2020-04-29 Sterling Augustine <saugustine@google.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 struct variant_part_builder;
1086
1087 /* When reading a variant, we track a bit more information about the
1088 field, and store it in an object of this type. */
1089
1090 struct variant_field
1091 {
1092 int first_field = -1;
1093 int last_field = -1;
1094
1095 /* A variant can contain other variant parts. */
1096 std::vector<variant_part_builder> variant_parts;
1097
1098 /* If we see a DW_TAG_variant, then this will be set if this is the
1099 default branch. */
1100 bool default_branch = false;
1101 /* If we see a DW_AT_discr_value, then this will be the discriminant
1102 value. */
1103 ULONGEST discriminant_value = 0;
1104 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1105 data. */
1106 struct dwarf_block *discr_list_data = nullptr;
1107 };
1108
1109 /* This represents a DW_TAG_variant_part. */
1110
1111 struct variant_part_builder
1112 {
1113 /* The offset of the discriminant field. */
1114 sect_offset discriminant_offset {};
1115
1116 /* Variants that are direct children of this variant part. */
1117 std::vector<variant_field> variants;
1118
1119 /* True if we're currently reading a variant. */
1120 bool processing_variant = false;
1121 };
1122
1123 struct nextfield
1124 {
1125 int accessibility = 0;
1126 int virtuality = 0;
1127 /* Variant parts need to find the discriminant, which is a DIE
1128 reference. We track the section offset of each field to make
1129 this link. */
1130 sect_offset offset;
1131 struct field field {};
1132 };
1133
1134 struct fnfieldlist
1135 {
1136 const char *name = nullptr;
1137 std::vector<struct fn_field> fnfields;
1138 };
1139
1140 /* The routines that read and process dies for a C struct or C++ class
1141 pass lists of data member fields and lists of member function fields
1142 in an instance of a field_info structure, as defined below. */
1143 struct field_info
1144 {
1145 /* List of data member and baseclasses fields. */
1146 std::vector<struct nextfield> fields;
1147 std::vector<struct nextfield> baseclasses;
1148
1149 /* Set if the accessibility of one of the fields is not public. */
1150 int non_public_fields = 0;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 std::vector<struct fnfieldlist> fnfieldlists;
1156
1157 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1158 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1159 std::vector<struct decl_field> typedef_field_list;
1160
1161 /* Nested types defined by this class and the number of elements in this
1162 list. */
1163 std::vector<struct decl_field> nested_types_list;
1164
1165 /* If non-null, this is the variant part we are currently
1166 reading. */
1167 variant_part_builder *current_variant_part = nullptr;
1168 /* This holds all the top-level variant parts attached to the type
1169 we're reading. */
1170 std::vector<variant_part_builder> variant_parts;
1171
1172 /* Return the total number of fields (including baseclasses). */
1173 int nfields () const
1174 {
1175 return fields.size () + baseclasses.size ();
1176 }
1177 };
1178
1179 /* Loaded secondary compilation units are kept in memory until they
1180 have not been referenced for the processing of this many
1181 compilation units. Set this to zero to disable caching. Cache
1182 sizes of up to at least twenty will improve startup time for
1183 typical inter-CU-reference binaries, at an obvious memory cost. */
1184 static int dwarf_max_cache_age = 5;
1185 static void
1186 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("The upper bound on the age of cached "
1190 "DWARF compilation units is %s.\n"),
1191 value);
1192 }
1193 \f
1194 /* local function prototypes */
1195
1196 static void dwarf2_find_base_address (struct die_info *die,
1197 struct dwarf2_cu *cu);
1198
1199 static dwarf2_psymtab *create_partial_symtab
1200 (struct dwarf2_per_cu_data *per_cu, const char *name);
1201
1202 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1203 const gdb_byte *info_ptr,
1204 struct die_info *type_unit_die);
1205
1206 static void dwarf2_build_psymtabs_hard
1207 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1208
1209 static void scan_partial_symbols (struct partial_die_info *,
1210 CORE_ADDR *, CORE_ADDR *,
1211 int, struct dwarf2_cu *);
1212
1213 static void add_partial_symbol (struct partial_die_info *,
1214 struct dwarf2_cu *);
1215
1216 static void add_partial_namespace (struct partial_die_info *pdi,
1217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1218 int set_addrmap, struct dwarf2_cu *cu);
1219
1220 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1221 CORE_ADDR *highpc, int set_addrmap,
1222 struct dwarf2_cu *cu);
1223
1224 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1225 struct dwarf2_cu *cu);
1226
1227 static void add_partial_subprogram (struct partial_die_info *pdi,
1228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1229 int need_pc, struct dwarf2_cu *cu);
1230
1231 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1232
1233 static struct partial_die_info *load_partial_dies
1234 (const struct die_reader_specs *, const gdb_byte *, int);
1235
1236 /* A pair of partial_die_info and compilation unit. */
1237 struct cu_partial_die_info
1238 {
1239 /* The compilation unit of the partial_die_info. */
1240 struct dwarf2_cu *cu;
1241 /* A partial_die_info. */
1242 struct partial_die_info *pdi;
1243
1244 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1245 : cu (cu),
1246 pdi (pdi)
1247 { /* Nothing. */ }
1248
1249 private:
1250 cu_partial_die_info () = delete;
1251 };
1252
1253 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1254 struct dwarf2_cu *);
1255
1256 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1257 struct attribute *, struct attr_abbrev *,
1258 const gdb_byte *, bool *need_reprocess);
1259
1260 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1261 struct attribute *attr);
1262
1263 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1264
1265 static sect_offset read_abbrev_offset
1266 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1267 struct dwarf2_section_info *, sect_offset);
1268
1269 static const char *read_indirect_string
1270 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1271 const struct comp_unit_head *, unsigned int *);
1272
1273 static const char *read_indirect_string_at_offset
1274 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1275
1276 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1277 const gdb_byte *,
1278 unsigned int *);
1279
1280 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1281 ULONGEST str_index);
1282
1283 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1284 ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1292 struct dwarf2_cu *cu);
1293
1294 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1295
1296 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1297 struct dwarf2_cu *cu);
1298
1299 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1300
1301 static struct die_info *die_specification (struct die_info *die,
1302 struct dwarf2_cu **);
1303
1304 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1305 struct dwarf2_cu *cu);
1306
1307 static void dwarf_decode_lines (struct line_header *, const char *,
1308 struct dwarf2_cu *, dwarf2_psymtab *,
1309 CORE_ADDR, int decode_mapping);
1310
1311 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1312 const char *);
1313
1314 static struct symbol *new_symbol (struct die_info *, struct type *,
1315 struct dwarf2_cu *, struct symbol * = NULL);
1316
1317 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_const_value_attr (const struct attribute *attr,
1321 struct type *type,
1322 const char *name,
1323 struct obstack *obstack,
1324 struct dwarf2_cu *cu, LONGEST *value,
1325 const gdb_byte **bytes,
1326 struct dwarf2_locexpr_baton **baton);
1327
1328 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1329
1330 static int need_gnat_info (struct dwarf2_cu *);
1331
1332 static struct type *die_descriptive_type (struct die_info *,
1333 struct dwarf2_cu *);
1334
1335 static void set_descriptive_type (struct type *, struct die_info *,
1336 struct dwarf2_cu *);
1337
1338 static struct type *die_containing_type (struct die_info *,
1339 struct dwarf2_cu *);
1340
1341 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1342 struct dwarf2_cu *);
1343
1344 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1345
1346 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1347
1348 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1349
1350 static char *typename_concat (struct obstack *obs, const char *prefix,
1351 const char *suffix, int physname,
1352 struct dwarf2_cu *cu);
1353
1354 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1355
1356 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1357
1358 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1359
1360 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1361
1362 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1363
1364 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1365
1366 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *, dwarf2_psymtab *);
1368
1369 /* Return the .debug_loclists section to use for cu. */
1370 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1371
1372 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1373 values. Keep the items ordered with increasing constraints compliance. */
1374 enum pc_bounds_kind
1375 {
1376 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1377 PC_BOUNDS_NOT_PRESENT,
1378
1379 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1380 were present but they do not form a valid range of PC addresses. */
1381 PC_BOUNDS_INVALID,
1382
1383 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1384 PC_BOUNDS_RANGES,
1385
1386 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1387 PC_BOUNDS_HIGH_LOW,
1388 };
1389
1390 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1391 CORE_ADDR *, CORE_ADDR *,
1392 struct dwarf2_cu *,
1393 dwarf2_psymtab *);
1394
1395 static void get_scope_pc_bounds (struct die_info *,
1396 CORE_ADDR *, CORE_ADDR *,
1397 struct dwarf2_cu *);
1398
1399 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1400 CORE_ADDR, struct dwarf2_cu *);
1401
1402 static void dwarf2_add_field (struct field_info *, struct die_info *,
1403 struct dwarf2_cu *);
1404
1405 static void dwarf2_attach_fields_to_type (struct field_info *,
1406 struct type *, struct dwarf2_cu *);
1407
1408 static void dwarf2_add_member_fn (struct field_info *,
1409 struct die_info *, struct type *,
1410 struct dwarf2_cu *);
1411
1412 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1413 struct type *,
1414 struct dwarf2_cu *);
1415
1416 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1419
1420 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1421
1422 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1423
1424 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1425
1426 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1427
1428 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1429
1430 static struct type *read_module_type (struct die_info *die,
1431 struct dwarf2_cu *cu);
1432
1433 static const char *namespace_name (struct die_info *die,
1434 int *is_anonymous, struct dwarf2_cu *);
1435
1436 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1439 bool * = nullptr);
1440
1441 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1442 struct dwarf2_cu *);
1443
1444 static struct die_info *read_die_and_siblings_1
1445 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1446 struct die_info *);
1447
1448 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1449 const gdb_byte *info_ptr,
1450 const gdb_byte **new_info_ptr,
1451 struct die_info *parent);
1452
1453 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1454 struct die_info **, const gdb_byte *,
1455 int);
1456
1457 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1458 struct die_info **, const gdb_byte *);
1459
1460 static void process_die (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1463 struct objfile *);
1464
1465 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1466
1467 static const char *dwarf2_full_name (const char *name,
1468 struct die_info *die,
1469 struct dwarf2_cu *cu);
1470
1471 static const char *dwarf2_physname (const char *name, struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct die_info *dwarf2_extension (struct die_info *die,
1475 struct dwarf2_cu **);
1476
1477 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1478
1479 static void dump_die_for_error (struct die_info *);
1480
1481 static void dump_die_1 (struct ui_file *, int level, int max_level,
1482 struct die_info *);
1483
1484 /*static*/ void dump_die (struct die_info *, int max_level);
1485
1486 static void store_in_ref_table (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_debug_line_missing_file_complaint (void)
1682 {
1683 complaint (_(".debug_line section has line data without a file"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_end_sequence_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line "
1690 "program sequence without an end"));
1691 }
1692
1693 static void
1694 dwarf2_complex_location_expr_complaint (void)
1695 {
1696 complaint (_("location expression too complex"));
1697 }
1698
1699 static void
1700 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1701 int arg3)
1702 {
1703 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1704 arg1, arg2, arg3);
1705 }
1706
1707 static void
1708 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1709 {
1710 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1711 arg1, arg2);
1712 }
1713
1714 /* Hash function for line_header_hash. */
1715
1716 static hashval_t
1717 line_header_hash (const struct line_header *ofs)
1718 {
1719 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1720 }
1721
1722 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1723
1724 static hashval_t
1725 line_header_hash_voidp (const void *item)
1726 {
1727 const struct line_header *ofs = (const struct line_header *) item;
1728
1729 return line_header_hash (ofs);
1730 }
1731
1732 /* Equality function for line_header_hash. */
1733
1734 static int
1735 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1736 {
1737 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1738 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1739
1740 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1741 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1742 }
1743
1744 \f
1745
1746 /* See declaration. */
1747
1748 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1749 const dwarf2_debug_sections *names,
1750 bool can_copy_)
1751 : objfile (objfile_),
1752 can_copy (can_copy_)
1753 {
1754 if (names == NULL)
1755 names = &dwarf2_elf_names;
1756
1757 bfd *obfd = objfile->obfd;
1758
1759 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1760 locate_sections (obfd, sec, *names);
1761 }
1762
1763 dwarf2_per_objfile::~dwarf2_per_objfile ()
1764 {
1765 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1766 free_cached_comp_units ();
1767
1768 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1769 per_cu->imported_symtabs_free ();
1770
1771 for (signatured_type *sig_type : all_type_units)
1772 sig_type->per_cu.imported_symtabs_free ();
1773
1774 /* Everything else should be on the objfile obstack. */
1775 }
1776
1777 /* See declaration. */
1778
1779 void
1780 dwarf2_per_objfile::free_cached_comp_units ()
1781 {
1782 dwarf2_per_cu_data *per_cu = read_in_chain;
1783 dwarf2_per_cu_data **last_chain = &read_in_chain;
1784 while (per_cu != NULL)
1785 {
1786 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1787
1788 delete per_cu->cu;
1789 *last_chain = next_cu;
1790 per_cu = next_cu;
1791 }
1792 }
1793
1794 /* A helper class that calls free_cached_comp_units on
1795 destruction. */
1796
1797 class free_cached_comp_units
1798 {
1799 public:
1800
1801 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1802 : m_per_objfile (per_objfile)
1803 {
1804 }
1805
1806 ~free_cached_comp_units ()
1807 {
1808 m_per_objfile->free_cached_comp_units ();
1809 }
1810
1811 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1812
1813 private:
1814
1815 dwarf2_per_objfile *m_per_objfile;
1816 };
1817
1818 /* Try to locate the sections we need for DWARF 2 debugging
1819 information and return true if we have enough to do something.
1820 NAMES points to the dwarf2 section names, or is NULL if the standard
1821 ELF names are used. CAN_COPY is true for formats where symbol
1822 interposition is possible and so symbol values must follow copy
1823 relocation rules. */
1824
1825 int
1826 dwarf2_has_info (struct objfile *objfile,
1827 const struct dwarf2_debug_sections *names,
1828 bool can_copy)
1829 {
1830 if (objfile->flags & OBJF_READNEVER)
1831 return 0;
1832
1833 struct dwarf2_per_objfile *dwarf2_per_objfile
1834 = get_dwarf2_per_objfile (objfile);
1835
1836 if (dwarf2_per_objfile == NULL)
1837 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1838 names,
1839 can_copy);
1840
1841 return (!dwarf2_per_objfile->info.is_virtual
1842 && dwarf2_per_objfile->info.s.section != NULL
1843 && !dwarf2_per_objfile->abbrev.is_virtual
1844 && dwarf2_per_objfile->abbrev.s.section != NULL);
1845 }
1846
1847 /* When loading sections, we look either for uncompressed section or for
1848 compressed section names. */
1849
1850 static int
1851 section_is_p (const char *section_name,
1852 const struct dwarf2_section_names *names)
1853 {
1854 if (names->normal != NULL
1855 && strcmp (section_name, names->normal) == 0)
1856 return 1;
1857 if (names->compressed != NULL
1858 && strcmp (section_name, names->compressed) == 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /* See declaration. */
1864
1865 void
1866 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1867 const dwarf2_debug_sections &names)
1868 {
1869 flagword aflag = bfd_section_flags (sectp);
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (elf_section_data (sectp)->this_hdr.sh_size
1875 > bfd_get_file_size (abfd))
1876 {
1877 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1878 warning (_("Discarding section %s which has a section size (%s"
1879 ") larger than the file size [in module %s]"),
1880 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1881 bfd_get_filename (abfd));
1882 }
1883 else if (section_is_p (sectp->name, &names.info))
1884 {
1885 this->info.s.section = sectp;
1886 this->info.size = bfd_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names.abbrev))
1889 {
1890 this->abbrev.s.section = sectp;
1891 this->abbrev.size = bfd_section_size (sectp);
1892 }
1893 else if (section_is_p (sectp->name, &names.line))
1894 {
1895 this->line.s.section = sectp;
1896 this->line.size = bfd_section_size (sectp);
1897 }
1898 else if (section_is_p (sectp->name, &names.loc))
1899 {
1900 this->loc.s.section = sectp;
1901 this->loc.size = bfd_section_size (sectp);
1902 }
1903 else if (section_is_p (sectp->name, &names.loclists))
1904 {
1905 this->loclists.s.section = sectp;
1906 this->loclists.size = bfd_section_size (sectp);
1907 }
1908 else if (section_is_p (sectp->name, &names.macinfo))
1909 {
1910 this->macinfo.s.section = sectp;
1911 this->macinfo.size = bfd_section_size (sectp);
1912 }
1913 else if (section_is_p (sectp->name, &names.macro))
1914 {
1915 this->macro.s.section = sectp;
1916 this->macro.size = bfd_section_size (sectp);
1917 }
1918 else if (section_is_p (sectp->name, &names.str))
1919 {
1920 this->str.s.section = sectp;
1921 this->str.size = bfd_section_size (sectp);
1922 }
1923 else if (section_is_p (sectp->name, &names.str_offsets))
1924 {
1925 this->str_offsets.s.section = sectp;
1926 this->str_offsets.size = bfd_section_size (sectp);
1927 }
1928 else if (section_is_p (sectp->name, &names.line_str))
1929 {
1930 this->line_str.s.section = sectp;
1931 this->line_str.size = bfd_section_size (sectp);
1932 }
1933 else if (section_is_p (sectp->name, &names.addr))
1934 {
1935 this->addr.s.section = sectp;
1936 this->addr.size = bfd_section_size (sectp);
1937 }
1938 else if (section_is_p (sectp->name, &names.frame))
1939 {
1940 this->frame.s.section = sectp;
1941 this->frame.size = bfd_section_size (sectp);
1942 }
1943 else if (section_is_p (sectp->name, &names.eh_frame))
1944 {
1945 this->eh_frame.s.section = sectp;
1946 this->eh_frame.size = bfd_section_size (sectp);
1947 }
1948 else if (section_is_p (sectp->name, &names.ranges))
1949 {
1950 this->ranges.s.section = sectp;
1951 this->ranges.size = bfd_section_size (sectp);
1952 }
1953 else if (section_is_p (sectp->name, &names.rnglists))
1954 {
1955 this->rnglists.s.section = sectp;
1956 this->rnglists.size = bfd_section_size (sectp);
1957 }
1958 else if (section_is_p (sectp->name, &names.types))
1959 {
1960 struct dwarf2_section_info type_section;
1961
1962 memset (&type_section, 0, sizeof (type_section));
1963 type_section.s.section = sectp;
1964 type_section.size = bfd_section_size (sectp);
1965
1966 this->types.push_back (type_section);
1967 }
1968 else if (section_is_p (sectp->name, &names.gdb_index))
1969 {
1970 this->gdb_index.s.section = sectp;
1971 this->gdb_index.size = bfd_section_size (sectp);
1972 }
1973 else if (section_is_p (sectp->name, &names.debug_names))
1974 {
1975 this->debug_names.s.section = sectp;
1976 this->debug_names.size = bfd_section_size (sectp);
1977 }
1978 else if (section_is_p (sectp->name, &names.debug_aranges))
1979 {
1980 this->debug_aranges.s.section = sectp;
1981 this->debug_aranges.size = bfd_section_size (sectp);
1982 }
1983
1984 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1985 && bfd_section_vma (sectp) == 0)
1986 this->has_section_at_zero = true;
1987 }
1988
1989 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 SECTION_NAME. */
1991
1992 void
1993 dwarf2_get_section_info (struct objfile *objfile,
1994 enum dwarf2_section_enum sect,
1995 asection **sectp, const gdb_byte **bufp,
1996 bfd_size_type *sizep)
1997 {
1998 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1999 struct dwarf2_section_info *info;
2000
2001 /* We may see an objfile without any DWARF, in which case we just
2002 return nothing. */
2003 if (data == NULL)
2004 {
2005 *sectp = NULL;
2006 *bufp = NULL;
2007 *sizep = 0;
2008 return;
2009 }
2010 switch (sect)
2011 {
2012 case DWARF2_DEBUG_FRAME:
2013 info = &data->frame;
2014 break;
2015 case DWARF2_EH_FRAME:
2016 info = &data->eh_frame;
2017 break;
2018 default:
2019 gdb_assert_not_reached ("unexpected section");
2020 }
2021
2022 info->read (objfile);
2023
2024 *sectp = info->get_bfd_section ();
2025 *bufp = info->buffer;
2026 *sizep = info->size;
2027 }
2028
2029 /* A helper function to find the sections for a .dwz file. */
2030
2031 static void
2032 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2033 {
2034 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2035
2036 /* Note that we only support the standard ELF names, because .dwz
2037 is ELF-only (at the time of writing). */
2038 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2039 {
2040 dwz_file->abbrev.s.section = sectp;
2041 dwz_file->abbrev.size = bfd_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2044 {
2045 dwz_file->info.s.section = sectp;
2046 dwz_file->info.size = bfd_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2049 {
2050 dwz_file->str.s.section = sectp;
2051 dwz_file->str.size = bfd_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2054 {
2055 dwz_file->line.s.section = sectp;
2056 dwz_file->line.size = bfd_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2059 {
2060 dwz_file->macro.s.section = sectp;
2061 dwz_file->macro.size = bfd_section_size (sectp);
2062 }
2063 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2064 {
2065 dwz_file->gdb_index.s.section = sectp;
2066 dwz_file->gdb_index.size = bfd_section_size (sectp);
2067 }
2068 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2069 {
2070 dwz_file->debug_names.s.section = sectp;
2071 dwz_file->debug_names.size = bfd_section_size (sectp);
2072 }
2073 }
2074
2075 /* See dwarf2read.h. */
2076
2077 struct dwz_file *
2078 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2079 {
2080 const char *filename;
2081 bfd_size_type buildid_len_arg;
2082 size_t buildid_len;
2083 bfd_byte *buildid;
2084
2085 if (dwarf2_per_objfile->dwz_file != NULL)
2086 return dwarf2_per_objfile->dwz_file.get ();
2087
2088 bfd_set_error (bfd_error_no_error);
2089 gdb::unique_xmalloc_ptr<char> data
2090 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2091 &buildid_len_arg, &buildid));
2092 if (data == NULL)
2093 {
2094 if (bfd_get_error () == bfd_error_no_error)
2095 return NULL;
2096 error (_("could not read '.gnu_debugaltlink' section: %s"),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2101
2102 buildid_len = (size_t) buildid_len_arg;
2103
2104 filename = data.get ();
2105
2106 std::string abs_storage;
2107 if (!IS_ABSOLUTE_PATH (filename))
2108 {
2109 gdb::unique_xmalloc_ptr<char> abs
2110 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2111
2112 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2113 filename = abs_storage.c_str ();
2114 }
2115
2116 /* First try the file name given in the section. If that doesn't
2117 work, try to use the build-id instead. */
2118 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2119 if (dwz_bfd != NULL)
2120 {
2121 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2122 dwz_bfd.reset (nullptr);
2123 }
2124
2125 if (dwz_bfd == NULL)
2126 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2127
2128 if (dwz_bfd == nullptr)
2129 {
2130 gdb::unique_xmalloc_ptr<char> alt_filename;
2131 const char *origname = dwarf2_per_objfile->objfile->original_name;
2132
2133 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2134 buildid_len,
2135 origname,
2136 &alt_filename));
2137
2138 if (fd.get () >= 0)
2139 {
2140 /* File successfully retrieved from server. */
2141 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2142
2143 if (dwz_bfd == nullptr)
2144 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2145 alt_filename.get ());
2146 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2147 dwz_bfd.reset (nullptr);
2148 }
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 error (_("could not find '.gnu_debugaltlink' file for %s"),
2153 objfile_name (dwarf2_per_objfile->objfile));
2154
2155 std::unique_ptr<struct dwz_file> result
2156 (new struct dwz_file (std::move (dwz_bfd)));
2157
2158 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2159 result.get ());
2160
2161 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2162 result->dwz_bfd.get ());
2163 dwarf2_per_objfile->dwz_file = std::move (result);
2164 return dwarf2_per_objfile->dwz_file.get ();
2165 }
2166 \f
2167 /* DWARF quick_symbols_functions support. */
2168
2169 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2170 unique line tables, so we maintain a separate table of all .debug_line
2171 derived entries to support the sharing.
2172 All the quick functions need is the list of file names. We discard the
2173 line_header when we're done and don't need to record it here. */
2174 struct quick_file_names
2175 {
2176 /* The data used to construct the hash key. */
2177 struct stmt_list_hash hash;
2178
2179 /* The number of entries in file_names, real_names. */
2180 unsigned int num_file_names;
2181
2182 /* The file names from the line table, after being run through
2183 file_full_name. */
2184 const char **file_names;
2185
2186 /* The file names from the line table after being run through
2187 gdb_realpath. These are computed lazily. */
2188 const char **real_names;
2189 };
2190
2191 /* When using the index (and thus not using psymtabs), each CU has an
2192 object of this type. This is used to hold information needed by
2193 the various "quick" methods. */
2194 struct dwarf2_per_cu_quick_data
2195 {
2196 /* The file table. This can be NULL if there was no file table
2197 or it's currently not read in.
2198 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2199 struct quick_file_names *file_names;
2200
2201 /* The corresponding symbol table. This is NULL if symbols for this
2202 CU have not yet been read. */
2203 struct compunit_symtab *compunit_symtab;
2204
2205 /* A temporary mark bit used when iterating over all CUs in
2206 expand_symtabs_matching. */
2207 unsigned int mark : 1;
2208
2209 /* True if we've tried to read the file table and found there isn't one.
2210 There will be no point in trying to read it again next time. */
2211 unsigned int no_file_data : 1;
2212 };
2213
2214 /* Utility hash function for a stmt_list_hash. */
2215
2216 static hashval_t
2217 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2218 {
2219 hashval_t v = 0;
2220
2221 if (stmt_list_hash->dwo_unit != NULL)
2222 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2223 v += to_underlying (stmt_list_hash->line_sect_off);
2224 return v;
2225 }
2226
2227 /* Utility equality function for a stmt_list_hash. */
2228
2229 static int
2230 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2231 const struct stmt_list_hash *rhs)
2232 {
2233 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2234 return 0;
2235 if (lhs->dwo_unit != NULL
2236 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2237 return 0;
2238
2239 return lhs->line_sect_off == rhs->line_sect_off;
2240 }
2241
2242 /* Hash function for a quick_file_names. */
2243
2244 static hashval_t
2245 hash_file_name_entry (const void *e)
2246 {
2247 const struct quick_file_names *file_data
2248 = (const struct quick_file_names *) e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2259 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = (struct quick_file_names *) e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_up
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_up (htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree));
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2304
2305 if (per_cu->cu == NULL)
2306 return; /* Dummy CU. */
2307
2308 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2309 }
2310
2311 /* Read in the symbols for PER_CU. */
2312
2313 static void
2314 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2315 {
2316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2317
2318 /* Skip type_unit_groups, reading the type units they contain
2319 is handled elsewhere. */
2320 if (per_cu->type_unit_group_p ())
2321 return;
2322
2323 /* The destructor of dwarf2_queue_guard frees any entries left on
2324 the queue. After this point we're guaranteed to leave this function
2325 with the dwarf queue empty. */
2326 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->compunit_symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu, skip_partial);
2334
2335 /* If we just loaded a CU from a DWO, and we're working with an index
2336 that may badly handle TUs, load all the TUs in that DWO as well.
2337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2338 if (!per_cu->is_debug_types
2339 && per_cu->cu != NULL
2340 && per_cu->cu->dwo_unit != NULL
2341 && dwarf2_per_objfile->index_table != NULL
2342 && dwarf2_per_objfile->index_table->version <= 7
2343 /* DWP files aren't supported yet. */
2344 && get_dwp_file (dwarf2_per_objfile) == NULL)
2345 queue_and_load_all_dwo_tus (per_cu);
2346 }
2347
2348 process_queue (dwarf2_per_objfile);
2349
2350 /* Age the cache, releasing compilation units that have not
2351 been used recently. */
2352 age_cached_comp_units (dwarf2_per_objfile);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct compunit_symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2361 {
2362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2363
2364 gdb_assert (dwarf2_per_objfile->using_index);
2365 if (!per_cu->v.quick->compunit_symtab)
2366 {
2367 free_cached_comp_units freer (dwarf2_per_objfile);
2368 scoped_restore decrementer = increment_reading_symtab ();
2369 dw2_do_instantiate_symtab (per_cu, skip_partial);
2370 process_cu_includes (dwarf2_per_objfile);
2371 }
2372
2373 return per_cu->v.quick->compunit_symtab;
2374 }
2375
2376 /* See declaration. */
2377
2378 dwarf2_per_cu_data *
2379 dwarf2_per_objfile::get_cutu (int index)
2380 {
2381 if (index >= this->all_comp_units.size ())
2382 {
2383 index -= this->all_comp_units.size ();
2384 gdb_assert (index < this->all_type_units.size ());
2385 return &this->all_type_units[index]->per_cu;
2386 }
2387
2388 return this->all_comp_units[index];
2389 }
2390
2391 /* See declaration. */
2392
2393 dwarf2_per_cu_data *
2394 dwarf2_per_objfile::get_cu (int index)
2395 {
2396 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2397
2398 return this->all_comp_units[index];
2399 }
2400
2401 /* See declaration. */
2402
2403 signatured_type *
2404 dwarf2_per_objfile::get_tu (int index)
2405 {
2406 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2407
2408 return this->all_type_units[index];
2409 }
2410
2411 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2412 objfile_obstack, and constructed with the specified field
2413 values. */
2414
2415 static dwarf2_per_cu_data *
2416 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2417 struct dwarf2_section_info *section,
2418 int is_dwz,
2419 sect_offset sect_off, ULONGEST length)
2420 {
2421 struct objfile *objfile = dwarf2_per_objfile->objfile;
2422 dwarf2_per_cu_data *the_cu
2423 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2424 struct dwarf2_per_cu_data);
2425 the_cu->sect_off = sect_off;
2426 the_cu->length = length;
2427 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2428 the_cu->section = section;
2429 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2430 struct dwarf2_per_cu_quick_data);
2431 the_cu->is_dwz = is_dwz;
2432 return the_cu;
2433 }
2434
2435 /* A helper for create_cus_from_index that handles a given list of
2436 CUs. */
2437
2438 static void
2439 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 const gdb_byte *cu_list, offset_type n_elements,
2441 struct dwarf2_section_info *section,
2442 int is_dwz)
2443 {
2444 for (offset_type i = 0; i < n_elements; i += 2)
2445 {
2446 gdb_static_assert (sizeof (ULONGEST) >= 8);
2447
2448 sect_offset sect_off
2449 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2450 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2451 cu_list += 2 * 8;
2452
2453 dwarf2_per_cu_data *per_cu
2454 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2455 sect_off, length);
2456 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2457 }
2458 }
2459
2460 /* Read the CU list from the mapped index, and use it to create all
2461 the CU objects for this objfile. */
2462
2463 static void
2464 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2465 const gdb_byte *cu_list, offset_type cu_list_elements,
2466 const gdb_byte *dwz_list, offset_type dwz_elements)
2467 {
2468 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2469 dwarf2_per_objfile->all_comp_units.reserve
2470 ((cu_list_elements + dwz_elements) / 2);
2471
2472 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2473 &dwarf2_per_objfile->info, 0);
2474
2475 if (dwz_elements == 0)
2476 return;
2477
2478 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2479 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2480 &dwz->info, 1);
2481 }
2482
2483 /* Create the signatured type hash table from the index. */
2484
2485 static void
2486 create_signatured_type_table_from_index
2487 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 struct dwarf2_section_info *section,
2489 const gdb_byte *bytes,
2490 offset_type elements)
2491 {
2492 struct objfile *objfile = dwarf2_per_objfile->objfile;
2493
2494 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2495 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2496
2497 htab_up sig_types_hash = allocate_signatured_type_table ();
2498
2499 for (offset_type i = 0; i < elements; i += 3)
2500 {
2501 struct signatured_type *sig_type;
2502 ULONGEST signature;
2503 void **slot;
2504 cu_offset type_offset_in_tu;
2505
2506 gdb_static_assert (sizeof (ULONGEST) >= 8);
2507 sect_offset sect_off
2508 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2509 type_offset_in_tu
2510 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2511 BFD_ENDIAN_LITTLE);
2512 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2513 bytes += 3 * 8;
2514
2515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2516 struct signatured_type);
2517 sig_type->signature = signature;
2518 sig_type->type_offset_in_tu = type_offset_in_tu;
2519 sig_type->per_cu.is_debug_types = 1;
2520 sig_type->per_cu.section = section;
2521 sig_type->per_cu.sect_off = sect_off;
2522 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2523 sig_type->per_cu.v.quick
2524 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2525 struct dwarf2_per_cu_quick_data);
2526
2527 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2528 *slot = sig_type;
2529
2530 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2531 }
2532
2533 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2534 }
2535
2536 /* Create the signatured type hash table from .debug_names. */
2537
2538 static void
2539 create_signatured_type_table_from_debug_names
2540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2541 const mapped_debug_names &map,
2542 struct dwarf2_section_info *section,
2543 struct dwarf2_section_info *abbrev_section)
2544 {
2545 struct objfile *objfile = dwarf2_per_objfile->objfile;
2546
2547 section->read (objfile);
2548 abbrev_section->read (objfile);
2549
2550 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2551 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2552
2553 htab_up sig_types_hash = allocate_signatured_type_table ();
2554
2555 for (uint32_t i = 0; i < map.tu_count; ++i)
2556 {
2557 struct signatured_type *sig_type;
2558 void **slot;
2559
2560 sect_offset sect_off
2561 = (sect_offset) (extract_unsigned_integer
2562 (map.tu_table_reordered + i * map.offset_size,
2563 map.offset_size,
2564 map.dwarf5_byte_order));
2565
2566 comp_unit_head cu_header;
2567 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2568 abbrev_section,
2569 section->buffer + to_underlying (sect_off),
2570 rcuh_kind::TYPE);
2571
2572 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2573 struct signatured_type);
2574 sig_type->signature = cu_header.signature;
2575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2576 sig_type->per_cu.is_debug_types = 1;
2577 sig_type->per_cu.section = section;
2578 sig_type->per_cu.sect_off = sect_off;
2579 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2580 sig_type->per_cu.v.quick
2581 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2582 struct dwarf2_per_cu_quick_data);
2583
2584 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2585 *slot = sig_type;
2586
2587 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2588 }
2589
2590 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2591 }
2592
2593 /* Read the address map data from the mapped index, and use it to
2594 populate the objfile's psymtabs_addrmap. */
2595
2596 static void
2597 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2598 struct mapped_index *index)
2599 {
2600 struct objfile *objfile = dwarf2_per_objfile->objfile;
2601 struct gdbarch *gdbarch = objfile->arch ();
2602 const gdb_byte *iter, *end;
2603 struct addrmap *mutable_map;
2604 CORE_ADDR baseaddr;
2605
2606 auto_obstack temp_obstack;
2607
2608 mutable_map = addrmap_create_mutable (&temp_obstack);
2609
2610 iter = index->address_table.data ();
2611 end = iter + index->address_table.size ();
2612
2613 baseaddr = objfile->text_section_offset ();
2614
2615 while (iter < end)
2616 {
2617 ULONGEST hi, lo, cu_index;
2618 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2619 iter += 8;
2620 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2621 iter += 8;
2622 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2623 iter += 4;
2624
2625 if (lo > hi)
2626 {
2627 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2628 hex_string (lo), hex_string (hi));
2629 continue;
2630 }
2631
2632 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2633 {
2634 complaint (_(".gdb_index address table has invalid CU number %u"),
2635 (unsigned) cu_index);
2636 continue;
2637 }
2638
2639 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2640 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2641 addrmap_set_empty (mutable_map, lo, hi - 1,
2642 dwarf2_per_objfile->get_cu (cu_index));
2643 }
2644
2645 objfile->partial_symtabs->psymtabs_addrmap
2646 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2647 }
2648
2649 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2650 populate the objfile's psymtabs_addrmap. */
2651
2652 static void
2653 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2654 struct dwarf2_section_info *section)
2655 {
2656 struct objfile *objfile = dwarf2_per_objfile->objfile;
2657 bfd *abfd = objfile->obfd;
2658 struct gdbarch *gdbarch = objfile->arch ();
2659 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2660
2661 auto_obstack temp_obstack;
2662 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2663
2664 std::unordered_map<sect_offset,
2665 dwarf2_per_cu_data *,
2666 gdb::hash_enum<sect_offset>>
2667 debug_info_offset_to_per_cu;
2668 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2669 {
2670 const auto insertpair
2671 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2672 if (!insertpair.second)
2673 {
2674 warning (_("Section .debug_aranges in %s has duplicate "
2675 "debug_info_offset %s, ignoring .debug_aranges."),
2676 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2677 return;
2678 }
2679 }
2680
2681 section->read (objfile);
2682
2683 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2684
2685 const gdb_byte *addr = section->buffer;
2686
2687 while (addr < section->buffer + section->size)
2688 {
2689 const gdb_byte *const entry_addr = addr;
2690 unsigned int bytes_read;
2691
2692 const LONGEST entry_length = read_initial_length (abfd, addr,
2693 &bytes_read);
2694 addr += bytes_read;
2695
2696 const gdb_byte *const entry_end = addr + entry_length;
2697 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2698 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2699 if (addr + entry_length > section->buffer + section->size)
2700 {
2701 warning (_("Section .debug_aranges in %s entry at offset %s "
2702 "length %s exceeds section length %s, "
2703 "ignoring .debug_aranges."),
2704 objfile_name (objfile),
2705 plongest (entry_addr - section->buffer),
2706 plongest (bytes_read + entry_length),
2707 pulongest (section->size));
2708 return;
2709 }
2710
2711 /* The version number. */
2712 const uint16_t version = read_2_bytes (abfd, addr);
2713 addr += 2;
2714 if (version != 2)
2715 {
2716 warning (_("Section .debug_aranges in %s entry at offset %s "
2717 "has unsupported version %d, ignoring .debug_aranges."),
2718 objfile_name (objfile),
2719 plongest (entry_addr - section->buffer), version);
2720 return;
2721 }
2722
2723 const uint64_t debug_info_offset
2724 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2725 addr += offset_size;
2726 const auto per_cu_it
2727 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2728 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2729 {
2730 warning (_("Section .debug_aranges in %s entry at offset %s "
2731 "debug_info_offset %s does not exists, "
2732 "ignoring .debug_aranges."),
2733 objfile_name (objfile),
2734 plongest (entry_addr - section->buffer),
2735 pulongest (debug_info_offset));
2736 return;
2737 }
2738 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2739
2740 const uint8_t address_size = *addr++;
2741 if (address_size < 1 || address_size > 8)
2742 {
2743 warning (_("Section .debug_aranges in %s entry at offset %s "
2744 "address_size %u is invalid, ignoring .debug_aranges."),
2745 objfile_name (objfile),
2746 plongest (entry_addr - section->buffer), address_size);
2747 return;
2748 }
2749
2750 const uint8_t segment_selector_size = *addr++;
2751 if (segment_selector_size != 0)
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "segment_selector_size %u is not supported, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 segment_selector_size);
2759 return;
2760 }
2761
2762 /* Must pad to an alignment boundary that is twice the address
2763 size. It is undocumented by the DWARF standard but GCC does
2764 use it. */
2765 for (size_t padding = ((-(addr - section->buffer))
2766 & (2 * address_size - 1));
2767 padding > 0; padding--)
2768 if (*addr++ != 0)
2769 {
2770 warning (_("Section .debug_aranges in %s entry at offset %s "
2771 "padding is not zero, ignoring .debug_aranges."),
2772 objfile_name (objfile),
2773 plongest (entry_addr - section->buffer));
2774 return;
2775 }
2776
2777 for (;;)
2778 {
2779 if (addr + 2 * address_size > entry_end)
2780 {
2781 warning (_("Section .debug_aranges in %s entry at offset %s "
2782 "address list is not properly terminated, "
2783 "ignoring .debug_aranges."),
2784 objfile_name (objfile),
2785 plongest (entry_addr - section->buffer));
2786 return;
2787 }
2788 ULONGEST start = extract_unsigned_integer (addr, address_size,
2789 dwarf5_byte_order);
2790 addr += address_size;
2791 ULONGEST length = extract_unsigned_integer (addr, address_size,
2792 dwarf5_byte_order);
2793 addr += address_size;
2794 if (start == 0 && length == 0)
2795 break;
2796 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2797 {
2798 /* Symbol was eliminated due to a COMDAT group. */
2799 continue;
2800 }
2801 ULONGEST end = start + length;
2802 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2803 - baseaddr);
2804 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2805 - baseaddr);
2806 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2807 }
2808 }
2809
2810 objfile->partial_symtabs->psymtabs_addrmap
2811 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2812 }
2813
2814 /* Find a slot in the mapped index INDEX for the object named NAME.
2815 If NAME is found, set *VEC_OUT to point to the CU vector in the
2816 constant pool and return true. If NAME cannot be found, return
2817 false. */
2818
2819 static bool
2820 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2821 offset_type **vec_out)
2822 {
2823 offset_type hash;
2824 offset_type slot, step;
2825 int (*cmp) (const char *, const char *);
2826
2827 gdb::unique_xmalloc_ptr<char> without_params;
2828 if (current_language->la_language == language_cplus
2829 || current_language->la_language == language_fortran
2830 || current_language->la_language == language_d)
2831 {
2832 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2833 not contain any. */
2834
2835 if (strchr (name, '(') != NULL)
2836 {
2837 without_params = cp_remove_params (name);
2838
2839 if (without_params != NULL)
2840 name = without_params.get ();
2841 }
2842 }
2843
2844 /* Index version 4 did not support case insensitive searches. But the
2845 indices for case insensitive languages are built in lowercase, therefore
2846 simulate our NAME being searched is also lowercased. */
2847 hash = mapped_index_string_hash ((index->version == 4
2848 && case_sensitivity == case_sensitive_off
2849 ? 5 : index->version),
2850 name);
2851
2852 slot = hash & (index->symbol_table.size () - 1);
2853 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2854 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2855
2856 for (;;)
2857 {
2858 const char *str;
2859
2860 const auto &bucket = index->symbol_table[slot];
2861 if (bucket.name == 0 && bucket.vec == 0)
2862 return false;
2863
2864 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2865 if (!cmp (name, str))
2866 {
2867 *vec_out = (offset_type *) (index->constant_pool
2868 + MAYBE_SWAP (bucket.vec));
2869 return true;
2870 }
2871
2872 slot = (slot + step) & (index->symbol_table.size () - 1);
2873 }
2874 }
2875
2876 /* A helper function that reads the .gdb_index from BUFFER and fills
2877 in MAP. FILENAME is the name of the file containing the data;
2878 it is used for error reporting. DEPRECATED_OK is true if it is
2879 ok to use deprecated sections.
2880
2881 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2882 out parameters that are filled in with information about the CU and
2883 TU lists in the section.
2884
2885 Returns true if all went well, false otherwise. */
2886
2887 static bool
2888 read_gdb_index_from_buffer (const char *filename,
2889 bool deprecated_ok,
2890 gdb::array_view<const gdb_byte> buffer,
2891 struct mapped_index *map,
2892 const gdb_byte **cu_list,
2893 offset_type *cu_list_elements,
2894 const gdb_byte **types_list,
2895 offset_type *types_list_elements)
2896 {
2897 const gdb_byte *addr = &buffer[0];
2898
2899 /* Version check. */
2900 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2901 /* Versions earlier than 3 emitted every copy of a psymbol. This
2902 causes the index to behave very poorly for certain requests. Version 3
2903 contained incomplete addrmap. So, it seems better to just ignore such
2904 indices. */
2905 if (version < 4)
2906 {
2907 static int warning_printed = 0;
2908 if (!warning_printed)
2909 {
2910 warning (_("Skipping obsolete .gdb_index section in %s."),
2911 filename);
2912 warning_printed = 1;
2913 }
2914 return 0;
2915 }
2916 /* Index version 4 uses a different hash function than index version
2917 5 and later.
2918
2919 Versions earlier than 6 did not emit psymbols for inlined
2920 functions. Using these files will cause GDB not to be able to
2921 set breakpoints on inlined functions by name, so we ignore these
2922 indices unless the user has done
2923 "set use-deprecated-index-sections on". */
2924 if (version < 6 && !deprecated_ok)
2925 {
2926 static int warning_printed = 0;
2927 if (!warning_printed)
2928 {
2929 warning (_("\
2930 Skipping deprecated .gdb_index section in %s.\n\
2931 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2932 to use the section anyway."),
2933 filename);
2934 warning_printed = 1;
2935 }
2936 return 0;
2937 }
2938 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2939 of the TU (for symbols coming from TUs),
2940 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2941 Plus gold-generated indices can have duplicate entries for global symbols,
2942 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2943 These are just performance bugs, and we can't distinguish gdb-generated
2944 indices from gold-generated ones, so issue no warning here. */
2945
2946 /* Indexes with higher version than the one supported by GDB may be no
2947 longer backward compatible. */
2948 if (version > 8)
2949 return 0;
2950
2951 map->version = version;
2952
2953 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2954
2955 int i = 0;
2956 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2957 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2958 / 8);
2959 ++i;
2960
2961 *types_list = addr + MAYBE_SWAP (metadata[i]);
2962 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2963 - MAYBE_SWAP (metadata[i]))
2964 / 8);
2965 ++i;
2966
2967 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2968 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2969 map->address_table
2970 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2971 ++i;
2972
2973 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2974 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2975 map->symbol_table
2976 = gdb::array_view<mapped_index::symbol_table_slot>
2977 ((mapped_index::symbol_table_slot *) symbol_table,
2978 (mapped_index::symbol_table_slot *) symbol_table_end);
2979
2980 ++i;
2981 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2982
2983 return 1;
2984 }
2985
2986 /* Callback types for dwarf2_read_gdb_index. */
2987
2988 typedef gdb::function_view
2989 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2990 get_gdb_index_contents_ftype;
2991 typedef gdb::function_view
2992 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2993 get_gdb_index_contents_dwz_ftype;
2994
2995 /* Read .gdb_index. If everything went ok, initialize the "quick"
2996 elements of all the CUs and return 1. Otherwise, return 0. */
2997
2998 static int
2999 dwarf2_read_gdb_index
3000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 get_gdb_index_contents_ftype get_gdb_index_contents,
3002 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3003 {
3004 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3005 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3006 struct dwz_file *dwz;
3007 struct objfile *objfile = dwarf2_per_objfile->objfile;
3008
3009 gdb::array_view<const gdb_byte> main_index_contents
3010 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3011
3012 if (main_index_contents.empty ())
3013 return 0;
3014
3015 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3016 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3017 use_deprecated_index_sections,
3018 main_index_contents, map.get (), &cu_list,
3019 &cu_list_elements, &types_list,
3020 &types_list_elements))
3021 return 0;
3022
3023 /* Don't use the index if it's empty. */
3024 if (map->symbol_table.empty ())
3025 return 0;
3026
3027 /* If there is a .dwz file, read it so we can get its CU list as
3028 well. */
3029 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3030 if (dwz != NULL)
3031 {
3032 struct mapped_index dwz_map;
3033 const gdb_byte *dwz_types_ignore;
3034 offset_type dwz_types_elements_ignore;
3035
3036 gdb::array_view<const gdb_byte> dwz_index_content
3037 = get_gdb_index_contents_dwz (objfile, dwz);
3038
3039 if (dwz_index_content.empty ())
3040 return 0;
3041
3042 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3043 1, dwz_index_content, &dwz_map,
3044 &dwz_list, &dwz_list_elements,
3045 &dwz_types_ignore,
3046 &dwz_types_elements_ignore))
3047 {
3048 warning (_("could not read '.gdb_index' section from %s; skipping"),
3049 bfd_get_filename (dwz->dwz_bfd.get ()));
3050 return 0;
3051 }
3052 }
3053
3054 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3055 dwz_list, dwz_list_elements);
3056
3057 if (types_list_elements)
3058 {
3059 /* We can only handle a single .debug_types when we have an
3060 index. */
3061 if (dwarf2_per_objfile->types.size () != 1)
3062 return 0;
3063
3064 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3065
3066 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3067 types_list, types_list_elements);
3068 }
3069
3070 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3071
3072 dwarf2_per_objfile->index_table = std::move (map);
3073 dwarf2_per_objfile->using_index = 1;
3074 dwarf2_per_objfile->quick_file_names_table =
3075 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3076
3077 return 1;
3078 }
3079
3080 /* die_reader_func for dw2_get_file_names. */
3081
3082 static void
3083 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3084 const gdb_byte *info_ptr,
3085 struct die_info *comp_unit_die)
3086 {
3087 struct dwarf2_cu *cu = reader->cu;
3088 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3089 struct dwarf2_per_objfile *dwarf2_per_objfile
3090 = cu->per_cu->dwarf2_per_objfile;
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092 struct dwarf2_per_cu_data *lh_cu;
3093 struct attribute *attr;
3094 void **slot;
3095 struct quick_file_names *qfn;
3096
3097 gdb_assert (! this_cu->is_debug_types);
3098
3099 /* Our callers never want to match partial units -- instead they
3100 will match the enclosing full CU. */
3101 if (comp_unit_die->tag == DW_TAG_partial_unit)
3102 {
3103 this_cu->v.quick->no_file_data = 1;
3104 return;
3105 }
3106
3107 lh_cu = this_cu;
3108 slot = NULL;
3109
3110 line_header_up lh;
3111 sect_offset line_offset {};
3112
3113 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3114 if (attr != nullptr)
3115 {
3116 struct quick_file_names find_entry;
3117
3118 line_offset = (sect_offset) DW_UNSND (attr);
3119
3120 /* We may have already read in this line header (TU line header sharing).
3121 If we have we're done. */
3122 find_entry.hash.dwo_unit = cu->dwo_unit;
3123 find_entry.hash.line_sect_off = line_offset;
3124 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3125 &find_entry, INSERT);
3126 if (*slot != NULL)
3127 {
3128 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3129 return;
3130 }
3131
3132 lh = dwarf_decode_line_header (line_offset, cu);
3133 }
3134 if (lh == NULL)
3135 {
3136 lh_cu->v.quick->no_file_data = 1;
3137 return;
3138 }
3139
3140 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3141 qfn->hash.dwo_unit = cu->dwo_unit;
3142 qfn->hash.line_sect_off = line_offset;
3143 gdb_assert (slot != NULL);
3144 *slot = qfn;
3145
3146 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3147
3148 int offset = 0;
3149 if (strcmp (fnd.name, "<unknown>") != 0)
3150 ++offset;
3151
3152 qfn->num_file_names = offset + lh->file_names_size ();
3153 qfn->file_names =
3154 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3155 if (offset != 0)
3156 qfn->file_names[0] = xstrdup (fnd.name);
3157 for (int i = 0; i < lh->file_names_size (); ++i)
3158 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3159 fnd.comp_dir).release ();
3160 qfn->real_names = NULL;
3161
3162 lh_cu->v.quick->file_names = qfn;
3163 }
3164
3165 /* A helper for the "quick" functions which attempts to read the line
3166 table for THIS_CU. */
3167
3168 static struct quick_file_names *
3169 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3170 {
3171 /* This should never be called for TUs. */
3172 gdb_assert (! this_cu->is_debug_types);
3173 /* Nor type unit groups. */
3174 gdb_assert (! this_cu->type_unit_group_p ());
3175
3176 if (this_cu->v.quick->file_names != NULL)
3177 return this_cu->v.quick->file_names;
3178 /* If we know there is no line data, no point in looking again. */
3179 if (this_cu->v.quick->no_file_data)
3180 return NULL;
3181
3182 cutu_reader reader (this_cu);
3183 if (!reader.dummy_p)
3184 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3185
3186 if (this_cu->v.quick->no_file_data)
3187 return NULL;
3188 return this_cu->v.quick->file_names;
3189 }
3190
3191 /* A helper for the "quick" functions which computes and caches the
3192 real path for a given file name from the line table. */
3193
3194 static const char *
3195 dw2_get_real_path (struct objfile *objfile,
3196 struct quick_file_names *qfn, int index)
3197 {
3198 if (qfn->real_names == NULL)
3199 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3200 qfn->num_file_names, const char *);
3201
3202 if (qfn->real_names[index] == NULL)
3203 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3204
3205 return qfn->real_names[index];
3206 }
3207
3208 static struct symtab *
3209 dw2_find_last_source_symtab (struct objfile *objfile)
3210 {
3211 struct dwarf2_per_objfile *dwarf2_per_objfile
3212 = get_dwarf2_per_objfile (objfile);
3213 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3214 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3215
3216 if (cust == NULL)
3217 return NULL;
3218
3219 return compunit_primary_filetab (cust);
3220 }
3221
3222 /* Traversal function for dw2_forget_cached_source_info. */
3223
3224 static int
3225 dw2_free_cached_file_names (void **slot, void *info)
3226 {
3227 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3228
3229 if (file_data->real_names)
3230 {
3231 int i;
3232
3233 for (i = 0; i < file_data->num_file_names; ++i)
3234 {
3235 xfree ((void*) file_data->real_names[i]);
3236 file_data->real_names[i] = NULL;
3237 }
3238 }
3239
3240 return 1;
3241 }
3242
3243 static void
3244 dw2_forget_cached_source_info (struct objfile *objfile)
3245 {
3246 struct dwarf2_per_objfile *dwarf2_per_objfile
3247 = get_dwarf2_per_objfile (objfile);
3248
3249 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3250 dw2_free_cached_file_names, NULL);
3251 }
3252
3253 /* Helper function for dw2_map_symtabs_matching_filename that expands
3254 the symtabs and calls the iterator. */
3255
3256 static int
3257 dw2_map_expand_apply (struct objfile *objfile,
3258 struct dwarf2_per_cu_data *per_cu,
3259 const char *name, const char *real_path,
3260 gdb::function_view<bool (symtab *)> callback)
3261 {
3262 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3263
3264 /* Don't visit already-expanded CUs. */
3265 if (per_cu->v.quick->compunit_symtab)
3266 return 0;
3267
3268 /* This may expand more than one symtab, and we want to iterate over
3269 all of them. */
3270 dw2_instantiate_symtab (per_cu, false);
3271
3272 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3273 last_made, callback);
3274 }
3275
3276 /* Implementation of the map_symtabs_matching_filename method. */
3277
3278 static bool
3279 dw2_map_symtabs_matching_filename
3280 (struct objfile *objfile, const char *name, const char *real_path,
3281 gdb::function_view<bool (symtab *)> callback)
3282 {
3283 const char *name_basename = lbasename (name);
3284 struct dwarf2_per_objfile *dwarf2_per_objfile
3285 = get_dwarf2_per_objfile (objfile);
3286
3287 /* The rule is CUs specify all the files, including those used by
3288 any TU, so there's no need to scan TUs here. */
3289
3290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3291 {
3292 /* We only need to look at symtabs not already expanded. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 continue;
3295
3296 quick_file_names *file_data = dw2_get_file_names (per_cu);
3297 if (file_data == NULL)
3298 continue;
3299
3300 for (int j = 0; j < file_data->num_file_names; ++j)
3301 {
3302 const char *this_name = file_data->file_names[j];
3303 const char *this_real_name;
3304
3305 if (compare_filenames_for_search (this_name, name))
3306 {
3307 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3308 callback))
3309 return true;
3310 continue;
3311 }
3312
3313 /* Before we invoke realpath, which can get expensive when many
3314 files are involved, do a quick comparison of the basenames. */
3315 if (! basenames_may_differ
3316 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3317 continue;
3318
3319 this_real_name = dw2_get_real_path (objfile, file_data, j);
3320 if (compare_filenames_for_search (this_real_name, name))
3321 {
3322 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3323 callback))
3324 return true;
3325 continue;
3326 }
3327
3328 if (real_path != NULL)
3329 {
3330 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3331 gdb_assert (IS_ABSOLUTE_PATH (name));
3332 if (this_real_name != NULL
3333 && FILENAME_CMP (real_path, this_real_name) == 0)
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340 }
3341 }
3342 }
3343
3344 return false;
3345 }
3346
3347 /* Struct used to manage iterating over all CUs looking for a symbol. */
3348
3349 struct dw2_symtab_iterator
3350 {
3351 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3352 struct dwarf2_per_objfile *dwarf2_per_objfile;
3353 /* If set, only look for symbols that match that block. Valid values are
3354 GLOBAL_BLOCK and STATIC_BLOCK. */
3355 gdb::optional<block_enum> block_index;
3356 /* The kind of symbol we're looking for. */
3357 domain_enum domain;
3358 /* The list of CUs from the index entry of the symbol,
3359 or NULL if not found. */
3360 offset_type *vec;
3361 /* The next element in VEC to look at. */
3362 int next;
3363 /* The number of elements in VEC, or zero if there is no match. */
3364 int length;
3365 /* Have we seen a global version of the symbol?
3366 If so we can ignore all further global instances.
3367 This is to work around gold/15646, inefficient gold-generated
3368 indices. */
3369 int global_seen;
3370 };
3371
3372 /* Initialize the index symtab iterator ITER. */
3373
3374 static void
3375 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3376 struct dwarf2_per_objfile *dwarf2_per_objfile,
3377 gdb::optional<block_enum> block_index,
3378 domain_enum domain,
3379 const char *name)
3380 {
3381 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3382 iter->block_index = block_index;
3383 iter->domain = domain;
3384 iter->next = 0;
3385 iter->global_seen = 0;
3386
3387 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3388
3389 /* index is NULL if OBJF_READNOW. */
3390 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3391 iter->length = MAYBE_SWAP (*iter->vec);
3392 else
3393 {
3394 iter->vec = NULL;
3395 iter->length = 0;
3396 }
3397 }
3398
3399 /* Return the next matching CU or NULL if there are no more. */
3400
3401 static struct dwarf2_per_cu_data *
3402 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3403 {
3404 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3405
3406 for ( ; iter->next < iter->length; ++iter->next)
3407 {
3408 offset_type cu_index_and_attrs =
3409 MAYBE_SWAP (iter->vec[iter->next + 1]);
3410 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3411 gdb_index_symbol_kind symbol_kind =
3412 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3413 /* Only check the symbol attributes if they're present.
3414 Indices prior to version 7 don't record them,
3415 and indices >= 7 may elide them for certain symbols
3416 (gold does this). */
3417 int attrs_valid =
3418 (dwarf2_per_objfile->index_table->version >= 7
3419 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3420
3421 /* Don't crash on bad data. */
3422 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3423 + dwarf2_per_objfile->all_type_units.size ()))
3424 {
3425 complaint (_(".gdb_index entry has bad CU index"
3426 " [in module %s]"),
3427 objfile_name (dwarf2_per_objfile->objfile));
3428 continue;
3429 }
3430
3431 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3432
3433 /* Skip if already read in. */
3434 if (per_cu->v.quick->compunit_symtab)
3435 continue;
3436
3437 /* Check static vs global. */
3438 if (attrs_valid)
3439 {
3440 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3441
3442 if (iter->block_index.has_value ())
3443 {
3444 bool want_static = *iter->block_index == STATIC_BLOCK;
3445
3446 if (is_static != want_static)
3447 continue;
3448 }
3449
3450 /* Work around gold/15646. */
3451 if (!is_static && iter->global_seen)
3452 continue;
3453 if (!is_static)
3454 iter->global_seen = 1;
3455 }
3456
3457 /* Only check the symbol's kind if it has one. */
3458 if (attrs_valid)
3459 {
3460 switch (iter->domain)
3461 {
3462 case VAR_DOMAIN:
3463 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3464 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3465 /* Some types are also in VAR_DOMAIN. */
3466 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3467 continue;
3468 break;
3469 case STRUCT_DOMAIN:
3470 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3471 continue;
3472 break;
3473 case LABEL_DOMAIN:
3474 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3475 continue;
3476 break;
3477 case MODULE_DOMAIN:
3478 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3479 continue;
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485
3486 ++iter->next;
3487 return per_cu;
3488 }
3489
3490 return NULL;
3491 }
3492
3493 static struct compunit_symtab *
3494 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3495 const char *name, domain_enum domain)
3496 {
3497 struct compunit_symtab *stab_best = NULL;
3498 struct dwarf2_per_objfile *dwarf2_per_objfile
3499 = get_dwarf2_per_objfile (objfile);
3500
3501 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3502
3503 struct dw2_symtab_iterator iter;
3504 struct dwarf2_per_cu_data *per_cu;
3505
3506 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3507
3508 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3509 {
3510 struct symbol *sym, *with_opaque = NULL;
3511 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3512 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3513 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3514
3515 sym = block_find_symbol (block, name, domain,
3516 block_find_non_opaque_type_preferred,
3517 &with_opaque);
3518
3519 /* Some caution must be observed with overloaded functions
3520 and methods, since the index will not contain any overload
3521 information (but NAME might contain it). */
3522
3523 if (sym != NULL
3524 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3525 return stab;
3526 if (with_opaque != NULL
3527 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3528 stab_best = stab;
3529
3530 /* Keep looking through other CUs. */
3531 }
3532
3533 return stab_best;
3534 }
3535
3536 static void
3537 dw2_print_stats (struct objfile *objfile)
3538 {
3539 struct dwarf2_per_objfile *dwarf2_per_objfile
3540 = get_dwarf2_per_objfile (objfile);
3541 int total = (dwarf2_per_objfile->all_comp_units.size ()
3542 + dwarf2_per_objfile->all_type_units.size ());
3543 int count = 0;
3544
3545 for (int i = 0; i < total; ++i)
3546 {
3547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3548
3549 if (!per_cu->v.quick->compunit_symtab)
3550 ++count;
3551 }
3552 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3553 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3554 }
3555
3556 /* This dumps minimal information about the index.
3557 It is called via "mt print objfiles".
3558 One use is to verify .gdb_index has been loaded by the
3559 gdb.dwarf2/gdb-index.exp testcase. */
3560
3561 static void
3562 dw2_dump (struct objfile *objfile)
3563 {
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566
3567 gdb_assert (dwarf2_per_objfile->using_index);
3568 printf_filtered (".gdb_index:");
3569 if (dwarf2_per_objfile->index_table != NULL)
3570 {
3571 printf_filtered (" version %d\n",
3572 dwarf2_per_objfile->index_table->version);
3573 }
3574 else
3575 printf_filtered (" faked for \"readnow\"\n");
3576 printf_filtered ("\n");
3577 }
3578
3579 static void
3580 dw2_expand_symtabs_for_function (struct objfile *objfile,
3581 const char *func_name)
3582 {
3583 struct dwarf2_per_objfile *dwarf2_per_objfile
3584 = get_dwarf2_per_objfile (objfile);
3585
3586 struct dw2_symtab_iterator iter;
3587 struct dwarf2_per_cu_data *per_cu;
3588
3589 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3590
3591 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3592 dw2_instantiate_symtab (per_cu, false);
3593
3594 }
3595
3596 static void
3597 dw2_expand_all_symtabs (struct objfile *objfile)
3598 {
3599 struct dwarf2_per_objfile *dwarf2_per_objfile
3600 = get_dwarf2_per_objfile (objfile);
3601 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3602 + dwarf2_per_objfile->all_type_units.size ());
3603
3604 for (int i = 0; i < total_units; ++i)
3605 {
3606 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3607
3608 /* We don't want to directly expand a partial CU, because if we
3609 read it with the wrong language, then assertion failures can
3610 be triggered later on. See PR symtab/23010. So, tell
3611 dw2_instantiate_symtab to skip partial CUs -- any important
3612 partial CU will be read via DW_TAG_imported_unit anyway. */
3613 dw2_instantiate_symtab (per_cu, true);
3614 }
3615 }
3616
3617 static void
3618 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3619 const char *fullname)
3620 {
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = get_dwarf2_per_objfile (objfile);
3623
3624 /* We don't need to consider type units here.
3625 This is only called for examining code, e.g. expand_line_sal.
3626 There can be an order of magnitude (or more) more type units
3627 than comp units, and we avoid them if we can. */
3628
3629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3630 {
3631 /* We only need to look at symtabs not already expanded. */
3632 if (per_cu->v.quick->compunit_symtab)
3633 continue;
3634
3635 quick_file_names *file_data = dw2_get_file_names (per_cu);
3636 if (file_data == NULL)
3637 continue;
3638
3639 for (int j = 0; j < file_data->num_file_names; ++j)
3640 {
3641 const char *this_fullname = file_data->file_names[j];
3642
3643 if (filename_cmp (this_fullname, fullname) == 0)
3644 {
3645 dw2_instantiate_symtab (per_cu, false);
3646 break;
3647 }
3648 }
3649 }
3650 }
3651
3652 static void
3653 dw2_map_matching_symbols
3654 (struct objfile *objfile,
3655 const lookup_name_info &name, domain_enum domain,
3656 int global,
3657 gdb::function_view<symbol_found_callback_ftype> callback,
3658 symbol_compare_ftype *ordered_compare)
3659 {
3660 /* Used for Ada. */
3661 struct dwarf2_per_objfile *dwarf2_per_objfile
3662 = get_dwarf2_per_objfile (objfile);
3663
3664 if (dwarf2_per_objfile->index_table != nullptr)
3665 {
3666 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3667 here though if the current language is Ada for a non-Ada objfile
3668 using GNU index. As Ada does not look for non-Ada symbols this
3669 function should just return. */
3670 return;
3671 }
3672
3673 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3674 inline psym_map_matching_symbols here, assuming all partial symtabs have
3675 been read in. */
3676 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3677
3678 for (compunit_symtab *cust : objfile->compunits ())
3679 {
3680 const struct block *block;
3681
3682 if (cust == NULL)
3683 continue;
3684 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3685 if (!iterate_over_symbols_terminated (block, name,
3686 domain, callback))
3687 return;
3688 }
3689 }
3690
3691 /* Starting from a search name, return the string that finds the upper
3692 bound of all strings that start with SEARCH_NAME in a sorted name
3693 list. Returns the empty string to indicate that the upper bound is
3694 the end of the list. */
3695
3696 static std::string
3697 make_sort_after_prefix_name (const char *search_name)
3698 {
3699 /* When looking to complete "func", we find the upper bound of all
3700 symbols that start with "func" by looking for where we'd insert
3701 the closest string that would follow "func" in lexicographical
3702 order. Usually, that's "func"-with-last-character-incremented,
3703 i.e. "fund". Mind non-ASCII characters, though. Usually those
3704 will be UTF-8 multi-byte sequences, but we can't be certain.
3705 Especially mind the 0xff character, which is a valid character in
3706 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3707 rule out compilers allowing it in identifiers. Note that
3708 conveniently, strcmp/strcasecmp are specified to compare
3709 characters interpreted as unsigned char. So what we do is treat
3710 the whole string as a base 256 number composed of a sequence of
3711 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3712 to 0, and carries 1 to the following more-significant position.
3713 If the very first character in SEARCH_NAME ends up incremented
3714 and carries/overflows, then the upper bound is the end of the
3715 list. The string after the empty string is also the empty
3716 string.
3717
3718 Some examples of this operation:
3719
3720 SEARCH_NAME => "+1" RESULT
3721
3722 "abc" => "abd"
3723 "ab\xff" => "ac"
3724 "\xff" "a" "\xff" => "\xff" "b"
3725 "\xff" => ""
3726 "\xff\xff" => ""
3727 "" => ""
3728
3729 Then, with these symbols for example:
3730
3731 func
3732 func1
3733 fund
3734
3735 completing "func" looks for symbols between "func" and
3736 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3737 which finds "func" and "func1", but not "fund".
3738
3739 And with:
3740
3741 funcÿ (Latin1 'ÿ' [0xff])
3742 funcÿ1
3743 fund
3744
3745 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3746 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3747
3748 And with:
3749
3750 ÿÿ (Latin1 'ÿ' [0xff])
3751 ÿÿ1
3752
3753 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3754 the end of the list.
3755 */
3756 std::string after = search_name;
3757 while (!after.empty () && (unsigned char) after.back () == 0xff)
3758 after.pop_back ();
3759 if (!after.empty ())
3760 after.back () = (unsigned char) after.back () + 1;
3761 return after;
3762 }
3763
3764 /* See declaration. */
3765
3766 std::pair<std::vector<name_component>::const_iterator,
3767 std::vector<name_component>::const_iterator>
3768 mapped_index_base::find_name_components_bounds
3769 (const lookup_name_info &lookup_name_without_params, language lang) const
3770 {
3771 auto *name_cmp
3772 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3773
3774 const char *lang_name
3775 = lookup_name_without_params.language_lookup_name (lang);
3776
3777 /* Comparison function object for lower_bound that matches against a
3778 given symbol name. */
3779 auto lookup_compare_lower = [&] (const name_component &elem,
3780 const char *name)
3781 {
3782 const char *elem_qualified = this->symbol_name_at (elem.idx);
3783 const char *elem_name = elem_qualified + elem.name_offset;
3784 return name_cmp (elem_name, name) < 0;
3785 };
3786
3787 /* Comparison function object for upper_bound that matches against a
3788 given symbol name. */
3789 auto lookup_compare_upper = [&] (const char *name,
3790 const name_component &elem)
3791 {
3792 const char *elem_qualified = this->symbol_name_at (elem.idx);
3793 const char *elem_name = elem_qualified + elem.name_offset;
3794 return name_cmp (name, elem_name) < 0;
3795 };
3796
3797 auto begin = this->name_components.begin ();
3798 auto end = this->name_components.end ();
3799
3800 /* Find the lower bound. */
3801 auto lower = [&] ()
3802 {
3803 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3804 return begin;
3805 else
3806 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3807 } ();
3808
3809 /* Find the upper bound. */
3810 auto upper = [&] ()
3811 {
3812 if (lookup_name_without_params.completion_mode ())
3813 {
3814 /* In completion mode, we want UPPER to point past all
3815 symbols names that have the same prefix. I.e., with
3816 these symbols, and completing "func":
3817
3818 function << lower bound
3819 function1
3820 other_function << upper bound
3821
3822 We find the upper bound by looking for the insertion
3823 point of "func"-with-last-character-incremented,
3824 i.e. "fund". */
3825 std::string after = make_sort_after_prefix_name (lang_name);
3826 if (after.empty ())
3827 return end;
3828 return std::lower_bound (lower, end, after.c_str (),
3829 lookup_compare_lower);
3830 }
3831 else
3832 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3833 } ();
3834
3835 return {lower, upper};
3836 }
3837
3838 /* See declaration. */
3839
3840 void
3841 mapped_index_base::build_name_components ()
3842 {
3843 if (!this->name_components.empty ())
3844 return;
3845
3846 this->name_components_casing = case_sensitivity;
3847 auto *name_cmp
3848 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3849
3850 /* The code below only knows how to break apart components of C++
3851 symbol names (and other languages that use '::' as
3852 namespace/module separator) and Ada symbol names. */
3853 auto count = this->symbol_name_count ();
3854 for (offset_type idx = 0; idx < count; idx++)
3855 {
3856 if (this->symbol_name_slot_invalid (idx))
3857 continue;
3858
3859 const char *name = this->symbol_name_at (idx);
3860
3861 /* Add each name component to the name component table. */
3862 unsigned int previous_len = 0;
3863
3864 if (strstr (name, "::") != nullptr)
3865 {
3866 for (unsigned int current_len = cp_find_first_component (name);
3867 name[current_len] != '\0';
3868 current_len += cp_find_first_component (name + current_len))
3869 {
3870 gdb_assert (name[current_len] == ':');
3871 this->name_components.push_back ({previous_len, idx});
3872 /* Skip the '::'. */
3873 current_len += 2;
3874 previous_len = current_len;
3875 }
3876 }
3877 else
3878 {
3879 /* Handle the Ada encoded (aka mangled) form here. */
3880 for (const char *iter = strstr (name, "__");
3881 iter != nullptr;
3882 iter = strstr (iter, "__"))
3883 {
3884 this->name_components.push_back ({previous_len, idx});
3885 iter += 2;
3886 previous_len = iter - name;
3887 }
3888 }
3889
3890 this->name_components.push_back ({previous_len, idx});
3891 }
3892
3893 /* Sort name_components elements by name. */
3894 auto name_comp_compare = [&] (const name_component &left,
3895 const name_component &right)
3896 {
3897 const char *left_qualified = this->symbol_name_at (left.idx);
3898 const char *right_qualified = this->symbol_name_at (right.idx);
3899
3900 const char *left_name = left_qualified + left.name_offset;
3901 const char *right_name = right_qualified + right.name_offset;
3902
3903 return name_cmp (left_name, right_name) < 0;
3904 };
3905
3906 std::sort (this->name_components.begin (),
3907 this->name_components.end (),
3908 name_comp_compare);
3909 }
3910
3911 /* Helper for dw2_expand_symtabs_matching that works with a
3912 mapped_index_base instead of the containing objfile. This is split
3913 to a separate function in order to be able to unit test the
3914 name_components matching using a mock mapped_index_base. For each
3915 symbol name that matches, calls MATCH_CALLBACK, passing it the
3916 symbol's index in the mapped_index_base symbol table. */
3917
3918 static void
3919 dw2_expand_symtabs_matching_symbol
3920 (mapped_index_base &index,
3921 const lookup_name_info &lookup_name_in,
3922 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3923 enum search_domain kind,
3924 gdb::function_view<bool (offset_type)> match_callback)
3925 {
3926 lookup_name_info lookup_name_without_params
3927 = lookup_name_in.make_ignore_params ();
3928
3929 /* Build the symbol name component sorted vector, if we haven't
3930 yet. */
3931 index.build_name_components ();
3932
3933 /* The same symbol may appear more than once in the range though.
3934 E.g., if we're looking for symbols that complete "w", and we have
3935 a symbol named "w1::w2", we'll find the two name components for
3936 that same symbol in the range. To be sure we only call the
3937 callback once per symbol, we first collect the symbol name
3938 indexes that matched in a temporary vector and ignore
3939 duplicates. */
3940 std::vector<offset_type> matches;
3941
3942 struct name_and_matcher
3943 {
3944 symbol_name_matcher_ftype *matcher;
3945 const char *name;
3946
3947 bool operator== (const name_and_matcher &other) const
3948 {
3949 return matcher == other.matcher && strcmp (name, other.name) == 0;
3950 }
3951 };
3952
3953 /* A vector holding all the different symbol name matchers, for all
3954 languages. */
3955 std::vector<name_and_matcher> matchers;
3956
3957 for (int i = 0; i < nr_languages; i++)
3958 {
3959 enum language lang_e = (enum language) i;
3960
3961 const language_defn *lang = language_def (lang_e);
3962 symbol_name_matcher_ftype *name_matcher
3963 = get_symbol_name_matcher (lang, lookup_name_without_params);
3964
3965 name_and_matcher key {
3966 name_matcher,
3967 lookup_name_without_params.language_lookup_name (lang_e)
3968 };
3969
3970 /* Don't insert the same comparison routine more than once.
3971 Note that we do this linear walk. This is not a problem in
3972 practice because the number of supported languages is
3973 low. */
3974 if (std::find (matchers.begin (), matchers.end (), key)
3975 != matchers.end ())
3976 continue;
3977 matchers.push_back (std::move (key));
3978
3979 auto bounds
3980 = index.find_name_components_bounds (lookup_name_without_params,
3981 lang_e);
3982
3983 /* Now for each symbol name in range, check to see if we have a name
3984 match, and if so, call the MATCH_CALLBACK callback. */
3985
3986 for (; bounds.first != bounds.second; ++bounds.first)
3987 {
3988 const char *qualified = index.symbol_name_at (bounds.first->idx);
3989
3990 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3991 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3992 continue;
3993
3994 matches.push_back (bounds.first->idx);
3995 }
3996 }
3997
3998 std::sort (matches.begin (), matches.end ());
3999
4000 /* Finally call the callback, once per match. */
4001 ULONGEST prev = -1;
4002 for (offset_type idx : matches)
4003 {
4004 if (prev != idx)
4005 {
4006 if (!match_callback (idx))
4007 break;
4008 prev = idx;
4009 }
4010 }
4011
4012 /* Above we use a type wider than idx's for 'prev', since 0 and
4013 (offset_type)-1 are both possible values. */
4014 static_assert (sizeof (prev) > sizeof (offset_type), "");
4015 }
4016
4017 #if GDB_SELF_TEST
4018
4019 namespace selftests { namespace dw2_expand_symtabs_matching {
4020
4021 /* A mock .gdb_index/.debug_names-like name index table, enough to
4022 exercise dw2_expand_symtabs_matching_symbol, which works with the
4023 mapped_index_base interface. Builds an index from the symbol list
4024 passed as parameter to the constructor. */
4025 class mock_mapped_index : public mapped_index_base
4026 {
4027 public:
4028 mock_mapped_index (gdb::array_view<const char *> symbols)
4029 : m_symbol_table (symbols)
4030 {}
4031
4032 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4033
4034 /* Return the number of names in the symbol table. */
4035 size_t symbol_name_count () const override
4036 {
4037 return m_symbol_table.size ();
4038 }
4039
4040 /* Get the name of the symbol at IDX in the symbol table. */
4041 const char *symbol_name_at (offset_type idx) const override
4042 {
4043 return m_symbol_table[idx];
4044 }
4045
4046 private:
4047 gdb::array_view<const char *> m_symbol_table;
4048 };
4049
4050 /* Convenience function that converts a NULL pointer to a "<null>"
4051 string, to pass to print routines. */
4052
4053 static const char *
4054 string_or_null (const char *str)
4055 {
4056 return str != NULL ? str : "<null>";
4057 }
4058
4059 /* Check if a lookup_name_info built from
4060 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4061 index. EXPECTED_LIST is the list of expected matches, in expected
4062 matching order. If no match expected, then an empty list is
4063 specified. Returns true on success. On failure prints a warning
4064 indicating the file:line that failed, and returns false. */
4065
4066 static bool
4067 check_match (const char *file, int line,
4068 mock_mapped_index &mock_index,
4069 const char *name, symbol_name_match_type match_type,
4070 bool completion_mode,
4071 std::initializer_list<const char *> expected_list)
4072 {
4073 lookup_name_info lookup_name (name, match_type, completion_mode);
4074
4075 bool matched = true;
4076
4077 auto mismatch = [&] (const char *expected_str,
4078 const char *got)
4079 {
4080 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4081 "expected=\"%s\", got=\"%s\"\n"),
4082 file, line,
4083 (match_type == symbol_name_match_type::FULL
4084 ? "FULL" : "WILD"),
4085 name, string_or_null (expected_str), string_or_null (got));
4086 matched = false;
4087 };
4088
4089 auto expected_it = expected_list.begin ();
4090 auto expected_end = expected_list.end ();
4091
4092 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4093 NULL, ALL_DOMAIN,
4094 [&] (offset_type idx)
4095 {
4096 const char *matched_name = mock_index.symbol_name_at (idx);
4097 const char *expected_str
4098 = expected_it == expected_end ? NULL : *expected_it++;
4099
4100 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4101 mismatch (expected_str, matched_name);
4102 return true;
4103 });
4104
4105 const char *expected_str
4106 = expected_it == expected_end ? NULL : *expected_it++;
4107 if (expected_str != NULL)
4108 mismatch (expected_str, NULL);
4109
4110 return matched;
4111 }
4112
4113 /* The symbols added to the mock mapped_index for testing (in
4114 canonical form). */
4115 static const char *test_symbols[] = {
4116 "function",
4117 "std::bar",
4118 "std::zfunction",
4119 "std::zfunction2",
4120 "w1::w2",
4121 "ns::foo<char*>",
4122 "ns::foo<int>",
4123 "ns::foo<long>",
4124 "ns2::tmpl<int>::foo2",
4125 "(anonymous namespace)::A::B::C",
4126
4127 /* These are used to check that the increment-last-char in the
4128 matching algorithm for completion doesn't match "t1_fund" when
4129 completing "t1_func". */
4130 "t1_func",
4131 "t1_func1",
4132 "t1_fund",
4133 "t1_fund1",
4134
4135 /* A UTF-8 name with multi-byte sequences to make sure that
4136 cp-name-parser understands this as a single identifier ("função"
4137 is "function" in PT). */
4138 u8"u8função",
4139
4140 /* \377 (0xff) is Latin1 'ÿ'. */
4141 "yfunc\377",
4142
4143 /* \377 (0xff) is Latin1 'ÿ'. */
4144 "\377",
4145 "\377\377123",
4146
4147 /* A name with all sorts of complications. Starts with "z" to make
4148 it easier for the completion tests below. */
4149 #define Z_SYM_NAME \
4150 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4151 "::tuple<(anonymous namespace)::ui*, " \
4152 "std::default_delete<(anonymous namespace)::ui>, void>"
4153
4154 Z_SYM_NAME
4155 };
4156
4157 /* Returns true if the mapped_index_base::find_name_component_bounds
4158 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4159 in completion mode. */
4160
4161 static bool
4162 check_find_bounds_finds (mapped_index_base &index,
4163 const char *search_name,
4164 gdb::array_view<const char *> expected_syms)
4165 {
4166 lookup_name_info lookup_name (search_name,
4167 symbol_name_match_type::FULL, true);
4168
4169 auto bounds = index.find_name_components_bounds (lookup_name,
4170 language_cplus);
4171
4172 size_t distance = std::distance (bounds.first, bounds.second);
4173 if (distance != expected_syms.size ())
4174 return false;
4175
4176 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4177 {
4178 auto nc_elem = bounds.first + exp_elem;
4179 const char *qualified = index.symbol_name_at (nc_elem->idx);
4180 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4181 return false;
4182 }
4183
4184 return true;
4185 }
4186
4187 /* Test the lower-level mapped_index::find_name_component_bounds
4188 method. */
4189
4190 static void
4191 test_mapped_index_find_name_component_bounds ()
4192 {
4193 mock_mapped_index mock_index (test_symbols);
4194
4195 mock_index.build_name_components ();
4196
4197 /* Test the lower-level mapped_index::find_name_component_bounds
4198 method in completion mode. */
4199 {
4200 static const char *expected_syms[] = {
4201 "t1_func",
4202 "t1_func1",
4203 };
4204
4205 SELF_CHECK (check_find_bounds_finds (mock_index,
4206 "t1_func", expected_syms));
4207 }
4208
4209 /* Check that the increment-last-char in the name matching algorithm
4210 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4211 {
4212 static const char *expected_syms1[] = {
4213 "\377",
4214 "\377\377123",
4215 };
4216 SELF_CHECK (check_find_bounds_finds (mock_index,
4217 "\377", expected_syms1));
4218
4219 static const char *expected_syms2[] = {
4220 "\377\377123",
4221 };
4222 SELF_CHECK (check_find_bounds_finds (mock_index,
4223 "\377\377", expected_syms2));
4224 }
4225 }
4226
4227 /* Test dw2_expand_symtabs_matching_symbol. */
4228
4229 static void
4230 test_dw2_expand_symtabs_matching_symbol ()
4231 {
4232 mock_mapped_index mock_index (test_symbols);
4233
4234 /* We let all tests run until the end even if some fails, for debug
4235 convenience. */
4236 bool any_mismatch = false;
4237
4238 /* Create the expected symbols list (an initializer_list). Needed
4239 because lists have commas, and we need to pass them to CHECK,
4240 which is a macro. */
4241 #define EXPECT(...) { __VA_ARGS__ }
4242
4243 /* Wrapper for check_match that passes down the current
4244 __FILE__/__LINE__. */
4245 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4246 any_mismatch |= !check_match (__FILE__, __LINE__, \
4247 mock_index, \
4248 NAME, MATCH_TYPE, COMPLETION_MODE, \
4249 EXPECTED_LIST)
4250
4251 /* Identity checks. */
4252 for (const char *sym : test_symbols)
4253 {
4254 /* Should be able to match all existing symbols. */
4255 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4256 EXPECT (sym));
4257
4258 /* Should be able to match all existing symbols with
4259 parameters. */
4260 std::string with_params = std::string (sym) + "(int)";
4261 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4262 EXPECT (sym));
4263
4264 /* Should be able to match all existing symbols with
4265 parameters and qualifiers. */
4266 with_params = std::string (sym) + " ( int ) const";
4267 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4268 EXPECT (sym));
4269
4270 /* This should really find sym, but cp-name-parser.y doesn't
4271 know about lvalue/rvalue qualifiers yet. */
4272 with_params = std::string (sym) + " ( int ) &&";
4273 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4274 {});
4275 }
4276
4277 /* Check that the name matching algorithm for completion doesn't get
4278 confused with Latin1 'ÿ' / 0xff. */
4279 {
4280 static const char str[] = "\377";
4281 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4282 EXPECT ("\377", "\377\377123"));
4283 }
4284
4285 /* Check that the increment-last-char in the matching algorithm for
4286 completion doesn't match "t1_fund" when completing "t1_func". */
4287 {
4288 static const char str[] = "t1_func";
4289 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4290 EXPECT ("t1_func", "t1_func1"));
4291 }
4292
4293 /* Check that completion mode works at each prefix of the expected
4294 symbol name. */
4295 {
4296 static const char str[] = "function(int)";
4297 size_t len = strlen (str);
4298 std::string lookup;
4299
4300 for (size_t i = 1; i < len; i++)
4301 {
4302 lookup.assign (str, i);
4303 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4304 EXPECT ("function"));
4305 }
4306 }
4307
4308 /* While "w" is a prefix of both components, the match function
4309 should still only be called once. */
4310 {
4311 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4312 EXPECT ("w1::w2"));
4313 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4314 EXPECT ("w1::w2"));
4315 }
4316
4317 /* Same, with a "complicated" symbol. */
4318 {
4319 static const char str[] = Z_SYM_NAME;
4320 size_t len = strlen (str);
4321 std::string lookup;
4322
4323 for (size_t i = 1; i < len; i++)
4324 {
4325 lookup.assign (str, i);
4326 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4327 EXPECT (Z_SYM_NAME));
4328 }
4329 }
4330
4331 /* In FULL mode, an incomplete symbol doesn't match. */
4332 {
4333 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4334 {});
4335 }
4336
4337 /* A complete symbol with parameters matches any overload, since the
4338 index has no overload info. */
4339 {
4340 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4341 EXPECT ("std::zfunction", "std::zfunction2"));
4342 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 }
4347
4348 /* Check that whitespace is ignored appropriately. A symbol with a
4349 template argument list. */
4350 {
4351 static const char expected[] = "ns::foo<int>";
4352 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4353 EXPECT (expected));
4354 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4355 EXPECT (expected));
4356 }
4357
4358 /* Check that whitespace is ignored appropriately. A symbol with a
4359 template argument list that includes a pointer. */
4360 {
4361 static const char expected[] = "ns::foo<char*>";
4362 /* Try both completion and non-completion modes. */
4363 static const bool completion_mode[2] = {false, true};
4364 for (size_t i = 0; i < 2; i++)
4365 {
4366 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4367 completion_mode[i], EXPECT (expected));
4368 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4369 completion_mode[i], EXPECT (expected));
4370
4371 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4372 completion_mode[i], EXPECT (expected));
4373 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4374 completion_mode[i], EXPECT (expected));
4375 }
4376 }
4377
4378 {
4379 /* Check method qualifiers are ignored. */
4380 static const char expected[] = "ns::foo<char*>";
4381 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4382 symbol_name_match_type::FULL, true, EXPECT (expected));
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("foo < char * > ( int ) const",
4386 symbol_name_match_type::WILD, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) &&",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 }
4390
4391 /* Test lookup names that don't match anything. */
4392 {
4393 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4394 {});
4395
4396 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4397 {});
4398 }
4399
4400 /* Some wild matching tests, exercising "(anonymous namespace)",
4401 which should not be confused with a parameter list. */
4402 {
4403 static const char *syms[] = {
4404 "A::B::C",
4405 "B::C",
4406 "C",
4407 "A :: B :: C ( int )",
4408 "B :: C ( int )",
4409 "C ( int )",
4410 };
4411
4412 for (const char *s : syms)
4413 {
4414 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4415 EXPECT ("(anonymous namespace)::A::B::C"));
4416 }
4417 }
4418
4419 {
4420 static const char expected[] = "ns2::tmpl<int>::foo2";
4421 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4422 EXPECT (expected));
4423 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 }
4426
4427 SELF_CHECK (!any_mismatch);
4428
4429 #undef EXPECT
4430 #undef CHECK_MATCH
4431 }
4432
4433 static void
4434 run_test ()
4435 {
4436 test_mapped_index_find_name_component_bounds ();
4437 test_dw2_expand_symtabs_matching_symbol ();
4438 }
4439
4440 }} // namespace selftests::dw2_expand_symtabs_matching
4441
4442 #endif /* GDB_SELF_TEST */
4443
4444 /* If FILE_MATCHER is NULL or if PER_CU has
4445 dwarf2_per_cu_quick_data::MARK set (see
4446 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4447 EXPANSION_NOTIFY on it. */
4448
4449 static void
4450 dw2_expand_symtabs_matching_one
4451 (struct dwarf2_per_cu_data *per_cu,
4452 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4453 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4454 {
4455 if (file_matcher == NULL || per_cu->v.quick->mark)
4456 {
4457 bool symtab_was_null
4458 = (per_cu->v.quick->compunit_symtab == NULL);
4459
4460 dw2_instantiate_symtab (per_cu, false);
4461
4462 if (expansion_notify != NULL
4463 && symtab_was_null
4464 && per_cu->v.quick->compunit_symtab != NULL)
4465 expansion_notify (per_cu->v.quick->compunit_symtab);
4466 }
4467 }
4468
4469 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4470 matched, to expand corresponding CUs that were marked. IDX is the
4471 index of the symbol name that matched. */
4472
4473 static void
4474 dw2_expand_marked_cus
4475 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4476 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4477 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4478 search_domain kind)
4479 {
4480 offset_type *vec, vec_len, vec_idx;
4481 bool global_seen = false;
4482 mapped_index &index = *dwarf2_per_objfile->index_table;
4483
4484 vec = (offset_type *) (index.constant_pool
4485 + MAYBE_SWAP (index.symbol_table[idx].vec));
4486 vec_len = MAYBE_SWAP (vec[0]);
4487 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4488 {
4489 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4490 /* This value is only valid for index versions >= 7. */
4491 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4492 gdb_index_symbol_kind symbol_kind =
4493 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4494 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4495 /* Only check the symbol attributes if they're present.
4496 Indices prior to version 7 don't record them,
4497 and indices >= 7 may elide them for certain symbols
4498 (gold does this). */
4499 int attrs_valid =
4500 (index.version >= 7
4501 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4502
4503 /* Work around gold/15646. */
4504 if (attrs_valid)
4505 {
4506 if (!is_static && global_seen)
4507 continue;
4508 if (!is_static)
4509 global_seen = true;
4510 }
4511
4512 /* Only check the symbol's kind if it has one. */
4513 if (attrs_valid)
4514 {
4515 switch (kind)
4516 {
4517 case VARIABLES_DOMAIN:
4518 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4519 continue;
4520 break;
4521 case FUNCTIONS_DOMAIN:
4522 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4523 continue;
4524 break;
4525 case TYPES_DOMAIN:
4526 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4527 continue;
4528 break;
4529 case MODULES_DOMAIN:
4530 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4531 continue;
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537
4538 /* Don't crash on bad data. */
4539 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4540 + dwarf2_per_objfile->all_type_units.size ()))
4541 {
4542 complaint (_(".gdb_index entry has bad CU index"
4543 " [in module %s]"),
4544 objfile_name (dwarf2_per_objfile->objfile));
4545 continue;
4546 }
4547
4548 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4549 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4550 expansion_notify);
4551 }
4552 }
4553
4554 /* If FILE_MATCHER is non-NULL, set all the
4555 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4556 that match FILE_MATCHER. */
4557
4558 static void
4559 dw_expand_symtabs_matching_file_matcher
4560 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4561 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4562 {
4563 if (file_matcher == NULL)
4564 return;
4565
4566 objfile *const objfile = dwarf2_per_objfile->objfile;
4567
4568 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4569 htab_eq_pointer,
4570 NULL, xcalloc, xfree));
4571 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4572 htab_eq_pointer,
4573 NULL, xcalloc, xfree));
4574
4575 /* The rule is CUs specify all the files, including those used by
4576 any TU, so there's no need to scan TUs here. */
4577
4578 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4579 {
4580 QUIT;
4581
4582 per_cu->v.quick->mark = 0;
4583
4584 /* We only need to look at symtabs not already expanded. */
4585 if (per_cu->v.quick->compunit_symtab)
4586 continue;
4587
4588 quick_file_names *file_data = dw2_get_file_names (per_cu);
4589 if (file_data == NULL)
4590 continue;
4591
4592 if (htab_find (visited_not_found.get (), file_data) != NULL)
4593 continue;
4594 else if (htab_find (visited_found.get (), file_data) != NULL)
4595 {
4596 per_cu->v.quick->mark = 1;
4597 continue;
4598 }
4599
4600 for (int j = 0; j < file_data->num_file_names; ++j)
4601 {
4602 const char *this_real_name;
4603
4604 if (file_matcher (file_data->file_names[j], false))
4605 {
4606 per_cu->v.quick->mark = 1;
4607 break;
4608 }
4609
4610 /* Before we invoke realpath, which can get expensive when many
4611 files are involved, do a quick comparison of the basenames. */
4612 if (!basenames_may_differ
4613 && !file_matcher (lbasename (file_data->file_names[j]),
4614 true))
4615 continue;
4616
4617 this_real_name = dw2_get_real_path (objfile, file_data, j);
4618 if (file_matcher (this_real_name, false))
4619 {
4620 per_cu->v.quick->mark = 1;
4621 break;
4622 }
4623 }
4624
4625 void **slot = htab_find_slot (per_cu->v.quick->mark
4626 ? visited_found.get ()
4627 : visited_not_found.get (),
4628 file_data, INSERT);
4629 *slot = file_data;
4630 }
4631 }
4632
4633 static void
4634 dw2_expand_symtabs_matching
4635 (struct objfile *objfile,
4636 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4637 const lookup_name_info *lookup_name,
4638 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4639 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4640 enum search_domain kind)
4641 {
4642 struct dwarf2_per_objfile *dwarf2_per_objfile
4643 = get_dwarf2_per_objfile (objfile);
4644
4645 /* index_table is NULL if OBJF_READNOW. */
4646 if (!dwarf2_per_objfile->index_table)
4647 return;
4648
4649 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4650
4651 if (symbol_matcher == NULL && lookup_name == NULL)
4652 {
4653 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4654 {
4655 QUIT;
4656
4657 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4658 expansion_notify);
4659 }
4660 return;
4661 }
4662
4663 mapped_index &index = *dwarf2_per_objfile->index_table;
4664
4665 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4666 symbol_matcher,
4667 kind, [&] (offset_type idx)
4668 {
4669 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4670 expansion_notify, kind);
4671 return true;
4672 });
4673 }
4674
4675 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4676 symtab. */
4677
4678 static struct compunit_symtab *
4679 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4680 CORE_ADDR pc)
4681 {
4682 int i;
4683
4684 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4685 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4686 return cust;
4687
4688 if (cust->includes == NULL)
4689 return NULL;
4690
4691 for (i = 0; cust->includes[i]; ++i)
4692 {
4693 struct compunit_symtab *s = cust->includes[i];
4694
4695 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4696 if (s != NULL)
4697 return s;
4698 }
4699
4700 return NULL;
4701 }
4702
4703 static struct compunit_symtab *
4704 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4705 struct bound_minimal_symbol msymbol,
4706 CORE_ADDR pc,
4707 struct obj_section *section,
4708 int warn_if_readin)
4709 {
4710 struct dwarf2_per_cu_data *data;
4711 struct compunit_symtab *result;
4712
4713 if (!objfile->partial_symtabs->psymtabs_addrmap)
4714 return NULL;
4715
4716 CORE_ADDR baseaddr = objfile->text_section_offset ();
4717 data = (struct dwarf2_per_cu_data *) addrmap_find
4718 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4719 if (!data)
4720 return NULL;
4721
4722 if (warn_if_readin && data->v.quick->compunit_symtab)
4723 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4724 paddress (objfile->arch (), pc));
4725
4726 result
4727 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4728 false),
4729 pc);
4730 gdb_assert (result != NULL);
4731 return result;
4732 }
4733
4734 static void
4735 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4736 void *data, int need_fullname)
4737 {
4738 struct dwarf2_per_objfile *dwarf2_per_objfile
4739 = get_dwarf2_per_objfile (objfile);
4740
4741 if (!dwarf2_per_objfile->filenames_cache)
4742 {
4743 dwarf2_per_objfile->filenames_cache.emplace ();
4744
4745 htab_up visited (htab_create_alloc (10,
4746 htab_hash_pointer, htab_eq_pointer,
4747 NULL, xcalloc, xfree));
4748
4749 /* The rule is CUs specify all the files, including those used
4750 by any TU, so there's no need to scan TUs here. We can
4751 ignore file names coming from already-expanded CUs. */
4752
4753 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4754 {
4755 if (per_cu->v.quick->compunit_symtab)
4756 {
4757 void **slot = htab_find_slot (visited.get (),
4758 per_cu->v.quick->file_names,
4759 INSERT);
4760
4761 *slot = per_cu->v.quick->file_names;
4762 }
4763 }
4764
4765 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4766 {
4767 /* We only need to look at symtabs not already expanded. */
4768 if (per_cu->v.quick->compunit_symtab)
4769 continue;
4770
4771 quick_file_names *file_data = dw2_get_file_names (per_cu);
4772 if (file_data == NULL)
4773 continue;
4774
4775 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4776 if (*slot)
4777 {
4778 /* Already visited. */
4779 continue;
4780 }
4781 *slot = file_data;
4782
4783 for (int j = 0; j < file_data->num_file_names; ++j)
4784 {
4785 const char *filename = file_data->file_names[j];
4786 dwarf2_per_objfile->filenames_cache->seen (filename);
4787 }
4788 }
4789 }
4790
4791 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4792 {
4793 gdb::unique_xmalloc_ptr<char> this_real_name;
4794
4795 if (need_fullname)
4796 this_real_name = gdb_realpath (filename);
4797 (*fun) (filename, this_real_name.get (), data);
4798 });
4799 }
4800
4801 static int
4802 dw2_has_symbols (struct objfile *objfile)
4803 {
4804 return 1;
4805 }
4806
4807 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4808 {
4809 dw2_has_symbols,
4810 dw2_find_last_source_symtab,
4811 dw2_forget_cached_source_info,
4812 dw2_map_symtabs_matching_filename,
4813 dw2_lookup_symbol,
4814 NULL,
4815 dw2_print_stats,
4816 dw2_dump,
4817 dw2_expand_symtabs_for_function,
4818 dw2_expand_all_symtabs,
4819 dw2_expand_symtabs_with_fullname,
4820 dw2_map_matching_symbols,
4821 dw2_expand_symtabs_matching,
4822 dw2_find_pc_sect_compunit_symtab,
4823 NULL,
4824 dw2_map_symbol_filenames
4825 };
4826
4827 /* DWARF-5 debug_names reader. */
4828
4829 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4830 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4831
4832 /* A helper function that reads the .debug_names section in SECTION
4833 and fills in MAP. FILENAME is the name of the file containing the
4834 section; it is used for error reporting.
4835
4836 Returns true if all went well, false otherwise. */
4837
4838 static bool
4839 read_debug_names_from_section (struct objfile *objfile,
4840 const char *filename,
4841 struct dwarf2_section_info *section,
4842 mapped_debug_names &map)
4843 {
4844 if (section->empty ())
4845 return false;
4846
4847 /* Older elfutils strip versions could keep the section in the main
4848 executable while splitting it for the separate debug info file. */
4849 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4850 return false;
4851
4852 section->read (objfile);
4853
4854 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4855
4856 const gdb_byte *addr = section->buffer;
4857
4858 bfd *const abfd = section->get_bfd_owner ();
4859
4860 unsigned int bytes_read;
4861 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4862 addr += bytes_read;
4863
4864 map.dwarf5_is_dwarf64 = bytes_read != 4;
4865 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4866 if (bytes_read + length != section->size)
4867 {
4868 /* There may be multiple per-CU indices. */
4869 warning (_("Section .debug_names in %s length %s does not match "
4870 "section length %s, ignoring .debug_names."),
4871 filename, plongest (bytes_read + length),
4872 pulongest (section->size));
4873 return false;
4874 }
4875
4876 /* The version number. */
4877 uint16_t version = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (version != 5)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported version %d, "
4882 "ignoring .debug_names."),
4883 filename, version);
4884 return false;
4885 }
4886
4887 /* Padding. */
4888 uint16_t padding = read_2_bytes (abfd, addr);
4889 addr += 2;
4890 if (padding != 0)
4891 {
4892 warning (_("Section .debug_names in %s has unsupported padding %d, "
4893 "ignoring .debug_names."),
4894 filename, padding);
4895 return false;
4896 }
4897
4898 /* comp_unit_count - The number of CUs in the CU list. */
4899 map.cu_count = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* local_type_unit_count - The number of TUs in the local TU
4903 list. */
4904 map.tu_count = read_4_bytes (abfd, addr);
4905 addr += 4;
4906
4907 /* foreign_type_unit_count - The number of TUs in the foreign TU
4908 list. */
4909 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4910 addr += 4;
4911 if (foreign_tu_count != 0)
4912 {
4913 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4914 "ignoring .debug_names."),
4915 filename, static_cast<unsigned long> (foreign_tu_count));
4916 return false;
4917 }
4918
4919 /* bucket_count - The number of hash buckets in the hash lookup
4920 table. */
4921 map.bucket_count = read_4_bytes (abfd, addr);
4922 addr += 4;
4923
4924 /* name_count - The number of unique names in the index. */
4925 map.name_count = read_4_bytes (abfd, addr);
4926 addr += 4;
4927
4928 /* abbrev_table_size - The size in bytes of the abbreviations
4929 table. */
4930 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4931 addr += 4;
4932
4933 /* augmentation_string_size - The size in bytes of the augmentation
4934 string. This value is rounded up to a multiple of 4. */
4935 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4936 addr += 4;
4937 map.augmentation_is_gdb = ((augmentation_string_size
4938 == sizeof (dwarf5_augmentation))
4939 && memcmp (addr, dwarf5_augmentation,
4940 sizeof (dwarf5_augmentation)) == 0);
4941 augmentation_string_size += (-augmentation_string_size) & 3;
4942 addr += augmentation_string_size;
4943
4944 /* List of CUs */
4945 map.cu_table_reordered = addr;
4946 addr += map.cu_count * map.offset_size;
4947
4948 /* List of Local TUs */
4949 map.tu_table_reordered = addr;
4950 addr += map.tu_count * map.offset_size;
4951
4952 /* Hash Lookup Table */
4953 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4954 addr += map.bucket_count * 4;
4955 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4956 addr += map.name_count * 4;
4957
4958 /* Name Table */
4959 map.name_table_string_offs_reordered = addr;
4960 addr += map.name_count * map.offset_size;
4961 map.name_table_entry_offs_reordered = addr;
4962 addr += map.name_count * map.offset_size;
4963
4964 const gdb_byte *abbrev_table_start = addr;
4965 for (;;)
4966 {
4967 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4968 addr += bytes_read;
4969 if (index_num == 0)
4970 break;
4971
4972 const auto insertpair
4973 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4974 if (!insertpair.second)
4975 {
4976 warning (_("Section .debug_names in %s has duplicate index %s, "
4977 "ignoring .debug_names."),
4978 filename, pulongest (index_num));
4979 return false;
4980 }
4981 mapped_debug_names::index_val &indexval = insertpair.first->second;
4982 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4983 addr += bytes_read;
4984
4985 for (;;)
4986 {
4987 mapped_debug_names::index_val::attr attr;
4988 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4989 addr += bytes_read;
4990 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4991 addr += bytes_read;
4992 if (attr.form == DW_FORM_implicit_const)
4993 {
4994 attr.implicit_const = read_signed_leb128 (abfd, addr,
4995 &bytes_read);
4996 addr += bytes_read;
4997 }
4998 if (attr.dw_idx == 0 && attr.form == 0)
4999 break;
5000 indexval.attr_vec.push_back (std::move (attr));
5001 }
5002 }
5003 if (addr != abbrev_table_start + abbrev_table_size)
5004 {
5005 warning (_("Section .debug_names in %s has abbreviation_table "
5006 "of size %s vs. written as %u, ignoring .debug_names."),
5007 filename, plongest (addr - abbrev_table_start),
5008 abbrev_table_size);
5009 return false;
5010 }
5011 map.entry_pool = addr;
5012
5013 return true;
5014 }
5015
5016 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5017 list. */
5018
5019 static void
5020 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5021 const mapped_debug_names &map,
5022 dwarf2_section_info &section,
5023 bool is_dwz)
5024 {
5025 sect_offset sect_off_prev;
5026 for (uint32_t i = 0; i <= map.cu_count; ++i)
5027 {
5028 sect_offset sect_off_next;
5029 if (i < map.cu_count)
5030 {
5031 sect_off_next
5032 = (sect_offset) (extract_unsigned_integer
5033 (map.cu_table_reordered + i * map.offset_size,
5034 map.offset_size,
5035 map.dwarf5_byte_order));
5036 }
5037 else
5038 sect_off_next = (sect_offset) section.size;
5039 if (i >= 1)
5040 {
5041 const ULONGEST length = sect_off_next - sect_off_prev;
5042 dwarf2_per_cu_data *per_cu
5043 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5044 sect_off_prev, length);
5045 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5046 }
5047 sect_off_prev = sect_off_next;
5048 }
5049 }
5050
5051 /* Read the CU list from the mapped index, and use it to create all
5052 the CU objects for this dwarf2_per_objfile. */
5053
5054 static void
5055 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5056 const mapped_debug_names &map,
5057 const mapped_debug_names &dwz_map)
5058 {
5059 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5060 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5061
5062 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5063 dwarf2_per_objfile->info,
5064 false /* is_dwz */);
5065
5066 if (dwz_map.cu_count == 0)
5067 return;
5068
5069 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5070 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5071 true /* is_dwz */);
5072 }
5073
5074 /* Read .debug_names. If everything went ok, initialize the "quick"
5075 elements of all the CUs and return true. Otherwise, return false. */
5076
5077 static bool
5078 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5079 {
5080 std::unique_ptr<mapped_debug_names> map
5081 (new mapped_debug_names (dwarf2_per_objfile));
5082 mapped_debug_names dwz_map (dwarf2_per_objfile);
5083 struct objfile *objfile = dwarf2_per_objfile->objfile;
5084
5085 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5086 &dwarf2_per_objfile->debug_names,
5087 *map))
5088 return false;
5089
5090 /* Don't use the index if it's empty. */
5091 if (map->name_count == 0)
5092 return false;
5093
5094 /* If there is a .dwz file, read it so we can get its CU list as
5095 well. */
5096 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5097 if (dwz != NULL)
5098 {
5099 if (!read_debug_names_from_section (objfile,
5100 bfd_get_filename (dwz->dwz_bfd.get ()),
5101 &dwz->debug_names, dwz_map))
5102 {
5103 warning (_("could not read '.debug_names' section from %s; skipping"),
5104 bfd_get_filename (dwz->dwz_bfd.get ()));
5105 return false;
5106 }
5107 }
5108
5109 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5110
5111 if (map->tu_count != 0)
5112 {
5113 /* We can only handle a single .debug_types when we have an
5114 index. */
5115 if (dwarf2_per_objfile->types.size () != 1)
5116 return false;
5117
5118 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5119
5120 create_signatured_type_table_from_debug_names
5121 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5122 }
5123
5124 create_addrmap_from_aranges (dwarf2_per_objfile,
5125 &dwarf2_per_objfile->debug_aranges);
5126
5127 dwarf2_per_objfile->debug_names_table = std::move (map);
5128 dwarf2_per_objfile->using_index = 1;
5129 dwarf2_per_objfile->quick_file_names_table =
5130 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5131
5132 return true;
5133 }
5134
5135 /* Type used to manage iterating over all CUs looking for a symbol for
5136 .debug_names. */
5137
5138 class dw2_debug_names_iterator
5139 {
5140 public:
5141 dw2_debug_names_iterator (const mapped_debug_names &map,
5142 gdb::optional<block_enum> block_index,
5143 domain_enum domain,
5144 const char *name)
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, name))
5147 {}
5148
5149 dw2_debug_names_iterator (const mapped_debug_names &map,
5150 search_domain search, uint32_t namei)
5151 : m_map (map),
5152 m_search (search),
5153 m_addr (find_vec_in_debug_names (map, namei))
5154 {}
5155
5156 dw2_debug_names_iterator (const mapped_debug_names &map,
5157 block_enum block_index, domain_enum domain,
5158 uint32_t namei)
5159 : m_map (map), m_block_index (block_index), m_domain (domain),
5160 m_addr (find_vec_in_debug_names (map, namei))
5161 {}
5162
5163 /* Return the next matching CU or NULL if there are no more. */
5164 dwarf2_per_cu_data *next ();
5165
5166 private:
5167 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5168 const char *name);
5169 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5170 uint32_t namei);
5171
5172 /* The internalized form of .debug_names. */
5173 const mapped_debug_names &m_map;
5174
5175 /* If set, only look for symbols that match that block. Valid values are
5176 GLOBAL_BLOCK and STATIC_BLOCK. */
5177 const gdb::optional<block_enum> m_block_index;
5178
5179 /* The kind of symbol we're looking for. */
5180 const domain_enum m_domain = UNDEF_DOMAIN;
5181 const search_domain m_search = ALL_DOMAIN;
5182
5183 /* The list of CUs from the index entry of the symbol, or NULL if
5184 not found. */
5185 const gdb_byte *m_addr;
5186 };
5187
5188 const char *
5189 mapped_debug_names::namei_to_name (uint32_t namei) const
5190 {
5191 const ULONGEST namei_string_offs
5192 = extract_unsigned_integer ((name_table_string_offs_reordered
5193 + namei * offset_size),
5194 offset_size,
5195 dwarf5_byte_order);
5196 return read_indirect_string_at_offset (dwarf2_per_objfile,
5197 namei_string_offs);
5198 }
5199
5200 /* Find a slot in .debug_names for the object named NAME. If NAME is
5201 found, return pointer to its pool data. If NAME cannot be found,
5202 return NULL. */
5203
5204 const gdb_byte *
5205 dw2_debug_names_iterator::find_vec_in_debug_names
5206 (const mapped_debug_names &map, const char *name)
5207 {
5208 int (*cmp) (const char *, const char *);
5209
5210 gdb::unique_xmalloc_ptr<char> without_params;
5211 if (current_language->la_language == language_cplus
5212 || current_language->la_language == language_fortran
5213 || current_language->la_language == language_d)
5214 {
5215 /* NAME is already canonical. Drop any qualifiers as
5216 .debug_names does not contain any. */
5217
5218 if (strchr (name, '(') != NULL)
5219 {
5220 without_params = cp_remove_params (name);
5221 if (without_params != NULL)
5222 name = without_params.get ();
5223 }
5224 }
5225
5226 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5227
5228 const uint32_t full_hash = dwarf5_djb_hash (name);
5229 uint32_t namei
5230 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5231 (map.bucket_table_reordered
5232 + (full_hash % map.bucket_count)), 4,
5233 map.dwarf5_byte_order);
5234 if (namei == 0)
5235 return NULL;
5236 --namei;
5237 if (namei >= map.name_count)
5238 {
5239 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5240 "[in module %s]"),
5241 namei, map.name_count,
5242 objfile_name (map.dwarf2_per_objfile->objfile));
5243 return NULL;
5244 }
5245
5246 for (;;)
5247 {
5248 const uint32_t namei_full_hash
5249 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5250 (map.hash_table_reordered + namei), 4,
5251 map.dwarf5_byte_order);
5252 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5253 return NULL;
5254
5255 if (full_hash == namei_full_hash)
5256 {
5257 const char *const namei_string = map.namei_to_name (namei);
5258
5259 #if 0 /* An expensive sanity check. */
5260 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5261 {
5262 complaint (_("Wrong .debug_names hash for string at index %u "
5263 "[in module %s]"),
5264 namei, objfile_name (dwarf2_per_objfile->objfile));
5265 return NULL;
5266 }
5267 #endif
5268
5269 if (cmp (namei_string, name) == 0)
5270 {
5271 const ULONGEST namei_entry_offs
5272 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5273 + namei * map.offset_size),
5274 map.offset_size, map.dwarf5_byte_order);
5275 return map.entry_pool + namei_entry_offs;
5276 }
5277 }
5278
5279 ++namei;
5280 if (namei >= map.name_count)
5281 return NULL;
5282 }
5283 }
5284
5285 const gdb_byte *
5286 dw2_debug_names_iterator::find_vec_in_debug_names
5287 (const mapped_debug_names &map, uint32_t namei)
5288 {
5289 if (namei >= map.name_count)
5290 {
5291 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5292 "[in module %s]"),
5293 namei, map.name_count,
5294 objfile_name (map.dwarf2_per_objfile->objfile));
5295 return NULL;
5296 }
5297
5298 const ULONGEST namei_entry_offs
5299 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5300 + namei * map.offset_size),
5301 map.offset_size, map.dwarf5_byte_order);
5302 return map.entry_pool + namei_entry_offs;
5303 }
5304
5305 /* See dw2_debug_names_iterator. */
5306
5307 dwarf2_per_cu_data *
5308 dw2_debug_names_iterator::next ()
5309 {
5310 if (m_addr == NULL)
5311 return NULL;
5312
5313 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5314 struct objfile *objfile = dwarf2_per_objfile->objfile;
5315 bfd *const abfd = objfile->obfd;
5316
5317 again:
5318
5319 unsigned int bytes_read;
5320 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5321 m_addr += bytes_read;
5322 if (abbrev == 0)
5323 return NULL;
5324
5325 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5326 if (indexval_it == m_map.abbrev_map.cend ())
5327 {
5328 complaint (_("Wrong .debug_names undefined abbrev code %s "
5329 "[in module %s]"),
5330 pulongest (abbrev), objfile_name (objfile));
5331 return NULL;
5332 }
5333 const mapped_debug_names::index_val &indexval = indexval_it->second;
5334 enum class symbol_linkage {
5335 unknown,
5336 static_,
5337 extern_,
5338 } symbol_linkage_ = symbol_linkage::unknown;
5339 dwarf2_per_cu_data *per_cu = NULL;
5340 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5341 {
5342 ULONGEST ull;
5343 switch (attr.form)
5344 {
5345 case DW_FORM_implicit_const:
5346 ull = attr.implicit_const;
5347 break;
5348 case DW_FORM_flag_present:
5349 ull = 1;
5350 break;
5351 case DW_FORM_udata:
5352 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5353 m_addr += bytes_read;
5354 break;
5355 default:
5356 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5357 dwarf_form_name (attr.form),
5358 objfile_name (objfile));
5359 return NULL;
5360 }
5361 switch (attr.dw_idx)
5362 {
5363 case DW_IDX_compile_unit:
5364 /* Don't crash on bad data. */
5365 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5366 {
5367 complaint (_(".debug_names entry has bad CU index %s"
5368 " [in module %s]"),
5369 pulongest (ull),
5370 objfile_name (dwarf2_per_objfile->objfile));
5371 continue;
5372 }
5373 per_cu = dwarf2_per_objfile->get_cutu (ull);
5374 break;
5375 case DW_IDX_type_unit:
5376 /* Don't crash on bad data. */
5377 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5378 {
5379 complaint (_(".debug_names entry has bad TU index %s"
5380 " [in module %s]"),
5381 pulongest (ull),
5382 objfile_name (dwarf2_per_objfile->objfile));
5383 continue;
5384 }
5385 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5386 break;
5387 case DW_IDX_GNU_internal:
5388 if (!m_map.augmentation_is_gdb)
5389 break;
5390 symbol_linkage_ = symbol_linkage::static_;
5391 break;
5392 case DW_IDX_GNU_external:
5393 if (!m_map.augmentation_is_gdb)
5394 break;
5395 symbol_linkage_ = symbol_linkage::extern_;
5396 break;
5397 }
5398 }
5399
5400 /* Skip if already read in. */
5401 if (per_cu->v.quick->compunit_symtab)
5402 goto again;
5403
5404 /* Check static vs global. */
5405 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5406 {
5407 const bool want_static = *m_block_index == STATIC_BLOCK;
5408 const bool symbol_is_static =
5409 symbol_linkage_ == symbol_linkage::static_;
5410 if (want_static != symbol_is_static)
5411 goto again;
5412 }
5413
5414 /* Match dw2_symtab_iter_next, symbol_kind
5415 and debug_names::psymbol_tag. */
5416 switch (m_domain)
5417 {
5418 case VAR_DOMAIN:
5419 switch (indexval.dwarf_tag)
5420 {
5421 case DW_TAG_variable:
5422 case DW_TAG_subprogram:
5423 /* Some types are also in VAR_DOMAIN. */
5424 case DW_TAG_typedef:
5425 case DW_TAG_structure_type:
5426 break;
5427 default:
5428 goto again;
5429 }
5430 break;
5431 case STRUCT_DOMAIN:
5432 switch (indexval.dwarf_tag)
5433 {
5434 case DW_TAG_typedef:
5435 case DW_TAG_structure_type:
5436 break;
5437 default:
5438 goto again;
5439 }
5440 break;
5441 case LABEL_DOMAIN:
5442 switch (indexval.dwarf_tag)
5443 {
5444 case 0:
5445 case DW_TAG_variable:
5446 break;
5447 default:
5448 goto again;
5449 }
5450 break;
5451 case MODULE_DOMAIN:
5452 switch (indexval.dwarf_tag)
5453 {
5454 case DW_TAG_module:
5455 break;
5456 default:
5457 goto again;
5458 }
5459 break;
5460 default:
5461 break;
5462 }
5463
5464 /* Match dw2_expand_symtabs_matching, symbol_kind and
5465 debug_names::psymbol_tag. */
5466 switch (m_search)
5467 {
5468 case VARIABLES_DOMAIN:
5469 switch (indexval.dwarf_tag)
5470 {
5471 case DW_TAG_variable:
5472 break;
5473 default:
5474 goto again;
5475 }
5476 break;
5477 case FUNCTIONS_DOMAIN:
5478 switch (indexval.dwarf_tag)
5479 {
5480 case DW_TAG_subprogram:
5481 break;
5482 default:
5483 goto again;
5484 }
5485 break;
5486 case TYPES_DOMAIN:
5487 switch (indexval.dwarf_tag)
5488 {
5489 case DW_TAG_typedef:
5490 case DW_TAG_structure_type:
5491 break;
5492 default:
5493 goto again;
5494 }
5495 break;
5496 case MODULES_DOMAIN:
5497 switch (indexval.dwarf_tag)
5498 {
5499 case DW_TAG_module:
5500 break;
5501 default:
5502 goto again;
5503 }
5504 default:
5505 break;
5506 }
5507
5508 return per_cu;
5509 }
5510
5511 static struct compunit_symtab *
5512 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5513 const char *name, domain_enum domain)
5514 {
5515 struct dwarf2_per_objfile *dwarf2_per_objfile
5516 = get_dwarf2_per_objfile (objfile);
5517
5518 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5519 if (!mapp)
5520 {
5521 /* index is NULL if OBJF_READNOW. */
5522 return NULL;
5523 }
5524 const auto &map = *mapp;
5525
5526 dw2_debug_names_iterator iter (map, block_index, domain, name);
5527
5528 struct compunit_symtab *stab_best = NULL;
5529 struct dwarf2_per_cu_data *per_cu;
5530 while ((per_cu = iter.next ()) != NULL)
5531 {
5532 struct symbol *sym, *with_opaque = NULL;
5533 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5534 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5535 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5536
5537 sym = block_find_symbol (block, name, domain,
5538 block_find_non_opaque_type_preferred,
5539 &with_opaque);
5540
5541 /* Some caution must be observed with overloaded functions and
5542 methods, since the index will not contain any overload
5543 information (but NAME might contain it). */
5544
5545 if (sym != NULL
5546 && strcmp_iw (sym->search_name (), name) == 0)
5547 return stab;
5548 if (with_opaque != NULL
5549 && strcmp_iw (with_opaque->search_name (), name) == 0)
5550 stab_best = stab;
5551
5552 /* Keep looking through other CUs. */
5553 }
5554
5555 return stab_best;
5556 }
5557
5558 /* This dumps minimal information about .debug_names. It is called
5559 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5560 uses this to verify that .debug_names has been loaded. */
5561
5562 static void
5563 dw2_debug_names_dump (struct objfile *objfile)
5564 {
5565 struct dwarf2_per_objfile *dwarf2_per_objfile
5566 = get_dwarf2_per_objfile (objfile);
5567
5568 gdb_assert (dwarf2_per_objfile->using_index);
5569 printf_filtered (".debug_names:");
5570 if (dwarf2_per_objfile->debug_names_table)
5571 printf_filtered (" exists\n");
5572 else
5573 printf_filtered (" faked for \"readnow\"\n");
5574 printf_filtered ("\n");
5575 }
5576
5577 static void
5578 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5579 const char *func_name)
5580 {
5581 struct dwarf2_per_objfile *dwarf2_per_objfile
5582 = get_dwarf2_per_objfile (objfile);
5583
5584 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5585 if (dwarf2_per_objfile->debug_names_table)
5586 {
5587 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5588
5589 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5590
5591 struct dwarf2_per_cu_data *per_cu;
5592 while ((per_cu = iter.next ()) != NULL)
5593 dw2_instantiate_symtab (per_cu, false);
5594 }
5595 }
5596
5597 static void
5598 dw2_debug_names_map_matching_symbols
5599 (struct objfile *objfile,
5600 const lookup_name_info &name, domain_enum domain,
5601 int global,
5602 gdb::function_view<symbol_found_callback_ftype> callback,
5603 symbol_compare_ftype *ordered_compare)
5604 {
5605 struct dwarf2_per_objfile *dwarf2_per_objfile
5606 = get_dwarf2_per_objfile (objfile);
5607
5608 /* debug_names_table is NULL if OBJF_READNOW. */
5609 if (!dwarf2_per_objfile->debug_names_table)
5610 return;
5611
5612 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5613 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5614
5615 const char *match_name = name.ada ().lookup_name ().c_str ();
5616 auto matcher = [&] (const char *symname)
5617 {
5618 if (ordered_compare == nullptr)
5619 return true;
5620 return ordered_compare (symname, match_name) == 0;
5621 };
5622
5623 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5624 [&] (offset_type namei)
5625 {
5626 /* The name was matched, now expand corresponding CUs that were
5627 marked. */
5628 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5629
5630 struct dwarf2_per_cu_data *per_cu;
5631 while ((per_cu = iter.next ()) != NULL)
5632 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5633 return true;
5634 });
5635
5636 /* It's a shame we couldn't do this inside the
5637 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5638 that have already been expanded. Instead, this loop matches what
5639 the psymtab code does. */
5640 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5641 {
5642 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5643 if (cust != nullptr)
5644 {
5645 const struct block *block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5647 if (!iterate_over_symbols_terminated (block, name,
5648 domain, callback))
5649 break;
5650 }
5651 }
5652 }
5653
5654 static void
5655 dw2_debug_names_expand_symtabs_matching
5656 (struct objfile *objfile,
5657 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5658 const lookup_name_info *lookup_name,
5659 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5660 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5661 enum search_domain kind)
5662 {
5663 struct dwarf2_per_objfile *dwarf2_per_objfile
5664 = get_dwarf2_per_objfile (objfile);
5665
5666 /* debug_names_table is NULL if OBJF_READNOW. */
5667 if (!dwarf2_per_objfile->debug_names_table)
5668 return;
5669
5670 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5671
5672 if (symbol_matcher == NULL && lookup_name == NULL)
5673 {
5674 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5675 {
5676 QUIT;
5677
5678 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5679 expansion_notify);
5680 }
5681 return;
5682 }
5683
5684 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5685
5686 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5687 symbol_matcher,
5688 kind, [&] (offset_type namei)
5689 {
5690 /* The name was matched, now expand corresponding CUs that were
5691 marked. */
5692 dw2_debug_names_iterator iter (map, kind, namei);
5693
5694 struct dwarf2_per_cu_data *per_cu;
5695 while ((per_cu = iter.next ()) != NULL)
5696 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5697 expansion_notify);
5698 return true;
5699 });
5700 }
5701
5702 const struct quick_symbol_functions dwarf2_debug_names_functions =
5703 {
5704 dw2_has_symbols,
5705 dw2_find_last_source_symtab,
5706 dw2_forget_cached_source_info,
5707 dw2_map_symtabs_matching_filename,
5708 dw2_debug_names_lookup_symbol,
5709 NULL,
5710 dw2_print_stats,
5711 dw2_debug_names_dump,
5712 dw2_debug_names_expand_symtabs_for_function,
5713 dw2_expand_all_symtabs,
5714 dw2_expand_symtabs_with_fullname,
5715 dw2_debug_names_map_matching_symbols,
5716 dw2_debug_names_expand_symtabs_matching,
5717 dw2_find_pc_sect_compunit_symtab,
5718 NULL,
5719 dw2_map_symbol_filenames
5720 };
5721
5722 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5723 to either a dwarf2_per_objfile or dwz_file object. */
5724
5725 template <typename T>
5726 static gdb::array_view<const gdb_byte>
5727 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5728 {
5729 dwarf2_section_info *section = &section_owner->gdb_index;
5730
5731 if (section->empty ())
5732 return {};
5733
5734 /* Older elfutils strip versions could keep the section in the main
5735 executable while splitting it for the separate debug info file. */
5736 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5737 return {};
5738
5739 section->read (obj);
5740
5741 /* dwarf2_section_info::size is a bfd_size_type, while
5742 gdb::array_view works with size_t. On 32-bit hosts, with
5743 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5744 is 32-bit. So we need an explicit narrowing conversion here.
5745 This is fine, because it's impossible to allocate or mmap an
5746 array/buffer larger than what size_t can represent. */
5747 return gdb::make_array_view (section->buffer, section->size);
5748 }
5749
5750 /* Lookup the index cache for the contents of the index associated to
5751 DWARF2_OBJ. */
5752
5753 static gdb::array_view<const gdb_byte>
5754 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5755 {
5756 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5757 if (build_id == nullptr)
5758 return {};
5759
5760 return global_index_cache.lookup_gdb_index (build_id,
5761 &dwarf2_obj->index_cache_res);
5762 }
5763
5764 /* Same as the above, but for DWZ. */
5765
5766 static gdb::array_view<const gdb_byte>
5767 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5768 {
5769 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5770 if (build_id == nullptr)
5771 return {};
5772
5773 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5774 }
5775
5776 /* See symfile.h. */
5777
5778 bool
5779 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5780 {
5781 struct dwarf2_per_objfile *dwarf2_per_objfile
5782 = get_dwarf2_per_objfile (objfile);
5783
5784 /* If we're about to read full symbols, don't bother with the
5785 indices. In this case we also don't care if some other debug
5786 format is making psymtabs, because they are all about to be
5787 expanded anyway. */
5788 if ((objfile->flags & OBJF_READNOW))
5789 {
5790 dwarf2_per_objfile->using_index = 1;
5791 create_all_comp_units (dwarf2_per_objfile);
5792 create_all_type_units (dwarf2_per_objfile);
5793 dwarf2_per_objfile->quick_file_names_table
5794 = create_quick_file_names_table
5795 (dwarf2_per_objfile->all_comp_units.size ());
5796
5797 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5798 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5799 {
5800 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5801
5802 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5803 struct dwarf2_per_cu_quick_data);
5804 }
5805
5806 /* Return 1 so that gdb sees the "quick" functions. However,
5807 these functions will be no-ops because we will have expanded
5808 all symtabs. */
5809 *index_kind = dw_index_kind::GDB_INDEX;
5810 return true;
5811 }
5812
5813 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5814 {
5815 *index_kind = dw_index_kind::DEBUG_NAMES;
5816 return true;
5817 }
5818
5819 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5820 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5821 get_gdb_index_contents_from_section<dwz_file>))
5822 {
5823 *index_kind = dw_index_kind::GDB_INDEX;
5824 return true;
5825 }
5826
5827 /* ... otherwise, try to find the index in the index cache. */
5828 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5829 get_gdb_index_contents_from_cache,
5830 get_gdb_index_contents_from_cache_dwz))
5831 {
5832 global_index_cache.hit ();
5833 *index_kind = dw_index_kind::GDB_INDEX;
5834 return true;
5835 }
5836
5837 global_index_cache.miss ();
5838 return false;
5839 }
5840
5841 \f
5842
5843 /* Build a partial symbol table. */
5844
5845 void
5846 dwarf2_build_psymtabs (struct objfile *objfile)
5847 {
5848 struct dwarf2_per_objfile *dwarf2_per_objfile
5849 = get_dwarf2_per_objfile (objfile);
5850
5851 init_psymbol_list (objfile, 1024);
5852
5853 try
5854 {
5855 /* This isn't really ideal: all the data we allocate on the
5856 objfile's obstack is still uselessly kept around. However,
5857 freeing it seems unsafe. */
5858 psymtab_discarder psymtabs (objfile);
5859 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5860 psymtabs.keep ();
5861
5862 /* (maybe) store an index in the cache. */
5863 global_index_cache.store (dwarf2_per_objfile);
5864 }
5865 catch (const gdb_exception_error &except)
5866 {
5867 exception_print (gdb_stderr, except);
5868 }
5869 }
5870
5871 /* Find the base address of the compilation unit for range lists and
5872 location lists. It will normally be specified by DW_AT_low_pc.
5873 In DWARF-3 draft 4, the base address could be overridden by
5874 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5875 compilation units with discontinuous ranges. */
5876
5877 static void
5878 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5879 {
5880 struct attribute *attr;
5881
5882 cu->base_address.reset ();
5883
5884 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5885 if (attr != nullptr)
5886 cu->base_address = attr->value_as_address ();
5887 else
5888 {
5889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5890 if (attr != nullptr)
5891 cu->base_address = attr->value_as_address ();
5892 }
5893 }
5894
5895 /* Helper function that returns the proper abbrev section for
5896 THIS_CU. */
5897
5898 static struct dwarf2_section_info *
5899 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5900 {
5901 struct dwarf2_section_info *abbrev;
5902 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5903
5904 if (this_cu->is_dwz)
5905 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5906 else
5907 abbrev = &dwarf2_per_objfile->abbrev;
5908
5909 return abbrev;
5910 }
5911
5912 /* Fetch the abbreviation table offset from a comp or type unit header. */
5913
5914 static sect_offset
5915 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5916 struct dwarf2_section_info *section,
5917 sect_offset sect_off)
5918 {
5919 bfd *abfd = section->get_bfd_owner ();
5920 const gdb_byte *info_ptr;
5921 unsigned int initial_length_size, offset_size;
5922 uint16_t version;
5923
5924 section->read (dwarf2_per_objfile->objfile);
5925 info_ptr = section->buffer + to_underlying (sect_off);
5926 read_initial_length (abfd, info_ptr, &initial_length_size);
5927 offset_size = initial_length_size == 4 ? 4 : 8;
5928 info_ptr += initial_length_size;
5929
5930 version = read_2_bytes (abfd, info_ptr);
5931 info_ptr += 2;
5932 if (version >= 5)
5933 {
5934 /* Skip unit type and address size. */
5935 info_ptr += 2;
5936 }
5937
5938 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5939 }
5940
5941 /* A partial symtab that is used only for include files. */
5942 struct dwarf2_include_psymtab : public partial_symtab
5943 {
5944 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5945 : partial_symtab (filename, objfile)
5946 {
5947 }
5948
5949 void read_symtab (struct objfile *objfile) override
5950 {
5951 /* It's an include file, no symbols to read for it.
5952 Everything is in the includer symtab. */
5953
5954 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5955 expansion of the includer psymtab. We use the dependencies[0] field to
5956 model the includer. But if we go the regular route of calling
5957 expand_psymtab here, and having expand_psymtab call expand_dependencies
5958 to expand the includer, we'll only use expand_psymtab on the includer
5959 (making it a non-toplevel psymtab), while if we expand the includer via
5960 another path, we'll use read_symtab (making it a toplevel psymtab).
5961 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5962 psymtab, and trigger read_symtab on the includer here directly. */
5963 includer ()->read_symtab (objfile);
5964 }
5965
5966 void expand_psymtab (struct objfile *objfile) override
5967 {
5968 /* This is not called by read_symtab, and should not be called by any
5969 expand_dependencies. */
5970 gdb_assert (false);
5971 }
5972
5973 bool readin_p () const override
5974 {
5975 return includer ()->readin_p ();
5976 }
5977
5978 struct compunit_symtab *get_compunit_symtab () const override
5979 {
5980 return nullptr;
5981 }
5982
5983 private:
5984 partial_symtab *includer () const
5985 {
5986 /* An include psymtab has exactly one dependency: the psymtab that
5987 includes it. */
5988 gdb_assert (this->number_of_dependencies == 1);
5989 return this->dependencies[0];
5990 }
5991 };
5992
5993 /* Allocate a new partial symtab for file named NAME and mark this new
5994 partial symtab as being an include of PST. */
5995
5996 static void
5997 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5998 struct objfile *objfile)
5999 {
6000 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6001
6002 if (!IS_ABSOLUTE_PATH (subpst->filename))
6003 {
6004 /* It shares objfile->objfile_obstack. */
6005 subpst->dirname = pst->dirname;
6006 }
6007
6008 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6009 subpst->dependencies[0] = pst;
6010 subpst->number_of_dependencies = 1;
6011 }
6012
6013 /* Read the Line Number Program data and extract the list of files
6014 included by the source file represented by PST. Build an include
6015 partial symtab for each of these included files. */
6016
6017 static void
6018 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6019 struct die_info *die,
6020 dwarf2_psymtab *pst)
6021 {
6022 line_header_up lh;
6023 struct attribute *attr;
6024
6025 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6026 if (attr != nullptr)
6027 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6028 if (lh == NULL)
6029 return; /* No linetable, so no includes. */
6030
6031 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6032 that we pass in the raw text_low here; that is ok because we're
6033 only decoding the line table to make include partial symtabs, and
6034 so the addresses aren't really used. */
6035 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6036 pst->raw_text_low (), 1);
6037 }
6038
6039 static hashval_t
6040 hash_signatured_type (const void *item)
6041 {
6042 const struct signatured_type *sig_type
6043 = (const struct signatured_type *) item;
6044
6045 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6046 return sig_type->signature;
6047 }
6048
6049 static int
6050 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6051 {
6052 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6053 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6054
6055 return lhs->signature == rhs->signature;
6056 }
6057
6058 /* Allocate a hash table for signatured types. */
6059
6060 static htab_up
6061 allocate_signatured_type_table ()
6062 {
6063 return htab_up (htab_create_alloc (41,
6064 hash_signatured_type,
6065 eq_signatured_type,
6066 NULL, xcalloc, xfree));
6067 }
6068
6069 /* A helper function to add a signatured type CU to a table. */
6070
6071 static int
6072 add_signatured_type_cu_to_table (void **slot, void *datum)
6073 {
6074 struct signatured_type *sigt = (struct signatured_type *) *slot;
6075 std::vector<signatured_type *> *all_type_units
6076 = (std::vector<signatured_type *> *) datum;
6077
6078 all_type_units->push_back (sigt);
6079
6080 return 1;
6081 }
6082
6083 /* A helper for create_debug_types_hash_table. Read types from SECTION
6084 and fill them into TYPES_HTAB. It will process only type units,
6085 therefore DW_UT_type. */
6086
6087 static void
6088 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6089 struct dwo_file *dwo_file,
6090 dwarf2_section_info *section, htab_up &types_htab,
6091 rcuh_kind section_kind)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_section_info *abbrev_section;
6095 bfd *abfd;
6096 const gdb_byte *info_ptr, *end_ptr;
6097
6098 abbrev_section = (dwo_file != NULL
6099 ? &dwo_file->sections.abbrev
6100 : &dwarf2_per_objfile->abbrev);
6101
6102 if (dwarf_read_debug)
6103 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6104 section->get_name (),
6105 abbrev_section->get_file_name ());
6106
6107 section->read (objfile);
6108 info_ptr = section->buffer;
6109
6110 if (info_ptr == NULL)
6111 return;
6112
6113 /* We can't set abfd until now because the section may be empty or
6114 not present, in which case the bfd is unknown. */
6115 abfd = section->get_bfd_owner ();
6116
6117 /* We don't use cutu_reader here because we don't need to read
6118 any dies: the signature is in the header. */
6119
6120 end_ptr = info_ptr + section->size;
6121 while (info_ptr < end_ptr)
6122 {
6123 struct signatured_type *sig_type;
6124 struct dwo_unit *dwo_tu;
6125 void **slot;
6126 const gdb_byte *ptr = info_ptr;
6127 struct comp_unit_head header;
6128 unsigned int length;
6129
6130 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6131
6132 /* Initialize it due to a false compiler warning. */
6133 header.signature = -1;
6134 header.type_cu_offset_in_tu = (cu_offset) -1;
6135
6136 /* We need to read the type's signature in order to build the hash
6137 table, but we don't need anything else just yet. */
6138
6139 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6140 abbrev_section, ptr, section_kind);
6141
6142 length = header.get_length ();
6143
6144 /* Skip dummy type units. */
6145 if (ptr >= info_ptr + length
6146 || peek_abbrev_code (abfd, ptr) == 0
6147 || header.unit_type != DW_UT_type)
6148 {
6149 info_ptr += length;
6150 continue;
6151 }
6152
6153 if (types_htab == NULL)
6154 {
6155 if (dwo_file)
6156 types_htab = allocate_dwo_unit_table ();
6157 else
6158 types_htab = allocate_signatured_type_table ();
6159 }
6160
6161 if (dwo_file)
6162 {
6163 sig_type = NULL;
6164 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6165 struct dwo_unit);
6166 dwo_tu->dwo_file = dwo_file;
6167 dwo_tu->signature = header.signature;
6168 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6169 dwo_tu->section = section;
6170 dwo_tu->sect_off = sect_off;
6171 dwo_tu->length = length;
6172 }
6173 else
6174 {
6175 /* N.B.: type_offset is not usable if this type uses a DWO file.
6176 The real type_offset is in the DWO file. */
6177 dwo_tu = NULL;
6178 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6179 struct signatured_type);
6180 sig_type->signature = header.signature;
6181 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6182 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6183 sig_type->per_cu.is_debug_types = 1;
6184 sig_type->per_cu.section = section;
6185 sig_type->per_cu.sect_off = sect_off;
6186 sig_type->per_cu.length = length;
6187 }
6188
6189 slot = htab_find_slot (types_htab.get (),
6190 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6191 INSERT);
6192 gdb_assert (slot != NULL);
6193 if (*slot != NULL)
6194 {
6195 sect_offset dup_sect_off;
6196
6197 if (dwo_file)
6198 {
6199 const struct dwo_unit *dup_tu
6200 = (const struct dwo_unit *) *slot;
6201
6202 dup_sect_off = dup_tu->sect_off;
6203 }
6204 else
6205 {
6206 const struct signatured_type *dup_tu
6207 = (const struct signatured_type *) *slot;
6208
6209 dup_sect_off = dup_tu->per_cu.sect_off;
6210 }
6211
6212 complaint (_("debug type entry at offset %s is duplicate to"
6213 " the entry at offset %s, signature %s"),
6214 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6215 hex_string (header.signature));
6216 }
6217 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6218
6219 if (dwarf_read_debug > 1)
6220 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6221 sect_offset_str (sect_off),
6222 hex_string (header.signature));
6223
6224 info_ptr += length;
6225 }
6226 }
6227
6228 /* Create the hash table of all entries in the .debug_types
6229 (or .debug_types.dwo) section(s).
6230 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6231 otherwise it is NULL.
6232
6233 The result is a pointer to the hash table or NULL if there are no types.
6234
6235 Note: This function processes DWO files only, not DWP files. */
6236
6237 static void
6238 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6239 struct dwo_file *dwo_file,
6240 gdb::array_view<dwarf2_section_info> type_sections,
6241 htab_up &types_htab)
6242 {
6243 for (dwarf2_section_info &section : type_sections)
6244 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6245 types_htab, rcuh_kind::TYPE);
6246 }
6247
6248 /* Create the hash table of all entries in the .debug_types section,
6249 and initialize all_type_units.
6250 The result is zero if there is an error (e.g. missing .debug_types section),
6251 otherwise non-zero. */
6252
6253 static int
6254 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6255 {
6256 htab_up types_htab;
6257
6258 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6259 &dwarf2_per_objfile->info, types_htab,
6260 rcuh_kind::COMPILE);
6261 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6262 dwarf2_per_objfile->types, types_htab);
6263 if (types_htab == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types = NULL;
6266 return 0;
6267 }
6268
6269 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6270
6271 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6272 dwarf2_per_objfile->all_type_units.reserve
6273 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6274
6275 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6276 add_signatured_type_cu_to_table,
6277 &dwarf2_per_objfile->all_type_units);
6278
6279 return 1;
6280 }
6281
6282 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6283 If SLOT is non-NULL, it is the entry to use in the hash table.
6284 Otherwise we find one. */
6285
6286 static struct signatured_type *
6287 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6288 void **slot)
6289 {
6290 struct objfile *objfile = dwarf2_per_objfile->objfile;
6291
6292 if (dwarf2_per_objfile->all_type_units.size ()
6293 == dwarf2_per_objfile->all_type_units.capacity ())
6294 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6295
6296 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6297 struct signatured_type);
6298
6299 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6300 sig_type->signature = sig;
6301 sig_type->per_cu.is_debug_types = 1;
6302 if (dwarf2_per_objfile->using_index)
6303 {
6304 sig_type->per_cu.v.quick =
6305 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6306 struct dwarf2_per_cu_quick_data);
6307 }
6308
6309 if (slot == NULL)
6310 {
6311 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6312 sig_type, INSERT);
6313 }
6314 gdb_assert (*slot == NULL);
6315 *slot = sig_type;
6316 /* The rest of sig_type must be filled in by the caller. */
6317 return sig_type;
6318 }
6319
6320 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6321 Fill in SIG_ENTRY with DWO_ENTRY. */
6322
6323 static void
6324 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6325 struct signatured_type *sig_entry,
6326 struct dwo_unit *dwo_entry)
6327 {
6328 /* Make sure we're not clobbering something we don't expect to. */
6329 gdb_assert (! sig_entry->per_cu.queued);
6330 gdb_assert (sig_entry->per_cu.cu == NULL);
6331 if (dwarf2_per_objfile->using_index)
6332 {
6333 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6334 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6335 }
6336 else
6337 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6338 gdb_assert (sig_entry->signature == dwo_entry->signature);
6339 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6340 gdb_assert (sig_entry->type_unit_group == NULL);
6341 gdb_assert (sig_entry->dwo_unit == NULL);
6342
6343 sig_entry->per_cu.section = dwo_entry->section;
6344 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6345 sig_entry->per_cu.length = dwo_entry->length;
6346 sig_entry->per_cu.reading_dwo_directly = 1;
6347 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6348 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6349 sig_entry->dwo_unit = dwo_entry;
6350 }
6351
6352 /* Subroutine of lookup_signatured_type.
6353 If we haven't read the TU yet, create the signatured_type data structure
6354 for a TU to be read in directly from a DWO file, bypassing the stub.
6355 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6356 using .gdb_index, then when reading a CU we want to stay in the DWO file
6357 containing that CU. Otherwise we could end up reading several other DWO
6358 files (due to comdat folding) to process the transitive closure of all the
6359 mentioned TUs, and that can be slow. The current DWO file will have every
6360 type signature that it needs.
6361 We only do this for .gdb_index because in the psymtab case we already have
6362 to read all the DWOs to build the type unit groups. */
6363
6364 static struct signatured_type *
6365 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6366 {
6367 struct dwarf2_per_objfile *dwarf2_per_objfile
6368 = cu->per_cu->dwarf2_per_objfile;
6369 struct dwo_file *dwo_file;
6370 struct dwo_unit find_dwo_entry, *dwo_entry;
6371 struct signatured_type find_sig_entry, *sig_entry;
6372 void **slot;
6373
6374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6375
6376 /* If TU skeletons have been removed then we may not have read in any
6377 TUs yet. */
6378 if (dwarf2_per_objfile->signatured_types == NULL)
6379 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6380
6381 /* We only ever need to read in one copy of a signatured type.
6382 Use the global signatured_types array to do our own comdat-folding
6383 of types. If this is the first time we're reading this TU, and
6384 the TU has an entry in .gdb_index, replace the recorded data from
6385 .gdb_index with this TU. */
6386
6387 find_sig_entry.signature = sig;
6388 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6389 &find_sig_entry, INSERT);
6390 sig_entry = (struct signatured_type *) *slot;
6391
6392 /* We can get here with the TU already read, *or* in the process of being
6393 read. Don't reassign the global entry to point to this DWO if that's
6394 the case. Also note that if the TU is already being read, it may not
6395 have come from a DWO, the program may be a mix of Fission-compiled
6396 code and non-Fission-compiled code. */
6397
6398 /* Have we already tried to read this TU?
6399 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6400 needn't exist in the global table yet). */
6401 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6402 return sig_entry;
6403
6404 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6405 dwo_unit of the TU itself. */
6406 dwo_file = cu->dwo_unit->dwo_file;
6407
6408 /* Ok, this is the first time we're reading this TU. */
6409 if (dwo_file->tus == NULL)
6410 return NULL;
6411 find_dwo_entry.signature = sig;
6412 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6413 &find_dwo_entry);
6414 if (dwo_entry == NULL)
6415 return NULL;
6416
6417 /* If the global table doesn't have an entry for this TU, add one. */
6418 if (sig_entry == NULL)
6419 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6420
6421 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6422 sig_entry->per_cu.tu_read = 1;
6423 return sig_entry;
6424 }
6425
6426 /* Subroutine of lookup_signatured_type.
6427 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6428 then try the DWP file. If the TU stub (skeleton) has been removed then
6429 it won't be in .gdb_index. */
6430
6431 static struct signatured_type *
6432 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6433 {
6434 struct dwarf2_per_objfile *dwarf2_per_objfile
6435 = cu->per_cu->dwarf2_per_objfile;
6436 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6437 struct dwo_unit *dwo_entry;
6438 struct signatured_type find_sig_entry, *sig_entry;
6439 void **slot;
6440
6441 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6442 gdb_assert (dwp_file != NULL);
6443
6444 /* If TU skeletons have been removed then we may not have read in any
6445 TUs yet. */
6446 if (dwarf2_per_objfile->signatured_types == NULL)
6447 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6448
6449 find_sig_entry.signature = sig;
6450 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6451 &find_sig_entry, INSERT);
6452 sig_entry = (struct signatured_type *) *slot;
6453
6454 /* Have we already tried to read this TU?
6455 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6456 needn't exist in the global table yet). */
6457 if (sig_entry != NULL)
6458 return sig_entry;
6459
6460 if (dwp_file->tus == NULL)
6461 return NULL;
6462 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6463 sig, 1 /* is_debug_types */);
6464 if (dwo_entry == NULL)
6465 return NULL;
6466
6467 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6468 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6469
6470 return sig_entry;
6471 }
6472
6473 /* Lookup a signature based type for DW_FORM_ref_sig8.
6474 Returns NULL if signature SIG is not present in the table.
6475 It is up to the caller to complain about this. */
6476
6477 static struct signatured_type *
6478 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6479 {
6480 struct dwarf2_per_objfile *dwarf2_per_objfile
6481 = cu->per_cu->dwarf2_per_objfile;
6482
6483 if (cu->dwo_unit
6484 && dwarf2_per_objfile->using_index)
6485 {
6486 /* We're in a DWO/DWP file, and we're using .gdb_index.
6487 These cases require special processing. */
6488 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6489 return lookup_dwo_signatured_type (cu, sig);
6490 else
6491 return lookup_dwp_signatured_type (cu, sig);
6492 }
6493 else
6494 {
6495 struct signatured_type find_entry, *entry;
6496
6497 if (dwarf2_per_objfile->signatured_types == NULL)
6498 return NULL;
6499 find_entry.signature = sig;
6500 entry = ((struct signatured_type *)
6501 htab_find (dwarf2_per_objfile->signatured_types.get (),
6502 &find_entry));
6503 return entry;
6504 }
6505 }
6506
6507 /* Low level DIE reading support. */
6508
6509 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6510
6511 static void
6512 init_cu_die_reader (struct die_reader_specs *reader,
6513 struct dwarf2_cu *cu,
6514 struct dwarf2_section_info *section,
6515 struct dwo_file *dwo_file,
6516 struct abbrev_table *abbrev_table)
6517 {
6518 gdb_assert (section->readin && section->buffer != NULL);
6519 reader->abfd = section->get_bfd_owner ();
6520 reader->cu = cu;
6521 reader->dwo_file = dwo_file;
6522 reader->die_section = section;
6523 reader->buffer = section->buffer;
6524 reader->buffer_end = section->buffer + section->size;
6525 reader->abbrev_table = abbrev_table;
6526 }
6527
6528 /* Subroutine of cutu_reader to simplify it.
6529 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6530 There's just a lot of work to do, and cutu_reader is big enough
6531 already.
6532
6533 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6534 from it to the DIE in the DWO. If NULL we are skipping the stub.
6535 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6536 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6537 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6538 STUB_COMP_DIR may be non-NULL.
6539 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6540 are filled in with the info of the DIE from the DWO file.
6541 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6542 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6543 kept around for at least as long as *RESULT_READER.
6544
6545 The result is non-zero if a valid (non-dummy) DIE was found. */
6546
6547 static int
6548 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6549 struct dwo_unit *dwo_unit,
6550 struct die_info *stub_comp_unit_die,
6551 const char *stub_comp_dir,
6552 struct die_reader_specs *result_reader,
6553 const gdb_byte **result_info_ptr,
6554 struct die_info **result_comp_unit_die,
6555 abbrev_table_up *result_dwo_abbrev_table)
6556 {
6557 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6558 struct objfile *objfile = dwarf2_per_objfile->objfile;
6559 struct dwarf2_cu *cu = this_cu->cu;
6560 bfd *abfd;
6561 const gdb_byte *begin_info_ptr, *info_ptr;
6562 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6563 int i,num_extra_attrs;
6564 struct dwarf2_section_info *dwo_abbrev_section;
6565 struct die_info *comp_unit_die;
6566
6567 /* At most one of these may be provided. */
6568 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6569
6570 /* These attributes aren't processed until later:
6571 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6572 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6573 referenced later. However, these attributes are found in the stub
6574 which we won't have later. In order to not impose this complication
6575 on the rest of the code, we read them here and copy them to the
6576 DWO CU/TU die. */
6577
6578 stmt_list = NULL;
6579 low_pc = NULL;
6580 high_pc = NULL;
6581 ranges = NULL;
6582 comp_dir = NULL;
6583
6584 if (stub_comp_unit_die != NULL)
6585 {
6586 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6587 DWO file. */
6588 if (! this_cu->is_debug_types)
6589 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6590 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6591 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6592 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6593 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6594
6595 cu->addr_base = stub_comp_unit_die->addr_base ();
6596
6597 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6598 here (if needed). We need the value before we can process
6599 DW_AT_ranges. */
6600 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6601 }
6602 else if (stub_comp_dir != NULL)
6603 {
6604 /* Reconstruct the comp_dir attribute to simplify the code below. */
6605 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6606 comp_dir->name = DW_AT_comp_dir;
6607 comp_dir->form = DW_FORM_string;
6608 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6609 DW_STRING (comp_dir) = stub_comp_dir;
6610 }
6611
6612 /* Set up for reading the DWO CU/TU. */
6613 cu->dwo_unit = dwo_unit;
6614 dwarf2_section_info *section = dwo_unit->section;
6615 section->read (objfile);
6616 abfd = section->get_bfd_owner ();
6617 begin_info_ptr = info_ptr = (section->buffer
6618 + to_underlying (dwo_unit->sect_off));
6619 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6620
6621 if (this_cu->is_debug_types)
6622 {
6623 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6624
6625 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6626 &cu->header, section,
6627 dwo_abbrev_section,
6628 info_ptr, rcuh_kind::TYPE);
6629 /* This is not an assert because it can be caused by bad debug info. */
6630 if (sig_type->signature != cu->header.signature)
6631 {
6632 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6633 " TU at offset %s [in module %s]"),
6634 hex_string (sig_type->signature),
6635 hex_string (cu->header.signature),
6636 sect_offset_str (dwo_unit->sect_off),
6637 bfd_get_filename (abfd));
6638 }
6639 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6640 /* For DWOs coming from DWP files, we don't know the CU length
6641 nor the type's offset in the TU until now. */
6642 dwo_unit->length = cu->header.get_length ();
6643 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6644
6645 /* Establish the type offset that can be used to lookup the type.
6646 For DWO files, we don't know it until now. */
6647 sig_type->type_offset_in_section
6648 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6649 }
6650 else
6651 {
6652 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6653 &cu->header, section,
6654 dwo_abbrev_section,
6655 info_ptr, rcuh_kind::COMPILE);
6656 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6657 /* For DWOs coming from DWP files, we don't know the CU length
6658 until now. */
6659 dwo_unit->length = cu->header.get_length ();
6660 }
6661
6662 *result_dwo_abbrev_table
6663 = abbrev_table::read (objfile, dwo_abbrev_section,
6664 cu->header.abbrev_sect_off);
6665 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6666 result_dwo_abbrev_table->get ());
6667
6668 /* Read in the die, but leave space to copy over the attributes
6669 from the stub. This has the benefit of simplifying the rest of
6670 the code - all the work to maintain the illusion of a single
6671 DW_TAG_{compile,type}_unit DIE is done here. */
6672 num_extra_attrs = ((stmt_list != NULL)
6673 + (low_pc != NULL)
6674 + (high_pc != NULL)
6675 + (ranges != NULL)
6676 + (comp_dir != NULL));
6677 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6678 num_extra_attrs);
6679
6680 /* Copy over the attributes from the stub to the DIE we just read in. */
6681 comp_unit_die = *result_comp_unit_die;
6682 i = comp_unit_die->num_attrs;
6683 if (stmt_list != NULL)
6684 comp_unit_die->attrs[i++] = *stmt_list;
6685 if (low_pc != NULL)
6686 comp_unit_die->attrs[i++] = *low_pc;
6687 if (high_pc != NULL)
6688 comp_unit_die->attrs[i++] = *high_pc;
6689 if (ranges != NULL)
6690 comp_unit_die->attrs[i++] = *ranges;
6691 if (comp_dir != NULL)
6692 comp_unit_die->attrs[i++] = *comp_dir;
6693 comp_unit_die->num_attrs += num_extra_attrs;
6694
6695 if (dwarf_die_debug)
6696 {
6697 fprintf_unfiltered (gdb_stdlog,
6698 "Read die from %s@0x%x of %s:\n",
6699 section->get_name (),
6700 (unsigned) (begin_info_ptr - section->buffer),
6701 bfd_get_filename (abfd));
6702 dump_die (comp_unit_die, dwarf_die_debug);
6703 }
6704
6705 /* Skip dummy compilation units. */
6706 if (info_ptr >= begin_info_ptr + dwo_unit->length
6707 || peek_abbrev_code (abfd, info_ptr) == 0)
6708 return 0;
6709
6710 *result_info_ptr = info_ptr;
6711 return 1;
6712 }
6713
6714 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6715 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6716 signature is part of the header. */
6717 static gdb::optional<ULONGEST>
6718 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6719 {
6720 if (cu->header.version >= 5)
6721 return cu->header.signature;
6722 struct attribute *attr;
6723 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6724 if (attr == nullptr)
6725 return gdb::optional<ULONGEST> ();
6726 return DW_UNSND (attr);
6727 }
6728
6729 /* Subroutine of cutu_reader to simplify it.
6730 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6731 Returns NULL if the specified DWO unit cannot be found. */
6732
6733 static struct dwo_unit *
6734 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6735 struct die_info *comp_unit_die,
6736 const char *dwo_name)
6737 {
6738 struct dwarf2_cu *cu = this_cu->cu;
6739 struct dwo_unit *dwo_unit;
6740 const char *comp_dir;
6741
6742 gdb_assert (cu != NULL);
6743
6744 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6745 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6746 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6747
6748 if (this_cu->is_debug_types)
6749 {
6750 struct signatured_type *sig_type;
6751
6752 /* Since this_cu is the first member of struct signatured_type,
6753 we can go from a pointer to one to a pointer to the other. */
6754 sig_type = (struct signatured_type *) this_cu;
6755 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6756 }
6757 else
6758 {
6759 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6760 if (!signature.has_value ())
6761 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6762 " [in module %s]"),
6763 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6764 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6765 *signature);
6766 }
6767
6768 return dwo_unit;
6769 }
6770
6771 /* Subroutine of cutu_reader to simplify it.
6772 See it for a description of the parameters.
6773 Read a TU directly from a DWO file, bypassing the stub. */
6774
6775 void
6776 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6777 int use_existing_cu)
6778 {
6779 struct signatured_type *sig_type;
6780
6781 /* Verify we can do the following downcast, and that we have the
6782 data we need. */
6783 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6784 sig_type = (struct signatured_type *) this_cu;
6785 gdb_assert (sig_type->dwo_unit != NULL);
6786
6787 if (use_existing_cu && this_cu->cu != NULL)
6788 {
6789 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6790 /* There's no need to do the rereading_dwo_cu handling that
6791 cutu_reader does since we don't read the stub. */
6792 }
6793 else
6794 {
6795 /* If !use_existing_cu, this_cu->cu must be NULL. */
6796 gdb_assert (this_cu->cu == NULL);
6797 m_new_cu.reset (new dwarf2_cu (this_cu));
6798 }
6799
6800 /* A future optimization, if needed, would be to use an existing
6801 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6802 could share abbrev tables. */
6803
6804 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6805 NULL /* stub_comp_unit_die */,
6806 sig_type->dwo_unit->dwo_file->comp_dir,
6807 this, &info_ptr,
6808 &comp_unit_die,
6809 &m_dwo_abbrev_table) == 0)
6810 {
6811 /* Dummy die. */
6812 dummy_p = true;
6813 }
6814 }
6815
6816 /* Initialize a CU (or TU) and read its DIEs.
6817 If the CU defers to a DWO file, read the DWO file as well.
6818
6819 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6820 Otherwise the table specified in the comp unit header is read in and used.
6821 This is an optimization for when we already have the abbrev table.
6822
6823 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6824 Otherwise, a new CU is allocated with xmalloc. */
6825
6826 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6827 struct abbrev_table *abbrev_table,
6828 int use_existing_cu,
6829 bool skip_partial)
6830 : die_reader_specs {},
6831 m_this_cu (this_cu)
6832 {
6833 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6834 struct objfile *objfile = dwarf2_per_objfile->objfile;
6835 struct dwarf2_section_info *section = this_cu->section;
6836 bfd *abfd = section->get_bfd_owner ();
6837 struct dwarf2_cu *cu;
6838 const gdb_byte *begin_info_ptr;
6839 struct signatured_type *sig_type = NULL;
6840 struct dwarf2_section_info *abbrev_section;
6841 /* Non-zero if CU currently points to a DWO file and we need to
6842 reread it. When this happens we need to reread the skeleton die
6843 before we can reread the DWO file (this only applies to CUs, not TUs). */
6844 int rereading_dwo_cu = 0;
6845
6846 if (dwarf_die_debug)
6847 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6848 this_cu->is_debug_types ? "type" : "comp",
6849 sect_offset_str (this_cu->sect_off));
6850
6851 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6852 file (instead of going through the stub), short-circuit all of this. */
6853 if (this_cu->reading_dwo_directly)
6854 {
6855 /* Narrow down the scope of possibilities to have to understand. */
6856 gdb_assert (this_cu->is_debug_types);
6857 gdb_assert (abbrev_table == NULL);
6858 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6859 return;
6860 }
6861
6862 /* This is cheap if the section is already read in. */
6863 section->read (objfile);
6864
6865 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6866
6867 abbrev_section = get_abbrev_section_for_cu (this_cu);
6868
6869 if (use_existing_cu && this_cu->cu != NULL)
6870 {
6871 cu = this_cu->cu;
6872 /* If this CU is from a DWO file we need to start over, we need to
6873 refetch the attributes from the skeleton CU.
6874 This could be optimized by retrieving those attributes from when we
6875 were here the first time: the previous comp_unit_die was stored in
6876 comp_unit_obstack. But there's no data yet that we need this
6877 optimization. */
6878 if (cu->dwo_unit != NULL)
6879 rereading_dwo_cu = 1;
6880 }
6881 else
6882 {
6883 /* If !use_existing_cu, this_cu->cu must be NULL. */
6884 gdb_assert (this_cu->cu == NULL);
6885 m_new_cu.reset (new dwarf2_cu (this_cu));
6886 cu = m_new_cu.get ();
6887 }
6888
6889 /* Get the header. */
6890 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6891 {
6892 /* We already have the header, there's no need to read it in again. */
6893 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6894 }
6895 else
6896 {
6897 if (this_cu->is_debug_types)
6898 {
6899 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6900 &cu->header, section,
6901 abbrev_section, info_ptr,
6902 rcuh_kind::TYPE);
6903
6904 /* Since per_cu is the first member of struct signatured_type,
6905 we can go from a pointer to one to a pointer to the other. */
6906 sig_type = (struct signatured_type *) this_cu;
6907 gdb_assert (sig_type->signature == cu->header.signature);
6908 gdb_assert (sig_type->type_offset_in_tu
6909 == cu->header.type_cu_offset_in_tu);
6910 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6911
6912 /* LENGTH has not been set yet for type units if we're
6913 using .gdb_index. */
6914 this_cu->length = cu->header.get_length ();
6915
6916 /* Establish the type offset that can be used to lookup the type. */
6917 sig_type->type_offset_in_section =
6918 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6919
6920 this_cu->dwarf_version = cu->header.version;
6921 }
6922 else
6923 {
6924 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6925 &cu->header, section,
6926 abbrev_section,
6927 info_ptr,
6928 rcuh_kind::COMPILE);
6929
6930 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6931 gdb_assert (this_cu->length == cu->header.get_length ());
6932 this_cu->dwarf_version = cu->header.version;
6933 }
6934 }
6935
6936 /* Skip dummy compilation units. */
6937 if (info_ptr >= begin_info_ptr + this_cu->length
6938 || peek_abbrev_code (abfd, info_ptr) == 0)
6939 {
6940 dummy_p = true;
6941 return;
6942 }
6943
6944 /* If we don't have them yet, read the abbrevs for this compilation unit.
6945 And if we need to read them now, make sure they're freed when we're
6946 done. */
6947 if (abbrev_table != NULL)
6948 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6949 else
6950 {
6951 m_abbrev_table_holder
6952 = abbrev_table::read (objfile, abbrev_section,
6953 cu->header.abbrev_sect_off);
6954 abbrev_table = m_abbrev_table_holder.get ();
6955 }
6956
6957 /* Read the top level CU/TU die. */
6958 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6959 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6960
6961 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6962 {
6963 dummy_p = true;
6964 return;
6965 }
6966
6967 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6968 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6969 table from the DWO file and pass the ownership over to us. It will be
6970 referenced from READER, so we must make sure to free it after we're done
6971 with READER.
6972
6973 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6974 DWO CU, that this test will fail (the attribute will not be present). */
6975 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6976 if (dwo_name != nullptr)
6977 {
6978 struct dwo_unit *dwo_unit;
6979 struct die_info *dwo_comp_unit_die;
6980
6981 if (comp_unit_die->has_children)
6982 {
6983 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6984 " has children (offset %s) [in module %s]"),
6985 sect_offset_str (this_cu->sect_off),
6986 bfd_get_filename (abfd));
6987 }
6988 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6989 if (dwo_unit != NULL)
6990 {
6991 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6992 comp_unit_die, NULL,
6993 this, &info_ptr,
6994 &dwo_comp_unit_die,
6995 &m_dwo_abbrev_table) == 0)
6996 {
6997 /* Dummy die. */
6998 dummy_p = true;
6999 return;
7000 }
7001 comp_unit_die = dwo_comp_unit_die;
7002 }
7003 else
7004 {
7005 /* Yikes, we couldn't find the rest of the DIE, we only have
7006 the stub. A complaint has already been logged. There's
7007 not much more we can do except pass on the stub DIE to
7008 die_reader_func. We don't want to throw an error on bad
7009 debug info. */
7010 }
7011 }
7012 }
7013
7014 void
7015 cutu_reader::keep ()
7016 {
7017 /* Done, clean up. */
7018 gdb_assert (!dummy_p);
7019 if (m_new_cu != NULL)
7020 {
7021 struct dwarf2_per_objfile *dwarf2_per_objfile
7022 = m_this_cu->dwarf2_per_objfile;
7023 /* Link this CU into read_in_chain. */
7024 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7025 dwarf2_per_objfile->read_in_chain = m_this_cu;
7026 /* The chain owns it now. */
7027 m_new_cu.release ();
7028 }
7029 }
7030
7031 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7032 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7033 assumed to have already done the lookup to find the DWO file).
7034
7035 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7036 THIS_CU->is_debug_types, but nothing else.
7037
7038 We fill in THIS_CU->length.
7039
7040 THIS_CU->cu is always freed when done.
7041 This is done in order to not leave THIS_CU->cu in a state where we have
7042 to care whether it refers to the "main" CU or the DWO CU.
7043
7044 When parent_cu is passed, it is used to provide a default value for
7045 str_offsets_base and addr_base from the parent. */
7046
7047 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7048 struct dwarf2_cu *parent_cu,
7049 struct dwo_file *dwo_file)
7050 : die_reader_specs {},
7051 m_this_cu (this_cu)
7052 {
7053 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7054 struct objfile *objfile = dwarf2_per_objfile->objfile;
7055 struct dwarf2_section_info *section = this_cu->section;
7056 bfd *abfd = section->get_bfd_owner ();
7057 struct dwarf2_section_info *abbrev_section;
7058 const gdb_byte *begin_info_ptr, *info_ptr;
7059
7060 if (dwarf_die_debug)
7061 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7062 this_cu->is_debug_types ? "type" : "comp",
7063 sect_offset_str (this_cu->sect_off));
7064
7065 gdb_assert (this_cu->cu == NULL);
7066
7067 abbrev_section = (dwo_file != NULL
7068 ? &dwo_file->sections.abbrev
7069 : get_abbrev_section_for_cu (this_cu));
7070
7071 /* This is cheap if the section is already read in. */
7072 section->read (objfile);
7073
7074 m_new_cu.reset (new dwarf2_cu (this_cu));
7075
7076 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7077 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7078 &m_new_cu->header, section,
7079 abbrev_section, info_ptr,
7080 (this_cu->is_debug_types
7081 ? rcuh_kind::TYPE
7082 : rcuh_kind::COMPILE));
7083
7084 if (parent_cu != nullptr)
7085 {
7086 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7087 m_new_cu->addr_base = parent_cu->addr_base;
7088 }
7089 this_cu->length = m_new_cu->header.get_length ();
7090
7091 /* Skip dummy compilation units. */
7092 if (info_ptr >= begin_info_ptr + this_cu->length
7093 || peek_abbrev_code (abfd, info_ptr) == 0)
7094 {
7095 dummy_p = true;
7096 return;
7097 }
7098
7099 m_abbrev_table_holder
7100 = abbrev_table::read (objfile, abbrev_section,
7101 m_new_cu->header.abbrev_sect_off);
7102
7103 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7104 m_abbrev_table_holder.get ());
7105 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7106 }
7107
7108 \f
7109 /* Type Unit Groups.
7110
7111 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7112 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7113 so that all types coming from the same compilation (.o file) are grouped
7114 together. A future step could be to put the types in the same symtab as
7115 the CU the types ultimately came from. */
7116
7117 static hashval_t
7118 hash_type_unit_group (const void *item)
7119 {
7120 const struct type_unit_group *tu_group
7121 = (const struct type_unit_group *) item;
7122
7123 return hash_stmt_list_entry (&tu_group->hash);
7124 }
7125
7126 static int
7127 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7128 {
7129 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7130 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7131
7132 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7133 }
7134
7135 /* Allocate a hash table for type unit groups. */
7136
7137 static htab_up
7138 allocate_type_unit_groups_table ()
7139 {
7140 return htab_up (htab_create_alloc (3,
7141 hash_type_unit_group,
7142 eq_type_unit_group,
7143 NULL, xcalloc, xfree));
7144 }
7145
7146 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7147 partial symtabs. We combine several TUs per psymtab to not let the size
7148 of any one psymtab grow too big. */
7149 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7150 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7151
7152 /* Helper routine for get_type_unit_group.
7153 Create the type_unit_group object used to hold one or more TUs. */
7154
7155 static struct type_unit_group *
7156 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7157 {
7158 struct dwarf2_per_objfile *dwarf2_per_objfile
7159 = cu->per_cu->dwarf2_per_objfile;
7160 struct objfile *objfile = dwarf2_per_objfile->objfile;
7161 struct dwarf2_per_cu_data *per_cu;
7162 struct type_unit_group *tu_group;
7163
7164 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7165 struct type_unit_group);
7166 per_cu = &tu_group->per_cu;
7167 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7168
7169 if (dwarf2_per_objfile->using_index)
7170 {
7171 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7172 struct dwarf2_per_cu_quick_data);
7173 }
7174 else
7175 {
7176 unsigned int line_offset = to_underlying (line_offset_struct);
7177 dwarf2_psymtab *pst;
7178 std::string name;
7179
7180 /* Give the symtab a useful name for debug purposes. */
7181 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7182 name = string_printf ("<type_units_%d>",
7183 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7184 else
7185 name = string_printf ("<type_units_at_0x%x>", line_offset);
7186
7187 pst = create_partial_symtab (per_cu, name.c_str ());
7188 pst->anonymous = true;
7189 }
7190
7191 tu_group->hash.dwo_unit = cu->dwo_unit;
7192 tu_group->hash.line_sect_off = line_offset_struct;
7193
7194 return tu_group;
7195 }
7196
7197 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7198 STMT_LIST is a DW_AT_stmt_list attribute. */
7199
7200 static struct type_unit_group *
7201 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7202 {
7203 struct dwarf2_per_objfile *dwarf2_per_objfile
7204 = cu->per_cu->dwarf2_per_objfile;
7205 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7206 struct type_unit_group *tu_group;
7207 void **slot;
7208 unsigned int line_offset;
7209 struct type_unit_group type_unit_group_for_lookup;
7210
7211 if (dwarf2_per_objfile->type_unit_groups == NULL)
7212 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7213
7214 /* Do we need to create a new group, or can we use an existing one? */
7215
7216 if (stmt_list)
7217 {
7218 line_offset = DW_UNSND (stmt_list);
7219 ++tu_stats->nr_symtab_sharers;
7220 }
7221 else
7222 {
7223 /* Ugh, no stmt_list. Rare, but we have to handle it.
7224 We can do various things here like create one group per TU or
7225 spread them over multiple groups to split up the expansion work.
7226 To avoid worst case scenarios (too many groups or too large groups)
7227 we, umm, group them in bunches. */
7228 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7229 | (tu_stats->nr_stmt_less_type_units
7230 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7231 ++tu_stats->nr_stmt_less_type_units;
7232 }
7233
7234 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7235 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7236 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7237 &type_unit_group_for_lookup, INSERT);
7238 if (*slot != NULL)
7239 {
7240 tu_group = (struct type_unit_group *) *slot;
7241 gdb_assert (tu_group != NULL);
7242 }
7243 else
7244 {
7245 sect_offset line_offset_struct = (sect_offset) line_offset;
7246 tu_group = create_type_unit_group (cu, line_offset_struct);
7247 *slot = tu_group;
7248 ++tu_stats->nr_symtabs;
7249 }
7250
7251 return tu_group;
7252 }
7253 \f
7254 /* Partial symbol tables. */
7255
7256 /* Create a psymtab named NAME and assign it to PER_CU.
7257
7258 The caller must fill in the following details:
7259 dirname, textlow, texthigh. */
7260
7261 static dwarf2_psymtab *
7262 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7263 {
7264 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7265 dwarf2_psymtab *pst;
7266
7267 pst = new dwarf2_psymtab (name, objfile, per_cu);
7268
7269 pst->psymtabs_addrmap_supported = true;
7270
7271 /* This is the glue that links PST into GDB's symbol API. */
7272 per_cu->v.psymtab = pst;
7273
7274 return pst;
7275 }
7276
7277 /* DIE reader function for process_psymtab_comp_unit. */
7278
7279 static void
7280 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7281 const gdb_byte *info_ptr,
7282 struct die_info *comp_unit_die,
7283 enum language pretend_language)
7284 {
7285 struct dwarf2_cu *cu = reader->cu;
7286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7287 struct gdbarch *gdbarch = objfile->arch ();
7288 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7289 CORE_ADDR baseaddr;
7290 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7291 dwarf2_psymtab *pst;
7292 enum pc_bounds_kind cu_bounds_kind;
7293 const char *filename;
7294
7295 gdb_assert (! per_cu->is_debug_types);
7296
7297 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7298
7299 /* Allocate a new partial symbol table structure. */
7300 gdb::unique_xmalloc_ptr<char> debug_filename;
7301 static const char artificial[] = "<artificial>";
7302 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7303 if (filename == NULL)
7304 filename = "";
7305 else if (strcmp (filename, artificial) == 0)
7306 {
7307 debug_filename.reset (concat (artificial, "@",
7308 sect_offset_str (per_cu->sect_off),
7309 (char *) NULL));
7310 filename = debug_filename.get ();
7311 }
7312
7313 pst = create_partial_symtab (per_cu, filename);
7314
7315 /* This must be done before calling dwarf2_build_include_psymtabs. */
7316 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7317
7318 baseaddr = objfile->text_section_offset ();
7319
7320 dwarf2_find_base_address (comp_unit_die, cu);
7321
7322 /* Possibly set the default values of LOWPC and HIGHPC from
7323 `DW_AT_ranges'. */
7324 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7325 &best_highpc, cu, pst);
7326 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7327 {
7328 CORE_ADDR low
7329 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7330 - baseaddr);
7331 CORE_ADDR high
7332 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7333 - baseaddr - 1);
7334 /* Store the contiguous range if it is not empty; it can be
7335 empty for CUs with no code. */
7336 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7337 low, high, pst);
7338 }
7339
7340 /* Check if comp unit has_children.
7341 If so, read the rest of the partial symbols from this comp unit.
7342 If not, there's no more debug_info for this comp unit. */
7343 if (comp_unit_die->has_children)
7344 {
7345 struct partial_die_info *first_die;
7346 CORE_ADDR lowpc, highpc;
7347
7348 lowpc = ((CORE_ADDR) -1);
7349 highpc = ((CORE_ADDR) 0);
7350
7351 first_die = load_partial_dies (reader, info_ptr, 1);
7352
7353 scan_partial_symbols (first_die, &lowpc, &highpc,
7354 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7355
7356 /* If we didn't find a lowpc, set it to highpc to avoid
7357 complaints from `maint check'. */
7358 if (lowpc == ((CORE_ADDR) -1))
7359 lowpc = highpc;
7360
7361 /* If the compilation unit didn't have an explicit address range,
7362 then use the information extracted from its child dies. */
7363 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7364 {
7365 best_lowpc = lowpc;
7366 best_highpc = highpc;
7367 }
7368 }
7369 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7370 best_lowpc + baseaddr)
7371 - baseaddr);
7372 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7373 best_highpc + baseaddr)
7374 - baseaddr);
7375
7376 end_psymtab_common (objfile, pst);
7377
7378 if (!cu->per_cu->imported_symtabs_empty ())
7379 {
7380 int i;
7381 int len = cu->per_cu->imported_symtabs_size ();
7382
7383 /* Fill in 'dependencies' here; we fill in 'users' in a
7384 post-pass. */
7385 pst->number_of_dependencies = len;
7386 pst->dependencies
7387 = objfile->partial_symtabs->allocate_dependencies (len);
7388 for (i = 0; i < len; ++i)
7389 {
7390 pst->dependencies[i]
7391 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7392 }
7393
7394 cu->per_cu->imported_symtabs_free ();
7395 }
7396
7397 /* Get the list of files included in the current compilation unit,
7398 and build a psymtab for each of them. */
7399 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7400
7401 if (dwarf_read_debug)
7402 fprintf_unfiltered (gdb_stdlog,
7403 "Psymtab for %s unit @%s: %s - %s"
7404 ", %d global, %d static syms\n",
7405 per_cu->is_debug_types ? "type" : "comp",
7406 sect_offset_str (per_cu->sect_off),
7407 paddress (gdbarch, pst->text_low (objfile)),
7408 paddress (gdbarch, pst->text_high (objfile)),
7409 pst->n_global_syms, pst->n_static_syms);
7410 }
7411
7412 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7413 Process compilation unit THIS_CU for a psymtab. */
7414
7415 static void
7416 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7417 bool want_partial_unit,
7418 enum language pretend_language)
7419 {
7420 /* If this compilation unit was already read in, free the
7421 cached copy in order to read it in again. This is
7422 necessary because we skipped some symbols when we first
7423 read in the compilation unit (see load_partial_dies).
7424 This problem could be avoided, but the benefit is unclear. */
7425 if (this_cu->cu != NULL)
7426 free_one_cached_comp_unit (this_cu);
7427
7428 cutu_reader reader (this_cu, NULL, 0, false);
7429
7430 switch (reader.comp_unit_die->tag)
7431 {
7432 case DW_TAG_compile_unit:
7433 this_cu->unit_type = DW_UT_compile;
7434 break;
7435 case DW_TAG_partial_unit:
7436 this_cu->unit_type = DW_UT_partial;
7437 break;
7438 default:
7439 abort ();
7440 }
7441
7442 if (reader.dummy_p)
7443 {
7444 /* Nothing. */
7445 }
7446 else if (this_cu->is_debug_types)
7447 build_type_psymtabs_reader (&reader, reader.info_ptr,
7448 reader.comp_unit_die);
7449 else if (want_partial_unit
7450 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7451 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7452 reader.comp_unit_die,
7453 pretend_language);
7454
7455 this_cu->lang = this_cu->cu->language;
7456
7457 /* Age out any secondary CUs. */
7458 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7459 }
7460
7461 /* Reader function for build_type_psymtabs. */
7462
7463 static void
7464 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7465 const gdb_byte *info_ptr,
7466 struct die_info *type_unit_die)
7467 {
7468 struct dwarf2_per_objfile *dwarf2_per_objfile
7469 = reader->cu->per_cu->dwarf2_per_objfile;
7470 struct objfile *objfile = dwarf2_per_objfile->objfile;
7471 struct dwarf2_cu *cu = reader->cu;
7472 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7473 struct signatured_type *sig_type;
7474 struct type_unit_group *tu_group;
7475 struct attribute *attr;
7476 struct partial_die_info *first_die;
7477 CORE_ADDR lowpc, highpc;
7478 dwarf2_psymtab *pst;
7479
7480 gdb_assert (per_cu->is_debug_types);
7481 sig_type = (struct signatured_type *) per_cu;
7482
7483 if (! type_unit_die->has_children)
7484 return;
7485
7486 attr = type_unit_die->attr (DW_AT_stmt_list);
7487 tu_group = get_type_unit_group (cu, attr);
7488
7489 if (tu_group->tus == nullptr)
7490 tu_group->tus = new std::vector<signatured_type *>;
7491 tu_group->tus->push_back (sig_type);
7492
7493 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7494 pst = create_partial_symtab (per_cu, "");
7495 pst->anonymous = true;
7496
7497 first_die = load_partial_dies (reader, info_ptr, 1);
7498
7499 lowpc = (CORE_ADDR) -1;
7500 highpc = (CORE_ADDR) 0;
7501 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7502
7503 end_psymtab_common (objfile, pst);
7504 }
7505
7506 /* Struct used to sort TUs by their abbreviation table offset. */
7507
7508 struct tu_abbrev_offset
7509 {
7510 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7511 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7512 {}
7513
7514 signatured_type *sig_type;
7515 sect_offset abbrev_offset;
7516 };
7517
7518 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7519
7520 static bool
7521 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7522 const struct tu_abbrev_offset &b)
7523 {
7524 return a.abbrev_offset < b.abbrev_offset;
7525 }
7526
7527 /* Efficiently read all the type units.
7528 This does the bulk of the work for build_type_psymtabs.
7529
7530 The efficiency is because we sort TUs by the abbrev table they use and
7531 only read each abbrev table once. In one program there are 200K TUs
7532 sharing 8K abbrev tables.
7533
7534 The main purpose of this function is to support building the
7535 dwarf2_per_objfile->type_unit_groups table.
7536 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7537 can collapse the search space by grouping them by stmt_list.
7538 The savings can be significant, in the same program from above the 200K TUs
7539 share 8K stmt_list tables.
7540
7541 FUNC is expected to call get_type_unit_group, which will create the
7542 struct type_unit_group if necessary and add it to
7543 dwarf2_per_objfile->type_unit_groups. */
7544
7545 static void
7546 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7547 {
7548 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7549 abbrev_table_up abbrev_table;
7550 sect_offset abbrev_offset;
7551
7552 /* It's up to the caller to not call us multiple times. */
7553 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7554
7555 if (dwarf2_per_objfile->all_type_units.empty ())
7556 return;
7557
7558 /* TUs typically share abbrev tables, and there can be way more TUs than
7559 abbrev tables. Sort by abbrev table to reduce the number of times we
7560 read each abbrev table in.
7561 Alternatives are to punt or to maintain a cache of abbrev tables.
7562 This is simpler and efficient enough for now.
7563
7564 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7565 symtab to use). Typically TUs with the same abbrev offset have the same
7566 stmt_list value too so in practice this should work well.
7567
7568 The basic algorithm here is:
7569
7570 sort TUs by abbrev table
7571 for each TU with same abbrev table:
7572 read abbrev table if first user
7573 read TU top level DIE
7574 [IWBN if DWO skeletons had DW_AT_stmt_list]
7575 call FUNC */
7576
7577 if (dwarf_read_debug)
7578 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7579
7580 /* Sort in a separate table to maintain the order of all_type_units
7581 for .gdb_index: TU indices directly index all_type_units. */
7582 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7583 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7584
7585 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7586 sorted_by_abbrev.emplace_back
7587 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7588 sig_type->per_cu.section,
7589 sig_type->per_cu.sect_off));
7590
7591 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7592 sort_tu_by_abbrev_offset);
7593
7594 abbrev_offset = (sect_offset) ~(unsigned) 0;
7595
7596 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7597 {
7598 /* Switch to the next abbrev table if necessary. */
7599 if (abbrev_table == NULL
7600 || tu.abbrev_offset != abbrev_offset)
7601 {
7602 abbrev_offset = tu.abbrev_offset;
7603 abbrev_table =
7604 abbrev_table::read (dwarf2_per_objfile->objfile,
7605 &dwarf2_per_objfile->abbrev,
7606 abbrev_offset);
7607 ++tu_stats->nr_uniq_abbrev_tables;
7608 }
7609
7610 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7611 0, false);
7612 if (!reader.dummy_p)
7613 build_type_psymtabs_reader (&reader, reader.info_ptr,
7614 reader.comp_unit_die);
7615 }
7616 }
7617
7618 /* Print collected type unit statistics. */
7619
7620 static void
7621 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7622 {
7623 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7624
7625 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7626 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7627 dwarf2_per_objfile->all_type_units.size ());
7628 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7629 tu_stats->nr_uniq_abbrev_tables);
7630 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7631 tu_stats->nr_symtabs);
7632 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7633 tu_stats->nr_symtab_sharers);
7634 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7635 tu_stats->nr_stmt_less_type_units);
7636 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7637 tu_stats->nr_all_type_units_reallocs);
7638 }
7639
7640 /* Traversal function for build_type_psymtabs. */
7641
7642 static int
7643 build_type_psymtab_dependencies (void **slot, void *info)
7644 {
7645 struct dwarf2_per_objfile *dwarf2_per_objfile
7646 = (struct dwarf2_per_objfile *) info;
7647 struct objfile *objfile = dwarf2_per_objfile->objfile;
7648 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7649 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7650 dwarf2_psymtab *pst = per_cu->v.psymtab;
7651 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7652 int i;
7653
7654 gdb_assert (len > 0);
7655 gdb_assert (per_cu->type_unit_group_p ());
7656
7657 pst->number_of_dependencies = len;
7658 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7659 for (i = 0; i < len; ++i)
7660 {
7661 struct signatured_type *iter = tu_group->tus->at (i);
7662 gdb_assert (iter->per_cu.is_debug_types);
7663 pst->dependencies[i] = iter->per_cu.v.psymtab;
7664 iter->type_unit_group = tu_group;
7665 }
7666
7667 delete tu_group->tus;
7668 tu_group->tus = nullptr;
7669
7670 return 1;
7671 }
7672
7673 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7674 Build partial symbol tables for the .debug_types comp-units. */
7675
7676 static void
7677 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7678 {
7679 if (! create_all_type_units (dwarf2_per_objfile))
7680 return;
7681
7682 build_type_psymtabs_1 (dwarf2_per_objfile);
7683 }
7684
7685 /* Traversal function for process_skeletonless_type_unit.
7686 Read a TU in a DWO file and build partial symbols for it. */
7687
7688 static int
7689 process_skeletonless_type_unit (void **slot, void *info)
7690 {
7691 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7692 struct dwarf2_per_objfile *dwarf2_per_objfile
7693 = (struct dwarf2_per_objfile *) info;
7694 struct signatured_type find_entry, *entry;
7695
7696 /* If this TU doesn't exist in the global table, add it and read it in. */
7697
7698 if (dwarf2_per_objfile->signatured_types == NULL)
7699 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7700
7701 find_entry.signature = dwo_unit->signature;
7702 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7703 &find_entry, INSERT);
7704 /* If we've already seen this type there's nothing to do. What's happening
7705 is we're doing our own version of comdat-folding here. */
7706 if (*slot != NULL)
7707 return 1;
7708
7709 /* This does the job that create_all_type_units would have done for
7710 this TU. */
7711 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7712 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7713 *slot = entry;
7714
7715 /* This does the job that build_type_psymtabs_1 would have done. */
7716 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7717 if (!reader.dummy_p)
7718 build_type_psymtabs_reader (&reader, reader.info_ptr,
7719 reader.comp_unit_die);
7720
7721 return 1;
7722 }
7723
7724 /* Traversal function for process_skeletonless_type_units. */
7725
7726 static int
7727 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7728 {
7729 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7730
7731 if (dwo_file->tus != NULL)
7732 htab_traverse_noresize (dwo_file->tus.get (),
7733 process_skeletonless_type_unit, info);
7734
7735 return 1;
7736 }
7737
7738 /* Scan all TUs of DWO files, verifying we've processed them.
7739 This is needed in case a TU was emitted without its skeleton.
7740 Note: This can't be done until we know what all the DWO files are. */
7741
7742 static void
7743 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7744 {
7745 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7746 if (get_dwp_file (dwarf2_per_objfile) == NULL
7747 && dwarf2_per_objfile->dwo_files != NULL)
7748 {
7749 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7750 process_dwo_file_for_skeletonless_type_units,
7751 dwarf2_per_objfile);
7752 }
7753 }
7754
7755 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7756
7757 static void
7758 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7759 {
7760 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7761 {
7762 dwarf2_psymtab *pst = per_cu->v.psymtab;
7763
7764 if (pst == NULL)
7765 continue;
7766
7767 for (int j = 0; j < pst->number_of_dependencies; ++j)
7768 {
7769 /* Set the 'user' field only if it is not already set. */
7770 if (pst->dependencies[j]->user == NULL)
7771 pst->dependencies[j]->user = pst;
7772 }
7773 }
7774 }
7775
7776 /* Build the partial symbol table by doing a quick pass through the
7777 .debug_info and .debug_abbrev sections. */
7778
7779 static void
7780 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7781 {
7782 struct objfile *objfile = dwarf2_per_objfile->objfile;
7783
7784 if (dwarf_read_debug)
7785 {
7786 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7787 objfile_name (objfile));
7788 }
7789
7790 scoped_restore restore_reading_psyms
7791 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7792 true);
7793
7794 dwarf2_per_objfile->info.read (objfile);
7795
7796 /* Any cached compilation units will be linked by the per-objfile
7797 read_in_chain. Make sure to free them when we're done. */
7798 free_cached_comp_units freer (dwarf2_per_objfile);
7799
7800 build_type_psymtabs (dwarf2_per_objfile);
7801
7802 create_all_comp_units (dwarf2_per_objfile);
7803
7804 /* Create a temporary address map on a temporary obstack. We later
7805 copy this to the final obstack. */
7806 auto_obstack temp_obstack;
7807
7808 scoped_restore save_psymtabs_addrmap
7809 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7810 addrmap_create_mutable (&temp_obstack));
7811
7812 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7813 {
7814 if (per_cu->v.psymtab != NULL)
7815 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7816 continue;
7817 process_psymtab_comp_unit (per_cu, false, language_minimal);
7818 }
7819
7820 /* This has to wait until we read the CUs, we need the list of DWOs. */
7821 process_skeletonless_type_units (dwarf2_per_objfile);
7822
7823 /* Now that all TUs have been processed we can fill in the dependencies. */
7824 if (dwarf2_per_objfile->type_unit_groups != NULL)
7825 {
7826 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7827 build_type_psymtab_dependencies, dwarf2_per_objfile);
7828 }
7829
7830 if (dwarf_read_debug)
7831 print_tu_stats (dwarf2_per_objfile);
7832
7833 set_partial_user (dwarf2_per_objfile);
7834
7835 objfile->partial_symtabs->psymtabs_addrmap
7836 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7837 objfile->partial_symtabs->obstack ());
7838 /* At this point we want to keep the address map. */
7839 save_psymtabs_addrmap.release ();
7840
7841 if (dwarf_read_debug)
7842 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7843 objfile_name (objfile));
7844 }
7845
7846 /* Load the partial DIEs for a secondary CU into memory.
7847 This is also used when rereading a primary CU with load_all_dies. */
7848
7849 static void
7850 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7851 {
7852 cutu_reader reader (this_cu, NULL, 1, false);
7853
7854 if (!reader.dummy_p)
7855 {
7856 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7857 language_minimal);
7858
7859 /* Check if comp unit has_children.
7860 If so, read the rest of the partial symbols from this comp unit.
7861 If not, there's no more debug_info for this comp unit. */
7862 if (reader.comp_unit_die->has_children)
7863 load_partial_dies (&reader, reader.info_ptr, 0);
7864
7865 reader.keep ();
7866 }
7867 }
7868
7869 static void
7870 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7871 struct dwarf2_section_info *section,
7872 struct dwarf2_section_info *abbrev_section,
7873 unsigned int is_dwz)
7874 {
7875 const gdb_byte *info_ptr;
7876 struct objfile *objfile = dwarf2_per_objfile->objfile;
7877
7878 if (dwarf_read_debug)
7879 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7880 section->get_name (),
7881 section->get_file_name ());
7882
7883 section->read (objfile);
7884
7885 info_ptr = section->buffer;
7886
7887 while (info_ptr < section->buffer + section->size)
7888 {
7889 struct dwarf2_per_cu_data *this_cu;
7890
7891 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7892
7893 comp_unit_head cu_header;
7894 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7895 abbrev_section, info_ptr,
7896 rcuh_kind::COMPILE);
7897
7898 /* Save the compilation unit for later lookup. */
7899 if (cu_header.unit_type != DW_UT_type)
7900 {
7901 this_cu = XOBNEW (&objfile->objfile_obstack,
7902 struct dwarf2_per_cu_data);
7903 memset (this_cu, 0, sizeof (*this_cu));
7904 }
7905 else
7906 {
7907 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7908 struct signatured_type);
7909 memset (sig_type, 0, sizeof (*sig_type));
7910 sig_type->signature = cu_header.signature;
7911 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7912 this_cu = &sig_type->per_cu;
7913 }
7914 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7915 this_cu->sect_off = sect_off;
7916 this_cu->length = cu_header.length + cu_header.initial_length_size;
7917 this_cu->is_dwz = is_dwz;
7918 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7919 this_cu->section = section;
7920
7921 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7922
7923 info_ptr = info_ptr + this_cu->length;
7924 }
7925 }
7926
7927 /* Create a list of all compilation units in OBJFILE.
7928 This is only done for -readnow and building partial symtabs. */
7929
7930 static void
7931 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7932 {
7933 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7934 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7935 &dwarf2_per_objfile->abbrev, 0);
7936
7937 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7938 if (dwz != NULL)
7939 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7940 1);
7941 }
7942
7943 /* Process all loaded DIEs for compilation unit CU, starting at
7944 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7945 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7946 DW_AT_ranges). See the comments of add_partial_subprogram on how
7947 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7948
7949 static void
7950 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7951 CORE_ADDR *highpc, int set_addrmap,
7952 struct dwarf2_cu *cu)
7953 {
7954 struct partial_die_info *pdi;
7955
7956 /* Now, march along the PDI's, descending into ones which have
7957 interesting children but skipping the children of the other ones,
7958 until we reach the end of the compilation unit. */
7959
7960 pdi = first_die;
7961
7962 while (pdi != NULL)
7963 {
7964 pdi->fixup (cu);
7965
7966 /* Anonymous namespaces or modules have no name but have interesting
7967 children, so we need to look at them. Ditto for anonymous
7968 enums. */
7969
7970 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7971 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7972 || pdi->tag == DW_TAG_imported_unit
7973 || pdi->tag == DW_TAG_inlined_subroutine)
7974 {
7975 switch (pdi->tag)
7976 {
7977 case DW_TAG_subprogram:
7978 case DW_TAG_inlined_subroutine:
7979 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7980 break;
7981 case DW_TAG_constant:
7982 case DW_TAG_variable:
7983 case DW_TAG_typedef:
7984 case DW_TAG_union_type:
7985 if (!pdi->is_declaration
7986 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7987 {
7988 add_partial_symbol (pdi, cu);
7989 }
7990 break;
7991 case DW_TAG_class_type:
7992 case DW_TAG_interface_type:
7993 case DW_TAG_structure_type:
7994 if (!pdi->is_declaration)
7995 {
7996 add_partial_symbol (pdi, cu);
7997 }
7998 if ((cu->language == language_rust
7999 || cu->language == language_cplus) && pdi->has_children)
8000 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8001 set_addrmap, cu);
8002 break;
8003 case DW_TAG_enumeration_type:
8004 if (!pdi->is_declaration)
8005 add_partial_enumeration (pdi, cu);
8006 break;
8007 case DW_TAG_base_type:
8008 case DW_TAG_subrange_type:
8009 /* File scope base type definitions are added to the partial
8010 symbol table. */
8011 add_partial_symbol (pdi, cu);
8012 break;
8013 case DW_TAG_namespace:
8014 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8015 break;
8016 case DW_TAG_module:
8017 if (!pdi->is_declaration)
8018 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8019 break;
8020 case DW_TAG_imported_unit:
8021 {
8022 struct dwarf2_per_cu_data *per_cu;
8023
8024 /* For now we don't handle imported units in type units. */
8025 if (cu->per_cu->is_debug_types)
8026 {
8027 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8028 " supported in type units [in module %s]"),
8029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8030 }
8031
8032 per_cu = dwarf2_find_containing_comp_unit
8033 (pdi->d.sect_off, pdi->is_dwz,
8034 cu->per_cu->dwarf2_per_objfile);
8035
8036 /* Go read the partial unit, if needed. */
8037 if (per_cu->v.psymtab == NULL)
8038 process_psymtab_comp_unit (per_cu, true, cu->language);
8039
8040 cu->per_cu->imported_symtabs_push (per_cu);
8041 }
8042 break;
8043 case DW_TAG_imported_declaration:
8044 add_partial_symbol (pdi, cu);
8045 break;
8046 default:
8047 break;
8048 }
8049 }
8050
8051 /* If the die has a sibling, skip to the sibling. */
8052
8053 pdi = pdi->die_sibling;
8054 }
8055 }
8056
8057 /* Functions used to compute the fully scoped name of a partial DIE.
8058
8059 Normally, this is simple. For C++, the parent DIE's fully scoped
8060 name is concatenated with "::" and the partial DIE's name.
8061 Enumerators are an exception; they use the scope of their parent
8062 enumeration type, i.e. the name of the enumeration type is not
8063 prepended to the enumerator.
8064
8065 There are two complexities. One is DW_AT_specification; in this
8066 case "parent" means the parent of the target of the specification,
8067 instead of the direct parent of the DIE. The other is compilers
8068 which do not emit DW_TAG_namespace; in this case we try to guess
8069 the fully qualified name of structure types from their members'
8070 linkage names. This must be done using the DIE's children rather
8071 than the children of any DW_AT_specification target. We only need
8072 to do this for structures at the top level, i.e. if the target of
8073 any DW_AT_specification (if any; otherwise the DIE itself) does not
8074 have a parent. */
8075
8076 /* Compute the scope prefix associated with PDI's parent, in
8077 compilation unit CU. The result will be allocated on CU's
8078 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8079 field. NULL is returned if no prefix is necessary. */
8080 static const char *
8081 partial_die_parent_scope (struct partial_die_info *pdi,
8082 struct dwarf2_cu *cu)
8083 {
8084 const char *grandparent_scope;
8085 struct partial_die_info *parent, *real_pdi;
8086
8087 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8088 then this means the parent of the specification DIE. */
8089
8090 real_pdi = pdi;
8091 while (real_pdi->has_specification)
8092 {
8093 auto res = find_partial_die (real_pdi->spec_offset,
8094 real_pdi->spec_is_dwz, cu);
8095 real_pdi = res.pdi;
8096 cu = res.cu;
8097 }
8098
8099 parent = real_pdi->die_parent;
8100 if (parent == NULL)
8101 return NULL;
8102
8103 if (parent->scope_set)
8104 return parent->scope;
8105
8106 parent->fixup (cu);
8107
8108 grandparent_scope = partial_die_parent_scope (parent, cu);
8109
8110 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8111 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8112 Work around this problem here. */
8113 if (cu->language == language_cplus
8114 && parent->tag == DW_TAG_namespace
8115 && strcmp (parent->name, "::") == 0
8116 && grandparent_scope == NULL)
8117 {
8118 parent->scope = NULL;
8119 parent->scope_set = 1;
8120 return NULL;
8121 }
8122
8123 /* Nested subroutines in Fortran get a prefix. */
8124 if (pdi->tag == DW_TAG_enumerator)
8125 /* Enumerators should not get the name of the enumeration as a prefix. */
8126 parent->scope = grandparent_scope;
8127 else if (parent->tag == DW_TAG_namespace
8128 || parent->tag == DW_TAG_module
8129 || parent->tag == DW_TAG_structure_type
8130 || parent->tag == DW_TAG_class_type
8131 || parent->tag == DW_TAG_interface_type
8132 || parent->tag == DW_TAG_union_type
8133 || parent->tag == DW_TAG_enumeration_type
8134 || (cu->language == language_fortran
8135 && parent->tag == DW_TAG_subprogram
8136 && pdi->tag == DW_TAG_subprogram))
8137 {
8138 if (grandparent_scope == NULL)
8139 parent->scope = parent->name;
8140 else
8141 parent->scope = typename_concat (&cu->comp_unit_obstack,
8142 grandparent_scope,
8143 parent->name, 0, cu);
8144 }
8145 else
8146 {
8147 /* FIXME drow/2004-04-01: What should we be doing with
8148 function-local names? For partial symbols, we should probably be
8149 ignoring them. */
8150 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8151 dwarf_tag_name (parent->tag),
8152 sect_offset_str (pdi->sect_off));
8153 parent->scope = grandparent_scope;
8154 }
8155
8156 parent->scope_set = 1;
8157 return parent->scope;
8158 }
8159
8160 /* Return the fully scoped name associated with PDI, from compilation unit
8161 CU. The result will be allocated with malloc. */
8162
8163 static gdb::unique_xmalloc_ptr<char>
8164 partial_die_full_name (struct partial_die_info *pdi,
8165 struct dwarf2_cu *cu)
8166 {
8167 const char *parent_scope;
8168
8169 /* If this is a template instantiation, we can not work out the
8170 template arguments from partial DIEs. So, unfortunately, we have
8171 to go through the full DIEs. At least any work we do building
8172 types here will be reused if full symbols are loaded later. */
8173 if (pdi->has_template_arguments)
8174 {
8175 pdi->fixup (cu);
8176
8177 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8178 {
8179 struct die_info *die;
8180 struct attribute attr;
8181 struct dwarf2_cu *ref_cu = cu;
8182
8183 /* DW_FORM_ref_addr is using section offset. */
8184 attr.name = (enum dwarf_attribute) 0;
8185 attr.form = DW_FORM_ref_addr;
8186 attr.u.unsnd = to_underlying (pdi->sect_off);
8187 die = follow_die_ref (NULL, &attr, &ref_cu);
8188
8189 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8190 }
8191 }
8192
8193 parent_scope = partial_die_parent_scope (pdi, cu);
8194 if (parent_scope == NULL)
8195 return NULL;
8196 else
8197 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8198 pdi->name, 0, cu));
8199 }
8200
8201 static void
8202 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8203 {
8204 struct dwarf2_per_objfile *dwarf2_per_objfile
8205 = cu->per_cu->dwarf2_per_objfile;
8206 struct objfile *objfile = dwarf2_per_objfile->objfile;
8207 struct gdbarch *gdbarch = objfile->arch ();
8208 CORE_ADDR addr = 0;
8209 const char *actual_name = NULL;
8210 CORE_ADDR baseaddr;
8211
8212 baseaddr = objfile->text_section_offset ();
8213
8214 gdb::unique_xmalloc_ptr<char> built_actual_name
8215 = partial_die_full_name (pdi, cu);
8216 if (built_actual_name != NULL)
8217 actual_name = built_actual_name.get ();
8218
8219 if (actual_name == NULL)
8220 actual_name = pdi->name;
8221
8222 partial_symbol psymbol;
8223 memset (&psymbol, 0, sizeof (psymbol));
8224 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8225 psymbol.ginfo.section = -1;
8226
8227 /* The code below indicates that the psymbol should be installed by
8228 setting this. */
8229 gdb::optional<psymbol_placement> where;
8230
8231 switch (pdi->tag)
8232 {
8233 case DW_TAG_inlined_subroutine:
8234 case DW_TAG_subprogram:
8235 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8236 - baseaddr);
8237 if (pdi->is_external
8238 || cu->language == language_ada
8239 || (cu->language == language_fortran
8240 && pdi->die_parent != NULL
8241 && pdi->die_parent->tag == DW_TAG_subprogram))
8242 {
8243 /* Normally, only "external" DIEs are part of the global scope.
8244 But in Ada and Fortran, we want to be able to access nested
8245 procedures globally. So all Ada and Fortran subprograms are
8246 stored in the global scope. */
8247 where = psymbol_placement::GLOBAL;
8248 }
8249 else
8250 where = psymbol_placement::STATIC;
8251
8252 psymbol.domain = VAR_DOMAIN;
8253 psymbol.aclass = LOC_BLOCK;
8254 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8255 psymbol.ginfo.value.address = addr;
8256
8257 if (pdi->main_subprogram && actual_name != NULL)
8258 set_objfile_main_name (objfile, actual_name, cu->language);
8259 break;
8260 case DW_TAG_constant:
8261 psymbol.domain = VAR_DOMAIN;
8262 psymbol.aclass = LOC_STATIC;
8263 where = (pdi->is_external
8264 ? psymbol_placement::GLOBAL
8265 : psymbol_placement::STATIC);
8266 break;
8267 case DW_TAG_variable:
8268 if (pdi->d.locdesc)
8269 addr = decode_locdesc (pdi->d.locdesc, cu);
8270
8271 if (pdi->d.locdesc
8272 && addr == 0
8273 && !dwarf2_per_objfile->has_section_at_zero)
8274 {
8275 /* A global or static variable may also have been stripped
8276 out by the linker if unused, in which case its address
8277 will be nullified; do not add such variables into partial
8278 symbol table then. */
8279 }
8280 else if (pdi->is_external)
8281 {
8282 /* Global Variable.
8283 Don't enter into the minimal symbol tables as there is
8284 a minimal symbol table entry from the ELF symbols already.
8285 Enter into partial symbol table if it has a location
8286 descriptor or a type.
8287 If the location descriptor is missing, new_symbol will create
8288 a LOC_UNRESOLVED symbol, the address of the variable will then
8289 be determined from the minimal symbol table whenever the variable
8290 is referenced.
8291 The address for the partial symbol table entry is not
8292 used by GDB, but it comes in handy for debugging partial symbol
8293 table building. */
8294
8295 if (pdi->d.locdesc || pdi->has_type)
8296 {
8297 psymbol.domain = VAR_DOMAIN;
8298 psymbol.aclass = LOC_STATIC;
8299 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8300 psymbol.ginfo.value.address = addr;
8301 where = psymbol_placement::GLOBAL;
8302 }
8303 }
8304 else
8305 {
8306 int has_loc = pdi->d.locdesc != NULL;
8307
8308 /* Static Variable. Skip symbols whose value we cannot know (those
8309 without location descriptors or constant values). */
8310 if (!has_loc && !pdi->has_const_value)
8311 return;
8312
8313 psymbol.domain = VAR_DOMAIN;
8314 psymbol.aclass = LOC_STATIC;
8315 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8316 if (has_loc)
8317 psymbol.ginfo.value.address = addr;
8318 where = psymbol_placement::STATIC;
8319 }
8320 break;
8321 case DW_TAG_typedef:
8322 case DW_TAG_base_type:
8323 case DW_TAG_subrange_type:
8324 psymbol.domain = VAR_DOMAIN;
8325 psymbol.aclass = LOC_TYPEDEF;
8326 where = psymbol_placement::STATIC;
8327 break;
8328 case DW_TAG_imported_declaration:
8329 case DW_TAG_namespace:
8330 psymbol.domain = VAR_DOMAIN;
8331 psymbol.aclass = LOC_TYPEDEF;
8332 where = psymbol_placement::GLOBAL;
8333 break;
8334 case DW_TAG_module:
8335 /* With Fortran 77 there might be a "BLOCK DATA" module
8336 available without any name. If so, we skip the module as it
8337 doesn't bring any value. */
8338 if (actual_name != nullptr)
8339 {
8340 psymbol.domain = MODULE_DOMAIN;
8341 psymbol.aclass = LOC_TYPEDEF;
8342 where = psymbol_placement::GLOBAL;
8343 }
8344 break;
8345 case DW_TAG_class_type:
8346 case DW_TAG_interface_type:
8347 case DW_TAG_structure_type:
8348 case DW_TAG_union_type:
8349 case DW_TAG_enumeration_type:
8350 /* Skip external references. The DWARF standard says in the section
8351 about "Structure, Union, and Class Type Entries": "An incomplete
8352 structure, union or class type is represented by a structure,
8353 union or class entry that does not have a byte size attribute
8354 and that has a DW_AT_declaration attribute." */
8355 if (!pdi->has_byte_size && pdi->is_declaration)
8356 return;
8357
8358 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8359 static vs. global. */
8360 psymbol.domain = STRUCT_DOMAIN;
8361 psymbol.aclass = LOC_TYPEDEF;
8362 where = (cu->language == language_cplus
8363 ? psymbol_placement::GLOBAL
8364 : psymbol_placement::STATIC);
8365 break;
8366 case DW_TAG_enumerator:
8367 psymbol.domain = VAR_DOMAIN;
8368 psymbol.aclass = LOC_CONST;
8369 where = (cu->language == language_cplus
8370 ? psymbol_placement::GLOBAL
8371 : psymbol_placement::STATIC);
8372 break;
8373 default:
8374 break;
8375 }
8376
8377 if (where.has_value ())
8378 {
8379 if (built_actual_name != nullptr)
8380 actual_name = objfile->intern (actual_name);
8381 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8382 psymbol.ginfo.set_linkage_name (actual_name);
8383 else
8384 {
8385 psymbol.ginfo.set_demangled_name (actual_name,
8386 &objfile->objfile_obstack);
8387 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8388 }
8389 add_psymbol_to_list (psymbol, *where, objfile);
8390 }
8391 }
8392
8393 /* Read a partial die corresponding to a namespace; also, add a symbol
8394 corresponding to that namespace to the symbol table. NAMESPACE is
8395 the name of the enclosing namespace. */
8396
8397 static void
8398 add_partial_namespace (struct partial_die_info *pdi,
8399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8400 int set_addrmap, struct dwarf2_cu *cu)
8401 {
8402 /* Add a symbol for the namespace. */
8403
8404 add_partial_symbol (pdi, cu);
8405
8406 /* Now scan partial symbols in that namespace. */
8407
8408 if (pdi->has_children)
8409 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8410 }
8411
8412 /* Read a partial die corresponding to a Fortran module. */
8413
8414 static void
8415 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8416 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8417 {
8418 /* Add a symbol for the namespace. */
8419
8420 add_partial_symbol (pdi, cu);
8421
8422 /* Now scan partial symbols in that module. */
8423
8424 if (pdi->has_children)
8425 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8426 }
8427
8428 /* Read a partial die corresponding to a subprogram or an inlined
8429 subprogram and create a partial symbol for that subprogram.
8430 When the CU language allows it, this routine also defines a partial
8431 symbol for each nested subprogram that this subprogram contains.
8432 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8433 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8434
8435 PDI may also be a lexical block, in which case we simply search
8436 recursively for subprograms defined inside that lexical block.
8437 Again, this is only performed when the CU language allows this
8438 type of definitions. */
8439
8440 static void
8441 add_partial_subprogram (struct partial_die_info *pdi,
8442 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8443 int set_addrmap, struct dwarf2_cu *cu)
8444 {
8445 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8446 {
8447 if (pdi->has_pc_info)
8448 {
8449 if (pdi->lowpc < *lowpc)
8450 *lowpc = pdi->lowpc;
8451 if (pdi->highpc > *highpc)
8452 *highpc = pdi->highpc;
8453 if (set_addrmap)
8454 {
8455 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8456 struct gdbarch *gdbarch = objfile->arch ();
8457 CORE_ADDR baseaddr;
8458 CORE_ADDR this_highpc;
8459 CORE_ADDR this_lowpc;
8460
8461 baseaddr = objfile->text_section_offset ();
8462 this_lowpc
8463 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8464 pdi->lowpc + baseaddr)
8465 - baseaddr);
8466 this_highpc
8467 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8468 pdi->highpc + baseaddr)
8469 - baseaddr);
8470 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8471 this_lowpc, this_highpc - 1,
8472 cu->per_cu->v.psymtab);
8473 }
8474 }
8475
8476 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8477 {
8478 if (!pdi->is_declaration)
8479 /* Ignore subprogram DIEs that do not have a name, they are
8480 illegal. Do not emit a complaint at this point, we will
8481 do so when we convert this psymtab into a symtab. */
8482 if (pdi->name)
8483 add_partial_symbol (pdi, cu);
8484 }
8485 }
8486
8487 if (! pdi->has_children)
8488 return;
8489
8490 if (cu->language == language_ada || cu->language == language_fortran)
8491 {
8492 pdi = pdi->die_child;
8493 while (pdi != NULL)
8494 {
8495 pdi->fixup (cu);
8496 if (pdi->tag == DW_TAG_subprogram
8497 || pdi->tag == DW_TAG_inlined_subroutine
8498 || pdi->tag == DW_TAG_lexical_block)
8499 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8500 pdi = pdi->die_sibling;
8501 }
8502 }
8503 }
8504
8505 /* Read a partial die corresponding to an enumeration type. */
8506
8507 static void
8508 add_partial_enumeration (struct partial_die_info *enum_pdi,
8509 struct dwarf2_cu *cu)
8510 {
8511 struct partial_die_info *pdi;
8512
8513 if (enum_pdi->name != NULL)
8514 add_partial_symbol (enum_pdi, cu);
8515
8516 pdi = enum_pdi->die_child;
8517 while (pdi)
8518 {
8519 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8520 complaint (_("malformed enumerator DIE ignored"));
8521 else
8522 add_partial_symbol (pdi, cu);
8523 pdi = pdi->die_sibling;
8524 }
8525 }
8526
8527 /* Return the initial uleb128 in the die at INFO_PTR. */
8528
8529 static unsigned int
8530 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8531 {
8532 unsigned int bytes_read;
8533
8534 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8535 }
8536
8537 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8538 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8539
8540 Return the corresponding abbrev, or NULL if the number is zero (indicating
8541 an empty DIE). In either case *BYTES_READ will be set to the length of
8542 the initial number. */
8543
8544 static struct abbrev_info *
8545 peek_die_abbrev (const die_reader_specs &reader,
8546 const gdb_byte *info_ptr, unsigned int *bytes_read)
8547 {
8548 dwarf2_cu *cu = reader.cu;
8549 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8550 unsigned int abbrev_number
8551 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8552
8553 if (abbrev_number == 0)
8554 return NULL;
8555
8556 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8557 if (!abbrev)
8558 {
8559 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8560 " at offset %s [in module %s]"),
8561 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8562 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8563 }
8564
8565 return abbrev;
8566 }
8567
8568 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8569 Returns a pointer to the end of a series of DIEs, terminated by an empty
8570 DIE. Any children of the skipped DIEs will also be skipped. */
8571
8572 static const gdb_byte *
8573 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8574 {
8575 while (1)
8576 {
8577 unsigned int bytes_read;
8578 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8579
8580 if (abbrev == NULL)
8581 return info_ptr + bytes_read;
8582 else
8583 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8584 }
8585 }
8586
8587 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8588 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8589 abbrev corresponding to that skipped uleb128 should be passed in
8590 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8591 children. */
8592
8593 static const gdb_byte *
8594 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8595 struct abbrev_info *abbrev)
8596 {
8597 unsigned int bytes_read;
8598 struct attribute attr;
8599 bfd *abfd = reader->abfd;
8600 struct dwarf2_cu *cu = reader->cu;
8601 const gdb_byte *buffer = reader->buffer;
8602 const gdb_byte *buffer_end = reader->buffer_end;
8603 unsigned int form, i;
8604
8605 for (i = 0; i < abbrev->num_attrs; i++)
8606 {
8607 /* The only abbrev we care about is DW_AT_sibling. */
8608 if (abbrev->attrs[i].name == DW_AT_sibling)
8609 {
8610 bool ignored;
8611 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8612 &ignored);
8613 if (attr.form == DW_FORM_ref_addr)
8614 complaint (_("ignoring absolute DW_AT_sibling"));
8615 else
8616 {
8617 sect_offset off = attr.get_ref_die_offset ();
8618 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8619
8620 if (sibling_ptr < info_ptr)
8621 complaint (_("DW_AT_sibling points backwards"));
8622 else if (sibling_ptr > reader->buffer_end)
8623 reader->die_section->overflow_complaint ();
8624 else
8625 return sibling_ptr;
8626 }
8627 }
8628
8629 /* If it isn't DW_AT_sibling, skip this attribute. */
8630 form = abbrev->attrs[i].form;
8631 skip_attribute:
8632 switch (form)
8633 {
8634 case DW_FORM_ref_addr:
8635 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8636 and later it is offset sized. */
8637 if (cu->header.version == 2)
8638 info_ptr += cu->header.addr_size;
8639 else
8640 info_ptr += cu->header.offset_size;
8641 break;
8642 case DW_FORM_GNU_ref_alt:
8643 info_ptr += cu->header.offset_size;
8644 break;
8645 case DW_FORM_addr:
8646 info_ptr += cu->header.addr_size;
8647 break;
8648 case DW_FORM_data1:
8649 case DW_FORM_ref1:
8650 case DW_FORM_flag:
8651 case DW_FORM_strx1:
8652 info_ptr += 1;
8653 break;
8654 case DW_FORM_flag_present:
8655 case DW_FORM_implicit_const:
8656 break;
8657 case DW_FORM_data2:
8658 case DW_FORM_ref2:
8659 case DW_FORM_strx2:
8660 info_ptr += 2;
8661 break;
8662 case DW_FORM_strx3:
8663 info_ptr += 3;
8664 break;
8665 case DW_FORM_data4:
8666 case DW_FORM_ref4:
8667 case DW_FORM_strx4:
8668 info_ptr += 4;
8669 break;
8670 case DW_FORM_data8:
8671 case DW_FORM_ref8:
8672 case DW_FORM_ref_sig8:
8673 info_ptr += 8;
8674 break;
8675 case DW_FORM_data16:
8676 info_ptr += 16;
8677 break;
8678 case DW_FORM_string:
8679 read_direct_string (abfd, info_ptr, &bytes_read);
8680 info_ptr += bytes_read;
8681 break;
8682 case DW_FORM_sec_offset:
8683 case DW_FORM_strp:
8684 case DW_FORM_GNU_strp_alt:
8685 info_ptr += cu->header.offset_size;
8686 break;
8687 case DW_FORM_exprloc:
8688 case DW_FORM_block:
8689 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8690 info_ptr += bytes_read;
8691 break;
8692 case DW_FORM_block1:
8693 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8694 break;
8695 case DW_FORM_block2:
8696 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8697 break;
8698 case DW_FORM_block4:
8699 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8700 break;
8701 case DW_FORM_addrx:
8702 case DW_FORM_strx:
8703 case DW_FORM_sdata:
8704 case DW_FORM_udata:
8705 case DW_FORM_ref_udata:
8706 case DW_FORM_GNU_addr_index:
8707 case DW_FORM_GNU_str_index:
8708 case DW_FORM_rnglistx:
8709 case DW_FORM_loclistx:
8710 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8711 break;
8712 case DW_FORM_indirect:
8713 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8714 info_ptr += bytes_read;
8715 /* We need to continue parsing from here, so just go back to
8716 the top. */
8717 goto skip_attribute;
8718
8719 default:
8720 error (_("Dwarf Error: Cannot handle %s "
8721 "in DWARF reader [in module %s]"),
8722 dwarf_form_name (form),
8723 bfd_get_filename (abfd));
8724 }
8725 }
8726
8727 if (abbrev->has_children)
8728 return skip_children (reader, info_ptr);
8729 else
8730 return info_ptr;
8731 }
8732
8733 /* Locate ORIG_PDI's sibling.
8734 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8735
8736 static const gdb_byte *
8737 locate_pdi_sibling (const struct die_reader_specs *reader,
8738 struct partial_die_info *orig_pdi,
8739 const gdb_byte *info_ptr)
8740 {
8741 /* Do we know the sibling already? */
8742
8743 if (orig_pdi->sibling)
8744 return orig_pdi->sibling;
8745
8746 /* Are there any children to deal with? */
8747
8748 if (!orig_pdi->has_children)
8749 return info_ptr;
8750
8751 /* Skip the children the long way. */
8752
8753 return skip_children (reader, info_ptr);
8754 }
8755
8756 /* Expand this partial symbol table into a full symbol table. SELF is
8757 not NULL. */
8758
8759 void
8760 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8761 {
8762 struct dwarf2_per_objfile *dwarf2_per_objfile
8763 = get_dwarf2_per_objfile (objfile);
8764
8765 gdb_assert (!readin);
8766 /* If this psymtab is constructed from a debug-only objfile, the
8767 has_section_at_zero flag will not necessarily be correct. We
8768 can get the correct value for this flag by looking at the data
8769 associated with the (presumably stripped) associated objfile. */
8770 if (objfile->separate_debug_objfile_backlink)
8771 {
8772 struct dwarf2_per_objfile *dpo_backlink
8773 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8774
8775 dwarf2_per_objfile->has_section_at_zero
8776 = dpo_backlink->has_section_at_zero;
8777 }
8778
8779 expand_psymtab (objfile);
8780
8781 process_cu_includes (dwarf2_per_objfile);
8782 }
8783 \f
8784 /* Reading in full CUs. */
8785
8786 /* Add PER_CU to the queue. */
8787
8788 static void
8789 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8790 enum language pretend_language)
8791 {
8792 per_cu->queued = 1;
8793 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8794 }
8795
8796 /* If PER_CU is not yet queued, add it to the queue.
8797 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8798 dependency.
8799 The result is non-zero if PER_CU was queued, otherwise the result is zero
8800 meaning either PER_CU is already queued or it is already loaded.
8801
8802 N.B. There is an invariant here that if a CU is queued then it is loaded.
8803 The caller is required to load PER_CU if we return non-zero. */
8804
8805 static int
8806 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8807 struct dwarf2_per_cu_data *per_cu,
8808 enum language pretend_language)
8809 {
8810 /* We may arrive here during partial symbol reading, if we need full
8811 DIEs to process an unusual case (e.g. template arguments). Do
8812 not queue PER_CU, just tell our caller to load its DIEs. */
8813 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8814 {
8815 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8816 return 1;
8817 return 0;
8818 }
8819
8820 /* Mark the dependence relation so that we don't flush PER_CU
8821 too early. */
8822 if (dependent_cu != NULL)
8823 dwarf2_add_dependence (dependent_cu, per_cu);
8824
8825 /* If it's already on the queue, we have nothing to do. */
8826 if (per_cu->queued)
8827 return 0;
8828
8829 /* If the compilation unit is already loaded, just mark it as
8830 used. */
8831 if (per_cu->cu != NULL)
8832 {
8833 per_cu->cu->last_used = 0;
8834 return 0;
8835 }
8836
8837 /* Add it to the queue. */
8838 queue_comp_unit (per_cu, pretend_language);
8839
8840 return 1;
8841 }
8842
8843 /* Process the queue. */
8844
8845 static void
8846 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8847 {
8848 if (dwarf_read_debug)
8849 {
8850 fprintf_unfiltered (gdb_stdlog,
8851 "Expanding one or more symtabs of objfile %s ...\n",
8852 objfile_name (dwarf2_per_objfile->objfile));
8853 }
8854
8855 /* The queue starts out with one item, but following a DIE reference
8856 may load a new CU, adding it to the end of the queue. */
8857 while (!dwarf2_per_objfile->queue.empty ())
8858 {
8859 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8860
8861 if ((dwarf2_per_objfile->using_index
8862 ? !item.per_cu->v.quick->compunit_symtab
8863 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8864 /* Skip dummy CUs. */
8865 && item.per_cu->cu != NULL)
8866 {
8867 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8868 unsigned int debug_print_threshold;
8869 char buf[100];
8870
8871 if (per_cu->is_debug_types)
8872 {
8873 struct signatured_type *sig_type =
8874 (struct signatured_type *) per_cu;
8875
8876 sprintf (buf, "TU %s at offset %s",
8877 hex_string (sig_type->signature),
8878 sect_offset_str (per_cu->sect_off));
8879 /* There can be 100s of TUs.
8880 Only print them in verbose mode. */
8881 debug_print_threshold = 2;
8882 }
8883 else
8884 {
8885 sprintf (buf, "CU at offset %s",
8886 sect_offset_str (per_cu->sect_off));
8887 debug_print_threshold = 1;
8888 }
8889
8890 if (dwarf_read_debug >= debug_print_threshold)
8891 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8892
8893 if (per_cu->is_debug_types)
8894 process_full_type_unit (per_cu, item.pretend_language);
8895 else
8896 process_full_comp_unit (per_cu, item.pretend_language);
8897
8898 if (dwarf_read_debug >= debug_print_threshold)
8899 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8900 }
8901
8902 item.per_cu->queued = 0;
8903 dwarf2_per_objfile->queue.pop ();
8904 }
8905
8906 if (dwarf_read_debug)
8907 {
8908 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8909 objfile_name (dwarf2_per_objfile->objfile));
8910 }
8911 }
8912
8913 /* Read in full symbols for PST, and anything it depends on. */
8914
8915 void
8916 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8917 {
8918 gdb_assert (!readin);
8919
8920 expand_dependencies (objfile);
8921
8922 dw2_do_instantiate_symtab (per_cu_data, false);
8923 gdb_assert (get_compunit_symtab () != nullptr);
8924 }
8925
8926 /* Trivial hash function for die_info: the hash value of a DIE
8927 is its offset in .debug_info for this objfile. */
8928
8929 static hashval_t
8930 die_hash (const void *item)
8931 {
8932 const struct die_info *die = (const struct die_info *) item;
8933
8934 return to_underlying (die->sect_off);
8935 }
8936
8937 /* Trivial comparison function for die_info structures: two DIEs
8938 are equal if they have the same offset. */
8939
8940 static int
8941 die_eq (const void *item_lhs, const void *item_rhs)
8942 {
8943 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8944 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8945
8946 return die_lhs->sect_off == die_rhs->sect_off;
8947 }
8948
8949 /* Load the DIEs associated with PER_CU into memory. */
8950
8951 static void
8952 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8953 bool skip_partial,
8954 enum language pretend_language)
8955 {
8956 gdb_assert (! this_cu->is_debug_types);
8957
8958 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8959 if (reader.dummy_p)
8960 return;
8961
8962 struct dwarf2_cu *cu = reader.cu;
8963 const gdb_byte *info_ptr = reader.info_ptr;
8964
8965 gdb_assert (cu->die_hash == NULL);
8966 cu->die_hash =
8967 htab_create_alloc_ex (cu->header.length / 12,
8968 die_hash,
8969 die_eq,
8970 NULL,
8971 &cu->comp_unit_obstack,
8972 hashtab_obstack_allocate,
8973 dummy_obstack_deallocate);
8974
8975 if (reader.comp_unit_die->has_children)
8976 reader.comp_unit_die->child
8977 = read_die_and_siblings (&reader, reader.info_ptr,
8978 &info_ptr, reader.comp_unit_die);
8979 cu->dies = reader.comp_unit_die;
8980 /* comp_unit_die is not stored in die_hash, no need. */
8981
8982 /* We try not to read any attributes in this function, because not
8983 all CUs needed for references have been loaded yet, and symbol
8984 table processing isn't initialized. But we have to set the CU language,
8985 or we won't be able to build types correctly.
8986 Similarly, if we do not read the producer, we can not apply
8987 producer-specific interpretation. */
8988 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8989
8990 reader.keep ();
8991 }
8992
8993 /* Add a DIE to the delayed physname list. */
8994
8995 static void
8996 add_to_method_list (struct type *type, int fnfield_index, int index,
8997 const char *name, struct die_info *die,
8998 struct dwarf2_cu *cu)
8999 {
9000 struct delayed_method_info mi;
9001 mi.type = type;
9002 mi.fnfield_index = fnfield_index;
9003 mi.index = index;
9004 mi.name = name;
9005 mi.die = die;
9006 cu->method_list.push_back (mi);
9007 }
9008
9009 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9010 "const" / "volatile". If so, decrements LEN by the length of the
9011 modifier and return true. Otherwise return false. */
9012
9013 template<size_t N>
9014 static bool
9015 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9016 {
9017 size_t mod_len = sizeof (mod) - 1;
9018 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9019 {
9020 len -= mod_len;
9021 return true;
9022 }
9023 return false;
9024 }
9025
9026 /* Compute the physnames of any methods on the CU's method list.
9027
9028 The computation of method physnames is delayed in order to avoid the
9029 (bad) condition that one of the method's formal parameters is of an as yet
9030 incomplete type. */
9031
9032 static void
9033 compute_delayed_physnames (struct dwarf2_cu *cu)
9034 {
9035 /* Only C++ delays computing physnames. */
9036 if (cu->method_list.empty ())
9037 return;
9038 gdb_assert (cu->language == language_cplus);
9039
9040 for (const delayed_method_info &mi : cu->method_list)
9041 {
9042 const char *physname;
9043 struct fn_fieldlist *fn_flp
9044 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9045 physname = dwarf2_physname (mi.name, mi.die, cu);
9046 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9047 = physname ? physname : "";
9048
9049 /* Since there's no tag to indicate whether a method is a
9050 const/volatile overload, extract that information out of the
9051 demangled name. */
9052 if (physname != NULL)
9053 {
9054 size_t len = strlen (physname);
9055
9056 while (1)
9057 {
9058 if (physname[len] == ')') /* shortcut */
9059 break;
9060 else if (check_modifier (physname, len, " const"))
9061 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9062 else if (check_modifier (physname, len, " volatile"))
9063 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9064 else
9065 break;
9066 }
9067 }
9068 }
9069
9070 /* The list is no longer needed. */
9071 cu->method_list.clear ();
9072 }
9073
9074 /* Go objects should be embedded in a DW_TAG_module DIE,
9075 and it's not clear if/how imported objects will appear.
9076 To keep Go support simple until that's worked out,
9077 go back through what we've read and create something usable.
9078 We could do this while processing each DIE, and feels kinda cleaner,
9079 but that way is more invasive.
9080 This is to, for example, allow the user to type "p var" or "b main"
9081 without having to specify the package name, and allow lookups
9082 of module.object to work in contexts that use the expression
9083 parser. */
9084
9085 static void
9086 fixup_go_packaging (struct dwarf2_cu *cu)
9087 {
9088 gdb::unique_xmalloc_ptr<char> package_name;
9089 struct pending *list;
9090 int i;
9091
9092 for (list = *cu->get_builder ()->get_global_symbols ();
9093 list != NULL;
9094 list = list->next)
9095 {
9096 for (i = 0; i < list->nsyms; ++i)
9097 {
9098 struct symbol *sym = list->symbol[i];
9099
9100 if (sym->language () == language_go
9101 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9102 {
9103 gdb::unique_xmalloc_ptr<char> this_package_name
9104 (go_symbol_package_name (sym));
9105
9106 if (this_package_name == NULL)
9107 continue;
9108 if (package_name == NULL)
9109 package_name = std::move (this_package_name);
9110 else
9111 {
9112 struct objfile *objfile
9113 = cu->per_cu->dwarf2_per_objfile->objfile;
9114 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9115 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9116 (symbol_symtab (sym) != NULL
9117 ? symtab_to_filename_for_display
9118 (symbol_symtab (sym))
9119 : objfile_name (objfile)),
9120 this_package_name.get (), package_name.get ());
9121 }
9122 }
9123 }
9124 }
9125
9126 if (package_name != NULL)
9127 {
9128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9129 const char *saved_package_name = objfile->intern (package_name.get ());
9130 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9131 saved_package_name);
9132 struct symbol *sym;
9133
9134 sym = allocate_symbol (objfile);
9135 sym->set_language (language_go, &objfile->objfile_obstack);
9136 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9137 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9138 e.g., "main" finds the "main" module and not C's main(). */
9139 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9140 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9141 SYMBOL_TYPE (sym) = type;
9142
9143 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9144 }
9145 }
9146
9147 /* Allocate a fully-qualified name consisting of the two parts on the
9148 obstack. */
9149
9150 static const char *
9151 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9152 {
9153 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9154 }
9155
9156 /* A helper that allocates a variant part to attach to a Rust enum
9157 type. OBSTACK is where the results should be allocated. TYPE is
9158 the type we're processing. DISCRIMINANT_INDEX is the index of the
9159 discriminant. It must be the index of one of the fields of TYPE.
9160 DEFAULT_INDEX is the index of the default field; or -1 if there is
9161 no default. RANGES is indexed by "effective" field number (the
9162 field index, but omitting the discriminant and default fields) and
9163 must hold the discriminant values used by the variants. Note that
9164 RANGES must have a lifetime at least as long as OBSTACK -- either
9165 already allocated on it, or static. */
9166
9167 static void
9168 alloc_rust_variant (struct obstack *obstack, struct type *type,
9169 int discriminant_index, int default_index,
9170 gdb::array_view<discriminant_range> ranges)
9171 {
9172 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9173 must be handled by the caller. */
9174 gdb_assert (discriminant_index >= 0
9175 && discriminant_index < TYPE_NFIELDS (type));
9176 gdb_assert (default_index == -1
9177 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9178
9179 /* We have one variant for each non-discriminant field. */
9180 int n_variants = TYPE_NFIELDS (type) - 1;
9181
9182 variant *variants = new (obstack) variant[n_variants];
9183 int var_idx = 0;
9184 int range_idx = 0;
9185 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9186 {
9187 if (i == discriminant_index)
9188 continue;
9189
9190 variants[var_idx].first_field = i;
9191 variants[var_idx].last_field = i + 1;
9192
9193 /* The default field does not need a range, but other fields do.
9194 We skipped the discriminant above. */
9195 if (i != default_index)
9196 {
9197 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9198 ++range_idx;
9199 }
9200
9201 ++var_idx;
9202 }
9203
9204 gdb_assert (range_idx == ranges.size ());
9205 gdb_assert (var_idx == n_variants);
9206
9207 variant_part *part = new (obstack) variant_part;
9208 part->discriminant_index = discriminant_index;
9209 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9210 discriminant_index));
9211 part->variants = gdb::array_view<variant> (variants, n_variants);
9212
9213 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9214 gdb::array_view<variant_part> *prop_value
9215 = new (storage) gdb::array_view<variant_part> (part, 1);
9216
9217 struct dynamic_prop prop;
9218 prop.kind = PROP_VARIANT_PARTS;
9219 prop.data.variant_parts = prop_value;
9220
9221 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
9222 }
9223
9224 /* Some versions of rustc emitted enums in an unusual way.
9225
9226 Ordinary enums were emitted as unions. The first element of each
9227 structure in the union was named "RUST$ENUM$DISR". This element
9228 held the discriminant.
9229
9230 These versions of Rust also implemented the "non-zero"
9231 optimization. When the enum had two values, and one is empty and
9232 the other holds a pointer that cannot be zero, the pointer is used
9233 as the discriminant, with a zero value meaning the empty variant.
9234 Here, the union's first member is of the form
9235 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9236 where the fieldnos are the indices of the fields that should be
9237 traversed in order to find the field (which may be several fields deep)
9238 and the variantname is the name of the variant of the case when the
9239 field is zero.
9240
9241 This function recognizes whether TYPE is of one of these forms,
9242 and, if so, smashes it to be a variant type. */
9243
9244 static void
9245 quirk_rust_enum (struct type *type, struct objfile *objfile)
9246 {
9247 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9248
9249 /* We don't need to deal with empty enums. */
9250 if (TYPE_NFIELDS (type) == 0)
9251 return;
9252
9253 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9254 if (TYPE_NFIELDS (type) == 1
9255 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9256 {
9257 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9258
9259 /* Decode the field name to find the offset of the
9260 discriminant. */
9261 ULONGEST bit_offset = 0;
9262 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9263 while (name[0] >= '0' && name[0] <= '9')
9264 {
9265 char *tail;
9266 unsigned long index = strtoul (name, &tail, 10);
9267 name = tail;
9268 if (*name != '$'
9269 || index >= TYPE_NFIELDS (field_type)
9270 || (TYPE_FIELD_LOC_KIND (field_type, index)
9271 != FIELD_LOC_KIND_BITPOS))
9272 {
9273 complaint (_("Could not parse Rust enum encoding string \"%s\""
9274 "[in module %s]"),
9275 TYPE_FIELD_NAME (type, 0),
9276 objfile_name (objfile));
9277 return;
9278 }
9279 ++name;
9280
9281 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9282 field_type = TYPE_FIELD_TYPE (field_type, index);
9283 }
9284
9285 /* Smash this type to be a structure type. We have to do this
9286 because the type has already been recorded. */
9287 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9288 TYPE_NFIELDS (type) = 3;
9289 /* Save the field we care about. */
9290 struct field saved_field = TYPE_FIELD (type, 0);
9291 TYPE_FIELDS (type)
9292 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9293
9294 /* Put the discriminant at index 0. */
9295 TYPE_FIELD_TYPE (type, 0) = field_type;
9296 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9297 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9298 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), bit_offset);
9299
9300 /* The order of fields doesn't really matter, so put the real
9301 field at index 1 and the data-less field at index 2. */
9302 TYPE_FIELD (type, 1) = saved_field;
9303 TYPE_FIELD_NAME (type, 1)
9304 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, 1)));
9305 TYPE_NAME (TYPE_FIELD_TYPE (type, 1))
9306 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9307 TYPE_FIELD_NAME (type, 1));
9308
9309 const char *dataless_name
9310 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9311 name);
9312 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9313 dataless_name);
9314 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9315 /* NAME points into the original discriminant name, which
9316 already has the correct lifetime. */
9317 TYPE_FIELD_NAME (type, 2) = name;
9318 SET_FIELD_BITPOS (TYPE_FIELD (type, 2), 0);
9319
9320 /* Indicate that this is a variant type. */
9321 static discriminant_range ranges[1] = { { 0, 0 } };
9322 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9323 }
9324 /* A union with a single anonymous field is probably an old-style
9325 univariant enum. */
9326 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9327 {
9328 /* Smash this type to be a structure type. We have to do this
9329 because the type has already been recorded. */
9330 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9331
9332 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9333 const char *variant_name
9334 = rust_last_path_segment (TYPE_NAME (field_type));
9335 TYPE_FIELD_NAME (type, 0) = variant_name;
9336 TYPE_NAME (field_type)
9337 = rust_fully_qualify (&objfile->objfile_obstack,
9338 TYPE_NAME (type), variant_name);
9339 }
9340 else
9341 {
9342 struct type *disr_type = nullptr;
9343 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9344 {
9345 disr_type = TYPE_FIELD_TYPE (type, i);
9346
9347 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9348 {
9349 /* All fields of a true enum will be structs. */
9350 return;
9351 }
9352 else if (TYPE_NFIELDS (disr_type) == 0)
9353 {
9354 /* Could be data-less variant, so keep going. */
9355 disr_type = nullptr;
9356 }
9357 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9358 "RUST$ENUM$DISR") != 0)
9359 {
9360 /* Not a Rust enum. */
9361 return;
9362 }
9363 else
9364 {
9365 /* Found one. */
9366 break;
9367 }
9368 }
9369
9370 /* If we got here without a discriminant, then it's probably
9371 just a union. */
9372 if (disr_type == nullptr)
9373 return;
9374
9375 /* Smash this type to be a structure type. We have to do this
9376 because the type has already been recorded. */
9377 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9378
9379 /* Make space for the discriminant field. */
9380 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9381 field *new_fields
9382 = (struct field *) TYPE_ZALLOC (type, (TYPE_NFIELDS (type)
9383 * sizeof (struct field)));
9384 memcpy (new_fields + 1, TYPE_FIELDS (type),
9385 TYPE_NFIELDS (type) * sizeof (struct field));
9386 TYPE_FIELDS (type) = new_fields;
9387 TYPE_NFIELDS (type) = TYPE_NFIELDS (type) + 1;
9388
9389 /* Install the discriminant at index 0 in the union. */
9390 TYPE_FIELD (type, 0) = *disr_field;
9391 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9392 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9393
9394 /* We need a way to find the correct discriminant given a
9395 variant name. For convenience we build a map here. */
9396 struct type *enum_type = FIELD_TYPE (*disr_field);
9397 std::unordered_map<std::string, ULONGEST> discriminant_map;
9398 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9399 {
9400 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9401 {
9402 const char *name
9403 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9404 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9405 }
9406 }
9407
9408 int n_fields = TYPE_NFIELDS (type);
9409 /* We don't need a range entry for the discriminant, but we do
9410 need one for every other field, as there is no default
9411 variant. */
9412 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9413 discriminant_range,
9414 n_fields - 1);
9415 /* Skip the discriminant here. */
9416 for (int i = 1; i < n_fields; ++i)
9417 {
9418 /* Find the final word in the name of this variant's type.
9419 That name can be used to look up the correct
9420 discriminant. */
9421 const char *variant_name
9422 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, i)));
9423
9424 auto iter = discriminant_map.find (variant_name);
9425 if (iter != discriminant_map.end ())
9426 {
9427 ranges[i].low = iter->second;
9428 ranges[i].high = iter->second;
9429 }
9430
9431 /* Remove the discriminant field, if it exists. */
9432 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9433 if (TYPE_NFIELDS (sub_type) > 0)
9434 {
9435 --TYPE_NFIELDS (sub_type);
9436 ++TYPE_FIELDS (sub_type);
9437 }
9438 TYPE_FIELD_NAME (type, i) = variant_name;
9439 TYPE_NAME (sub_type)
9440 = rust_fully_qualify (&objfile->objfile_obstack,
9441 TYPE_NAME (type), variant_name);
9442 }
9443
9444 /* Indicate that this is a variant type. */
9445 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9446 gdb::array_view<discriminant_range> (ranges,
9447 n_fields - 1));
9448 }
9449 }
9450
9451 /* Rewrite some Rust unions to be structures with variants parts. */
9452
9453 static void
9454 rust_union_quirks (struct dwarf2_cu *cu)
9455 {
9456 gdb_assert (cu->language == language_rust);
9457 for (type *type_ : cu->rust_unions)
9458 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9459 /* We don't need this any more. */
9460 cu->rust_unions.clear ();
9461 }
9462
9463 /* Return the symtab for PER_CU. This works properly regardless of
9464 whether we're using the index or psymtabs. */
9465
9466 static struct compunit_symtab *
9467 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9468 {
9469 return (per_cu->dwarf2_per_objfile->using_index
9470 ? per_cu->v.quick->compunit_symtab
9471 : per_cu->v.psymtab->compunit_symtab);
9472 }
9473
9474 /* A helper function for computing the list of all symbol tables
9475 included by PER_CU. */
9476
9477 static void
9478 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9479 htab_t all_children, htab_t all_type_symtabs,
9480 struct dwarf2_per_cu_data *per_cu,
9481 struct compunit_symtab *immediate_parent)
9482 {
9483 void **slot;
9484 struct compunit_symtab *cust;
9485
9486 slot = htab_find_slot (all_children, per_cu, INSERT);
9487 if (*slot != NULL)
9488 {
9489 /* This inclusion and its children have been processed. */
9490 return;
9491 }
9492
9493 *slot = per_cu;
9494 /* Only add a CU if it has a symbol table. */
9495 cust = get_compunit_symtab (per_cu);
9496 if (cust != NULL)
9497 {
9498 /* If this is a type unit only add its symbol table if we haven't
9499 seen it yet (type unit per_cu's can share symtabs). */
9500 if (per_cu->is_debug_types)
9501 {
9502 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9503 if (*slot == NULL)
9504 {
9505 *slot = cust;
9506 result->push_back (cust);
9507 if (cust->user == NULL)
9508 cust->user = immediate_parent;
9509 }
9510 }
9511 else
9512 {
9513 result->push_back (cust);
9514 if (cust->user == NULL)
9515 cust->user = immediate_parent;
9516 }
9517 }
9518
9519 if (!per_cu->imported_symtabs_empty ())
9520 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9521 {
9522 recursively_compute_inclusions (result, all_children,
9523 all_type_symtabs, ptr, cust);
9524 }
9525 }
9526
9527 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9528 PER_CU. */
9529
9530 static void
9531 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9532 {
9533 gdb_assert (! per_cu->is_debug_types);
9534
9535 if (!per_cu->imported_symtabs_empty ())
9536 {
9537 int len;
9538 std::vector<compunit_symtab *> result_symtabs;
9539 htab_t all_children, all_type_symtabs;
9540 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9541
9542 /* If we don't have a symtab, we can just skip this case. */
9543 if (cust == NULL)
9544 return;
9545
9546 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9547 NULL, xcalloc, xfree);
9548 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9549 NULL, xcalloc, xfree);
9550
9551 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9552 {
9553 recursively_compute_inclusions (&result_symtabs, all_children,
9554 all_type_symtabs, ptr, cust);
9555 }
9556
9557 /* Now we have a transitive closure of all the included symtabs. */
9558 len = result_symtabs.size ();
9559 cust->includes
9560 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9561 struct compunit_symtab *, len + 1);
9562 memcpy (cust->includes, result_symtabs.data (),
9563 len * sizeof (compunit_symtab *));
9564 cust->includes[len] = NULL;
9565
9566 htab_delete (all_children);
9567 htab_delete (all_type_symtabs);
9568 }
9569 }
9570
9571 /* Compute the 'includes' field for the symtabs of all the CUs we just
9572 read. */
9573
9574 static void
9575 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9576 {
9577 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9578 {
9579 if (! iter->is_debug_types)
9580 compute_compunit_symtab_includes (iter);
9581 }
9582
9583 dwarf2_per_objfile->just_read_cus.clear ();
9584 }
9585
9586 /* Generate full symbol information for PER_CU, whose DIEs have
9587 already been loaded into memory. */
9588
9589 static void
9590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9591 enum language pretend_language)
9592 {
9593 struct dwarf2_cu *cu = per_cu->cu;
9594 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9595 struct objfile *objfile = dwarf2_per_objfile->objfile;
9596 struct gdbarch *gdbarch = objfile->arch ();
9597 CORE_ADDR lowpc, highpc;
9598 struct compunit_symtab *cust;
9599 CORE_ADDR baseaddr;
9600 struct block *static_block;
9601 CORE_ADDR addr;
9602
9603 baseaddr = objfile->text_section_offset ();
9604
9605 /* Clear the list here in case something was left over. */
9606 cu->method_list.clear ();
9607
9608 cu->language = pretend_language;
9609 cu->language_defn = language_def (cu->language);
9610
9611 /* Do line number decoding in read_file_scope () */
9612 process_die (cu->dies, cu);
9613
9614 /* For now fudge the Go package. */
9615 if (cu->language == language_go)
9616 fixup_go_packaging (cu);
9617
9618 /* Now that we have processed all the DIEs in the CU, all the types
9619 should be complete, and it should now be safe to compute all of the
9620 physnames. */
9621 compute_delayed_physnames (cu);
9622
9623 if (cu->language == language_rust)
9624 rust_union_quirks (cu);
9625
9626 /* Some compilers don't define a DW_AT_high_pc attribute for the
9627 compilation unit. If the DW_AT_high_pc is missing, synthesize
9628 it, by scanning the DIE's below the compilation unit. */
9629 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9630
9631 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9632 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9633
9634 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9635 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9636 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9637 addrmap to help ensure it has an accurate map of pc values belonging to
9638 this comp unit. */
9639 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9640
9641 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9642 SECT_OFF_TEXT (objfile),
9643 0);
9644
9645 if (cust != NULL)
9646 {
9647 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9648
9649 /* Set symtab language to language from DW_AT_language. If the
9650 compilation is from a C file generated by language preprocessors, do
9651 not set the language if it was already deduced by start_subfile. */
9652 if (!(cu->language == language_c
9653 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9654 COMPUNIT_FILETABS (cust)->language = cu->language;
9655
9656 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9657 produce DW_AT_location with location lists but it can be possibly
9658 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9659 there were bugs in prologue debug info, fixed later in GCC-4.5
9660 by "unwind info for epilogues" patch (which is not directly related).
9661
9662 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9663 needed, it would be wrong due to missing DW_AT_producer there.
9664
9665 Still one can confuse GDB by using non-standard GCC compilation
9666 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9667 */
9668 if (cu->has_loclist && gcc_4_minor >= 5)
9669 cust->locations_valid = 1;
9670
9671 if (gcc_4_minor >= 5)
9672 cust->epilogue_unwind_valid = 1;
9673
9674 cust->call_site_htab = cu->call_site_htab;
9675 }
9676
9677 if (dwarf2_per_objfile->using_index)
9678 per_cu->v.quick->compunit_symtab = cust;
9679 else
9680 {
9681 dwarf2_psymtab *pst = per_cu->v.psymtab;
9682 pst->compunit_symtab = cust;
9683 pst->readin = true;
9684 }
9685
9686 /* Push it for inclusion processing later. */
9687 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9688
9689 /* Not needed any more. */
9690 cu->reset_builder ();
9691 }
9692
9693 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9694 already been loaded into memory. */
9695
9696 static void
9697 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9698 enum language pretend_language)
9699 {
9700 struct dwarf2_cu *cu = per_cu->cu;
9701 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9702 struct objfile *objfile = dwarf2_per_objfile->objfile;
9703 struct compunit_symtab *cust;
9704 struct signatured_type *sig_type;
9705
9706 gdb_assert (per_cu->is_debug_types);
9707 sig_type = (struct signatured_type *) per_cu;
9708
9709 /* Clear the list here in case something was left over. */
9710 cu->method_list.clear ();
9711
9712 cu->language = pretend_language;
9713 cu->language_defn = language_def (cu->language);
9714
9715 /* The symbol tables are set up in read_type_unit_scope. */
9716 process_die (cu->dies, cu);
9717
9718 /* For now fudge the Go package. */
9719 if (cu->language == language_go)
9720 fixup_go_packaging (cu);
9721
9722 /* Now that we have processed all the DIEs in the CU, all the types
9723 should be complete, and it should now be safe to compute all of the
9724 physnames. */
9725 compute_delayed_physnames (cu);
9726
9727 if (cu->language == language_rust)
9728 rust_union_quirks (cu);
9729
9730 /* TUs share symbol tables.
9731 If this is the first TU to use this symtab, complete the construction
9732 of it with end_expandable_symtab. Otherwise, complete the addition of
9733 this TU's symbols to the existing symtab. */
9734 if (sig_type->type_unit_group->compunit_symtab == NULL)
9735 {
9736 buildsym_compunit *builder = cu->get_builder ();
9737 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9738 sig_type->type_unit_group->compunit_symtab = cust;
9739
9740 if (cust != NULL)
9741 {
9742 /* Set symtab language to language from DW_AT_language. If the
9743 compilation is from a C file generated by language preprocessors,
9744 do not set the language if it was already deduced by
9745 start_subfile. */
9746 if (!(cu->language == language_c
9747 && COMPUNIT_FILETABS (cust)->language != language_c))
9748 COMPUNIT_FILETABS (cust)->language = cu->language;
9749 }
9750 }
9751 else
9752 {
9753 cu->get_builder ()->augment_type_symtab ();
9754 cust = sig_type->type_unit_group->compunit_symtab;
9755 }
9756
9757 if (dwarf2_per_objfile->using_index)
9758 per_cu->v.quick->compunit_symtab = cust;
9759 else
9760 {
9761 dwarf2_psymtab *pst = per_cu->v.psymtab;
9762 pst->compunit_symtab = cust;
9763 pst->readin = true;
9764 }
9765
9766 /* Not needed any more. */
9767 cu->reset_builder ();
9768 }
9769
9770 /* Process an imported unit DIE. */
9771
9772 static void
9773 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9774 {
9775 struct attribute *attr;
9776
9777 /* For now we don't handle imported units in type units. */
9778 if (cu->per_cu->is_debug_types)
9779 {
9780 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9781 " supported in type units [in module %s]"),
9782 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9783 }
9784
9785 attr = dwarf2_attr (die, DW_AT_import, cu);
9786 if (attr != NULL)
9787 {
9788 sect_offset sect_off = attr->get_ref_die_offset ();
9789 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9790 dwarf2_per_cu_data *per_cu
9791 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9792 cu->per_cu->dwarf2_per_objfile);
9793
9794 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9795 into another compilation unit, at root level. Regard this as a hint,
9796 and ignore it. */
9797 if (die->parent && die->parent->parent == NULL
9798 && per_cu->unit_type == DW_UT_compile
9799 && per_cu->lang == language_cplus)
9800 return;
9801
9802 /* If necessary, add it to the queue and load its DIEs. */
9803 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9804 load_full_comp_unit (per_cu, false, cu->language);
9805
9806 cu->per_cu->imported_symtabs_push (per_cu);
9807 }
9808 }
9809
9810 /* RAII object that represents a process_die scope: i.e.,
9811 starts/finishes processing a DIE. */
9812 class process_die_scope
9813 {
9814 public:
9815 process_die_scope (die_info *die, dwarf2_cu *cu)
9816 : m_die (die), m_cu (cu)
9817 {
9818 /* We should only be processing DIEs not already in process. */
9819 gdb_assert (!m_die->in_process);
9820 m_die->in_process = true;
9821 }
9822
9823 ~process_die_scope ()
9824 {
9825 m_die->in_process = false;
9826
9827 /* If we're done processing the DIE for the CU that owns the line
9828 header, we don't need the line header anymore. */
9829 if (m_cu->line_header_die_owner == m_die)
9830 {
9831 delete m_cu->line_header;
9832 m_cu->line_header = NULL;
9833 m_cu->line_header_die_owner = NULL;
9834 }
9835 }
9836
9837 private:
9838 die_info *m_die;
9839 dwarf2_cu *m_cu;
9840 };
9841
9842 /* Process a die and its children. */
9843
9844 static void
9845 process_die (struct die_info *die, struct dwarf2_cu *cu)
9846 {
9847 process_die_scope scope (die, cu);
9848
9849 switch (die->tag)
9850 {
9851 case DW_TAG_padding:
9852 break;
9853 case DW_TAG_compile_unit:
9854 case DW_TAG_partial_unit:
9855 read_file_scope (die, cu);
9856 break;
9857 case DW_TAG_type_unit:
9858 read_type_unit_scope (die, cu);
9859 break;
9860 case DW_TAG_subprogram:
9861 /* Nested subprograms in Fortran get a prefix. */
9862 if (cu->language == language_fortran
9863 && die->parent != NULL
9864 && die->parent->tag == DW_TAG_subprogram)
9865 cu->processing_has_namespace_info = true;
9866 /* Fall through. */
9867 case DW_TAG_inlined_subroutine:
9868 read_func_scope (die, cu);
9869 break;
9870 case DW_TAG_lexical_block:
9871 case DW_TAG_try_block:
9872 case DW_TAG_catch_block:
9873 read_lexical_block_scope (die, cu);
9874 break;
9875 case DW_TAG_call_site:
9876 case DW_TAG_GNU_call_site:
9877 read_call_site_scope (die, cu);
9878 break;
9879 case DW_TAG_class_type:
9880 case DW_TAG_interface_type:
9881 case DW_TAG_structure_type:
9882 case DW_TAG_union_type:
9883 process_structure_scope (die, cu);
9884 break;
9885 case DW_TAG_enumeration_type:
9886 process_enumeration_scope (die, cu);
9887 break;
9888
9889 /* These dies have a type, but processing them does not create
9890 a symbol or recurse to process the children. Therefore we can
9891 read them on-demand through read_type_die. */
9892 case DW_TAG_subroutine_type:
9893 case DW_TAG_set_type:
9894 case DW_TAG_array_type:
9895 case DW_TAG_pointer_type:
9896 case DW_TAG_ptr_to_member_type:
9897 case DW_TAG_reference_type:
9898 case DW_TAG_rvalue_reference_type:
9899 case DW_TAG_string_type:
9900 break;
9901
9902 case DW_TAG_base_type:
9903 case DW_TAG_subrange_type:
9904 case DW_TAG_typedef:
9905 /* Add a typedef symbol for the type definition, if it has a
9906 DW_AT_name. */
9907 new_symbol (die, read_type_die (die, cu), cu);
9908 break;
9909 case DW_TAG_common_block:
9910 read_common_block (die, cu);
9911 break;
9912 case DW_TAG_common_inclusion:
9913 break;
9914 case DW_TAG_namespace:
9915 cu->processing_has_namespace_info = true;
9916 read_namespace (die, cu);
9917 break;
9918 case DW_TAG_module:
9919 cu->processing_has_namespace_info = true;
9920 read_module (die, cu);
9921 break;
9922 case DW_TAG_imported_declaration:
9923 cu->processing_has_namespace_info = true;
9924 if (read_namespace_alias (die, cu))
9925 break;
9926 /* The declaration is not a global namespace alias. */
9927 /* Fall through. */
9928 case DW_TAG_imported_module:
9929 cu->processing_has_namespace_info = true;
9930 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9931 || cu->language != language_fortran))
9932 complaint (_("Tag '%s' has unexpected children"),
9933 dwarf_tag_name (die->tag));
9934 read_import_statement (die, cu);
9935 break;
9936
9937 case DW_TAG_imported_unit:
9938 process_imported_unit_die (die, cu);
9939 break;
9940
9941 case DW_TAG_variable:
9942 read_variable (die, cu);
9943 break;
9944
9945 default:
9946 new_symbol (die, NULL, cu);
9947 break;
9948 }
9949 }
9950 \f
9951 /* DWARF name computation. */
9952
9953 /* A helper function for dwarf2_compute_name which determines whether DIE
9954 needs to have the name of the scope prepended to the name listed in the
9955 die. */
9956
9957 static int
9958 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9959 {
9960 struct attribute *attr;
9961
9962 switch (die->tag)
9963 {
9964 case DW_TAG_namespace:
9965 case DW_TAG_typedef:
9966 case DW_TAG_class_type:
9967 case DW_TAG_interface_type:
9968 case DW_TAG_structure_type:
9969 case DW_TAG_union_type:
9970 case DW_TAG_enumeration_type:
9971 case DW_TAG_enumerator:
9972 case DW_TAG_subprogram:
9973 case DW_TAG_inlined_subroutine:
9974 case DW_TAG_member:
9975 case DW_TAG_imported_declaration:
9976 return 1;
9977
9978 case DW_TAG_variable:
9979 case DW_TAG_constant:
9980 /* We only need to prefix "globally" visible variables. These include
9981 any variable marked with DW_AT_external or any variable that
9982 lives in a namespace. [Variables in anonymous namespaces
9983 require prefixing, but they are not DW_AT_external.] */
9984
9985 if (dwarf2_attr (die, DW_AT_specification, cu))
9986 {
9987 struct dwarf2_cu *spec_cu = cu;
9988
9989 return die_needs_namespace (die_specification (die, &spec_cu),
9990 spec_cu);
9991 }
9992
9993 attr = dwarf2_attr (die, DW_AT_external, cu);
9994 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9995 && die->parent->tag != DW_TAG_module)
9996 return 0;
9997 /* A variable in a lexical block of some kind does not need a
9998 namespace, even though in C++ such variables may be external
9999 and have a mangled name. */
10000 if (die->parent->tag == DW_TAG_lexical_block
10001 || die->parent->tag == DW_TAG_try_block
10002 || die->parent->tag == DW_TAG_catch_block
10003 || die->parent->tag == DW_TAG_subprogram)
10004 return 0;
10005 return 1;
10006
10007 default:
10008 return 0;
10009 }
10010 }
10011
10012 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10013 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10014 defined for the given DIE. */
10015
10016 static struct attribute *
10017 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10018 {
10019 struct attribute *attr;
10020
10021 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10022 if (attr == NULL)
10023 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10024
10025 return attr;
10026 }
10027
10028 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10029 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10030 defined for the given DIE. */
10031
10032 static const char *
10033 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10034 {
10035 const char *linkage_name;
10036
10037 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10038 if (linkage_name == NULL)
10039 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10040
10041 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10042 See https://github.com/rust-lang/rust/issues/32925. */
10043 if (cu->language == language_rust && linkage_name != NULL
10044 && strchr (linkage_name, '{') != NULL)
10045 linkage_name = NULL;
10046
10047 return linkage_name;
10048 }
10049
10050 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10051 compute the physname for the object, which include a method's:
10052 - formal parameters (C++),
10053 - receiver type (Go),
10054
10055 The term "physname" is a bit confusing.
10056 For C++, for example, it is the demangled name.
10057 For Go, for example, it's the mangled name.
10058
10059 For Ada, return the DIE's linkage name rather than the fully qualified
10060 name. PHYSNAME is ignored..
10061
10062 The result is allocated on the objfile_obstack and canonicalized. */
10063
10064 static const char *
10065 dwarf2_compute_name (const char *name,
10066 struct die_info *die, struct dwarf2_cu *cu,
10067 int physname)
10068 {
10069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10070
10071 if (name == NULL)
10072 name = dwarf2_name (die, cu);
10073
10074 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10075 but otherwise compute it by typename_concat inside GDB.
10076 FIXME: Actually this is not really true, or at least not always true.
10077 It's all very confusing. compute_and_set_names doesn't try to demangle
10078 Fortran names because there is no mangling standard. So new_symbol
10079 will set the demangled name to the result of dwarf2_full_name, and it is
10080 the demangled name that GDB uses if it exists. */
10081 if (cu->language == language_ada
10082 || (cu->language == language_fortran && physname))
10083 {
10084 /* For Ada unit, we prefer the linkage name over the name, as
10085 the former contains the exported name, which the user expects
10086 to be able to reference. Ideally, we want the user to be able
10087 to reference this entity using either natural or linkage name,
10088 but we haven't started looking at this enhancement yet. */
10089 const char *linkage_name = dw2_linkage_name (die, cu);
10090
10091 if (linkage_name != NULL)
10092 return linkage_name;
10093 }
10094
10095 /* These are the only languages we know how to qualify names in. */
10096 if (name != NULL
10097 && (cu->language == language_cplus
10098 || cu->language == language_fortran || cu->language == language_d
10099 || cu->language == language_rust))
10100 {
10101 if (die_needs_namespace (die, cu))
10102 {
10103 const char *prefix;
10104 const char *canonical_name = NULL;
10105
10106 string_file buf;
10107
10108 prefix = determine_prefix (die, cu);
10109 if (*prefix != '\0')
10110 {
10111 gdb::unique_xmalloc_ptr<char> prefixed_name
10112 (typename_concat (NULL, prefix, name, physname, cu));
10113
10114 buf.puts (prefixed_name.get ());
10115 }
10116 else
10117 buf.puts (name);
10118
10119 /* Template parameters may be specified in the DIE's DW_AT_name, or
10120 as children with DW_TAG_template_type_param or
10121 DW_TAG_value_type_param. If the latter, add them to the name
10122 here. If the name already has template parameters, then
10123 skip this step; some versions of GCC emit both, and
10124 it is more efficient to use the pre-computed name.
10125
10126 Something to keep in mind about this process: it is very
10127 unlikely, or in some cases downright impossible, to produce
10128 something that will match the mangled name of a function.
10129 If the definition of the function has the same debug info,
10130 we should be able to match up with it anyway. But fallbacks
10131 using the minimal symbol, for instance to find a method
10132 implemented in a stripped copy of libstdc++, will not work.
10133 If we do not have debug info for the definition, we will have to
10134 match them up some other way.
10135
10136 When we do name matching there is a related problem with function
10137 templates; two instantiated function templates are allowed to
10138 differ only by their return types, which we do not add here. */
10139
10140 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10141 {
10142 struct attribute *attr;
10143 struct die_info *child;
10144 int first = 1;
10145
10146 die->building_fullname = 1;
10147
10148 for (child = die->child; child != NULL; child = child->sibling)
10149 {
10150 struct type *type;
10151 LONGEST value;
10152 const gdb_byte *bytes;
10153 struct dwarf2_locexpr_baton *baton;
10154 struct value *v;
10155
10156 if (child->tag != DW_TAG_template_type_param
10157 && child->tag != DW_TAG_template_value_param)
10158 continue;
10159
10160 if (first)
10161 {
10162 buf.puts ("<");
10163 first = 0;
10164 }
10165 else
10166 buf.puts (", ");
10167
10168 attr = dwarf2_attr (child, DW_AT_type, cu);
10169 if (attr == NULL)
10170 {
10171 complaint (_("template parameter missing DW_AT_type"));
10172 buf.puts ("UNKNOWN_TYPE");
10173 continue;
10174 }
10175 type = die_type (child, cu);
10176
10177 if (child->tag == DW_TAG_template_type_param)
10178 {
10179 c_print_type (type, "", &buf, -1, 0, cu->language,
10180 &type_print_raw_options);
10181 continue;
10182 }
10183
10184 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10185 if (attr == NULL)
10186 {
10187 complaint (_("template parameter missing "
10188 "DW_AT_const_value"));
10189 buf.puts ("UNKNOWN_VALUE");
10190 continue;
10191 }
10192
10193 dwarf2_const_value_attr (attr, type, name,
10194 &cu->comp_unit_obstack, cu,
10195 &value, &bytes, &baton);
10196
10197 if (TYPE_NOSIGN (type))
10198 /* GDB prints characters as NUMBER 'CHAR'. If that's
10199 changed, this can use value_print instead. */
10200 c_printchar (value, type, &buf);
10201 else
10202 {
10203 struct value_print_options opts;
10204
10205 if (baton != NULL)
10206 v = dwarf2_evaluate_loc_desc (type, NULL,
10207 baton->data,
10208 baton->size,
10209 baton->per_cu);
10210 else if (bytes != NULL)
10211 {
10212 v = allocate_value (type);
10213 memcpy (value_contents_writeable (v), bytes,
10214 TYPE_LENGTH (type));
10215 }
10216 else
10217 v = value_from_longest (type, value);
10218
10219 /* Specify decimal so that we do not depend on
10220 the radix. */
10221 get_formatted_print_options (&opts, 'd');
10222 opts.raw = 1;
10223 value_print (v, &buf, &opts);
10224 release_value (v);
10225 }
10226 }
10227
10228 die->building_fullname = 0;
10229
10230 if (!first)
10231 {
10232 /* Close the argument list, with a space if necessary
10233 (nested templates). */
10234 if (!buf.empty () && buf.string ().back () == '>')
10235 buf.puts (" >");
10236 else
10237 buf.puts (">");
10238 }
10239 }
10240
10241 /* For C++ methods, append formal parameter type
10242 information, if PHYSNAME. */
10243
10244 if (physname && die->tag == DW_TAG_subprogram
10245 && cu->language == language_cplus)
10246 {
10247 struct type *type = read_type_die (die, cu);
10248
10249 c_type_print_args (type, &buf, 1, cu->language,
10250 &type_print_raw_options);
10251
10252 if (cu->language == language_cplus)
10253 {
10254 /* Assume that an artificial first parameter is
10255 "this", but do not crash if it is not. RealView
10256 marks unnamed (and thus unused) parameters as
10257 artificial; there is no way to differentiate
10258 the two cases. */
10259 if (TYPE_NFIELDS (type) > 0
10260 && TYPE_FIELD_ARTIFICIAL (type, 0)
10261 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10262 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10263 0))))
10264 buf.puts (" const");
10265 }
10266 }
10267
10268 const std::string &intermediate_name = buf.string ();
10269
10270 if (cu->language == language_cplus)
10271 canonical_name
10272 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10273 objfile);
10274
10275 /* If we only computed INTERMEDIATE_NAME, or if
10276 INTERMEDIATE_NAME is already canonical, then we need to
10277 intern it. */
10278 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10279 name = objfile->intern (intermediate_name);
10280 else
10281 name = canonical_name;
10282 }
10283 }
10284
10285 return name;
10286 }
10287
10288 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10289 If scope qualifiers are appropriate they will be added. The result
10290 will be allocated on the storage_obstack, or NULL if the DIE does
10291 not have a name. NAME may either be from a previous call to
10292 dwarf2_name or NULL.
10293
10294 The output string will be canonicalized (if C++). */
10295
10296 static const char *
10297 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10298 {
10299 return dwarf2_compute_name (name, die, cu, 0);
10300 }
10301
10302 /* Construct a physname for the given DIE in CU. NAME may either be
10303 from a previous call to dwarf2_name or NULL. The result will be
10304 allocated on the objfile_objstack or NULL if the DIE does not have a
10305 name.
10306
10307 The output string will be canonicalized (if C++). */
10308
10309 static const char *
10310 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10311 {
10312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10313 const char *retval, *mangled = NULL, *canon = NULL;
10314 int need_copy = 1;
10315
10316 /* In this case dwarf2_compute_name is just a shortcut not building anything
10317 on its own. */
10318 if (!die_needs_namespace (die, cu))
10319 return dwarf2_compute_name (name, die, cu, 1);
10320
10321 if (cu->language != language_rust)
10322 mangled = dw2_linkage_name (die, cu);
10323
10324 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10325 has computed. */
10326 gdb::unique_xmalloc_ptr<char> demangled;
10327 if (mangled != NULL)
10328 {
10329
10330 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10331 {
10332 /* Do nothing (do not demangle the symbol name). */
10333 }
10334 else if (cu->language == language_go)
10335 {
10336 /* This is a lie, but we already lie to the caller new_symbol.
10337 new_symbol assumes we return the mangled name.
10338 This just undoes that lie until things are cleaned up. */
10339 }
10340 else
10341 {
10342 /* Use DMGL_RET_DROP for C++ template functions to suppress
10343 their return type. It is easier for GDB users to search
10344 for such functions as `name(params)' than `long name(params)'.
10345 In such case the minimal symbol names do not match the full
10346 symbol names but for template functions there is never a need
10347 to look up their definition from their declaration so
10348 the only disadvantage remains the minimal symbol variant
10349 `long name(params)' does not have the proper inferior type. */
10350 demangled.reset (gdb_demangle (mangled,
10351 (DMGL_PARAMS | DMGL_ANSI
10352 | DMGL_RET_DROP)));
10353 }
10354 if (demangled)
10355 canon = demangled.get ();
10356 else
10357 {
10358 canon = mangled;
10359 need_copy = 0;
10360 }
10361 }
10362
10363 if (canon == NULL || check_physname)
10364 {
10365 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10366
10367 if (canon != NULL && strcmp (physname, canon) != 0)
10368 {
10369 /* It may not mean a bug in GDB. The compiler could also
10370 compute DW_AT_linkage_name incorrectly. But in such case
10371 GDB would need to be bug-to-bug compatible. */
10372
10373 complaint (_("Computed physname <%s> does not match demangled <%s> "
10374 "(from linkage <%s>) - DIE at %s [in module %s]"),
10375 physname, canon, mangled, sect_offset_str (die->sect_off),
10376 objfile_name (objfile));
10377
10378 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10379 is available here - over computed PHYSNAME. It is safer
10380 against both buggy GDB and buggy compilers. */
10381
10382 retval = canon;
10383 }
10384 else
10385 {
10386 retval = physname;
10387 need_copy = 0;
10388 }
10389 }
10390 else
10391 retval = canon;
10392
10393 if (need_copy)
10394 retval = objfile->intern (retval);
10395
10396 return retval;
10397 }
10398
10399 /* Inspect DIE in CU for a namespace alias. If one exists, record
10400 a new symbol for it.
10401
10402 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10403
10404 static int
10405 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10406 {
10407 struct attribute *attr;
10408
10409 /* If the die does not have a name, this is not a namespace
10410 alias. */
10411 attr = dwarf2_attr (die, DW_AT_name, cu);
10412 if (attr != NULL)
10413 {
10414 int num;
10415 struct die_info *d = die;
10416 struct dwarf2_cu *imported_cu = cu;
10417
10418 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10419 keep inspecting DIEs until we hit the underlying import. */
10420 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10421 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10422 {
10423 attr = dwarf2_attr (d, DW_AT_import, cu);
10424 if (attr == NULL)
10425 break;
10426
10427 d = follow_die_ref (d, attr, &imported_cu);
10428 if (d->tag != DW_TAG_imported_declaration)
10429 break;
10430 }
10431
10432 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10433 {
10434 complaint (_("DIE at %s has too many recursively imported "
10435 "declarations"), sect_offset_str (d->sect_off));
10436 return 0;
10437 }
10438
10439 if (attr != NULL)
10440 {
10441 struct type *type;
10442 sect_offset sect_off = attr->get_ref_die_offset ();
10443
10444 type = get_die_type_at_offset (sect_off, cu->per_cu);
10445 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10446 {
10447 /* This declaration is a global namespace alias. Add
10448 a symbol for it whose type is the aliased namespace. */
10449 new_symbol (die, type, cu);
10450 return 1;
10451 }
10452 }
10453 }
10454
10455 return 0;
10456 }
10457
10458 /* Return the using directives repository (global or local?) to use in the
10459 current context for CU.
10460
10461 For Ada, imported declarations can materialize renamings, which *may* be
10462 global. However it is impossible (for now?) in DWARF to distinguish
10463 "external" imported declarations and "static" ones. As all imported
10464 declarations seem to be static in all other languages, make them all CU-wide
10465 global only in Ada. */
10466
10467 static struct using_direct **
10468 using_directives (struct dwarf2_cu *cu)
10469 {
10470 if (cu->language == language_ada
10471 && cu->get_builder ()->outermost_context_p ())
10472 return cu->get_builder ()->get_global_using_directives ();
10473 else
10474 return cu->get_builder ()->get_local_using_directives ();
10475 }
10476
10477 /* Read the import statement specified by the given die and record it. */
10478
10479 static void
10480 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10481 {
10482 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10483 struct attribute *import_attr;
10484 struct die_info *imported_die, *child_die;
10485 struct dwarf2_cu *imported_cu;
10486 const char *imported_name;
10487 const char *imported_name_prefix;
10488 const char *canonical_name;
10489 const char *import_alias;
10490 const char *imported_declaration = NULL;
10491 const char *import_prefix;
10492 std::vector<const char *> excludes;
10493
10494 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10495 if (import_attr == NULL)
10496 {
10497 complaint (_("Tag '%s' has no DW_AT_import"),
10498 dwarf_tag_name (die->tag));
10499 return;
10500 }
10501
10502 imported_cu = cu;
10503 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10504 imported_name = dwarf2_name (imported_die, imported_cu);
10505 if (imported_name == NULL)
10506 {
10507 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10508
10509 The import in the following code:
10510 namespace A
10511 {
10512 typedef int B;
10513 }
10514
10515 int main ()
10516 {
10517 using A::B;
10518 B b;
10519 return b;
10520 }
10521
10522 ...
10523 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10524 <52> DW_AT_decl_file : 1
10525 <53> DW_AT_decl_line : 6
10526 <54> DW_AT_import : <0x75>
10527 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10528 <59> DW_AT_name : B
10529 <5b> DW_AT_decl_file : 1
10530 <5c> DW_AT_decl_line : 2
10531 <5d> DW_AT_type : <0x6e>
10532 ...
10533 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10534 <76> DW_AT_byte_size : 4
10535 <77> DW_AT_encoding : 5 (signed)
10536
10537 imports the wrong die ( 0x75 instead of 0x58 ).
10538 This case will be ignored until the gcc bug is fixed. */
10539 return;
10540 }
10541
10542 /* Figure out the local name after import. */
10543 import_alias = dwarf2_name (die, cu);
10544
10545 /* Figure out where the statement is being imported to. */
10546 import_prefix = determine_prefix (die, cu);
10547
10548 /* Figure out what the scope of the imported die is and prepend it
10549 to the name of the imported die. */
10550 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10551
10552 if (imported_die->tag != DW_TAG_namespace
10553 && imported_die->tag != DW_TAG_module)
10554 {
10555 imported_declaration = imported_name;
10556 canonical_name = imported_name_prefix;
10557 }
10558 else if (strlen (imported_name_prefix) > 0)
10559 canonical_name = obconcat (&objfile->objfile_obstack,
10560 imported_name_prefix,
10561 (cu->language == language_d ? "." : "::"),
10562 imported_name, (char *) NULL);
10563 else
10564 canonical_name = imported_name;
10565
10566 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10567 for (child_die = die->child; child_die && child_die->tag;
10568 child_die = child_die->sibling)
10569 {
10570 /* DWARF-4: A Fortran use statement with a “rename list” may be
10571 represented by an imported module entry with an import attribute
10572 referring to the module and owned entries corresponding to those
10573 entities that are renamed as part of being imported. */
10574
10575 if (child_die->tag != DW_TAG_imported_declaration)
10576 {
10577 complaint (_("child DW_TAG_imported_declaration expected "
10578 "- DIE at %s [in module %s]"),
10579 sect_offset_str (child_die->sect_off),
10580 objfile_name (objfile));
10581 continue;
10582 }
10583
10584 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10585 if (import_attr == NULL)
10586 {
10587 complaint (_("Tag '%s' has no DW_AT_import"),
10588 dwarf_tag_name (child_die->tag));
10589 continue;
10590 }
10591
10592 imported_cu = cu;
10593 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10594 &imported_cu);
10595 imported_name = dwarf2_name (imported_die, imported_cu);
10596 if (imported_name == NULL)
10597 {
10598 complaint (_("child DW_TAG_imported_declaration has unknown "
10599 "imported name - DIE at %s [in module %s]"),
10600 sect_offset_str (child_die->sect_off),
10601 objfile_name (objfile));
10602 continue;
10603 }
10604
10605 excludes.push_back (imported_name);
10606
10607 process_die (child_die, cu);
10608 }
10609
10610 add_using_directive (using_directives (cu),
10611 import_prefix,
10612 canonical_name,
10613 import_alias,
10614 imported_declaration,
10615 excludes,
10616 0,
10617 &objfile->objfile_obstack);
10618 }
10619
10620 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10621 types, but gives them a size of zero. Starting with version 14,
10622 ICC is compatible with GCC. */
10623
10624 static bool
10625 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10626 {
10627 if (!cu->checked_producer)
10628 check_producer (cu);
10629
10630 return cu->producer_is_icc_lt_14;
10631 }
10632
10633 /* ICC generates a DW_AT_type for C void functions. This was observed on
10634 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10635 which says that void functions should not have a DW_AT_type. */
10636
10637 static bool
10638 producer_is_icc (struct dwarf2_cu *cu)
10639 {
10640 if (!cu->checked_producer)
10641 check_producer (cu);
10642
10643 return cu->producer_is_icc;
10644 }
10645
10646 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10647 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10648 this, it was first present in GCC release 4.3.0. */
10649
10650 static bool
10651 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10652 {
10653 if (!cu->checked_producer)
10654 check_producer (cu);
10655
10656 return cu->producer_is_gcc_lt_4_3;
10657 }
10658
10659 static file_and_directory
10660 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10661 {
10662 file_and_directory res;
10663
10664 /* Find the filename. Do not use dwarf2_name here, since the filename
10665 is not a source language identifier. */
10666 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10667 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10668
10669 if (res.comp_dir == NULL
10670 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10671 && IS_ABSOLUTE_PATH (res.name))
10672 {
10673 res.comp_dir_storage = ldirname (res.name);
10674 if (!res.comp_dir_storage.empty ())
10675 res.comp_dir = res.comp_dir_storage.c_str ();
10676 }
10677 if (res.comp_dir != NULL)
10678 {
10679 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10680 directory, get rid of it. */
10681 const char *cp = strchr (res.comp_dir, ':');
10682
10683 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10684 res.comp_dir = cp + 1;
10685 }
10686
10687 if (res.name == NULL)
10688 res.name = "<unknown>";
10689
10690 return res;
10691 }
10692
10693 /* Handle DW_AT_stmt_list for a compilation unit.
10694 DIE is the DW_TAG_compile_unit die for CU.
10695 COMP_DIR is the compilation directory. LOWPC is passed to
10696 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10697
10698 static void
10699 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10700 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10701 {
10702 struct dwarf2_per_objfile *dwarf2_per_objfile
10703 = cu->per_cu->dwarf2_per_objfile;
10704 struct attribute *attr;
10705 struct line_header line_header_local;
10706 hashval_t line_header_local_hash;
10707 void **slot;
10708 int decode_mapping;
10709
10710 gdb_assert (! cu->per_cu->is_debug_types);
10711
10712 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10713 if (attr == NULL)
10714 return;
10715
10716 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10717
10718 /* The line header hash table is only created if needed (it exists to
10719 prevent redundant reading of the line table for partial_units).
10720 If we're given a partial_unit, we'll need it. If we're given a
10721 compile_unit, then use the line header hash table if it's already
10722 created, but don't create one just yet. */
10723
10724 if (dwarf2_per_objfile->line_header_hash == NULL
10725 && die->tag == DW_TAG_partial_unit)
10726 {
10727 dwarf2_per_objfile->line_header_hash
10728 .reset (htab_create_alloc (127, line_header_hash_voidp,
10729 line_header_eq_voidp,
10730 free_line_header_voidp,
10731 xcalloc, xfree));
10732 }
10733
10734 line_header_local.sect_off = line_offset;
10735 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10736 line_header_local_hash = line_header_hash (&line_header_local);
10737 if (dwarf2_per_objfile->line_header_hash != NULL)
10738 {
10739 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10740 &line_header_local,
10741 line_header_local_hash, NO_INSERT);
10742
10743 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10744 is not present in *SLOT (since if there is something in *SLOT then
10745 it will be for a partial_unit). */
10746 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10747 {
10748 gdb_assert (*slot != NULL);
10749 cu->line_header = (struct line_header *) *slot;
10750 return;
10751 }
10752 }
10753
10754 /* dwarf_decode_line_header does not yet provide sufficient information.
10755 We always have to call also dwarf_decode_lines for it. */
10756 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10757 if (lh == NULL)
10758 return;
10759
10760 cu->line_header = lh.release ();
10761 cu->line_header_die_owner = die;
10762
10763 if (dwarf2_per_objfile->line_header_hash == NULL)
10764 slot = NULL;
10765 else
10766 {
10767 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10768 &line_header_local,
10769 line_header_local_hash, INSERT);
10770 gdb_assert (slot != NULL);
10771 }
10772 if (slot != NULL && *slot == NULL)
10773 {
10774 /* This newly decoded line number information unit will be owned
10775 by line_header_hash hash table. */
10776 *slot = cu->line_header;
10777 cu->line_header_die_owner = NULL;
10778 }
10779 else
10780 {
10781 /* We cannot free any current entry in (*slot) as that struct line_header
10782 may be already used by multiple CUs. Create only temporary decoded
10783 line_header for this CU - it may happen at most once for each line
10784 number information unit. And if we're not using line_header_hash
10785 then this is what we want as well. */
10786 gdb_assert (die->tag != DW_TAG_partial_unit);
10787 }
10788 decode_mapping = (die->tag != DW_TAG_partial_unit);
10789 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10790 decode_mapping);
10791
10792 }
10793
10794 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10795
10796 static void
10797 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10798 {
10799 struct dwarf2_per_objfile *dwarf2_per_objfile
10800 = cu->per_cu->dwarf2_per_objfile;
10801 struct objfile *objfile = dwarf2_per_objfile->objfile;
10802 struct gdbarch *gdbarch = objfile->arch ();
10803 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10804 CORE_ADDR highpc = ((CORE_ADDR) 0);
10805 struct attribute *attr;
10806 struct die_info *child_die;
10807 CORE_ADDR baseaddr;
10808
10809 prepare_one_comp_unit (cu, die, cu->language);
10810 baseaddr = objfile->text_section_offset ();
10811
10812 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10813
10814 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10815 from finish_block. */
10816 if (lowpc == ((CORE_ADDR) -1))
10817 lowpc = highpc;
10818 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10819
10820 file_and_directory fnd = find_file_and_directory (die, cu);
10821
10822 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10823 standardised yet. As a workaround for the language detection we fall
10824 back to the DW_AT_producer string. */
10825 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10826 cu->language = language_opencl;
10827
10828 /* Similar hack for Go. */
10829 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10830 set_cu_language (DW_LANG_Go, cu);
10831
10832 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10833
10834 /* Decode line number information if present. We do this before
10835 processing child DIEs, so that the line header table is available
10836 for DW_AT_decl_file. */
10837 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10838
10839 /* Process all dies in compilation unit. */
10840 if (die->child != NULL)
10841 {
10842 child_die = die->child;
10843 while (child_die && child_die->tag)
10844 {
10845 process_die (child_die, cu);
10846 child_die = child_die->sibling;
10847 }
10848 }
10849
10850 /* Decode macro information, if present. Dwarf 2 macro information
10851 refers to information in the line number info statement program
10852 header, so we can only read it if we've read the header
10853 successfully. */
10854 attr = dwarf2_attr (die, DW_AT_macros, cu);
10855 if (attr == NULL)
10856 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10857 if (attr && cu->line_header)
10858 {
10859 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10860 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10861
10862 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10863 }
10864 else
10865 {
10866 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10867 if (attr && cu->line_header)
10868 {
10869 unsigned int macro_offset = DW_UNSND (attr);
10870
10871 dwarf_decode_macros (cu, macro_offset, 0);
10872 }
10873 }
10874 }
10875
10876 void
10877 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10878 {
10879 struct type_unit_group *tu_group;
10880 int first_time;
10881 struct attribute *attr;
10882 unsigned int i;
10883 struct signatured_type *sig_type;
10884
10885 gdb_assert (per_cu->is_debug_types);
10886 sig_type = (struct signatured_type *) per_cu;
10887
10888 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10889
10890 /* If we're using .gdb_index (includes -readnow) then
10891 per_cu->type_unit_group may not have been set up yet. */
10892 if (sig_type->type_unit_group == NULL)
10893 sig_type->type_unit_group = get_type_unit_group (this, attr);
10894 tu_group = sig_type->type_unit_group;
10895
10896 /* If we've already processed this stmt_list there's no real need to
10897 do it again, we could fake it and just recreate the part we need
10898 (file name,index -> symtab mapping). If data shows this optimization
10899 is useful we can do it then. */
10900 first_time = tu_group->compunit_symtab == NULL;
10901
10902 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10903 debug info. */
10904 line_header_up lh;
10905 if (attr != NULL)
10906 {
10907 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10908 lh = dwarf_decode_line_header (line_offset, this);
10909 }
10910 if (lh == NULL)
10911 {
10912 if (first_time)
10913 start_symtab ("", NULL, 0);
10914 else
10915 {
10916 gdb_assert (tu_group->symtabs == NULL);
10917 gdb_assert (m_builder == nullptr);
10918 struct compunit_symtab *cust = tu_group->compunit_symtab;
10919 m_builder.reset (new struct buildsym_compunit
10920 (COMPUNIT_OBJFILE (cust), "",
10921 COMPUNIT_DIRNAME (cust),
10922 compunit_language (cust),
10923 0, cust));
10924 list_in_scope = get_builder ()->get_file_symbols ();
10925 }
10926 return;
10927 }
10928
10929 line_header = lh.release ();
10930 line_header_die_owner = die;
10931
10932 if (first_time)
10933 {
10934 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10935
10936 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10937 still initializing it, and our caller (a few levels up)
10938 process_full_type_unit still needs to know if this is the first
10939 time. */
10940
10941 tu_group->symtabs
10942 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10943 struct symtab *, line_header->file_names_size ());
10944
10945 list_in_scope = get_builder ()->get_file_symbols ();
10946 auto &file_names = line_header->file_names ();
10947 for (i = 0; i < file_names.size (); ++i)
10948 {
10949 file_entry &fe = file_names[i];
10950 dwarf2_start_subfile (this, fe.name,
10951 fe.include_dir (line_header));
10952 buildsym_compunit *b = get_builder ();
10953 if (b->get_current_subfile ()->symtab == NULL)
10954 {
10955 /* NOTE: start_subfile will recognize when it's been
10956 passed a file it has already seen. So we can't
10957 assume there's a simple mapping from
10958 cu->line_header->file_names to subfiles, plus
10959 cu->line_header->file_names may contain dups. */
10960 b->get_current_subfile ()->symtab
10961 = allocate_symtab (cust, b->get_current_subfile ()->name);
10962 }
10963
10964 fe.symtab = b->get_current_subfile ()->symtab;
10965 tu_group->symtabs[i] = fe.symtab;
10966 }
10967 }
10968 else
10969 {
10970 gdb_assert (m_builder == nullptr);
10971 struct compunit_symtab *cust = tu_group->compunit_symtab;
10972 m_builder.reset (new struct buildsym_compunit
10973 (COMPUNIT_OBJFILE (cust), "",
10974 COMPUNIT_DIRNAME (cust),
10975 compunit_language (cust),
10976 0, cust));
10977 list_in_scope = get_builder ()->get_file_symbols ();
10978
10979 auto &file_names = line_header->file_names ();
10980 for (i = 0; i < file_names.size (); ++i)
10981 {
10982 file_entry &fe = file_names[i];
10983 fe.symtab = tu_group->symtabs[i];
10984 }
10985 }
10986
10987 /* The main symtab is allocated last. Type units don't have DW_AT_name
10988 so they don't have a "real" (so to speak) symtab anyway.
10989 There is later code that will assign the main symtab to all symbols
10990 that don't have one. We need to handle the case of a symbol with a
10991 missing symtab (DW_AT_decl_file) anyway. */
10992 }
10993
10994 /* Process DW_TAG_type_unit.
10995 For TUs we want to skip the first top level sibling if it's not the
10996 actual type being defined by this TU. In this case the first top
10997 level sibling is there to provide context only. */
10998
10999 static void
11000 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11001 {
11002 struct die_info *child_die;
11003
11004 prepare_one_comp_unit (cu, die, language_minimal);
11005
11006 /* Initialize (or reinitialize) the machinery for building symtabs.
11007 We do this before processing child DIEs, so that the line header table
11008 is available for DW_AT_decl_file. */
11009 cu->setup_type_unit_groups (die);
11010
11011 if (die->child != NULL)
11012 {
11013 child_die = die->child;
11014 while (child_die && child_die->tag)
11015 {
11016 process_die (child_die, cu);
11017 child_die = child_die->sibling;
11018 }
11019 }
11020 }
11021 \f
11022 /* DWO/DWP files.
11023
11024 http://gcc.gnu.org/wiki/DebugFission
11025 http://gcc.gnu.org/wiki/DebugFissionDWP
11026
11027 To simplify handling of both DWO files ("object" files with the DWARF info)
11028 and DWP files (a file with the DWOs packaged up into one file), we treat
11029 DWP files as having a collection of virtual DWO files. */
11030
11031 static hashval_t
11032 hash_dwo_file (const void *item)
11033 {
11034 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11035 hashval_t hash;
11036
11037 hash = htab_hash_string (dwo_file->dwo_name);
11038 if (dwo_file->comp_dir != NULL)
11039 hash += htab_hash_string (dwo_file->comp_dir);
11040 return hash;
11041 }
11042
11043 static int
11044 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11045 {
11046 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11047 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11048
11049 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11050 return 0;
11051 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11052 return lhs->comp_dir == rhs->comp_dir;
11053 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11054 }
11055
11056 /* Allocate a hash table for DWO files. */
11057
11058 static htab_up
11059 allocate_dwo_file_hash_table ()
11060 {
11061 auto delete_dwo_file = [] (void *item)
11062 {
11063 struct dwo_file *dwo_file = (struct dwo_file *) item;
11064
11065 delete dwo_file;
11066 };
11067
11068 return htab_up (htab_create_alloc (41,
11069 hash_dwo_file,
11070 eq_dwo_file,
11071 delete_dwo_file,
11072 xcalloc, xfree));
11073 }
11074
11075 /* Lookup DWO file DWO_NAME. */
11076
11077 static void **
11078 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11079 const char *dwo_name,
11080 const char *comp_dir)
11081 {
11082 struct dwo_file find_entry;
11083 void **slot;
11084
11085 if (dwarf2_per_objfile->dwo_files == NULL)
11086 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11087
11088 find_entry.dwo_name = dwo_name;
11089 find_entry.comp_dir = comp_dir;
11090 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11091 INSERT);
11092
11093 return slot;
11094 }
11095
11096 static hashval_t
11097 hash_dwo_unit (const void *item)
11098 {
11099 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11100
11101 /* This drops the top 32 bits of the id, but is ok for a hash. */
11102 return dwo_unit->signature;
11103 }
11104
11105 static int
11106 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11107 {
11108 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11109 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11110
11111 /* The signature is assumed to be unique within the DWO file.
11112 So while object file CU dwo_id's always have the value zero,
11113 that's OK, assuming each object file DWO file has only one CU,
11114 and that's the rule for now. */
11115 return lhs->signature == rhs->signature;
11116 }
11117
11118 /* Allocate a hash table for DWO CUs,TUs.
11119 There is one of these tables for each of CUs,TUs for each DWO file. */
11120
11121 static htab_up
11122 allocate_dwo_unit_table ()
11123 {
11124 /* Start out with a pretty small number.
11125 Generally DWO files contain only one CU and maybe some TUs. */
11126 return htab_up (htab_create_alloc (3,
11127 hash_dwo_unit,
11128 eq_dwo_unit,
11129 NULL, xcalloc, xfree));
11130 }
11131
11132 /* die_reader_func for create_dwo_cu. */
11133
11134 static void
11135 create_dwo_cu_reader (const struct die_reader_specs *reader,
11136 const gdb_byte *info_ptr,
11137 struct die_info *comp_unit_die,
11138 struct dwo_file *dwo_file,
11139 struct dwo_unit *dwo_unit)
11140 {
11141 struct dwarf2_cu *cu = reader->cu;
11142 sect_offset sect_off = cu->per_cu->sect_off;
11143 struct dwarf2_section_info *section = cu->per_cu->section;
11144
11145 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11146 if (!signature.has_value ())
11147 {
11148 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11149 " its dwo_id [in module %s]"),
11150 sect_offset_str (sect_off), dwo_file->dwo_name);
11151 return;
11152 }
11153
11154 dwo_unit->dwo_file = dwo_file;
11155 dwo_unit->signature = *signature;
11156 dwo_unit->section = section;
11157 dwo_unit->sect_off = sect_off;
11158 dwo_unit->length = cu->per_cu->length;
11159
11160 if (dwarf_read_debug)
11161 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11162 sect_offset_str (sect_off),
11163 hex_string (dwo_unit->signature));
11164 }
11165
11166 /* Create the dwo_units for the CUs in a DWO_FILE.
11167 Note: This function processes DWO files only, not DWP files. */
11168
11169 static void
11170 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11171 dwarf2_cu *cu, struct dwo_file &dwo_file,
11172 dwarf2_section_info &section, htab_up &cus_htab)
11173 {
11174 struct objfile *objfile = dwarf2_per_objfile->objfile;
11175 const gdb_byte *info_ptr, *end_ptr;
11176
11177 section.read (objfile);
11178 info_ptr = section.buffer;
11179
11180 if (info_ptr == NULL)
11181 return;
11182
11183 if (dwarf_read_debug)
11184 {
11185 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11186 section.get_name (),
11187 section.get_file_name ());
11188 }
11189
11190 end_ptr = info_ptr + section.size;
11191 while (info_ptr < end_ptr)
11192 {
11193 struct dwarf2_per_cu_data per_cu;
11194 struct dwo_unit read_unit {};
11195 struct dwo_unit *dwo_unit;
11196 void **slot;
11197 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11198
11199 memset (&per_cu, 0, sizeof (per_cu));
11200 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11201 per_cu.is_debug_types = 0;
11202 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11203 per_cu.section = &section;
11204
11205 cutu_reader reader (&per_cu, cu, &dwo_file);
11206 if (!reader.dummy_p)
11207 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11208 &dwo_file, &read_unit);
11209 info_ptr += per_cu.length;
11210
11211 // If the unit could not be parsed, skip it.
11212 if (read_unit.dwo_file == NULL)
11213 continue;
11214
11215 if (cus_htab == NULL)
11216 cus_htab = allocate_dwo_unit_table ();
11217
11218 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11219 *dwo_unit = read_unit;
11220 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11221 gdb_assert (slot != NULL);
11222 if (*slot != NULL)
11223 {
11224 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11225 sect_offset dup_sect_off = dup_cu->sect_off;
11226
11227 complaint (_("debug cu entry at offset %s is duplicate to"
11228 " the entry at offset %s, signature %s"),
11229 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11230 hex_string (dwo_unit->signature));
11231 }
11232 *slot = (void *)dwo_unit;
11233 }
11234 }
11235
11236 /* DWP file .debug_{cu,tu}_index section format:
11237 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11238
11239 DWP Version 1:
11240
11241 Both index sections have the same format, and serve to map a 64-bit
11242 signature to a set of section numbers. Each section begins with a header,
11243 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11244 indexes, and a pool of 32-bit section numbers. The index sections will be
11245 aligned at 8-byte boundaries in the file.
11246
11247 The index section header consists of:
11248
11249 V, 32 bit version number
11250 -, 32 bits unused
11251 N, 32 bit number of compilation units or type units in the index
11252 M, 32 bit number of slots in the hash table
11253
11254 Numbers are recorded using the byte order of the application binary.
11255
11256 The hash table begins at offset 16 in the section, and consists of an array
11257 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11258 order of the application binary). Unused slots in the hash table are 0.
11259 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11260
11261 The parallel table begins immediately after the hash table
11262 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11263 array of 32-bit indexes (using the byte order of the application binary),
11264 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11265 table contains a 32-bit index into the pool of section numbers. For unused
11266 hash table slots, the corresponding entry in the parallel table will be 0.
11267
11268 The pool of section numbers begins immediately following the hash table
11269 (at offset 16 + 12 * M from the beginning of the section). The pool of
11270 section numbers consists of an array of 32-bit words (using the byte order
11271 of the application binary). Each item in the array is indexed starting
11272 from 0. The hash table entry provides the index of the first section
11273 number in the set. Additional section numbers in the set follow, and the
11274 set is terminated by a 0 entry (section number 0 is not used in ELF).
11275
11276 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11277 section must be the first entry in the set, and the .debug_abbrev.dwo must
11278 be the second entry. Other members of the set may follow in any order.
11279
11280 ---
11281
11282 DWP Version 2:
11283
11284 DWP Version 2 combines all the .debug_info, etc. sections into one,
11285 and the entries in the index tables are now offsets into these sections.
11286 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11287 section.
11288
11289 Index Section Contents:
11290 Header
11291 Hash Table of Signatures dwp_hash_table.hash_table
11292 Parallel Table of Indices dwp_hash_table.unit_table
11293 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11294 Table of Section Sizes dwp_hash_table.v2.sizes
11295
11296 The index section header consists of:
11297
11298 V, 32 bit version number
11299 L, 32 bit number of columns in the table of section offsets
11300 N, 32 bit number of compilation units or type units in the index
11301 M, 32 bit number of slots in the hash table
11302
11303 Numbers are recorded using the byte order of the application binary.
11304
11305 The hash table has the same format as version 1.
11306 The parallel table of indices has the same format as version 1,
11307 except that the entries are origin-1 indices into the table of sections
11308 offsets and the table of section sizes.
11309
11310 The table of offsets begins immediately following the parallel table
11311 (at offset 16 + 12 * M from the beginning of the section). The table is
11312 a two-dimensional array of 32-bit words (using the byte order of the
11313 application binary), with L columns and N+1 rows, in row-major order.
11314 Each row in the array is indexed starting from 0. The first row provides
11315 a key to the remaining rows: each column in this row provides an identifier
11316 for a debug section, and the offsets in the same column of subsequent rows
11317 refer to that section. The section identifiers are:
11318
11319 DW_SECT_INFO 1 .debug_info.dwo
11320 DW_SECT_TYPES 2 .debug_types.dwo
11321 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11322 DW_SECT_LINE 4 .debug_line.dwo
11323 DW_SECT_LOC 5 .debug_loc.dwo
11324 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11325 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11326 DW_SECT_MACRO 8 .debug_macro.dwo
11327
11328 The offsets provided by the CU and TU index sections are the base offsets
11329 for the contributions made by each CU or TU to the corresponding section
11330 in the package file. Each CU and TU header contains an abbrev_offset
11331 field, used to find the abbreviations table for that CU or TU within the
11332 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11333 be interpreted as relative to the base offset given in the index section.
11334 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11335 should be interpreted as relative to the base offset for .debug_line.dwo,
11336 and offsets into other debug sections obtained from DWARF attributes should
11337 also be interpreted as relative to the corresponding base offset.
11338
11339 The table of sizes begins immediately following the table of offsets.
11340 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11341 with L columns and N rows, in row-major order. Each row in the array is
11342 indexed starting from 1 (row 0 is shared by the two tables).
11343
11344 ---
11345
11346 Hash table lookup is handled the same in version 1 and 2:
11347
11348 We assume that N and M will not exceed 2^32 - 1.
11349 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11350
11351 Given a 64-bit compilation unit signature or a type signature S, an entry
11352 in the hash table is located as follows:
11353
11354 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11355 the low-order k bits all set to 1.
11356
11357 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11358
11359 3) If the hash table entry at index H matches the signature, use that
11360 entry. If the hash table entry at index H is unused (all zeroes),
11361 terminate the search: the signature is not present in the table.
11362
11363 4) Let H = (H + H') modulo M. Repeat at Step 3.
11364
11365 Because M > N and H' and M are relatively prime, the search is guaranteed
11366 to stop at an unused slot or find the match. */
11367
11368 /* Create a hash table to map DWO IDs to their CU/TU entry in
11369 .debug_{info,types}.dwo in DWP_FILE.
11370 Returns NULL if there isn't one.
11371 Note: This function processes DWP files only, not DWO files. */
11372
11373 static struct dwp_hash_table *
11374 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11375 struct dwp_file *dwp_file, int is_debug_types)
11376 {
11377 struct objfile *objfile = dwarf2_per_objfile->objfile;
11378 bfd *dbfd = dwp_file->dbfd.get ();
11379 const gdb_byte *index_ptr, *index_end;
11380 struct dwarf2_section_info *index;
11381 uint32_t version, nr_columns, nr_units, nr_slots;
11382 struct dwp_hash_table *htab;
11383
11384 if (is_debug_types)
11385 index = &dwp_file->sections.tu_index;
11386 else
11387 index = &dwp_file->sections.cu_index;
11388
11389 if (index->empty ())
11390 return NULL;
11391 index->read (objfile);
11392
11393 index_ptr = index->buffer;
11394 index_end = index_ptr + index->size;
11395
11396 version = read_4_bytes (dbfd, index_ptr);
11397 index_ptr += 4;
11398 if (version == 2)
11399 nr_columns = read_4_bytes (dbfd, index_ptr);
11400 else
11401 nr_columns = 0;
11402 index_ptr += 4;
11403 nr_units = read_4_bytes (dbfd, index_ptr);
11404 index_ptr += 4;
11405 nr_slots = read_4_bytes (dbfd, index_ptr);
11406 index_ptr += 4;
11407
11408 if (version != 1 && version != 2)
11409 {
11410 error (_("Dwarf Error: unsupported DWP file version (%s)"
11411 " [in module %s]"),
11412 pulongest (version), dwp_file->name);
11413 }
11414 if (nr_slots != (nr_slots & -nr_slots))
11415 {
11416 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11417 " is not power of 2 [in module %s]"),
11418 pulongest (nr_slots), dwp_file->name);
11419 }
11420
11421 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11422 htab->version = version;
11423 htab->nr_columns = nr_columns;
11424 htab->nr_units = nr_units;
11425 htab->nr_slots = nr_slots;
11426 htab->hash_table = index_ptr;
11427 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11428
11429 /* Exit early if the table is empty. */
11430 if (nr_slots == 0 || nr_units == 0
11431 || (version == 2 && nr_columns == 0))
11432 {
11433 /* All must be zero. */
11434 if (nr_slots != 0 || nr_units != 0
11435 || (version == 2 && nr_columns != 0))
11436 {
11437 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11438 " all zero [in modules %s]"),
11439 dwp_file->name);
11440 }
11441 return htab;
11442 }
11443
11444 if (version == 1)
11445 {
11446 htab->section_pool.v1.indices =
11447 htab->unit_table + sizeof (uint32_t) * nr_slots;
11448 /* It's harder to decide whether the section is too small in v1.
11449 V1 is deprecated anyway so we punt. */
11450 }
11451 else
11452 {
11453 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11454 int *ids = htab->section_pool.v2.section_ids;
11455 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11456 /* Reverse map for error checking. */
11457 int ids_seen[DW_SECT_MAX + 1];
11458 int i;
11459
11460 if (nr_columns < 2)
11461 {
11462 error (_("Dwarf Error: bad DWP hash table, too few columns"
11463 " in section table [in module %s]"),
11464 dwp_file->name);
11465 }
11466 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11467 {
11468 error (_("Dwarf Error: bad DWP hash table, too many columns"
11469 " in section table [in module %s]"),
11470 dwp_file->name);
11471 }
11472 memset (ids, 255, sizeof_ids);
11473 memset (ids_seen, 255, sizeof (ids_seen));
11474 for (i = 0; i < nr_columns; ++i)
11475 {
11476 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11477
11478 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11479 {
11480 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11481 " in section table [in module %s]"),
11482 id, dwp_file->name);
11483 }
11484 if (ids_seen[id] != -1)
11485 {
11486 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11487 " id %d in section table [in module %s]"),
11488 id, dwp_file->name);
11489 }
11490 ids_seen[id] = i;
11491 ids[i] = id;
11492 }
11493 /* Must have exactly one info or types section. */
11494 if (((ids_seen[DW_SECT_INFO] != -1)
11495 + (ids_seen[DW_SECT_TYPES] != -1))
11496 != 1)
11497 {
11498 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11499 " DWO info/types section [in module %s]"),
11500 dwp_file->name);
11501 }
11502 /* Must have an abbrev section. */
11503 if (ids_seen[DW_SECT_ABBREV] == -1)
11504 {
11505 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11506 " section [in module %s]"),
11507 dwp_file->name);
11508 }
11509 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11510 htab->section_pool.v2.sizes =
11511 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11512 * nr_units * nr_columns);
11513 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11514 * nr_units * nr_columns))
11515 > index_end)
11516 {
11517 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11518 " [in module %s]"),
11519 dwp_file->name);
11520 }
11521 }
11522
11523 return htab;
11524 }
11525
11526 /* Update SECTIONS with the data from SECTP.
11527
11528 This function is like the other "locate" section routines that are
11529 passed to bfd_map_over_sections, but in this context the sections to
11530 read comes from the DWP V1 hash table, not the full ELF section table.
11531
11532 The result is non-zero for success, or zero if an error was found. */
11533
11534 static int
11535 locate_v1_virtual_dwo_sections (asection *sectp,
11536 struct virtual_v1_dwo_sections *sections)
11537 {
11538 const struct dwop_section_names *names = &dwop_section_names;
11539
11540 if (section_is_p (sectp->name, &names->abbrev_dwo))
11541 {
11542 /* There can be only one. */
11543 if (sections->abbrev.s.section != NULL)
11544 return 0;
11545 sections->abbrev.s.section = sectp;
11546 sections->abbrev.size = bfd_section_size (sectp);
11547 }
11548 else if (section_is_p (sectp->name, &names->info_dwo)
11549 || section_is_p (sectp->name, &names->types_dwo))
11550 {
11551 /* There can be only one. */
11552 if (sections->info_or_types.s.section != NULL)
11553 return 0;
11554 sections->info_or_types.s.section = sectp;
11555 sections->info_or_types.size = bfd_section_size (sectp);
11556 }
11557 else if (section_is_p (sectp->name, &names->line_dwo))
11558 {
11559 /* There can be only one. */
11560 if (sections->line.s.section != NULL)
11561 return 0;
11562 sections->line.s.section = sectp;
11563 sections->line.size = bfd_section_size (sectp);
11564 }
11565 else if (section_is_p (sectp->name, &names->loc_dwo))
11566 {
11567 /* There can be only one. */
11568 if (sections->loc.s.section != NULL)
11569 return 0;
11570 sections->loc.s.section = sectp;
11571 sections->loc.size = bfd_section_size (sectp);
11572 }
11573 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11574 {
11575 /* There can be only one. */
11576 if (sections->macinfo.s.section != NULL)
11577 return 0;
11578 sections->macinfo.s.section = sectp;
11579 sections->macinfo.size = bfd_section_size (sectp);
11580 }
11581 else if (section_is_p (sectp->name, &names->macro_dwo))
11582 {
11583 /* There can be only one. */
11584 if (sections->macro.s.section != NULL)
11585 return 0;
11586 sections->macro.s.section = sectp;
11587 sections->macro.size = bfd_section_size (sectp);
11588 }
11589 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11590 {
11591 /* There can be only one. */
11592 if (sections->str_offsets.s.section != NULL)
11593 return 0;
11594 sections->str_offsets.s.section = sectp;
11595 sections->str_offsets.size = bfd_section_size (sectp);
11596 }
11597 else
11598 {
11599 /* No other kind of section is valid. */
11600 return 0;
11601 }
11602
11603 return 1;
11604 }
11605
11606 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11607 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11608 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11609 This is for DWP version 1 files. */
11610
11611 static struct dwo_unit *
11612 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11613 struct dwp_file *dwp_file,
11614 uint32_t unit_index,
11615 const char *comp_dir,
11616 ULONGEST signature, int is_debug_types)
11617 {
11618 struct objfile *objfile = dwarf2_per_objfile->objfile;
11619 const struct dwp_hash_table *dwp_htab =
11620 is_debug_types ? dwp_file->tus : dwp_file->cus;
11621 bfd *dbfd = dwp_file->dbfd.get ();
11622 const char *kind = is_debug_types ? "TU" : "CU";
11623 struct dwo_file *dwo_file;
11624 struct dwo_unit *dwo_unit;
11625 struct virtual_v1_dwo_sections sections;
11626 void **dwo_file_slot;
11627 int i;
11628
11629 gdb_assert (dwp_file->version == 1);
11630
11631 if (dwarf_read_debug)
11632 {
11633 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11634 kind,
11635 pulongest (unit_index), hex_string (signature),
11636 dwp_file->name);
11637 }
11638
11639 /* Fetch the sections of this DWO unit.
11640 Put a limit on the number of sections we look for so that bad data
11641 doesn't cause us to loop forever. */
11642
11643 #define MAX_NR_V1_DWO_SECTIONS \
11644 (1 /* .debug_info or .debug_types */ \
11645 + 1 /* .debug_abbrev */ \
11646 + 1 /* .debug_line */ \
11647 + 1 /* .debug_loc */ \
11648 + 1 /* .debug_str_offsets */ \
11649 + 1 /* .debug_macro or .debug_macinfo */ \
11650 + 1 /* trailing zero */)
11651
11652 memset (&sections, 0, sizeof (sections));
11653
11654 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11655 {
11656 asection *sectp;
11657 uint32_t section_nr =
11658 read_4_bytes (dbfd,
11659 dwp_htab->section_pool.v1.indices
11660 + (unit_index + i) * sizeof (uint32_t));
11661
11662 if (section_nr == 0)
11663 break;
11664 if (section_nr >= dwp_file->num_sections)
11665 {
11666 error (_("Dwarf Error: bad DWP hash table, section number too large"
11667 " [in module %s]"),
11668 dwp_file->name);
11669 }
11670
11671 sectp = dwp_file->elf_sections[section_nr];
11672 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11673 {
11674 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11675 " [in module %s]"),
11676 dwp_file->name);
11677 }
11678 }
11679
11680 if (i < 2
11681 || sections.info_or_types.empty ()
11682 || sections.abbrev.empty ())
11683 {
11684 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11685 " [in module %s]"),
11686 dwp_file->name);
11687 }
11688 if (i == MAX_NR_V1_DWO_SECTIONS)
11689 {
11690 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11691 " [in module %s]"),
11692 dwp_file->name);
11693 }
11694
11695 /* It's easier for the rest of the code if we fake a struct dwo_file and
11696 have dwo_unit "live" in that. At least for now.
11697
11698 The DWP file can be made up of a random collection of CUs and TUs.
11699 However, for each CU + set of TUs that came from the same original DWO
11700 file, we can combine them back into a virtual DWO file to save space
11701 (fewer struct dwo_file objects to allocate). Remember that for really
11702 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11703
11704 std::string virtual_dwo_name =
11705 string_printf ("virtual-dwo/%d-%d-%d-%d",
11706 sections.abbrev.get_id (),
11707 sections.line.get_id (),
11708 sections.loc.get_id (),
11709 sections.str_offsets.get_id ());
11710 /* Can we use an existing virtual DWO file? */
11711 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11712 virtual_dwo_name.c_str (),
11713 comp_dir);
11714 /* Create one if necessary. */
11715 if (*dwo_file_slot == NULL)
11716 {
11717 if (dwarf_read_debug)
11718 {
11719 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11720 virtual_dwo_name.c_str ());
11721 }
11722 dwo_file = new struct dwo_file;
11723 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11724 dwo_file->comp_dir = comp_dir;
11725 dwo_file->sections.abbrev = sections.abbrev;
11726 dwo_file->sections.line = sections.line;
11727 dwo_file->sections.loc = sections.loc;
11728 dwo_file->sections.macinfo = sections.macinfo;
11729 dwo_file->sections.macro = sections.macro;
11730 dwo_file->sections.str_offsets = sections.str_offsets;
11731 /* The "str" section is global to the entire DWP file. */
11732 dwo_file->sections.str = dwp_file->sections.str;
11733 /* The info or types section is assigned below to dwo_unit,
11734 there's no need to record it in dwo_file.
11735 Also, we can't simply record type sections in dwo_file because
11736 we record a pointer into the vector in dwo_unit. As we collect more
11737 types we'll grow the vector and eventually have to reallocate space
11738 for it, invalidating all copies of pointers into the previous
11739 contents. */
11740 *dwo_file_slot = dwo_file;
11741 }
11742 else
11743 {
11744 if (dwarf_read_debug)
11745 {
11746 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11747 virtual_dwo_name.c_str ());
11748 }
11749 dwo_file = (struct dwo_file *) *dwo_file_slot;
11750 }
11751
11752 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11753 dwo_unit->dwo_file = dwo_file;
11754 dwo_unit->signature = signature;
11755 dwo_unit->section =
11756 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11757 *dwo_unit->section = sections.info_or_types;
11758 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11759
11760 return dwo_unit;
11761 }
11762
11763 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11764 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11765 piece within that section used by a TU/CU, return a virtual section
11766 of just that piece. */
11767
11768 static struct dwarf2_section_info
11769 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11770 struct dwarf2_section_info *section,
11771 bfd_size_type offset, bfd_size_type size)
11772 {
11773 struct dwarf2_section_info result;
11774 asection *sectp;
11775
11776 gdb_assert (section != NULL);
11777 gdb_assert (!section->is_virtual);
11778
11779 memset (&result, 0, sizeof (result));
11780 result.s.containing_section = section;
11781 result.is_virtual = true;
11782
11783 if (size == 0)
11784 return result;
11785
11786 sectp = section->get_bfd_section ();
11787
11788 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11789 bounds of the real section. This is a pretty-rare event, so just
11790 flag an error (easier) instead of a warning and trying to cope. */
11791 if (sectp == NULL
11792 || offset + size > bfd_section_size (sectp))
11793 {
11794 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11795 " in section %s [in module %s]"),
11796 sectp ? bfd_section_name (sectp) : "<unknown>",
11797 objfile_name (dwarf2_per_objfile->objfile));
11798 }
11799
11800 result.virtual_offset = offset;
11801 result.size = size;
11802 return result;
11803 }
11804
11805 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11806 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11807 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11808 This is for DWP version 2 files. */
11809
11810 static struct dwo_unit *
11811 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11812 struct dwp_file *dwp_file,
11813 uint32_t unit_index,
11814 const char *comp_dir,
11815 ULONGEST signature, int is_debug_types)
11816 {
11817 struct objfile *objfile = dwarf2_per_objfile->objfile;
11818 const struct dwp_hash_table *dwp_htab =
11819 is_debug_types ? dwp_file->tus : dwp_file->cus;
11820 bfd *dbfd = dwp_file->dbfd.get ();
11821 const char *kind = is_debug_types ? "TU" : "CU";
11822 struct dwo_file *dwo_file;
11823 struct dwo_unit *dwo_unit;
11824 struct virtual_v2_dwo_sections sections;
11825 void **dwo_file_slot;
11826 int i;
11827
11828 gdb_assert (dwp_file->version == 2);
11829
11830 if (dwarf_read_debug)
11831 {
11832 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11833 kind,
11834 pulongest (unit_index), hex_string (signature),
11835 dwp_file->name);
11836 }
11837
11838 /* Fetch the section offsets of this DWO unit. */
11839
11840 memset (&sections, 0, sizeof (sections));
11841
11842 for (i = 0; i < dwp_htab->nr_columns; ++i)
11843 {
11844 uint32_t offset = read_4_bytes (dbfd,
11845 dwp_htab->section_pool.v2.offsets
11846 + (((unit_index - 1) * dwp_htab->nr_columns
11847 + i)
11848 * sizeof (uint32_t)));
11849 uint32_t size = read_4_bytes (dbfd,
11850 dwp_htab->section_pool.v2.sizes
11851 + (((unit_index - 1) * dwp_htab->nr_columns
11852 + i)
11853 * sizeof (uint32_t)));
11854
11855 switch (dwp_htab->section_pool.v2.section_ids[i])
11856 {
11857 case DW_SECT_INFO:
11858 case DW_SECT_TYPES:
11859 sections.info_or_types_offset = offset;
11860 sections.info_or_types_size = size;
11861 break;
11862 case DW_SECT_ABBREV:
11863 sections.abbrev_offset = offset;
11864 sections.abbrev_size = size;
11865 break;
11866 case DW_SECT_LINE:
11867 sections.line_offset = offset;
11868 sections.line_size = size;
11869 break;
11870 case DW_SECT_LOC:
11871 sections.loc_offset = offset;
11872 sections.loc_size = size;
11873 break;
11874 case DW_SECT_STR_OFFSETS:
11875 sections.str_offsets_offset = offset;
11876 sections.str_offsets_size = size;
11877 break;
11878 case DW_SECT_MACINFO:
11879 sections.macinfo_offset = offset;
11880 sections.macinfo_size = size;
11881 break;
11882 case DW_SECT_MACRO:
11883 sections.macro_offset = offset;
11884 sections.macro_size = size;
11885 break;
11886 }
11887 }
11888
11889 /* It's easier for the rest of the code if we fake a struct dwo_file and
11890 have dwo_unit "live" in that. At least for now.
11891
11892 The DWP file can be made up of a random collection of CUs and TUs.
11893 However, for each CU + set of TUs that came from the same original DWO
11894 file, we can combine them back into a virtual DWO file to save space
11895 (fewer struct dwo_file objects to allocate). Remember that for really
11896 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11897
11898 std::string virtual_dwo_name =
11899 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11900 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11901 (long) (sections.line_size ? sections.line_offset : 0),
11902 (long) (sections.loc_size ? sections.loc_offset : 0),
11903 (long) (sections.str_offsets_size
11904 ? sections.str_offsets_offset : 0));
11905 /* Can we use an existing virtual DWO file? */
11906 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11907 virtual_dwo_name.c_str (),
11908 comp_dir);
11909 /* Create one if necessary. */
11910 if (*dwo_file_slot == NULL)
11911 {
11912 if (dwarf_read_debug)
11913 {
11914 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11915 virtual_dwo_name.c_str ());
11916 }
11917 dwo_file = new struct dwo_file;
11918 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11919 dwo_file->comp_dir = comp_dir;
11920 dwo_file->sections.abbrev =
11921 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11922 sections.abbrev_offset, sections.abbrev_size);
11923 dwo_file->sections.line =
11924 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11925 sections.line_offset, sections.line_size);
11926 dwo_file->sections.loc =
11927 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11928 sections.loc_offset, sections.loc_size);
11929 dwo_file->sections.macinfo =
11930 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11931 sections.macinfo_offset, sections.macinfo_size);
11932 dwo_file->sections.macro =
11933 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11934 sections.macro_offset, sections.macro_size);
11935 dwo_file->sections.str_offsets =
11936 create_dwp_v2_section (dwarf2_per_objfile,
11937 &dwp_file->sections.str_offsets,
11938 sections.str_offsets_offset,
11939 sections.str_offsets_size);
11940 /* The "str" section is global to the entire DWP file. */
11941 dwo_file->sections.str = dwp_file->sections.str;
11942 /* The info or types section is assigned below to dwo_unit,
11943 there's no need to record it in dwo_file.
11944 Also, we can't simply record type sections in dwo_file because
11945 we record a pointer into the vector in dwo_unit. As we collect more
11946 types we'll grow the vector and eventually have to reallocate space
11947 for it, invalidating all copies of pointers into the previous
11948 contents. */
11949 *dwo_file_slot = dwo_file;
11950 }
11951 else
11952 {
11953 if (dwarf_read_debug)
11954 {
11955 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11956 virtual_dwo_name.c_str ());
11957 }
11958 dwo_file = (struct dwo_file *) *dwo_file_slot;
11959 }
11960
11961 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11962 dwo_unit->dwo_file = dwo_file;
11963 dwo_unit->signature = signature;
11964 dwo_unit->section =
11965 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11966 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11967 is_debug_types
11968 ? &dwp_file->sections.types
11969 : &dwp_file->sections.info,
11970 sections.info_or_types_offset,
11971 sections.info_or_types_size);
11972 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11973
11974 return dwo_unit;
11975 }
11976
11977 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11978 Returns NULL if the signature isn't found. */
11979
11980 static struct dwo_unit *
11981 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11982 struct dwp_file *dwp_file, const char *comp_dir,
11983 ULONGEST signature, int is_debug_types)
11984 {
11985 const struct dwp_hash_table *dwp_htab =
11986 is_debug_types ? dwp_file->tus : dwp_file->cus;
11987 bfd *dbfd = dwp_file->dbfd.get ();
11988 uint32_t mask = dwp_htab->nr_slots - 1;
11989 uint32_t hash = signature & mask;
11990 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11991 unsigned int i;
11992 void **slot;
11993 struct dwo_unit find_dwo_cu;
11994
11995 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11996 find_dwo_cu.signature = signature;
11997 slot = htab_find_slot (is_debug_types
11998 ? dwp_file->loaded_tus.get ()
11999 : dwp_file->loaded_cus.get (),
12000 &find_dwo_cu, INSERT);
12001
12002 if (*slot != NULL)
12003 return (struct dwo_unit *) *slot;
12004
12005 /* Use a for loop so that we don't loop forever on bad debug info. */
12006 for (i = 0; i < dwp_htab->nr_slots; ++i)
12007 {
12008 ULONGEST signature_in_table;
12009
12010 signature_in_table =
12011 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12012 if (signature_in_table == signature)
12013 {
12014 uint32_t unit_index =
12015 read_4_bytes (dbfd,
12016 dwp_htab->unit_table + hash * sizeof (uint32_t));
12017
12018 if (dwp_file->version == 1)
12019 {
12020 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12021 dwp_file, unit_index,
12022 comp_dir, signature,
12023 is_debug_types);
12024 }
12025 else
12026 {
12027 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12028 dwp_file, unit_index,
12029 comp_dir, signature,
12030 is_debug_types);
12031 }
12032 return (struct dwo_unit *) *slot;
12033 }
12034 if (signature_in_table == 0)
12035 return NULL;
12036 hash = (hash + hash2) & mask;
12037 }
12038
12039 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12040 " [in module %s]"),
12041 dwp_file->name);
12042 }
12043
12044 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12045 Open the file specified by FILE_NAME and hand it off to BFD for
12046 preliminary analysis. Return a newly initialized bfd *, which
12047 includes a canonicalized copy of FILE_NAME.
12048 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12049 SEARCH_CWD is true if the current directory is to be searched.
12050 It will be searched before debug-file-directory.
12051 If successful, the file is added to the bfd include table of the
12052 objfile's bfd (see gdb_bfd_record_inclusion).
12053 If unable to find/open the file, return NULL.
12054 NOTE: This function is derived from symfile_bfd_open. */
12055
12056 static gdb_bfd_ref_ptr
12057 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12058 const char *file_name, int is_dwp, int search_cwd)
12059 {
12060 int desc;
12061 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12062 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12063 to debug_file_directory. */
12064 const char *search_path;
12065 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12066
12067 gdb::unique_xmalloc_ptr<char> search_path_holder;
12068 if (search_cwd)
12069 {
12070 if (*debug_file_directory != '\0')
12071 {
12072 search_path_holder.reset (concat (".", dirname_separator_string,
12073 debug_file_directory,
12074 (char *) NULL));
12075 search_path = search_path_holder.get ();
12076 }
12077 else
12078 search_path = ".";
12079 }
12080 else
12081 search_path = debug_file_directory;
12082
12083 openp_flags flags = OPF_RETURN_REALPATH;
12084 if (is_dwp)
12085 flags |= OPF_SEARCH_IN_PATH;
12086
12087 gdb::unique_xmalloc_ptr<char> absolute_name;
12088 desc = openp (search_path, flags, file_name,
12089 O_RDONLY | O_BINARY, &absolute_name);
12090 if (desc < 0)
12091 return NULL;
12092
12093 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12094 gnutarget, desc));
12095 if (sym_bfd == NULL)
12096 return NULL;
12097 bfd_set_cacheable (sym_bfd.get (), 1);
12098
12099 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12100 return NULL;
12101
12102 /* Success. Record the bfd as having been included by the objfile's bfd.
12103 This is important because things like demangled_names_hash lives in the
12104 objfile's per_bfd space and may have references to things like symbol
12105 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12106 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12107
12108 return sym_bfd;
12109 }
12110
12111 /* Try to open DWO file FILE_NAME.
12112 COMP_DIR is the DW_AT_comp_dir attribute.
12113 The result is the bfd handle of the file.
12114 If there is a problem finding or opening the file, return NULL.
12115 Upon success, the canonicalized path of the file is stored in the bfd,
12116 same as symfile_bfd_open. */
12117
12118 static gdb_bfd_ref_ptr
12119 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12120 const char *file_name, const char *comp_dir)
12121 {
12122 if (IS_ABSOLUTE_PATH (file_name))
12123 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12124 0 /*is_dwp*/, 0 /*search_cwd*/);
12125
12126 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12127
12128 if (comp_dir != NULL)
12129 {
12130 gdb::unique_xmalloc_ptr<char> path_to_try
12131 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12132
12133 /* NOTE: If comp_dir is a relative path, this will also try the
12134 search path, which seems useful. */
12135 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12136 path_to_try.get (),
12137 0 /*is_dwp*/,
12138 1 /*search_cwd*/));
12139 if (abfd != NULL)
12140 return abfd;
12141 }
12142
12143 /* That didn't work, try debug-file-directory, which, despite its name,
12144 is a list of paths. */
12145
12146 if (*debug_file_directory == '\0')
12147 return NULL;
12148
12149 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12150 0 /*is_dwp*/, 1 /*search_cwd*/);
12151 }
12152
12153 /* This function is mapped across the sections and remembers the offset and
12154 size of each of the DWO debugging sections we are interested in. */
12155
12156 static void
12157 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12158 {
12159 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12160 const struct dwop_section_names *names = &dwop_section_names;
12161
12162 if (section_is_p (sectp->name, &names->abbrev_dwo))
12163 {
12164 dwo_sections->abbrev.s.section = sectp;
12165 dwo_sections->abbrev.size = bfd_section_size (sectp);
12166 }
12167 else if (section_is_p (sectp->name, &names->info_dwo))
12168 {
12169 dwo_sections->info.s.section = sectp;
12170 dwo_sections->info.size = bfd_section_size (sectp);
12171 }
12172 else if (section_is_p (sectp->name, &names->line_dwo))
12173 {
12174 dwo_sections->line.s.section = sectp;
12175 dwo_sections->line.size = bfd_section_size (sectp);
12176 }
12177 else if (section_is_p (sectp->name, &names->loc_dwo))
12178 {
12179 dwo_sections->loc.s.section = sectp;
12180 dwo_sections->loc.size = bfd_section_size (sectp);
12181 }
12182 else if (section_is_p (sectp->name, &names->loclists_dwo))
12183 {
12184 dwo_sections->loclists.s.section = sectp;
12185 dwo_sections->loclists.size = bfd_section_size (sectp);
12186 }
12187 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12188 {
12189 dwo_sections->macinfo.s.section = sectp;
12190 dwo_sections->macinfo.size = bfd_section_size (sectp);
12191 }
12192 else if (section_is_p (sectp->name, &names->macro_dwo))
12193 {
12194 dwo_sections->macro.s.section = sectp;
12195 dwo_sections->macro.size = bfd_section_size (sectp);
12196 }
12197 else if (section_is_p (sectp->name, &names->str_dwo))
12198 {
12199 dwo_sections->str.s.section = sectp;
12200 dwo_sections->str.size = bfd_section_size (sectp);
12201 }
12202 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12203 {
12204 dwo_sections->str_offsets.s.section = sectp;
12205 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12206 }
12207 else if (section_is_p (sectp->name, &names->types_dwo))
12208 {
12209 struct dwarf2_section_info type_section;
12210
12211 memset (&type_section, 0, sizeof (type_section));
12212 type_section.s.section = sectp;
12213 type_section.size = bfd_section_size (sectp);
12214 dwo_sections->types.push_back (type_section);
12215 }
12216 }
12217
12218 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12219 by PER_CU. This is for the non-DWP case.
12220 The result is NULL if DWO_NAME can't be found. */
12221
12222 static struct dwo_file *
12223 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12224 const char *dwo_name, const char *comp_dir)
12225 {
12226 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12227
12228 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12229 if (dbfd == NULL)
12230 {
12231 if (dwarf_read_debug)
12232 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12233 return NULL;
12234 }
12235
12236 dwo_file_up dwo_file (new struct dwo_file);
12237 dwo_file->dwo_name = dwo_name;
12238 dwo_file->comp_dir = comp_dir;
12239 dwo_file->dbfd = std::move (dbfd);
12240
12241 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12242 &dwo_file->sections);
12243
12244 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12245 dwo_file->sections.info, dwo_file->cus);
12246
12247 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12248 dwo_file->sections.types, dwo_file->tus);
12249
12250 if (dwarf_read_debug)
12251 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12252
12253 return dwo_file.release ();
12254 }
12255
12256 /* This function is mapped across the sections and remembers the offset and
12257 size of each of the DWP debugging sections common to version 1 and 2 that
12258 we are interested in. */
12259
12260 static void
12261 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12262 void *dwp_file_ptr)
12263 {
12264 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12265 const struct dwop_section_names *names = &dwop_section_names;
12266 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12267
12268 /* Record the ELF section number for later lookup: this is what the
12269 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12270 gdb_assert (elf_section_nr < dwp_file->num_sections);
12271 dwp_file->elf_sections[elf_section_nr] = sectp;
12272
12273 /* Look for specific sections that we need. */
12274 if (section_is_p (sectp->name, &names->str_dwo))
12275 {
12276 dwp_file->sections.str.s.section = sectp;
12277 dwp_file->sections.str.size = bfd_section_size (sectp);
12278 }
12279 else if (section_is_p (sectp->name, &names->cu_index))
12280 {
12281 dwp_file->sections.cu_index.s.section = sectp;
12282 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12283 }
12284 else if (section_is_p (sectp->name, &names->tu_index))
12285 {
12286 dwp_file->sections.tu_index.s.section = sectp;
12287 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12288 }
12289 }
12290
12291 /* This function is mapped across the sections and remembers the offset and
12292 size of each of the DWP version 2 debugging sections that we are interested
12293 in. This is split into a separate function because we don't know if we
12294 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12295
12296 static void
12297 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12298 {
12299 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12300 const struct dwop_section_names *names = &dwop_section_names;
12301 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12302
12303 /* Record the ELF section number for later lookup: this is what the
12304 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12305 gdb_assert (elf_section_nr < dwp_file->num_sections);
12306 dwp_file->elf_sections[elf_section_nr] = sectp;
12307
12308 /* Look for specific sections that we need. */
12309 if (section_is_p (sectp->name, &names->abbrev_dwo))
12310 {
12311 dwp_file->sections.abbrev.s.section = sectp;
12312 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12313 }
12314 else if (section_is_p (sectp->name, &names->info_dwo))
12315 {
12316 dwp_file->sections.info.s.section = sectp;
12317 dwp_file->sections.info.size = bfd_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->line_dwo))
12320 {
12321 dwp_file->sections.line.s.section = sectp;
12322 dwp_file->sections.line.size = bfd_section_size (sectp);
12323 }
12324 else if (section_is_p (sectp->name, &names->loc_dwo))
12325 {
12326 dwp_file->sections.loc.s.section = sectp;
12327 dwp_file->sections.loc.size = bfd_section_size (sectp);
12328 }
12329 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12330 {
12331 dwp_file->sections.macinfo.s.section = sectp;
12332 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12333 }
12334 else if (section_is_p (sectp->name, &names->macro_dwo))
12335 {
12336 dwp_file->sections.macro.s.section = sectp;
12337 dwp_file->sections.macro.size = bfd_section_size (sectp);
12338 }
12339 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12340 {
12341 dwp_file->sections.str_offsets.s.section = sectp;
12342 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12343 }
12344 else if (section_is_p (sectp->name, &names->types_dwo))
12345 {
12346 dwp_file->sections.types.s.section = sectp;
12347 dwp_file->sections.types.size = bfd_section_size (sectp);
12348 }
12349 }
12350
12351 /* Hash function for dwp_file loaded CUs/TUs. */
12352
12353 static hashval_t
12354 hash_dwp_loaded_cutus (const void *item)
12355 {
12356 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12357
12358 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12359 return dwo_unit->signature;
12360 }
12361
12362 /* Equality function for dwp_file loaded CUs/TUs. */
12363
12364 static int
12365 eq_dwp_loaded_cutus (const void *a, const void *b)
12366 {
12367 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12368 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12369
12370 return dua->signature == dub->signature;
12371 }
12372
12373 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12374
12375 static htab_up
12376 allocate_dwp_loaded_cutus_table ()
12377 {
12378 return htab_up (htab_create_alloc (3,
12379 hash_dwp_loaded_cutus,
12380 eq_dwp_loaded_cutus,
12381 NULL, xcalloc, xfree));
12382 }
12383
12384 /* Try to open DWP file FILE_NAME.
12385 The result is the bfd handle of the file.
12386 If there is a problem finding or opening the file, return NULL.
12387 Upon success, the canonicalized path of the file is stored in the bfd,
12388 same as symfile_bfd_open. */
12389
12390 static gdb_bfd_ref_ptr
12391 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12392 const char *file_name)
12393 {
12394 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12395 1 /*is_dwp*/,
12396 1 /*search_cwd*/));
12397 if (abfd != NULL)
12398 return abfd;
12399
12400 /* Work around upstream bug 15652.
12401 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12402 [Whether that's a "bug" is debatable, but it is getting in our way.]
12403 We have no real idea where the dwp file is, because gdb's realpath-ing
12404 of the executable's path may have discarded the needed info.
12405 [IWBN if the dwp file name was recorded in the executable, akin to
12406 .gnu_debuglink, but that doesn't exist yet.]
12407 Strip the directory from FILE_NAME and search again. */
12408 if (*debug_file_directory != '\0')
12409 {
12410 /* Don't implicitly search the current directory here.
12411 If the user wants to search "." to handle this case,
12412 it must be added to debug-file-directory. */
12413 return try_open_dwop_file (dwarf2_per_objfile,
12414 lbasename (file_name), 1 /*is_dwp*/,
12415 0 /*search_cwd*/);
12416 }
12417
12418 return NULL;
12419 }
12420
12421 /* Initialize the use of the DWP file for the current objfile.
12422 By convention the name of the DWP file is ${objfile}.dwp.
12423 The result is NULL if it can't be found. */
12424
12425 static std::unique_ptr<struct dwp_file>
12426 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12427 {
12428 struct objfile *objfile = dwarf2_per_objfile->objfile;
12429
12430 /* Try to find first .dwp for the binary file before any symbolic links
12431 resolving. */
12432
12433 /* If the objfile is a debug file, find the name of the real binary
12434 file and get the name of dwp file from there. */
12435 std::string dwp_name;
12436 if (objfile->separate_debug_objfile_backlink != NULL)
12437 {
12438 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12439 const char *backlink_basename = lbasename (backlink->original_name);
12440
12441 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12442 }
12443 else
12444 dwp_name = objfile->original_name;
12445
12446 dwp_name += ".dwp";
12447
12448 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12449 if (dbfd == NULL
12450 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12451 {
12452 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12453 dwp_name = objfile_name (objfile);
12454 dwp_name += ".dwp";
12455 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12456 }
12457
12458 if (dbfd == NULL)
12459 {
12460 if (dwarf_read_debug)
12461 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12462 return std::unique_ptr<dwp_file> ();
12463 }
12464
12465 const char *name = bfd_get_filename (dbfd.get ());
12466 std::unique_ptr<struct dwp_file> dwp_file
12467 (new struct dwp_file (name, std::move (dbfd)));
12468
12469 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12470 dwp_file->elf_sections =
12471 OBSTACK_CALLOC (&objfile->objfile_obstack,
12472 dwp_file->num_sections, asection *);
12473
12474 bfd_map_over_sections (dwp_file->dbfd.get (),
12475 dwarf2_locate_common_dwp_sections,
12476 dwp_file.get ());
12477
12478 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12479 0);
12480
12481 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12482 1);
12483
12484 /* The DWP file version is stored in the hash table. Oh well. */
12485 if (dwp_file->cus && dwp_file->tus
12486 && dwp_file->cus->version != dwp_file->tus->version)
12487 {
12488 /* Technically speaking, we should try to limp along, but this is
12489 pretty bizarre. We use pulongest here because that's the established
12490 portability solution (e.g, we cannot use %u for uint32_t). */
12491 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12492 " TU version %s [in DWP file %s]"),
12493 pulongest (dwp_file->cus->version),
12494 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12495 }
12496
12497 if (dwp_file->cus)
12498 dwp_file->version = dwp_file->cus->version;
12499 else if (dwp_file->tus)
12500 dwp_file->version = dwp_file->tus->version;
12501 else
12502 dwp_file->version = 2;
12503
12504 if (dwp_file->version == 2)
12505 bfd_map_over_sections (dwp_file->dbfd.get (),
12506 dwarf2_locate_v2_dwp_sections,
12507 dwp_file.get ());
12508
12509 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12510 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12511
12512 if (dwarf_read_debug)
12513 {
12514 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12515 fprintf_unfiltered (gdb_stdlog,
12516 " %s CUs, %s TUs\n",
12517 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12518 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12519 }
12520
12521 return dwp_file;
12522 }
12523
12524 /* Wrapper around open_and_init_dwp_file, only open it once. */
12525
12526 static struct dwp_file *
12527 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12528 {
12529 if (! dwarf2_per_objfile->dwp_checked)
12530 {
12531 dwarf2_per_objfile->dwp_file
12532 = open_and_init_dwp_file (dwarf2_per_objfile);
12533 dwarf2_per_objfile->dwp_checked = 1;
12534 }
12535 return dwarf2_per_objfile->dwp_file.get ();
12536 }
12537
12538 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12539 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12540 or in the DWP file for the objfile, referenced by THIS_UNIT.
12541 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12542 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12543
12544 This is called, for example, when wanting to read a variable with a
12545 complex location. Therefore we don't want to do file i/o for every call.
12546 Therefore we don't want to look for a DWO file on every call.
12547 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12548 then we check if we've already seen DWO_NAME, and only THEN do we check
12549 for a DWO file.
12550
12551 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12552 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12553
12554 static struct dwo_unit *
12555 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12556 const char *dwo_name, const char *comp_dir,
12557 ULONGEST signature, int is_debug_types)
12558 {
12559 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12560 struct objfile *objfile = dwarf2_per_objfile->objfile;
12561 const char *kind = is_debug_types ? "TU" : "CU";
12562 void **dwo_file_slot;
12563 struct dwo_file *dwo_file;
12564 struct dwp_file *dwp_file;
12565
12566 /* First see if there's a DWP file.
12567 If we have a DWP file but didn't find the DWO inside it, don't
12568 look for the original DWO file. It makes gdb behave differently
12569 depending on whether one is debugging in the build tree. */
12570
12571 dwp_file = get_dwp_file (dwarf2_per_objfile);
12572 if (dwp_file != NULL)
12573 {
12574 const struct dwp_hash_table *dwp_htab =
12575 is_debug_types ? dwp_file->tus : dwp_file->cus;
12576
12577 if (dwp_htab != NULL)
12578 {
12579 struct dwo_unit *dwo_cutu =
12580 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12581 signature, is_debug_types);
12582
12583 if (dwo_cutu != NULL)
12584 {
12585 if (dwarf_read_debug)
12586 {
12587 fprintf_unfiltered (gdb_stdlog,
12588 "Virtual DWO %s %s found: @%s\n",
12589 kind, hex_string (signature),
12590 host_address_to_string (dwo_cutu));
12591 }
12592 return dwo_cutu;
12593 }
12594 }
12595 }
12596 else
12597 {
12598 /* No DWP file, look for the DWO file. */
12599
12600 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12601 dwo_name, comp_dir);
12602 if (*dwo_file_slot == NULL)
12603 {
12604 /* Read in the file and build a table of the CUs/TUs it contains. */
12605 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12606 }
12607 /* NOTE: This will be NULL if unable to open the file. */
12608 dwo_file = (struct dwo_file *) *dwo_file_slot;
12609
12610 if (dwo_file != NULL)
12611 {
12612 struct dwo_unit *dwo_cutu = NULL;
12613
12614 if (is_debug_types && dwo_file->tus)
12615 {
12616 struct dwo_unit find_dwo_cutu;
12617
12618 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12619 find_dwo_cutu.signature = signature;
12620 dwo_cutu
12621 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12622 &find_dwo_cutu);
12623 }
12624 else if (!is_debug_types && dwo_file->cus)
12625 {
12626 struct dwo_unit find_dwo_cutu;
12627
12628 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12629 find_dwo_cutu.signature = signature;
12630 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12631 &find_dwo_cutu);
12632 }
12633
12634 if (dwo_cutu != NULL)
12635 {
12636 if (dwarf_read_debug)
12637 {
12638 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12639 kind, dwo_name, hex_string (signature),
12640 host_address_to_string (dwo_cutu));
12641 }
12642 return dwo_cutu;
12643 }
12644 }
12645 }
12646
12647 /* We didn't find it. This could mean a dwo_id mismatch, or
12648 someone deleted the DWO/DWP file, or the search path isn't set up
12649 correctly to find the file. */
12650
12651 if (dwarf_read_debug)
12652 {
12653 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12654 kind, dwo_name, hex_string (signature));
12655 }
12656
12657 /* This is a warning and not a complaint because it can be caused by
12658 pilot error (e.g., user accidentally deleting the DWO). */
12659 {
12660 /* Print the name of the DWP file if we looked there, helps the user
12661 better diagnose the problem. */
12662 std::string dwp_text;
12663
12664 if (dwp_file != NULL)
12665 dwp_text = string_printf (" [in DWP file %s]",
12666 lbasename (dwp_file->name));
12667
12668 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12669 " [in module %s]"),
12670 kind, dwo_name, hex_string (signature),
12671 dwp_text.c_str (),
12672 this_unit->is_debug_types ? "TU" : "CU",
12673 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12674 }
12675 return NULL;
12676 }
12677
12678 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12679 See lookup_dwo_cutu_unit for details. */
12680
12681 static struct dwo_unit *
12682 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12683 const char *dwo_name, const char *comp_dir,
12684 ULONGEST signature)
12685 {
12686 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12687 }
12688
12689 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12690 See lookup_dwo_cutu_unit for details. */
12691
12692 static struct dwo_unit *
12693 lookup_dwo_type_unit (struct signatured_type *this_tu,
12694 const char *dwo_name, const char *comp_dir)
12695 {
12696 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12697 }
12698
12699 /* Traversal function for queue_and_load_all_dwo_tus. */
12700
12701 static int
12702 queue_and_load_dwo_tu (void **slot, void *info)
12703 {
12704 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12705 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12706 ULONGEST signature = dwo_unit->signature;
12707 struct signatured_type *sig_type =
12708 lookup_dwo_signatured_type (per_cu->cu, signature);
12709
12710 if (sig_type != NULL)
12711 {
12712 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12713
12714 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12715 a real dependency of PER_CU on SIG_TYPE. That is detected later
12716 while processing PER_CU. */
12717 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12718 load_full_type_unit (sig_cu);
12719 per_cu->imported_symtabs_push (sig_cu);
12720 }
12721
12722 return 1;
12723 }
12724
12725 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12726 The DWO may have the only definition of the type, though it may not be
12727 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12728 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12729
12730 static void
12731 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12732 {
12733 struct dwo_unit *dwo_unit;
12734 struct dwo_file *dwo_file;
12735
12736 gdb_assert (!per_cu->is_debug_types);
12737 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12738 gdb_assert (per_cu->cu != NULL);
12739
12740 dwo_unit = per_cu->cu->dwo_unit;
12741 gdb_assert (dwo_unit != NULL);
12742
12743 dwo_file = dwo_unit->dwo_file;
12744 if (dwo_file->tus != NULL)
12745 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12746 per_cu);
12747 }
12748
12749 /* Read in various DIEs. */
12750
12751 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12752 Inherit only the children of the DW_AT_abstract_origin DIE not being
12753 already referenced by DW_AT_abstract_origin from the children of the
12754 current DIE. */
12755
12756 static void
12757 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12758 {
12759 struct die_info *child_die;
12760 sect_offset *offsetp;
12761 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12762 struct die_info *origin_die;
12763 /* Iterator of the ORIGIN_DIE children. */
12764 struct die_info *origin_child_die;
12765 struct attribute *attr;
12766 struct dwarf2_cu *origin_cu;
12767 struct pending **origin_previous_list_in_scope;
12768
12769 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12770 if (!attr)
12771 return;
12772
12773 /* Note that following die references may follow to a die in a
12774 different cu. */
12775
12776 origin_cu = cu;
12777 origin_die = follow_die_ref (die, attr, &origin_cu);
12778
12779 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12780 symbols in. */
12781 origin_previous_list_in_scope = origin_cu->list_in_scope;
12782 origin_cu->list_in_scope = cu->list_in_scope;
12783
12784 if (die->tag != origin_die->tag
12785 && !(die->tag == DW_TAG_inlined_subroutine
12786 && origin_die->tag == DW_TAG_subprogram))
12787 complaint (_("DIE %s and its abstract origin %s have different tags"),
12788 sect_offset_str (die->sect_off),
12789 sect_offset_str (origin_die->sect_off));
12790
12791 std::vector<sect_offset> offsets;
12792
12793 for (child_die = die->child;
12794 child_die && child_die->tag;
12795 child_die = child_die->sibling)
12796 {
12797 struct die_info *child_origin_die;
12798 struct dwarf2_cu *child_origin_cu;
12799
12800 /* We are trying to process concrete instance entries:
12801 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12802 it's not relevant to our analysis here. i.e. detecting DIEs that are
12803 present in the abstract instance but not referenced in the concrete
12804 one. */
12805 if (child_die->tag == DW_TAG_call_site
12806 || child_die->tag == DW_TAG_GNU_call_site)
12807 continue;
12808
12809 /* For each CHILD_DIE, find the corresponding child of
12810 ORIGIN_DIE. If there is more than one layer of
12811 DW_AT_abstract_origin, follow them all; there shouldn't be,
12812 but GCC versions at least through 4.4 generate this (GCC PR
12813 40573). */
12814 child_origin_die = child_die;
12815 child_origin_cu = cu;
12816 while (1)
12817 {
12818 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12819 child_origin_cu);
12820 if (attr == NULL)
12821 break;
12822 child_origin_die = follow_die_ref (child_origin_die, attr,
12823 &child_origin_cu);
12824 }
12825
12826 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12827 counterpart may exist. */
12828 if (child_origin_die != child_die)
12829 {
12830 if (child_die->tag != child_origin_die->tag
12831 && !(child_die->tag == DW_TAG_inlined_subroutine
12832 && child_origin_die->tag == DW_TAG_subprogram))
12833 complaint (_("Child DIE %s and its abstract origin %s have "
12834 "different tags"),
12835 sect_offset_str (child_die->sect_off),
12836 sect_offset_str (child_origin_die->sect_off));
12837 if (child_origin_die->parent != origin_die)
12838 complaint (_("Child DIE %s and its abstract origin %s have "
12839 "different parents"),
12840 sect_offset_str (child_die->sect_off),
12841 sect_offset_str (child_origin_die->sect_off));
12842 else
12843 offsets.push_back (child_origin_die->sect_off);
12844 }
12845 }
12846 std::sort (offsets.begin (), offsets.end ());
12847 sect_offset *offsets_end = offsets.data () + offsets.size ();
12848 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12849 if (offsetp[-1] == *offsetp)
12850 complaint (_("Multiple children of DIE %s refer "
12851 "to DIE %s as their abstract origin"),
12852 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12853
12854 offsetp = offsets.data ();
12855 origin_child_die = origin_die->child;
12856 while (origin_child_die && origin_child_die->tag)
12857 {
12858 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12859 while (offsetp < offsets_end
12860 && *offsetp < origin_child_die->sect_off)
12861 offsetp++;
12862 if (offsetp >= offsets_end
12863 || *offsetp > origin_child_die->sect_off)
12864 {
12865 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12866 Check whether we're already processing ORIGIN_CHILD_DIE.
12867 This can happen with mutually referenced abstract_origins.
12868 PR 16581. */
12869 if (!origin_child_die->in_process)
12870 process_die (origin_child_die, origin_cu);
12871 }
12872 origin_child_die = origin_child_die->sibling;
12873 }
12874 origin_cu->list_in_scope = origin_previous_list_in_scope;
12875
12876 if (cu != origin_cu)
12877 compute_delayed_physnames (origin_cu);
12878 }
12879
12880 static void
12881 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12882 {
12883 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12884 struct gdbarch *gdbarch = objfile->arch ();
12885 struct context_stack *newobj;
12886 CORE_ADDR lowpc;
12887 CORE_ADDR highpc;
12888 struct die_info *child_die;
12889 struct attribute *attr, *call_line, *call_file;
12890 const char *name;
12891 CORE_ADDR baseaddr;
12892 struct block *block;
12893 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12894 std::vector<struct symbol *> template_args;
12895 struct template_symbol *templ_func = NULL;
12896
12897 if (inlined_func)
12898 {
12899 /* If we do not have call site information, we can't show the
12900 caller of this inlined function. That's too confusing, so
12901 only use the scope for local variables. */
12902 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12903 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12904 if (call_line == NULL || call_file == NULL)
12905 {
12906 read_lexical_block_scope (die, cu);
12907 return;
12908 }
12909 }
12910
12911 baseaddr = objfile->text_section_offset ();
12912
12913 name = dwarf2_name (die, cu);
12914
12915 /* Ignore functions with missing or empty names. These are actually
12916 illegal according to the DWARF standard. */
12917 if (name == NULL)
12918 {
12919 complaint (_("missing name for subprogram DIE at %s"),
12920 sect_offset_str (die->sect_off));
12921 return;
12922 }
12923
12924 /* Ignore functions with missing or invalid low and high pc attributes. */
12925 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12926 <= PC_BOUNDS_INVALID)
12927 {
12928 attr = dwarf2_attr (die, DW_AT_external, cu);
12929 if (!attr || !DW_UNSND (attr))
12930 complaint (_("cannot get low and high bounds "
12931 "for subprogram DIE at %s"),
12932 sect_offset_str (die->sect_off));
12933 return;
12934 }
12935
12936 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12937 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12938
12939 /* If we have any template arguments, then we must allocate a
12940 different sort of symbol. */
12941 for (child_die = die->child; child_die; child_die = child_die->sibling)
12942 {
12943 if (child_die->tag == DW_TAG_template_type_param
12944 || child_die->tag == DW_TAG_template_value_param)
12945 {
12946 templ_func = allocate_template_symbol (objfile);
12947 templ_func->subclass = SYMBOL_TEMPLATE;
12948 break;
12949 }
12950 }
12951
12952 newobj = cu->get_builder ()->push_context (0, lowpc);
12953 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12954 (struct symbol *) templ_func);
12955
12956 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12957 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12958 cu->language);
12959
12960 /* If there is a location expression for DW_AT_frame_base, record
12961 it. */
12962 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12963 if (attr != nullptr)
12964 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12965
12966 /* If there is a location for the static link, record it. */
12967 newobj->static_link = NULL;
12968 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12969 if (attr != nullptr)
12970 {
12971 newobj->static_link
12972 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12973 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12974 cu->per_cu->addr_type ());
12975 }
12976
12977 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12978
12979 if (die->child != NULL)
12980 {
12981 child_die = die->child;
12982 while (child_die && child_die->tag)
12983 {
12984 if (child_die->tag == DW_TAG_template_type_param
12985 || child_die->tag == DW_TAG_template_value_param)
12986 {
12987 struct symbol *arg = new_symbol (child_die, NULL, cu);
12988
12989 if (arg != NULL)
12990 template_args.push_back (arg);
12991 }
12992 else
12993 process_die (child_die, cu);
12994 child_die = child_die->sibling;
12995 }
12996 }
12997
12998 inherit_abstract_dies (die, cu);
12999
13000 /* If we have a DW_AT_specification, we might need to import using
13001 directives from the context of the specification DIE. See the
13002 comment in determine_prefix. */
13003 if (cu->language == language_cplus
13004 && dwarf2_attr (die, DW_AT_specification, cu))
13005 {
13006 struct dwarf2_cu *spec_cu = cu;
13007 struct die_info *spec_die = die_specification (die, &spec_cu);
13008
13009 while (spec_die)
13010 {
13011 child_die = spec_die->child;
13012 while (child_die && child_die->tag)
13013 {
13014 if (child_die->tag == DW_TAG_imported_module)
13015 process_die (child_die, spec_cu);
13016 child_die = child_die->sibling;
13017 }
13018
13019 /* In some cases, GCC generates specification DIEs that
13020 themselves contain DW_AT_specification attributes. */
13021 spec_die = die_specification (spec_die, &spec_cu);
13022 }
13023 }
13024
13025 struct context_stack cstk = cu->get_builder ()->pop_context ();
13026 /* Make a block for the local symbols within. */
13027 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13028 cstk.static_link, lowpc, highpc);
13029
13030 /* For C++, set the block's scope. */
13031 if ((cu->language == language_cplus
13032 || cu->language == language_fortran
13033 || cu->language == language_d
13034 || cu->language == language_rust)
13035 && cu->processing_has_namespace_info)
13036 block_set_scope (block, determine_prefix (die, cu),
13037 &objfile->objfile_obstack);
13038
13039 /* If we have address ranges, record them. */
13040 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13041
13042 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13043
13044 /* Attach template arguments to function. */
13045 if (!template_args.empty ())
13046 {
13047 gdb_assert (templ_func != NULL);
13048
13049 templ_func->n_template_arguments = template_args.size ();
13050 templ_func->template_arguments
13051 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13052 templ_func->n_template_arguments);
13053 memcpy (templ_func->template_arguments,
13054 template_args.data (),
13055 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13056
13057 /* Make sure that the symtab is set on the new symbols. Even
13058 though they don't appear in this symtab directly, other parts
13059 of gdb assume that symbols do, and this is reasonably
13060 true. */
13061 for (symbol *sym : template_args)
13062 symbol_set_symtab (sym, symbol_symtab (templ_func));
13063 }
13064
13065 /* In C++, we can have functions nested inside functions (e.g., when
13066 a function declares a class that has methods). This means that
13067 when we finish processing a function scope, we may need to go
13068 back to building a containing block's symbol lists. */
13069 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13070 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13071
13072 /* If we've finished processing a top-level function, subsequent
13073 symbols go in the file symbol list. */
13074 if (cu->get_builder ()->outermost_context_p ())
13075 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13076 }
13077
13078 /* Process all the DIES contained within a lexical block scope. Start
13079 a new scope, process the dies, and then close the scope. */
13080
13081 static void
13082 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13083 {
13084 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13085 struct gdbarch *gdbarch = objfile->arch ();
13086 CORE_ADDR lowpc, highpc;
13087 struct die_info *child_die;
13088 CORE_ADDR baseaddr;
13089
13090 baseaddr = objfile->text_section_offset ();
13091
13092 /* Ignore blocks with missing or invalid low and high pc attributes. */
13093 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13094 as multiple lexical blocks? Handling children in a sane way would
13095 be nasty. Might be easier to properly extend generic blocks to
13096 describe ranges. */
13097 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13098 {
13099 case PC_BOUNDS_NOT_PRESENT:
13100 /* DW_TAG_lexical_block has no attributes, process its children as if
13101 there was no wrapping by that DW_TAG_lexical_block.
13102 GCC does no longer produces such DWARF since GCC r224161. */
13103 for (child_die = die->child;
13104 child_die != NULL && child_die->tag;
13105 child_die = child_die->sibling)
13106 process_die (child_die, cu);
13107 return;
13108 case PC_BOUNDS_INVALID:
13109 return;
13110 }
13111 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13112 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13113
13114 cu->get_builder ()->push_context (0, lowpc);
13115 if (die->child != NULL)
13116 {
13117 child_die = die->child;
13118 while (child_die && child_die->tag)
13119 {
13120 process_die (child_die, cu);
13121 child_die = child_die->sibling;
13122 }
13123 }
13124 inherit_abstract_dies (die, cu);
13125 struct context_stack cstk = cu->get_builder ()->pop_context ();
13126
13127 if (*cu->get_builder ()->get_local_symbols () != NULL
13128 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13129 {
13130 struct block *block
13131 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13132 cstk.start_addr, highpc);
13133
13134 /* Note that recording ranges after traversing children, as we
13135 do here, means that recording a parent's ranges entails
13136 walking across all its children's ranges as they appear in
13137 the address map, which is quadratic behavior.
13138
13139 It would be nicer to record the parent's ranges before
13140 traversing its children, simply overriding whatever you find
13141 there. But since we don't even decide whether to create a
13142 block until after we've traversed its children, that's hard
13143 to do. */
13144 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13145 }
13146 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13147 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13148 }
13149
13150 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13151
13152 static void
13153 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13154 {
13155 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13156 struct gdbarch *gdbarch = objfile->arch ();
13157 CORE_ADDR pc, baseaddr;
13158 struct attribute *attr;
13159 struct call_site *call_site, call_site_local;
13160 void **slot;
13161 int nparams;
13162 struct die_info *child_die;
13163
13164 baseaddr = objfile->text_section_offset ();
13165
13166 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13167 if (attr == NULL)
13168 {
13169 /* This was a pre-DWARF-5 GNU extension alias
13170 for DW_AT_call_return_pc. */
13171 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13172 }
13173 if (!attr)
13174 {
13175 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13176 "DIE %s [in module %s]"),
13177 sect_offset_str (die->sect_off), objfile_name (objfile));
13178 return;
13179 }
13180 pc = attr->value_as_address () + baseaddr;
13181 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13182
13183 if (cu->call_site_htab == NULL)
13184 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13185 NULL, &objfile->objfile_obstack,
13186 hashtab_obstack_allocate, NULL);
13187 call_site_local.pc = pc;
13188 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13189 if (*slot != NULL)
13190 {
13191 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13192 "DIE %s [in module %s]"),
13193 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13194 objfile_name (objfile));
13195 return;
13196 }
13197
13198 /* Count parameters at the caller. */
13199
13200 nparams = 0;
13201 for (child_die = die->child; child_die && child_die->tag;
13202 child_die = child_die->sibling)
13203 {
13204 if (child_die->tag != DW_TAG_call_site_parameter
13205 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13206 {
13207 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13208 "DW_TAG_call_site child DIE %s [in module %s]"),
13209 child_die->tag, sect_offset_str (child_die->sect_off),
13210 objfile_name (objfile));
13211 continue;
13212 }
13213
13214 nparams++;
13215 }
13216
13217 call_site
13218 = ((struct call_site *)
13219 obstack_alloc (&objfile->objfile_obstack,
13220 sizeof (*call_site)
13221 + (sizeof (*call_site->parameter) * (nparams - 1))));
13222 *slot = call_site;
13223 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13224 call_site->pc = pc;
13225
13226 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13227 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13228 {
13229 struct die_info *func_die;
13230
13231 /* Skip also over DW_TAG_inlined_subroutine. */
13232 for (func_die = die->parent;
13233 func_die && func_die->tag != DW_TAG_subprogram
13234 && func_die->tag != DW_TAG_subroutine_type;
13235 func_die = func_die->parent);
13236
13237 /* DW_AT_call_all_calls is a superset
13238 of DW_AT_call_all_tail_calls. */
13239 if (func_die
13240 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13241 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13242 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13243 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13244 {
13245 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13246 not complete. But keep CALL_SITE for look ups via call_site_htab,
13247 both the initial caller containing the real return address PC and
13248 the final callee containing the current PC of a chain of tail
13249 calls do not need to have the tail call list complete. But any
13250 function candidate for a virtual tail call frame searched via
13251 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13252 determined unambiguously. */
13253 }
13254 else
13255 {
13256 struct type *func_type = NULL;
13257
13258 if (func_die)
13259 func_type = get_die_type (func_die, cu);
13260 if (func_type != NULL)
13261 {
13262 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13263
13264 /* Enlist this call site to the function. */
13265 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13266 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13267 }
13268 else
13269 complaint (_("Cannot find function owning DW_TAG_call_site "
13270 "DIE %s [in module %s]"),
13271 sect_offset_str (die->sect_off), objfile_name (objfile));
13272 }
13273 }
13274
13275 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13276 if (attr == NULL)
13277 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13278 if (attr == NULL)
13279 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13280 if (attr == NULL)
13281 {
13282 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13283 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13284 }
13285 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13286 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13287 /* Keep NULL DWARF_BLOCK. */;
13288 else if (attr->form_is_block ())
13289 {
13290 struct dwarf2_locexpr_baton *dlbaton;
13291
13292 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13293 dlbaton->data = DW_BLOCK (attr)->data;
13294 dlbaton->size = DW_BLOCK (attr)->size;
13295 dlbaton->per_cu = cu->per_cu;
13296
13297 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13298 }
13299 else if (attr->form_is_ref ())
13300 {
13301 struct dwarf2_cu *target_cu = cu;
13302 struct die_info *target_die;
13303
13304 target_die = follow_die_ref (die, attr, &target_cu);
13305 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13306 if (die_is_declaration (target_die, target_cu))
13307 {
13308 const char *target_physname;
13309
13310 /* Prefer the mangled name; otherwise compute the demangled one. */
13311 target_physname = dw2_linkage_name (target_die, target_cu);
13312 if (target_physname == NULL)
13313 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13314 if (target_physname == NULL)
13315 complaint (_("DW_AT_call_target target DIE has invalid "
13316 "physname, for referencing DIE %s [in module %s]"),
13317 sect_offset_str (die->sect_off), objfile_name (objfile));
13318 else
13319 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13320 }
13321 else
13322 {
13323 CORE_ADDR lowpc;
13324
13325 /* DW_AT_entry_pc should be preferred. */
13326 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13327 <= PC_BOUNDS_INVALID)
13328 complaint (_("DW_AT_call_target target DIE has invalid "
13329 "low pc, for referencing DIE %s [in module %s]"),
13330 sect_offset_str (die->sect_off), objfile_name (objfile));
13331 else
13332 {
13333 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13334 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13335 }
13336 }
13337 }
13338 else
13339 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13340 "block nor reference, for DIE %s [in module %s]"),
13341 sect_offset_str (die->sect_off), objfile_name (objfile));
13342
13343 call_site->per_cu = cu->per_cu;
13344
13345 for (child_die = die->child;
13346 child_die && child_die->tag;
13347 child_die = child_die->sibling)
13348 {
13349 struct call_site_parameter *parameter;
13350 struct attribute *loc, *origin;
13351
13352 if (child_die->tag != DW_TAG_call_site_parameter
13353 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13354 {
13355 /* Already printed the complaint above. */
13356 continue;
13357 }
13358
13359 gdb_assert (call_site->parameter_count < nparams);
13360 parameter = &call_site->parameter[call_site->parameter_count];
13361
13362 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13363 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13364 register is contained in DW_AT_call_value. */
13365
13366 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13367 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13368 if (origin == NULL)
13369 {
13370 /* This was a pre-DWARF-5 GNU extension alias
13371 for DW_AT_call_parameter. */
13372 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13373 }
13374 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13375 {
13376 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13377
13378 sect_offset sect_off = origin->get_ref_die_offset ();
13379 if (!cu->header.offset_in_cu_p (sect_off))
13380 {
13381 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13382 binding can be done only inside one CU. Such referenced DIE
13383 therefore cannot be even moved to DW_TAG_partial_unit. */
13384 complaint (_("DW_AT_call_parameter offset is not in CU for "
13385 "DW_TAG_call_site child DIE %s [in module %s]"),
13386 sect_offset_str (child_die->sect_off),
13387 objfile_name (objfile));
13388 continue;
13389 }
13390 parameter->u.param_cu_off
13391 = (cu_offset) (sect_off - cu->header.sect_off);
13392 }
13393 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13394 {
13395 complaint (_("No DW_FORM_block* DW_AT_location for "
13396 "DW_TAG_call_site child DIE %s [in module %s]"),
13397 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13398 continue;
13399 }
13400 else
13401 {
13402 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13403 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13404 if (parameter->u.dwarf_reg != -1)
13405 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13406 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13407 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13408 &parameter->u.fb_offset))
13409 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13410 else
13411 {
13412 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13413 "for DW_FORM_block* DW_AT_location is supported for "
13414 "DW_TAG_call_site child DIE %s "
13415 "[in module %s]"),
13416 sect_offset_str (child_die->sect_off),
13417 objfile_name (objfile));
13418 continue;
13419 }
13420 }
13421
13422 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13423 if (attr == NULL)
13424 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13425 if (attr == NULL || !attr->form_is_block ())
13426 {
13427 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13428 "DW_TAG_call_site child DIE %s [in module %s]"),
13429 sect_offset_str (child_die->sect_off),
13430 objfile_name (objfile));
13431 continue;
13432 }
13433 parameter->value = DW_BLOCK (attr)->data;
13434 parameter->value_size = DW_BLOCK (attr)->size;
13435
13436 /* Parameters are not pre-cleared by memset above. */
13437 parameter->data_value = NULL;
13438 parameter->data_value_size = 0;
13439 call_site->parameter_count++;
13440
13441 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13442 if (attr == NULL)
13443 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13444 if (attr != nullptr)
13445 {
13446 if (!attr->form_is_block ())
13447 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13448 "DW_TAG_call_site child DIE %s [in module %s]"),
13449 sect_offset_str (child_die->sect_off),
13450 objfile_name (objfile));
13451 else
13452 {
13453 parameter->data_value = DW_BLOCK (attr)->data;
13454 parameter->data_value_size = DW_BLOCK (attr)->size;
13455 }
13456 }
13457 }
13458 }
13459
13460 /* Helper function for read_variable. If DIE represents a virtual
13461 table, then return the type of the concrete object that is
13462 associated with the virtual table. Otherwise, return NULL. */
13463
13464 static struct type *
13465 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13466 {
13467 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13468 if (attr == NULL)
13469 return NULL;
13470
13471 /* Find the type DIE. */
13472 struct die_info *type_die = NULL;
13473 struct dwarf2_cu *type_cu = cu;
13474
13475 if (attr->form_is_ref ())
13476 type_die = follow_die_ref (die, attr, &type_cu);
13477 if (type_die == NULL)
13478 return NULL;
13479
13480 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13481 return NULL;
13482 return die_containing_type (type_die, type_cu);
13483 }
13484
13485 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13486
13487 static void
13488 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13489 {
13490 struct rust_vtable_symbol *storage = NULL;
13491
13492 if (cu->language == language_rust)
13493 {
13494 struct type *containing_type = rust_containing_type (die, cu);
13495
13496 if (containing_type != NULL)
13497 {
13498 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13499
13500 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13501 initialize_objfile_symbol (storage);
13502 storage->concrete_type = containing_type;
13503 storage->subclass = SYMBOL_RUST_VTABLE;
13504 }
13505 }
13506
13507 struct symbol *res = new_symbol (die, NULL, cu, storage);
13508 struct attribute *abstract_origin
13509 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13510 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13511 if (res == NULL && loc && abstract_origin)
13512 {
13513 /* We have a variable without a name, but with a location and an abstract
13514 origin. This may be a concrete instance of an abstract variable
13515 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13516 later. */
13517 struct dwarf2_cu *origin_cu = cu;
13518 struct die_info *origin_die
13519 = follow_die_ref (die, abstract_origin, &origin_cu);
13520 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13521 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13522 }
13523 }
13524
13525 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13526 reading .debug_rnglists.
13527 Callback's type should be:
13528 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13529 Return true if the attributes are present and valid, otherwise,
13530 return false. */
13531
13532 template <typename Callback>
13533 static bool
13534 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13535 Callback &&callback)
13536 {
13537 struct dwarf2_per_objfile *dwarf2_per_objfile
13538 = cu->per_cu->dwarf2_per_objfile;
13539 struct objfile *objfile = dwarf2_per_objfile->objfile;
13540 bfd *obfd = objfile->obfd;
13541 /* Base address selection entry. */
13542 gdb::optional<CORE_ADDR> base;
13543 const gdb_byte *buffer;
13544 CORE_ADDR baseaddr;
13545 bool overflow = false;
13546
13547 base = cu->base_address;
13548
13549 dwarf2_per_objfile->rnglists.read (objfile);
13550 if (offset >= dwarf2_per_objfile->rnglists.size)
13551 {
13552 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13553 offset);
13554 return false;
13555 }
13556 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13557
13558 baseaddr = objfile->text_section_offset ();
13559
13560 while (1)
13561 {
13562 /* Initialize it due to a false compiler warning. */
13563 CORE_ADDR range_beginning = 0, range_end = 0;
13564 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13565 + dwarf2_per_objfile->rnglists.size);
13566 unsigned int bytes_read;
13567
13568 if (buffer == buf_end)
13569 {
13570 overflow = true;
13571 break;
13572 }
13573 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13574 switch (rlet)
13575 {
13576 case DW_RLE_end_of_list:
13577 break;
13578 case DW_RLE_base_address:
13579 if (buffer + cu->header.addr_size > buf_end)
13580 {
13581 overflow = true;
13582 break;
13583 }
13584 base = cu->header.read_address (obfd, buffer, &bytes_read);
13585 buffer += bytes_read;
13586 break;
13587 case DW_RLE_start_length:
13588 if (buffer + cu->header.addr_size > buf_end)
13589 {
13590 overflow = true;
13591 break;
13592 }
13593 range_beginning = cu->header.read_address (obfd, buffer,
13594 &bytes_read);
13595 buffer += bytes_read;
13596 range_end = (range_beginning
13597 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13598 buffer += bytes_read;
13599 if (buffer > buf_end)
13600 {
13601 overflow = true;
13602 break;
13603 }
13604 break;
13605 case DW_RLE_offset_pair:
13606 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13607 buffer += bytes_read;
13608 if (buffer > buf_end)
13609 {
13610 overflow = true;
13611 break;
13612 }
13613 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13614 buffer += bytes_read;
13615 if (buffer > buf_end)
13616 {
13617 overflow = true;
13618 break;
13619 }
13620 break;
13621 case DW_RLE_start_end:
13622 if (buffer + 2 * cu->header.addr_size > buf_end)
13623 {
13624 overflow = true;
13625 break;
13626 }
13627 range_beginning = cu->header.read_address (obfd, buffer,
13628 &bytes_read);
13629 buffer += bytes_read;
13630 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13631 buffer += bytes_read;
13632 break;
13633 default:
13634 complaint (_("Invalid .debug_rnglists data (no base address)"));
13635 return false;
13636 }
13637 if (rlet == DW_RLE_end_of_list || overflow)
13638 break;
13639 if (rlet == DW_RLE_base_address)
13640 continue;
13641
13642 if (!base.has_value ())
13643 {
13644 /* We have no valid base address for the ranges
13645 data. */
13646 complaint (_("Invalid .debug_rnglists data (no base address)"));
13647 return false;
13648 }
13649
13650 if (range_beginning > range_end)
13651 {
13652 /* Inverted range entries are invalid. */
13653 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13654 return false;
13655 }
13656
13657 /* Empty range entries have no effect. */
13658 if (range_beginning == range_end)
13659 continue;
13660
13661 range_beginning += *base;
13662 range_end += *base;
13663
13664 /* A not-uncommon case of bad debug info.
13665 Don't pollute the addrmap with bad data. */
13666 if (range_beginning + baseaddr == 0
13667 && !dwarf2_per_objfile->has_section_at_zero)
13668 {
13669 complaint (_(".debug_rnglists entry has start address of zero"
13670 " [in module %s]"), objfile_name (objfile));
13671 continue;
13672 }
13673
13674 callback (range_beginning, range_end);
13675 }
13676
13677 if (overflow)
13678 {
13679 complaint (_("Offset %d is not terminated "
13680 "for DW_AT_ranges attribute"),
13681 offset);
13682 return false;
13683 }
13684
13685 return true;
13686 }
13687
13688 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13689 Callback's type should be:
13690 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13691 Return 1 if the attributes are present and valid, otherwise, return 0. */
13692
13693 template <typename Callback>
13694 static int
13695 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13696 Callback &&callback)
13697 {
13698 struct dwarf2_per_objfile *dwarf2_per_objfile
13699 = cu->per_cu->dwarf2_per_objfile;
13700 struct objfile *objfile = dwarf2_per_objfile->objfile;
13701 struct comp_unit_head *cu_header = &cu->header;
13702 bfd *obfd = objfile->obfd;
13703 unsigned int addr_size = cu_header->addr_size;
13704 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13705 /* Base address selection entry. */
13706 gdb::optional<CORE_ADDR> base;
13707 unsigned int dummy;
13708 const gdb_byte *buffer;
13709 CORE_ADDR baseaddr;
13710
13711 if (cu_header->version >= 5)
13712 return dwarf2_rnglists_process (offset, cu, callback);
13713
13714 base = cu->base_address;
13715
13716 dwarf2_per_objfile->ranges.read (objfile);
13717 if (offset >= dwarf2_per_objfile->ranges.size)
13718 {
13719 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13720 offset);
13721 return 0;
13722 }
13723 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13724
13725 baseaddr = objfile->text_section_offset ();
13726
13727 while (1)
13728 {
13729 CORE_ADDR range_beginning, range_end;
13730
13731 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13732 buffer += addr_size;
13733 range_end = cu->header.read_address (obfd, buffer, &dummy);
13734 buffer += addr_size;
13735 offset += 2 * addr_size;
13736
13737 /* An end of list marker is a pair of zero addresses. */
13738 if (range_beginning == 0 && range_end == 0)
13739 /* Found the end of list entry. */
13740 break;
13741
13742 /* Each base address selection entry is a pair of 2 values.
13743 The first is the largest possible address, the second is
13744 the base address. Check for a base address here. */
13745 if ((range_beginning & mask) == mask)
13746 {
13747 /* If we found the largest possible address, then we already
13748 have the base address in range_end. */
13749 base = range_end;
13750 continue;
13751 }
13752
13753 if (!base.has_value ())
13754 {
13755 /* We have no valid base address for the ranges
13756 data. */
13757 complaint (_("Invalid .debug_ranges data (no base address)"));
13758 return 0;
13759 }
13760
13761 if (range_beginning > range_end)
13762 {
13763 /* Inverted range entries are invalid. */
13764 complaint (_("Invalid .debug_ranges data (inverted range)"));
13765 return 0;
13766 }
13767
13768 /* Empty range entries have no effect. */
13769 if (range_beginning == range_end)
13770 continue;
13771
13772 range_beginning += *base;
13773 range_end += *base;
13774
13775 /* A not-uncommon case of bad debug info.
13776 Don't pollute the addrmap with bad data. */
13777 if (range_beginning + baseaddr == 0
13778 && !dwarf2_per_objfile->has_section_at_zero)
13779 {
13780 complaint (_(".debug_ranges entry has start address of zero"
13781 " [in module %s]"), objfile_name (objfile));
13782 continue;
13783 }
13784
13785 callback (range_beginning, range_end);
13786 }
13787
13788 return 1;
13789 }
13790
13791 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13792 Return 1 if the attributes are present and valid, otherwise, return 0.
13793 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13794
13795 static int
13796 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13797 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13798 dwarf2_psymtab *ranges_pst)
13799 {
13800 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13801 struct gdbarch *gdbarch = objfile->arch ();
13802 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13803 int low_set = 0;
13804 CORE_ADDR low = 0;
13805 CORE_ADDR high = 0;
13806 int retval;
13807
13808 retval = dwarf2_ranges_process (offset, cu,
13809 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13810 {
13811 if (ranges_pst != NULL)
13812 {
13813 CORE_ADDR lowpc;
13814 CORE_ADDR highpc;
13815
13816 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13817 range_beginning + baseaddr)
13818 - baseaddr);
13819 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13820 range_end + baseaddr)
13821 - baseaddr);
13822 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13823 lowpc, highpc - 1, ranges_pst);
13824 }
13825
13826 /* FIXME: This is recording everything as a low-high
13827 segment of consecutive addresses. We should have a
13828 data structure for discontiguous block ranges
13829 instead. */
13830 if (! low_set)
13831 {
13832 low = range_beginning;
13833 high = range_end;
13834 low_set = 1;
13835 }
13836 else
13837 {
13838 if (range_beginning < low)
13839 low = range_beginning;
13840 if (range_end > high)
13841 high = range_end;
13842 }
13843 });
13844 if (!retval)
13845 return 0;
13846
13847 if (! low_set)
13848 /* If the first entry is an end-of-list marker, the range
13849 describes an empty scope, i.e. no instructions. */
13850 return 0;
13851
13852 if (low_return)
13853 *low_return = low;
13854 if (high_return)
13855 *high_return = high;
13856 return 1;
13857 }
13858
13859 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13860 definition for the return value. *LOWPC and *HIGHPC are set iff
13861 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13862
13863 static enum pc_bounds_kind
13864 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13865 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13866 dwarf2_psymtab *pst)
13867 {
13868 struct dwarf2_per_objfile *dwarf2_per_objfile
13869 = cu->per_cu->dwarf2_per_objfile;
13870 struct attribute *attr;
13871 struct attribute *attr_high;
13872 CORE_ADDR low = 0;
13873 CORE_ADDR high = 0;
13874 enum pc_bounds_kind ret;
13875
13876 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13877 if (attr_high)
13878 {
13879 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13880 if (attr != nullptr)
13881 {
13882 low = attr->value_as_address ();
13883 high = attr_high->value_as_address ();
13884 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13885 high += low;
13886 }
13887 else
13888 /* Found high w/o low attribute. */
13889 return PC_BOUNDS_INVALID;
13890
13891 /* Found consecutive range of addresses. */
13892 ret = PC_BOUNDS_HIGH_LOW;
13893 }
13894 else
13895 {
13896 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13897 if (attr != NULL)
13898 {
13899 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13900 We take advantage of the fact that DW_AT_ranges does not appear
13901 in DW_TAG_compile_unit of DWO files. */
13902 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13903 unsigned int ranges_offset = (DW_UNSND (attr)
13904 + (need_ranges_base
13905 ? cu->ranges_base
13906 : 0));
13907
13908 /* Value of the DW_AT_ranges attribute is the offset in the
13909 .debug_ranges section. */
13910 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13911 return PC_BOUNDS_INVALID;
13912 /* Found discontinuous range of addresses. */
13913 ret = PC_BOUNDS_RANGES;
13914 }
13915 else
13916 return PC_BOUNDS_NOT_PRESENT;
13917 }
13918
13919 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13920 if (high <= low)
13921 return PC_BOUNDS_INVALID;
13922
13923 /* When using the GNU linker, .gnu.linkonce. sections are used to
13924 eliminate duplicate copies of functions and vtables and such.
13925 The linker will arbitrarily choose one and discard the others.
13926 The AT_*_pc values for such functions refer to local labels in
13927 these sections. If the section from that file was discarded, the
13928 labels are not in the output, so the relocs get a value of 0.
13929 If this is a discarded function, mark the pc bounds as invalid,
13930 so that GDB will ignore it. */
13931 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13932 return PC_BOUNDS_INVALID;
13933
13934 *lowpc = low;
13935 if (highpc)
13936 *highpc = high;
13937 return ret;
13938 }
13939
13940 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13941 its low and high PC addresses. Do nothing if these addresses could not
13942 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13943 and HIGHPC to the high address if greater than HIGHPC. */
13944
13945 static void
13946 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13947 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13948 struct dwarf2_cu *cu)
13949 {
13950 CORE_ADDR low, high;
13951 struct die_info *child = die->child;
13952
13953 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13954 {
13955 *lowpc = std::min (*lowpc, low);
13956 *highpc = std::max (*highpc, high);
13957 }
13958
13959 /* If the language does not allow nested subprograms (either inside
13960 subprograms or lexical blocks), we're done. */
13961 if (cu->language != language_ada)
13962 return;
13963
13964 /* Check all the children of the given DIE. If it contains nested
13965 subprograms, then check their pc bounds. Likewise, we need to
13966 check lexical blocks as well, as they may also contain subprogram
13967 definitions. */
13968 while (child && child->tag)
13969 {
13970 if (child->tag == DW_TAG_subprogram
13971 || child->tag == DW_TAG_lexical_block)
13972 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13973 child = child->sibling;
13974 }
13975 }
13976
13977 /* Get the low and high pc's represented by the scope DIE, and store
13978 them in *LOWPC and *HIGHPC. If the correct values can't be
13979 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13980
13981 static void
13982 get_scope_pc_bounds (struct die_info *die,
13983 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13984 struct dwarf2_cu *cu)
13985 {
13986 CORE_ADDR best_low = (CORE_ADDR) -1;
13987 CORE_ADDR best_high = (CORE_ADDR) 0;
13988 CORE_ADDR current_low, current_high;
13989
13990 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13991 >= PC_BOUNDS_RANGES)
13992 {
13993 best_low = current_low;
13994 best_high = current_high;
13995 }
13996 else
13997 {
13998 struct die_info *child = die->child;
13999
14000 while (child && child->tag)
14001 {
14002 switch (child->tag) {
14003 case DW_TAG_subprogram:
14004 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14005 break;
14006 case DW_TAG_namespace:
14007 case DW_TAG_module:
14008 /* FIXME: carlton/2004-01-16: Should we do this for
14009 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14010 that current GCC's always emit the DIEs corresponding
14011 to definitions of methods of classes as children of a
14012 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14013 the DIEs giving the declarations, which could be
14014 anywhere). But I don't see any reason why the
14015 standards says that they have to be there. */
14016 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14017
14018 if (current_low != ((CORE_ADDR) -1))
14019 {
14020 best_low = std::min (best_low, current_low);
14021 best_high = std::max (best_high, current_high);
14022 }
14023 break;
14024 default:
14025 /* Ignore. */
14026 break;
14027 }
14028
14029 child = child->sibling;
14030 }
14031 }
14032
14033 *lowpc = best_low;
14034 *highpc = best_high;
14035 }
14036
14037 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14038 in DIE. */
14039
14040 static void
14041 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14042 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14043 {
14044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14045 struct gdbarch *gdbarch = objfile->arch ();
14046 struct attribute *attr;
14047 struct attribute *attr_high;
14048
14049 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14050 if (attr_high)
14051 {
14052 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14053 if (attr != nullptr)
14054 {
14055 CORE_ADDR low = attr->value_as_address ();
14056 CORE_ADDR high = attr_high->value_as_address ();
14057
14058 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14059 high += low;
14060
14061 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14062 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14063 cu->get_builder ()->record_block_range (block, low, high - 1);
14064 }
14065 }
14066
14067 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14068 if (attr != nullptr)
14069 {
14070 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14071 We take advantage of the fact that DW_AT_ranges does not appear
14072 in DW_TAG_compile_unit of DWO files. */
14073 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14074
14075 /* The value of the DW_AT_ranges attribute is the offset of the
14076 address range list in the .debug_ranges section. */
14077 unsigned long offset = (DW_UNSND (attr)
14078 + (need_ranges_base ? cu->ranges_base : 0));
14079
14080 std::vector<blockrange> blockvec;
14081 dwarf2_ranges_process (offset, cu,
14082 [&] (CORE_ADDR start, CORE_ADDR end)
14083 {
14084 start += baseaddr;
14085 end += baseaddr;
14086 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14087 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14088 cu->get_builder ()->record_block_range (block, start, end - 1);
14089 blockvec.emplace_back (start, end);
14090 });
14091
14092 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14093 }
14094 }
14095
14096 /* Check whether the producer field indicates either of GCC < 4.6, or the
14097 Intel C/C++ compiler, and cache the result in CU. */
14098
14099 static void
14100 check_producer (struct dwarf2_cu *cu)
14101 {
14102 int major, minor;
14103
14104 if (cu->producer == NULL)
14105 {
14106 /* For unknown compilers expect their behavior is DWARF version
14107 compliant.
14108
14109 GCC started to support .debug_types sections by -gdwarf-4 since
14110 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14111 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14112 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14113 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14114 }
14115 else if (producer_is_gcc (cu->producer, &major, &minor))
14116 {
14117 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14118 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14119 }
14120 else if (producer_is_icc (cu->producer, &major, &minor))
14121 {
14122 cu->producer_is_icc = true;
14123 cu->producer_is_icc_lt_14 = major < 14;
14124 }
14125 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14126 cu->producer_is_codewarrior = true;
14127 else
14128 {
14129 /* For other non-GCC compilers, expect their behavior is DWARF version
14130 compliant. */
14131 }
14132
14133 cu->checked_producer = true;
14134 }
14135
14136 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14137 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14138 during 4.6.0 experimental. */
14139
14140 static bool
14141 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14142 {
14143 if (!cu->checked_producer)
14144 check_producer (cu);
14145
14146 return cu->producer_is_gxx_lt_4_6;
14147 }
14148
14149
14150 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14151 with incorrect is_stmt attributes. */
14152
14153 static bool
14154 producer_is_codewarrior (struct dwarf2_cu *cu)
14155 {
14156 if (!cu->checked_producer)
14157 check_producer (cu);
14158
14159 return cu->producer_is_codewarrior;
14160 }
14161
14162 /* Return the default accessibility type if it is not overridden by
14163 DW_AT_accessibility. */
14164
14165 static enum dwarf_access_attribute
14166 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14167 {
14168 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14169 {
14170 /* The default DWARF 2 accessibility for members is public, the default
14171 accessibility for inheritance is private. */
14172
14173 if (die->tag != DW_TAG_inheritance)
14174 return DW_ACCESS_public;
14175 else
14176 return DW_ACCESS_private;
14177 }
14178 else
14179 {
14180 /* DWARF 3+ defines the default accessibility a different way. The same
14181 rules apply now for DW_TAG_inheritance as for the members and it only
14182 depends on the container kind. */
14183
14184 if (die->parent->tag == DW_TAG_class_type)
14185 return DW_ACCESS_private;
14186 else
14187 return DW_ACCESS_public;
14188 }
14189 }
14190
14191 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14192 offset. If the attribute was not found return 0, otherwise return
14193 1. If it was found but could not properly be handled, set *OFFSET
14194 to 0. */
14195
14196 static int
14197 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14198 LONGEST *offset)
14199 {
14200 struct attribute *attr;
14201
14202 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14203 if (attr != NULL)
14204 {
14205 *offset = 0;
14206
14207 /* Note that we do not check for a section offset first here.
14208 This is because DW_AT_data_member_location is new in DWARF 4,
14209 so if we see it, we can assume that a constant form is really
14210 a constant and not a section offset. */
14211 if (attr->form_is_constant ())
14212 *offset = attr->constant_value (0);
14213 else if (attr->form_is_section_offset ())
14214 dwarf2_complex_location_expr_complaint ();
14215 else if (attr->form_is_block ())
14216 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14217 else
14218 dwarf2_complex_location_expr_complaint ();
14219
14220 return 1;
14221 }
14222
14223 return 0;
14224 }
14225
14226 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14227
14228 static void
14229 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14230 struct field *field)
14231 {
14232 struct attribute *attr;
14233
14234 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14235 if (attr != NULL)
14236 {
14237 if (attr->form_is_constant ())
14238 {
14239 LONGEST offset = attr->constant_value (0);
14240 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14241 }
14242 else if (attr->form_is_section_offset ())
14243 dwarf2_complex_location_expr_complaint ();
14244 else if (attr->form_is_block ())
14245 {
14246 bool handled;
14247 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14248 if (handled)
14249 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14250 else
14251 {
14252 struct objfile *objfile
14253 = cu->per_cu->dwarf2_per_objfile->objfile;
14254 struct dwarf2_locexpr_baton *dlbaton
14255 = XOBNEW (&objfile->objfile_obstack,
14256 struct dwarf2_locexpr_baton);
14257 dlbaton->data = DW_BLOCK (attr)->data;
14258 dlbaton->size = DW_BLOCK (attr)->size;
14259 /* When using this baton, we want to compute the address
14260 of the field, not the value. This is why
14261 is_reference is set to false here. */
14262 dlbaton->is_reference = false;
14263 dlbaton->per_cu = cu->per_cu;
14264
14265 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14266 }
14267 }
14268 else
14269 dwarf2_complex_location_expr_complaint ();
14270 }
14271 }
14272
14273 /* Add an aggregate field to the field list. */
14274
14275 static void
14276 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14277 struct dwarf2_cu *cu)
14278 {
14279 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14280 struct gdbarch *gdbarch = objfile->arch ();
14281 struct nextfield *new_field;
14282 struct attribute *attr;
14283 struct field *fp;
14284 const char *fieldname = "";
14285
14286 if (die->tag == DW_TAG_inheritance)
14287 {
14288 fip->baseclasses.emplace_back ();
14289 new_field = &fip->baseclasses.back ();
14290 }
14291 else
14292 {
14293 fip->fields.emplace_back ();
14294 new_field = &fip->fields.back ();
14295 }
14296
14297 new_field->offset = die->sect_off;
14298
14299 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14300 if (attr != nullptr)
14301 new_field->accessibility = DW_UNSND (attr);
14302 else
14303 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14304 if (new_field->accessibility != DW_ACCESS_public)
14305 fip->non_public_fields = 1;
14306
14307 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14308 if (attr != nullptr)
14309 new_field->virtuality = DW_UNSND (attr);
14310 else
14311 new_field->virtuality = DW_VIRTUALITY_none;
14312
14313 fp = &new_field->field;
14314
14315 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14316 {
14317 /* Data member other than a C++ static data member. */
14318
14319 /* Get type of field. */
14320 fp->type = die_type (die, cu);
14321
14322 SET_FIELD_BITPOS (*fp, 0);
14323
14324 /* Get bit size of field (zero if none). */
14325 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14326 if (attr != nullptr)
14327 {
14328 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14329 }
14330 else
14331 {
14332 FIELD_BITSIZE (*fp) = 0;
14333 }
14334
14335 /* Get bit offset of field. */
14336 handle_data_member_location (die, cu, fp);
14337 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14338 if (attr != nullptr)
14339 {
14340 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14341 {
14342 /* For big endian bits, the DW_AT_bit_offset gives the
14343 additional bit offset from the MSB of the containing
14344 anonymous object to the MSB of the field. We don't
14345 have to do anything special since we don't need to
14346 know the size of the anonymous object. */
14347 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14348 }
14349 else
14350 {
14351 /* For little endian bits, compute the bit offset to the
14352 MSB of the anonymous object, subtract off the number of
14353 bits from the MSB of the field to the MSB of the
14354 object, and then subtract off the number of bits of
14355 the field itself. The result is the bit offset of
14356 the LSB of the field. */
14357 int anonymous_size;
14358 int bit_offset = DW_UNSND (attr);
14359
14360 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14361 if (attr != nullptr)
14362 {
14363 /* The size of the anonymous object containing
14364 the bit field is explicit, so use the
14365 indicated size (in bytes). */
14366 anonymous_size = DW_UNSND (attr);
14367 }
14368 else
14369 {
14370 /* The size of the anonymous object containing
14371 the bit field must be inferred from the type
14372 attribute of the data member containing the
14373 bit field. */
14374 anonymous_size = TYPE_LENGTH (fp->type);
14375 }
14376 SET_FIELD_BITPOS (*fp,
14377 (FIELD_BITPOS (*fp)
14378 + anonymous_size * bits_per_byte
14379 - bit_offset - FIELD_BITSIZE (*fp)));
14380 }
14381 }
14382 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14383 if (attr != NULL)
14384 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14385 + attr->constant_value (0)));
14386
14387 /* Get name of field. */
14388 fieldname = dwarf2_name (die, cu);
14389 if (fieldname == NULL)
14390 fieldname = "";
14391
14392 /* The name is already allocated along with this objfile, so we don't
14393 need to duplicate it for the type. */
14394 fp->name = fieldname;
14395
14396 /* Change accessibility for artificial fields (e.g. virtual table
14397 pointer or virtual base class pointer) to private. */
14398 if (dwarf2_attr (die, DW_AT_artificial, cu))
14399 {
14400 FIELD_ARTIFICIAL (*fp) = 1;
14401 new_field->accessibility = DW_ACCESS_private;
14402 fip->non_public_fields = 1;
14403 }
14404 }
14405 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14406 {
14407 /* C++ static member. */
14408
14409 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14410 is a declaration, but all versions of G++ as of this writing
14411 (so through at least 3.2.1) incorrectly generate
14412 DW_TAG_variable tags. */
14413
14414 const char *physname;
14415
14416 /* Get name of field. */
14417 fieldname = dwarf2_name (die, cu);
14418 if (fieldname == NULL)
14419 return;
14420
14421 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14422 if (attr
14423 /* Only create a symbol if this is an external value.
14424 new_symbol checks this and puts the value in the global symbol
14425 table, which we want. If it is not external, new_symbol
14426 will try to put the value in cu->list_in_scope which is wrong. */
14427 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14428 {
14429 /* A static const member, not much different than an enum as far as
14430 we're concerned, except that we can support more types. */
14431 new_symbol (die, NULL, cu);
14432 }
14433
14434 /* Get physical name. */
14435 physname = dwarf2_physname (fieldname, die, cu);
14436
14437 /* The name is already allocated along with this objfile, so we don't
14438 need to duplicate it for the type. */
14439 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14440 FIELD_TYPE (*fp) = die_type (die, cu);
14441 FIELD_NAME (*fp) = fieldname;
14442 }
14443 else if (die->tag == DW_TAG_inheritance)
14444 {
14445 /* C++ base class field. */
14446 handle_data_member_location (die, cu, fp);
14447 FIELD_BITSIZE (*fp) = 0;
14448 FIELD_TYPE (*fp) = die_type (die, cu);
14449 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14450 }
14451 else
14452 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14453 }
14454
14455 /* Can the type given by DIE define another type? */
14456
14457 static bool
14458 type_can_define_types (const struct die_info *die)
14459 {
14460 switch (die->tag)
14461 {
14462 case DW_TAG_typedef:
14463 case DW_TAG_class_type:
14464 case DW_TAG_structure_type:
14465 case DW_TAG_union_type:
14466 case DW_TAG_enumeration_type:
14467 return true;
14468
14469 default:
14470 return false;
14471 }
14472 }
14473
14474 /* Add a type definition defined in the scope of the FIP's class. */
14475
14476 static void
14477 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14478 struct dwarf2_cu *cu)
14479 {
14480 struct decl_field fp;
14481 memset (&fp, 0, sizeof (fp));
14482
14483 gdb_assert (type_can_define_types (die));
14484
14485 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14486 fp.name = dwarf2_name (die, cu);
14487 fp.type = read_type_die (die, cu);
14488
14489 /* Save accessibility. */
14490 enum dwarf_access_attribute accessibility;
14491 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14492 if (attr != NULL)
14493 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14494 else
14495 accessibility = dwarf2_default_access_attribute (die, cu);
14496 switch (accessibility)
14497 {
14498 case DW_ACCESS_public:
14499 /* The assumed value if neither private nor protected. */
14500 break;
14501 case DW_ACCESS_private:
14502 fp.is_private = 1;
14503 break;
14504 case DW_ACCESS_protected:
14505 fp.is_protected = 1;
14506 break;
14507 default:
14508 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14509 }
14510
14511 if (die->tag == DW_TAG_typedef)
14512 fip->typedef_field_list.push_back (fp);
14513 else
14514 fip->nested_types_list.push_back (fp);
14515 }
14516
14517 /* A convenience typedef that's used when finding the discriminant
14518 field for a variant part. */
14519 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14520 offset_map_type;
14521
14522 /* Compute the discriminant range for a given variant. OBSTACK is
14523 where the results will be stored. VARIANT is the variant to
14524 process. IS_UNSIGNED indicates whether the discriminant is signed
14525 or unsigned. */
14526
14527 static const gdb::array_view<discriminant_range>
14528 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14529 bool is_unsigned)
14530 {
14531 std::vector<discriminant_range> ranges;
14532
14533 if (variant.default_branch)
14534 return {};
14535
14536 if (variant.discr_list_data == nullptr)
14537 {
14538 discriminant_range r
14539 = {variant.discriminant_value, variant.discriminant_value};
14540 ranges.push_back (r);
14541 }
14542 else
14543 {
14544 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14545 variant.discr_list_data->size);
14546 while (!data.empty ())
14547 {
14548 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14549 {
14550 complaint (_("invalid discriminant marker: %d"), data[0]);
14551 break;
14552 }
14553 bool is_range = data[0] == DW_DSC_range;
14554 data = data.slice (1);
14555
14556 ULONGEST low, high;
14557 unsigned int bytes_read;
14558
14559 if (data.empty ())
14560 {
14561 complaint (_("DW_AT_discr_list missing low value"));
14562 break;
14563 }
14564 if (is_unsigned)
14565 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14566 else
14567 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14568 &bytes_read);
14569 data = data.slice (bytes_read);
14570
14571 if (is_range)
14572 {
14573 if (data.empty ())
14574 {
14575 complaint (_("DW_AT_discr_list missing high value"));
14576 break;
14577 }
14578 if (is_unsigned)
14579 high = read_unsigned_leb128 (nullptr, data.data (),
14580 &bytes_read);
14581 else
14582 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14583 &bytes_read);
14584 data = data.slice (bytes_read);
14585 }
14586 else
14587 high = low;
14588
14589 ranges.push_back ({ low, high });
14590 }
14591 }
14592
14593 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14594 ranges.size ());
14595 std::copy (ranges.begin (), ranges.end (), result);
14596 return gdb::array_view<discriminant_range> (result, ranges.size ());
14597 }
14598
14599 static const gdb::array_view<variant_part> create_variant_parts
14600 (struct obstack *obstack,
14601 const offset_map_type &offset_map,
14602 struct field_info *fi,
14603 const std::vector<variant_part_builder> &variant_parts);
14604
14605 /* Fill in a "struct variant" for a given variant field. RESULT is
14606 the variant to fill in. OBSTACK is where any needed allocations
14607 will be done. OFFSET_MAP holds the mapping from section offsets to
14608 fields for the type. FI describes the fields of the type we're
14609 processing. FIELD is the variant field we're converting. */
14610
14611 static void
14612 create_one_variant (variant &result, struct obstack *obstack,
14613 const offset_map_type &offset_map,
14614 struct field_info *fi, const variant_field &field)
14615 {
14616 result.discriminants = convert_variant_range (obstack, field, false);
14617 result.first_field = field.first_field + fi->baseclasses.size ();
14618 result.last_field = field.last_field + fi->baseclasses.size ();
14619 result.parts = create_variant_parts (obstack, offset_map, fi,
14620 field.variant_parts);
14621 }
14622
14623 /* Fill in a "struct variant_part" for a given variant part. RESULT
14624 is the variant part to fill in. OBSTACK is where any needed
14625 allocations will be done. OFFSET_MAP holds the mapping from
14626 section offsets to fields for the type. FI describes the fields of
14627 the type we're processing. BUILDER is the variant part to be
14628 converted. */
14629
14630 static void
14631 create_one_variant_part (variant_part &result,
14632 struct obstack *obstack,
14633 const offset_map_type &offset_map,
14634 struct field_info *fi,
14635 const variant_part_builder &builder)
14636 {
14637 auto iter = offset_map.find (builder.discriminant_offset);
14638 if (iter == offset_map.end ())
14639 {
14640 result.discriminant_index = -1;
14641 /* Doesn't matter. */
14642 result.is_unsigned = false;
14643 }
14644 else
14645 {
14646 result.discriminant_index = iter->second;
14647 result.is_unsigned
14648 = TYPE_UNSIGNED (FIELD_TYPE
14649 (fi->fields[result.discriminant_index].field));
14650 }
14651
14652 size_t n = builder.variants.size ();
14653 variant *output = new (obstack) variant[n];
14654 for (size_t i = 0; i < n; ++i)
14655 create_one_variant (output[i], obstack, offset_map, fi,
14656 builder.variants[i]);
14657
14658 result.variants = gdb::array_view<variant> (output, n);
14659 }
14660
14661 /* Create a vector of variant parts that can be attached to a type.
14662 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14663 holds the mapping from section offsets to fields for the type. FI
14664 describes the fields of the type we're processing. VARIANT_PARTS
14665 is the vector to convert. */
14666
14667 static const gdb::array_view<variant_part>
14668 create_variant_parts (struct obstack *obstack,
14669 const offset_map_type &offset_map,
14670 struct field_info *fi,
14671 const std::vector<variant_part_builder> &variant_parts)
14672 {
14673 if (variant_parts.empty ())
14674 return {};
14675
14676 size_t n = variant_parts.size ();
14677 variant_part *result = new (obstack) variant_part[n];
14678 for (size_t i = 0; i < n; ++i)
14679 create_one_variant_part (result[i], obstack, offset_map, fi,
14680 variant_parts[i]);
14681
14682 return gdb::array_view<variant_part> (result, n);
14683 }
14684
14685 /* Compute the variant part vector for FIP, attaching it to TYPE when
14686 done. */
14687
14688 static void
14689 add_variant_property (struct field_info *fip, struct type *type,
14690 struct dwarf2_cu *cu)
14691 {
14692 /* Map section offsets of fields to their field index. Note the
14693 field index here does not take the number of baseclasses into
14694 account. */
14695 offset_map_type offset_map;
14696 for (int i = 0; i < fip->fields.size (); ++i)
14697 offset_map[fip->fields[i].offset] = i;
14698
14699 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14700 gdb::array_view<variant_part> parts
14701 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14702 fip->variant_parts);
14703
14704 struct dynamic_prop prop;
14705 prop.kind = PROP_VARIANT_PARTS;
14706 prop.data.variant_parts
14707 = ((gdb::array_view<variant_part> *)
14708 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14709
14710 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
14711 }
14712
14713 /* Create the vector of fields, and attach it to the type. */
14714
14715 static void
14716 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14717 struct dwarf2_cu *cu)
14718 {
14719 int nfields = fip->nfields ();
14720
14721 /* Record the field count, allocate space for the array of fields,
14722 and create blank accessibility bitfields if necessary. */
14723 TYPE_NFIELDS (type) = nfields;
14724 TYPE_FIELDS (type) = (struct field *)
14725 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14726
14727 if (fip->non_public_fields && cu->language != language_ada)
14728 {
14729 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14730
14731 TYPE_FIELD_PRIVATE_BITS (type) =
14732 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14733 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14734
14735 TYPE_FIELD_PROTECTED_BITS (type) =
14736 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14737 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14738
14739 TYPE_FIELD_IGNORE_BITS (type) =
14740 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14741 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14742 }
14743
14744 /* If the type has baseclasses, allocate and clear a bit vector for
14745 TYPE_FIELD_VIRTUAL_BITS. */
14746 if (!fip->baseclasses.empty () && cu->language != language_ada)
14747 {
14748 int num_bytes = B_BYTES (fip->baseclasses.size ());
14749 unsigned char *pointer;
14750
14751 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14752 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14753 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14754 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14755 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14756 }
14757
14758 if (!fip->variant_parts.empty ())
14759 add_variant_property (fip, type, cu);
14760
14761 /* Copy the saved-up fields into the field vector. */
14762 for (int i = 0; i < nfields; ++i)
14763 {
14764 struct nextfield &field
14765 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14766 : fip->fields[i - fip->baseclasses.size ()]);
14767
14768 TYPE_FIELD (type, i) = field.field;
14769 switch (field.accessibility)
14770 {
14771 case DW_ACCESS_private:
14772 if (cu->language != language_ada)
14773 SET_TYPE_FIELD_PRIVATE (type, i);
14774 break;
14775
14776 case DW_ACCESS_protected:
14777 if (cu->language != language_ada)
14778 SET_TYPE_FIELD_PROTECTED (type, i);
14779 break;
14780
14781 case DW_ACCESS_public:
14782 break;
14783
14784 default:
14785 /* Unknown accessibility. Complain and treat it as public. */
14786 {
14787 complaint (_("unsupported accessibility %d"),
14788 field.accessibility);
14789 }
14790 break;
14791 }
14792 if (i < fip->baseclasses.size ())
14793 {
14794 switch (field.virtuality)
14795 {
14796 case DW_VIRTUALITY_virtual:
14797 case DW_VIRTUALITY_pure_virtual:
14798 if (cu->language == language_ada)
14799 error (_("unexpected virtuality in component of Ada type"));
14800 SET_TYPE_FIELD_VIRTUAL (type, i);
14801 break;
14802 }
14803 }
14804 }
14805 }
14806
14807 /* Return true if this member function is a constructor, false
14808 otherwise. */
14809
14810 static int
14811 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14812 {
14813 const char *fieldname;
14814 const char *type_name;
14815 int len;
14816
14817 if (die->parent == NULL)
14818 return 0;
14819
14820 if (die->parent->tag != DW_TAG_structure_type
14821 && die->parent->tag != DW_TAG_union_type
14822 && die->parent->tag != DW_TAG_class_type)
14823 return 0;
14824
14825 fieldname = dwarf2_name (die, cu);
14826 type_name = dwarf2_name (die->parent, cu);
14827 if (fieldname == NULL || type_name == NULL)
14828 return 0;
14829
14830 len = strlen (fieldname);
14831 return (strncmp (fieldname, type_name, len) == 0
14832 && (type_name[len] == '\0' || type_name[len] == '<'));
14833 }
14834
14835 /* Check if the given VALUE is a recognized enum
14836 dwarf_defaulted_attribute constant according to DWARF5 spec,
14837 Table 7.24. */
14838
14839 static bool
14840 is_valid_DW_AT_defaulted (ULONGEST value)
14841 {
14842 switch (value)
14843 {
14844 case DW_DEFAULTED_no:
14845 case DW_DEFAULTED_in_class:
14846 case DW_DEFAULTED_out_of_class:
14847 return true;
14848 }
14849
14850 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14851 return false;
14852 }
14853
14854 /* Add a member function to the proper fieldlist. */
14855
14856 static void
14857 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14858 struct type *type, struct dwarf2_cu *cu)
14859 {
14860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14861 struct attribute *attr;
14862 int i;
14863 struct fnfieldlist *flp = nullptr;
14864 struct fn_field *fnp;
14865 const char *fieldname;
14866 struct type *this_type;
14867 enum dwarf_access_attribute accessibility;
14868
14869 if (cu->language == language_ada)
14870 error (_("unexpected member function in Ada type"));
14871
14872 /* Get name of member function. */
14873 fieldname = dwarf2_name (die, cu);
14874 if (fieldname == NULL)
14875 return;
14876
14877 /* Look up member function name in fieldlist. */
14878 for (i = 0; i < fip->fnfieldlists.size (); i++)
14879 {
14880 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14881 {
14882 flp = &fip->fnfieldlists[i];
14883 break;
14884 }
14885 }
14886
14887 /* Create a new fnfieldlist if necessary. */
14888 if (flp == nullptr)
14889 {
14890 fip->fnfieldlists.emplace_back ();
14891 flp = &fip->fnfieldlists.back ();
14892 flp->name = fieldname;
14893 i = fip->fnfieldlists.size () - 1;
14894 }
14895
14896 /* Create a new member function field and add it to the vector of
14897 fnfieldlists. */
14898 flp->fnfields.emplace_back ();
14899 fnp = &flp->fnfields.back ();
14900
14901 /* Delay processing of the physname until later. */
14902 if (cu->language == language_cplus)
14903 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14904 die, cu);
14905 else
14906 {
14907 const char *physname = dwarf2_physname (fieldname, die, cu);
14908 fnp->physname = physname ? physname : "";
14909 }
14910
14911 fnp->type = alloc_type (objfile);
14912 this_type = read_type_die (die, cu);
14913 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14914 {
14915 int nparams = TYPE_NFIELDS (this_type);
14916
14917 /* TYPE is the domain of this method, and THIS_TYPE is the type
14918 of the method itself (TYPE_CODE_METHOD). */
14919 smash_to_method_type (fnp->type, type,
14920 TYPE_TARGET_TYPE (this_type),
14921 TYPE_FIELDS (this_type),
14922 TYPE_NFIELDS (this_type),
14923 TYPE_VARARGS (this_type));
14924
14925 /* Handle static member functions.
14926 Dwarf2 has no clean way to discern C++ static and non-static
14927 member functions. G++ helps GDB by marking the first
14928 parameter for non-static member functions (which is the this
14929 pointer) as artificial. We obtain this information from
14930 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14931 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14932 fnp->voffset = VOFFSET_STATIC;
14933 }
14934 else
14935 complaint (_("member function type missing for '%s'"),
14936 dwarf2_full_name (fieldname, die, cu));
14937
14938 /* Get fcontext from DW_AT_containing_type if present. */
14939 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14940 fnp->fcontext = die_containing_type (die, cu);
14941
14942 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14943 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14944
14945 /* Get accessibility. */
14946 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14947 if (attr != nullptr)
14948 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14949 else
14950 accessibility = dwarf2_default_access_attribute (die, cu);
14951 switch (accessibility)
14952 {
14953 case DW_ACCESS_private:
14954 fnp->is_private = 1;
14955 break;
14956 case DW_ACCESS_protected:
14957 fnp->is_protected = 1;
14958 break;
14959 }
14960
14961 /* Check for artificial methods. */
14962 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14963 if (attr && DW_UNSND (attr) != 0)
14964 fnp->is_artificial = 1;
14965
14966 /* Check for defaulted methods. */
14967 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14968 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14969 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14970
14971 /* Check for deleted methods. */
14972 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14973 if (attr != nullptr && DW_UNSND (attr) != 0)
14974 fnp->is_deleted = 1;
14975
14976 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14977
14978 /* Get index in virtual function table if it is a virtual member
14979 function. For older versions of GCC, this is an offset in the
14980 appropriate virtual table, as specified by DW_AT_containing_type.
14981 For everyone else, it is an expression to be evaluated relative
14982 to the object address. */
14983
14984 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14985 if (attr != nullptr)
14986 {
14987 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14988 {
14989 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14990 {
14991 /* Old-style GCC. */
14992 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14993 }
14994 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14995 || (DW_BLOCK (attr)->size > 1
14996 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14997 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14998 {
14999 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15000 if ((fnp->voffset % cu->header.addr_size) != 0)
15001 dwarf2_complex_location_expr_complaint ();
15002 else
15003 fnp->voffset /= cu->header.addr_size;
15004 fnp->voffset += 2;
15005 }
15006 else
15007 dwarf2_complex_location_expr_complaint ();
15008
15009 if (!fnp->fcontext)
15010 {
15011 /* If there is no `this' field and no DW_AT_containing_type,
15012 we cannot actually find a base class context for the
15013 vtable! */
15014 if (TYPE_NFIELDS (this_type) == 0
15015 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15016 {
15017 complaint (_("cannot determine context for virtual member "
15018 "function \"%s\" (offset %s)"),
15019 fieldname, sect_offset_str (die->sect_off));
15020 }
15021 else
15022 {
15023 fnp->fcontext
15024 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15025 }
15026 }
15027 }
15028 else if (attr->form_is_section_offset ())
15029 {
15030 dwarf2_complex_location_expr_complaint ();
15031 }
15032 else
15033 {
15034 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15035 fieldname);
15036 }
15037 }
15038 else
15039 {
15040 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15041 if (attr && DW_UNSND (attr))
15042 {
15043 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15044 complaint (_("Member function \"%s\" (offset %s) is virtual "
15045 "but the vtable offset is not specified"),
15046 fieldname, sect_offset_str (die->sect_off));
15047 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15048 TYPE_CPLUS_DYNAMIC (type) = 1;
15049 }
15050 }
15051 }
15052
15053 /* Create the vector of member function fields, and attach it to the type. */
15054
15055 static void
15056 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15057 struct dwarf2_cu *cu)
15058 {
15059 if (cu->language == language_ada)
15060 error (_("unexpected member functions in Ada type"));
15061
15062 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15063 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15064 TYPE_ALLOC (type,
15065 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15066
15067 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15068 {
15069 struct fnfieldlist &nf = fip->fnfieldlists[i];
15070 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15071
15072 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15073 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15074 fn_flp->fn_fields = (struct fn_field *)
15075 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15076
15077 for (int k = 0; k < nf.fnfields.size (); ++k)
15078 fn_flp->fn_fields[k] = nf.fnfields[k];
15079 }
15080
15081 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15082 }
15083
15084 /* Returns non-zero if NAME is the name of a vtable member in CU's
15085 language, zero otherwise. */
15086 static int
15087 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15088 {
15089 static const char vptr[] = "_vptr";
15090
15091 /* Look for the C++ form of the vtable. */
15092 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15093 return 1;
15094
15095 return 0;
15096 }
15097
15098 /* GCC outputs unnamed structures that are really pointers to member
15099 functions, with the ABI-specified layout. If TYPE describes
15100 such a structure, smash it into a member function type.
15101
15102 GCC shouldn't do this; it should just output pointer to member DIEs.
15103 This is GCC PR debug/28767. */
15104
15105 static void
15106 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15107 {
15108 struct type *pfn_type, *self_type, *new_type;
15109
15110 /* Check for a structure with no name and two children. */
15111 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15112 return;
15113
15114 /* Check for __pfn and __delta members. */
15115 if (TYPE_FIELD_NAME (type, 0) == NULL
15116 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15117 || TYPE_FIELD_NAME (type, 1) == NULL
15118 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15119 return;
15120
15121 /* Find the type of the method. */
15122 pfn_type = TYPE_FIELD_TYPE (type, 0);
15123 if (pfn_type == NULL
15124 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15125 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15126 return;
15127
15128 /* Look for the "this" argument. */
15129 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15130 if (TYPE_NFIELDS (pfn_type) == 0
15131 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15132 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15133 return;
15134
15135 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15136 new_type = alloc_type (objfile);
15137 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15138 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15139 TYPE_VARARGS (pfn_type));
15140 smash_to_methodptr_type (type, new_type);
15141 }
15142
15143 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15144 appropriate error checking and issuing complaints if there is a
15145 problem. */
15146
15147 static ULONGEST
15148 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15149 {
15150 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15151
15152 if (attr == nullptr)
15153 return 0;
15154
15155 if (!attr->form_is_constant ())
15156 {
15157 complaint (_("DW_AT_alignment must have constant form"
15158 " - DIE at %s [in module %s]"),
15159 sect_offset_str (die->sect_off),
15160 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15161 return 0;
15162 }
15163
15164 ULONGEST align;
15165 if (attr->form == DW_FORM_sdata)
15166 {
15167 LONGEST val = DW_SND (attr);
15168 if (val < 0)
15169 {
15170 complaint (_("DW_AT_alignment value must not be negative"
15171 " - DIE at %s [in module %s]"),
15172 sect_offset_str (die->sect_off),
15173 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15174 return 0;
15175 }
15176 align = val;
15177 }
15178 else
15179 align = DW_UNSND (attr);
15180
15181 if (align == 0)
15182 {
15183 complaint (_("DW_AT_alignment value must not be zero"
15184 " - DIE at %s [in module %s]"),
15185 sect_offset_str (die->sect_off),
15186 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15187 return 0;
15188 }
15189 if ((align & (align - 1)) != 0)
15190 {
15191 complaint (_("DW_AT_alignment value must be a power of 2"
15192 " - DIE at %s [in module %s]"),
15193 sect_offset_str (die->sect_off),
15194 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15195 return 0;
15196 }
15197
15198 return align;
15199 }
15200
15201 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15202 the alignment for TYPE. */
15203
15204 static void
15205 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15206 struct type *type)
15207 {
15208 if (!set_type_align (type, get_alignment (cu, die)))
15209 complaint (_("DW_AT_alignment value too large"
15210 " - DIE at %s [in module %s]"),
15211 sect_offset_str (die->sect_off),
15212 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15213 }
15214
15215 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15216 constant for a type, according to DWARF5 spec, Table 5.5. */
15217
15218 static bool
15219 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15220 {
15221 switch (value)
15222 {
15223 case DW_CC_normal:
15224 case DW_CC_pass_by_reference:
15225 case DW_CC_pass_by_value:
15226 return true;
15227
15228 default:
15229 complaint (_("unrecognized DW_AT_calling_convention value "
15230 "(%s) for a type"), pulongest (value));
15231 return false;
15232 }
15233 }
15234
15235 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15236 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15237 also according to GNU-specific values (see include/dwarf2.h). */
15238
15239 static bool
15240 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15241 {
15242 switch (value)
15243 {
15244 case DW_CC_normal:
15245 case DW_CC_program:
15246 case DW_CC_nocall:
15247 return true;
15248
15249 case DW_CC_GNU_renesas_sh:
15250 case DW_CC_GNU_borland_fastcall_i386:
15251 case DW_CC_GDB_IBM_OpenCL:
15252 return true;
15253
15254 default:
15255 complaint (_("unrecognized DW_AT_calling_convention value "
15256 "(%s) for a subroutine"), pulongest (value));
15257 return false;
15258 }
15259 }
15260
15261 /* Called when we find the DIE that starts a structure or union scope
15262 (definition) to create a type for the structure or union. Fill in
15263 the type's name and general properties; the members will not be
15264 processed until process_structure_scope. A symbol table entry for
15265 the type will also not be done until process_structure_scope (assuming
15266 the type has a name).
15267
15268 NOTE: we need to call these functions regardless of whether or not the
15269 DIE has a DW_AT_name attribute, since it might be an anonymous
15270 structure or union. This gets the type entered into our set of
15271 user defined types. */
15272
15273 static struct type *
15274 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15275 {
15276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15277 struct type *type;
15278 struct attribute *attr;
15279 const char *name;
15280
15281 /* If the definition of this type lives in .debug_types, read that type.
15282 Don't follow DW_AT_specification though, that will take us back up
15283 the chain and we want to go down. */
15284 attr = die->attr (DW_AT_signature);
15285 if (attr != nullptr)
15286 {
15287 type = get_DW_AT_signature_type (die, attr, cu);
15288
15289 /* The type's CU may not be the same as CU.
15290 Ensure TYPE is recorded with CU in die_type_hash. */
15291 return set_die_type (die, type, cu);
15292 }
15293
15294 type = alloc_type (objfile);
15295 INIT_CPLUS_SPECIFIC (type);
15296
15297 name = dwarf2_name (die, cu);
15298 if (name != NULL)
15299 {
15300 if (cu->language == language_cplus
15301 || cu->language == language_d
15302 || cu->language == language_rust)
15303 {
15304 const char *full_name = dwarf2_full_name (name, die, cu);
15305
15306 /* dwarf2_full_name might have already finished building the DIE's
15307 type. If so, there is no need to continue. */
15308 if (get_die_type (die, cu) != NULL)
15309 return get_die_type (die, cu);
15310
15311 TYPE_NAME (type) = full_name;
15312 }
15313 else
15314 {
15315 /* The name is already allocated along with this objfile, so
15316 we don't need to duplicate it for the type. */
15317 TYPE_NAME (type) = name;
15318 }
15319 }
15320
15321 if (die->tag == DW_TAG_structure_type)
15322 {
15323 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15324 }
15325 else if (die->tag == DW_TAG_union_type)
15326 {
15327 TYPE_CODE (type) = TYPE_CODE_UNION;
15328 }
15329 else
15330 {
15331 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15332 }
15333
15334 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15335 TYPE_DECLARED_CLASS (type) = 1;
15336
15337 /* Store the calling convention in the type if it's available in
15338 the die. Otherwise the calling convention remains set to
15339 the default value DW_CC_normal. */
15340 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15341 if (attr != nullptr
15342 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15343 {
15344 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15345 TYPE_CPLUS_CALLING_CONVENTION (type)
15346 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15347 }
15348
15349 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15350 if (attr != nullptr)
15351 {
15352 if (attr->form_is_constant ())
15353 TYPE_LENGTH (type) = DW_UNSND (attr);
15354 else
15355 {
15356 struct dynamic_prop prop;
15357 if (attr_to_dynamic_prop (attr, die, cu, &prop,
15358 cu->per_cu->addr_type ()))
15359 add_dyn_prop (DYN_PROP_BYTE_SIZE, prop, type);
15360 TYPE_LENGTH (type) = 0;
15361 }
15362 }
15363 else
15364 {
15365 TYPE_LENGTH (type) = 0;
15366 }
15367
15368 maybe_set_alignment (cu, die, type);
15369
15370 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15371 {
15372 /* ICC<14 does not output the required DW_AT_declaration on
15373 incomplete types, but gives them a size of zero. */
15374 TYPE_STUB (type) = 1;
15375 }
15376 else
15377 TYPE_STUB_SUPPORTED (type) = 1;
15378
15379 if (die_is_declaration (die, cu))
15380 TYPE_STUB (type) = 1;
15381 else if (attr == NULL && die->child == NULL
15382 && producer_is_realview (cu->producer))
15383 /* RealView does not output the required DW_AT_declaration
15384 on incomplete types. */
15385 TYPE_STUB (type) = 1;
15386
15387 /* We need to add the type field to the die immediately so we don't
15388 infinitely recurse when dealing with pointers to the structure
15389 type within the structure itself. */
15390 set_die_type (die, type, cu);
15391
15392 /* set_die_type should be already done. */
15393 set_descriptive_type (type, die, cu);
15394
15395 return type;
15396 }
15397
15398 static void handle_struct_member_die
15399 (struct die_info *child_die,
15400 struct type *type,
15401 struct field_info *fi,
15402 std::vector<struct symbol *> *template_args,
15403 struct dwarf2_cu *cu);
15404
15405 /* A helper for handle_struct_member_die that handles
15406 DW_TAG_variant_part. */
15407
15408 static void
15409 handle_variant_part (struct die_info *die, struct type *type,
15410 struct field_info *fi,
15411 std::vector<struct symbol *> *template_args,
15412 struct dwarf2_cu *cu)
15413 {
15414 variant_part_builder *new_part;
15415 if (fi->current_variant_part == nullptr)
15416 {
15417 fi->variant_parts.emplace_back ();
15418 new_part = &fi->variant_parts.back ();
15419 }
15420 else if (!fi->current_variant_part->processing_variant)
15421 {
15422 complaint (_("nested DW_TAG_variant_part seen "
15423 "- DIE at %s [in module %s]"),
15424 sect_offset_str (die->sect_off),
15425 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15426 return;
15427 }
15428 else
15429 {
15430 variant_field &current = fi->current_variant_part->variants.back ();
15431 current.variant_parts.emplace_back ();
15432 new_part = &current.variant_parts.back ();
15433 }
15434
15435 /* When we recurse, we want callees to add to this new variant
15436 part. */
15437 scoped_restore save_current_variant_part
15438 = make_scoped_restore (&fi->current_variant_part, new_part);
15439
15440 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15441 if (discr == NULL)
15442 {
15443 /* It's a univariant form, an extension we support. */
15444 }
15445 else if (discr->form_is_ref ())
15446 {
15447 struct dwarf2_cu *target_cu = cu;
15448 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15449
15450 new_part->discriminant_offset = target_die->sect_off;
15451 }
15452 else
15453 {
15454 complaint (_("DW_AT_discr does not have DIE reference form"
15455 " - DIE at %s [in module %s]"),
15456 sect_offset_str (die->sect_off),
15457 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15458 }
15459
15460 for (die_info *child_die = die->child;
15461 child_die != NULL;
15462 child_die = child_die->sibling)
15463 handle_struct_member_die (child_die, type, fi, template_args, cu);
15464 }
15465
15466 /* A helper for handle_struct_member_die that handles
15467 DW_TAG_variant. */
15468
15469 static void
15470 handle_variant (struct die_info *die, struct type *type,
15471 struct field_info *fi,
15472 std::vector<struct symbol *> *template_args,
15473 struct dwarf2_cu *cu)
15474 {
15475 if (fi->current_variant_part == nullptr)
15476 {
15477 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15478 "- DIE at %s [in module %s]"),
15479 sect_offset_str (die->sect_off),
15480 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15481 return;
15482 }
15483 if (fi->current_variant_part->processing_variant)
15484 {
15485 complaint (_("nested DW_TAG_variant seen "
15486 "- DIE at %s [in module %s]"),
15487 sect_offset_str (die->sect_off),
15488 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15489 return;
15490 }
15491
15492 scoped_restore save_processing_variant
15493 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15494 true);
15495
15496 fi->current_variant_part->variants.emplace_back ();
15497 variant_field &variant = fi->current_variant_part->variants.back ();
15498 variant.first_field = fi->fields.size ();
15499
15500 /* In a variant we want to get the discriminant and also add a
15501 field for our sole member child. */
15502 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15503 if (discr == nullptr)
15504 {
15505 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15506 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15507 variant.default_branch = true;
15508 else
15509 variant.discr_list_data = DW_BLOCK (discr);
15510 }
15511 else
15512 variant.discriminant_value = DW_UNSND (discr);
15513
15514 for (die_info *variant_child = die->child;
15515 variant_child != NULL;
15516 variant_child = variant_child->sibling)
15517 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15518
15519 variant.last_field = fi->fields.size ();
15520 }
15521
15522 /* A helper for process_structure_scope that handles a single member
15523 DIE. */
15524
15525 static void
15526 handle_struct_member_die (struct die_info *child_die, struct type *type,
15527 struct field_info *fi,
15528 std::vector<struct symbol *> *template_args,
15529 struct dwarf2_cu *cu)
15530 {
15531 if (child_die->tag == DW_TAG_member
15532 || child_die->tag == DW_TAG_variable)
15533 {
15534 /* NOTE: carlton/2002-11-05: A C++ static data member
15535 should be a DW_TAG_member that is a declaration, but
15536 all versions of G++ as of this writing (so through at
15537 least 3.2.1) incorrectly generate DW_TAG_variable
15538 tags for them instead. */
15539 dwarf2_add_field (fi, child_die, cu);
15540 }
15541 else if (child_die->tag == DW_TAG_subprogram)
15542 {
15543 /* Rust doesn't have member functions in the C++ sense.
15544 However, it does emit ordinary functions as children
15545 of a struct DIE. */
15546 if (cu->language == language_rust)
15547 read_func_scope (child_die, cu);
15548 else
15549 {
15550 /* C++ member function. */
15551 dwarf2_add_member_fn (fi, child_die, type, cu);
15552 }
15553 }
15554 else if (child_die->tag == DW_TAG_inheritance)
15555 {
15556 /* C++ base class field. */
15557 dwarf2_add_field (fi, child_die, cu);
15558 }
15559 else if (type_can_define_types (child_die))
15560 dwarf2_add_type_defn (fi, child_die, cu);
15561 else if (child_die->tag == DW_TAG_template_type_param
15562 || child_die->tag == DW_TAG_template_value_param)
15563 {
15564 struct symbol *arg = new_symbol (child_die, NULL, cu);
15565
15566 if (arg != NULL)
15567 template_args->push_back (arg);
15568 }
15569 else if (child_die->tag == DW_TAG_variant_part)
15570 handle_variant_part (child_die, type, fi, template_args, cu);
15571 else if (child_die->tag == DW_TAG_variant)
15572 handle_variant (child_die, type, fi, template_args, cu);
15573 }
15574
15575 /* Finish creating a structure or union type, including filling in
15576 its members and creating a symbol for it. */
15577
15578 static void
15579 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15580 {
15581 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15582 struct die_info *child_die;
15583 struct type *type;
15584
15585 type = get_die_type (die, cu);
15586 if (type == NULL)
15587 type = read_structure_type (die, cu);
15588
15589 bool has_template_parameters = false;
15590 if (die->child != NULL && ! die_is_declaration (die, cu))
15591 {
15592 struct field_info fi;
15593 std::vector<struct symbol *> template_args;
15594
15595 child_die = die->child;
15596
15597 while (child_die && child_die->tag)
15598 {
15599 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15600 child_die = child_die->sibling;
15601 }
15602
15603 /* Attach template arguments to type. */
15604 if (!template_args.empty ())
15605 {
15606 has_template_parameters = true;
15607 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15608 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15609 TYPE_TEMPLATE_ARGUMENTS (type)
15610 = XOBNEWVEC (&objfile->objfile_obstack,
15611 struct symbol *,
15612 TYPE_N_TEMPLATE_ARGUMENTS (type));
15613 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15614 template_args.data (),
15615 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15616 * sizeof (struct symbol *)));
15617 }
15618
15619 /* Attach fields and member functions to the type. */
15620 if (fi.nfields () > 0)
15621 dwarf2_attach_fields_to_type (&fi, type, cu);
15622 if (!fi.fnfieldlists.empty ())
15623 {
15624 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15625
15626 /* Get the type which refers to the base class (possibly this
15627 class itself) which contains the vtable pointer for the current
15628 class from the DW_AT_containing_type attribute. This use of
15629 DW_AT_containing_type is a GNU extension. */
15630
15631 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15632 {
15633 struct type *t = die_containing_type (die, cu);
15634
15635 set_type_vptr_basetype (type, t);
15636 if (type == t)
15637 {
15638 int i;
15639
15640 /* Our own class provides vtbl ptr. */
15641 for (i = TYPE_NFIELDS (t) - 1;
15642 i >= TYPE_N_BASECLASSES (t);
15643 --i)
15644 {
15645 const char *fieldname = TYPE_FIELD_NAME (t, i);
15646
15647 if (is_vtable_name (fieldname, cu))
15648 {
15649 set_type_vptr_fieldno (type, i);
15650 break;
15651 }
15652 }
15653
15654 /* Complain if virtual function table field not found. */
15655 if (i < TYPE_N_BASECLASSES (t))
15656 complaint (_("virtual function table pointer "
15657 "not found when defining class '%s'"),
15658 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15659 }
15660 else
15661 {
15662 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15663 }
15664 }
15665 else if (cu->producer
15666 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15667 {
15668 /* The IBM XLC compiler does not provide direct indication
15669 of the containing type, but the vtable pointer is
15670 always named __vfp. */
15671
15672 int i;
15673
15674 for (i = TYPE_NFIELDS (type) - 1;
15675 i >= TYPE_N_BASECLASSES (type);
15676 --i)
15677 {
15678 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15679 {
15680 set_type_vptr_fieldno (type, i);
15681 set_type_vptr_basetype (type, type);
15682 break;
15683 }
15684 }
15685 }
15686 }
15687
15688 /* Copy fi.typedef_field_list linked list elements content into the
15689 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15690 if (!fi.typedef_field_list.empty ())
15691 {
15692 int count = fi.typedef_field_list.size ();
15693
15694 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15695 TYPE_TYPEDEF_FIELD_ARRAY (type)
15696 = ((struct decl_field *)
15697 TYPE_ALLOC (type,
15698 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15699 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15700
15701 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15702 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15703 }
15704
15705 /* Copy fi.nested_types_list linked list elements content into the
15706 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15707 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15708 {
15709 int count = fi.nested_types_list.size ();
15710
15711 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15712 TYPE_NESTED_TYPES_ARRAY (type)
15713 = ((struct decl_field *)
15714 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15715 TYPE_NESTED_TYPES_COUNT (type) = count;
15716
15717 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15718 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15719 }
15720 }
15721
15722 quirk_gcc_member_function_pointer (type, objfile);
15723 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15724 cu->rust_unions.push_back (type);
15725
15726 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15727 snapshots) has been known to create a die giving a declaration
15728 for a class that has, as a child, a die giving a definition for a
15729 nested class. So we have to process our children even if the
15730 current die is a declaration. Normally, of course, a declaration
15731 won't have any children at all. */
15732
15733 child_die = die->child;
15734
15735 while (child_die != NULL && child_die->tag)
15736 {
15737 if (child_die->tag == DW_TAG_member
15738 || child_die->tag == DW_TAG_variable
15739 || child_die->tag == DW_TAG_inheritance
15740 || child_die->tag == DW_TAG_template_value_param
15741 || child_die->tag == DW_TAG_template_type_param)
15742 {
15743 /* Do nothing. */
15744 }
15745 else
15746 process_die (child_die, cu);
15747
15748 child_die = child_die->sibling;
15749 }
15750
15751 /* Do not consider external references. According to the DWARF standard,
15752 these DIEs are identified by the fact that they have no byte_size
15753 attribute, and a declaration attribute. */
15754 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15755 || !die_is_declaration (die, cu)
15756 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15757 {
15758 struct symbol *sym = new_symbol (die, type, cu);
15759
15760 if (has_template_parameters)
15761 {
15762 struct symtab *symtab;
15763 if (sym != nullptr)
15764 symtab = symbol_symtab (sym);
15765 else if (cu->line_header != nullptr)
15766 {
15767 /* Any related symtab will do. */
15768 symtab
15769 = cu->line_header->file_names ()[0].symtab;
15770 }
15771 else
15772 {
15773 symtab = nullptr;
15774 complaint (_("could not find suitable "
15775 "symtab for template parameter"
15776 " - DIE at %s [in module %s]"),
15777 sect_offset_str (die->sect_off),
15778 objfile_name (objfile));
15779 }
15780
15781 if (symtab != nullptr)
15782 {
15783 /* Make sure that the symtab is set on the new symbols.
15784 Even though they don't appear in this symtab directly,
15785 other parts of gdb assume that symbols do, and this is
15786 reasonably true. */
15787 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15788 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15789 }
15790 }
15791 }
15792 }
15793
15794 /* Assuming DIE is an enumeration type, and TYPE is its associated
15795 type, update TYPE using some information only available in DIE's
15796 children. In particular, the fields are computed. */
15797
15798 static void
15799 update_enumeration_type_from_children (struct die_info *die,
15800 struct type *type,
15801 struct dwarf2_cu *cu)
15802 {
15803 struct die_info *child_die;
15804 int unsigned_enum = 1;
15805 int flag_enum = 1;
15806
15807 auto_obstack obstack;
15808 std::vector<struct field> fields;
15809
15810 for (child_die = die->child;
15811 child_die != NULL && child_die->tag;
15812 child_die = child_die->sibling)
15813 {
15814 struct attribute *attr;
15815 LONGEST value;
15816 const gdb_byte *bytes;
15817 struct dwarf2_locexpr_baton *baton;
15818 const char *name;
15819
15820 if (child_die->tag != DW_TAG_enumerator)
15821 continue;
15822
15823 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15824 if (attr == NULL)
15825 continue;
15826
15827 name = dwarf2_name (child_die, cu);
15828 if (name == NULL)
15829 name = "<anonymous enumerator>";
15830
15831 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15832 &value, &bytes, &baton);
15833 if (value < 0)
15834 {
15835 unsigned_enum = 0;
15836 flag_enum = 0;
15837 }
15838 else
15839 {
15840 if (count_one_bits_ll (value) >= 2)
15841 flag_enum = 0;
15842 }
15843
15844 fields.emplace_back ();
15845 struct field &field = fields.back ();
15846 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
15847 SET_FIELD_ENUMVAL (field, value);
15848 }
15849
15850 if (!fields.empty ())
15851 {
15852 TYPE_NFIELDS (type) = fields.size ();
15853 TYPE_FIELDS (type) = (struct field *)
15854 TYPE_ALLOC (type, sizeof (struct field) * fields.size ());
15855 memcpy (TYPE_FIELDS (type), fields.data (),
15856 sizeof (struct field) * fields.size ());
15857 }
15858
15859 if (unsigned_enum)
15860 TYPE_UNSIGNED (type) = 1;
15861 if (flag_enum)
15862 TYPE_FLAG_ENUM (type) = 1;
15863 }
15864
15865 /* Given a DW_AT_enumeration_type die, set its type. We do not
15866 complete the type's fields yet, or create any symbols. */
15867
15868 static struct type *
15869 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15870 {
15871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15872 struct type *type;
15873 struct attribute *attr;
15874 const char *name;
15875
15876 /* If the definition of this type lives in .debug_types, read that type.
15877 Don't follow DW_AT_specification though, that will take us back up
15878 the chain and we want to go down. */
15879 attr = die->attr (DW_AT_signature);
15880 if (attr != nullptr)
15881 {
15882 type = get_DW_AT_signature_type (die, attr, cu);
15883
15884 /* The type's CU may not be the same as CU.
15885 Ensure TYPE is recorded with CU in die_type_hash. */
15886 return set_die_type (die, type, cu);
15887 }
15888
15889 type = alloc_type (objfile);
15890
15891 TYPE_CODE (type) = TYPE_CODE_ENUM;
15892 name = dwarf2_full_name (NULL, die, cu);
15893 if (name != NULL)
15894 TYPE_NAME (type) = name;
15895
15896 attr = dwarf2_attr (die, DW_AT_type, cu);
15897 if (attr != NULL)
15898 {
15899 struct type *underlying_type = die_type (die, cu);
15900
15901 TYPE_TARGET_TYPE (type) = underlying_type;
15902 }
15903
15904 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15905 if (attr != nullptr)
15906 {
15907 TYPE_LENGTH (type) = DW_UNSND (attr);
15908 }
15909 else
15910 {
15911 TYPE_LENGTH (type) = 0;
15912 }
15913
15914 maybe_set_alignment (cu, die, type);
15915
15916 /* The enumeration DIE can be incomplete. In Ada, any type can be
15917 declared as private in the package spec, and then defined only
15918 inside the package body. Such types are known as Taft Amendment
15919 Types. When another package uses such a type, an incomplete DIE
15920 may be generated by the compiler. */
15921 if (die_is_declaration (die, cu))
15922 TYPE_STUB (type) = 1;
15923
15924 /* If this type has an underlying type that is not a stub, then we
15925 may use its attributes. We always use the "unsigned" attribute
15926 in this situation, because ordinarily we guess whether the type
15927 is unsigned -- but the guess can be wrong and the underlying type
15928 can tell us the reality. However, we defer to a local size
15929 attribute if one exists, because this lets the compiler override
15930 the underlying type if needed. */
15931 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15932 {
15933 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15934 underlying_type = check_typedef (underlying_type);
15935 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15936 if (TYPE_LENGTH (type) == 0)
15937 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15938 if (TYPE_RAW_ALIGN (type) == 0
15939 && TYPE_RAW_ALIGN (underlying_type) != 0)
15940 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15941 }
15942
15943 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15944
15945 set_die_type (die, type, cu);
15946
15947 /* Finish the creation of this type by using the enum's children.
15948 Note that, as usual, this must come after set_die_type to avoid
15949 infinite recursion when trying to compute the names of the
15950 enumerators. */
15951 update_enumeration_type_from_children (die, type, cu);
15952
15953 return type;
15954 }
15955
15956 /* Given a pointer to a die which begins an enumeration, process all
15957 the dies that define the members of the enumeration, and create the
15958 symbol for the enumeration type.
15959
15960 NOTE: We reverse the order of the element list. */
15961
15962 static void
15963 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15964 {
15965 struct type *this_type;
15966
15967 this_type = get_die_type (die, cu);
15968 if (this_type == NULL)
15969 this_type = read_enumeration_type (die, cu);
15970
15971 if (die->child != NULL)
15972 {
15973 struct die_info *child_die;
15974 const char *name;
15975
15976 child_die = die->child;
15977 while (child_die && child_die->tag)
15978 {
15979 if (child_die->tag != DW_TAG_enumerator)
15980 {
15981 process_die (child_die, cu);
15982 }
15983 else
15984 {
15985 name = dwarf2_name (child_die, cu);
15986 if (name)
15987 new_symbol (child_die, this_type, cu);
15988 }
15989
15990 child_die = child_die->sibling;
15991 }
15992 }
15993
15994 /* If we are reading an enum from a .debug_types unit, and the enum
15995 is a declaration, and the enum is not the signatured type in the
15996 unit, then we do not want to add a symbol for it. Adding a
15997 symbol would in some cases obscure the true definition of the
15998 enum, giving users an incomplete type when the definition is
15999 actually available. Note that we do not want to do this for all
16000 enums which are just declarations, because C++0x allows forward
16001 enum declarations. */
16002 if (cu->per_cu->is_debug_types
16003 && die_is_declaration (die, cu))
16004 {
16005 struct signatured_type *sig_type;
16006
16007 sig_type = (struct signatured_type *) cu->per_cu;
16008 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16009 if (sig_type->type_offset_in_section != die->sect_off)
16010 return;
16011 }
16012
16013 new_symbol (die, this_type, cu);
16014 }
16015
16016 /* Extract all information from a DW_TAG_array_type DIE and put it in
16017 the DIE's type field. For now, this only handles one dimensional
16018 arrays. */
16019
16020 static struct type *
16021 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16022 {
16023 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16024 struct die_info *child_die;
16025 struct type *type;
16026 struct type *element_type, *range_type, *index_type;
16027 struct attribute *attr;
16028 const char *name;
16029 struct dynamic_prop *byte_stride_prop = NULL;
16030 unsigned int bit_stride = 0;
16031
16032 element_type = die_type (die, cu);
16033
16034 /* The die_type call above may have already set the type for this DIE. */
16035 type = get_die_type (die, cu);
16036 if (type)
16037 return type;
16038
16039 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16040 if (attr != NULL)
16041 {
16042 int stride_ok;
16043 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
16044
16045 byte_stride_prop
16046 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16047 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16048 prop_type);
16049 if (!stride_ok)
16050 {
16051 complaint (_("unable to read array DW_AT_byte_stride "
16052 " - DIE at %s [in module %s]"),
16053 sect_offset_str (die->sect_off),
16054 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16055 /* Ignore this attribute. We will likely not be able to print
16056 arrays of this type correctly, but there is little we can do
16057 to help if we cannot read the attribute's value. */
16058 byte_stride_prop = NULL;
16059 }
16060 }
16061
16062 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16063 if (attr != NULL)
16064 bit_stride = DW_UNSND (attr);
16065
16066 /* Irix 6.2 native cc creates array types without children for
16067 arrays with unspecified length. */
16068 if (die->child == NULL)
16069 {
16070 index_type = objfile_type (objfile)->builtin_int;
16071 range_type = create_static_range_type (NULL, index_type, 0, -1);
16072 type = create_array_type_with_stride (NULL, element_type, range_type,
16073 byte_stride_prop, bit_stride);
16074 return set_die_type (die, type, cu);
16075 }
16076
16077 std::vector<struct type *> range_types;
16078 child_die = die->child;
16079 while (child_die && child_die->tag)
16080 {
16081 if (child_die->tag == DW_TAG_subrange_type)
16082 {
16083 struct type *child_type = read_type_die (child_die, cu);
16084
16085 if (child_type != NULL)
16086 {
16087 /* The range type was succesfully read. Save it for the
16088 array type creation. */
16089 range_types.push_back (child_type);
16090 }
16091 }
16092 child_die = child_die->sibling;
16093 }
16094
16095 /* Dwarf2 dimensions are output from left to right, create the
16096 necessary array types in backwards order. */
16097
16098 type = element_type;
16099
16100 if (read_array_order (die, cu) == DW_ORD_col_major)
16101 {
16102 int i = 0;
16103
16104 while (i < range_types.size ())
16105 type = create_array_type_with_stride (NULL, type, range_types[i++],
16106 byte_stride_prop, bit_stride);
16107 }
16108 else
16109 {
16110 size_t ndim = range_types.size ();
16111 while (ndim-- > 0)
16112 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16113 byte_stride_prop, bit_stride);
16114 }
16115
16116 /* Understand Dwarf2 support for vector types (like they occur on
16117 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16118 array type. This is not part of the Dwarf2/3 standard yet, but a
16119 custom vendor extension. The main difference between a regular
16120 array and the vector variant is that vectors are passed by value
16121 to functions. */
16122 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16123 if (attr != nullptr)
16124 make_vector_type (type);
16125
16126 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16127 implementation may choose to implement triple vectors using this
16128 attribute. */
16129 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16130 if (attr != nullptr)
16131 {
16132 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16133 TYPE_LENGTH (type) = DW_UNSND (attr);
16134 else
16135 complaint (_("DW_AT_byte_size for array type smaller "
16136 "than the total size of elements"));
16137 }
16138
16139 name = dwarf2_name (die, cu);
16140 if (name)
16141 TYPE_NAME (type) = name;
16142
16143 maybe_set_alignment (cu, die, type);
16144
16145 /* Install the type in the die. */
16146 set_die_type (die, type, cu);
16147
16148 /* set_die_type should be already done. */
16149 set_descriptive_type (type, die, cu);
16150
16151 return type;
16152 }
16153
16154 static enum dwarf_array_dim_ordering
16155 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16156 {
16157 struct attribute *attr;
16158
16159 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16160
16161 if (attr != nullptr)
16162 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16163
16164 /* GNU F77 is a special case, as at 08/2004 array type info is the
16165 opposite order to the dwarf2 specification, but data is still
16166 laid out as per normal fortran.
16167
16168 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16169 version checking. */
16170
16171 if (cu->language == language_fortran
16172 && cu->producer && strstr (cu->producer, "GNU F77"))
16173 {
16174 return DW_ORD_row_major;
16175 }
16176
16177 switch (cu->language_defn->la_array_ordering)
16178 {
16179 case array_column_major:
16180 return DW_ORD_col_major;
16181 case array_row_major:
16182 default:
16183 return DW_ORD_row_major;
16184 };
16185 }
16186
16187 /* Extract all information from a DW_TAG_set_type DIE and put it in
16188 the DIE's type field. */
16189
16190 static struct type *
16191 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16192 {
16193 struct type *domain_type, *set_type;
16194 struct attribute *attr;
16195
16196 domain_type = die_type (die, cu);
16197
16198 /* The die_type call above may have already set the type for this DIE. */
16199 set_type = get_die_type (die, cu);
16200 if (set_type)
16201 return set_type;
16202
16203 set_type = create_set_type (NULL, domain_type);
16204
16205 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16206 if (attr != nullptr)
16207 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16208
16209 maybe_set_alignment (cu, die, set_type);
16210
16211 return set_die_type (die, set_type, cu);
16212 }
16213
16214 /* A helper for read_common_block that creates a locexpr baton.
16215 SYM is the symbol which we are marking as computed.
16216 COMMON_DIE is the DIE for the common block.
16217 COMMON_LOC is the location expression attribute for the common
16218 block itself.
16219 MEMBER_LOC is the location expression attribute for the particular
16220 member of the common block that we are processing.
16221 CU is the CU from which the above come. */
16222
16223 static void
16224 mark_common_block_symbol_computed (struct symbol *sym,
16225 struct die_info *common_die,
16226 struct attribute *common_loc,
16227 struct attribute *member_loc,
16228 struct dwarf2_cu *cu)
16229 {
16230 struct dwarf2_per_objfile *dwarf2_per_objfile
16231 = cu->per_cu->dwarf2_per_objfile;
16232 struct objfile *objfile = dwarf2_per_objfile->objfile;
16233 struct dwarf2_locexpr_baton *baton;
16234 gdb_byte *ptr;
16235 unsigned int cu_off;
16236 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16237 LONGEST offset = 0;
16238
16239 gdb_assert (common_loc && member_loc);
16240 gdb_assert (common_loc->form_is_block ());
16241 gdb_assert (member_loc->form_is_block ()
16242 || member_loc->form_is_constant ());
16243
16244 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16245 baton->per_cu = cu->per_cu;
16246 gdb_assert (baton->per_cu);
16247
16248 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16249
16250 if (member_loc->form_is_constant ())
16251 {
16252 offset = member_loc->constant_value (0);
16253 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16254 }
16255 else
16256 baton->size += DW_BLOCK (member_loc)->size;
16257
16258 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16259 baton->data = ptr;
16260
16261 *ptr++ = DW_OP_call4;
16262 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16263 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16264 ptr += 4;
16265
16266 if (member_loc->form_is_constant ())
16267 {
16268 *ptr++ = DW_OP_addr;
16269 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16270 ptr += cu->header.addr_size;
16271 }
16272 else
16273 {
16274 /* We have to copy the data here, because DW_OP_call4 will only
16275 use a DW_AT_location attribute. */
16276 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16277 ptr += DW_BLOCK (member_loc)->size;
16278 }
16279
16280 *ptr++ = DW_OP_plus;
16281 gdb_assert (ptr - baton->data == baton->size);
16282
16283 SYMBOL_LOCATION_BATON (sym) = baton;
16284 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16285 }
16286
16287 /* Create appropriate locally-scoped variables for all the
16288 DW_TAG_common_block entries. Also create a struct common_block
16289 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16290 is used to separate the common blocks name namespace from regular
16291 variable names. */
16292
16293 static void
16294 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16295 {
16296 struct attribute *attr;
16297
16298 attr = dwarf2_attr (die, DW_AT_location, cu);
16299 if (attr != nullptr)
16300 {
16301 /* Support the .debug_loc offsets. */
16302 if (attr->form_is_block ())
16303 {
16304 /* Ok. */
16305 }
16306 else if (attr->form_is_section_offset ())
16307 {
16308 dwarf2_complex_location_expr_complaint ();
16309 attr = NULL;
16310 }
16311 else
16312 {
16313 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16314 "common block member");
16315 attr = NULL;
16316 }
16317 }
16318
16319 if (die->child != NULL)
16320 {
16321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16322 struct die_info *child_die;
16323 size_t n_entries = 0, size;
16324 struct common_block *common_block;
16325 struct symbol *sym;
16326
16327 for (child_die = die->child;
16328 child_die && child_die->tag;
16329 child_die = child_die->sibling)
16330 ++n_entries;
16331
16332 size = (sizeof (struct common_block)
16333 + (n_entries - 1) * sizeof (struct symbol *));
16334 common_block
16335 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16336 size);
16337 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16338 common_block->n_entries = 0;
16339
16340 for (child_die = die->child;
16341 child_die && child_die->tag;
16342 child_die = child_die->sibling)
16343 {
16344 /* Create the symbol in the DW_TAG_common_block block in the current
16345 symbol scope. */
16346 sym = new_symbol (child_die, NULL, cu);
16347 if (sym != NULL)
16348 {
16349 struct attribute *member_loc;
16350
16351 common_block->contents[common_block->n_entries++] = sym;
16352
16353 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16354 cu);
16355 if (member_loc)
16356 {
16357 /* GDB has handled this for a long time, but it is
16358 not specified by DWARF. It seems to have been
16359 emitted by gfortran at least as recently as:
16360 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16361 complaint (_("Variable in common block has "
16362 "DW_AT_data_member_location "
16363 "- DIE at %s [in module %s]"),
16364 sect_offset_str (child_die->sect_off),
16365 objfile_name (objfile));
16366
16367 if (member_loc->form_is_section_offset ())
16368 dwarf2_complex_location_expr_complaint ();
16369 else if (member_loc->form_is_constant ()
16370 || member_loc->form_is_block ())
16371 {
16372 if (attr != nullptr)
16373 mark_common_block_symbol_computed (sym, die, attr,
16374 member_loc, cu);
16375 }
16376 else
16377 dwarf2_complex_location_expr_complaint ();
16378 }
16379 }
16380 }
16381
16382 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16383 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16384 }
16385 }
16386
16387 /* Create a type for a C++ namespace. */
16388
16389 static struct type *
16390 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16391 {
16392 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16393 const char *previous_prefix, *name;
16394 int is_anonymous;
16395 struct type *type;
16396
16397 /* For extensions, reuse the type of the original namespace. */
16398 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16399 {
16400 struct die_info *ext_die;
16401 struct dwarf2_cu *ext_cu = cu;
16402
16403 ext_die = dwarf2_extension (die, &ext_cu);
16404 type = read_type_die (ext_die, ext_cu);
16405
16406 /* EXT_CU may not be the same as CU.
16407 Ensure TYPE is recorded with CU in die_type_hash. */
16408 return set_die_type (die, type, cu);
16409 }
16410
16411 name = namespace_name (die, &is_anonymous, cu);
16412
16413 /* Now build the name of the current namespace. */
16414
16415 previous_prefix = determine_prefix (die, cu);
16416 if (previous_prefix[0] != '\0')
16417 name = typename_concat (&objfile->objfile_obstack,
16418 previous_prefix, name, 0, cu);
16419
16420 /* Create the type. */
16421 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16422
16423 return set_die_type (die, type, cu);
16424 }
16425
16426 /* Read a namespace scope. */
16427
16428 static void
16429 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16430 {
16431 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16432 int is_anonymous;
16433
16434 /* Add a symbol associated to this if we haven't seen the namespace
16435 before. Also, add a using directive if it's an anonymous
16436 namespace. */
16437
16438 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16439 {
16440 struct type *type;
16441
16442 type = read_type_die (die, cu);
16443 new_symbol (die, type, cu);
16444
16445 namespace_name (die, &is_anonymous, cu);
16446 if (is_anonymous)
16447 {
16448 const char *previous_prefix = determine_prefix (die, cu);
16449
16450 std::vector<const char *> excludes;
16451 add_using_directive (using_directives (cu),
16452 previous_prefix, TYPE_NAME (type), NULL,
16453 NULL, excludes, 0, &objfile->objfile_obstack);
16454 }
16455 }
16456
16457 if (die->child != NULL)
16458 {
16459 struct die_info *child_die = die->child;
16460
16461 while (child_die && child_die->tag)
16462 {
16463 process_die (child_die, cu);
16464 child_die = child_die->sibling;
16465 }
16466 }
16467 }
16468
16469 /* Read a Fortran module as type. This DIE can be only a declaration used for
16470 imported module. Still we need that type as local Fortran "use ... only"
16471 declaration imports depend on the created type in determine_prefix. */
16472
16473 static struct type *
16474 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16475 {
16476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16477 const char *module_name;
16478 struct type *type;
16479
16480 module_name = dwarf2_name (die, cu);
16481 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16482
16483 return set_die_type (die, type, cu);
16484 }
16485
16486 /* Read a Fortran module. */
16487
16488 static void
16489 read_module (struct die_info *die, struct dwarf2_cu *cu)
16490 {
16491 struct die_info *child_die = die->child;
16492 struct type *type;
16493
16494 type = read_type_die (die, cu);
16495 new_symbol (die, type, cu);
16496
16497 while (child_die && child_die->tag)
16498 {
16499 process_die (child_die, cu);
16500 child_die = child_die->sibling;
16501 }
16502 }
16503
16504 /* Return the name of the namespace represented by DIE. Set
16505 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16506 namespace. */
16507
16508 static const char *
16509 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16510 {
16511 struct die_info *current_die;
16512 const char *name = NULL;
16513
16514 /* Loop through the extensions until we find a name. */
16515
16516 for (current_die = die;
16517 current_die != NULL;
16518 current_die = dwarf2_extension (die, &cu))
16519 {
16520 /* We don't use dwarf2_name here so that we can detect the absence
16521 of a name -> anonymous namespace. */
16522 name = dwarf2_string_attr (die, DW_AT_name, cu);
16523
16524 if (name != NULL)
16525 break;
16526 }
16527
16528 /* Is it an anonymous namespace? */
16529
16530 *is_anonymous = (name == NULL);
16531 if (*is_anonymous)
16532 name = CP_ANONYMOUS_NAMESPACE_STR;
16533
16534 return name;
16535 }
16536
16537 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16538 the user defined type vector. */
16539
16540 static struct type *
16541 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16542 {
16543 struct gdbarch *gdbarch
16544 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16545 struct comp_unit_head *cu_header = &cu->header;
16546 struct type *type;
16547 struct attribute *attr_byte_size;
16548 struct attribute *attr_address_class;
16549 int byte_size, addr_class;
16550 struct type *target_type;
16551
16552 target_type = die_type (die, cu);
16553
16554 /* The die_type call above may have already set the type for this DIE. */
16555 type = get_die_type (die, cu);
16556 if (type)
16557 return type;
16558
16559 type = lookup_pointer_type (target_type);
16560
16561 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16562 if (attr_byte_size)
16563 byte_size = DW_UNSND (attr_byte_size);
16564 else
16565 byte_size = cu_header->addr_size;
16566
16567 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16568 if (attr_address_class)
16569 addr_class = DW_UNSND (attr_address_class);
16570 else
16571 addr_class = DW_ADDR_none;
16572
16573 ULONGEST alignment = get_alignment (cu, die);
16574
16575 /* If the pointer size, alignment, or address class is different
16576 than the default, create a type variant marked as such and set
16577 the length accordingly. */
16578 if (TYPE_LENGTH (type) != byte_size
16579 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16580 && alignment != TYPE_RAW_ALIGN (type))
16581 || addr_class != DW_ADDR_none)
16582 {
16583 if (gdbarch_address_class_type_flags_p (gdbarch))
16584 {
16585 int type_flags;
16586
16587 type_flags = gdbarch_address_class_type_flags
16588 (gdbarch, byte_size, addr_class);
16589 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16590 == 0);
16591 type = make_type_with_address_space (type, type_flags);
16592 }
16593 else if (TYPE_LENGTH (type) != byte_size)
16594 {
16595 complaint (_("invalid pointer size %d"), byte_size);
16596 }
16597 else if (TYPE_RAW_ALIGN (type) != alignment)
16598 {
16599 complaint (_("Invalid DW_AT_alignment"
16600 " - DIE at %s [in module %s]"),
16601 sect_offset_str (die->sect_off),
16602 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16603 }
16604 else
16605 {
16606 /* Should we also complain about unhandled address classes? */
16607 }
16608 }
16609
16610 TYPE_LENGTH (type) = byte_size;
16611 set_type_align (type, alignment);
16612 return set_die_type (die, type, cu);
16613 }
16614
16615 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16616 the user defined type vector. */
16617
16618 static struct type *
16619 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16620 {
16621 struct type *type;
16622 struct type *to_type;
16623 struct type *domain;
16624
16625 to_type = die_type (die, cu);
16626 domain = die_containing_type (die, cu);
16627
16628 /* The calls above may have already set the type for this DIE. */
16629 type = get_die_type (die, cu);
16630 if (type)
16631 return type;
16632
16633 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16634 type = lookup_methodptr_type (to_type);
16635 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16636 {
16637 struct type *new_type
16638 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16639
16640 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16641 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16642 TYPE_VARARGS (to_type));
16643 type = lookup_methodptr_type (new_type);
16644 }
16645 else
16646 type = lookup_memberptr_type (to_type, domain);
16647
16648 return set_die_type (die, type, cu);
16649 }
16650
16651 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16652 the user defined type vector. */
16653
16654 static struct type *
16655 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16656 enum type_code refcode)
16657 {
16658 struct comp_unit_head *cu_header = &cu->header;
16659 struct type *type, *target_type;
16660 struct attribute *attr;
16661
16662 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16663
16664 target_type = die_type (die, cu);
16665
16666 /* The die_type call above may have already set the type for this DIE. */
16667 type = get_die_type (die, cu);
16668 if (type)
16669 return type;
16670
16671 type = lookup_reference_type (target_type, refcode);
16672 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16673 if (attr != nullptr)
16674 {
16675 TYPE_LENGTH (type) = DW_UNSND (attr);
16676 }
16677 else
16678 {
16679 TYPE_LENGTH (type) = cu_header->addr_size;
16680 }
16681 maybe_set_alignment (cu, die, type);
16682 return set_die_type (die, type, cu);
16683 }
16684
16685 /* Add the given cv-qualifiers to the element type of the array. GCC
16686 outputs DWARF type qualifiers that apply to an array, not the
16687 element type. But GDB relies on the array element type to carry
16688 the cv-qualifiers. This mimics section 6.7.3 of the C99
16689 specification. */
16690
16691 static struct type *
16692 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16693 struct type *base_type, int cnst, int voltl)
16694 {
16695 struct type *el_type, *inner_array;
16696
16697 base_type = copy_type (base_type);
16698 inner_array = base_type;
16699
16700 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16701 {
16702 TYPE_TARGET_TYPE (inner_array) =
16703 copy_type (TYPE_TARGET_TYPE (inner_array));
16704 inner_array = TYPE_TARGET_TYPE (inner_array);
16705 }
16706
16707 el_type = TYPE_TARGET_TYPE (inner_array);
16708 cnst |= TYPE_CONST (el_type);
16709 voltl |= TYPE_VOLATILE (el_type);
16710 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16711
16712 return set_die_type (die, base_type, cu);
16713 }
16714
16715 static struct type *
16716 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16717 {
16718 struct type *base_type, *cv_type;
16719
16720 base_type = die_type (die, cu);
16721
16722 /* The die_type call above may have already set the type for this DIE. */
16723 cv_type = get_die_type (die, cu);
16724 if (cv_type)
16725 return cv_type;
16726
16727 /* In case the const qualifier is applied to an array type, the element type
16728 is so qualified, not the array type (section 6.7.3 of C99). */
16729 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16730 return add_array_cv_type (die, cu, base_type, 1, 0);
16731
16732 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16733 return set_die_type (die, cv_type, cu);
16734 }
16735
16736 static struct type *
16737 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16738 {
16739 struct type *base_type, *cv_type;
16740
16741 base_type = die_type (die, cu);
16742
16743 /* The die_type call above may have already set the type for this DIE. */
16744 cv_type = get_die_type (die, cu);
16745 if (cv_type)
16746 return cv_type;
16747
16748 /* In case the volatile qualifier is applied to an array type, the
16749 element type is so qualified, not the array type (section 6.7.3
16750 of C99). */
16751 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16752 return add_array_cv_type (die, cu, base_type, 0, 1);
16753
16754 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16755 return set_die_type (die, cv_type, cu);
16756 }
16757
16758 /* Handle DW_TAG_restrict_type. */
16759
16760 static struct type *
16761 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16762 {
16763 struct type *base_type, *cv_type;
16764
16765 base_type = die_type (die, cu);
16766
16767 /* The die_type call above may have already set the type for this DIE. */
16768 cv_type = get_die_type (die, cu);
16769 if (cv_type)
16770 return cv_type;
16771
16772 cv_type = make_restrict_type (base_type);
16773 return set_die_type (die, cv_type, cu);
16774 }
16775
16776 /* Handle DW_TAG_atomic_type. */
16777
16778 static struct type *
16779 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16780 {
16781 struct type *base_type, *cv_type;
16782
16783 base_type = die_type (die, cu);
16784
16785 /* The die_type call above may have already set the type for this DIE. */
16786 cv_type = get_die_type (die, cu);
16787 if (cv_type)
16788 return cv_type;
16789
16790 cv_type = make_atomic_type (base_type);
16791 return set_die_type (die, cv_type, cu);
16792 }
16793
16794 /* Extract all information from a DW_TAG_string_type DIE and add to
16795 the user defined type vector. It isn't really a user defined type,
16796 but it behaves like one, with other DIE's using an AT_user_def_type
16797 attribute to reference it. */
16798
16799 static struct type *
16800 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16801 {
16802 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16803 struct gdbarch *gdbarch = objfile->arch ();
16804 struct type *type, *range_type, *index_type, *char_type;
16805 struct attribute *attr;
16806 struct dynamic_prop prop;
16807 bool length_is_constant = true;
16808 LONGEST length;
16809
16810 /* There are a couple of places where bit sizes might be made use of
16811 when parsing a DW_TAG_string_type, however, no producer that we know
16812 of make use of these. Handling bit sizes that are a multiple of the
16813 byte size is easy enough, but what about other bit sizes? Lets deal
16814 with that problem when we have to. Warn about these attributes being
16815 unsupported, then parse the type and ignore them like we always
16816 have. */
16817 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16818 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16819 {
16820 static bool warning_printed = false;
16821 if (!warning_printed)
16822 {
16823 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16824 "currently supported on DW_TAG_string_type."));
16825 warning_printed = true;
16826 }
16827 }
16828
16829 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16830 if (attr != nullptr && !attr->form_is_constant ())
16831 {
16832 /* The string length describes the location at which the length of
16833 the string can be found. The size of the length field can be
16834 specified with one of the attributes below. */
16835 struct type *prop_type;
16836 struct attribute *len
16837 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16838 if (len == nullptr)
16839 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16840 if (len != nullptr && len->form_is_constant ())
16841 {
16842 /* Pass 0 as the default as we know this attribute is constant
16843 and the default value will not be returned. */
16844 LONGEST sz = len->constant_value (0);
16845 prop_type = cu->per_cu->int_type (sz, true);
16846 }
16847 else
16848 {
16849 /* If the size is not specified then we assume it is the size of
16850 an address on this target. */
16851 prop_type = cu->per_cu->addr_sized_int_type (true);
16852 }
16853
16854 /* Convert the attribute into a dynamic property. */
16855 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16856 length = 1;
16857 else
16858 length_is_constant = false;
16859 }
16860 else if (attr != nullptr)
16861 {
16862 /* This DW_AT_string_length just contains the length with no
16863 indirection. There's no need to create a dynamic property in this
16864 case. Pass 0 for the default value as we know it will not be
16865 returned in this case. */
16866 length = attr->constant_value (0);
16867 }
16868 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16869 {
16870 /* We don't currently support non-constant byte sizes for strings. */
16871 length = attr->constant_value (1);
16872 }
16873 else
16874 {
16875 /* Use 1 as a fallback length if we have nothing else. */
16876 length = 1;
16877 }
16878
16879 index_type = objfile_type (objfile)->builtin_int;
16880 if (length_is_constant)
16881 range_type = create_static_range_type (NULL, index_type, 1, length);
16882 else
16883 {
16884 struct dynamic_prop low_bound;
16885
16886 low_bound.kind = PROP_CONST;
16887 low_bound.data.const_val = 1;
16888 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16889 }
16890 char_type = language_string_char_type (cu->language_defn, gdbarch);
16891 type = create_string_type (NULL, char_type, range_type);
16892
16893 return set_die_type (die, type, cu);
16894 }
16895
16896 /* Assuming that DIE corresponds to a function, returns nonzero
16897 if the function is prototyped. */
16898
16899 static int
16900 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16901 {
16902 struct attribute *attr;
16903
16904 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16905 if (attr && (DW_UNSND (attr) != 0))
16906 return 1;
16907
16908 /* The DWARF standard implies that the DW_AT_prototyped attribute
16909 is only meaningful for C, but the concept also extends to other
16910 languages that allow unprototyped functions (Eg: Objective C).
16911 For all other languages, assume that functions are always
16912 prototyped. */
16913 if (cu->language != language_c
16914 && cu->language != language_objc
16915 && cu->language != language_opencl)
16916 return 1;
16917
16918 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16919 prototyped and unprototyped functions; default to prototyped,
16920 since that is more common in modern code (and RealView warns
16921 about unprototyped functions). */
16922 if (producer_is_realview (cu->producer))
16923 return 1;
16924
16925 return 0;
16926 }
16927
16928 /* Handle DIES due to C code like:
16929
16930 struct foo
16931 {
16932 int (*funcp)(int a, long l);
16933 int b;
16934 };
16935
16936 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16937
16938 static struct type *
16939 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16940 {
16941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16942 struct type *type; /* Type that this function returns. */
16943 struct type *ftype; /* Function that returns above type. */
16944 struct attribute *attr;
16945
16946 type = die_type (die, cu);
16947
16948 /* The die_type call above may have already set the type for this DIE. */
16949 ftype = get_die_type (die, cu);
16950 if (ftype)
16951 return ftype;
16952
16953 ftype = lookup_function_type (type);
16954
16955 if (prototyped_function_p (die, cu))
16956 TYPE_PROTOTYPED (ftype) = 1;
16957
16958 /* Store the calling convention in the type if it's available in
16959 the subroutine die. Otherwise set the calling convention to
16960 the default value DW_CC_normal. */
16961 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16962 if (attr != nullptr
16963 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16964 TYPE_CALLING_CONVENTION (ftype)
16965 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16966 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16967 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16968 else
16969 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16970
16971 /* Record whether the function returns normally to its caller or not
16972 if the DWARF producer set that information. */
16973 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16974 if (attr && (DW_UNSND (attr) != 0))
16975 TYPE_NO_RETURN (ftype) = 1;
16976
16977 /* We need to add the subroutine type to the die immediately so
16978 we don't infinitely recurse when dealing with parameters
16979 declared as the same subroutine type. */
16980 set_die_type (die, ftype, cu);
16981
16982 if (die->child != NULL)
16983 {
16984 struct type *void_type = objfile_type (objfile)->builtin_void;
16985 struct die_info *child_die;
16986 int nparams, iparams;
16987
16988 /* Count the number of parameters.
16989 FIXME: GDB currently ignores vararg functions, but knows about
16990 vararg member functions. */
16991 nparams = 0;
16992 child_die = die->child;
16993 while (child_die && child_die->tag)
16994 {
16995 if (child_die->tag == DW_TAG_formal_parameter)
16996 nparams++;
16997 else if (child_die->tag == DW_TAG_unspecified_parameters)
16998 TYPE_VARARGS (ftype) = 1;
16999 child_die = child_die->sibling;
17000 }
17001
17002 /* Allocate storage for parameters and fill them in. */
17003 TYPE_NFIELDS (ftype) = nparams;
17004 TYPE_FIELDS (ftype) = (struct field *)
17005 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17006
17007 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17008 even if we error out during the parameters reading below. */
17009 for (iparams = 0; iparams < nparams; iparams++)
17010 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17011
17012 iparams = 0;
17013 child_die = die->child;
17014 while (child_die && child_die->tag)
17015 {
17016 if (child_die->tag == DW_TAG_formal_parameter)
17017 {
17018 struct type *arg_type;
17019
17020 /* DWARF version 2 has no clean way to discern C++
17021 static and non-static member functions. G++ helps
17022 GDB by marking the first parameter for non-static
17023 member functions (which is the this pointer) as
17024 artificial. We pass this information to
17025 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17026
17027 DWARF version 3 added DW_AT_object_pointer, which GCC
17028 4.5 does not yet generate. */
17029 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17030 if (attr != nullptr)
17031 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17032 else
17033 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17034 arg_type = die_type (child_die, cu);
17035
17036 /* RealView does not mark THIS as const, which the testsuite
17037 expects. GCC marks THIS as const in method definitions,
17038 but not in the class specifications (GCC PR 43053). */
17039 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17040 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17041 {
17042 int is_this = 0;
17043 struct dwarf2_cu *arg_cu = cu;
17044 const char *name = dwarf2_name (child_die, cu);
17045
17046 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17047 if (attr != nullptr)
17048 {
17049 /* If the compiler emits this, use it. */
17050 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17051 is_this = 1;
17052 }
17053 else if (name && strcmp (name, "this") == 0)
17054 /* Function definitions will have the argument names. */
17055 is_this = 1;
17056 else if (name == NULL && iparams == 0)
17057 /* Declarations may not have the names, so like
17058 elsewhere in GDB, assume an artificial first
17059 argument is "this". */
17060 is_this = 1;
17061
17062 if (is_this)
17063 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17064 arg_type, 0);
17065 }
17066
17067 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17068 iparams++;
17069 }
17070 child_die = child_die->sibling;
17071 }
17072 }
17073
17074 return ftype;
17075 }
17076
17077 static struct type *
17078 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17079 {
17080 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17081 const char *name = NULL;
17082 struct type *this_type, *target_type;
17083
17084 name = dwarf2_full_name (NULL, die, cu);
17085 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17086 TYPE_TARGET_STUB (this_type) = 1;
17087 set_die_type (die, this_type, cu);
17088 target_type = die_type (die, cu);
17089 if (target_type != this_type)
17090 TYPE_TARGET_TYPE (this_type) = target_type;
17091 else
17092 {
17093 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17094 spec and cause infinite loops in GDB. */
17095 complaint (_("Self-referential DW_TAG_typedef "
17096 "- DIE at %s [in module %s]"),
17097 sect_offset_str (die->sect_off), objfile_name (objfile));
17098 TYPE_TARGET_TYPE (this_type) = NULL;
17099 }
17100 if (name == NULL)
17101 {
17102 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17103 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17104 Handle these by just returning the target type, rather than
17105 constructing an anonymous typedef type and trying to handle this
17106 elsewhere. */
17107 set_die_type (die, target_type, cu);
17108 return target_type;
17109 }
17110 return this_type;
17111 }
17112
17113 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17114 (which may be different from NAME) to the architecture back-end to allow
17115 it to guess the correct format if necessary. */
17116
17117 static struct type *
17118 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17119 const char *name_hint, enum bfd_endian byte_order)
17120 {
17121 struct gdbarch *gdbarch = objfile->arch ();
17122 const struct floatformat **format;
17123 struct type *type;
17124
17125 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17126 if (format)
17127 type = init_float_type (objfile, bits, name, format, byte_order);
17128 else
17129 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17130
17131 return type;
17132 }
17133
17134 /* Allocate an integer type of size BITS and name NAME. */
17135
17136 static struct type *
17137 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17138 int bits, int unsigned_p, const char *name)
17139 {
17140 struct type *type;
17141
17142 /* Versions of Intel's C Compiler generate an integer type called "void"
17143 instead of using DW_TAG_unspecified_type. This has been seen on
17144 at least versions 14, 17, and 18. */
17145 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17146 && strcmp (name, "void") == 0)
17147 type = objfile_type (objfile)->builtin_void;
17148 else
17149 type = init_integer_type (objfile, bits, unsigned_p, name);
17150
17151 return type;
17152 }
17153
17154 /* Initialise and return a floating point type of size BITS suitable for
17155 use as a component of a complex number. The NAME_HINT is passed through
17156 when initialising the floating point type and is the name of the complex
17157 type.
17158
17159 As DWARF doesn't currently provide an explicit name for the components
17160 of a complex number, but it can be helpful to have these components
17161 named, we try to select a suitable name based on the size of the
17162 component. */
17163 static struct type *
17164 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17165 struct objfile *objfile,
17166 int bits, const char *name_hint,
17167 enum bfd_endian byte_order)
17168 {
17169 gdbarch *gdbarch = objfile->arch ();
17170 struct type *tt = nullptr;
17171
17172 /* Try to find a suitable floating point builtin type of size BITS.
17173 We're going to use the name of this type as the name for the complex
17174 target type that we are about to create. */
17175 switch (cu->language)
17176 {
17177 case language_fortran:
17178 switch (bits)
17179 {
17180 case 32:
17181 tt = builtin_f_type (gdbarch)->builtin_real;
17182 break;
17183 case 64:
17184 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17185 break;
17186 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17187 case 128:
17188 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17189 break;
17190 }
17191 break;
17192 default:
17193 switch (bits)
17194 {
17195 case 32:
17196 tt = builtin_type (gdbarch)->builtin_float;
17197 break;
17198 case 64:
17199 tt = builtin_type (gdbarch)->builtin_double;
17200 break;
17201 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17202 case 128:
17203 tt = builtin_type (gdbarch)->builtin_long_double;
17204 break;
17205 }
17206 break;
17207 }
17208
17209 /* If the type we found doesn't match the size we were looking for, then
17210 pretend we didn't find a type at all, the complex target type we
17211 create will then be nameless. */
17212 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17213 tt = nullptr;
17214
17215 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17216 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17217 }
17218
17219 /* Find a representation of a given base type and install
17220 it in the TYPE field of the die. */
17221
17222 static struct type *
17223 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17224 {
17225 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17226 struct type *type;
17227 struct attribute *attr;
17228 int encoding = 0, bits = 0;
17229 const char *name;
17230 gdbarch *arch;
17231
17232 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17233 if (attr != nullptr)
17234 encoding = DW_UNSND (attr);
17235 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17236 if (attr != nullptr)
17237 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17238 name = dwarf2_name (die, cu);
17239 if (!name)
17240 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17241
17242 arch = objfile->arch ();
17243 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17244
17245 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17246 if (attr)
17247 {
17248 int endianity = DW_UNSND (attr);
17249
17250 switch (endianity)
17251 {
17252 case DW_END_big:
17253 byte_order = BFD_ENDIAN_BIG;
17254 break;
17255 case DW_END_little:
17256 byte_order = BFD_ENDIAN_LITTLE;
17257 break;
17258 default:
17259 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17260 break;
17261 }
17262 }
17263
17264 switch (encoding)
17265 {
17266 case DW_ATE_address:
17267 /* Turn DW_ATE_address into a void * pointer. */
17268 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17269 type = init_pointer_type (objfile, bits, name, type);
17270 break;
17271 case DW_ATE_boolean:
17272 type = init_boolean_type (objfile, bits, 1, name);
17273 break;
17274 case DW_ATE_complex_float:
17275 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17276 byte_order);
17277 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
17278 {
17279 if (name == nullptr)
17280 {
17281 struct obstack *obstack
17282 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17283 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17284 nullptr);
17285 }
17286 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17287 }
17288 else
17289 type = init_complex_type (name, type);
17290 break;
17291 case DW_ATE_decimal_float:
17292 type = init_decfloat_type (objfile, bits, name);
17293 break;
17294 case DW_ATE_float:
17295 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17296 break;
17297 case DW_ATE_signed:
17298 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17299 break;
17300 case DW_ATE_unsigned:
17301 if (cu->language == language_fortran
17302 && name
17303 && startswith (name, "character("))
17304 type = init_character_type (objfile, bits, 1, name);
17305 else
17306 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17307 break;
17308 case DW_ATE_signed_char:
17309 if (cu->language == language_ada || cu->language == language_m2
17310 || cu->language == language_pascal
17311 || cu->language == language_fortran)
17312 type = init_character_type (objfile, bits, 0, name);
17313 else
17314 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17315 break;
17316 case DW_ATE_unsigned_char:
17317 if (cu->language == language_ada || cu->language == language_m2
17318 || cu->language == language_pascal
17319 || cu->language == language_fortran
17320 || cu->language == language_rust)
17321 type = init_character_type (objfile, bits, 1, name);
17322 else
17323 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17324 break;
17325 case DW_ATE_UTF:
17326 {
17327 if (bits == 16)
17328 type = builtin_type (arch)->builtin_char16;
17329 else if (bits == 32)
17330 type = builtin_type (arch)->builtin_char32;
17331 else
17332 {
17333 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17334 bits);
17335 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17336 }
17337 return set_die_type (die, type, cu);
17338 }
17339 break;
17340
17341 default:
17342 complaint (_("unsupported DW_AT_encoding: '%s'"),
17343 dwarf_type_encoding_name (encoding));
17344 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17345 break;
17346 }
17347
17348 if (name && strcmp (name, "char") == 0)
17349 TYPE_NOSIGN (type) = 1;
17350
17351 maybe_set_alignment (cu, die, type);
17352
17353 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17354
17355 return set_die_type (die, type, cu);
17356 }
17357
17358 /* Parse dwarf attribute if it's a block, reference or constant and put the
17359 resulting value of the attribute into struct bound_prop.
17360 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17361
17362 static int
17363 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17364 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17365 struct type *default_type)
17366 {
17367 struct dwarf2_property_baton *baton;
17368 struct obstack *obstack
17369 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17370
17371 gdb_assert (default_type != NULL);
17372
17373 if (attr == NULL || prop == NULL)
17374 return 0;
17375
17376 if (attr->form_is_block ())
17377 {
17378 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17379 baton->property_type = default_type;
17380 baton->locexpr.per_cu = cu->per_cu;
17381 baton->locexpr.size = DW_BLOCK (attr)->size;
17382 baton->locexpr.data = DW_BLOCK (attr)->data;
17383 switch (attr->name)
17384 {
17385 case DW_AT_string_length:
17386 baton->locexpr.is_reference = true;
17387 break;
17388 default:
17389 baton->locexpr.is_reference = false;
17390 break;
17391 }
17392 prop->data.baton = baton;
17393 prop->kind = PROP_LOCEXPR;
17394 gdb_assert (prop->data.baton != NULL);
17395 }
17396 else if (attr->form_is_ref ())
17397 {
17398 struct dwarf2_cu *target_cu = cu;
17399 struct die_info *target_die;
17400 struct attribute *target_attr;
17401
17402 target_die = follow_die_ref (die, attr, &target_cu);
17403 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17404 if (target_attr == NULL)
17405 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17406 target_cu);
17407 if (target_attr == NULL)
17408 return 0;
17409
17410 switch (target_attr->name)
17411 {
17412 case DW_AT_location:
17413 if (target_attr->form_is_section_offset ())
17414 {
17415 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17416 baton->property_type = die_type (target_die, target_cu);
17417 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17418 prop->data.baton = baton;
17419 prop->kind = PROP_LOCLIST;
17420 gdb_assert (prop->data.baton != NULL);
17421 }
17422 else if (target_attr->form_is_block ())
17423 {
17424 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17425 baton->property_type = die_type (target_die, target_cu);
17426 baton->locexpr.per_cu = cu->per_cu;
17427 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17428 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17429 baton->locexpr.is_reference = true;
17430 prop->data.baton = baton;
17431 prop->kind = PROP_LOCEXPR;
17432 gdb_assert (prop->data.baton != NULL);
17433 }
17434 else
17435 {
17436 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17437 "dynamic property");
17438 return 0;
17439 }
17440 break;
17441 case DW_AT_data_member_location:
17442 {
17443 LONGEST offset;
17444
17445 if (!handle_data_member_location (target_die, target_cu,
17446 &offset))
17447 return 0;
17448
17449 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17450 baton->property_type = read_type_die (target_die->parent,
17451 target_cu);
17452 baton->offset_info.offset = offset;
17453 baton->offset_info.type = die_type (target_die, target_cu);
17454 prop->data.baton = baton;
17455 prop->kind = PROP_ADDR_OFFSET;
17456 break;
17457 }
17458 }
17459 }
17460 else if (attr->form_is_constant ())
17461 {
17462 prop->data.const_val = attr->constant_value (0);
17463 prop->kind = PROP_CONST;
17464 }
17465 else
17466 {
17467 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17468 dwarf2_name (die, cu));
17469 return 0;
17470 }
17471
17472 return 1;
17473 }
17474
17475 /* See read.h. */
17476
17477 struct type *
17478 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17479 {
17480 struct objfile *objfile = dwarf2_per_objfile->objfile;
17481 struct type *int_type;
17482
17483 /* Helper macro to examine the various builtin types. */
17484 #define TRY_TYPE(F) \
17485 int_type = (unsigned_p \
17486 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17487 : objfile_type (objfile)->builtin_ ## F); \
17488 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17489 return int_type
17490
17491 TRY_TYPE (char);
17492 TRY_TYPE (short);
17493 TRY_TYPE (int);
17494 TRY_TYPE (long);
17495 TRY_TYPE (long_long);
17496
17497 #undef TRY_TYPE
17498
17499 gdb_assert_not_reached ("unable to find suitable integer type");
17500 }
17501
17502 /* See read.h. */
17503
17504 struct type *
17505 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17506 {
17507 int addr_size = this->addr_size ();
17508 return int_type (addr_size, unsigned_p);
17509 }
17510
17511 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17512 present (which is valid) then compute the default type based on the
17513 compilation units address size. */
17514
17515 static struct type *
17516 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17517 {
17518 struct type *index_type = die_type (die, cu);
17519
17520 /* Dwarf-2 specifications explicitly allows to create subrange types
17521 without specifying a base type.
17522 In that case, the base type must be set to the type of
17523 the lower bound, upper bound or count, in that order, if any of these
17524 three attributes references an object that has a type.
17525 If no base type is found, the Dwarf-2 specifications say that
17526 a signed integer type of size equal to the size of an address should
17527 be used.
17528 For the following C code: `extern char gdb_int [];'
17529 GCC produces an empty range DIE.
17530 FIXME: muller/2010-05-28: Possible references to object for low bound,
17531 high bound or count are not yet handled by this code. */
17532 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17533 index_type = cu->per_cu->addr_sized_int_type (false);
17534
17535 return index_type;
17536 }
17537
17538 /* Read the given DW_AT_subrange DIE. */
17539
17540 static struct type *
17541 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17542 {
17543 struct type *base_type, *orig_base_type;
17544 struct type *range_type;
17545 struct attribute *attr;
17546 struct dynamic_prop low, high;
17547 int low_default_is_valid;
17548 int high_bound_is_count = 0;
17549 const char *name;
17550 ULONGEST negative_mask;
17551
17552 orig_base_type = read_subrange_index_type (die, cu);
17553
17554 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17555 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17556 creating the range type, but we use the result of check_typedef
17557 when examining properties of the type. */
17558 base_type = check_typedef (orig_base_type);
17559
17560 /* The die_type call above may have already set the type for this DIE. */
17561 range_type = get_die_type (die, cu);
17562 if (range_type)
17563 return range_type;
17564
17565 low.kind = PROP_CONST;
17566 high.kind = PROP_CONST;
17567 high.data.const_val = 0;
17568
17569 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17570 omitting DW_AT_lower_bound. */
17571 switch (cu->language)
17572 {
17573 case language_c:
17574 case language_cplus:
17575 low.data.const_val = 0;
17576 low_default_is_valid = 1;
17577 break;
17578 case language_fortran:
17579 low.data.const_val = 1;
17580 low_default_is_valid = 1;
17581 break;
17582 case language_d:
17583 case language_objc:
17584 case language_rust:
17585 low.data.const_val = 0;
17586 low_default_is_valid = (cu->header.version >= 4);
17587 break;
17588 case language_ada:
17589 case language_m2:
17590 case language_pascal:
17591 low.data.const_val = 1;
17592 low_default_is_valid = (cu->header.version >= 4);
17593 break;
17594 default:
17595 low.data.const_val = 0;
17596 low_default_is_valid = 0;
17597 break;
17598 }
17599
17600 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17601 if (attr != nullptr)
17602 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17603 else if (!low_default_is_valid)
17604 complaint (_("Missing DW_AT_lower_bound "
17605 "- DIE at %s [in module %s]"),
17606 sect_offset_str (die->sect_off),
17607 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17608
17609 struct attribute *attr_ub, *attr_count;
17610 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17611 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17612 {
17613 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17614 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17615 {
17616 /* If bounds are constant do the final calculation here. */
17617 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17618 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17619 else
17620 high_bound_is_count = 1;
17621 }
17622 else
17623 {
17624 if (attr_ub != NULL)
17625 complaint (_("Unresolved DW_AT_upper_bound "
17626 "- DIE at %s [in module %s]"),
17627 sect_offset_str (die->sect_off),
17628 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17629 if (attr_count != NULL)
17630 complaint (_("Unresolved DW_AT_count "
17631 "- DIE at %s [in module %s]"),
17632 sect_offset_str (die->sect_off),
17633 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17634 }
17635 }
17636
17637 LONGEST bias = 0;
17638 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17639 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17640 bias = bias_attr->constant_value (0);
17641
17642 /* Normally, the DWARF producers are expected to use a signed
17643 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17644 But this is unfortunately not always the case, as witnessed
17645 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17646 is used instead. To work around that ambiguity, we treat
17647 the bounds as signed, and thus sign-extend their values, when
17648 the base type is signed. */
17649 negative_mask =
17650 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17651 if (low.kind == PROP_CONST
17652 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17653 low.data.const_val |= negative_mask;
17654 if (high.kind == PROP_CONST
17655 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17656 high.data.const_val |= negative_mask;
17657
17658 /* Check for bit and byte strides. */
17659 struct dynamic_prop byte_stride_prop;
17660 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17661 if (attr_byte_stride != nullptr)
17662 {
17663 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17664 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17665 prop_type);
17666 }
17667
17668 struct dynamic_prop bit_stride_prop;
17669 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17670 if (attr_bit_stride != nullptr)
17671 {
17672 /* It only makes sense to have either a bit or byte stride. */
17673 if (attr_byte_stride != nullptr)
17674 {
17675 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17676 "- DIE at %s [in module %s]"),
17677 sect_offset_str (die->sect_off),
17678 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17679 attr_bit_stride = nullptr;
17680 }
17681 else
17682 {
17683 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17684 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17685 prop_type);
17686 }
17687 }
17688
17689 if (attr_byte_stride != nullptr
17690 || attr_bit_stride != nullptr)
17691 {
17692 bool byte_stride_p = (attr_byte_stride != nullptr);
17693 struct dynamic_prop *stride
17694 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17695
17696 range_type
17697 = create_range_type_with_stride (NULL, orig_base_type, &low,
17698 &high, bias, stride, byte_stride_p);
17699 }
17700 else
17701 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17702
17703 if (high_bound_is_count)
17704 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17705
17706 /* Ada expects an empty array on no boundary attributes. */
17707 if (attr == NULL && cu->language != language_ada)
17708 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17709
17710 name = dwarf2_name (die, cu);
17711 if (name)
17712 TYPE_NAME (range_type) = name;
17713
17714 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17715 if (attr != nullptr)
17716 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17717
17718 maybe_set_alignment (cu, die, range_type);
17719
17720 set_die_type (die, range_type, cu);
17721
17722 /* set_die_type should be already done. */
17723 set_descriptive_type (range_type, die, cu);
17724
17725 return range_type;
17726 }
17727
17728 static struct type *
17729 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17730 {
17731 struct type *type;
17732
17733 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17734 NULL);
17735 TYPE_NAME (type) = dwarf2_name (die, cu);
17736
17737 /* In Ada, an unspecified type is typically used when the description
17738 of the type is deferred to a different unit. When encountering
17739 such a type, we treat it as a stub, and try to resolve it later on,
17740 when needed. */
17741 if (cu->language == language_ada)
17742 TYPE_STUB (type) = 1;
17743
17744 return set_die_type (die, type, cu);
17745 }
17746
17747 /* Read a single die and all its descendents. Set the die's sibling
17748 field to NULL; set other fields in the die correctly, and set all
17749 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17750 location of the info_ptr after reading all of those dies. PARENT
17751 is the parent of the die in question. */
17752
17753 static struct die_info *
17754 read_die_and_children (const struct die_reader_specs *reader,
17755 const gdb_byte *info_ptr,
17756 const gdb_byte **new_info_ptr,
17757 struct die_info *parent)
17758 {
17759 struct die_info *die;
17760 const gdb_byte *cur_ptr;
17761
17762 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17763 if (die == NULL)
17764 {
17765 *new_info_ptr = cur_ptr;
17766 return NULL;
17767 }
17768 store_in_ref_table (die, reader->cu);
17769
17770 if (die->has_children)
17771 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17772 else
17773 {
17774 die->child = NULL;
17775 *new_info_ptr = cur_ptr;
17776 }
17777
17778 die->sibling = NULL;
17779 die->parent = parent;
17780 return die;
17781 }
17782
17783 /* Read a die, all of its descendents, and all of its siblings; set
17784 all of the fields of all of the dies correctly. Arguments are as
17785 in read_die_and_children. */
17786
17787 static struct die_info *
17788 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17789 const gdb_byte *info_ptr,
17790 const gdb_byte **new_info_ptr,
17791 struct die_info *parent)
17792 {
17793 struct die_info *first_die, *last_sibling;
17794 const gdb_byte *cur_ptr;
17795
17796 cur_ptr = info_ptr;
17797 first_die = last_sibling = NULL;
17798
17799 while (1)
17800 {
17801 struct die_info *die
17802 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17803
17804 if (die == NULL)
17805 {
17806 *new_info_ptr = cur_ptr;
17807 return first_die;
17808 }
17809
17810 if (!first_die)
17811 first_die = die;
17812 else
17813 last_sibling->sibling = die;
17814
17815 last_sibling = die;
17816 }
17817 }
17818
17819 /* Read a die, all of its descendents, and all of its siblings; set
17820 all of the fields of all of the dies correctly. Arguments are as
17821 in read_die_and_children.
17822 This the main entry point for reading a DIE and all its children. */
17823
17824 static struct die_info *
17825 read_die_and_siblings (const struct die_reader_specs *reader,
17826 const gdb_byte *info_ptr,
17827 const gdb_byte **new_info_ptr,
17828 struct die_info *parent)
17829 {
17830 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17831 new_info_ptr, parent);
17832
17833 if (dwarf_die_debug)
17834 {
17835 fprintf_unfiltered (gdb_stdlog,
17836 "Read die from %s@0x%x of %s:\n",
17837 reader->die_section->get_name (),
17838 (unsigned) (info_ptr - reader->die_section->buffer),
17839 bfd_get_filename (reader->abfd));
17840 dump_die (die, dwarf_die_debug);
17841 }
17842
17843 return die;
17844 }
17845
17846 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17847 attributes.
17848 The caller is responsible for filling in the extra attributes
17849 and updating (*DIEP)->num_attrs.
17850 Set DIEP to point to a newly allocated die with its information,
17851 except for its child, sibling, and parent fields. */
17852
17853 static const gdb_byte *
17854 read_full_die_1 (const struct die_reader_specs *reader,
17855 struct die_info **diep, const gdb_byte *info_ptr,
17856 int num_extra_attrs)
17857 {
17858 unsigned int abbrev_number, bytes_read, i;
17859 struct abbrev_info *abbrev;
17860 struct die_info *die;
17861 struct dwarf2_cu *cu = reader->cu;
17862 bfd *abfd = reader->abfd;
17863
17864 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17865 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17866 info_ptr += bytes_read;
17867 if (!abbrev_number)
17868 {
17869 *diep = NULL;
17870 return info_ptr;
17871 }
17872
17873 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17874 if (!abbrev)
17875 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17876 abbrev_number,
17877 bfd_get_filename (abfd));
17878
17879 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17880 die->sect_off = sect_off;
17881 die->tag = abbrev->tag;
17882 die->abbrev = abbrev_number;
17883 die->has_children = abbrev->has_children;
17884
17885 /* Make the result usable.
17886 The caller needs to update num_attrs after adding the extra
17887 attributes. */
17888 die->num_attrs = abbrev->num_attrs;
17889
17890 std::vector<int> indexes_that_need_reprocess;
17891 for (i = 0; i < abbrev->num_attrs; ++i)
17892 {
17893 bool need_reprocess;
17894 info_ptr =
17895 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17896 info_ptr, &need_reprocess);
17897 if (need_reprocess)
17898 indexes_that_need_reprocess.push_back (i);
17899 }
17900
17901 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17902 if (attr != nullptr)
17903 cu->str_offsets_base = DW_UNSND (attr);
17904
17905 attr = die->attr (DW_AT_loclists_base);
17906 if (attr != nullptr)
17907 cu->loclist_base = DW_UNSND (attr);
17908
17909 auto maybe_addr_base = die->addr_base ();
17910 if (maybe_addr_base.has_value ())
17911 cu->addr_base = *maybe_addr_base;
17912 for (int index : indexes_that_need_reprocess)
17913 read_attribute_reprocess (reader, &die->attrs[index]);
17914 *diep = die;
17915 return info_ptr;
17916 }
17917
17918 /* Read a die and all its attributes.
17919 Set DIEP to point to a newly allocated die with its information,
17920 except for its child, sibling, and parent fields. */
17921
17922 static const gdb_byte *
17923 read_full_die (const struct die_reader_specs *reader,
17924 struct die_info **diep, const gdb_byte *info_ptr)
17925 {
17926 const gdb_byte *result;
17927
17928 result = read_full_die_1 (reader, diep, info_ptr, 0);
17929
17930 if (dwarf_die_debug)
17931 {
17932 fprintf_unfiltered (gdb_stdlog,
17933 "Read die from %s@0x%x of %s:\n",
17934 reader->die_section->get_name (),
17935 (unsigned) (info_ptr - reader->die_section->buffer),
17936 bfd_get_filename (reader->abfd));
17937 dump_die (*diep, dwarf_die_debug);
17938 }
17939
17940 return result;
17941 }
17942 \f
17943
17944 /* Returns nonzero if TAG represents a type that we might generate a partial
17945 symbol for. */
17946
17947 static int
17948 is_type_tag_for_partial (int tag)
17949 {
17950 switch (tag)
17951 {
17952 #if 0
17953 /* Some types that would be reasonable to generate partial symbols for,
17954 that we don't at present. */
17955 case DW_TAG_array_type:
17956 case DW_TAG_file_type:
17957 case DW_TAG_ptr_to_member_type:
17958 case DW_TAG_set_type:
17959 case DW_TAG_string_type:
17960 case DW_TAG_subroutine_type:
17961 #endif
17962 case DW_TAG_base_type:
17963 case DW_TAG_class_type:
17964 case DW_TAG_interface_type:
17965 case DW_TAG_enumeration_type:
17966 case DW_TAG_structure_type:
17967 case DW_TAG_subrange_type:
17968 case DW_TAG_typedef:
17969 case DW_TAG_union_type:
17970 return 1;
17971 default:
17972 return 0;
17973 }
17974 }
17975
17976 /* Load all DIEs that are interesting for partial symbols into memory. */
17977
17978 static struct partial_die_info *
17979 load_partial_dies (const struct die_reader_specs *reader,
17980 const gdb_byte *info_ptr, int building_psymtab)
17981 {
17982 struct dwarf2_cu *cu = reader->cu;
17983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17984 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17985 unsigned int bytes_read;
17986 unsigned int load_all = 0;
17987 int nesting_level = 1;
17988
17989 parent_die = NULL;
17990 last_die = NULL;
17991
17992 gdb_assert (cu->per_cu != NULL);
17993 if (cu->per_cu->load_all_dies)
17994 load_all = 1;
17995
17996 cu->partial_dies
17997 = htab_create_alloc_ex (cu->header.length / 12,
17998 partial_die_hash,
17999 partial_die_eq,
18000 NULL,
18001 &cu->comp_unit_obstack,
18002 hashtab_obstack_allocate,
18003 dummy_obstack_deallocate);
18004
18005 while (1)
18006 {
18007 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18008
18009 /* A NULL abbrev means the end of a series of children. */
18010 if (abbrev == NULL)
18011 {
18012 if (--nesting_level == 0)
18013 return first_die;
18014
18015 info_ptr += bytes_read;
18016 last_die = parent_die;
18017 parent_die = parent_die->die_parent;
18018 continue;
18019 }
18020
18021 /* Check for template arguments. We never save these; if
18022 they're seen, we just mark the parent, and go on our way. */
18023 if (parent_die != NULL
18024 && cu->language == language_cplus
18025 && (abbrev->tag == DW_TAG_template_type_param
18026 || abbrev->tag == DW_TAG_template_value_param))
18027 {
18028 parent_die->has_template_arguments = 1;
18029
18030 if (!load_all)
18031 {
18032 /* We don't need a partial DIE for the template argument. */
18033 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18034 continue;
18035 }
18036 }
18037
18038 /* We only recurse into c++ subprograms looking for template arguments.
18039 Skip their other children. */
18040 if (!load_all
18041 && cu->language == language_cplus
18042 && parent_die != NULL
18043 && parent_die->tag == DW_TAG_subprogram)
18044 {
18045 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18046 continue;
18047 }
18048
18049 /* Check whether this DIE is interesting enough to save. Normally
18050 we would not be interested in members here, but there may be
18051 later variables referencing them via DW_AT_specification (for
18052 static members). */
18053 if (!load_all
18054 && !is_type_tag_for_partial (abbrev->tag)
18055 && abbrev->tag != DW_TAG_constant
18056 && abbrev->tag != DW_TAG_enumerator
18057 && abbrev->tag != DW_TAG_subprogram
18058 && abbrev->tag != DW_TAG_inlined_subroutine
18059 && abbrev->tag != DW_TAG_lexical_block
18060 && abbrev->tag != DW_TAG_variable
18061 && abbrev->tag != DW_TAG_namespace
18062 && abbrev->tag != DW_TAG_module
18063 && abbrev->tag != DW_TAG_member
18064 && abbrev->tag != DW_TAG_imported_unit
18065 && abbrev->tag != DW_TAG_imported_declaration)
18066 {
18067 /* Otherwise we skip to the next sibling, if any. */
18068 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18069 continue;
18070 }
18071
18072 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18073 abbrev);
18074
18075 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18076
18077 /* This two-pass algorithm for processing partial symbols has a
18078 high cost in cache pressure. Thus, handle some simple cases
18079 here which cover the majority of C partial symbols. DIEs
18080 which neither have specification tags in them, nor could have
18081 specification tags elsewhere pointing at them, can simply be
18082 processed and discarded.
18083
18084 This segment is also optional; scan_partial_symbols and
18085 add_partial_symbol will handle these DIEs if we chain
18086 them in normally. When compilers which do not emit large
18087 quantities of duplicate debug information are more common,
18088 this code can probably be removed. */
18089
18090 /* Any complete simple types at the top level (pretty much all
18091 of them, for a language without namespaces), can be processed
18092 directly. */
18093 if (parent_die == NULL
18094 && pdi.has_specification == 0
18095 && pdi.is_declaration == 0
18096 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18097 || pdi.tag == DW_TAG_base_type
18098 || pdi.tag == DW_TAG_subrange_type))
18099 {
18100 if (building_psymtab && pdi.name != NULL)
18101 add_psymbol_to_list (pdi.name, false,
18102 VAR_DOMAIN, LOC_TYPEDEF, -1,
18103 psymbol_placement::STATIC,
18104 0, cu->language, objfile);
18105 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18106 continue;
18107 }
18108
18109 /* The exception for DW_TAG_typedef with has_children above is
18110 a workaround of GCC PR debug/47510. In the case of this complaint
18111 type_name_or_error will error on such types later.
18112
18113 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18114 it could not find the child DIEs referenced later, this is checked
18115 above. In correct DWARF DW_TAG_typedef should have no children. */
18116
18117 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18118 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18119 "- DIE at %s [in module %s]"),
18120 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18121
18122 /* If we're at the second level, and we're an enumerator, and
18123 our parent has no specification (meaning possibly lives in a
18124 namespace elsewhere), then we can add the partial symbol now
18125 instead of queueing it. */
18126 if (pdi.tag == DW_TAG_enumerator
18127 && parent_die != NULL
18128 && parent_die->die_parent == NULL
18129 && parent_die->tag == DW_TAG_enumeration_type
18130 && parent_die->has_specification == 0)
18131 {
18132 if (pdi.name == NULL)
18133 complaint (_("malformed enumerator DIE ignored"));
18134 else if (building_psymtab)
18135 add_psymbol_to_list (pdi.name, false,
18136 VAR_DOMAIN, LOC_CONST, -1,
18137 cu->language == language_cplus
18138 ? psymbol_placement::GLOBAL
18139 : psymbol_placement::STATIC,
18140 0, cu->language, objfile);
18141
18142 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18143 continue;
18144 }
18145
18146 struct partial_die_info *part_die
18147 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18148
18149 /* We'll save this DIE so link it in. */
18150 part_die->die_parent = parent_die;
18151 part_die->die_sibling = NULL;
18152 part_die->die_child = NULL;
18153
18154 if (last_die && last_die == parent_die)
18155 last_die->die_child = part_die;
18156 else if (last_die)
18157 last_die->die_sibling = part_die;
18158
18159 last_die = part_die;
18160
18161 if (first_die == NULL)
18162 first_die = part_die;
18163
18164 /* Maybe add the DIE to the hash table. Not all DIEs that we
18165 find interesting need to be in the hash table, because we
18166 also have the parent/sibling/child chains; only those that we
18167 might refer to by offset later during partial symbol reading.
18168
18169 For now this means things that might have be the target of a
18170 DW_AT_specification, DW_AT_abstract_origin, or
18171 DW_AT_extension. DW_AT_extension will refer only to
18172 namespaces; DW_AT_abstract_origin refers to functions (and
18173 many things under the function DIE, but we do not recurse
18174 into function DIEs during partial symbol reading) and
18175 possibly variables as well; DW_AT_specification refers to
18176 declarations. Declarations ought to have the DW_AT_declaration
18177 flag. It happens that GCC forgets to put it in sometimes, but
18178 only for functions, not for types.
18179
18180 Adding more things than necessary to the hash table is harmless
18181 except for the performance cost. Adding too few will result in
18182 wasted time in find_partial_die, when we reread the compilation
18183 unit with load_all_dies set. */
18184
18185 if (load_all
18186 || abbrev->tag == DW_TAG_constant
18187 || abbrev->tag == DW_TAG_subprogram
18188 || abbrev->tag == DW_TAG_variable
18189 || abbrev->tag == DW_TAG_namespace
18190 || part_die->is_declaration)
18191 {
18192 void **slot;
18193
18194 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18195 to_underlying (part_die->sect_off),
18196 INSERT);
18197 *slot = part_die;
18198 }
18199
18200 /* For some DIEs we want to follow their children (if any). For C
18201 we have no reason to follow the children of structures; for other
18202 languages we have to, so that we can get at method physnames
18203 to infer fully qualified class names, for DW_AT_specification,
18204 and for C++ template arguments. For C++, we also look one level
18205 inside functions to find template arguments (if the name of the
18206 function does not already contain the template arguments).
18207
18208 For Ada and Fortran, we need to scan the children of subprograms
18209 and lexical blocks as well because these languages allow the
18210 definition of nested entities that could be interesting for the
18211 debugger, such as nested subprograms for instance. */
18212 if (last_die->has_children
18213 && (load_all
18214 || last_die->tag == DW_TAG_namespace
18215 || last_die->tag == DW_TAG_module
18216 || last_die->tag == DW_TAG_enumeration_type
18217 || (cu->language == language_cplus
18218 && last_die->tag == DW_TAG_subprogram
18219 && (last_die->name == NULL
18220 || strchr (last_die->name, '<') == NULL))
18221 || (cu->language != language_c
18222 && (last_die->tag == DW_TAG_class_type
18223 || last_die->tag == DW_TAG_interface_type
18224 || last_die->tag == DW_TAG_structure_type
18225 || last_die->tag == DW_TAG_union_type))
18226 || ((cu->language == language_ada
18227 || cu->language == language_fortran)
18228 && (last_die->tag == DW_TAG_subprogram
18229 || last_die->tag == DW_TAG_lexical_block))))
18230 {
18231 nesting_level++;
18232 parent_die = last_die;
18233 continue;
18234 }
18235
18236 /* Otherwise we skip to the next sibling, if any. */
18237 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18238
18239 /* Back to the top, do it again. */
18240 }
18241 }
18242
18243 partial_die_info::partial_die_info (sect_offset sect_off_,
18244 struct abbrev_info *abbrev)
18245 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18246 {
18247 }
18248
18249 /* Read a minimal amount of information into the minimal die structure.
18250 INFO_PTR should point just after the initial uleb128 of a DIE. */
18251
18252 const gdb_byte *
18253 partial_die_info::read (const struct die_reader_specs *reader,
18254 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18255 {
18256 struct dwarf2_cu *cu = reader->cu;
18257 struct dwarf2_per_objfile *dwarf2_per_objfile
18258 = cu->per_cu->dwarf2_per_objfile;
18259 unsigned int i;
18260 int has_low_pc_attr = 0;
18261 int has_high_pc_attr = 0;
18262 int high_pc_relative = 0;
18263
18264 for (i = 0; i < abbrev.num_attrs; ++i)
18265 {
18266 attribute attr;
18267 bool need_reprocess;
18268 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18269 info_ptr, &need_reprocess);
18270 /* String and address offsets that need to do the reprocessing have
18271 already been read at this point, so there is no need to wait until
18272 the loop terminates to do the reprocessing. */
18273 if (need_reprocess)
18274 read_attribute_reprocess (reader, &attr);
18275 /* Store the data if it is of an attribute we want to keep in a
18276 partial symbol table. */
18277 switch (attr.name)
18278 {
18279 case DW_AT_name:
18280 switch (tag)
18281 {
18282 case DW_TAG_compile_unit:
18283 case DW_TAG_partial_unit:
18284 case DW_TAG_type_unit:
18285 /* Compilation units have a DW_AT_name that is a filename, not
18286 a source language identifier. */
18287 case DW_TAG_enumeration_type:
18288 case DW_TAG_enumerator:
18289 /* These tags always have simple identifiers already; no need
18290 to canonicalize them. */
18291 name = DW_STRING (&attr);
18292 break;
18293 default:
18294 {
18295 struct objfile *objfile = dwarf2_per_objfile->objfile;
18296
18297 name
18298 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18299 }
18300 break;
18301 }
18302 break;
18303 case DW_AT_linkage_name:
18304 case DW_AT_MIPS_linkage_name:
18305 /* Note that both forms of linkage name might appear. We
18306 assume they will be the same, and we only store the last
18307 one we see. */
18308 linkage_name = attr.value_as_string ();
18309 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18310 See https://github.com/rust-lang/rust/issues/32925. */
18311 if (cu->language == language_rust && linkage_name != NULL
18312 && strchr (linkage_name, '{') != NULL)
18313 linkage_name = NULL;
18314 break;
18315 case DW_AT_low_pc:
18316 has_low_pc_attr = 1;
18317 lowpc = attr.value_as_address ();
18318 break;
18319 case DW_AT_high_pc:
18320 has_high_pc_attr = 1;
18321 highpc = attr.value_as_address ();
18322 if (cu->header.version >= 4 && attr.form_is_constant ())
18323 high_pc_relative = 1;
18324 break;
18325 case DW_AT_location:
18326 /* Support the .debug_loc offsets. */
18327 if (attr.form_is_block ())
18328 {
18329 d.locdesc = DW_BLOCK (&attr);
18330 }
18331 else if (attr.form_is_section_offset ())
18332 {
18333 dwarf2_complex_location_expr_complaint ();
18334 }
18335 else
18336 {
18337 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18338 "partial symbol information");
18339 }
18340 break;
18341 case DW_AT_external:
18342 is_external = DW_UNSND (&attr);
18343 break;
18344 case DW_AT_declaration:
18345 is_declaration = DW_UNSND (&attr);
18346 break;
18347 case DW_AT_type:
18348 has_type = 1;
18349 break;
18350 case DW_AT_abstract_origin:
18351 case DW_AT_specification:
18352 case DW_AT_extension:
18353 has_specification = 1;
18354 spec_offset = attr.get_ref_die_offset ();
18355 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18356 || cu->per_cu->is_dwz);
18357 break;
18358 case DW_AT_sibling:
18359 /* Ignore absolute siblings, they might point outside of
18360 the current compile unit. */
18361 if (attr.form == DW_FORM_ref_addr)
18362 complaint (_("ignoring absolute DW_AT_sibling"));
18363 else
18364 {
18365 const gdb_byte *buffer = reader->buffer;
18366 sect_offset off = attr.get_ref_die_offset ();
18367 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18368
18369 if (sibling_ptr < info_ptr)
18370 complaint (_("DW_AT_sibling points backwards"));
18371 else if (sibling_ptr > reader->buffer_end)
18372 reader->die_section->overflow_complaint ();
18373 else
18374 sibling = sibling_ptr;
18375 }
18376 break;
18377 case DW_AT_byte_size:
18378 has_byte_size = 1;
18379 break;
18380 case DW_AT_const_value:
18381 has_const_value = 1;
18382 break;
18383 case DW_AT_calling_convention:
18384 /* DWARF doesn't provide a way to identify a program's source-level
18385 entry point. DW_AT_calling_convention attributes are only meant
18386 to describe functions' calling conventions.
18387
18388 However, because it's a necessary piece of information in
18389 Fortran, and before DWARF 4 DW_CC_program was the only
18390 piece of debugging information whose definition refers to
18391 a 'main program' at all, several compilers marked Fortran
18392 main programs with DW_CC_program --- even when those
18393 functions use the standard calling conventions.
18394
18395 Although DWARF now specifies a way to provide this
18396 information, we support this practice for backward
18397 compatibility. */
18398 if (DW_UNSND (&attr) == DW_CC_program
18399 && cu->language == language_fortran)
18400 main_subprogram = 1;
18401 break;
18402 case DW_AT_inline:
18403 if (DW_UNSND (&attr) == DW_INL_inlined
18404 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18405 may_be_inlined = 1;
18406 break;
18407
18408 case DW_AT_import:
18409 if (tag == DW_TAG_imported_unit)
18410 {
18411 d.sect_off = attr.get_ref_die_offset ();
18412 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18413 || cu->per_cu->is_dwz);
18414 }
18415 break;
18416
18417 case DW_AT_main_subprogram:
18418 main_subprogram = DW_UNSND (&attr);
18419 break;
18420
18421 case DW_AT_ranges:
18422 {
18423 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18424 but that requires a full DIE, so instead we just
18425 reimplement it. */
18426 int need_ranges_base = tag != DW_TAG_compile_unit;
18427 unsigned int ranges_offset = (DW_UNSND (&attr)
18428 + (need_ranges_base
18429 ? cu->ranges_base
18430 : 0));
18431
18432 /* Value of the DW_AT_ranges attribute is the offset in the
18433 .debug_ranges section. */
18434 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18435 nullptr))
18436 has_pc_info = 1;
18437 }
18438 break;
18439
18440 default:
18441 break;
18442 }
18443 }
18444
18445 /* For Ada, if both the name and the linkage name appear, we prefer
18446 the latter. This lets "catch exception" work better, regardless
18447 of the order in which the name and linkage name were emitted.
18448 Really, though, this is just a workaround for the fact that gdb
18449 doesn't store both the name and the linkage name. */
18450 if (cu->language == language_ada && linkage_name != nullptr)
18451 name = linkage_name;
18452
18453 if (high_pc_relative)
18454 highpc += lowpc;
18455
18456 if (has_low_pc_attr && has_high_pc_attr)
18457 {
18458 /* When using the GNU linker, .gnu.linkonce. sections are used to
18459 eliminate duplicate copies of functions and vtables and such.
18460 The linker will arbitrarily choose one and discard the others.
18461 The AT_*_pc values for such functions refer to local labels in
18462 these sections. If the section from that file was discarded, the
18463 labels are not in the output, so the relocs get a value of 0.
18464 If this is a discarded function, mark the pc bounds as invalid,
18465 so that GDB will ignore it. */
18466 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18467 {
18468 struct objfile *objfile = dwarf2_per_objfile->objfile;
18469 struct gdbarch *gdbarch = objfile->arch ();
18470
18471 complaint (_("DW_AT_low_pc %s is zero "
18472 "for DIE at %s [in module %s]"),
18473 paddress (gdbarch, lowpc),
18474 sect_offset_str (sect_off),
18475 objfile_name (objfile));
18476 }
18477 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18478 else if (lowpc >= highpc)
18479 {
18480 struct objfile *objfile = dwarf2_per_objfile->objfile;
18481 struct gdbarch *gdbarch = objfile->arch ();
18482
18483 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18484 "for DIE at %s [in module %s]"),
18485 paddress (gdbarch, lowpc),
18486 paddress (gdbarch, highpc),
18487 sect_offset_str (sect_off),
18488 objfile_name (objfile));
18489 }
18490 else
18491 has_pc_info = 1;
18492 }
18493
18494 return info_ptr;
18495 }
18496
18497 /* Find a cached partial DIE at OFFSET in CU. */
18498
18499 struct partial_die_info *
18500 dwarf2_cu::find_partial_die (sect_offset sect_off)
18501 {
18502 struct partial_die_info *lookup_die = NULL;
18503 struct partial_die_info part_die (sect_off);
18504
18505 lookup_die = ((struct partial_die_info *)
18506 htab_find_with_hash (partial_dies, &part_die,
18507 to_underlying (sect_off)));
18508
18509 return lookup_die;
18510 }
18511
18512 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18513 except in the case of .debug_types DIEs which do not reference
18514 outside their CU (they do however referencing other types via
18515 DW_FORM_ref_sig8). */
18516
18517 static const struct cu_partial_die_info
18518 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18519 {
18520 struct dwarf2_per_objfile *dwarf2_per_objfile
18521 = cu->per_cu->dwarf2_per_objfile;
18522 struct objfile *objfile = dwarf2_per_objfile->objfile;
18523 struct dwarf2_per_cu_data *per_cu = NULL;
18524 struct partial_die_info *pd = NULL;
18525
18526 if (offset_in_dwz == cu->per_cu->is_dwz
18527 && cu->header.offset_in_cu_p (sect_off))
18528 {
18529 pd = cu->find_partial_die (sect_off);
18530 if (pd != NULL)
18531 return { cu, pd };
18532 /* We missed recording what we needed.
18533 Load all dies and try again. */
18534 per_cu = cu->per_cu;
18535 }
18536 else
18537 {
18538 /* TUs don't reference other CUs/TUs (except via type signatures). */
18539 if (cu->per_cu->is_debug_types)
18540 {
18541 error (_("Dwarf Error: Type Unit at offset %s contains"
18542 " external reference to offset %s [in module %s].\n"),
18543 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18544 bfd_get_filename (objfile->obfd));
18545 }
18546 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18547 dwarf2_per_objfile);
18548
18549 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18550 load_partial_comp_unit (per_cu);
18551
18552 per_cu->cu->last_used = 0;
18553 pd = per_cu->cu->find_partial_die (sect_off);
18554 }
18555
18556 /* If we didn't find it, and not all dies have been loaded,
18557 load them all and try again. */
18558
18559 if (pd == NULL && per_cu->load_all_dies == 0)
18560 {
18561 per_cu->load_all_dies = 1;
18562
18563 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18564 THIS_CU->cu may already be in use. So we can't just free it and
18565 replace its DIEs with the ones we read in. Instead, we leave those
18566 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18567 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18568 set. */
18569 load_partial_comp_unit (per_cu);
18570
18571 pd = per_cu->cu->find_partial_die (sect_off);
18572 }
18573
18574 if (pd == NULL)
18575 internal_error (__FILE__, __LINE__,
18576 _("could not find partial DIE %s "
18577 "in cache [from module %s]\n"),
18578 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18579 return { per_cu->cu, pd };
18580 }
18581
18582 /* See if we can figure out if the class lives in a namespace. We do
18583 this by looking for a member function; its demangled name will
18584 contain namespace info, if there is any. */
18585
18586 static void
18587 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18588 struct dwarf2_cu *cu)
18589 {
18590 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18591 what template types look like, because the demangler
18592 frequently doesn't give the same name as the debug info. We
18593 could fix this by only using the demangled name to get the
18594 prefix (but see comment in read_structure_type). */
18595
18596 struct partial_die_info *real_pdi;
18597 struct partial_die_info *child_pdi;
18598
18599 /* If this DIE (this DIE's specification, if any) has a parent, then
18600 we should not do this. We'll prepend the parent's fully qualified
18601 name when we create the partial symbol. */
18602
18603 real_pdi = struct_pdi;
18604 while (real_pdi->has_specification)
18605 {
18606 auto res = find_partial_die (real_pdi->spec_offset,
18607 real_pdi->spec_is_dwz, cu);
18608 real_pdi = res.pdi;
18609 cu = res.cu;
18610 }
18611
18612 if (real_pdi->die_parent != NULL)
18613 return;
18614
18615 for (child_pdi = struct_pdi->die_child;
18616 child_pdi != NULL;
18617 child_pdi = child_pdi->die_sibling)
18618 {
18619 if (child_pdi->tag == DW_TAG_subprogram
18620 && child_pdi->linkage_name != NULL)
18621 {
18622 gdb::unique_xmalloc_ptr<char> actual_class_name
18623 (language_class_name_from_physname (cu->language_defn,
18624 child_pdi->linkage_name));
18625 if (actual_class_name != NULL)
18626 {
18627 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18628 struct_pdi->name = objfile->intern (actual_class_name.get ());
18629 }
18630 break;
18631 }
18632 }
18633 }
18634
18635 /* Return true if a DIE with TAG may have the DW_AT_const_value
18636 attribute. */
18637
18638 static bool
18639 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18640 {
18641 switch (tag)
18642 {
18643 case DW_TAG_constant:
18644 case DW_TAG_enumerator:
18645 case DW_TAG_formal_parameter:
18646 case DW_TAG_template_value_param:
18647 case DW_TAG_variable:
18648 return true;
18649 }
18650
18651 return false;
18652 }
18653
18654 void
18655 partial_die_info::fixup (struct dwarf2_cu *cu)
18656 {
18657 /* Once we've fixed up a die, there's no point in doing so again.
18658 This also avoids a memory leak if we were to call
18659 guess_partial_die_structure_name multiple times. */
18660 if (fixup_called)
18661 return;
18662
18663 /* If we found a reference attribute and the DIE has no name, try
18664 to find a name in the referred to DIE. */
18665
18666 if (name == NULL && has_specification)
18667 {
18668 struct partial_die_info *spec_die;
18669
18670 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18671 spec_die = res.pdi;
18672 cu = res.cu;
18673
18674 spec_die->fixup (cu);
18675
18676 if (spec_die->name)
18677 {
18678 name = spec_die->name;
18679
18680 /* Copy DW_AT_external attribute if it is set. */
18681 if (spec_die->is_external)
18682 is_external = spec_die->is_external;
18683 }
18684 }
18685
18686 if (!has_const_value && has_specification
18687 && can_have_DW_AT_const_value_p (tag))
18688 {
18689 struct partial_die_info *spec_die;
18690
18691 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18692 spec_die = res.pdi;
18693 cu = res.cu;
18694
18695 spec_die->fixup (cu);
18696
18697 if (spec_die->has_const_value)
18698 {
18699 /* Copy DW_AT_const_value attribute if it is set. */
18700 has_const_value = spec_die->has_const_value;
18701 }
18702 }
18703
18704 /* Set default names for some unnamed DIEs. */
18705
18706 if (name == NULL && tag == DW_TAG_namespace)
18707 name = CP_ANONYMOUS_NAMESPACE_STR;
18708
18709 /* If there is no parent die to provide a namespace, and there are
18710 children, see if we can determine the namespace from their linkage
18711 name. */
18712 if (cu->language == language_cplus
18713 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18714 && die_parent == NULL
18715 && has_children
18716 && (tag == DW_TAG_class_type
18717 || tag == DW_TAG_structure_type
18718 || tag == DW_TAG_union_type))
18719 guess_partial_die_structure_name (this, cu);
18720
18721 /* GCC might emit a nameless struct or union that has a linkage
18722 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18723 if (name == NULL
18724 && (tag == DW_TAG_class_type
18725 || tag == DW_TAG_interface_type
18726 || tag == DW_TAG_structure_type
18727 || tag == DW_TAG_union_type)
18728 && linkage_name != NULL)
18729 {
18730 gdb::unique_xmalloc_ptr<char> demangled
18731 (gdb_demangle (linkage_name, DMGL_TYPES));
18732 if (demangled != nullptr)
18733 {
18734 const char *base;
18735
18736 /* Strip any leading namespaces/classes, keep only the base name.
18737 DW_AT_name for named DIEs does not contain the prefixes. */
18738 base = strrchr (demangled.get (), ':');
18739 if (base && base > demangled.get () && base[-1] == ':')
18740 base++;
18741 else
18742 base = demangled.get ();
18743
18744 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18745 name = objfile->intern (base);
18746 }
18747 }
18748
18749 fixup_called = 1;
18750 }
18751
18752 /* Read the .debug_loclists header contents from the given SECTION in the
18753 HEADER. */
18754 static void
18755 read_loclist_header (struct loclist_header *header,
18756 struct dwarf2_section_info *section)
18757 {
18758 unsigned int bytes_read;
18759 bfd *abfd = section->get_bfd_owner ();
18760 const gdb_byte *info_ptr = section->buffer;
18761 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18762 info_ptr += bytes_read;
18763 header->version = read_2_bytes (abfd, info_ptr);
18764 info_ptr += 2;
18765 header->addr_size = read_1_byte (abfd, info_ptr);
18766 info_ptr += 1;
18767 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18768 info_ptr += 1;
18769 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18770 }
18771
18772 /* Return the DW_AT_loclists_base value for the CU. */
18773 static ULONGEST
18774 lookup_loclist_base (struct dwarf2_cu *cu)
18775 {
18776 /* For the .dwo unit, the loclist_base points to the first offset following
18777 the header. The header consists of the following entities-
18778 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18779 bit format)
18780 2. version (2 bytes)
18781 3. address size (1 byte)
18782 4. segment selector size (1 byte)
18783 5. offset entry count (4 bytes)
18784 These sizes are derived as per the DWARFv5 standard. */
18785 if (cu->dwo_unit != nullptr)
18786 {
18787 if (cu->header.initial_length_size == 4)
18788 return LOCLIST_HEADER_SIZE32;
18789 return LOCLIST_HEADER_SIZE64;
18790 }
18791 return cu->loclist_base;
18792 }
18793
18794 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18795 array of offsets in the .debug_loclists section. */
18796 static CORE_ADDR
18797 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18798 {
18799 struct dwarf2_per_objfile *dwarf2_per_objfile
18800 = cu->per_cu->dwarf2_per_objfile;
18801 struct objfile *objfile = dwarf2_per_objfile->objfile;
18802 bfd *abfd = objfile->obfd;
18803 ULONGEST loclist_base = lookup_loclist_base (cu);
18804 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18805
18806 section->read (objfile);
18807 if (section->buffer == NULL)
18808 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18809 "section [in module %s]"), objfile_name (objfile));
18810 struct loclist_header header;
18811 read_loclist_header (&header, section);
18812 if (loclist_index >= header.offset_entry_count)
18813 complaint (_("DW_FORM_loclistx pointing outside of "
18814 ".debug_loclists offset array [in module %s]"),
18815 objfile_name (objfile));
18816 if (loclist_base + loclist_index * cu->header.offset_size
18817 >= section->size)
18818 complaint (_("DW_FORM_loclistx pointing outside of "
18819 ".debug_loclists section [in module %s]"),
18820 objfile_name (objfile));
18821 const gdb_byte *info_ptr
18822 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18823
18824 if (cu->header.offset_size == 4)
18825 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18826 else
18827 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18828 }
18829
18830 /* Process the attributes that had to be skipped in the first round. These
18831 attributes are the ones that need str_offsets_base or addr_base attributes.
18832 They could not have been processed in the first round, because at the time
18833 the values of str_offsets_base or addr_base may not have been known. */
18834 static void
18835 read_attribute_reprocess (const struct die_reader_specs *reader,
18836 struct attribute *attr)
18837 {
18838 struct dwarf2_cu *cu = reader->cu;
18839 switch (attr->form)
18840 {
18841 case DW_FORM_addrx:
18842 case DW_FORM_GNU_addr_index:
18843 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18844 break;
18845 case DW_FORM_loclistx:
18846 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18847 break;
18848 case DW_FORM_strx:
18849 case DW_FORM_strx1:
18850 case DW_FORM_strx2:
18851 case DW_FORM_strx3:
18852 case DW_FORM_strx4:
18853 case DW_FORM_GNU_str_index:
18854 {
18855 unsigned int str_index = DW_UNSND (attr);
18856 if (reader->dwo_file != NULL)
18857 {
18858 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18859 DW_STRING_IS_CANONICAL (attr) = 0;
18860 }
18861 else
18862 {
18863 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18864 DW_STRING_IS_CANONICAL (attr) = 0;
18865 }
18866 break;
18867 }
18868 default:
18869 gdb_assert_not_reached (_("Unexpected DWARF form."));
18870 }
18871 }
18872
18873 /* Read an attribute value described by an attribute form. */
18874
18875 static const gdb_byte *
18876 read_attribute_value (const struct die_reader_specs *reader,
18877 struct attribute *attr, unsigned form,
18878 LONGEST implicit_const, const gdb_byte *info_ptr,
18879 bool *need_reprocess)
18880 {
18881 struct dwarf2_cu *cu = reader->cu;
18882 struct dwarf2_per_objfile *dwarf2_per_objfile
18883 = cu->per_cu->dwarf2_per_objfile;
18884 struct objfile *objfile = dwarf2_per_objfile->objfile;
18885 bfd *abfd = reader->abfd;
18886 struct comp_unit_head *cu_header = &cu->header;
18887 unsigned int bytes_read;
18888 struct dwarf_block *blk;
18889 *need_reprocess = false;
18890
18891 attr->form = (enum dwarf_form) form;
18892 switch (form)
18893 {
18894 case DW_FORM_ref_addr:
18895 if (cu->header.version == 2)
18896 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18897 &bytes_read);
18898 else
18899 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18900 &bytes_read);
18901 info_ptr += bytes_read;
18902 break;
18903 case DW_FORM_GNU_ref_alt:
18904 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18905 info_ptr += bytes_read;
18906 break;
18907 case DW_FORM_addr:
18908 {
18909 struct gdbarch *gdbarch = objfile->arch ();
18910 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18911 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18912 info_ptr += bytes_read;
18913 }
18914 break;
18915 case DW_FORM_block2:
18916 blk = dwarf_alloc_block (cu);
18917 blk->size = read_2_bytes (abfd, info_ptr);
18918 info_ptr += 2;
18919 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18920 info_ptr += blk->size;
18921 DW_BLOCK (attr) = blk;
18922 break;
18923 case DW_FORM_block4:
18924 blk = dwarf_alloc_block (cu);
18925 blk->size = read_4_bytes (abfd, info_ptr);
18926 info_ptr += 4;
18927 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18928 info_ptr += blk->size;
18929 DW_BLOCK (attr) = blk;
18930 break;
18931 case DW_FORM_data2:
18932 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18933 info_ptr += 2;
18934 break;
18935 case DW_FORM_data4:
18936 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18937 info_ptr += 4;
18938 break;
18939 case DW_FORM_data8:
18940 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18941 info_ptr += 8;
18942 break;
18943 case DW_FORM_data16:
18944 blk = dwarf_alloc_block (cu);
18945 blk->size = 16;
18946 blk->data = read_n_bytes (abfd, info_ptr, 16);
18947 info_ptr += 16;
18948 DW_BLOCK (attr) = blk;
18949 break;
18950 case DW_FORM_sec_offset:
18951 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18952 info_ptr += bytes_read;
18953 break;
18954 case DW_FORM_loclistx:
18955 {
18956 *need_reprocess = true;
18957 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18958 info_ptr += bytes_read;
18959 }
18960 break;
18961 case DW_FORM_string:
18962 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18963 DW_STRING_IS_CANONICAL (attr) = 0;
18964 info_ptr += bytes_read;
18965 break;
18966 case DW_FORM_strp:
18967 if (!cu->per_cu->is_dwz)
18968 {
18969 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18970 abfd, info_ptr, cu_header,
18971 &bytes_read);
18972 DW_STRING_IS_CANONICAL (attr) = 0;
18973 info_ptr += bytes_read;
18974 break;
18975 }
18976 /* FALLTHROUGH */
18977 case DW_FORM_line_strp:
18978 if (!cu->per_cu->is_dwz)
18979 {
18980 DW_STRING (attr)
18981 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
18982 &bytes_read);
18983 DW_STRING_IS_CANONICAL (attr) = 0;
18984 info_ptr += bytes_read;
18985 break;
18986 }
18987 /* FALLTHROUGH */
18988 case DW_FORM_GNU_strp_alt:
18989 {
18990 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18991 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18992 &bytes_read);
18993
18994 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
18995 DW_STRING_IS_CANONICAL (attr) = 0;
18996 info_ptr += bytes_read;
18997 }
18998 break;
18999 case DW_FORM_exprloc:
19000 case DW_FORM_block:
19001 blk = dwarf_alloc_block (cu);
19002 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19003 info_ptr += bytes_read;
19004 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19005 info_ptr += blk->size;
19006 DW_BLOCK (attr) = blk;
19007 break;
19008 case DW_FORM_block1:
19009 blk = dwarf_alloc_block (cu);
19010 blk->size = read_1_byte (abfd, info_ptr);
19011 info_ptr += 1;
19012 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19013 info_ptr += blk->size;
19014 DW_BLOCK (attr) = blk;
19015 break;
19016 case DW_FORM_data1:
19017 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19018 info_ptr += 1;
19019 break;
19020 case DW_FORM_flag:
19021 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19022 info_ptr += 1;
19023 break;
19024 case DW_FORM_flag_present:
19025 DW_UNSND (attr) = 1;
19026 break;
19027 case DW_FORM_sdata:
19028 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19029 info_ptr += bytes_read;
19030 break;
19031 case DW_FORM_udata:
19032 case DW_FORM_rnglistx:
19033 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19034 info_ptr += bytes_read;
19035 break;
19036 case DW_FORM_ref1:
19037 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19038 + read_1_byte (abfd, info_ptr));
19039 info_ptr += 1;
19040 break;
19041 case DW_FORM_ref2:
19042 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19043 + read_2_bytes (abfd, info_ptr));
19044 info_ptr += 2;
19045 break;
19046 case DW_FORM_ref4:
19047 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19048 + read_4_bytes (abfd, info_ptr));
19049 info_ptr += 4;
19050 break;
19051 case DW_FORM_ref8:
19052 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19053 + read_8_bytes (abfd, info_ptr));
19054 info_ptr += 8;
19055 break;
19056 case DW_FORM_ref_sig8:
19057 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19058 info_ptr += 8;
19059 break;
19060 case DW_FORM_ref_udata:
19061 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19062 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19063 info_ptr += bytes_read;
19064 break;
19065 case DW_FORM_indirect:
19066 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19067 info_ptr += bytes_read;
19068 if (form == DW_FORM_implicit_const)
19069 {
19070 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19071 info_ptr += bytes_read;
19072 }
19073 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19074 info_ptr, need_reprocess);
19075 break;
19076 case DW_FORM_implicit_const:
19077 DW_SND (attr) = implicit_const;
19078 break;
19079 case DW_FORM_addrx:
19080 case DW_FORM_GNU_addr_index:
19081 *need_reprocess = true;
19082 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19083 info_ptr += bytes_read;
19084 break;
19085 case DW_FORM_strx:
19086 case DW_FORM_strx1:
19087 case DW_FORM_strx2:
19088 case DW_FORM_strx3:
19089 case DW_FORM_strx4:
19090 case DW_FORM_GNU_str_index:
19091 {
19092 ULONGEST str_index;
19093 if (form == DW_FORM_strx1)
19094 {
19095 str_index = read_1_byte (abfd, info_ptr);
19096 info_ptr += 1;
19097 }
19098 else if (form == DW_FORM_strx2)
19099 {
19100 str_index = read_2_bytes (abfd, info_ptr);
19101 info_ptr += 2;
19102 }
19103 else if (form == DW_FORM_strx3)
19104 {
19105 str_index = read_3_bytes (abfd, info_ptr);
19106 info_ptr += 3;
19107 }
19108 else if (form == DW_FORM_strx4)
19109 {
19110 str_index = read_4_bytes (abfd, info_ptr);
19111 info_ptr += 4;
19112 }
19113 else
19114 {
19115 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19116 info_ptr += bytes_read;
19117 }
19118 *need_reprocess = true;
19119 DW_UNSND (attr) = str_index;
19120 }
19121 break;
19122 default:
19123 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19124 dwarf_form_name (form),
19125 bfd_get_filename (abfd));
19126 }
19127
19128 /* Super hack. */
19129 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19130 attr->form = DW_FORM_GNU_ref_alt;
19131
19132 /* We have seen instances where the compiler tried to emit a byte
19133 size attribute of -1 which ended up being encoded as an unsigned
19134 0xffffffff. Although 0xffffffff is technically a valid size value,
19135 an object of this size seems pretty unlikely so we can relatively
19136 safely treat these cases as if the size attribute was invalid and
19137 treat them as zero by default. */
19138 if (attr->name == DW_AT_byte_size
19139 && form == DW_FORM_data4
19140 && DW_UNSND (attr) >= 0xffffffff)
19141 {
19142 complaint
19143 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19144 hex_string (DW_UNSND (attr)));
19145 DW_UNSND (attr) = 0;
19146 }
19147
19148 return info_ptr;
19149 }
19150
19151 /* Read an attribute described by an abbreviated attribute. */
19152
19153 static const gdb_byte *
19154 read_attribute (const struct die_reader_specs *reader,
19155 struct attribute *attr, struct attr_abbrev *abbrev,
19156 const gdb_byte *info_ptr, bool *need_reprocess)
19157 {
19158 attr->name = abbrev->name;
19159 return read_attribute_value (reader, attr, abbrev->form,
19160 abbrev->implicit_const, info_ptr,
19161 need_reprocess);
19162 }
19163
19164 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19165
19166 static const char *
19167 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19168 LONGEST str_offset)
19169 {
19170 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
19171 str_offset, "DW_FORM_strp");
19172 }
19173
19174 /* Return pointer to string at .debug_str offset as read from BUF.
19175 BUF is assumed to be in a compilation unit described by CU_HEADER.
19176 Return *BYTES_READ_PTR count of bytes read from BUF. */
19177
19178 static const char *
19179 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19180 const gdb_byte *buf,
19181 const struct comp_unit_head *cu_header,
19182 unsigned int *bytes_read_ptr)
19183 {
19184 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19185
19186 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19187 }
19188
19189 /* See read.h. */
19190
19191 const char *
19192 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19193 const struct comp_unit_head *cu_header,
19194 unsigned int *bytes_read_ptr)
19195 {
19196 bfd *abfd = objfile->obfd;
19197 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19198
19199 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19200 }
19201
19202 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19203 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19204 ADDR_SIZE is the size of addresses from the CU header. */
19205
19206 static CORE_ADDR
19207 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19208 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19209 int addr_size)
19210 {
19211 struct objfile *objfile = dwarf2_per_objfile->objfile;
19212 bfd *abfd = objfile->obfd;
19213 const gdb_byte *info_ptr;
19214 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19215
19216 dwarf2_per_objfile->addr.read (objfile);
19217 if (dwarf2_per_objfile->addr.buffer == NULL)
19218 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19219 objfile_name (objfile));
19220 if (addr_base_or_zero + addr_index * addr_size
19221 >= dwarf2_per_objfile->addr.size)
19222 error (_("DW_FORM_addr_index pointing outside of "
19223 ".debug_addr section [in module %s]"),
19224 objfile_name (objfile));
19225 info_ptr = (dwarf2_per_objfile->addr.buffer
19226 + addr_base_or_zero + addr_index * addr_size);
19227 if (addr_size == 4)
19228 return bfd_get_32 (abfd, info_ptr);
19229 else
19230 return bfd_get_64 (abfd, info_ptr);
19231 }
19232
19233 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19234
19235 static CORE_ADDR
19236 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19237 {
19238 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19239 cu->addr_base, cu->header.addr_size);
19240 }
19241
19242 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19243
19244 static CORE_ADDR
19245 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19246 unsigned int *bytes_read)
19247 {
19248 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19249 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19250
19251 return read_addr_index (cu, addr_index);
19252 }
19253
19254 /* See read.h. */
19255
19256 CORE_ADDR
19257 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19258 {
19259 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19260 struct dwarf2_cu *cu = per_cu->cu;
19261 gdb::optional<ULONGEST> addr_base;
19262 int addr_size;
19263
19264 /* We need addr_base and addr_size.
19265 If we don't have PER_CU->cu, we have to get it.
19266 Nasty, but the alternative is storing the needed info in PER_CU,
19267 which at this point doesn't seem justified: it's not clear how frequently
19268 it would get used and it would increase the size of every PER_CU.
19269 Entry points like dwarf2_per_cu_addr_size do a similar thing
19270 so we're not in uncharted territory here.
19271 Alas we need to be a bit more complicated as addr_base is contained
19272 in the DIE.
19273
19274 We don't need to read the entire CU(/TU).
19275 We just need the header and top level die.
19276
19277 IWBN to use the aging mechanism to let us lazily later discard the CU.
19278 For now we skip this optimization. */
19279
19280 if (cu != NULL)
19281 {
19282 addr_base = cu->addr_base;
19283 addr_size = cu->header.addr_size;
19284 }
19285 else
19286 {
19287 cutu_reader reader (per_cu, NULL, 0, false);
19288 addr_base = reader.cu->addr_base;
19289 addr_size = reader.cu->header.addr_size;
19290 }
19291
19292 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19293 addr_size);
19294 }
19295
19296 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19297 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19298 DWO file. */
19299
19300 static const char *
19301 read_str_index (struct dwarf2_cu *cu,
19302 struct dwarf2_section_info *str_section,
19303 struct dwarf2_section_info *str_offsets_section,
19304 ULONGEST str_offsets_base, ULONGEST str_index)
19305 {
19306 struct dwarf2_per_objfile *dwarf2_per_objfile
19307 = cu->per_cu->dwarf2_per_objfile;
19308 struct objfile *objfile = dwarf2_per_objfile->objfile;
19309 const char *objf_name = objfile_name (objfile);
19310 bfd *abfd = objfile->obfd;
19311 const gdb_byte *info_ptr;
19312 ULONGEST str_offset;
19313 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19314
19315 str_section->read (objfile);
19316 str_offsets_section->read (objfile);
19317 if (str_section->buffer == NULL)
19318 error (_("%s used without %s section"
19319 " in CU at offset %s [in module %s]"),
19320 form_name, str_section->get_name (),
19321 sect_offset_str (cu->header.sect_off), objf_name);
19322 if (str_offsets_section->buffer == NULL)
19323 error (_("%s used without %s section"
19324 " in CU at offset %s [in module %s]"),
19325 form_name, str_section->get_name (),
19326 sect_offset_str (cu->header.sect_off), objf_name);
19327 info_ptr = (str_offsets_section->buffer
19328 + str_offsets_base
19329 + str_index * cu->header.offset_size);
19330 if (cu->header.offset_size == 4)
19331 str_offset = bfd_get_32 (abfd, info_ptr);
19332 else
19333 str_offset = bfd_get_64 (abfd, info_ptr);
19334 if (str_offset >= str_section->size)
19335 error (_("Offset from %s pointing outside of"
19336 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19337 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19338 return (const char *) (str_section->buffer + str_offset);
19339 }
19340
19341 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19342
19343 static const char *
19344 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19345 {
19346 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19347 ? reader->cu->header.addr_size : 0;
19348 return read_str_index (reader->cu,
19349 &reader->dwo_file->sections.str,
19350 &reader->dwo_file->sections.str_offsets,
19351 str_offsets_base, str_index);
19352 }
19353
19354 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19355
19356 static const char *
19357 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19358 {
19359 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19360 const char *objf_name = objfile_name (objfile);
19361 static const char form_name[] = "DW_FORM_GNU_str_index";
19362 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19363
19364 if (!cu->str_offsets_base.has_value ())
19365 error (_("%s used in Fission stub without %s"
19366 " in CU at offset 0x%lx [in module %s]"),
19367 form_name, str_offsets_attr_name,
19368 (long) cu->header.offset_size, objf_name);
19369
19370 return read_str_index (cu,
19371 &cu->per_cu->dwarf2_per_objfile->str,
19372 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19373 *cu->str_offsets_base, str_index);
19374 }
19375
19376 /* Return the length of an LEB128 number in BUF. */
19377
19378 static int
19379 leb128_size (const gdb_byte *buf)
19380 {
19381 const gdb_byte *begin = buf;
19382 gdb_byte byte;
19383
19384 while (1)
19385 {
19386 byte = *buf++;
19387 if ((byte & 128) == 0)
19388 return buf - begin;
19389 }
19390 }
19391
19392 static void
19393 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19394 {
19395 switch (lang)
19396 {
19397 case DW_LANG_C89:
19398 case DW_LANG_C99:
19399 case DW_LANG_C11:
19400 case DW_LANG_C:
19401 case DW_LANG_UPC:
19402 cu->language = language_c;
19403 break;
19404 case DW_LANG_Java:
19405 case DW_LANG_C_plus_plus:
19406 case DW_LANG_C_plus_plus_11:
19407 case DW_LANG_C_plus_plus_14:
19408 cu->language = language_cplus;
19409 break;
19410 case DW_LANG_D:
19411 cu->language = language_d;
19412 break;
19413 case DW_LANG_Fortran77:
19414 case DW_LANG_Fortran90:
19415 case DW_LANG_Fortran95:
19416 case DW_LANG_Fortran03:
19417 case DW_LANG_Fortran08:
19418 cu->language = language_fortran;
19419 break;
19420 case DW_LANG_Go:
19421 cu->language = language_go;
19422 break;
19423 case DW_LANG_Mips_Assembler:
19424 cu->language = language_asm;
19425 break;
19426 case DW_LANG_Ada83:
19427 case DW_LANG_Ada95:
19428 cu->language = language_ada;
19429 break;
19430 case DW_LANG_Modula2:
19431 cu->language = language_m2;
19432 break;
19433 case DW_LANG_Pascal83:
19434 cu->language = language_pascal;
19435 break;
19436 case DW_LANG_ObjC:
19437 cu->language = language_objc;
19438 break;
19439 case DW_LANG_Rust:
19440 case DW_LANG_Rust_old:
19441 cu->language = language_rust;
19442 break;
19443 case DW_LANG_Cobol74:
19444 case DW_LANG_Cobol85:
19445 default:
19446 cu->language = language_minimal;
19447 break;
19448 }
19449 cu->language_defn = language_def (cu->language);
19450 }
19451
19452 /* Return the named attribute or NULL if not there. */
19453
19454 static struct attribute *
19455 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19456 {
19457 for (;;)
19458 {
19459 unsigned int i;
19460 struct attribute *spec = NULL;
19461
19462 for (i = 0; i < die->num_attrs; ++i)
19463 {
19464 if (die->attrs[i].name == name)
19465 return &die->attrs[i];
19466 if (die->attrs[i].name == DW_AT_specification
19467 || die->attrs[i].name == DW_AT_abstract_origin)
19468 spec = &die->attrs[i];
19469 }
19470
19471 if (!spec)
19472 break;
19473
19474 die = follow_die_ref (die, spec, &cu);
19475 }
19476
19477 return NULL;
19478 }
19479
19480 /* Return the string associated with a string-typed attribute, or NULL if it
19481 is either not found or is of an incorrect type. */
19482
19483 static const char *
19484 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19485 {
19486 struct attribute *attr;
19487 const char *str = NULL;
19488
19489 attr = dwarf2_attr (die, name, cu);
19490
19491 if (attr != NULL)
19492 {
19493 str = attr->value_as_string ();
19494 if (str == nullptr)
19495 complaint (_("string type expected for attribute %s for "
19496 "DIE at %s in module %s"),
19497 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19498 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19499 }
19500
19501 return str;
19502 }
19503
19504 /* Return the dwo name or NULL if not present. If present, it is in either
19505 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19506 static const char *
19507 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19508 {
19509 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19510 if (dwo_name == nullptr)
19511 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19512 return dwo_name;
19513 }
19514
19515 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19516 and holds a non-zero value. This function should only be used for
19517 DW_FORM_flag or DW_FORM_flag_present attributes. */
19518
19519 static int
19520 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19521 {
19522 struct attribute *attr = dwarf2_attr (die, name, cu);
19523
19524 return (attr && DW_UNSND (attr));
19525 }
19526
19527 static int
19528 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19529 {
19530 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19531 which value is non-zero. However, we have to be careful with
19532 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19533 (via dwarf2_flag_true_p) follows this attribute. So we may
19534 end up accidently finding a declaration attribute that belongs
19535 to a different DIE referenced by the specification attribute,
19536 even though the given DIE does not have a declaration attribute. */
19537 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19538 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19539 }
19540
19541 /* Return the die giving the specification for DIE, if there is
19542 one. *SPEC_CU is the CU containing DIE on input, and the CU
19543 containing the return value on output. If there is no
19544 specification, but there is an abstract origin, that is
19545 returned. */
19546
19547 static struct die_info *
19548 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19549 {
19550 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19551 *spec_cu);
19552
19553 if (spec_attr == NULL)
19554 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19555
19556 if (spec_attr == NULL)
19557 return NULL;
19558 else
19559 return follow_die_ref (die, spec_attr, spec_cu);
19560 }
19561
19562 /* Stub for free_line_header to match void * callback types. */
19563
19564 static void
19565 free_line_header_voidp (void *arg)
19566 {
19567 struct line_header *lh = (struct line_header *) arg;
19568
19569 delete lh;
19570 }
19571
19572 /* A convenience function to find the proper .debug_line section for a CU. */
19573
19574 static struct dwarf2_section_info *
19575 get_debug_line_section (struct dwarf2_cu *cu)
19576 {
19577 struct dwarf2_section_info *section;
19578 struct dwarf2_per_objfile *dwarf2_per_objfile
19579 = cu->per_cu->dwarf2_per_objfile;
19580
19581 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19582 DWO file. */
19583 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19584 section = &cu->dwo_unit->dwo_file->sections.line;
19585 else if (cu->per_cu->is_dwz)
19586 {
19587 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19588
19589 section = &dwz->line;
19590 }
19591 else
19592 section = &dwarf2_per_objfile->line;
19593
19594 return section;
19595 }
19596
19597 /* Read the statement program header starting at OFFSET in
19598 .debug_line, or .debug_line.dwo. Return a pointer
19599 to a struct line_header, allocated using xmalloc.
19600 Returns NULL if there is a problem reading the header, e.g., if it
19601 has a version we don't understand.
19602
19603 NOTE: the strings in the include directory and file name tables of
19604 the returned object point into the dwarf line section buffer,
19605 and must not be freed. */
19606
19607 static line_header_up
19608 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19609 {
19610 struct dwarf2_section_info *section;
19611 struct dwarf2_per_objfile *dwarf2_per_objfile
19612 = cu->per_cu->dwarf2_per_objfile;
19613
19614 section = get_debug_line_section (cu);
19615 section->read (dwarf2_per_objfile->objfile);
19616 if (section->buffer == NULL)
19617 {
19618 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19619 complaint (_("missing .debug_line.dwo section"));
19620 else
19621 complaint (_("missing .debug_line section"));
19622 return 0;
19623 }
19624
19625 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19626 dwarf2_per_objfile, section,
19627 &cu->header);
19628 }
19629
19630 /* Subroutine of dwarf_decode_lines to simplify it.
19631 Return the file name of the psymtab for the given file_entry.
19632 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19633 If space for the result is malloc'd, *NAME_HOLDER will be set.
19634 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19635
19636 static const char *
19637 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19638 const dwarf2_psymtab *pst,
19639 const char *comp_dir,
19640 gdb::unique_xmalloc_ptr<char> *name_holder)
19641 {
19642 const char *include_name = fe.name;
19643 const char *include_name_to_compare = include_name;
19644 const char *pst_filename;
19645 int file_is_pst;
19646
19647 const char *dir_name = fe.include_dir (lh);
19648
19649 gdb::unique_xmalloc_ptr<char> hold_compare;
19650 if (!IS_ABSOLUTE_PATH (include_name)
19651 && (dir_name != NULL || comp_dir != NULL))
19652 {
19653 /* Avoid creating a duplicate psymtab for PST.
19654 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19655 Before we do the comparison, however, we need to account
19656 for DIR_NAME and COMP_DIR.
19657 First prepend dir_name (if non-NULL). If we still don't
19658 have an absolute path prepend comp_dir (if non-NULL).
19659 However, the directory we record in the include-file's
19660 psymtab does not contain COMP_DIR (to match the
19661 corresponding symtab(s)).
19662
19663 Example:
19664
19665 bash$ cd /tmp
19666 bash$ gcc -g ./hello.c
19667 include_name = "hello.c"
19668 dir_name = "."
19669 DW_AT_comp_dir = comp_dir = "/tmp"
19670 DW_AT_name = "./hello.c"
19671
19672 */
19673
19674 if (dir_name != NULL)
19675 {
19676 name_holder->reset (concat (dir_name, SLASH_STRING,
19677 include_name, (char *) NULL));
19678 include_name = name_holder->get ();
19679 include_name_to_compare = include_name;
19680 }
19681 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19682 {
19683 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19684 include_name, (char *) NULL));
19685 include_name_to_compare = hold_compare.get ();
19686 }
19687 }
19688
19689 pst_filename = pst->filename;
19690 gdb::unique_xmalloc_ptr<char> copied_name;
19691 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19692 {
19693 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19694 pst_filename, (char *) NULL));
19695 pst_filename = copied_name.get ();
19696 }
19697
19698 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19699
19700 if (file_is_pst)
19701 return NULL;
19702 return include_name;
19703 }
19704
19705 /* State machine to track the state of the line number program. */
19706
19707 class lnp_state_machine
19708 {
19709 public:
19710 /* Initialize a machine state for the start of a line number
19711 program. */
19712 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19713 bool record_lines_p);
19714
19715 file_entry *current_file ()
19716 {
19717 /* lh->file_names is 0-based, but the file name numbers in the
19718 statement program are 1-based. */
19719 return m_line_header->file_name_at (m_file);
19720 }
19721
19722 /* Record the line in the state machine. END_SEQUENCE is true if
19723 we're processing the end of a sequence. */
19724 void record_line (bool end_sequence);
19725
19726 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19727 nop-out rest of the lines in this sequence. */
19728 void check_line_address (struct dwarf2_cu *cu,
19729 const gdb_byte *line_ptr,
19730 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19731
19732 void handle_set_discriminator (unsigned int discriminator)
19733 {
19734 m_discriminator = discriminator;
19735 m_line_has_non_zero_discriminator |= discriminator != 0;
19736 }
19737
19738 /* Handle DW_LNE_set_address. */
19739 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19740 {
19741 m_op_index = 0;
19742 address += baseaddr;
19743 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19744 }
19745
19746 /* Handle DW_LNS_advance_pc. */
19747 void handle_advance_pc (CORE_ADDR adjust);
19748
19749 /* Handle a special opcode. */
19750 void handle_special_opcode (unsigned char op_code);
19751
19752 /* Handle DW_LNS_advance_line. */
19753 void handle_advance_line (int line_delta)
19754 {
19755 advance_line (line_delta);
19756 }
19757
19758 /* Handle DW_LNS_set_file. */
19759 void handle_set_file (file_name_index file);
19760
19761 /* Handle DW_LNS_negate_stmt. */
19762 void handle_negate_stmt ()
19763 {
19764 m_is_stmt = !m_is_stmt;
19765 }
19766
19767 /* Handle DW_LNS_const_add_pc. */
19768 void handle_const_add_pc ();
19769
19770 /* Handle DW_LNS_fixed_advance_pc. */
19771 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19772 {
19773 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19774 m_op_index = 0;
19775 }
19776
19777 /* Handle DW_LNS_copy. */
19778 void handle_copy ()
19779 {
19780 record_line (false);
19781 m_discriminator = 0;
19782 }
19783
19784 /* Handle DW_LNE_end_sequence. */
19785 void handle_end_sequence ()
19786 {
19787 m_currently_recording_lines = true;
19788 }
19789
19790 private:
19791 /* Advance the line by LINE_DELTA. */
19792 void advance_line (int line_delta)
19793 {
19794 m_line += line_delta;
19795
19796 if (line_delta != 0)
19797 m_line_has_non_zero_discriminator = m_discriminator != 0;
19798 }
19799
19800 struct dwarf2_cu *m_cu;
19801
19802 gdbarch *m_gdbarch;
19803
19804 /* True if we're recording lines.
19805 Otherwise we're building partial symtabs and are just interested in
19806 finding include files mentioned by the line number program. */
19807 bool m_record_lines_p;
19808
19809 /* The line number header. */
19810 line_header *m_line_header;
19811
19812 /* These are part of the standard DWARF line number state machine,
19813 and initialized according to the DWARF spec. */
19814
19815 unsigned char m_op_index = 0;
19816 /* The line table index of the current file. */
19817 file_name_index m_file = 1;
19818 unsigned int m_line = 1;
19819
19820 /* These are initialized in the constructor. */
19821
19822 CORE_ADDR m_address;
19823 bool m_is_stmt;
19824 unsigned int m_discriminator;
19825
19826 /* Additional bits of state we need to track. */
19827
19828 /* The last file that we called dwarf2_start_subfile for.
19829 This is only used for TLLs. */
19830 unsigned int m_last_file = 0;
19831 /* The last file a line number was recorded for. */
19832 struct subfile *m_last_subfile = NULL;
19833
19834 /* When true, record the lines we decode. */
19835 bool m_currently_recording_lines = false;
19836
19837 /* The last line number that was recorded, used to coalesce
19838 consecutive entries for the same line. This can happen, for
19839 example, when discriminators are present. PR 17276. */
19840 unsigned int m_last_line = 0;
19841 bool m_line_has_non_zero_discriminator = false;
19842 };
19843
19844 void
19845 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19846 {
19847 CORE_ADDR addr_adj = (((m_op_index + adjust)
19848 / m_line_header->maximum_ops_per_instruction)
19849 * m_line_header->minimum_instruction_length);
19850 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19851 m_op_index = ((m_op_index + adjust)
19852 % m_line_header->maximum_ops_per_instruction);
19853 }
19854
19855 void
19856 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19857 {
19858 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19859 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19860 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19861 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19862 / m_line_header->maximum_ops_per_instruction)
19863 * m_line_header->minimum_instruction_length);
19864 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19865 m_op_index = ((m_op_index + adj_opcode_d)
19866 % m_line_header->maximum_ops_per_instruction);
19867
19868 int line_delta = m_line_header->line_base + adj_opcode_r;
19869 advance_line (line_delta);
19870 record_line (false);
19871 m_discriminator = 0;
19872 }
19873
19874 void
19875 lnp_state_machine::handle_set_file (file_name_index file)
19876 {
19877 m_file = file;
19878
19879 const file_entry *fe = current_file ();
19880 if (fe == NULL)
19881 dwarf2_debug_line_missing_file_complaint ();
19882 else if (m_record_lines_p)
19883 {
19884 const char *dir = fe->include_dir (m_line_header);
19885
19886 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19887 m_line_has_non_zero_discriminator = m_discriminator != 0;
19888 dwarf2_start_subfile (m_cu, fe->name, dir);
19889 }
19890 }
19891
19892 void
19893 lnp_state_machine::handle_const_add_pc ()
19894 {
19895 CORE_ADDR adjust
19896 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19897
19898 CORE_ADDR addr_adj
19899 = (((m_op_index + adjust)
19900 / m_line_header->maximum_ops_per_instruction)
19901 * m_line_header->minimum_instruction_length);
19902
19903 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19904 m_op_index = ((m_op_index + adjust)
19905 % m_line_header->maximum_ops_per_instruction);
19906 }
19907
19908 /* Return non-zero if we should add LINE to the line number table.
19909 LINE is the line to add, LAST_LINE is the last line that was added,
19910 LAST_SUBFILE is the subfile for LAST_LINE.
19911 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19912 had a non-zero discriminator.
19913
19914 We have to be careful in the presence of discriminators.
19915 E.g., for this line:
19916
19917 for (i = 0; i < 100000; i++);
19918
19919 clang can emit four line number entries for that one line,
19920 each with a different discriminator.
19921 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19922
19923 However, we want gdb to coalesce all four entries into one.
19924 Otherwise the user could stepi into the middle of the line and
19925 gdb would get confused about whether the pc really was in the
19926 middle of the line.
19927
19928 Things are further complicated by the fact that two consecutive
19929 line number entries for the same line is a heuristic used by gcc
19930 to denote the end of the prologue. So we can't just discard duplicate
19931 entries, we have to be selective about it. The heuristic we use is
19932 that we only collapse consecutive entries for the same line if at least
19933 one of those entries has a non-zero discriminator. PR 17276.
19934
19935 Note: Addresses in the line number state machine can never go backwards
19936 within one sequence, thus this coalescing is ok. */
19937
19938 static int
19939 dwarf_record_line_p (struct dwarf2_cu *cu,
19940 unsigned int line, unsigned int last_line,
19941 int line_has_non_zero_discriminator,
19942 struct subfile *last_subfile)
19943 {
19944 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19945 return 1;
19946 if (line != last_line)
19947 return 1;
19948 /* Same line for the same file that we've seen already.
19949 As a last check, for pr 17276, only record the line if the line
19950 has never had a non-zero discriminator. */
19951 if (!line_has_non_zero_discriminator)
19952 return 1;
19953 return 0;
19954 }
19955
19956 /* Use the CU's builder to record line number LINE beginning at
19957 address ADDRESS in the line table of subfile SUBFILE. */
19958
19959 static void
19960 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19961 unsigned int line, CORE_ADDR address, bool is_stmt,
19962 struct dwarf2_cu *cu)
19963 {
19964 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19965
19966 if (dwarf_line_debug)
19967 {
19968 fprintf_unfiltered (gdb_stdlog,
19969 "Recording line %u, file %s, address %s\n",
19970 line, lbasename (subfile->name),
19971 paddress (gdbarch, address));
19972 }
19973
19974 if (cu != nullptr)
19975 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
19976 }
19977
19978 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19979 Mark the end of a set of line number records.
19980 The arguments are the same as for dwarf_record_line_1.
19981 If SUBFILE is NULL the request is ignored. */
19982
19983 static void
19984 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19985 CORE_ADDR address, struct dwarf2_cu *cu)
19986 {
19987 if (subfile == NULL)
19988 return;
19989
19990 if (dwarf_line_debug)
19991 {
19992 fprintf_unfiltered (gdb_stdlog,
19993 "Finishing current line, file %s, address %s\n",
19994 lbasename (subfile->name),
19995 paddress (gdbarch, address));
19996 }
19997
19998 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
19999 }
20000
20001 void
20002 lnp_state_machine::record_line (bool end_sequence)
20003 {
20004 if (dwarf_line_debug)
20005 {
20006 fprintf_unfiltered (gdb_stdlog,
20007 "Processing actual line %u: file %u,"
20008 " address %s, is_stmt %u, discrim %u%s\n",
20009 m_line, m_file,
20010 paddress (m_gdbarch, m_address),
20011 m_is_stmt, m_discriminator,
20012 (end_sequence ? "\t(end sequence)" : ""));
20013 }
20014
20015 file_entry *fe = current_file ();
20016
20017 if (fe == NULL)
20018 dwarf2_debug_line_missing_file_complaint ();
20019 /* For now we ignore lines not starting on an instruction boundary.
20020 But not when processing end_sequence for compatibility with the
20021 previous version of the code. */
20022 else if (m_op_index == 0 || end_sequence)
20023 {
20024 fe->included_p = 1;
20025 if (m_record_lines_p)
20026 {
20027 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20028 || end_sequence)
20029 {
20030 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20031 m_currently_recording_lines ? m_cu : nullptr);
20032 }
20033
20034 if (!end_sequence)
20035 {
20036 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20037
20038 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20039 m_line_has_non_zero_discriminator,
20040 m_last_subfile))
20041 {
20042 buildsym_compunit *builder = m_cu->get_builder ();
20043 dwarf_record_line_1 (m_gdbarch,
20044 builder->get_current_subfile (),
20045 m_line, m_address, is_stmt,
20046 m_currently_recording_lines ? m_cu : nullptr);
20047 }
20048 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20049 m_last_line = m_line;
20050 }
20051 }
20052 }
20053 }
20054
20055 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20056 line_header *lh, bool record_lines_p)
20057 {
20058 m_cu = cu;
20059 m_gdbarch = arch;
20060 m_record_lines_p = record_lines_p;
20061 m_line_header = lh;
20062
20063 m_currently_recording_lines = true;
20064
20065 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20066 was a line entry for it so that the backend has a chance to adjust it
20067 and also record it in case it needs it. This is currently used by MIPS
20068 code, cf. `mips_adjust_dwarf2_line'. */
20069 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20070 m_is_stmt = lh->default_is_stmt;
20071 m_discriminator = 0;
20072 }
20073
20074 void
20075 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20076 const gdb_byte *line_ptr,
20077 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20078 {
20079 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20080 the pc range of the CU. However, we restrict the test to only ADDRESS
20081 values of zero to preserve GDB's previous behaviour which is to handle
20082 the specific case of a function being GC'd by the linker. */
20083
20084 if (address == 0 && address < unrelocated_lowpc)
20085 {
20086 /* This line table is for a function which has been
20087 GCd by the linker. Ignore it. PR gdb/12528 */
20088
20089 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20090 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20091
20092 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20093 line_offset, objfile_name (objfile));
20094 m_currently_recording_lines = false;
20095 /* Note: m_currently_recording_lines is left as false until we see
20096 DW_LNE_end_sequence. */
20097 }
20098 }
20099
20100 /* Subroutine of dwarf_decode_lines to simplify it.
20101 Process the line number information in LH.
20102 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20103 program in order to set included_p for every referenced header. */
20104
20105 static void
20106 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20107 const int decode_for_pst_p, CORE_ADDR lowpc)
20108 {
20109 const gdb_byte *line_ptr, *extended_end;
20110 const gdb_byte *line_end;
20111 unsigned int bytes_read, extended_len;
20112 unsigned char op_code, extended_op;
20113 CORE_ADDR baseaddr;
20114 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20115 bfd *abfd = objfile->obfd;
20116 struct gdbarch *gdbarch = objfile->arch ();
20117 /* True if we're recording line info (as opposed to building partial
20118 symtabs and just interested in finding include files mentioned by
20119 the line number program). */
20120 bool record_lines_p = !decode_for_pst_p;
20121
20122 baseaddr = objfile->text_section_offset ();
20123
20124 line_ptr = lh->statement_program_start;
20125 line_end = lh->statement_program_end;
20126
20127 /* Read the statement sequences until there's nothing left. */
20128 while (line_ptr < line_end)
20129 {
20130 /* The DWARF line number program state machine. Reset the state
20131 machine at the start of each sequence. */
20132 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20133 bool end_sequence = false;
20134
20135 if (record_lines_p)
20136 {
20137 /* Start a subfile for the current file of the state
20138 machine. */
20139 const file_entry *fe = state_machine.current_file ();
20140
20141 if (fe != NULL)
20142 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20143 }
20144
20145 /* Decode the table. */
20146 while (line_ptr < line_end && !end_sequence)
20147 {
20148 op_code = read_1_byte (abfd, line_ptr);
20149 line_ptr += 1;
20150
20151 if (op_code >= lh->opcode_base)
20152 {
20153 /* Special opcode. */
20154 state_machine.handle_special_opcode (op_code);
20155 }
20156 else switch (op_code)
20157 {
20158 case DW_LNS_extended_op:
20159 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20160 &bytes_read);
20161 line_ptr += bytes_read;
20162 extended_end = line_ptr + extended_len;
20163 extended_op = read_1_byte (abfd, line_ptr);
20164 line_ptr += 1;
20165 switch (extended_op)
20166 {
20167 case DW_LNE_end_sequence:
20168 state_machine.handle_end_sequence ();
20169 end_sequence = true;
20170 break;
20171 case DW_LNE_set_address:
20172 {
20173 CORE_ADDR address
20174 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20175 line_ptr += bytes_read;
20176
20177 state_machine.check_line_address (cu, line_ptr,
20178 lowpc - baseaddr, address);
20179 state_machine.handle_set_address (baseaddr, address);
20180 }
20181 break;
20182 case DW_LNE_define_file:
20183 {
20184 const char *cur_file;
20185 unsigned int mod_time, length;
20186 dir_index dindex;
20187
20188 cur_file = read_direct_string (abfd, line_ptr,
20189 &bytes_read);
20190 line_ptr += bytes_read;
20191 dindex = (dir_index)
20192 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20193 line_ptr += bytes_read;
20194 mod_time =
20195 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20196 line_ptr += bytes_read;
20197 length =
20198 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20199 line_ptr += bytes_read;
20200 lh->add_file_name (cur_file, dindex, mod_time, length);
20201 }
20202 break;
20203 case DW_LNE_set_discriminator:
20204 {
20205 /* The discriminator is not interesting to the
20206 debugger; just ignore it. We still need to
20207 check its value though:
20208 if there are consecutive entries for the same
20209 (non-prologue) line we want to coalesce them.
20210 PR 17276. */
20211 unsigned int discr
20212 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20213 line_ptr += bytes_read;
20214
20215 state_machine.handle_set_discriminator (discr);
20216 }
20217 break;
20218 default:
20219 complaint (_("mangled .debug_line section"));
20220 return;
20221 }
20222 /* Make sure that we parsed the extended op correctly. If e.g.
20223 we expected a different address size than the producer used,
20224 we may have read the wrong number of bytes. */
20225 if (line_ptr != extended_end)
20226 {
20227 complaint (_("mangled .debug_line section"));
20228 return;
20229 }
20230 break;
20231 case DW_LNS_copy:
20232 state_machine.handle_copy ();
20233 break;
20234 case DW_LNS_advance_pc:
20235 {
20236 CORE_ADDR adjust
20237 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20238 line_ptr += bytes_read;
20239
20240 state_machine.handle_advance_pc (adjust);
20241 }
20242 break;
20243 case DW_LNS_advance_line:
20244 {
20245 int line_delta
20246 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20247 line_ptr += bytes_read;
20248
20249 state_machine.handle_advance_line (line_delta);
20250 }
20251 break;
20252 case DW_LNS_set_file:
20253 {
20254 file_name_index file
20255 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20256 &bytes_read);
20257 line_ptr += bytes_read;
20258
20259 state_machine.handle_set_file (file);
20260 }
20261 break;
20262 case DW_LNS_set_column:
20263 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20264 line_ptr += bytes_read;
20265 break;
20266 case DW_LNS_negate_stmt:
20267 state_machine.handle_negate_stmt ();
20268 break;
20269 case DW_LNS_set_basic_block:
20270 break;
20271 /* Add to the address register of the state machine the
20272 address increment value corresponding to special opcode
20273 255. I.e., this value is scaled by the minimum
20274 instruction length since special opcode 255 would have
20275 scaled the increment. */
20276 case DW_LNS_const_add_pc:
20277 state_machine.handle_const_add_pc ();
20278 break;
20279 case DW_LNS_fixed_advance_pc:
20280 {
20281 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20282 line_ptr += 2;
20283
20284 state_machine.handle_fixed_advance_pc (addr_adj);
20285 }
20286 break;
20287 default:
20288 {
20289 /* Unknown standard opcode, ignore it. */
20290 int i;
20291
20292 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20293 {
20294 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20295 line_ptr += bytes_read;
20296 }
20297 }
20298 }
20299 }
20300
20301 if (!end_sequence)
20302 dwarf2_debug_line_missing_end_sequence_complaint ();
20303
20304 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20305 in which case we still finish recording the last line). */
20306 state_machine.record_line (true);
20307 }
20308 }
20309
20310 /* Decode the Line Number Program (LNP) for the given line_header
20311 structure and CU. The actual information extracted and the type
20312 of structures created from the LNP depends on the value of PST.
20313
20314 1. If PST is NULL, then this procedure uses the data from the program
20315 to create all necessary symbol tables, and their linetables.
20316
20317 2. If PST is not NULL, this procedure reads the program to determine
20318 the list of files included by the unit represented by PST, and
20319 builds all the associated partial symbol tables.
20320
20321 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20322 It is used for relative paths in the line table.
20323 NOTE: When processing partial symtabs (pst != NULL),
20324 comp_dir == pst->dirname.
20325
20326 NOTE: It is important that psymtabs have the same file name (via strcmp)
20327 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20328 symtab we don't use it in the name of the psymtabs we create.
20329 E.g. expand_line_sal requires this when finding psymtabs to expand.
20330 A good testcase for this is mb-inline.exp.
20331
20332 LOWPC is the lowest address in CU (or 0 if not known).
20333
20334 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20335 for its PC<->lines mapping information. Otherwise only the filename
20336 table is read in. */
20337
20338 static void
20339 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20340 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20341 CORE_ADDR lowpc, int decode_mapping)
20342 {
20343 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20344 const int decode_for_pst_p = (pst != NULL);
20345
20346 if (decode_mapping)
20347 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20348
20349 if (decode_for_pst_p)
20350 {
20351 /* Now that we're done scanning the Line Header Program, we can
20352 create the psymtab of each included file. */
20353 for (auto &file_entry : lh->file_names ())
20354 if (file_entry.included_p == 1)
20355 {
20356 gdb::unique_xmalloc_ptr<char> name_holder;
20357 const char *include_name =
20358 psymtab_include_file_name (lh, file_entry, pst,
20359 comp_dir, &name_holder);
20360 if (include_name != NULL)
20361 dwarf2_create_include_psymtab (include_name, pst, objfile);
20362 }
20363 }
20364 else
20365 {
20366 /* Make sure a symtab is created for every file, even files
20367 which contain only variables (i.e. no code with associated
20368 line numbers). */
20369 buildsym_compunit *builder = cu->get_builder ();
20370 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20371
20372 for (auto &fe : lh->file_names ())
20373 {
20374 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20375 if (builder->get_current_subfile ()->symtab == NULL)
20376 {
20377 builder->get_current_subfile ()->symtab
20378 = allocate_symtab (cust,
20379 builder->get_current_subfile ()->name);
20380 }
20381 fe.symtab = builder->get_current_subfile ()->symtab;
20382 }
20383 }
20384 }
20385
20386 /* Start a subfile for DWARF. FILENAME is the name of the file and
20387 DIRNAME the name of the source directory which contains FILENAME
20388 or NULL if not known.
20389 This routine tries to keep line numbers from identical absolute and
20390 relative file names in a common subfile.
20391
20392 Using the `list' example from the GDB testsuite, which resides in
20393 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20394 of /srcdir/list0.c yields the following debugging information for list0.c:
20395
20396 DW_AT_name: /srcdir/list0.c
20397 DW_AT_comp_dir: /compdir
20398 files.files[0].name: list0.h
20399 files.files[0].dir: /srcdir
20400 files.files[1].name: list0.c
20401 files.files[1].dir: /srcdir
20402
20403 The line number information for list0.c has to end up in a single
20404 subfile, so that `break /srcdir/list0.c:1' works as expected.
20405 start_subfile will ensure that this happens provided that we pass the
20406 concatenation of files.files[1].dir and files.files[1].name as the
20407 subfile's name. */
20408
20409 static void
20410 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20411 const char *dirname)
20412 {
20413 gdb::unique_xmalloc_ptr<char> copy;
20414
20415 /* In order not to lose the line information directory,
20416 we concatenate it to the filename when it makes sense.
20417 Note that the Dwarf3 standard says (speaking of filenames in line
20418 information): ``The directory index is ignored for file names
20419 that represent full path names''. Thus ignoring dirname in the
20420 `else' branch below isn't an issue. */
20421
20422 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20423 {
20424 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20425 filename = copy.get ();
20426 }
20427
20428 cu->get_builder ()->start_subfile (filename);
20429 }
20430
20431 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20432 buildsym_compunit constructor. */
20433
20434 struct compunit_symtab *
20435 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20436 CORE_ADDR low_pc)
20437 {
20438 gdb_assert (m_builder == nullptr);
20439
20440 m_builder.reset (new struct buildsym_compunit
20441 (per_cu->dwarf2_per_objfile->objfile,
20442 name, comp_dir, language, low_pc));
20443
20444 list_in_scope = get_builder ()->get_file_symbols ();
20445
20446 get_builder ()->record_debugformat ("DWARF 2");
20447 get_builder ()->record_producer (producer);
20448
20449 processing_has_namespace_info = false;
20450
20451 return get_builder ()->get_compunit_symtab ();
20452 }
20453
20454 static void
20455 var_decode_location (struct attribute *attr, struct symbol *sym,
20456 struct dwarf2_cu *cu)
20457 {
20458 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20459 struct comp_unit_head *cu_header = &cu->header;
20460
20461 /* NOTE drow/2003-01-30: There used to be a comment and some special
20462 code here to turn a symbol with DW_AT_external and a
20463 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20464 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20465 with some versions of binutils) where shared libraries could have
20466 relocations against symbols in their debug information - the
20467 minimal symbol would have the right address, but the debug info
20468 would not. It's no longer necessary, because we will explicitly
20469 apply relocations when we read in the debug information now. */
20470
20471 /* A DW_AT_location attribute with no contents indicates that a
20472 variable has been optimized away. */
20473 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20474 {
20475 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20476 return;
20477 }
20478
20479 /* Handle one degenerate form of location expression specially, to
20480 preserve GDB's previous behavior when section offsets are
20481 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20482 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20483
20484 if (attr->form_is_block ()
20485 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20486 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20487 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20488 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20489 && (DW_BLOCK (attr)->size
20490 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20491 {
20492 unsigned int dummy;
20493
20494 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20495 SET_SYMBOL_VALUE_ADDRESS
20496 (sym, cu->header.read_address (objfile->obfd,
20497 DW_BLOCK (attr)->data + 1,
20498 &dummy));
20499 else
20500 SET_SYMBOL_VALUE_ADDRESS
20501 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20502 &dummy));
20503 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20504 fixup_symbol_section (sym, objfile);
20505 SET_SYMBOL_VALUE_ADDRESS
20506 (sym,
20507 SYMBOL_VALUE_ADDRESS (sym)
20508 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20509 return;
20510 }
20511
20512 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20513 expression evaluator, and use LOC_COMPUTED only when necessary
20514 (i.e. when the value of a register or memory location is
20515 referenced, or a thread-local block, etc.). Then again, it might
20516 not be worthwhile. I'm assuming that it isn't unless performance
20517 or memory numbers show me otherwise. */
20518
20519 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20520
20521 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20522 cu->has_loclist = true;
20523 }
20524
20525 /* Given a pointer to a DWARF information entry, figure out if we need
20526 to make a symbol table entry for it, and if so, create a new entry
20527 and return a pointer to it.
20528 If TYPE is NULL, determine symbol type from the die, otherwise
20529 used the passed type.
20530 If SPACE is not NULL, use it to hold the new symbol. If it is
20531 NULL, allocate a new symbol on the objfile's obstack. */
20532
20533 static struct symbol *
20534 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20535 struct symbol *space)
20536 {
20537 struct dwarf2_per_objfile *dwarf2_per_objfile
20538 = cu->per_cu->dwarf2_per_objfile;
20539 struct objfile *objfile = dwarf2_per_objfile->objfile;
20540 struct gdbarch *gdbarch = objfile->arch ();
20541 struct symbol *sym = NULL;
20542 const char *name;
20543 struct attribute *attr = NULL;
20544 struct attribute *attr2 = NULL;
20545 CORE_ADDR baseaddr;
20546 struct pending **list_to_add = NULL;
20547
20548 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20549
20550 baseaddr = objfile->text_section_offset ();
20551
20552 name = dwarf2_name (die, cu);
20553 if (name)
20554 {
20555 int suppress_add = 0;
20556
20557 if (space)
20558 sym = space;
20559 else
20560 sym = allocate_symbol (objfile);
20561 OBJSTAT (objfile, n_syms++);
20562
20563 /* Cache this symbol's name and the name's demangled form (if any). */
20564 sym->set_language (cu->language, &objfile->objfile_obstack);
20565 /* Fortran does not have mangling standard and the mangling does differ
20566 between gfortran, iFort etc. */
20567 const char *physname
20568 = (cu->language == language_fortran
20569 ? dwarf2_full_name (name, die, cu)
20570 : dwarf2_physname (name, die, cu));
20571 const char *linkagename = dw2_linkage_name (die, cu);
20572
20573 if (linkagename == nullptr || cu->language == language_ada)
20574 sym->set_linkage_name (physname);
20575 else
20576 {
20577 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20578 sym->set_linkage_name (linkagename);
20579 }
20580
20581 /* Default assumptions.
20582 Use the passed type or decode it from the die. */
20583 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20584 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20585 if (type != NULL)
20586 SYMBOL_TYPE (sym) = type;
20587 else
20588 SYMBOL_TYPE (sym) = die_type (die, cu);
20589 attr = dwarf2_attr (die,
20590 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20591 cu);
20592 if (attr != nullptr)
20593 {
20594 SYMBOL_LINE (sym) = DW_UNSND (attr);
20595 }
20596
20597 attr = dwarf2_attr (die,
20598 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20599 cu);
20600 if (attr != nullptr)
20601 {
20602 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20603 struct file_entry *fe;
20604
20605 if (cu->line_header != NULL)
20606 fe = cu->line_header->file_name_at (file_index);
20607 else
20608 fe = NULL;
20609
20610 if (fe == NULL)
20611 complaint (_("file index out of range"));
20612 else
20613 symbol_set_symtab (sym, fe->symtab);
20614 }
20615
20616 switch (die->tag)
20617 {
20618 case DW_TAG_label:
20619 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20620 if (attr != nullptr)
20621 {
20622 CORE_ADDR addr;
20623
20624 addr = attr->value_as_address ();
20625 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20626 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20627 }
20628 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20629 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20630 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20631 add_symbol_to_list (sym, cu->list_in_scope);
20632 break;
20633 case DW_TAG_subprogram:
20634 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20635 finish_block. */
20636 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20637 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20638 if ((attr2 && (DW_UNSND (attr2) != 0))
20639 || cu->language == language_ada
20640 || cu->language == language_fortran)
20641 {
20642 /* Subprograms marked external are stored as a global symbol.
20643 Ada and Fortran subprograms, whether marked external or
20644 not, are always stored as a global symbol, because we want
20645 to be able to access them globally. For instance, we want
20646 to be able to break on a nested subprogram without having
20647 to specify the context. */
20648 list_to_add = cu->get_builder ()->get_global_symbols ();
20649 }
20650 else
20651 {
20652 list_to_add = cu->list_in_scope;
20653 }
20654 break;
20655 case DW_TAG_inlined_subroutine:
20656 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20657 finish_block. */
20658 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20659 SYMBOL_INLINED (sym) = 1;
20660 list_to_add = cu->list_in_scope;
20661 break;
20662 case DW_TAG_template_value_param:
20663 suppress_add = 1;
20664 /* Fall through. */
20665 case DW_TAG_constant:
20666 case DW_TAG_variable:
20667 case DW_TAG_member:
20668 /* Compilation with minimal debug info may result in
20669 variables with missing type entries. Change the
20670 misleading `void' type to something sensible. */
20671 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20672 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20673
20674 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20675 /* In the case of DW_TAG_member, we should only be called for
20676 static const members. */
20677 if (die->tag == DW_TAG_member)
20678 {
20679 /* dwarf2_add_field uses die_is_declaration,
20680 so we do the same. */
20681 gdb_assert (die_is_declaration (die, cu));
20682 gdb_assert (attr);
20683 }
20684 if (attr != nullptr)
20685 {
20686 dwarf2_const_value (attr, sym, cu);
20687 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20688 if (!suppress_add)
20689 {
20690 if (attr2 && (DW_UNSND (attr2) != 0))
20691 list_to_add = cu->get_builder ()->get_global_symbols ();
20692 else
20693 list_to_add = cu->list_in_scope;
20694 }
20695 break;
20696 }
20697 attr = dwarf2_attr (die, DW_AT_location, cu);
20698 if (attr != nullptr)
20699 {
20700 var_decode_location (attr, sym, cu);
20701 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20702
20703 /* Fortran explicitly imports any global symbols to the local
20704 scope by DW_TAG_common_block. */
20705 if (cu->language == language_fortran && die->parent
20706 && die->parent->tag == DW_TAG_common_block)
20707 attr2 = NULL;
20708
20709 if (SYMBOL_CLASS (sym) == LOC_STATIC
20710 && SYMBOL_VALUE_ADDRESS (sym) == 0
20711 && !dwarf2_per_objfile->has_section_at_zero)
20712 {
20713 /* When a static variable is eliminated by the linker,
20714 the corresponding debug information is not stripped
20715 out, but the variable address is set to null;
20716 do not add such variables into symbol table. */
20717 }
20718 else if (attr2 && (DW_UNSND (attr2) != 0))
20719 {
20720 if (SYMBOL_CLASS (sym) == LOC_STATIC
20721 && (objfile->flags & OBJF_MAINLINE) == 0
20722 && dwarf2_per_objfile->can_copy)
20723 {
20724 /* A global static variable might be subject to
20725 copy relocation. We first check for a local
20726 minsym, though, because maybe the symbol was
20727 marked hidden, in which case this would not
20728 apply. */
20729 bound_minimal_symbol found
20730 = (lookup_minimal_symbol_linkage
20731 (sym->linkage_name (), objfile));
20732 if (found.minsym != nullptr)
20733 sym->maybe_copied = 1;
20734 }
20735
20736 /* A variable with DW_AT_external is never static,
20737 but it may be block-scoped. */
20738 list_to_add
20739 = ((cu->list_in_scope
20740 == cu->get_builder ()->get_file_symbols ())
20741 ? cu->get_builder ()->get_global_symbols ()
20742 : cu->list_in_scope);
20743 }
20744 else
20745 list_to_add = cu->list_in_scope;
20746 }
20747 else
20748 {
20749 /* We do not know the address of this symbol.
20750 If it is an external symbol and we have type information
20751 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20752 The address of the variable will then be determined from
20753 the minimal symbol table whenever the variable is
20754 referenced. */
20755 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20756
20757 /* Fortran explicitly imports any global symbols to the local
20758 scope by DW_TAG_common_block. */
20759 if (cu->language == language_fortran && die->parent
20760 && die->parent->tag == DW_TAG_common_block)
20761 {
20762 /* SYMBOL_CLASS doesn't matter here because
20763 read_common_block is going to reset it. */
20764 if (!suppress_add)
20765 list_to_add = cu->list_in_scope;
20766 }
20767 else if (attr2 && (DW_UNSND (attr2) != 0)
20768 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20769 {
20770 /* A variable with DW_AT_external is never static, but it
20771 may be block-scoped. */
20772 list_to_add
20773 = ((cu->list_in_scope
20774 == cu->get_builder ()->get_file_symbols ())
20775 ? cu->get_builder ()->get_global_symbols ()
20776 : cu->list_in_scope);
20777
20778 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20779 }
20780 else if (!die_is_declaration (die, cu))
20781 {
20782 /* Use the default LOC_OPTIMIZED_OUT class. */
20783 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20784 if (!suppress_add)
20785 list_to_add = cu->list_in_scope;
20786 }
20787 }
20788 break;
20789 case DW_TAG_formal_parameter:
20790 {
20791 /* If we are inside a function, mark this as an argument. If
20792 not, we might be looking at an argument to an inlined function
20793 when we do not have enough information to show inlined frames;
20794 pretend it's a local variable in that case so that the user can
20795 still see it. */
20796 struct context_stack *curr
20797 = cu->get_builder ()->get_current_context_stack ();
20798 if (curr != nullptr && curr->name != nullptr)
20799 SYMBOL_IS_ARGUMENT (sym) = 1;
20800 attr = dwarf2_attr (die, DW_AT_location, cu);
20801 if (attr != nullptr)
20802 {
20803 var_decode_location (attr, sym, cu);
20804 }
20805 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20806 if (attr != nullptr)
20807 {
20808 dwarf2_const_value (attr, sym, cu);
20809 }
20810
20811 list_to_add = cu->list_in_scope;
20812 }
20813 break;
20814 case DW_TAG_unspecified_parameters:
20815 /* From varargs functions; gdb doesn't seem to have any
20816 interest in this information, so just ignore it for now.
20817 (FIXME?) */
20818 break;
20819 case DW_TAG_template_type_param:
20820 suppress_add = 1;
20821 /* Fall through. */
20822 case DW_TAG_class_type:
20823 case DW_TAG_interface_type:
20824 case DW_TAG_structure_type:
20825 case DW_TAG_union_type:
20826 case DW_TAG_set_type:
20827 case DW_TAG_enumeration_type:
20828 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20829 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20830
20831 {
20832 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20833 really ever be static objects: otherwise, if you try
20834 to, say, break of a class's method and you're in a file
20835 which doesn't mention that class, it won't work unless
20836 the check for all static symbols in lookup_symbol_aux
20837 saves you. See the OtherFileClass tests in
20838 gdb.c++/namespace.exp. */
20839
20840 if (!suppress_add)
20841 {
20842 buildsym_compunit *builder = cu->get_builder ();
20843 list_to_add
20844 = (cu->list_in_scope == builder->get_file_symbols ()
20845 && cu->language == language_cplus
20846 ? builder->get_global_symbols ()
20847 : cu->list_in_scope);
20848
20849 /* The semantics of C++ state that "struct foo {
20850 ... }" also defines a typedef for "foo". */
20851 if (cu->language == language_cplus
20852 || cu->language == language_ada
20853 || cu->language == language_d
20854 || cu->language == language_rust)
20855 {
20856 /* The symbol's name is already allocated along
20857 with this objfile, so we don't need to
20858 duplicate it for the type. */
20859 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20860 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20861 }
20862 }
20863 }
20864 break;
20865 case DW_TAG_typedef:
20866 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20867 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20868 list_to_add = cu->list_in_scope;
20869 break;
20870 case DW_TAG_base_type:
20871 case DW_TAG_subrange_type:
20872 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20873 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20874 list_to_add = cu->list_in_scope;
20875 break;
20876 case DW_TAG_enumerator:
20877 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20878 if (attr != nullptr)
20879 {
20880 dwarf2_const_value (attr, sym, cu);
20881 }
20882 {
20883 /* NOTE: carlton/2003-11-10: See comment above in the
20884 DW_TAG_class_type, etc. block. */
20885
20886 list_to_add
20887 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20888 && cu->language == language_cplus
20889 ? cu->get_builder ()->get_global_symbols ()
20890 : cu->list_in_scope);
20891 }
20892 break;
20893 case DW_TAG_imported_declaration:
20894 case DW_TAG_namespace:
20895 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20896 list_to_add = cu->get_builder ()->get_global_symbols ();
20897 break;
20898 case DW_TAG_module:
20899 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20900 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20901 list_to_add = cu->get_builder ()->get_global_symbols ();
20902 break;
20903 case DW_TAG_common_block:
20904 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20905 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20906 add_symbol_to_list (sym, cu->list_in_scope);
20907 break;
20908 default:
20909 /* Not a tag we recognize. Hopefully we aren't processing
20910 trash data, but since we must specifically ignore things
20911 we don't recognize, there is nothing else we should do at
20912 this point. */
20913 complaint (_("unsupported tag: '%s'"),
20914 dwarf_tag_name (die->tag));
20915 break;
20916 }
20917
20918 if (suppress_add)
20919 {
20920 sym->hash_next = objfile->template_symbols;
20921 objfile->template_symbols = sym;
20922 list_to_add = NULL;
20923 }
20924
20925 if (list_to_add != NULL)
20926 add_symbol_to_list (sym, list_to_add);
20927
20928 /* For the benefit of old versions of GCC, check for anonymous
20929 namespaces based on the demangled name. */
20930 if (!cu->processing_has_namespace_info
20931 && cu->language == language_cplus)
20932 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20933 }
20934 return (sym);
20935 }
20936
20937 /* Given an attr with a DW_FORM_dataN value in host byte order,
20938 zero-extend it as appropriate for the symbol's type. The DWARF
20939 standard (v4) is not entirely clear about the meaning of using
20940 DW_FORM_dataN for a constant with a signed type, where the type is
20941 wider than the data. The conclusion of a discussion on the DWARF
20942 list was that this is unspecified. We choose to always zero-extend
20943 because that is the interpretation long in use by GCC. */
20944
20945 static gdb_byte *
20946 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20947 struct dwarf2_cu *cu, LONGEST *value, int bits)
20948 {
20949 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20950 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20951 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20952 LONGEST l = DW_UNSND (attr);
20953
20954 if (bits < sizeof (*value) * 8)
20955 {
20956 l &= ((LONGEST) 1 << bits) - 1;
20957 *value = l;
20958 }
20959 else if (bits == sizeof (*value) * 8)
20960 *value = l;
20961 else
20962 {
20963 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20964 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20965 return bytes;
20966 }
20967
20968 return NULL;
20969 }
20970
20971 /* Read a constant value from an attribute. Either set *VALUE, or if
20972 the value does not fit in *VALUE, set *BYTES - either already
20973 allocated on the objfile obstack, or newly allocated on OBSTACK,
20974 or, set *BATON, if we translated the constant to a location
20975 expression. */
20976
20977 static void
20978 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20979 const char *name, struct obstack *obstack,
20980 struct dwarf2_cu *cu,
20981 LONGEST *value, const gdb_byte **bytes,
20982 struct dwarf2_locexpr_baton **baton)
20983 {
20984 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20985 struct comp_unit_head *cu_header = &cu->header;
20986 struct dwarf_block *blk;
20987 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20988 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20989
20990 *value = 0;
20991 *bytes = NULL;
20992 *baton = NULL;
20993
20994 switch (attr->form)
20995 {
20996 case DW_FORM_addr:
20997 case DW_FORM_addrx:
20998 case DW_FORM_GNU_addr_index:
20999 {
21000 gdb_byte *data;
21001
21002 if (TYPE_LENGTH (type) != cu_header->addr_size)
21003 dwarf2_const_value_length_mismatch_complaint (name,
21004 cu_header->addr_size,
21005 TYPE_LENGTH (type));
21006 /* Symbols of this form are reasonably rare, so we just
21007 piggyback on the existing location code rather than writing
21008 a new implementation of symbol_computed_ops. */
21009 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21010 (*baton)->per_cu = cu->per_cu;
21011 gdb_assert ((*baton)->per_cu);
21012
21013 (*baton)->size = 2 + cu_header->addr_size;
21014 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21015 (*baton)->data = data;
21016
21017 data[0] = DW_OP_addr;
21018 store_unsigned_integer (&data[1], cu_header->addr_size,
21019 byte_order, DW_ADDR (attr));
21020 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21021 }
21022 break;
21023 case DW_FORM_string:
21024 case DW_FORM_strp:
21025 case DW_FORM_strx:
21026 case DW_FORM_GNU_str_index:
21027 case DW_FORM_GNU_strp_alt:
21028 /* DW_STRING is already allocated on the objfile obstack, point
21029 directly to it. */
21030 *bytes = (const gdb_byte *) DW_STRING (attr);
21031 break;
21032 case DW_FORM_block1:
21033 case DW_FORM_block2:
21034 case DW_FORM_block4:
21035 case DW_FORM_block:
21036 case DW_FORM_exprloc:
21037 case DW_FORM_data16:
21038 blk = DW_BLOCK (attr);
21039 if (TYPE_LENGTH (type) != blk->size)
21040 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21041 TYPE_LENGTH (type));
21042 *bytes = blk->data;
21043 break;
21044
21045 /* The DW_AT_const_value attributes are supposed to carry the
21046 symbol's value "represented as it would be on the target
21047 architecture." By the time we get here, it's already been
21048 converted to host endianness, so we just need to sign- or
21049 zero-extend it as appropriate. */
21050 case DW_FORM_data1:
21051 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21052 break;
21053 case DW_FORM_data2:
21054 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21055 break;
21056 case DW_FORM_data4:
21057 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21058 break;
21059 case DW_FORM_data8:
21060 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21061 break;
21062
21063 case DW_FORM_sdata:
21064 case DW_FORM_implicit_const:
21065 *value = DW_SND (attr);
21066 break;
21067
21068 case DW_FORM_udata:
21069 *value = DW_UNSND (attr);
21070 break;
21071
21072 default:
21073 complaint (_("unsupported const value attribute form: '%s'"),
21074 dwarf_form_name (attr->form));
21075 *value = 0;
21076 break;
21077 }
21078 }
21079
21080
21081 /* Copy constant value from an attribute to a symbol. */
21082
21083 static void
21084 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21085 struct dwarf2_cu *cu)
21086 {
21087 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21088 LONGEST value;
21089 const gdb_byte *bytes;
21090 struct dwarf2_locexpr_baton *baton;
21091
21092 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21093 sym->print_name (),
21094 &objfile->objfile_obstack, cu,
21095 &value, &bytes, &baton);
21096
21097 if (baton != NULL)
21098 {
21099 SYMBOL_LOCATION_BATON (sym) = baton;
21100 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21101 }
21102 else if (bytes != NULL)
21103 {
21104 SYMBOL_VALUE_BYTES (sym) = bytes;
21105 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21106 }
21107 else
21108 {
21109 SYMBOL_VALUE (sym) = value;
21110 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21111 }
21112 }
21113
21114 /* Return the type of the die in question using its DW_AT_type attribute. */
21115
21116 static struct type *
21117 die_type (struct die_info *die, struct dwarf2_cu *cu)
21118 {
21119 struct attribute *type_attr;
21120
21121 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21122 if (!type_attr)
21123 {
21124 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21125 /* A missing DW_AT_type represents a void type. */
21126 return objfile_type (objfile)->builtin_void;
21127 }
21128
21129 return lookup_die_type (die, type_attr, cu);
21130 }
21131
21132 /* True iff CU's producer generates GNAT Ada auxiliary information
21133 that allows to find parallel types through that information instead
21134 of having to do expensive parallel lookups by type name. */
21135
21136 static int
21137 need_gnat_info (struct dwarf2_cu *cu)
21138 {
21139 /* Assume that the Ada compiler was GNAT, which always produces
21140 the auxiliary information. */
21141 return (cu->language == language_ada);
21142 }
21143
21144 /* Return the auxiliary type of the die in question using its
21145 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21146 attribute is not present. */
21147
21148 static struct type *
21149 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21150 {
21151 struct attribute *type_attr;
21152
21153 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21154 if (!type_attr)
21155 return NULL;
21156
21157 return lookup_die_type (die, type_attr, cu);
21158 }
21159
21160 /* If DIE has a descriptive_type attribute, then set the TYPE's
21161 descriptive type accordingly. */
21162
21163 static void
21164 set_descriptive_type (struct type *type, struct die_info *die,
21165 struct dwarf2_cu *cu)
21166 {
21167 struct type *descriptive_type = die_descriptive_type (die, cu);
21168
21169 if (descriptive_type)
21170 {
21171 ALLOCATE_GNAT_AUX_TYPE (type);
21172 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21173 }
21174 }
21175
21176 /* Return the containing type of the die in question using its
21177 DW_AT_containing_type attribute. */
21178
21179 static struct type *
21180 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21181 {
21182 struct attribute *type_attr;
21183 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21184
21185 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21186 if (!type_attr)
21187 error (_("Dwarf Error: Problem turning containing type into gdb type "
21188 "[in module %s]"), objfile_name (objfile));
21189
21190 return lookup_die_type (die, type_attr, cu);
21191 }
21192
21193 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21194
21195 static struct type *
21196 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21197 {
21198 struct dwarf2_per_objfile *dwarf2_per_objfile
21199 = cu->per_cu->dwarf2_per_objfile;
21200 struct objfile *objfile = dwarf2_per_objfile->objfile;
21201 char *saved;
21202
21203 std::string message
21204 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21205 objfile_name (objfile),
21206 sect_offset_str (cu->header.sect_off),
21207 sect_offset_str (die->sect_off));
21208 saved = obstack_strdup (&objfile->objfile_obstack, message);
21209
21210 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21211 }
21212
21213 /* Look up the type of DIE in CU using its type attribute ATTR.
21214 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21215 DW_AT_containing_type.
21216 If there is no type substitute an error marker. */
21217
21218 static struct type *
21219 lookup_die_type (struct die_info *die, const struct attribute *attr,
21220 struct dwarf2_cu *cu)
21221 {
21222 struct dwarf2_per_objfile *dwarf2_per_objfile
21223 = cu->per_cu->dwarf2_per_objfile;
21224 struct objfile *objfile = dwarf2_per_objfile->objfile;
21225 struct type *this_type;
21226
21227 gdb_assert (attr->name == DW_AT_type
21228 || attr->name == DW_AT_GNAT_descriptive_type
21229 || attr->name == DW_AT_containing_type);
21230
21231 /* First see if we have it cached. */
21232
21233 if (attr->form == DW_FORM_GNU_ref_alt)
21234 {
21235 struct dwarf2_per_cu_data *per_cu;
21236 sect_offset sect_off = attr->get_ref_die_offset ();
21237
21238 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21239 dwarf2_per_objfile);
21240 this_type = get_die_type_at_offset (sect_off, per_cu);
21241 }
21242 else if (attr->form_is_ref ())
21243 {
21244 sect_offset sect_off = attr->get_ref_die_offset ();
21245
21246 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21247 }
21248 else if (attr->form == DW_FORM_ref_sig8)
21249 {
21250 ULONGEST signature = DW_SIGNATURE (attr);
21251
21252 return get_signatured_type (die, signature, cu);
21253 }
21254 else
21255 {
21256 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21257 " at %s [in module %s]"),
21258 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21259 objfile_name (objfile));
21260 return build_error_marker_type (cu, die);
21261 }
21262
21263 /* If not cached we need to read it in. */
21264
21265 if (this_type == NULL)
21266 {
21267 struct die_info *type_die = NULL;
21268 struct dwarf2_cu *type_cu = cu;
21269
21270 if (attr->form_is_ref ())
21271 type_die = follow_die_ref (die, attr, &type_cu);
21272 if (type_die == NULL)
21273 return build_error_marker_type (cu, die);
21274 /* If we find the type now, it's probably because the type came
21275 from an inter-CU reference and the type's CU got expanded before
21276 ours. */
21277 this_type = read_type_die (type_die, type_cu);
21278 }
21279
21280 /* If we still don't have a type use an error marker. */
21281
21282 if (this_type == NULL)
21283 return build_error_marker_type (cu, die);
21284
21285 return this_type;
21286 }
21287
21288 /* Return the type in DIE, CU.
21289 Returns NULL for invalid types.
21290
21291 This first does a lookup in die_type_hash,
21292 and only reads the die in if necessary.
21293
21294 NOTE: This can be called when reading in partial or full symbols. */
21295
21296 static struct type *
21297 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21298 {
21299 struct type *this_type;
21300
21301 this_type = get_die_type (die, cu);
21302 if (this_type)
21303 return this_type;
21304
21305 return read_type_die_1 (die, cu);
21306 }
21307
21308 /* Read the type in DIE, CU.
21309 Returns NULL for invalid types. */
21310
21311 static struct type *
21312 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21313 {
21314 struct type *this_type = NULL;
21315
21316 switch (die->tag)
21317 {
21318 case DW_TAG_class_type:
21319 case DW_TAG_interface_type:
21320 case DW_TAG_structure_type:
21321 case DW_TAG_union_type:
21322 this_type = read_structure_type (die, cu);
21323 break;
21324 case DW_TAG_enumeration_type:
21325 this_type = read_enumeration_type (die, cu);
21326 break;
21327 case DW_TAG_subprogram:
21328 case DW_TAG_subroutine_type:
21329 case DW_TAG_inlined_subroutine:
21330 this_type = read_subroutine_type (die, cu);
21331 break;
21332 case DW_TAG_array_type:
21333 this_type = read_array_type (die, cu);
21334 break;
21335 case DW_TAG_set_type:
21336 this_type = read_set_type (die, cu);
21337 break;
21338 case DW_TAG_pointer_type:
21339 this_type = read_tag_pointer_type (die, cu);
21340 break;
21341 case DW_TAG_ptr_to_member_type:
21342 this_type = read_tag_ptr_to_member_type (die, cu);
21343 break;
21344 case DW_TAG_reference_type:
21345 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21346 break;
21347 case DW_TAG_rvalue_reference_type:
21348 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21349 break;
21350 case DW_TAG_const_type:
21351 this_type = read_tag_const_type (die, cu);
21352 break;
21353 case DW_TAG_volatile_type:
21354 this_type = read_tag_volatile_type (die, cu);
21355 break;
21356 case DW_TAG_restrict_type:
21357 this_type = read_tag_restrict_type (die, cu);
21358 break;
21359 case DW_TAG_string_type:
21360 this_type = read_tag_string_type (die, cu);
21361 break;
21362 case DW_TAG_typedef:
21363 this_type = read_typedef (die, cu);
21364 break;
21365 case DW_TAG_subrange_type:
21366 this_type = read_subrange_type (die, cu);
21367 break;
21368 case DW_TAG_base_type:
21369 this_type = read_base_type (die, cu);
21370 break;
21371 case DW_TAG_unspecified_type:
21372 this_type = read_unspecified_type (die, cu);
21373 break;
21374 case DW_TAG_namespace:
21375 this_type = read_namespace_type (die, cu);
21376 break;
21377 case DW_TAG_module:
21378 this_type = read_module_type (die, cu);
21379 break;
21380 case DW_TAG_atomic_type:
21381 this_type = read_tag_atomic_type (die, cu);
21382 break;
21383 default:
21384 complaint (_("unexpected tag in read_type_die: '%s'"),
21385 dwarf_tag_name (die->tag));
21386 break;
21387 }
21388
21389 return this_type;
21390 }
21391
21392 /* See if we can figure out if the class lives in a namespace. We do
21393 this by looking for a member function; its demangled name will
21394 contain namespace info, if there is any.
21395 Return the computed name or NULL.
21396 Space for the result is allocated on the objfile's obstack.
21397 This is the full-die version of guess_partial_die_structure_name.
21398 In this case we know DIE has no useful parent. */
21399
21400 static const char *
21401 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21402 {
21403 struct die_info *spec_die;
21404 struct dwarf2_cu *spec_cu;
21405 struct die_info *child;
21406 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21407
21408 spec_cu = cu;
21409 spec_die = die_specification (die, &spec_cu);
21410 if (spec_die != NULL)
21411 {
21412 die = spec_die;
21413 cu = spec_cu;
21414 }
21415
21416 for (child = die->child;
21417 child != NULL;
21418 child = child->sibling)
21419 {
21420 if (child->tag == DW_TAG_subprogram)
21421 {
21422 const char *linkage_name = dw2_linkage_name (child, cu);
21423
21424 if (linkage_name != NULL)
21425 {
21426 gdb::unique_xmalloc_ptr<char> actual_name
21427 (language_class_name_from_physname (cu->language_defn,
21428 linkage_name));
21429 const char *name = NULL;
21430
21431 if (actual_name != NULL)
21432 {
21433 const char *die_name = dwarf2_name (die, cu);
21434
21435 if (die_name != NULL
21436 && strcmp (die_name, actual_name.get ()) != 0)
21437 {
21438 /* Strip off the class name from the full name.
21439 We want the prefix. */
21440 int die_name_len = strlen (die_name);
21441 int actual_name_len = strlen (actual_name.get ());
21442 const char *ptr = actual_name.get ();
21443
21444 /* Test for '::' as a sanity check. */
21445 if (actual_name_len > die_name_len + 2
21446 && ptr[actual_name_len - die_name_len - 1] == ':')
21447 name = obstack_strndup (
21448 &objfile->per_bfd->storage_obstack,
21449 ptr, actual_name_len - die_name_len - 2);
21450 }
21451 }
21452 return name;
21453 }
21454 }
21455 }
21456
21457 return NULL;
21458 }
21459
21460 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21461 prefix part in such case. See
21462 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21463
21464 static const char *
21465 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21466 {
21467 struct attribute *attr;
21468 const char *base;
21469
21470 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21471 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21472 return NULL;
21473
21474 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21475 return NULL;
21476
21477 attr = dw2_linkage_name_attr (die, cu);
21478 if (attr == NULL || DW_STRING (attr) == NULL)
21479 return NULL;
21480
21481 /* dwarf2_name had to be already called. */
21482 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21483
21484 /* Strip the base name, keep any leading namespaces/classes. */
21485 base = strrchr (DW_STRING (attr), ':');
21486 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21487 return "";
21488
21489 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21490 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21491 DW_STRING (attr),
21492 &base[-1] - DW_STRING (attr));
21493 }
21494
21495 /* Return the name of the namespace/class that DIE is defined within,
21496 or "" if we can't tell. The caller should not xfree the result.
21497
21498 For example, if we're within the method foo() in the following
21499 code:
21500
21501 namespace N {
21502 class C {
21503 void foo () {
21504 }
21505 };
21506 }
21507
21508 then determine_prefix on foo's die will return "N::C". */
21509
21510 static const char *
21511 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21512 {
21513 struct dwarf2_per_objfile *dwarf2_per_objfile
21514 = cu->per_cu->dwarf2_per_objfile;
21515 struct die_info *parent, *spec_die;
21516 struct dwarf2_cu *spec_cu;
21517 struct type *parent_type;
21518 const char *retval;
21519
21520 if (cu->language != language_cplus
21521 && cu->language != language_fortran && cu->language != language_d
21522 && cu->language != language_rust)
21523 return "";
21524
21525 retval = anonymous_struct_prefix (die, cu);
21526 if (retval)
21527 return retval;
21528
21529 /* We have to be careful in the presence of DW_AT_specification.
21530 For example, with GCC 3.4, given the code
21531
21532 namespace N {
21533 void foo() {
21534 // Definition of N::foo.
21535 }
21536 }
21537
21538 then we'll have a tree of DIEs like this:
21539
21540 1: DW_TAG_compile_unit
21541 2: DW_TAG_namespace // N
21542 3: DW_TAG_subprogram // declaration of N::foo
21543 4: DW_TAG_subprogram // definition of N::foo
21544 DW_AT_specification // refers to die #3
21545
21546 Thus, when processing die #4, we have to pretend that we're in
21547 the context of its DW_AT_specification, namely the contex of die
21548 #3. */
21549 spec_cu = cu;
21550 spec_die = die_specification (die, &spec_cu);
21551 if (spec_die == NULL)
21552 parent = die->parent;
21553 else
21554 {
21555 parent = spec_die->parent;
21556 cu = spec_cu;
21557 }
21558
21559 if (parent == NULL)
21560 return "";
21561 else if (parent->building_fullname)
21562 {
21563 const char *name;
21564 const char *parent_name;
21565
21566 /* It has been seen on RealView 2.2 built binaries,
21567 DW_TAG_template_type_param types actually _defined_ as
21568 children of the parent class:
21569
21570 enum E {};
21571 template class <class Enum> Class{};
21572 Class<enum E> class_e;
21573
21574 1: DW_TAG_class_type (Class)
21575 2: DW_TAG_enumeration_type (E)
21576 3: DW_TAG_enumerator (enum1:0)
21577 3: DW_TAG_enumerator (enum2:1)
21578 ...
21579 2: DW_TAG_template_type_param
21580 DW_AT_type DW_FORM_ref_udata (E)
21581
21582 Besides being broken debug info, it can put GDB into an
21583 infinite loop. Consider:
21584
21585 When we're building the full name for Class<E>, we'll start
21586 at Class, and go look over its template type parameters,
21587 finding E. We'll then try to build the full name of E, and
21588 reach here. We're now trying to build the full name of E,
21589 and look over the parent DIE for containing scope. In the
21590 broken case, if we followed the parent DIE of E, we'd again
21591 find Class, and once again go look at its template type
21592 arguments, etc., etc. Simply don't consider such parent die
21593 as source-level parent of this die (it can't be, the language
21594 doesn't allow it), and break the loop here. */
21595 name = dwarf2_name (die, cu);
21596 parent_name = dwarf2_name (parent, cu);
21597 complaint (_("template param type '%s' defined within parent '%s'"),
21598 name ? name : "<unknown>",
21599 parent_name ? parent_name : "<unknown>");
21600 return "";
21601 }
21602 else
21603 switch (parent->tag)
21604 {
21605 case DW_TAG_namespace:
21606 parent_type = read_type_die (parent, cu);
21607 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21608 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21609 Work around this problem here. */
21610 if (cu->language == language_cplus
21611 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21612 return "";
21613 /* We give a name to even anonymous namespaces. */
21614 return TYPE_NAME (parent_type);
21615 case DW_TAG_class_type:
21616 case DW_TAG_interface_type:
21617 case DW_TAG_structure_type:
21618 case DW_TAG_union_type:
21619 case DW_TAG_module:
21620 parent_type = read_type_die (parent, cu);
21621 if (TYPE_NAME (parent_type) != NULL)
21622 return TYPE_NAME (parent_type);
21623 else
21624 /* An anonymous structure is only allowed non-static data
21625 members; no typedefs, no member functions, et cetera.
21626 So it does not need a prefix. */
21627 return "";
21628 case DW_TAG_compile_unit:
21629 case DW_TAG_partial_unit:
21630 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21631 if (cu->language == language_cplus
21632 && !dwarf2_per_objfile->types.empty ()
21633 && die->child != NULL
21634 && (die->tag == DW_TAG_class_type
21635 || die->tag == DW_TAG_structure_type
21636 || die->tag == DW_TAG_union_type))
21637 {
21638 const char *name = guess_full_die_structure_name (die, cu);
21639 if (name != NULL)
21640 return name;
21641 }
21642 return "";
21643 case DW_TAG_subprogram:
21644 /* Nested subroutines in Fortran get a prefix with the name
21645 of the parent's subroutine. */
21646 if (cu->language == language_fortran)
21647 {
21648 if ((die->tag == DW_TAG_subprogram)
21649 && (dwarf2_name (parent, cu) != NULL))
21650 return dwarf2_name (parent, cu);
21651 }
21652 return determine_prefix (parent, cu);
21653 case DW_TAG_enumeration_type:
21654 parent_type = read_type_die (parent, cu);
21655 if (TYPE_DECLARED_CLASS (parent_type))
21656 {
21657 if (TYPE_NAME (parent_type) != NULL)
21658 return TYPE_NAME (parent_type);
21659 return "";
21660 }
21661 /* Fall through. */
21662 default:
21663 return determine_prefix (parent, cu);
21664 }
21665 }
21666
21667 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21668 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21669 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21670 an obconcat, otherwise allocate storage for the result. The CU argument is
21671 used to determine the language and hence, the appropriate separator. */
21672
21673 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21674
21675 static char *
21676 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21677 int physname, struct dwarf2_cu *cu)
21678 {
21679 const char *lead = "";
21680 const char *sep;
21681
21682 if (suffix == NULL || suffix[0] == '\0'
21683 || prefix == NULL || prefix[0] == '\0')
21684 sep = "";
21685 else if (cu->language == language_d)
21686 {
21687 /* For D, the 'main' function could be defined in any module, but it
21688 should never be prefixed. */
21689 if (strcmp (suffix, "D main") == 0)
21690 {
21691 prefix = "";
21692 sep = "";
21693 }
21694 else
21695 sep = ".";
21696 }
21697 else if (cu->language == language_fortran && physname)
21698 {
21699 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21700 DW_AT_MIPS_linkage_name is preferred and used instead. */
21701
21702 lead = "__";
21703 sep = "_MOD_";
21704 }
21705 else
21706 sep = "::";
21707
21708 if (prefix == NULL)
21709 prefix = "";
21710 if (suffix == NULL)
21711 suffix = "";
21712
21713 if (obs == NULL)
21714 {
21715 char *retval
21716 = ((char *)
21717 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21718
21719 strcpy (retval, lead);
21720 strcat (retval, prefix);
21721 strcat (retval, sep);
21722 strcat (retval, suffix);
21723 return retval;
21724 }
21725 else
21726 {
21727 /* We have an obstack. */
21728 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21729 }
21730 }
21731
21732 /* Get name of a die, return NULL if not found. */
21733
21734 static const char *
21735 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21736 struct objfile *objfile)
21737 {
21738 if (name && cu->language == language_cplus)
21739 {
21740 std::string canon_name = cp_canonicalize_string (name);
21741
21742 if (!canon_name.empty ())
21743 {
21744 if (canon_name != name)
21745 name = objfile->intern (canon_name);
21746 }
21747 }
21748
21749 return name;
21750 }
21751
21752 /* Get name of a die, return NULL if not found.
21753 Anonymous namespaces are converted to their magic string. */
21754
21755 static const char *
21756 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21757 {
21758 struct attribute *attr;
21759 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21760
21761 attr = dwarf2_attr (die, DW_AT_name, cu);
21762 if ((!attr || !DW_STRING (attr))
21763 && die->tag != DW_TAG_namespace
21764 && die->tag != DW_TAG_class_type
21765 && die->tag != DW_TAG_interface_type
21766 && die->tag != DW_TAG_structure_type
21767 && die->tag != DW_TAG_union_type)
21768 return NULL;
21769
21770 switch (die->tag)
21771 {
21772 case DW_TAG_compile_unit:
21773 case DW_TAG_partial_unit:
21774 /* Compilation units have a DW_AT_name that is a filename, not
21775 a source language identifier. */
21776 case DW_TAG_enumeration_type:
21777 case DW_TAG_enumerator:
21778 /* These tags always have simple identifiers already; no need
21779 to canonicalize them. */
21780 return DW_STRING (attr);
21781
21782 case DW_TAG_namespace:
21783 if (attr != NULL && DW_STRING (attr) != NULL)
21784 return DW_STRING (attr);
21785 return CP_ANONYMOUS_NAMESPACE_STR;
21786
21787 case DW_TAG_class_type:
21788 case DW_TAG_interface_type:
21789 case DW_TAG_structure_type:
21790 case DW_TAG_union_type:
21791 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21792 structures or unions. These were of the form "._%d" in GCC 4.1,
21793 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21794 and GCC 4.4. We work around this problem by ignoring these. */
21795 if (attr && DW_STRING (attr)
21796 && (startswith (DW_STRING (attr), "._")
21797 || startswith (DW_STRING (attr), "<anonymous")))
21798 return NULL;
21799
21800 /* GCC might emit a nameless typedef that has a linkage name. See
21801 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21802 if (!attr || DW_STRING (attr) == NULL)
21803 {
21804 attr = dw2_linkage_name_attr (die, cu);
21805 if (attr == NULL || DW_STRING (attr) == NULL)
21806 return NULL;
21807
21808 /* Avoid demangling DW_STRING (attr) the second time on a second
21809 call for the same DIE. */
21810 if (!DW_STRING_IS_CANONICAL (attr))
21811 {
21812 gdb::unique_xmalloc_ptr<char> demangled
21813 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21814 if (demangled == nullptr)
21815 return nullptr;
21816
21817 DW_STRING (attr) = objfile->intern (demangled.get ());
21818 DW_STRING_IS_CANONICAL (attr) = 1;
21819 }
21820
21821 /* Strip any leading namespaces/classes, keep only the base name.
21822 DW_AT_name for named DIEs does not contain the prefixes. */
21823 const char *base = strrchr (DW_STRING (attr), ':');
21824 if (base && base > DW_STRING (attr) && base[-1] == ':')
21825 return &base[1];
21826 else
21827 return DW_STRING (attr);
21828 }
21829 break;
21830
21831 default:
21832 break;
21833 }
21834
21835 if (!DW_STRING_IS_CANONICAL (attr))
21836 {
21837 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21838 objfile);
21839 DW_STRING_IS_CANONICAL (attr) = 1;
21840 }
21841 return DW_STRING (attr);
21842 }
21843
21844 /* Return the die that this die in an extension of, or NULL if there
21845 is none. *EXT_CU is the CU containing DIE on input, and the CU
21846 containing the return value on output. */
21847
21848 static struct die_info *
21849 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21850 {
21851 struct attribute *attr;
21852
21853 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21854 if (attr == NULL)
21855 return NULL;
21856
21857 return follow_die_ref (die, attr, ext_cu);
21858 }
21859
21860 static void
21861 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21862 {
21863 unsigned int i;
21864
21865 print_spaces (indent, f);
21866 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21867 dwarf_tag_name (die->tag), die->abbrev,
21868 sect_offset_str (die->sect_off));
21869
21870 if (die->parent != NULL)
21871 {
21872 print_spaces (indent, f);
21873 fprintf_unfiltered (f, " parent at offset: %s\n",
21874 sect_offset_str (die->parent->sect_off));
21875 }
21876
21877 print_spaces (indent, f);
21878 fprintf_unfiltered (f, " has children: %s\n",
21879 dwarf_bool_name (die->child != NULL));
21880
21881 print_spaces (indent, f);
21882 fprintf_unfiltered (f, " attributes:\n");
21883
21884 for (i = 0; i < die->num_attrs; ++i)
21885 {
21886 print_spaces (indent, f);
21887 fprintf_unfiltered (f, " %s (%s) ",
21888 dwarf_attr_name (die->attrs[i].name),
21889 dwarf_form_name (die->attrs[i].form));
21890
21891 switch (die->attrs[i].form)
21892 {
21893 case DW_FORM_addr:
21894 case DW_FORM_addrx:
21895 case DW_FORM_GNU_addr_index:
21896 fprintf_unfiltered (f, "address: ");
21897 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21898 break;
21899 case DW_FORM_block2:
21900 case DW_FORM_block4:
21901 case DW_FORM_block:
21902 case DW_FORM_block1:
21903 fprintf_unfiltered (f, "block: size %s",
21904 pulongest (DW_BLOCK (&die->attrs[i])->size));
21905 break;
21906 case DW_FORM_exprloc:
21907 fprintf_unfiltered (f, "expression: size %s",
21908 pulongest (DW_BLOCK (&die->attrs[i])->size));
21909 break;
21910 case DW_FORM_data16:
21911 fprintf_unfiltered (f, "constant of 16 bytes");
21912 break;
21913 case DW_FORM_ref_addr:
21914 fprintf_unfiltered (f, "ref address: ");
21915 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21916 break;
21917 case DW_FORM_GNU_ref_alt:
21918 fprintf_unfiltered (f, "alt ref address: ");
21919 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21920 break;
21921 case DW_FORM_ref1:
21922 case DW_FORM_ref2:
21923 case DW_FORM_ref4:
21924 case DW_FORM_ref8:
21925 case DW_FORM_ref_udata:
21926 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21927 (long) (DW_UNSND (&die->attrs[i])));
21928 break;
21929 case DW_FORM_data1:
21930 case DW_FORM_data2:
21931 case DW_FORM_data4:
21932 case DW_FORM_data8:
21933 case DW_FORM_udata:
21934 case DW_FORM_sdata:
21935 fprintf_unfiltered (f, "constant: %s",
21936 pulongest (DW_UNSND (&die->attrs[i])));
21937 break;
21938 case DW_FORM_sec_offset:
21939 fprintf_unfiltered (f, "section offset: %s",
21940 pulongest (DW_UNSND (&die->attrs[i])));
21941 break;
21942 case DW_FORM_ref_sig8:
21943 fprintf_unfiltered (f, "signature: %s",
21944 hex_string (DW_SIGNATURE (&die->attrs[i])));
21945 break;
21946 case DW_FORM_string:
21947 case DW_FORM_strp:
21948 case DW_FORM_line_strp:
21949 case DW_FORM_strx:
21950 case DW_FORM_GNU_str_index:
21951 case DW_FORM_GNU_strp_alt:
21952 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21953 DW_STRING (&die->attrs[i])
21954 ? DW_STRING (&die->attrs[i]) : "",
21955 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21956 break;
21957 case DW_FORM_flag:
21958 if (DW_UNSND (&die->attrs[i]))
21959 fprintf_unfiltered (f, "flag: TRUE");
21960 else
21961 fprintf_unfiltered (f, "flag: FALSE");
21962 break;
21963 case DW_FORM_flag_present:
21964 fprintf_unfiltered (f, "flag: TRUE");
21965 break;
21966 case DW_FORM_indirect:
21967 /* The reader will have reduced the indirect form to
21968 the "base form" so this form should not occur. */
21969 fprintf_unfiltered (f,
21970 "unexpected attribute form: DW_FORM_indirect");
21971 break;
21972 case DW_FORM_implicit_const:
21973 fprintf_unfiltered (f, "constant: %s",
21974 plongest (DW_SND (&die->attrs[i])));
21975 break;
21976 default:
21977 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21978 die->attrs[i].form);
21979 break;
21980 }
21981 fprintf_unfiltered (f, "\n");
21982 }
21983 }
21984
21985 static void
21986 dump_die_for_error (struct die_info *die)
21987 {
21988 dump_die_shallow (gdb_stderr, 0, die);
21989 }
21990
21991 static void
21992 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21993 {
21994 int indent = level * 4;
21995
21996 gdb_assert (die != NULL);
21997
21998 if (level >= max_level)
21999 return;
22000
22001 dump_die_shallow (f, indent, die);
22002
22003 if (die->child != NULL)
22004 {
22005 print_spaces (indent, f);
22006 fprintf_unfiltered (f, " Children:");
22007 if (level + 1 < max_level)
22008 {
22009 fprintf_unfiltered (f, "\n");
22010 dump_die_1 (f, level + 1, max_level, die->child);
22011 }
22012 else
22013 {
22014 fprintf_unfiltered (f,
22015 " [not printed, max nesting level reached]\n");
22016 }
22017 }
22018
22019 if (die->sibling != NULL && level > 0)
22020 {
22021 dump_die_1 (f, level, max_level, die->sibling);
22022 }
22023 }
22024
22025 /* This is called from the pdie macro in gdbinit.in.
22026 It's not static so gcc will keep a copy callable from gdb. */
22027
22028 void
22029 dump_die (struct die_info *die, int max_level)
22030 {
22031 dump_die_1 (gdb_stdlog, 0, max_level, die);
22032 }
22033
22034 static void
22035 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22036 {
22037 void **slot;
22038
22039 slot = htab_find_slot_with_hash (cu->die_hash, die,
22040 to_underlying (die->sect_off),
22041 INSERT);
22042
22043 *slot = die;
22044 }
22045
22046 /* Follow reference or signature attribute ATTR of SRC_DIE.
22047 On entry *REF_CU is the CU of SRC_DIE.
22048 On exit *REF_CU is the CU of the result. */
22049
22050 static struct die_info *
22051 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22052 struct dwarf2_cu **ref_cu)
22053 {
22054 struct die_info *die;
22055
22056 if (attr->form_is_ref ())
22057 die = follow_die_ref (src_die, attr, ref_cu);
22058 else if (attr->form == DW_FORM_ref_sig8)
22059 die = follow_die_sig (src_die, attr, ref_cu);
22060 else
22061 {
22062 dump_die_for_error (src_die);
22063 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22064 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22065 }
22066
22067 return die;
22068 }
22069
22070 /* Follow reference OFFSET.
22071 On entry *REF_CU is the CU of the source die referencing OFFSET.
22072 On exit *REF_CU is the CU of the result.
22073 Returns NULL if OFFSET is invalid. */
22074
22075 static struct die_info *
22076 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22077 struct dwarf2_cu **ref_cu)
22078 {
22079 struct die_info temp_die;
22080 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22081 struct dwarf2_per_objfile *dwarf2_per_objfile
22082 = cu->per_cu->dwarf2_per_objfile;
22083
22084 gdb_assert (cu->per_cu != NULL);
22085
22086 target_cu = cu;
22087
22088 if (cu->per_cu->is_debug_types)
22089 {
22090 /* .debug_types CUs cannot reference anything outside their CU.
22091 If they need to, they have to reference a signatured type via
22092 DW_FORM_ref_sig8. */
22093 if (!cu->header.offset_in_cu_p (sect_off))
22094 return NULL;
22095 }
22096 else if (offset_in_dwz != cu->per_cu->is_dwz
22097 || !cu->header.offset_in_cu_p (sect_off))
22098 {
22099 struct dwarf2_per_cu_data *per_cu;
22100
22101 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22102 dwarf2_per_objfile);
22103
22104 /* If necessary, add it to the queue and load its DIEs. */
22105 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22106 load_full_comp_unit (per_cu, false, cu->language);
22107
22108 target_cu = per_cu->cu;
22109 }
22110 else if (cu->dies == NULL)
22111 {
22112 /* We're loading full DIEs during partial symbol reading. */
22113 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22114 load_full_comp_unit (cu->per_cu, false, language_minimal);
22115 }
22116
22117 *ref_cu = target_cu;
22118 temp_die.sect_off = sect_off;
22119
22120 if (target_cu != cu)
22121 target_cu->ancestor = cu;
22122
22123 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22124 &temp_die,
22125 to_underlying (sect_off));
22126 }
22127
22128 /* Follow reference attribute ATTR of SRC_DIE.
22129 On entry *REF_CU is the CU of SRC_DIE.
22130 On exit *REF_CU is the CU of the result. */
22131
22132 static struct die_info *
22133 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22134 struct dwarf2_cu **ref_cu)
22135 {
22136 sect_offset sect_off = attr->get_ref_die_offset ();
22137 struct dwarf2_cu *cu = *ref_cu;
22138 struct die_info *die;
22139
22140 die = follow_die_offset (sect_off,
22141 (attr->form == DW_FORM_GNU_ref_alt
22142 || cu->per_cu->is_dwz),
22143 ref_cu);
22144 if (!die)
22145 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22146 "at %s [in module %s]"),
22147 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22148 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22149
22150 return die;
22151 }
22152
22153 /* See read.h. */
22154
22155 struct dwarf2_locexpr_baton
22156 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22157 dwarf2_per_cu_data *per_cu,
22158 CORE_ADDR (*get_frame_pc) (void *baton),
22159 void *baton, bool resolve_abstract_p)
22160 {
22161 struct dwarf2_cu *cu;
22162 struct die_info *die;
22163 struct attribute *attr;
22164 struct dwarf2_locexpr_baton retval;
22165 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22166 struct objfile *objfile = dwarf2_per_objfile->objfile;
22167
22168 if (per_cu->cu == NULL)
22169 load_cu (per_cu, false);
22170 cu = per_cu->cu;
22171 if (cu == NULL)
22172 {
22173 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22174 Instead just throw an error, not much else we can do. */
22175 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22176 sect_offset_str (sect_off), objfile_name (objfile));
22177 }
22178
22179 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22180 if (!die)
22181 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22182 sect_offset_str (sect_off), objfile_name (objfile));
22183
22184 attr = dwarf2_attr (die, DW_AT_location, cu);
22185 if (!attr && resolve_abstract_p
22186 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22187 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22188 {
22189 CORE_ADDR pc = (*get_frame_pc) (baton);
22190 CORE_ADDR baseaddr = objfile->text_section_offset ();
22191 struct gdbarch *gdbarch = objfile->arch ();
22192
22193 for (const auto &cand_off
22194 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22195 {
22196 struct dwarf2_cu *cand_cu = cu;
22197 struct die_info *cand
22198 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22199 if (!cand
22200 || !cand->parent
22201 || cand->parent->tag != DW_TAG_subprogram)
22202 continue;
22203
22204 CORE_ADDR pc_low, pc_high;
22205 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22206 if (pc_low == ((CORE_ADDR) -1))
22207 continue;
22208 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22209 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22210 if (!(pc_low <= pc && pc < pc_high))
22211 continue;
22212
22213 die = cand;
22214 attr = dwarf2_attr (die, DW_AT_location, cu);
22215 break;
22216 }
22217 }
22218
22219 if (!attr)
22220 {
22221 /* DWARF: "If there is no such attribute, then there is no effect.".
22222 DATA is ignored if SIZE is 0. */
22223
22224 retval.data = NULL;
22225 retval.size = 0;
22226 }
22227 else if (attr->form_is_section_offset ())
22228 {
22229 struct dwarf2_loclist_baton loclist_baton;
22230 CORE_ADDR pc = (*get_frame_pc) (baton);
22231 size_t size;
22232
22233 fill_in_loclist_baton (cu, &loclist_baton, attr);
22234
22235 retval.data = dwarf2_find_location_expression (&loclist_baton,
22236 &size, pc);
22237 retval.size = size;
22238 }
22239 else
22240 {
22241 if (!attr->form_is_block ())
22242 error (_("Dwarf Error: DIE at %s referenced in module %s "
22243 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22244 sect_offset_str (sect_off), objfile_name (objfile));
22245
22246 retval.data = DW_BLOCK (attr)->data;
22247 retval.size = DW_BLOCK (attr)->size;
22248 }
22249 retval.per_cu = cu->per_cu;
22250
22251 age_cached_comp_units (dwarf2_per_objfile);
22252
22253 return retval;
22254 }
22255
22256 /* See read.h. */
22257
22258 struct dwarf2_locexpr_baton
22259 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22260 dwarf2_per_cu_data *per_cu,
22261 CORE_ADDR (*get_frame_pc) (void *baton),
22262 void *baton)
22263 {
22264 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22265
22266 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22267 }
22268
22269 /* Write a constant of a given type as target-ordered bytes into
22270 OBSTACK. */
22271
22272 static const gdb_byte *
22273 write_constant_as_bytes (struct obstack *obstack,
22274 enum bfd_endian byte_order,
22275 struct type *type,
22276 ULONGEST value,
22277 LONGEST *len)
22278 {
22279 gdb_byte *result;
22280
22281 *len = TYPE_LENGTH (type);
22282 result = (gdb_byte *) obstack_alloc (obstack, *len);
22283 store_unsigned_integer (result, *len, byte_order, value);
22284
22285 return result;
22286 }
22287
22288 /* See read.h. */
22289
22290 const gdb_byte *
22291 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22292 dwarf2_per_cu_data *per_cu,
22293 obstack *obstack,
22294 LONGEST *len)
22295 {
22296 struct dwarf2_cu *cu;
22297 struct die_info *die;
22298 struct attribute *attr;
22299 const gdb_byte *result = NULL;
22300 struct type *type;
22301 LONGEST value;
22302 enum bfd_endian byte_order;
22303 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22304
22305 if (per_cu->cu == NULL)
22306 load_cu (per_cu, false);
22307 cu = per_cu->cu;
22308 if (cu == NULL)
22309 {
22310 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22311 Instead just throw an error, not much else we can do. */
22312 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22313 sect_offset_str (sect_off), objfile_name (objfile));
22314 }
22315
22316 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22317 if (!die)
22318 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22319 sect_offset_str (sect_off), objfile_name (objfile));
22320
22321 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22322 if (attr == NULL)
22323 return NULL;
22324
22325 byte_order = (bfd_big_endian (objfile->obfd)
22326 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22327
22328 switch (attr->form)
22329 {
22330 case DW_FORM_addr:
22331 case DW_FORM_addrx:
22332 case DW_FORM_GNU_addr_index:
22333 {
22334 gdb_byte *tem;
22335
22336 *len = cu->header.addr_size;
22337 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22338 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22339 result = tem;
22340 }
22341 break;
22342 case DW_FORM_string:
22343 case DW_FORM_strp:
22344 case DW_FORM_strx:
22345 case DW_FORM_GNU_str_index:
22346 case DW_FORM_GNU_strp_alt:
22347 /* DW_STRING is already allocated on the objfile obstack, point
22348 directly to it. */
22349 result = (const gdb_byte *) DW_STRING (attr);
22350 *len = strlen (DW_STRING (attr));
22351 break;
22352 case DW_FORM_block1:
22353 case DW_FORM_block2:
22354 case DW_FORM_block4:
22355 case DW_FORM_block:
22356 case DW_FORM_exprloc:
22357 case DW_FORM_data16:
22358 result = DW_BLOCK (attr)->data;
22359 *len = DW_BLOCK (attr)->size;
22360 break;
22361
22362 /* The DW_AT_const_value attributes are supposed to carry the
22363 symbol's value "represented as it would be on the target
22364 architecture." By the time we get here, it's already been
22365 converted to host endianness, so we just need to sign- or
22366 zero-extend it as appropriate. */
22367 case DW_FORM_data1:
22368 type = die_type (die, cu);
22369 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22370 if (result == NULL)
22371 result = write_constant_as_bytes (obstack, byte_order,
22372 type, value, len);
22373 break;
22374 case DW_FORM_data2:
22375 type = die_type (die, cu);
22376 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22377 if (result == NULL)
22378 result = write_constant_as_bytes (obstack, byte_order,
22379 type, value, len);
22380 break;
22381 case DW_FORM_data4:
22382 type = die_type (die, cu);
22383 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22384 if (result == NULL)
22385 result = write_constant_as_bytes (obstack, byte_order,
22386 type, value, len);
22387 break;
22388 case DW_FORM_data8:
22389 type = die_type (die, cu);
22390 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22391 if (result == NULL)
22392 result = write_constant_as_bytes (obstack, byte_order,
22393 type, value, len);
22394 break;
22395
22396 case DW_FORM_sdata:
22397 case DW_FORM_implicit_const:
22398 type = die_type (die, cu);
22399 result = write_constant_as_bytes (obstack, byte_order,
22400 type, DW_SND (attr), len);
22401 break;
22402
22403 case DW_FORM_udata:
22404 type = die_type (die, cu);
22405 result = write_constant_as_bytes (obstack, byte_order,
22406 type, DW_UNSND (attr), len);
22407 break;
22408
22409 default:
22410 complaint (_("unsupported const value attribute form: '%s'"),
22411 dwarf_form_name (attr->form));
22412 break;
22413 }
22414
22415 return result;
22416 }
22417
22418 /* See read.h. */
22419
22420 struct type *
22421 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22422 dwarf2_per_cu_data *per_cu)
22423 {
22424 struct dwarf2_cu *cu;
22425 struct die_info *die;
22426
22427 if (per_cu->cu == NULL)
22428 load_cu (per_cu, false);
22429 cu = per_cu->cu;
22430 if (!cu)
22431 return NULL;
22432
22433 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22434 if (!die)
22435 return NULL;
22436
22437 return die_type (die, cu);
22438 }
22439
22440 /* See read.h. */
22441
22442 struct type *
22443 dwarf2_get_die_type (cu_offset die_offset,
22444 struct dwarf2_per_cu_data *per_cu)
22445 {
22446 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22447 return get_die_type_at_offset (die_offset_sect, per_cu);
22448 }
22449
22450 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22451 On entry *REF_CU is the CU of SRC_DIE.
22452 On exit *REF_CU is the CU of the result.
22453 Returns NULL if the referenced DIE isn't found. */
22454
22455 static struct die_info *
22456 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22457 struct dwarf2_cu **ref_cu)
22458 {
22459 struct die_info temp_die;
22460 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22461 struct die_info *die;
22462
22463 /* While it might be nice to assert sig_type->type == NULL here,
22464 we can get here for DW_AT_imported_declaration where we need
22465 the DIE not the type. */
22466
22467 /* If necessary, add it to the queue and load its DIEs. */
22468
22469 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22470 read_signatured_type (sig_type);
22471
22472 sig_cu = sig_type->per_cu.cu;
22473 gdb_assert (sig_cu != NULL);
22474 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22475 temp_die.sect_off = sig_type->type_offset_in_section;
22476 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22477 to_underlying (temp_die.sect_off));
22478 if (die)
22479 {
22480 struct dwarf2_per_objfile *dwarf2_per_objfile
22481 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22482
22483 /* For .gdb_index version 7 keep track of included TUs.
22484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22485 if (dwarf2_per_objfile->index_table != NULL
22486 && dwarf2_per_objfile->index_table->version <= 7)
22487 {
22488 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22489 }
22490
22491 *ref_cu = sig_cu;
22492 if (sig_cu != cu)
22493 sig_cu->ancestor = cu;
22494
22495 return die;
22496 }
22497
22498 return NULL;
22499 }
22500
22501 /* Follow signatured type referenced by ATTR in SRC_DIE.
22502 On entry *REF_CU is the CU of SRC_DIE.
22503 On exit *REF_CU is the CU of the result.
22504 The result is the DIE of the type.
22505 If the referenced type cannot be found an error is thrown. */
22506
22507 static struct die_info *
22508 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22509 struct dwarf2_cu **ref_cu)
22510 {
22511 ULONGEST signature = DW_SIGNATURE (attr);
22512 struct signatured_type *sig_type;
22513 struct die_info *die;
22514
22515 gdb_assert (attr->form == DW_FORM_ref_sig8);
22516
22517 sig_type = lookup_signatured_type (*ref_cu, signature);
22518 /* sig_type will be NULL if the signatured type is missing from
22519 the debug info. */
22520 if (sig_type == NULL)
22521 {
22522 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22523 " from DIE at %s [in module %s]"),
22524 hex_string (signature), sect_offset_str (src_die->sect_off),
22525 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22526 }
22527
22528 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22529 if (die == NULL)
22530 {
22531 dump_die_for_error (src_die);
22532 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22533 " from DIE at %s [in module %s]"),
22534 hex_string (signature), sect_offset_str (src_die->sect_off),
22535 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22536 }
22537
22538 return die;
22539 }
22540
22541 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22542 reading in and processing the type unit if necessary. */
22543
22544 static struct type *
22545 get_signatured_type (struct die_info *die, ULONGEST signature,
22546 struct dwarf2_cu *cu)
22547 {
22548 struct dwarf2_per_objfile *dwarf2_per_objfile
22549 = cu->per_cu->dwarf2_per_objfile;
22550 struct signatured_type *sig_type;
22551 struct dwarf2_cu *type_cu;
22552 struct die_info *type_die;
22553 struct type *type;
22554
22555 sig_type = lookup_signatured_type (cu, signature);
22556 /* sig_type will be NULL if the signatured type is missing from
22557 the debug info. */
22558 if (sig_type == NULL)
22559 {
22560 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22561 " from DIE at %s [in module %s]"),
22562 hex_string (signature), sect_offset_str (die->sect_off),
22563 objfile_name (dwarf2_per_objfile->objfile));
22564 return build_error_marker_type (cu, die);
22565 }
22566
22567 /* If we already know the type we're done. */
22568 if (sig_type->type != NULL)
22569 return sig_type->type;
22570
22571 type_cu = cu;
22572 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22573 if (type_die != NULL)
22574 {
22575 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22576 is created. This is important, for example, because for c++ classes
22577 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22578 type = read_type_die (type_die, type_cu);
22579 if (type == NULL)
22580 {
22581 complaint (_("Dwarf Error: Cannot build signatured type %s"
22582 " referenced from DIE at %s [in module %s]"),
22583 hex_string (signature), sect_offset_str (die->sect_off),
22584 objfile_name (dwarf2_per_objfile->objfile));
22585 type = build_error_marker_type (cu, die);
22586 }
22587 }
22588 else
22589 {
22590 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22591 " from DIE at %s [in module %s]"),
22592 hex_string (signature), sect_offset_str (die->sect_off),
22593 objfile_name (dwarf2_per_objfile->objfile));
22594 type = build_error_marker_type (cu, die);
22595 }
22596 sig_type->type = type;
22597
22598 return type;
22599 }
22600
22601 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22602 reading in and processing the type unit if necessary. */
22603
22604 static struct type *
22605 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22606 struct dwarf2_cu *cu) /* ARI: editCase function */
22607 {
22608 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22609 if (attr->form_is_ref ())
22610 {
22611 struct dwarf2_cu *type_cu = cu;
22612 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22613
22614 return read_type_die (type_die, type_cu);
22615 }
22616 else if (attr->form == DW_FORM_ref_sig8)
22617 {
22618 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22619 }
22620 else
22621 {
22622 struct dwarf2_per_objfile *dwarf2_per_objfile
22623 = cu->per_cu->dwarf2_per_objfile;
22624
22625 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22626 " at %s [in module %s]"),
22627 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22628 objfile_name (dwarf2_per_objfile->objfile));
22629 return build_error_marker_type (cu, die);
22630 }
22631 }
22632
22633 /* Load the DIEs associated with type unit PER_CU into memory. */
22634
22635 static void
22636 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22637 {
22638 struct signatured_type *sig_type;
22639
22640 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22641 gdb_assert (! per_cu->type_unit_group_p ());
22642
22643 /* We have the per_cu, but we need the signatured_type.
22644 Fortunately this is an easy translation. */
22645 gdb_assert (per_cu->is_debug_types);
22646 sig_type = (struct signatured_type *) per_cu;
22647
22648 gdb_assert (per_cu->cu == NULL);
22649
22650 read_signatured_type (sig_type);
22651
22652 gdb_assert (per_cu->cu != NULL);
22653 }
22654
22655 /* Read in a signatured type and build its CU and DIEs.
22656 If the type is a stub for the real type in a DWO file,
22657 read in the real type from the DWO file as well. */
22658
22659 static void
22660 read_signatured_type (struct signatured_type *sig_type)
22661 {
22662 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22663
22664 gdb_assert (per_cu->is_debug_types);
22665 gdb_assert (per_cu->cu == NULL);
22666
22667 cutu_reader reader (per_cu, NULL, 0, false);
22668
22669 if (!reader.dummy_p)
22670 {
22671 struct dwarf2_cu *cu = reader.cu;
22672 const gdb_byte *info_ptr = reader.info_ptr;
22673
22674 gdb_assert (cu->die_hash == NULL);
22675 cu->die_hash =
22676 htab_create_alloc_ex (cu->header.length / 12,
22677 die_hash,
22678 die_eq,
22679 NULL,
22680 &cu->comp_unit_obstack,
22681 hashtab_obstack_allocate,
22682 dummy_obstack_deallocate);
22683
22684 if (reader.comp_unit_die->has_children)
22685 reader.comp_unit_die->child
22686 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22687 reader.comp_unit_die);
22688 cu->dies = reader.comp_unit_die;
22689 /* comp_unit_die is not stored in die_hash, no need. */
22690
22691 /* We try not to read any attributes in this function, because
22692 not all CUs needed for references have been loaded yet, and
22693 symbol table processing isn't initialized. But we have to
22694 set the CU language, or we won't be able to build types
22695 correctly. Similarly, if we do not read the producer, we can
22696 not apply producer-specific interpretation. */
22697 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22698
22699 reader.keep ();
22700 }
22701
22702 sig_type->per_cu.tu_read = 1;
22703 }
22704
22705 /* Decode simple location descriptions.
22706 Given a pointer to a dwarf block that defines a location, compute
22707 the location and return the value. If COMPUTED is non-null, it is
22708 set to true to indicate that decoding was successful, and false
22709 otherwise. If COMPUTED is null, then this function may emit a
22710 complaint. */
22711
22712 static CORE_ADDR
22713 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22714 {
22715 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22716 size_t i;
22717 size_t size = blk->size;
22718 const gdb_byte *data = blk->data;
22719 CORE_ADDR stack[64];
22720 int stacki;
22721 unsigned int bytes_read, unsnd;
22722 gdb_byte op;
22723
22724 if (computed != nullptr)
22725 *computed = false;
22726
22727 i = 0;
22728 stacki = 0;
22729 stack[stacki] = 0;
22730 stack[++stacki] = 0;
22731
22732 while (i < size)
22733 {
22734 op = data[i++];
22735 switch (op)
22736 {
22737 case DW_OP_lit0:
22738 case DW_OP_lit1:
22739 case DW_OP_lit2:
22740 case DW_OP_lit3:
22741 case DW_OP_lit4:
22742 case DW_OP_lit5:
22743 case DW_OP_lit6:
22744 case DW_OP_lit7:
22745 case DW_OP_lit8:
22746 case DW_OP_lit9:
22747 case DW_OP_lit10:
22748 case DW_OP_lit11:
22749 case DW_OP_lit12:
22750 case DW_OP_lit13:
22751 case DW_OP_lit14:
22752 case DW_OP_lit15:
22753 case DW_OP_lit16:
22754 case DW_OP_lit17:
22755 case DW_OP_lit18:
22756 case DW_OP_lit19:
22757 case DW_OP_lit20:
22758 case DW_OP_lit21:
22759 case DW_OP_lit22:
22760 case DW_OP_lit23:
22761 case DW_OP_lit24:
22762 case DW_OP_lit25:
22763 case DW_OP_lit26:
22764 case DW_OP_lit27:
22765 case DW_OP_lit28:
22766 case DW_OP_lit29:
22767 case DW_OP_lit30:
22768 case DW_OP_lit31:
22769 stack[++stacki] = op - DW_OP_lit0;
22770 break;
22771
22772 case DW_OP_reg0:
22773 case DW_OP_reg1:
22774 case DW_OP_reg2:
22775 case DW_OP_reg3:
22776 case DW_OP_reg4:
22777 case DW_OP_reg5:
22778 case DW_OP_reg6:
22779 case DW_OP_reg7:
22780 case DW_OP_reg8:
22781 case DW_OP_reg9:
22782 case DW_OP_reg10:
22783 case DW_OP_reg11:
22784 case DW_OP_reg12:
22785 case DW_OP_reg13:
22786 case DW_OP_reg14:
22787 case DW_OP_reg15:
22788 case DW_OP_reg16:
22789 case DW_OP_reg17:
22790 case DW_OP_reg18:
22791 case DW_OP_reg19:
22792 case DW_OP_reg20:
22793 case DW_OP_reg21:
22794 case DW_OP_reg22:
22795 case DW_OP_reg23:
22796 case DW_OP_reg24:
22797 case DW_OP_reg25:
22798 case DW_OP_reg26:
22799 case DW_OP_reg27:
22800 case DW_OP_reg28:
22801 case DW_OP_reg29:
22802 case DW_OP_reg30:
22803 case DW_OP_reg31:
22804 stack[++stacki] = op - DW_OP_reg0;
22805 if (i < size)
22806 {
22807 if (computed == nullptr)
22808 dwarf2_complex_location_expr_complaint ();
22809 else
22810 return 0;
22811 }
22812 break;
22813
22814 case DW_OP_regx:
22815 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22816 i += bytes_read;
22817 stack[++stacki] = unsnd;
22818 if (i < size)
22819 {
22820 if (computed == nullptr)
22821 dwarf2_complex_location_expr_complaint ();
22822 else
22823 return 0;
22824 }
22825 break;
22826
22827 case DW_OP_addr:
22828 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22829 &bytes_read);
22830 i += bytes_read;
22831 break;
22832
22833 case DW_OP_const1u:
22834 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22835 i += 1;
22836 break;
22837
22838 case DW_OP_const1s:
22839 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22840 i += 1;
22841 break;
22842
22843 case DW_OP_const2u:
22844 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22845 i += 2;
22846 break;
22847
22848 case DW_OP_const2s:
22849 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22850 i += 2;
22851 break;
22852
22853 case DW_OP_const4u:
22854 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22855 i += 4;
22856 break;
22857
22858 case DW_OP_const4s:
22859 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22860 i += 4;
22861 break;
22862
22863 case DW_OP_const8u:
22864 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22865 i += 8;
22866 break;
22867
22868 case DW_OP_constu:
22869 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22870 &bytes_read);
22871 i += bytes_read;
22872 break;
22873
22874 case DW_OP_consts:
22875 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22876 i += bytes_read;
22877 break;
22878
22879 case DW_OP_dup:
22880 stack[stacki + 1] = stack[stacki];
22881 stacki++;
22882 break;
22883
22884 case DW_OP_plus:
22885 stack[stacki - 1] += stack[stacki];
22886 stacki--;
22887 break;
22888
22889 case DW_OP_plus_uconst:
22890 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22891 &bytes_read);
22892 i += bytes_read;
22893 break;
22894
22895 case DW_OP_minus:
22896 stack[stacki - 1] -= stack[stacki];
22897 stacki--;
22898 break;
22899
22900 case DW_OP_deref:
22901 /* If we're not the last op, then we definitely can't encode
22902 this using GDB's address_class enum. This is valid for partial
22903 global symbols, although the variable's address will be bogus
22904 in the psymtab. */
22905 if (i < size)
22906 {
22907 if (computed == nullptr)
22908 dwarf2_complex_location_expr_complaint ();
22909 else
22910 return 0;
22911 }
22912 break;
22913
22914 case DW_OP_GNU_push_tls_address:
22915 case DW_OP_form_tls_address:
22916 /* The top of the stack has the offset from the beginning
22917 of the thread control block at which the variable is located. */
22918 /* Nothing should follow this operator, so the top of stack would
22919 be returned. */
22920 /* This is valid for partial global symbols, but the variable's
22921 address will be bogus in the psymtab. Make it always at least
22922 non-zero to not look as a variable garbage collected by linker
22923 which have DW_OP_addr 0. */
22924 if (i < size)
22925 {
22926 if (computed == nullptr)
22927 dwarf2_complex_location_expr_complaint ();
22928 else
22929 return 0;
22930 }
22931 stack[stacki]++;
22932 break;
22933
22934 case DW_OP_GNU_uninit:
22935 if (computed != nullptr)
22936 return 0;
22937 break;
22938
22939 case DW_OP_addrx:
22940 case DW_OP_GNU_addr_index:
22941 case DW_OP_GNU_const_index:
22942 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22943 &bytes_read);
22944 i += bytes_read;
22945 break;
22946
22947 default:
22948 if (computed == nullptr)
22949 {
22950 const char *name = get_DW_OP_name (op);
22951
22952 if (name)
22953 complaint (_("unsupported stack op: '%s'"),
22954 name);
22955 else
22956 complaint (_("unsupported stack op: '%02x'"),
22957 op);
22958 }
22959
22960 return (stack[stacki]);
22961 }
22962
22963 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22964 outside of the allocated space. Also enforce minimum>0. */
22965 if (stacki >= ARRAY_SIZE (stack) - 1)
22966 {
22967 if (computed == nullptr)
22968 complaint (_("location description stack overflow"));
22969 return 0;
22970 }
22971
22972 if (stacki <= 0)
22973 {
22974 if (computed == nullptr)
22975 complaint (_("location description stack underflow"));
22976 return 0;
22977 }
22978 }
22979
22980 if (computed != nullptr)
22981 *computed = true;
22982 return (stack[stacki]);
22983 }
22984
22985 /* memory allocation interface */
22986
22987 static struct dwarf_block *
22988 dwarf_alloc_block (struct dwarf2_cu *cu)
22989 {
22990 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22991 }
22992
22993 static struct die_info *
22994 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22995 {
22996 struct die_info *die;
22997 size_t size = sizeof (struct die_info);
22998
22999 if (num_attrs > 1)
23000 size += (num_attrs - 1) * sizeof (struct attribute);
23001
23002 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23003 memset (die, 0, sizeof (struct die_info));
23004 return (die);
23005 }
23006
23007 \f
23008
23009 /* Macro support. */
23010
23011 /* An overload of dwarf_decode_macros that finds the correct section
23012 and ensures it is read in before calling the other overload. */
23013
23014 static void
23015 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23016 int section_is_gnu)
23017 {
23018 struct dwarf2_per_objfile *dwarf2_per_objfile
23019 = cu->per_cu->dwarf2_per_objfile;
23020 struct objfile *objfile = dwarf2_per_objfile->objfile;
23021 const struct line_header *lh = cu->line_header;
23022 unsigned int offset_size = cu->header.offset_size;
23023 struct dwarf2_section_info *section;
23024 const char *section_name;
23025
23026 if (cu->dwo_unit != nullptr)
23027 {
23028 if (section_is_gnu)
23029 {
23030 section = &cu->dwo_unit->dwo_file->sections.macro;
23031 section_name = ".debug_macro.dwo";
23032 }
23033 else
23034 {
23035 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23036 section_name = ".debug_macinfo.dwo";
23037 }
23038 }
23039 else
23040 {
23041 if (section_is_gnu)
23042 {
23043 section = &dwarf2_per_objfile->macro;
23044 section_name = ".debug_macro";
23045 }
23046 else
23047 {
23048 section = &dwarf2_per_objfile->macinfo;
23049 section_name = ".debug_macinfo";
23050 }
23051 }
23052
23053 section->read (objfile);
23054 if (section->buffer == nullptr)
23055 {
23056 complaint (_("missing %s section"), section_name);
23057 return;
23058 }
23059
23060 buildsym_compunit *builder = cu->get_builder ();
23061
23062 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23063 offset_size, offset, section_is_gnu);
23064 }
23065
23066 /* Return the .debug_loc section to use for CU.
23067 For DWO files use .debug_loc.dwo. */
23068
23069 static struct dwarf2_section_info *
23070 cu_debug_loc_section (struct dwarf2_cu *cu)
23071 {
23072 struct dwarf2_per_objfile *dwarf2_per_objfile
23073 = cu->per_cu->dwarf2_per_objfile;
23074
23075 if (cu->dwo_unit)
23076 {
23077 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23078
23079 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23080 }
23081 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23082 : &dwarf2_per_objfile->loc);
23083 }
23084
23085 /* A helper function that fills in a dwarf2_loclist_baton. */
23086
23087 static void
23088 fill_in_loclist_baton (struct dwarf2_cu *cu,
23089 struct dwarf2_loclist_baton *baton,
23090 const struct attribute *attr)
23091 {
23092 struct dwarf2_per_objfile *dwarf2_per_objfile
23093 = cu->per_cu->dwarf2_per_objfile;
23094 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23095
23096 section->read (dwarf2_per_objfile->objfile);
23097
23098 baton->per_cu = cu->per_cu;
23099 gdb_assert (baton->per_cu);
23100 /* We don't know how long the location list is, but make sure we
23101 don't run off the edge of the section. */
23102 baton->size = section->size - DW_UNSND (attr);
23103 baton->data = section->buffer + DW_UNSND (attr);
23104 if (cu->base_address.has_value ())
23105 baton->base_address = *cu->base_address;
23106 else
23107 baton->base_address = 0;
23108 baton->from_dwo = cu->dwo_unit != NULL;
23109 }
23110
23111 static void
23112 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23113 struct dwarf2_cu *cu, int is_block)
23114 {
23115 struct dwarf2_per_objfile *dwarf2_per_objfile
23116 = cu->per_cu->dwarf2_per_objfile;
23117 struct objfile *objfile = dwarf2_per_objfile->objfile;
23118 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23119
23120 if (attr->form_is_section_offset ()
23121 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23122 the section. If so, fall through to the complaint in the
23123 other branch. */
23124 && DW_UNSND (attr) < section->get_size (objfile))
23125 {
23126 struct dwarf2_loclist_baton *baton;
23127
23128 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23129
23130 fill_in_loclist_baton (cu, baton, attr);
23131
23132 if (!cu->base_address.has_value ())
23133 complaint (_("Location list used without "
23134 "specifying the CU base address."));
23135
23136 SYMBOL_ACLASS_INDEX (sym) = (is_block
23137 ? dwarf2_loclist_block_index
23138 : dwarf2_loclist_index);
23139 SYMBOL_LOCATION_BATON (sym) = baton;
23140 }
23141 else
23142 {
23143 struct dwarf2_locexpr_baton *baton;
23144
23145 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23146 baton->per_cu = cu->per_cu;
23147 gdb_assert (baton->per_cu);
23148
23149 if (attr->form_is_block ())
23150 {
23151 /* Note that we're just copying the block's data pointer
23152 here, not the actual data. We're still pointing into the
23153 info_buffer for SYM's objfile; right now we never release
23154 that buffer, but when we do clean up properly this may
23155 need to change. */
23156 baton->size = DW_BLOCK (attr)->size;
23157 baton->data = DW_BLOCK (attr)->data;
23158 }
23159 else
23160 {
23161 dwarf2_invalid_attrib_class_complaint ("location description",
23162 sym->natural_name ());
23163 baton->size = 0;
23164 }
23165
23166 SYMBOL_ACLASS_INDEX (sym) = (is_block
23167 ? dwarf2_locexpr_block_index
23168 : dwarf2_locexpr_index);
23169 SYMBOL_LOCATION_BATON (sym) = baton;
23170 }
23171 }
23172
23173 /* See read.h. */
23174
23175 struct objfile *
23176 dwarf2_per_cu_data::objfile () const
23177 {
23178 struct objfile *objfile = dwarf2_per_objfile->objfile;
23179
23180 /* Return the master objfile, so that we can report and look up the
23181 correct file containing this variable. */
23182 if (objfile->separate_debug_objfile_backlink)
23183 objfile = objfile->separate_debug_objfile_backlink;
23184
23185 return objfile;
23186 }
23187
23188 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23189 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23190 CU_HEADERP first. */
23191
23192 static const struct comp_unit_head *
23193 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23194 const struct dwarf2_per_cu_data *per_cu)
23195 {
23196 const gdb_byte *info_ptr;
23197
23198 if (per_cu->cu)
23199 return &per_cu->cu->header;
23200
23201 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23202
23203 memset (cu_headerp, 0, sizeof (*cu_headerp));
23204 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23205 rcuh_kind::COMPILE);
23206
23207 return cu_headerp;
23208 }
23209
23210 /* See read.h. */
23211
23212 int
23213 dwarf2_per_cu_data::addr_size () const
23214 {
23215 struct comp_unit_head cu_header_local;
23216 const struct comp_unit_head *cu_headerp;
23217
23218 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23219
23220 return cu_headerp->addr_size;
23221 }
23222
23223 /* See read.h. */
23224
23225 int
23226 dwarf2_per_cu_data::offset_size () const
23227 {
23228 struct comp_unit_head cu_header_local;
23229 const struct comp_unit_head *cu_headerp;
23230
23231 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23232
23233 return cu_headerp->offset_size;
23234 }
23235
23236 /* See read.h. */
23237
23238 int
23239 dwarf2_per_cu_data::ref_addr_size () const
23240 {
23241 struct comp_unit_head cu_header_local;
23242 const struct comp_unit_head *cu_headerp;
23243
23244 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23245
23246 if (cu_headerp->version == 2)
23247 return cu_headerp->addr_size;
23248 else
23249 return cu_headerp->offset_size;
23250 }
23251
23252 /* See read.h. */
23253
23254 CORE_ADDR
23255 dwarf2_per_cu_data::text_offset () const
23256 {
23257 struct objfile *objfile = dwarf2_per_objfile->objfile;
23258
23259 return objfile->text_section_offset ();
23260 }
23261
23262 /* See read.h. */
23263
23264 struct type *
23265 dwarf2_per_cu_data::addr_type () const
23266 {
23267 struct objfile *objfile = dwarf2_per_objfile->objfile;
23268 struct type *void_type = objfile_type (objfile)->builtin_void;
23269 struct type *addr_type = lookup_pointer_type (void_type);
23270 int addr_size = this->addr_size ();
23271
23272 if (TYPE_LENGTH (addr_type) == addr_size)
23273 return addr_type;
23274
23275 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23276 return addr_type;
23277 }
23278
23279 /* A helper function for dwarf2_find_containing_comp_unit that returns
23280 the index of the result, and that searches a vector. It will
23281 return a result even if the offset in question does not actually
23282 occur in any CU. This is separate so that it can be unit
23283 tested. */
23284
23285 static int
23286 dwarf2_find_containing_comp_unit
23287 (sect_offset sect_off,
23288 unsigned int offset_in_dwz,
23289 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23290 {
23291 int low, high;
23292
23293 low = 0;
23294 high = all_comp_units.size () - 1;
23295 while (high > low)
23296 {
23297 struct dwarf2_per_cu_data *mid_cu;
23298 int mid = low + (high - low) / 2;
23299
23300 mid_cu = all_comp_units[mid];
23301 if (mid_cu->is_dwz > offset_in_dwz
23302 || (mid_cu->is_dwz == offset_in_dwz
23303 && mid_cu->sect_off + mid_cu->length > sect_off))
23304 high = mid;
23305 else
23306 low = mid + 1;
23307 }
23308 gdb_assert (low == high);
23309 return low;
23310 }
23311
23312 /* Locate the .debug_info compilation unit from CU's objfile which contains
23313 the DIE at OFFSET. Raises an error on failure. */
23314
23315 static struct dwarf2_per_cu_data *
23316 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23317 unsigned int offset_in_dwz,
23318 struct dwarf2_per_objfile *dwarf2_per_objfile)
23319 {
23320 int low
23321 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23322 dwarf2_per_objfile->all_comp_units);
23323 struct dwarf2_per_cu_data *this_cu
23324 = dwarf2_per_objfile->all_comp_units[low];
23325
23326 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23327 {
23328 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23329 error (_("Dwarf Error: could not find partial DIE containing "
23330 "offset %s [in module %s]"),
23331 sect_offset_str (sect_off),
23332 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23333
23334 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23335 <= sect_off);
23336 return dwarf2_per_objfile->all_comp_units[low-1];
23337 }
23338 else
23339 {
23340 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23341 && sect_off >= this_cu->sect_off + this_cu->length)
23342 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23343 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23344 return this_cu;
23345 }
23346 }
23347
23348 #if GDB_SELF_TEST
23349
23350 namespace selftests {
23351 namespace find_containing_comp_unit {
23352
23353 static void
23354 run_test ()
23355 {
23356 struct dwarf2_per_cu_data one {};
23357 struct dwarf2_per_cu_data two {};
23358 struct dwarf2_per_cu_data three {};
23359 struct dwarf2_per_cu_data four {};
23360
23361 one.length = 5;
23362 two.sect_off = sect_offset (one.length);
23363 two.length = 7;
23364
23365 three.length = 5;
23366 three.is_dwz = 1;
23367 four.sect_off = sect_offset (three.length);
23368 four.length = 7;
23369 four.is_dwz = 1;
23370
23371 std::vector<dwarf2_per_cu_data *> units;
23372 units.push_back (&one);
23373 units.push_back (&two);
23374 units.push_back (&three);
23375 units.push_back (&four);
23376
23377 int result;
23378
23379 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23380 SELF_CHECK (units[result] == &one);
23381 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23382 SELF_CHECK (units[result] == &one);
23383 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23384 SELF_CHECK (units[result] == &two);
23385
23386 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23387 SELF_CHECK (units[result] == &three);
23388 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23389 SELF_CHECK (units[result] == &three);
23390 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23391 SELF_CHECK (units[result] == &four);
23392 }
23393
23394 }
23395 }
23396
23397 #endif /* GDB_SELF_TEST */
23398
23399 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23400
23401 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23402 : per_cu (per_cu_),
23403 mark (false),
23404 has_loclist (false),
23405 checked_producer (false),
23406 producer_is_gxx_lt_4_6 (false),
23407 producer_is_gcc_lt_4_3 (false),
23408 producer_is_icc (false),
23409 producer_is_icc_lt_14 (false),
23410 producer_is_codewarrior (false),
23411 processing_has_namespace_info (false)
23412 {
23413 per_cu->cu = this;
23414 }
23415
23416 /* Destroy a dwarf2_cu. */
23417
23418 dwarf2_cu::~dwarf2_cu ()
23419 {
23420 per_cu->cu = NULL;
23421 }
23422
23423 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23424
23425 static void
23426 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23427 enum language pretend_language)
23428 {
23429 struct attribute *attr;
23430
23431 /* Set the language we're debugging. */
23432 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23433 if (attr != nullptr)
23434 set_cu_language (DW_UNSND (attr), cu);
23435 else
23436 {
23437 cu->language = pretend_language;
23438 cu->language_defn = language_def (cu->language);
23439 }
23440
23441 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23442 }
23443
23444 /* Increase the age counter on each cached compilation unit, and free
23445 any that are too old. */
23446
23447 static void
23448 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23449 {
23450 struct dwarf2_per_cu_data *per_cu, **last_chain;
23451
23452 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23453 per_cu = dwarf2_per_objfile->read_in_chain;
23454 while (per_cu != NULL)
23455 {
23456 per_cu->cu->last_used ++;
23457 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23458 dwarf2_mark (per_cu->cu);
23459 per_cu = per_cu->cu->read_in_chain;
23460 }
23461
23462 per_cu = dwarf2_per_objfile->read_in_chain;
23463 last_chain = &dwarf2_per_objfile->read_in_chain;
23464 while (per_cu != NULL)
23465 {
23466 struct dwarf2_per_cu_data *next_cu;
23467
23468 next_cu = per_cu->cu->read_in_chain;
23469
23470 if (!per_cu->cu->mark)
23471 {
23472 delete per_cu->cu;
23473 *last_chain = next_cu;
23474 }
23475 else
23476 last_chain = &per_cu->cu->read_in_chain;
23477
23478 per_cu = next_cu;
23479 }
23480 }
23481
23482 /* Remove a single compilation unit from the cache. */
23483
23484 static void
23485 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23486 {
23487 struct dwarf2_per_cu_data *per_cu, **last_chain;
23488 struct dwarf2_per_objfile *dwarf2_per_objfile
23489 = target_per_cu->dwarf2_per_objfile;
23490
23491 per_cu = dwarf2_per_objfile->read_in_chain;
23492 last_chain = &dwarf2_per_objfile->read_in_chain;
23493 while (per_cu != NULL)
23494 {
23495 struct dwarf2_per_cu_data *next_cu;
23496
23497 next_cu = per_cu->cu->read_in_chain;
23498
23499 if (per_cu == target_per_cu)
23500 {
23501 delete per_cu->cu;
23502 per_cu->cu = NULL;
23503 *last_chain = next_cu;
23504 break;
23505 }
23506 else
23507 last_chain = &per_cu->cu->read_in_chain;
23508
23509 per_cu = next_cu;
23510 }
23511 }
23512
23513 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23514 We store these in a hash table separate from the DIEs, and preserve them
23515 when the DIEs are flushed out of cache.
23516
23517 The CU "per_cu" pointer is needed because offset alone is not enough to
23518 uniquely identify the type. A file may have multiple .debug_types sections,
23519 or the type may come from a DWO file. Furthermore, while it's more logical
23520 to use per_cu->section+offset, with Fission the section with the data is in
23521 the DWO file but we don't know that section at the point we need it.
23522 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23523 because we can enter the lookup routine, get_die_type_at_offset, from
23524 outside this file, and thus won't necessarily have PER_CU->cu.
23525 Fortunately, PER_CU is stable for the life of the objfile. */
23526
23527 struct dwarf2_per_cu_offset_and_type
23528 {
23529 const struct dwarf2_per_cu_data *per_cu;
23530 sect_offset sect_off;
23531 struct type *type;
23532 };
23533
23534 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23535
23536 static hashval_t
23537 per_cu_offset_and_type_hash (const void *item)
23538 {
23539 const struct dwarf2_per_cu_offset_and_type *ofs
23540 = (const struct dwarf2_per_cu_offset_and_type *) item;
23541
23542 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23543 }
23544
23545 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23546
23547 static int
23548 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23549 {
23550 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23551 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23552 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23553 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23554
23555 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23556 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23557 }
23558
23559 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23560 table if necessary. For convenience, return TYPE.
23561
23562 The DIEs reading must have careful ordering to:
23563 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23564 reading current DIE.
23565 * Not trying to dereference contents of still incompletely read in types
23566 while reading in other DIEs.
23567 * Enable referencing still incompletely read in types just by a pointer to
23568 the type without accessing its fields.
23569
23570 Therefore caller should follow these rules:
23571 * Try to fetch any prerequisite types we may need to build this DIE type
23572 before building the type and calling set_die_type.
23573 * After building type call set_die_type for current DIE as soon as
23574 possible before fetching more types to complete the current type.
23575 * Make the type as complete as possible before fetching more types. */
23576
23577 static struct type *
23578 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23579 {
23580 struct dwarf2_per_objfile *dwarf2_per_objfile
23581 = cu->per_cu->dwarf2_per_objfile;
23582 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23583 struct objfile *objfile = dwarf2_per_objfile->objfile;
23584 struct attribute *attr;
23585 struct dynamic_prop prop;
23586
23587 /* For Ada types, make sure that the gnat-specific data is always
23588 initialized (if not already set). There are a few types where
23589 we should not be doing so, because the type-specific area is
23590 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23591 where the type-specific area is used to store the floatformat).
23592 But this is not a problem, because the gnat-specific information
23593 is actually not needed for these types. */
23594 if (need_gnat_info (cu)
23595 && TYPE_CODE (type) != TYPE_CODE_FUNC
23596 && TYPE_CODE (type) != TYPE_CODE_FLT
23597 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23598 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23599 && TYPE_CODE (type) != TYPE_CODE_METHOD
23600 && !HAVE_GNAT_AUX_INFO (type))
23601 INIT_GNAT_SPECIFIC (type);
23602
23603 /* Read DW_AT_allocated and set in type. */
23604 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23605 if (attr != NULL && attr->form_is_block ())
23606 {
23607 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23608 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23609 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
23610 }
23611 else if (attr != NULL)
23612 {
23613 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23614 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23615 sect_offset_str (die->sect_off));
23616 }
23617
23618 /* Read DW_AT_associated and set in type. */
23619 attr = dwarf2_attr (die, DW_AT_associated, cu);
23620 if (attr != NULL && attr->form_is_block ())
23621 {
23622 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23623 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23624 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
23625 }
23626 else if (attr != NULL)
23627 {
23628 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23629 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23630 sect_offset_str (die->sect_off));
23631 }
23632
23633 /* Read DW_AT_data_location and set in type. */
23634 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23635 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23636 cu->per_cu->addr_type ()))
23637 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
23638
23639 if (dwarf2_per_objfile->die_type_hash == NULL)
23640 dwarf2_per_objfile->die_type_hash
23641 = htab_up (htab_create_alloc (127,
23642 per_cu_offset_and_type_hash,
23643 per_cu_offset_and_type_eq,
23644 NULL, xcalloc, xfree));
23645
23646 ofs.per_cu = cu->per_cu;
23647 ofs.sect_off = die->sect_off;
23648 ofs.type = type;
23649 slot = (struct dwarf2_per_cu_offset_and_type **)
23650 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23651 if (*slot)
23652 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23653 sect_offset_str (die->sect_off));
23654 *slot = XOBNEW (&objfile->objfile_obstack,
23655 struct dwarf2_per_cu_offset_and_type);
23656 **slot = ofs;
23657 return type;
23658 }
23659
23660 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23661 or return NULL if the die does not have a saved type. */
23662
23663 static struct type *
23664 get_die_type_at_offset (sect_offset sect_off,
23665 struct dwarf2_per_cu_data *per_cu)
23666 {
23667 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23668 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23669
23670 if (dwarf2_per_objfile->die_type_hash == NULL)
23671 return NULL;
23672
23673 ofs.per_cu = per_cu;
23674 ofs.sect_off = sect_off;
23675 slot = ((struct dwarf2_per_cu_offset_and_type *)
23676 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23677 if (slot)
23678 return slot->type;
23679 else
23680 return NULL;
23681 }
23682
23683 /* Look up the type for DIE in CU in die_type_hash,
23684 or return NULL if DIE does not have a saved type. */
23685
23686 static struct type *
23687 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23688 {
23689 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23690 }
23691
23692 /* Add a dependence relationship from CU to REF_PER_CU. */
23693
23694 static void
23695 dwarf2_add_dependence (struct dwarf2_cu *cu,
23696 struct dwarf2_per_cu_data *ref_per_cu)
23697 {
23698 void **slot;
23699
23700 if (cu->dependencies == NULL)
23701 cu->dependencies
23702 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23703 NULL, &cu->comp_unit_obstack,
23704 hashtab_obstack_allocate,
23705 dummy_obstack_deallocate);
23706
23707 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23708 if (*slot == NULL)
23709 *slot = ref_per_cu;
23710 }
23711
23712 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23713 Set the mark field in every compilation unit in the
23714 cache that we must keep because we are keeping CU. */
23715
23716 static int
23717 dwarf2_mark_helper (void **slot, void *data)
23718 {
23719 struct dwarf2_per_cu_data *per_cu;
23720
23721 per_cu = (struct dwarf2_per_cu_data *) *slot;
23722
23723 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23724 reading of the chain. As such dependencies remain valid it is not much
23725 useful to track and undo them during QUIT cleanups. */
23726 if (per_cu->cu == NULL)
23727 return 1;
23728
23729 if (per_cu->cu->mark)
23730 return 1;
23731 per_cu->cu->mark = true;
23732
23733 if (per_cu->cu->dependencies != NULL)
23734 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23735
23736 return 1;
23737 }
23738
23739 /* Set the mark field in CU and in every other compilation unit in the
23740 cache that we must keep because we are keeping CU. */
23741
23742 static void
23743 dwarf2_mark (struct dwarf2_cu *cu)
23744 {
23745 if (cu->mark)
23746 return;
23747 cu->mark = true;
23748 if (cu->dependencies != NULL)
23749 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23750 }
23751
23752 static void
23753 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23754 {
23755 while (per_cu)
23756 {
23757 per_cu->cu->mark = false;
23758 per_cu = per_cu->cu->read_in_chain;
23759 }
23760 }
23761
23762 /* Trivial hash function for partial_die_info: the hash value of a DIE
23763 is its offset in .debug_info for this objfile. */
23764
23765 static hashval_t
23766 partial_die_hash (const void *item)
23767 {
23768 const struct partial_die_info *part_die
23769 = (const struct partial_die_info *) item;
23770
23771 return to_underlying (part_die->sect_off);
23772 }
23773
23774 /* Trivial comparison function for partial_die_info structures: two DIEs
23775 are equal if they have the same offset. */
23776
23777 static int
23778 partial_die_eq (const void *item_lhs, const void *item_rhs)
23779 {
23780 const struct partial_die_info *part_die_lhs
23781 = (const struct partial_die_info *) item_lhs;
23782 const struct partial_die_info *part_die_rhs
23783 = (const struct partial_die_info *) item_rhs;
23784
23785 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23786 }
23787
23788 struct cmd_list_element *set_dwarf_cmdlist;
23789 struct cmd_list_element *show_dwarf_cmdlist;
23790
23791 static void
23792 show_check_physname (struct ui_file *file, int from_tty,
23793 struct cmd_list_element *c, const char *value)
23794 {
23795 fprintf_filtered (file,
23796 _("Whether to check \"physname\" is %s.\n"),
23797 value);
23798 }
23799
23800 void _initialize_dwarf2_read ();
23801 void
23802 _initialize_dwarf2_read ()
23803 {
23804 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23805 Set DWARF specific variables.\n\
23806 Configure DWARF variables such as the cache size."),
23807 &set_dwarf_cmdlist, "maintenance set dwarf ",
23808 0/*allow-unknown*/, &maintenance_set_cmdlist);
23809
23810 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23811 Show DWARF specific variables.\n\
23812 Show DWARF variables such as the cache size."),
23813 &show_dwarf_cmdlist, "maintenance show dwarf ",
23814 0/*allow-unknown*/, &maintenance_show_cmdlist);
23815
23816 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23817 &dwarf_max_cache_age, _("\
23818 Set the upper bound on the age of cached DWARF compilation units."), _("\
23819 Show the upper bound on the age of cached DWARF compilation units."), _("\
23820 A higher limit means that cached compilation units will be stored\n\
23821 in memory longer, and more total memory will be used. Zero disables\n\
23822 caching, which can slow down startup."),
23823 NULL,
23824 show_dwarf_max_cache_age,
23825 &set_dwarf_cmdlist,
23826 &show_dwarf_cmdlist);
23827
23828 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23829 Set debugging of the DWARF reader."), _("\
23830 Show debugging of the DWARF reader."), _("\
23831 When enabled (non-zero), debugging messages are printed during DWARF\n\
23832 reading and symtab expansion. A value of 1 (one) provides basic\n\
23833 information. A value greater than 1 provides more verbose information."),
23834 NULL,
23835 NULL,
23836 &setdebuglist, &showdebuglist);
23837
23838 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23839 Set debugging of the DWARF DIE reader."), _("\
23840 Show debugging of the DWARF DIE reader."), _("\
23841 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23842 The value is the maximum depth to print."),
23843 NULL,
23844 NULL,
23845 &setdebuglist, &showdebuglist);
23846
23847 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23848 Set debugging of the dwarf line reader."), _("\
23849 Show debugging of the dwarf line reader."), _("\
23850 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23851 A value of 1 (one) provides basic information.\n\
23852 A value greater than 1 provides more verbose information."),
23853 NULL,
23854 NULL,
23855 &setdebuglist, &showdebuglist);
23856
23857 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23858 Set cross-checking of \"physname\" code against demangler."), _("\
23859 Show cross-checking of \"physname\" code against demangler."), _("\
23860 When enabled, GDB's internal \"physname\" code is checked against\n\
23861 the demangler."),
23862 NULL, show_check_physname,
23863 &setdebuglist, &showdebuglist);
23864
23865 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23866 no_class, &use_deprecated_index_sections, _("\
23867 Set whether to use deprecated gdb_index sections."), _("\
23868 Show whether to use deprecated gdb_index sections."), _("\
23869 When enabled, deprecated .gdb_index sections are used anyway.\n\
23870 Normally they are ignored either because of a missing feature or\n\
23871 performance issue.\n\
23872 Warning: This option must be enabled before gdb reads the file."),
23873 NULL,
23874 NULL,
23875 &setlist, &showlist);
23876
23877 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23878 &dwarf2_locexpr_funcs);
23879 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23880 &dwarf2_loclist_funcs);
23881
23882 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23883 &dwarf2_block_frame_base_locexpr_funcs);
23884 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23885 &dwarf2_block_frame_base_loclist_funcs);
23886
23887 #if GDB_SELF_TEST
23888 selftests::register_test ("dw2_expand_symtabs_matching",
23889 selftests::dw2_expand_symtabs_matching::run_test);
23890 selftests::register_test ("dwarf2_find_containing_comp_unit",
23891 selftests::find_containing_comp_unit::run_test);
23892 #endif
23893 }
This page took 0.5361 seconds and 5 git commands to generate.