));
9250 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9251 TYPE_NAME (field_type)
9252 = rust_fully_qualify (&objfile->objfile_obstack,
9253 TYPE_NAME (type), variant_name);
9254
9255 /* Install the union in the outer struct type. */
9256 TYPE_NFIELDS (type) = 1;
9257 TYPE_FIELDS (type)
9258 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9259 TYPE_FIELD_TYPE (type, 0) = union_type;
9260 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9261 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9262
9263 alloc_discriminant_info (union_type, -1, 0);
9264 }
9265 else
9266 {
9267 struct type *disr_type = nullptr;
9268 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9269 {
9270 disr_type = TYPE_FIELD_TYPE (type, i);
9271
9272 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9273 {
9274 /* All fields of a true enum will be structs. */
9275 return;
9276 }
9277 else if (TYPE_NFIELDS (disr_type) == 0)
9278 {
9279 /* Could be data-less variant, so keep going. */
9280 disr_type = nullptr;
9281 }
9282 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9283 "RUST$ENUM$DISR") != 0)
9284 {
9285 /* Not a Rust enum. */
9286 return;
9287 }
9288 else
9289 {
9290 /* Found one. */
9291 break;
9292 }
9293 }
9294
9295 /* If we got here without a discriminant, then it's probably
9296 just a union. */
9297 if (disr_type == nullptr)
9298 return;
9299
9300 /* Smash this type to be a structure type. We have to do this
9301 because the type has already been recorded. */
9302 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9303
9304 /* Make a union to hold the variants. */
9305 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9306 struct type *union_type = alloc_type (objfile);
9307 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9308 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9309 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9310 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9311 TYPE_FIELDS (union_type)
9312 = (struct field *) TYPE_ZALLOC (union_type,
9313 (TYPE_NFIELDS (union_type)
9314 * sizeof (struct field)));
9315
9316 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9317 TYPE_NFIELDS (type) * sizeof (struct field));
9318
9319 /* Install the discriminant at index 0 in the union. */
9320 TYPE_FIELD (union_type, 0) = *disr_field;
9321 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9322 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9323
9324 /* Install the union in the outer struct type. */
9325 TYPE_FIELD_TYPE (type, 0) = union_type;
9326 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9327 TYPE_NFIELDS (type) = 1;
9328
9329 /* Set the size and offset of the union type. */
9330 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9331
9332 /* We need a way to find the correct discriminant given a
9333 variant name. For convenience we build a map here. */
9334 struct type *enum_type = FIELD_TYPE (*disr_field);
9335 std::unordered_map<std::string, ULONGEST> discriminant_map;
9336 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9337 {
9338 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9339 {
9340 const char *name
9341 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9342 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9343 }
9344 }
9345
9346 int n_fields = TYPE_NFIELDS (union_type);
9347 struct discriminant_info *disc
9348 = alloc_discriminant_info (union_type, 0, -1);
9349 /* Skip the discriminant here. */
9350 for (int i = 1; i < n_fields; ++i)
9351 {
9352 /* Find the final word in the name of this variant's type.
9353 That name can be used to look up the correct
9354 discriminant. */
9355 const char *variant_name
9356 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9357 i)));
9358
9359 auto iter = discriminant_map.find (variant_name);
9360 if (iter != discriminant_map.end ())
9361 disc->discriminants[i] = iter->second;
9362
9363 /* Remove the discriminant field, if it exists. */
9364 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9365 if (TYPE_NFIELDS (sub_type) > 0)
9366 {
9367 --TYPE_NFIELDS (sub_type);
9368 ++TYPE_FIELDS (sub_type);
9369 }
9370 TYPE_FIELD_NAME (union_type, i) = variant_name;
9371 TYPE_NAME (sub_type)
9372 = rust_fully_qualify (&objfile->objfile_obstack,
9373 TYPE_NAME (type), variant_name);
9374 }
9375 }
9376 }
9377
9378 /* Rewrite some Rust unions to be structures with variants parts. */
9379
9380 static void
9381 rust_union_quirks (struct dwarf2_cu *cu)
9382 {
9383 gdb_assert (cu->language == language_rust);
9384 for (type *type_ : cu->rust_unions)
9385 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9386 /* We don't need this any more. */
9387 cu->rust_unions.clear ();
9388 }
9389
9390 /* Return the symtab for PER_CU. This works properly regardless of
9391 whether we're using the index or psymtabs. */
9392
9393 static struct compunit_symtab *
9394 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9395 {
9396 return (per_cu->dwarf2_per_objfile->using_index
9397 ? per_cu->v.quick->compunit_symtab
9398 : per_cu->v.psymtab->compunit_symtab);
9399 }
9400
9401 /* A helper function for computing the list of all symbol tables
9402 included by PER_CU. */
9403
9404 static void
9405 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9406 htab_t all_children, htab_t all_type_symtabs,
9407 struct dwarf2_per_cu_data *per_cu,
9408 struct compunit_symtab *immediate_parent)
9409 {
9410 void **slot;
9411 struct compunit_symtab *cust;
9412
9413 slot = htab_find_slot (all_children, per_cu, INSERT);
9414 if (*slot != NULL)
9415 {
9416 /* This inclusion and its children have been processed. */
9417 return;
9418 }
9419
9420 *slot = per_cu;
9421 /* Only add a CU if it has a symbol table. */
9422 cust = get_compunit_symtab (per_cu);
9423 if (cust != NULL)
9424 {
9425 /* If this is a type unit only add its symbol table if we haven't
9426 seen it yet (type unit per_cu's can share symtabs). */
9427 if (per_cu->is_debug_types)
9428 {
9429 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9430 if (*slot == NULL)
9431 {
9432 *slot = cust;
9433 result->push_back (cust);
9434 if (cust->user == NULL)
9435 cust->user = immediate_parent;
9436 }
9437 }
9438 else
9439 {
9440 result->push_back (cust);
9441 if (cust->user == NULL)
9442 cust->user = immediate_parent;
9443 }
9444 }
9445
9446 if (!per_cu->imported_symtabs_empty ())
9447 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9448 {
9449 recursively_compute_inclusions (result, all_children,
9450 all_type_symtabs, ptr, cust);
9451 }
9452 }
9453
9454 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9455 PER_CU. */
9456
9457 static void
9458 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9459 {
9460 gdb_assert (! per_cu->is_debug_types);
9461
9462 if (!per_cu->imported_symtabs_empty ())
9463 {
9464 int len;
9465 std::vector<compunit_symtab *> result_symtabs;
9466 htab_t all_children, all_type_symtabs;
9467 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9468
9469 /* If we don't have a symtab, we can just skip this case. */
9470 if (cust == NULL)
9471 return;
9472
9473 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9474 NULL, xcalloc, xfree);
9475 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9476 NULL, xcalloc, xfree);
9477
9478 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9479 {
9480 recursively_compute_inclusions (&result_symtabs, all_children,
9481 all_type_symtabs, ptr, cust);
9482 }
9483
9484 /* Now we have a transitive closure of all the included symtabs. */
9485 len = result_symtabs.size ();
9486 cust->includes
9487 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9488 struct compunit_symtab *, len + 1);
9489 memcpy (cust->includes, result_symtabs.data (),
9490 len * sizeof (compunit_symtab *));
9491 cust->includes[len] = NULL;
9492
9493 htab_delete (all_children);
9494 htab_delete (all_type_symtabs);
9495 }
9496 }
9497
9498 /* Compute the 'includes' field for the symtabs of all the CUs we just
9499 read. */
9500
9501 static void
9502 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9503 {
9504 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9505 {
9506 if (! iter->is_debug_types)
9507 compute_compunit_symtab_includes (iter);
9508 }
9509
9510 dwarf2_per_objfile->just_read_cus.clear ();
9511 }
9512
9513 /* Generate full symbol information for PER_CU, whose DIEs have
9514 already been loaded into memory. */
9515
9516 static void
9517 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9518 enum language pretend_language)
9519 {
9520 struct dwarf2_cu *cu = per_cu->cu;
9521 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9522 struct objfile *objfile = dwarf2_per_objfile->objfile;
9523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9524 CORE_ADDR lowpc, highpc;
9525 struct compunit_symtab *cust;
9526 CORE_ADDR baseaddr;
9527 struct block *static_block;
9528 CORE_ADDR addr;
9529
9530 baseaddr = objfile->text_section_offset ();
9531
9532 /* Clear the list here in case something was left over. */
9533 cu->method_list.clear ();
9534
9535 cu->language = pretend_language;
9536 cu->language_defn = language_def (cu->language);
9537
9538 /* Do line number decoding in read_file_scope () */
9539 process_die (cu->dies, cu);
9540
9541 /* For now fudge the Go package. */
9542 if (cu->language == language_go)
9543 fixup_go_packaging (cu);
9544
9545 /* Now that we have processed all the DIEs in the CU, all the types
9546 should be complete, and it should now be safe to compute all of the
9547 physnames. */
9548 compute_delayed_physnames (cu);
9549
9550 if (cu->language == language_rust)
9551 rust_union_quirks (cu);
9552
9553 /* Some compilers don't define a DW_AT_high_pc attribute for the
9554 compilation unit. If the DW_AT_high_pc is missing, synthesize
9555 it, by scanning the DIE's below the compilation unit. */
9556 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9557
9558 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9559 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9560
9561 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9562 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9563 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9564 addrmap to help ensure it has an accurate map of pc values belonging to
9565 this comp unit. */
9566 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9567
9568 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9569 SECT_OFF_TEXT (objfile),
9570 0);
9571
9572 if (cust != NULL)
9573 {
9574 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9575
9576 /* Set symtab language to language from DW_AT_language. If the
9577 compilation is from a C file generated by language preprocessors, do
9578 not set the language if it was already deduced by start_subfile. */
9579 if (!(cu->language == language_c
9580 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9581 COMPUNIT_FILETABS (cust)->language = cu->language;
9582
9583 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9584 produce DW_AT_location with location lists but it can be possibly
9585 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9586 there were bugs in prologue debug info, fixed later in GCC-4.5
9587 by "unwind info for epilogues" patch (which is not directly related).
9588
9589 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9590 needed, it would be wrong due to missing DW_AT_producer there.
9591
9592 Still one can confuse GDB by using non-standard GCC compilation
9593 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9594 */
9595 if (cu->has_loclist && gcc_4_minor >= 5)
9596 cust->locations_valid = 1;
9597
9598 if (gcc_4_minor >= 5)
9599 cust->epilogue_unwind_valid = 1;
9600
9601 cust->call_site_htab = cu->call_site_htab;
9602 }
9603
9604 if (dwarf2_per_objfile->using_index)
9605 per_cu->v.quick->compunit_symtab = cust;
9606 else
9607 {
9608 dwarf2_psymtab *pst = per_cu->v.psymtab;
9609 pst->compunit_symtab = cust;
9610 pst->readin = true;
9611 }
9612
9613 /* Push it for inclusion processing later. */
9614 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9615
9616 /* Not needed any more. */
9617 cu->reset_builder ();
9618 }
9619
9620 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9621 already been loaded into memory. */
9622
9623 static void
9624 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9625 enum language pretend_language)
9626 {
9627 struct dwarf2_cu *cu = per_cu->cu;
9628 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9629 struct objfile *objfile = dwarf2_per_objfile->objfile;
9630 struct compunit_symtab *cust;
9631 struct signatured_type *sig_type;
9632
9633 gdb_assert (per_cu->is_debug_types);
9634 sig_type = (struct signatured_type *) per_cu;
9635
9636 /* Clear the list here in case something was left over. */
9637 cu->method_list.clear ();
9638
9639 cu->language = pretend_language;
9640 cu->language_defn = language_def (cu->language);
9641
9642 /* The symbol tables are set up in read_type_unit_scope. */
9643 process_die (cu->dies, cu);
9644
9645 /* For now fudge the Go package. */
9646 if (cu->language == language_go)
9647 fixup_go_packaging (cu);
9648
9649 /* Now that we have processed all the DIEs in the CU, all the types
9650 should be complete, and it should now be safe to compute all of the
9651 physnames. */
9652 compute_delayed_physnames (cu);
9653
9654 if (cu->language == language_rust)
9655 rust_union_quirks (cu);
9656
9657 /* TUs share symbol tables.
9658 If this is the first TU to use this symtab, complete the construction
9659 of it with end_expandable_symtab. Otherwise, complete the addition of
9660 this TU's symbols to the existing symtab. */
9661 if (sig_type->type_unit_group->compunit_symtab == NULL)
9662 {
9663 buildsym_compunit *builder = cu->get_builder ();
9664 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9665 sig_type->type_unit_group->compunit_symtab = cust;
9666
9667 if (cust != NULL)
9668 {
9669 /* Set symtab language to language from DW_AT_language. If the
9670 compilation is from a C file generated by language preprocessors,
9671 do not set the language if it was already deduced by
9672 start_subfile. */
9673 if (!(cu->language == language_c
9674 && COMPUNIT_FILETABS (cust)->language != language_c))
9675 COMPUNIT_FILETABS (cust)->language = cu->language;
9676 }
9677 }
9678 else
9679 {
9680 cu->get_builder ()->augment_type_symtab ();
9681 cust = sig_type->type_unit_group->compunit_symtab;
9682 }
9683
9684 if (dwarf2_per_objfile->using_index)
9685 per_cu->v.quick->compunit_symtab = cust;
9686 else
9687 {
9688 dwarf2_psymtab *pst = per_cu->v.psymtab;
9689 pst->compunit_symtab = cust;
9690 pst->readin = true;
9691 }
9692
9693 /* Not needed any more. */
9694 cu->reset_builder ();
9695 }
9696
9697 /* Process an imported unit DIE. */
9698
9699 static void
9700 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9701 {
9702 struct attribute *attr;
9703
9704 /* For now we don't handle imported units in type units. */
9705 if (cu->per_cu->is_debug_types)
9706 {
9707 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9708 " supported in type units [in module %s]"),
9709 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9710 }
9711
9712 attr = dwarf2_attr (die, DW_AT_import, cu);
9713 if (attr != NULL)
9714 {
9715 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9716 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9717 dwarf2_per_cu_data *per_cu
9718 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9719 cu->per_cu->dwarf2_per_objfile);
9720
9721 /* If necessary, add it to the queue and load its DIEs. */
9722 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9723 load_full_comp_unit (per_cu, false, cu->language);
9724
9725 cu->per_cu->imported_symtabs_push (per_cu);
9726 }
9727 }
9728
9729 /* RAII object that represents a process_die scope: i.e.,
9730 starts/finishes processing a DIE. */
9731 class process_die_scope
9732 {
9733 public:
9734 process_die_scope (die_info *die, dwarf2_cu *cu)
9735 : m_die (die), m_cu (cu)
9736 {
9737 /* We should only be processing DIEs not already in process. */
9738 gdb_assert (!m_die->in_process);
9739 m_die->in_process = true;
9740 }
9741
9742 ~process_die_scope ()
9743 {
9744 m_die->in_process = false;
9745
9746 /* If we're done processing the DIE for the CU that owns the line
9747 header, we don't need the line header anymore. */
9748 if (m_cu->line_header_die_owner == m_die)
9749 {
9750 delete m_cu->line_header;
9751 m_cu->line_header = NULL;
9752 m_cu->line_header_die_owner = NULL;
9753 }
9754 }
9755
9756 private:
9757 die_info *m_die;
9758 dwarf2_cu *m_cu;
9759 };
9760
9761 /* Process a die and its children. */
9762
9763 static void
9764 process_die (struct die_info *die, struct dwarf2_cu *cu)
9765 {
9766 process_die_scope scope (die, cu);
9767
9768 switch (die->tag)
9769 {
9770 case DW_TAG_padding:
9771 break;
9772 case DW_TAG_compile_unit:
9773 case DW_TAG_partial_unit:
9774 read_file_scope (die, cu);
9775 break;
9776 case DW_TAG_type_unit:
9777 read_type_unit_scope (die, cu);
9778 break;
9779 case DW_TAG_subprogram:
9780 /* Nested subprograms in Fortran get a prefix. */
9781 if (cu->language == language_fortran
9782 && die->parent != NULL
9783 && die->parent->tag == DW_TAG_subprogram)
9784 cu->processing_has_namespace_info = true;
9785 /* Fall through. */
9786 case DW_TAG_inlined_subroutine:
9787 read_func_scope (die, cu);
9788 break;
9789 case DW_TAG_lexical_block:
9790 case DW_TAG_try_block:
9791 case DW_TAG_catch_block:
9792 read_lexical_block_scope (die, cu);
9793 break;
9794 case DW_TAG_call_site:
9795 case DW_TAG_GNU_call_site:
9796 read_call_site_scope (die, cu);
9797 break;
9798 case DW_TAG_class_type:
9799 case DW_TAG_interface_type:
9800 case DW_TAG_structure_type:
9801 case DW_TAG_union_type:
9802 process_structure_scope (die, cu);
9803 break;
9804 case DW_TAG_enumeration_type:
9805 process_enumeration_scope (die, cu);
9806 break;
9807
9808 /* These dies have a type, but processing them does not create
9809 a symbol or recurse to process the children. Therefore we can
9810 read them on-demand through read_type_die. */
9811 case DW_TAG_subroutine_type:
9812 case DW_TAG_set_type:
9813 case DW_TAG_array_type:
9814 case DW_TAG_pointer_type:
9815 case DW_TAG_ptr_to_member_type:
9816 case DW_TAG_reference_type:
9817 case DW_TAG_rvalue_reference_type:
9818 case DW_TAG_string_type:
9819 break;
9820
9821 case DW_TAG_base_type:
9822 case DW_TAG_subrange_type:
9823 case DW_TAG_typedef:
9824 /* Add a typedef symbol for the type definition, if it has a
9825 DW_AT_name. */
9826 new_symbol (die, read_type_die (die, cu), cu);
9827 break;
9828 case DW_TAG_common_block:
9829 read_common_block (die, cu);
9830 break;
9831 case DW_TAG_common_inclusion:
9832 break;
9833 case DW_TAG_namespace:
9834 cu->processing_has_namespace_info = true;
9835 read_namespace (die, cu);
9836 break;
9837 case DW_TAG_module:
9838 cu->processing_has_namespace_info = true;
9839 read_module (die, cu);
9840 break;
9841 case DW_TAG_imported_declaration:
9842 cu->processing_has_namespace_info = true;
9843 if (read_namespace_alias (die, cu))
9844 break;
9845 /* The declaration is not a global namespace alias. */
9846 /* Fall through. */
9847 case DW_TAG_imported_module:
9848 cu->processing_has_namespace_info = true;
9849 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9850 || cu->language != language_fortran))
9851 complaint (_("Tag '%s' has unexpected children"),
9852 dwarf_tag_name (die->tag));
9853 read_import_statement (die, cu);
9854 break;
9855
9856 case DW_TAG_imported_unit:
9857 process_imported_unit_die (die, cu);
9858 break;
9859
9860 case DW_TAG_variable:
9861 read_variable (die, cu);
9862 break;
9863
9864 default:
9865 new_symbol (die, NULL, cu);
9866 break;
9867 }
9868 }
9869 \f
9870 /* DWARF name computation. */
9871
9872 /* A helper function for dwarf2_compute_name which determines whether DIE
9873 needs to have the name of the scope prepended to the name listed in the
9874 die. */
9875
9876 static int
9877 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9878 {
9879 struct attribute *attr;
9880
9881 switch (die->tag)
9882 {
9883 case DW_TAG_namespace:
9884 case DW_TAG_typedef:
9885 case DW_TAG_class_type:
9886 case DW_TAG_interface_type:
9887 case DW_TAG_structure_type:
9888 case DW_TAG_union_type:
9889 case DW_TAG_enumeration_type:
9890 case DW_TAG_enumerator:
9891 case DW_TAG_subprogram:
9892 case DW_TAG_inlined_subroutine:
9893 case DW_TAG_member:
9894 case DW_TAG_imported_declaration:
9895 return 1;
9896
9897 case DW_TAG_variable:
9898 case DW_TAG_constant:
9899 /* We only need to prefix "globally" visible variables. These include
9900 any variable marked with DW_AT_external or any variable that
9901 lives in a namespace. [Variables in anonymous namespaces
9902 require prefixing, but they are not DW_AT_external.] */
9903
9904 if (dwarf2_attr (die, DW_AT_specification, cu))
9905 {
9906 struct dwarf2_cu *spec_cu = cu;
9907
9908 return die_needs_namespace (die_specification (die, &spec_cu),
9909 spec_cu);
9910 }
9911
9912 attr = dwarf2_attr (die, DW_AT_external, cu);
9913 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9914 && die->parent->tag != DW_TAG_module)
9915 return 0;
9916 /* A variable in a lexical block of some kind does not need a
9917 namespace, even though in C++ such variables may be external
9918 and have a mangled name. */
9919 if (die->parent->tag == DW_TAG_lexical_block
9920 || die->parent->tag == DW_TAG_try_block
9921 || die->parent->tag == DW_TAG_catch_block
9922 || die->parent->tag == DW_TAG_subprogram)
9923 return 0;
9924 return 1;
9925
9926 default:
9927 return 0;
9928 }
9929 }
9930
9931 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9932 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9933 defined for the given DIE. */
9934
9935 static struct attribute *
9936 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9937 {
9938 struct attribute *attr;
9939
9940 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9941 if (attr == NULL)
9942 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9943
9944 return attr;
9945 }
9946
9947 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9948 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9949 defined for the given DIE. */
9950
9951 static const char *
9952 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9953 {
9954 const char *linkage_name;
9955
9956 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9957 if (linkage_name == NULL)
9958 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9959
9960 return linkage_name;
9961 }
9962
9963 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9964 compute the physname for the object, which include a method's:
9965 - formal parameters (C++),
9966 - receiver type (Go),
9967
9968 The term "physname" is a bit confusing.
9969 For C++, for example, it is the demangled name.
9970 For Go, for example, it's the mangled name.
9971
9972 For Ada, return the DIE's linkage name rather than the fully qualified
9973 name. PHYSNAME is ignored..
9974
9975 The result is allocated on the objfile_obstack and canonicalized. */
9976
9977 static const char *
9978 dwarf2_compute_name (const char *name,
9979 struct die_info *die, struct dwarf2_cu *cu,
9980 int physname)
9981 {
9982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9983
9984 if (name == NULL)
9985 name = dwarf2_name (die, cu);
9986
9987 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9988 but otherwise compute it by typename_concat inside GDB.
9989 FIXME: Actually this is not really true, or at least not always true.
9990 It's all very confusing. compute_and_set_names doesn't try to demangle
9991 Fortran names because there is no mangling standard. So new_symbol
9992 will set the demangled name to the result of dwarf2_full_name, and it is
9993 the demangled name that GDB uses if it exists. */
9994 if (cu->language == language_ada
9995 || (cu->language == language_fortran && physname))
9996 {
9997 /* For Ada unit, we prefer the linkage name over the name, as
9998 the former contains the exported name, which the user expects
9999 to be able to reference. Ideally, we want the user to be able
10000 to reference this entity using either natural or linkage name,
10001 but we haven't started looking at this enhancement yet. */
10002 const char *linkage_name = dw2_linkage_name (die, cu);
10003
10004 if (linkage_name != NULL)
10005 return linkage_name;
10006 }
10007
10008 /* These are the only languages we know how to qualify names in. */
10009 if (name != NULL
10010 && (cu->language == language_cplus
10011 || cu->language == language_fortran || cu->language == language_d
10012 || cu->language == language_rust))
10013 {
10014 if (die_needs_namespace (die, cu))
10015 {
10016 const char *prefix;
10017 const char *canonical_name = NULL;
10018
10019 string_file buf;
10020
10021 prefix = determine_prefix (die, cu);
10022 if (*prefix != '\0')
10023 {
10024 gdb::unique_xmalloc_ptr<char> prefixed_name
10025 (typename_concat (NULL, prefix, name, physname, cu));
10026
10027 buf.puts (prefixed_name.get ());
10028 }
10029 else
10030 buf.puts (name);
10031
10032 /* Template parameters may be specified in the DIE's DW_AT_name, or
10033 as children with DW_TAG_template_type_param or
10034 DW_TAG_value_type_param. If the latter, add them to the name
10035 here. If the name already has template parameters, then
10036 skip this step; some versions of GCC emit both, and
10037 it is more efficient to use the pre-computed name.
10038
10039 Something to keep in mind about this process: it is very
10040 unlikely, or in some cases downright impossible, to produce
10041 something that will match the mangled name of a function.
10042 If the definition of the function has the same debug info,
10043 we should be able to match up with it anyway. But fallbacks
10044 using the minimal symbol, for instance to find a method
10045 implemented in a stripped copy of libstdc++, will not work.
10046 If we do not have debug info for the definition, we will have to
10047 match them up some other way.
10048
10049 When we do name matching there is a related problem with function
10050 templates; two instantiated function templates are allowed to
10051 differ only by their return types, which we do not add here. */
10052
10053 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10054 {
10055 struct attribute *attr;
10056 struct die_info *child;
10057 int first = 1;
10058
10059 die->building_fullname = 1;
10060
10061 for (child = die->child; child != NULL; child = child->sibling)
10062 {
10063 struct type *type;
10064 LONGEST value;
10065 const gdb_byte *bytes;
10066 struct dwarf2_locexpr_baton *baton;
10067 struct value *v;
10068
10069 if (child->tag != DW_TAG_template_type_param
10070 && child->tag != DW_TAG_template_value_param)
10071 continue;
10072
10073 if (first)
10074 {
10075 buf.puts ("<");
10076 first = 0;
10077 }
10078 else
10079 buf.puts (", ");
10080
10081 attr = dwarf2_attr (child, DW_AT_type, cu);
10082 if (attr == NULL)
10083 {
10084 complaint (_("template parameter missing DW_AT_type"));
10085 buf.puts ("UNKNOWN_TYPE");
10086 continue;
10087 }
10088 type = die_type (child, cu);
10089
10090 if (child->tag == DW_TAG_template_type_param)
10091 {
10092 c_print_type (type, "", &buf, -1, 0, cu->language,
10093 &type_print_raw_options);
10094 continue;
10095 }
10096
10097 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10098 if (attr == NULL)
10099 {
10100 complaint (_("template parameter missing "
10101 "DW_AT_const_value"));
10102 buf.puts ("UNKNOWN_VALUE");
10103 continue;
10104 }
10105
10106 dwarf2_const_value_attr (attr, type, name,
10107 &cu->comp_unit_obstack, cu,
10108 &value, &bytes, &baton);
10109
10110 if (TYPE_NOSIGN (type))
10111 /* GDB prints characters as NUMBER 'CHAR'. If that's
10112 changed, this can use value_print instead. */
10113 c_printchar (value, type, &buf);
10114 else
10115 {
10116 struct value_print_options opts;
10117
10118 if (baton != NULL)
10119 v = dwarf2_evaluate_loc_desc (type, NULL,
10120 baton->data,
10121 baton->size,
10122 baton->per_cu);
10123 else if (bytes != NULL)
10124 {
10125 v = allocate_value (type);
10126 memcpy (value_contents_writeable (v), bytes,
10127 TYPE_LENGTH (type));
10128 }
10129 else
10130 v = value_from_longest (type, value);
10131
10132 /* Specify decimal so that we do not depend on
10133 the radix. */
10134 get_formatted_print_options (&opts, 'd');
10135 opts.raw = 1;
10136 value_print (v, &buf, &opts);
10137 release_value (v);
10138 }
10139 }
10140
10141 die->building_fullname = 0;
10142
10143 if (!first)
10144 {
10145 /* Close the argument list, with a space if necessary
10146 (nested templates). */
10147 if (!buf.empty () && buf.string ().back () == '>')
10148 buf.puts (" >");
10149 else
10150 buf.puts (">");
10151 }
10152 }
10153
10154 /* For C++ methods, append formal parameter type
10155 information, if PHYSNAME. */
10156
10157 if (physname && die->tag == DW_TAG_subprogram
10158 && cu->language == language_cplus)
10159 {
10160 struct type *type = read_type_die (die, cu);
10161
10162 c_type_print_args (type, &buf, 1, cu->language,
10163 &type_print_raw_options);
10164
10165 if (cu->language == language_cplus)
10166 {
10167 /* Assume that an artificial first parameter is
10168 "this", but do not crash if it is not. RealView
10169 marks unnamed (and thus unused) parameters as
10170 artificial; there is no way to differentiate
10171 the two cases. */
10172 if (TYPE_NFIELDS (type) > 0
10173 && TYPE_FIELD_ARTIFICIAL (type, 0)
10174 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10175 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10176 0))))
10177 buf.puts (" const");
10178 }
10179 }
10180
10181 const std::string &intermediate_name = buf.string ();
10182
10183 if (cu->language == language_cplus)
10184 canonical_name
10185 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10186 &objfile->per_bfd->storage_obstack);
10187
10188 /* If we only computed INTERMEDIATE_NAME, or if
10189 INTERMEDIATE_NAME is already canonical, then we need to
10190 copy it to the appropriate obstack. */
10191 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10192 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10193 intermediate_name);
10194 else
10195 name = canonical_name;
10196 }
10197 }
10198
10199 return name;
10200 }
10201
10202 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10203 If scope qualifiers are appropriate they will be added. The result
10204 will be allocated on the storage_obstack, or NULL if the DIE does
10205 not have a name. NAME may either be from a previous call to
10206 dwarf2_name or NULL.
10207
10208 The output string will be canonicalized (if C++). */
10209
10210 static const char *
10211 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10212 {
10213 return dwarf2_compute_name (name, die, cu, 0);
10214 }
10215
10216 /* Construct a physname for the given DIE in CU. NAME may either be
10217 from a previous call to dwarf2_name or NULL. The result will be
10218 allocated on the objfile_objstack or NULL if the DIE does not have a
10219 name.
10220
10221 The output string will be canonicalized (if C++). */
10222
10223 static const char *
10224 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10225 {
10226 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10227 const char *retval, *mangled = NULL, *canon = NULL;
10228 int need_copy = 1;
10229
10230 /* In this case dwarf2_compute_name is just a shortcut not building anything
10231 on its own. */
10232 if (!die_needs_namespace (die, cu))
10233 return dwarf2_compute_name (name, die, cu, 1);
10234
10235 mangled = dw2_linkage_name (die, cu);
10236
10237 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10238 See https://github.com/rust-lang/rust/issues/32925. */
10239 if (cu->language == language_rust && mangled != NULL
10240 && strchr (mangled, '{') != NULL)
10241 mangled = NULL;
10242
10243 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10244 has computed. */
10245 gdb::unique_xmalloc_ptr<char> demangled;
10246 if (mangled != NULL)
10247 {
10248
10249 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10250 {
10251 /* Do nothing (do not demangle the symbol name). */
10252 }
10253 else if (cu->language == language_go)
10254 {
10255 /* This is a lie, but we already lie to the caller new_symbol.
10256 new_symbol assumes we return the mangled name.
10257 This just undoes that lie until things are cleaned up. */
10258 }
10259 else
10260 {
10261 /* Use DMGL_RET_DROP for C++ template functions to suppress
10262 their return type. It is easier for GDB users to search
10263 for such functions as `name(params)' than `long name(params)'.
10264 In such case the minimal symbol names do not match the full
10265 symbol names but for template functions there is never a need
10266 to look up their definition from their declaration so
10267 the only disadvantage remains the minimal symbol variant
10268 `long name(params)' does not have the proper inferior type. */
10269 demangled.reset (gdb_demangle (mangled,
10270 (DMGL_PARAMS | DMGL_ANSI
10271 | DMGL_RET_DROP)));
10272 }
10273 if (demangled)
10274 canon = demangled.get ();
10275 else
10276 {
10277 canon = mangled;
10278 need_copy = 0;
10279 }
10280 }
10281
10282 if (canon == NULL || check_physname)
10283 {
10284 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10285
10286 if (canon != NULL && strcmp (physname, canon) != 0)
10287 {
10288 /* It may not mean a bug in GDB. The compiler could also
10289 compute DW_AT_linkage_name incorrectly. But in such case
10290 GDB would need to be bug-to-bug compatible. */
10291
10292 complaint (_("Computed physname <%s> does not match demangled <%s> "
10293 "(from linkage <%s>) - DIE at %s [in module %s]"),
10294 physname, canon, mangled, sect_offset_str (die->sect_off),
10295 objfile_name (objfile));
10296
10297 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10298 is available here - over computed PHYSNAME. It is safer
10299 against both buggy GDB and buggy compilers. */
10300
10301 retval = canon;
10302 }
10303 else
10304 {
10305 retval = physname;
10306 need_copy = 0;
10307 }
10308 }
10309 else
10310 retval = canon;
10311
10312 if (need_copy)
10313 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10314
10315 return retval;
10316 }
10317
10318 /* Inspect DIE in CU for a namespace alias. If one exists, record
10319 a new symbol for it.
10320
10321 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10322
10323 static int
10324 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10325 {
10326 struct attribute *attr;
10327
10328 /* If the die does not have a name, this is not a namespace
10329 alias. */
10330 attr = dwarf2_attr (die, DW_AT_name, cu);
10331 if (attr != NULL)
10332 {
10333 int num;
10334 struct die_info *d = die;
10335 struct dwarf2_cu *imported_cu = cu;
10336
10337 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10338 keep inspecting DIEs until we hit the underlying import. */
10339 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10340 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10341 {
10342 attr = dwarf2_attr (d, DW_AT_import, cu);
10343 if (attr == NULL)
10344 break;
10345
10346 d = follow_die_ref (d, attr, &imported_cu);
10347 if (d->tag != DW_TAG_imported_declaration)
10348 break;
10349 }
10350
10351 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10352 {
10353 complaint (_("DIE at %s has too many recursively imported "
10354 "declarations"), sect_offset_str (d->sect_off));
10355 return 0;
10356 }
10357
10358 if (attr != NULL)
10359 {
10360 struct type *type;
10361 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10362
10363 type = get_die_type_at_offset (sect_off, cu->per_cu);
10364 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10365 {
10366 /* This declaration is a global namespace alias. Add
10367 a symbol for it whose type is the aliased namespace. */
10368 new_symbol (die, type, cu);
10369 return 1;
10370 }
10371 }
10372 }
10373
10374 return 0;
10375 }
10376
10377 /* Return the using directives repository (global or local?) to use in the
10378 current context for CU.
10379
10380 For Ada, imported declarations can materialize renamings, which *may* be
10381 global. However it is impossible (for now?) in DWARF to distinguish
10382 "external" imported declarations and "static" ones. As all imported
10383 declarations seem to be static in all other languages, make them all CU-wide
10384 global only in Ada. */
10385
10386 static struct using_direct **
10387 using_directives (struct dwarf2_cu *cu)
10388 {
10389 if (cu->language == language_ada
10390 && cu->get_builder ()->outermost_context_p ())
10391 return cu->get_builder ()->get_global_using_directives ();
10392 else
10393 return cu->get_builder ()->get_local_using_directives ();
10394 }
10395
10396 /* Read the import statement specified by the given die and record it. */
10397
10398 static void
10399 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10400 {
10401 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10402 struct attribute *import_attr;
10403 struct die_info *imported_die, *child_die;
10404 struct dwarf2_cu *imported_cu;
10405 const char *imported_name;
10406 const char *imported_name_prefix;
10407 const char *canonical_name;
10408 const char *import_alias;
10409 const char *imported_declaration = NULL;
10410 const char *import_prefix;
10411 std::vector<const char *> excludes;
10412
10413 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10414 if (import_attr == NULL)
10415 {
10416 complaint (_("Tag '%s' has no DW_AT_import"),
10417 dwarf_tag_name (die->tag));
10418 return;
10419 }
10420
10421 imported_cu = cu;
10422 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10423 imported_name = dwarf2_name (imported_die, imported_cu);
10424 if (imported_name == NULL)
10425 {
10426 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10427
10428 The import in the following code:
10429 namespace A
10430 {
10431 typedef int B;
10432 }
10433
10434 int main ()
10435 {
10436 using A::B;
10437 B b;
10438 return b;
10439 }
10440
10441 ...
10442 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10443 <52> DW_AT_decl_file : 1
10444 <53> DW_AT_decl_line : 6
10445 <54> DW_AT_import : <0x75>
10446 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10447 <59> DW_AT_name : B
10448 <5b> DW_AT_decl_file : 1
10449 <5c> DW_AT_decl_line : 2
10450 <5d> DW_AT_type : <0x6e>
10451 ...
10452 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10453 <76> DW_AT_byte_size : 4
10454 <77> DW_AT_encoding : 5 (signed)
10455
10456 imports the wrong die ( 0x75 instead of 0x58 ).
10457 This case will be ignored until the gcc bug is fixed. */
10458 return;
10459 }
10460
10461 /* Figure out the local name after import. */
10462 import_alias = dwarf2_name (die, cu);
10463
10464 /* Figure out where the statement is being imported to. */
10465 import_prefix = determine_prefix (die, cu);
10466
10467 /* Figure out what the scope of the imported die is and prepend it
10468 to the name of the imported die. */
10469 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10470
10471 if (imported_die->tag != DW_TAG_namespace
10472 && imported_die->tag != DW_TAG_module)
10473 {
10474 imported_declaration = imported_name;
10475 canonical_name = imported_name_prefix;
10476 }
10477 else if (strlen (imported_name_prefix) > 0)
10478 canonical_name = obconcat (&objfile->objfile_obstack,
10479 imported_name_prefix,
10480 (cu->language == language_d ? "." : "::"),
10481 imported_name, (char *) NULL);
10482 else
10483 canonical_name = imported_name;
10484
10485 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10486 for (child_die = die->child; child_die && child_die->tag;
10487 child_die = sibling_die (child_die))
10488 {
10489 /* DWARF-4: A Fortran use statement with a “rename list” may be
10490 represented by an imported module entry with an import attribute
10491 referring to the module and owned entries corresponding to those
10492 entities that are renamed as part of being imported. */
10493
10494 if (child_die->tag != DW_TAG_imported_declaration)
10495 {
10496 complaint (_("child DW_TAG_imported_declaration expected "
10497 "- DIE at %s [in module %s]"),
10498 sect_offset_str (child_die->sect_off),
10499 objfile_name (objfile));
10500 continue;
10501 }
10502
10503 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10504 if (import_attr == NULL)
10505 {
10506 complaint (_("Tag '%s' has no DW_AT_import"),
10507 dwarf_tag_name (child_die->tag));
10508 continue;
10509 }
10510
10511 imported_cu = cu;
10512 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10513 &imported_cu);
10514 imported_name = dwarf2_name (imported_die, imported_cu);
10515 if (imported_name == NULL)
10516 {
10517 complaint (_("child DW_TAG_imported_declaration has unknown "
10518 "imported name - DIE at %s [in module %s]"),
10519 sect_offset_str (child_die->sect_off),
10520 objfile_name (objfile));
10521 continue;
10522 }
10523
10524 excludes.push_back (imported_name);
10525
10526 process_die (child_die, cu);
10527 }
10528
10529 add_using_directive (using_directives (cu),
10530 import_prefix,
10531 canonical_name,
10532 import_alias,
10533 imported_declaration,
10534 excludes,
10535 0,
10536 &objfile->objfile_obstack);
10537 }
10538
10539 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10540 types, but gives them a size of zero. Starting with version 14,
10541 ICC is compatible with GCC. */
10542
10543 static bool
10544 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10545 {
10546 if (!cu->checked_producer)
10547 check_producer (cu);
10548
10549 return cu->producer_is_icc_lt_14;
10550 }
10551
10552 /* ICC generates a DW_AT_type for C void functions. This was observed on
10553 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10554 which says that void functions should not have a DW_AT_type. */
10555
10556 static bool
10557 producer_is_icc (struct dwarf2_cu *cu)
10558 {
10559 if (!cu->checked_producer)
10560 check_producer (cu);
10561
10562 return cu->producer_is_icc;
10563 }
10564
10565 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10566 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10567 this, it was first present in GCC release 4.3.0. */
10568
10569 static bool
10570 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10571 {
10572 if (!cu->checked_producer)
10573 check_producer (cu);
10574
10575 return cu->producer_is_gcc_lt_4_3;
10576 }
10577
10578 static file_and_directory
10579 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10580 {
10581 file_and_directory res;
10582
10583 /* Find the filename. Do not use dwarf2_name here, since the filename
10584 is not a source language identifier. */
10585 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10586 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10587
10588 if (res.comp_dir == NULL
10589 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10590 && IS_ABSOLUTE_PATH (res.name))
10591 {
10592 res.comp_dir_storage = ldirname (res.name);
10593 if (!res.comp_dir_storage.empty ())
10594 res.comp_dir = res.comp_dir_storage.c_str ();
10595 }
10596 if (res.comp_dir != NULL)
10597 {
10598 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10599 directory, get rid of it. */
10600 const char *cp = strchr (res.comp_dir, ':');
10601
10602 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10603 res.comp_dir = cp + 1;
10604 }
10605
10606 if (res.name == NULL)
10607 res.name = "<unknown>";
10608
10609 return res;
10610 }
10611
10612 /* Handle DW_AT_stmt_list for a compilation unit.
10613 DIE is the DW_TAG_compile_unit die for CU.
10614 COMP_DIR is the compilation directory. LOWPC is passed to
10615 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10616
10617 static void
10618 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10619 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10620 {
10621 struct dwarf2_per_objfile *dwarf2_per_objfile
10622 = cu->per_cu->dwarf2_per_objfile;
10623 struct attribute *attr;
10624 struct line_header line_header_local;
10625 hashval_t line_header_local_hash;
10626 void **slot;
10627 int decode_mapping;
10628
10629 gdb_assert (! cu->per_cu->is_debug_types);
10630
10631 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10632 if (attr == NULL)
10633 return;
10634
10635 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10636
10637 /* The line header hash table is only created if needed (it exists to
10638 prevent redundant reading of the line table for partial_units).
10639 If we're given a partial_unit, we'll need it. If we're given a
10640 compile_unit, then use the line header hash table if it's already
10641 created, but don't create one just yet. */
10642
10643 if (dwarf2_per_objfile->line_header_hash == NULL
10644 && die->tag == DW_TAG_partial_unit)
10645 {
10646 dwarf2_per_objfile->line_header_hash
10647 .reset (htab_create_alloc (127, line_header_hash_voidp,
10648 line_header_eq_voidp,
10649 free_line_header_voidp,
10650 xcalloc, xfree));
10651 }
10652
10653 line_header_local.sect_off = line_offset;
10654 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10655 line_header_local_hash = line_header_hash (&line_header_local);
10656 if (dwarf2_per_objfile->line_header_hash != NULL)
10657 {
10658 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10659 &line_header_local,
10660 line_header_local_hash, NO_INSERT);
10661
10662 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10663 is not present in *SLOT (since if there is something in *SLOT then
10664 it will be for a partial_unit). */
10665 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10666 {
10667 gdb_assert (*slot != NULL);
10668 cu->line_header = (struct line_header *) *slot;
10669 return;
10670 }
10671 }
10672
10673 /* dwarf_decode_line_header does not yet provide sufficient information.
10674 We always have to call also dwarf_decode_lines for it. */
10675 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10676 if (lh == NULL)
10677 return;
10678
10679 cu->line_header = lh.release ();
10680 cu->line_header_die_owner = die;
10681
10682 if (dwarf2_per_objfile->line_header_hash == NULL)
10683 slot = NULL;
10684 else
10685 {
10686 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10687 &line_header_local,
10688 line_header_local_hash, INSERT);
10689 gdb_assert (slot != NULL);
10690 }
10691 if (slot != NULL && *slot == NULL)
10692 {
10693 /* This newly decoded line number information unit will be owned
10694 by line_header_hash hash table. */
10695 *slot = cu->line_header;
10696 cu->line_header_die_owner = NULL;
10697 }
10698 else
10699 {
10700 /* We cannot free any current entry in (*slot) as that struct line_header
10701 may be already used by multiple CUs. Create only temporary decoded
10702 line_header for this CU - it may happen at most once for each line
10703 number information unit. And if we're not using line_header_hash
10704 then this is what we want as well. */
10705 gdb_assert (die->tag != DW_TAG_partial_unit);
10706 }
10707 decode_mapping = (die->tag != DW_TAG_partial_unit);
10708 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10709 decode_mapping);
10710
10711 }
10712
10713 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10714
10715 static void
10716 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10717 {
10718 struct dwarf2_per_objfile *dwarf2_per_objfile
10719 = cu->per_cu->dwarf2_per_objfile;
10720 struct objfile *objfile = dwarf2_per_objfile->objfile;
10721 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10722 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10723 CORE_ADDR highpc = ((CORE_ADDR) 0);
10724 struct attribute *attr;
10725 struct die_info *child_die;
10726 CORE_ADDR baseaddr;
10727
10728 prepare_one_comp_unit (cu, die, cu->language);
10729 baseaddr = objfile->text_section_offset ();
10730
10731 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10732
10733 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10734 from finish_block. */
10735 if (lowpc == ((CORE_ADDR) -1))
10736 lowpc = highpc;
10737 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10738
10739 file_and_directory fnd = find_file_and_directory (die, cu);
10740
10741 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10742 standardised yet. As a workaround for the language detection we fall
10743 back to the DW_AT_producer string. */
10744 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10745 cu->language = language_opencl;
10746
10747 /* Similar hack for Go. */
10748 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10749 set_cu_language (DW_LANG_Go, cu);
10750
10751 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10752
10753 /* Decode line number information if present. We do this before
10754 processing child DIEs, so that the line header table is available
10755 for DW_AT_decl_file. */
10756 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10757
10758 /* Process all dies in compilation unit. */
10759 if (die->child != NULL)
10760 {
10761 child_die = die->child;
10762 while (child_die && child_die->tag)
10763 {
10764 process_die (child_die, cu);
10765 child_die = sibling_die (child_die);
10766 }
10767 }
10768
10769 /* Decode macro information, if present. Dwarf 2 macro information
10770 refers to information in the line number info statement program
10771 header, so we can only read it if we've read the header
10772 successfully. */
10773 attr = dwarf2_attr (die, DW_AT_macros, cu);
10774 if (attr == NULL)
10775 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10776 if (attr && cu->line_header)
10777 {
10778 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10779 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10780
10781 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10782 }
10783 else
10784 {
10785 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10786 if (attr && cu->line_header)
10787 {
10788 unsigned int macro_offset = DW_UNSND (attr);
10789
10790 dwarf_decode_macros (cu, macro_offset, 0);
10791 }
10792 }
10793 }
10794
10795 void
10796 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10797 {
10798 struct type_unit_group *tu_group;
10799 int first_time;
10800 struct attribute *attr;
10801 unsigned int i;
10802 struct signatured_type *sig_type;
10803
10804 gdb_assert (per_cu->is_debug_types);
10805 sig_type = (struct signatured_type *) per_cu;
10806
10807 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10808
10809 /* If we're using .gdb_index (includes -readnow) then
10810 per_cu->type_unit_group may not have been set up yet. */
10811 if (sig_type->type_unit_group == NULL)
10812 sig_type->type_unit_group = get_type_unit_group (this, attr);
10813 tu_group = sig_type->type_unit_group;
10814
10815 /* If we've already processed this stmt_list there's no real need to
10816 do it again, we could fake it and just recreate the part we need
10817 (file name,index -> symtab mapping). If data shows this optimization
10818 is useful we can do it then. */
10819 first_time = tu_group->compunit_symtab == NULL;
10820
10821 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10822 debug info. */
10823 line_header_up lh;
10824 if (attr != NULL)
10825 {
10826 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10827 lh = dwarf_decode_line_header (line_offset, this);
10828 }
10829 if (lh == NULL)
10830 {
10831 if (first_time)
10832 start_symtab ("", NULL, 0);
10833 else
10834 {
10835 gdb_assert (tu_group->symtabs == NULL);
10836 gdb_assert (m_builder == nullptr);
10837 struct compunit_symtab *cust = tu_group->compunit_symtab;
10838 m_builder.reset (new struct buildsym_compunit
10839 (COMPUNIT_OBJFILE (cust), "",
10840 COMPUNIT_DIRNAME (cust),
10841 compunit_language (cust),
10842 0, cust));
10843 }
10844 return;
10845 }
10846
10847 line_header = lh.release ();
10848 line_header_die_owner = die;
10849
10850 if (first_time)
10851 {
10852 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10853
10854 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10855 still initializing it, and our caller (a few levels up)
10856 process_full_type_unit still needs to know if this is the first
10857 time. */
10858
10859 tu_group->num_symtabs = line_header->file_names_size ();
10860 tu_group->symtabs = XNEWVEC (struct symtab *,
10861 line_header->file_names_size ());
10862
10863 auto &file_names = line_header->file_names ();
10864 for (i = 0; i < file_names.size (); ++i)
10865 {
10866 file_entry &fe = file_names[i];
10867 dwarf2_start_subfile (this, fe.name,
10868 fe.include_dir (line_header));
10869 buildsym_compunit *b = get_builder ();
10870 if (b->get_current_subfile ()->symtab == NULL)
10871 {
10872 /* NOTE: start_subfile will recognize when it's been
10873 passed a file it has already seen. So we can't
10874 assume there's a simple mapping from
10875 cu->line_header->file_names to subfiles, plus
10876 cu->line_header->file_names may contain dups. */
10877 b->get_current_subfile ()->symtab
10878 = allocate_symtab (cust, b->get_current_subfile ()->name);
10879 }
10880
10881 fe.symtab = b->get_current_subfile ()->symtab;
10882 tu_group->symtabs[i] = fe.symtab;
10883 }
10884 }
10885 else
10886 {
10887 gdb_assert (m_builder == nullptr);
10888 struct compunit_symtab *cust = tu_group->compunit_symtab;
10889 m_builder.reset (new struct buildsym_compunit
10890 (COMPUNIT_OBJFILE (cust), "",
10891 COMPUNIT_DIRNAME (cust),
10892 compunit_language (cust),
10893 0, cust));
10894
10895 auto &file_names = line_header->file_names ();
10896 for (i = 0; i < file_names.size (); ++i)
10897 {
10898 file_entry &fe = file_names[i];
10899 fe.symtab = tu_group->symtabs[i];
10900 }
10901 }
10902
10903 /* The main symtab is allocated last. Type units don't have DW_AT_name
10904 so they don't have a "real" (so to speak) symtab anyway.
10905 There is later code that will assign the main symtab to all symbols
10906 that don't have one. We need to handle the case of a symbol with a
10907 missing symtab (DW_AT_decl_file) anyway. */
10908 }
10909
10910 /* Process DW_TAG_type_unit.
10911 For TUs we want to skip the first top level sibling if it's not the
10912 actual type being defined by this TU. In this case the first top
10913 level sibling is there to provide context only. */
10914
10915 static void
10916 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10917 {
10918 struct die_info *child_die;
10919
10920 prepare_one_comp_unit (cu, die, language_minimal);
10921
10922 /* Initialize (or reinitialize) the machinery for building symtabs.
10923 We do this before processing child DIEs, so that the line header table
10924 is available for DW_AT_decl_file. */
10925 cu->setup_type_unit_groups (die);
10926
10927 if (die->child != NULL)
10928 {
10929 child_die = die->child;
10930 while (child_die && child_die->tag)
10931 {
10932 process_die (child_die, cu);
10933 child_die = sibling_die (child_die);
10934 }
10935 }
10936 }
10937 \f
10938 /* DWO/DWP files.
10939
10940 http://gcc.gnu.org/wiki/DebugFission
10941 http://gcc.gnu.org/wiki/DebugFissionDWP
10942
10943 To simplify handling of both DWO files ("object" files with the DWARF info)
10944 and DWP files (a file with the DWOs packaged up into one file), we treat
10945 DWP files as having a collection of virtual DWO files. */
10946
10947 static hashval_t
10948 hash_dwo_file (const void *item)
10949 {
10950 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10951 hashval_t hash;
10952
10953 hash = htab_hash_string (dwo_file->dwo_name);
10954 if (dwo_file->comp_dir != NULL)
10955 hash += htab_hash_string (dwo_file->comp_dir);
10956 return hash;
10957 }
10958
10959 static int
10960 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10961 {
10962 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10963 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10964
10965 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10966 return 0;
10967 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10968 return lhs->comp_dir == rhs->comp_dir;
10969 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10970 }
10971
10972 /* Allocate a hash table for DWO files. */
10973
10974 static htab_up
10975 allocate_dwo_file_hash_table ()
10976 {
10977 auto delete_dwo_file = [] (void *item)
10978 {
10979 struct dwo_file *dwo_file = (struct dwo_file *) item;
10980
10981 delete dwo_file;
10982 };
10983
10984 return htab_up (htab_create_alloc (41,
10985 hash_dwo_file,
10986 eq_dwo_file,
10987 delete_dwo_file,
10988 xcalloc, xfree));
10989 }
10990
10991 /* Lookup DWO file DWO_NAME. */
10992
10993 static void **
10994 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
10995 const char *dwo_name,
10996 const char *comp_dir)
10997 {
10998 struct dwo_file find_entry;
10999 void **slot;
11000
11001 if (dwarf2_per_objfile->dwo_files == NULL)
11002 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11003
11004 find_entry.dwo_name = dwo_name;
11005 find_entry.comp_dir = comp_dir;
11006 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11007 INSERT);
11008
11009 return slot;
11010 }
11011
11012 static hashval_t
11013 hash_dwo_unit (const void *item)
11014 {
11015 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11016
11017 /* This drops the top 32 bits of the id, but is ok for a hash. */
11018 return dwo_unit->signature;
11019 }
11020
11021 static int
11022 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11023 {
11024 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11025 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11026
11027 /* The signature is assumed to be unique within the DWO file.
11028 So while object file CU dwo_id's always have the value zero,
11029 that's OK, assuming each object file DWO file has only one CU,
11030 and that's the rule for now. */
11031 return lhs->signature == rhs->signature;
11032 }
11033
11034 /* Allocate a hash table for DWO CUs,TUs.
11035 There is one of these tables for each of CUs,TUs for each DWO file. */
11036
11037 static htab_up
11038 allocate_dwo_unit_table ()
11039 {
11040 /* Start out with a pretty small number.
11041 Generally DWO files contain only one CU and maybe some TUs. */
11042 return htab_up (htab_create_alloc (3,
11043 hash_dwo_unit,
11044 eq_dwo_unit,
11045 NULL, xcalloc, xfree));
11046 }
11047
11048 /* die_reader_func for create_dwo_cu. */
11049
11050 static void
11051 create_dwo_cu_reader (const struct die_reader_specs *reader,
11052 const gdb_byte *info_ptr,
11053 struct die_info *comp_unit_die,
11054 struct dwo_file *dwo_file,
11055 struct dwo_unit *dwo_unit)
11056 {
11057 struct dwarf2_cu *cu = reader->cu;
11058 sect_offset sect_off = cu->per_cu->sect_off;
11059 struct dwarf2_section_info *section = cu->per_cu->section;
11060
11061 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11062 if (!signature.has_value ())
11063 {
11064 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11065 " its dwo_id [in module %s]"),
11066 sect_offset_str (sect_off), dwo_file->dwo_name);
11067 return;
11068 }
11069
11070 dwo_unit->dwo_file = dwo_file;
11071 dwo_unit->signature = *signature;
11072 dwo_unit->section = section;
11073 dwo_unit->sect_off = sect_off;
11074 dwo_unit->length = cu->per_cu->length;
11075
11076 if (dwarf_read_debug)
11077 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11078 sect_offset_str (sect_off),
11079 hex_string (dwo_unit->signature));
11080 }
11081
11082 /* Create the dwo_units for the CUs in a DWO_FILE.
11083 Note: This function processes DWO files only, not DWP files. */
11084
11085 static void
11086 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11087 dwarf2_cu *cu, struct dwo_file &dwo_file,
11088 dwarf2_section_info &section, htab_up &cus_htab)
11089 {
11090 struct objfile *objfile = dwarf2_per_objfile->objfile;
11091 const gdb_byte *info_ptr, *end_ptr;
11092
11093 section.read (objfile);
11094 info_ptr = section.buffer;
11095
11096 if (info_ptr == NULL)
11097 return;
11098
11099 if (dwarf_read_debug)
11100 {
11101 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11102 section.get_name (),
11103 section.get_file_name ());
11104 }
11105
11106 end_ptr = info_ptr + section.size;
11107 while (info_ptr < end_ptr)
11108 {
11109 struct dwarf2_per_cu_data per_cu;
11110 struct dwo_unit read_unit {};
11111 struct dwo_unit *dwo_unit;
11112 void **slot;
11113 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11114
11115 memset (&per_cu, 0, sizeof (per_cu));
11116 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11117 per_cu.is_debug_types = 0;
11118 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11119 per_cu.section = &section;
11120
11121 cutu_reader reader (&per_cu, cu, &dwo_file);
11122 if (!reader.dummy_p)
11123 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11124 &dwo_file, &read_unit);
11125 info_ptr += per_cu.length;
11126
11127 // If the unit could not be parsed, skip it.
11128 if (read_unit.dwo_file == NULL)
11129 continue;
11130
11131 if (cus_htab == NULL)
11132 cus_htab = allocate_dwo_unit_table ();
11133
11134 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11135 *dwo_unit = read_unit;
11136 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11137 gdb_assert (slot != NULL);
11138 if (*slot != NULL)
11139 {
11140 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11141 sect_offset dup_sect_off = dup_cu->sect_off;
11142
11143 complaint (_("debug cu entry at offset %s is duplicate to"
11144 " the entry at offset %s, signature %s"),
11145 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11146 hex_string (dwo_unit->signature));
11147 }
11148 *slot = (void *)dwo_unit;
11149 }
11150 }
11151
11152 /* DWP file .debug_{cu,tu}_index section format:
11153 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11154
11155 DWP Version 1:
11156
11157 Both index sections have the same format, and serve to map a 64-bit
11158 signature to a set of section numbers. Each section begins with a header,
11159 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11160 indexes, and a pool of 32-bit section numbers. The index sections will be
11161 aligned at 8-byte boundaries in the file.
11162
11163 The index section header consists of:
11164
11165 V, 32 bit version number
11166 -, 32 bits unused
11167 N, 32 bit number of compilation units or type units in the index
11168 M, 32 bit number of slots in the hash table
11169
11170 Numbers are recorded using the byte order of the application binary.
11171
11172 The hash table begins at offset 16 in the section, and consists of an array
11173 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11174 order of the application binary). Unused slots in the hash table are 0.
11175 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11176
11177 The parallel table begins immediately after the hash table
11178 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11179 array of 32-bit indexes (using the byte order of the application binary),
11180 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11181 table contains a 32-bit index into the pool of section numbers. For unused
11182 hash table slots, the corresponding entry in the parallel table will be 0.
11183
11184 The pool of section numbers begins immediately following the hash table
11185 (at offset 16 + 12 * M from the beginning of the section). The pool of
11186 section numbers consists of an array of 32-bit words (using the byte order
11187 of the application binary). Each item in the array is indexed starting
11188 from 0. The hash table entry provides the index of the first section
11189 number in the set. Additional section numbers in the set follow, and the
11190 set is terminated by a 0 entry (section number 0 is not used in ELF).
11191
11192 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11193 section must be the first entry in the set, and the .debug_abbrev.dwo must
11194 be the second entry. Other members of the set may follow in any order.
11195
11196 ---
11197
11198 DWP Version 2:
11199
11200 DWP Version 2 combines all the .debug_info, etc. sections into one,
11201 and the entries in the index tables are now offsets into these sections.
11202 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11203 section.
11204
11205 Index Section Contents:
11206 Header
11207 Hash Table of Signatures dwp_hash_table.hash_table
11208 Parallel Table of Indices dwp_hash_table.unit_table
11209 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11210 Table of Section Sizes dwp_hash_table.v2.sizes
11211
11212 The index section header consists of:
11213
11214 V, 32 bit version number
11215 L, 32 bit number of columns in the table of section offsets
11216 N, 32 bit number of compilation units or type units in the index
11217 M, 32 bit number of slots in the hash table
11218
11219 Numbers are recorded using the byte order of the application binary.
11220
11221 The hash table has the same format as version 1.
11222 The parallel table of indices has the same format as version 1,
11223 except that the entries are origin-1 indices into the table of sections
11224 offsets and the table of section sizes.
11225
11226 The table of offsets begins immediately following the parallel table
11227 (at offset 16 + 12 * M from the beginning of the section). The table is
11228 a two-dimensional array of 32-bit words (using the byte order of the
11229 application binary), with L columns and N+1 rows, in row-major order.
11230 Each row in the array is indexed starting from 0. The first row provides
11231 a key to the remaining rows: each column in this row provides an identifier
11232 for a debug section, and the offsets in the same column of subsequent rows
11233 refer to that section. The section identifiers are:
11234
11235 DW_SECT_INFO 1 .debug_info.dwo
11236 DW_SECT_TYPES 2 .debug_types.dwo
11237 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11238 DW_SECT_LINE 4 .debug_line.dwo
11239 DW_SECT_LOC 5 .debug_loc.dwo
11240 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11241 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11242 DW_SECT_MACRO 8 .debug_macro.dwo
11243
11244 The offsets provided by the CU and TU index sections are the base offsets
11245 for the contributions made by each CU or TU to the corresponding section
11246 in the package file. Each CU and TU header contains an abbrev_offset
11247 field, used to find the abbreviations table for that CU or TU within the
11248 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11249 be interpreted as relative to the base offset given in the index section.
11250 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11251 should be interpreted as relative to the base offset for .debug_line.dwo,
11252 and offsets into other debug sections obtained from DWARF attributes should
11253 also be interpreted as relative to the corresponding base offset.
11254
11255 The table of sizes begins immediately following the table of offsets.
11256 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11257 with L columns and N rows, in row-major order. Each row in the array is
11258 indexed starting from 1 (row 0 is shared by the two tables).
11259
11260 ---
11261
11262 Hash table lookup is handled the same in version 1 and 2:
11263
11264 We assume that N and M will not exceed 2^32 - 1.
11265 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11266
11267 Given a 64-bit compilation unit signature or a type signature S, an entry
11268 in the hash table is located as follows:
11269
11270 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11271 the low-order k bits all set to 1.
11272
11273 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11274
11275 3) If the hash table entry at index H matches the signature, use that
11276 entry. If the hash table entry at index H is unused (all zeroes),
11277 terminate the search: the signature is not present in the table.
11278
11279 4) Let H = (H + H') modulo M. Repeat at Step 3.
11280
11281 Because M > N and H' and M are relatively prime, the search is guaranteed
11282 to stop at an unused slot or find the match. */
11283
11284 /* Create a hash table to map DWO IDs to their CU/TU entry in
11285 .debug_{info,types}.dwo in DWP_FILE.
11286 Returns NULL if there isn't one.
11287 Note: This function processes DWP files only, not DWO files. */
11288
11289 static struct dwp_hash_table *
11290 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11291 struct dwp_file *dwp_file, int is_debug_types)
11292 {
11293 struct objfile *objfile = dwarf2_per_objfile->objfile;
11294 bfd *dbfd = dwp_file->dbfd.get ();
11295 const gdb_byte *index_ptr, *index_end;
11296 struct dwarf2_section_info *index;
11297 uint32_t version, nr_columns, nr_units, nr_slots;
11298 struct dwp_hash_table *htab;
11299
11300 if (is_debug_types)
11301 index = &dwp_file->sections.tu_index;
11302 else
11303 index = &dwp_file->sections.cu_index;
11304
11305 if (index->empty ())
11306 return NULL;
11307 index->read (objfile);
11308
11309 index_ptr = index->buffer;
11310 index_end = index_ptr + index->size;
11311
11312 version = read_4_bytes (dbfd, index_ptr);
11313 index_ptr += 4;
11314 if (version == 2)
11315 nr_columns = read_4_bytes (dbfd, index_ptr);
11316 else
11317 nr_columns = 0;
11318 index_ptr += 4;
11319 nr_units = read_4_bytes (dbfd, index_ptr);
11320 index_ptr += 4;
11321 nr_slots = read_4_bytes (dbfd, index_ptr);
11322 index_ptr += 4;
11323
11324 if (version != 1 && version != 2)
11325 {
11326 error (_("Dwarf Error: unsupported DWP file version (%s)"
11327 " [in module %s]"),
11328 pulongest (version), dwp_file->name);
11329 }
11330 if (nr_slots != (nr_slots & -nr_slots))
11331 {
11332 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11333 " is not power of 2 [in module %s]"),
11334 pulongest (nr_slots), dwp_file->name);
11335 }
11336
11337 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11338 htab->version = version;
11339 htab->nr_columns = nr_columns;
11340 htab->nr_units = nr_units;
11341 htab->nr_slots = nr_slots;
11342 htab->hash_table = index_ptr;
11343 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11344
11345 /* Exit early if the table is empty. */
11346 if (nr_slots == 0 || nr_units == 0
11347 || (version == 2 && nr_columns == 0))
11348 {
11349 /* All must be zero. */
11350 if (nr_slots != 0 || nr_units != 0
11351 || (version == 2 && nr_columns != 0))
11352 {
11353 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11354 " all zero [in modules %s]"),
11355 dwp_file->name);
11356 }
11357 return htab;
11358 }
11359
11360 if (version == 1)
11361 {
11362 htab->section_pool.v1.indices =
11363 htab->unit_table + sizeof (uint32_t) * nr_slots;
11364 /* It's harder to decide whether the section is too small in v1.
11365 V1 is deprecated anyway so we punt. */
11366 }
11367 else
11368 {
11369 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11370 int *ids = htab->section_pool.v2.section_ids;
11371 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11372 /* Reverse map for error checking. */
11373 int ids_seen[DW_SECT_MAX + 1];
11374 int i;
11375
11376 if (nr_columns < 2)
11377 {
11378 error (_("Dwarf Error: bad DWP hash table, too few columns"
11379 " in section table [in module %s]"),
11380 dwp_file->name);
11381 }
11382 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11383 {
11384 error (_("Dwarf Error: bad DWP hash table, too many columns"
11385 " in section table [in module %s]"),
11386 dwp_file->name);
11387 }
11388 memset (ids, 255, sizeof_ids);
11389 memset (ids_seen, 255, sizeof (ids_seen));
11390 for (i = 0; i < nr_columns; ++i)
11391 {
11392 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11393
11394 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11395 {
11396 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11397 " in section table [in module %s]"),
11398 id, dwp_file->name);
11399 }
11400 if (ids_seen[id] != -1)
11401 {
11402 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11403 " id %d in section table [in module %s]"),
11404 id, dwp_file->name);
11405 }
11406 ids_seen[id] = i;
11407 ids[i] = id;
11408 }
11409 /* Must have exactly one info or types section. */
11410 if (((ids_seen[DW_SECT_INFO] != -1)
11411 + (ids_seen[DW_SECT_TYPES] != -1))
11412 != 1)
11413 {
11414 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11415 " DWO info/types section [in module %s]"),
11416 dwp_file->name);
11417 }
11418 /* Must have an abbrev section. */
11419 if (ids_seen[DW_SECT_ABBREV] == -1)
11420 {
11421 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11422 " section [in module %s]"),
11423 dwp_file->name);
11424 }
11425 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11426 htab->section_pool.v2.sizes =
11427 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11428 * nr_units * nr_columns);
11429 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11430 * nr_units * nr_columns))
11431 > index_end)
11432 {
11433 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11434 " [in module %s]"),
11435 dwp_file->name);
11436 }
11437 }
11438
11439 return htab;
11440 }
11441
11442 /* Update SECTIONS with the data from SECTP.
11443
11444 This function is like the other "locate" section routines that are
11445 passed to bfd_map_over_sections, but in this context the sections to
11446 read comes from the DWP V1 hash table, not the full ELF section table.
11447
11448 The result is non-zero for success, or zero if an error was found. */
11449
11450 static int
11451 locate_v1_virtual_dwo_sections (asection *sectp,
11452 struct virtual_v1_dwo_sections *sections)
11453 {
11454 const struct dwop_section_names *names = &dwop_section_names;
11455
11456 if (section_is_p (sectp->name, &names->abbrev_dwo))
11457 {
11458 /* There can be only one. */
11459 if (sections->abbrev.s.section != NULL)
11460 return 0;
11461 sections->abbrev.s.section = sectp;
11462 sections->abbrev.size = bfd_section_size (sectp);
11463 }
11464 else if (section_is_p (sectp->name, &names->info_dwo)
11465 || section_is_p (sectp->name, &names->types_dwo))
11466 {
11467 /* There can be only one. */
11468 if (sections->info_or_types.s.section != NULL)
11469 return 0;
11470 sections->info_or_types.s.section = sectp;
11471 sections->info_or_types.size = bfd_section_size (sectp);
11472 }
11473 else if (section_is_p (sectp->name, &names->line_dwo))
11474 {
11475 /* There can be only one. */
11476 if (sections->line.s.section != NULL)
11477 return 0;
11478 sections->line.s.section = sectp;
11479 sections->line.size = bfd_section_size (sectp);
11480 }
11481 else if (section_is_p (sectp->name, &names->loc_dwo))
11482 {
11483 /* There can be only one. */
11484 if (sections->loc.s.section != NULL)
11485 return 0;
11486 sections->loc.s.section = sectp;
11487 sections->loc.size = bfd_section_size (sectp);
11488 }
11489 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11490 {
11491 /* There can be only one. */
11492 if (sections->macinfo.s.section != NULL)
11493 return 0;
11494 sections->macinfo.s.section = sectp;
11495 sections->macinfo.size = bfd_section_size (sectp);
11496 }
11497 else if (section_is_p (sectp->name, &names->macro_dwo))
11498 {
11499 /* There can be only one. */
11500 if (sections->macro.s.section != NULL)
11501 return 0;
11502 sections->macro.s.section = sectp;
11503 sections->macro.size = bfd_section_size (sectp);
11504 }
11505 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11506 {
11507 /* There can be only one. */
11508 if (sections->str_offsets.s.section != NULL)
11509 return 0;
11510 sections->str_offsets.s.section = sectp;
11511 sections->str_offsets.size = bfd_section_size (sectp);
11512 }
11513 else
11514 {
11515 /* No other kind of section is valid. */
11516 return 0;
11517 }
11518
11519 return 1;
11520 }
11521
11522 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11523 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11524 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11525 This is for DWP version 1 files. */
11526
11527 static struct dwo_unit *
11528 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11529 struct dwp_file *dwp_file,
11530 uint32_t unit_index,
11531 const char *comp_dir,
11532 ULONGEST signature, int is_debug_types)
11533 {
11534 struct objfile *objfile = dwarf2_per_objfile->objfile;
11535 const struct dwp_hash_table *dwp_htab =
11536 is_debug_types ? dwp_file->tus : dwp_file->cus;
11537 bfd *dbfd = dwp_file->dbfd.get ();
11538 const char *kind = is_debug_types ? "TU" : "CU";
11539 struct dwo_file *dwo_file;
11540 struct dwo_unit *dwo_unit;
11541 struct virtual_v1_dwo_sections sections;
11542 void **dwo_file_slot;
11543 int i;
11544
11545 gdb_assert (dwp_file->version == 1);
11546
11547 if (dwarf_read_debug)
11548 {
11549 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11550 kind,
11551 pulongest (unit_index), hex_string (signature),
11552 dwp_file->name);
11553 }
11554
11555 /* Fetch the sections of this DWO unit.
11556 Put a limit on the number of sections we look for so that bad data
11557 doesn't cause us to loop forever. */
11558
11559 #define MAX_NR_V1_DWO_SECTIONS \
11560 (1 /* .debug_info or .debug_types */ \
11561 + 1 /* .debug_abbrev */ \
11562 + 1 /* .debug_line */ \
11563 + 1 /* .debug_loc */ \
11564 + 1 /* .debug_str_offsets */ \
11565 + 1 /* .debug_macro or .debug_macinfo */ \
11566 + 1 /* trailing zero */)
11567
11568 memset (&sections, 0, sizeof (sections));
11569
11570 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11571 {
11572 asection *sectp;
11573 uint32_t section_nr =
11574 read_4_bytes (dbfd,
11575 dwp_htab->section_pool.v1.indices
11576 + (unit_index + i) * sizeof (uint32_t));
11577
11578 if (section_nr == 0)
11579 break;
11580 if (section_nr >= dwp_file->num_sections)
11581 {
11582 error (_("Dwarf Error: bad DWP hash table, section number too large"
11583 " [in module %s]"),
11584 dwp_file->name);
11585 }
11586
11587 sectp = dwp_file->elf_sections[section_nr];
11588 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11589 {
11590 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11591 " [in module %s]"),
11592 dwp_file->name);
11593 }
11594 }
11595
11596 if (i < 2
11597 || sections.info_or_types.empty ()
11598 || sections.abbrev.empty ())
11599 {
11600 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11601 " [in module %s]"),
11602 dwp_file->name);
11603 }
11604 if (i == MAX_NR_V1_DWO_SECTIONS)
11605 {
11606 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11607 " [in module %s]"),
11608 dwp_file->name);
11609 }
11610
11611 /* It's easier for the rest of the code if we fake a struct dwo_file and
11612 have dwo_unit "live" in that. At least for now.
11613
11614 The DWP file can be made up of a random collection of CUs and TUs.
11615 However, for each CU + set of TUs that came from the same original DWO
11616 file, we can combine them back into a virtual DWO file to save space
11617 (fewer struct dwo_file objects to allocate). Remember that for really
11618 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11619
11620 std::string virtual_dwo_name =
11621 string_printf ("virtual-dwo/%d-%d-%d-%d",
11622 sections.abbrev.get_id (),
11623 sections.line.get_id (),
11624 sections.loc.get_id (),
11625 sections.str_offsets.get_id ());
11626 /* Can we use an existing virtual DWO file? */
11627 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11628 virtual_dwo_name.c_str (),
11629 comp_dir);
11630 /* Create one if necessary. */
11631 if (*dwo_file_slot == NULL)
11632 {
11633 if (dwarf_read_debug)
11634 {
11635 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11636 virtual_dwo_name.c_str ());
11637 }
11638 dwo_file = new struct dwo_file;
11639 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11640 virtual_dwo_name);
11641 dwo_file->comp_dir = comp_dir;
11642 dwo_file->sections.abbrev = sections.abbrev;
11643 dwo_file->sections.line = sections.line;
11644 dwo_file->sections.loc = sections.loc;
11645 dwo_file->sections.macinfo = sections.macinfo;
11646 dwo_file->sections.macro = sections.macro;
11647 dwo_file->sections.str_offsets = sections.str_offsets;
11648 /* The "str" section is global to the entire DWP file. */
11649 dwo_file->sections.str = dwp_file->sections.str;
11650 /* The info or types section is assigned below to dwo_unit,
11651 there's no need to record it in dwo_file.
11652 Also, we can't simply record type sections in dwo_file because
11653 we record a pointer into the vector in dwo_unit. As we collect more
11654 types we'll grow the vector and eventually have to reallocate space
11655 for it, invalidating all copies of pointers into the previous
11656 contents. */
11657 *dwo_file_slot = dwo_file;
11658 }
11659 else
11660 {
11661 if (dwarf_read_debug)
11662 {
11663 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11664 virtual_dwo_name.c_str ());
11665 }
11666 dwo_file = (struct dwo_file *) *dwo_file_slot;
11667 }
11668
11669 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11670 dwo_unit->dwo_file = dwo_file;
11671 dwo_unit->signature = signature;
11672 dwo_unit->section =
11673 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11674 *dwo_unit->section = sections.info_or_types;
11675 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11676
11677 return dwo_unit;
11678 }
11679
11680 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11681 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11682 piece within that section used by a TU/CU, return a virtual section
11683 of just that piece. */
11684
11685 static struct dwarf2_section_info
11686 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11687 struct dwarf2_section_info *section,
11688 bfd_size_type offset, bfd_size_type size)
11689 {
11690 struct dwarf2_section_info result;
11691 asection *sectp;
11692
11693 gdb_assert (section != NULL);
11694 gdb_assert (!section->is_virtual);
11695
11696 memset (&result, 0, sizeof (result));
11697 result.s.containing_section = section;
11698 result.is_virtual = true;
11699
11700 if (size == 0)
11701 return result;
11702
11703 sectp = section->get_bfd_section ();
11704
11705 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11706 bounds of the real section. This is a pretty-rare event, so just
11707 flag an error (easier) instead of a warning and trying to cope. */
11708 if (sectp == NULL
11709 || offset + size > bfd_section_size (sectp))
11710 {
11711 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11712 " in section %s [in module %s]"),
11713 sectp ? bfd_section_name (sectp) : "<unknown>",
11714 objfile_name (dwarf2_per_objfile->objfile));
11715 }
11716
11717 result.virtual_offset = offset;
11718 result.size = size;
11719 return result;
11720 }
11721
11722 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11723 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11724 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11725 This is for DWP version 2 files. */
11726
11727 static struct dwo_unit *
11728 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11729 struct dwp_file *dwp_file,
11730 uint32_t unit_index,
11731 const char *comp_dir,
11732 ULONGEST signature, int is_debug_types)
11733 {
11734 struct objfile *objfile = dwarf2_per_objfile->objfile;
11735 const struct dwp_hash_table *dwp_htab =
11736 is_debug_types ? dwp_file->tus : dwp_file->cus;
11737 bfd *dbfd = dwp_file->dbfd.get ();
11738 const char *kind = is_debug_types ? "TU" : "CU";
11739 struct dwo_file *dwo_file;
11740 struct dwo_unit *dwo_unit;
11741 struct virtual_v2_dwo_sections sections;
11742 void **dwo_file_slot;
11743 int i;
11744
11745 gdb_assert (dwp_file->version == 2);
11746
11747 if (dwarf_read_debug)
11748 {
11749 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11750 kind,
11751 pulongest (unit_index), hex_string (signature),
11752 dwp_file->name);
11753 }
11754
11755 /* Fetch the section offsets of this DWO unit. */
11756
11757 memset (&sections, 0, sizeof (sections));
11758
11759 for (i = 0; i < dwp_htab->nr_columns; ++i)
11760 {
11761 uint32_t offset = read_4_bytes (dbfd,
11762 dwp_htab->section_pool.v2.offsets
11763 + (((unit_index - 1) * dwp_htab->nr_columns
11764 + i)
11765 * sizeof (uint32_t)));
11766 uint32_t size = read_4_bytes (dbfd,
11767 dwp_htab->section_pool.v2.sizes
11768 + (((unit_index - 1) * dwp_htab->nr_columns
11769 + i)
11770 * sizeof (uint32_t)));
11771
11772 switch (dwp_htab->section_pool.v2.section_ids[i])
11773 {
11774 case DW_SECT_INFO:
11775 case DW_SECT_TYPES:
11776 sections.info_or_types_offset = offset;
11777 sections.info_or_types_size = size;
11778 break;
11779 case DW_SECT_ABBREV:
11780 sections.abbrev_offset = offset;
11781 sections.abbrev_size = size;
11782 break;
11783 case DW_SECT_LINE:
11784 sections.line_offset = offset;
11785 sections.line_size = size;
11786 break;
11787 case DW_SECT_LOC:
11788 sections.loc_offset = offset;
11789 sections.loc_size = size;
11790 break;
11791 case DW_SECT_STR_OFFSETS:
11792 sections.str_offsets_offset = offset;
11793 sections.str_offsets_size = size;
11794 break;
11795 case DW_SECT_MACINFO:
11796 sections.macinfo_offset = offset;
11797 sections.macinfo_size = size;
11798 break;
11799 case DW_SECT_MACRO:
11800 sections.macro_offset = offset;
11801 sections.macro_size = size;
11802 break;
11803 }
11804 }
11805
11806 /* It's easier for the rest of the code if we fake a struct dwo_file and
11807 have dwo_unit "live" in that. At least for now.
11808
11809 The DWP file can be made up of a random collection of CUs and TUs.
11810 However, for each CU + set of TUs that came from the same original DWO
11811 file, we can combine them back into a virtual DWO file to save space
11812 (fewer struct dwo_file objects to allocate). Remember that for really
11813 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11814
11815 std::string virtual_dwo_name =
11816 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11817 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11818 (long) (sections.line_size ? sections.line_offset : 0),
11819 (long) (sections.loc_size ? sections.loc_offset : 0),
11820 (long) (sections.str_offsets_size
11821 ? sections.str_offsets_offset : 0));
11822 /* Can we use an existing virtual DWO file? */
11823 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11824 virtual_dwo_name.c_str (),
11825 comp_dir);
11826 /* Create one if necessary. */
11827 if (*dwo_file_slot == NULL)
11828 {
11829 if (dwarf_read_debug)
11830 {
11831 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11832 virtual_dwo_name.c_str ());
11833 }
11834 dwo_file = new struct dwo_file;
11835 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11836 virtual_dwo_name);
11837 dwo_file->comp_dir = comp_dir;
11838 dwo_file->sections.abbrev =
11839 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11840 sections.abbrev_offset, sections.abbrev_size);
11841 dwo_file->sections.line =
11842 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11843 sections.line_offset, sections.line_size);
11844 dwo_file->sections.loc =
11845 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11846 sections.loc_offset, sections.loc_size);
11847 dwo_file->sections.macinfo =
11848 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11849 sections.macinfo_offset, sections.macinfo_size);
11850 dwo_file->sections.macro =
11851 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11852 sections.macro_offset, sections.macro_size);
11853 dwo_file->sections.str_offsets =
11854 create_dwp_v2_section (dwarf2_per_objfile,
11855 &dwp_file->sections.str_offsets,
11856 sections.str_offsets_offset,
11857 sections.str_offsets_size);
11858 /* The "str" section is global to the entire DWP file. */
11859 dwo_file->sections.str = dwp_file->sections.str;
11860 /* The info or types section is assigned below to dwo_unit,
11861 there's no need to record it in dwo_file.
11862 Also, we can't simply record type sections in dwo_file because
11863 we record a pointer into the vector in dwo_unit. As we collect more
11864 types we'll grow the vector and eventually have to reallocate space
11865 for it, invalidating all copies of pointers into the previous
11866 contents. */
11867 *dwo_file_slot = dwo_file;
11868 }
11869 else
11870 {
11871 if (dwarf_read_debug)
11872 {
11873 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11874 virtual_dwo_name.c_str ());
11875 }
11876 dwo_file = (struct dwo_file *) *dwo_file_slot;
11877 }
11878
11879 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11880 dwo_unit->dwo_file = dwo_file;
11881 dwo_unit->signature = signature;
11882 dwo_unit->section =
11883 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11884 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11885 is_debug_types
11886 ? &dwp_file->sections.types
11887 : &dwp_file->sections.info,
11888 sections.info_or_types_offset,
11889 sections.info_or_types_size);
11890 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11891
11892 return dwo_unit;
11893 }
11894
11895 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11896 Returns NULL if the signature isn't found. */
11897
11898 static struct dwo_unit *
11899 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11900 struct dwp_file *dwp_file, const char *comp_dir,
11901 ULONGEST signature, int is_debug_types)
11902 {
11903 const struct dwp_hash_table *dwp_htab =
11904 is_debug_types ? dwp_file->tus : dwp_file->cus;
11905 bfd *dbfd = dwp_file->dbfd.get ();
11906 uint32_t mask = dwp_htab->nr_slots - 1;
11907 uint32_t hash = signature & mask;
11908 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11909 unsigned int i;
11910 void **slot;
11911 struct dwo_unit find_dwo_cu;
11912
11913 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11914 find_dwo_cu.signature = signature;
11915 slot = htab_find_slot (is_debug_types
11916 ? dwp_file->loaded_tus.get ()
11917 : dwp_file->loaded_cus.get (),
11918 &find_dwo_cu, INSERT);
11919
11920 if (*slot != NULL)
11921 return (struct dwo_unit *) *slot;
11922
11923 /* Use a for loop so that we don't loop forever on bad debug info. */
11924 for (i = 0; i < dwp_htab->nr_slots; ++i)
11925 {
11926 ULONGEST signature_in_table;
11927
11928 signature_in_table =
11929 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11930 if (signature_in_table == signature)
11931 {
11932 uint32_t unit_index =
11933 read_4_bytes (dbfd,
11934 dwp_htab->unit_table + hash * sizeof (uint32_t));
11935
11936 if (dwp_file->version == 1)
11937 {
11938 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11939 dwp_file, unit_index,
11940 comp_dir, signature,
11941 is_debug_types);
11942 }
11943 else
11944 {
11945 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11946 dwp_file, unit_index,
11947 comp_dir, signature,
11948 is_debug_types);
11949 }
11950 return (struct dwo_unit *) *slot;
11951 }
11952 if (signature_in_table == 0)
11953 return NULL;
11954 hash = (hash + hash2) & mask;
11955 }
11956
11957 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11958 " [in module %s]"),
11959 dwp_file->name);
11960 }
11961
11962 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11963 Open the file specified by FILE_NAME and hand it off to BFD for
11964 preliminary analysis. Return a newly initialized bfd *, which
11965 includes a canonicalized copy of FILE_NAME.
11966 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11967 SEARCH_CWD is true if the current directory is to be searched.
11968 It will be searched before debug-file-directory.
11969 If successful, the file is added to the bfd include table of the
11970 objfile's bfd (see gdb_bfd_record_inclusion).
11971 If unable to find/open the file, return NULL.
11972 NOTE: This function is derived from symfile_bfd_open. */
11973
11974 static gdb_bfd_ref_ptr
11975 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
11976 const char *file_name, int is_dwp, int search_cwd)
11977 {
11978 int desc;
11979 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11980 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11981 to debug_file_directory. */
11982 const char *search_path;
11983 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
11984
11985 gdb::unique_xmalloc_ptr<char> search_path_holder;
11986 if (search_cwd)
11987 {
11988 if (*debug_file_directory != '\0')
11989 {
11990 search_path_holder.reset (concat (".", dirname_separator_string,
11991 debug_file_directory,
11992 (char *) NULL));
11993 search_path = search_path_holder.get ();
11994 }
11995 else
11996 search_path = ".";
11997 }
11998 else
11999 search_path = debug_file_directory;
12000
12001 openp_flags flags = OPF_RETURN_REALPATH;
12002 if (is_dwp)
12003 flags |= OPF_SEARCH_IN_PATH;
12004
12005 gdb::unique_xmalloc_ptr<char> absolute_name;
12006 desc = openp (search_path, flags, file_name,
12007 O_RDONLY | O_BINARY, &absolute_name);
12008 if (desc < 0)
12009 return NULL;
12010
12011 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12012 gnutarget, desc));
12013 if (sym_bfd == NULL)
12014 return NULL;
12015 bfd_set_cacheable (sym_bfd.get (), 1);
12016
12017 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12018 return NULL;
12019
12020 /* Success. Record the bfd as having been included by the objfile's bfd.
12021 This is important because things like demangled_names_hash lives in the
12022 objfile's per_bfd space and may have references to things like symbol
12023 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12024 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12025
12026 return sym_bfd;
12027 }
12028
12029 /* Try to open DWO file FILE_NAME.
12030 COMP_DIR is the DW_AT_comp_dir attribute.
12031 The result is the bfd handle of the file.
12032 If there is a problem finding or opening the file, return NULL.
12033 Upon success, the canonicalized path of the file is stored in the bfd,
12034 same as symfile_bfd_open. */
12035
12036 static gdb_bfd_ref_ptr
12037 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12038 const char *file_name, const char *comp_dir)
12039 {
12040 if (IS_ABSOLUTE_PATH (file_name))
12041 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12042 0 /*is_dwp*/, 0 /*search_cwd*/);
12043
12044 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12045
12046 if (comp_dir != NULL)
12047 {
12048 gdb::unique_xmalloc_ptr<char> path_to_try
12049 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12050
12051 /* NOTE: If comp_dir is a relative path, this will also try the
12052 search path, which seems useful. */
12053 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12054 path_to_try.get (),
12055 0 /*is_dwp*/,
12056 1 /*search_cwd*/));
12057 if (abfd != NULL)
12058 return abfd;
12059 }
12060
12061 /* That didn't work, try debug-file-directory, which, despite its name,
12062 is a list of paths. */
12063
12064 if (*debug_file_directory == '\0')
12065 return NULL;
12066
12067 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12068 0 /*is_dwp*/, 1 /*search_cwd*/);
12069 }
12070
12071 /* This function is mapped across the sections and remembers the offset and
12072 size of each of the DWO debugging sections we are interested in. */
12073
12074 static void
12075 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12076 {
12077 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12078 const struct dwop_section_names *names = &dwop_section_names;
12079
12080 if (section_is_p (sectp->name, &names->abbrev_dwo))
12081 {
12082 dwo_sections->abbrev.s.section = sectp;
12083 dwo_sections->abbrev.size = bfd_section_size (sectp);
12084 }
12085 else if (section_is_p (sectp->name, &names->info_dwo))
12086 {
12087 dwo_sections->info.s.section = sectp;
12088 dwo_sections->info.size = bfd_section_size (sectp);
12089 }
12090 else if (section_is_p (sectp->name, &names->line_dwo))
12091 {
12092 dwo_sections->line.s.section = sectp;
12093 dwo_sections->line.size = bfd_section_size (sectp);
12094 }
12095 else if (section_is_p (sectp->name, &names->loc_dwo))
12096 {
12097 dwo_sections->loc.s.section = sectp;
12098 dwo_sections->loc.size = bfd_section_size (sectp);
12099 }
12100 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12101 {
12102 dwo_sections->macinfo.s.section = sectp;
12103 dwo_sections->macinfo.size = bfd_section_size (sectp);
12104 }
12105 else if (section_is_p (sectp->name, &names->macro_dwo))
12106 {
12107 dwo_sections->macro.s.section = sectp;
12108 dwo_sections->macro.size = bfd_section_size (sectp);
12109 }
12110 else if (section_is_p (sectp->name, &names->str_dwo))
12111 {
12112 dwo_sections->str.s.section = sectp;
12113 dwo_sections->str.size = bfd_section_size (sectp);
12114 }
12115 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12116 {
12117 dwo_sections->str_offsets.s.section = sectp;
12118 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12119 }
12120 else if (section_is_p (sectp->name, &names->types_dwo))
12121 {
12122 struct dwarf2_section_info type_section;
12123
12124 memset (&type_section, 0, sizeof (type_section));
12125 type_section.s.section = sectp;
12126 type_section.size = bfd_section_size (sectp);
12127 dwo_sections->types.push_back (type_section);
12128 }
12129 }
12130
12131 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12132 by PER_CU. This is for the non-DWP case.
12133 The result is NULL if DWO_NAME can't be found. */
12134
12135 static struct dwo_file *
12136 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12137 const char *dwo_name, const char *comp_dir)
12138 {
12139 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12140
12141 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12142 if (dbfd == NULL)
12143 {
12144 if (dwarf_read_debug)
12145 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12146 return NULL;
12147 }
12148
12149 dwo_file_up dwo_file (new struct dwo_file);
12150 dwo_file->dwo_name = dwo_name;
12151 dwo_file->comp_dir = comp_dir;
12152 dwo_file->dbfd = std::move (dbfd);
12153
12154 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12155 &dwo_file->sections);
12156
12157 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12158 dwo_file->sections.info, dwo_file->cus);
12159
12160 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12161 dwo_file->sections.types, dwo_file->tus);
12162
12163 if (dwarf_read_debug)
12164 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12165
12166 return dwo_file.release ();
12167 }
12168
12169 /* This function is mapped across the sections and remembers the offset and
12170 size of each of the DWP debugging sections common to version 1 and 2 that
12171 we are interested in. */
12172
12173 static void
12174 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12175 void *dwp_file_ptr)
12176 {
12177 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12178 const struct dwop_section_names *names = &dwop_section_names;
12179 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12180
12181 /* Record the ELF section number for later lookup: this is what the
12182 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12183 gdb_assert (elf_section_nr < dwp_file->num_sections);
12184 dwp_file->elf_sections[elf_section_nr] = sectp;
12185
12186 /* Look for specific sections that we need. */
12187 if (section_is_p (sectp->name, &names->str_dwo))
12188 {
12189 dwp_file->sections.str.s.section = sectp;
12190 dwp_file->sections.str.size = bfd_section_size (sectp);
12191 }
12192 else if (section_is_p (sectp->name, &names->cu_index))
12193 {
12194 dwp_file->sections.cu_index.s.section = sectp;
12195 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12196 }
12197 else if (section_is_p (sectp->name, &names->tu_index))
12198 {
12199 dwp_file->sections.tu_index.s.section = sectp;
12200 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12201 }
12202 }
12203
12204 /* This function is mapped across the sections and remembers the offset and
12205 size of each of the DWP version 2 debugging sections that we are interested
12206 in. This is split into a separate function because we don't know if we
12207 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12208
12209 static void
12210 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12211 {
12212 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12213 const struct dwop_section_names *names = &dwop_section_names;
12214 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12215
12216 /* Record the ELF section number for later lookup: this is what the
12217 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12218 gdb_assert (elf_section_nr < dwp_file->num_sections);
12219 dwp_file->elf_sections[elf_section_nr] = sectp;
12220
12221 /* Look for specific sections that we need. */
12222 if (section_is_p (sectp->name, &names->abbrev_dwo))
12223 {
12224 dwp_file->sections.abbrev.s.section = sectp;
12225 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12226 }
12227 else if (section_is_p (sectp->name, &names->info_dwo))
12228 {
12229 dwp_file->sections.info.s.section = sectp;
12230 dwp_file->sections.info.size = bfd_section_size (sectp);
12231 }
12232 else if (section_is_p (sectp->name, &names->line_dwo))
12233 {
12234 dwp_file->sections.line.s.section = sectp;
12235 dwp_file->sections.line.size = bfd_section_size (sectp);
12236 }
12237 else if (section_is_p (sectp->name, &names->loc_dwo))
12238 {
12239 dwp_file->sections.loc.s.section = sectp;
12240 dwp_file->sections.loc.size = bfd_section_size (sectp);
12241 }
12242 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12243 {
12244 dwp_file->sections.macinfo.s.section = sectp;
12245 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12246 }
12247 else if (section_is_p (sectp->name, &names->macro_dwo))
12248 {
12249 dwp_file->sections.macro.s.section = sectp;
12250 dwp_file->sections.macro.size = bfd_section_size (sectp);
12251 }
12252 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12253 {
12254 dwp_file->sections.str_offsets.s.section = sectp;
12255 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12256 }
12257 else if (section_is_p (sectp->name, &names->types_dwo))
12258 {
12259 dwp_file->sections.types.s.section = sectp;
12260 dwp_file->sections.types.size = bfd_section_size (sectp);
12261 }
12262 }
12263
12264 /* Hash function for dwp_file loaded CUs/TUs. */
12265
12266 static hashval_t
12267 hash_dwp_loaded_cutus (const void *item)
12268 {
12269 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12270
12271 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12272 return dwo_unit->signature;
12273 }
12274
12275 /* Equality function for dwp_file loaded CUs/TUs. */
12276
12277 static int
12278 eq_dwp_loaded_cutus (const void *a, const void *b)
12279 {
12280 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12281 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12282
12283 return dua->signature == dub->signature;
12284 }
12285
12286 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12287
12288 static htab_up
12289 allocate_dwp_loaded_cutus_table ()
12290 {
12291 return htab_up (htab_create_alloc (3,
12292 hash_dwp_loaded_cutus,
12293 eq_dwp_loaded_cutus,
12294 NULL, xcalloc, xfree));
12295 }
12296
12297 /* Try to open DWP file FILE_NAME.
12298 The result is the bfd handle of the file.
12299 If there is a problem finding or opening the file, return NULL.
12300 Upon success, the canonicalized path of the file is stored in the bfd,
12301 same as symfile_bfd_open. */
12302
12303 static gdb_bfd_ref_ptr
12304 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12305 const char *file_name)
12306 {
12307 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12308 1 /*is_dwp*/,
12309 1 /*search_cwd*/));
12310 if (abfd != NULL)
12311 return abfd;
12312
12313 /* Work around upstream bug 15652.
12314 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12315 [Whether that's a "bug" is debatable, but it is getting in our way.]
12316 We have no real idea where the dwp file is, because gdb's realpath-ing
12317 of the executable's path may have discarded the needed info.
12318 [IWBN if the dwp file name was recorded in the executable, akin to
12319 .gnu_debuglink, but that doesn't exist yet.]
12320 Strip the directory from FILE_NAME and search again. */
12321 if (*debug_file_directory != '\0')
12322 {
12323 /* Don't implicitly search the current directory here.
12324 If the user wants to search "." to handle this case,
12325 it must be added to debug-file-directory. */
12326 return try_open_dwop_file (dwarf2_per_objfile,
12327 lbasename (file_name), 1 /*is_dwp*/,
12328 0 /*search_cwd*/);
12329 }
12330
12331 return NULL;
12332 }
12333
12334 /* Initialize the use of the DWP file for the current objfile.
12335 By convention the name of the DWP file is ${objfile}.dwp.
12336 The result is NULL if it can't be found. */
12337
12338 static std::unique_ptr<struct dwp_file>
12339 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12340 {
12341 struct objfile *objfile = dwarf2_per_objfile->objfile;
12342
12343 /* Try to find first .dwp for the binary file before any symbolic links
12344 resolving. */
12345
12346 /* If the objfile is a debug file, find the name of the real binary
12347 file and get the name of dwp file from there. */
12348 std::string dwp_name;
12349 if (objfile->separate_debug_objfile_backlink != NULL)
12350 {
12351 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12352 const char *backlink_basename = lbasename (backlink->original_name);
12353
12354 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12355 }
12356 else
12357 dwp_name = objfile->original_name;
12358
12359 dwp_name += ".dwp";
12360
12361 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12362 if (dbfd == NULL
12363 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12364 {
12365 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12366 dwp_name = objfile_name (objfile);
12367 dwp_name += ".dwp";
12368 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12369 }
12370
12371 if (dbfd == NULL)
12372 {
12373 if (dwarf_read_debug)
12374 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12375 return std::unique_ptr<dwp_file> ();
12376 }
12377
12378 const char *name = bfd_get_filename (dbfd.get ());
12379 std::unique_ptr<struct dwp_file> dwp_file
12380 (new struct dwp_file (name, std::move (dbfd)));
12381
12382 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12383 dwp_file->elf_sections =
12384 OBSTACK_CALLOC (&objfile->objfile_obstack,
12385 dwp_file->num_sections, asection *);
12386
12387 bfd_map_over_sections (dwp_file->dbfd.get (),
12388 dwarf2_locate_common_dwp_sections,
12389 dwp_file.get ());
12390
12391 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12392 0);
12393
12394 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12395 1);
12396
12397 /* The DWP file version is stored in the hash table. Oh well. */
12398 if (dwp_file->cus && dwp_file->tus
12399 && dwp_file->cus->version != dwp_file->tus->version)
12400 {
12401 /* Technically speaking, we should try to limp along, but this is
12402 pretty bizarre. We use pulongest here because that's the established
12403 portability solution (e.g, we cannot use %u for uint32_t). */
12404 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12405 " TU version %s [in DWP file %s]"),
12406 pulongest (dwp_file->cus->version),
12407 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12408 }
12409
12410 if (dwp_file->cus)
12411 dwp_file->version = dwp_file->cus->version;
12412 else if (dwp_file->tus)
12413 dwp_file->version = dwp_file->tus->version;
12414 else
12415 dwp_file->version = 2;
12416
12417 if (dwp_file->version == 2)
12418 bfd_map_over_sections (dwp_file->dbfd.get (),
12419 dwarf2_locate_v2_dwp_sections,
12420 dwp_file.get ());
12421
12422 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12423 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12424
12425 if (dwarf_read_debug)
12426 {
12427 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12428 fprintf_unfiltered (gdb_stdlog,
12429 " %s CUs, %s TUs\n",
12430 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12431 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12432 }
12433
12434 return dwp_file;
12435 }
12436
12437 /* Wrapper around open_and_init_dwp_file, only open it once. */
12438
12439 static struct dwp_file *
12440 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12441 {
12442 if (! dwarf2_per_objfile->dwp_checked)
12443 {
12444 dwarf2_per_objfile->dwp_file
12445 = open_and_init_dwp_file (dwarf2_per_objfile);
12446 dwarf2_per_objfile->dwp_checked = 1;
12447 }
12448 return dwarf2_per_objfile->dwp_file.get ();
12449 }
12450
12451 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12452 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12453 or in the DWP file for the objfile, referenced by THIS_UNIT.
12454 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12455 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12456
12457 This is called, for example, when wanting to read a variable with a
12458 complex location. Therefore we don't want to do file i/o for every call.
12459 Therefore we don't want to look for a DWO file on every call.
12460 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12461 then we check if we've already seen DWO_NAME, and only THEN do we check
12462 for a DWO file.
12463
12464 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12465 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12466
12467 static struct dwo_unit *
12468 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12469 const char *dwo_name, const char *comp_dir,
12470 ULONGEST signature, int is_debug_types)
12471 {
12472 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12473 struct objfile *objfile = dwarf2_per_objfile->objfile;
12474 const char *kind = is_debug_types ? "TU" : "CU";
12475 void **dwo_file_slot;
12476 struct dwo_file *dwo_file;
12477 struct dwp_file *dwp_file;
12478
12479 /* First see if there's a DWP file.
12480 If we have a DWP file but didn't find the DWO inside it, don't
12481 look for the original DWO file. It makes gdb behave differently
12482 depending on whether one is debugging in the build tree. */
12483
12484 dwp_file = get_dwp_file (dwarf2_per_objfile);
12485 if (dwp_file != NULL)
12486 {
12487 const struct dwp_hash_table *dwp_htab =
12488 is_debug_types ? dwp_file->tus : dwp_file->cus;
12489
12490 if (dwp_htab != NULL)
12491 {
12492 struct dwo_unit *dwo_cutu =
12493 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12494 signature, is_debug_types);
12495
12496 if (dwo_cutu != NULL)
12497 {
12498 if (dwarf_read_debug)
12499 {
12500 fprintf_unfiltered (gdb_stdlog,
12501 "Virtual DWO %s %s found: @%s\n",
12502 kind, hex_string (signature),
12503 host_address_to_string (dwo_cutu));
12504 }
12505 return dwo_cutu;
12506 }
12507 }
12508 }
12509 else
12510 {
12511 /* No DWP file, look for the DWO file. */
12512
12513 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12514 dwo_name, comp_dir);
12515 if (*dwo_file_slot == NULL)
12516 {
12517 /* Read in the file and build a table of the CUs/TUs it contains. */
12518 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12519 }
12520 /* NOTE: This will be NULL if unable to open the file. */
12521 dwo_file = (struct dwo_file *) *dwo_file_slot;
12522
12523 if (dwo_file != NULL)
12524 {
12525 struct dwo_unit *dwo_cutu = NULL;
12526
12527 if (is_debug_types && dwo_file->tus)
12528 {
12529 struct dwo_unit find_dwo_cutu;
12530
12531 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12532 find_dwo_cutu.signature = signature;
12533 dwo_cutu
12534 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12535 &find_dwo_cutu);
12536 }
12537 else if (!is_debug_types && dwo_file->cus)
12538 {
12539 struct dwo_unit find_dwo_cutu;
12540
12541 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12542 find_dwo_cutu.signature = signature;
12543 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12544 &find_dwo_cutu);
12545 }
12546
12547 if (dwo_cutu != NULL)
12548 {
12549 if (dwarf_read_debug)
12550 {
12551 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12552 kind, dwo_name, hex_string (signature),
12553 host_address_to_string (dwo_cutu));
12554 }
12555 return dwo_cutu;
12556 }
12557 }
12558 }
12559
12560 /* We didn't find it. This could mean a dwo_id mismatch, or
12561 someone deleted the DWO/DWP file, or the search path isn't set up
12562 correctly to find the file. */
12563
12564 if (dwarf_read_debug)
12565 {
12566 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12567 kind, dwo_name, hex_string (signature));
12568 }
12569
12570 /* This is a warning and not a complaint because it can be caused by
12571 pilot error (e.g., user accidentally deleting the DWO). */
12572 {
12573 /* Print the name of the DWP file if we looked there, helps the user
12574 better diagnose the problem. */
12575 std::string dwp_text;
12576
12577 if (dwp_file != NULL)
12578 dwp_text = string_printf (" [in DWP file %s]",
12579 lbasename (dwp_file->name));
12580
12581 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12582 " [in module %s]"),
12583 kind, dwo_name, hex_string (signature),
12584 dwp_text.c_str (),
12585 this_unit->is_debug_types ? "TU" : "CU",
12586 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12587 }
12588 return NULL;
12589 }
12590
12591 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12592 See lookup_dwo_cutu_unit for details. */
12593
12594 static struct dwo_unit *
12595 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12596 const char *dwo_name, const char *comp_dir,
12597 ULONGEST signature)
12598 {
12599 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12600 }
12601
12602 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12603 See lookup_dwo_cutu_unit for details. */
12604
12605 static struct dwo_unit *
12606 lookup_dwo_type_unit (struct signatured_type *this_tu,
12607 const char *dwo_name, const char *comp_dir)
12608 {
12609 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12610 }
12611
12612 /* Traversal function for queue_and_load_all_dwo_tus. */
12613
12614 static int
12615 queue_and_load_dwo_tu (void **slot, void *info)
12616 {
12617 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12618 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12619 ULONGEST signature = dwo_unit->signature;
12620 struct signatured_type *sig_type =
12621 lookup_dwo_signatured_type (per_cu->cu, signature);
12622
12623 if (sig_type != NULL)
12624 {
12625 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12626
12627 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12628 a real dependency of PER_CU on SIG_TYPE. That is detected later
12629 while processing PER_CU. */
12630 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12631 load_full_type_unit (sig_cu);
12632 per_cu->imported_symtabs_push (sig_cu);
12633 }
12634
12635 return 1;
12636 }
12637
12638 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12639 The DWO may have the only definition of the type, though it may not be
12640 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12641 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12642
12643 static void
12644 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12645 {
12646 struct dwo_unit *dwo_unit;
12647 struct dwo_file *dwo_file;
12648
12649 gdb_assert (!per_cu->is_debug_types);
12650 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12651 gdb_assert (per_cu->cu != NULL);
12652
12653 dwo_unit = per_cu->cu->dwo_unit;
12654 gdb_assert (dwo_unit != NULL);
12655
12656 dwo_file = dwo_unit->dwo_file;
12657 if (dwo_file->tus != NULL)
12658 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12659 per_cu);
12660 }
12661
12662 /* Read in various DIEs. */
12663
12664 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12665 Inherit only the children of the DW_AT_abstract_origin DIE not being
12666 already referenced by DW_AT_abstract_origin from the children of the
12667 current DIE. */
12668
12669 static void
12670 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12671 {
12672 struct die_info *child_die;
12673 sect_offset *offsetp;
12674 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12675 struct die_info *origin_die;
12676 /* Iterator of the ORIGIN_DIE children. */
12677 struct die_info *origin_child_die;
12678 struct attribute *attr;
12679 struct dwarf2_cu *origin_cu;
12680 struct pending **origin_previous_list_in_scope;
12681
12682 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12683 if (!attr)
12684 return;
12685
12686 /* Note that following die references may follow to a die in a
12687 different cu. */
12688
12689 origin_cu = cu;
12690 origin_die = follow_die_ref (die, attr, &origin_cu);
12691
12692 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12693 symbols in. */
12694 origin_previous_list_in_scope = origin_cu->list_in_scope;
12695 origin_cu->list_in_scope = cu->list_in_scope;
12696
12697 if (die->tag != origin_die->tag
12698 && !(die->tag == DW_TAG_inlined_subroutine
12699 && origin_die->tag == DW_TAG_subprogram))
12700 complaint (_("DIE %s and its abstract origin %s have different tags"),
12701 sect_offset_str (die->sect_off),
12702 sect_offset_str (origin_die->sect_off));
12703
12704 std::vector<sect_offset> offsets;
12705
12706 for (child_die = die->child;
12707 child_die && child_die->tag;
12708 child_die = sibling_die (child_die))
12709 {
12710 struct die_info *child_origin_die;
12711 struct dwarf2_cu *child_origin_cu;
12712
12713 /* We are trying to process concrete instance entries:
12714 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12715 it's not relevant to our analysis here. i.e. detecting DIEs that are
12716 present in the abstract instance but not referenced in the concrete
12717 one. */
12718 if (child_die->tag == DW_TAG_call_site
12719 || child_die->tag == DW_TAG_GNU_call_site)
12720 continue;
12721
12722 /* For each CHILD_DIE, find the corresponding child of
12723 ORIGIN_DIE. If there is more than one layer of
12724 DW_AT_abstract_origin, follow them all; there shouldn't be,
12725 but GCC versions at least through 4.4 generate this (GCC PR
12726 40573). */
12727 child_origin_die = child_die;
12728 child_origin_cu = cu;
12729 while (1)
12730 {
12731 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12732 child_origin_cu);
12733 if (attr == NULL)
12734 break;
12735 child_origin_die = follow_die_ref (child_origin_die, attr,
12736 &child_origin_cu);
12737 }
12738
12739 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12740 counterpart may exist. */
12741 if (child_origin_die != child_die)
12742 {
12743 if (child_die->tag != child_origin_die->tag
12744 && !(child_die->tag == DW_TAG_inlined_subroutine
12745 && child_origin_die->tag == DW_TAG_subprogram))
12746 complaint (_("Child DIE %s and its abstract origin %s have "
12747 "different tags"),
12748 sect_offset_str (child_die->sect_off),
12749 sect_offset_str (child_origin_die->sect_off));
12750 if (child_origin_die->parent != origin_die)
12751 complaint (_("Child DIE %s and its abstract origin %s have "
12752 "different parents"),
12753 sect_offset_str (child_die->sect_off),
12754 sect_offset_str (child_origin_die->sect_off));
12755 else
12756 offsets.push_back (child_origin_die->sect_off);
12757 }
12758 }
12759 std::sort (offsets.begin (), offsets.end ());
12760 sect_offset *offsets_end = offsets.data () + offsets.size ();
12761 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12762 if (offsetp[-1] == *offsetp)
12763 complaint (_("Multiple children of DIE %s refer "
12764 "to DIE %s as their abstract origin"),
12765 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12766
12767 offsetp = offsets.data ();
12768 origin_child_die = origin_die->child;
12769 while (origin_child_die && origin_child_die->tag)
12770 {
12771 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12772 while (offsetp < offsets_end
12773 && *offsetp < origin_child_die->sect_off)
12774 offsetp++;
12775 if (offsetp >= offsets_end
12776 || *offsetp > origin_child_die->sect_off)
12777 {
12778 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12779 Check whether we're already processing ORIGIN_CHILD_DIE.
12780 This can happen with mutually referenced abstract_origins.
12781 PR 16581. */
12782 if (!origin_child_die->in_process)
12783 process_die (origin_child_die, origin_cu);
12784 }
12785 origin_child_die = sibling_die (origin_child_die);
12786 }
12787 origin_cu->list_in_scope = origin_previous_list_in_scope;
12788
12789 if (cu != origin_cu)
12790 compute_delayed_physnames (origin_cu);
12791 }
12792
12793 static void
12794 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12795 {
12796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12797 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12798 struct context_stack *newobj;
12799 CORE_ADDR lowpc;
12800 CORE_ADDR highpc;
12801 struct die_info *child_die;
12802 struct attribute *attr, *call_line, *call_file;
12803 const char *name;
12804 CORE_ADDR baseaddr;
12805 struct block *block;
12806 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12807 std::vector<struct symbol *> template_args;
12808 struct template_symbol *templ_func = NULL;
12809
12810 if (inlined_func)
12811 {
12812 /* If we do not have call site information, we can't show the
12813 caller of this inlined function. That's too confusing, so
12814 only use the scope for local variables. */
12815 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12816 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12817 if (call_line == NULL || call_file == NULL)
12818 {
12819 read_lexical_block_scope (die, cu);
12820 return;
12821 }
12822 }
12823
12824 baseaddr = objfile->text_section_offset ();
12825
12826 name = dwarf2_name (die, cu);
12827
12828 /* Ignore functions with missing or empty names. These are actually
12829 illegal according to the DWARF standard. */
12830 if (name == NULL)
12831 {
12832 complaint (_("missing name for subprogram DIE at %s"),
12833 sect_offset_str (die->sect_off));
12834 return;
12835 }
12836
12837 /* Ignore functions with missing or invalid low and high pc attributes. */
12838 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12839 <= PC_BOUNDS_INVALID)
12840 {
12841 attr = dwarf2_attr (die, DW_AT_external, cu);
12842 if (!attr || !DW_UNSND (attr))
12843 complaint (_("cannot get low and high bounds "
12844 "for subprogram DIE at %s"),
12845 sect_offset_str (die->sect_off));
12846 return;
12847 }
12848
12849 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12850 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12851
12852 /* If we have any template arguments, then we must allocate a
12853 different sort of symbol. */
12854 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12855 {
12856 if (child_die->tag == DW_TAG_template_type_param
12857 || child_die->tag == DW_TAG_template_value_param)
12858 {
12859 templ_func = allocate_template_symbol (objfile);
12860 templ_func->subclass = SYMBOL_TEMPLATE;
12861 break;
12862 }
12863 }
12864
12865 newobj = cu->get_builder ()->push_context (0, lowpc);
12866 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12867 (struct symbol *) templ_func);
12868
12869 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12870 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12871 cu->language);
12872
12873 /* If there is a location expression for DW_AT_frame_base, record
12874 it. */
12875 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12876 if (attr != nullptr)
12877 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12878
12879 /* If there is a location for the static link, record it. */
12880 newobj->static_link = NULL;
12881 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12882 if (attr != nullptr)
12883 {
12884 newobj->static_link
12885 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12886 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12887 cu->per_cu->addr_type ());
12888 }
12889
12890 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12891
12892 if (die->child != NULL)
12893 {
12894 child_die = die->child;
12895 while (child_die && child_die->tag)
12896 {
12897 if (child_die->tag == DW_TAG_template_type_param
12898 || child_die->tag == DW_TAG_template_value_param)
12899 {
12900 struct symbol *arg = new_symbol (child_die, NULL, cu);
12901
12902 if (arg != NULL)
12903 template_args.push_back (arg);
12904 }
12905 else
12906 process_die (child_die, cu);
12907 child_die = sibling_die (child_die);
12908 }
12909 }
12910
12911 inherit_abstract_dies (die, cu);
12912
12913 /* If we have a DW_AT_specification, we might need to import using
12914 directives from the context of the specification DIE. See the
12915 comment in determine_prefix. */
12916 if (cu->language == language_cplus
12917 && dwarf2_attr (die, DW_AT_specification, cu))
12918 {
12919 struct dwarf2_cu *spec_cu = cu;
12920 struct die_info *spec_die = die_specification (die, &spec_cu);
12921
12922 while (spec_die)
12923 {
12924 child_die = spec_die->child;
12925 while (child_die && child_die->tag)
12926 {
12927 if (child_die->tag == DW_TAG_imported_module)
12928 process_die (child_die, spec_cu);
12929 child_die = sibling_die (child_die);
12930 }
12931
12932 /* In some cases, GCC generates specification DIEs that
12933 themselves contain DW_AT_specification attributes. */
12934 spec_die = die_specification (spec_die, &spec_cu);
12935 }
12936 }
12937
12938 struct context_stack cstk = cu->get_builder ()->pop_context ();
12939 /* Make a block for the local symbols within. */
12940 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12941 cstk.static_link, lowpc, highpc);
12942
12943 /* For C++, set the block's scope. */
12944 if ((cu->language == language_cplus
12945 || cu->language == language_fortran
12946 || cu->language == language_d
12947 || cu->language == language_rust)
12948 && cu->processing_has_namespace_info)
12949 block_set_scope (block, determine_prefix (die, cu),
12950 &objfile->objfile_obstack);
12951
12952 /* If we have address ranges, record them. */
12953 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12954
12955 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12956
12957 /* Attach template arguments to function. */
12958 if (!template_args.empty ())
12959 {
12960 gdb_assert (templ_func != NULL);
12961
12962 templ_func->n_template_arguments = template_args.size ();
12963 templ_func->template_arguments
12964 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12965 templ_func->n_template_arguments);
12966 memcpy (templ_func->template_arguments,
12967 template_args.data (),
12968 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12969
12970 /* Make sure that the symtab is set on the new symbols. Even
12971 though they don't appear in this symtab directly, other parts
12972 of gdb assume that symbols do, and this is reasonably
12973 true. */
12974 for (symbol *sym : template_args)
12975 symbol_set_symtab (sym, symbol_symtab (templ_func));
12976 }
12977
12978 /* In C++, we can have functions nested inside functions (e.g., when
12979 a function declares a class that has methods). This means that
12980 when we finish processing a function scope, we may need to go
12981 back to building a containing block's symbol lists. */
12982 *cu->get_builder ()->get_local_symbols () = cstk.locals;
12983 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
12984
12985 /* If we've finished processing a top-level function, subsequent
12986 symbols go in the file symbol list. */
12987 if (cu->get_builder ()->outermost_context_p ())
12988 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
12989 }
12990
12991 /* Process all the DIES contained within a lexical block scope. Start
12992 a new scope, process the dies, and then close the scope. */
12993
12994 static void
12995 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
12996 {
12997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12998 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12999 CORE_ADDR lowpc, highpc;
13000 struct die_info *child_die;
13001 CORE_ADDR baseaddr;
13002
13003 baseaddr = objfile->text_section_offset ();
13004
13005 /* Ignore blocks with missing or invalid low and high pc attributes. */
13006 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13007 as multiple lexical blocks? Handling children in a sane way would
13008 be nasty. Might be easier to properly extend generic blocks to
13009 describe ranges. */
13010 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13011 {
13012 case PC_BOUNDS_NOT_PRESENT:
13013 /* DW_TAG_lexical_block has no attributes, process its children as if
13014 there was no wrapping by that DW_TAG_lexical_block.
13015 GCC does no longer produces such DWARF since GCC r224161. */
13016 for (child_die = die->child;
13017 child_die != NULL && child_die->tag;
13018 child_die = sibling_die (child_die))
13019 process_die (child_die, cu);
13020 return;
13021 case PC_BOUNDS_INVALID:
13022 return;
13023 }
13024 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13025 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13026
13027 cu->get_builder ()->push_context (0, lowpc);
13028 if (die->child != NULL)
13029 {
13030 child_die = die->child;
13031 while (child_die && child_die->tag)
13032 {
13033 process_die (child_die, cu);
13034 child_die = sibling_die (child_die);
13035 }
13036 }
13037 inherit_abstract_dies (die, cu);
13038 struct context_stack cstk = cu->get_builder ()->pop_context ();
13039
13040 if (*cu->get_builder ()->get_local_symbols () != NULL
13041 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13042 {
13043 struct block *block
13044 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13045 cstk.start_addr, highpc);
13046
13047 /* Note that recording ranges after traversing children, as we
13048 do here, means that recording a parent's ranges entails
13049 walking across all its children's ranges as they appear in
13050 the address map, which is quadratic behavior.
13051
13052 It would be nicer to record the parent's ranges before
13053 traversing its children, simply overriding whatever you find
13054 there. But since we don't even decide whether to create a
13055 block until after we've traversed its children, that's hard
13056 to do. */
13057 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13058 }
13059 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13060 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13061 }
13062
13063 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13064
13065 static void
13066 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13067 {
13068 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13069 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13070 CORE_ADDR pc, baseaddr;
13071 struct attribute *attr;
13072 struct call_site *call_site, call_site_local;
13073 void **slot;
13074 int nparams;
13075 struct die_info *child_die;
13076
13077 baseaddr = objfile->text_section_offset ();
13078
13079 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13080 if (attr == NULL)
13081 {
13082 /* This was a pre-DWARF-5 GNU extension alias
13083 for DW_AT_call_return_pc. */
13084 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13085 }
13086 if (!attr)
13087 {
13088 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13089 "DIE %s [in module %s]"),
13090 sect_offset_str (die->sect_off), objfile_name (objfile));
13091 return;
13092 }
13093 pc = attr->value_as_address () + baseaddr;
13094 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13095
13096 if (cu->call_site_htab == NULL)
13097 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13098 NULL, &objfile->objfile_obstack,
13099 hashtab_obstack_allocate, NULL);
13100 call_site_local.pc = pc;
13101 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13102 if (*slot != NULL)
13103 {
13104 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13105 "DIE %s [in module %s]"),
13106 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13107 objfile_name (objfile));
13108 return;
13109 }
13110
13111 /* Count parameters at the caller. */
13112
13113 nparams = 0;
13114 for (child_die = die->child; child_die && child_die->tag;
13115 child_die = sibling_die (child_die))
13116 {
13117 if (child_die->tag != DW_TAG_call_site_parameter
13118 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13119 {
13120 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13121 "DW_TAG_call_site child DIE %s [in module %s]"),
13122 child_die->tag, sect_offset_str (child_die->sect_off),
13123 objfile_name (objfile));
13124 continue;
13125 }
13126
13127 nparams++;
13128 }
13129
13130 call_site
13131 = ((struct call_site *)
13132 obstack_alloc (&objfile->objfile_obstack,
13133 sizeof (*call_site)
13134 + (sizeof (*call_site->parameter) * (nparams - 1))));
13135 *slot = call_site;
13136 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13137 call_site->pc = pc;
13138
13139 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13140 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13141 {
13142 struct die_info *func_die;
13143
13144 /* Skip also over DW_TAG_inlined_subroutine. */
13145 for (func_die = die->parent;
13146 func_die && func_die->tag != DW_TAG_subprogram
13147 && func_die->tag != DW_TAG_subroutine_type;
13148 func_die = func_die->parent);
13149
13150 /* DW_AT_call_all_calls is a superset
13151 of DW_AT_call_all_tail_calls. */
13152 if (func_die
13153 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13154 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13155 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13156 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13157 {
13158 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13159 not complete. But keep CALL_SITE for look ups via call_site_htab,
13160 both the initial caller containing the real return address PC and
13161 the final callee containing the current PC of a chain of tail
13162 calls do not need to have the tail call list complete. But any
13163 function candidate for a virtual tail call frame searched via
13164 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13165 determined unambiguously. */
13166 }
13167 else
13168 {
13169 struct type *func_type = NULL;
13170
13171 if (func_die)
13172 func_type = get_die_type (func_die, cu);
13173 if (func_type != NULL)
13174 {
13175 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13176
13177 /* Enlist this call site to the function. */
13178 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13179 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13180 }
13181 else
13182 complaint (_("Cannot find function owning DW_TAG_call_site "
13183 "DIE %s [in module %s]"),
13184 sect_offset_str (die->sect_off), objfile_name (objfile));
13185 }
13186 }
13187
13188 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13189 if (attr == NULL)
13190 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13191 if (attr == NULL)
13192 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13193 if (attr == NULL)
13194 {
13195 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13196 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13197 }
13198 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13199 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13200 /* Keep NULL DWARF_BLOCK. */;
13201 else if (attr->form_is_block ())
13202 {
13203 struct dwarf2_locexpr_baton *dlbaton;
13204
13205 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13206 dlbaton->data = DW_BLOCK (attr)->data;
13207 dlbaton->size = DW_BLOCK (attr)->size;
13208 dlbaton->per_cu = cu->per_cu;
13209
13210 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13211 }
13212 else if (attr->form_is_ref ())
13213 {
13214 struct dwarf2_cu *target_cu = cu;
13215 struct die_info *target_die;
13216
13217 target_die = follow_die_ref (die, attr, &target_cu);
13218 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13219 if (die_is_declaration (target_die, target_cu))
13220 {
13221 const char *target_physname;
13222
13223 /* Prefer the mangled name; otherwise compute the demangled one. */
13224 target_physname = dw2_linkage_name (target_die, target_cu);
13225 if (target_physname == NULL)
13226 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13227 if (target_physname == NULL)
13228 complaint (_("DW_AT_call_target target DIE has invalid "
13229 "physname, for referencing DIE %s [in module %s]"),
13230 sect_offset_str (die->sect_off), objfile_name (objfile));
13231 else
13232 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13233 }
13234 else
13235 {
13236 CORE_ADDR lowpc;
13237
13238 /* DW_AT_entry_pc should be preferred. */
13239 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13240 <= PC_BOUNDS_INVALID)
13241 complaint (_("DW_AT_call_target target DIE has invalid "
13242 "low pc, for referencing DIE %s [in module %s]"),
13243 sect_offset_str (die->sect_off), objfile_name (objfile));
13244 else
13245 {
13246 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13247 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13248 }
13249 }
13250 }
13251 else
13252 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13253 "block nor reference, for DIE %s [in module %s]"),
13254 sect_offset_str (die->sect_off), objfile_name (objfile));
13255
13256 call_site->per_cu = cu->per_cu;
13257
13258 for (child_die = die->child;
13259 child_die && child_die->tag;
13260 child_die = sibling_die (child_die))
13261 {
13262 struct call_site_parameter *parameter;
13263 struct attribute *loc, *origin;
13264
13265 if (child_die->tag != DW_TAG_call_site_parameter
13266 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13267 {
13268 /* Already printed the complaint above. */
13269 continue;
13270 }
13271
13272 gdb_assert (call_site->parameter_count < nparams);
13273 parameter = &call_site->parameter[call_site->parameter_count];
13274
13275 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13276 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13277 register is contained in DW_AT_call_value. */
13278
13279 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13280 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13281 if (origin == NULL)
13282 {
13283 /* This was a pre-DWARF-5 GNU extension alias
13284 for DW_AT_call_parameter. */
13285 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13286 }
13287 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13288 {
13289 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13290
13291 sect_offset sect_off
13292 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13293 if (!cu->header.offset_in_cu_p (sect_off))
13294 {
13295 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13296 binding can be done only inside one CU. Such referenced DIE
13297 therefore cannot be even moved to DW_TAG_partial_unit. */
13298 complaint (_("DW_AT_call_parameter offset is not in CU for "
13299 "DW_TAG_call_site child DIE %s [in module %s]"),
13300 sect_offset_str (child_die->sect_off),
13301 objfile_name (objfile));
13302 continue;
13303 }
13304 parameter->u.param_cu_off
13305 = (cu_offset) (sect_off - cu->header.sect_off);
13306 }
13307 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13308 {
13309 complaint (_("No DW_FORM_block* DW_AT_location for "
13310 "DW_TAG_call_site child DIE %s [in module %s]"),
13311 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13312 continue;
13313 }
13314 else
13315 {
13316 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13317 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13318 if (parameter->u.dwarf_reg != -1)
13319 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13320 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13321 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13322 &parameter->u.fb_offset))
13323 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13324 else
13325 {
13326 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13327 "for DW_FORM_block* DW_AT_location is supported for "
13328 "DW_TAG_call_site child DIE %s "
13329 "[in module %s]"),
13330 sect_offset_str (child_die->sect_off),
13331 objfile_name (objfile));
13332 continue;
13333 }
13334 }
13335
13336 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13337 if (attr == NULL)
13338 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13339 if (attr == NULL || !attr->form_is_block ())
13340 {
13341 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13342 "DW_TAG_call_site child DIE %s [in module %s]"),
13343 sect_offset_str (child_die->sect_off),
13344 objfile_name (objfile));
13345 continue;
13346 }
13347 parameter->value = DW_BLOCK (attr)->data;
13348 parameter->value_size = DW_BLOCK (attr)->size;
13349
13350 /* Parameters are not pre-cleared by memset above. */
13351 parameter->data_value = NULL;
13352 parameter->data_value_size = 0;
13353 call_site->parameter_count++;
13354
13355 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13356 if (attr == NULL)
13357 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13358 if (attr != nullptr)
13359 {
13360 if (!attr->form_is_block ())
13361 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13362 "DW_TAG_call_site child DIE %s [in module %s]"),
13363 sect_offset_str (child_die->sect_off),
13364 objfile_name (objfile));
13365 else
13366 {
13367 parameter->data_value = DW_BLOCK (attr)->data;
13368 parameter->data_value_size = DW_BLOCK (attr)->size;
13369 }
13370 }
13371 }
13372 }
13373
13374 /* Helper function for read_variable. If DIE represents a virtual
13375 table, then return the type of the concrete object that is
13376 associated with the virtual table. Otherwise, return NULL. */
13377
13378 static struct type *
13379 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13380 {
13381 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13382 if (attr == NULL)
13383 return NULL;
13384
13385 /* Find the type DIE. */
13386 struct die_info *type_die = NULL;
13387 struct dwarf2_cu *type_cu = cu;
13388
13389 if (attr->form_is_ref ())
13390 type_die = follow_die_ref (die, attr, &type_cu);
13391 if (type_die == NULL)
13392 return NULL;
13393
13394 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13395 return NULL;
13396 return die_containing_type (type_die, type_cu);
13397 }
13398
13399 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13400
13401 static void
13402 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13403 {
13404 struct rust_vtable_symbol *storage = NULL;
13405
13406 if (cu->language == language_rust)
13407 {
13408 struct type *containing_type = rust_containing_type (die, cu);
13409
13410 if (containing_type != NULL)
13411 {
13412 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13413
13414 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13415 initialize_objfile_symbol (storage);
13416 storage->concrete_type = containing_type;
13417 storage->subclass = SYMBOL_RUST_VTABLE;
13418 }
13419 }
13420
13421 struct symbol *res = new_symbol (die, NULL, cu, storage);
13422 struct attribute *abstract_origin
13423 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13424 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13425 if (res == NULL && loc && abstract_origin)
13426 {
13427 /* We have a variable without a name, but with a location and an abstract
13428 origin. This may be a concrete instance of an abstract variable
13429 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13430 later. */
13431 struct dwarf2_cu *origin_cu = cu;
13432 struct die_info *origin_die
13433 = follow_die_ref (die, abstract_origin, &origin_cu);
13434 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13435 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13436 }
13437 }
13438
13439 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13440 reading .debug_rnglists.
13441 Callback's type should be:
13442 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13443 Return true if the attributes are present and valid, otherwise,
13444 return false. */
13445
13446 template <typename Callback>
13447 static bool
13448 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13449 Callback &&callback)
13450 {
13451 struct dwarf2_per_objfile *dwarf2_per_objfile
13452 = cu->per_cu->dwarf2_per_objfile;
13453 struct objfile *objfile = dwarf2_per_objfile->objfile;
13454 bfd *obfd = objfile->obfd;
13455 /* Base address selection entry. */
13456 CORE_ADDR base;
13457 int found_base;
13458 const gdb_byte *buffer;
13459 CORE_ADDR baseaddr;
13460 bool overflow = false;
13461
13462 found_base = cu->base_known;
13463 base = cu->base_address;
13464
13465 dwarf2_per_objfile->rnglists.read (objfile);
13466 if (offset >= dwarf2_per_objfile->rnglists.size)
13467 {
13468 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13469 offset);
13470 return false;
13471 }
13472 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13473
13474 baseaddr = objfile->text_section_offset ();
13475
13476 while (1)
13477 {
13478 /* Initialize it due to a false compiler warning. */
13479 CORE_ADDR range_beginning = 0, range_end = 0;
13480 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13481 + dwarf2_per_objfile->rnglists.size);
13482 unsigned int bytes_read;
13483
13484 if (buffer == buf_end)
13485 {
13486 overflow = true;
13487 break;
13488 }
13489 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13490 switch (rlet)
13491 {
13492 case DW_RLE_end_of_list:
13493 break;
13494 case DW_RLE_base_address:
13495 if (buffer + cu->header.addr_size > buf_end)
13496 {
13497 overflow = true;
13498 break;
13499 }
13500 base = cu->header.read_address (obfd, buffer, &bytes_read);
13501 found_base = 1;
13502 buffer += bytes_read;
13503 break;
13504 case DW_RLE_start_length:
13505 if (buffer + cu->header.addr_size > buf_end)
13506 {
13507 overflow = true;
13508 break;
13509 }
13510 range_beginning = cu->header.read_address (obfd, buffer,
13511 &bytes_read);
13512 buffer += bytes_read;
13513 range_end = (range_beginning
13514 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13515 buffer += bytes_read;
13516 if (buffer > buf_end)
13517 {
13518 overflow = true;
13519 break;
13520 }
13521 break;
13522 case DW_RLE_offset_pair:
13523 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13524 buffer += bytes_read;
13525 if (buffer > buf_end)
13526 {
13527 overflow = true;
13528 break;
13529 }
13530 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13531 buffer += bytes_read;
13532 if (buffer > buf_end)
13533 {
13534 overflow = true;
13535 break;
13536 }
13537 break;
13538 case DW_RLE_start_end:
13539 if (buffer + 2 * cu->header.addr_size > buf_end)
13540 {
13541 overflow = true;
13542 break;
13543 }
13544 range_beginning = cu->header.read_address (obfd, buffer,
13545 &bytes_read);
13546 buffer += bytes_read;
13547 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13548 buffer += bytes_read;
13549 break;
13550 default:
13551 complaint (_("Invalid .debug_rnglists data (no base address)"));
13552 return false;
13553 }
13554 if (rlet == DW_RLE_end_of_list || overflow)
13555 break;
13556 if (rlet == DW_RLE_base_address)
13557 continue;
13558
13559 if (!found_base)
13560 {
13561 /* We have no valid base address for the ranges
13562 data. */
13563 complaint (_("Invalid .debug_rnglists data (no base address)"));
13564 return false;
13565 }
13566
13567 if (range_beginning > range_end)
13568 {
13569 /* Inverted range entries are invalid. */
13570 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13571 return false;
13572 }
13573
13574 /* Empty range entries have no effect. */
13575 if (range_beginning == range_end)
13576 continue;
13577
13578 range_beginning += base;
13579 range_end += base;
13580
13581 /* A not-uncommon case of bad debug info.
13582 Don't pollute the addrmap with bad data. */
13583 if (range_beginning + baseaddr == 0
13584 && !dwarf2_per_objfile->has_section_at_zero)
13585 {
13586 complaint (_(".debug_rnglists entry has start address of zero"
13587 " [in module %s]"), objfile_name (objfile));
13588 continue;
13589 }
13590
13591 callback (range_beginning, range_end);
13592 }
13593
13594 if (overflow)
13595 {
13596 complaint (_("Offset %d is not terminated "
13597 "for DW_AT_ranges attribute"),
13598 offset);
13599 return false;
13600 }
13601
13602 return true;
13603 }
13604
13605 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13606 Callback's type should be:
13607 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13608 Return 1 if the attributes are present and valid, otherwise, return 0. */
13609
13610 template <typename Callback>
13611 static int
13612 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13613 Callback &&callback)
13614 {
13615 struct dwarf2_per_objfile *dwarf2_per_objfile
13616 = cu->per_cu->dwarf2_per_objfile;
13617 struct objfile *objfile = dwarf2_per_objfile->objfile;
13618 struct comp_unit_head *cu_header = &cu->header;
13619 bfd *obfd = objfile->obfd;
13620 unsigned int addr_size = cu_header->addr_size;
13621 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13622 /* Base address selection entry. */
13623 CORE_ADDR base;
13624 int found_base;
13625 unsigned int dummy;
13626 const gdb_byte *buffer;
13627 CORE_ADDR baseaddr;
13628
13629 if (cu_header->version >= 5)
13630 return dwarf2_rnglists_process (offset, cu, callback);
13631
13632 found_base = cu->base_known;
13633 base = cu->base_address;
13634
13635 dwarf2_per_objfile->ranges.read (objfile);
13636 if (offset >= dwarf2_per_objfile->ranges.size)
13637 {
13638 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13639 offset);
13640 return 0;
13641 }
13642 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13643
13644 baseaddr = objfile->text_section_offset ();
13645
13646 while (1)
13647 {
13648 CORE_ADDR range_beginning, range_end;
13649
13650 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13651 buffer += addr_size;
13652 range_end = cu->header.read_address (obfd, buffer, &dummy);
13653 buffer += addr_size;
13654 offset += 2 * addr_size;
13655
13656 /* An end of list marker is a pair of zero addresses. */
13657 if (range_beginning == 0 && range_end == 0)
13658 /* Found the end of list entry. */
13659 break;
13660
13661 /* Each base address selection entry is a pair of 2 values.
13662 The first is the largest possible address, the second is
13663 the base address. Check for a base address here. */
13664 if ((range_beginning & mask) == mask)
13665 {
13666 /* If we found the largest possible address, then we already
13667 have the base address in range_end. */
13668 base = range_end;
13669 found_base = 1;
13670 continue;
13671 }
13672
13673 if (!found_base)
13674 {
13675 /* We have no valid base address for the ranges
13676 data. */
13677 complaint (_("Invalid .debug_ranges data (no base address)"));
13678 return 0;
13679 }
13680
13681 if (range_beginning > range_end)
13682 {
13683 /* Inverted range entries are invalid. */
13684 complaint (_("Invalid .debug_ranges data (inverted range)"));
13685 return 0;
13686 }
13687
13688 /* Empty range entries have no effect. */
13689 if (range_beginning == range_end)
13690 continue;
13691
13692 range_beginning += base;
13693 range_end += base;
13694
13695 /* A not-uncommon case of bad debug info.
13696 Don't pollute the addrmap with bad data. */
13697 if (range_beginning + baseaddr == 0
13698 && !dwarf2_per_objfile->has_section_at_zero)
13699 {
13700 complaint (_(".debug_ranges entry has start address of zero"
13701 " [in module %s]"), objfile_name (objfile));
13702 continue;
13703 }
13704
13705 callback (range_beginning, range_end);
13706 }
13707
13708 return 1;
13709 }
13710
13711 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13712 Return 1 if the attributes are present and valid, otherwise, return 0.
13713 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13714
13715 static int
13716 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13717 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13718 dwarf2_psymtab *ranges_pst)
13719 {
13720 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13721 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13722 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13723 int low_set = 0;
13724 CORE_ADDR low = 0;
13725 CORE_ADDR high = 0;
13726 int retval;
13727
13728 retval = dwarf2_ranges_process (offset, cu,
13729 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13730 {
13731 if (ranges_pst != NULL)
13732 {
13733 CORE_ADDR lowpc;
13734 CORE_ADDR highpc;
13735
13736 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13737 range_beginning + baseaddr)
13738 - baseaddr);
13739 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13740 range_end + baseaddr)
13741 - baseaddr);
13742 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13743 lowpc, highpc - 1, ranges_pst);
13744 }
13745
13746 /* FIXME: This is recording everything as a low-high
13747 segment of consecutive addresses. We should have a
13748 data structure for discontiguous block ranges
13749 instead. */
13750 if (! low_set)
13751 {
13752 low = range_beginning;
13753 high = range_end;
13754 low_set = 1;
13755 }
13756 else
13757 {
13758 if (range_beginning < low)
13759 low = range_beginning;
13760 if (range_end > high)
13761 high = range_end;
13762 }
13763 });
13764 if (!retval)
13765 return 0;
13766
13767 if (! low_set)
13768 /* If the first entry is an end-of-list marker, the range
13769 describes an empty scope, i.e. no instructions. */
13770 return 0;
13771
13772 if (low_return)
13773 *low_return = low;
13774 if (high_return)
13775 *high_return = high;
13776 return 1;
13777 }
13778
13779 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13780 definition for the return value. *LOWPC and *HIGHPC are set iff
13781 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13782
13783 static enum pc_bounds_kind
13784 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13785 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13786 dwarf2_psymtab *pst)
13787 {
13788 struct dwarf2_per_objfile *dwarf2_per_objfile
13789 = cu->per_cu->dwarf2_per_objfile;
13790 struct attribute *attr;
13791 struct attribute *attr_high;
13792 CORE_ADDR low = 0;
13793 CORE_ADDR high = 0;
13794 enum pc_bounds_kind ret;
13795
13796 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13797 if (attr_high)
13798 {
13799 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13800 if (attr != nullptr)
13801 {
13802 low = attr->value_as_address ();
13803 high = attr_high->value_as_address ();
13804 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13805 high += low;
13806 }
13807 else
13808 /* Found high w/o low attribute. */
13809 return PC_BOUNDS_INVALID;
13810
13811 /* Found consecutive range of addresses. */
13812 ret = PC_BOUNDS_HIGH_LOW;
13813 }
13814 else
13815 {
13816 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13817 if (attr != NULL)
13818 {
13819 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13820 We take advantage of the fact that DW_AT_ranges does not appear
13821 in DW_TAG_compile_unit of DWO files. */
13822 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13823 unsigned int ranges_offset = (DW_UNSND (attr)
13824 + (need_ranges_base
13825 ? cu->ranges_base
13826 : 0));
13827
13828 /* Value of the DW_AT_ranges attribute is the offset in the
13829 .debug_ranges section. */
13830 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13831 return PC_BOUNDS_INVALID;
13832 /* Found discontinuous range of addresses. */
13833 ret = PC_BOUNDS_RANGES;
13834 }
13835 else
13836 return PC_BOUNDS_NOT_PRESENT;
13837 }
13838
13839 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13840 if (high <= low)
13841 return PC_BOUNDS_INVALID;
13842
13843 /* When using the GNU linker, .gnu.linkonce. sections are used to
13844 eliminate duplicate copies of functions and vtables and such.
13845 The linker will arbitrarily choose one and discard the others.
13846 The AT_*_pc values for such functions refer to local labels in
13847 these sections. If the section from that file was discarded, the
13848 labels are not in the output, so the relocs get a value of 0.
13849 If this is a discarded function, mark the pc bounds as invalid,
13850 so that GDB will ignore it. */
13851 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13852 return PC_BOUNDS_INVALID;
13853
13854 *lowpc = low;
13855 if (highpc)
13856 *highpc = high;
13857 return ret;
13858 }
13859
13860 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13861 its low and high PC addresses. Do nothing if these addresses could not
13862 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13863 and HIGHPC to the high address if greater than HIGHPC. */
13864
13865 static void
13866 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13867 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13868 struct dwarf2_cu *cu)
13869 {
13870 CORE_ADDR low, high;
13871 struct die_info *child = die->child;
13872
13873 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13874 {
13875 *lowpc = std::min (*lowpc, low);
13876 *highpc = std::max (*highpc, high);
13877 }
13878
13879 /* If the language does not allow nested subprograms (either inside
13880 subprograms or lexical blocks), we're done. */
13881 if (cu->language != language_ada)
13882 return;
13883
13884 /* Check all the children of the given DIE. If it contains nested
13885 subprograms, then check their pc bounds. Likewise, we need to
13886 check lexical blocks as well, as they may also contain subprogram
13887 definitions. */
13888 while (child && child->tag)
13889 {
13890 if (child->tag == DW_TAG_subprogram
13891 || child->tag == DW_TAG_lexical_block)
13892 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13893 child = sibling_die (child);
13894 }
13895 }
13896
13897 /* Get the low and high pc's represented by the scope DIE, and store
13898 them in *LOWPC and *HIGHPC. If the correct values can't be
13899 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13900
13901 static void
13902 get_scope_pc_bounds (struct die_info *die,
13903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13904 struct dwarf2_cu *cu)
13905 {
13906 CORE_ADDR best_low = (CORE_ADDR) -1;
13907 CORE_ADDR best_high = (CORE_ADDR) 0;
13908 CORE_ADDR current_low, current_high;
13909
13910 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13911 >= PC_BOUNDS_RANGES)
13912 {
13913 best_low = current_low;
13914 best_high = current_high;
13915 }
13916 else
13917 {
13918 struct die_info *child = die->child;
13919
13920 while (child && child->tag)
13921 {
13922 switch (child->tag) {
13923 case DW_TAG_subprogram:
13924 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13925 break;
13926 case DW_TAG_namespace:
13927 case DW_TAG_module:
13928 /* FIXME: carlton/2004-01-16: Should we do this for
13929 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13930 that current GCC's always emit the DIEs corresponding
13931 to definitions of methods of classes as children of a
13932 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13933 the DIEs giving the declarations, which could be
13934 anywhere). But I don't see any reason why the
13935 standards says that they have to be there. */
13936 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13937
13938 if (current_low != ((CORE_ADDR) -1))
13939 {
13940 best_low = std::min (best_low, current_low);
13941 best_high = std::max (best_high, current_high);
13942 }
13943 break;
13944 default:
13945 /* Ignore. */
13946 break;
13947 }
13948
13949 child = sibling_die (child);
13950 }
13951 }
13952
13953 *lowpc = best_low;
13954 *highpc = best_high;
13955 }
13956
13957 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13958 in DIE. */
13959
13960 static void
13961 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13962 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13963 {
13964 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13965 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13966 struct attribute *attr;
13967 struct attribute *attr_high;
13968
13969 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13970 if (attr_high)
13971 {
13972 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13973 if (attr != nullptr)
13974 {
13975 CORE_ADDR low = attr->value_as_address ();
13976 CORE_ADDR high = attr_high->value_as_address ();
13977
13978 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13979 high += low;
13980
13981 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
13982 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
13983 cu->get_builder ()->record_block_range (block, low, high - 1);
13984 }
13985 }
13986
13987 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13988 if (attr != nullptr)
13989 {
13990 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13991 We take advantage of the fact that DW_AT_ranges does not appear
13992 in DW_TAG_compile_unit of DWO files. */
13993 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13994
13995 /* The value of the DW_AT_ranges attribute is the offset of the
13996 address range list in the .debug_ranges section. */
13997 unsigned long offset = (DW_UNSND (attr)
13998 + (need_ranges_base ? cu->ranges_base : 0));
13999
14000 std::vector<blockrange> blockvec;
14001 dwarf2_ranges_process (offset, cu,
14002 [&] (CORE_ADDR start, CORE_ADDR end)
14003 {
14004 start += baseaddr;
14005 end += baseaddr;
14006 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14007 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14008 cu->get_builder ()->record_block_range (block, start, end - 1);
14009 blockvec.emplace_back (start, end);
14010 });
14011
14012 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14013 }
14014 }
14015
14016 /* Check whether the producer field indicates either of GCC < 4.6, or the
14017 Intel C/C++ compiler, and cache the result in CU. */
14018
14019 static void
14020 check_producer (struct dwarf2_cu *cu)
14021 {
14022 int major, minor;
14023
14024 if (cu->producer == NULL)
14025 {
14026 /* For unknown compilers expect their behavior is DWARF version
14027 compliant.
14028
14029 GCC started to support .debug_types sections by -gdwarf-4 since
14030 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14031 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14032 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14033 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14034 }
14035 else if (producer_is_gcc (cu->producer, &major, &minor))
14036 {
14037 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14038 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14039 }
14040 else if (producer_is_icc (cu->producer, &major, &minor))
14041 {
14042 cu->producer_is_icc = true;
14043 cu->producer_is_icc_lt_14 = major < 14;
14044 }
14045 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14046 cu->producer_is_codewarrior = true;
14047 else
14048 {
14049 /* For other non-GCC compilers, expect their behavior is DWARF version
14050 compliant. */
14051 }
14052
14053 cu->checked_producer = true;
14054 }
14055
14056 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14057 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14058 during 4.6.0 experimental. */
14059
14060 static bool
14061 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14062 {
14063 if (!cu->checked_producer)
14064 check_producer (cu);
14065
14066 return cu->producer_is_gxx_lt_4_6;
14067 }
14068
14069
14070 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14071 with incorrect is_stmt attributes. */
14072
14073 static bool
14074 producer_is_codewarrior (struct dwarf2_cu *cu)
14075 {
14076 if (!cu->checked_producer)
14077 check_producer (cu);
14078
14079 return cu->producer_is_codewarrior;
14080 }
14081
14082 /* Return the default accessibility type if it is not overridden by
14083 DW_AT_accessibility. */
14084
14085 static enum dwarf_access_attribute
14086 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14087 {
14088 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14089 {
14090 /* The default DWARF 2 accessibility for members is public, the default
14091 accessibility for inheritance is private. */
14092
14093 if (die->tag != DW_TAG_inheritance)
14094 return DW_ACCESS_public;
14095 else
14096 return DW_ACCESS_private;
14097 }
14098 else
14099 {
14100 /* DWARF 3+ defines the default accessibility a different way. The same
14101 rules apply now for DW_TAG_inheritance as for the members and it only
14102 depends on the container kind. */
14103
14104 if (die->parent->tag == DW_TAG_class_type)
14105 return DW_ACCESS_private;
14106 else
14107 return DW_ACCESS_public;
14108 }
14109 }
14110
14111 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14112 offset. If the attribute was not found return 0, otherwise return
14113 1. If it was found but could not properly be handled, set *OFFSET
14114 to 0. */
14115
14116 static int
14117 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14118 LONGEST *offset)
14119 {
14120 struct attribute *attr;
14121
14122 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14123 if (attr != NULL)
14124 {
14125 *offset = 0;
14126
14127 /* Note that we do not check for a section offset first here.
14128 This is because DW_AT_data_member_location is new in DWARF 4,
14129 so if we see it, we can assume that a constant form is really
14130 a constant and not a section offset. */
14131 if (attr->form_is_constant ())
14132 *offset = dwarf2_get_attr_constant_value (attr, 0);
14133 else if (attr->form_is_section_offset ())
14134 dwarf2_complex_location_expr_complaint ();
14135 else if (attr->form_is_block ())
14136 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14137 else
14138 dwarf2_complex_location_expr_complaint ();
14139
14140 return 1;
14141 }
14142
14143 return 0;
14144 }
14145
14146 /* Add an aggregate field to the field list. */
14147
14148 static void
14149 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14150 struct dwarf2_cu *cu)
14151 {
14152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14153 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14154 struct nextfield *new_field;
14155 struct attribute *attr;
14156 struct field *fp;
14157 const char *fieldname = "";
14158
14159 if (die->tag == DW_TAG_inheritance)
14160 {
14161 fip->baseclasses.emplace_back ();
14162 new_field = &fip->baseclasses.back ();
14163 }
14164 else
14165 {
14166 fip->fields.emplace_back ();
14167 new_field = &fip->fields.back ();
14168 }
14169
14170 fip->nfields++;
14171
14172 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14173 if (attr != nullptr)
14174 new_field->accessibility = DW_UNSND (attr);
14175 else
14176 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14177 if (new_field->accessibility != DW_ACCESS_public)
14178 fip->non_public_fields = 1;
14179
14180 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14181 if (attr != nullptr)
14182 new_field->virtuality = DW_UNSND (attr);
14183 else
14184 new_field->virtuality = DW_VIRTUALITY_none;
14185
14186 fp = &new_field->field;
14187
14188 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14189 {
14190 LONGEST offset;
14191
14192 /* Data member other than a C++ static data member. */
14193
14194 /* Get type of field. */
14195 fp->type = die_type (die, cu);
14196
14197 SET_FIELD_BITPOS (*fp, 0);
14198
14199 /* Get bit size of field (zero if none). */
14200 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14201 if (attr != nullptr)
14202 {
14203 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14204 }
14205 else
14206 {
14207 FIELD_BITSIZE (*fp) = 0;
14208 }
14209
14210 /* Get bit offset of field. */
14211 if (handle_data_member_location (die, cu, &offset))
14212 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14213 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14214 if (attr != nullptr)
14215 {
14216 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14217 {
14218 /* For big endian bits, the DW_AT_bit_offset gives the
14219 additional bit offset from the MSB of the containing
14220 anonymous object to the MSB of the field. We don't
14221 have to do anything special since we don't need to
14222 know the size of the anonymous object. */
14223 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14224 }
14225 else
14226 {
14227 /* For little endian bits, compute the bit offset to the
14228 MSB of the anonymous object, subtract off the number of
14229 bits from the MSB of the field to the MSB of the
14230 object, and then subtract off the number of bits of
14231 the field itself. The result is the bit offset of
14232 the LSB of the field. */
14233 int anonymous_size;
14234 int bit_offset = DW_UNSND (attr);
14235
14236 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14237 if (attr != nullptr)
14238 {
14239 /* The size of the anonymous object containing
14240 the bit field is explicit, so use the
14241 indicated size (in bytes). */
14242 anonymous_size = DW_UNSND (attr);
14243 }
14244 else
14245 {
14246 /* The size of the anonymous object containing
14247 the bit field must be inferred from the type
14248 attribute of the data member containing the
14249 bit field. */
14250 anonymous_size = TYPE_LENGTH (fp->type);
14251 }
14252 SET_FIELD_BITPOS (*fp,
14253 (FIELD_BITPOS (*fp)
14254 + anonymous_size * bits_per_byte
14255 - bit_offset - FIELD_BITSIZE (*fp)));
14256 }
14257 }
14258 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14259 if (attr != NULL)
14260 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14261 + dwarf2_get_attr_constant_value (attr, 0)));
14262
14263 /* Get name of field. */
14264 fieldname = dwarf2_name (die, cu);
14265 if (fieldname == NULL)
14266 fieldname = "";
14267
14268 /* The name is already allocated along with this objfile, so we don't
14269 need to duplicate it for the type. */
14270 fp->name = fieldname;
14271
14272 /* Change accessibility for artificial fields (e.g. virtual table
14273 pointer or virtual base class pointer) to private. */
14274 if (dwarf2_attr (die, DW_AT_artificial, cu))
14275 {
14276 FIELD_ARTIFICIAL (*fp) = 1;
14277 new_field->accessibility = DW_ACCESS_private;
14278 fip->non_public_fields = 1;
14279 }
14280 }
14281 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14282 {
14283 /* C++ static member. */
14284
14285 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14286 is a declaration, but all versions of G++ as of this writing
14287 (so through at least 3.2.1) incorrectly generate
14288 DW_TAG_variable tags. */
14289
14290 const char *physname;
14291
14292 /* Get name of field. */
14293 fieldname = dwarf2_name (die, cu);
14294 if (fieldname == NULL)
14295 return;
14296
14297 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14298 if (attr
14299 /* Only create a symbol if this is an external value.
14300 new_symbol checks this and puts the value in the global symbol
14301 table, which we want. If it is not external, new_symbol
14302 will try to put the value in cu->list_in_scope which is wrong. */
14303 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14304 {
14305 /* A static const member, not much different than an enum as far as
14306 we're concerned, except that we can support more types. */
14307 new_symbol (die, NULL, cu);
14308 }
14309
14310 /* Get physical name. */
14311 physname = dwarf2_physname (fieldname, die, cu);
14312
14313 /* The name is already allocated along with this objfile, so we don't
14314 need to duplicate it for the type. */
14315 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14316 FIELD_TYPE (*fp) = die_type (die, cu);
14317 FIELD_NAME (*fp) = fieldname;
14318 }
14319 else if (die->tag == DW_TAG_inheritance)
14320 {
14321 LONGEST offset;
14322
14323 /* C++ base class field. */
14324 if (handle_data_member_location (die, cu, &offset))
14325 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14326 FIELD_BITSIZE (*fp) = 0;
14327 FIELD_TYPE (*fp) = die_type (die, cu);
14328 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14329 }
14330 else if (die->tag == DW_TAG_variant_part)
14331 {
14332 /* process_structure_scope will treat this DIE as a union. */
14333 process_structure_scope (die, cu);
14334
14335 /* The variant part is relative to the start of the enclosing
14336 structure. */
14337 SET_FIELD_BITPOS (*fp, 0);
14338 fp->type = get_die_type (die, cu);
14339 fp->artificial = 1;
14340 fp->name = "<<variant>>";
14341
14342 /* Normally a DW_TAG_variant_part won't have a size, but our
14343 representation requires one, so set it to the maximum of the
14344 child sizes, being sure to account for the offset at which
14345 each child is seen. */
14346 if (TYPE_LENGTH (fp->type) == 0)
14347 {
14348 unsigned max = 0;
14349 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14350 {
14351 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14352 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14353 if (len > max)
14354 max = len;
14355 }
14356 TYPE_LENGTH (fp->type) = max;
14357 }
14358 }
14359 else
14360 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14361 }
14362
14363 /* Can the type given by DIE define another type? */
14364
14365 static bool
14366 type_can_define_types (const struct die_info *die)
14367 {
14368 switch (die->tag)
14369 {
14370 case DW_TAG_typedef:
14371 case DW_TAG_class_type:
14372 case DW_TAG_structure_type:
14373 case DW_TAG_union_type:
14374 case DW_TAG_enumeration_type:
14375 return true;
14376
14377 default:
14378 return false;
14379 }
14380 }
14381
14382 /* Add a type definition defined in the scope of the FIP's class. */
14383
14384 static void
14385 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14386 struct dwarf2_cu *cu)
14387 {
14388 struct decl_field fp;
14389 memset (&fp, 0, sizeof (fp));
14390
14391 gdb_assert (type_can_define_types (die));
14392
14393 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14394 fp.name = dwarf2_name (die, cu);
14395 fp.type = read_type_die (die, cu);
14396
14397 /* Save accessibility. */
14398 enum dwarf_access_attribute accessibility;
14399 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14400 if (attr != NULL)
14401 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14402 else
14403 accessibility = dwarf2_default_access_attribute (die, cu);
14404 switch (accessibility)
14405 {
14406 case DW_ACCESS_public:
14407 /* The assumed value if neither private nor protected. */
14408 break;
14409 case DW_ACCESS_private:
14410 fp.is_private = 1;
14411 break;
14412 case DW_ACCESS_protected:
14413 fp.is_protected = 1;
14414 break;
14415 default:
14416 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14417 }
14418
14419 if (die->tag == DW_TAG_typedef)
14420 fip->typedef_field_list.push_back (fp);
14421 else
14422 fip->nested_types_list.push_back (fp);
14423 }
14424
14425 /* Create the vector of fields, and attach it to the type. */
14426
14427 static void
14428 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14429 struct dwarf2_cu *cu)
14430 {
14431 int nfields = fip->nfields;
14432
14433 /* Record the field count, allocate space for the array of fields,
14434 and create blank accessibility bitfields if necessary. */
14435 TYPE_NFIELDS (type) = nfields;
14436 TYPE_FIELDS (type) = (struct field *)
14437 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14438
14439 if (fip->non_public_fields && cu->language != language_ada)
14440 {
14441 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14442
14443 TYPE_FIELD_PRIVATE_BITS (type) =
14444 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14445 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14446
14447 TYPE_FIELD_PROTECTED_BITS (type) =
14448 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14449 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14450
14451 TYPE_FIELD_IGNORE_BITS (type) =
14452 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14453 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14454 }
14455
14456 /* If the type has baseclasses, allocate and clear a bit vector for
14457 TYPE_FIELD_VIRTUAL_BITS. */
14458 if (!fip->baseclasses.empty () && cu->language != language_ada)
14459 {
14460 int num_bytes = B_BYTES (fip->baseclasses.size ());
14461 unsigned char *pointer;
14462
14463 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14464 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14465 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14466 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14467 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14468 }
14469
14470 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14471 {
14472 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14473
14474 for (int index = 0; index < nfields; ++index)
14475 {
14476 struct nextfield &field = fip->fields[index];
14477
14478 if (field.variant.is_discriminant)
14479 di->discriminant_index = index;
14480 else if (field.variant.default_branch)
14481 di->default_index = index;
14482 else
14483 di->discriminants[index] = field.variant.discriminant_value;
14484 }
14485 }
14486
14487 /* Copy the saved-up fields into the field vector. */
14488 for (int i = 0; i < nfields; ++i)
14489 {
14490 struct nextfield &field
14491 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14492 : fip->fields[i - fip->baseclasses.size ()]);
14493
14494 TYPE_FIELD (type, i) = field.field;
14495 switch (field.accessibility)
14496 {
14497 case DW_ACCESS_private:
14498 if (cu->language != language_ada)
14499 SET_TYPE_FIELD_PRIVATE (type, i);
14500 break;
14501
14502 case DW_ACCESS_protected:
14503 if (cu->language != language_ada)
14504 SET_TYPE_FIELD_PROTECTED (type, i);
14505 break;
14506
14507 case DW_ACCESS_public:
14508 break;
14509
14510 default:
14511 /* Unknown accessibility. Complain and treat it as public. */
14512 {
14513 complaint (_("unsupported accessibility %d"),
14514 field.accessibility);
14515 }
14516 break;
14517 }
14518 if (i < fip->baseclasses.size ())
14519 {
14520 switch (field.virtuality)
14521 {
14522 case DW_VIRTUALITY_virtual:
14523 case DW_VIRTUALITY_pure_virtual:
14524 if (cu->language == language_ada)
14525 error (_("unexpected virtuality in component of Ada type"));
14526 SET_TYPE_FIELD_VIRTUAL (type, i);
14527 break;
14528 }
14529 }
14530 }
14531 }
14532
14533 /* Return true if this member function is a constructor, false
14534 otherwise. */
14535
14536 static int
14537 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14538 {
14539 const char *fieldname;
14540 const char *type_name;
14541 int len;
14542
14543 if (die->parent == NULL)
14544 return 0;
14545
14546 if (die->parent->tag != DW_TAG_structure_type
14547 && die->parent->tag != DW_TAG_union_type
14548 && die->parent->tag != DW_TAG_class_type)
14549 return 0;
14550
14551 fieldname = dwarf2_name (die, cu);
14552 type_name = dwarf2_name (die->parent, cu);
14553 if (fieldname == NULL || type_name == NULL)
14554 return 0;
14555
14556 len = strlen (fieldname);
14557 return (strncmp (fieldname, type_name, len) == 0
14558 && (type_name[len] == '\0' || type_name[len] == '<'));
14559 }
14560
14561 /* Check if the given VALUE is a recognized enum
14562 dwarf_defaulted_attribute constant according to DWARF5 spec,
14563 Table 7.24. */
14564
14565 static bool
14566 is_valid_DW_AT_defaulted (ULONGEST value)
14567 {
14568 switch (value)
14569 {
14570 case DW_DEFAULTED_no:
14571 case DW_DEFAULTED_in_class:
14572 case DW_DEFAULTED_out_of_class:
14573 return true;
14574 }
14575
14576 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14577 return false;
14578 }
14579
14580 /* Add a member function to the proper fieldlist. */
14581
14582 static void
14583 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14584 struct type *type, struct dwarf2_cu *cu)
14585 {
14586 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14587 struct attribute *attr;
14588 int i;
14589 struct fnfieldlist *flp = nullptr;
14590 struct fn_field *fnp;
14591 const char *fieldname;
14592 struct type *this_type;
14593 enum dwarf_access_attribute accessibility;
14594
14595 if (cu->language == language_ada)
14596 error (_("unexpected member function in Ada type"));
14597
14598 /* Get name of member function. */
14599 fieldname = dwarf2_name (die, cu);
14600 if (fieldname == NULL)
14601 return;
14602
14603 /* Look up member function name in fieldlist. */
14604 for (i = 0; i < fip->fnfieldlists.size (); i++)
14605 {
14606 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14607 {
14608 flp = &fip->fnfieldlists[i];
14609 break;
14610 }
14611 }
14612
14613 /* Create a new fnfieldlist if necessary. */
14614 if (flp == nullptr)
14615 {
14616 fip->fnfieldlists.emplace_back ();
14617 flp = &fip->fnfieldlists.back ();
14618 flp->name = fieldname;
14619 i = fip->fnfieldlists.size () - 1;
14620 }
14621
14622 /* Create a new member function field and add it to the vector of
14623 fnfieldlists. */
14624 flp->fnfields.emplace_back ();
14625 fnp = &flp->fnfields.back ();
14626
14627 /* Delay processing of the physname until later. */
14628 if (cu->language == language_cplus)
14629 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14630 die, cu);
14631 else
14632 {
14633 const char *physname = dwarf2_physname (fieldname, die, cu);
14634 fnp->physname = physname ? physname : "";
14635 }
14636
14637 fnp->type = alloc_type (objfile);
14638 this_type = read_type_die (die, cu);
14639 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14640 {
14641 int nparams = TYPE_NFIELDS (this_type);
14642
14643 /* TYPE is the domain of this method, and THIS_TYPE is the type
14644 of the method itself (TYPE_CODE_METHOD). */
14645 smash_to_method_type (fnp->type, type,
14646 TYPE_TARGET_TYPE (this_type),
14647 TYPE_FIELDS (this_type),
14648 TYPE_NFIELDS (this_type),
14649 TYPE_VARARGS (this_type));
14650
14651 /* Handle static member functions.
14652 Dwarf2 has no clean way to discern C++ static and non-static
14653 member functions. G++ helps GDB by marking the first
14654 parameter for non-static member functions (which is the this
14655 pointer) as artificial. We obtain this information from
14656 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14657 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14658 fnp->voffset = VOFFSET_STATIC;
14659 }
14660 else
14661 complaint (_("member function type missing for '%s'"),
14662 dwarf2_full_name (fieldname, die, cu));
14663
14664 /* Get fcontext from DW_AT_containing_type if present. */
14665 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14666 fnp->fcontext = die_containing_type (die, cu);
14667
14668 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14669 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14670
14671 /* Get accessibility. */
14672 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14673 if (attr != nullptr)
14674 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14675 else
14676 accessibility = dwarf2_default_access_attribute (die, cu);
14677 switch (accessibility)
14678 {
14679 case DW_ACCESS_private:
14680 fnp->is_private = 1;
14681 break;
14682 case DW_ACCESS_protected:
14683 fnp->is_protected = 1;
14684 break;
14685 }
14686
14687 /* Check for artificial methods. */
14688 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14689 if (attr && DW_UNSND (attr) != 0)
14690 fnp->is_artificial = 1;
14691
14692 /* Check for defaulted methods. */
14693 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14694 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14695 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14696
14697 /* Check for deleted methods. */
14698 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14699 if (attr != nullptr && DW_UNSND (attr) != 0)
14700 fnp->is_deleted = 1;
14701
14702 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14703
14704 /* Get index in virtual function table if it is a virtual member
14705 function. For older versions of GCC, this is an offset in the
14706 appropriate virtual table, as specified by DW_AT_containing_type.
14707 For everyone else, it is an expression to be evaluated relative
14708 to the object address. */
14709
14710 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14711 if (attr != nullptr)
14712 {
14713 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14714 {
14715 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14716 {
14717 /* Old-style GCC. */
14718 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14719 }
14720 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14721 || (DW_BLOCK (attr)->size > 1
14722 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14723 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14724 {
14725 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14726 if ((fnp->voffset % cu->header.addr_size) != 0)
14727 dwarf2_complex_location_expr_complaint ();
14728 else
14729 fnp->voffset /= cu->header.addr_size;
14730 fnp->voffset += 2;
14731 }
14732 else
14733 dwarf2_complex_location_expr_complaint ();
14734
14735 if (!fnp->fcontext)
14736 {
14737 /* If there is no `this' field and no DW_AT_containing_type,
14738 we cannot actually find a base class context for the
14739 vtable! */
14740 if (TYPE_NFIELDS (this_type) == 0
14741 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14742 {
14743 complaint (_("cannot determine context for virtual member "
14744 "function \"%s\" (offset %s)"),
14745 fieldname, sect_offset_str (die->sect_off));
14746 }
14747 else
14748 {
14749 fnp->fcontext
14750 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14751 }
14752 }
14753 }
14754 else if (attr->form_is_section_offset ())
14755 {
14756 dwarf2_complex_location_expr_complaint ();
14757 }
14758 else
14759 {
14760 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14761 fieldname);
14762 }
14763 }
14764 else
14765 {
14766 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14767 if (attr && DW_UNSND (attr))
14768 {
14769 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14770 complaint (_("Member function \"%s\" (offset %s) is virtual "
14771 "but the vtable offset is not specified"),
14772 fieldname, sect_offset_str (die->sect_off));
14773 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14774 TYPE_CPLUS_DYNAMIC (type) = 1;
14775 }
14776 }
14777 }
14778
14779 /* Create the vector of member function fields, and attach it to the type. */
14780
14781 static void
14782 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14783 struct dwarf2_cu *cu)
14784 {
14785 if (cu->language == language_ada)
14786 error (_("unexpected member functions in Ada type"));
14787
14788 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14789 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14790 TYPE_ALLOC (type,
14791 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14792
14793 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14794 {
14795 struct fnfieldlist &nf = fip->fnfieldlists[i];
14796 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14797
14798 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14799 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14800 fn_flp->fn_fields = (struct fn_field *)
14801 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14802
14803 for (int k = 0; k < nf.fnfields.size (); ++k)
14804 fn_flp->fn_fields[k] = nf.fnfields[k];
14805 }
14806
14807 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14808 }
14809
14810 /* Returns non-zero if NAME is the name of a vtable member in CU's
14811 language, zero otherwise. */
14812 static int
14813 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14814 {
14815 static const char vptr[] = "_vptr";
14816
14817 /* Look for the C++ form of the vtable. */
14818 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14819 return 1;
14820
14821 return 0;
14822 }
14823
14824 /* GCC outputs unnamed structures that are really pointers to member
14825 functions, with the ABI-specified layout. If TYPE describes
14826 such a structure, smash it into a member function type.
14827
14828 GCC shouldn't do this; it should just output pointer to member DIEs.
14829 This is GCC PR debug/28767. */
14830
14831 static void
14832 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14833 {
14834 struct type *pfn_type, *self_type, *new_type;
14835
14836 /* Check for a structure with no name and two children. */
14837 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14838 return;
14839
14840 /* Check for __pfn and __delta members. */
14841 if (TYPE_FIELD_NAME (type, 0) == NULL
14842 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14843 || TYPE_FIELD_NAME (type, 1) == NULL
14844 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14845 return;
14846
14847 /* Find the type of the method. */
14848 pfn_type = TYPE_FIELD_TYPE (type, 0);
14849 if (pfn_type == NULL
14850 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14851 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14852 return;
14853
14854 /* Look for the "this" argument. */
14855 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14856 if (TYPE_NFIELDS (pfn_type) == 0
14857 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14858 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14859 return;
14860
14861 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14862 new_type = alloc_type (objfile);
14863 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14864 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14865 TYPE_VARARGS (pfn_type));
14866 smash_to_methodptr_type (type, new_type);
14867 }
14868
14869 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
14870 appropriate error checking and issuing complaints if there is a
14871 problem. */
14872
14873 static ULONGEST
14874 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14875 {
14876 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14877
14878 if (attr == nullptr)
14879 return 0;
14880
14881 if (!attr->form_is_constant ())
14882 {
14883 complaint (_("DW_AT_alignment must have constant form"
14884 " - DIE at %s [in module %s]"),
14885 sect_offset_str (die->sect_off),
14886 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14887 return 0;
14888 }
14889
14890 ULONGEST align;
14891 if (attr->form == DW_FORM_sdata)
14892 {
14893 LONGEST val = DW_SND (attr);
14894 if (val < 0)
14895 {
14896 complaint (_("DW_AT_alignment value must not be negative"
14897 " - DIE at %s [in module %s]"),
14898 sect_offset_str (die->sect_off),
14899 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14900 return 0;
14901 }
14902 align = val;
14903 }
14904 else
14905 align = DW_UNSND (attr);
14906
14907 if (align == 0)
14908 {
14909 complaint (_("DW_AT_alignment value must not be zero"
14910 " - DIE at %s [in module %s]"),
14911 sect_offset_str (die->sect_off),
14912 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14913 return 0;
14914 }
14915 if ((align & (align - 1)) != 0)
14916 {
14917 complaint (_("DW_AT_alignment value must be a power of 2"
14918 " - DIE at %s [in module %s]"),
14919 sect_offset_str (die->sect_off),
14920 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14921 return 0;
14922 }
14923
14924 return align;
14925 }
14926
14927 /* If the DIE has a DW_AT_alignment attribute, use its value to set
14928 the alignment for TYPE. */
14929
14930 static void
14931 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14932 struct type *type)
14933 {
14934 if (!set_type_align (type, get_alignment (cu, die)))
14935 complaint (_("DW_AT_alignment value too large"
14936 " - DIE at %s [in module %s]"),
14937 sect_offset_str (die->sect_off),
14938 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14939 }
14940
14941 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14942 constant for a type, according to DWARF5 spec, Table 5.5. */
14943
14944 static bool
14945 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14946 {
14947 switch (value)
14948 {
14949 case DW_CC_normal:
14950 case DW_CC_pass_by_reference:
14951 case DW_CC_pass_by_value:
14952 return true;
14953
14954 default:
14955 complaint (_("unrecognized DW_AT_calling_convention value "
14956 "(%s) for a type"), pulongest (value));
14957 return false;
14958 }
14959 }
14960
14961 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14962 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
14963 also according to GNU-specific values (see include/dwarf2.h). */
14964
14965 static bool
14966 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
14967 {
14968 switch (value)
14969 {
14970 case DW_CC_normal:
14971 case DW_CC_program:
14972 case DW_CC_nocall:
14973 return true;
14974
14975 case DW_CC_GNU_renesas_sh:
14976 case DW_CC_GNU_borland_fastcall_i386:
14977 case DW_CC_GDB_IBM_OpenCL:
14978 return true;
14979
14980 default:
14981 complaint (_("unrecognized DW_AT_calling_convention value "
14982 "(%s) for a subroutine"), pulongest (value));
14983 return false;
14984 }
14985 }
14986
14987 /* Called when we find the DIE that starts a structure or union scope
14988 (definition) to create a type for the structure or union. Fill in
14989 the type's name and general properties; the members will not be
14990 processed until process_structure_scope. A symbol table entry for
14991 the type will also not be done until process_structure_scope (assuming
14992 the type has a name).
14993
14994 NOTE: we need to call these functions regardless of whether or not the
14995 DIE has a DW_AT_name attribute, since it might be an anonymous
14996 structure or union. This gets the type entered into our set of
14997 user defined types. */
14998
14999 static struct type *
15000 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15001 {
15002 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15003 struct type *type;
15004 struct attribute *attr;
15005 const char *name;
15006
15007 /* If the definition of this type lives in .debug_types, read that type.
15008 Don't follow DW_AT_specification though, that will take us back up
15009 the chain and we want to go down. */
15010 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15011 if (attr != nullptr)
15012 {
15013 type = get_DW_AT_signature_type (die, attr, cu);
15014
15015 /* The type's CU may not be the same as CU.
15016 Ensure TYPE is recorded with CU in die_type_hash. */
15017 return set_die_type (die, type, cu);
15018 }
15019
15020 type = alloc_type (objfile);
15021 INIT_CPLUS_SPECIFIC (type);
15022
15023 name = dwarf2_name (die, cu);
15024 if (name != NULL)
15025 {
15026 if (cu->language == language_cplus
15027 || cu->language == language_d
15028 || cu->language == language_rust)
15029 {
15030 const char *full_name = dwarf2_full_name (name, die, cu);
15031
15032 /* dwarf2_full_name might have already finished building the DIE's
15033 type. If so, there is no need to continue. */
15034 if (get_die_type (die, cu) != NULL)
15035 return get_die_type (die, cu);
15036
15037 TYPE_NAME (type) = full_name;
15038 }
15039 else
15040 {
15041 /* The name is already allocated along with this objfile, so
15042 we don't need to duplicate it for the type. */
15043 TYPE_NAME (type) = name;
15044 }
15045 }
15046
15047 if (die->tag == DW_TAG_structure_type)
15048 {
15049 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15050 }
15051 else if (die->tag == DW_TAG_union_type)
15052 {
15053 TYPE_CODE (type) = TYPE_CODE_UNION;
15054 }
15055 else if (die->tag == DW_TAG_variant_part)
15056 {
15057 TYPE_CODE (type) = TYPE_CODE_UNION;
15058 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15059 }
15060 else
15061 {
15062 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15063 }
15064
15065 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15066 TYPE_DECLARED_CLASS (type) = 1;
15067
15068 /* Store the calling convention in the type if it's available in
15069 the die. Otherwise the calling convention remains set to
15070 the default value DW_CC_normal. */
15071 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15072 if (attr != nullptr
15073 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15074 {
15075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15076 TYPE_CPLUS_CALLING_CONVENTION (type)
15077 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15078 }
15079
15080 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15081 if (attr != nullptr)
15082 {
15083 if (attr->form_is_constant ())
15084 TYPE_LENGTH (type) = DW_UNSND (attr);
15085 else
15086 {
15087 /* For the moment, dynamic type sizes are not supported
15088 by GDB's struct type. The actual size is determined
15089 on-demand when resolving the type of a given object,
15090 so set the type's length to zero for now. Otherwise,
15091 we record an expression as the length, and that expression
15092 could lead to a very large value, which could eventually
15093 lead to us trying to allocate that much memory when creating
15094 a value of that type. */
15095 TYPE_LENGTH (type) = 0;
15096 }
15097 }
15098 else
15099 {
15100 TYPE_LENGTH (type) = 0;
15101 }
15102
15103 maybe_set_alignment (cu, die, type);
15104
15105 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15106 {
15107 /* ICC<14 does not output the required DW_AT_declaration on
15108 incomplete types, but gives them a size of zero. */
15109 TYPE_STUB (type) = 1;
15110 }
15111 else
15112 TYPE_STUB_SUPPORTED (type) = 1;
15113
15114 if (die_is_declaration (die, cu))
15115 TYPE_STUB (type) = 1;
15116 else if (attr == NULL && die->child == NULL
15117 && producer_is_realview (cu->producer))
15118 /* RealView does not output the required DW_AT_declaration
15119 on incomplete types. */
15120 TYPE_STUB (type) = 1;
15121
15122 /* We need to add the type field to the die immediately so we don't
15123 infinitely recurse when dealing with pointers to the structure
15124 type within the structure itself. */
15125 set_die_type (die, type, cu);
15126
15127 /* set_die_type should be already done. */
15128 set_descriptive_type (type, die, cu);
15129
15130 return type;
15131 }
15132
15133 /* A helper for process_structure_scope that handles a single member
15134 DIE. */
15135
15136 static void
15137 handle_struct_member_die (struct die_info *child_die, struct type *type,
15138 struct field_info *fi,
15139 std::vector<struct symbol *> *template_args,
15140 struct dwarf2_cu *cu)
15141 {
15142 if (child_die->tag == DW_TAG_member
15143 || child_die->tag == DW_TAG_variable
15144 || child_die->tag == DW_TAG_variant_part)
15145 {
15146 /* NOTE: carlton/2002-11-05: A C++ static data member
15147 should be a DW_TAG_member that is a declaration, but
15148 all versions of G++ as of this writing (so through at
15149 least 3.2.1) incorrectly generate DW_TAG_variable
15150 tags for them instead. */
15151 dwarf2_add_field (fi, child_die, cu);
15152 }
15153 else if (child_die->tag == DW_TAG_subprogram)
15154 {
15155 /* Rust doesn't have member functions in the C++ sense.
15156 However, it does emit ordinary functions as children
15157 of a struct DIE. */
15158 if (cu->language == language_rust)
15159 read_func_scope (child_die, cu);
15160 else
15161 {
15162 /* C++ member function. */
15163 dwarf2_add_member_fn (fi, child_die, type, cu);
15164 }
15165 }
15166 else if (child_die->tag == DW_TAG_inheritance)
15167 {
15168 /* C++ base class field. */
15169 dwarf2_add_field (fi, child_die, cu);
15170 }
15171 else if (type_can_define_types (child_die))
15172 dwarf2_add_type_defn (fi, child_die, cu);
15173 else if (child_die->tag == DW_TAG_template_type_param
15174 || child_die->tag == DW_TAG_template_value_param)
15175 {
15176 struct symbol *arg = new_symbol (child_die, NULL, cu);
15177
15178 if (arg != NULL)
15179 template_args->push_back (arg);
15180 }
15181 else if (child_die->tag == DW_TAG_variant)
15182 {
15183 /* In a variant we want to get the discriminant and also add a
15184 field for our sole member child. */
15185 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15186
15187 for (die_info *variant_child = child_die->child;
15188 variant_child != NULL;
15189 variant_child = sibling_die (variant_child))
15190 {
15191 if (variant_child->tag == DW_TAG_member)
15192 {
15193 handle_struct_member_die (variant_child, type, fi,
15194 template_args, cu);
15195 /* Only handle the one. */
15196 break;
15197 }
15198 }
15199
15200 /* We don't handle this but we might as well report it if we see
15201 it. */
15202 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15203 complaint (_("DW_AT_discr_list is not supported yet"
15204 " - DIE at %s [in module %s]"),
15205 sect_offset_str (child_die->sect_off),
15206 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15207
15208 /* The first field was just added, so we can stash the
15209 discriminant there. */
15210 gdb_assert (!fi->fields.empty ());
15211 if (discr == NULL)
15212 fi->fields.back ().variant.default_branch = true;
15213 else
15214 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15215 }
15216 }
15217
15218 /* Finish creating a structure or union type, including filling in
15219 its members and creating a symbol for it. */
15220
15221 static void
15222 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15223 {
15224 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15225 struct die_info *child_die;
15226 struct type *type;
15227
15228 type = get_die_type (die, cu);
15229 if (type == NULL)
15230 type = read_structure_type (die, cu);
15231
15232 /* When reading a DW_TAG_variant_part, we need to notice when we
15233 read the discriminant member, so we can record it later in the
15234 discriminant_info. */
15235 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15236 sect_offset discr_offset {};
15237 bool has_template_parameters = false;
15238
15239 if (is_variant_part)
15240 {
15241 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15242 if (discr == NULL)
15243 {
15244 /* Maybe it's a univariant form, an extension we support.
15245 In this case arrange not to check the offset. */
15246 is_variant_part = false;
15247 }
15248 else if (discr->form_is_ref ())
15249 {
15250 struct dwarf2_cu *target_cu = cu;
15251 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15252
15253 discr_offset = target_die->sect_off;
15254 }
15255 else
15256 {
15257 complaint (_("DW_AT_discr does not have DIE reference form"
15258 " - DIE at %s [in module %s]"),
15259 sect_offset_str (die->sect_off),
15260 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15261 is_variant_part = false;
15262 }
15263 }
15264
15265 if (die->child != NULL && ! die_is_declaration (die, cu))
15266 {
15267 struct field_info fi;
15268 std::vector<struct symbol *> template_args;
15269
15270 child_die = die->child;
15271
15272 while (child_die && child_die->tag)
15273 {
15274 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15275
15276 if (is_variant_part && discr_offset == child_die->sect_off)
15277 fi.fields.back ().variant.is_discriminant = true;
15278
15279 child_die = sibling_die (child_die);
15280 }
15281
15282 /* Attach template arguments to type. */
15283 if (!template_args.empty ())
15284 {
15285 has_template_parameters = true;
15286 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15287 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15288 TYPE_TEMPLATE_ARGUMENTS (type)
15289 = XOBNEWVEC (&objfile->objfile_obstack,
15290 struct symbol *,
15291 TYPE_N_TEMPLATE_ARGUMENTS (type));
15292 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15293 template_args.data (),
15294 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15295 * sizeof (struct symbol *)));
15296 }
15297
15298 /* Attach fields and member functions to the type. */
15299 if (fi.nfields)
15300 dwarf2_attach_fields_to_type (&fi, type, cu);
15301 if (!fi.fnfieldlists.empty ())
15302 {
15303 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15304
15305 /* Get the type which refers to the base class (possibly this
15306 class itself) which contains the vtable pointer for the current
15307 class from the DW_AT_containing_type attribute. This use of
15308 DW_AT_containing_type is a GNU extension. */
15309
15310 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15311 {
15312 struct type *t = die_containing_type (die, cu);
15313
15314 set_type_vptr_basetype (type, t);
15315 if (type == t)
15316 {
15317 int i;
15318
15319 /* Our own class provides vtbl ptr. */
15320 for (i = TYPE_NFIELDS (t) - 1;
15321 i >= TYPE_N_BASECLASSES (t);
15322 --i)
15323 {
15324 const char *fieldname = TYPE_FIELD_NAME (t, i);
15325
15326 if (is_vtable_name (fieldname, cu))
15327 {
15328 set_type_vptr_fieldno (type, i);
15329 break;
15330 }
15331 }
15332
15333 /* Complain if virtual function table field not found. */
15334 if (i < TYPE_N_BASECLASSES (t))
15335 complaint (_("virtual function table pointer "
15336 "not found when defining class '%s'"),
15337 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15338 }
15339 else
15340 {
15341 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15342 }
15343 }
15344 else if (cu->producer
15345 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15346 {
15347 /* The IBM XLC compiler does not provide direct indication
15348 of the containing type, but the vtable pointer is
15349 always named __vfp. */
15350
15351 int i;
15352
15353 for (i = TYPE_NFIELDS (type) - 1;
15354 i >= TYPE_N_BASECLASSES (type);
15355 --i)
15356 {
15357 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15358 {
15359 set_type_vptr_fieldno (type, i);
15360 set_type_vptr_basetype (type, type);
15361 break;
15362 }
15363 }
15364 }
15365 }
15366
15367 /* Copy fi.typedef_field_list linked list elements content into the
15368 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15369 if (!fi.typedef_field_list.empty ())
15370 {
15371 int count = fi.typedef_field_list.size ();
15372
15373 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15374 TYPE_TYPEDEF_FIELD_ARRAY (type)
15375 = ((struct decl_field *)
15376 TYPE_ALLOC (type,
15377 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15378 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15379
15380 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15381 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15382 }
15383
15384 /* Copy fi.nested_types_list linked list elements content into the
15385 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15386 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15387 {
15388 int count = fi.nested_types_list.size ();
15389
15390 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15391 TYPE_NESTED_TYPES_ARRAY (type)
15392 = ((struct decl_field *)
15393 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15394 TYPE_NESTED_TYPES_COUNT (type) = count;
15395
15396 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15397 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15398 }
15399 }
15400
15401 quirk_gcc_member_function_pointer (type, objfile);
15402 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15403 cu->rust_unions.push_back (type);
15404
15405 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15406 snapshots) has been known to create a die giving a declaration
15407 for a class that has, as a child, a die giving a definition for a
15408 nested class. So we have to process our children even if the
15409 current die is a declaration. Normally, of course, a declaration
15410 won't have any children at all. */
15411
15412 child_die = die->child;
15413
15414 while (child_die != NULL && child_die->tag)
15415 {
15416 if (child_die->tag == DW_TAG_member
15417 || child_die->tag == DW_TAG_variable
15418 || child_die->tag == DW_TAG_inheritance
15419 || child_die->tag == DW_TAG_template_value_param
15420 || child_die->tag == DW_TAG_template_type_param)
15421 {
15422 /* Do nothing. */
15423 }
15424 else
15425 process_die (child_die, cu);
15426
15427 child_die = sibling_die (child_die);
15428 }
15429
15430 /* Do not consider external references. According to the DWARF standard,
15431 these DIEs are identified by the fact that they have no byte_size
15432 attribute, and a declaration attribute. */
15433 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15434 || !die_is_declaration (die, cu))
15435 {
15436 struct symbol *sym = new_symbol (die, type, cu);
15437
15438 if (has_template_parameters)
15439 {
15440 struct symtab *symtab;
15441 if (sym != nullptr)
15442 symtab = symbol_symtab (sym);
15443 else if (cu->line_header != nullptr)
15444 {
15445 /* Any related symtab will do. */
15446 symtab
15447 = cu->line_header->file_names ()[0].symtab;
15448 }
15449 else
15450 {
15451 symtab = nullptr;
15452 complaint (_("could not find suitable "
15453 "symtab for template parameter"
15454 " - DIE at %s [in module %s]"),
15455 sect_offset_str (die->sect_off),
15456 objfile_name (objfile));
15457 }
15458
15459 if (symtab != nullptr)
15460 {
15461 /* Make sure that the symtab is set on the new symbols.
15462 Even though they don't appear in this symtab directly,
15463 other parts of gdb assume that symbols do, and this is
15464 reasonably true. */
15465 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15466 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15467 }
15468 }
15469 }
15470 }
15471
15472 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15473 update TYPE using some information only available in DIE's children. */
15474
15475 static void
15476 update_enumeration_type_from_children (struct die_info *die,
15477 struct type *type,
15478 struct dwarf2_cu *cu)
15479 {
15480 struct die_info *child_die;
15481 int unsigned_enum = 1;
15482 int flag_enum = 1;
15483
15484 auto_obstack obstack;
15485
15486 for (child_die = die->child;
15487 child_die != NULL && child_die->tag;
15488 child_die = sibling_die (child_die))
15489 {
15490 struct attribute *attr;
15491 LONGEST value;
15492 const gdb_byte *bytes;
15493 struct dwarf2_locexpr_baton *baton;
15494 const char *name;
15495
15496 if (child_die->tag != DW_TAG_enumerator)
15497 continue;
15498
15499 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15500 if (attr == NULL)
15501 continue;
15502
15503 name = dwarf2_name (child_die, cu);
15504 if (name == NULL)
15505 name = "<anonymous enumerator>";
15506
15507 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15508 &value, &bytes, &baton);
15509 if (value < 0)
15510 {
15511 unsigned_enum = 0;
15512 flag_enum = 0;
15513 }
15514 else
15515 {
15516 if (count_one_bits_ll (value) >= 2)
15517 flag_enum = 0;
15518 }
15519
15520 /* If we already know that the enum type is neither unsigned, nor
15521 a flag type, no need to look at the rest of the enumerates. */
15522 if (!unsigned_enum && !flag_enum)
15523 break;
15524 }
15525
15526 if (unsigned_enum)
15527 TYPE_UNSIGNED (type) = 1;
15528 if (flag_enum)
15529 TYPE_FLAG_ENUM (type) = 1;
15530 }
15531
15532 /* Given a DW_AT_enumeration_type die, set its type. We do not
15533 complete the type's fields yet, or create any symbols. */
15534
15535 static struct type *
15536 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15537 {
15538 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15539 struct type *type;
15540 struct attribute *attr;
15541 const char *name;
15542
15543 /* If the definition of this type lives in .debug_types, read that type.
15544 Don't follow DW_AT_specification though, that will take us back up
15545 the chain and we want to go down. */
15546 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15547 if (attr != nullptr)
15548 {
15549 type = get_DW_AT_signature_type (die, attr, cu);
15550
15551 /* The type's CU may not be the same as CU.
15552 Ensure TYPE is recorded with CU in die_type_hash. */
15553 return set_die_type (die, type, cu);
15554 }
15555
15556 type = alloc_type (objfile);
15557
15558 TYPE_CODE (type) = TYPE_CODE_ENUM;
15559 name = dwarf2_full_name (NULL, die, cu);
15560 if (name != NULL)
15561 TYPE_NAME (type) = name;
15562
15563 attr = dwarf2_attr (die, DW_AT_type, cu);
15564 if (attr != NULL)
15565 {
15566 struct type *underlying_type = die_type (die, cu);
15567
15568 TYPE_TARGET_TYPE (type) = underlying_type;
15569 }
15570
15571 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15572 if (attr != nullptr)
15573 {
15574 TYPE_LENGTH (type) = DW_UNSND (attr);
15575 }
15576 else
15577 {
15578 TYPE_LENGTH (type) = 0;
15579 }
15580
15581 maybe_set_alignment (cu, die, type);
15582
15583 /* The enumeration DIE can be incomplete. In Ada, any type can be
15584 declared as private in the package spec, and then defined only
15585 inside the package body. Such types are known as Taft Amendment
15586 Types. When another package uses such a type, an incomplete DIE
15587 may be generated by the compiler. */
15588 if (die_is_declaration (die, cu))
15589 TYPE_STUB (type) = 1;
15590
15591 /* Finish the creation of this type by using the enum's children.
15592 We must call this even when the underlying type has been provided
15593 so that we can determine if we're looking at a "flag" enum. */
15594 update_enumeration_type_from_children (die, type, cu);
15595
15596 /* If this type has an underlying type that is not a stub, then we
15597 may use its attributes. We always use the "unsigned" attribute
15598 in this situation, because ordinarily we guess whether the type
15599 is unsigned -- but the guess can be wrong and the underlying type
15600 can tell us the reality. However, we defer to a local size
15601 attribute if one exists, because this lets the compiler override
15602 the underlying type if needed. */
15603 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15604 {
15605 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
15606 if (TYPE_LENGTH (type) == 0)
15607 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
15608 if (TYPE_RAW_ALIGN (type) == 0
15609 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
15610 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
15611 }
15612
15613 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15614
15615 return set_die_type (die, type, cu);
15616 }
15617
15618 /* Given a pointer to a die which begins an enumeration, process all
15619 the dies that define the members of the enumeration, and create the
15620 symbol for the enumeration type.
15621
15622 NOTE: We reverse the order of the element list. */
15623
15624 static void
15625 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15626 {
15627 struct type *this_type;
15628
15629 this_type = get_die_type (die, cu);
15630 if (this_type == NULL)
15631 this_type = read_enumeration_type (die, cu);
15632
15633 if (die->child != NULL)
15634 {
15635 struct die_info *child_die;
15636 struct symbol *sym;
15637 std::vector<struct field> fields;
15638 const char *name;
15639
15640 child_die = die->child;
15641 while (child_die && child_die->tag)
15642 {
15643 if (child_die->tag != DW_TAG_enumerator)
15644 {
15645 process_die (child_die, cu);
15646 }
15647 else
15648 {
15649 name = dwarf2_name (child_die, cu);
15650 if (name)
15651 {
15652 sym = new_symbol (child_die, this_type, cu);
15653
15654 fields.emplace_back ();
15655 struct field &field = fields.back ();
15656
15657 FIELD_NAME (field) = sym->linkage_name ();
15658 FIELD_TYPE (field) = NULL;
15659 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15660 FIELD_BITSIZE (field) = 0;
15661 }
15662 }
15663
15664 child_die = sibling_die (child_die);
15665 }
15666
15667 if (!fields.empty ())
15668 {
15669 TYPE_NFIELDS (this_type) = fields.size ();
15670 TYPE_FIELDS (this_type) = (struct field *)
15671 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15672 memcpy (TYPE_FIELDS (this_type), fields.data (),
15673 sizeof (struct field) * fields.size ());
15674 }
15675 }
15676
15677 /* If we are reading an enum from a .debug_types unit, and the enum
15678 is a declaration, and the enum is not the signatured type in the
15679 unit, then we do not want to add a symbol for it. Adding a
15680 symbol would in some cases obscure the true definition of the
15681 enum, giving users an incomplete type when the definition is
15682 actually available. Note that we do not want to do this for all
15683 enums which are just declarations, because C++0x allows forward
15684 enum declarations. */
15685 if (cu->per_cu->is_debug_types
15686 && die_is_declaration (die, cu))
15687 {
15688 struct signatured_type *sig_type;
15689
15690 sig_type = (struct signatured_type *) cu->per_cu;
15691 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15692 if (sig_type->type_offset_in_section != die->sect_off)
15693 return;
15694 }
15695
15696 new_symbol (die, this_type, cu);
15697 }
15698
15699 /* Extract all information from a DW_TAG_array_type DIE and put it in
15700 the DIE's type field. For now, this only handles one dimensional
15701 arrays. */
15702
15703 static struct type *
15704 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15705 {
15706 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15707 struct die_info *child_die;
15708 struct type *type;
15709 struct type *element_type, *range_type, *index_type;
15710 struct attribute *attr;
15711 const char *name;
15712 struct dynamic_prop *byte_stride_prop = NULL;
15713 unsigned int bit_stride = 0;
15714
15715 element_type = die_type (die, cu);
15716
15717 /* The die_type call above may have already set the type for this DIE. */
15718 type = get_die_type (die, cu);
15719 if (type)
15720 return type;
15721
15722 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15723 if (attr != NULL)
15724 {
15725 int stride_ok;
15726 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15727
15728 byte_stride_prop
15729 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15730 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15731 prop_type);
15732 if (!stride_ok)
15733 {
15734 complaint (_("unable to read array DW_AT_byte_stride "
15735 " - DIE at %s [in module %s]"),
15736 sect_offset_str (die->sect_off),
15737 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15738 /* Ignore this attribute. We will likely not be able to print
15739 arrays of this type correctly, but there is little we can do
15740 to help if we cannot read the attribute's value. */
15741 byte_stride_prop = NULL;
15742 }
15743 }
15744
15745 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15746 if (attr != NULL)
15747 bit_stride = DW_UNSND (attr);
15748
15749 /* Irix 6.2 native cc creates array types without children for
15750 arrays with unspecified length. */
15751 if (die->child == NULL)
15752 {
15753 index_type = objfile_type (objfile)->builtin_int;
15754 range_type = create_static_range_type (NULL, index_type, 0, -1);
15755 type = create_array_type_with_stride (NULL, element_type, range_type,
15756 byte_stride_prop, bit_stride);
15757 return set_die_type (die, type, cu);
15758 }
15759
15760 std::vector<struct type *> range_types;
15761 child_die = die->child;
15762 while (child_die && child_die->tag)
15763 {
15764 if (child_die->tag == DW_TAG_subrange_type)
15765 {
15766 struct type *child_type = read_type_die (child_die, cu);
15767
15768 if (child_type != NULL)
15769 {
15770 /* The range type was succesfully read. Save it for the
15771 array type creation. */
15772 range_types.push_back (child_type);
15773 }
15774 }
15775 child_die = sibling_die (child_die);
15776 }
15777
15778 /* Dwarf2 dimensions are output from left to right, create the
15779 necessary array types in backwards order. */
15780
15781 type = element_type;
15782
15783 if (read_array_order (die, cu) == DW_ORD_col_major)
15784 {
15785 int i = 0;
15786
15787 while (i < range_types.size ())
15788 type = create_array_type_with_stride (NULL, type, range_types[i++],
15789 byte_stride_prop, bit_stride);
15790 }
15791 else
15792 {
15793 size_t ndim = range_types.size ();
15794 while (ndim-- > 0)
15795 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15796 byte_stride_prop, bit_stride);
15797 }
15798
15799 /* Understand Dwarf2 support for vector types (like they occur on
15800 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15801 array type. This is not part of the Dwarf2/3 standard yet, but a
15802 custom vendor extension. The main difference between a regular
15803 array and the vector variant is that vectors are passed by value
15804 to functions. */
15805 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15806 if (attr != nullptr)
15807 make_vector_type (type);
15808
15809 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15810 implementation may choose to implement triple vectors using this
15811 attribute. */
15812 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15813 if (attr != nullptr)
15814 {
15815 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15816 TYPE_LENGTH (type) = DW_UNSND (attr);
15817 else
15818 complaint (_("DW_AT_byte_size for array type smaller "
15819 "than the total size of elements"));
15820 }
15821
15822 name = dwarf2_name (die, cu);
15823 if (name)
15824 TYPE_NAME (type) = name;
15825
15826 maybe_set_alignment (cu, die, type);
15827
15828 /* Install the type in the die. */
15829 set_die_type (die, type, cu);
15830
15831 /* set_die_type should be already done. */
15832 set_descriptive_type (type, die, cu);
15833
15834 return type;
15835 }
15836
15837 static enum dwarf_array_dim_ordering
15838 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15839 {
15840 struct attribute *attr;
15841
15842 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15843
15844 if (attr != nullptr)
15845 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15846
15847 /* GNU F77 is a special case, as at 08/2004 array type info is the
15848 opposite order to the dwarf2 specification, but data is still
15849 laid out as per normal fortran.
15850
15851 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15852 version checking. */
15853
15854 if (cu->language == language_fortran
15855 && cu->producer && strstr (cu->producer, "GNU F77"))
15856 {
15857 return DW_ORD_row_major;
15858 }
15859
15860 switch (cu->language_defn->la_array_ordering)
15861 {
15862 case array_column_major:
15863 return DW_ORD_col_major;
15864 case array_row_major:
15865 default:
15866 return DW_ORD_row_major;
15867 };
15868 }
15869
15870 /* Extract all information from a DW_TAG_set_type DIE and put it in
15871 the DIE's type field. */
15872
15873 static struct type *
15874 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15875 {
15876 struct type *domain_type, *set_type;
15877 struct attribute *attr;
15878
15879 domain_type = die_type (die, cu);
15880
15881 /* The die_type call above may have already set the type for this DIE. */
15882 set_type = get_die_type (die, cu);
15883 if (set_type)
15884 return set_type;
15885
15886 set_type = create_set_type (NULL, domain_type);
15887
15888 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15889 if (attr != nullptr)
15890 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15891
15892 maybe_set_alignment (cu, die, set_type);
15893
15894 return set_die_type (die, set_type, cu);
15895 }
15896
15897 /* A helper for read_common_block that creates a locexpr baton.
15898 SYM is the symbol which we are marking as computed.
15899 COMMON_DIE is the DIE for the common block.
15900 COMMON_LOC is the location expression attribute for the common
15901 block itself.
15902 MEMBER_LOC is the location expression attribute for the particular
15903 member of the common block that we are processing.
15904 CU is the CU from which the above come. */
15905
15906 static void
15907 mark_common_block_symbol_computed (struct symbol *sym,
15908 struct die_info *common_die,
15909 struct attribute *common_loc,
15910 struct attribute *member_loc,
15911 struct dwarf2_cu *cu)
15912 {
15913 struct dwarf2_per_objfile *dwarf2_per_objfile
15914 = cu->per_cu->dwarf2_per_objfile;
15915 struct objfile *objfile = dwarf2_per_objfile->objfile;
15916 struct dwarf2_locexpr_baton *baton;
15917 gdb_byte *ptr;
15918 unsigned int cu_off;
15919 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15920 LONGEST offset = 0;
15921
15922 gdb_assert (common_loc && member_loc);
15923 gdb_assert (common_loc->form_is_block ());
15924 gdb_assert (member_loc->form_is_block ()
15925 || member_loc->form_is_constant ());
15926
15927 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15928 baton->per_cu = cu->per_cu;
15929 gdb_assert (baton->per_cu);
15930
15931 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15932
15933 if (member_loc->form_is_constant ())
15934 {
15935 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15936 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15937 }
15938 else
15939 baton->size += DW_BLOCK (member_loc)->size;
15940
15941 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15942 baton->data = ptr;
15943
15944 *ptr++ = DW_OP_call4;
15945 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15946 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15947 ptr += 4;
15948
15949 if (member_loc->form_is_constant ())
15950 {
15951 *ptr++ = DW_OP_addr;
15952 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15953 ptr += cu->header.addr_size;
15954 }
15955 else
15956 {
15957 /* We have to copy the data here, because DW_OP_call4 will only
15958 use a DW_AT_location attribute. */
15959 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15960 ptr += DW_BLOCK (member_loc)->size;
15961 }
15962
15963 *ptr++ = DW_OP_plus;
15964 gdb_assert (ptr - baton->data == baton->size);
15965
15966 SYMBOL_LOCATION_BATON (sym) = baton;
15967 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
15968 }
15969
15970 /* Create appropriate locally-scoped variables for all the
15971 DW_TAG_common_block entries. Also create a struct common_block
15972 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
15973 is used to separate the common blocks name namespace from regular
15974 variable names. */
15975
15976 static void
15977 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
15978 {
15979 struct attribute *attr;
15980
15981 attr = dwarf2_attr (die, DW_AT_location, cu);
15982 if (attr != nullptr)
15983 {
15984 /* Support the .debug_loc offsets. */
15985 if (attr->form_is_block ())
15986 {
15987 /* Ok. */
15988 }
15989 else if (attr->form_is_section_offset ())
15990 {
15991 dwarf2_complex_location_expr_complaint ();
15992 attr = NULL;
15993 }
15994 else
15995 {
15996 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15997 "common block member");
15998 attr = NULL;
15999 }
16000 }
16001
16002 if (die->child != NULL)
16003 {
16004 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16005 struct die_info *child_die;
16006 size_t n_entries = 0, size;
16007 struct common_block *common_block;
16008 struct symbol *sym;
16009
16010 for (child_die = die->child;
16011 child_die && child_die->tag;
16012 child_die = sibling_die (child_die))
16013 ++n_entries;
16014
16015 size = (sizeof (struct common_block)
16016 + (n_entries - 1) * sizeof (struct symbol *));
16017 common_block
16018 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16019 size);
16020 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16021 common_block->n_entries = 0;
16022
16023 for (child_die = die->child;
16024 child_die && child_die->tag;
16025 child_die = sibling_die (child_die))
16026 {
16027 /* Create the symbol in the DW_TAG_common_block block in the current
16028 symbol scope. */
16029 sym = new_symbol (child_die, NULL, cu);
16030 if (sym != NULL)
16031 {
16032 struct attribute *member_loc;
16033
16034 common_block->contents[common_block->n_entries++] = sym;
16035
16036 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16037 cu);
16038 if (member_loc)
16039 {
16040 /* GDB has handled this for a long time, but it is
16041 not specified by DWARF. It seems to have been
16042 emitted by gfortran at least as recently as:
16043 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16044 complaint (_("Variable in common block has "
16045 "DW_AT_data_member_location "
16046 "- DIE at %s [in module %s]"),
16047 sect_offset_str (child_die->sect_off),
16048 objfile_name (objfile));
16049
16050 if (member_loc->form_is_section_offset ())
16051 dwarf2_complex_location_expr_complaint ();
16052 else if (member_loc->form_is_constant ()
16053 || member_loc->form_is_block ())
16054 {
16055 if (attr != nullptr)
16056 mark_common_block_symbol_computed (sym, die, attr,
16057 member_loc, cu);
16058 }
16059 else
16060 dwarf2_complex_location_expr_complaint ();
16061 }
16062 }
16063 }
16064
16065 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16066 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16067 }
16068 }
16069
16070 /* Create a type for a C++ namespace. */
16071
16072 static struct type *
16073 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16074 {
16075 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16076 const char *previous_prefix, *name;
16077 int is_anonymous;
16078 struct type *type;
16079
16080 /* For extensions, reuse the type of the original namespace. */
16081 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16082 {
16083 struct die_info *ext_die;
16084 struct dwarf2_cu *ext_cu = cu;
16085
16086 ext_die = dwarf2_extension (die, &ext_cu);
16087 type = read_type_die (ext_die, ext_cu);
16088
16089 /* EXT_CU may not be the same as CU.
16090 Ensure TYPE is recorded with CU in die_type_hash. */
16091 return set_die_type (die, type, cu);
16092 }
16093
16094 name = namespace_name (die, &is_anonymous, cu);
16095
16096 /* Now build the name of the current namespace. */
16097
16098 previous_prefix = determine_prefix (die, cu);
16099 if (previous_prefix[0] != '\0')
16100 name = typename_concat (&objfile->objfile_obstack,
16101 previous_prefix, name, 0, cu);
16102
16103 /* Create the type. */
16104 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16105
16106 return set_die_type (die, type, cu);
16107 }
16108
16109 /* Read a namespace scope. */
16110
16111 static void
16112 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16113 {
16114 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16115 int is_anonymous;
16116
16117 /* Add a symbol associated to this if we haven't seen the namespace
16118 before. Also, add a using directive if it's an anonymous
16119 namespace. */
16120
16121 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16122 {
16123 struct type *type;
16124
16125 type = read_type_die (die, cu);
16126 new_symbol (die, type, cu);
16127
16128 namespace_name (die, &is_anonymous, cu);
16129 if (is_anonymous)
16130 {
16131 const char *previous_prefix = determine_prefix (die, cu);
16132
16133 std::vector<const char *> excludes;
16134 add_using_directive (using_directives (cu),
16135 previous_prefix, TYPE_NAME (type), NULL,
16136 NULL, excludes, 0, &objfile->objfile_obstack);
16137 }
16138 }
16139
16140 if (die->child != NULL)
16141 {
16142 struct die_info *child_die = die->child;
16143
16144 while (child_die && child_die->tag)
16145 {
16146 process_die (child_die, cu);
16147 child_die = sibling_die (child_die);
16148 }
16149 }
16150 }
16151
16152 /* Read a Fortran module as type. This DIE can be only a declaration used for
16153 imported module. Still we need that type as local Fortran "use ... only"
16154 declaration imports depend on the created type in determine_prefix. */
16155
16156 static struct type *
16157 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16158 {
16159 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16160 const char *module_name;
16161 struct type *type;
16162
16163 module_name = dwarf2_name (die, cu);
16164 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16165
16166 return set_die_type (die, type, cu);
16167 }
16168
16169 /* Read a Fortran module. */
16170
16171 static void
16172 read_module (struct die_info *die, struct dwarf2_cu *cu)
16173 {
16174 struct die_info *child_die = die->child;
16175 struct type *type;
16176
16177 type = read_type_die (die, cu);
16178 new_symbol (die, type, cu);
16179
16180 while (child_die && child_die->tag)
16181 {
16182 process_die (child_die, cu);
16183 child_die = sibling_die (child_die);
16184 }
16185 }
16186
16187 /* Return the name of the namespace represented by DIE. Set
16188 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16189 namespace. */
16190
16191 static const char *
16192 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16193 {
16194 struct die_info *current_die;
16195 const char *name = NULL;
16196
16197 /* Loop through the extensions until we find a name. */
16198
16199 for (current_die = die;
16200 current_die != NULL;
16201 current_die = dwarf2_extension (die, &cu))
16202 {
16203 /* We don't use dwarf2_name here so that we can detect the absence
16204 of a name -> anonymous namespace. */
16205 name = dwarf2_string_attr (die, DW_AT_name, cu);
16206
16207 if (name != NULL)
16208 break;
16209 }
16210
16211 /* Is it an anonymous namespace? */
16212
16213 *is_anonymous = (name == NULL);
16214 if (*is_anonymous)
16215 name = CP_ANONYMOUS_NAMESPACE_STR;
16216
16217 return name;
16218 }
16219
16220 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16221 the user defined type vector. */
16222
16223 static struct type *
16224 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16225 {
16226 struct gdbarch *gdbarch
16227 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16228 struct comp_unit_head *cu_header = &cu->header;
16229 struct type *type;
16230 struct attribute *attr_byte_size;
16231 struct attribute *attr_address_class;
16232 int byte_size, addr_class;
16233 struct type *target_type;
16234
16235 target_type = die_type (die, cu);
16236
16237 /* The die_type call above may have already set the type for this DIE. */
16238 type = get_die_type (die, cu);
16239 if (type)
16240 return type;
16241
16242 type = lookup_pointer_type (target_type);
16243
16244 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16245 if (attr_byte_size)
16246 byte_size = DW_UNSND (attr_byte_size);
16247 else
16248 byte_size = cu_header->addr_size;
16249
16250 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16251 if (attr_address_class)
16252 addr_class = DW_UNSND (attr_address_class);
16253 else
16254 addr_class = DW_ADDR_none;
16255
16256 ULONGEST alignment = get_alignment (cu, die);
16257
16258 /* If the pointer size, alignment, or address class is different
16259 than the default, create a type variant marked as such and set
16260 the length accordingly. */
16261 if (TYPE_LENGTH (type) != byte_size
16262 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16263 && alignment != TYPE_RAW_ALIGN (type))
16264 || addr_class != DW_ADDR_none)
16265 {
16266 if (gdbarch_address_class_type_flags_p (gdbarch))
16267 {
16268 int type_flags;
16269
16270 type_flags = gdbarch_address_class_type_flags
16271 (gdbarch, byte_size, addr_class);
16272 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16273 == 0);
16274 type = make_type_with_address_space (type, type_flags);
16275 }
16276 else if (TYPE_LENGTH (type) != byte_size)
16277 {
16278 complaint (_("invalid pointer size %d"), byte_size);
16279 }
16280 else if (TYPE_RAW_ALIGN (type) != alignment)
16281 {
16282 complaint (_("Invalid DW_AT_alignment"
16283 " - DIE at %s [in module %s]"),
16284 sect_offset_str (die->sect_off),
16285 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16286 }
16287 else
16288 {
16289 /* Should we also complain about unhandled address classes? */
16290 }
16291 }
16292
16293 TYPE_LENGTH (type) = byte_size;
16294 set_type_align (type, alignment);
16295 return set_die_type (die, type, cu);
16296 }
16297
16298 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16299 the user defined type vector. */
16300
16301 static struct type *
16302 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16303 {
16304 struct type *type;
16305 struct type *to_type;
16306 struct type *domain;
16307
16308 to_type = die_type (die, cu);
16309 domain = die_containing_type (die, cu);
16310
16311 /* The calls above may have already set the type for this DIE. */
16312 type = get_die_type (die, cu);
16313 if (type)
16314 return type;
16315
16316 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16317 type = lookup_methodptr_type (to_type);
16318 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16319 {
16320 struct type *new_type
16321 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16322
16323 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16324 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16325 TYPE_VARARGS (to_type));
16326 type = lookup_methodptr_type (new_type);
16327 }
16328 else
16329 type = lookup_memberptr_type (to_type, domain);
16330
16331 return set_die_type (die, type, cu);
16332 }
16333
16334 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16335 the user defined type vector. */
16336
16337 static struct type *
16338 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16339 enum type_code refcode)
16340 {
16341 struct comp_unit_head *cu_header = &cu->header;
16342 struct type *type, *target_type;
16343 struct attribute *attr;
16344
16345 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16346
16347 target_type = die_type (die, cu);
16348
16349 /* The die_type call above may have already set the type for this DIE. */
16350 type = get_die_type (die, cu);
16351 if (type)
16352 return type;
16353
16354 type = lookup_reference_type (target_type, refcode);
16355 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16356 if (attr != nullptr)
16357 {
16358 TYPE_LENGTH (type) = DW_UNSND (attr);
16359 }
16360 else
16361 {
16362 TYPE_LENGTH (type) = cu_header->addr_size;
16363 }
16364 maybe_set_alignment (cu, die, type);
16365 return set_die_type (die, type, cu);
16366 }
16367
16368 /* Add the given cv-qualifiers to the element type of the array. GCC
16369 outputs DWARF type qualifiers that apply to an array, not the
16370 element type. But GDB relies on the array element type to carry
16371 the cv-qualifiers. This mimics section 6.7.3 of the C99
16372 specification. */
16373
16374 static struct type *
16375 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16376 struct type *base_type, int cnst, int voltl)
16377 {
16378 struct type *el_type, *inner_array;
16379
16380 base_type = copy_type (base_type);
16381 inner_array = base_type;
16382
16383 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16384 {
16385 TYPE_TARGET_TYPE (inner_array) =
16386 copy_type (TYPE_TARGET_TYPE (inner_array));
16387 inner_array = TYPE_TARGET_TYPE (inner_array);
16388 }
16389
16390 el_type = TYPE_TARGET_TYPE (inner_array);
16391 cnst |= TYPE_CONST (el_type);
16392 voltl |= TYPE_VOLATILE (el_type);
16393 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16394
16395 return set_die_type (die, base_type, cu);
16396 }
16397
16398 static struct type *
16399 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16400 {
16401 struct type *base_type, *cv_type;
16402
16403 base_type = die_type (die, cu);
16404
16405 /* The die_type call above may have already set the type for this DIE. */
16406 cv_type = get_die_type (die, cu);
16407 if (cv_type)
16408 return cv_type;
16409
16410 /* In case the const qualifier is applied to an array type, the element type
16411 is so qualified, not the array type (section 6.7.3 of C99). */
16412 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16413 return add_array_cv_type (die, cu, base_type, 1, 0);
16414
16415 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16416 return set_die_type (die, cv_type, cu);
16417 }
16418
16419 static struct type *
16420 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16421 {
16422 struct type *base_type, *cv_type;
16423
16424 base_type = die_type (die, cu);
16425
16426 /* The die_type call above may have already set the type for this DIE. */
16427 cv_type = get_die_type (die, cu);
16428 if (cv_type)
16429 return cv_type;
16430
16431 /* In case the volatile qualifier is applied to an array type, the
16432 element type is so qualified, not the array type (section 6.7.3
16433 of C99). */
16434 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16435 return add_array_cv_type (die, cu, base_type, 0, 1);
16436
16437 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16438 return set_die_type (die, cv_type, cu);
16439 }
16440
16441 /* Handle DW_TAG_restrict_type. */
16442
16443 static struct type *
16444 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16445 {
16446 struct type *base_type, *cv_type;
16447
16448 base_type = die_type (die, cu);
16449
16450 /* The die_type call above may have already set the type for this DIE. */
16451 cv_type = get_die_type (die, cu);
16452 if (cv_type)
16453 return cv_type;
16454
16455 cv_type = make_restrict_type (base_type);
16456 return set_die_type (die, cv_type, cu);
16457 }
16458
16459 /* Handle DW_TAG_atomic_type. */
16460
16461 static struct type *
16462 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16463 {
16464 struct type *base_type, *cv_type;
16465
16466 base_type = die_type (die, cu);
16467
16468 /* The die_type call above may have already set the type for this DIE. */
16469 cv_type = get_die_type (die, cu);
16470 if (cv_type)
16471 return cv_type;
16472
16473 cv_type = make_atomic_type (base_type);
16474 return set_die_type (die, cv_type, cu);
16475 }
16476
16477 /* Extract all information from a DW_TAG_string_type DIE and add to
16478 the user defined type vector. It isn't really a user defined type,
16479 but it behaves like one, with other DIE's using an AT_user_def_type
16480 attribute to reference it. */
16481
16482 static struct type *
16483 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16484 {
16485 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16487 struct type *type, *range_type, *index_type, *char_type;
16488 struct attribute *attr;
16489 struct dynamic_prop prop;
16490 bool length_is_constant = true;
16491 LONGEST length;
16492
16493 /* There are a couple of places where bit sizes might be made use of
16494 when parsing a DW_TAG_string_type, however, no producer that we know
16495 of make use of these. Handling bit sizes that are a multiple of the
16496 byte size is easy enough, but what about other bit sizes? Lets deal
16497 with that problem when we have to. Warn about these attributes being
16498 unsupported, then parse the type and ignore them like we always
16499 have. */
16500 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16501 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16502 {
16503 static bool warning_printed = false;
16504 if (!warning_printed)
16505 {
16506 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16507 "currently supported on DW_TAG_string_type."));
16508 warning_printed = true;
16509 }
16510 }
16511
16512 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16513 if (attr != nullptr && !attr->form_is_constant ())
16514 {
16515 /* The string length describes the location at which the length of
16516 the string can be found. The size of the length field can be
16517 specified with one of the attributes below. */
16518 struct type *prop_type;
16519 struct attribute *len
16520 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16521 if (len == nullptr)
16522 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16523 if (len != nullptr && len->form_is_constant ())
16524 {
16525 /* Pass 0 as the default as we know this attribute is constant
16526 and the default value will not be returned. */
16527 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16528 prop_type = cu->per_cu->int_type (sz, true);
16529 }
16530 else
16531 {
16532 /* If the size is not specified then we assume it is the size of
16533 an address on this target. */
16534 prop_type = cu->per_cu->addr_sized_int_type (true);
16535 }
16536
16537 /* Convert the attribute into a dynamic property. */
16538 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16539 length = 1;
16540 else
16541 length_is_constant = false;
16542 }
16543 else if (attr != nullptr)
16544 {
16545 /* This DW_AT_string_length just contains the length with no
16546 indirection. There's no need to create a dynamic property in this
16547 case. Pass 0 for the default value as we know it will not be
16548 returned in this case. */
16549 length = dwarf2_get_attr_constant_value (attr, 0);
16550 }
16551 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16552 {
16553 /* We don't currently support non-constant byte sizes for strings. */
16554 length = dwarf2_get_attr_constant_value (attr, 1);
16555 }
16556 else
16557 {
16558 /* Use 1 as a fallback length if we have nothing else. */
16559 length = 1;
16560 }
16561
16562 index_type = objfile_type (objfile)->builtin_int;
16563 if (length_is_constant)
16564 range_type = create_static_range_type (NULL, index_type, 1, length);
16565 else
16566 {
16567 struct dynamic_prop low_bound;
16568
16569 low_bound.kind = PROP_CONST;
16570 low_bound.data.const_val = 1;
16571 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16572 }
16573 char_type = language_string_char_type (cu->language_defn, gdbarch);
16574 type = create_string_type (NULL, char_type, range_type);
16575
16576 return set_die_type (die, type, cu);
16577 }
16578
16579 /* Assuming that DIE corresponds to a function, returns nonzero
16580 if the function is prototyped. */
16581
16582 static int
16583 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16584 {
16585 struct attribute *attr;
16586
16587 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16588 if (attr && (DW_UNSND (attr) != 0))
16589 return 1;
16590
16591 /* The DWARF standard implies that the DW_AT_prototyped attribute
16592 is only meaningful for C, but the concept also extends to other
16593 languages that allow unprototyped functions (Eg: Objective C).
16594 For all other languages, assume that functions are always
16595 prototyped. */
16596 if (cu->language != language_c
16597 && cu->language != language_objc
16598 && cu->language != language_opencl)
16599 return 1;
16600
16601 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16602 prototyped and unprototyped functions; default to prototyped,
16603 since that is more common in modern code (and RealView warns
16604 about unprototyped functions). */
16605 if (producer_is_realview (cu->producer))
16606 return 1;
16607
16608 return 0;
16609 }
16610
16611 /* Handle DIES due to C code like:
16612
16613 struct foo
16614 {
16615 int (*funcp)(int a, long l);
16616 int b;
16617 };
16618
16619 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16620
16621 static struct type *
16622 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16623 {
16624 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16625 struct type *type; /* Type that this function returns. */
16626 struct type *ftype; /* Function that returns above type. */
16627 struct attribute *attr;
16628
16629 type = die_type (die, cu);
16630
16631 /* The die_type call above may have already set the type for this DIE. */
16632 ftype = get_die_type (die, cu);
16633 if (ftype)
16634 return ftype;
16635
16636 ftype = lookup_function_type (type);
16637
16638 if (prototyped_function_p (die, cu))
16639 TYPE_PROTOTYPED (ftype) = 1;
16640
16641 /* Store the calling convention in the type if it's available in
16642 the subroutine die. Otherwise set the calling convention to
16643 the default value DW_CC_normal. */
16644 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16645 if (attr != nullptr
16646 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16647 TYPE_CALLING_CONVENTION (ftype)
16648 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16649 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16650 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16651 else
16652 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16653
16654 /* Record whether the function returns normally to its caller or not
16655 if the DWARF producer set that information. */
16656 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16657 if (attr && (DW_UNSND (attr) != 0))
16658 TYPE_NO_RETURN (ftype) = 1;
16659
16660 /* We need to add the subroutine type to the die immediately so
16661 we don't infinitely recurse when dealing with parameters
16662 declared as the same subroutine type. */
16663 set_die_type (die, ftype, cu);
16664
16665 if (die->child != NULL)
16666 {
16667 struct type *void_type = objfile_type (objfile)->builtin_void;
16668 struct die_info *child_die;
16669 int nparams, iparams;
16670
16671 /* Count the number of parameters.
16672 FIXME: GDB currently ignores vararg functions, but knows about
16673 vararg member functions. */
16674 nparams = 0;
16675 child_die = die->child;
16676 while (child_die && child_die->tag)
16677 {
16678 if (child_die->tag == DW_TAG_formal_parameter)
16679 nparams++;
16680 else if (child_die->tag == DW_TAG_unspecified_parameters)
16681 TYPE_VARARGS (ftype) = 1;
16682 child_die = sibling_die (child_die);
16683 }
16684
16685 /* Allocate storage for parameters and fill them in. */
16686 TYPE_NFIELDS (ftype) = nparams;
16687 TYPE_FIELDS (ftype) = (struct field *)
16688 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16689
16690 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16691 even if we error out during the parameters reading below. */
16692 for (iparams = 0; iparams < nparams; iparams++)
16693 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16694
16695 iparams = 0;
16696 child_die = die->child;
16697 while (child_die && child_die->tag)
16698 {
16699 if (child_die->tag == DW_TAG_formal_parameter)
16700 {
16701 struct type *arg_type;
16702
16703 /* DWARF version 2 has no clean way to discern C++
16704 static and non-static member functions. G++ helps
16705 GDB by marking the first parameter for non-static
16706 member functions (which is the this pointer) as
16707 artificial. We pass this information to
16708 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16709
16710 DWARF version 3 added DW_AT_object_pointer, which GCC
16711 4.5 does not yet generate. */
16712 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16713 if (attr != nullptr)
16714 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16715 else
16716 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16717 arg_type = die_type (child_die, cu);
16718
16719 /* RealView does not mark THIS as const, which the testsuite
16720 expects. GCC marks THIS as const in method definitions,
16721 but not in the class specifications (GCC PR 43053). */
16722 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16723 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16724 {
16725 int is_this = 0;
16726 struct dwarf2_cu *arg_cu = cu;
16727 const char *name = dwarf2_name (child_die, cu);
16728
16729 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16730 if (attr != nullptr)
16731 {
16732 /* If the compiler emits this, use it. */
16733 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16734 is_this = 1;
16735 }
16736 else if (name && strcmp (name, "this") == 0)
16737 /* Function definitions will have the argument names. */
16738 is_this = 1;
16739 else if (name == NULL && iparams == 0)
16740 /* Declarations may not have the names, so like
16741 elsewhere in GDB, assume an artificial first
16742 argument is "this". */
16743 is_this = 1;
16744
16745 if (is_this)
16746 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16747 arg_type, 0);
16748 }
16749
16750 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16751 iparams++;
16752 }
16753 child_die = sibling_die (child_die);
16754 }
16755 }
16756
16757 return ftype;
16758 }
16759
16760 static struct type *
16761 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16762 {
16763 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16764 const char *name = NULL;
16765 struct type *this_type, *target_type;
16766
16767 name = dwarf2_full_name (NULL, die, cu);
16768 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16769 TYPE_TARGET_STUB (this_type) = 1;
16770 set_die_type (die, this_type, cu);
16771 target_type = die_type (die, cu);
16772 if (target_type != this_type)
16773 TYPE_TARGET_TYPE (this_type) = target_type;
16774 else
16775 {
16776 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16777 spec and cause infinite loops in GDB. */
16778 complaint (_("Self-referential DW_TAG_typedef "
16779 "- DIE at %s [in module %s]"),
16780 sect_offset_str (die->sect_off), objfile_name (objfile));
16781 TYPE_TARGET_TYPE (this_type) = NULL;
16782 }
16783 return this_type;
16784 }
16785
16786 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16787 (which may be different from NAME) to the architecture back-end to allow
16788 it to guess the correct format if necessary. */
16789
16790 static struct type *
16791 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16792 const char *name_hint, enum bfd_endian byte_order)
16793 {
16794 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16795 const struct floatformat **format;
16796 struct type *type;
16797
16798 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16799 if (format)
16800 type = init_float_type (objfile, bits, name, format, byte_order);
16801 else
16802 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16803
16804 return type;
16805 }
16806
16807 /* Allocate an integer type of size BITS and name NAME. */
16808
16809 static struct type *
16810 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16811 int bits, int unsigned_p, const char *name)
16812 {
16813 struct type *type;
16814
16815 /* Versions of Intel's C Compiler generate an integer type called "void"
16816 instead of using DW_TAG_unspecified_type. This has been seen on
16817 at least versions 14, 17, and 18. */
16818 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16819 && strcmp (name, "void") == 0)
16820 type = objfile_type (objfile)->builtin_void;
16821 else
16822 type = init_integer_type (objfile, bits, unsigned_p, name);
16823
16824 return type;
16825 }
16826
16827 /* Initialise and return a floating point type of size BITS suitable for
16828 use as a component of a complex number. The NAME_HINT is passed through
16829 when initialising the floating point type and is the name of the complex
16830 type.
16831
16832 As DWARF doesn't currently provide an explicit name for the components
16833 of a complex number, but it can be helpful to have these components
16834 named, we try to select a suitable name based on the size of the
16835 component. */
16836 static struct type *
16837 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16838 struct objfile *objfile,
16839 int bits, const char *name_hint,
16840 enum bfd_endian byte_order)
16841 {
16842 gdbarch *gdbarch = get_objfile_arch (objfile);
16843 struct type *tt = nullptr;
16844
16845 /* Try to find a suitable floating point builtin type of size BITS.
16846 We're going to use the name of this type as the name for the complex
16847 target type that we are about to create. */
16848 switch (cu->language)
16849 {
16850 case language_fortran:
16851 switch (bits)
16852 {
16853 case 32:
16854 tt = builtin_f_type (gdbarch)->builtin_real;
16855 break;
16856 case 64:
16857 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16858 break;
16859 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16860 case 128:
16861 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16862 break;
16863 }
16864 break;
16865 default:
16866 switch (bits)
16867 {
16868 case 32:
16869 tt = builtin_type (gdbarch)->builtin_float;
16870 break;
16871 case 64:
16872 tt = builtin_type (gdbarch)->builtin_double;
16873 break;
16874 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16875 case 128:
16876 tt = builtin_type (gdbarch)->builtin_long_double;
16877 break;
16878 }
16879 break;
16880 }
16881
16882 /* If the type we found doesn't match the size we were looking for, then
16883 pretend we didn't find a type at all, the complex target type we
16884 create will then be nameless. */
16885 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16886 tt = nullptr;
16887
16888 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16889 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16890 }
16891
16892 /* Find a representation of a given base type and install
16893 it in the TYPE field of the die. */
16894
16895 static struct type *
16896 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16897 {
16898 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16899 struct type *type;
16900 struct attribute *attr;
16901 int encoding = 0, bits = 0;
16902 const char *name;
16903 gdbarch *arch;
16904
16905 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16906 if (attr != nullptr)
16907 encoding = DW_UNSND (attr);
16908 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16909 if (attr != nullptr)
16910 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16911 name = dwarf2_name (die, cu);
16912 if (!name)
16913 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16914
16915 arch = get_objfile_arch (objfile);
16916 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16917
16918 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16919 if (attr)
16920 {
16921 int endianity = DW_UNSND (attr);
16922
16923 switch (endianity)
16924 {
16925 case DW_END_big:
16926 byte_order = BFD_ENDIAN_BIG;
16927 break;
16928 case DW_END_little:
16929 byte_order = BFD_ENDIAN_LITTLE;
16930 break;
16931 default:
16932 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16933 break;
16934 }
16935 }
16936
16937 switch (encoding)
16938 {
16939 case DW_ATE_address:
16940 /* Turn DW_ATE_address into a void * pointer. */
16941 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16942 type = init_pointer_type (objfile, bits, name, type);
16943 break;
16944 case DW_ATE_boolean:
16945 type = init_boolean_type (objfile, bits, 1, name);
16946 break;
16947 case DW_ATE_complex_float:
16948 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16949 byte_order);
16950 type = init_complex_type (objfile, name, type);
16951 break;
16952 case DW_ATE_decimal_float:
16953 type = init_decfloat_type (objfile, bits, name);
16954 break;
16955 case DW_ATE_float:
16956 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
16957 break;
16958 case DW_ATE_signed:
16959 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
16960 break;
16961 case DW_ATE_unsigned:
16962 if (cu->language == language_fortran
16963 && name
16964 && startswith (name, "character("))
16965 type = init_character_type (objfile, bits, 1, name);
16966 else
16967 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
16968 break;
16969 case DW_ATE_signed_char:
16970 if (cu->language == language_ada || cu->language == language_m2
16971 || cu->language == language_pascal
16972 || cu->language == language_fortran)
16973 type = init_character_type (objfile, bits, 0, name);
16974 else
16975 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
16976 break;
16977 case DW_ATE_unsigned_char:
16978 if (cu->language == language_ada || cu->language == language_m2
16979 || cu->language == language_pascal
16980 || cu->language == language_fortran
16981 || cu->language == language_rust)
16982 type = init_character_type (objfile, bits, 1, name);
16983 else
16984 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
16985 break;
16986 case DW_ATE_UTF:
16987 {
16988 if (bits == 16)
16989 type = builtin_type (arch)->builtin_char16;
16990 else if (bits == 32)
16991 type = builtin_type (arch)->builtin_char32;
16992 else
16993 {
16994 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
16995 bits);
16996 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
16997 }
16998 return set_die_type (die, type, cu);
16999 }
17000 break;
17001
17002 default:
17003 complaint (_("unsupported DW_AT_encoding: '%s'"),
17004 dwarf_type_encoding_name (encoding));
17005 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17006 break;
17007 }
17008
17009 if (name && strcmp (name, "char") == 0)
17010 TYPE_NOSIGN (type) = 1;
17011
17012 maybe_set_alignment (cu, die, type);
17013
17014 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17015
17016 return set_die_type (die, type, cu);
17017 }
17018
17019 /* Parse dwarf attribute if it's a block, reference or constant and put the
17020 resulting value of the attribute into struct bound_prop.
17021 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17022
17023 static int
17024 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17025 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17026 struct type *default_type)
17027 {
17028 struct dwarf2_property_baton *baton;
17029 struct obstack *obstack
17030 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17031
17032 gdb_assert (default_type != NULL);
17033
17034 if (attr == NULL || prop == NULL)
17035 return 0;
17036
17037 if (attr->form_is_block ())
17038 {
17039 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17040 baton->property_type = default_type;
17041 baton->locexpr.per_cu = cu->per_cu;
17042 baton->locexpr.size = DW_BLOCK (attr)->size;
17043 baton->locexpr.data = DW_BLOCK (attr)->data;
17044 switch (attr->name)
17045 {
17046 case DW_AT_string_length:
17047 baton->locexpr.is_reference = true;
17048 break;
17049 default:
17050 baton->locexpr.is_reference = false;
17051 break;
17052 }
17053 prop->data.baton = baton;
17054 prop->kind = PROP_LOCEXPR;
17055 gdb_assert (prop->data.baton != NULL);
17056 }
17057 else if (attr->form_is_ref ())
17058 {
17059 struct dwarf2_cu *target_cu = cu;
17060 struct die_info *target_die;
17061 struct attribute *target_attr;
17062
17063 target_die = follow_die_ref (die, attr, &target_cu);
17064 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17065 if (target_attr == NULL)
17066 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17067 target_cu);
17068 if (target_attr == NULL)
17069 return 0;
17070
17071 switch (target_attr->name)
17072 {
17073 case DW_AT_location:
17074 if (target_attr->form_is_section_offset ())
17075 {
17076 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17077 baton->property_type = die_type (target_die, target_cu);
17078 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17079 prop->data.baton = baton;
17080 prop->kind = PROP_LOCLIST;
17081 gdb_assert (prop->data.baton != NULL);
17082 }
17083 else if (target_attr->form_is_block ())
17084 {
17085 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17086 baton->property_type = die_type (target_die, target_cu);
17087 baton->locexpr.per_cu = cu->per_cu;
17088 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17089 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17090 baton->locexpr.is_reference = true;
17091 prop->data.baton = baton;
17092 prop->kind = PROP_LOCEXPR;
17093 gdb_assert (prop->data.baton != NULL);
17094 }
17095 else
17096 {
17097 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17098 "dynamic property");
17099 return 0;
17100 }
17101 break;
17102 case DW_AT_data_member_location:
17103 {
17104 LONGEST offset;
17105
17106 if (!handle_data_member_location (target_die, target_cu,
17107 &offset))
17108 return 0;
17109
17110 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17111 baton->property_type = read_type_die (target_die->parent,
17112 target_cu);
17113 baton->offset_info.offset = offset;
17114 baton->offset_info.type = die_type (target_die, target_cu);
17115 prop->data.baton = baton;
17116 prop->kind = PROP_ADDR_OFFSET;
17117 break;
17118 }
17119 }
17120 }
17121 else if (attr->form_is_constant ())
17122 {
17123 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17124 prop->kind = PROP_CONST;
17125 }
17126 else
17127 {
17128 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17129 dwarf2_name (die, cu));
17130 return 0;
17131 }
17132
17133 return 1;
17134 }
17135
17136 /* See read.h. */
17137
17138 struct type *
17139 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17140 {
17141 struct objfile *objfile = dwarf2_per_objfile->objfile;
17142 struct type *int_type;
17143
17144 /* Helper macro to examine the various builtin types. */
17145 #define TRY_TYPE(F) \
17146 int_type = (unsigned_p \
17147 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17148 : objfile_type (objfile)->builtin_ ## F); \
17149 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17150 return int_type
17151
17152 TRY_TYPE (char);
17153 TRY_TYPE (short);
17154 TRY_TYPE (int);
17155 TRY_TYPE (long);
17156 TRY_TYPE (long_long);
17157
17158 #undef TRY_TYPE
17159
17160 gdb_assert_not_reached ("unable to find suitable integer type");
17161 }
17162
17163 /* See read.h. */
17164
17165 struct type *
17166 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17167 {
17168 int addr_size = this->addr_size ();
17169 return int_type (addr_size, unsigned_p);
17170 }
17171
17172 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17173 present (which is valid) then compute the default type based on the
17174 compilation units address size. */
17175
17176 static struct type *
17177 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17178 {
17179 struct type *index_type = die_type (die, cu);
17180
17181 /* Dwarf-2 specifications explicitly allows to create subrange types
17182 without specifying a base type.
17183 In that case, the base type must be set to the type of
17184 the lower bound, upper bound or count, in that order, if any of these
17185 three attributes references an object that has a type.
17186 If no base type is found, the Dwarf-2 specifications say that
17187 a signed integer type of size equal to the size of an address should
17188 be used.
17189 For the following C code: `extern char gdb_int [];'
17190 GCC produces an empty range DIE.
17191 FIXME: muller/2010-05-28: Possible references to object for low bound,
17192 high bound or count are not yet handled by this code. */
17193 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17194 index_type = cu->per_cu->addr_sized_int_type (false);
17195
17196 return index_type;
17197 }
17198
17199 /* Read the given DW_AT_subrange DIE. */
17200
17201 static struct type *
17202 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17203 {
17204 struct type *base_type, *orig_base_type;
17205 struct type *range_type;
17206 struct attribute *attr;
17207 struct dynamic_prop low, high;
17208 int low_default_is_valid;
17209 int high_bound_is_count = 0;
17210 const char *name;
17211 ULONGEST negative_mask;
17212
17213 orig_base_type = read_subrange_index_type (die, cu);
17214
17215 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17216 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17217 creating the range type, but we use the result of check_typedef
17218 when examining properties of the type. */
17219 base_type = check_typedef (orig_base_type);
17220
17221 /* The die_type call above may have already set the type for this DIE. */
17222 range_type = get_die_type (die, cu);
17223 if (range_type)
17224 return range_type;
17225
17226 low.kind = PROP_CONST;
17227 high.kind = PROP_CONST;
17228 high.data.const_val = 0;
17229
17230 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17231 omitting DW_AT_lower_bound. */
17232 switch (cu->language)
17233 {
17234 case language_c:
17235 case language_cplus:
17236 low.data.const_val = 0;
17237 low_default_is_valid = 1;
17238 break;
17239 case language_fortran:
17240 low.data.const_val = 1;
17241 low_default_is_valid = 1;
17242 break;
17243 case language_d:
17244 case language_objc:
17245 case language_rust:
17246 low.data.const_val = 0;
17247 low_default_is_valid = (cu->header.version >= 4);
17248 break;
17249 case language_ada:
17250 case language_m2:
17251 case language_pascal:
17252 low.data.const_val = 1;
17253 low_default_is_valid = (cu->header.version >= 4);
17254 break;
17255 default:
17256 low.data.const_val = 0;
17257 low_default_is_valid = 0;
17258 break;
17259 }
17260
17261 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17262 if (attr != nullptr)
17263 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17264 else if (!low_default_is_valid)
17265 complaint (_("Missing DW_AT_lower_bound "
17266 "- DIE at %s [in module %s]"),
17267 sect_offset_str (die->sect_off),
17268 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17269
17270 struct attribute *attr_ub, *attr_count;
17271 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17272 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17273 {
17274 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17275 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17276 {
17277 /* If bounds are constant do the final calculation here. */
17278 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17279 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17280 else
17281 high_bound_is_count = 1;
17282 }
17283 else
17284 {
17285 if (attr_ub != NULL)
17286 complaint (_("Unresolved DW_AT_upper_bound "
17287 "- DIE at %s [in module %s]"),
17288 sect_offset_str (die->sect_off),
17289 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17290 if (attr_count != NULL)
17291 complaint (_("Unresolved DW_AT_count "
17292 "- DIE at %s [in module %s]"),
17293 sect_offset_str (die->sect_off),
17294 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17295 }
17296 }
17297
17298 LONGEST bias = 0;
17299 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17300 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17301 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17302
17303 /* Normally, the DWARF producers are expected to use a signed
17304 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17305 But this is unfortunately not always the case, as witnessed
17306 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17307 is used instead. To work around that ambiguity, we treat
17308 the bounds as signed, and thus sign-extend their values, when
17309 the base type is signed. */
17310 negative_mask =
17311 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17312 if (low.kind == PROP_CONST
17313 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17314 low.data.const_val |= negative_mask;
17315 if (high.kind == PROP_CONST
17316 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17317 high.data.const_val |= negative_mask;
17318
17319 /* Check for bit and byte strides. */
17320 struct dynamic_prop byte_stride_prop;
17321 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17322 if (attr_byte_stride != nullptr)
17323 {
17324 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17325 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17326 prop_type);
17327 }
17328
17329 struct dynamic_prop bit_stride_prop;
17330 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17331 if (attr_bit_stride != nullptr)
17332 {
17333 /* It only makes sense to have either a bit or byte stride. */
17334 if (attr_byte_stride != nullptr)
17335 {
17336 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17337 "- DIE at %s [in module %s]"),
17338 sect_offset_str (die->sect_off),
17339 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17340 attr_bit_stride = nullptr;
17341 }
17342 else
17343 {
17344 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17345 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17346 prop_type);
17347 }
17348 }
17349
17350 if (attr_byte_stride != nullptr
17351 || attr_bit_stride != nullptr)
17352 {
17353 bool byte_stride_p = (attr_byte_stride != nullptr);
17354 struct dynamic_prop *stride
17355 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17356
17357 range_type
17358 = create_range_type_with_stride (NULL, orig_base_type, &low,
17359 &high, bias, stride, byte_stride_p);
17360 }
17361 else
17362 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17363
17364 if (high_bound_is_count)
17365 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17366
17367 /* Ada expects an empty array on no boundary attributes. */
17368 if (attr == NULL && cu->language != language_ada)
17369 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17370
17371 name = dwarf2_name (die, cu);
17372 if (name)
17373 TYPE_NAME (range_type) = name;
17374
17375 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17376 if (attr != nullptr)
17377 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17378
17379 maybe_set_alignment (cu, die, range_type);
17380
17381 set_die_type (die, range_type, cu);
17382
17383 /* set_die_type should be already done. */
17384 set_descriptive_type (range_type, die, cu);
17385
17386 return range_type;
17387 }
17388
17389 static struct type *
17390 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17391 {
17392 struct type *type;
17393
17394 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17395 NULL);
17396 TYPE_NAME (type) = dwarf2_name (die, cu);
17397
17398 /* In Ada, an unspecified type is typically used when the description
17399 of the type is deferred to a different unit. When encountering
17400 such a type, we treat it as a stub, and try to resolve it later on,
17401 when needed. */
17402 if (cu->language == language_ada)
17403 TYPE_STUB (type) = 1;
17404
17405 return set_die_type (die, type, cu);
17406 }
17407
17408 /* Read a single die and all its descendents. Set the die's sibling
17409 field to NULL; set other fields in the die correctly, and set all
17410 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17411 location of the info_ptr after reading all of those dies. PARENT
17412 is the parent of the die in question. */
17413
17414 static struct die_info *
17415 read_die_and_children (const struct die_reader_specs *reader,
17416 const gdb_byte *info_ptr,
17417 const gdb_byte **new_info_ptr,
17418 struct die_info *parent)
17419 {
17420 struct die_info *die;
17421 const gdb_byte *cur_ptr;
17422
17423 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17424 if (die == NULL)
17425 {
17426 *new_info_ptr = cur_ptr;
17427 return NULL;
17428 }
17429 store_in_ref_table (die, reader->cu);
17430
17431 if (die->has_children)
17432 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17433 else
17434 {
17435 die->child = NULL;
17436 *new_info_ptr = cur_ptr;
17437 }
17438
17439 die->sibling = NULL;
17440 die->parent = parent;
17441 return die;
17442 }
17443
17444 /* Read a die, all of its descendents, and all of its siblings; set
17445 all of the fields of all of the dies correctly. Arguments are as
17446 in read_die_and_children. */
17447
17448 static struct die_info *
17449 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17450 const gdb_byte *info_ptr,
17451 const gdb_byte **new_info_ptr,
17452 struct die_info *parent)
17453 {
17454 struct die_info *first_die, *last_sibling;
17455 const gdb_byte *cur_ptr;
17456
17457 cur_ptr = info_ptr;
17458 first_die = last_sibling = NULL;
17459
17460 while (1)
17461 {
17462 struct die_info *die
17463 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17464
17465 if (die == NULL)
17466 {
17467 *new_info_ptr = cur_ptr;
17468 return first_die;
17469 }
17470
17471 if (!first_die)
17472 first_die = die;
17473 else
17474 last_sibling->sibling = die;
17475
17476 last_sibling = die;
17477 }
17478 }
17479
17480 /* Read a die, all of its descendents, and all of its siblings; set
17481 all of the fields of all of the dies correctly. Arguments are as
17482 in read_die_and_children.
17483 This the main entry point for reading a DIE and all its children. */
17484
17485 static struct die_info *
17486 read_die_and_siblings (const struct die_reader_specs *reader,
17487 const gdb_byte *info_ptr,
17488 const gdb_byte **new_info_ptr,
17489 struct die_info *parent)
17490 {
17491 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17492 new_info_ptr, parent);
17493
17494 if (dwarf_die_debug)
17495 {
17496 fprintf_unfiltered (gdb_stdlog,
17497 "Read die from %s@0x%x of %s:\n",
17498 reader->die_section->get_name (),
17499 (unsigned) (info_ptr - reader->die_section->buffer),
17500 bfd_get_filename (reader->abfd));
17501 dump_die (die, dwarf_die_debug);
17502 }
17503
17504 return die;
17505 }
17506
17507 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17508 attributes.
17509 The caller is responsible for filling in the extra attributes
17510 and updating (*DIEP)->num_attrs.
17511 Set DIEP to point to a newly allocated die with its information,
17512 except for its child, sibling, and parent fields. */
17513
17514 static const gdb_byte *
17515 read_full_die_1 (const struct die_reader_specs *reader,
17516 struct die_info **diep, const gdb_byte *info_ptr,
17517 int num_extra_attrs)
17518 {
17519 unsigned int abbrev_number, bytes_read, i;
17520 struct abbrev_info *abbrev;
17521 struct die_info *die;
17522 struct dwarf2_cu *cu = reader->cu;
17523 bfd *abfd = reader->abfd;
17524
17525 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17526 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17527 info_ptr += bytes_read;
17528 if (!abbrev_number)
17529 {
17530 *diep = NULL;
17531 return info_ptr;
17532 }
17533
17534 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17535 if (!abbrev)
17536 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17537 abbrev_number,
17538 bfd_get_filename (abfd));
17539
17540 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17541 die->sect_off = sect_off;
17542 die->tag = abbrev->tag;
17543 die->abbrev = abbrev_number;
17544 die->has_children = abbrev->has_children;
17545
17546 /* Make the result usable.
17547 The caller needs to update num_attrs after adding the extra
17548 attributes. */
17549 die->num_attrs = abbrev->num_attrs;
17550
17551 std::vector<int> indexes_that_need_reprocess;
17552 for (i = 0; i < abbrev->num_attrs; ++i)
17553 {
17554 bool need_reprocess;
17555 info_ptr =
17556 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17557 info_ptr, &need_reprocess);
17558 if (need_reprocess)
17559 indexes_that_need_reprocess.push_back (i);
17560 }
17561
17562 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
17563 if (attr != nullptr)
17564 cu->str_offsets_base = DW_UNSND (attr);
17565
17566 auto maybe_addr_base = lookup_addr_base(die);
17567 if (maybe_addr_base.has_value ())
17568 cu->addr_base = *maybe_addr_base;
17569 for (int index : indexes_that_need_reprocess)
17570 read_attribute_reprocess (reader, &die->attrs[index]);
17571 *diep = die;
17572 return info_ptr;
17573 }
17574
17575 /* Read a die and all its attributes.
17576 Set DIEP to point to a newly allocated die with its information,
17577 except for its child, sibling, and parent fields. */
17578
17579 static const gdb_byte *
17580 read_full_die (const struct die_reader_specs *reader,
17581 struct die_info **diep, const gdb_byte *info_ptr)
17582 {
17583 const gdb_byte *result;
17584
17585 result = read_full_die_1 (reader, diep, info_ptr, 0);
17586
17587 if (dwarf_die_debug)
17588 {
17589 fprintf_unfiltered (gdb_stdlog,
17590 "Read die from %s@0x%x of %s:\n",
17591 reader->die_section->get_name (),
17592 (unsigned) (info_ptr - reader->die_section->buffer),
17593 bfd_get_filename (reader->abfd));
17594 dump_die (*diep, dwarf_die_debug);
17595 }
17596
17597 return result;
17598 }
17599 \f
17600
17601 /* Returns nonzero if TAG represents a type that we might generate a partial
17602 symbol for. */
17603
17604 static int
17605 is_type_tag_for_partial (int tag)
17606 {
17607 switch (tag)
17608 {
17609 #if 0
17610 /* Some types that would be reasonable to generate partial symbols for,
17611 that we don't at present. */
17612 case DW_TAG_array_type:
17613 case DW_TAG_file_type:
17614 case DW_TAG_ptr_to_member_type:
17615 case DW_TAG_set_type:
17616 case DW_TAG_string_type:
17617 case DW_TAG_subroutine_type:
17618 #endif
17619 case DW_TAG_base_type:
17620 case DW_TAG_class_type:
17621 case DW_TAG_interface_type:
17622 case DW_TAG_enumeration_type:
17623 case DW_TAG_structure_type:
17624 case DW_TAG_subrange_type:
17625 case DW_TAG_typedef:
17626 case DW_TAG_union_type:
17627 return 1;
17628 default:
17629 return 0;
17630 }
17631 }
17632
17633 /* Load all DIEs that are interesting for partial symbols into memory. */
17634
17635 static struct partial_die_info *
17636 load_partial_dies (const struct die_reader_specs *reader,
17637 const gdb_byte *info_ptr, int building_psymtab)
17638 {
17639 struct dwarf2_cu *cu = reader->cu;
17640 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17641 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17642 unsigned int bytes_read;
17643 unsigned int load_all = 0;
17644 int nesting_level = 1;
17645
17646 parent_die = NULL;
17647 last_die = NULL;
17648
17649 gdb_assert (cu->per_cu != NULL);
17650 if (cu->per_cu->load_all_dies)
17651 load_all = 1;
17652
17653 cu->partial_dies
17654 = htab_create_alloc_ex (cu->header.length / 12,
17655 partial_die_hash,
17656 partial_die_eq,
17657 NULL,
17658 &cu->comp_unit_obstack,
17659 hashtab_obstack_allocate,
17660 dummy_obstack_deallocate);
17661
17662 while (1)
17663 {
17664 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17665
17666 /* A NULL abbrev means the end of a series of children. */
17667 if (abbrev == NULL)
17668 {
17669 if (--nesting_level == 0)
17670 return first_die;
17671
17672 info_ptr += bytes_read;
17673 last_die = parent_die;
17674 parent_die = parent_die->die_parent;
17675 continue;
17676 }
17677
17678 /* Check for template arguments. We never save these; if
17679 they're seen, we just mark the parent, and go on our way. */
17680 if (parent_die != NULL
17681 && cu->language == language_cplus
17682 && (abbrev->tag == DW_TAG_template_type_param
17683 || abbrev->tag == DW_TAG_template_value_param))
17684 {
17685 parent_die->has_template_arguments = 1;
17686
17687 if (!load_all)
17688 {
17689 /* We don't need a partial DIE for the template argument. */
17690 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17691 continue;
17692 }
17693 }
17694
17695 /* We only recurse into c++ subprograms looking for template arguments.
17696 Skip their other children. */
17697 if (!load_all
17698 && cu->language == language_cplus
17699 && parent_die != NULL
17700 && parent_die->tag == DW_TAG_subprogram)
17701 {
17702 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17703 continue;
17704 }
17705
17706 /* Check whether this DIE is interesting enough to save. Normally
17707 we would not be interested in members here, but there may be
17708 later variables referencing them via DW_AT_specification (for
17709 static members). */
17710 if (!load_all
17711 && !is_type_tag_for_partial (abbrev->tag)
17712 && abbrev->tag != DW_TAG_constant
17713 && abbrev->tag != DW_TAG_enumerator
17714 && abbrev->tag != DW_TAG_subprogram
17715 && abbrev->tag != DW_TAG_inlined_subroutine
17716 && abbrev->tag != DW_TAG_lexical_block
17717 && abbrev->tag != DW_TAG_variable
17718 && abbrev->tag != DW_TAG_namespace
17719 && abbrev->tag != DW_TAG_module
17720 && abbrev->tag != DW_TAG_member
17721 && abbrev->tag != DW_TAG_imported_unit
17722 && abbrev->tag != DW_TAG_imported_declaration)
17723 {
17724 /* Otherwise we skip to the next sibling, if any. */
17725 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17726 continue;
17727 }
17728
17729 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17730 abbrev);
17731
17732 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17733
17734 /* This two-pass algorithm for processing partial symbols has a
17735 high cost in cache pressure. Thus, handle some simple cases
17736 here which cover the majority of C partial symbols. DIEs
17737 which neither have specification tags in them, nor could have
17738 specification tags elsewhere pointing at them, can simply be
17739 processed and discarded.
17740
17741 This segment is also optional; scan_partial_symbols and
17742 add_partial_symbol will handle these DIEs if we chain
17743 them in normally. When compilers which do not emit large
17744 quantities of duplicate debug information are more common,
17745 this code can probably be removed. */
17746
17747 /* Any complete simple types at the top level (pretty much all
17748 of them, for a language without namespaces), can be processed
17749 directly. */
17750 if (parent_die == NULL
17751 && pdi.has_specification == 0
17752 && pdi.is_declaration == 0
17753 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17754 || pdi.tag == DW_TAG_base_type
17755 || pdi.tag == DW_TAG_subrange_type))
17756 {
17757 if (building_psymtab && pdi.name != NULL)
17758 add_psymbol_to_list (pdi.name, false,
17759 VAR_DOMAIN, LOC_TYPEDEF, -1,
17760 psymbol_placement::STATIC,
17761 0, cu->language, objfile);
17762 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17763 continue;
17764 }
17765
17766 /* The exception for DW_TAG_typedef with has_children above is
17767 a workaround of GCC PR debug/47510. In the case of this complaint
17768 type_name_or_error will error on such types later.
17769
17770 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17771 it could not find the child DIEs referenced later, this is checked
17772 above. In correct DWARF DW_TAG_typedef should have no children. */
17773
17774 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17775 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17776 "- DIE at %s [in module %s]"),
17777 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17778
17779 /* If we're at the second level, and we're an enumerator, and
17780 our parent has no specification (meaning possibly lives in a
17781 namespace elsewhere), then we can add the partial symbol now
17782 instead of queueing it. */
17783 if (pdi.tag == DW_TAG_enumerator
17784 && parent_die != NULL
17785 && parent_die->die_parent == NULL
17786 && parent_die->tag == DW_TAG_enumeration_type
17787 && parent_die->has_specification == 0)
17788 {
17789 if (pdi.name == NULL)
17790 complaint (_("malformed enumerator DIE ignored"));
17791 else if (building_psymtab)
17792 add_psymbol_to_list (pdi.name, false,
17793 VAR_DOMAIN, LOC_CONST, -1,
17794 cu->language == language_cplus
17795 ? psymbol_placement::GLOBAL
17796 : psymbol_placement::STATIC,
17797 0, cu->language, objfile);
17798
17799 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17800 continue;
17801 }
17802
17803 struct partial_die_info *part_die
17804 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17805
17806 /* We'll save this DIE so link it in. */
17807 part_die->die_parent = parent_die;
17808 part_die->die_sibling = NULL;
17809 part_die->die_child = NULL;
17810
17811 if (last_die && last_die == parent_die)
17812 last_die->die_child = part_die;
17813 else if (last_die)
17814 last_die->die_sibling = part_die;
17815
17816 last_die = part_die;
17817
17818 if (first_die == NULL)
17819 first_die = part_die;
17820
17821 /* Maybe add the DIE to the hash table. Not all DIEs that we
17822 find interesting need to be in the hash table, because we
17823 also have the parent/sibling/child chains; only those that we
17824 might refer to by offset later during partial symbol reading.
17825
17826 For now this means things that might have be the target of a
17827 DW_AT_specification, DW_AT_abstract_origin, or
17828 DW_AT_extension. DW_AT_extension will refer only to
17829 namespaces; DW_AT_abstract_origin refers to functions (and
17830 many things under the function DIE, but we do not recurse
17831 into function DIEs during partial symbol reading) and
17832 possibly variables as well; DW_AT_specification refers to
17833 declarations. Declarations ought to have the DW_AT_declaration
17834 flag. It happens that GCC forgets to put it in sometimes, but
17835 only for functions, not for types.
17836
17837 Adding more things than necessary to the hash table is harmless
17838 except for the performance cost. Adding too few will result in
17839 wasted time in find_partial_die, when we reread the compilation
17840 unit with load_all_dies set. */
17841
17842 if (load_all
17843 || abbrev->tag == DW_TAG_constant
17844 || abbrev->tag == DW_TAG_subprogram
17845 || abbrev->tag == DW_TAG_variable
17846 || abbrev->tag == DW_TAG_namespace
17847 || part_die->is_declaration)
17848 {
17849 void **slot;
17850
17851 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17852 to_underlying (part_die->sect_off),
17853 INSERT);
17854 *slot = part_die;
17855 }
17856
17857 /* For some DIEs we want to follow their children (if any). For C
17858 we have no reason to follow the children of structures; for other
17859 languages we have to, so that we can get at method physnames
17860 to infer fully qualified class names, for DW_AT_specification,
17861 and for C++ template arguments. For C++, we also look one level
17862 inside functions to find template arguments (if the name of the
17863 function does not already contain the template arguments).
17864
17865 For Ada and Fortran, we need to scan the children of subprograms
17866 and lexical blocks as well because these languages allow the
17867 definition of nested entities that could be interesting for the
17868 debugger, such as nested subprograms for instance. */
17869 if (last_die->has_children
17870 && (load_all
17871 || last_die->tag == DW_TAG_namespace
17872 || last_die->tag == DW_TAG_module
17873 || last_die->tag == DW_TAG_enumeration_type
17874 || (cu->language == language_cplus
17875 && last_die->tag == DW_TAG_subprogram
17876 && (last_die->name == NULL
17877 || strchr (last_die->name, '<') == NULL))
17878 || (cu->language != language_c
17879 && (last_die->tag == DW_TAG_class_type
17880 || last_die->tag == DW_TAG_interface_type
17881 || last_die->tag == DW_TAG_structure_type
17882 || last_die->tag == DW_TAG_union_type))
17883 || ((cu->language == language_ada
17884 || cu->language == language_fortran)
17885 && (last_die->tag == DW_TAG_subprogram
17886 || last_die->tag == DW_TAG_lexical_block))))
17887 {
17888 nesting_level++;
17889 parent_die = last_die;
17890 continue;
17891 }
17892
17893 /* Otherwise we skip to the next sibling, if any. */
17894 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17895
17896 /* Back to the top, do it again. */
17897 }
17898 }
17899
17900 partial_die_info::partial_die_info (sect_offset sect_off_,
17901 struct abbrev_info *abbrev)
17902 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17903 {
17904 }
17905
17906 /* Read a minimal amount of information into the minimal die structure.
17907 INFO_PTR should point just after the initial uleb128 of a DIE. */
17908
17909 const gdb_byte *
17910 partial_die_info::read (const struct die_reader_specs *reader,
17911 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17912 {
17913 struct dwarf2_cu *cu = reader->cu;
17914 struct dwarf2_per_objfile *dwarf2_per_objfile
17915 = cu->per_cu->dwarf2_per_objfile;
17916 unsigned int i;
17917 int has_low_pc_attr = 0;
17918 int has_high_pc_attr = 0;
17919 int high_pc_relative = 0;
17920
17921 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
17922 for (i = 0; i < abbrev.num_attrs; ++i)
17923 {
17924 bool need_reprocess;
17925 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
17926 info_ptr, &need_reprocess);
17927 /* String and address offsets that need to do the reprocessing have
17928 already been read at this point, so there is no need to wait until
17929 the loop terminates to do the reprocessing. */
17930 if (need_reprocess)
17931 read_attribute_reprocess (reader, &attr_vec[i]);
17932 attribute &attr = attr_vec[i];
17933 /* Store the data if it is of an attribute we want to keep in a
17934 partial symbol table. */
17935 switch (attr.name)
17936 {
17937 case DW_AT_name:
17938 switch (tag)
17939 {
17940 case DW_TAG_compile_unit:
17941 case DW_TAG_partial_unit:
17942 case DW_TAG_type_unit:
17943 /* Compilation units have a DW_AT_name that is a filename, not
17944 a source language identifier. */
17945 case DW_TAG_enumeration_type:
17946 case DW_TAG_enumerator:
17947 /* These tags always have simple identifiers already; no need
17948 to canonicalize them. */
17949 name = DW_STRING (&attr);
17950 break;
17951 default:
17952 {
17953 struct objfile *objfile = dwarf2_per_objfile->objfile;
17954
17955 name
17956 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17957 &objfile->per_bfd->storage_obstack);
17958 }
17959 break;
17960 }
17961 break;
17962 case DW_AT_linkage_name:
17963 case DW_AT_MIPS_linkage_name:
17964 /* Note that both forms of linkage name might appear. We
17965 assume they will be the same, and we only store the last
17966 one we see. */
17967 linkage_name = DW_STRING (&attr);
17968 break;
17969 case DW_AT_low_pc:
17970 has_low_pc_attr = 1;
17971 lowpc = attr.value_as_address ();
17972 break;
17973 case DW_AT_high_pc:
17974 has_high_pc_attr = 1;
17975 highpc = attr.value_as_address ();
17976 if (cu->header.version >= 4 && attr.form_is_constant ())
17977 high_pc_relative = 1;
17978 break;
17979 case DW_AT_location:
17980 /* Support the .debug_loc offsets. */
17981 if (attr.form_is_block ())
17982 {
17983 d.locdesc = DW_BLOCK (&attr);
17984 }
17985 else if (attr.form_is_section_offset ())
17986 {
17987 dwarf2_complex_location_expr_complaint ();
17988 }
17989 else
17990 {
17991 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17992 "partial symbol information");
17993 }
17994 break;
17995 case DW_AT_external:
17996 is_external = DW_UNSND (&attr);
17997 break;
17998 case DW_AT_declaration:
17999 is_declaration = DW_UNSND (&attr);
18000 break;
18001 case DW_AT_type:
18002 has_type = 1;
18003 break;
18004 case DW_AT_abstract_origin:
18005 case DW_AT_specification:
18006 case DW_AT_extension:
18007 has_specification = 1;
18008 spec_offset = dwarf2_get_ref_die_offset (&attr);
18009 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18010 || cu->per_cu->is_dwz);
18011 break;
18012 case DW_AT_sibling:
18013 /* Ignore absolute siblings, they might point outside of
18014 the current compile unit. */
18015 if (attr.form == DW_FORM_ref_addr)
18016 complaint (_("ignoring absolute DW_AT_sibling"));
18017 else
18018 {
18019 const gdb_byte *buffer = reader->buffer;
18020 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18021 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18022
18023 if (sibling_ptr < info_ptr)
18024 complaint (_("DW_AT_sibling points backwards"));
18025 else if (sibling_ptr > reader->buffer_end)
18026 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18027 else
18028 sibling = sibling_ptr;
18029 }
18030 break;
18031 case DW_AT_byte_size:
18032 has_byte_size = 1;
18033 break;
18034 case DW_AT_const_value:
18035 has_const_value = 1;
18036 break;
18037 case DW_AT_calling_convention:
18038 /* DWARF doesn't provide a way to identify a program's source-level
18039 entry point. DW_AT_calling_convention attributes are only meant
18040 to describe functions' calling conventions.
18041
18042 However, because it's a necessary piece of information in
18043 Fortran, and before DWARF 4 DW_CC_program was the only
18044 piece of debugging information whose definition refers to
18045 a 'main program' at all, several compilers marked Fortran
18046 main programs with DW_CC_program --- even when those
18047 functions use the standard calling conventions.
18048
18049 Although DWARF now specifies a way to provide this
18050 information, we support this practice for backward
18051 compatibility. */
18052 if (DW_UNSND (&attr) == DW_CC_program
18053 && cu->language == language_fortran)
18054 main_subprogram = 1;
18055 break;
18056 case DW_AT_inline:
18057 if (DW_UNSND (&attr) == DW_INL_inlined
18058 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18059 may_be_inlined = 1;
18060 break;
18061
18062 case DW_AT_import:
18063 if (tag == DW_TAG_imported_unit)
18064 {
18065 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18066 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18067 || cu->per_cu->is_dwz);
18068 }
18069 break;
18070
18071 case DW_AT_main_subprogram:
18072 main_subprogram = DW_UNSND (&attr);
18073 break;
18074
18075 case DW_AT_ranges:
18076 {
18077 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18078 but that requires a full DIE, so instead we just
18079 reimplement it. */
18080 int need_ranges_base = tag != DW_TAG_compile_unit;
18081 unsigned int ranges_offset = (DW_UNSND (&attr)
18082 + (need_ranges_base
18083 ? cu->ranges_base
18084 : 0));
18085
18086 /* Value of the DW_AT_ranges attribute is the offset in the
18087 .debug_ranges section. */
18088 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18089 nullptr))
18090 has_pc_info = 1;
18091 }
18092 break;
18093
18094 default:
18095 break;
18096 }
18097 }
18098
18099 /* For Ada, if both the name and the linkage name appear, we prefer
18100 the latter. This lets "catch exception" work better, regardless
18101 of the order in which the name and linkage name were emitted.
18102 Really, though, this is just a workaround for the fact that gdb
18103 doesn't store both the name and the linkage name. */
18104 if (cu->language == language_ada && linkage_name != nullptr)
18105 name = linkage_name;
18106
18107 if (high_pc_relative)
18108 highpc += lowpc;
18109
18110 if (has_low_pc_attr && has_high_pc_attr)
18111 {
18112 /* When using the GNU linker, .gnu.linkonce. sections are used to
18113 eliminate duplicate copies of functions and vtables and such.
18114 The linker will arbitrarily choose one and discard the others.
18115 The AT_*_pc values for such functions refer to local labels in
18116 these sections. If the section from that file was discarded, the
18117 labels are not in the output, so the relocs get a value of 0.
18118 If this is a discarded function, mark the pc bounds as invalid,
18119 so that GDB will ignore it. */
18120 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18121 {
18122 struct objfile *objfile = dwarf2_per_objfile->objfile;
18123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18124
18125 complaint (_("DW_AT_low_pc %s is zero "
18126 "for DIE at %s [in module %s]"),
18127 paddress (gdbarch, lowpc),
18128 sect_offset_str (sect_off),
18129 objfile_name (objfile));
18130 }
18131 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18132 else if (lowpc >= highpc)
18133 {
18134 struct objfile *objfile = dwarf2_per_objfile->objfile;
18135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18136
18137 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18138 "for DIE at %s [in module %s]"),
18139 paddress (gdbarch, lowpc),
18140 paddress (gdbarch, highpc),
18141 sect_offset_str (sect_off),
18142 objfile_name (objfile));
18143 }
18144 else
18145 has_pc_info = 1;
18146 }
18147
18148 return info_ptr;
18149 }
18150
18151 /* Find a cached partial DIE at OFFSET in CU. */
18152
18153 struct partial_die_info *
18154 dwarf2_cu::find_partial_die (sect_offset sect_off)
18155 {
18156 struct partial_die_info *lookup_die = NULL;
18157 struct partial_die_info part_die (sect_off);
18158
18159 lookup_die = ((struct partial_die_info *)
18160 htab_find_with_hash (partial_dies, &part_die,
18161 to_underlying (sect_off)));
18162
18163 return lookup_die;
18164 }
18165
18166 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18167 except in the case of .debug_types DIEs which do not reference
18168 outside their CU (they do however referencing other types via
18169 DW_FORM_ref_sig8). */
18170
18171 static const struct cu_partial_die_info
18172 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18173 {
18174 struct dwarf2_per_objfile *dwarf2_per_objfile
18175 = cu->per_cu->dwarf2_per_objfile;
18176 struct objfile *objfile = dwarf2_per_objfile->objfile;
18177 struct dwarf2_per_cu_data *per_cu = NULL;
18178 struct partial_die_info *pd = NULL;
18179
18180 if (offset_in_dwz == cu->per_cu->is_dwz
18181 && cu->header.offset_in_cu_p (sect_off))
18182 {
18183 pd = cu->find_partial_die (sect_off);
18184 if (pd != NULL)
18185 return { cu, pd };
18186 /* We missed recording what we needed.
18187 Load all dies and try again. */
18188 per_cu = cu->per_cu;
18189 }
18190 else
18191 {
18192 /* TUs don't reference other CUs/TUs (except via type signatures). */
18193 if (cu->per_cu->is_debug_types)
18194 {
18195 error (_("Dwarf Error: Type Unit at offset %s contains"
18196 " external reference to offset %s [in module %s].\n"),
18197 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18198 bfd_get_filename (objfile->obfd));
18199 }
18200 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18201 dwarf2_per_objfile);
18202
18203 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18204 load_partial_comp_unit (per_cu);
18205
18206 per_cu->cu->last_used = 0;
18207 pd = per_cu->cu->find_partial_die (sect_off);
18208 }
18209
18210 /* If we didn't find it, and not all dies have been loaded,
18211 load them all and try again. */
18212
18213 if (pd == NULL && per_cu->load_all_dies == 0)
18214 {
18215 per_cu->load_all_dies = 1;
18216
18217 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18218 THIS_CU->cu may already be in use. So we can't just free it and
18219 replace its DIEs with the ones we read in. Instead, we leave those
18220 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18221 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18222 set. */
18223 load_partial_comp_unit (per_cu);
18224
18225 pd = per_cu->cu->find_partial_die (sect_off);
18226 }
18227
18228 if (pd == NULL)
18229 internal_error (__FILE__, __LINE__,
18230 _("could not find partial DIE %s "
18231 "in cache [from module %s]\n"),
18232 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18233 return { per_cu->cu, pd };
18234 }
18235
18236 /* See if we can figure out if the class lives in a namespace. We do
18237 this by looking for a member function; its demangled name will
18238 contain namespace info, if there is any. */
18239
18240 static void
18241 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18242 struct dwarf2_cu *cu)
18243 {
18244 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18245 what template types look like, because the demangler
18246 frequently doesn't give the same name as the debug info. We
18247 could fix this by only using the demangled name to get the
18248 prefix (but see comment in read_structure_type). */
18249
18250 struct partial_die_info *real_pdi;
18251 struct partial_die_info *child_pdi;
18252
18253 /* If this DIE (this DIE's specification, if any) has a parent, then
18254 we should not do this. We'll prepend the parent's fully qualified
18255 name when we create the partial symbol. */
18256
18257 real_pdi = struct_pdi;
18258 while (real_pdi->has_specification)
18259 {
18260 auto res = find_partial_die (real_pdi->spec_offset,
18261 real_pdi->spec_is_dwz, cu);
18262 real_pdi = res.pdi;
18263 cu = res.cu;
18264 }
18265
18266 if (real_pdi->die_parent != NULL)
18267 return;
18268
18269 for (child_pdi = struct_pdi->die_child;
18270 child_pdi != NULL;
18271 child_pdi = child_pdi->die_sibling)
18272 {
18273 if (child_pdi->tag == DW_TAG_subprogram
18274 && child_pdi->linkage_name != NULL)
18275 {
18276 gdb::unique_xmalloc_ptr<char> actual_class_name
18277 (language_class_name_from_physname (cu->language_defn,
18278 child_pdi->linkage_name));
18279 if (actual_class_name != NULL)
18280 {
18281 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18282 struct_pdi->name
18283 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18284 actual_class_name.get ());
18285 }
18286 break;
18287 }
18288 }
18289 }
18290
18291 void
18292 partial_die_info::fixup (struct dwarf2_cu *cu)
18293 {
18294 /* Once we've fixed up a die, there's no point in doing so again.
18295 This also avoids a memory leak if we were to call
18296 guess_partial_die_structure_name multiple times. */
18297 if (fixup_called)
18298 return;
18299
18300 /* If we found a reference attribute and the DIE has no name, try
18301 to find a name in the referred to DIE. */
18302
18303 if (name == NULL && has_specification)
18304 {
18305 struct partial_die_info *spec_die;
18306
18307 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18308 spec_die = res.pdi;
18309 cu = res.cu;
18310
18311 spec_die->fixup (cu);
18312
18313 if (spec_die->name)
18314 {
18315 name = spec_die->name;
18316
18317 /* Copy DW_AT_external attribute if it is set. */
18318 if (spec_die->is_external)
18319 is_external = spec_die->is_external;
18320 }
18321 }
18322
18323 /* Set default names for some unnamed DIEs. */
18324
18325 if (name == NULL && tag == DW_TAG_namespace)
18326 name = CP_ANONYMOUS_NAMESPACE_STR;
18327
18328 /* If there is no parent die to provide a namespace, and there are
18329 children, see if we can determine the namespace from their linkage
18330 name. */
18331 if (cu->language == language_cplus
18332 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18333 && die_parent == NULL
18334 && has_children
18335 && (tag == DW_TAG_class_type
18336 || tag == DW_TAG_structure_type
18337 || tag == DW_TAG_union_type))
18338 guess_partial_die_structure_name (this, cu);
18339
18340 /* GCC might emit a nameless struct or union that has a linkage
18341 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18342 if (name == NULL
18343 && (tag == DW_TAG_class_type
18344 || tag == DW_TAG_interface_type
18345 || tag == DW_TAG_structure_type
18346 || tag == DW_TAG_union_type)
18347 && linkage_name != NULL)
18348 {
18349 gdb::unique_xmalloc_ptr<char> demangled
18350 (gdb_demangle (linkage_name, DMGL_TYPES));
18351 if (demangled != nullptr)
18352 {
18353 const char *base;
18354
18355 /* Strip any leading namespaces/classes, keep only the base name.
18356 DW_AT_name for named DIEs does not contain the prefixes. */
18357 base = strrchr (demangled.get (), ':');
18358 if (base && base > demangled.get () && base[-1] == ':')
18359 base++;
18360 else
18361 base = demangled.get ();
18362
18363 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18364 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18365 }
18366 }
18367
18368 fixup_called = 1;
18369 }
18370
18371 /* Process the attributes that had to be skipped in the first round. These
18372 attributes are the ones that need str_offsets_base or addr_base attributes.
18373 They could not have been processed in the first round, because at the time
18374 the values of str_offsets_base or addr_base may not have been known. */
18375 void read_attribute_reprocess (const struct die_reader_specs *reader,
18376 struct attribute *attr)
18377 {
18378 struct dwarf2_cu *cu = reader->cu;
18379 switch (attr->form)
18380 {
18381 case DW_FORM_addrx:
18382 case DW_FORM_GNU_addr_index:
18383 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18384 break;
18385 case DW_FORM_strx:
18386 case DW_FORM_strx1:
18387 case DW_FORM_strx2:
18388 case DW_FORM_strx3:
18389 case DW_FORM_strx4:
18390 case DW_FORM_GNU_str_index:
18391 {
18392 unsigned int str_index = DW_UNSND (attr);
18393 if (reader->dwo_file != NULL)
18394 {
18395 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18396 DW_STRING_IS_CANONICAL (attr) = 0;
18397 }
18398 else
18399 {
18400 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18401 DW_STRING_IS_CANONICAL (attr) = 0;
18402 }
18403 break;
18404 }
18405 default:
18406 gdb_assert_not_reached (_("Unexpected DWARF form."));
18407 }
18408 }
18409
18410 /* Read an attribute value described by an attribute form. */
18411
18412 static const gdb_byte *
18413 read_attribute_value (const struct die_reader_specs *reader,
18414 struct attribute *attr, unsigned form,
18415 LONGEST implicit_const, const gdb_byte *info_ptr,
18416 bool *need_reprocess)
18417 {
18418 struct dwarf2_cu *cu = reader->cu;
18419 struct dwarf2_per_objfile *dwarf2_per_objfile
18420 = cu->per_cu->dwarf2_per_objfile;
18421 struct objfile *objfile = dwarf2_per_objfile->objfile;
18422 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18423 bfd *abfd = reader->abfd;
18424 struct comp_unit_head *cu_header = &cu->header;
18425 unsigned int bytes_read;
18426 struct dwarf_block *blk;
18427 *need_reprocess = false;
18428
18429 attr->form = (enum dwarf_form) form;
18430 switch (form)
18431 {
18432 case DW_FORM_ref_addr:
18433 if (cu->header.version == 2)
18434 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18435 &bytes_read);
18436 else
18437 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18438 &bytes_read);
18439 info_ptr += bytes_read;
18440 break;
18441 case DW_FORM_GNU_ref_alt:
18442 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18443 info_ptr += bytes_read;
18444 break;
18445 case DW_FORM_addr:
18446 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18447 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18448 info_ptr += bytes_read;
18449 break;
18450 case DW_FORM_block2:
18451 blk = dwarf_alloc_block (cu);
18452 blk->size = read_2_bytes (abfd, info_ptr);
18453 info_ptr += 2;
18454 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18455 info_ptr += blk->size;
18456 DW_BLOCK (attr) = blk;
18457 break;
18458 case DW_FORM_block4:
18459 blk = dwarf_alloc_block (cu);
18460 blk->size = read_4_bytes (abfd, info_ptr);
18461 info_ptr += 4;
18462 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18463 info_ptr += blk->size;
18464 DW_BLOCK (attr) = blk;
18465 break;
18466 case DW_FORM_data2:
18467 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18468 info_ptr += 2;
18469 break;
18470 case DW_FORM_data4:
18471 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18472 info_ptr += 4;
18473 break;
18474 case DW_FORM_data8:
18475 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18476 info_ptr += 8;
18477 break;
18478 case DW_FORM_data16:
18479 blk = dwarf_alloc_block (cu);
18480 blk->size = 16;
18481 blk->data = read_n_bytes (abfd, info_ptr, 16);
18482 info_ptr += 16;
18483 DW_BLOCK (attr) = blk;
18484 break;
18485 case DW_FORM_sec_offset:
18486 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18487 info_ptr += bytes_read;
18488 break;
18489 case DW_FORM_string:
18490 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18491 DW_STRING_IS_CANONICAL (attr) = 0;
18492 info_ptr += bytes_read;
18493 break;
18494 case DW_FORM_strp:
18495 if (!cu->per_cu->is_dwz)
18496 {
18497 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18498 abfd, info_ptr, cu_header,
18499 &bytes_read);
18500 DW_STRING_IS_CANONICAL (attr) = 0;
18501 info_ptr += bytes_read;
18502 break;
18503 }
18504 /* FALLTHROUGH */
18505 case DW_FORM_line_strp:
18506 if (!cu->per_cu->is_dwz)
18507 {
18508 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18509 abfd, info_ptr,
18510 cu_header, &bytes_read);
18511 DW_STRING_IS_CANONICAL (attr) = 0;
18512 info_ptr += bytes_read;
18513 break;
18514 }
18515 /* FALLTHROUGH */
18516 case DW_FORM_GNU_strp_alt:
18517 {
18518 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18519 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18520 &bytes_read);
18521
18522 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18523 dwz, str_offset);
18524 DW_STRING_IS_CANONICAL (attr) = 0;
18525 info_ptr += bytes_read;
18526 }
18527 break;
18528 case DW_FORM_exprloc:
18529 case DW_FORM_block:
18530 blk = dwarf_alloc_block (cu);
18531 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18532 info_ptr += bytes_read;
18533 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18534 info_ptr += blk->size;
18535 DW_BLOCK (attr) = blk;
18536 break;
18537 case DW_FORM_block1:
18538 blk = dwarf_alloc_block (cu);
18539 blk->size = read_1_byte (abfd, info_ptr);
18540 info_ptr += 1;
18541 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18542 info_ptr += blk->size;
18543 DW_BLOCK (attr) = blk;
18544 break;
18545 case DW_FORM_data1:
18546 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18547 info_ptr += 1;
18548 break;
18549 case DW_FORM_flag:
18550 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18551 info_ptr += 1;
18552 break;
18553 case DW_FORM_flag_present:
18554 DW_UNSND (attr) = 1;
18555 break;
18556 case DW_FORM_sdata:
18557 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18558 info_ptr += bytes_read;
18559 break;
18560 case DW_FORM_udata:
18561 case DW_FORM_rnglistx:
18562 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18563 info_ptr += bytes_read;
18564 break;
18565 case DW_FORM_ref1:
18566 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18567 + read_1_byte (abfd, info_ptr));
18568 info_ptr += 1;
18569 break;
18570 case DW_FORM_ref2:
18571 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18572 + read_2_bytes (abfd, info_ptr));
18573 info_ptr += 2;
18574 break;
18575 case DW_FORM_ref4:
18576 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18577 + read_4_bytes (abfd, info_ptr));
18578 info_ptr += 4;
18579 break;
18580 case DW_FORM_ref8:
18581 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18582 + read_8_bytes (abfd, info_ptr));
18583 info_ptr += 8;
18584 break;
18585 case DW_FORM_ref_sig8:
18586 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18587 info_ptr += 8;
18588 break;
18589 case DW_FORM_ref_udata:
18590 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18591 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18592 info_ptr += bytes_read;
18593 break;
18594 case DW_FORM_indirect:
18595 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18596 info_ptr += bytes_read;
18597 if (form == DW_FORM_implicit_const)
18598 {
18599 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18600 info_ptr += bytes_read;
18601 }
18602 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18603 info_ptr, need_reprocess);
18604 break;
18605 case DW_FORM_implicit_const:
18606 DW_SND (attr) = implicit_const;
18607 break;
18608 case DW_FORM_addrx:
18609 case DW_FORM_GNU_addr_index:
18610 *need_reprocess = true;
18611 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18612 info_ptr += bytes_read;
18613 break;
18614 case DW_FORM_strx:
18615 case DW_FORM_strx1:
18616 case DW_FORM_strx2:
18617 case DW_FORM_strx3:
18618 case DW_FORM_strx4:
18619 case DW_FORM_GNU_str_index:
18620 {
18621 ULONGEST str_index;
18622 if (form == DW_FORM_strx1)
18623 {
18624 str_index = read_1_byte (abfd, info_ptr);
18625 info_ptr += 1;
18626 }
18627 else if (form == DW_FORM_strx2)
18628 {
18629 str_index = read_2_bytes (abfd, info_ptr);
18630 info_ptr += 2;
18631 }
18632 else if (form == DW_FORM_strx3)
18633 {
18634 str_index = read_3_bytes (abfd, info_ptr);
18635 info_ptr += 3;
18636 }
18637 else if (form == DW_FORM_strx4)
18638 {
18639 str_index = read_4_bytes (abfd, info_ptr);
18640 info_ptr += 4;
18641 }
18642 else
18643 {
18644 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18645 info_ptr += bytes_read;
18646 }
18647 *need_reprocess = true;
18648 DW_UNSND (attr) = str_index;
18649 }
18650 break;
18651 default:
18652 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18653 dwarf_form_name (form),
18654 bfd_get_filename (abfd));
18655 }
18656
18657 /* Super hack. */
18658 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18659 attr->form = DW_FORM_GNU_ref_alt;
18660
18661 /* We have seen instances where the compiler tried to emit a byte
18662 size attribute of -1 which ended up being encoded as an unsigned
18663 0xffffffff. Although 0xffffffff is technically a valid size value,
18664 an object of this size seems pretty unlikely so we can relatively
18665 safely treat these cases as if the size attribute was invalid and
18666 treat them as zero by default. */
18667 if (attr->name == DW_AT_byte_size
18668 && form == DW_FORM_data4
18669 && DW_UNSND (attr) >= 0xffffffff)
18670 {
18671 complaint
18672 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18673 hex_string (DW_UNSND (attr)));
18674 DW_UNSND (attr) = 0;
18675 }
18676
18677 return info_ptr;
18678 }
18679
18680 /* Read an attribute described by an abbreviated attribute. */
18681
18682 static const gdb_byte *
18683 read_attribute (const struct die_reader_specs *reader,
18684 struct attribute *attr, struct attr_abbrev *abbrev,
18685 const gdb_byte *info_ptr, bool *need_reprocess)
18686 {
18687 attr->name = abbrev->name;
18688 return read_attribute_value (reader, attr, abbrev->form,
18689 abbrev->implicit_const, info_ptr,
18690 need_reprocess);
18691 }
18692
18693 /* Cover function for read_initial_length.
18694 Returns the length of the object at BUF, and stores the size of the
18695 initial length in *BYTES_READ and stores the size that offsets will be in
18696 *OFFSET_SIZE.
18697 If the initial length size is not equivalent to that specified in
18698 CU_HEADER then issue a complaint.
18699 This is useful when reading non-comp-unit headers. */
18700
18701 static LONGEST
18702 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18703 const struct comp_unit_head *cu_header,
18704 unsigned int *bytes_read,
18705 unsigned int *offset_size)
18706 {
18707 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18708
18709 gdb_assert (cu_header->initial_length_size == 4
18710 || cu_header->initial_length_size == 8
18711 || cu_header->initial_length_size == 12);
18712
18713 if (cu_header->initial_length_size != *bytes_read)
18714 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
18715
18716 *offset_size = (*bytes_read == 4) ? 4 : 8;
18717 return length;
18718 }
18719
18720 /* Return pointer to string at section SECT offset STR_OFFSET with error
18721 reporting strings FORM_NAME and SECT_NAME. */
18722
18723 static const char *
18724 read_indirect_string_at_offset_from (struct objfile *objfile,
18725 bfd *abfd, LONGEST str_offset,
18726 struct dwarf2_section_info *sect,
18727 const char *form_name,
18728 const char *sect_name)
18729 {
18730 sect->read (objfile);
18731 if (sect->buffer == NULL)
18732 error (_("%s used without %s section [in module %s]"),
18733 form_name, sect_name, bfd_get_filename (abfd));
18734 if (str_offset >= sect->size)
18735 error (_("%s pointing outside of %s section [in module %s]"),
18736 form_name, sect_name, bfd_get_filename (abfd));
18737 gdb_assert (HOST_CHAR_BIT == 8);
18738 if (sect->buffer[str_offset] == '\0')
18739 return NULL;
18740 return (const char *) (sect->buffer + str_offset);
18741 }
18742
18743 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18744
18745 static const char *
18746 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18747 bfd *abfd, LONGEST str_offset)
18748 {
18749 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18750 abfd, str_offset,
18751 &dwarf2_per_objfile->str,
18752 "DW_FORM_strp", ".debug_str");
18753 }
18754
18755 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18756
18757 static const char *
18758 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18759 bfd *abfd, LONGEST str_offset)
18760 {
18761 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18762 abfd, str_offset,
18763 &dwarf2_per_objfile->line_str,
18764 "DW_FORM_line_strp",
18765 ".debug_line_str");
18766 }
18767
18768 /* Read a string at offset STR_OFFSET in the .debug_str section from
18769 the .dwz file DWZ. Throw an error if the offset is too large. If
18770 the string consists of a single NUL byte, return NULL; otherwise
18771 return a pointer to the string. */
18772
18773 static const char *
18774 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
18775 LONGEST str_offset)
18776 {
18777 dwz->str.read (objfile);
18778
18779 if (dwz->str.buffer == NULL)
18780 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18781 "section [in module %s]"),
18782 bfd_get_filename (dwz->dwz_bfd.get ()));
18783 if (str_offset >= dwz->str.size)
18784 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18785 ".debug_str section [in module %s]"),
18786 bfd_get_filename (dwz->dwz_bfd.get ()));
18787 gdb_assert (HOST_CHAR_BIT == 8);
18788 if (dwz->str.buffer[str_offset] == '\0')
18789 return NULL;
18790 return (const char *) (dwz->str.buffer + str_offset);
18791 }
18792
18793 /* Return pointer to string at .debug_str offset as read from BUF.
18794 BUF is assumed to be in a compilation unit described by CU_HEADER.
18795 Return *BYTES_READ_PTR count of bytes read from BUF. */
18796
18797 static const char *
18798 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18799 const gdb_byte *buf,
18800 const struct comp_unit_head *cu_header,
18801 unsigned int *bytes_read_ptr)
18802 {
18803 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18804
18805 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
18806 }
18807
18808 /* Return pointer to string at .debug_line_str offset as read from BUF.
18809 BUF is assumed to be in a compilation unit described by CU_HEADER.
18810 Return *BYTES_READ_PTR count of bytes read from BUF. */
18811
18812 static const char *
18813 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
18814 bfd *abfd, const gdb_byte *buf,
18815 const struct comp_unit_head *cu_header,
18816 unsigned int *bytes_read_ptr)
18817 {
18818 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18819
18820 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
18821 str_offset);
18822 }
18823
18824 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18825 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18826 ADDR_SIZE is the size of addresses from the CU header. */
18827
18828 static CORE_ADDR
18829 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18830 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18831 int addr_size)
18832 {
18833 struct objfile *objfile = dwarf2_per_objfile->objfile;
18834 bfd *abfd = objfile->obfd;
18835 const gdb_byte *info_ptr;
18836 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18837
18838 dwarf2_per_objfile->addr.read (objfile);
18839 if (dwarf2_per_objfile->addr.buffer == NULL)
18840 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18841 objfile_name (objfile));
18842 if (addr_base_or_zero + addr_index * addr_size
18843 >= dwarf2_per_objfile->addr.size)
18844 error (_("DW_FORM_addr_index pointing outside of "
18845 ".debug_addr section [in module %s]"),
18846 objfile_name (objfile));
18847 info_ptr = (dwarf2_per_objfile->addr.buffer
18848 + addr_base_or_zero + addr_index * addr_size);
18849 if (addr_size == 4)
18850 return bfd_get_32 (abfd, info_ptr);
18851 else
18852 return bfd_get_64 (abfd, info_ptr);
18853 }
18854
18855 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18856
18857 static CORE_ADDR
18858 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18859 {
18860 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18861 cu->addr_base, cu->header.addr_size);
18862 }
18863
18864 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18865
18866 static CORE_ADDR
18867 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18868 unsigned int *bytes_read)
18869 {
18870 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18871 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18872
18873 return read_addr_index (cu, addr_index);
18874 }
18875
18876 /* Given an index in .debug_addr, fetch the value.
18877 NOTE: This can be called during dwarf expression evaluation,
18878 long after the debug information has been read, and thus per_cu->cu
18879 may no longer exist. */
18880
18881 CORE_ADDR
18882 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
18883 unsigned int addr_index)
18884 {
18885 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18886 struct dwarf2_cu *cu = per_cu->cu;
18887 gdb::optional<ULONGEST> addr_base;
18888 int addr_size;
18889
18890 /* We need addr_base and addr_size.
18891 If we don't have PER_CU->cu, we have to get it.
18892 Nasty, but the alternative is storing the needed info in PER_CU,
18893 which at this point doesn't seem justified: it's not clear how frequently
18894 it would get used and it would increase the size of every PER_CU.
18895 Entry points like dwarf2_per_cu_addr_size do a similar thing
18896 so we're not in uncharted territory here.
18897 Alas we need to be a bit more complicated as addr_base is contained
18898 in the DIE.
18899
18900 We don't need to read the entire CU(/TU).
18901 We just need the header and top level die.
18902
18903 IWBN to use the aging mechanism to let us lazily later discard the CU.
18904 For now we skip this optimization. */
18905
18906 if (cu != NULL)
18907 {
18908 addr_base = cu->addr_base;
18909 addr_size = cu->header.addr_size;
18910 }
18911 else
18912 {
18913 cutu_reader reader (per_cu, NULL, 0, false);
18914 addr_base = reader.cu->addr_base;
18915 addr_size = reader.cu->header.addr_size;
18916 }
18917
18918 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
18919 addr_size);
18920 }
18921
18922 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
18923 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
18924 DWO file. */
18925
18926 static const char *
18927 read_str_index (struct dwarf2_cu *cu,
18928 struct dwarf2_section_info *str_section,
18929 struct dwarf2_section_info *str_offsets_section,
18930 ULONGEST str_offsets_base, ULONGEST str_index)
18931 {
18932 struct dwarf2_per_objfile *dwarf2_per_objfile
18933 = cu->per_cu->dwarf2_per_objfile;
18934 struct objfile *objfile = dwarf2_per_objfile->objfile;
18935 const char *objf_name = objfile_name (objfile);
18936 bfd *abfd = objfile->obfd;
18937 const gdb_byte *info_ptr;
18938 ULONGEST str_offset;
18939 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
18940
18941 str_section->read (objfile);
18942 str_offsets_section->read (objfile);
18943 if (str_section->buffer == NULL)
18944 error (_("%s used without %s section"
18945 " in CU at offset %s [in module %s]"),
18946 form_name, str_section->get_name (),
18947 sect_offset_str (cu->header.sect_off), objf_name);
18948 if (str_offsets_section->buffer == NULL)
18949 error (_("%s used without %s section"
18950 " in CU at offset %s [in module %s]"),
18951 form_name, str_section->get_name (),
18952 sect_offset_str (cu->header.sect_off), objf_name);
18953 info_ptr = (str_offsets_section->buffer
18954 + str_offsets_base
18955 + str_index * cu->header.offset_size);
18956 if (cu->header.offset_size == 4)
18957 str_offset = bfd_get_32 (abfd, info_ptr);
18958 else
18959 str_offset = bfd_get_64 (abfd, info_ptr);
18960 if (str_offset >= str_section->size)
18961 error (_("Offset from %s pointing outside of"
18962 " .debug_str.dwo section in CU at offset %s [in module %s]"),
18963 form_name, sect_offset_str (cu->header.sect_off), objf_name);
18964 return (const char *) (str_section->buffer + str_offset);
18965 }
18966
18967 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
18968
18969 static const char *
18970 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
18971 {
18972 ULONGEST str_offsets_base = reader->cu->header.version >= 5
18973 ? reader->cu->header.addr_size : 0;
18974 return read_str_index (reader->cu,
18975 &reader->dwo_file->sections.str,
18976 &reader->dwo_file->sections.str_offsets,
18977 str_offsets_base, str_index);
18978 }
18979
18980 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
18981
18982 static const char *
18983 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
18984 {
18985 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18986 const char *objf_name = objfile_name (objfile);
18987 static const char form_name[] = "DW_FORM_GNU_str_index";
18988 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
18989
18990 if (!cu->str_offsets_base.has_value ())
18991 error (_("%s used in Fission stub without %s"
18992 " in CU at offset 0x%lx [in module %s]"),
18993 form_name, str_offsets_attr_name,
18994 (long) cu->header.offset_size, objf_name);
18995
18996 return read_str_index (cu,
18997 &cu->per_cu->dwarf2_per_objfile->str,
18998 &cu->per_cu->dwarf2_per_objfile->str_offsets,
18999 *cu->str_offsets_base, str_index);
19000 }
19001
19002 /* Return the length of an LEB128 number in BUF. */
19003
19004 static int
19005 leb128_size (const gdb_byte *buf)
19006 {
19007 const gdb_byte *begin = buf;
19008 gdb_byte byte;
19009
19010 while (1)
19011 {
19012 byte = *buf++;
19013 if ((byte & 128) == 0)
19014 return buf - begin;
19015 }
19016 }
19017
19018 static void
19019 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19020 {
19021 switch (lang)
19022 {
19023 case DW_LANG_C89:
19024 case DW_LANG_C99:
19025 case DW_LANG_C11:
19026 case DW_LANG_C:
19027 case DW_LANG_UPC:
19028 cu->language = language_c;
19029 break;
19030 case DW_LANG_Java:
19031 case DW_LANG_C_plus_plus:
19032 case DW_LANG_C_plus_plus_11:
19033 case DW_LANG_C_plus_plus_14:
19034 cu->language = language_cplus;
19035 break;
19036 case DW_LANG_D:
19037 cu->language = language_d;
19038 break;
19039 case DW_LANG_Fortran77:
19040 case DW_LANG_Fortran90:
19041 case DW_LANG_Fortran95:
19042 case DW_LANG_Fortran03:
19043 case DW_LANG_Fortran08:
19044 cu->language = language_fortran;
19045 break;
19046 case DW_LANG_Go:
19047 cu->language = language_go;
19048 break;
19049 case DW_LANG_Mips_Assembler:
19050 cu->language = language_asm;
19051 break;
19052 case DW_LANG_Ada83:
19053 case DW_LANG_Ada95:
19054 cu->language = language_ada;
19055 break;
19056 case DW_LANG_Modula2:
19057 cu->language = language_m2;
19058 break;
19059 case DW_LANG_Pascal83:
19060 cu->language = language_pascal;
19061 break;
19062 case DW_LANG_ObjC:
19063 cu->language = language_objc;
19064 break;
19065 case DW_LANG_Rust:
19066 case DW_LANG_Rust_old:
19067 cu->language = language_rust;
19068 break;
19069 case DW_LANG_Cobol74:
19070 case DW_LANG_Cobol85:
19071 default:
19072 cu->language = language_minimal;
19073 break;
19074 }
19075 cu->language_defn = language_def (cu->language);
19076 }
19077
19078 /* Return the named attribute or NULL if not there. */
19079
19080 static struct attribute *
19081 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19082 {
19083 for (;;)
19084 {
19085 unsigned int i;
19086 struct attribute *spec = NULL;
19087
19088 for (i = 0; i < die->num_attrs; ++i)
19089 {
19090 if (die->attrs[i].name == name)
19091 return &die->attrs[i];
19092 if (die->attrs[i].name == DW_AT_specification
19093 || die->attrs[i].name == DW_AT_abstract_origin)
19094 spec = &die->attrs[i];
19095 }
19096
19097 if (!spec)
19098 break;
19099
19100 die = follow_die_ref (die, spec, &cu);
19101 }
19102
19103 return NULL;
19104 }
19105
19106 /* Return the named attribute or NULL if not there,
19107 but do not follow DW_AT_specification, etc.
19108 This is for use in contexts where we're reading .debug_types dies.
19109 Following DW_AT_specification, DW_AT_abstract_origin will take us
19110 back up the chain, and we want to go down. */
19111
19112 static struct attribute *
19113 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19114 {
19115 unsigned int i;
19116
19117 for (i = 0; i < die->num_attrs; ++i)
19118 if (die->attrs[i].name == name)
19119 return &die->attrs[i];
19120
19121 return NULL;
19122 }
19123
19124 /* Return the string associated with a string-typed attribute, or NULL if it
19125 is either not found or is of an incorrect type. */
19126
19127 static const char *
19128 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19129 {
19130 struct attribute *attr;
19131 const char *str = NULL;
19132
19133 attr = dwarf2_attr (die, name, cu);
19134
19135 if (attr != NULL)
19136 {
19137 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19138 || attr->form == DW_FORM_string
19139 || attr->form == DW_FORM_strx
19140 || attr->form == DW_FORM_strx1
19141 || attr->form == DW_FORM_strx2
19142 || attr->form == DW_FORM_strx3
19143 || attr->form == DW_FORM_strx4
19144 || attr->form == DW_FORM_GNU_str_index
19145 || attr->form == DW_FORM_GNU_strp_alt)
19146 str = DW_STRING (attr);
19147 else
19148 complaint (_("string type expected for attribute %s for "
19149 "DIE at %s in module %s"),
19150 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19151 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19152 }
19153
19154 return str;
19155 }
19156
19157 /* Return the dwo name or NULL if not present. If present, it is in either
19158 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19159 static const char *
19160 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19161 {
19162 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19163 if (dwo_name == nullptr)
19164 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19165 return dwo_name;
19166 }
19167
19168 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19169 and holds a non-zero value. This function should only be used for
19170 DW_FORM_flag or DW_FORM_flag_present attributes. */
19171
19172 static int
19173 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19174 {
19175 struct attribute *attr = dwarf2_attr (die, name, cu);
19176
19177 return (attr && DW_UNSND (attr));
19178 }
19179
19180 static int
19181 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19182 {
19183 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19184 which value is non-zero. However, we have to be careful with
19185 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19186 (via dwarf2_flag_true_p) follows this attribute. So we may
19187 end up accidently finding a declaration attribute that belongs
19188 to a different DIE referenced by the specification attribute,
19189 even though the given DIE does not have a declaration attribute. */
19190 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19191 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19192 }
19193
19194 /* Return the die giving the specification for DIE, if there is
19195 one. *SPEC_CU is the CU containing DIE on input, and the CU
19196 containing the return value on output. If there is no
19197 specification, but there is an abstract origin, that is
19198 returned. */
19199
19200 static struct die_info *
19201 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19202 {
19203 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19204 *spec_cu);
19205
19206 if (spec_attr == NULL)
19207 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19208
19209 if (spec_attr == NULL)
19210 return NULL;
19211 else
19212 return follow_die_ref (die, spec_attr, spec_cu);
19213 }
19214
19215 /* Stub for free_line_header to match void * callback types. */
19216
19217 static void
19218 free_line_header_voidp (void *arg)
19219 {
19220 struct line_header *lh = (struct line_header *) arg;
19221
19222 delete lh;
19223 }
19224
19225 /* A convenience function to find the proper .debug_line section for a CU. */
19226
19227 static struct dwarf2_section_info *
19228 get_debug_line_section (struct dwarf2_cu *cu)
19229 {
19230 struct dwarf2_section_info *section;
19231 struct dwarf2_per_objfile *dwarf2_per_objfile
19232 = cu->per_cu->dwarf2_per_objfile;
19233
19234 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19235 DWO file. */
19236 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19237 section = &cu->dwo_unit->dwo_file->sections.line;
19238 else if (cu->per_cu->is_dwz)
19239 {
19240 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19241
19242 section = &dwz->line;
19243 }
19244 else
19245 section = &dwarf2_per_objfile->line;
19246
19247 return section;
19248 }
19249
19250 /* Read directory or file name entry format, starting with byte of
19251 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19252 entries count and the entries themselves in the described entry
19253 format. */
19254
19255 static void
19256 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19257 bfd *abfd, const gdb_byte **bufp,
19258 struct line_header *lh,
19259 const struct comp_unit_head *cu_header,
19260 void (*callback) (struct line_header *lh,
19261 const char *name,
19262 dir_index d_index,
19263 unsigned int mod_time,
19264 unsigned int length))
19265 {
19266 gdb_byte format_count, formati;
19267 ULONGEST data_count, datai;
19268 const gdb_byte *buf = *bufp;
19269 const gdb_byte *format_header_data;
19270 unsigned int bytes_read;
19271
19272 format_count = read_1_byte (abfd, buf);
19273 buf += 1;
19274 format_header_data = buf;
19275 for (formati = 0; formati < format_count; formati++)
19276 {
19277 read_unsigned_leb128 (abfd, buf, &bytes_read);
19278 buf += bytes_read;
19279 read_unsigned_leb128 (abfd, buf, &bytes_read);
19280 buf += bytes_read;
19281 }
19282
19283 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19284 buf += bytes_read;
19285 for (datai = 0; datai < data_count; datai++)
19286 {
19287 const gdb_byte *format = format_header_data;
19288 struct file_entry fe;
19289
19290 for (formati = 0; formati < format_count; formati++)
19291 {
19292 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19293 format += bytes_read;
19294
19295 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19296 format += bytes_read;
19297
19298 gdb::optional<const char *> string;
19299 gdb::optional<unsigned int> uint;
19300
19301 switch (form)
19302 {
19303 case DW_FORM_string:
19304 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19305 buf += bytes_read;
19306 break;
19307
19308 case DW_FORM_line_strp:
19309 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19310 abfd, buf,
19311 cu_header,
19312 &bytes_read));
19313 buf += bytes_read;
19314 break;
19315
19316 case DW_FORM_data1:
19317 uint.emplace (read_1_byte (abfd, buf));
19318 buf += 1;
19319 break;
19320
19321 case DW_FORM_data2:
19322 uint.emplace (read_2_bytes (abfd, buf));
19323 buf += 2;
19324 break;
19325
19326 case DW_FORM_data4:
19327 uint.emplace (read_4_bytes (abfd, buf));
19328 buf += 4;
19329 break;
19330
19331 case DW_FORM_data8:
19332 uint.emplace (read_8_bytes (abfd, buf));
19333 buf += 8;
19334 break;
19335
19336 case DW_FORM_data16:
19337 /* This is used for MD5, but file_entry does not record MD5s. */
19338 buf += 16;
19339 break;
19340
19341 case DW_FORM_udata:
19342 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19343 buf += bytes_read;
19344 break;
19345
19346 case DW_FORM_block:
19347 /* It is valid only for DW_LNCT_timestamp which is ignored by
19348 current GDB. */
19349 break;
19350 }
19351
19352 switch (content_type)
19353 {
19354 case DW_LNCT_path:
19355 if (string.has_value ())
19356 fe.name = *string;
19357 break;
19358 case DW_LNCT_directory_index:
19359 if (uint.has_value ())
19360 fe.d_index = (dir_index) *uint;
19361 break;
19362 case DW_LNCT_timestamp:
19363 if (uint.has_value ())
19364 fe.mod_time = *uint;
19365 break;
19366 case DW_LNCT_size:
19367 if (uint.has_value ())
19368 fe.length = *uint;
19369 break;
19370 case DW_LNCT_MD5:
19371 break;
19372 default:
19373 complaint (_("Unknown format content type %s"),
19374 pulongest (content_type));
19375 }
19376 }
19377
19378 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
19379 }
19380
19381 *bufp = buf;
19382 }
19383
19384 /* Read the statement program header starting at OFFSET in
19385 .debug_line, or .debug_line.dwo. Return a pointer
19386 to a struct line_header, allocated using xmalloc.
19387 Returns NULL if there is a problem reading the header, e.g., if it
19388 has a version we don't understand.
19389
19390 NOTE: the strings in the include directory and file name tables of
19391 the returned object point into the dwarf line section buffer,
19392 and must not be freed. */
19393
19394 static line_header_up
19395 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19396 {
19397 const gdb_byte *line_ptr;
19398 unsigned int bytes_read, offset_size;
19399 int i;
19400 const char *cur_dir, *cur_file;
19401 struct dwarf2_section_info *section;
19402 bfd *abfd;
19403 struct dwarf2_per_objfile *dwarf2_per_objfile
19404 = cu->per_cu->dwarf2_per_objfile;
19405
19406 section = get_debug_line_section (cu);
19407 section->read (dwarf2_per_objfile->objfile);
19408 if (section->buffer == NULL)
19409 {
19410 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19411 complaint (_("missing .debug_line.dwo section"));
19412 else
19413 complaint (_("missing .debug_line section"));
19414 return 0;
19415 }
19416
19417 /* We can't do this until we know the section is non-empty.
19418 Only then do we know we have such a section. */
19419 abfd = section->get_bfd_owner ();
19420
19421 /* Make sure that at least there's room for the total_length field.
19422 That could be 12 bytes long, but we're just going to fudge that. */
19423 if (to_underlying (sect_off) + 4 >= section->size)
19424 {
19425 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19426 return 0;
19427 }
19428
19429 line_header_up lh (new line_header ());
19430
19431 lh->sect_off = sect_off;
19432 lh->offset_in_dwz = cu->per_cu->is_dwz;
19433
19434 line_ptr = section->buffer + to_underlying (sect_off);
19435
19436 /* Read in the header. */
19437 lh->total_length =
19438 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
19439 &bytes_read, &offset_size);
19440 line_ptr += bytes_read;
19441
19442 const gdb_byte *start_here = line_ptr;
19443
19444 if (line_ptr + lh->total_length > (section->buffer + section->size))
19445 {
19446 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19447 return 0;
19448 }
19449 lh->statement_program_end = start_here + lh->total_length;
19450 lh->version = read_2_bytes (abfd, line_ptr);
19451 line_ptr += 2;
19452 if (lh->version > 5)
19453 {
19454 /* This is a version we don't understand. The format could have
19455 changed in ways we don't handle properly so just punt. */
19456 complaint (_("unsupported version in .debug_line section"));
19457 return NULL;
19458 }
19459 if (lh->version >= 5)
19460 {
19461 gdb_byte segment_selector_size;
19462
19463 /* Skip address size. */
19464 read_1_byte (abfd, line_ptr);
19465 line_ptr += 1;
19466
19467 segment_selector_size = read_1_byte (abfd, line_ptr);
19468 line_ptr += 1;
19469 if (segment_selector_size != 0)
19470 {
19471 complaint (_("unsupported segment selector size %u "
19472 "in .debug_line section"),
19473 segment_selector_size);
19474 return NULL;
19475 }
19476 }
19477 lh->header_length = read_offset (abfd, line_ptr, offset_size);
19478 line_ptr += offset_size;
19479 lh->statement_program_start = line_ptr + lh->header_length;
19480 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
19481 line_ptr += 1;
19482 if (lh->version >= 4)
19483 {
19484 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
19485 line_ptr += 1;
19486 }
19487 else
19488 lh->maximum_ops_per_instruction = 1;
19489
19490 if (lh->maximum_ops_per_instruction == 0)
19491 {
19492 lh->maximum_ops_per_instruction = 1;
19493 complaint (_("invalid maximum_ops_per_instruction "
19494 "in `.debug_line' section"));
19495 }
19496
19497 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
19498 line_ptr += 1;
19499 lh->line_base = read_1_signed_byte (abfd, line_ptr);
19500 line_ptr += 1;
19501 lh->line_range = read_1_byte (abfd, line_ptr);
19502 line_ptr += 1;
19503 lh->opcode_base = read_1_byte (abfd, line_ptr);
19504 line_ptr += 1;
19505 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
19506
19507 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
19508 for (i = 1; i < lh->opcode_base; ++i)
19509 {
19510 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
19511 line_ptr += 1;
19512 }
19513
19514 if (lh->version >= 5)
19515 {
19516 /* Read directory table. */
19517 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19518 &cu->header,
19519 [] (struct line_header *header, const char *name,
19520 dir_index d_index, unsigned int mod_time,
19521 unsigned int length)
19522 {
19523 header->add_include_dir (name);
19524 });
19525
19526 /* Read file name table. */
19527 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19528 &cu->header,
19529 [] (struct line_header *header, const char *name,
19530 dir_index d_index, unsigned int mod_time,
19531 unsigned int length)
19532 {
19533 header->add_file_name (name, d_index, mod_time, length);
19534 });
19535 }
19536 else
19537 {
19538 /* Read directory table. */
19539 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19540 {
19541 line_ptr += bytes_read;
19542 lh->add_include_dir (cur_dir);
19543 }
19544 line_ptr += bytes_read;
19545
19546 /* Read file name table. */
19547 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19548 {
19549 unsigned int mod_time, length;
19550 dir_index d_index;
19551
19552 line_ptr += bytes_read;
19553 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19554 line_ptr += bytes_read;
19555 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19556 line_ptr += bytes_read;
19557 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19558 line_ptr += bytes_read;
19559
19560 lh->add_file_name (cur_file, d_index, mod_time, length);
19561 }
19562 line_ptr += bytes_read;
19563 }
19564
19565 if (line_ptr > (section->buffer + section->size))
19566 complaint (_("line number info header doesn't "
19567 "fit in `.debug_line' section"));
19568
19569 return lh;
19570 }
19571
19572 /* Subroutine of dwarf_decode_lines to simplify it.
19573 Return the file name of the psymtab for the given file_entry.
19574 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19575 If space for the result is malloc'd, *NAME_HOLDER will be set.
19576 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19577
19578 static const char *
19579 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19580 const dwarf2_psymtab *pst,
19581 const char *comp_dir,
19582 gdb::unique_xmalloc_ptr<char> *name_holder)
19583 {
19584 const char *include_name = fe.name;
19585 const char *include_name_to_compare = include_name;
19586 const char *pst_filename;
19587 int file_is_pst;
19588
19589 const char *dir_name = fe.include_dir (lh);
19590
19591 gdb::unique_xmalloc_ptr<char> hold_compare;
19592 if (!IS_ABSOLUTE_PATH (include_name)
19593 && (dir_name != NULL || comp_dir != NULL))
19594 {
19595 /* Avoid creating a duplicate psymtab for PST.
19596 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19597 Before we do the comparison, however, we need to account
19598 for DIR_NAME and COMP_DIR.
19599 First prepend dir_name (if non-NULL). If we still don't
19600 have an absolute path prepend comp_dir (if non-NULL).
19601 However, the directory we record in the include-file's
19602 psymtab does not contain COMP_DIR (to match the
19603 corresponding symtab(s)).
19604
19605 Example:
19606
19607 bash$ cd /tmp
19608 bash$ gcc -g ./hello.c
19609 include_name = "hello.c"
19610 dir_name = "."
19611 DW_AT_comp_dir = comp_dir = "/tmp"
19612 DW_AT_name = "./hello.c"
19613
19614 */
19615
19616 if (dir_name != NULL)
19617 {
19618 name_holder->reset (concat (dir_name, SLASH_STRING,
19619 include_name, (char *) NULL));
19620 include_name = name_holder->get ();
19621 include_name_to_compare = include_name;
19622 }
19623 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19624 {
19625 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19626 include_name, (char *) NULL));
19627 include_name_to_compare = hold_compare.get ();
19628 }
19629 }
19630
19631 pst_filename = pst->filename;
19632 gdb::unique_xmalloc_ptr<char> copied_name;
19633 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19634 {
19635 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19636 pst_filename, (char *) NULL));
19637 pst_filename = copied_name.get ();
19638 }
19639
19640 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19641
19642 if (file_is_pst)
19643 return NULL;
19644 return include_name;
19645 }
19646
19647 /* State machine to track the state of the line number program. */
19648
19649 class lnp_state_machine
19650 {
19651 public:
19652 /* Initialize a machine state for the start of a line number
19653 program. */
19654 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19655 bool record_lines_p);
19656
19657 file_entry *current_file ()
19658 {
19659 /* lh->file_names is 0-based, but the file name numbers in the
19660 statement program are 1-based. */
19661 return m_line_header->file_name_at (m_file);
19662 }
19663
19664 /* Record the line in the state machine. END_SEQUENCE is true if
19665 we're processing the end of a sequence. */
19666 void record_line (bool end_sequence);
19667
19668 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19669 nop-out rest of the lines in this sequence. */
19670 void check_line_address (struct dwarf2_cu *cu,
19671 const gdb_byte *line_ptr,
19672 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19673
19674 void handle_set_discriminator (unsigned int discriminator)
19675 {
19676 m_discriminator = discriminator;
19677 m_line_has_non_zero_discriminator |= discriminator != 0;
19678 }
19679
19680 /* Handle DW_LNE_set_address. */
19681 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19682 {
19683 m_op_index = 0;
19684 address += baseaddr;
19685 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19686 }
19687
19688 /* Handle DW_LNS_advance_pc. */
19689 void handle_advance_pc (CORE_ADDR adjust);
19690
19691 /* Handle a special opcode. */
19692 void handle_special_opcode (unsigned char op_code);
19693
19694 /* Handle DW_LNS_advance_line. */
19695 void handle_advance_line (int line_delta)
19696 {
19697 advance_line (line_delta);
19698 }
19699
19700 /* Handle DW_LNS_set_file. */
19701 void handle_set_file (file_name_index file);
19702
19703 /* Handle DW_LNS_negate_stmt. */
19704 void handle_negate_stmt ()
19705 {
19706 m_is_stmt = !m_is_stmt;
19707 }
19708
19709 /* Handle DW_LNS_const_add_pc. */
19710 void handle_const_add_pc ();
19711
19712 /* Handle DW_LNS_fixed_advance_pc. */
19713 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19714 {
19715 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19716 m_op_index = 0;
19717 }
19718
19719 /* Handle DW_LNS_copy. */
19720 void handle_copy ()
19721 {
19722 record_line (false);
19723 m_discriminator = 0;
19724 }
19725
19726 /* Handle DW_LNE_end_sequence. */
19727 void handle_end_sequence ()
19728 {
19729 m_currently_recording_lines = true;
19730 }
19731
19732 private:
19733 /* Advance the line by LINE_DELTA. */
19734 void advance_line (int line_delta)
19735 {
19736 m_line += line_delta;
19737
19738 if (line_delta != 0)
19739 m_line_has_non_zero_discriminator = m_discriminator != 0;
19740 }
19741
19742 struct dwarf2_cu *m_cu;
19743
19744 gdbarch *m_gdbarch;
19745
19746 /* True if we're recording lines.
19747 Otherwise we're building partial symtabs and are just interested in
19748 finding include files mentioned by the line number program. */
19749 bool m_record_lines_p;
19750
19751 /* The line number header. */
19752 line_header *m_line_header;
19753
19754 /* These are part of the standard DWARF line number state machine,
19755 and initialized according to the DWARF spec. */
19756
19757 unsigned char m_op_index = 0;
19758 /* The line table index of the current file. */
19759 file_name_index m_file = 1;
19760 unsigned int m_line = 1;
19761
19762 /* These are initialized in the constructor. */
19763
19764 CORE_ADDR m_address;
19765 bool m_is_stmt;
19766 unsigned int m_discriminator;
19767
19768 /* Additional bits of state we need to track. */
19769
19770 /* The last file that we called dwarf2_start_subfile for.
19771 This is only used for TLLs. */
19772 unsigned int m_last_file = 0;
19773 /* The last file a line number was recorded for. */
19774 struct subfile *m_last_subfile = NULL;
19775
19776 /* When true, record the lines we decode. */
19777 bool m_currently_recording_lines = false;
19778
19779 /* The last line number that was recorded, used to coalesce
19780 consecutive entries for the same line. This can happen, for
19781 example, when discriminators are present. PR 17276. */
19782 unsigned int m_last_line = 0;
19783 bool m_line_has_non_zero_discriminator = false;
19784 };
19785
19786 void
19787 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19788 {
19789 CORE_ADDR addr_adj = (((m_op_index + adjust)
19790 / m_line_header->maximum_ops_per_instruction)
19791 * m_line_header->minimum_instruction_length);
19792 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19793 m_op_index = ((m_op_index + adjust)
19794 % m_line_header->maximum_ops_per_instruction);
19795 }
19796
19797 void
19798 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19799 {
19800 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19801 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19802 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19803 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19804 / m_line_header->maximum_ops_per_instruction)
19805 * m_line_header->minimum_instruction_length);
19806 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19807 m_op_index = ((m_op_index + adj_opcode_d)
19808 % m_line_header->maximum_ops_per_instruction);
19809
19810 int line_delta = m_line_header->line_base + adj_opcode_r;
19811 advance_line (line_delta);
19812 record_line (false);
19813 m_discriminator = 0;
19814 }
19815
19816 void
19817 lnp_state_machine::handle_set_file (file_name_index file)
19818 {
19819 m_file = file;
19820
19821 const file_entry *fe = current_file ();
19822 if (fe == NULL)
19823 dwarf2_debug_line_missing_file_complaint ();
19824 else if (m_record_lines_p)
19825 {
19826 const char *dir = fe->include_dir (m_line_header);
19827
19828 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19829 m_line_has_non_zero_discriminator = m_discriminator != 0;
19830 dwarf2_start_subfile (m_cu, fe->name, dir);
19831 }
19832 }
19833
19834 void
19835 lnp_state_machine::handle_const_add_pc ()
19836 {
19837 CORE_ADDR adjust
19838 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19839
19840 CORE_ADDR addr_adj
19841 = (((m_op_index + adjust)
19842 / m_line_header->maximum_ops_per_instruction)
19843 * m_line_header->minimum_instruction_length);
19844
19845 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19846 m_op_index = ((m_op_index + adjust)
19847 % m_line_header->maximum_ops_per_instruction);
19848 }
19849
19850 /* Return non-zero if we should add LINE to the line number table.
19851 LINE is the line to add, LAST_LINE is the last line that was added,
19852 LAST_SUBFILE is the subfile for LAST_LINE.
19853 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19854 had a non-zero discriminator.
19855
19856 We have to be careful in the presence of discriminators.
19857 E.g., for this line:
19858
19859 for (i = 0; i < 100000; i++);
19860
19861 clang can emit four line number entries for that one line,
19862 each with a different discriminator.
19863 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19864
19865 However, we want gdb to coalesce all four entries into one.
19866 Otherwise the user could stepi into the middle of the line and
19867 gdb would get confused about whether the pc really was in the
19868 middle of the line.
19869
19870 Things are further complicated by the fact that two consecutive
19871 line number entries for the same line is a heuristic used by gcc
19872 to denote the end of the prologue. So we can't just discard duplicate
19873 entries, we have to be selective about it. The heuristic we use is
19874 that we only collapse consecutive entries for the same line if at least
19875 one of those entries has a non-zero discriminator. PR 17276.
19876
19877 Note: Addresses in the line number state machine can never go backwards
19878 within one sequence, thus this coalescing is ok. */
19879
19880 static int
19881 dwarf_record_line_p (struct dwarf2_cu *cu,
19882 unsigned int line, unsigned int last_line,
19883 int line_has_non_zero_discriminator,
19884 struct subfile *last_subfile)
19885 {
19886 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19887 return 1;
19888 if (line != last_line)
19889 return 1;
19890 /* Same line for the same file that we've seen already.
19891 As a last check, for pr 17276, only record the line if the line
19892 has never had a non-zero discriminator. */
19893 if (!line_has_non_zero_discriminator)
19894 return 1;
19895 return 0;
19896 }
19897
19898 /* Use the CU's builder to record line number LINE beginning at
19899 address ADDRESS in the line table of subfile SUBFILE. */
19900
19901 static void
19902 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19903 unsigned int line, CORE_ADDR address,
19904 struct dwarf2_cu *cu)
19905 {
19906 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19907
19908 if (dwarf_line_debug)
19909 {
19910 fprintf_unfiltered (gdb_stdlog,
19911 "Recording line %u, file %s, address %s\n",
19912 line, lbasename (subfile->name),
19913 paddress (gdbarch, address));
19914 }
19915
19916 if (cu != nullptr)
19917 cu->get_builder ()->record_line (subfile, line, addr);
19918 }
19919
19920 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19921 Mark the end of a set of line number records.
19922 The arguments are the same as for dwarf_record_line_1.
19923 If SUBFILE is NULL the request is ignored. */
19924
19925 static void
19926 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19927 CORE_ADDR address, struct dwarf2_cu *cu)
19928 {
19929 if (subfile == NULL)
19930 return;
19931
19932 if (dwarf_line_debug)
19933 {
19934 fprintf_unfiltered (gdb_stdlog,
19935 "Finishing current line, file %s, address %s\n",
19936 lbasename (subfile->name),
19937 paddress (gdbarch, address));
19938 }
19939
19940 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
19941 }
19942
19943 void
19944 lnp_state_machine::record_line (bool end_sequence)
19945 {
19946 if (dwarf_line_debug)
19947 {
19948 fprintf_unfiltered (gdb_stdlog,
19949 "Processing actual line %u: file %u,"
19950 " address %s, is_stmt %u, discrim %u%s\n",
19951 m_line, m_file,
19952 paddress (m_gdbarch, m_address),
19953 m_is_stmt, m_discriminator,
19954 (end_sequence ? "\t(end sequence)" : ""));
19955 }
19956
19957 file_entry *fe = current_file ();
19958
19959 if (fe == NULL)
19960 dwarf2_debug_line_missing_file_complaint ();
19961 /* For now we ignore lines not starting on an instruction boundary.
19962 But not when processing end_sequence for compatibility with the
19963 previous version of the code. */
19964 else if (m_op_index == 0 || end_sequence)
19965 {
19966 fe->included_p = 1;
19967 if (m_record_lines_p
19968 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
19969 {
19970 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
19971 || end_sequence)
19972 {
19973 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
19974 m_currently_recording_lines ? m_cu : nullptr);
19975 }
19976
19977 if (!end_sequence)
19978 {
19979 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
19980 m_line_has_non_zero_discriminator,
19981 m_last_subfile))
19982 {
19983 buildsym_compunit *builder = m_cu->get_builder ();
19984 dwarf_record_line_1 (m_gdbarch,
19985 builder->get_current_subfile (),
19986 m_line, m_address,
19987 m_currently_recording_lines ? m_cu : nullptr);
19988 }
19989 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19990 m_last_line = m_line;
19991 }
19992 }
19993 }
19994 }
19995
19996 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
19997 line_header *lh, bool record_lines_p)
19998 {
19999 m_cu = cu;
20000 m_gdbarch = arch;
20001 m_record_lines_p = record_lines_p;
20002 m_line_header = lh;
20003
20004 m_currently_recording_lines = true;
20005
20006 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20007 was a line entry for it so that the backend has a chance to adjust it
20008 and also record it in case it needs it. This is currently used by MIPS
20009 code, cf. `mips_adjust_dwarf2_line'. */
20010 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20011 m_is_stmt = lh->default_is_stmt;
20012 m_discriminator = 0;
20013 }
20014
20015 void
20016 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20017 const gdb_byte *line_ptr,
20018 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20019 {
20020 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20021 the pc range of the CU. However, we restrict the test to only ADDRESS
20022 values of zero to preserve GDB's previous behaviour which is to handle
20023 the specific case of a function being GC'd by the linker. */
20024
20025 if (address == 0 && address < unrelocated_lowpc)
20026 {
20027 /* This line table is for a function which has been
20028 GCd by the linker. Ignore it. PR gdb/12528 */
20029
20030 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20031 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20032
20033 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20034 line_offset, objfile_name (objfile));
20035 m_currently_recording_lines = false;
20036 /* Note: m_currently_recording_lines is left as false until we see
20037 DW_LNE_end_sequence. */
20038 }
20039 }
20040
20041 /* Subroutine of dwarf_decode_lines to simplify it.
20042 Process the line number information in LH.
20043 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20044 program in order to set included_p for every referenced header. */
20045
20046 static void
20047 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20048 const int decode_for_pst_p, CORE_ADDR lowpc)
20049 {
20050 const gdb_byte *line_ptr, *extended_end;
20051 const gdb_byte *line_end;
20052 unsigned int bytes_read, extended_len;
20053 unsigned char op_code, extended_op;
20054 CORE_ADDR baseaddr;
20055 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20056 bfd *abfd = objfile->obfd;
20057 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20058 /* True if we're recording line info (as opposed to building partial
20059 symtabs and just interested in finding include files mentioned by
20060 the line number program). */
20061 bool record_lines_p = !decode_for_pst_p;
20062
20063 baseaddr = objfile->text_section_offset ();
20064
20065 line_ptr = lh->statement_program_start;
20066 line_end = lh->statement_program_end;
20067
20068 /* Read the statement sequences until there's nothing left. */
20069 while (line_ptr < line_end)
20070 {
20071 /* The DWARF line number program state machine. Reset the state
20072 machine at the start of each sequence. */
20073 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20074 bool end_sequence = false;
20075
20076 if (record_lines_p)
20077 {
20078 /* Start a subfile for the current file of the state
20079 machine. */
20080 const file_entry *fe = state_machine.current_file ();
20081
20082 if (fe != NULL)
20083 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20084 }
20085
20086 /* Decode the table. */
20087 while (line_ptr < line_end && !end_sequence)
20088 {
20089 op_code = read_1_byte (abfd, line_ptr);
20090 line_ptr += 1;
20091
20092 if (op_code >= lh->opcode_base)
20093 {
20094 /* Special opcode. */
20095 state_machine.handle_special_opcode (op_code);
20096 }
20097 else switch (op_code)
20098 {
20099 case DW_LNS_extended_op:
20100 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20101 &bytes_read);
20102 line_ptr += bytes_read;
20103 extended_end = line_ptr + extended_len;
20104 extended_op = read_1_byte (abfd, line_ptr);
20105 line_ptr += 1;
20106 switch (extended_op)
20107 {
20108 case DW_LNE_end_sequence:
20109 state_machine.handle_end_sequence ();
20110 end_sequence = true;
20111 break;
20112 case DW_LNE_set_address:
20113 {
20114 CORE_ADDR address
20115 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20116 line_ptr += bytes_read;
20117
20118 state_machine.check_line_address (cu, line_ptr,
20119 lowpc - baseaddr, address);
20120 state_machine.handle_set_address (baseaddr, address);
20121 }
20122 break;
20123 case DW_LNE_define_file:
20124 {
20125 const char *cur_file;
20126 unsigned int mod_time, length;
20127 dir_index dindex;
20128
20129 cur_file = read_direct_string (abfd, line_ptr,
20130 &bytes_read);
20131 line_ptr += bytes_read;
20132 dindex = (dir_index)
20133 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20134 line_ptr += bytes_read;
20135 mod_time =
20136 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20137 line_ptr += bytes_read;
20138 length =
20139 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20140 line_ptr += bytes_read;
20141 lh->add_file_name (cur_file, dindex, mod_time, length);
20142 }
20143 break;
20144 case DW_LNE_set_discriminator:
20145 {
20146 /* The discriminator is not interesting to the
20147 debugger; just ignore it. We still need to
20148 check its value though:
20149 if there are consecutive entries for the same
20150 (non-prologue) line we want to coalesce them.
20151 PR 17276. */
20152 unsigned int discr
20153 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20154 line_ptr += bytes_read;
20155
20156 state_machine.handle_set_discriminator (discr);
20157 }
20158 break;
20159 default:
20160 complaint (_("mangled .debug_line section"));
20161 return;
20162 }
20163 /* Make sure that we parsed the extended op correctly. If e.g.
20164 we expected a different address size than the producer used,
20165 we may have read the wrong number of bytes. */
20166 if (line_ptr != extended_end)
20167 {
20168 complaint (_("mangled .debug_line section"));
20169 return;
20170 }
20171 break;
20172 case DW_LNS_copy:
20173 state_machine.handle_copy ();
20174 break;
20175 case DW_LNS_advance_pc:
20176 {
20177 CORE_ADDR adjust
20178 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20179 line_ptr += bytes_read;
20180
20181 state_machine.handle_advance_pc (adjust);
20182 }
20183 break;
20184 case DW_LNS_advance_line:
20185 {
20186 int line_delta
20187 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20188 line_ptr += bytes_read;
20189
20190 state_machine.handle_advance_line (line_delta);
20191 }
20192 break;
20193 case DW_LNS_set_file:
20194 {
20195 file_name_index file
20196 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20197 &bytes_read);
20198 line_ptr += bytes_read;
20199
20200 state_machine.handle_set_file (file);
20201 }
20202 break;
20203 case DW_LNS_set_column:
20204 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20205 line_ptr += bytes_read;
20206 break;
20207 case DW_LNS_negate_stmt:
20208 state_machine.handle_negate_stmt ();
20209 break;
20210 case DW_LNS_set_basic_block:
20211 break;
20212 /* Add to the address register of the state machine the
20213 address increment value corresponding to special opcode
20214 255. I.e., this value is scaled by the minimum
20215 instruction length since special opcode 255 would have
20216 scaled the increment. */
20217 case DW_LNS_const_add_pc:
20218 state_machine.handle_const_add_pc ();
20219 break;
20220 case DW_LNS_fixed_advance_pc:
20221 {
20222 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20223 line_ptr += 2;
20224
20225 state_machine.handle_fixed_advance_pc (addr_adj);
20226 }
20227 break;
20228 default:
20229 {
20230 /* Unknown standard opcode, ignore it. */
20231 int i;
20232
20233 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20234 {
20235 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20236 line_ptr += bytes_read;
20237 }
20238 }
20239 }
20240 }
20241
20242 if (!end_sequence)
20243 dwarf2_debug_line_missing_end_sequence_complaint ();
20244
20245 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20246 in which case we still finish recording the last line). */
20247 state_machine.record_line (true);
20248 }
20249 }
20250
20251 /* Decode the Line Number Program (LNP) for the given line_header
20252 structure and CU. The actual information extracted and the type
20253 of structures created from the LNP depends on the value of PST.
20254
20255 1. If PST is NULL, then this procedure uses the data from the program
20256 to create all necessary symbol tables, and their linetables.
20257
20258 2. If PST is not NULL, this procedure reads the program to determine
20259 the list of files included by the unit represented by PST, and
20260 builds all the associated partial symbol tables.
20261
20262 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20263 It is used for relative paths in the line table.
20264 NOTE: When processing partial symtabs (pst != NULL),
20265 comp_dir == pst->dirname.
20266
20267 NOTE: It is important that psymtabs have the same file name (via strcmp)
20268 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20269 symtab we don't use it in the name of the psymtabs we create.
20270 E.g. expand_line_sal requires this when finding psymtabs to expand.
20271 A good testcase for this is mb-inline.exp.
20272
20273 LOWPC is the lowest address in CU (or 0 if not known).
20274
20275 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20276 for its PC<->lines mapping information. Otherwise only the filename
20277 table is read in. */
20278
20279 static void
20280 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20281 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20282 CORE_ADDR lowpc, int decode_mapping)
20283 {
20284 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20285 const int decode_for_pst_p = (pst != NULL);
20286
20287 if (decode_mapping)
20288 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20289
20290 if (decode_for_pst_p)
20291 {
20292 /* Now that we're done scanning the Line Header Program, we can
20293 create the psymtab of each included file. */
20294 for (auto &file_entry : lh->file_names ())
20295 if (file_entry.included_p == 1)
20296 {
20297 gdb::unique_xmalloc_ptr<char> name_holder;
20298 const char *include_name =
20299 psymtab_include_file_name (lh, file_entry, pst,
20300 comp_dir, &name_holder);
20301 if (include_name != NULL)
20302 dwarf2_create_include_psymtab (include_name, pst, objfile);
20303 }
20304 }
20305 else
20306 {
20307 /* Make sure a symtab is created for every file, even files
20308 which contain only variables (i.e. no code with associated
20309 line numbers). */
20310 buildsym_compunit *builder = cu->get_builder ();
20311 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20312
20313 for (auto &fe : lh->file_names ())
20314 {
20315 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20316 if (builder->get_current_subfile ()->symtab == NULL)
20317 {
20318 builder->get_current_subfile ()->symtab
20319 = allocate_symtab (cust,
20320 builder->get_current_subfile ()->name);
20321 }
20322 fe.symtab = builder->get_current_subfile ()->symtab;
20323 }
20324 }
20325 }
20326
20327 /* Start a subfile for DWARF. FILENAME is the name of the file and
20328 DIRNAME the name of the source directory which contains FILENAME
20329 or NULL if not known.
20330 This routine tries to keep line numbers from identical absolute and
20331 relative file names in a common subfile.
20332
20333 Using the `list' example from the GDB testsuite, which resides in
20334 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20335 of /srcdir/list0.c yields the following debugging information for list0.c:
20336
20337 DW_AT_name: /srcdir/list0.c
20338 DW_AT_comp_dir: /compdir
20339 files.files[0].name: list0.h
20340 files.files[0].dir: /srcdir
20341 files.files[1].name: list0.c
20342 files.files[1].dir: /srcdir
20343
20344 The line number information for list0.c has to end up in a single
20345 subfile, so that `break /srcdir/list0.c:1' works as expected.
20346 start_subfile will ensure that this happens provided that we pass the
20347 concatenation of files.files[1].dir and files.files[1].name as the
20348 subfile's name. */
20349
20350 static void
20351 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20352 const char *dirname)
20353 {
20354 gdb::unique_xmalloc_ptr<char> copy;
20355
20356 /* In order not to lose the line information directory,
20357 we concatenate it to the filename when it makes sense.
20358 Note that the Dwarf3 standard says (speaking of filenames in line
20359 information): ``The directory index is ignored for file names
20360 that represent full path names''. Thus ignoring dirname in the
20361 `else' branch below isn't an issue. */
20362
20363 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20364 {
20365 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20366 filename = copy.get ();
20367 }
20368
20369 cu->get_builder ()->start_subfile (filename);
20370 }
20371
20372 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20373 buildsym_compunit constructor. */
20374
20375 struct compunit_symtab *
20376 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20377 CORE_ADDR low_pc)
20378 {
20379 gdb_assert (m_builder == nullptr);
20380
20381 m_builder.reset (new struct buildsym_compunit
20382 (per_cu->dwarf2_per_objfile->objfile,
20383 name, comp_dir, language, low_pc));
20384
20385 list_in_scope = get_builder ()->get_file_symbols ();
20386
20387 get_builder ()->record_debugformat ("DWARF 2");
20388 get_builder ()->record_producer (producer);
20389
20390 processing_has_namespace_info = false;
20391
20392 return get_builder ()->get_compunit_symtab ();
20393 }
20394
20395 static void
20396 var_decode_location (struct attribute *attr, struct symbol *sym,
20397 struct dwarf2_cu *cu)
20398 {
20399 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20400 struct comp_unit_head *cu_header = &cu->header;
20401
20402 /* NOTE drow/2003-01-30: There used to be a comment and some special
20403 code here to turn a symbol with DW_AT_external and a
20404 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20405 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20406 with some versions of binutils) where shared libraries could have
20407 relocations against symbols in their debug information - the
20408 minimal symbol would have the right address, but the debug info
20409 would not. It's no longer necessary, because we will explicitly
20410 apply relocations when we read in the debug information now. */
20411
20412 /* A DW_AT_location attribute with no contents indicates that a
20413 variable has been optimized away. */
20414 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20415 {
20416 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20417 return;
20418 }
20419
20420 /* Handle one degenerate form of location expression specially, to
20421 preserve GDB's previous behavior when section offsets are
20422 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20423 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20424
20425 if (attr->form_is_block ()
20426 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20427 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20428 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20429 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20430 && (DW_BLOCK (attr)->size
20431 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20432 {
20433 unsigned int dummy;
20434
20435 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20436 SET_SYMBOL_VALUE_ADDRESS
20437 (sym, cu->header.read_address (objfile->obfd,
20438 DW_BLOCK (attr)->data + 1,
20439 &dummy));
20440 else
20441 SET_SYMBOL_VALUE_ADDRESS
20442 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20443 &dummy));
20444 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20445 fixup_symbol_section (sym, objfile);
20446 SET_SYMBOL_VALUE_ADDRESS
20447 (sym,
20448 SYMBOL_VALUE_ADDRESS (sym)
20449 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20450 return;
20451 }
20452
20453 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20454 expression evaluator, and use LOC_COMPUTED only when necessary
20455 (i.e. when the value of a register or memory location is
20456 referenced, or a thread-local block, etc.). Then again, it might
20457 not be worthwhile. I'm assuming that it isn't unless performance
20458 or memory numbers show me otherwise. */
20459
20460 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20461
20462 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20463 cu->has_loclist = true;
20464 }
20465
20466 /* Given a pointer to a DWARF information entry, figure out if we need
20467 to make a symbol table entry for it, and if so, create a new entry
20468 and return a pointer to it.
20469 If TYPE is NULL, determine symbol type from the die, otherwise
20470 used the passed type.
20471 If SPACE is not NULL, use it to hold the new symbol. If it is
20472 NULL, allocate a new symbol on the objfile's obstack. */
20473
20474 static struct symbol *
20475 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20476 struct symbol *space)
20477 {
20478 struct dwarf2_per_objfile *dwarf2_per_objfile
20479 = cu->per_cu->dwarf2_per_objfile;
20480 struct objfile *objfile = dwarf2_per_objfile->objfile;
20481 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20482 struct symbol *sym = NULL;
20483 const char *name;
20484 struct attribute *attr = NULL;
20485 struct attribute *attr2 = NULL;
20486 CORE_ADDR baseaddr;
20487 struct pending **list_to_add = NULL;
20488
20489 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20490
20491 baseaddr = objfile->text_section_offset ();
20492
20493 name = dwarf2_name (die, cu);
20494 if (name)
20495 {
20496 const char *linkagename;
20497 int suppress_add = 0;
20498
20499 if (space)
20500 sym = space;
20501 else
20502 sym = allocate_symbol (objfile);
20503 OBJSTAT (objfile, n_syms++);
20504
20505 /* Cache this symbol's name and the name's demangled form (if any). */
20506 sym->set_language (cu->language, &objfile->objfile_obstack);
20507 linkagename = dwarf2_physname (name, die, cu);
20508 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20509
20510 /* Fortran does not have mangling standard and the mangling does differ
20511 between gfortran, iFort etc. */
20512 if (cu->language == language_fortran
20513 && symbol_get_demangled_name (sym) == NULL)
20514 symbol_set_demangled_name (sym,
20515 dwarf2_full_name (name, die, cu),
20516 NULL);
20517
20518 /* Default assumptions.
20519 Use the passed type or decode it from the die. */
20520 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20521 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20522 if (type != NULL)
20523 SYMBOL_TYPE (sym) = type;
20524 else
20525 SYMBOL_TYPE (sym) = die_type (die, cu);
20526 attr = dwarf2_attr (die,
20527 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20528 cu);
20529 if (attr != nullptr)
20530 {
20531 SYMBOL_LINE (sym) = DW_UNSND (attr);
20532 }
20533
20534 attr = dwarf2_attr (die,
20535 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20536 cu);
20537 if (attr != nullptr)
20538 {
20539 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20540 struct file_entry *fe;
20541
20542 if (cu->line_header != NULL)
20543 fe = cu->line_header->file_name_at (file_index);
20544 else
20545 fe = NULL;
20546
20547 if (fe == NULL)
20548 complaint (_("file index out of range"));
20549 else
20550 symbol_set_symtab (sym, fe->symtab);
20551 }
20552
20553 switch (die->tag)
20554 {
20555 case DW_TAG_label:
20556 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20557 if (attr != nullptr)
20558 {
20559 CORE_ADDR addr;
20560
20561 addr = attr->value_as_address ();
20562 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20563 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20564 }
20565 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20566 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20567 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20568 add_symbol_to_list (sym, cu->list_in_scope);
20569 break;
20570 case DW_TAG_subprogram:
20571 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20572 finish_block. */
20573 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20574 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20575 if ((attr2 && (DW_UNSND (attr2) != 0))
20576 || cu->language == language_ada
20577 || cu->language == language_fortran)
20578 {
20579 /* Subprograms marked external are stored as a global symbol.
20580 Ada and Fortran subprograms, whether marked external or
20581 not, are always stored as a global symbol, because we want
20582 to be able to access them globally. For instance, we want
20583 to be able to break on a nested subprogram without having
20584 to specify the context. */
20585 list_to_add = cu->get_builder ()->get_global_symbols ();
20586 }
20587 else
20588 {
20589 list_to_add = cu->list_in_scope;
20590 }
20591 break;
20592 case DW_TAG_inlined_subroutine:
20593 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20594 finish_block. */
20595 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20596 SYMBOL_INLINED (sym) = 1;
20597 list_to_add = cu->list_in_scope;
20598 break;
20599 case DW_TAG_template_value_param:
20600 suppress_add = 1;
20601 /* Fall through. */
20602 case DW_TAG_constant:
20603 case DW_TAG_variable:
20604 case DW_TAG_member:
20605 /* Compilation with minimal debug info may result in
20606 variables with missing type entries. Change the
20607 misleading `void' type to something sensible. */
20608 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20609 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20610
20611 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20612 /* In the case of DW_TAG_member, we should only be called for
20613 static const members. */
20614 if (die->tag == DW_TAG_member)
20615 {
20616 /* dwarf2_add_field uses die_is_declaration,
20617 so we do the same. */
20618 gdb_assert (die_is_declaration (die, cu));
20619 gdb_assert (attr);
20620 }
20621 if (attr != nullptr)
20622 {
20623 dwarf2_const_value (attr, sym, cu);
20624 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20625 if (!suppress_add)
20626 {
20627 if (attr2 && (DW_UNSND (attr2) != 0))
20628 list_to_add = cu->get_builder ()->get_global_symbols ();
20629 else
20630 list_to_add = cu->list_in_scope;
20631 }
20632 break;
20633 }
20634 attr = dwarf2_attr (die, DW_AT_location, cu);
20635 if (attr != nullptr)
20636 {
20637 var_decode_location (attr, sym, cu);
20638 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20639
20640 /* Fortran explicitly imports any global symbols to the local
20641 scope by DW_TAG_common_block. */
20642 if (cu->language == language_fortran && die->parent
20643 && die->parent->tag == DW_TAG_common_block)
20644 attr2 = NULL;
20645
20646 if (SYMBOL_CLASS (sym) == LOC_STATIC
20647 && SYMBOL_VALUE_ADDRESS (sym) == 0
20648 && !dwarf2_per_objfile->has_section_at_zero)
20649 {
20650 /* When a static variable is eliminated by the linker,
20651 the corresponding debug information is not stripped
20652 out, but the variable address is set to null;
20653 do not add such variables into symbol table. */
20654 }
20655 else if (attr2 && (DW_UNSND (attr2) != 0))
20656 {
20657 if (SYMBOL_CLASS (sym) == LOC_STATIC
20658 && (objfile->flags & OBJF_MAINLINE) == 0
20659 && dwarf2_per_objfile->can_copy)
20660 {
20661 /* A global static variable might be subject to
20662 copy relocation. We first check for a local
20663 minsym, though, because maybe the symbol was
20664 marked hidden, in which case this would not
20665 apply. */
20666 bound_minimal_symbol found
20667 = (lookup_minimal_symbol_linkage
20668 (sym->linkage_name (), objfile));
20669 if (found.minsym != nullptr)
20670 sym->maybe_copied = 1;
20671 }
20672
20673 /* A variable with DW_AT_external is never static,
20674 but it may be block-scoped. */
20675 list_to_add
20676 = ((cu->list_in_scope
20677 == cu->get_builder ()->get_file_symbols ())
20678 ? cu->get_builder ()->get_global_symbols ()
20679 : cu->list_in_scope);
20680 }
20681 else
20682 list_to_add = cu->list_in_scope;
20683 }
20684 else
20685 {
20686 /* We do not know the address of this symbol.
20687 If it is an external symbol and we have type information
20688 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20689 The address of the variable will then be determined from
20690 the minimal symbol table whenever the variable is
20691 referenced. */
20692 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20693
20694 /* Fortran explicitly imports any global symbols to the local
20695 scope by DW_TAG_common_block. */
20696 if (cu->language == language_fortran && die->parent
20697 && die->parent->tag == DW_TAG_common_block)
20698 {
20699 /* SYMBOL_CLASS doesn't matter here because
20700 read_common_block is going to reset it. */
20701 if (!suppress_add)
20702 list_to_add = cu->list_in_scope;
20703 }
20704 else if (attr2 && (DW_UNSND (attr2) != 0)
20705 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20706 {
20707 /* A variable with DW_AT_external is never static, but it
20708 may be block-scoped. */
20709 list_to_add
20710 = ((cu->list_in_scope
20711 == cu->get_builder ()->get_file_symbols ())
20712 ? cu->get_builder ()->get_global_symbols ()
20713 : cu->list_in_scope);
20714
20715 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20716 }
20717 else if (!die_is_declaration (die, cu))
20718 {
20719 /* Use the default LOC_OPTIMIZED_OUT class. */
20720 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20721 if (!suppress_add)
20722 list_to_add = cu->list_in_scope;
20723 }
20724 }
20725 break;
20726 case DW_TAG_formal_parameter:
20727 {
20728 /* If we are inside a function, mark this as an argument. If
20729 not, we might be looking at an argument to an inlined function
20730 when we do not have enough information to show inlined frames;
20731 pretend it's a local variable in that case so that the user can
20732 still see it. */
20733 struct context_stack *curr
20734 = cu->get_builder ()->get_current_context_stack ();
20735 if (curr != nullptr && curr->name != nullptr)
20736 SYMBOL_IS_ARGUMENT (sym) = 1;
20737 attr = dwarf2_attr (die, DW_AT_location, cu);
20738 if (attr != nullptr)
20739 {
20740 var_decode_location (attr, sym, cu);
20741 }
20742 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20743 if (attr != nullptr)
20744 {
20745 dwarf2_const_value (attr, sym, cu);
20746 }
20747
20748 list_to_add = cu->list_in_scope;
20749 }
20750 break;
20751 case DW_TAG_unspecified_parameters:
20752 /* From varargs functions; gdb doesn't seem to have any
20753 interest in this information, so just ignore it for now.
20754 (FIXME?) */
20755 break;
20756 case DW_TAG_template_type_param:
20757 suppress_add = 1;
20758 /* Fall through. */
20759 case DW_TAG_class_type:
20760 case DW_TAG_interface_type:
20761 case DW_TAG_structure_type:
20762 case DW_TAG_union_type:
20763 case DW_TAG_set_type:
20764 case DW_TAG_enumeration_type:
20765 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20766 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20767
20768 {
20769 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20770 really ever be static objects: otherwise, if you try
20771 to, say, break of a class's method and you're in a file
20772 which doesn't mention that class, it won't work unless
20773 the check for all static symbols in lookup_symbol_aux
20774 saves you. See the OtherFileClass tests in
20775 gdb.c++/namespace.exp. */
20776
20777 if (!suppress_add)
20778 {
20779 buildsym_compunit *builder = cu->get_builder ();
20780 list_to_add
20781 = (cu->list_in_scope == builder->get_file_symbols ()
20782 && cu->language == language_cplus
20783 ? builder->get_global_symbols ()
20784 : cu->list_in_scope);
20785
20786 /* The semantics of C++ state that "struct foo {
20787 ... }" also defines a typedef for "foo". */
20788 if (cu->language == language_cplus
20789 || cu->language == language_ada
20790 || cu->language == language_d
20791 || cu->language == language_rust)
20792 {
20793 /* The symbol's name is already allocated along
20794 with this objfile, so we don't need to
20795 duplicate it for the type. */
20796 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20797 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20798 }
20799 }
20800 }
20801 break;
20802 case DW_TAG_typedef:
20803 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20804 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20805 list_to_add = cu->list_in_scope;
20806 break;
20807 case DW_TAG_base_type:
20808 case DW_TAG_subrange_type:
20809 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20810 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20811 list_to_add = cu->list_in_scope;
20812 break;
20813 case DW_TAG_enumerator:
20814 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20815 if (attr != nullptr)
20816 {
20817 dwarf2_const_value (attr, sym, cu);
20818 }
20819 {
20820 /* NOTE: carlton/2003-11-10: See comment above in the
20821 DW_TAG_class_type, etc. block. */
20822
20823 list_to_add
20824 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20825 && cu->language == language_cplus
20826 ? cu->get_builder ()->get_global_symbols ()
20827 : cu->list_in_scope);
20828 }
20829 break;
20830 case DW_TAG_imported_declaration:
20831 case DW_TAG_namespace:
20832 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20833 list_to_add = cu->get_builder ()->get_global_symbols ();
20834 break;
20835 case DW_TAG_module:
20836 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20837 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20838 list_to_add = cu->get_builder ()->get_global_symbols ();
20839 break;
20840 case DW_TAG_common_block:
20841 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20842 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20843 add_symbol_to_list (sym, cu->list_in_scope);
20844 break;
20845 default:
20846 /* Not a tag we recognize. Hopefully we aren't processing
20847 trash data, but since we must specifically ignore things
20848 we don't recognize, there is nothing else we should do at
20849 this point. */
20850 complaint (_("unsupported tag: '%s'"),
20851 dwarf_tag_name (die->tag));
20852 break;
20853 }
20854
20855 if (suppress_add)
20856 {
20857 sym->hash_next = objfile->template_symbols;
20858 objfile->template_symbols = sym;
20859 list_to_add = NULL;
20860 }
20861
20862 if (list_to_add != NULL)
20863 add_symbol_to_list (sym, list_to_add);
20864
20865 /* For the benefit of old versions of GCC, check for anonymous
20866 namespaces based on the demangled name. */
20867 if (!cu->processing_has_namespace_info
20868 && cu->language == language_cplus)
20869 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20870 }
20871 return (sym);
20872 }
20873
20874 /* Given an attr with a DW_FORM_dataN value in host byte order,
20875 zero-extend it as appropriate for the symbol's type. The DWARF
20876 standard (v4) is not entirely clear about the meaning of using
20877 DW_FORM_dataN for a constant with a signed type, where the type is
20878 wider than the data. The conclusion of a discussion on the DWARF
20879 list was that this is unspecified. We choose to always zero-extend
20880 because that is the interpretation long in use by GCC. */
20881
20882 static gdb_byte *
20883 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20884 struct dwarf2_cu *cu, LONGEST *value, int bits)
20885 {
20886 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20887 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20888 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20889 LONGEST l = DW_UNSND (attr);
20890
20891 if (bits < sizeof (*value) * 8)
20892 {
20893 l &= ((LONGEST) 1 << bits) - 1;
20894 *value = l;
20895 }
20896 else if (bits == sizeof (*value) * 8)
20897 *value = l;
20898 else
20899 {
20900 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20901 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20902 return bytes;
20903 }
20904
20905 return NULL;
20906 }
20907
20908 /* Read a constant value from an attribute. Either set *VALUE, or if
20909 the value does not fit in *VALUE, set *BYTES - either already
20910 allocated on the objfile obstack, or newly allocated on OBSTACK,
20911 or, set *BATON, if we translated the constant to a location
20912 expression. */
20913
20914 static void
20915 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20916 const char *name, struct obstack *obstack,
20917 struct dwarf2_cu *cu,
20918 LONGEST *value, const gdb_byte **bytes,
20919 struct dwarf2_locexpr_baton **baton)
20920 {
20921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20922 struct comp_unit_head *cu_header = &cu->header;
20923 struct dwarf_block *blk;
20924 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20925 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20926
20927 *value = 0;
20928 *bytes = NULL;
20929 *baton = NULL;
20930
20931 switch (attr->form)
20932 {
20933 case DW_FORM_addr:
20934 case DW_FORM_addrx:
20935 case DW_FORM_GNU_addr_index:
20936 {
20937 gdb_byte *data;
20938
20939 if (TYPE_LENGTH (type) != cu_header->addr_size)
20940 dwarf2_const_value_length_mismatch_complaint (name,
20941 cu_header->addr_size,
20942 TYPE_LENGTH (type));
20943 /* Symbols of this form are reasonably rare, so we just
20944 piggyback on the existing location code rather than writing
20945 a new implementation of symbol_computed_ops. */
20946 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20947 (*baton)->per_cu = cu->per_cu;
20948 gdb_assert ((*baton)->per_cu);
20949
20950 (*baton)->size = 2 + cu_header->addr_size;
20951 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20952 (*baton)->data = data;
20953
20954 data[0] = DW_OP_addr;
20955 store_unsigned_integer (&data[1], cu_header->addr_size,
20956 byte_order, DW_ADDR (attr));
20957 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20958 }
20959 break;
20960 case DW_FORM_string:
20961 case DW_FORM_strp:
20962 case DW_FORM_strx:
20963 case DW_FORM_GNU_str_index:
20964 case DW_FORM_GNU_strp_alt:
20965 /* DW_STRING is already allocated on the objfile obstack, point
20966 directly to it. */
20967 *bytes = (const gdb_byte *) DW_STRING (attr);
20968 break;
20969 case DW_FORM_block1:
20970 case DW_FORM_block2:
20971 case DW_FORM_block4:
20972 case DW_FORM_block:
20973 case DW_FORM_exprloc:
20974 case DW_FORM_data16:
20975 blk = DW_BLOCK (attr);
20976 if (TYPE_LENGTH (type) != blk->size)
20977 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20978 TYPE_LENGTH (type));
20979 *bytes = blk->data;
20980 break;
20981
20982 /* The DW_AT_const_value attributes are supposed to carry the
20983 symbol's value "represented as it would be on the target
20984 architecture." By the time we get here, it's already been
20985 converted to host endianness, so we just need to sign- or
20986 zero-extend it as appropriate. */
20987 case DW_FORM_data1:
20988 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
20989 break;
20990 case DW_FORM_data2:
20991 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
20992 break;
20993 case DW_FORM_data4:
20994 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
20995 break;
20996 case DW_FORM_data8:
20997 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
20998 break;
20999
21000 case DW_FORM_sdata:
21001 case DW_FORM_implicit_const:
21002 *value = DW_SND (attr);
21003 break;
21004
21005 case DW_FORM_udata:
21006 *value = DW_UNSND (attr);
21007 break;
21008
21009 default:
21010 complaint (_("unsupported const value attribute form: '%s'"),
21011 dwarf_form_name (attr->form));
21012 *value = 0;
21013 break;
21014 }
21015 }
21016
21017
21018 /* Copy constant value from an attribute to a symbol. */
21019
21020 static void
21021 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21022 struct dwarf2_cu *cu)
21023 {
21024 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21025 LONGEST value;
21026 const gdb_byte *bytes;
21027 struct dwarf2_locexpr_baton *baton;
21028
21029 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21030 sym->print_name (),
21031 &objfile->objfile_obstack, cu,
21032 &value, &bytes, &baton);
21033
21034 if (baton != NULL)
21035 {
21036 SYMBOL_LOCATION_BATON (sym) = baton;
21037 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21038 }
21039 else if (bytes != NULL)
21040 {
21041 SYMBOL_VALUE_BYTES (sym) = bytes;
21042 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21043 }
21044 else
21045 {
21046 SYMBOL_VALUE (sym) = value;
21047 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21048 }
21049 }
21050
21051 /* Return the type of the die in question using its DW_AT_type attribute. */
21052
21053 static struct type *
21054 die_type (struct die_info *die, struct dwarf2_cu *cu)
21055 {
21056 struct attribute *type_attr;
21057
21058 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21059 if (!type_attr)
21060 {
21061 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21062 /* A missing DW_AT_type represents a void type. */
21063 return objfile_type (objfile)->builtin_void;
21064 }
21065
21066 return lookup_die_type (die, type_attr, cu);
21067 }
21068
21069 /* True iff CU's producer generates GNAT Ada auxiliary information
21070 that allows to find parallel types through that information instead
21071 of having to do expensive parallel lookups by type name. */
21072
21073 static int
21074 need_gnat_info (struct dwarf2_cu *cu)
21075 {
21076 /* Assume that the Ada compiler was GNAT, which always produces
21077 the auxiliary information. */
21078 return (cu->language == language_ada);
21079 }
21080
21081 /* Return the auxiliary type of the die in question using its
21082 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21083 attribute is not present. */
21084
21085 static struct type *
21086 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21087 {
21088 struct attribute *type_attr;
21089
21090 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21091 if (!type_attr)
21092 return NULL;
21093
21094 return lookup_die_type (die, type_attr, cu);
21095 }
21096
21097 /* If DIE has a descriptive_type attribute, then set the TYPE's
21098 descriptive type accordingly. */
21099
21100 static void
21101 set_descriptive_type (struct type *type, struct die_info *die,
21102 struct dwarf2_cu *cu)
21103 {
21104 struct type *descriptive_type = die_descriptive_type (die, cu);
21105
21106 if (descriptive_type)
21107 {
21108 ALLOCATE_GNAT_AUX_TYPE (type);
21109 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21110 }
21111 }
21112
21113 /* Return the containing type of the die in question using its
21114 DW_AT_containing_type attribute. */
21115
21116 static struct type *
21117 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21118 {
21119 struct attribute *type_attr;
21120 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21121
21122 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21123 if (!type_attr)
21124 error (_("Dwarf Error: Problem turning containing type into gdb type "
21125 "[in module %s]"), objfile_name (objfile));
21126
21127 return lookup_die_type (die, type_attr, cu);
21128 }
21129
21130 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21131
21132 static struct type *
21133 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21134 {
21135 struct dwarf2_per_objfile *dwarf2_per_objfile
21136 = cu->per_cu->dwarf2_per_objfile;
21137 struct objfile *objfile = dwarf2_per_objfile->objfile;
21138 char *saved;
21139
21140 std::string message
21141 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21142 objfile_name (objfile),
21143 sect_offset_str (cu->header.sect_off),
21144 sect_offset_str (die->sect_off));
21145 saved = obstack_strdup (&objfile->objfile_obstack, message);
21146
21147 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21148 }
21149
21150 /* Look up the type of DIE in CU using its type attribute ATTR.
21151 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21152 DW_AT_containing_type.
21153 If there is no type substitute an error marker. */
21154
21155 static struct type *
21156 lookup_die_type (struct die_info *die, const struct attribute *attr,
21157 struct dwarf2_cu *cu)
21158 {
21159 struct dwarf2_per_objfile *dwarf2_per_objfile
21160 = cu->per_cu->dwarf2_per_objfile;
21161 struct objfile *objfile = dwarf2_per_objfile->objfile;
21162 struct type *this_type;
21163
21164 gdb_assert (attr->name == DW_AT_type
21165 || attr->name == DW_AT_GNAT_descriptive_type
21166 || attr->name == DW_AT_containing_type);
21167
21168 /* First see if we have it cached. */
21169
21170 if (attr->form == DW_FORM_GNU_ref_alt)
21171 {
21172 struct dwarf2_per_cu_data *per_cu;
21173 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21174
21175 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21176 dwarf2_per_objfile);
21177 this_type = get_die_type_at_offset (sect_off, per_cu);
21178 }
21179 else if (attr->form_is_ref ())
21180 {
21181 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21182
21183 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21184 }
21185 else if (attr->form == DW_FORM_ref_sig8)
21186 {
21187 ULONGEST signature = DW_SIGNATURE (attr);
21188
21189 return get_signatured_type (die, signature, cu);
21190 }
21191 else
21192 {
21193 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21194 " at %s [in module %s]"),
21195 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21196 objfile_name (objfile));
21197 return build_error_marker_type (cu, die);
21198 }
21199
21200 /* If not cached we need to read it in. */
21201
21202 if (this_type == NULL)
21203 {
21204 struct die_info *type_die = NULL;
21205 struct dwarf2_cu *type_cu = cu;
21206
21207 if (attr->form_is_ref ())
21208 type_die = follow_die_ref (die, attr, &type_cu);
21209 if (type_die == NULL)
21210 return build_error_marker_type (cu, die);
21211 /* If we find the type now, it's probably because the type came
21212 from an inter-CU reference and the type's CU got expanded before
21213 ours. */
21214 this_type = read_type_die (type_die, type_cu);
21215 }
21216
21217 /* If we still don't have a type use an error marker. */
21218
21219 if (this_type == NULL)
21220 return build_error_marker_type (cu, die);
21221
21222 return this_type;
21223 }
21224
21225 /* Return the type in DIE, CU.
21226 Returns NULL for invalid types.
21227
21228 This first does a lookup in die_type_hash,
21229 and only reads the die in if necessary.
21230
21231 NOTE: This can be called when reading in partial or full symbols. */
21232
21233 static struct type *
21234 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21235 {
21236 struct type *this_type;
21237
21238 this_type = get_die_type (die, cu);
21239 if (this_type)
21240 return this_type;
21241
21242 return read_type_die_1 (die, cu);
21243 }
21244
21245 /* Read the type in DIE, CU.
21246 Returns NULL for invalid types. */
21247
21248 static struct type *
21249 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21250 {
21251 struct type *this_type = NULL;
21252
21253 switch (die->tag)
21254 {
21255 case DW_TAG_class_type:
21256 case DW_TAG_interface_type:
21257 case DW_TAG_structure_type:
21258 case DW_TAG_union_type:
21259 this_type = read_structure_type (die, cu);
21260 break;
21261 case DW_TAG_enumeration_type:
21262 this_type = read_enumeration_type (die, cu);
21263 break;
21264 case DW_TAG_subprogram:
21265 case DW_TAG_subroutine_type:
21266 case DW_TAG_inlined_subroutine:
21267 this_type = read_subroutine_type (die, cu);
21268 break;
21269 case DW_TAG_array_type:
21270 this_type = read_array_type (die, cu);
21271 break;
21272 case DW_TAG_set_type:
21273 this_type = read_set_type (die, cu);
21274 break;
21275 case DW_TAG_pointer_type:
21276 this_type = read_tag_pointer_type (die, cu);
21277 break;
21278 case DW_TAG_ptr_to_member_type:
21279 this_type = read_tag_ptr_to_member_type (die, cu);
21280 break;
21281 case DW_TAG_reference_type:
21282 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21283 break;
21284 case DW_TAG_rvalue_reference_type:
21285 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21286 break;
21287 case DW_TAG_const_type:
21288 this_type = read_tag_const_type (die, cu);
21289 break;
21290 case DW_TAG_volatile_type:
21291 this_type = read_tag_volatile_type (die, cu);
21292 break;
21293 case DW_TAG_restrict_type:
21294 this_type = read_tag_restrict_type (die, cu);
21295 break;
21296 case DW_TAG_string_type:
21297 this_type = read_tag_string_type (die, cu);
21298 break;
21299 case DW_TAG_typedef:
21300 this_type = read_typedef (die, cu);
21301 break;
21302 case DW_TAG_subrange_type:
21303 this_type = read_subrange_type (die, cu);
21304 break;
21305 case DW_TAG_base_type:
21306 this_type = read_base_type (die, cu);
21307 break;
21308 case DW_TAG_unspecified_type:
21309 this_type = read_unspecified_type (die, cu);
21310 break;
21311 case DW_TAG_namespace:
21312 this_type = read_namespace_type (die, cu);
21313 break;
21314 case DW_TAG_module:
21315 this_type = read_module_type (die, cu);
21316 break;
21317 case DW_TAG_atomic_type:
21318 this_type = read_tag_atomic_type (die, cu);
21319 break;
21320 default:
21321 complaint (_("unexpected tag in read_type_die: '%s'"),
21322 dwarf_tag_name (die->tag));
21323 break;
21324 }
21325
21326 return this_type;
21327 }
21328
21329 /* See if we can figure out if the class lives in a namespace. We do
21330 this by looking for a member function; its demangled name will
21331 contain namespace info, if there is any.
21332 Return the computed name or NULL.
21333 Space for the result is allocated on the objfile's obstack.
21334 This is the full-die version of guess_partial_die_structure_name.
21335 In this case we know DIE has no useful parent. */
21336
21337 static const char *
21338 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21339 {
21340 struct die_info *spec_die;
21341 struct dwarf2_cu *spec_cu;
21342 struct die_info *child;
21343 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21344
21345 spec_cu = cu;
21346 spec_die = die_specification (die, &spec_cu);
21347 if (spec_die != NULL)
21348 {
21349 die = spec_die;
21350 cu = spec_cu;
21351 }
21352
21353 for (child = die->child;
21354 child != NULL;
21355 child = child->sibling)
21356 {
21357 if (child->tag == DW_TAG_subprogram)
21358 {
21359 const char *linkage_name = dw2_linkage_name (child, cu);
21360
21361 if (linkage_name != NULL)
21362 {
21363 gdb::unique_xmalloc_ptr<char> actual_name
21364 (language_class_name_from_physname (cu->language_defn,
21365 linkage_name));
21366 const char *name = NULL;
21367
21368 if (actual_name != NULL)
21369 {
21370 const char *die_name = dwarf2_name (die, cu);
21371
21372 if (die_name != NULL
21373 && strcmp (die_name, actual_name.get ()) != 0)
21374 {
21375 /* Strip off the class name from the full name.
21376 We want the prefix. */
21377 int die_name_len = strlen (die_name);
21378 int actual_name_len = strlen (actual_name.get ());
21379 const char *ptr = actual_name.get ();
21380
21381 /* Test for '::' as a sanity check. */
21382 if (actual_name_len > die_name_len + 2
21383 && ptr[actual_name_len - die_name_len - 1] == ':')
21384 name = obstack_strndup (
21385 &objfile->per_bfd->storage_obstack,
21386 ptr, actual_name_len - die_name_len - 2);
21387 }
21388 }
21389 return name;
21390 }
21391 }
21392 }
21393
21394 return NULL;
21395 }
21396
21397 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21398 prefix part in such case. See
21399 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21400
21401 static const char *
21402 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21403 {
21404 struct attribute *attr;
21405 const char *base;
21406
21407 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21408 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21409 return NULL;
21410
21411 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21412 return NULL;
21413
21414 attr = dw2_linkage_name_attr (die, cu);
21415 if (attr == NULL || DW_STRING (attr) == NULL)
21416 return NULL;
21417
21418 /* dwarf2_name had to be already called. */
21419 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21420
21421 /* Strip the base name, keep any leading namespaces/classes. */
21422 base = strrchr (DW_STRING (attr), ':');
21423 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21424 return "";
21425
21426 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21427 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21428 DW_STRING (attr),
21429 &base[-1] - DW_STRING (attr));
21430 }
21431
21432 /* Return the name of the namespace/class that DIE is defined within,
21433 or "" if we can't tell. The caller should not xfree the result.
21434
21435 For example, if we're within the method foo() in the following
21436 code:
21437
21438 namespace N {
21439 class C {
21440 void foo () {
21441 }
21442 };
21443 }
21444
21445 then determine_prefix on foo's die will return "N::C". */
21446
21447 static const char *
21448 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21449 {
21450 struct dwarf2_per_objfile *dwarf2_per_objfile
21451 = cu->per_cu->dwarf2_per_objfile;
21452 struct die_info *parent, *spec_die;
21453 struct dwarf2_cu *spec_cu;
21454 struct type *parent_type;
21455 const char *retval;
21456
21457 if (cu->language != language_cplus
21458 && cu->language != language_fortran && cu->language != language_d
21459 && cu->language != language_rust)
21460 return "";
21461
21462 retval = anonymous_struct_prefix (die, cu);
21463 if (retval)
21464 return retval;
21465
21466 /* We have to be careful in the presence of DW_AT_specification.
21467 For example, with GCC 3.4, given the code
21468
21469 namespace N {
21470 void foo() {
21471 // Definition of N::foo.
21472 }
21473 }
21474
21475 then we'll have a tree of DIEs like this:
21476
21477 1: DW_TAG_compile_unit
21478 2: DW_TAG_namespace // N
21479 3: DW_TAG_subprogram // declaration of N::foo
21480 4: DW_TAG_subprogram // definition of N::foo
21481 DW_AT_specification // refers to die #3
21482
21483 Thus, when processing die #4, we have to pretend that we're in
21484 the context of its DW_AT_specification, namely the contex of die
21485 #3. */
21486 spec_cu = cu;
21487 spec_die = die_specification (die, &spec_cu);
21488 if (spec_die == NULL)
21489 parent = die->parent;
21490 else
21491 {
21492 parent = spec_die->parent;
21493 cu = spec_cu;
21494 }
21495
21496 if (parent == NULL)
21497 return "";
21498 else if (parent->building_fullname)
21499 {
21500 const char *name;
21501 const char *parent_name;
21502
21503 /* It has been seen on RealView 2.2 built binaries,
21504 DW_TAG_template_type_param types actually _defined_ as
21505 children of the parent class:
21506
21507 enum E {};
21508 template class <class Enum> Class{};
21509 Class<enum E> class_e;
21510
21511 1: DW_TAG_class_type (Class)
21512 2: DW_TAG_enumeration_type (E)
21513 3: DW_TAG_enumerator (enum1:0)
21514 3: DW_TAG_enumerator (enum2:1)
21515 ...
21516 2: DW_TAG_template_type_param
21517 DW_AT_type DW_FORM_ref_udata (E)
21518
21519 Besides being broken debug info, it can put GDB into an
21520 infinite loop. Consider:
21521
21522 When we're building the full name for Class<E>, we'll start
21523 at Class, and go look over its template type parameters,
21524 finding E. We'll then try to build the full name of E, and
21525 reach here. We're now trying to build the full name of E,
21526 and look over the parent DIE for containing scope. In the
21527 broken case, if we followed the parent DIE of E, we'd again
21528 find Class, and once again go look at its template type
21529 arguments, etc., etc. Simply don't consider such parent die
21530 as source-level parent of this die (it can't be, the language
21531 doesn't allow it), and break the loop here. */
21532 name = dwarf2_name (die, cu);
21533 parent_name = dwarf2_name (parent, cu);
21534 complaint (_("template param type '%s' defined within parent '%s'"),
21535 name ? name : "<unknown>",
21536 parent_name ? parent_name : "<unknown>");
21537 return "";
21538 }
21539 else
21540 switch (parent->tag)
21541 {
21542 case DW_TAG_namespace:
21543 parent_type = read_type_die (parent, cu);
21544 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21545 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21546 Work around this problem here. */
21547 if (cu->language == language_cplus
21548 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21549 return "";
21550 /* We give a name to even anonymous namespaces. */
21551 return TYPE_NAME (parent_type);
21552 case DW_TAG_class_type:
21553 case DW_TAG_interface_type:
21554 case DW_TAG_structure_type:
21555 case DW_TAG_union_type:
21556 case DW_TAG_module:
21557 parent_type = read_type_die (parent, cu);
21558 if (TYPE_NAME (parent_type) != NULL)
21559 return TYPE_NAME (parent_type);
21560 else
21561 /* An anonymous structure is only allowed non-static data
21562 members; no typedefs, no member functions, et cetera.
21563 So it does not need a prefix. */
21564 return "";
21565 case DW_TAG_compile_unit:
21566 case DW_TAG_partial_unit:
21567 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21568 if (cu->language == language_cplus
21569 && !dwarf2_per_objfile->types.empty ()
21570 && die->child != NULL
21571 && (die->tag == DW_TAG_class_type
21572 || die->tag == DW_TAG_structure_type
21573 || die->tag == DW_TAG_union_type))
21574 {
21575 const char *name = guess_full_die_structure_name (die, cu);
21576 if (name != NULL)
21577 return name;
21578 }
21579 return "";
21580 case DW_TAG_subprogram:
21581 /* Nested subroutines in Fortran get a prefix with the name
21582 of the parent's subroutine. */
21583 if (cu->language == language_fortran)
21584 {
21585 if ((die->tag == DW_TAG_subprogram)
21586 && (dwarf2_name (parent, cu) != NULL))
21587 return dwarf2_name (parent, cu);
21588 }
21589 return determine_prefix (parent, cu);
21590 case DW_TAG_enumeration_type:
21591 parent_type = read_type_die (parent, cu);
21592 if (TYPE_DECLARED_CLASS (parent_type))
21593 {
21594 if (TYPE_NAME (parent_type) != NULL)
21595 return TYPE_NAME (parent_type);
21596 return "";
21597 }
21598 /* Fall through. */
21599 default:
21600 return determine_prefix (parent, cu);
21601 }
21602 }
21603
21604 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21605 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21606 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21607 an obconcat, otherwise allocate storage for the result. The CU argument is
21608 used to determine the language and hence, the appropriate separator. */
21609
21610 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21611
21612 static char *
21613 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21614 int physname, struct dwarf2_cu *cu)
21615 {
21616 const char *lead = "";
21617 const char *sep;
21618
21619 if (suffix == NULL || suffix[0] == '\0'
21620 || prefix == NULL || prefix[0] == '\0')
21621 sep = "";
21622 else if (cu->language == language_d)
21623 {
21624 /* For D, the 'main' function could be defined in any module, but it
21625 should never be prefixed. */
21626 if (strcmp (suffix, "D main") == 0)
21627 {
21628 prefix = "";
21629 sep = "";
21630 }
21631 else
21632 sep = ".";
21633 }
21634 else if (cu->language == language_fortran && physname)
21635 {
21636 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21637 DW_AT_MIPS_linkage_name is preferred and used instead. */
21638
21639 lead = "__";
21640 sep = "_MOD_";
21641 }
21642 else
21643 sep = "::";
21644
21645 if (prefix == NULL)
21646 prefix = "";
21647 if (suffix == NULL)
21648 suffix = "";
21649
21650 if (obs == NULL)
21651 {
21652 char *retval
21653 = ((char *)
21654 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21655
21656 strcpy (retval, lead);
21657 strcat (retval, prefix);
21658 strcat (retval, sep);
21659 strcat (retval, suffix);
21660 return retval;
21661 }
21662 else
21663 {
21664 /* We have an obstack. */
21665 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21666 }
21667 }
21668
21669 /* Return sibling of die, NULL if no sibling. */
21670
21671 static struct die_info *
21672 sibling_die (struct die_info *die)
21673 {
21674 return die->sibling;
21675 }
21676
21677 /* Get name of a die, return NULL if not found. */
21678
21679 static const char *
21680 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21681 struct obstack *obstack)
21682 {
21683 if (name && cu->language == language_cplus)
21684 {
21685 std::string canon_name = cp_canonicalize_string (name);
21686
21687 if (!canon_name.empty ())
21688 {
21689 if (canon_name != name)
21690 name = obstack_strdup (obstack, canon_name);
21691 }
21692 }
21693
21694 return name;
21695 }
21696
21697 /* Get name of a die, return NULL if not found.
21698 Anonymous namespaces are converted to their magic string. */
21699
21700 static const char *
21701 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21702 {
21703 struct attribute *attr;
21704 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21705
21706 attr = dwarf2_attr (die, DW_AT_name, cu);
21707 if ((!attr || !DW_STRING (attr))
21708 && die->tag != DW_TAG_namespace
21709 && die->tag != DW_TAG_class_type
21710 && die->tag != DW_TAG_interface_type
21711 && die->tag != DW_TAG_structure_type
21712 && die->tag != DW_TAG_union_type)
21713 return NULL;
21714
21715 switch (die->tag)
21716 {
21717 case DW_TAG_compile_unit:
21718 case DW_TAG_partial_unit:
21719 /* Compilation units have a DW_AT_name that is a filename, not
21720 a source language identifier. */
21721 case DW_TAG_enumeration_type:
21722 case DW_TAG_enumerator:
21723 /* These tags always have simple identifiers already; no need
21724 to canonicalize them. */
21725 return DW_STRING (attr);
21726
21727 case DW_TAG_namespace:
21728 if (attr != NULL && DW_STRING (attr) != NULL)
21729 return DW_STRING (attr);
21730 return CP_ANONYMOUS_NAMESPACE_STR;
21731
21732 case DW_TAG_class_type:
21733 case DW_TAG_interface_type:
21734 case DW_TAG_structure_type:
21735 case DW_TAG_union_type:
21736 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21737 structures or unions. These were of the form "._%d" in GCC 4.1,
21738 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21739 and GCC 4.4. We work around this problem by ignoring these. */
21740 if (attr && DW_STRING (attr)
21741 && (startswith (DW_STRING (attr), "._")
21742 || startswith (DW_STRING (attr), "<anonymous")))
21743 return NULL;
21744
21745 /* GCC might emit a nameless typedef that has a linkage name. See
21746 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21747 if (!attr || DW_STRING (attr) == NULL)
21748 {
21749 attr = dw2_linkage_name_attr (die, cu);
21750 if (attr == NULL || DW_STRING (attr) == NULL)
21751 return NULL;
21752
21753 /* Avoid demangling DW_STRING (attr) the second time on a second
21754 call for the same DIE. */
21755 if (!DW_STRING_IS_CANONICAL (attr))
21756 {
21757 gdb::unique_xmalloc_ptr<char> demangled
21758 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21759 if (demangled == nullptr)
21760 return nullptr;
21761
21762 const char *base;
21763
21764 /* FIXME: we already did this for the partial symbol... */
21765 DW_STRING (attr)
21766 = obstack_strdup (&objfile->per_bfd->storage_obstack,
21767 demangled.get ());
21768 DW_STRING_IS_CANONICAL (attr) = 1;
21769
21770 /* Strip any leading namespaces/classes, keep only the base name.
21771 DW_AT_name for named DIEs does not contain the prefixes. */
21772 base = strrchr (DW_STRING (attr), ':');
21773 if (base && base > DW_STRING (attr) && base[-1] == ':')
21774 return &base[1];
21775 else
21776 return DW_STRING (attr);
21777 }
21778 }
21779 break;
21780
21781 default:
21782 break;
21783 }
21784
21785 if (!DW_STRING_IS_CANONICAL (attr))
21786 {
21787 DW_STRING (attr)
21788 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21789 &objfile->per_bfd->storage_obstack);
21790 DW_STRING_IS_CANONICAL (attr) = 1;
21791 }
21792 return DW_STRING (attr);
21793 }
21794
21795 /* Return the die that this die in an extension of, or NULL if there
21796 is none. *EXT_CU is the CU containing DIE on input, and the CU
21797 containing the return value on output. */
21798
21799 static struct die_info *
21800 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21801 {
21802 struct attribute *attr;
21803
21804 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21805 if (attr == NULL)
21806 return NULL;
21807
21808 return follow_die_ref (die, attr, ext_cu);
21809 }
21810
21811 /* A convenience function that returns an "unknown" DWARF name,
21812 including the value of V. STR is the name of the entity being
21813 printed, e.g., "TAG". */
21814
21815 static const char *
21816 dwarf_unknown (const char *str, unsigned v)
21817 {
21818 char *cell = get_print_cell ();
21819 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
21820 return cell;
21821 }
21822
21823 /* Convert a DIE tag into its string name. */
21824
21825 static const char *
21826 dwarf_tag_name (unsigned tag)
21827 {
21828 const char *name = get_DW_TAG_name (tag);
21829
21830 if (name == NULL)
21831 return dwarf_unknown ("TAG", tag);
21832
21833 return name;
21834 }
21835
21836 /* Convert a DWARF attribute code into its string name. */
21837
21838 static const char *
21839 dwarf_attr_name (unsigned attr)
21840 {
21841 const char *name;
21842
21843 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21844 if (attr == DW_AT_MIPS_fde)
21845 return "DW_AT_MIPS_fde";
21846 #else
21847 if (attr == DW_AT_HP_block_index)
21848 return "DW_AT_HP_block_index";
21849 #endif
21850
21851 name = get_DW_AT_name (attr);
21852
21853 if (name == NULL)
21854 return dwarf_unknown ("AT", attr);
21855
21856 return name;
21857 }
21858
21859 /* Convert a DWARF value form code into its string name. */
21860
21861 static const char *
21862 dwarf_form_name (unsigned form)
21863 {
21864 const char *name = get_DW_FORM_name (form);
21865
21866 if (name == NULL)
21867 return dwarf_unknown ("FORM", form);
21868
21869 return name;
21870 }
21871
21872 static const char *
21873 dwarf_bool_name (unsigned mybool)
21874 {
21875 if (mybool)
21876 return "TRUE";
21877 else
21878 return "FALSE";
21879 }
21880
21881 /* Convert a DWARF type code into its string name. */
21882
21883 static const char *
21884 dwarf_type_encoding_name (unsigned enc)
21885 {
21886 const char *name = get_DW_ATE_name (enc);
21887
21888 if (name == NULL)
21889 return dwarf_unknown ("ATE", enc);
21890
21891 return name;
21892 }
21893
21894 static void
21895 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21896 {
21897 unsigned int i;
21898
21899 print_spaces (indent, f);
21900 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21901 dwarf_tag_name (die->tag), die->abbrev,
21902 sect_offset_str (die->sect_off));
21903
21904 if (die->parent != NULL)
21905 {
21906 print_spaces (indent, f);
21907 fprintf_unfiltered (f, " parent at offset: %s\n",
21908 sect_offset_str (die->parent->sect_off));
21909 }
21910
21911 print_spaces (indent, f);
21912 fprintf_unfiltered (f, " has children: %s\n",
21913 dwarf_bool_name (die->child != NULL));
21914
21915 print_spaces (indent, f);
21916 fprintf_unfiltered (f, " attributes:\n");
21917
21918 for (i = 0; i < die->num_attrs; ++i)
21919 {
21920 print_spaces (indent, f);
21921 fprintf_unfiltered (f, " %s (%s) ",
21922 dwarf_attr_name (die->attrs[i].name),
21923 dwarf_form_name (die->attrs[i].form));
21924
21925 switch (die->attrs[i].form)
21926 {
21927 case DW_FORM_addr:
21928 case DW_FORM_addrx:
21929 case DW_FORM_GNU_addr_index:
21930 fprintf_unfiltered (f, "address: ");
21931 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21932 break;
21933 case DW_FORM_block2:
21934 case DW_FORM_block4:
21935 case DW_FORM_block:
21936 case DW_FORM_block1:
21937 fprintf_unfiltered (f, "block: size %s",
21938 pulongest (DW_BLOCK (&die->attrs[i])->size));
21939 break;
21940 case DW_FORM_exprloc:
21941 fprintf_unfiltered (f, "expression: size %s",
21942 pulongest (DW_BLOCK (&die->attrs[i])->size));
21943 break;
21944 case DW_FORM_data16:
21945 fprintf_unfiltered (f, "constant of 16 bytes");
21946 break;
21947 case DW_FORM_ref_addr:
21948 fprintf_unfiltered (f, "ref address: ");
21949 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21950 break;
21951 case DW_FORM_GNU_ref_alt:
21952 fprintf_unfiltered (f, "alt ref address: ");
21953 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21954 break;
21955 case DW_FORM_ref1:
21956 case DW_FORM_ref2:
21957 case DW_FORM_ref4:
21958 case DW_FORM_ref8:
21959 case DW_FORM_ref_udata:
21960 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21961 (long) (DW_UNSND (&die->attrs[i])));
21962 break;
21963 case DW_FORM_data1:
21964 case DW_FORM_data2:
21965 case DW_FORM_data4:
21966 case DW_FORM_data8:
21967 case DW_FORM_udata:
21968 case DW_FORM_sdata:
21969 fprintf_unfiltered (f, "constant: %s",
21970 pulongest (DW_UNSND (&die->attrs[i])));
21971 break;
21972 case DW_FORM_sec_offset:
21973 fprintf_unfiltered (f, "section offset: %s",
21974 pulongest (DW_UNSND (&die->attrs[i])));
21975 break;
21976 case DW_FORM_ref_sig8:
21977 fprintf_unfiltered (f, "signature: %s",
21978 hex_string (DW_SIGNATURE (&die->attrs[i])));
21979 break;
21980 case DW_FORM_string:
21981 case DW_FORM_strp:
21982 case DW_FORM_line_strp:
21983 case DW_FORM_strx:
21984 case DW_FORM_GNU_str_index:
21985 case DW_FORM_GNU_strp_alt:
21986 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21987 DW_STRING (&die->attrs[i])
21988 ? DW_STRING (&die->attrs[i]) : "",
21989 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21990 break;
21991 case DW_FORM_flag:
21992 if (DW_UNSND (&die->attrs[i]))
21993 fprintf_unfiltered (f, "flag: TRUE");
21994 else
21995 fprintf_unfiltered (f, "flag: FALSE");
21996 break;
21997 case DW_FORM_flag_present:
21998 fprintf_unfiltered (f, "flag: TRUE");
21999 break;
22000 case DW_FORM_indirect:
22001 /* The reader will have reduced the indirect form to
22002 the "base form" so this form should not occur. */
22003 fprintf_unfiltered (f,
22004 "unexpected attribute form: DW_FORM_indirect");
22005 break;
22006 case DW_FORM_implicit_const:
22007 fprintf_unfiltered (f, "constant: %s",
22008 plongest (DW_SND (&die->attrs[i])));
22009 break;
22010 default:
22011 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22012 die->attrs[i].form);
22013 break;
22014 }
22015 fprintf_unfiltered (f, "\n");
22016 }
22017 }
22018
22019 static void
22020 dump_die_for_error (struct die_info *die)
22021 {
22022 dump_die_shallow (gdb_stderr, 0, die);
22023 }
22024
22025 static void
22026 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22027 {
22028 int indent = level * 4;
22029
22030 gdb_assert (die != NULL);
22031
22032 if (level >= max_level)
22033 return;
22034
22035 dump_die_shallow (f, indent, die);
22036
22037 if (die->child != NULL)
22038 {
22039 print_spaces (indent, f);
22040 fprintf_unfiltered (f, " Children:");
22041 if (level + 1 < max_level)
22042 {
22043 fprintf_unfiltered (f, "\n");
22044 dump_die_1 (f, level + 1, max_level, die->child);
22045 }
22046 else
22047 {
22048 fprintf_unfiltered (f,
22049 " [not printed, max nesting level reached]\n");
22050 }
22051 }
22052
22053 if (die->sibling != NULL && level > 0)
22054 {
22055 dump_die_1 (f, level, max_level, die->sibling);
22056 }
22057 }
22058
22059 /* This is called from the pdie macro in gdbinit.in.
22060 It's not static so gcc will keep a copy callable from gdb. */
22061
22062 void
22063 dump_die (struct die_info *die, int max_level)
22064 {
22065 dump_die_1 (gdb_stdlog, 0, max_level, die);
22066 }
22067
22068 static void
22069 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22070 {
22071 void **slot;
22072
22073 slot = htab_find_slot_with_hash (cu->die_hash, die,
22074 to_underlying (die->sect_off),
22075 INSERT);
22076
22077 *slot = die;
22078 }
22079
22080 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22081 required kind. */
22082
22083 static sect_offset
22084 dwarf2_get_ref_die_offset (const struct attribute *attr)
22085 {
22086 if (attr->form_is_ref ())
22087 return (sect_offset) DW_UNSND (attr);
22088
22089 complaint (_("unsupported die ref attribute form: '%s'"),
22090 dwarf_form_name (attr->form));
22091 return {};
22092 }
22093
22094 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22095 * the value held by the attribute is not constant. */
22096
22097 static LONGEST
22098 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22099 {
22100 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22101 return DW_SND (attr);
22102 else if (attr->form == DW_FORM_udata
22103 || attr->form == DW_FORM_data1
22104 || attr->form == DW_FORM_data2
22105 || attr->form == DW_FORM_data4
22106 || attr->form == DW_FORM_data8)
22107 return DW_UNSND (attr);
22108 else
22109 {
22110 /* For DW_FORM_data16 see attribute::form_is_constant. */
22111 complaint (_("Attribute value is not a constant (%s)"),
22112 dwarf_form_name (attr->form));
22113 return default_value;
22114 }
22115 }
22116
22117 /* Follow reference or signature attribute ATTR of SRC_DIE.
22118 On entry *REF_CU is the CU of SRC_DIE.
22119 On exit *REF_CU is the CU of the result. */
22120
22121 static struct die_info *
22122 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22123 struct dwarf2_cu **ref_cu)
22124 {
22125 struct die_info *die;
22126
22127 if (attr->form_is_ref ())
22128 die = follow_die_ref (src_die, attr, ref_cu);
22129 else if (attr->form == DW_FORM_ref_sig8)
22130 die = follow_die_sig (src_die, attr, ref_cu);
22131 else
22132 {
22133 dump_die_for_error (src_die);
22134 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22135 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22136 }
22137
22138 return die;
22139 }
22140
22141 /* Follow reference OFFSET.
22142 On entry *REF_CU is the CU of the source die referencing OFFSET.
22143 On exit *REF_CU is the CU of the result.
22144 Returns NULL if OFFSET is invalid. */
22145
22146 static struct die_info *
22147 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22148 struct dwarf2_cu **ref_cu)
22149 {
22150 struct die_info temp_die;
22151 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22152 struct dwarf2_per_objfile *dwarf2_per_objfile
22153 = cu->per_cu->dwarf2_per_objfile;
22154
22155 gdb_assert (cu->per_cu != NULL);
22156
22157 target_cu = cu;
22158
22159 if (cu->per_cu->is_debug_types)
22160 {
22161 /* .debug_types CUs cannot reference anything outside their CU.
22162 If they need to, they have to reference a signatured type via
22163 DW_FORM_ref_sig8. */
22164 if (!cu->header.offset_in_cu_p (sect_off))
22165 return NULL;
22166 }
22167 else if (offset_in_dwz != cu->per_cu->is_dwz
22168 || !cu->header.offset_in_cu_p (sect_off))
22169 {
22170 struct dwarf2_per_cu_data *per_cu;
22171
22172 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22173 dwarf2_per_objfile);
22174
22175 /* If necessary, add it to the queue and load its DIEs. */
22176 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22177 load_full_comp_unit (per_cu, false, cu->language);
22178
22179 target_cu = per_cu->cu;
22180 }
22181 else if (cu->dies == NULL)
22182 {
22183 /* We're loading full DIEs during partial symbol reading. */
22184 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22185 load_full_comp_unit (cu->per_cu, false, language_minimal);
22186 }
22187
22188 *ref_cu = target_cu;
22189 temp_die.sect_off = sect_off;
22190
22191 if (target_cu != cu)
22192 target_cu->ancestor = cu;
22193
22194 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22195 &temp_die,
22196 to_underlying (sect_off));
22197 }
22198
22199 /* Follow reference attribute ATTR of SRC_DIE.
22200 On entry *REF_CU is the CU of SRC_DIE.
22201 On exit *REF_CU is the CU of the result. */
22202
22203 static struct die_info *
22204 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22205 struct dwarf2_cu **ref_cu)
22206 {
22207 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22208 struct dwarf2_cu *cu = *ref_cu;
22209 struct die_info *die;
22210
22211 die = follow_die_offset (sect_off,
22212 (attr->form == DW_FORM_GNU_ref_alt
22213 || cu->per_cu->is_dwz),
22214 ref_cu);
22215 if (!die)
22216 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22217 "at %s [in module %s]"),
22218 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22219 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22220
22221 return die;
22222 }
22223
22224 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22225 Returned value is intended for DW_OP_call*. Returned
22226 dwarf2_locexpr_baton->data has lifetime of
22227 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22228
22229 struct dwarf2_locexpr_baton
22230 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22231 struct dwarf2_per_cu_data *per_cu,
22232 CORE_ADDR (*get_frame_pc) (void *baton),
22233 void *baton, bool resolve_abstract_p)
22234 {
22235 struct dwarf2_cu *cu;
22236 struct die_info *die;
22237 struct attribute *attr;
22238 struct dwarf2_locexpr_baton retval;
22239 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22240 struct objfile *objfile = dwarf2_per_objfile->objfile;
22241
22242 if (per_cu->cu == NULL)
22243 load_cu (per_cu, false);
22244 cu = per_cu->cu;
22245 if (cu == NULL)
22246 {
22247 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22248 Instead just throw an error, not much else we can do. */
22249 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22250 sect_offset_str (sect_off), objfile_name (objfile));
22251 }
22252
22253 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22254 if (!die)
22255 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22256 sect_offset_str (sect_off), objfile_name (objfile));
22257
22258 attr = dwarf2_attr (die, DW_AT_location, cu);
22259 if (!attr && resolve_abstract_p
22260 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22261 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22262 {
22263 CORE_ADDR pc = (*get_frame_pc) (baton);
22264 CORE_ADDR baseaddr = objfile->text_section_offset ();
22265 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22266
22267 for (const auto &cand_off
22268 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22269 {
22270 struct dwarf2_cu *cand_cu = cu;
22271 struct die_info *cand
22272 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22273 if (!cand
22274 || !cand->parent
22275 || cand->parent->tag != DW_TAG_subprogram)
22276 continue;
22277
22278 CORE_ADDR pc_low, pc_high;
22279 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22280 if (pc_low == ((CORE_ADDR) -1))
22281 continue;
22282 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22283 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22284 if (!(pc_low <= pc && pc < pc_high))
22285 continue;
22286
22287 die = cand;
22288 attr = dwarf2_attr (die, DW_AT_location, cu);
22289 break;
22290 }
22291 }
22292
22293 if (!attr)
22294 {
22295 /* DWARF: "If there is no such attribute, then there is no effect.".
22296 DATA is ignored if SIZE is 0. */
22297
22298 retval.data = NULL;
22299 retval.size = 0;
22300 }
22301 else if (attr->form_is_section_offset ())
22302 {
22303 struct dwarf2_loclist_baton loclist_baton;
22304 CORE_ADDR pc = (*get_frame_pc) (baton);
22305 size_t size;
22306
22307 fill_in_loclist_baton (cu, &loclist_baton, attr);
22308
22309 retval.data = dwarf2_find_location_expression (&loclist_baton,
22310 &size, pc);
22311 retval.size = size;
22312 }
22313 else
22314 {
22315 if (!attr->form_is_block ())
22316 error (_("Dwarf Error: DIE at %s referenced in module %s "
22317 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22318 sect_offset_str (sect_off), objfile_name (objfile));
22319
22320 retval.data = DW_BLOCK (attr)->data;
22321 retval.size = DW_BLOCK (attr)->size;
22322 }
22323 retval.per_cu = cu->per_cu;
22324
22325 age_cached_comp_units (dwarf2_per_objfile);
22326
22327 return retval;
22328 }
22329
22330 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22331 offset. */
22332
22333 struct dwarf2_locexpr_baton
22334 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22335 struct dwarf2_per_cu_data *per_cu,
22336 CORE_ADDR (*get_frame_pc) (void *baton),
22337 void *baton)
22338 {
22339 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22340
22341 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22342 }
22343
22344 /* Write a constant of a given type as target-ordered bytes into
22345 OBSTACK. */
22346
22347 static const gdb_byte *
22348 write_constant_as_bytes (struct obstack *obstack,
22349 enum bfd_endian byte_order,
22350 struct type *type,
22351 ULONGEST value,
22352 LONGEST *len)
22353 {
22354 gdb_byte *result;
22355
22356 *len = TYPE_LENGTH (type);
22357 result = (gdb_byte *) obstack_alloc (obstack, *len);
22358 store_unsigned_integer (result, *len, byte_order, value);
22359
22360 return result;
22361 }
22362
22363 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22364 pointer to the constant bytes and set LEN to the length of the
22365 data. If memory is needed, allocate it on OBSTACK. If the DIE
22366 does not have a DW_AT_const_value, return NULL. */
22367
22368 const gdb_byte *
22369 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22370 struct dwarf2_per_cu_data *per_cu,
22371 struct obstack *obstack,
22372 LONGEST *len)
22373 {
22374 struct dwarf2_cu *cu;
22375 struct die_info *die;
22376 struct attribute *attr;
22377 const gdb_byte *result = NULL;
22378 struct type *type;
22379 LONGEST value;
22380 enum bfd_endian byte_order;
22381 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22382
22383 if (per_cu->cu == NULL)
22384 load_cu (per_cu, false);
22385 cu = per_cu->cu;
22386 if (cu == NULL)
22387 {
22388 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22389 Instead just throw an error, not much else we can do. */
22390 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22391 sect_offset_str (sect_off), objfile_name (objfile));
22392 }
22393
22394 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22395 if (!die)
22396 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22397 sect_offset_str (sect_off), objfile_name (objfile));
22398
22399 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22400 if (attr == NULL)
22401 return NULL;
22402
22403 byte_order = (bfd_big_endian (objfile->obfd)
22404 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22405
22406 switch (attr->form)
22407 {
22408 case DW_FORM_addr:
22409 case DW_FORM_addrx:
22410 case DW_FORM_GNU_addr_index:
22411 {
22412 gdb_byte *tem;
22413
22414 *len = cu->header.addr_size;
22415 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22416 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22417 result = tem;
22418 }
22419 break;
22420 case DW_FORM_string:
22421 case DW_FORM_strp:
22422 case DW_FORM_strx:
22423 case DW_FORM_GNU_str_index:
22424 case DW_FORM_GNU_strp_alt:
22425 /* DW_STRING is already allocated on the objfile obstack, point
22426 directly to it. */
22427 result = (const gdb_byte *) DW_STRING (attr);
22428 *len = strlen (DW_STRING (attr));
22429 break;
22430 case DW_FORM_block1:
22431 case DW_FORM_block2:
22432 case DW_FORM_block4:
22433 case DW_FORM_block:
22434 case DW_FORM_exprloc:
22435 case DW_FORM_data16:
22436 result = DW_BLOCK (attr)->data;
22437 *len = DW_BLOCK (attr)->size;
22438 break;
22439
22440 /* The DW_AT_const_value attributes are supposed to carry the
22441 symbol's value "represented as it would be on the target
22442 architecture." By the time we get here, it's already been
22443 converted to host endianness, so we just need to sign- or
22444 zero-extend it as appropriate. */
22445 case DW_FORM_data1:
22446 type = die_type (die, cu);
22447 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22448 if (result == NULL)
22449 result = write_constant_as_bytes (obstack, byte_order,
22450 type, value, len);
22451 break;
22452 case DW_FORM_data2:
22453 type = die_type (die, cu);
22454 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22455 if (result == NULL)
22456 result = write_constant_as_bytes (obstack, byte_order,
22457 type, value, len);
22458 break;
22459 case DW_FORM_data4:
22460 type = die_type (die, cu);
22461 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22462 if (result == NULL)
22463 result = write_constant_as_bytes (obstack, byte_order,
22464 type, value, len);
22465 break;
22466 case DW_FORM_data8:
22467 type = die_type (die, cu);
22468 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22469 if (result == NULL)
22470 result = write_constant_as_bytes (obstack, byte_order,
22471 type, value, len);
22472 break;
22473
22474 case DW_FORM_sdata:
22475 case DW_FORM_implicit_const:
22476 type = die_type (die, cu);
22477 result = write_constant_as_bytes (obstack, byte_order,
22478 type, DW_SND (attr), len);
22479 break;
22480
22481 case DW_FORM_udata:
22482 type = die_type (die, cu);
22483 result = write_constant_as_bytes (obstack, byte_order,
22484 type, DW_UNSND (attr), len);
22485 break;
22486
22487 default:
22488 complaint (_("unsupported const value attribute form: '%s'"),
22489 dwarf_form_name (attr->form));
22490 break;
22491 }
22492
22493 return result;
22494 }
22495
22496 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
22497 valid type for this die is found. */
22498
22499 struct type *
22500 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22501 struct dwarf2_per_cu_data *per_cu)
22502 {
22503 struct dwarf2_cu *cu;
22504 struct die_info *die;
22505
22506 if (per_cu->cu == NULL)
22507 load_cu (per_cu, false);
22508 cu = per_cu->cu;
22509 if (!cu)
22510 return NULL;
22511
22512 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22513 if (!die)
22514 return NULL;
22515
22516 return die_type (die, cu);
22517 }
22518
22519 /* Return the type of the DIE at DIE_OFFSET in the CU named by
22520 PER_CU. */
22521
22522 struct type *
22523 dwarf2_get_die_type (cu_offset die_offset,
22524 struct dwarf2_per_cu_data *per_cu)
22525 {
22526 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22527 return get_die_type_at_offset (die_offset_sect, per_cu);
22528 }
22529
22530 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22531 On entry *REF_CU is the CU of SRC_DIE.
22532 On exit *REF_CU is the CU of the result.
22533 Returns NULL if the referenced DIE isn't found. */
22534
22535 static struct die_info *
22536 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22537 struct dwarf2_cu **ref_cu)
22538 {
22539 struct die_info temp_die;
22540 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22541 struct die_info *die;
22542
22543 /* While it might be nice to assert sig_type->type == NULL here,
22544 we can get here for DW_AT_imported_declaration where we need
22545 the DIE not the type. */
22546
22547 /* If necessary, add it to the queue and load its DIEs. */
22548
22549 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22550 read_signatured_type (sig_type);
22551
22552 sig_cu = sig_type->per_cu.cu;
22553 gdb_assert (sig_cu != NULL);
22554 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22555 temp_die.sect_off = sig_type->type_offset_in_section;
22556 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22557 to_underlying (temp_die.sect_off));
22558 if (die)
22559 {
22560 struct dwarf2_per_objfile *dwarf2_per_objfile
22561 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22562
22563 /* For .gdb_index version 7 keep track of included TUs.
22564 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22565 if (dwarf2_per_objfile->index_table != NULL
22566 && dwarf2_per_objfile->index_table->version <= 7)
22567 {
22568 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22569 }
22570
22571 *ref_cu = sig_cu;
22572 if (sig_cu != cu)
22573 sig_cu->ancestor = cu;
22574
22575 return die;
22576 }
22577
22578 return NULL;
22579 }
22580
22581 /* Follow signatured type referenced by ATTR in SRC_DIE.
22582 On entry *REF_CU is the CU of SRC_DIE.
22583 On exit *REF_CU is the CU of the result.
22584 The result is the DIE of the type.
22585 If the referenced type cannot be found an error is thrown. */
22586
22587 static struct die_info *
22588 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22589 struct dwarf2_cu **ref_cu)
22590 {
22591 ULONGEST signature = DW_SIGNATURE (attr);
22592 struct signatured_type *sig_type;
22593 struct die_info *die;
22594
22595 gdb_assert (attr->form == DW_FORM_ref_sig8);
22596
22597 sig_type = lookup_signatured_type (*ref_cu, signature);
22598 /* sig_type will be NULL if the signatured type is missing from
22599 the debug info. */
22600 if (sig_type == NULL)
22601 {
22602 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22603 " from DIE at %s [in module %s]"),
22604 hex_string (signature), sect_offset_str (src_die->sect_off),
22605 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22606 }
22607
22608 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22609 if (die == NULL)
22610 {
22611 dump_die_for_error (src_die);
22612 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22613 " from DIE at %s [in module %s]"),
22614 hex_string (signature), sect_offset_str (src_die->sect_off),
22615 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22616 }
22617
22618 return die;
22619 }
22620
22621 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22622 reading in and processing the type unit if necessary. */
22623
22624 static struct type *
22625 get_signatured_type (struct die_info *die, ULONGEST signature,
22626 struct dwarf2_cu *cu)
22627 {
22628 struct dwarf2_per_objfile *dwarf2_per_objfile
22629 = cu->per_cu->dwarf2_per_objfile;
22630 struct signatured_type *sig_type;
22631 struct dwarf2_cu *type_cu;
22632 struct die_info *type_die;
22633 struct type *type;
22634
22635 sig_type = lookup_signatured_type (cu, signature);
22636 /* sig_type will be NULL if the signatured type is missing from
22637 the debug info. */
22638 if (sig_type == NULL)
22639 {
22640 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22641 " from DIE at %s [in module %s]"),
22642 hex_string (signature), sect_offset_str (die->sect_off),
22643 objfile_name (dwarf2_per_objfile->objfile));
22644 return build_error_marker_type (cu, die);
22645 }
22646
22647 /* If we already know the type we're done. */
22648 if (sig_type->type != NULL)
22649 return sig_type->type;
22650
22651 type_cu = cu;
22652 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22653 if (type_die != NULL)
22654 {
22655 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22656 is created. This is important, for example, because for c++ classes
22657 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22658 type = read_type_die (type_die, type_cu);
22659 if (type == NULL)
22660 {
22661 complaint (_("Dwarf Error: Cannot build signatured type %s"
22662 " referenced from DIE at %s [in module %s]"),
22663 hex_string (signature), sect_offset_str (die->sect_off),
22664 objfile_name (dwarf2_per_objfile->objfile));
22665 type = build_error_marker_type (cu, die);
22666 }
22667 }
22668 else
22669 {
22670 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22671 " from DIE at %s [in module %s]"),
22672 hex_string (signature), sect_offset_str (die->sect_off),
22673 objfile_name (dwarf2_per_objfile->objfile));
22674 type = build_error_marker_type (cu, die);
22675 }
22676 sig_type->type = type;
22677
22678 return type;
22679 }
22680
22681 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22682 reading in and processing the type unit if necessary. */
22683
22684 static struct type *
22685 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22686 struct dwarf2_cu *cu) /* ARI: editCase function */
22687 {
22688 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22689 if (attr->form_is_ref ())
22690 {
22691 struct dwarf2_cu *type_cu = cu;
22692 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22693
22694 return read_type_die (type_die, type_cu);
22695 }
22696 else if (attr->form == DW_FORM_ref_sig8)
22697 {
22698 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22699 }
22700 else
22701 {
22702 struct dwarf2_per_objfile *dwarf2_per_objfile
22703 = cu->per_cu->dwarf2_per_objfile;
22704
22705 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22706 " at %s [in module %s]"),
22707 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22708 objfile_name (dwarf2_per_objfile->objfile));
22709 return build_error_marker_type (cu, die);
22710 }
22711 }
22712
22713 /* Load the DIEs associated with type unit PER_CU into memory. */
22714
22715 static void
22716 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22717 {
22718 struct signatured_type *sig_type;
22719
22720 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22721 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
22722
22723 /* We have the per_cu, but we need the signatured_type.
22724 Fortunately this is an easy translation. */
22725 gdb_assert (per_cu->is_debug_types);
22726 sig_type = (struct signatured_type *) per_cu;
22727
22728 gdb_assert (per_cu->cu == NULL);
22729
22730 read_signatured_type (sig_type);
22731
22732 gdb_assert (per_cu->cu != NULL);
22733 }
22734
22735 /* Read in a signatured type and build its CU and DIEs.
22736 If the type is a stub for the real type in a DWO file,
22737 read in the real type from the DWO file as well. */
22738
22739 static void
22740 read_signatured_type (struct signatured_type *sig_type)
22741 {
22742 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22743
22744 gdb_assert (per_cu->is_debug_types);
22745 gdb_assert (per_cu->cu == NULL);
22746
22747 cutu_reader reader (per_cu, NULL, 0, false);
22748
22749 if (!reader.dummy_p)
22750 {
22751 struct dwarf2_cu *cu = reader.cu;
22752 const gdb_byte *info_ptr = reader.info_ptr;
22753
22754 gdb_assert (cu->die_hash == NULL);
22755 cu->die_hash =
22756 htab_create_alloc_ex (cu->header.length / 12,
22757 die_hash,
22758 die_eq,
22759 NULL,
22760 &cu->comp_unit_obstack,
22761 hashtab_obstack_allocate,
22762 dummy_obstack_deallocate);
22763
22764 if (reader.comp_unit_die->has_children)
22765 reader.comp_unit_die->child
22766 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22767 reader.comp_unit_die);
22768 cu->dies = reader.comp_unit_die;
22769 /* comp_unit_die is not stored in die_hash, no need. */
22770
22771 /* We try not to read any attributes in this function, because
22772 not all CUs needed for references have been loaded yet, and
22773 symbol table processing isn't initialized. But we have to
22774 set the CU language, or we won't be able to build types
22775 correctly. Similarly, if we do not read the producer, we can
22776 not apply producer-specific interpretation. */
22777 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22778
22779 reader.keep ();
22780 }
22781
22782 sig_type->per_cu.tu_read = 1;
22783 }
22784
22785 /* Decode simple location descriptions.
22786 Given a pointer to a dwarf block that defines a location, compute
22787 the location and return the value.
22788
22789 NOTE drow/2003-11-18: This function is called in two situations
22790 now: for the address of static or global variables (partial symbols
22791 only) and for offsets into structures which are expected to be
22792 (more or less) constant. The partial symbol case should go away,
22793 and only the constant case should remain. That will let this
22794 function complain more accurately. A few special modes are allowed
22795 without complaint for global variables (for instance, global
22796 register values and thread-local values).
22797
22798 A location description containing no operations indicates that the
22799 object is optimized out. The return value is 0 for that case.
22800 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22801 callers will only want a very basic result and this can become a
22802 complaint.
22803
22804 Note that stack[0] is unused except as a default error return. */
22805
22806 static CORE_ADDR
22807 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22808 {
22809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22810 size_t i;
22811 size_t size = blk->size;
22812 const gdb_byte *data = blk->data;
22813 CORE_ADDR stack[64];
22814 int stacki;
22815 unsigned int bytes_read, unsnd;
22816 gdb_byte op;
22817
22818 i = 0;
22819 stacki = 0;
22820 stack[stacki] = 0;
22821 stack[++stacki] = 0;
22822
22823 while (i < size)
22824 {
22825 op = data[i++];
22826 switch (op)
22827 {
22828 case DW_OP_lit0:
22829 case DW_OP_lit1:
22830 case DW_OP_lit2:
22831 case DW_OP_lit3:
22832 case DW_OP_lit4:
22833 case DW_OP_lit5:
22834 case DW_OP_lit6:
22835 case DW_OP_lit7:
22836 case DW_OP_lit8:
22837 case DW_OP_lit9:
22838 case DW_OP_lit10:
22839 case DW_OP_lit11:
22840 case DW_OP_lit12:
22841 case DW_OP_lit13:
22842 case DW_OP_lit14:
22843 case DW_OP_lit15:
22844 case DW_OP_lit16:
22845 case DW_OP_lit17:
22846 case DW_OP_lit18:
22847 case DW_OP_lit19:
22848 case DW_OP_lit20:
22849 case DW_OP_lit21:
22850 case DW_OP_lit22:
22851 case DW_OP_lit23:
22852 case DW_OP_lit24:
22853 case DW_OP_lit25:
22854 case DW_OP_lit26:
22855 case DW_OP_lit27:
22856 case DW_OP_lit28:
22857 case DW_OP_lit29:
22858 case DW_OP_lit30:
22859 case DW_OP_lit31:
22860 stack[++stacki] = op - DW_OP_lit0;
22861 break;
22862
22863 case DW_OP_reg0:
22864 case DW_OP_reg1:
22865 case DW_OP_reg2:
22866 case DW_OP_reg3:
22867 case DW_OP_reg4:
22868 case DW_OP_reg5:
22869 case DW_OP_reg6:
22870 case DW_OP_reg7:
22871 case DW_OP_reg8:
22872 case DW_OP_reg9:
22873 case DW_OP_reg10:
22874 case DW_OP_reg11:
22875 case DW_OP_reg12:
22876 case DW_OP_reg13:
22877 case DW_OP_reg14:
22878 case DW_OP_reg15:
22879 case DW_OP_reg16:
22880 case DW_OP_reg17:
22881 case DW_OP_reg18:
22882 case DW_OP_reg19:
22883 case DW_OP_reg20:
22884 case DW_OP_reg21:
22885 case DW_OP_reg22:
22886 case DW_OP_reg23:
22887 case DW_OP_reg24:
22888 case DW_OP_reg25:
22889 case DW_OP_reg26:
22890 case DW_OP_reg27:
22891 case DW_OP_reg28:
22892 case DW_OP_reg29:
22893 case DW_OP_reg30:
22894 case DW_OP_reg31:
22895 stack[++stacki] = op - DW_OP_reg0;
22896 if (i < size)
22897 dwarf2_complex_location_expr_complaint ();
22898 break;
22899
22900 case DW_OP_regx:
22901 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22902 i += bytes_read;
22903 stack[++stacki] = unsnd;
22904 if (i < size)
22905 dwarf2_complex_location_expr_complaint ();
22906 break;
22907
22908 case DW_OP_addr:
22909 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22910 &bytes_read);
22911 i += bytes_read;
22912 break;
22913
22914 case DW_OP_const1u:
22915 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22916 i += 1;
22917 break;
22918
22919 case DW_OP_const1s:
22920 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22921 i += 1;
22922 break;
22923
22924 case DW_OP_const2u:
22925 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22926 i += 2;
22927 break;
22928
22929 case DW_OP_const2s:
22930 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22931 i += 2;
22932 break;
22933
22934 case DW_OP_const4u:
22935 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22936 i += 4;
22937 break;
22938
22939 case DW_OP_const4s:
22940 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22941 i += 4;
22942 break;
22943
22944 case DW_OP_const8u:
22945 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22946 i += 8;
22947 break;
22948
22949 case DW_OP_constu:
22950 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22951 &bytes_read);
22952 i += bytes_read;
22953 break;
22954
22955 case DW_OP_consts:
22956 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22957 i += bytes_read;
22958 break;
22959
22960 case DW_OP_dup:
22961 stack[stacki + 1] = stack[stacki];
22962 stacki++;
22963 break;
22964
22965 case DW_OP_plus:
22966 stack[stacki - 1] += stack[stacki];
22967 stacki--;
22968 break;
22969
22970 case DW_OP_plus_uconst:
22971 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22972 &bytes_read);
22973 i += bytes_read;
22974 break;
22975
22976 case DW_OP_minus:
22977 stack[stacki - 1] -= stack[stacki];
22978 stacki--;
22979 break;
22980
22981 case DW_OP_deref:
22982 /* If we're not the last op, then we definitely can't encode
22983 this using GDB's address_class enum. This is valid for partial
22984 global symbols, although the variable's address will be bogus
22985 in the psymtab. */
22986 if (i < size)
22987 dwarf2_complex_location_expr_complaint ();
22988 break;
22989
22990 case DW_OP_GNU_push_tls_address:
22991 case DW_OP_form_tls_address:
22992 /* The top of the stack has the offset from the beginning
22993 of the thread control block at which the variable is located. */
22994 /* Nothing should follow this operator, so the top of stack would
22995 be returned. */
22996 /* This is valid for partial global symbols, but the variable's
22997 address will be bogus in the psymtab. Make it always at least
22998 non-zero to not look as a variable garbage collected by linker
22999 which have DW_OP_addr 0. */
23000 if (i < size)
23001 dwarf2_complex_location_expr_complaint ();
23002 stack[stacki]++;
23003 break;
23004
23005 case DW_OP_GNU_uninit:
23006 break;
23007
23008 case DW_OP_addrx:
23009 case DW_OP_GNU_addr_index:
23010 case DW_OP_GNU_const_index:
23011 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23012 &bytes_read);
23013 i += bytes_read;
23014 break;
23015
23016 default:
23017 {
23018 const char *name = get_DW_OP_name (op);
23019
23020 if (name)
23021 complaint (_("unsupported stack op: '%s'"),
23022 name);
23023 else
23024 complaint (_("unsupported stack op: '%02x'"),
23025 op);
23026 }
23027
23028 return (stack[stacki]);
23029 }
23030
23031 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23032 outside of the allocated space. Also enforce minimum>0. */
23033 if (stacki >= ARRAY_SIZE (stack) - 1)
23034 {
23035 complaint (_("location description stack overflow"));
23036 return 0;
23037 }
23038
23039 if (stacki <= 0)
23040 {
23041 complaint (_("location description stack underflow"));
23042 return 0;
23043 }
23044 }
23045 return (stack[stacki]);
23046 }
23047
23048 /* memory allocation interface */
23049
23050 static struct dwarf_block *
23051 dwarf_alloc_block (struct dwarf2_cu *cu)
23052 {
23053 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23054 }
23055
23056 static struct die_info *
23057 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23058 {
23059 struct die_info *die;
23060 size_t size = sizeof (struct die_info);
23061
23062 if (num_attrs > 1)
23063 size += (num_attrs - 1) * sizeof (struct attribute);
23064
23065 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23066 memset (die, 0, sizeof (struct die_info));
23067 return (die);
23068 }
23069
23070 \f
23071 /* Macro support. */
23072
23073 static struct macro_source_file *
23074 macro_start_file (struct dwarf2_cu *cu,
23075 int file, int line,
23076 struct macro_source_file *current_file,
23077 struct line_header *lh)
23078 {
23079 /* File name relative to the compilation directory of this source file. */
23080 gdb::unique_xmalloc_ptr<char> file_name = lh->file_file_name (file);
23081
23082 if (! current_file)
23083 {
23084 /* Note: We don't create a macro table for this compilation unit
23085 at all until we actually get a filename. */
23086 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23087
23088 /* If we have no current file, then this must be the start_file
23089 directive for the compilation unit's main source file. */
23090 current_file = macro_set_main (macro_table, file_name.get ());
23091 macro_define_special (macro_table);
23092 }
23093 else
23094 current_file = macro_include (current_file, line, file_name.get ());
23095
23096 return current_file;
23097 }
23098
23099 static const char *
23100 consume_improper_spaces (const char *p, const char *body)
23101 {
23102 if (*p == ' ')
23103 {
23104 complaint (_("macro definition contains spaces "
23105 "in formal argument list:\n`%s'"),
23106 body);
23107
23108 while (*p == ' ')
23109 p++;
23110 }
23111
23112 return p;
23113 }
23114
23115
23116 static void
23117 parse_macro_definition (struct macro_source_file *file, int line,
23118 const char *body)
23119 {
23120 const char *p;
23121
23122 /* The body string takes one of two forms. For object-like macro
23123 definitions, it should be:
23124
23125 <macro name> " " <definition>
23126
23127 For function-like macro definitions, it should be:
23128
23129 <macro name> "() " <definition>
23130 or
23131 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23132
23133 Spaces may appear only where explicitly indicated, and in the
23134 <definition>.
23135
23136 The Dwarf 2 spec says that an object-like macro's name is always
23137 followed by a space, but versions of GCC around March 2002 omit
23138 the space when the macro's definition is the empty string.
23139
23140 The Dwarf 2 spec says that there should be no spaces between the
23141 formal arguments in a function-like macro's formal argument list,
23142 but versions of GCC around March 2002 include spaces after the
23143 commas. */
23144
23145
23146 /* Find the extent of the macro name. The macro name is terminated
23147 by either a space or null character (for an object-like macro) or
23148 an opening paren (for a function-like macro). */
23149 for (p = body; *p; p++)
23150 if (*p == ' ' || *p == '(')
23151 break;
23152
23153 if (*p == ' ' || *p == '\0')
23154 {
23155 /* It's an object-like macro. */
23156 int name_len = p - body;
23157 std::string name (body, name_len);
23158 const char *replacement;
23159
23160 if (*p == ' ')
23161 replacement = body + name_len + 1;
23162 else
23163 {
23164 dwarf2_macro_malformed_definition_complaint (body);
23165 replacement = body + name_len;
23166 }
23167
23168 macro_define_object (file, line, name.c_str (), replacement);
23169 }
23170 else if (*p == '(')
23171 {
23172 /* It's a function-like macro. */
23173 std::string name (body, p - body);
23174 int argc = 0;
23175 int argv_size = 1;
23176 char **argv = XNEWVEC (char *, argv_size);
23177
23178 p++;
23179
23180 p = consume_improper_spaces (p, body);
23181
23182 /* Parse the formal argument list. */
23183 while (*p && *p != ')')
23184 {
23185 /* Find the extent of the current argument name. */
23186 const char *arg_start = p;
23187
23188 while (*p && *p != ',' && *p != ')' && *p != ' ')
23189 p++;
23190
23191 if (! *p || p == arg_start)
23192 dwarf2_macro_malformed_definition_complaint (body);
23193 else
23194 {
23195 /* Make sure argv has room for the new argument. */
23196 if (argc >= argv_size)
23197 {
23198 argv_size *= 2;
23199 argv = XRESIZEVEC (char *, argv, argv_size);
23200 }
23201
23202 argv[argc++] = savestring (arg_start, p - arg_start);
23203 }
23204
23205 p = consume_improper_spaces (p, body);
23206
23207 /* Consume the comma, if present. */
23208 if (*p == ',')
23209 {
23210 p++;
23211
23212 p = consume_improper_spaces (p, body);
23213 }
23214 }
23215
23216 if (*p == ')')
23217 {
23218 p++;
23219
23220 if (*p == ' ')
23221 /* Perfectly formed definition, no complaints. */
23222 macro_define_function (file, line, name.c_str (),
23223 argc, (const char **) argv,
23224 p + 1);
23225 else if (*p == '\0')
23226 {
23227 /* Complain, but do define it. */
23228 dwarf2_macro_malformed_definition_complaint (body);
23229 macro_define_function (file, line, name.c_str (),
23230 argc, (const char **) argv,
23231 p);
23232 }
23233 else
23234 /* Just complain. */
23235 dwarf2_macro_malformed_definition_complaint (body);
23236 }
23237 else
23238 /* Just complain. */
23239 dwarf2_macro_malformed_definition_complaint (body);
23240
23241 {
23242 int i;
23243
23244 for (i = 0; i < argc; i++)
23245 xfree (argv[i]);
23246 }
23247 xfree (argv);
23248 }
23249 else
23250 dwarf2_macro_malformed_definition_complaint (body);
23251 }
23252
23253 /* Skip some bytes from BYTES according to the form given in FORM.
23254 Returns the new pointer. */
23255
23256 static const gdb_byte *
23257 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23258 enum dwarf_form form,
23259 unsigned int offset_size,
23260 struct dwarf2_section_info *section)
23261 {
23262 unsigned int bytes_read;
23263
23264 switch (form)
23265 {
23266 case DW_FORM_data1:
23267 case DW_FORM_flag:
23268 ++bytes;
23269 break;
23270
23271 case DW_FORM_data2:
23272 bytes += 2;
23273 break;
23274
23275 case DW_FORM_data4:
23276 bytes += 4;
23277 break;
23278
23279 case DW_FORM_data8:
23280 bytes += 8;
23281 break;
23282
23283 case DW_FORM_data16:
23284 bytes += 16;
23285 break;
23286
23287 case DW_FORM_string:
23288 read_direct_string (abfd, bytes, &bytes_read);
23289 bytes += bytes_read;
23290 break;
23291
23292 case DW_FORM_sec_offset:
23293 case DW_FORM_strp:
23294 case DW_FORM_GNU_strp_alt:
23295 bytes += offset_size;
23296 break;
23297
23298 case DW_FORM_block:
23299 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23300 bytes += bytes_read;
23301 break;
23302
23303 case DW_FORM_block1:
23304 bytes += 1 + read_1_byte (abfd, bytes);
23305 break;
23306 case DW_FORM_block2:
23307 bytes += 2 + read_2_bytes (abfd, bytes);
23308 break;
23309 case DW_FORM_block4:
23310 bytes += 4 + read_4_bytes (abfd, bytes);
23311 break;
23312
23313 case DW_FORM_addrx:
23314 case DW_FORM_sdata:
23315 case DW_FORM_strx:
23316 case DW_FORM_udata:
23317 case DW_FORM_GNU_addr_index:
23318 case DW_FORM_GNU_str_index:
23319 bytes = gdb_skip_leb128 (bytes, buffer_end);
23320 if (bytes == NULL)
23321 {
23322 dwarf2_section_buffer_overflow_complaint (section);
23323 return NULL;
23324 }
23325 break;
23326
23327 case DW_FORM_implicit_const:
23328 break;
23329
23330 default:
23331 {
23332 complaint (_("invalid form 0x%x in `%s'"),
23333 form, section->get_name ());
23334 return NULL;
23335 }
23336 }
23337
23338 return bytes;
23339 }
23340
23341 /* A helper for dwarf_decode_macros that handles skipping an unknown
23342 opcode. Returns an updated pointer to the macro data buffer; or,
23343 on error, issues a complaint and returns NULL. */
23344
23345 static const gdb_byte *
23346 skip_unknown_opcode (unsigned int opcode,
23347 const gdb_byte **opcode_definitions,
23348 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23349 bfd *abfd,
23350 unsigned int offset_size,
23351 struct dwarf2_section_info *section)
23352 {
23353 unsigned int bytes_read, i;
23354 unsigned long arg;
23355 const gdb_byte *defn;
23356
23357 if (opcode_definitions[opcode] == NULL)
23358 {
23359 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23360 opcode);
23361 return NULL;
23362 }
23363
23364 defn = opcode_definitions[opcode];
23365 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23366 defn += bytes_read;
23367
23368 for (i = 0; i < arg; ++i)
23369 {
23370 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23371 (enum dwarf_form) defn[i], offset_size,
23372 section);
23373 if (mac_ptr == NULL)
23374 {
23375 /* skip_form_bytes already issued the complaint. */
23376 return NULL;
23377 }
23378 }
23379
23380 return mac_ptr;
23381 }
23382
23383 /* A helper function which parses the header of a macro section.
23384 If the macro section is the extended (for now called "GNU") type,
23385 then this updates *OFFSET_SIZE. Returns a pointer to just after
23386 the header, or issues a complaint and returns NULL on error. */
23387
23388 static const gdb_byte *
23389 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
23390 bfd *abfd,
23391 const gdb_byte *mac_ptr,
23392 unsigned int *offset_size,
23393 int section_is_gnu)
23394 {
23395 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
23396
23397 if (section_is_gnu)
23398 {
23399 unsigned int version, flags;
23400
23401 version = read_2_bytes (abfd, mac_ptr);
23402 if (version != 4 && version != 5)
23403 {
23404 complaint (_("unrecognized version `%d' in .debug_macro section"),
23405 version);
23406 return NULL;
23407 }
23408 mac_ptr += 2;
23409
23410 flags = read_1_byte (abfd, mac_ptr);
23411 ++mac_ptr;
23412 *offset_size = (flags & 1) ? 8 : 4;
23413
23414 if ((flags & 2) != 0)
23415 /* We don't need the line table offset. */
23416 mac_ptr += *offset_size;
23417
23418 /* Vendor opcode descriptions. */
23419 if ((flags & 4) != 0)
23420 {
23421 unsigned int i, count;
23422
23423 count = read_1_byte (abfd, mac_ptr);
23424 ++mac_ptr;
23425 for (i = 0; i < count; ++i)
23426 {
23427 unsigned int opcode, bytes_read;
23428 unsigned long arg;
23429
23430 opcode = read_1_byte (abfd, mac_ptr);
23431 ++mac_ptr;
23432 opcode_definitions[opcode] = mac_ptr;
23433 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23434 mac_ptr += bytes_read;
23435 mac_ptr += arg;
23436 }
23437 }
23438 }
23439
23440 return mac_ptr;
23441 }
23442
23443 /* A helper for dwarf_decode_macros that handles the GNU extensions,
23444 including DW_MACRO_import. */
23445
23446 static void
23447 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
23448 bfd *abfd,
23449 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23450 struct macro_source_file *current_file,
23451 struct line_header *lh,
23452 struct dwarf2_section_info *section,
23453 int section_is_gnu, int section_is_dwz,
23454 unsigned int offset_size,
23455 htab_t include_hash)
23456 {
23457 struct dwarf2_per_objfile *dwarf2_per_objfile
23458 = cu->per_cu->dwarf2_per_objfile;
23459 struct objfile *objfile = dwarf2_per_objfile->objfile;
23460 enum dwarf_macro_record_type macinfo_type;
23461 int at_commandline;
23462 const gdb_byte *opcode_definitions[256];
23463
23464 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23465 &offset_size, section_is_gnu);
23466 if (mac_ptr == NULL)
23467 {
23468 /* We already issued a complaint. */
23469 return;
23470 }
23471
23472 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
23473 GDB is still reading the definitions from command line. First
23474 DW_MACINFO_start_file will need to be ignored as it was already executed
23475 to create CURRENT_FILE for the main source holding also the command line
23476 definitions. On first met DW_MACINFO_start_file this flag is reset to
23477 normally execute all the remaining DW_MACINFO_start_file macinfos. */
23478
23479 at_commandline = 1;
23480
23481 do
23482 {
23483 /* Do we at least have room for a macinfo type byte? */
23484 if (mac_ptr >= mac_end)
23485 {
23486 dwarf2_section_buffer_overflow_complaint (section);
23487 break;
23488 }
23489
23490 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23491 mac_ptr++;
23492
23493 /* Note that we rely on the fact that the corresponding GNU and
23494 DWARF constants are the same. */
23495 DIAGNOSTIC_PUSH
23496 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23497 switch (macinfo_type)
23498 {
23499 /* A zero macinfo type indicates the end of the macro
23500 information. */
23501 case 0:
23502 break;
23503
23504 case DW_MACRO_define:
23505 case DW_MACRO_undef:
23506 case DW_MACRO_define_strp:
23507 case DW_MACRO_undef_strp:
23508 case DW_MACRO_define_sup:
23509 case DW_MACRO_undef_sup:
23510 {
23511 unsigned int bytes_read;
23512 int line;
23513 const char *body;
23514 int is_define;
23515
23516 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23517 mac_ptr += bytes_read;
23518
23519 if (macinfo_type == DW_MACRO_define
23520 || macinfo_type == DW_MACRO_undef)
23521 {
23522 body = read_direct_string (abfd, mac_ptr, &bytes_read);
23523 mac_ptr += bytes_read;
23524 }
23525 else
23526 {
23527 LONGEST str_offset;
23528
23529 str_offset = read_offset (abfd, mac_ptr, offset_size);
23530 mac_ptr += offset_size;
23531
23532 if (macinfo_type == DW_MACRO_define_sup
23533 || macinfo_type == DW_MACRO_undef_sup
23534 || section_is_dwz)
23535 {
23536 struct dwz_file *dwz
23537 = dwarf2_get_dwz_file (dwarf2_per_objfile);
23538
23539 body = read_indirect_string_from_dwz (objfile,
23540 dwz, str_offset);
23541 }
23542 else
23543 body = read_indirect_string_at_offset (dwarf2_per_objfile,
23544 abfd, str_offset);
23545 }
23546
23547 is_define = (macinfo_type == DW_MACRO_define
23548 || macinfo_type == DW_MACRO_define_strp
23549 || macinfo_type == DW_MACRO_define_sup);
23550 if (! current_file)
23551 {
23552 /* DWARF violation as no main source is present. */
23553 complaint (_("debug info with no main source gives macro %s "
23554 "on line %d: %s"),
23555 is_define ? _("definition") : _("undefinition"),
23556 line, body);
23557 break;
23558 }
23559 if ((line == 0 && !at_commandline)
23560 || (line != 0 && at_commandline))
23561 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
23562 at_commandline ? _("command-line") : _("in-file"),
23563 is_define ? _("definition") : _("undefinition"),
23564 line == 0 ? _("zero") : _("non-zero"), line, body);
23565
23566 if (body == NULL)
23567 {
23568 /* Fedora's rpm-build's "debugedit" binary
23569 corrupted .debug_macro sections.
23570
23571 For more info, see
23572 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
23573 complaint (_("debug info gives %s invalid macro %s "
23574 "without body (corrupted?) at line %d "
23575 "on file %s"),
23576 at_commandline ? _("command-line") : _("in-file"),
23577 is_define ? _("definition") : _("undefinition"),
23578 line, current_file->filename);
23579 }
23580 else if (is_define)
23581 parse_macro_definition (current_file, line, body);
23582 else
23583 {
23584 gdb_assert (macinfo_type == DW_MACRO_undef
23585 || macinfo_type == DW_MACRO_undef_strp
23586 || macinfo_type == DW_MACRO_undef_sup);
23587 macro_undef (current_file, line, body);
23588 }
23589 }
23590 break;
23591
23592 case DW_MACRO_start_file:
23593 {
23594 unsigned int bytes_read;
23595 int line, file;
23596
23597 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23598 mac_ptr += bytes_read;
23599 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23600 mac_ptr += bytes_read;
23601
23602 if ((line == 0 && !at_commandline)
23603 || (line != 0 && at_commandline))
23604 complaint (_("debug info gives source %d included "
23605 "from %s at %s line %d"),
23606 file, at_commandline ? _("command-line") : _("file"),
23607 line == 0 ? _("zero") : _("non-zero"), line);
23608
23609 if (at_commandline)
23610 {
23611 /* This DW_MACRO_start_file was executed in the
23612 pass one. */
23613 at_commandline = 0;
23614 }
23615 else
23616 current_file = macro_start_file (cu, file, line, current_file,
23617 lh);
23618 }
23619 break;
23620
23621 case DW_MACRO_end_file:
23622 if (! current_file)
23623 complaint (_("macro debug info has an unmatched "
23624 "`close_file' directive"));
23625 else
23626 {
23627 current_file = current_file->included_by;
23628 if (! current_file)
23629 {
23630 enum dwarf_macro_record_type next_type;
23631
23632 /* GCC circa March 2002 doesn't produce the zero
23633 type byte marking the end of the compilation
23634 unit. Complain if it's not there, but exit no
23635 matter what. */
23636
23637 /* Do we at least have room for a macinfo type byte? */
23638 if (mac_ptr >= mac_end)
23639 {
23640 dwarf2_section_buffer_overflow_complaint (section);
23641 return;
23642 }
23643
23644 /* We don't increment mac_ptr here, so this is just
23645 a look-ahead. */
23646 next_type
23647 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23648 mac_ptr);
23649 if (next_type != 0)
23650 complaint (_("no terminating 0-type entry for "
23651 "macros in `.debug_macinfo' section"));
23652
23653 return;
23654 }
23655 }
23656 break;
23657
23658 case DW_MACRO_import:
23659 case DW_MACRO_import_sup:
23660 {
23661 LONGEST offset;
23662 void **slot;
23663 bfd *include_bfd = abfd;
23664 struct dwarf2_section_info *include_section = section;
23665 const gdb_byte *include_mac_end = mac_end;
23666 int is_dwz = section_is_dwz;
23667 const gdb_byte *new_mac_ptr;
23668
23669 offset = read_offset (abfd, mac_ptr, offset_size);
23670 mac_ptr += offset_size;
23671
23672 if (macinfo_type == DW_MACRO_import_sup)
23673 {
23674 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
23675
23676 dwz->macro.read (objfile);
23677
23678 include_section = &dwz->macro;
23679 include_bfd = include_section->get_bfd_owner ();
23680 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23681 is_dwz = 1;
23682 }
23683
23684 new_mac_ptr = include_section->buffer + offset;
23685 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23686
23687 if (*slot != NULL)
23688 {
23689 /* This has actually happened; see
23690 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23691 complaint (_("recursive DW_MACRO_import in "
23692 ".debug_macro section"));
23693 }
23694 else
23695 {
23696 *slot = (void *) new_mac_ptr;
23697
23698 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
23699 include_mac_end, current_file, lh,
23700 section, section_is_gnu, is_dwz,
23701 offset_size, include_hash);
23702
23703 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23704 }
23705 }
23706 break;
23707
23708 case DW_MACINFO_vendor_ext:
23709 if (!section_is_gnu)
23710 {
23711 unsigned int bytes_read;
23712
23713 /* This reads the constant, but since we don't recognize
23714 any vendor extensions, we ignore it. */
23715 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23716 mac_ptr += bytes_read;
23717 read_direct_string (abfd, mac_ptr, &bytes_read);
23718 mac_ptr += bytes_read;
23719
23720 /* We don't recognize any vendor extensions. */
23721 break;
23722 }
23723 /* FALLTHROUGH */
23724
23725 default:
23726 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23727 mac_ptr, mac_end, abfd, offset_size,
23728 section);
23729 if (mac_ptr == NULL)
23730 return;
23731 break;
23732 }
23733 DIAGNOSTIC_POP
23734 } while (macinfo_type != 0);
23735 }
23736
23737 static void
23738 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23739 int section_is_gnu)
23740 {
23741 struct dwarf2_per_objfile *dwarf2_per_objfile
23742 = cu->per_cu->dwarf2_per_objfile;
23743 struct objfile *objfile = dwarf2_per_objfile->objfile;
23744 struct line_header *lh = cu->line_header;
23745 bfd *abfd;
23746 const gdb_byte *mac_ptr, *mac_end;
23747 struct macro_source_file *current_file = 0;
23748 enum dwarf_macro_record_type macinfo_type;
23749 unsigned int offset_size = cu->header.offset_size;
23750 const gdb_byte *opcode_definitions[256];
23751 void **slot;
23752 struct dwarf2_section_info *section;
23753 const char *section_name;
23754
23755 if (cu->dwo_unit != NULL)
23756 {
23757 if (section_is_gnu)
23758 {
23759 section = &cu->dwo_unit->dwo_file->sections.macro;
23760 section_name = ".debug_macro.dwo";
23761 }
23762 else
23763 {
23764 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23765 section_name = ".debug_macinfo.dwo";
23766 }
23767 }
23768 else
23769 {
23770 if (section_is_gnu)
23771 {
23772 section = &dwarf2_per_objfile->macro;
23773 section_name = ".debug_macro";
23774 }
23775 else
23776 {
23777 section = &dwarf2_per_objfile->macinfo;
23778 section_name = ".debug_macinfo";
23779 }
23780 }
23781
23782 section->read (objfile);
23783 if (section->buffer == NULL)
23784 {
23785 complaint (_("missing %s section"), section_name);
23786 return;
23787 }
23788 abfd = section->get_bfd_owner ();
23789
23790 /* First pass: Find the name of the base filename.
23791 This filename is needed in order to process all macros whose definition
23792 (or undefinition) comes from the command line. These macros are defined
23793 before the first DW_MACINFO_start_file entry, and yet still need to be
23794 associated to the base file.
23795
23796 To determine the base file name, we scan the macro definitions until we
23797 reach the first DW_MACINFO_start_file entry. We then initialize
23798 CURRENT_FILE accordingly so that any macro definition found before the
23799 first DW_MACINFO_start_file can still be associated to the base file. */
23800
23801 mac_ptr = section->buffer + offset;
23802 mac_end = section->buffer + section->size;
23803
23804 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23805 &offset_size, section_is_gnu);
23806 if (mac_ptr == NULL)
23807 {
23808 /* We already issued a complaint. */
23809 return;
23810 }
23811
23812 do
23813 {
23814 /* Do we at least have room for a macinfo type byte? */
23815 if (mac_ptr >= mac_end)
23816 {
23817 /* Complaint is printed during the second pass as GDB will probably
23818 stop the first pass earlier upon finding
23819 DW_MACINFO_start_file. */
23820 break;
23821 }
23822
23823 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23824 mac_ptr++;
23825
23826 /* Note that we rely on the fact that the corresponding GNU and
23827 DWARF constants are the same. */
23828 DIAGNOSTIC_PUSH
23829 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23830 switch (macinfo_type)
23831 {
23832 /* A zero macinfo type indicates the end of the macro
23833 information. */
23834 case 0:
23835 break;
23836
23837 case DW_MACRO_define:
23838 case DW_MACRO_undef:
23839 /* Only skip the data by MAC_PTR. */
23840 {
23841 unsigned int bytes_read;
23842
23843 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23844 mac_ptr += bytes_read;
23845 read_direct_string (abfd, mac_ptr, &bytes_read);
23846 mac_ptr += bytes_read;
23847 }
23848 break;
23849
23850 case DW_MACRO_start_file:
23851 {
23852 unsigned int bytes_read;
23853 int line, file;
23854
23855 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23856 mac_ptr += bytes_read;
23857 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23858 mac_ptr += bytes_read;
23859
23860 current_file = macro_start_file (cu, file, line, current_file, lh);
23861 }
23862 break;
23863
23864 case DW_MACRO_end_file:
23865 /* No data to skip by MAC_PTR. */
23866 break;
23867
23868 case DW_MACRO_define_strp:
23869 case DW_MACRO_undef_strp:
23870 case DW_MACRO_define_sup:
23871 case DW_MACRO_undef_sup:
23872 {
23873 unsigned int bytes_read;
23874
23875 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23876 mac_ptr += bytes_read;
23877 mac_ptr += offset_size;
23878 }
23879 break;
23880
23881 case DW_MACRO_import:
23882 case DW_MACRO_import_sup:
23883 /* Note that, according to the spec, a transparent include
23884 chain cannot call DW_MACRO_start_file. So, we can just
23885 skip this opcode. */
23886 mac_ptr += offset_size;
23887 break;
23888
23889 case DW_MACINFO_vendor_ext:
23890 /* Only skip the data by MAC_PTR. */
23891 if (!section_is_gnu)
23892 {
23893 unsigned int bytes_read;
23894
23895 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23896 mac_ptr += bytes_read;
23897 read_direct_string (abfd, mac_ptr, &bytes_read);
23898 mac_ptr += bytes_read;
23899 }
23900 /* FALLTHROUGH */
23901
23902 default:
23903 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23904 mac_ptr, mac_end, abfd, offset_size,
23905 section);
23906 if (mac_ptr == NULL)
23907 return;
23908 break;
23909 }
23910 DIAGNOSTIC_POP
23911 } while (macinfo_type != 0 && current_file == NULL);
23912
23913 /* Second pass: Process all entries.
23914
23915 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23916 command-line macro definitions/undefinitions. This flag is unset when we
23917 reach the first DW_MACINFO_start_file entry. */
23918
23919 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23920 htab_eq_pointer,
23921 NULL, xcalloc, xfree));
23922 mac_ptr = section->buffer + offset;
23923 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23924 *slot = (void *) mac_ptr;
23925 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
23926 current_file, lh, section,
23927 section_is_gnu, 0, offset_size,
23928 include_hash.get ());
23929 }
23930
23931 /* Return the .debug_loc section to use for CU.
23932 For DWO files use .debug_loc.dwo. */
23933
23934 static struct dwarf2_section_info *
23935 cu_debug_loc_section (struct dwarf2_cu *cu)
23936 {
23937 struct dwarf2_per_objfile *dwarf2_per_objfile
23938 = cu->per_cu->dwarf2_per_objfile;
23939
23940 if (cu->dwo_unit)
23941 {
23942 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23943
23944 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23945 }
23946 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23947 : &dwarf2_per_objfile->loc);
23948 }
23949
23950 /* A helper function that fills in a dwarf2_loclist_baton. */
23951
23952 static void
23953 fill_in_loclist_baton (struct dwarf2_cu *cu,
23954 struct dwarf2_loclist_baton *baton,
23955 const struct attribute *attr)
23956 {
23957 struct dwarf2_per_objfile *dwarf2_per_objfile
23958 = cu->per_cu->dwarf2_per_objfile;
23959 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23960
23961 section->read (dwarf2_per_objfile->objfile);
23962
23963 baton->per_cu = cu->per_cu;
23964 gdb_assert (baton->per_cu);
23965 /* We don't know how long the location list is, but make sure we
23966 don't run off the edge of the section. */
23967 baton->size = section->size - DW_UNSND (attr);
23968 baton->data = section->buffer + DW_UNSND (attr);
23969 baton->base_address = cu->base_address;
23970 baton->from_dwo = cu->dwo_unit != NULL;
23971 }
23972
23973 static void
23974 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23975 struct dwarf2_cu *cu, int is_block)
23976 {
23977 struct dwarf2_per_objfile *dwarf2_per_objfile
23978 = cu->per_cu->dwarf2_per_objfile;
23979 struct objfile *objfile = dwarf2_per_objfile->objfile;
23980 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23981
23982 if (attr->form_is_section_offset ()
23983 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23984 the section. If so, fall through to the complaint in the
23985 other branch. */
23986 && DW_UNSND (attr) < section->get_size (objfile))
23987 {
23988 struct dwarf2_loclist_baton *baton;
23989
23990 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23991
23992 fill_in_loclist_baton (cu, baton, attr);
23993
23994 if (cu->base_known == 0)
23995 complaint (_("Location list used without "
23996 "specifying the CU base address."));
23997
23998 SYMBOL_ACLASS_INDEX (sym) = (is_block
23999 ? dwarf2_loclist_block_index
24000 : dwarf2_loclist_index);
24001 SYMBOL_LOCATION_BATON (sym) = baton;
24002 }
24003 else
24004 {
24005 struct dwarf2_locexpr_baton *baton;
24006
24007 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24008 baton->per_cu = cu->per_cu;
24009 gdb_assert (baton->per_cu);
24010
24011 if (attr->form_is_block ())
24012 {
24013 /* Note that we're just copying the block's data pointer
24014 here, not the actual data. We're still pointing into the
24015 info_buffer for SYM's objfile; right now we never release
24016 that buffer, but when we do clean up properly this may
24017 need to change. */
24018 baton->size = DW_BLOCK (attr)->size;
24019 baton->data = DW_BLOCK (attr)->data;
24020 }
24021 else
24022 {
24023 dwarf2_invalid_attrib_class_complaint ("location description",
24024 sym->natural_name ());
24025 baton->size = 0;
24026 }
24027
24028 SYMBOL_ACLASS_INDEX (sym) = (is_block
24029 ? dwarf2_locexpr_block_index
24030 : dwarf2_locexpr_index);
24031 SYMBOL_LOCATION_BATON (sym) = baton;
24032 }
24033 }
24034
24035 /* See read.h. */
24036
24037 struct objfile *
24038 dwarf2_per_cu_data::objfile () const
24039 {
24040 struct objfile *objfile = dwarf2_per_objfile->objfile;
24041
24042 /* Return the master objfile, so that we can report and look up the
24043 correct file containing this variable. */
24044 if (objfile->separate_debug_objfile_backlink)
24045 objfile = objfile->separate_debug_objfile_backlink;
24046
24047 return objfile;
24048 }
24049
24050 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24051 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24052 CU_HEADERP first. */
24053
24054 static const struct comp_unit_head *
24055 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24056 const struct dwarf2_per_cu_data *per_cu)
24057 {
24058 const gdb_byte *info_ptr;
24059
24060 if (per_cu->cu)
24061 return &per_cu->cu->header;
24062
24063 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24064
24065 memset (cu_headerp, 0, sizeof (*cu_headerp));
24066 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24067 rcuh_kind::COMPILE);
24068
24069 return cu_headerp;
24070 }
24071
24072 /* See read.h. */
24073
24074 int
24075 dwarf2_per_cu_data::addr_size () const
24076 {
24077 struct comp_unit_head cu_header_local;
24078 const struct comp_unit_head *cu_headerp;
24079
24080 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24081
24082 return cu_headerp->addr_size;
24083 }
24084
24085 /* See read.h. */
24086
24087 int
24088 dwarf2_per_cu_data::offset_size () const
24089 {
24090 struct comp_unit_head cu_header_local;
24091 const struct comp_unit_head *cu_headerp;
24092
24093 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24094
24095 return cu_headerp->offset_size;
24096 }
24097
24098 /* See read.h. */
24099
24100 int
24101 dwarf2_per_cu_data::ref_addr_size () const
24102 {
24103 struct comp_unit_head cu_header_local;
24104 const struct comp_unit_head *cu_headerp;
24105
24106 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24107
24108 if (cu_headerp->version == 2)
24109 return cu_headerp->addr_size;
24110 else
24111 return cu_headerp->offset_size;
24112 }
24113
24114 /* See read.h. */
24115
24116 CORE_ADDR
24117 dwarf2_per_cu_data::text_offset () const
24118 {
24119 struct objfile *objfile = dwarf2_per_objfile->objfile;
24120
24121 return objfile->text_section_offset ();
24122 }
24123
24124 /* See read.h. */
24125
24126 struct type *
24127 dwarf2_per_cu_data::addr_type () const
24128 {
24129 struct objfile *objfile = dwarf2_per_objfile->objfile;
24130 struct type *void_type = objfile_type (objfile)->builtin_void;
24131 struct type *addr_type = lookup_pointer_type (void_type);
24132 int addr_size = this->addr_size ();
24133
24134 if (TYPE_LENGTH (addr_type) == addr_size)
24135 return addr_type;
24136
24137 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
24138 return addr_type;
24139 }
24140
24141 /* A helper function for dwarf2_find_containing_comp_unit that returns
24142 the index of the result, and that searches a vector. It will
24143 return a result even if the offset in question does not actually
24144 occur in any CU. This is separate so that it can be unit
24145 tested. */
24146
24147 static int
24148 dwarf2_find_containing_comp_unit
24149 (sect_offset sect_off,
24150 unsigned int offset_in_dwz,
24151 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24152 {
24153 int low, high;
24154
24155 low = 0;
24156 high = all_comp_units.size () - 1;
24157 while (high > low)
24158 {
24159 struct dwarf2_per_cu_data *mid_cu;
24160 int mid = low + (high - low) / 2;
24161
24162 mid_cu = all_comp_units[mid];
24163 if (mid_cu->is_dwz > offset_in_dwz
24164 || (mid_cu->is_dwz == offset_in_dwz
24165 && mid_cu->sect_off + mid_cu->length > sect_off))
24166 high = mid;
24167 else
24168 low = mid + 1;
24169 }
24170 gdb_assert (low == high);
24171 return low;
24172 }
24173
24174 /* Locate the .debug_info compilation unit from CU's objfile which contains
24175 the DIE at OFFSET. Raises an error on failure. */
24176
24177 static struct dwarf2_per_cu_data *
24178 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24179 unsigned int offset_in_dwz,
24180 struct dwarf2_per_objfile *dwarf2_per_objfile)
24181 {
24182 int low
24183 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
24184 dwarf2_per_objfile->all_comp_units);
24185 struct dwarf2_per_cu_data *this_cu
24186 = dwarf2_per_objfile->all_comp_units[low];
24187
24188 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24189 {
24190 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24191 error (_("Dwarf Error: could not find partial DIE containing "
24192 "offset %s [in module %s]"),
24193 sect_offset_str (sect_off),
24194 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24195
24196 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24197 <= sect_off);
24198 return dwarf2_per_objfile->all_comp_units[low-1];
24199 }
24200 else
24201 {
24202 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24203 && sect_off >= this_cu->sect_off + this_cu->length)
24204 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24205 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24206 return this_cu;
24207 }
24208 }
24209
24210 #if GDB_SELF_TEST
24211
24212 namespace selftests {
24213 namespace find_containing_comp_unit {
24214
24215 static void
24216 run_test ()
24217 {
24218 struct dwarf2_per_cu_data one {};
24219 struct dwarf2_per_cu_data two {};
24220 struct dwarf2_per_cu_data three {};
24221 struct dwarf2_per_cu_data four {};
24222
24223 one.length = 5;
24224 two.sect_off = sect_offset (one.length);
24225 two.length = 7;
24226
24227 three.length = 5;
24228 three.is_dwz = 1;
24229 four.sect_off = sect_offset (three.length);
24230 four.length = 7;
24231 four.is_dwz = 1;
24232
24233 std::vector<dwarf2_per_cu_data *> units;
24234 units.push_back (&one);
24235 units.push_back (&two);
24236 units.push_back (&three);
24237 units.push_back (&four);
24238
24239 int result;
24240
24241 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24242 SELF_CHECK (units[result] == &one);
24243 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24244 SELF_CHECK (units[result] == &one);
24245 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24246 SELF_CHECK (units[result] == &two);
24247
24248 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24249 SELF_CHECK (units[result] == &three);
24250 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24251 SELF_CHECK (units[result] == &three);
24252 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24253 SELF_CHECK (units[result] == &four);
24254 }
24255
24256 }
24257 }
24258
24259 #endif /* GDB_SELF_TEST */
24260
24261 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24262
24263 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24264 : per_cu (per_cu_),
24265 mark (false),
24266 has_loclist (false),
24267 checked_producer (false),
24268 producer_is_gxx_lt_4_6 (false),
24269 producer_is_gcc_lt_4_3 (false),
24270 producer_is_icc (false),
24271 producer_is_icc_lt_14 (false),
24272 producer_is_codewarrior (false),
24273 processing_has_namespace_info (false)
24274 {
24275 per_cu->cu = this;
24276 }
24277
24278 /* Destroy a dwarf2_cu. */
24279
24280 dwarf2_cu::~dwarf2_cu ()
24281 {
24282 per_cu->cu = NULL;
24283 }
24284
24285 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24286
24287 static void
24288 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24289 enum language pretend_language)
24290 {
24291 struct attribute *attr;
24292
24293 /* Set the language we're debugging. */
24294 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24295 if (attr != nullptr)
24296 set_cu_language (DW_UNSND (attr), cu);
24297 else
24298 {
24299 cu->language = pretend_language;
24300 cu->language_defn = language_def (cu->language);
24301 }
24302
24303 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24304 }
24305
24306 /* Increase the age counter on each cached compilation unit, and free
24307 any that are too old. */
24308
24309 static void
24310 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24311 {
24312 struct dwarf2_per_cu_data *per_cu, **last_chain;
24313
24314 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24315 per_cu = dwarf2_per_objfile->read_in_chain;
24316 while (per_cu != NULL)
24317 {
24318 per_cu->cu->last_used ++;
24319 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24320 dwarf2_mark (per_cu->cu);
24321 per_cu = per_cu->cu->read_in_chain;
24322 }
24323
24324 per_cu = dwarf2_per_objfile->read_in_chain;
24325 last_chain = &dwarf2_per_objfile->read_in_chain;
24326 while (per_cu != NULL)
24327 {
24328 struct dwarf2_per_cu_data *next_cu;
24329
24330 next_cu = per_cu->cu->read_in_chain;
24331
24332 if (!per_cu->cu->mark)
24333 {
24334 delete per_cu->cu;
24335 *last_chain = next_cu;
24336 }
24337 else
24338 last_chain = &per_cu->cu->read_in_chain;
24339
24340 per_cu = next_cu;
24341 }
24342 }
24343
24344 /* Remove a single compilation unit from the cache. */
24345
24346 static void
24347 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24348 {
24349 struct dwarf2_per_cu_data *per_cu, **last_chain;
24350 struct dwarf2_per_objfile *dwarf2_per_objfile
24351 = target_per_cu->dwarf2_per_objfile;
24352
24353 per_cu = dwarf2_per_objfile->read_in_chain;
24354 last_chain = &dwarf2_per_objfile->read_in_chain;
24355 while (per_cu != NULL)
24356 {
24357 struct dwarf2_per_cu_data *next_cu;
24358
24359 next_cu = per_cu->cu->read_in_chain;
24360
24361 if (per_cu == target_per_cu)
24362 {
24363 delete per_cu->cu;
24364 per_cu->cu = NULL;
24365 *last_chain = next_cu;
24366 break;
24367 }
24368 else
24369 last_chain = &per_cu->cu->read_in_chain;
24370
24371 per_cu = next_cu;
24372 }
24373 }
24374
24375 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24376 We store these in a hash table separate from the DIEs, and preserve them
24377 when the DIEs are flushed out of cache.
24378
24379 The CU "per_cu" pointer is needed because offset alone is not enough to
24380 uniquely identify the type. A file may have multiple .debug_types sections,
24381 or the type may come from a DWO file. Furthermore, while it's more logical
24382 to use per_cu->section+offset, with Fission the section with the data is in
24383 the DWO file but we don't know that section at the point we need it.
24384 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24385 because we can enter the lookup routine, get_die_type_at_offset, from
24386 outside this file, and thus won't necessarily have PER_CU->cu.
24387 Fortunately, PER_CU is stable for the life of the objfile. */
24388
24389 struct dwarf2_per_cu_offset_and_type
24390 {
24391 const struct dwarf2_per_cu_data *per_cu;
24392 sect_offset sect_off;
24393 struct type *type;
24394 };
24395
24396 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24397
24398 static hashval_t
24399 per_cu_offset_and_type_hash (const void *item)
24400 {
24401 const struct dwarf2_per_cu_offset_and_type *ofs
24402 = (const struct dwarf2_per_cu_offset_and_type *) item;
24403
24404 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24405 }
24406
24407 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24408
24409 static int
24410 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24411 {
24412 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24413 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24414 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24415 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24416
24417 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24418 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24419 }
24420
24421 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24422 table if necessary. For convenience, return TYPE.
24423
24424 The DIEs reading must have careful ordering to:
24425 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24426 reading current DIE.
24427 * Not trying to dereference contents of still incompletely read in types
24428 while reading in other DIEs.
24429 * Enable referencing still incompletely read in types just by a pointer to
24430 the type without accessing its fields.
24431
24432 Therefore caller should follow these rules:
24433 * Try to fetch any prerequisite types we may need to build this DIE type
24434 before building the type and calling set_die_type.
24435 * After building type call set_die_type for current DIE as soon as
24436 possible before fetching more types to complete the current type.
24437 * Make the type as complete as possible before fetching more types. */
24438
24439 static struct type *
24440 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24441 {
24442 struct dwarf2_per_objfile *dwarf2_per_objfile
24443 = cu->per_cu->dwarf2_per_objfile;
24444 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24445 struct objfile *objfile = dwarf2_per_objfile->objfile;
24446 struct attribute *attr;
24447 struct dynamic_prop prop;
24448
24449 /* For Ada types, make sure that the gnat-specific data is always
24450 initialized (if not already set). There are a few types where
24451 we should not be doing so, because the type-specific area is
24452 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24453 where the type-specific area is used to store the floatformat).
24454 But this is not a problem, because the gnat-specific information
24455 is actually not needed for these types. */
24456 if (need_gnat_info (cu)
24457 && TYPE_CODE (type) != TYPE_CODE_FUNC
24458 && TYPE_CODE (type) != TYPE_CODE_FLT
24459 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
24460 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
24461 && TYPE_CODE (type) != TYPE_CODE_METHOD
24462 && !HAVE_GNAT_AUX_INFO (type))
24463 INIT_GNAT_SPECIFIC (type);
24464
24465 /* Read DW_AT_allocated and set in type. */
24466 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24467 if (attr != NULL && attr->form_is_block ())
24468 {
24469 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24470 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24471 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
24472 }
24473 else if (attr != NULL)
24474 {
24475 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
24476 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24477 sect_offset_str (die->sect_off));
24478 }
24479
24480 /* Read DW_AT_associated and set in type. */
24481 attr = dwarf2_attr (die, DW_AT_associated, cu);
24482 if (attr != NULL && attr->form_is_block ())
24483 {
24484 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24485 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24486 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
24487 }
24488 else if (attr != NULL)
24489 {
24490 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
24491 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24492 sect_offset_str (die->sect_off));
24493 }
24494
24495 /* Read DW_AT_data_location and set in type. */
24496 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24497 if (attr_to_dynamic_prop (attr, die, cu, &prop,
24498 cu->per_cu->addr_type ()))
24499 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
24500
24501 if (dwarf2_per_objfile->die_type_hash == NULL)
24502 dwarf2_per_objfile->die_type_hash
24503 = htab_up (htab_create_alloc (127,
24504 per_cu_offset_and_type_hash,
24505 per_cu_offset_and_type_eq,
24506 NULL, xcalloc, xfree));
24507
24508 ofs.per_cu = cu->per_cu;
24509 ofs.sect_off = die->sect_off;
24510 ofs.type = type;
24511 slot = (struct dwarf2_per_cu_offset_and_type **)
24512 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
24513 if (*slot)
24514 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24515 sect_offset_str (die->sect_off));
24516 *slot = XOBNEW (&objfile->objfile_obstack,
24517 struct dwarf2_per_cu_offset_and_type);
24518 **slot = ofs;
24519 return type;
24520 }
24521
24522 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24523 or return NULL if the die does not have a saved type. */
24524
24525 static struct type *
24526 get_die_type_at_offset (sect_offset sect_off,
24527 struct dwarf2_per_cu_data *per_cu)
24528 {
24529 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24530 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
24531
24532 if (dwarf2_per_objfile->die_type_hash == NULL)
24533 return NULL;
24534
24535 ofs.per_cu = per_cu;
24536 ofs.sect_off = sect_off;
24537 slot = ((struct dwarf2_per_cu_offset_and_type *)
24538 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
24539 if (slot)
24540 return slot->type;
24541 else
24542 return NULL;
24543 }
24544
24545 /* Look up the type for DIE in CU in die_type_hash,
24546 or return NULL if DIE does not have a saved type. */
24547
24548 static struct type *
24549 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24550 {
24551 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24552 }
24553
24554 /* Add a dependence relationship from CU to REF_PER_CU. */
24555
24556 static void
24557 dwarf2_add_dependence (struct dwarf2_cu *cu,
24558 struct dwarf2_per_cu_data *ref_per_cu)
24559 {
24560 void **slot;
24561
24562 if (cu->dependencies == NULL)
24563 cu->dependencies
24564 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24565 NULL, &cu->comp_unit_obstack,
24566 hashtab_obstack_allocate,
24567 dummy_obstack_deallocate);
24568
24569 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24570 if (*slot == NULL)
24571 *slot = ref_per_cu;
24572 }
24573
24574 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24575 Set the mark field in every compilation unit in the
24576 cache that we must keep because we are keeping CU. */
24577
24578 static int
24579 dwarf2_mark_helper (void **slot, void *data)
24580 {
24581 struct dwarf2_per_cu_data *per_cu;
24582
24583 per_cu = (struct dwarf2_per_cu_data *) *slot;
24584
24585 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24586 reading of the chain. As such dependencies remain valid it is not much
24587 useful to track and undo them during QUIT cleanups. */
24588 if (per_cu->cu == NULL)
24589 return 1;
24590
24591 if (per_cu->cu->mark)
24592 return 1;
24593 per_cu->cu->mark = true;
24594
24595 if (per_cu->cu->dependencies != NULL)
24596 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24597
24598 return 1;
24599 }
24600
24601 /* Set the mark field in CU and in every other compilation unit in the
24602 cache that we must keep because we are keeping CU. */
24603
24604 static void
24605 dwarf2_mark (struct dwarf2_cu *cu)
24606 {
24607 if (cu->mark)
24608 return;
24609 cu->mark = true;
24610 if (cu->dependencies != NULL)
24611 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24612 }
24613
24614 static void
24615 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24616 {
24617 while (per_cu)
24618 {
24619 per_cu->cu->mark = false;
24620 per_cu = per_cu->cu->read_in_chain;
24621 }
24622 }
24623
24624 /* Trivial hash function for partial_die_info: the hash value of a DIE
24625 is its offset in .debug_info for this objfile. */
24626
24627 static hashval_t
24628 partial_die_hash (const void *item)
24629 {
24630 const struct partial_die_info *part_die
24631 = (const struct partial_die_info *) item;
24632
24633 return to_underlying (part_die->sect_off);
24634 }
24635
24636 /* Trivial comparison function for partial_die_info structures: two DIEs
24637 are equal if they have the same offset. */
24638
24639 static int
24640 partial_die_eq (const void *item_lhs, const void *item_rhs)
24641 {
24642 const struct partial_die_info *part_die_lhs
24643 = (const struct partial_die_info *) item_lhs;
24644 const struct partial_die_info *part_die_rhs
24645 = (const struct partial_die_info *) item_rhs;
24646
24647 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24648 }
24649
24650 struct cmd_list_element *set_dwarf_cmdlist;
24651 struct cmd_list_element *show_dwarf_cmdlist;
24652
24653 static void
24654 set_dwarf_cmd (const char *args, int from_tty)
24655 {
24656 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24657 gdb_stdout);
24658 }
24659
24660 static void
24661 show_dwarf_cmd (const char *args, int from_tty)
24662 {
24663 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24664 }
24665
24666 static void
24667 show_check_physname (struct ui_file *file, int from_tty,
24668 struct cmd_list_element *c, const char *value)
24669 {
24670 fprintf_filtered (file,
24671 _("Whether to check \"physname\" is %s.\n"),
24672 value);
24673 }
24674
24675 void _initialize_dwarf2_read ();
24676 void
24677 _initialize_dwarf2_read ()
24678 {
24679 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24680 Set DWARF specific variables.\n\
24681 Configure DWARF variables such as the cache size."),
24682 &set_dwarf_cmdlist, "maintenance set dwarf ",
24683 0/*allow-unknown*/, &maintenance_set_cmdlist);
24684
24685 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24686 Show DWARF specific variables.\n\
24687 Show DWARF variables such as the cache size."),
24688 &show_dwarf_cmdlist, "maintenance show dwarf ",
24689 0/*allow-unknown*/, &maintenance_show_cmdlist);
24690
24691 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24692 &dwarf_max_cache_age, _("\
24693 Set the upper bound on the age of cached DWARF compilation units."), _("\
24694 Show the upper bound on the age of cached DWARF compilation units."), _("\
24695 A higher limit means that cached compilation units will be stored\n\
24696 in memory longer, and more total memory will be used. Zero disables\n\
24697 caching, which can slow down startup."),
24698 NULL,
24699 show_dwarf_max_cache_age,
24700 &set_dwarf_cmdlist,
24701 &show_dwarf_cmdlist);
24702
24703 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24704 Set debugging of the DWARF reader."), _("\
24705 Show debugging of the DWARF reader."), _("\
24706 When enabled (non-zero), debugging messages are printed during DWARF\n\
24707 reading and symtab expansion. A value of 1 (one) provides basic\n\
24708 information. A value greater than 1 provides more verbose information."),
24709 NULL,
24710 NULL,
24711 &setdebuglist, &showdebuglist);
24712
24713 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24714 Set debugging of the DWARF DIE reader."), _("\
24715 Show debugging of the DWARF DIE reader."), _("\
24716 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24717 The value is the maximum depth to print."),
24718 NULL,
24719 NULL,
24720 &setdebuglist, &showdebuglist);
24721
24722 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24723 Set debugging of the dwarf line reader."), _("\
24724 Show debugging of the dwarf line reader."), _("\
24725 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24726 A value of 1 (one) provides basic information.\n\
24727 A value greater than 1 provides more verbose information."),
24728 NULL,
24729 NULL,
24730 &setdebuglist, &showdebuglist);
24731
24732 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24733 Set cross-checking of \"physname\" code against demangler."), _("\
24734 Show cross-checking of \"physname\" code against demangler."), _("\
24735 When enabled, GDB's internal \"physname\" code is checked against\n\
24736 the demangler."),
24737 NULL, show_check_physname,
24738 &setdebuglist, &showdebuglist);
24739
24740 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24741 no_class, &use_deprecated_index_sections, _("\
24742 Set whether to use deprecated gdb_index sections."), _("\
24743 Show whether to use deprecated gdb_index sections."), _("\
24744 When enabled, deprecated .gdb_index sections are used anyway.\n\
24745 Normally they are ignored either because of a missing feature or\n\
24746 performance issue.\n\
24747 Warning: This option must be enabled before gdb reads the file."),
24748 NULL,
24749 NULL,
24750 &setlist, &showlist);
24751
24752 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24753 &dwarf2_locexpr_funcs);
24754 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24755 &dwarf2_loclist_funcs);
24756
24757 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24758 &dwarf2_block_frame_base_locexpr_funcs);
24759 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24760 &dwarf2_block_frame_base_loclist_funcs);
24761
24762 #if GDB_SELF_TEST
24763 selftests::register_test ("dw2_expand_symtabs_matching",
24764 selftests::dw2_expand_symtabs_matching::run_test);
24765 selftests::register_test ("dwarf2_find_containing_comp_unit",
24766 selftests::find_containing_comp_unit::run_test);
24767 #endif
24768 }
This page took 0.510122 seconds and 5 git commands to generate.