Add attribute::as_unsigned method
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 /* This is used to store the data that is always per objfile. */
109 static const objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
110
111 /* These are used to store the dwarf2_per_bfd objects.
112
113 objfiles having the same BFD, which doesn't require relocations, are going to
114 share a dwarf2_per_bfd object, which is held in the _bfd_data_key version.
115
116 Other objfiles are not going to share a dwarf2_per_bfd with any other
117 objfiles, so they'll have their own version kept in the _objfile_data_key
118 version. */
119 static const struct bfd_key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key;
120 static const struct objfile_key<dwarf2_per_bfd> dwarf2_per_bfd_objfile_data_key;
121
122 /* The "aclass" indices for various kinds of computed DWARF symbols. */
123
124 static int dwarf2_locexpr_index;
125 static int dwarf2_loclist_index;
126 static int dwarf2_locexpr_block_index;
127 static int dwarf2_loclist_block_index;
128
129 /* Size of .debug_loclists section header for 32-bit DWARF format. */
130 #define LOCLIST_HEADER_SIZE32 12
131
132 /* Size of .debug_loclists section header for 64-bit DWARF format. */
133 #define LOCLIST_HEADER_SIZE64 20
134
135 /* Size of .debug_rnglists section header for 32-bit DWARF format. */
136 #define RNGLIST_HEADER_SIZE32 12
137
138 /* Size of .debug_rnglists section header for 64-bit DWARF format. */
139 #define RNGLIST_HEADER_SIZE64 20
140
141 /* An index into a (C++) symbol name component in a symbol name as
142 recorded in the mapped_index's symbol table. For each C++ symbol
143 in the symbol table, we record one entry for the start of each
144 component in the symbol in a table of name components, and then
145 sort the table, in order to be able to binary search symbol names,
146 ignoring leading namespaces, both completion and regular look up.
147 For example, for symbol "A::B::C", we'll have an entry that points
148 to "A::B::C", another that points to "B::C", and another for "C".
149 Note that function symbols in GDB index have no parameter
150 information, just the function/method names. You can convert a
151 name_component to a "const char *" using the
152 'mapped_index::symbol_name_at(offset_type)' method. */
153
154 struct name_component
155 {
156 /* Offset in the symbol name where the component starts. Stored as
157 a (32-bit) offset instead of a pointer to save memory and improve
158 locality on 64-bit architectures. */
159 offset_type name_offset;
160
161 /* The symbol's index in the symbol and constant pool tables of a
162 mapped_index. */
163 offset_type idx;
164 };
165
166 /* Base class containing bits shared by both .gdb_index and
167 .debug_name indexes. */
168
169 struct mapped_index_base
170 {
171 mapped_index_base () = default;
172 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
173
174 /* The name_component table (a sorted vector). See name_component's
175 description above. */
176 std::vector<name_component> name_components;
177
178 /* How NAME_COMPONENTS is sorted. */
179 enum case_sensitivity name_components_casing;
180
181 /* Return the number of names in the symbol table. */
182 virtual size_t symbol_name_count () const = 0;
183
184 /* Get the name of the symbol at IDX in the symbol table. */
185 virtual const char *symbol_name_at
186 (offset_type idx, dwarf2_per_objfile *per_objfile) const = 0;
187
188 /* Return whether the name at IDX in the symbol table should be
189 ignored. */
190 virtual bool symbol_name_slot_invalid (offset_type idx) const
191 {
192 return false;
193 }
194
195 /* Build the symbol name component sorted vector, if we haven't
196 yet. */
197 void build_name_components (dwarf2_per_objfile *per_objfile);
198
199 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
200 possible matches for LN_NO_PARAMS in the name component
201 vector. */
202 std::pair<std::vector<name_component>::const_iterator,
203 std::vector<name_component>::const_iterator>
204 find_name_components_bounds (const lookup_name_info &ln_no_params,
205 enum language lang,
206 dwarf2_per_objfile *per_objfile) const;
207
208 /* Prevent deleting/destroying via a base class pointer. */
209 protected:
210 ~mapped_index_base() = default;
211 };
212
213 /* A description of the mapped index. The file format is described in
214 a comment by the code that writes the index. */
215 struct mapped_index final : public mapped_index_base
216 {
217 /* A slot/bucket in the symbol table hash. */
218 struct symbol_table_slot
219 {
220 const offset_type name;
221 const offset_type vec;
222 };
223
224 /* Index data format version. */
225 int version = 0;
226
227 /* The address table data. */
228 gdb::array_view<const gdb_byte> address_table;
229
230 /* The symbol table, implemented as a hash table. */
231 gdb::array_view<symbol_table_slot> symbol_table;
232
233 /* A pointer to the constant pool. */
234 const char *constant_pool = nullptr;
235
236 bool symbol_name_slot_invalid (offset_type idx) const override
237 {
238 const auto &bucket = this->symbol_table[idx];
239 return bucket.name == 0 && bucket.vec == 0;
240 }
241
242 /* Convenience method to get at the name of the symbol at IDX in the
243 symbol table. */
244 const char *symbol_name_at
245 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
246 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
247
248 size_t symbol_name_count () const override
249 { return this->symbol_table.size (); }
250 };
251
252 /* A description of the mapped .debug_names.
253 Uninitialized map has CU_COUNT 0. */
254 struct mapped_debug_names final : public mapped_index_base
255 {
256 bfd_endian dwarf5_byte_order;
257 bool dwarf5_is_dwarf64;
258 bool augmentation_is_gdb;
259 uint8_t offset_size;
260 uint32_t cu_count = 0;
261 uint32_t tu_count, bucket_count, name_count;
262 const gdb_byte *cu_table_reordered, *tu_table_reordered;
263 const uint32_t *bucket_table_reordered, *hash_table_reordered;
264 const gdb_byte *name_table_string_offs_reordered;
265 const gdb_byte *name_table_entry_offs_reordered;
266 const gdb_byte *entry_pool;
267
268 struct index_val
269 {
270 ULONGEST dwarf_tag;
271 struct attr
272 {
273 /* Attribute name DW_IDX_*. */
274 ULONGEST dw_idx;
275
276 /* Attribute form DW_FORM_*. */
277 ULONGEST form;
278
279 /* Value if FORM is DW_FORM_implicit_const. */
280 LONGEST implicit_const;
281 };
282 std::vector<attr> attr_vec;
283 };
284
285 std::unordered_map<ULONGEST, index_val> abbrev_map;
286
287 const char *namei_to_name
288 (uint32_t namei, dwarf2_per_objfile *per_objfile) const;
289
290 /* Implementation of the mapped_index_base virtual interface, for
291 the name_components cache. */
292
293 const char *symbol_name_at
294 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
295 { return namei_to_name (idx, per_objfile); }
296
297 size_t symbol_name_count () const override
298 { return this->name_count; }
299 };
300
301 /* See dwarf2read.h. */
302
303 dwarf2_per_objfile *
304 get_dwarf2_per_objfile (struct objfile *objfile)
305 {
306 return dwarf2_objfile_data_key.get (objfile);
307 }
308
309 /* Default names of the debugging sections. */
310
311 /* Note that if the debugging section has been compressed, it might
312 have a name like .zdebug_info. */
313
314 static const struct dwarf2_debug_sections dwarf2_elf_names =
315 {
316 { ".debug_info", ".zdebug_info" },
317 { ".debug_abbrev", ".zdebug_abbrev" },
318 { ".debug_line", ".zdebug_line" },
319 { ".debug_loc", ".zdebug_loc" },
320 { ".debug_loclists", ".zdebug_loclists" },
321 { ".debug_macinfo", ".zdebug_macinfo" },
322 { ".debug_macro", ".zdebug_macro" },
323 { ".debug_str", ".zdebug_str" },
324 { ".debug_str_offsets", ".zdebug_str_offsets" },
325 { ".debug_line_str", ".zdebug_line_str" },
326 { ".debug_ranges", ".zdebug_ranges" },
327 { ".debug_rnglists", ".zdebug_rnglists" },
328 { ".debug_types", ".zdebug_types" },
329 { ".debug_addr", ".zdebug_addr" },
330 { ".debug_frame", ".zdebug_frame" },
331 { ".eh_frame", NULL },
332 { ".gdb_index", ".zgdb_index" },
333 { ".debug_names", ".zdebug_names" },
334 { ".debug_aranges", ".zdebug_aranges" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names loclists_dwo;
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
349 struct dwarf2_section_names rnglists_dwo;
350 struct dwarf2_section_names str_dwo;
351 struct dwarf2_section_names str_offsets_dwo;
352 struct dwarf2_section_names types_dwo;
353 struct dwarf2_section_names cu_index;
354 struct dwarf2_section_names tu_index;
355 }
356 dwop_section_names =
357 {
358 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
359 { ".debug_info.dwo", ".zdebug_info.dwo" },
360 { ".debug_line.dwo", ".zdebug_line.dwo" },
361 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
362 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_rnglists.dwo", ".zdebug_rnglists.dwo" },
366 { ".debug_str.dwo", ".zdebug_str.dwo" },
367 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
368 { ".debug_types.dwo", ".zdebug_types.dwo" },
369 { ".debug_cu_index", ".zdebug_cu_index" },
370 { ".debug_tu_index", ".zdebug_tu_index" },
371 };
372
373 /* local data types */
374
375 /* The location list and range list sections (.debug_loclists & .debug_rnglists)
376 begin with a header, which contains the following information. */
377 struct loclists_rnglists_header
378 {
379 /* A 4-byte or 12-byte length containing the length of the
380 set of entries for this compilation unit, not including the
381 length field itself. */
382 unsigned int length;
383
384 /* A 2-byte version identifier. */
385 short version;
386
387 /* A 1-byte unsigned integer containing the size in bytes of an address on
388 the target system. */
389 unsigned char addr_size;
390
391 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
392 on the target system. */
393 unsigned char segment_collector_size;
394
395 /* A 4-byte count of the number of offsets that follow the header. */
396 unsigned int offset_entry_count;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 explicit dwarf2_cu (dwarf2_per_cu_data *per_cu,
423 dwarf2_per_objfile *per_objfile);
424
425 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
426
427 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
428 Create the set of symtabs used by this TU, or if this TU is sharing
429 symtabs with another TU and the symtabs have already been created
430 then restore those symtabs in the line header.
431 We don't need the pc/line-number mapping for type units. */
432 void setup_type_unit_groups (struct die_info *die);
433
434 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
435 buildsym_compunit constructor. */
436 struct compunit_symtab *start_symtab (const char *name,
437 const char *comp_dir,
438 CORE_ADDR low_pc);
439
440 /* Reset the builder. */
441 void reset_builder () { m_builder.reset (); }
442
443 /* Return a type that is a generic pointer type, the size of which
444 matches the address size given in the compilation unit header for
445 this CU. */
446 struct type *addr_type () const;
447
448 /* Find an integer type the same size as the address size given in
449 the compilation unit header for this CU. UNSIGNED_P controls if
450 the integer is unsigned or not. */
451 struct type *addr_sized_int_type (bool unsigned_p) const;
452
453 /* The header of the compilation unit. */
454 struct comp_unit_head header {};
455
456 /* Base address of this compilation unit. */
457 gdb::optional<CORE_ADDR> base_address;
458
459 /* The language we are debugging. */
460 enum language language = language_unknown;
461 const struct language_defn *language_defn = nullptr;
462
463 const char *producer = nullptr;
464
465 private:
466 /* The symtab builder for this CU. This is only non-NULL when full
467 symbols are being read. */
468 std::unique_ptr<buildsym_compunit> m_builder;
469
470 public:
471 /* The generic symbol table building routines have separate lists for
472 file scope symbols and all all other scopes (local scopes). So
473 we need to select the right one to pass to add_symbol_to_list().
474 We do it by keeping a pointer to the correct list in list_in_scope.
475
476 FIXME: The original dwarf code just treated the file scope as the
477 first local scope, and all other local scopes as nested local
478 scopes, and worked fine. Check to see if we really need to
479 distinguish these in buildsym.c. */
480 struct pending **list_in_scope = nullptr;
481
482 /* Hash table holding all the loaded partial DIEs
483 with partial_die->offset.SECT_OFF as hash. */
484 htab_t partial_dies = nullptr;
485
486 /* Storage for things with the same lifetime as this read-in compilation
487 unit, including partial DIEs. */
488 auto_obstack comp_unit_obstack;
489
490 /* Backlink to our per_cu entry. */
491 struct dwarf2_per_cu_data *per_cu;
492
493 /* The dwarf2_per_objfile that owns this. */
494 dwarf2_per_objfile *per_objfile;
495
496 /* How many compilation units ago was this CU last referenced? */
497 int last_used = 0;
498
499 /* A hash table of DIE cu_offset for following references with
500 die_info->offset.sect_off as hash. */
501 htab_t die_hash = nullptr;
502
503 /* Full DIEs if read in. */
504 struct die_info *dies = nullptr;
505
506 /* A set of pointers to dwarf2_per_cu_data objects for compilation
507 units referenced by this one. Only set during full symbol processing;
508 partial symbol tables do not have dependencies. */
509 htab_t dependencies = nullptr;
510
511 /* Header data from the line table, during full symbol processing. */
512 struct line_header *line_header = nullptr;
513 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
514 it's owned by dwarf2_per_bfd::line_header_hash. If non-NULL,
515 this is the DW_TAG_compile_unit die for this CU. We'll hold on
516 to the line header as long as this DIE is being processed. See
517 process_die_scope. */
518 die_info *line_header_die_owner = nullptr;
519
520 /* A list of methods which need to have physnames computed
521 after all type information has been read. */
522 std::vector<delayed_method_info> method_list;
523
524 /* To be copied to symtab->call_site_htab. */
525 htab_t call_site_htab = nullptr;
526
527 /* Non-NULL if this CU came from a DWO file.
528 There is an invariant here that is important to remember:
529 Except for attributes copied from the top level DIE in the "main"
530 (or "stub") file in preparation for reading the DWO file
531 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
532 Either there isn't a DWO file (in which case this is NULL and the point
533 is moot), or there is and either we're not going to read it (in which
534 case this is NULL) or there is and we are reading it (in which case this
535 is non-NULL). */
536 struct dwo_unit *dwo_unit = nullptr;
537
538 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
539 Note this value comes from the Fission stub CU/TU's DIE. */
540 gdb::optional<ULONGEST> addr_base;
541
542 /* The DW_AT_rnglists_base attribute if present.
543 Note this value comes from the Fission stub CU/TU's DIE.
544 Also note that the value is zero in the non-DWO case so this value can
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
551 ULONGEST ranges_base = 0;
552
553 /* The DW_AT_loclists_base attribute if present. */
554 ULONGEST loclist_base = 0;
555
556 /* When reading debug info generated by older versions of rustc, we
557 have to rewrite some union types to be struct types with a
558 variant part. This rewriting must be done after the CU is fully
559 read in, because otherwise at the point of rewriting some struct
560 type might not have been fully processed. So, we keep a list of
561 all such types here and process them after expansion. */
562 std::vector<struct type *> rust_unions;
563
564 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
565 files, the value is implicitly zero. For DWARF 5 version DWO files, the
566 value is often implicit and is the size of the header of
567 .debug_str_offsets section (8 or 4, depending on the address size). */
568 gdb::optional<ULONGEST> str_offsets_base;
569
570 /* Mark used when releasing cached dies. */
571 bool mark : 1;
572
573 /* This CU references .debug_loc. See the symtab->locations_valid field.
574 This test is imperfect as there may exist optimized debug code not using
575 any location list and still facing inlining issues if handled as
576 unoptimized code. For a future better test see GCC PR other/32998. */
577 bool has_loclist : 1;
578
579 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
580 if all the producer_is_* fields are valid. This information is cached
581 because profiling CU expansion showed excessive time spent in
582 producer_is_gxx_lt_4_6. */
583 bool checked_producer : 1;
584 bool producer_is_gxx_lt_4_6 : 1;
585 bool producer_is_gcc_lt_4_3 : 1;
586 bool producer_is_icc : 1;
587 bool producer_is_icc_lt_14 : 1;
588 bool producer_is_codewarrior : 1;
589
590 /* When true, the file that we're processing is known to have
591 debugging info for C++ namespaces. GCC 3.3.x did not produce
592 this information, but later versions do. */
593
594 bool processing_has_namespace_info : 1;
595
596 struct partial_die_info *find_partial_die (sect_offset sect_off);
597
598 /* If this CU was inherited by another CU (via specification,
599 abstract_origin, etc), this is the ancestor CU. */
600 dwarf2_cu *ancestor;
601
602 /* Get the buildsym_compunit for this CU. */
603 buildsym_compunit *get_builder ()
604 {
605 /* If this CU has a builder associated with it, use that. */
606 if (m_builder != nullptr)
607 return m_builder.get ();
608
609 /* Otherwise, search ancestors for a valid builder. */
610 if (ancestor != nullptr)
611 return ancestor->get_builder ();
612
613 return nullptr;
614 }
615 };
616
617 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
618 This includes type_unit_group and quick_file_names. */
619
620 struct stmt_list_hash
621 {
622 /* The DWO unit this table is from or NULL if there is none. */
623 struct dwo_unit *dwo_unit;
624
625 /* Offset in .debug_line or .debug_line.dwo. */
626 sect_offset line_sect_off;
627 };
628
629 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
630 an object of this type. This contains elements of type unit groups
631 that can be shared across objfiles. The non-shareable parts are in
632 type_unit_group_unshareable. */
633
634 struct type_unit_group
635 {
636 /* dwarf2read.c's main "handle" on a TU symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab. */
640 struct dwarf2_per_cu_data per_cu;
641
642 /* The TUs that share this DW_AT_stmt_list entry.
643 This is added to while parsing type units to build partial symtabs,
644 and is deleted afterwards and not used again. */
645 std::vector<signatured_type *> *tus;
646
647 /* The data used to construct the hash key. */
648 struct stmt_list_hash hash;
649 };
650
651 /* These sections are what may appear in a (real or virtual) DWO file. */
652
653 struct dwo_sections
654 {
655 struct dwarf2_section_info abbrev;
656 struct dwarf2_section_info line;
657 struct dwarf2_section_info loc;
658 struct dwarf2_section_info loclists;
659 struct dwarf2_section_info macinfo;
660 struct dwarf2_section_info macro;
661 struct dwarf2_section_info rnglists;
662 struct dwarf2_section_info str;
663 struct dwarf2_section_info str_offsets;
664 /* In the case of a virtual DWO file, these two are unused. */
665 struct dwarf2_section_info info;
666 std::vector<dwarf2_section_info> types;
667 };
668
669 /* CUs/TUs in DWP/DWO files. */
670
671 struct dwo_unit
672 {
673 /* Backlink to the containing struct dwo_file. */
674 struct dwo_file *dwo_file;
675
676 /* The "id" that distinguishes this CU/TU.
677 .debug_info calls this "dwo_id", .debug_types calls this "signature".
678 Since signatures came first, we stick with it for consistency. */
679 ULONGEST signature;
680
681 /* The section this CU/TU lives in, in the DWO file. */
682 struct dwarf2_section_info *section;
683
684 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
685 sect_offset sect_off;
686 unsigned int length;
687
688 /* For types, offset in the type's DIE of the type defined by this TU. */
689 cu_offset type_offset_in_tu;
690 };
691
692 /* include/dwarf2.h defines the DWP section codes.
693 It defines a max value but it doesn't define a min value, which we
694 use for error checking, so provide one. */
695
696 enum dwp_v2_section_ids
697 {
698 DW_SECT_MIN = 1
699 };
700
701 /* Data for one DWO file.
702
703 This includes virtual DWO files (a virtual DWO file is a DWO file as it
704 appears in a DWP file). DWP files don't really have DWO files per se -
705 comdat folding of types "loses" the DWO file they came from, and from
706 a high level view DWP files appear to contain a mass of random types.
707 However, to maintain consistency with the non-DWP case we pretend DWP
708 files contain virtual DWO files, and we assign each TU with one virtual
709 DWO file (generally based on the line and abbrev section offsets -
710 a heuristic that seems to work in practice). */
711
712 struct dwo_file
713 {
714 dwo_file () = default;
715 DISABLE_COPY_AND_ASSIGN (dwo_file);
716
717 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name = nullptr;
722
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir = nullptr;
725
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
728 gdb_bfd_ref_ptr dbfd;
729
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2 or DWP V5, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections {};
734
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
739 htab_up cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_up tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 /* These are used by all DWP versions (1, 2 and 5). */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754
755 /* These are only used by DWP version 2 and version 5 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 or 5 there is at most one copy of all these sections,
759 each section being (effectively) comprised of the concatenation of all of
760 the individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info loclists;
768 struct dwarf2_section_info macinfo;
769 struct dwarf2_section_info macro;
770 struct dwarf2_section_info rnglists;
771 struct dwarf2_section_info str_offsets;
772 struct dwarf2_section_info types;
773 };
774
775 /* These sections are what may appear in a virtual DWO file in DWP version 1.
776 A virtual DWO file is a DWO file as it appears in a DWP file. */
777
778 struct virtual_v1_dwo_sections
779 {
780 struct dwarf2_section_info abbrev;
781 struct dwarf2_section_info line;
782 struct dwarf2_section_info loc;
783 struct dwarf2_section_info macinfo;
784 struct dwarf2_section_info macro;
785 struct dwarf2_section_info str_offsets;
786 /* Each DWP hash table entry records one CU or one TU.
787 That is recorded here, and copied to dwo_unit.section. */
788 struct dwarf2_section_info info_or_types;
789 };
790
791 /* Similar to virtual_v1_dwo_sections, but for DWP version 2 or 5.
792 In version 2, the sections of the DWO files are concatenated together
793 and stored in one section of that name. Thus each ELF section contains
794 several "virtual" sections. */
795
796 struct virtual_v2_or_v5_dwo_sections
797 {
798 bfd_size_type abbrev_offset;
799 bfd_size_type abbrev_size;
800
801 bfd_size_type line_offset;
802 bfd_size_type line_size;
803
804 bfd_size_type loc_offset;
805 bfd_size_type loc_size;
806
807 bfd_size_type loclists_offset;
808 bfd_size_type loclists_size;
809
810 bfd_size_type macinfo_offset;
811 bfd_size_type macinfo_size;
812
813 bfd_size_type macro_offset;
814 bfd_size_type macro_size;
815
816 bfd_size_type rnglists_offset;
817 bfd_size_type rnglists_size;
818
819 bfd_size_type str_offsets_offset;
820 bfd_size_type str_offsets_size;
821
822 /* Each DWP hash table entry records one CU or one TU.
823 That is recorded here, and copied to dwo_unit.section. */
824 bfd_size_type info_or_types_offset;
825 bfd_size_type info_or_types_size;
826 };
827
828 /* Contents of DWP hash tables. */
829
830 struct dwp_hash_table
831 {
832 uint32_t version, nr_columns;
833 uint32_t nr_units, nr_slots;
834 const gdb_byte *hash_table, *unit_table;
835 union
836 {
837 struct
838 {
839 const gdb_byte *indices;
840 } v1;
841 struct
842 {
843 /* This is indexed by column number and gives the id of the section
844 in that column. */
845 #define MAX_NR_V2_DWO_SECTIONS \
846 (1 /* .debug_info or .debug_types */ \
847 + 1 /* .debug_abbrev */ \
848 + 1 /* .debug_line */ \
849 + 1 /* .debug_loc */ \
850 + 1 /* .debug_str_offsets */ \
851 + 1 /* .debug_macro or .debug_macinfo */)
852 int section_ids[MAX_NR_V2_DWO_SECTIONS];
853 const gdb_byte *offsets;
854 const gdb_byte *sizes;
855 } v2;
856 struct
857 {
858 /* This is indexed by column number and gives the id of the section
859 in that column. */
860 #define MAX_NR_V5_DWO_SECTIONS \
861 (1 /* .debug_info */ \
862 + 1 /* .debug_abbrev */ \
863 + 1 /* .debug_line */ \
864 + 1 /* .debug_loclists */ \
865 + 1 /* .debug_str_offsets */ \
866 + 1 /* .debug_macro */ \
867 + 1 /* .debug_rnglists */)
868 int section_ids[MAX_NR_V5_DWO_SECTIONS];
869 const gdb_byte *offsets;
870 const gdb_byte *sizes;
871 } v5;
872 } section_pool;
873 };
874
875 /* Data for one DWP file. */
876
877 struct dwp_file
878 {
879 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
880 : name (name_),
881 dbfd (std::move (abfd))
882 {
883 }
884
885 /* Name of the file. */
886 const char *name;
887
888 /* File format version. */
889 int version = 0;
890
891 /* The bfd. */
892 gdb_bfd_ref_ptr dbfd;
893
894 /* Section info for this file. */
895 struct dwp_sections sections {};
896
897 /* Table of CUs in the file. */
898 const struct dwp_hash_table *cus = nullptr;
899
900 /* Table of TUs in the file. */
901 const struct dwp_hash_table *tus = nullptr;
902
903 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
904 htab_up loaded_cus;
905 htab_up loaded_tus;
906
907 /* Table to map ELF section numbers to their sections.
908 This is only needed for the DWP V1 file format. */
909 unsigned int num_sections = 0;
910 asection **elf_sections = nullptr;
911 };
912
913 /* Struct used to pass misc. parameters to read_die_and_children, et
914 al. which are used for both .debug_info and .debug_types dies.
915 All parameters here are unchanging for the life of the call. This
916 struct exists to abstract away the constant parameters of die reading. */
917
918 struct die_reader_specs
919 {
920 /* The bfd of die_section. */
921 bfd* abfd;
922
923 /* The CU of the DIE we are parsing. */
924 struct dwarf2_cu *cu;
925
926 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
927 struct dwo_file *dwo_file;
928
929 /* The section the die comes from.
930 This is either .debug_info or .debug_types, or the .dwo variants. */
931 struct dwarf2_section_info *die_section;
932
933 /* die_section->buffer. */
934 const gdb_byte *buffer;
935
936 /* The end of the buffer. */
937 const gdb_byte *buffer_end;
938
939 /* The abbreviation table to use when reading the DIEs. */
940 struct abbrev_table *abbrev_table;
941 };
942
943 /* A subclass of die_reader_specs that holds storage and has complex
944 constructor and destructor behavior. */
945
946 class cutu_reader : public die_reader_specs
947 {
948 public:
949
950 cutu_reader (dwarf2_per_cu_data *this_cu,
951 dwarf2_per_objfile *per_objfile,
952 struct abbrev_table *abbrev_table,
953 dwarf2_cu *existing_cu,
954 bool skip_partial);
955
956 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
957 dwarf2_per_objfile *per_objfile,
958 struct dwarf2_cu *parent_cu = nullptr,
959 struct dwo_file *dwo_file = nullptr);
960
961 DISABLE_COPY_AND_ASSIGN (cutu_reader);
962
963 const gdb_byte *info_ptr = nullptr;
964 struct die_info *comp_unit_die = nullptr;
965 bool dummy_p = false;
966
967 /* Release the new CU, putting it on the chain. This cannot be done
968 for dummy CUs. */
969 void keep ();
970
971 private:
972 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
973 dwarf2_per_objfile *per_objfile,
974 dwarf2_cu *existing_cu);
975
976 struct dwarf2_per_cu_data *m_this_cu;
977 std::unique_ptr<dwarf2_cu> m_new_cu;
978
979 /* The ordinary abbreviation table. */
980 abbrev_table_up m_abbrev_table_holder;
981
982 /* The DWO abbreviation table. */
983 abbrev_table_up m_dwo_abbrev_table;
984 };
985
986 /* When we construct a partial symbol table entry we only
987 need this much information. */
988 struct partial_die_info : public allocate_on_obstack
989 {
990 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
991
992 /* Disable assign but still keep copy ctor, which is needed
993 load_partial_dies. */
994 partial_die_info& operator=(const partial_die_info& rhs) = delete;
995
996 /* Adjust the partial die before generating a symbol for it. This
997 function may set the is_external flag or change the DIE's
998 name. */
999 void fixup (struct dwarf2_cu *cu);
1000
1001 /* Read a minimal amount of information into the minimal die
1002 structure. */
1003 const gdb_byte *read (const struct die_reader_specs *reader,
1004 const struct abbrev_info &abbrev,
1005 const gdb_byte *info_ptr);
1006
1007 /* Compute the name of this partial DIE. This memoizes the
1008 result, so it is safe to call multiple times. */
1009 const char *name (dwarf2_cu *cu);
1010
1011 /* Offset of this DIE. */
1012 const sect_offset sect_off;
1013
1014 /* DWARF-2 tag for this DIE. */
1015 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1016
1017 /* Assorted flags describing the data found in this DIE. */
1018 const unsigned int has_children : 1;
1019
1020 unsigned int is_external : 1;
1021 unsigned int is_declaration : 1;
1022 unsigned int has_type : 1;
1023 unsigned int has_specification : 1;
1024 unsigned int has_pc_info : 1;
1025 unsigned int may_be_inlined : 1;
1026
1027 /* This DIE has been marked DW_AT_main_subprogram. */
1028 unsigned int main_subprogram : 1;
1029
1030 /* Flag set if the SCOPE field of this structure has been
1031 computed. */
1032 unsigned int scope_set : 1;
1033
1034 /* Flag set if the DIE has a byte_size attribute. */
1035 unsigned int has_byte_size : 1;
1036
1037 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1038 unsigned int has_const_value : 1;
1039
1040 /* Flag set if any of the DIE's children are template arguments. */
1041 unsigned int has_template_arguments : 1;
1042
1043 /* Flag set if fixup has been called on this die. */
1044 unsigned int fixup_called : 1;
1045
1046 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1047 unsigned int is_dwz : 1;
1048
1049 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1050 unsigned int spec_is_dwz : 1;
1051
1052 unsigned int canonical_name : 1;
1053
1054 /* The name of this DIE. Normally the value of DW_AT_name, but
1055 sometimes a default name for unnamed DIEs. */
1056 const char *raw_name = nullptr;
1057
1058 /* The linkage name, if present. */
1059 const char *linkage_name = nullptr;
1060
1061 /* The scope to prepend to our children. This is generally
1062 allocated on the comp_unit_obstack, so will disappear
1063 when this compilation unit leaves the cache. */
1064 const char *scope = nullptr;
1065
1066 /* Some data associated with the partial DIE. The tag determines
1067 which field is live. */
1068 union
1069 {
1070 /* The location description associated with this DIE, if any. */
1071 struct dwarf_block *locdesc;
1072 /* The offset of an import, for DW_TAG_imported_unit. */
1073 sect_offset sect_off;
1074 } d {};
1075
1076 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1077 CORE_ADDR lowpc = 0;
1078 CORE_ADDR highpc = 0;
1079
1080 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1081 DW_AT_sibling, if any. */
1082 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1083 could return DW_AT_sibling values to its caller load_partial_dies. */
1084 const gdb_byte *sibling = nullptr;
1085
1086 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1087 DW_AT_specification (or DW_AT_abstract_origin or
1088 DW_AT_extension). */
1089 sect_offset spec_offset {};
1090
1091 /* Pointers to this DIE's parent, first child, and next sibling,
1092 if any. */
1093 struct partial_die_info *die_parent = nullptr;
1094 struct partial_die_info *die_child = nullptr;
1095 struct partial_die_info *die_sibling = nullptr;
1096
1097 friend struct partial_die_info *
1098 dwarf2_cu::find_partial_die (sect_offset sect_off);
1099
1100 private:
1101 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1102 partial_die_info (sect_offset sect_off)
1103 : partial_die_info (sect_off, DW_TAG_padding, 0)
1104 {
1105 }
1106
1107 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1108 int has_children_)
1109 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1110 {
1111 is_external = 0;
1112 is_declaration = 0;
1113 has_type = 0;
1114 has_specification = 0;
1115 has_pc_info = 0;
1116 may_be_inlined = 0;
1117 main_subprogram = 0;
1118 scope_set = 0;
1119 has_byte_size = 0;
1120 has_const_value = 0;
1121 has_template_arguments = 0;
1122 fixup_called = 0;
1123 is_dwz = 0;
1124 spec_is_dwz = 0;
1125 canonical_name = 0;
1126 }
1127 };
1128
1129 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1130 but this would require a corresponding change in unpack_field_as_long
1131 and friends. */
1132 static int bits_per_byte = 8;
1133
1134 struct variant_part_builder;
1135
1136 /* When reading a variant, we track a bit more information about the
1137 field, and store it in an object of this type. */
1138
1139 struct variant_field
1140 {
1141 int first_field = -1;
1142 int last_field = -1;
1143
1144 /* A variant can contain other variant parts. */
1145 std::vector<variant_part_builder> variant_parts;
1146
1147 /* If we see a DW_TAG_variant, then this will be set if this is the
1148 default branch. */
1149 bool default_branch = false;
1150 /* If we see a DW_AT_discr_value, then this will be the discriminant
1151 value. */
1152 ULONGEST discriminant_value = 0;
1153 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1154 data. */
1155 struct dwarf_block *discr_list_data = nullptr;
1156 };
1157
1158 /* This represents a DW_TAG_variant_part. */
1159
1160 struct variant_part_builder
1161 {
1162 /* The offset of the discriminant field. */
1163 sect_offset discriminant_offset {};
1164
1165 /* Variants that are direct children of this variant part. */
1166 std::vector<variant_field> variants;
1167
1168 /* True if we're currently reading a variant. */
1169 bool processing_variant = false;
1170 };
1171
1172 struct nextfield
1173 {
1174 int accessibility = 0;
1175 int virtuality = 0;
1176 /* Variant parts need to find the discriminant, which is a DIE
1177 reference. We track the section offset of each field to make
1178 this link. */
1179 sect_offset offset;
1180 struct field field {};
1181 };
1182
1183 struct fnfieldlist
1184 {
1185 const char *name = nullptr;
1186 std::vector<struct fn_field> fnfields;
1187 };
1188
1189 /* The routines that read and process dies for a C struct or C++ class
1190 pass lists of data member fields and lists of member function fields
1191 in an instance of a field_info structure, as defined below. */
1192 struct field_info
1193 {
1194 /* List of data member and baseclasses fields. */
1195 std::vector<struct nextfield> fields;
1196 std::vector<struct nextfield> baseclasses;
1197
1198 /* Set if the accessibility of one of the fields is not public. */
1199 bool non_public_fields = false;
1200
1201 /* Member function fieldlist array, contains name of possibly overloaded
1202 member function, number of overloaded member functions and a pointer
1203 to the head of the member function field chain. */
1204 std::vector<struct fnfieldlist> fnfieldlists;
1205
1206 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1207 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1208 std::vector<struct decl_field> typedef_field_list;
1209
1210 /* Nested types defined by this class and the number of elements in this
1211 list. */
1212 std::vector<struct decl_field> nested_types_list;
1213
1214 /* If non-null, this is the variant part we are currently
1215 reading. */
1216 variant_part_builder *current_variant_part = nullptr;
1217 /* This holds all the top-level variant parts attached to the type
1218 we're reading. */
1219 std::vector<variant_part_builder> variant_parts;
1220
1221 /* Return the total number of fields (including baseclasses). */
1222 int nfields () const
1223 {
1224 return fields.size () + baseclasses.size ();
1225 }
1226 };
1227
1228 /* Loaded secondary compilation units are kept in memory until they
1229 have not been referenced for the processing of this many
1230 compilation units. Set this to zero to disable caching. Cache
1231 sizes of up to at least twenty will improve startup time for
1232 typical inter-CU-reference binaries, at an obvious memory cost. */
1233 static int dwarf_max_cache_age = 5;
1234 static void
1235 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1236 struct cmd_list_element *c, const char *value)
1237 {
1238 fprintf_filtered (file, _("The upper bound on the age of cached "
1239 "DWARF compilation units is %s.\n"),
1240 value);
1241 }
1242 \f
1243 /* local function prototypes */
1244
1245 static void dwarf2_find_base_address (struct die_info *die,
1246 struct dwarf2_cu *cu);
1247
1248 static dwarf2_psymtab *create_partial_symtab
1249 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1250 const char *name);
1251
1252 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1253 const gdb_byte *info_ptr,
1254 struct die_info *type_unit_die);
1255
1256 static void dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile);
1257
1258 static void scan_partial_symbols (struct partial_die_info *,
1259 CORE_ADDR *, CORE_ADDR *,
1260 int, struct dwarf2_cu *);
1261
1262 static void add_partial_symbol (struct partial_die_info *,
1263 struct dwarf2_cu *);
1264
1265 static void add_partial_namespace (struct partial_die_info *pdi,
1266 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1267 int set_addrmap, struct dwarf2_cu *cu);
1268
1269 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1270 CORE_ADDR *highpc, int set_addrmap,
1271 struct dwarf2_cu *cu);
1272
1273 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1274 struct dwarf2_cu *cu);
1275
1276 static void add_partial_subprogram (struct partial_die_info *pdi,
1277 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1278 int need_pc, struct dwarf2_cu *cu);
1279
1280 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1281
1282 static struct partial_die_info *load_partial_dies
1283 (const struct die_reader_specs *, const gdb_byte *, int);
1284
1285 /* A pair of partial_die_info and compilation unit. */
1286 struct cu_partial_die_info
1287 {
1288 /* The compilation unit of the partial_die_info. */
1289 struct dwarf2_cu *cu;
1290 /* A partial_die_info. */
1291 struct partial_die_info *pdi;
1292
1293 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1294 : cu (cu),
1295 pdi (pdi)
1296 { /* Nothing. */ }
1297
1298 private:
1299 cu_partial_die_info () = delete;
1300 };
1301
1302 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1303 struct dwarf2_cu *);
1304
1305 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1306 struct attribute *, struct attr_abbrev *,
1307 const gdb_byte *);
1308
1309 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1310 struct attribute *attr, dwarf_tag tag);
1311
1312 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1313
1314 static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile,
1315 dwarf2_section_info *, sect_offset);
1316
1317 static const char *read_indirect_string
1318 (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *,
1319 const struct comp_unit_head *, unsigned int *);
1320
1321 static const char *read_indirect_string_at_offset
1322 (dwarf2_per_objfile *per_objfile, LONGEST str_offset);
1323
1324 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1325 const gdb_byte *,
1326 unsigned int *);
1327
1328 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1329 ULONGEST str_index);
1330
1331 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1332 ULONGEST str_index);
1333
1334 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1335
1336 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1337 struct dwarf2_cu *);
1338
1339 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1340 struct dwarf2_cu *cu);
1341
1342 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1343
1344 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1345 struct dwarf2_cu *cu);
1346
1347 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1348
1349 static struct die_info *die_specification (struct die_info *die,
1350 struct dwarf2_cu **);
1351
1352 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1353 struct dwarf2_cu *cu);
1354
1355 static void dwarf_decode_lines (struct line_header *, const char *,
1356 struct dwarf2_cu *, dwarf2_psymtab *,
1357 CORE_ADDR, int decode_mapping);
1358
1359 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1360 const char *);
1361
1362 static struct symbol *new_symbol (struct die_info *, struct type *,
1363 struct dwarf2_cu *, struct symbol * = NULL);
1364
1365 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1366 struct dwarf2_cu *);
1367
1368 static void dwarf2_const_value_attr (const struct attribute *attr,
1369 struct type *type,
1370 const char *name,
1371 struct obstack *obstack,
1372 struct dwarf2_cu *cu, LONGEST *value,
1373 const gdb_byte **bytes,
1374 struct dwarf2_locexpr_baton **baton);
1375
1376 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1377
1378 static int need_gnat_info (struct dwarf2_cu *);
1379
1380 static struct type *die_descriptive_type (struct die_info *,
1381 struct dwarf2_cu *);
1382
1383 static void set_descriptive_type (struct type *, struct die_info *,
1384 struct dwarf2_cu *);
1385
1386 static struct type *die_containing_type (struct die_info *,
1387 struct dwarf2_cu *);
1388
1389 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1390 struct dwarf2_cu *);
1391
1392 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1393
1394 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1395
1396 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1397
1398 static char *typename_concat (struct obstack *obs, const char *prefix,
1399 const char *suffix, int physname,
1400 struct dwarf2_cu *cu);
1401
1402 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1403
1404 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1405
1406 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1407
1408 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1409
1410 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1411
1412 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1413
1414 /* Return the .debug_loclists section to use for cu. */
1415 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1416
1417 /* Return the .debug_rnglists section to use for cu. */
1418 static struct dwarf2_section_info *cu_debug_rnglists_section
1419 (struct dwarf2_cu *cu, dwarf_tag tag);
1420
1421 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1422 values. Keep the items ordered with increasing constraints compliance. */
1423 enum pc_bounds_kind
1424 {
1425 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1426 PC_BOUNDS_NOT_PRESENT,
1427
1428 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1429 were present but they do not form a valid range of PC addresses. */
1430 PC_BOUNDS_INVALID,
1431
1432 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1433 PC_BOUNDS_RANGES,
1434
1435 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1436 PC_BOUNDS_HIGH_LOW,
1437 };
1438
1439 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1440 CORE_ADDR *, CORE_ADDR *,
1441 struct dwarf2_cu *,
1442 dwarf2_psymtab *);
1443
1444 static void get_scope_pc_bounds (struct die_info *,
1445 CORE_ADDR *, CORE_ADDR *,
1446 struct dwarf2_cu *);
1447
1448 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1449 CORE_ADDR, struct dwarf2_cu *);
1450
1451 static void dwarf2_add_field (struct field_info *, struct die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void dwarf2_attach_fields_to_type (struct field_info *,
1455 struct type *, struct dwarf2_cu *);
1456
1457 static void dwarf2_add_member_fn (struct field_info *,
1458 struct die_info *, struct type *,
1459 struct dwarf2_cu *);
1460
1461 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1462 struct type *,
1463 struct dwarf2_cu *);
1464
1465 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1466
1467 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1468
1469 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1470
1471 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1472
1473 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1474
1475 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1476
1477 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1478
1479 static struct type *read_module_type (struct die_info *die,
1480 struct dwarf2_cu *cu);
1481
1482 static const char *namespace_name (struct die_info *die,
1483 int *is_anonymous, struct dwarf2_cu *);
1484
1485 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1486
1487 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1488 bool * = nullptr);
1489
1490 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1491 struct dwarf2_cu *);
1492
1493 static struct die_info *read_die_and_siblings_1
1494 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1495 struct die_info *);
1496
1497 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1498 const gdb_byte *info_ptr,
1499 const gdb_byte **new_info_ptr,
1500 struct die_info *parent);
1501
1502 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1503 struct die_info **, const gdb_byte *,
1504 int);
1505
1506 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1507 struct die_info **, const gdb_byte *);
1508
1509 static void process_die (struct die_info *, struct dwarf2_cu *);
1510
1511 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1512 struct objfile *);
1513
1514 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1515
1516 static const char *dwarf2_full_name (const char *name,
1517 struct die_info *die,
1518 struct dwarf2_cu *cu);
1519
1520 static const char *dwarf2_physname (const char *name, struct die_info *die,
1521 struct dwarf2_cu *cu);
1522
1523 static struct die_info *dwarf2_extension (struct die_info *die,
1524 struct dwarf2_cu **);
1525
1526 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1527
1528 static void dump_die_for_error (struct die_info *);
1529
1530 static void dump_die_1 (struct ui_file *, int level, int max_level,
1531 struct die_info *);
1532
1533 /*static*/ void dump_die (struct die_info *, int max_level);
1534
1535 static void store_in_ref_table (struct die_info *,
1536 struct dwarf2_cu *);
1537
1538 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1539 const struct attribute *,
1540 struct dwarf2_cu **);
1541
1542 static struct die_info *follow_die_ref (struct die_info *,
1543 const struct attribute *,
1544 struct dwarf2_cu **);
1545
1546 static struct die_info *follow_die_sig (struct die_info *,
1547 const struct attribute *,
1548 struct dwarf2_cu **);
1549
1550 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1551 struct dwarf2_cu *);
1552
1553 static struct type *get_DW_AT_signature_type (struct die_info *,
1554 const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1558 dwarf2_per_objfile *per_objfile);
1559
1560 static void read_signatured_type (signatured_type *sig_type,
1561 dwarf2_per_objfile *per_objfile);
1562
1563 static int attr_to_dynamic_prop (const struct attribute *attr,
1564 struct die_info *die, struct dwarf2_cu *cu,
1565 struct dynamic_prop *prop, struct type *type);
1566
1567 /* memory allocation interface */
1568
1569 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1570
1571 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1572
1573 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1574
1575 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1576 struct dwarf2_loclist_baton *baton,
1577 const struct attribute *attr);
1578
1579 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1580 struct symbol *sym,
1581 struct dwarf2_cu *cu,
1582 int is_block);
1583
1584 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1585 const gdb_byte *info_ptr,
1586 struct abbrev_info *abbrev);
1587
1588 static hashval_t partial_die_hash (const void *item);
1589
1590 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1591
1592 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1593 (sect_offset sect_off, unsigned int offset_in_dwz,
1594 dwarf2_per_objfile *per_objfile);
1595
1596 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1597 struct die_info *comp_unit_die,
1598 enum language pretend_language);
1599
1600 static struct type *set_die_type (struct die_info *, struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void create_all_comp_units (dwarf2_per_objfile *per_objfile);
1604
1605 static int create_all_type_units (dwarf2_per_objfile *per_objfile);
1606
1607 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1608 dwarf2_per_objfile *per_objfile,
1609 bool skip_partial,
1610 enum language pretend_language);
1611
1612 static void process_full_comp_unit (dwarf2_cu *cu,
1613 enum language pretend_language);
1614
1615 static void process_full_type_unit (dwarf2_cu *cu,
1616 enum language pretend_language);
1617
1618 static void dwarf2_add_dependence (struct dwarf2_cu *,
1619 struct dwarf2_per_cu_data *);
1620
1621 static void dwarf2_mark (struct dwarf2_cu *);
1622
1623 static struct type *get_die_type_at_offset (sect_offset,
1624 dwarf2_per_cu_data *per_cu,
1625 dwarf2_per_objfile *per_objfile);
1626
1627 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void queue_comp_unit (dwarf2_per_cu_data *per_cu,
1630 dwarf2_per_objfile *per_objfile,
1631 enum language pretend_language);
1632
1633 static void process_queue (dwarf2_per_objfile *per_objfile);
1634
1635 /* Class, the destructor of which frees all allocated queue entries. This
1636 will only have work to do if an error was thrown while processing the
1637 dwarf. If no error was thrown then the queue entries should have all
1638 been processed, and freed, as we went along. */
1639
1640 class dwarf2_queue_guard
1641 {
1642 public:
1643 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1644 : m_per_objfile (per_objfile)
1645 {
1646 }
1647
1648 /* Free any entries remaining on the queue. There should only be
1649 entries left if we hit an error while processing the dwarf. */
1650 ~dwarf2_queue_guard ()
1651 {
1652 /* Ensure that no memory is allocated by the queue. */
1653 std::queue<dwarf2_queue_item> empty;
1654 std::swap (m_per_objfile->per_bfd->queue, empty);
1655 }
1656
1657 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1658
1659 private:
1660 dwarf2_per_objfile *m_per_objfile;
1661 };
1662
1663 dwarf2_queue_item::~dwarf2_queue_item ()
1664 {
1665 /* Anything still marked queued is likely to be in an
1666 inconsistent state, so discard it. */
1667 if (per_cu->queued)
1668 {
1669 per_objfile->remove_cu (per_cu);
1670 per_cu->queued = 0;
1671 }
1672 }
1673
1674 /* The return type of find_file_and_directory. Note, the enclosed
1675 string pointers are only valid while this object is valid. */
1676
1677 struct file_and_directory
1678 {
1679 /* The filename. This is never NULL. */
1680 const char *name;
1681
1682 /* The compilation directory. NULL if not known. If we needed to
1683 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1684 points directly to the DW_AT_comp_dir string attribute owned by
1685 the obstack that owns the DIE. */
1686 const char *comp_dir;
1687
1688 /* If we needed to build a new string for comp_dir, this is what
1689 owns the storage. */
1690 std::string comp_dir_storage;
1691 };
1692
1693 static file_and_directory find_file_and_directory (struct die_info *die,
1694 struct dwarf2_cu *cu);
1695
1696 static htab_up allocate_signatured_type_table ();
1697
1698 static htab_up allocate_dwo_unit_table ();
1699
1700 static struct dwo_unit *lookup_dwo_unit_in_dwp
1701 (dwarf2_per_objfile *per_objfile, struct dwp_file *dwp_file,
1702 const char *comp_dir, ULONGEST signature, int is_debug_types);
1703
1704 static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile);
1705
1706 static struct dwo_unit *lookup_dwo_comp_unit
1707 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1708 ULONGEST signature);
1709
1710 static struct dwo_unit *lookup_dwo_type_unit
1711 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1712
1713 static void queue_and_load_all_dwo_tus (dwarf2_cu *cu);
1714
1715 /* A unique pointer to a dwo_file. */
1716
1717 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1718
1719 static void process_cu_includes (dwarf2_per_objfile *per_objfile);
1720
1721 static void check_producer (struct dwarf2_cu *cu);
1722
1723 static void free_line_header_voidp (void *arg);
1724 \f
1725 /* Various complaints about symbol reading that don't abort the process. */
1726
1727 static void
1728 dwarf2_debug_line_missing_file_complaint (void)
1729 {
1730 complaint (_(".debug_line section has line data without a file"));
1731 }
1732
1733 static void
1734 dwarf2_debug_line_missing_end_sequence_complaint (void)
1735 {
1736 complaint (_(".debug_line section has line "
1737 "program sequence without an end"));
1738 }
1739
1740 static void
1741 dwarf2_complex_location_expr_complaint (void)
1742 {
1743 complaint (_("location expression too complex"));
1744 }
1745
1746 static void
1747 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1748 int arg3)
1749 {
1750 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1751 arg1, arg2, arg3);
1752 }
1753
1754 static void
1755 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1756 {
1757 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1758 arg1, arg2);
1759 }
1760
1761 /* Hash function for line_header_hash. */
1762
1763 static hashval_t
1764 line_header_hash (const struct line_header *ofs)
1765 {
1766 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1767 }
1768
1769 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1770
1771 static hashval_t
1772 line_header_hash_voidp (const void *item)
1773 {
1774 const struct line_header *ofs = (const struct line_header *) item;
1775
1776 return line_header_hash (ofs);
1777 }
1778
1779 /* Equality function for line_header_hash. */
1780
1781 static int
1782 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1783 {
1784 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1785 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1786
1787 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1788 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1789 }
1790
1791 \f
1792
1793 /* See declaration. */
1794
1795 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1796 bool can_copy_)
1797 : obfd (obfd),
1798 can_copy (can_copy_)
1799 {
1800 if (names == NULL)
1801 names = &dwarf2_elf_names;
1802
1803 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1804 locate_sections (obfd, sec, *names);
1805 }
1806
1807 dwarf2_per_bfd::~dwarf2_per_bfd ()
1808 {
1809 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1810 per_cu->imported_symtabs_free ();
1811
1812 for (signatured_type *sig_type : all_type_units)
1813 sig_type->per_cu.imported_symtabs_free ();
1814
1815 /* Everything else should be on this->obstack. */
1816 }
1817
1818 /* See read.h. */
1819
1820 void
1821 dwarf2_per_objfile::remove_all_cus ()
1822 {
1823 for (auto pair : m_dwarf2_cus)
1824 delete pair.second;
1825
1826 m_dwarf2_cus.clear ();
1827 }
1828
1829 /* A helper class that calls free_cached_comp_units on
1830 destruction. */
1831
1832 class free_cached_comp_units
1833 {
1834 public:
1835
1836 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1837 : m_per_objfile (per_objfile)
1838 {
1839 }
1840
1841 ~free_cached_comp_units ()
1842 {
1843 m_per_objfile->remove_all_cus ();
1844 }
1845
1846 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1847
1848 private:
1849
1850 dwarf2_per_objfile *m_per_objfile;
1851 };
1852
1853 /* See read.h. */
1854
1855 bool
1856 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1857 {
1858 gdb_assert (per_cu->index < this->m_symtabs.size ());
1859
1860 return this->m_symtabs[per_cu->index] != nullptr;
1861 }
1862
1863 /* See read.h. */
1864
1865 compunit_symtab *
1866 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1867 {
1868 gdb_assert (per_cu->index < this->m_symtabs.size ());
1869
1870 return this->m_symtabs[per_cu->index];
1871 }
1872
1873 /* See read.h. */
1874
1875 void
1876 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1877 compunit_symtab *symtab)
1878 {
1879 gdb_assert (per_cu->index < this->m_symtabs.size ());
1880 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1881
1882 this->m_symtabs[per_cu->index] = symtab;
1883 }
1884
1885 /* Try to locate the sections we need for DWARF 2 debugging
1886 information and return true if we have enough to do something.
1887 NAMES points to the dwarf2 section names, or is NULL if the standard
1888 ELF names are used. CAN_COPY is true for formats where symbol
1889 interposition is possible and so symbol values must follow copy
1890 relocation rules. */
1891
1892 int
1893 dwarf2_has_info (struct objfile *objfile,
1894 const struct dwarf2_debug_sections *names,
1895 bool can_copy)
1896 {
1897 if (objfile->flags & OBJF_READNEVER)
1898 return 0;
1899
1900 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1901
1902 if (per_objfile == NULL)
1903 {
1904 dwarf2_per_bfd *per_bfd;
1905
1906 /* We can share a "dwarf2_per_bfd" with other objfiles if the BFD
1907 doesn't require relocations and if there aren't partial symbols
1908 from some other reader. */
1909 if (!objfile_has_partial_symbols (objfile)
1910 && !gdb_bfd_requires_relocations (objfile->obfd))
1911 {
1912 /* See if one has been created for this BFD yet. */
1913 per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd);
1914
1915 if (per_bfd == nullptr)
1916 {
1917 /* No, create it now. */
1918 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1919 dwarf2_per_bfd_bfd_data_key.set (objfile->obfd, per_bfd);
1920 }
1921 }
1922 else
1923 {
1924 /* No sharing possible, create one specifically for this objfile. */
1925 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1926 dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd);
1927 }
1928
1929 per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1930 }
1931
1932 return (!per_objfile->per_bfd->info.is_virtual
1933 && per_objfile->per_bfd->info.s.section != NULL
1934 && !per_objfile->per_bfd->abbrev.is_virtual
1935 && per_objfile->per_bfd->abbrev.s.section != NULL);
1936 }
1937
1938 /* When loading sections, we look either for uncompressed section or for
1939 compressed section names. */
1940
1941 static int
1942 section_is_p (const char *section_name,
1943 const struct dwarf2_section_names *names)
1944 {
1945 if (names->normal != NULL
1946 && strcmp (section_name, names->normal) == 0)
1947 return 1;
1948 if (names->compressed != NULL
1949 && strcmp (section_name, names->compressed) == 0)
1950 return 1;
1951 return 0;
1952 }
1953
1954 /* See declaration. */
1955
1956 void
1957 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1958 const dwarf2_debug_sections &names)
1959 {
1960 flagword aflag = bfd_section_flags (sectp);
1961
1962 if ((aflag & SEC_HAS_CONTENTS) == 0)
1963 {
1964 }
1965 else if (elf_section_data (sectp)->this_hdr.sh_size
1966 > bfd_get_file_size (abfd))
1967 {
1968 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1969 warning (_("Discarding section %s which has a section size (%s"
1970 ") larger than the file size [in module %s]"),
1971 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1972 bfd_get_filename (abfd));
1973 }
1974 else if (section_is_p (sectp->name, &names.info))
1975 {
1976 this->info.s.section = sectp;
1977 this->info.size = bfd_section_size (sectp);
1978 }
1979 else if (section_is_p (sectp->name, &names.abbrev))
1980 {
1981 this->abbrev.s.section = sectp;
1982 this->abbrev.size = bfd_section_size (sectp);
1983 }
1984 else if (section_is_p (sectp->name, &names.line))
1985 {
1986 this->line.s.section = sectp;
1987 this->line.size = bfd_section_size (sectp);
1988 }
1989 else if (section_is_p (sectp->name, &names.loc))
1990 {
1991 this->loc.s.section = sectp;
1992 this->loc.size = bfd_section_size (sectp);
1993 }
1994 else if (section_is_p (sectp->name, &names.loclists))
1995 {
1996 this->loclists.s.section = sectp;
1997 this->loclists.size = bfd_section_size (sectp);
1998 }
1999 else if (section_is_p (sectp->name, &names.macinfo))
2000 {
2001 this->macinfo.s.section = sectp;
2002 this->macinfo.size = bfd_section_size (sectp);
2003 }
2004 else if (section_is_p (sectp->name, &names.macro))
2005 {
2006 this->macro.s.section = sectp;
2007 this->macro.size = bfd_section_size (sectp);
2008 }
2009 else if (section_is_p (sectp->name, &names.str))
2010 {
2011 this->str.s.section = sectp;
2012 this->str.size = bfd_section_size (sectp);
2013 }
2014 else if (section_is_p (sectp->name, &names.str_offsets))
2015 {
2016 this->str_offsets.s.section = sectp;
2017 this->str_offsets.size = bfd_section_size (sectp);
2018 }
2019 else if (section_is_p (sectp->name, &names.line_str))
2020 {
2021 this->line_str.s.section = sectp;
2022 this->line_str.size = bfd_section_size (sectp);
2023 }
2024 else if (section_is_p (sectp->name, &names.addr))
2025 {
2026 this->addr.s.section = sectp;
2027 this->addr.size = bfd_section_size (sectp);
2028 }
2029 else if (section_is_p (sectp->name, &names.frame))
2030 {
2031 this->frame.s.section = sectp;
2032 this->frame.size = bfd_section_size (sectp);
2033 }
2034 else if (section_is_p (sectp->name, &names.eh_frame))
2035 {
2036 this->eh_frame.s.section = sectp;
2037 this->eh_frame.size = bfd_section_size (sectp);
2038 }
2039 else if (section_is_p (sectp->name, &names.ranges))
2040 {
2041 this->ranges.s.section = sectp;
2042 this->ranges.size = bfd_section_size (sectp);
2043 }
2044 else if (section_is_p (sectp->name, &names.rnglists))
2045 {
2046 this->rnglists.s.section = sectp;
2047 this->rnglists.size = bfd_section_size (sectp);
2048 }
2049 else if (section_is_p (sectp->name, &names.types))
2050 {
2051 struct dwarf2_section_info type_section;
2052
2053 memset (&type_section, 0, sizeof (type_section));
2054 type_section.s.section = sectp;
2055 type_section.size = bfd_section_size (sectp);
2056
2057 this->types.push_back (type_section);
2058 }
2059 else if (section_is_p (sectp->name, &names.gdb_index))
2060 {
2061 this->gdb_index.s.section = sectp;
2062 this->gdb_index.size = bfd_section_size (sectp);
2063 }
2064 else if (section_is_p (sectp->name, &names.debug_names))
2065 {
2066 this->debug_names.s.section = sectp;
2067 this->debug_names.size = bfd_section_size (sectp);
2068 }
2069 else if (section_is_p (sectp->name, &names.debug_aranges))
2070 {
2071 this->debug_aranges.s.section = sectp;
2072 this->debug_aranges.size = bfd_section_size (sectp);
2073 }
2074
2075 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2076 && bfd_section_vma (sectp) == 0)
2077 this->has_section_at_zero = true;
2078 }
2079
2080 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2081 SECTION_NAME. */
2082
2083 void
2084 dwarf2_get_section_info (struct objfile *objfile,
2085 enum dwarf2_section_enum sect,
2086 asection **sectp, const gdb_byte **bufp,
2087 bfd_size_type *sizep)
2088 {
2089 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
2090 struct dwarf2_section_info *info;
2091
2092 /* We may see an objfile without any DWARF, in which case we just
2093 return nothing. */
2094 if (per_objfile == NULL)
2095 {
2096 *sectp = NULL;
2097 *bufp = NULL;
2098 *sizep = 0;
2099 return;
2100 }
2101 switch (sect)
2102 {
2103 case DWARF2_DEBUG_FRAME:
2104 info = &per_objfile->per_bfd->frame;
2105 break;
2106 case DWARF2_EH_FRAME:
2107 info = &per_objfile->per_bfd->eh_frame;
2108 break;
2109 default:
2110 gdb_assert_not_reached ("unexpected section");
2111 }
2112
2113 info->read (objfile);
2114
2115 *sectp = info->get_bfd_section ();
2116 *bufp = info->buffer;
2117 *sizep = info->size;
2118 }
2119
2120 /* A helper function to find the sections for a .dwz file. */
2121
2122 static void
2123 locate_dwz_sections (bfd *abfd, asection *sectp, dwz_file *dwz_file)
2124 {
2125 /* Note that we only support the standard ELF names, because .dwz
2126 is ELF-only (at the time of writing). */
2127 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2128 {
2129 dwz_file->abbrev.s.section = sectp;
2130 dwz_file->abbrev.size = bfd_section_size (sectp);
2131 }
2132 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2133 {
2134 dwz_file->info.s.section = sectp;
2135 dwz_file->info.size = bfd_section_size (sectp);
2136 }
2137 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2138 {
2139 dwz_file->str.s.section = sectp;
2140 dwz_file->str.size = bfd_section_size (sectp);
2141 }
2142 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2143 {
2144 dwz_file->line.s.section = sectp;
2145 dwz_file->line.size = bfd_section_size (sectp);
2146 }
2147 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2148 {
2149 dwz_file->macro.s.section = sectp;
2150 dwz_file->macro.size = bfd_section_size (sectp);
2151 }
2152 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2153 {
2154 dwz_file->gdb_index.s.section = sectp;
2155 dwz_file->gdb_index.size = bfd_section_size (sectp);
2156 }
2157 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2158 {
2159 dwz_file->debug_names.s.section = sectp;
2160 dwz_file->debug_names.size = bfd_section_size (sectp);
2161 }
2162 }
2163
2164 /* See dwarf2read.h. */
2165
2166 struct dwz_file *
2167 dwarf2_get_dwz_file (dwarf2_per_bfd *per_bfd)
2168 {
2169 const char *filename;
2170 bfd_size_type buildid_len_arg;
2171 size_t buildid_len;
2172 bfd_byte *buildid;
2173
2174 if (per_bfd->dwz_file != NULL)
2175 return per_bfd->dwz_file.get ();
2176
2177 bfd_set_error (bfd_error_no_error);
2178 gdb::unique_xmalloc_ptr<char> data
2179 (bfd_get_alt_debug_link_info (per_bfd->obfd,
2180 &buildid_len_arg, &buildid));
2181 if (data == NULL)
2182 {
2183 if (bfd_get_error () == bfd_error_no_error)
2184 return NULL;
2185 error (_("could not read '.gnu_debugaltlink' section: %s"),
2186 bfd_errmsg (bfd_get_error ()));
2187 }
2188
2189 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2190
2191 buildid_len = (size_t) buildid_len_arg;
2192
2193 filename = data.get ();
2194
2195 std::string abs_storage;
2196 if (!IS_ABSOLUTE_PATH (filename))
2197 {
2198 gdb::unique_xmalloc_ptr<char> abs
2199 = gdb_realpath (bfd_get_filename (per_bfd->obfd));
2200
2201 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2202 filename = abs_storage.c_str ();
2203 }
2204
2205 /* First try the file name given in the section. If that doesn't
2206 work, try to use the build-id instead. */
2207 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget));
2208 if (dwz_bfd != NULL)
2209 {
2210 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2211 dwz_bfd.reset (nullptr);
2212 }
2213
2214 if (dwz_bfd == NULL)
2215 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2216
2217 if (dwz_bfd == nullptr)
2218 {
2219 gdb::unique_xmalloc_ptr<char> alt_filename;
2220 const char *origname = bfd_get_filename (per_bfd->obfd);
2221
2222 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2223 buildid_len,
2224 origname,
2225 &alt_filename));
2226
2227 if (fd.get () >= 0)
2228 {
2229 /* File successfully retrieved from server. */
2230 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget);
2231
2232 if (dwz_bfd == nullptr)
2233 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2234 alt_filename.get ());
2235 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2236 dwz_bfd.reset (nullptr);
2237 }
2238 }
2239
2240 if (dwz_bfd == NULL)
2241 error (_("could not find '.gnu_debugaltlink' file for %s"),
2242 bfd_get_filename (per_bfd->obfd));
2243
2244 std::unique_ptr<struct dwz_file> result
2245 (new struct dwz_file (std::move (dwz_bfd)));
2246
2247 for (asection *sec : gdb_bfd_sections (result->dwz_bfd))
2248 locate_dwz_sections (result->dwz_bfd.get (), sec, result.get ());
2249
2250 gdb_bfd_record_inclusion (per_bfd->obfd, result->dwz_bfd.get ());
2251 per_bfd->dwz_file = std::move (result);
2252 return per_bfd->dwz_file.get ();
2253 }
2254 \f
2255 /* DWARF quick_symbols_functions support. */
2256
2257 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2258 unique line tables, so we maintain a separate table of all .debug_line
2259 derived entries to support the sharing.
2260 All the quick functions need is the list of file names. We discard the
2261 line_header when we're done and don't need to record it here. */
2262 struct quick_file_names
2263 {
2264 /* The data used to construct the hash key. */
2265 struct stmt_list_hash hash;
2266
2267 /* The number of entries in file_names, real_names. */
2268 unsigned int num_file_names;
2269
2270 /* The file names from the line table, after being run through
2271 file_full_name. */
2272 const char **file_names;
2273
2274 /* The file names from the line table after being run through
2275 gdb_realpath. These are computed lazily. */
2276 const char **real_names;
2277 };
2278
2279 /* When using the index (and thus not using psymtabs), each CU has an
2280 object of this type. This is used to hold information needed by
2281 the various "quick" methods. */
2282 struct dwarf2_per_cu_quick_data
2283 {
2284 /* The file table. This can be NULL if there was no file table
2285 or it's currently not read in.
2286 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
2287 struct quick_file_names *file_names;
2288
2289 /* A temporary mark bit used when iterating over all CUs in
2290 expand_symtabs_matching. */
2291 unsigned int mark : 1;
2292
2293 /* True if we've tried to read the file table and found there isn't one.
2294 There will be no point in trying to read it again next time. */
2295 unsigned int no_file_data : 1;
2296 };
2297
2298 /* Utility hash function for a stmt_list_hash. */
2299
2300 static hashval_t
2301 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2302 {
2303 hashval_t v = 0;
2304
2305 if (stmt_list_hash->dwo_unit != NULL)
2306 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2307 v += to_underlying (stmt_list_hash->line_sect_off);
2308 return v;
2309 }
2310
2311 /* Utility equality function for a stmt_list_hash. */
2312
2313 static int
2314 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2315 const struct stmt_list_hash *rhs)
2316 {
2317 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2318 return 0;
2319 if (lhs->dwo_unit != NULL
2320 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2321 return 0;
2322
2323 return lhs->line_sect_off == rhs->line_sect_off;
2324 }
2325
2326 /* Hash function for a quick_file_names. */
2327
2328 static hashval_t
2329 hash_file_name_entry (const void *e)
2330 {
2331 const struct quick_file_names *file_data
2332 = (const struct quick_file_names *) e;
2333
2334 return hash_stmt_list_entry (&file_data->hash);
2335 }
2336
2337 /* Equality function for a quick_file_names. */
2338
2339 static int
2340 eq_file_name_entry (const void *a, const void *b)
2341 {
2342 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2343 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2344
2345 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2346 }
2347
2348 /* Delete function for a quick_file_names. */
2349
2350 static void
2351 delete_file_name_entry (void *e)
2352 {
2353 struct quick_file_names *file_data = (struct quick_file_names *) e;
2354 int i;
2355
2356 for (i = 0; i < file_data->num_file_names; ++i)
2357 {
2358 xfree ((void*) file_data->file_names[i]);
2359 if (file_data->real_names)
2360 xfree ((void*) file_data->real_names[i]);
2361 }
2362
2363 /* The space for the struct itself lives on the obstack, so we don't
2364 free it here. */
2365 }
2366
2367 /* Create a quick_file_names hash table. */
2368
2369 static htab_up
2370 create_quick_file_names_table (unsigned int nr_initial_entries)
2371 {
2372 return htab_up (htab_create_alloc (nr_initial_entries,
2373 hash_file_name_entry, eq_file_name_entry,
2374 delete_file_name_entry, xcalloc, xfree));
2375 }
2376
2377 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2378 function is unrelated to symtabs, symtab would have to be created afterwards.
2379 You should call age_cached_comp_units after processing the CU. */
2380
2381 static dwarf2_cu *
2382 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2383 bool skip_partial)
2384 {
2385 if (per_cu->is_debug_types)
2386 load_full_type_unit (per_cu, per_objfile);
2387 else
2388 load_full_comp_unit (per_cu, per_objfile, skip_partial, language_minimal);
2389
2390 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
2391 if (cu == nullptr)
2392 return nullptr; /* Dummy CU. */
2393
2394 dwarf2_find_base_address (cu->dies, cu);
2395
2396 return cu;
2397 }
2398
2399 /* Read in the symbols for PER_CU in the context of DWARF"_PER_OBJFILE. */
2400
2401 static void
2402 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2403 dwarf2_per_objfile *per_objfile, bool skip_partial)
2404 {
2405 /* Skip type_unit_groups, reading the type units they contain
2406 is handled elsewhere. */
2407 if (per_cu->type_unit_group_p ())
2408 return;
2409
2410 /* The destructor of dwarf2_queue_guard frees any entries left on
2411 the queue. After this point we're guaranteed to leave this function
2412 with the dwarf queue empty. */
2413 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2414
2415 if (!per_objfile->symtab_set_p (per_cu))
2416 {
2417 queue_comp_unit (per_cu, per_objfile, language_minimal);
2418 dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial);
2419
2420 /* If we just loaded a CU from a DWO, and we're working with an index
2421 that may badly handle TUs, load all the TUs in that DWO as well.
2422 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2423 if (!per_cu->is_debug_types
2424 && cu != NULL
2425 && cu->dwo_unit != NULL
2426 && per_objfile->per_bfd->index_table != NULL
2427 && per_objfile->per_bfd->index_table->version <= 7
2428 /* DWP files aren't supported yet. */
2429 && get_dwp_file (per_objfile) == NULL)
2430 queue_and_load_all_dwo_tus (cu);
2431 }
2432
2433 process_queue (per_objfile);
2434
2435 /* Age the cache, releasing compilation units that have not
2436 been used recently. */
2437 per_objfile->age_comp_units ();
2438 }
2439
2440 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2441 the per-objfile for which this symtab is instantiated.
2442
2443 Returns the resulting symbol table. */
2444
2445 static struct compunit_symtab *
2446 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2447 dwarf2_per_objfile *per_objfile,
2448 bool skip_partial)
2449 {
2450 gdb_assert (per_objfile->per_bfd->using_index);
2451
2452 if (!per_objfile->symtab_set_p (per_cu))
2453 {
2454 free_cached_comp_units freer (per_objfile);
2455 scoped_restore decrementer = increment_reading_symtab ();
2456 dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial);
2457 process_cu_includes (per_objfile);
2458 }
2459
2460 return per_objfile->get_symtab (per_cu);
2461 }
2462
2463 /* See declaration. */
2464
2465 dwarf2_per_cu_data *
2466 dwarf2_per_bfd::get_cutu (int index)
2467 {
2468 if (index >= this->all_comp_units.size ())
2469 {
2470 index -= this->all_comp_units.size ();
2471 gdb_assert (index < this->all_type_units.size ());
2472 return &this->all_type_units[index]->per_cu;
2473 }
2474
2475 return this->all_comp_units[index];
2476 }
2477
2478 /* See declaration. */
2479
2480 dwarf2_per_cu_data *
2481 dwarf2_per_bfd::get_cu (int index)
2482 {
2483 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2484
2485 return this->all_comp_units[index];
2486 }
2487
2488 /* See declaration. */
2489
2490 signatured_type *
2491 dwarf2_per_bfd::get_tu (int index)
2492 {
2493 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2494
2495 return this->all_type_units[index];
2496 }
2497
2498 /* See read.h. */
2499
2500 dwarf2_per_cu_data *
2501 dwarf2_per_bfd::allocate_per_cu ()
2502 {
2503 dwarf2_per_cu_data *result = OBSTACK_ZALLOC (&obstack, dwarf2_per_cu_data);
2504 result->per_bfd = this;
2505 result->index = m_num_psymtabs++;
2506 return result;
2507 }
2508
2509 /* See read.h. */
2510
2511 signatured_type *
2512 dwarf2_per_bfd::allocate_signatured_type ()
2513 {
2514 signatured_type *result = OBSTACK_ZALLOC (&obstack, signatured_type);
2515 result->per_cu.per_bfd = this;
2516 result->per_cu.index = m_num_psymtabs++;
2517 return result;
2518 }
2519
2520 /* Return a new dwarf2_per_cu_data allocated on the per-bfd
2521 obstack, and constructed with the specified field values. */
2522
2523 static dwarf2_per_cu_data *
2524 create_cu_from_index_list (dwarf2_per_bfd *per_bfd,
2525 struct dwarf2_section_info *section,
2526 int is_dwz,
2527 sect_offset sect_off, ULONGEST length)
2528 {
2529 dwarf2_per_cu_data *the_cu = per_bfd->allocate_per_cu ();
2530 the_cu->sect_off = sect_off;
2531 the_cu->length = length;
2532 the_cu->section = section;
2533 the_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
2534 struct dwarf2_per_cu_quick_data);
2535 the_cu->is_dwz = is_dwz;
2536 return the_cu;
2537 }
2538
2539 /* A helper for create_cus_from_index that handles a given list of
2540 CUs. */
2541
2542 static void
2543 create_cus_from_index_list (dwarf2_per_bfd *per_bfd,
2544 const gdb_byte *cu_list, offset_type n_elements,
2545 struct dwarf2_section_info *section,
2546 int is_dwz)
2547 {
2548 for (offset_type i = 0; i < n_elements; i += 2)
2549 {
2550 gdb_static_assert (sizeof (ULONGEST) >= 8);
2551
2552 sect_offset sect_off
2553 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2554 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2555 cu_list += 2 * 8;
2556
2557 dwarf2_per_cu_data *per_cu
2558 = create_cu_from_index_list (per_bfd, section, is_dwz, sect_off,
2559 length);
2560 per_bfd->all_comp_units.push_back (per_cu);
2561 }
2562 }
2563
2564 /* Read the CU list from the mapped index, and use it to create all
2565 the CU objects for PER_BFD. */
2566
2567 static void
2568 create_cus_from_index (dwarf2_per_bfd *per_bfd,
2569 const gdb_byte *cu_list, offset_type cu_list_elements,
2570 const gdb_byte *dwz_list, offset_type dwz_elements)
2571 {
2572 gdb_assert (per_bfd->all_comp_units.empty ());
2573 per_bfd->all_comp_units.reserve ((cu_list_elements + dwz_elements) / 2);
2574
2575 create_cus_from_index_list (per_bfd, cu_list, cu_list_elements,
2576 &per_bfd->info, 0);
2577
2578 if (dwz_elements == 0)
2579 return;
2580
2581 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
2582 create_cus_from_index_list (per_bfd, dwz_list, dwz_elements,
2583 &dwz->info, 1);
2584 }
2585
2586 /* Create the signatured type hash table from the index. */
2587
2588 static void
2589 create_signatured_type_table_from_index
2590 (dwarf2_per_bfd *per_bfd, struct dwarf2_section_info *section,
2591 const gdb_byte *bytes, offset_type elements)
2592 {
2593 gdb_assert (per_bfd->all_type_units.empty ());
2594 per_bfd->all_type_units.reserve (elements / 3);
2595
2596 htab_up sig_types_hash = allocate_signatured_type_table ();
2597
2598 for (offset_type i = 0; i < elements; i += 3)
2599 {
2600 struct signatured_type *sig_type;
2601 ULONGEST signature;
2602 void **slot;
2603 cu_offset type_offset_in_tu;
2604
2605 gdb_static_assert (sizeof (ULONGEST) >= 8);
2606 sect_offset sect_off
2607 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2608 type_offset_in_tu
2609 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2610 BFD_ENDIAN_LITTLE);
2611 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2612 bytes += 3 * 8;
2613
2614 sig_type = per_bfd->allocate_signatured_type ();
2615 sig_type->signature = signature;
2616 sig_type->type_offset_in_tu = type_offset_in_tu;
2617 sig_type->per_cu.is_debug_types = 1;
2618 sig_type->per_cu.section = section;
2619 sig_type->per_cu.sect_off = sect_off;
2620 sig_type->per_cu.v.quick
2621 = OBSTACK_ZALLOC (&per_bfd->obstack,
2622 struct dwarf2_per_cu_quick_data);
2623
2624 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2625 *slot = sig_type;
2626
2627 per_bfd->all_type_units.push_back (sig_type);
2628 }
2629
2630 per_bfd->signatured_types = std::move (sig_types_hash);
2631 }
2632
2633 /* Create the signatured type hash table from .debug_names. */
2634
2635 static void
2636 create_signatured_type_table_from_debug_names
2637 (dwarf2_per_objfile *per_objfile,
2638 const mapped_debug_names &map,
2639 struct dwarf2_section_info *section,
2640 struct dwarf2_section_info *abbrev_section)
2641 {
2642 struct objfile *objfile = per_objfile->objfile;
2643
2644 section->read (objfile);
2645 abbrev_section->read (objfile);
2646
2647 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
2648 per_objfile->per_bfd->all_type_units.reserve (map.tu_count);
2649
2650 htab_up sig_types_hash = allocate_signatured_type_table ();
2651
2652 for (uint32_t i = 0; i < map.tu_count; ++i)
2653 {
2654 struct signatured_type *sig_type;
2655 void **slot;
2656
2657 sect_offset sect_off
2658 = (sect_offset) (extract_unsigned_integer
2659 (map.tu_table_reordered + i * map.offset_size,
2660 map.offset_size,
2661 map.dwarf5_byte_order));
2662
2663 comp_unit_head cu_header;
2664 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
2665 abbrev_section,
2666 section->buffer + to_underlying (sect_off),
2667 rcuh_kind::TYPE);
2668
2669 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
2670 sig_type->signature = cu_header.signature;
2671 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2672 sig_type->per_cu.is_debug_types = 1;
2673 sig_type->per_cu.section = section;
2674 sig_type->per_cu.sect_off = sect_off;
2675 sig_type->per_cu.v.quick
2676 = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
2677 struct dwarf2_per_cu_quick_data);
2678
2679 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2680 *slot = sig_type;
2681
2682 per_objfile->per_bfd->all_type_units.push_back (sig_type);
2683 }
2684
2685 per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2686 }
2687
2688 /* Read the address map data from the mapped index, and use it to
2689 populate the objfile's psymtabs_addrmap. */
2690
2691 static void
2692 create_addrmap_from_index (dwarf2_per_objfile *per_objfile,
2693 struct mapped_index *index)
2694 {
2695 struct objfile *objfile = per_objfile->objfile;
2696 struct gdbarch *gdbarch = objfile->arch ();
2697 const gdb_byte *iter, *end;
2698 struct addrmap *mutable_map;
2699 CORE_ADDR baseaddr;
2700
2701 auto_obstack temp_obstack;
2702
2703 mutable_map = addrmap_create_mutable (&temp_obstack);
2704
2705 iter = index->address_table.data ();
2706 end = iter + index->address_table.size ();
2707
2708 baseaddr = objfile->text_section_offset ();
2709
2710 while (iter < end)
2711 {
2712 ULONGEST hi, lo, cu_index;
2713 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2714 iter += 8;
2715 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2716 iter += 8;
2717 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2718 iter += 4;
2719
2720 if (lo > hi)
2721 {
2722 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2723 hex_string (lo), hex_string (hi));
2724 continue;
2725 }
2726
2727 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
2728 {
2729 complaint (_(".gdb_index address table has invalid CU number %u"),
2730 (unsigned) cu_index);
2731 continue;
2732 }
2733
2734 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2735 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2736 addrmap_set_empty (mutable_map, lo, hi - 1,
2737 per_objfile->per_bfd->get_cu (cu_index));
2738 }
2739
2740 objfile->partial_symtabs->psymtabs_addrmap
2741 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2742 }
2743
2744 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2745 populate the objfile's psymtabs_addrmap. */
2746
2747 static void
2748 create_addrmap_from_aranges (dwarf2_per_objfile *per_objfile,
2749 struct dwarf2_section_info *section)
2750 {
2751 struct objfile *objfile = per_objfile->objfile;
2752 bfd *abfd = objfile->obfd;
2753 struct gdbarch *gdbarch = objfile->arch ();
2754 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2755
2756 auto_obstack temp_obstack;
2757 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2758
2759 std::unordered_map<sect_offset,
2760 dwarf2_per_cu_data *,
2761 gdb::hash_enum<sect_offset>>
2762 debug_info_offset_to_per_cu;
2763 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
2764 {
2765 const auto insertpair
2766 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2767 if (!insertpair.second)
2768 {
2769 warning (_("Section .debug_aranges in %s has duplicate "
2770 "debug_info_offset %s, ignoring .debug_aranges."),
2771 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2772 return;
2773 }
2774 }
2775
2776 section->read (objfile);
2777
2778 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2779
2780 const gdb_byte *addr = section->buffer;
2781
2782 while (addr < section->buffer + section->size)
2783 {
2784 const gdb_byte *const entry_addr = addr;
2785 unsigned int bytes_read;
2786
2787 const LONGEST entry_length = read_initial_length (abfd, addr,
2788 &bytes_read);
2789 addr += bytes_read;
2790
2791 const gdb_byte *const entry_end = addr + entry_length;
2792 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2793 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2794 if (addr + entry_length > section->buffer + section->size)
2795 {
2796 warning (_("Section .debug_aranges in %s entry at offset %s "
2797 "length %s exceeds section length %s, "
2798 "ignoring .debug_aranges."),
2799 objfile_name (objfile),
2800 plongest (entry_addr - section->buffer),
2801 plongest (bytes_read + entry_length),
2802 pulongest (section->size));
2803 return;
2804 }
2805
2806 /* The version number. */
2807 const uint16_t version = read_2_bytes (abfd, addr);
2808 addr += 2;
2809 if (version != 2)
2810 {
2811 warning (_("Section .debug_aranges in %s entry at offset %s "
2812 "has unsupported version %d, ignoring .debug_aranges."),
2813 objfile_name (objfile),
2814 plongest (entry_addr - section->buffer), version);
2815 return;
2816 }
2817
2818 const uint64_t debug_info_offset
2819 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2820 addr += offset_size;
2821 const auto per_cu_it
2822 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2823 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2824 {
2825 warning (_("Section .debug_aranges in %s entry at offset %s "
2826 "debug_info_offset %s does not exists, "
2827 "ignoring .debug_aranges."),
2828 objfile_name (objfile),
2829 plongest (entry_addr - section->buffer),
2830 pulongest (debug_info_offset));
2831 return;
2832 }
2833 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2834
2835 const uint8_t address_size = *addr++;
2836 if (address_size < 1 || address_size > 8)
2837 {
2838 warning (_("Section .debug_aranges in %s entry at offset %s "
2839 "address_size %u is invalid, ignoring .debug_aranges."),
2840 objfile_name (objfile),
2841 plongest (entry_addr - section->buffer), address_size);
2842 return;
2843 }
2844
2845 const uint8_t segment_selector_size = *addr++;
2846 if (segment_selector_size != 0)
2847 {
2848 warning (_("Section .debug_aranges in %s entry at offset %s "
2849 "segment_selector_size %u is not supported, "
2850 "ignoring .debug_aranges."),
2851 objfile_name (objfile),
2852 plongest (entry_addr - section->buffer),
2853 segment_selector_size);
2854 return;
2855 }
2856
2857 /* Must pad to an alignment boundary that is twice the address
2858 size. It is undocumented by the DWARF standard but GCC does
2859 use it. */
2860 for (size_t padding = ((-(addr - section->buffer))
2861 & (2 * address_size - 1));
2862 padding > 0; padding--)
2863 if (*addr++ != 0)
2864 {
2865 warning (_("Section .debug_aranges in %s entry at offset %s "
2866 "padding is not zero, ignoring .debug_aranges."),
2867 objfile_name (objfile),
2868 plongest (entry_addr - section->buffer));
2869 return;
2870 }
2871
2872 for (;;)
2873 {
2874 if (addr + 2 * address_size > entry_end)
2875 {
2876 warning (_("Section .debug_aranges in %s entry at offset %s "
2877 "address list is not properly terminated, "
2878 "ignoring .debug_aranges."),
2879 objfile_name (objfile),
2880 plongest (entry_addr - section->buffer));
2881 return;
2882 }
2883 ULONGEST start = extract_unsigned_integer (addr, address_size,
2884 dwarf5_byte_order);
2885 addr += address_size;
2886 ULONGEST length = extract_unsigned_integer (addr, address_size,
2887 dwarf5_byte_order);
2888 addr += address_size;
2889 if (start == 0 && length == 0)
2890 break;
2891 if (start == 0 && !per_objfile->per_bfd->has_section_at_zero)
2892 {
2893 /* Symbol was eliminated due to a COMDAT group. */
2894 continue;
2895 }
2896 ULONGEST end = start + length;
2897 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2898 - baseaddr);
2899 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2900 - baseaddr);
2901 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2902 }
2903 }
2904
2905 objfile->partial_symtabs->psymtabs_addrmap
2906 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2907 }
2908
2909 /* Find a slot in the mapped index INDEX for the object named NAME.
2910 If NAME is found, set *VEC_OUT to point to the CU vector in the
2911 constant pool and return true. If NAME cannot be found, return
2912 false. */
2913
2914 static bool
2915 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2916 offset_type **vec_out)
2917 {
2918 offset_type hash;
2919 offset_type slot, step;
2920 int (*cmp) (const char *, const char *);
2921
2922 gdb::unique_xmalloc_ptr<char> without_params;
2923 if (current_language->la_language == language_cplus
2924 || current_language->la_language == language_fortran
2925 || current_language->la_language == language_d)
2926 {
2927 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2928 not contain any. */
2929
2930 if (strchr (name, '(') != NULL)
2931 {
2932 without_params = cp_remove_params (name);
2933
2934 if (without_params != NULL)
2935 name = without_params.get ();
2936 }
2937 }
2938
2939 /* Index version 4 did not support case insensitive searches. But the
2940 indices for case insensitive languages are built in lowercase, therefore
2941 simulate our NAME being searched is also lowercased. */
2942 hash = mapped_index_string_hash ((index->version == 4
2943 && case_sensitivity == case_sensitive_off
2944 ? 5 : index->version),
2945 name);
2946
2947 slot = hash & (index->symbol_table.size () - 1);
2948 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2949 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2950
2951 for (;;)
2952 {
2953 const char *str;
2954
2955 const auto &bucket = index->symbol_table[slot];
2956 if (bucket.name == 0 && bucket.vec == 0)
2957 return false;
2958
2959 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2960 if (!cmp (name, str))
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
2963 + MAYBE_SWAP (bucket.vec));
2964 return true;
2965 }
2966
2967 slot = (slot + step) & (index->symbol_table.size () - 1);
2968 }
2969 }
2970
2971 /* A helper function that reads the .gdb_index from BUFFER and fills
2972 in MAP. FILENAME is the name of the file containing the data;
2973 it is used for error reporting. DEPRECATED_OK is true if it is
2974 ok to use deprecated sections.
2975
2976 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2977 out parameters that are filled in with information about the CU and
2978 TU lists in the section.
2979
2980 Returns true if all went well, false otherwise. */
2981
2982 static bool
2983 read_gdb_index_from_buffer (const char *filename,
2984 bool deprecated_ok,
2985 gdb::array_view<const gdb_byte> buffer,
2986 struct mapped_index *map,
2987 const gdb_byte **cu_list,
2988 offset_type *cu_list_elements,
2989 const gdb_byte **types_list,
2990 offset_type *types_list_elements)
2991 {
2992 const gdb_byte *addr = &buffer[0];
2993
2994 /* Version check. */
2995 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2996 /* Versions earlier than 3 emitted every copy of a psymbol. This
2997 causes the index to behave very poorly for certain requests. Version 3
2998 contained incomplete addrmap. So, it seems better to just ignore such
2999 indices. */
3000 if (version < 4)
3001 {
3002 static int warning_printed = 0;
3003 if (!warning_printed)
3004 {
3005 warning (_("Skipping obsolete .gdb_index section in %s."),
3006 filename);
3007 warning_printed = 1;
3008 }
3009 return 0;
3010 }
3011 /* Index version 4 uses a different hash function than index version
3012 5 and later.
3013
3014 Versions earlier than 6 did not emit psymbols for inlined
3015 functions. Using these files will cause GDB not to be able to
3016 set breakpoints on inlined functions by name, so we ignore these
3017 indices unless the user has done
3018 "set use-deprecated-index-sections on". */
3019 if (version < 6 && !deprecated_ok)
3020 {
3021 static int warning_printed = 0;
3022 if (!warning_printed)
3023 {
3024 warning (_("\
3025 Skipping deprecated .gdb_index section in %s.\n\
3026 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3027 to use the section anyway."),
3028 filename);
3029 warning_printed = 1;
3030 }
3031 return 0;
3032 }
3033 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3034 of the TU (for symbols coming from TUs),
3035 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3036 Plus gold-generated indices can have duplicate entries for global symbols,
3037 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3038 These are just performance bugs, and we can't distinguish gdb-generated
3039 indices from gold-generated ones, so issue no warning here. */
3040
3041 /* Indexes with higher version than the one supported by GDB may be no
3042 longer backward compatible. */
3043 if (version > 8)
3044 return 0;
3045
3046 map->version = version;
3047
3048 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3049
3050 int i = 0;
3051 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3052 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3053 / 8);
3054 ++i;
3055
3056 *types_list = addr + MAYBE_SWAP (metadata[i]);
3057 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3058 - MAYBE_SWAP (metadata[i]))
3059 / 8);
3060 ++i;
3061
3062 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3063 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3064 map->address_table
3065 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3066 ++i;
3067
3068 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3069 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3070 map->symbol_table
3071 = gdb::array_view<mapped_index::symbol_table_slot>
3072 ((mapped_index::symbol_table_slot *) symbol_table,
3073 (mapped_index::symbol_table_slot *) symbol_table_end);
3074
3075 ++i;
3076 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3077
3078 return 1;
3079 }
3080
3081 /* Callback types for dwarf2_read_gdb_index. */
3082
3083 typedef gdb::function_view
3084 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
3085 get_gdb_index_contents_ftype;
3086 typedef gdb::function_view
3087 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3088 get_gdb_index_contents_dwz_ftype;
3089
3090 /* Read .gdb_index. If everything went ok, initialize the "quick"
3091 elements of all the CUs and return 1. Otherwise, return 0. */
3092
3093 static int
3094 dwarf2_read_gdb_index
3095 (dwarf2_per_objfile *per_objfile,
3096 get_gdb_index_contents_ftype get_gdb_index_contents,
3097 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3098 {
3099 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3100 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3101 struct dwz_file *dwz;
3102 struct objfile *objfile = per_objfile->objfile;
3103 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
3104
3105 gdb::array_view<const gdb_byte> main_index_contents
3106 = get_gdb_index_contents (objfile, per_bfd);
3107
3108 if (main_index_contents.empty ())
3109 return 0;
3110
3111 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3112 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3113 use_deprecated_index_sections,
3114 main_index_contents, map.get (), &cu_list,
3115 &cu_list_elements, &types_list,
3116 &types_list_elements))
3117 return 0;
3118
3119 /* Don't use the index if it's empty. */
3120 if (map->symbol_table.empty ())
3121 return 0;
3122
3123 /* If there is a .dwz file, read it so we can get its CU list as
3124 well. */
3125 dwz = dwarf2_get_dwz_file (per_bfd);
3126 if (dwz != NULL)
3127 {
3128 struct mapped_index dwz_map;
3129 const gdb_byte *dwz_types_ignore;
3130 offset_type dwz_types_elements_ignore;
3131
3132 gdb::array_view<const gdb_byte> dwz_index_content
3133 = get_gdb_index_contents_dwz (objfile, dwz);
3134
3135 if (dwz_index_content.empty ())
3136 return 0;
3137
3138 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3139 1, dwz_index_content, &dwz_map,
3140 &dwz_list, &dwz_list_elements,
3141 &dwz_types_ignore,
3142 &dwz_types_elements_ignore))
3143 {
3144 warning (_("could not read '.gdb_index' section from %s; skipping"),
3145 bfd_get_filename (dwz->dwz_bfd.get ()));
3146 return 0;
3147 }
3148 }
3149
3150 create_cus_from_index (per_bfd, cu_list, cu_list_elements, dwz_list,
3151 dwz_list_elements);
3152
3153 if (types_list_elements)
3154 {
3155 /* We can only handle a single .debug_types when we have an
3156 index. */
3157 if (per_bfd->types.size () != 1)
3158 return 0;
3159
3160 dwarf2_section_info *section = &per_bfd->types[0];
3161
3162 create_signatured_type_table_from_index (per_bfd, section, types_list,
3163 types_list_elements);
3164 }
3165
3166 create_addrmap_from_index (per_objfile, map.get ());
3167
3168 per_bfd->index_table = std::move (map);
3169 per_bfd->using_index = 1;
3170 per_bfd->quick_file_names_table =
3171 create_quick_file_names_table (per_bfd->all_comp_units.size ());
3172
3173 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
3174 objfiles using the same BFD. */
3175 gdb_assert (per_bfd->partial_symtabs == nullptr);
3176 per_bfd->partial_symtabs = objfile->partial_symtabs;
3177
3178 return 1;
3179 }
3180
3181 /* die_reader_func for dw2_get_file_names. */
3182
3183 static void
3184 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3185 const gdb_byte *info_ptr,
3186 struct die_info *comp_unit_die)
3187 {
3188 struct dwarf2_cu *cu = reader->cu;
3189 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3190 dwarf2_per_objfile *per_objfile = cu->per_objfile;
3191 struct dwarf2_per_cu_data *lh_cu;
3192 struct attribute *attr;
3193 void **slot;
3194 struct quick_file_names *qfn;
3195
3196 gdb_assert (! this_cu->is_debug_types);
3197
3198 /* Our callers never want to match partial units -- instead they
3199 will match the enclosing full CU. */
3200 if (comp_unit_die->tag == DW_TAG_partial_unit)
3201 {
3202 this_cu->v.quick->no_file_data = 1;
3203 return;
3204 }
3205
3206 lh_cu = this_cu;
3207 slot = NULL;
3208
3209 line_header_up lh;
3210 sect_offset line_offset {};
3211
3212 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3213 if (attr != nullptr && attr->form_is_unsigned ())
3214 {
3215 struct quick_file_names find_entry;
3216
3217 line_offset = (sect_offset) attr->as_unsigned ();
3218
3219 /* We may have already read in this line header (TU line header sharing).
3220 If we have we're done. */
3221 find_entry.hash.dwo_unit = cu->dwo_unit;
3222 find_entry.hash.line_sect_off = line_offset;
3223 slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (),
3224 &find_entry, INSERT);
3225 if (*slot != NULL)
3226 {
3227 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3228 return;
3229 }
3230
3231 lh = dwarf_decode_line_header (line_offset, cu);
3232 }
3233 if (lh == NULL)
3234 {
3235 lh_cu->v.quick->no_file_data = 1;
3236 return;
3237 }
3238
3239 qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names);
3240 qfn->hash.dwo_unit = cu->dwo_unit;
3241 qfn->hash.line_sect_off = line_offset;
3242 gdb_assert (slot != NULL);
3243 *slot = qfn;
3244
3245 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3246
3247 int offset = 0;
3248 if (strcmp (fnd.name, "<unknown>") != 0)
3249 ++offset;
3250
3251 qfn->num_file_names = offset + lh->file_names_size ();
3252 qfn->file_names =
3253 XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *,
3254 qfn->num_file_names);
3255 if (offset != 0)
3256 qfn->file_names[0] = xstrdup (fnd.name);
3257 for (int i = 0; i < lh->file_names_size (); ++i)
3258 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3259 fnd.comp_dir).release ();
3260 qfn->real_names = NULL;
3261
3262 lh_cu->v.quick->file_names = qfn;
3263 }
3264
3265 /* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268 static struct quick_file_names *
3269 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
3270 dwarf2_per_objfile *per_objfile)
3271 {
3272 /* This should never be called for TUs. */
3273 gdb_assert (! this_cu->is_debug_types);
3274 /* Nor type unit groups. */
3275 gdb_assert (! this_cu->type_unit_group_p ());
3276
3277 if (this_cu->v.quick->file_names != NULL)
3278 return this_cu->v.quick->file_names;
3279 /* If we know there is no line data, no point in looking again. */
3280 if (this_cu->v.quick->no_file_data)
3281 return NULL;
3282
3283 cutu_reader reader (this_cu, per_objfile);
3284 if (!reader.dummy_p)
3285 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3286
3287 if (this_cu->v.quick->no_file_data)
3288 return NULL;
3289 return this_cu->v.quick->file_names;
3290 }
3291
3292 /* A helper for the "quick" functions which computes and caches the
3293 real path for a given file name from the line table. */
3294
3295 static const char *
3296 dw2_get_real_path (dwarf2_per_objfile *per_objfile,
3297 struct quick_file_names *qfn, int index)
3298 {
3299 if (qfn->real_names == NULL)
3300 qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
3301 qfn->num_file_names, const char *);
3302
3303 if (qfn->real_names[index] == NULL)
3304 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3305
3306 return qfn->real_names[index];
3307 }
3308
3309 static struct symtab *
3310 dw2_find_last_source_symtab (struct objfile *objfile)
3311 {
3312 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3313 dwarf2_per_cu_data *dwarf_cu = per_objfile->per_bfd->all_comp_units.back ();
3314 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false);
3315
3316 if (cust == NULL)
3317 return NULL;
3318
3319 return compunit_primary_filetab (cust);
3320 }
3321
3322 /* Traversal function for dw2_forget_cached_source_info. */
3323
3324 static int
3325 dw2_free_cached_file_names (void **slot, void *info)
3326 {
3327 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3328
3329 if (file_data->real_names)
3330 {
3331 int i;
3332
3333 for (i = 0; i < file_data->num_file_names; ++i)
3334 {
3335 xfree ((void*) file_data->real_names[i]);
3336 file_data->real_names[i] = NULL;
3337 }
3338 }
3339
3340 return 1;
3341 }
3342
3343 static void
3344 dw2_forget_cached_source_info (struct objfile *objfile)
3345 {
3346 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3347
3348 htab_traverse_noresize (per_objfile->per_bfd->quick_file_names_table.get (),
3349 dw2_free_cached_file_names, NULL);
3350 }
3351
3352 /* Helper function for dw2_map_symtabs_matching_filename that expands
3353 the symtabs and calls the iterator. */
3354
3355 static int
3356 dw2_map_expand_apply (struct objfile *objfile,
3357 struct dwarf2_per_cu_data *per_cu,
3358 const char *name, const char *real_path,
3359 gdb::function_view<bool (symtab *)> callback)
3360 {
3361 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3362
3363 /* Don't visit already-expanded CUs. */
3364 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3365 if (per_objfile->symtab_set_p (per_cu))
3366 return 0;
3367
3368 /* This may expand more than one symtab, and we want to iterate over
3369 all of them. */
3370 dw2_instantiate_symtab (per_cu, per_objfile, false);
3371
3372 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3373 last_made, callback);
3374 }
3375
3376 /* Implementation of the map_symtabs_matching_filename method. */
3377
3378 static bool
3379 dw2_map_symtabs_matching_filename
3380 (struct objfile *objfile, const char *name, const char *real_path,
3381 gdb::function_view<bool (symtab *)> callback)
3382 {
3383 const char *name_basename = lbasename (name);
3384 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3385
3386 /* The rule is CUs specify all the files, including those used by
3387 any TU, so there's no need to scan TUs here. */
3388
3389 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3390 {
3391 /* We only need to look at symtabs not already expanded. */
3392 if (per_objfile->symtab_set_p (per_cu))
3393 continue;
3394
3395 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3396 if (file_data == NULL)
3397 continue;
3398
3399 for (int j = 0; j < file_data->num_file_names; ++j)
3400 {
3401 const char *this_name = file_data->file_names[j];
3402 const char *this_real_name;
3403
3404 if (compare_filenames_for_search (this_name, name))
3405 {
3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3407 callback))
3408 return true;
3409 continue;
3410 }
3411
3412 /* Before we invoke realpath, which can get expensive when many
3413 files are involved, do a quick comparison of the basenames. */
3414 if (! basenames_may_differ
3415 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3416 continue;
3417
3418 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
3419 if (compare_filenames_for_search (this_real_name, name))
3420 {
3421 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3422 callback))
3423 return true;
3424 continue;
3425 }
3426
3427 if (real_path != NULL)
3428 {
3429 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3430 gdb_assert (IS_ABSOLUTE_PATH (name));
3431 if (this_real_name != NULL
3432 && FILENAME_CMP (real_path, this_real_name) == 0)
3433 {
3434 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3435 callback))
3436 return true;
3437 continue;
3438 }
3439 }
3440 }
3441 }
3442
3443 return false;
3444 }
3445
3446 /* Struct used to manage iterating over all CUs looking for a symbol. */
3447
3448 struct dw2_symtab_iterator
3449 {
3450 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3451 dwarf2_per_objfile *per_objfile;
3452 /* If set, only look for symbols that match that block. Valid values are
3453 GLOBAL_BLOCK and STATIC_BLOCK. */
3454 gdb::optional<block_enum> block_index;
3455 /* The kind of symbol we're looking for. */
3456 domain_enum domain;
3457 /* The list of CUs from the index entry of the symbol,
3458 or NULL if not found. */
3459 offset_type *vec;
3460 /* The next element in VEC to look at. */
3461 int next;
3462 /* The number of elements in VEC, or zero if there is no match. */
3463 int length;
3464 /* Have we seen a global version of the symbol?
3465 If so we can ignore all further global instances.
3466 This is to work around gold/15646, inefficient gold-generated
3467 indices. */
3468 int global_seen;
3469 };
3470
3471 /* Initialize the index symtab iterator ITER, common part. */
3472
3473 static void
3474 dw2_symtab_iter_init_common (struct dw2_symtab_iterator *iter,
3475 dwarf2_per_objfile *per_objfile,
3476 gdb::optional<block_enum> block_index,
3477 domain_enum domain)
3478 {
3479 iter->per_objfile = per_objfile;
3480 iter->block_index = block_index;
3481 iter->domain = domain;
3482 iter->next = 0;
3483 iter->global_seen = 0;
3484 iter->vec = NULL;
3485 iter->length = 0;
3486 }
3487
3488 /* Initialize the index symtab iterator ITER, const char *NAME variant. */
3489
3490 static void
3491 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3492 dwarf2_per_objfile *per_objfile,
3493 gdb::optional<block_enum> block_index,
3494 domain_enum domain,
3495 const char *name)
3496 {
3497 dw2_symtab_iter_init_common (iter, per_objfile, block_index, domain);
3498
3499 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3500 /* index is NULL if OBJF_READNOW. */
3501 if (index == NULL)
3502 return;
3503
3504 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3505 iter->length = MAYBE_SWAP (*iter->vec);
3506 }
3507
3508 /* Initialize the index symtab iterator ITER, offset_type NAMEI variant. */
3509
3510 static void
3511 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3512 dwarf2_per_objfile *per_objfile,
3513 gdb::optional<block_enum> block_index,
3514 domain_enum domain, offset_type namei)
3515 {
3516 dw2_symtab_iter_init_common (iter, per_objfile, block_index, domain);
3517
3518 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3519 /* index is NULL if OBJF_READNOW. */
3520 if (index == NULL)
3521 return;
3522
3523 gdb_assert (!index->symbol_name_slot_invalid (namei));
3524 const auto &bucket = index->symbol_table[namei];
3525
3526 iter->vec = (offset_type *) (index->constant_pool
3527 + MAYBE_SWAP (bucket.vec));
3528 iter->length = MAYBE_SWAP (*iter->vec);
3529 }
3530
3531 /* Return the next matching CU or NULL if there are no more. */
3532
3533 static struct dwarf2_per_cu_data *
3534 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3535 {
3536 dwarf2_per_objfile *per_objfile = iter->per_objfile;
3537
3538 for ( ; iter->next < iter->length; ++iter->next)
3539 {
3540 offset_type cu_index_and_attrs =
3541 MAYBE_SWAP (iter->vec[iter->next + 1]);
3542 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3543 gdb_index_symbol_kind symbol_kind =
3544 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3545 /* Only check the symbol attributes if they're present.
3546 Indices prior to version 7 don't record them,
3547 and indices >= 7 may elide them for certain symbols
3548 (gold does this). */
3549 int attrs_valid =
3550 (per_objfile->per_bfd->index_table->version >= 7
3551 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3552
3553 /* Don't crash on bad data. */
3554 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
3555 + per_objfile->per_bfd->all_type_units.size ()))
3556 {
3557 complaint (_(".gdb_index entry has bad CU index"
3558 " [in module %s]"), objfile_name (per_objfile->objfile));
3559 continue;
3560 }
3561
3562 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
3563
3564 /* Skip if already read in. */
3565 if (per_objfile->symtab_set_p (per_cu))
3566 continue;
3567
3568 /* Check static vs global. */
3569 if (attrs_valid)
3570 {
3571 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3572
3573 if (iter->block_index.has_value ())
3574 {
3575 bool want_static = *iter->block_index == STATIC_BLOCK;
3576
3577 if (is_static != want_static)
3578 continue;
3579 }
3580
3581 /* Work around gold/15646. */
3582 if (!is_static
3583 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
3584 {
3585 if (iter->global_seen)
3586 continue;
3587
3588 iter->global_seen = 1;
3589 }
3590 }
3591
3592 /* Only check the symbol's kind if it has one. */
3593 if (attrs_valid)
3594 {
3595 switch (iter->domain)
3596 {
3597 case VAR_DOMAIN:
3598 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3599 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3600 /* Some types are also in VAR_DOMAIN. */
3601 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3602 continue;
3603 break;
3604 case STRUCT_DOMAIN:
3605 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3606 continue;
3607 break;
3608 case LABEL_DOMAIN:
3609 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3610 continue;
3611 break;
3612 case MODULE_DOMAIN:
3613 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3614 continue;
3615 break;
3616 default:
3617 break;
3618 }
3619 }
3620
3621 ++iter->next;
3622 return per_cu;
3623 }
3624
3625 return NULL;
3626 }
3627
3628 static struct compunit_symtab *
3629 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3630 const char *name, domain_enum domain)
3631 {
3632 struct compunit_symtab *stab_best = NULL;
3633 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3634
3635 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3636
3637 struct dw2_symtab_iterator iter;
3638 struct dwarf2_per_cu_data *per_cu;
3639
3640 dw2_symtab_iter_init (&iter, per_objfile, block_index, domain, name);
3641
3642 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3643 {
3644 struct symbol *sym, *with_opaque = NULL;
3645 struct compunit_symtab *stab
3646 = dw2_instantiate_symtab (per_cu, per_objfile, false);
3647 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3648 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3649
3650 sym = block_find_symbol (block, name, domain,
3651 block_find_non_opaque_type_preferred,
3652 &with_opaque);
3653
3654 /* Some caution must be observed with overloaded functions
3655 and methods, since the index will not contain any overload
3656 information (but NAME might contain it). */
3657
3658 if (sym != NULL
3659 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3660 return stab;
3661 if (with_opaque != NULL
3662 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3663 stab_best = stab;
3664
3665 /* Keep looking through other CUs. */
3666 }
3667
3668 return stab_best;
3669 }
3670
3671 static void
3672 dw2_print_stats (struct objfile *objfile)
3673 {
3674 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3675 int total = (per_objfile->per_bfd->all_comp_units.size ()
3676 + per_objfile->per_bfd->all_type_units.size ());
3677 int count = 0;
3678
3679 for (int i = 0; i < total; ++i)
3680 {
3681 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3682
3683 if (!per_objfile->symtab_set_p (per_cu))
3684 ++count;
3685 }
3686 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3687 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3688 }
3689
3690 /* This dumps minimal information about the index.
3691 It is called via "mt print objfiles".
3692 One use is to verify .gdb_index has been loaded by the
3693 gdb.dwarf2/gdb-index.exp testcase. */
3694
3695 static void
3696 dw2_dump (struct objfile *objfile)
3697 {
3698 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3699
3700 gdb_assert (per_objfile->per_bfd->using_index);
3701 printf_filtered (".gdb_index:");
3702 if (per_objfile->per_bfd->index_table != NULL)
3703 {
3704 printf_filtered (" version %d\n",
3705 per_objfile->per_bfd->index_table->version);
3706 }
3707 else
3708 printf_filtered (" faked for \"readnow\"\n");
3709 printf_filtered ("\n");
3710 }
3711
3712 static void
3713 dw2_expand_symtabs_for_function (struct objfile *objfile,
3714 const char *func_name)
3715 {
3716 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3717
3718 struct dw2_symtab_iterator iter;
3719 struct dwarf2_per_cu_data *per_cu;
3720
3721 dw2_symtab_iter_init (&iter, per_objfile, {}, VAR_DOMAIN, func_name);
3722
3723 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3724 dw2_instantiate_symtab (per_cu, per_objfile, false);
3725
3726 }
3727
3728 static void
3729 dw2_expand_all_symtabs (struct objfile *objfile)
3730 {
3731 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3732 int total_units = (per_objfile->per_bfd->all_comp_units.size ()
3733 + per_objfile->per_bfd->all_type_units.size ());
3734
3735 for (int i = 0; i < total_units; ++i)
3736 {
3737 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3738
3739 /* We don't want to directly expand a partial CU, because if we
3740 read it with the wrong language, then assertion failures can
3741 be triggered later on. See PR symtab/23010. So, tell
3742 dw2_instantiate_symtab to skip partial CUs -- any important
3743 partial CU will be read via DW_TAG_imported_unit anyway. */
3744 dw2_instantiate_symtab (per_cu, per_objfile, true);
3745 }
3746 }
3747
3748 static void
3749 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3750 const char *fullname)
3751 {
3752 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3753
3754 /* We don't need to consider type units here.
3755 This is only called for examining code, e.g. expand_line_sal.
3756 There can be an order of magnitude (or more) more type units
3757 than comp units, and we avoid them if we can. */
3758
3759 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3760 {
3761 /* We only need to look at symtabs not already expanded. */
3762 if (per_objfile->symtab_set_p (per_cu))
3763 continue;
3764
3765 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3766 if (file_data == NULL)
3767 continue;
3768
3769 for (int j = 0; j < file_data->num_file_names; ++j)
3770 {
3771 const char *this_fullname = file_data->file_names[j];
3772
3773 if (filename_cmp (this_fullname, fullname) == 0)
3774 {
3775 dw2_instantiate_symtab (per_cu, per_objfile, false);
3776 break;
3777 }
3778 }
3779 }
3780 }
3781
3782 static void
3783 dw2_expand_symtabs_matching_symbol
3784 (mapped_index_base &index,
3785 const lookup_name_info &lookup_name_in,
3786 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3787 enum search_domain kind,
3788 gdb::function_view<bool (offset_type)> match_callback,
3789 dwarf2_per_objfile *per_objfile);
3790
3791 static void
3792 dw2_expand_symtabs_matching_one
3793 (dwarf2_per_cu_data *per_cu,
3794 dwarf2_per_objfile *per_objfile,
3795 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3796 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3797
3798 static void
3799 dw2_map_matching_symbols
3800 (struct objfile *objfile,
3801 const lookup_name_info &name, domain_enum domain,
3802 int global,
3803 gdb::function_view<symbol_found_callback_ftype> callback,
3804 symbol_compare_ftype *ordered_compare)
3805 {
3806 /* Used for Ada. */
3807 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3808
3809 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3810
3811 if (per_objfile->per_bfd->index_table != nullptr)
3812 {
3813 mapped_index &index = *per_objfile->per_bfd->index_table;
3814
3815 const char *match_name = name.ada ().lookup_name ().c_str ();
3816 auto matcher = [&] (const char *symname)
3817 {
3818 if (ordered_compare == nullptr)
3819 return true;
3820 return ordered_compare (symname, match_name) == 0;
3821 };
3822
3823 dw2_expand_symtabs_matching_symbol (index, name, matcher, ALL_DOMAIN,
3824 [&] (offset_type namei)
3825 {
3826 struct dw2_symtab_iterator iter;
3827 struct dwarf2_per_cu_data *per_cu;
3828
3829 dw2_symtab_iter_init (&iter, per_objfile, block_kind, domain,
3830 namei);
3831 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3832 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
3833 nullptr);
3834 return true;
3835 }, per_objfile);
3836 }
3837 else
3838 {
3839 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3840 proceed assuming all symtabs have been read in. */
3841 }
3842
3843 for (compunit_symtab *cust : objfile->compunits ())
3844 {
3845 const struct block *block;
3846
3847 if (cust == NULL)
3848 continue;
3849 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3850 if (!iterate_over_symbols_terminated (block, name,
3851 domain, callback))
3852 return;
3853 }
3854 }
3855
3856 /* Starting from a search name, return the string that finds the upper
3857 bound of all strings that start with SEARCH_NAME in a sorted name
3858 list. Returns the empty string to indicate that the upper bound is
3859 the end of the list. */
3860
3861 static std::string
3862 make_sort_after_prefix_name (const char *search_name)
3863 {
3864 /* When looking to complete "func", we find the upper bound of all
3865 symbols that start with "func" by looking for where we'd insert
3866 the closest string that would follow "func" in lexicographical
3867 order. Usually, that's "func"-with-last-character-incremented,
3868 i.e. "fund". Mind non-ASCII characters, though. Usually those
3869 will be UTF-8 multi-byte sequences, but we can't be certain.
3870 Especially mind the 0xff character, which is a valid character in
3871 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3872 rule out compilers allowing it in identifiers. Note that
3873 conveniently, strcmp/strcasecmp are specified to compare
3874 characters interpreted as unsigned char. So what we do is treat
3875 the whole string as a base 256 number composed of a sequence of
3876 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3877 to 0, and carries 1 to the following more-significant position.
3878 If the very first character in SEARCH_NAME ends up incremented
3879 and carries/overflows, then the upper bound is the end of the
3880 list. The string after the empty string is also the empty
3881 string.
3882
3883 Some examples of this operation:
3884
3885 SEARCH_NAME => "+1" RESULT
3886
3887 "abc" => "abd"
3888 "ab\xff" => "ac"
3889 "\xff" "a" "\xff" => "\xff" "b"
3890 "\xff" => ""
3891 "\xff\xff" => ""
3892 "" => ""
3893
3894 Then, with these symbols for example:
3895
3896 func
3897 func1
3898 fund
3899
3900 completing "func" looks for symbols between "func" and
3901 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3902 which finds "func" and "func1", but not "fund".
3903
3904 And with:
3905
3906 funcÿ (Latin1 'ÿ' [0xff])
3907 funcÿ1
3908 fund
3909
3910 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3911 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3912
3913 And with:
3914
3915 ÿÿ (Latin1 'ÿ' [0xff])
3916 ÿÿ1
3917
3918 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3919 the end of the list.
3920 */
3921 std::string after = search_name;
3922 while (!after.empty () && (unsigned char) after.back () == 0xff)
3923 after.pop_back ();
3924 if (!after.empty ())
3925 after.back () = (unsigned char) after.back () + 1;
3926 return after;
3927 }
3928
3929 /* See declaration. */
3930
3931 std::pair<std::vector<name_component>::const_iterator,
3932 std::vector<name_component>::const_iterator>
3933 mapped_index_base::find_name_components_bounds
3934 (const lookup_name_info &lookup_name_without_params, language lang,
3935 dwarf2_per_objfile *per_objfile) const
3936 {
3937 auto *name_cmp
3938 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3939
3940 const char *lang_name
3941 = lookup_name_without_params.language_lookup_name (lang);
3942
3943 /* Comparison function object for lower_bound that matches against a
3944 given symbol name. */
3945 auto lookup_compare_lower = [&] (const name_component &elem,
3946 const char *name)
3947 {
3948 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3949 const char *elem_name = elem_qualified + elem.name_offset;
3950 return name_cmp (elem_name, name) < 0;
3951 };
3952
3953 /* Comparison function object for upper_bound that matches against a
3954 given symbol name. */
3955 auto lookup_compare_upper = [&] (const char *name,
3956 const name_component &elem)
3957 {
3958 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3959 const char *elem_name = elem_qualified + elem.name_offset;
3960 return name_cmp (name, elem_name) < 0;
3961 };
3962
3963 auto begin = this->name_components.begin ();
3964 auto end = this->name_components.end ();
3965
3966 /* Find the lower bound. */
3967 auto lower = [&] ()
3968 {
3969 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3970 return begin;
3971 else
3972 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3973 } ();
3974
3975 /* Find the upper bound. */
3976 auto upper = [&] ()
3977 {
3978 if (lookup_name_without_params.completion_mode ())
3979 {
3980 /* In completion mode, we want UPPER to point past all
3981 symbols names that have the same prefix. I.e., with
3982 these symbols, and completing "func":
3983
3984 function << lower bound
3985 function1
3986 other_function << upper bound
3987
3988 We find the upper bound by looking for the insertion
3989 point of "func"-with-last-character-incremented,
3990 i.e. "fund". */
3991 std::string after = make_sort_after_prefix_name (lang_name);
3992 if (after.empty ())
3993 return end;
3994 return std::lower_bound (lower, end, after.c_str (),
3995 lookup_compare_lower);
3996 }
3997 else
3998 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3999 } ();
4000
4001 return {lower, upper};
4002 }
4003
4004 /* See declaration. */
4005
4006 void
4007 mapped_index_base::build_name_components (dwarf2_per_objfile *per_objfile)
4008 {
4009 if (!this->name_components.empty ())
4010 return;
4011
4012 this->name_components_casing = case_sensitivity;
4013 auto *name_cmp
4014 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4015
4016 /* The code below only knows how to break apart components of C++
4017 symbol names (and other languages that use '::' as
4018 namespace/module separator) and Ada symbol names. */
4019 auto count = this->symbol_name_count ();
4020 for (offset_type idx = 0; idx < count; idx++)
4021 {
4022 if (this->symbol_name_slot_invalid (idx))
4023 continue;
4024
4025 const char *name = this->symbol_name_at (idx, per_objfile);
4026
4027 /* Add each name component to the name component table. */
4028 unsigned int previous_len = 0;
4029
4030 if (strstr (name, "::") != nullptr)
4031 {
4032 for (unsigned int current_len = cp_find_first_component (name);
4033 name[current_len] != '\0';
4034 current_len += cp_find_first_component (name + current_len))
4035 {
4036 gdb_assert (name[current_len] == ':');
4037 this->name_components.push_back ({previous_len, idx});
4038 /* Skip the '::'. */
4039 current_len += 2;
4040 previous_len = current_len;
4041 }
4042 }
4043 else
4044 {
4045 /* Handle the Ada encoded (aka mangled) form here. */
4046 for (const char *iter = strstr (name, "__");
4047 iter != nullptr;
4048 iter = strstr (iter, "__"))
4049 {
4050 this->name_components.push_back ({previous_len, idx});
4051 iter += 2;
4052 previous_len = iter - name;
4053 }
4054 }
4055
4056 this->name_components.push_back ({previous_len, idx});
4057 }
4058
4059 /* Sort name_components elements by name. */
4060 auto name_comp_compare = [&] (const name_component &left,
4061 const name_component &right)
4062 {
4063 const char *left_qualified
4064 = this->symbol_name_at (left.idx, per_objfile);
4065 const char *right_qualified
4066 = this->symbol_name_at (right.idx, per_objfile);
4067
4068 const char *left_name = left_qualified + left.name_offset;
4069 const char *right_name = right_qualified + right.name_offset;
4070
4071 return name_cmp (left_name, right_name) < 0;
4072 };
4073
4074 std::sort (this->name_components.begin (),
4075 this->name_components.end (),
4076 name_comp_compare);
4077 }
4078
4079 /* Helper for dw2_expand_symtabs_matching that works with a
4080 mapped_index_base instead of the containing objfile. This is split
4081 to a separate function in order to be able to unit test the
4082 name_components matching using a mock mapped_index_base. For each
4083 symbol name that matches, calls MATCH_CALLBACK, passing it the
4084 symbol's index in the mapped_index_base symbol table. */
4085
4086 static void
4087 dw2_expand_symtabs_matching_symbol
4088 (mapped_index_base &index,
4089 const lookup_name_info &lookup_name_in,
4090 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4091 enum search_domain kind,
4092 gdb::function_view<bool (offset_type)> match_callback,
4093 dwarf2_per_objfile *per_objfile)
4094 {
4095 lookup_name_info lookup_name_without_params
4096 = lookup_name_in.make_ignore_params ();
4097
4098 /* Build the symbol name component sorted vector, if we haven't
4099 yet. */
4100 index.build_name_components (per_objfile);
4101
4102 /* The same symbol may appear more than once in the range though.
4103 E.g., if we're looking for symbols that complete "w", and we have
4104 a symbol named "w1::w2", we'll find the two name components for
4105 that same symbol in the range. To be sure we only call the
4106 callback once per symbol, we first collect the symbol name
4107 indexes that matched in a temporary vector and ignore
4108 duplicates. */
4109 std::vector<offset_type> matches;
4110
4111 struct name_and_matcher
4112 {
4113 symbol_name_matcher_ftype *matcher;
4114 const char *name;
4115
4116 bool operator== (const name_and_matcher &other) const
4117 {
4118 return matcher == other.matcher && strcmp (name, other.name) == 0;
4119 }
4120 };
4121
4122 /* A vector holding all the different symbol name matchers, for all
4123 languages. */
4124 std::vector<name_and_matcher> matchers;
4125
4126 for (int i = 0; i < nr_languages; i++)
4127 {
4128 enum language lang_e = (enum language) i;
4129
4130 const language_defn *lang = language_def (lang_e);
4131 symbol_name_matcher_ftype *name_matcher
4132 = lang->get_symbol_name_matcher (lookup_name_without_params);
4133
4134 name_and_matcher key {
4135 name_matcher,
4136 lookup_name_without_params.language_lookup_name (lang_e)
4137 };
4138
4139 /* Don't insert the same comparison routine more than once.
4140 Note that we do this linear walk. This is not a problem in
4141 practice because the number of supported languages is
4142 low. */
4143 if (std::find (matchers.begin (), matchers.end (), key)
4144 != matchers.end ())
4145 continue;
4146 matchers.push_back (std::move (key));
4147
4148 auto bounds
4149 = index.find_name_components_bounds (lookup_name_without_params,
4150 lang_e, per_objfile);
4151
4152 /* Now for each symbol name in range, check to see if we have a name
4153 match, and if so, call the MATCH_CALLBACK callback. */
4154
4155 for (; bounds.first != bounds.second; ++bounds.first)
4156 {
4157 const char *qualified
4158 = index.symbol_name_at (bounds.first->idx, per_objfile);
4159
4160 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4161 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4162 continue;
4163
4164 matches.push_back (bounds.first->idx);
4165 }
4166 }
4167
4168 std::sort (matches.begin (), matches.end ());
4169
4170 /* Finally call the callback, once per match. */
4171 ULONGEST prev = -1;
4172 for (offset_type idx : matches)
4173 {
4174 if (prev != idx)
4175 {
4176 if (!match_callback (idx))
4177 break;
4178 prev = idx;
4179 }
4180 }
4181
4182 /* Above we use a type wider than idx's for 'prev', since 0 and
4183 (offset_type)-1 are both possible values. */
4184 static_assert (sizeof (prev) > sizeof (offset_type), "");
4185 }
4186
4187 #if GDB_SELF_TEST
4188
4189 namespace selftests { namespace dw2_expand_symtabs_matching {
4190
4191 /* A mock .gdb_index/.debug_names-like name index table, enough to
4192 exercise dw2_expand_symtabs_matching_symbol, which works with the
4193 mapped_index_base interface. Builds an index from the symbol list
4194 passed as parameter to the constructor. */
4195 class mock_mapped_index : public mapped_index_base
4196 {
4197 public:
4198 mock_mapped_index (gdb::array_view<const char *> symbols)
4199 : m_symbol_table (symbols)
4200 {}
4201
4202 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4203
4204 /* Return the number of names in the symbol table. */
4205 size_t symbol_name_count () const override
4206 {
4207 return m_symbol_table.size ();
4208 }
4209
4210 /* Get the name of the symbol at IDX in the symbol table. */
4211 const char *symbol_name_at
4212 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
4213 {
4214 return m_symbol_table[idx];
4215 }
4216
4217 private:
4218 gdb::array_view<const char *> m_symbol_table;
4219 };
4220
4221 /* Convenience function that converts a NULL pointer to a "<null>"
4222 string, to pass to print routines. */
4223
4224 static const char *
4225 string_or_null (const char *str)
4226 {
4227 return str != NULL ? str : "<null>";
4228 }
4229
4230 /* Check if a lookup_name_info built from
4231 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4232 index. EXPECTED_LIST is the list of expected matches, in expected
4233 matching order. If no match expected, then an empty list is
4234 specified. Returns true on success. On failure prints a warning
4235 indicating the file:line that failed, and returns false. */
4236
4237 static bool
4238 check_match (const char *file, int line,
4239 mock_mapped_index &mock_index,
4240 const char *name, symbol_name_match_type match_type,
4241 bool completion_mode,
4242 std::initializer_list<const char *> expected_list,
4243 dwarf2_per_objfile *per_objfile)
4244 {
4245 lookup_name_info lookup_name (name, match_type, completion_mode);
4246
4247 bool matched = true;
4248
4249 auto mismatch = [&] (const char *expected_str,
4250 const char *got)
4251 {
4252 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4253 "expected=\"%s\", got=\"%s\"\n"),
4254 file, line,
4255 (match_type == symbol_name_match_type::FULL
4256 ? "FULL" : "WILD"),
4257 name, string_or_null (expected_str), string_or_null (got));
4258 matched = false;
4259 };
4260
4261 auto expected_it = expected_list.begin ();
4262 auto expected_end = expected_list.end ();
4263
4264 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4265 NULL, ALL_DOMAIN,
4266 [&] (offset_type idx)
4267 {
4268 const char *matched_name = mock_index.symbol_name_at (idx, per_objfile);
4269 const char *expected_str
4270 = expected_it == expected_end ? NULL : *expected_it++;
4271
4272 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4273 mismatch (expected_str, matched_name);
4274 return true;
4275 }, per_objfile);
4276
4277 const char *expected_str
4278 = expected_it == expected_end ? NULL : *expected_it++;
4279 if (expected_str != NULL)
4280 mismatch (expected_str, NULL);
4281
4282 return matched;
4283 }
4284
4285 /* The symbols added to the mock mapped_index for testing (in
4286 canonical form). */
4287 static const char *test_symbols[] = {
4288 "function",
4289 "std::bar",
4290 "std::zfunction",
4291 "std::zfunction2",
4292 "w1::w2",
4293 "ns::foo<char*>",
4294 "ns::foo<int>",
4295 "ns::foo<long>",
4296 "ns2::tmpl<int>::foo2",
4297 "(anonymous namespace)::A::B::C",
4298
4299 /* These are used to check that the increment-last-char in the
4300 matching algorithm for completion doesn't match "t1_fund" when
4301 completing "t1_func". */
4302 "t1_func",
4303 "t1_func1",
4304 "t1_fund",
4305 "t1_fund1",
4306
4307 /* A UTF-8 name with multi-byte sequences to make sure that
4308 cp-name-parser understands this as a single identifier ("função"
4309 is "function" in PT). */
4310 u8"u8função",
4311
4312 /* \377 (0xff) is Latin1 'ÿ'. */
4313 "yfunc\377",
4314
4315 /* \377 (0xff) is Latin1 'ÿ'. */
4316 "\377",
4317 "\377\377123",
4318
4319 /* A name with all sorts of complications. Starts with "z" to make
4320 it easier for the completion tests below. */
4321 #define Z_SYM_NAME \
4322 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4323 "::tuple<(anonymous namespace)::ui*, " \
4324 "std::default_delete<(anonymous namespace)::ui>, void>"
4325
4326 Z_SYM_NAME
4327 };
4328
4329 /* Returns true if the mapped_index_base::find_name_component_bounds
4330 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4331 in completion mode. */
4332
4333 static bool
4334 check_find_bounds_finds (mapped_index_base &index,
4335 const char *search_name,
4336 gdb::array_view<const char *> expected_syms,
4337 dwarf2_per_objfile *per_objfile)
4338 {
4339 lookup_name_info lookup_name (search_name,
4340 symbol_name_match_type::FULL, true);
4341
4342 auto bounds = index.find_name_components_bounds (lookup_name,
4343 language_cplus,
4344 per_objfile);
4345
4346 size_t distance = std::distance (bounds.first, bounds.second);
4347 if (distance != expected_syms.size ())
4348 return false;
4349
4350 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4351 {
4352 auto nc_elem = bounds.first + exp_elem;
4353 const char *qualified = index.symbol_name_at (nc_elem->idx, per_objfile);
4354 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4355 return false;
4356 }
4357
4358 return true;
4359 }
4360
4361 /* Test the lower-level mapped_index::find_name_component_bounds
4362 method. */
4363
4364 static void
4365 test_mapped_index_find_name_component_bounds ()
4366 {
4367 mock_mapped_index mock_index (test_symbols);
4368
4369 mock_index.build_name_components (NULL /* per_objfile */);
4370
4371 /* Test the lower-level mapped_index::find_name_component_bounds
4372 method in completion mode. */
4373 {
4374 static const char *expected_syms[] = {
4375 "t1_func",
4376 "t1_func1",
4377 };
4378
4379 SELF_CHECK (check_find_bounds_finds
4380 (mock_index, "t1_func", expected_syms,
4381 NULL /* per_objfile */));
4382 }
4383
4384 /* Check that the increment-last-char in the name matching algorithm
4385 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4386 {
4387 static const char *expected_syms1[] = {
4388 "\377",
4389 "\377\377123",
4390 };
4391 SELF_CHECK (check_find_bounds_finds
4392 (mock_index, "\377", expected_syms1, NULL /* per_objfile */));
4393
4394 static const char *expected_syms2[] = {
4395 "\377\377123",
4396 };
4397 SELF_CHECK (check_find_bounds_finds
4398 (mock_index, "\377\377", expected_syms2,
4399 NULL /* per_objfile */));
4400 }
4401 }
4402
4403 /* Test dw2_expand_symtabs_matching_symbol. */
4404
4405 static void
4406 test_dw2_expand_symtabs_matching_symbol ()
4407 {
4408 mock_mapped_index mock_index (test_symbols);
4409
4410 /* We let all tests run until the end even if some fails, for debug
4411 convenience. */
4412 bool any_mismatch = false;
4413
4414 /* Create the expected symbols list (an initializer_list). Needed
4415 because lists have commas, and we need to pass them to CHECK,
4416 which is a macro. */
4417 #define EXPECT(...) { __VA_ARGS__ }
4418
4419 /* Wrapper for check_match that passes down the current
4420 __FILE__/__LINE__. */
4421 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4422 any_mismatch |= !check_match (__FILE__, __LINE__, \
4423 mock_index, \
4424 NAME, MATCH_TYPE, COMPLETION_MODE, \
4425 EXPECTED_LIST, NULL)
4426
4427 /* Identity checks. */
4428 for (const char *sym : test_symbols)
4429 {
4430 /* Should be able to match all existing symbols. */
4431 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4432 EXPECT (sym));
4433
4434 /* Should be able to match all existing symbols with
4435 parameters. */
4436 std::string with_params = std::string (sym) + "(int)";
4437 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4438 EXPECT (sym));
4439
4440 /* Should be able to match all existing symbols with
4441 parameters and qualifiers. */
4442 with_params = std::string (sym) + " ( int ) const";
4443 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4444 EXPECT (sym));
4445
4446 /* This should really find sym, but cp-name-parser.y doesn't
4447 know about lvalue/rvalue qualifiers yet. */
4448 with_params = std::string (sym) + " ( int ) &&";
4449 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4450 {});
4451 }
4452
4453 /* Check that the name matching algorithm for completion doesn't get
4454 confused with Latin1 'ÿ' / 0xff. */
4455 {
4456 static const char str[] = "\377";
4457 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4458 EXPECT ("\377", "\377\377123"));
4459 }
4460
4461 /* Check that the increment-last-char in the matching algorithm for
4462 completion doesn't match "t1_fund" when completing "t1_func". */
4463 {
4464 static const char str[] = "t1_func";
4465 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4466 EXPECT ("t1_func", "t1_func1"));
4467 }
4468
4469 /* Check that completion mode works at each prefix of the expected
4470 symbol name. */
4471 {
4472 static const char str[] = "function(int)";
4473 size_t len = strlen (str);
4474 std::string lookup;
4475
4476 for (size_t i = 1; i < len; i++)
4477 {
4478 lookup.assign (str, i);
4479 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4480 EXPECT ("function"));
4481 }
4482 }
4483
4484 /* While "w" is a prefix of both components, the match function
4485 should still only be called once. */
4486 {
4487 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4488 EXPECT ("w1::w2"));
4489 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4490 EXPECT ("w1::w2"));
4491 }
4492
4493 /* Same, with a "complicated" symbol. */
4494 {
4495 static const char str[] = Z_SYM_NAME;
4496 size_t len = strlen (str);
4497 std::string lookup;
4498
4499 for (size_t i = 1; i < len; i++)
4500 {
4501 lookup.assign (str, i);
4502 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4503 EXPECT (Z_SYM_NAME));
4504 }
4505 }
4506
4507 /* In FULL mode, an incomplete symbol doesn't match. */
4508 {
4509 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4510 {});
4511 }
4512
4513 /* A complete symbol with parameters matches any overload, since the
4514 index has no overload info. */
4515 {
4516 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4517 EXPECT ("std::zfunction", "std::zfunction2"));
4518 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4519 EXPECT ("std::zfunction", "std::zfunction2"));
4520 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4521 EXPECT ("std::zfunction", "std::zfunction2"));
4522 }
4523
4524 /* Check that whitespace is ignored appropriately. A symbol with a
4525 template argument list. */
4526 {
4527 static const char expected[] = "ns::foo<int>";
4528 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4529 EXPECT (expected));
4530 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4531 EXPECT (expected));
4532 }
4533
4534 /* Check that whitespace is ignored appropriately. A symbol with a
4535 template argument list that includes a pointer. */
4536 {
4537 static const char expected[] = "ns::foo<char*>";
4538 /* Try both completion and non-completion modes. */
4539 static const bool completion_mode[2] = {false, true};
4540 for (size_t i = 0; i < 2; i++)
4541 {
4542 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4543 completion_mode[i], EXPECT (expected));
4544 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4545 completion_mode[i], EXPECT (expected));
4546
4547 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4548 completion_mode[i], EXPECT (expected));
4549 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4550 completion_mode[i], EXPECT (expected));
4551 }
4552 }
4553
4554 {
4555 /* Check method qualifiers are ignored. */
4556 static const char expected[] = "ns::foo<char*>";
4557 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4558 symbol_name_match_type::FULL, true, EXPECT (expected));
4559 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4560 symbol_name_match_type::FULL, true, EXPECT (expected));
4561 CHECK_MATCH ("foo < char * > ( int ) const",
4562 symbol_name_match_type::WILD, true, EXPECT (expected));
4563 CHECK_MATCH ("foo < char * > ( int ) &&",
4564 symbol_name_match_type::WILD, true, EXPECT (expected));
4565 }
4566
4567 /* Test lookup names that don't match anything. */
4568 {
4569 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4570 {});
4571
4572 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4573 {});
4574 }
4575
4576 /* Some wild matching tests, exercising "(anonymous namespace)",
4577 which should not be confused with a parameter list. */
4578 {
4579 static const char *syms[] = {
4580 "A::B::C",
4581 "B::C",
4582 "C",
4583 "A :: B :: C ( int )",
4584 "B :: C ( int )",
4585 "C ( int )",
4586 };
4587
4588 for (const char *s : syms)
4589 {
4590 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4591 EXPECT ("(anonymous namespace)::A::B::C"));
4592 }
4593 }
4594
4595 {
4596 static const char expected[] = "ns2::tmpl<int>::foo2";
4597 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4598 EXPECT (expected));
4599 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4600 EXPECT (expected));
4601 }
4602
4603 SELF_CHECK (!any_mismatch);
4604
4605 #undef EXPECT
4606 #undef CHECK_MATCH
4607 }
4608
4609 static void
4610 run_test ()
4611 {
4612 test_mapped_index_find_name_component_bounds ();
4613 test_dw2_expand_symtabs_matching_symbol ();
4614 }
4615
4616 }} // namespace selftests::dw2_expand_symtabs_matching
4617
4618 #endif /* GDB_SELF_TEST */
4619
4620 /* If FILE_MATCHER is NULL or if PER_CU has
4621 dwarf2_per_cu_quick_data::MARK set (see
4622 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4623 EXPANSION_NOTIFY on it. */
4624
4625 static void
4626 dw2_expand_symtabs_matching_one
4627 (dwarf2_per_cu_data *per_cu,
4628 dwarf2_per_objfile *per_objfile,
4629 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4630 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4631 {
4632 if (file_matcher == NULL || per_cu->v.quick->mark)
4633 {
4634 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4635
4636 compunit_symtab *symtab
4637 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4638 gdb_assert (symtab != nullptr);
4639
4640 if (expansion_notify != NULL && symtab_was_null)
4641 expansion_notify (symtab);
4642 }
4643 }
4644
4645 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4646 matched, to expand corresponding CUs that were marked. IDX is the
4647 index of the symbol name that matched. */
4648
4649 static void
4650 dw2_expand_marked_cus
4651 (dwarf2_per_objfile *per_objfile, offset_type idx,
4652 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4653 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4654 search_domain kind)
4655 {
4656 offset_type *vec, vec_len, vec_idx;
4657 bool global_seen = false;
4658 mapped_index &index = *per_objfile->per_bfd->index_table;
4659
4660 vec = (offset_type *) (index.constant_pool
4661 + MAYBE_SWAP (index.symbol_table[idx].vec));
4662 vec_len = MAYBE_SWAP (vec[0]);
4663 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4664 {
4665 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4666 /* This value is only valid for index versions >= 7. */
4667 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4668 gdb_index_symbol_kind symbol_kind =
4669 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4670 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4671 /* Only check the symbol attributes if they're present.
4672 Indices prior to version 7 don't record them,
4673 and indices >= 7 may elide them for certain symbols
4674 (gold does this). */
4675 int attrs_valid =
4676 (index.version >= 7
4677 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4678
4679 /* Work around gold/15646. */
4680 if (attrs_valid
4681 && !is_static
4682 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
4683 {
4684 if (global_seen)
4685 continue;
4686
4687 global_seen = true;
4688 }
4689
4690 /* Only check the symbol's kind if it has one. */
4691 if (attrs_valid)
4692 {
4693 switch (kind)
4694 {
4695 case VARIABLES_DOMAIN:
4696 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4697 continue;
4698 break;
4699 case FUNCTIONS_DOMAIN:
4700 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4701 continue;
4702 break;
4703 case TYPES_DOMAIN:
4704 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4705 continue;
4706 break;
4707 case MODULES_DOMAIN:
4708 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4709 continue;
4710 break;
4711 default:
4712 break;
4713 }
4714 }
4715
4716 /* Don't crash on bad data. */
4717 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
4718 + per_objfile->per_bfd->all_type_units.size ()))
4719 {
4720 complaint (_(".gdb_index entry has bad CU index"
4721 " [in module %s]"), objfile_name (per_objfile->objfile));
4722 continue;
4723 }
4724
4725 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
4726 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
4727 expansion_notify);
4728 }
4729 }
4730
4731 /* If FILE_MATCHER is non-NULL, set all the
4732 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4733 that match FILE_MATCHER. */
4734
4735 static void
4736 dw_expand_symtabs_matching_file_matcher
4737 (dwarf2_per_objfile *per_objfile,
4738 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4739 {
4740 if (file_matcher == NULL)
4741 return;
4742
4743 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4744 htab_eq_pointer,
4745 NULL, xcalloc, xfree));
4746 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4747 htab_eq_pointer,
4748 NULL, xcalloc, xfree));
4749
4750 /* The rule is CUs specify all the files, including those used by
4751 any TU, so there's no need to scan TUs here. */
4752
4753 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4754 {
4755 QUIT;
4756
4757 per_cu->v.quick->mark = 0;
4758
4759 /* We only need to look at symtabs not already expanded. */
4760 if (per_objfile->symtab_set_p (per_cu))
4761 continue;
4762
4763 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
4764 if (file_data == NULL)
4765 continue;
4766
4767 if (htab_find (visited_not_found.get (), file_data) != NULL)
4768 continue;
4769 else if (htab_find (visited_found.get (), file_data) != NULL)
4770 {
4771 per_cu->v.quick->mark = 1;
4772 continue;
4773 }
4774
4775 for (int j = 0; j < file_data->num_file_names; ++j)
4776 {
4777 const char *this_real_name;
4778
4779 if (file_matcher (file_data->file_names[j], false))
4780 {
4781 per_cu->v.quick->mark = 1;
4782 break;
4783 }
4784
4785 /* Before we invoke realpath, which can get expensive when many
4786 files are involved, do a quick comparison of the basenames. */
4787 if (!basenames_may_differ
4788 && !file_matcher (lbasename (file_data->file_names[j]),
4789 true))
4790 continue;
4791
4792 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
4793 if (file_matcher (this_real_name, false))
4794 {
4795 per_cu->v.quick->mark = 1;
4796 break;
4797 }
4798 }
4799
4800 void **slot = htab_find_slot (per_cu->v.quick->mark
4801 ? visited_found.get ()
4802 : visited_not_found.get (),
4803 file_data, INSERT);
4804 *slot = file_data;
4805 }
4806 }
4807
4808 static void
4809 dw2_expand_symtabs_matching
4810 (struct objfile *objfile,
4811 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4812 const lookup_name_info *lookup_name,
4813 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4814 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4815 enum search_domain kind)
4816 {
4817 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4818
4819 /* index_table is NULL if OBJF_READNOW. */
4820 if (!per_objfile->per_bfd->index_table)
4821 return;
4822
4823 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
4824
4825 if (symbol_matcher == NULL && lookup_name == NULL)
4826 {
4827 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4828 {
4829 QUIT;
4830
4831 dw2_expand_symtabs_matching_one (per_cu, per_objfile,
4832 file_matcher, expansion_notify);
4833 }
4834 return;
4835 }
4836
4837 mapped_index &index = *per_objfile->per_bfd->index_table;
4838
4839 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4840 symbol_matcher,
4841 kind, [&] (offset_type idx)
4842 {
4843 dw2_expand_marked_cus (per_objfile, idx, file_matcher, expansion_notify,
4844 kind);
4845 return true;
4846 }, per_objfile);
4847 }
4848
4849 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4850 symtab. */
4851
4852 static struct compunit_symtab *
4853 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4854 CORE_ADDR pc)
4855 {
4856 int i;
4857
4858 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4859 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4860 return cust;
4861
4862 if (cust->includes == NULL)
4863 return NULL;
4864
4865 for (i = 0; cust->includes[i]; ++i)
4866 {
4867 struct compunit_symtab *s = cust->includes[i];
4868
4869 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4870 if (s != NULL)
4871 return s;
4872 }
4873
4874 return NULL;
4875 }
4876
4877 static struct compunit_symtab *
4878 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4879 struct bound_minimal_symbol msymbol,
4880 CORE_ADDR pc,
4881 struct obj_section *section,
4882 int warn_if_readin)
4883 {
4884 struct dwarf2_per_cu_data *data;
4885 struct compunit_symtab *result;
4886
4887 if (!objfile->partial_symtabs->psymtabs_addrmap)
4888 return NULL;
4889
4890 CORE_ADDR baseaddr = objfile->text_section_offset ();
4891 data = (struct dwarf2_per_cu_data *) addrmap_find
4892 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4893 if (!data)
4894 return NULL;
4895
4896 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4897 if (warn_if_readin && per_objfile->symtab_set_p (data))
4898 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4899 paddress (objfile->arch (), pc));
4900
4901 result = recursively_find_pc_sect_compunit_symtab
4902 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4903
4904 gdb_assert (result != NULL);
4905 return result;
4906 }
4907
4908 static void
4909 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4910 void *data, int need_fullname)
4911 {
4912 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4913
4914 if (!per_objfile->per_bfd->filenames_cache)
4915 {
4916 per_objfile->per_bfd->filenames_cache.emplace ();
4917
4918 htab_up visited (htab_create_alloc (10,
4919 htab_hash_pointer, htab_eq_pointer,
4920 NULL, xcalloc, xfree));
4921
4922 /* The rule is CUs specify all the files, including those used
4923 by any TU, so there's no need to scan TUs here. We can
4924 ignore file names coming from already-expanded CUs. */
4925
4926 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4927 {
4928 if (per_objfile->symtab_set_p (per_cu))
4929 {
4930 void **slot = htab_find_slot (visited.get (),
4931 per_cu->v.quick->file_names,
4932 INSERT);
4933
4934 *slot = per_cu->v.quick->file_names;
4935 }
4936 }
4937
4938 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4939 {
4940 /* We only need to look at symtabs not already expanded. */
4941 if (per_objfile->symtab_set_p (per_cu))
4942 continue;
4943
4944 quick_file_names *file_data
4945 = dw2_get_file_names (per_cu, per_objfile);
4946 if (file_data == NULL)
4947 continue;
4948
4949 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4950 if (*slot)
4951 {
4952 /* Already visited. */
4953 continue;
4954 }
4955 *slot = file_data;
4956
4957 for (int j = 0; j < file_data->num_file_names; ++j)
4958 {
4959 const char *filename = file_data->file_names[j];
4960 per_objfile->per_bfd->filenames_cache->seen (filename);
4961 }
4962 }
4963 }
4964
4965 per_objfile->per_bfd->filenames_cache->traverse ([&] (const char *filename)
4966 {
4967 gdb::unique_xmalloc_ptr<char> this_real_name;
4968
4969 if (need_fullname)
4970 this_real_name = gdb_realpath (filename);
4971 (*fun) (filename, this_real_name.get (), data);
4972 });
4973 }
4974
4975 static int
4976 dw2_has_symbols (struct objfile *objfile)
4977 {
4978 return 1;
4979 }
4980
4981 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4982 {
4983 dw2_has_symbols,
4984 dw2_find_last_source_symtab,
4985 dw2_forget_cached_source_info,
4986 dw2_map_symtabs_matching_filename,
4987 dw2_lookup_symbol,
4988 NULL,
4989 dw2_print_stats,
4990 dw2_dump,
4991 dw2_expand_symtabs_for_function,
4992 dw2_expand_all_symtabs,
4993 dw2_expand_symtabs_with_fullname,
4994 dw2_map_matching_symbols,
4995 dw2_expand_symtabs_matching,
4996 dw2_find_pc_sect_compunit_symtab,
4997 NULL,
4998 dw2_map_symbol_filenames
4999 };
5000
5001 /* DWARF-5 debug_names reader. */
5002
5003 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5004 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5005
5006 /* A helper function that reads the .debug_names section in SECTION
5007 and fills in MAP. FILENAME is the name of the file containing the
5008 section; it is used for error reporting.
5009
5010 Returns true if all went well, false otherwise. */
5011
5012 static bool
5013 read_debug_names_from_section (struct objfile *objfile,
5014 const char *filename,
5015 struct dwarf2_section_info *section,
5016 mapped_debug_names &map)
5017 {
5018 if (section->empty ())
5019 return false;
5020
5021 /* Older elfutils strip versions could keep the section in the main
5022 executable while splitting it for the separate debug info file. */
5023 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5024 return false;
5025
5026 section->read (objfile);
5027
5028 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
5029
5030 const gdb_byte *addr = section->buffer;
5031
5032 bfd *const abfd = section->get_bfd_owner ();
5033
5034 unsigned int bytes_read;
5035 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5036 addr += bytes_read;
5037
5038 map.dwarf5_is_dwarf64 = bytes_read != 4;
5039 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5040 if (bytes_read + length != section->size)
5041 {
5042 /* There may be multiple per-CU indices. */
5043 warning (_("Section .debug_names in %s length %s does not match "
5044 "section length %s, ignoring .debug_names."),
5045 filename, plongest (bytes_read + length),
5046 pulongest (section->size));
5047 return false;
5048 }
5049
5050 /* The version number. */
5051 uint16_t version = read_2_bytes (abfd, addr);
5052 addr += 2;
5053 if (version != 5)
5054 {
5055 warning (_("Section .debug_names in %s has unsupported version %d, "
5056 "ignoring .debug_names."),
5057 filename, version);
5058 return false;
5059 }
5060
5061 /* Padding. */
5062 uint16_t padding = read_2_bytes (abfd, addr);
5063 addr += 2;
5064 if (padding != 0)
5065 {
5066 warning (_("Section .debug_names in %s has unsupported padding %d, "
5067 "ignoring .debug_names."),
5068 filename, padding);
5069 return false;
5070 }
5071
5072 /* comp_unit_count - The number of CUs in the CU list. */
5073 map.cu_count = read_4_bytes (abfd, addr);
5074 addr += 4;
5075
5076 /* local_type_unit_count - The number of TUs in the local TU
5077 list. */
5078 map.tu_count = read_4_bytes (abfd, addr);
5079 addr += 4;
5080
5081 /* foreign_type_unit_count - The number of TUs in the foreign TU
5082 list. */
5083 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5084 addr += 4;
5085 if (foreign_tu_count != 0)
5086 {
5087 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5088 "ignoring .debug_names."),
5089 filename, static_cast<unsigned long> (foreign_tu_count));
5090 return false;
5091 }
5092
5093 /* bucket_count - The number of hash buckets in the hash lookup
5094 table. */
5095 map.bucket_count = read_4_bytes (abfd, addr);
5096 addr += 4;
5097
5098 /* name_count - The number of unique names in the index. */
5099 map.name_count = read_4_bytes (abfd, addr);
5100 addr += 4;
5101
5102 /* abbrev_table_size - The size in bytes of the abbreviations
5103 table. */
5104 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5105 addr += 4;
5106
5107 /* augmentation_string_size - The size in bytes of the augmentation
5108 string. This value is rounded up to a multiple of 4. */
5109 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5110 addr += 4;
5111 map.augmentation_is_gdb = ((augmentation_string_size
5112 == sizeof (dwarf5_augmentation))
5113 && memcmp (addr, dwarf5_augmentation,
5114 sizeof (dwarf5_augmentation)) == 0);
5115 augmentation_string_size += (-augmentation_string_size) & 3;
5116 addr += augmentation_string_size;
5117
5118 /* List of CUs */
5119 map.cu_table_reordered = addr;
5120 addr += map.cu_count * map.offset_size;
5121
5122 /* List of Local TUs */
5123 map.tu_table_reordered = addr;
5124 addr += map.tu_count * map.offset_size;
5125
5126 /* Hash Lookup Table */
5127 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5128 addr += map.bucket_count * 4;
5129 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5130 addr += map.name_count * 4;
5131
5132 /* Name Table */
5133 map.name_table_string_offs_reordered = addr;
5134 addr += map.name_count * map.offset_size;
5135 map.name_table_entry_offs_reordered = addr;
5136 addr += map.name_count * map.offset_size;
5137
5138 const gdb_byte *abbrev_table_start = addr;
5139 for (;;)
5140 {
5141 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5142 addr += bytes_read;
5143 if (index_num == 0)
5144 break;
5145
5146 const auto insertpair
5147 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5148 if (!insertpair.second)
5149 {
5150 warning (_("Section .debug_names in %s has duplicate index %s, "
5151 "ignoring .debug_names."),
5152 filename, pulongest (index_num));
5153 return false;
5154 }
5155 mapped_debug_names::index_val &indexval = insertpair.first->second;
5156 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5157 addr += bytes_read;
5158
5159 for (;;)
5160 {
5161 mapped_debug_names::index_val::attr attr;
5162 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5163 addr += bytes_read;
5164 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5165 addr += bytes_read;
5166 if (attr.form == DW_FORM_implicit_const)
5167 {
5168 attr.implicit_const = read_signed_leb128 (abfd, addr,
5169 &bytes_read);
5170 addr += bytes_read;
5171 }
5172 if (attr.dw_idx == 0 && attr.form == 0)
5173 break;
5174 indexval.attr_vec.push_back (std::move (attr));
5175 }
5176 }
5177 if (addr != abbrev_table_start + abbrev_table_size)
5178 {
5179 warning (_("Section .debug_names in %s has abbreviation_table "
5180 "of size %s vs. written as %u, ignoring .debug_names."),
5181 filename, plongest (addr - abbrev_table_start),
5182 abbrev_table_size);
5183 return false;
5184 }
5185 map.entry_pool = addr;
5186
5187 return true;
5188 }
5189
5190 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5191 list. */
5192
5193 static void
5194 create_cus_from_debug_names_list (dwarf2_per_bfd *per_bfd,
5195 const mapped_debug_names &map,
5196 dwarf2_section_info &section,
5197 bool is_dwz)
5198 {
5199 if (!map.augmentation_is_gdb)
5200 {
5201 for (uint32_t i = 0; i < map.cu_count; ++i)
5202 {
5203 sect_offset sect_off
5204 = (sect_offset) (extract_unsigned_integer
5205 (map.cu_table_reordered + i * map.offset_size,
5206 map.offset_size,
5207 map.dwarf5_byte_order));
5208 /* We don't know the length of the CU, because the CU list in a
5209 .debug_names index can be incomplete, so we can't use the start of
5210 the next CU as end of this CU. We create the CUs here with length 0,
5211 and in cutu_reader::cutu_reader we'll fill in the actual length. */
5212 dwarf2_per_cu_data *per_cu
5213 = create_cu_from_index_list (per_bfd, &section, is_dwz, sect_off, 0);
5214 per_bfd->all_comp_units.push_back (per_cu);
5215 }
5216 }
5217
5218 sect_offset sect_off_prev;
5219 for (uint32_t i = 0; i <= map.cu_count; ++i)
5220 {
5221 sect_offset sect_off_next;
5222 if (i < map.cu_count)
5223 {
5224 sect_off_next
5225 = (sect_offset) (extract_unsigned_integer
5226 (map.cu_table_reordered + i * map.offset_size,
5227 map.offset_size,
5228 map.dwarf5_byte_order));
5229 }
5230 else
5231 sect_off_next = (sect_offset) section.size;
5232 if (i >= 1)
5233 {
5234 const ULONGEST length = sect_off_next - sect_off_prev;
5235 dwarf2_per_cu_data *per_cu
5236 = create_cu_from_index_list (per_bfd, &section, is_dwz,
5237 sect_off_prev, length);
5238 per_bfd->all_comp_units.push_back (per_cu);
5239 }
5240 sect_off_prev = sect_off_next;
5241 }
5242 }
5243
5244 /* Read the CU list from the mapped index, and use it to create all
5245 the CU objects for this dwarf2_per_objfile. */
5246
5247 static void
5248 create_cus_from_debug_names (dwarf2_per_bfd *per_bfd,
5249 const mapped_debug_names &map,
5250 const mapped_debug_names &dwz_map)
5251 {
5252 gdb_assert (per_bfd->all_comp_units.empty ());
5253 per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5254
5255 create_cus_from_debug_names_list (per_bfd, map, per_bfd->info,
5256 false /* is_dwz */);
5257
5258 if (dwz_map.cu_count == 0)
5259 return;
5260
5261 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5262 create_cus_from_debug_names_list (per_bfd, dwz_map, dwz->info,
5263 true /* is_dwz */);
5264 }
5265
5266 /* Read .debug_names. If everything went ok, initialize the "quick"
5267 elements of all the CUs and return true. Otherwise, return false. */
5268
5269 static bool
5270 dwarf2_read_debug_names (dwarf2_per_objfile *per_objfile)
5271 {
5272 std::unique_ptr<mapped_debug_names> map (new mapped_debug_names);
5273 mapped_debug_names dwz_map;
5274 struct objfile *objfile = per_objfile->objfile;
5275 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5276
5277 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5278 &per_objfile->per_bfd->debug_names, *map))
5279 return false;
5280
5281 /* Don't use the index if it's empty. */
5282 if (map->name_count == 0)
5283 return false;
5284
5285 /* If there is a .dwz file, read it so we can get its CU list as
5286 well. */
5287 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5288 if (dwz != NULL)
5289 {
5290 if (!read_debug_names_from_section (objfile,
5291 bfd_get_filename (dwz->dwz_bfd.get ()),
5292 &dwz->debug_names, dwz_map))
5293 {
5294 warning (_("could not read '.debug_names' section from %s; skipping"),
5295 bfd_get_filename (dwz->dwz_bfd.get ()));
5296 return false;
5297 }
5298 }
5299
5300 create_cus_from_debug_names (per_bfd, *map, dwz_map);
5301
5302 if (map->tu_count != 0)
5303 {
5304 /* We can only handle a single .debug_types when we have an
5305 index. */
5306 if (per_bfd->types.size () != 1)
5307 return false;
5308
5309 dwarf2_section_info *section = &per_bfd->types[0];
5310
5311 create_signatured_type_table_from_debug_names
5312 (per_objfile, *map, section, &per_bfd->abbrev);
5313 }
5314
5315 create_addrmap_from_aranges (per_objfile, &per_bfd->debug_aranges);
5316
5317 per_bfd->debug_names_table = std::move (map);
5318 per_bfd->using_index = 1;
5319 per_bfd->quick_file_names_table =
5320 create_quick_file_names_table (per_objfile->per_bfd->all_comp_units.size ());
5321
5322 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
5323 objfiles using the same BFD. */
5324 gdb_assert (per_bfd->partial_symtabs == nullptr);
5325 per_bfd->partial_symtabs = objfile->partial_symtabs;
5326
5327 return true;
5328 }
5329
5330 /* Type used to manage iterating over all CUs looking for a symbol for
5331 .debug_names. */
5332
5333 class dw2_debug_names_iterator
5334 {
5335 public:
5336 dw2_debug_names_iterator (const mapped_debug_names &map,
5337 gdb::optional<block_enum> block_index,
5338 domain_enum domain,
5339 const char *name, dwarf2_per_objfile *per_objfile)
5340 : m_map (map), m_block_index (block_index), m_domain (domain),
5341 m_addr (find_vec_in_debug_names (map, name, per_objfile)),
5342 m_per_objfile (per_objfile)
5343 {}
5344
5345 dw2_debug_names_iterator (const mapped_debug_names &map,
5346 search_domain search, uint32_t namei, dwarf2_per_objfile *per_objfile)
5347 : m_map (map),
5348 m_search (search),
5349 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5350 m_per_objfile (per_objfile)
5351 {}
5352
5353 dw2_debug_names_iterator (const mapped_debug_names &map,
5354 block_enum block_index, domain_enum domain,
5355 uint32_t namei, dwarf2_per_objfile *per_objfile)
5356 : m_map (map), m_block_index (block_index), m_domain (domain),
5357 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5358 m_per_objfile (per_objfile)
5359 {}
5360
5361 /* Return the next matching CU or NULL if there are no more. */
5362 dwarf2_per_cu_data *next ();
5363
5364 private:
5365 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5366 const char *name,
5367 dwarf2_per_objfile *per_objfile);
5368 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5369 uint32_t namei,
5370 dwarf2_per_objfile *per_objfile);
5371
5372 /* The internalized form of .debug_names. */
5373 const mapped_debug_names &m_map;
5374
5375 /* If set, only look for symbols that match that block. Valid values are
5376 GLOBAL_BLOCK and STATIC_BLOCK. */
5377 const gdb::optional<block_enum> m_block_index;
5378
5379 /* The kind of symbol we're looking for. */
5380 const domain_enum m_domain = UNDEF_DOMAIN;
5381 const search_domain m_search = ALL_DOMAIN;
5382
5383 /* The list of CUs from the index entry of the symbol, or NULL if
5384 not found. */
5385 const gdb_byte *m_addr;
5386
5387 dwarf2_per_objfile *m_per_objfile;
5388 };
5389
5390 const char *
5391 mapped_debug_names::namei_to_name
5392 (uint32_t namei, dwarf2_per_objfile *per_objfile) const
5393 {
5394 const ULONGEST namei_string_offs
5395 = extract_unsigned_integer ((name_table_string_offs_reordered
5396 + namei * offset_size),
5397 offset_size,
5398 dwarf5_byte_order);
5399 return read_indirect_string_at_offset (per_objfile, namei_string_offs);
5400 }
5401
5402 /* Find a slot in .debug_names for the object named NAME. If NAME is
5403 found, return pointer to its pool data. If NAME cannot be found,
5404 return NULL. */
5405
5406 const gdb_byte *
5407 dw2_debug_names_iterator::find_vec_in_debug_names
5408 (const mapped_debug_names &map, const char *name,
5409 dwarf2_per_objfile *per_objfile)
5410 {
5411 int (*cmp) (const char *, const char *);
5412
5413 gdb::unique_xmalloc_ptr<char> without_params;
5414 if (current_language->la_language == language_cplus
5415 || current_language->la_language == language_fortran
5416 || current_language->la_language == language_d)
5417 {
5418 /* NAME is already canonical. Drop any qualifiers as
5419 .debug_names does not contain any. */
5420
5421 if (strchr (name, '(') != NULL)
5422 {
5423 without_params = cp_remove_params (name);
5424 if (without_params != NULL)
5425 name = without_params.get ();
5426 }
5427 }
5428
5429 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5430
5431 const uint32_t full_hash = dwarf5_djb_hash (name);
5432 uint32_t namei
5433 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5434 (map.bucket_table_reordered
5435 + (full_hash % map.bucket_count)), 4,
5436 map.dwarf5_byte_order);
5437 if (namei == 0)
5438 return NULL;
5439 --namei;
5440 if (namei >= map.name_count)
5441 {
5442 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5443 "[in module %s]"),
5444 namei, map.name_count,
5445 objfile_name (per_objfile->objfile));
5446 return NULL;
5447 }
5448
5449 for (;;)
5450 {
5451 const uint32_t namei_full_hash
5452 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5453 (map.hash_table_reordered + namei), 4,
5454 map.dwarf5_byte_order);
5455 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5456 return NULL;
5457
5458 if (full_hash == namei_full_hash)
5459 {
5460 const char *const namei_string = map.namei_to_name (namei, per_objfile);
5461
5462 #if 0 /* An expensive sanity check. */
5463 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5464 {
5465 complaint (_("Wrong .debug_names hash for string at index %u "
5466 "[in module %s]"),
5467 namei, objfile_name (dwarf2_per_objfile->objfile));
5468 return NULL;
5469 }
5470 #endif
5471
5472 if (cmp (namei_string, name) == 0)
5473 {
5474 const ULONGEST namei_entry_offs
5475 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5476 + namei * map.offset_size),
5477 map.offset_size, map.dwarf5_byte_order);
5478 return map.entry_pool + namei_entry_offs;
5479 }
5480 }
5481
5482 ++namei;
5483 if (namei >= map.name_count)
5484 return NULL;
5485 }
5486 }
5487
5488 const gdb_byte *
5489 dw2_debug_names_iterator::find_vec_in_debug_names
5490 (const mapped_debug_names &map, uint32_t namei, dwarf2_per_objfile *per_objfile)
5491 {
5492 if (namei >= map.name_count)
5493 {
5494 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5495 "[in module %s]"),
5496 namei, map.name_count,
5497 objfile_name (per_objfile->objfile));
5498 return NULL;
5499 }
5500
5501 const ULONGEST namei_entry_offs
5502 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5503 + namei * map.offset_size),
5504 map.offset_size, map.dwarf5_byte_order);
5505 return map.entry_pool + namei_entry_offs;
5506 }
5507
5508 /* See dw2_debug_names_iterator. */
5509
5510 dwarf2_per_cu_data *
5511 dw2_debug_names_iterator::next ()
5512 {
5513 if (m_addr == NULL)
5514 return NULL;
5515
5516 dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd;
5517 struct objfile *objfile = m_per_objfile->objfile;
5518 bfd *const abfd = objfile->obfd;
5519
5520 again:
5521
5522 unsigned int bytes_read;
5523 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5524 m_addr += bytes_read;
5525 if (abbrev == 0)
5526 return NULL;
5527
5528 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5529 if (indexval_it == m_map.abbrev_map.cend ())
5530 {
5531 complaint (_("Wrong .debug_names undefined abbrev code %s "
5532 "[in module %s]"),
5533 pulongest (abbrev), objfile_name (objfile));
5534 return NULL;
5535 }
5536 const mapped_debug_names::index_val &indexval = indexval_it->second;
5537 enum class symbol_linkage {
5538 unknown,
5539 static_,
5540 extern_,
5541 } symbol_linkage_ = symbol_linkage::unknown;
5542 dwarf2_per_cu_data *per_cu = NULL;
5543 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5544 {
5545 ULONGEST ull;
5546 switch (attr.form)
5547 {
5548 case DW_FORM_implicit_const:
5549 ull = attr.implicit_const;
5550 break;
5551 case DW_FORM_flag_present:
5552 ull = 1;
5553 break;
5554 case DW_FORM_udata:
5555 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5556 m_addr += bytes_read;
5557 break;
5558 case DW_FORM_ref4:
5559 ull = read_4_bytes (abfd, m_addr);
5560 m_addr += 4;
5561 break;
5562 case DW_FORM_ref8:
5563 ull = read_8_bytes (abfd, m_addr);
5564 m_addr += 8;
5565 break;
5566 case DW_FORM_ref_sig8:
5567 ull = read_8_bytes (abfd, m_addr);
5568 m_addr += 8;
5569 break;
5570 default:
5571 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5572 dwarf_form_name (attr.form),
5573 objfile_name (objfile));
5574 return NULL;
5575 }
5576 switch (attr.dw_idx)
5577 {
5578 case DW_IDX_compile_unit:
5579 /* Don't crash on bad data. */
5580 if (ull >= m_per_objfile->per_bfd->all_comp_units.size ())
5581 {
5582 complaint (_(".debug_names entry has bad CU index %s"
5583 " [in module %s]"),
5584 pulongest (ull),
5585 objfile_name (objfile));
5586 continue;
5587 }
5588 per_cu = per_bfd->get_cutu (ull);
5589 break;
5590 case DW_IDX_type_unit:
5591 /* Don't crash on bad data. */
5592 if (ull >= per_bfd->all_type_units.size ())
5593 {
5594 complaint (_(".debug_names entry has bad TU index %s"
5595 " [in module %s]"),
5596 pulongest (ull),
5597 objfile_name (objfile));
5598 continue;
5599 }
5600 per_cu = &per_bfd->get_tu (ull)->per_cu;
5601 break;
5602 case DW_IDX_die_offset:
5603 /* In a per-CU index (as opposed to a per-module index), index
5604 entries without CU attribute implicitly refer to the single CU. */
5605 if (per_cu == NULL)
5606 per_cu = per_bfd->get_cu (0);
5607 break;
5608 case DW_IDX_GNU_internal:
5609 if (!m_map.augmentation_is_gdb)
5610 break;
5611 symbol_linkage_ = symbol_linkage::static_;
5612 break;
5613 case DW_IDX_GNU_external:
5614 if (!m_map.augmentation_is_gdb)
5615 break;
5616 symbol_linkage_ = symbol_linkage::extern_;
5617 break;
5618 }
5619 }
5620
5621 /* Skip if already read in. */
5622 if (m_per_objfile->symtab_set_p (per_cu))
5623 goto again;
5624
5625 /* Check static vs global. */
5626 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5627 {
5628 const bool want_static = *m_block_index == STATIC_BLOCK;
5629 const bool symbol_is_static =
5630 symbol_linkage_ == symbol_linkage::static_;
5631 if (want_static != symbol_is_static)
5632 goto again;
5633 }
5634
5635 /* Match dw2_symtab_iter_next, symbol_kind
5636 and debug_names::psymbol_tag. */
5637 switch (m_domain)
5638 {
5639 case VAR_DOMAIN:
5640 switch (indexval.dwarf_tag)
5641 {
5642 case DW_TAG_variable:
5643 case DW_TAG_subprogram:
5644 /* Some types are also in VAR_DOMAIN. */
5645 case DW_TAG_typedef:
5646 case DW_TAG_structure_type:
5647 break;
5648 default:
5649 goto again;
5650 }
5651 break;
5652 case STRUCT_DOMAIN:
5653 switch (indexval.dwarf_tag)
5654 {
5655 case DW_TAG_typedef:
5656 case DW_TAG_structure_type:
5657 break;
5658 default:
5659 goto again;
5660 }
5661 break;
5662 case LABEL_DOMAIN:
5663 switch (indexval.dwarf_tag)
5664 {
5665 case 0:
5666 case DW_TAG_variable:
5667 break;
5668 default:
5669 goto again;
5670 }
5671 break;
5672 case MODULE_DOMAIN:
5673 switch (indexval.dwarf_tag)
5674 {
5675 case DW_TAG_module:
5676 break;
5677 default:
5678 goto again;
5679 }
5680 break;
5681 default:
5682 break;
5683 }
5684
5685 /* Match dw2_expand_symtabs_matching, symbol_kind and
5686 debug_names::psymbol_tag. */
5687 switch (m_search)
5688 {
5689 case VARIABLES_DOMAIN:
5690 switch (indexval.dwarf_tag)
5691 {
5692 case DW_TAG_variable:
5693 break;
5694 default:
5695 goto again;
5696 }
5697 break;
5698 case FUNCTIONS_DOMAIN:
5699 switch (indexval.dwarf_tag)
5700 {
5701 case DW_TAG_subprogram:
5702 break;
5703 default:
5704 goto again;
5705 }
5706 break;
5707 case TYPES_DOMAIN:
5708 switch (indexval.dwarf_tag)
5709 {
5710 case DW_TAG_typedef:
5711 case DW_TAG_structure_type:
5712 break;
5713 default:
5714 goto again;
5715 }
5716 break;
5717 case MODULES_DOMAIN:
5718 switch (indexval.dwarf_tag)
5719 {
5720 case DW_TAG_module:
5721 break;
5722 default:
5723 goto again;
5724 }
5725 default:
5726 break;
5727 }
5728
5729 return per_cu;
5730 }
5731
5732 static struct compunit_symtab *
5733 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5734 const char *name, domain_enum domain)
5735 {
5736 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5737
5738 const auto &mapp = per_objfile->per_bfd->debug_names_table;
5739 if (!mapp)
5740 {
5741 /* index is NULL if OBJF_READNOW. */
5742 return NULL;
5743 }
5744 const auto &map = *mapp;
5745
5746 dw2_debug_names_iterator iter (map, block_index, domain, name, per_objfile);
5747
5748 struct compunit_symtab *stab_best = NULL;
5749 struct dwarf2_per_cu_data *per_cu;
5750 while ((per_cu = iter.next ()) != NULL)
5751 {
5752 struct symbol *sym, *with_opaque = NULL;
5753 compunit_symtab *stab
5754 = dw2_instantiate_symtab (per_cu, per_objfile, false);
5755 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5756 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5757
5758 sym = block_find_symbol (block, name, domain,
5759 block_find_non_opaque_type_preferred,
5760 &with_opaque);
5761
5762 /* Some caution must be observed with overloaded functions and
5763 methods, since the index will not contain any overload
5764 information (but NAME might contain it). */
5765
5766 if (sym != NULL
5767 && strcmp_iw (sym->search_name (), name) == 0)
5768 return stab;
5769 if (with_opaque != NULL
5770 && strcmp_iw (with_opaque->search_name (), name) == 0)
5771 stab_best = stab;
5772
5773 /* Keep looking through other CUs. */
5774 }
5775
5776 return stab_best;
5777 }
5778
5779 /* This dumps minimal information about .debug_names. It is called
5780 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5781 uses this to verify that .debug_names has been loaded. */
5782
5783 static void
5784 dw2_debug_names_dump (struct objfile *objfile)
5785 {
5786 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5787
5788 gdb_assert (per_objfile->per_bfd->using_index);
5789 printf_filtered (".debug_names:");
5790 if (per_objfile->per_bfd->debug_names_table)
5791 printf_filtered (" exists\n");
5792 else
5793 printf_filtered (" faked for \"readnow\"\n");
5794 printf_filtered ("\n");
5795 }
5796
5797 static void
5798 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5799 const char *func_name)
5800 {
5801 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5802
5803 /* per_objfile->per_bfd->debug_names_table is NULL if OBJF_READNOW. */
5804 if (per_objfile->per_bfd->debug_names_table)
5805 {
5806 const mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5807
5808 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name,
5809 per_objfile);
5810
5811 struct dwarf2_per_cu_data *per_cu;
5812 while ((per_cu = iter.next ()) != NULL)
5813 dw2_instantiate_symtab (per_cu, per_objfile, false);
5814 }
5815 }
5816
5817 static void
5818 dw2_debug_names_map_matching_symbols
5819 (struct objfile *objfile,
5820 const lookup_name_info &name, domain_enum domain,
5821 int global,
5822 gdb::function_view<symbol_found_callback_ftype> callback,
5823 symbol_compare_ftype *ordered_compare)
5824 {
5825 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5826
5827 /* debug_names_table is NULL if OBJF_READNOW. */
5828 if (!per_objfile->per_bfd->debug_names_table)
5829 return;
5830
5831 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5832 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5833
5834 const char *match_name = name.ada ().lookup_name ().c_str ();
5835 auto matcher = [&] (const char *symname)
5836 {
5837 if (ordered_compare == nullptr)
5838 return true;
5839 return ordered_compare (symname, match_name) == 0;
5840 };
5841
5842 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5843 [&] (offset_type namei)
5844 {
5845 /* The name was matched, now expand corresponding CUs that were
5846 marked. */
5847 dw2_debug_names_iterator iter (map, block_kind, domain, namei,
5848 per_objfile);
5849
5850 struct dwarf2_per_cu_data *per_cu;
5851 while ((per_cu = iter.next ()) != NULL)
5852 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
5853 nullptr);
5854 return true;
5855 }, per_objfile);
5856
5857 /* It's a shame we couldn't do this inside the
5858 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5859 that have already been expanded. Instead, this loop matches what
5860 the psymtab code does. */
5861 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5862 {
5863 compunit_symtab *symtab = per_objfile->get_symtab (per_cu);
5864 if (symtab != nullptr)
5865 {
5866 const struct block *block
5867 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5868 if (!iterate_over_symbols_terminated (block, name,
5869 domain, callback))
5870 break;
5871 }
5872 }
5873 }
5874
5875 static void
5876 dw2_debug_names_expand_symtabs_matching
5877 (struct objfile *objfile,
5878 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5879 const lookup_name_info *lookup_name,
5880 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5881 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5882 enum search_domain kind)
5883 {
5884 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5885
5886 /* debug_names_table is NULL if OBJF_READNOW. */
5887 if (!per_objfile->per_bfd->debug_names_table)
5888 return;
5889
5890 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
5891
5892 if (symbol_matcher == NULL && lookup_name == NULL)
5893 {
5894 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5895 {
5896 QUIT;
5897
5898 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5899 expansion_notify);
5900 }
5901 return;
5902 }
5903
5904 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5905
5906 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5907 symbol_matcher,
5908 kind, [&] (offset_type namei)
5909 {
5910 /* The name was matched, now expand corresponding CUs that were
5911 marked. */
5912 dw2_debug_names_iterator iter (map, kind, namei, per_objfile);
5913
5914 struct dwarf2_per_cu_data *per_cu;
5915 while ((per_cu = iter.next ()) != NULL)
5916 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5917 expansion_notify);
5918 return true;
5919 }, per_objfile);
5920 }
5921
5922 const struct quick_symbol_functions dwarf2_debug_names_functions =
5923 {
5924 dw2_has_symbols,
5925 dw2_find_last_source_symtab,
5926 dw2_forget_cached_source_info,
5927 dw2_map_symtabs_matching_filename,
5928 dw2_debug_names_lookup_symbol,
5929 NULL,
5930 dw2_print_stats,
5931 dw2_debug_names_dump,
5932 dw2_debug_names_expand_symtabs_for_function,
5933 dw2_expand_all_symtabs,
5934 dw2_expand_symtabs_with_fullname,
5935 dw2_debug_names_map_matching_symbols,
5936 dw2_debug_names_expand_symtabs_matching,
5937 dw2_find_pc_sect_compunit_symtab,
5938 NULL,
5939 dw2_map_symbol_filenames
5940 };
5941
5942 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5943 to either a dwarf2_per_bfd or dwz_file object. */
5944
5945 template <typename T>
5946 static gdb::array_view<const gdb_byte>
5947 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5948 {
5949 dwarf2_section_info *section = &section_owner->gdb_index;
5950
5951 if (section->empty ())
5952 return {};
5953
5954 /* Older elfutils strip versions could keep the section in the main
5955 executable while splitting it for the separate debug info file. */
5956 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5957 return {};
5958
5959 section->read (obj);
5960
5961 /* dwarf2_section_info::size is a bfd_size_type, while
5962 gdb::array_view works with size_t. On 32-bit hosts, with
5963 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5964 is 32-bit. So we need an explicit narrowing conversion here.
5965 This is fine, because it's impossible to allocate or mmap an
5966 array/buffer larger than what size_t can represent. */
5967 return gdb::make_array_view (section->buffer, section->size);
5968 }
5969
5970 /* Lookup the index cache for the contents of the index associated to
5971 DWARF2_OBJ. */
5972
5973 static gdb::array_view<const gdb_byte>
5974 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5975 {
5976 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5977 if (build_id == nullptr)
5978 return {};
5979
5980 return global_index_cache.lookup_gdb_index (build_id,
5981 &dwarf2_per_bfd->index_cache_res);
5982 }
5983
5984 /* Same as the above, but for DWZ. */
5985
5986 static gdb::array_view<const gdb_byte>
5987 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5988 {
5989 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5990 if (build_id == nullptr)
5991 return {};
5992
5993 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5994 }
5995
5996 /* See symfile.h. */
5997
5998 bool
5999 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6000 {
6001 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
6002 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6003
6004 /* If we're about to read full symbols, don't bother with the
6005 indices. In this case we also don't care if some other debug
6006 format is making psymtabs, because they are all about to be
6007 expanded anyway. */
6008 if ((objfile->flags & OBJF_READNOW))
6009 {
6010 /* When using READNOW, the using_index flag (set below) indicates that
6011 PER_BFD was already initialized, when we loaded some other objfile. */
6012 if (per_bfd->using_index)
6013 {
6014 *index_kind = dw_index_kind::GDB_INDEX;
6015 per_objfile->resize_symtabs ();
6016 return true;
6017 }
6018
6019 per_bfd->using_index = 1;
6020 create_all_comp_units (per_objfile);
6021 create_all_type_units (per_objfile);
6022 per_bfd->quick_file_names_table
6023 = create_quick_file_names_table (per_bfd->all_comp_units.size ());
6024 per_objfile->resize_symtabs ();
6025
6026 for (int i = 0; i < (per_bfd->all_comp_units.size ()
6027 + per_bfd->all_type_units.size ()); ++i)
6028 {
6029 dwarf2_per_cu_data *per_cu = per_bfd->get_cutu (i);
6030
6031 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
6032 struct dwarf2_per_cu_quick_data);
6033 }
6034
6035 /* Return 1 so that gdb sees the "quick" functions. However,
6036 these functions will be no-ops because we will have expanded
6037 all symtabs. */
6038 *index_kind = dw_index_kind::GDB_INDEX;
6039 return true;
6040 }
6041
6042 /* Was a debug names index already read when we processed an objfile sharing
6043 PER_BFD? */
6044 if (per_bfd->debug_names_table != nullptr)
6045 {
6046 *index_kind = dw_index_kind::DEBUG_NAMES;
6047 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
6048 per_objfile->resize_symtabs ();
6049 return true;
6050 }
6051
6052 /* Was a GDB index already read when we processed an objfile sharing
6053 PER_BFD? */
6054 if (per_bfd->index_table != nullptr)
6055 {
6056 *index_kind = dw_index_kind::GDB_INDEX;
6057 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
6058 per_objfile->resize_symtabs ();
6059 return true;
6060 }
6061
6062 /* There might already be partial symtabs built for this BFD. This happens
6063 when loading the same binary twice with the index-cache enabled. If so,
6064 don't try to read an index. The objfile / per_objfile initialization will
6065 be completed in dwarf2_build_psymtabs, in the standard partial symtabs
6066 code path. */
6067 if (per_bfd->partial_symtabs != nullptr)
6068 return false;
6069
6070 if (dwarf2_read_debug_names (per_objfile))
6071 {
6072 *index_kind = dw_index_kind::DEBUG_NAMES;
6073 per_objfile->resize_symtabs ();
6074 return true;
6075 }
6076
6077 if (dwarf2_read_gdb_index (per_objfile,
6078 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
6079 get_gdb_index_contents_from_section<dwz_file>))
6080 {
6081 *index_kind = dw_index_kind::GDB_INDEX;
6082 per_objfile->resize_symtabs ();
6083 return true;
6084 }
6085
6086 /* ... otherwise, try to find the index in the index cache. */
6087 if (dwarf2_read_gdb_index (per_objfile,
6088 get_gdb_index_contents_from_cache,
6089 get_gdb_index_contents_from_cache_dwz))
6090 {
6091 global_index_cache.hit ();
6092 *index_kind = dw_index_kind::GDB_INDEX;
6093 per_objfile->resize_symtabs ();
6094 return true;
6095 }
6096
6097 global_index_cache.miss ();
6098 return false;
6099 }
6100
6101 \f
6102
6103 /* Build a partial symbol table. */
6104
6105 void
6106 dwarf2_build_psymtabs (struct objfile *objfile)
6107 {
6108 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
6109 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6110
6111 if (per_bfd->partial_symtabs != nullptr)
6112 {
6113 /* Partial symbols were already read, so now we can simply
6114 attach them. */
6115 objfile->partial_symtabs = per_bfd->partial_symtabs;
6116 per_objfile->resize_symtabs ();
6117 return;
6118 }
6119
6120 init_psymbol_list (objfile, 1024);
6121
6122 try
6123 {
6124 /* This isn't really ideal: all the data we allocate on the
6125 objfile's obstack is still uselessly kept around. However,
6126 freeing it seems unsafe. */
6127 psymtab_discarder psymtabs (objfile);
6128 dwarf2_build_psymtabs_hard (per_objfile);
6129 psymtabs.keep ();
6130
6131 per_objfile->resize_symtabs ();
6132
6133 /* (maybe) store an index in the cache. */
6134 global_index_cache.store (per_objfile);
6135 }
6136 catch (const gdb_exception_error &except)
6137 {
6138 exception_print (gdb_stderr, except);
6139 }
6140
6141 /* Finish by setting the local reference to partial symtabs, so that
6142 we don't try to read them again if reading another objfile with the same
6143 BFD. If we can't in fact share, this won't make a difference anyway as
6144 the dwarf2_per_bfd object won't be shared. */
6145 per_bfd->partial_symtabs = objfile->partial_symtabs;
6146 }
6147
6148 /* Find the base address of the compilation unit for range lists and
6149 location lists. It will normally be specified by DW_AT_low_pc.
6150 In DWARF-3 draft 4, the base address could be overridden by
6151 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6152 compilation units with discontinuous ranges. */
6153
6154 static void
6155 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6156 {
6157 struct attribute *attr;
6158
6159 cu->base_address.reset ();
6160
6161 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6162 if (attr != nullptr)
6163 cu->base_address = attr->as_address ();
6164 else
6165 {
6166 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6167 if (attr != nullptr)
6168 cu->base_address = attr->as_address ();
6169 }
6170 }
6171
6172 /* Helper function that returns the proper abbrev section for
6173 THIS_CU. */
6174
6175 static struct dwarf2_section_info *
6176 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6177 {
6178 struct dwarf2_section_info *abbrev;
6179 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
6180
6181 if (this_cu->is_dwz)
6182 abbrev = &dwarf2_get_dwz_file (per_bfd)->abbrev;
6183 else
6184 abbrev = &per_bfd->abbrev;
6185
6186 return abbrev;
6187 }
6188
6189 /* Fetch the abbreviation table offset from a comp or type unit header. */
6190
6191 static sect_offset
6192 read_abbrev_offset (dwarf2_per_objfile *per_objfile,
6193 struct dwarf2_section_info *section,
6194 sect_offset sect_off)
6195 {
6196 bfd *abfd = section->get_bfd_owner ();
6197 const gdb_byte *info_ptr;
6198 unsigned int initial_length_size, offset_size;
6199 uint16_t version;
6200
6201 section->read (per_objfile->objfile);
6202 info_ptr = section->buffer + to_underlying (sect_off);
6203 read_initial_length (abfd, info_ptr, &initial_length_size);
6204 offset_size = initial_length_size == 4 ? 4 : 8;
6205 info_ptr += initial_length_size;
6206
6207 version = read_2_bytes (abfd, info_ptr);
6208 info_ptr += 2;
6209 if (version >= 5)
6210 {
6211 /* Skip unit type and address size. */
6212 info_ptr += 2;
6213 }
6214
6215 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
6216 }
6217
6218 /* A partial symtab that is used only for include files. */
6219 struct dwarf2_include_psymtab : public partial_symtab
6220 {
6221 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
6222 : partial_symtab (filename, objfile)
6223 {
6224 }
6225
6226 void read_symtab (struct objfile *objfile) override
6227 {
6228 /* It's an include file, no symbols to read for it.
6229 Everything is in the includer symtab. */
6230
6231 /* The expansion of a dwarf2_include_psymtab is just a trigger for
6232 expansion of the includer psymtab. We use the dependencies[0] field to
6233 model the includer. But if we go the regular route of calling
6234 expand_psymtab here, and having expand_psymtab call expand_dependencies
6235 to expand the includer, we'll only use expand_psymtab on the includer
6236 (making it a non-toplevel psymtab), while if we expand the includer via
6237 another path, we'll use read_symtab (making it a toplevel psymtab).
6238 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
6239 psymtab, and trigger read_symtab on the includer here directly. */
6240 includer ()->read_symtab (objfile);
6241 }
6242
6243 void expand_psymtab (struct objfile *objfile) override
6244 {
6245 /* This is not called by read_symtab, and should not be called by any
6246 expand_dependencies. */
6247 gdb_assert (false);
6248 }
6249
6250 bool readin_p (struct objfile *objfile) const override
6251 {
6252 return includer ()->readin_p (objfile);
6253 }
6254
6255 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
6256 {
6257 return nullptr;
6258 }
6259
6260 private:
6261 partial_symtab *includer () const
6262 {
6263 /* An include psymtab has exactly one dependency: the psymtab that
6264 includes it. */
6265 gdb_assert (this->number_of_dependencies == 1);
6266 return this->dependencies[0];
6267 }
6268 };
6269
6270 /* Allocate a new partial symtab for file named NAME and mark this new
6271 partial symtab as being an include of PST. */
6272
6273 static void
6274 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6275 struct objfile *objfile)
6276 {
6277 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6278
6279 if (!IS_ABSOLUTE_PATH (subpst->filename))
6280 subpst->dirname = pst->dirname;
6281
6282 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6283 subpst->dependencies[0] = pst;
6284 subpst->number_of_dependencies = 1;
6285 }
6286
6287 /* Read the Line Number Program data and extract the list of files
6288 included by the source file represented by PST. Build an include
6289 partial symtab for each of these included files. */
6290
6291 static void
6292 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6293 struct die_info *die,
6294 dwarf2_psymtab *pst)
6295 {
6296 line_header_up lh;
6297 struct attribute *attr;
6298
6299 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6300 if (attr != nullptr && attr->form_is_unsigned ())
6301 lh = dwarf_decode_line_header ((sect_offset) attr->as_unsigned (), cu);
6302 if (lh == NULL)
6303 return; /* No linetable, so no includes. */
6304
6305 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6306 that we pass in the raw text_low here; that is ok because we're
6307 only decoding the line table to make include partial symtabs, and
6308 so the addresses aren't really used. */
6309 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6310 pst->raw_text_low (), 1);
6311 }
6312
6313 static hashval_t
6314 hash_signatured_type (const void *item)
6315 {
6316 const struct signatured_type *sig_type
6317 = (const struct signatured_type *) item;
6318
6319 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6320 return sig_type->signature;
6321 }
6322
6323 static int
6324 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6325 {
6326 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6327 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6328
6329 return lhs->signature == rhs->signature;
6330 }
6331
6332 /* Allocate a hash table for signatured types. */
6333
6334 static htab_up
6335 allocate_signatured_type_table ()
6336 {
6337 return htab_up (htab_create_alloc (41,
6338 hash_signatured_type,
6339 eq_signatured_type,
6340 NULL, xcalloc, xfree));
6341 }
6342
6343 /* A helper function to add a signatured type CU to a table. */
6344
6345 static int
6346 add_signatured_type_cu_to_table (void **slot, void *datum)
6347 {
6348 struct signatured_type *sigt = (struct signatured_type *) *slot;
6349 std::vector<signatured_type *> *all_type_units
6350 = (std::vector<signatured_type *> *) datum;
6351
6352 all_type_units->push_back (sigt);
6353
6354 return 1;
6355 }
6356
6357 /* A helper for create_debug_types_hash_table. Read types from SECTION
6358 and fill them into TYPES_HTAB. It will process only type units,
6359 therefore DW_UT_type. */
6360
6361 static void
6362 create_debug_type_hash_table (dwarf2_per_objfile *per_objfile,
6363 struct dwo_file *dwo_file,
6364 dwarf2_section_info *section, htab_up &types_htab,
6365 rcuh_kind section_kind)
6366 {
6367 struct objfile *objfile = per_objfile->objfile;
6368 struct dwarf2_section_info *abbrev_section;
6369 bfd *abfd;
6370 const gdb_byte *info_ptr, *end_ptr;
6371
6372 abbrev_section = (dwo_file != NULL
6373 ? &dwo_file->sections.abbrev
6374 : &per_objfile->per_bfd->abbrev);
6375
6376 if (dwarf_read_debug)
6377 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6378 section->get_name (),
6379 abbrev_section->get_file_name ());
6380
6381 section->read (objfile);
6382 info_ptr = section->buffer;
6383
6384 if (info_ptr == NULL)
6385 return;
6386
6387 /* We can't set abfd until now because the section may be empty or
6388 not present, in which case the bfd is unknown. */
6389 abfd = section->get_bfd_owner ();
6390
6391 /* We don't use cutu_reader here because we don't need to read
6392 any dies: the signature is in the header. */
6393
6394 end_ptr = info_ptr + section->size;
6395 while (info_ptr < end_ptr)
6396 {
6397 struct signatured_type *sig_type;
6398 struct dwo_unit *dwo_tu;
6399 void **slot;
6400 const gdb_byte *ptr = info_ptr;
6401 struct comp_unit_head header;
6402 unsigned int length;
6403
6404 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6405
6406 /* Initialize it due to a false compiler warning. */
6407 header.signature = -1;
6408 header.type_cu_offset_in_tu = (cu_offset) -1;
6409
6410 /* We need to read the type's signature in order to build the hash
6411 table, but we don't need anything else just yet. */
6412
6413 ptr = read_and_check_comp_unit_head (per_objfile, &header, section,
6414 abbrev_section, ptr, section_kind);
6415
6416 length = header.get_length ();
6417
6418 /* Skip dummy type units. */
6419 if (ptr >= info_ptr + length
6420 || peek_abbrev_code (abfd, ptr) == 0
6421 || (header.unit_type != DW_UT_type
6422 && header.unit_type != DW_UT_split_type))
6423 {
6424 info_ptr += length;
6425 continue;
6426 }
6427
6428 if (types_htab == NULL)
6429 {
6430 if (dwo_file)
6431 types_htab = allocate_dwo_unit_table ();
6432 else
6433 types_htab = allocate_signatured_type_table ();
6434 }
6435
6436 if (dwo_file)
6437 {
6438 sig_type = NULL;
6439 dwo_tu = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit);
6440 dwo_tu->dwo_file = dwo_file;
6441 dwo_tu->signature = header.signature;
6442 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6443 dwo_tu->section = section;
6444 dwo_tu->sect_off = sect_off;
6445 dwo_tu->length = length;
6446 }
6447 else
6448 {
6449 /* N.B.: type_offset is not usable if this type uses a DWO file.
6450 The real type_offset is in the DWO file. */
6451 dwo_tu = NULL;
6452 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6453 sig_type->signature = header.signature;
6454 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6455 sig_type->per_cu.is_debug_types = 1;
6456 sig_type->per_cu.section = section;
6457 sig_type->per_cu.sect_off = sect_off;
6458 sig_type->per_cu.length = length;
6459 }
6460
6461 slot = htab_find_slot (types_htab.get (),
6462 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6463 INSERT);
6464 gdb_assert (slot != NULL);
6465 if (*slot != NULL)
6466 {
6467 sect_offset dup_sect_off;
6468
6469 if (dwo_file)
6470 {
6471 const struct dwo_unit *dup_tu
6472 = (const struct dwo_unit *) *slot;
6473
6474 dup_sect_off = dup_tu->sect_off;
6475 }
6476 else
6477 {
6478 const struct signatured_type *dup_tu
6479 = (const struct signatured_type *) *slot;
6480
6481 dup_sect_off = dup_tu->per_cu.sect_off;
6482 }
6483
6484 complaint (_("debug type entry at offset %s is duplicate to"
6485 " the entry at offset %s, signature %s"),
6486 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6487 hex_string (header.signature));
6488 }
6489 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6490
6491 if (dwarf_read_debug > 1)
6492 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6493 sect_offset_str (sect_off),
6494 hex_string (header.signature));
6495
6496 info_ptr += length;
6497 }
6498 }
6499
6500 /* Create the hash table of all entries in the .debug_types
6501 (or .debug_types.dwo) section(s).
6502 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6503 otherwise it is NULL.
6504
6505 The result is a pointer to the hash table or NULL if there are no types.
6506
6507 Note: This function processes DWO files only, not DWP files. */
6508
6509 static void
6510 create_debug_types_hash_table (dwarf2_per_objfile *per_objfile,
6511 struct dwo_file *dwo_file,
6512 gdb::array_view<dwarf2_section_info> type_sections,
6513 htab_up &types_htab)
6514 {
6515 for (dwarf2_section_info &section : type_sections)
6516 create_debug_type_hash_table (per_objfile, dwo_file, &section, types_htab,
6517 rcuh_kind::TYPE);
6518 }
6519
6520 /* Create the hash table of all entries in the .debug_types section,
6521 and initialize all_type_units.
6522 The result is zero if there is an error (e.g. missing .debug_types section),
6523 otherwise non-zero. */
6524
6525 static int
6526 create_all_type_units (dwarf2_per_objfile *per_objfile)
6527 {
6528 htab_up types_htab;
6529
6530 create_debug_type_hash_table (per_objfile, NULL, &per_objfile->per_bfd->info,
6531 types_htab, rcuh_kind::COMPILE);
6532 create_debug_types_hash_table (per_objfile, NULL, per_objfile->per_bfd->types,
6533 types_htab);
6534 if (types_htab == NULL)
6535 {
6536 per_objfile->per_bfd->signatured_types = NULL;
6537 return 0;
6538 }
6539
6540 per_objfile->per_bfd->signatured_types = std::move (types_htab);
6541
6542 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
6543 per_objfile->per_bfd->all_type_units.reserve
6544 (htab_elements (per_objfile->per_bfd->signatured_types.get ()));
6545
6546 htab_traverse_noresize (per_objfile->per_bfd->signatured_types.get (),
6547 add_signatured_type_cu_to_table,
6548 &per_objfile->per_bfd->all_type_units);
6549
6550 return 1;
6551 }
6552
6553 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
6554 If SLOT is non-NULL, it is the entry to use in the hash table.
6555 Otherwise we find one. */
6556
6557 static struct signatured_type *
6558 add_type_unit (dwarf2_per_objfile *per_objfile, ULONGEST sig, void **slot)
6559 {
6560 if (per_objfile->per_bfd->all_type_units.size ()
6561 == per_objfile->per_bfd->all_type_units.capacity ())
6562 ++per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
6563
6564 signatured_type *sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6565
6566 per_objfile->resize_symtabs ();
6567
6568 per_objfile->per_bfd->all_type_units.push_back (sig_type);
6569 sig_type->signature = sig;
6570 sig_type->per_cu.is_debug_types = 1;
6571 if (per_objfile->per_bfd->using_index)
6572 {
6573 sig_type->per_cu.v.quick =
6574 OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
6575 struct dwarf2_per_cu_quick_data);
6576 }
6577
6578 if (slot == NULL)
6579 {
6580 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6581 sig_type, INSERT);
6582 }
6583 gdb_assert (*slot == NULL);
6584 *slot = sig_type;
6585 /* The rest of sig_type must be filled in by the caller. */
6586 return sig_type;
6587 }
6588
6589 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6590 Fill in SIG_ENTRY with DWO_ENTRY. */
6591
6592 static void
6593 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile,
6594 struct signatured_type *sig_entry,
6595 struct dwo_unit *dwo_entry)
6596 {
6597 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6598
6599 /* Make sure we're not clobbering something we don't expect to. */
6600 gdb_assert (! sig_entry->per_cu.queued);
6601 gdb_assert (per_objfile->get_cu (&sig_entry->per_cu) == NULL);
6602 if (per_bfd->using_index)
6603 {
6604 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6605 gdb_assert (!per_objfile->symtab_set_p (&sig_entry->per_cu));
6606 }
6607 else
6608 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6609 gdb_assert (sig_entry->signature == dwo_entry->signature);
6610 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6611 gdb_assert (sig_entry->type_unit_group == NULL);
6612 gdb_assert (sig_entry->dwo_unit == NULL);
6613
6614 sig_entry->per_cu.section = dwo_entry->section;
6615 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6616 sig_entry->per_cu.length = dwo_entry->length;
6617 sig_entry->per_cu.reading_dwo_directly = 1;
6618 sig_entry->per_cu.per_bfd = per_bfd;
6619 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6620 sig_entry->dwo_unit = dwo_entry;
6621 }
6622
6623 /* Subroutine of lookup_signatured_type.
6624 If we haven't read the TU yet, create the signatured_type data structure
6625 for a TU to be read in directly from a DWO file, bypassing the stub.
6626 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6627 using .gdb_index, then when reading a CU we want to stay in the DWO file
6628 containing that CU. Otherwise we could end up reading several other DWO
6629 files (due to comdat folding) to process the transitive closure of all the
6630 mentioned TUs, and that can be slow. The current DWO file will have every
6631 type signature that it needs.
6632 We only do this for .gdb_index because in the psymtab case we already have
6633 to read all the DWOs to build the type unit groups. */
6634
6635 static struct signatured_type *
6636 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6637 {
6638 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6639 struct dwo_file *dwo_file;
6640 struct dwo_unit find_dwo_entry, *dwo_entry;
6641 struct signatured_type find_sig_entry, *sig_entry;
6642 void **slot;
6643
6644 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6645
6646 /* If TU skeletons have been removed then we may not have read in any
6647 TUs yet. */
6648 if (per_objfile->per_bfd->signatured_types == NULL)
6649 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6650
6651 /* We only ever need to read in one copy of a signatured type.
6652 Use the global signatured_types array to do our own comdat-folding
6653 of types. If this is the first time we're reading this TU, and
6654 the TU has an entry in .gdb_index, replace the recorded data from
6655 .gdb_index with this TU. */
6656
6657 find_sig_entry.signature = sig;
6658 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6659 &find_sig_entry, INSERT);
6660 sig_entry = (struct signatured_type *) *slot;
6661
6662 /* We can get here with the TU already read, *or* in the process of being
6663 read. Don't reassign the global entry to point to this DWO if that's
6664 the case. Also note that if the TU is already being read, it may not
6665 have come from a DWO, the program may be a mix of Fission-compiled
6666 code and non-Fission-compiled code. */
6667
6668 /* Have we already tried to read this TU?
6669 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6670 needn't exist in the global table yet). */
6671 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6672 return sig_entry;
6673
6674 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6675 dwo_unit of the TU itself. */
6676 dwo_file = cu->dwo_unit->dwo_file;
6677
6678 /* Ok, this is the first time we're reading this TU. */
6679 if (dwo_file->tus == NULL)
6680 return NULL;
6681 find_dwo_entry.signature = sig;
6682 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6683 &find_dwo_entry);
6684 if (dwo_entry == NULL)
6685 return NULL;
6686
6687 /* If the global table doesn't have an entry for this TU, add one. */
6688 if (sig_entry == NULL)
6689 sig_entry = add_type_unit (per_objfile, sig, slot);
6690
6691 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6692 sig_entry->per_cu.tu_read = 1;
6693 return sig_entry;
6694 }
6695
6696 /* Subroutine of lookup_signatured_type.
6697 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6698 then try the DWP file. If the TU stub (skeleton) has been removed then
6699 it won't be in .gdb_index. */
6700
6701 static struct signatured_type *
6702 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6703 {
6704 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6705 struct dwp_file *dwp_file = get_dwp_file (per_objfile);
6706 struct dwo_unit *dwo_entry;
6707 struct signatured_type find_sig_entry, *sig_entry;
6708 void **slot;
6709
6710 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6711 gdb_assert (dwp_file != NULL);
6712
6713 /* If TU skeletons have been removed then we may not have read in any
6714 TUs yet. */
6715 if (per_objfile->per_bfd->signatured_types == NULL)
6716 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6717
6718 find_sig_entry.signature = sig;
6719 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6720 &find_sig_entry, INSERT);
6721 sig_entry = (struct signatured_type *) *slot;
6722
6723 /* Have we already tried to read this TU?
6724 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6725 needn't exist in the global table yet). */
6726 if (sig_entry != NULL)
6727 return sig_entry;
6728
6729 if (dwp_file->tus == NULL)
6730 return NULL;
6731 dwo_entry = lookup_dwo_unit_in_dwp (per_objfile, dwp_file, NULL, sig,
6732 1 /* is_debug_types */);
6733 if (dwo_entry == NULL)
6734 return NULL;
6735
6736 sig_entry = add_type_unit (per_objfile, sig, slot);
6737 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6738
6739 return sig_entry;
6740 }
6741
6742 /* Lookup a signature based type for DW_FORM_ref_sig8.
6743 Returns NULL if signature SIG is not present in the table.
6744 It is up to the caller to complain about this. */
6745
6746 static struct signatured_type *
6747 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6748 {
6749 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6750
6751 if (cu->dwo_unit && per_objfile->per_bfd->using_index)
6752 {
6753 /* We're in a DWO/DWP file, and we're using .gdb_index.
6754 These cases require special processing. */
6755 if (get_dwp_file (per_objfile) == NULL)
6756 return lookup_dwo_signatured_type (cu, sig);
6757 else
6758 return lookup_dwp_signatured_type (cu, sig);
6759 }
6760 else
6761 {
6762 struct signatured_type find_entry, *entry;
6763
6764 if (per_objfile->per_bfd->signatured_types == NULL)
6765 return NULL;
6766 find_entry.signature = sig;
6767 entry = ((struct signatured_type *)
6768 htab_find (per_objfile->per_bfd->signatured_types.get (),
6769 &find_entry));
6770 return entry;
6771 }
6772 }
6773
6774 /* Low level DIE reading support. */
6775
6776 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6777
6778 static void
6779 init_cu_die_reader (struct die_reader_specs *reader,
6780 struct dwarf2_cu *cu,
6781 struct dwarf2_section_info *section,
6782 struct dwo_file *dwo_file,
6783 struct abbrev_table *abbrev_table)
6784 {
6785 gdb_assert (section->readin && section->buffer != NULL);
6786 reader->abfd = section->get_bfd_owner ();
6787 reader->cu = cu;
6788 reader->dwo_file = dwo_file;
6789 reader->die_section = section;
6790 reader->buffer = section->buffer;
6791 reader->buffer_end = section->buffer + section->size;
6792 reader->abbrev_table = abbrev_table;
6793 }
6794
6795 /* Subroutine of cutu_reader to simplify it.
6796 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6797 There's just a lot of work to do, and cutu_reader is big enough
6798 already.
6799
6800 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6801 from it to the DIE in the DWO. If NULL we are skipping the stub.
6802 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6803 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6804 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6805 STUB_COMP_DIR may be non-NULL.
6806 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6807 are filled in with the info of the DIE from the DWO file.
6808 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6809 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6810 kept around for at least as long as *RESULT_READER.
6811
6812 The result is non-zero if a valid (non-dummy) DIE was found. */
6813
6814 static int
6815 read_cutu_die_from_dwo (dwarf2_cu *cu,
6816 struct dwo_unit *dwo_unit,
6817 struct die_info *stub_comp_unit_die,
6818 const char *stub_comp_dir,
6819 struct die_reader_specs *result_reader,
6820 const gdb_byte **result_info_ptr,
6821 struct die_info **result_comp_unit_die,
6822 abbrev_table_up *result_dwo_abbrev_table)
6823 {
6824 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6825 dwarf2_per_cu_data *per_cu = cu->per_cu;
6826 struct objfile *objfile = per_objfile->objfile;
6827 bfd *abfd;
6828 const gdb_byte *begin_info_ptr, *info_ptr;
6829 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6830 int i,num_extra_attrs;
6831 struct dwarf2_section_info *dwo_abbrev_section;
6832 struct die_info *comp_unit_die;
6833
6834 /* At most one of these may be provided. */
6835 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6836
6837 /* These attributes aren't processed until later:
6838 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6839 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6840 referenced later. However, these attributes are found in the stub
6841 which we won't have later. In order to not impose this complication
6842 on the rest of the code, we read them here and copy them to the
6843 DWO CU/TU die. */
6844
6845 stmt_list = NULL;
6846 low_pc = NULL;
6847 high_pc = NULL;
6848 ranges = NULL;
6849 comp_dir = NULL;
6850
6851 if (stub_comp_unit_die != NULL)
6852 {
6853 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6854 DWO file. */
6855 if (!per_cu->is_debug_types)
6856 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6857 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6858 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6859 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6860 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6861
6862 cu->addr_base = stub_comp_unit_die->addr_base ();
6863
6864 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6865 here (if needed). We need the value before we can process
6866 DW_AT_ranges. */
6867 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6868 }
6869 else if (stub_comp_dir != NULL)
6870 {
6871 /* Reconstruct the comp_dir attribute to simplify the code below. */
6872 comp_dir = OBSTACK_ZALLOC (&cu->comp_unit_obstack, struct attribute);
6873 comp_dir->name = DW_AT_comp_dir;
6874 comp_dir->form = DW_FORM_string;
6875 comp_dir->set_string_noncanonical (stub_comp_dir);
6876 }
6877
6878 /* Set up for reading the DWO CU/TU. */
6879 cu->dwo_unit = dwo_unit;
6880 dwarf2_section_info *section = dwo_unit->section;
6881 section->read (objfile);
6882 abfd = section->get_bfd_owner ();
6883 begin_info_ptr = info_ptr = (section->buffer
6884 + to_underlying (dwo_unit->sect_off));
6885 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6886
6887 if (per_cu->is_debug_types)
6888 {
6889 signatured_type *sig_type = (struct signatured_type *) per_cu;
6890
6891 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6892 section, dwo_abbrev_section,
6893 info_ptr, rcuh_kind::TYPE);
6894 /* This is not an assert because it can be caused by bad debug info. */
6895 if (sig_type->signature != cu->header.signature)
6896 {
6897 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6898 " TU at offset %s [in module %s]"),
6899 hex_string (sig_type->signature),
6900 hex_string (cu->header.signature),
6901 sect_offset_str (dwo_unit->sect_off),
6902 bfd_get_filename (abfd));
6903 }
6904 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6905 /* For DWOs coming from DWP files, we don't know the CU length
6906 nor the type's offset in the TU until now. */
6907 dwo_unit->length = cu->header.get_length ();
6908 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6909
6910 /* Establish the type offset that can be used to lookup the type.
6911 For DWO files, we don't know it until now. */
6912 sig_type->type_offset_in_section
6913 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6914 }
6915 else
6916 {
6917 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6918 section, dwo_abbrev_section,
6919 info_ptr, rcuh_kind::COMPILE);
6920 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6921 /* For DWOs coming from DWP files, we don't know the CU length
6922 until now. */
6923 dwo_unit->length = cu->header.get_length ();
6924 }
6925
6926 *result_dwo_abbrev_table
6927 = abbrev_table::read (objfile, dwo_abbrev_section,
6928 cu->header.abbrev_sect_off);
6929 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6930 result_dwo_abbrev_table->get ());
6931
6932 /* Read in the die, but leave space to copy over the attributes
6933 from the stub. This has the benefit of simplifying the rest of
6934 the code - all the work to maintain the illusion of a single
6935 DW_TAG_{compile,type}_unit DIE is done here. */
6936 num_extra_attrs = ((stmt_list != NULL)
6937 + (low_pc != NULL)
6938 + (high_pc != NULL)
6939 + (ranges != NULL)
6940 + (comp_dir != NULL));
6941 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6942 num_extra_attrs);
6943
6944 /* Copy over the attributes from the stub to the DIE we just read in. */
6945 comp_unit_die = *result_comp_unit_die;
6946 i = comp_unit_die->num_attrs;
6947 if (stmt_list != NULL)
6948 comp_unit_die->attrs[i++] = *stmt_list;
6949 if (low_pc != NULL)
6950 comp_unit_die->attrs[i++] = *low_pc;
6951 if (high_pc != NULL)
6952 comp_unit_die->attrs[i++] = *high_pc;
6953 if (ranges != NULL)
6954 comp_unit_die->attrs[i++] = *ranges;
6955 if (comp_dir != NULL)
6956 comp_unit_die->attrs[i++] = *comp_dir;
6957 comp_unit_die->num_attrs += num_extra_attrs;
6958
6959 if (dwarf_die_debug)
6960 {
6961 fprintf_unfiltered (gdb_stdlog,
6962 "Read die from %s@0x%x of %s:\n",
6963 section->get_name (),
6964 (unsigned) (begin_info_ptr - section->buffer),
6965 bfd_get_filename (abfd));
6966 dump_die (comp_unit_die, dwarf_die_debug);
6967 }
6968
6969 /* Skip dummy compilation units. */
6970 if (info_ptr >= begin_info_ptr + dwo_unit->length
6971 || peek_abbrev_code (abfd, info_ptr) == 0)
6972 return 0;
6973
6974 *result_info_ptr = info_ptr;
6975 return 1;
6976 }
6977
6978 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6979 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6980 signature is part of the header. */
6981 static gdb::optional<ULONGEST>
6982 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6983 {
6984 if (cu->header.version >= 5)
6985 return cu->header.signature;
6986 struct attribute *attr;
6987 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6988 if (attr == nullptr)
6989 return gdb::optional<ULONGEST> ();
6990 return DW_UNSND (attr);
6991 }
6992
6993 /* Subroutine of cutu_reader to simplify it.
6994 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6995 Returns NULL if the specified DWO unit cannot be found. */
6996
6997 static struct dwo_unit *
6998 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
6999 {
7000 dwarf2_per_cu_data *per_cu = cu->per_cu;
7001 struct dwo_unit *dwo_unit;
7002 const char *comp_dir;
7003
7004 gdb_assert (cu != NULL);
7005
7006 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7007 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7008 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7009
7010 if (per_cu->is_debug_types)
7011 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
7012 else
7013 {
7014 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7015
7016 if (!signature.has_value ())
7017 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7018 " [in module %s]"),
7019 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
7020
7021 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
7022 }
7023
7024 return dwo_unit;
7025 }
7026
7027 /* Subroutine of cutu_reader to simplify it.
7028 See it for a description of the parameters.
7029 Read a TU directly from a DWO file, bypassing the stub. */
7030
7031 void
7032 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
7033 dwarf2_per_objfile *per_objfile,
7034 dwarf2_cu *existing_cu)
7035 {
7036 struct signatured_type *sig_type;
7037
7038 /* Verify we can do the following downcast, and that we have the
7039 data we need. */
7040 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7041 sig_type = (struct signatured_type *) this_cu;
7042 gdb_assert (sig_type->dwo_unit != NULL);
7043
7044 dwarf2_cu *cu;
7045
7046 if (existing_cu != nullptr)
7047 {
7048 cu = existing_cu;
7049 gdb_assert (cu->dwo_unit == sig_type->dwo_unit);
7050 /* There's no need to do the rereading_dwo_cu handling that
7051 cutu_reader does since we don't read the stub. */
7052 }
7053 else
7054 {
7055 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
7056 in per_objfile yet. */
7057 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7058 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7059 cu = m_new_cu.get ();
7060 }
7061
7062 /* A future optimization, if needed, would be to use an existing
7063 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7064 could share abbrev tables. */
7065
7066 if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit,
7067 NULL /* stub_comp_unit_die */,
7068 sig_type->dwo_unit->dwo_file->comp_dir,
7069 this, &info_ptr,
7070 &comp_unit_die,
7071 &m_dwo_abbrev_table) == 0)
7072 {
7073 /* Dummy die. */
7074 dummy_p = true;
7075 }
7076 }
7077
7078 /* Initialize a CU (or TU) and read its DIEs.
7079 If the CU defers to a DWO file, read the DWO file as well.
7080
7081 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7082 Otherwise the table specified in the comp unit header is read in and used.
7083 This is an optimization for when we already have the abbrev table.
7084
7085 If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is
7086 allocated. */
7087
7088 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7089 dwarf2_per_objfile *per_objfile,
7090 struct abbrev_table *abbrev_table,
7091 dwarf2_cu *existing_cu,
7092 bool skip_partial)
7093 : die_reader_specs {},
7094 m_this_cu (this_cu)
7095 {
7096 struct objfile *objfile = per_objfile->objfile;
7097 struct dwarf2_section_info *section = this_cu->section;
7098 bfd *abfd = section->get_bfd_owner ();
7099 const gdb_byte *begin_info_ptr;
7100 struct signatured_type *sig_type = NULL;
7101 struct dwarf2_section_info *abbrev_section;
7102 /* Non-zero if CU currently points to a DWO file and we need to
7103 reread it. When this happens we need to reread the skeleton die
7104 before we can reread the DWO file (this only applies to CUs, not TUs). */
7105 int rereading_dwo_cu = 0;
7106
7107 if (dwarf_die_debug)
7108 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7109 this_cu->is_debug_types ? "type" : "comp",
7110 sect_offset_str (this_cu->sect_off));
7111
7112 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7113 file (instead of going through the stub), short-circuit all of this. */
7114 if (this_cu->reading_dwo_directly)
7115 {
7116 /* Narrow down the scope of possibilities to have to understand. */
7117 gdb_assert (this_cu->is_debug_types);
7118 gdb_assert (abbrev_table == NULL);
7119 init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu);
7120 return;
7121 }
7122
7123 /* This is cheap if the section is already read in. */
7124 section->read (objfile);
7125
7126 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7127
7128 abbrev_section = get_abbrev_section_for_cu (this_cu);
7129
7130 dwarf2_cu *cu;
7131
7132 if (existing_cu != nullptr)
7133 {
7134 cu = existing_cu;
7135 /* If this CU is from a DWO file we need to start over, we need to
7136 refetch the attributes from the skeleton CU.
7137 This could be optimized by retrieving those attributes from when we
7138 were here the first time: the previous comp_unit_die was stored in
7139 comp_unit_obstack. But there's no data yet that we need this
7140 optimization. */
7141 if (cu->dwo_unit != NULL)
7142 rereading_dwo_cu = 1;
7143 }
7144 else
7145 {
7146 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
7147 in per_objfile yet. */
7148 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7149 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7150 cu = m_new_cu.get ();
7151 }
7152
7153 /* Get the header. */
7154 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7155 {
7156 /* We already have the header, there's no need to read it in again. */
7157 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7158 }
7159 else
7160 {
7161 if (this_cu->is_debug_types)
7162 {
7163 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7164 section, abbrev_section,
7165 info_ptr, rcuh_kind::TYPE);
7166
7167 /* Since per_cu is the first member of struct signatured_type,
7168 we can go from a pointer to one to a pointer to the other. */
7169 sig_type = (struct signatured_type *) this_cu;
7170 gdb_assert (sig_type->signature == cu->header.signature);
7171 gdb_assert (sig_type->type_offset_in_tu
7172 == cu->header.type_cu_offset_in_tu);
7173 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7174
7175 /* LENGTH has not been set yet for type units if we're
7176 using .gdb_index. */
7177 this_cu->length = cu->header.get_length ();
7178
7179 /* Establish the type offset that can be used to lookup the type. */
7180 sig_type->type_offset_in_section =
7181 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7182
7183 this_cu->dwarf_version = cu->header.version;
7184 }
7185 else
7186 {
7187 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7188 section, abbrev_section,
7189 info_ptr,
7190 rcuh_kind::COMPILE);
7191
7192 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7193 if (this_cu->length == 0)
7194 this_cu->length = cu->header.get_length ();
7195 else
7196 gdb_assert (this_cu->length == cu->header.get_length ());
7197 this_cu->dwarf_version = cu->header.version;
7198 }
7199 }
7200
7201 /* Skip dummy compilation units. */
7202 if (info_ptr >= begin_info_ptr + this_cu->length
7203 || peek_abbrev_code (abfd, info_ptr) == 0)
7204 {
7205 dummy_p = true;
7206 return;
7207 }
7208
7209 /* If we don't have them yet, read the abbrevs for this compilation unit.
7210 And if we need to read them now, make sure they're freed when we're
7211 done. */
7212 if (abbrev_table != NULL)
7213 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7214 else
7215 {
7216 m_abbrev_table_holder
7217 = abbrev_table::read (objfile, abbrev_section,
7218 cu->header.abbrev_sect_off);
7219 abbrev_table = m_abbrev_table_holder.get ();
7220 }
7221
7222 /* Read the top level CU/TU die. */
7223 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7224 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7225
7226 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7227 {
7228 dummy_p = true;
7229 return;
7230 }
7231
7232 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7233 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7234 table from the DWO file and pass the ownership over to us. It will be
7235 referenced from READER, so we must make sure to free it after we're done
7236 with READER.
7237
7238 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7239 DWO CU, that this test will fail (the attribute will not be present). */
7240 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7241 if (dwo_name != nullptr)
7242 {
7243 struct dwo_unit *dwo_unit;
7244 struct die_info *dwo_comp_unit_die;
7245
7246 if (comp_unit_die->has_children)
7247 {
7248 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7249 " has children (offset %s) [in module %s]"),
7250 sect_offset_str (this_cu->sect_off),
7251 bfd_get_filename (abfd));
7252 }
7253 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
7254 if (dwo_unit != NULL)
7255 {
7256 if (read_cutu_die_from_dwo (cu, dwo_unit,
7257 comp_unit_die, NULL,
7258 this, &info_ptr,
7259 &dwo_comp_unit_die,
7260 &m_dwo_abbrev_table) == 0)
7261 {
7262 /* Dummy die. */
7263 dummy_p = true;
7264 return;
7265 }
7266 comp_unit_die = dwo_comp_unit_die;
7267 }
7268 else
7269 {
7270 /* Yikes, we couldn't find the rest of the DIE, we only have
7271 the stub. A complaint has already been logged. There's
7272 not much more we can do except pass on the stub DIE to
7273 die_reader_func. We don't want to throw an error on bad
7274 debug info. */
7275 }
7276 }
7277 }
7278
7279 void
7280 cutu_reader::keep ()
7281 {
7282 /* Done, clean up. */
7283 gdb_assert (!dummy_p);
7284 if (m_new_cu != NULL)
7285 {
7286 /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it
7287 now. */
7288 dwarf2_per_objfile *per_objfile = m_new_cu->per_objfile;
7289 per_objfile->set_cu (m_this_cu, m_new_cu.release ());
7290 }
7291 }
7292
7293 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7294 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7295 assumed to have already done the lookup to find the DWO file).
7296
7297 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7298 THIS_CU->is_debug_types, but nothing else.
7299
7300 We fill in THIS_CU->length.
7301
7302 THIS_CU->cu is always freed when done.
7303 This is done in order to not leave THIS_CU->cu in a state where we have
7304 to care whether it refers to the "main" CU or the DWO CU.
7305
7306 When parent_cu is passed, it is used to provide a default value for
7307 str_offsets_base and addr_base from the parent. */
7308
7309 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7310 dwarf2_per_objfile *per_objfile,
7311 struct dwarf2_cu *parent_cu,
7312 struct dwo_file *dwo_file)
7313 : die_reader_specs {},
7314 m_this_cu (this_cu)
7315 {
7316 struct objfile *objfile = per_objfile->objfile;
7317 struct dwarf2_section_info *section = this_cu->section;
7318 bfd *abfd = section->get_bfd_owner ();
7319 struct dwarf2_section_info *abbrev_section;
7320 const gdb_byte *begin_info_ptr, *info_ptr;
7321
7322 if (dwarf_die_debug)
7323 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7324 this_cu->is_debug_types ? "type" : "comp",
7325 sect_offset_str (this_cu->sect_off));
7326
7327 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7328
7329 abbrev_section = (dwo_file != NULL
7330 ? &dwo_file->sections.abbrev
7331 : get_abbrev_section_for_cu (this_cu));
7332
7333 /* This is cheap if the section is already read in. */
7334 section->read (objfile);
7335
7336 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7337
7338 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7339 info_ptr = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header,
7340 section, abbrev_section, info_ptr,
7341 (this_cu->is_debug_types
7342 ? rcuh_kind::TYPE
7343 : rcuh_kind::COMPILE));
7344
7345 if (parent_cu != nullptr)
7346 {
7347 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7348 m_new_cu->addr_base = parent_cu->addr_base;
7349 }
7350 this_cu->length = m_new_cu->header.get_length ();
7351
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + this_cu->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7355 {
7356 dummy_p = true;
7357 return;
7358 }
7359
7360 m_abbrev_table_holder
7361 = abbrev_table::read (objfile, abbrev_section,
7362 m_new_cu->header.abbrev_sect_off);
7363
7364 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7365 m_abbrev_table_holder.get ());
7366 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7367 }
7368
7369 \f
7370 /* Type Unit Groups.
7371
7372 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7373 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7374 so that all types coming from the same compilation (.o file) are grouped
7375 together. A future step could be to put the types in the same symtab as
7376 the CU the types ultimately came from. */
7377
7378 static hashval_t
7379 hash_type_unit_group (const void *item)
7380 {
7381 const struct type_unit_group *tu_group
7382 = (const struct type_unit_group *) item;
7383
7384 return hash_stmt_list_entry (&tu_group->hash);
7385 }
7386
7387 static int
7388 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7389 {
7390 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7391 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7392
7393 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7394 }
7395
7396 /* Allocate a hash table for type unit groups. */
7397
7398 static htab_up
7399 allocate_type_unit_groups_table ()
7400 {
7401 return htab_up (htab_create_alloc (3,
7402 hash_type_unit_group,
7403 eq_type_unit_group,
7404 NULL, xcalloc, xfree));
7405 }
7406
7407 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7408 partial symtabs. We combine several TUs per psymtab to not let the size
7409 of any one psymtab grow too big. */
7410 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7411 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7412
7413 /* Helper routine for get_type_unit_group.
7414 Create the type_unit_group object used to hold one or more TUs. */
7415
7416 static struct type_unit_group *
7417 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7418 {
7419 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7420 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7421 struct dwarf2_per_cu_data *per_cu;
7422 struct type_unit_group *tu_group;
7423
7424 tu_group = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, type_unit_group);
7425 per_cu = &tu_group->per_cu;
7426 per_cu->per_bfd = per_bfd;
7427
7428 if (per_bfd->using_index)
7429 {
7430 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
7431 struct dwarf2_per_cu_quick_data);
7432 }
7433 else
7434 {
7435 unsigned int line_offset = to_underlying (line_offset_struct);
7436 dwarf2_psymtab *pst;
7437 std::string name;
7438
7439 /* Give the symtab a useful name for debug purposes. */
7440 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7441 name = string_printf ("<type_units_%d>",
7442 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7443 else
7444 name = string_printf ("<type_units_at_0x%x>", line_offset);
7445
7446 pst = create_partial_symtab (per_cu, per_objfile, name.c_str ());
7447 pst->anonymous = true;
7448 }
7449
7450 tu_group->hash.dwo_unit = cu->dwo_unit;
7451 tu_group->hash.line_sect_off = line_offset_struct;
7452
7453 return tu_group;
7454 }
7455
7456 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7457 STMT_LIST is a DW_AT_stmt_list attribute. */
7458
7459 static struct type_unit_group *
7460 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7461 {
7462 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7463 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7464 struct type_unit_group *tu_group;
7465 void **slot;
7466 unsigned int line_offset;
7467 struct type_unit_group type_unit_group_for_lookup;
7468
7469 if (per_objfile->per_bfd->type_unit_groups == NULL)
7470 per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
7471
7472 /* Do we need to create a new group, or can we use an existing one? */
7473
7474 if (stmt_list)
7475 {
7476 line_offset = DW_UNSND (stmt_list);
7477 ++tu_stats->nr_symtab_sharers;
7478 }
7479 else
7480 {
7481 /* Ugh, no stmt_list. Rare, but we have to handle it.
7482 We can do various things here like create one group per TU or
7483 spread them over multiple groups to split up the expansion work.
7484 To avoid worst case scenarios (too many groups or too large groups)
7485 we, umm, group them in bunches. */
7486 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7487 | (tu_stats->nr_stmt_less_type_units
7488 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7489 ++tu_stats->nr_stmt_less_type_units;
7490 }
7491
7492 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7493 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7494 slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (),
7495 &type_unit_group_for_lookup, INSERT);
7496 if (*slot != NULL)
7497 {
7498 tu_group = (struct type_unit_group *) *slot;
7499 gdb_assert (tu_group != NULL);
7500 }
7501 else
7502 {
7503 sect_offset line_offset_struct = (sect_offset) line_offset;
7504 tu_group = create_type_unit_group (cu, line_offset_struct);
7505 *slot = tu_group;
7506 ++tu_stats->nr_symtabs;
7507 }
7508
7509 return tu_group;
7510 }
7511 \f
7512 /* Partial symbol tables. */
7513
7514 /* Create a psymtab named NAME and assign it to PER_CU.
7515
7516 The caller must fill in the following details:
7517 dirname, textlow, texthigh. */
7518
7519 static dwarf2_psymtab *
7520 create_partial_symtab (dwarf2_per_cu_data *per_cu,
7521 dwarf2_per_objfile *per_objfile,
7522 const char *name)
7523 {
7524 struct objfile *objfile = per_objfile->objfile;
7525 dwarf2_psymtab *pst;
7526
7527 pst = new dwarf2_psymtab (name, objfile, per_cu);
7528
7529 pst->psymtabs_addrmap_supported = true;
7530
7531 /* This is the glue that links PST into GDB's symbol API. */
7532 per_cu->v.psymtab = pst;
7533
7534 return pst;
7535 }
7536
7537 /* DIE reader function for process_psymtab_comp_unit. */
7538
7539 static void
7540 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7541 const gdb_byte *info_ptr,
7542 struct die_info *comp_unit_die,
7543 enum language pretend_language)
7544 {
7545 struct dwarf2_cu *cu = reader->cu;
7546 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7547 struct objfile *objfile = per_objfile->objfile;
7548 struct gdbarch *gdbarch = objfile->arch ();
7549 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7550 CORE_ADDR baseaddr;
7551 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7552 dwarf2_psymtab *pst;
7553 enum pc_bounds_kind cu_bounds_kind;
7554 const char *filename;
7555
7556 gdb_assert (! per_cu->is_debug_types);
7557
7558 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7559
7560 /* Allocate a new partial symbol table structure. */
7561 gdb::unique_xmalloc_ptr<char> debug_filename;
7562 static const char artificial[] = "<artificial>";
7563 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7564 if (filename == NULL)
7565 filename = "";
7566 else if (strcmp (filename, artificial) == 0)
7567 {
7568 debug_filename.reset (concat (artificial, "@",
7569 sect_offset_str (per_cu->sect_off),
7570 (char *) NULL));
7571 filename = debug_filename.get ();
7572 }
7573
7574 pst = create_partial_symtab (per_cu, per_objfile, filename);
7575
7576 /* This must be done before calling dwarf2_build_include_psymtabs. */
7577 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7578
7579 baseaddr = objfile->text_section_offset ();
7580
7581 dwarf2_find_base_address (comp_unit_die, cu);
7582
7583 /* Possibly set the default values of LOWPC and HIGHPC from
7584 `DW_AT_ranges'. */
7585 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7586 &best_highpc, cu, pst);
7587 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7588 {
7589 CORE_ADDR low
7590 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7591 - baseaddr);
7592 CORE_ADDR high
7593 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7594 - baseaddr - 1);
7595 /* Store the contiguous range if it is not empty; it can be
7596 empty for CUs with no code. */
7597 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7598 low, high, pst);
7599 }
7600
7601 /* Check if comp unit has_children.
7602 If so, read the rest of the partial symbols from this comp unit.
7603 If not, there's no more debug_info for this comp unit. */
7604 if (comp_unit_die->has_children)
7605 {
7606 struct partial_die_info *first_die;
7607 CORE_ADDR lowpc, highpc;
7608
7609 lowpc = ((CORE_ADDR) -1);
7610 highpc = ((CORE_ADDR) 0);
7611
7612 first_die = load_partial_dies (reader, info_ptr, 1);
7613
7614 scan_partial_symbols (first_die, &lowpc, &highpc,
7615 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7616
7617 /* If we didn't find a lowpc, set it to highpc to avoid
7618 complaints from `maint check'. */
7619 if (lowpc == ((CORE_ADDR) -1))
7620 lowpc = highpc;
7621
7622 /* If the compilation unit didn't have an explicit address range,
7623 then use the information extracted from its child dies. */
7624 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7625 {
7626 best_lowpc = lowpc;
7627 best_highpc = highpc;
7628 }
7629 }
7630 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7631 best_lowpc + baseaddr)
7632 - baseaddr);
7633 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7634 best_highpc + baseaddr)
7635 - baseaddr);
7636
7637 end_psymtab_common (objfile, pst);
7638
7639 if (!cu->per_cu->imported_symtabs_empty ())
7640 {
7641 int i;
7642 int len = cu->per_cu->imported_symtabs_size ();
7643
7644 /* Fill in 'dependencies' here; we fill in 'users' in a
7645 post-pass. */
7646 pst->number_of_dependencies = len;
7647 pst->dependencies
7648 = objfile->partial_symtabs->allocate_dependencies (len);
7649 for (i = 0; i < len; ++i)
7650 {
7651 pst->dependencies[i]
7652 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7653 }
7654
7655 cu->per_cu->imported_symtabs_free ();
7656 }
7657
7658 /* Get the list of files included in the current compilation unit,
7659 and build a psymtab for each of them. */
7660 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7661
7662 if (dwarf_read_debug)
7663 fprintf_unfiltered (gdb_stdlog,
7664 "Psymtab for %s unit @%s: %s - %s"
7665 ", %d global, %d static syms\n",
7666 per_cu->is_debug_types ? "type" : "comp",
7667 sect_offset_str (per_cu->sect_off),
7668 paddress (gdbarch, pst->text_low (objfile)),
7669 paddress (gdbarch, pst->text_high (objfile)),
7670 pst->n_global_syms, pst->n_static_syms);
7671 }
7672
7673 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7674 Process compilation unit THIS_CU for a psymtab. */
7675
7676 static void
7677 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7678 dwarf2_per_objfile *per_objfile,
7679 bool want_partial_unit,
7680 enum language pretend_language)
7681 {
7682 /* If this compilation unit was already read in, free the
7683 cached copy in order to read it in again. This is
7684 necessary because we skipped some symbols when we first
7685 read in the compilation unit (see load_partial_dies).
7686 This problem could be avoided, but the benefit is unclear. */
7687 per_objfile->remove_cu (this_cu);
7688
7689 cutu_reader reader (this_cu, per_objfile, nullptr, nullptr, false);
7690
7691 switch (reader.comp_unit_die->tag)
7692 {
7693 case DW_TAG_compile_unit:
7694 this_cu->unit_type = DW_UT_compile;
7695 break;
7696 case DW_TAG_partial_unit:
7697 this_cu->unit_type = DW_UT_partial;
7698 break;
7699 default:
7700 abort ();
7701 }
7702
7703 if (reader.dummy_p)
7704 {
7705 /* Nothing. */
7706 }
7707 else if (this_cu->is_debug_types)
7708 build_type_psymtabs_reader (&reader, reader.info_ptr,
7709 reader.comp_unit_die);
7710 else if (want_partial_unit
7711 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7712 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7713 reader.comp_unit_die,
7714 pretend_language);
7715
7716 this_cu->lang = reader.cu->language;
7717
7718 /* Age out any secondary CUs. */
7719 per_objfile->age_comp_units ();
7720 }
7721
7722 /* Reader function for build_type_psymtabs. */
7723
7724 static void
7725 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7726 const gdb_byte *info_ptr,
7727 struct die_info *type_unit_die)
7728 {
7729 dwarf2_per_objfile *per_objfile = reader->cu->per_objfile;
7730 struct objfile *objfile = per_objfile->objfile;
7731 struct dwarf2_cu *cu = reader->cu;
7732 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7733 struct signatured_type *sig_type;
7734 struct type_unit_group *tu_group;
7735 struct attribute *attr;
7736 struct partial_die_info *first_die;
7737 CORE_ADDR lowpc, highpc;
7738 dwarf2_psymtab *pst;
7739
7740 gdb_assert (per_cu->is_debug_types);
7741 sig_type = (struct signatured_type *) per_cu;
7742
7743 if (! type_unit_die->has_children)
7744 return;
7745
7746 attr = type_unit_die->attr (DW_AT_stmt_list);
7747 tu_group = get_type_unit_group (cu, attr);
7748
7749 if (tu_group->tus == nullptr)
7750 tu_group->tus = new std::vector<signatured_type *>;
7751 tu_group->tus->push_back (sig_type);
7752
7753 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7754 pst = create_partial_symtab (per_cu, per_objfile, "");
7755 pst->anonymous = true;
7756
7757 first_die = load_partial_dies (reader, info_ptr, 1);
7758
7759 lowpc = (CORE_ADDR) -1;
7760 highpc = (CORE_ADDR) 0;
7761 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7762
7763 end_psymtab_common (objfile, pst);
7764 }
7765
7766 /* Struct used to sort TUs by their abbreviation table offset. */
7767
7768 struct tu_abbrev_offset
7769 {
7770 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7771 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7772 {}
7773
7774 signatured_type *sig_type;
7775 sect_offset abbrev_offset;
7776 };
7777
7778 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7779
7780 static bool
7781 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7782 const struct tu_abbrev_offset &b)
7783 {
7784 return a.abbrev_offset < b.abbrev_offset;
7785 }
7786
7787 /* Efficiently read all the type units.
7788 This does the bulk of the work for build_type_psymtabs.
7789
7790 The efficiency is because we sort TUs by the abbrev table they use and
7791 only read each abbrev table once. In one program there are 200K TUs
7792 sharing 8K abbrev tables.
7793
7794 The main purpose of this function is to support building the
7795 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7796 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7797 can collapse the search space by grouping them by stmt_list.
7798 The savings can be significant, in the same program from above the 200K TUs
7799 share 8K stmt_list tables.
7800
7801 FUNC is expected to call get_type_unit_group, which will create the
7802 struct type_unit_group if necessary and add it to
7803 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7804
7805 static void
7806 build_type_psymtabs_1 (dwarf2_per_objfile *per_objfile)
7807 {
7808 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7809 abbrev_table_up abbrev_table;
7810 sect_offset abbrev_offset;
7811
7812 /* It's up to the caller to not call us multiple times. */
7813 gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL);
7814
7815 if (per_objfile->per_bfd->all_type_units.empty ())
7816 return;
7817
7818 /* TUs typically share abbrev tables, and there can be way more TUs than
7819 abbrev tables. Sort by abbrev table to reduce the number of times we
7820 read each abbrev table in.
7821 Alternatives are to punt or to maintain a cache of abbrev tables.
7822 This is simpler and efficient enough for now.
7823
7824 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7825 symtab to use). Typically TUs with the same abbrev offset have the same
7826 stmt_list value too so in practice this should work well.
7827
7828 The basic algorithm here is:
7829
7830 sort TUs by abbrev table
7831 for each TU with same abbrev table:
7832 read abbrev table if first user
7833 read TU top level DIE
7834 [IWBN if DWO skeletons had DW_AT_stmt_list]
7835 call FUNC */
7836
7837 if (dwarf_read_debug)
7838 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7839
7840 /* Sort in a separate table to maintain the order of all_type_units
7841 for .gdb_index: TU indices directly index all_type_units. */
7842 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7843 sorted_by_abbrev.reserve (per_objfile->per_bfd->all_type_units.size ());
7844
7845 for (signatured_type *sig_type : per_objfile->per_bfd->all_type_units)
7846 sorted_by_abbrev.emplace_back
7847 (sig_type, read_abbrev_offset (per_objfile, sig_type->per_cu.section,
7848 sig_type->per_cu.sect_off));
7849
7850 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7851 sort_tu_by_abbrev_offset);
7852
7853 abbrev_offset = (sect_offset) ~(unsigned) 0;
7854
7855 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7856 {
7857 /* Switch to the next abbrev table if necessary. */
7858 if (abbrev_table == NULL
7859 || tu.abbrev_offset != abbrev_offset)
7860 {
7861 abbrev_offset = tu.abbrev_offset;
7862 abbrev_table =
7863 abbrev_table::read (per_objfile->objfile,
7864 &per_objfile->per_bfd->abbrev, abbrev_offset);
7865 ++tu_stats->nr_uniq_abbrev_tables;
7866 }
7867
7868 cutu_reader reader (&tu.sig_type->per_cu, per_objfile,
7869 abbrev_table.get (), nullptr, false);
7870 if (!reader.dummy_p)
7871 build_type_psymtabs_reader (&reader, reader.info_ptr,
7872 reader.comp_unit_die);
7873 }
7874 }
7875
7876 /* Print collected type unit statistics. */
7877
7878 static void
7879 print_tu_stats (dwarf2_per_objfile *per_objfile)
7880 {
7881 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7882
7883 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7884 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7885 per_objfile->per_bfd->all_type_units.size ());
7886 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7887 tu_stats->nr_uniq_abbrev_tables);
7888 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7889 tu_stats->nr_symtabs);
7890 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7891 tu_stats->nr_symtab_sharers);
7892 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7893 tu_stats->nr_stmt_less_type_units);
7894 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7895 tu_stats->nr_all_type_units_reallocs);
7896 }
7897
7898 /* Traversal function for build_type_psymtabs. */
7899
7900 static int
7901 build_type_psymtab_dependencies (void **slot, void *info)
7902 {
7903 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7904 struct objfile *objfile = per_objfile->objfile;
7905 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7906 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7907 dwarf2_psymtab *pst = per_cu->v.psymtab;
7908 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7909 int i;
7910
7911 gdb_assert (len > 0);
7912 gdb_assert (per_cu->type_unit_group_p ());
7913
7914 pst->number_of_dependencies = len;
7915 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7916 for (i = 0; i < len; ++i)
7917 {
7918 struct signatured_type *iter = tu_group->tus->at (i);
7919 gdb_assert (iter->per_cu.is_debug_types);
7920 pst->dependencies[i] = iter->per_cu.v.psymtab;
7921 iter->type_unit_group = tu_group;
7922 }
7923
7924 delete tu_group->tus;
7925 tu_group->tus = nullptr;
7926
7927 return 1;
7928 }
7929
7930 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7931 Build partial symbol tables for the .debug_types comp-units. */
7932
7933 static void
7934 build_type_psymtabs (dwarf2_per_objfile *per_objfile)
7935 {
7936 if (! create_all_type_units (per_objfile))
7937 return;
7938
7939 build_type_psymtabs_1 (per_objfile);
7940 }
7941
7942 /* Traversal function for process_skeletonless_type_unit.
7943 Read a TU in a DWO file and build partial symbols for it. */
7944
7945 static int
7946 process_skeletonless_type_unit (void **slot, void *info)
7947 {
7948 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7949 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7950 struct signatured_type find_entry, *entry;
7951
7952 /* If this TU doesn't exist in the global table, add it and read it in. */
7953
7954 if (per_objfile->per_bfd->signatured_types == NULL)
7955 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7956
7957 find_entry.signature = dwo_unit->signature;
7958 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
7959 &find_entry, INSERT);
7960 /* If we've already seen this type there's nothing to do. What's happening
7961 is we're doing our own version of comdat-folding here. */
7962 if (*slot != NULL)
7963 return 1;
7964
7965 /* This does the job that create_all_type_units would have done for
7966 this TU. */
7967 entry = add_type_unit (per_objfile, dwo_unit->signature, slot);
7968 fill_in_sig_entry_from_dwo_entry (per_objfile, entry, dwo_unit);
7969 *slot = entry;
7970
7971 /* This does the job that build_type_psymtabs_1 would have done. */
7972 cutu_reader reader (&entry->per_cu, per_objfile, nullptr, nullptr, false);
7973 if (!reader.dummy_p)
7974 build_type_psymtabs_reader (&reader, reader.info_ptr,
7975 reader.comp_unit_die);
7976
7977 return 1;
7978 }
7979
7980 /* Traversal function for process_skeletonless_type_units. */
7981
7982 static int
7983 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7984 {
7985 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7986
7987 if (dwo_file->tus != NULL)
7988 htab_traverse_noresize (dwo_file->tus.get (),
7989 process_skeletonless_type_unit, info);
7990
7991 return 1;
7992 }
7993
7994 /* Scan all TUs of DWO files, verifying we've processed them.
7995 This is needed in case a TU was emitted without its skeleton.
7996 Note: This can't be done until we know what all the DWO files are. */
7997
7998 static void
7999 process_skeletonless_type_units (dwarf2_per_objfile *per_objfile)
8000 {
8001 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8002 if (get_dwp_file (per_objfile) == NULL
8003 && per_objfile->per_bfd->dwo_files != NULL)
8004 {
8005 htab_traverse_noresize (per_objfile->per_bfd->dwo_files.get (),
8006 process_dwo_file_for_skeletonless_type_units,
8007 per_objfile);
8008 }
8009 }
8010
8011 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8012
8013 static void
8014 set_partial_user (dwarf2_per_objfile *per_objfile)
8015 {
8016 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
8017 {
8018 dwarf2_psymtab *pst = per_cu->v.psymtab;
8019
8020 if (pst == NULL)
8021 continue;
8022
8023 for (int j = 0; j < pst->number_of_dependencies; ++j)
8024 {
8025 /* Set the 'user' field only if it is not already set. */
8026 if (pst->dependencies[j]->user == NULL)
8027 pst->dependencies[j]->user = pst;
8028 }
8029 }
8030 }
8031
8032 /* Build the partial symbol table by doing a quick pass through the
8033 .debug_info and .debug_abbrev sections. */
8034
8035 static void
8036 dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile)
8037 {
8038 struct objfile *objfile = per_objfile->objfile;
8039
8040 if (dwarf_read_debug)
8041 {
8042 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8043 objfile_name (objfile));
8044 }
8045
8046 scoped_restore restore_reading_psyms
8047 = make_scoped_restore (&per_objfile->per_bfd->reading_partial_symbols,
8048 true);
8049
8050 per_objfile->per_bfd->info.read (objfile);
8051
8052 /* Any cached compilation units will be linked by the per-objfile
8053 read_in_chain. Make sure to free them when we're done. */
8054 free_cached_comp_units freer (per_objfile);
8055
8056 build_type_psymtabs (per_objfile);
8057
8058 create_all_comp_units (per_objfile);
8059
8060 /* Create a temporary address map on a temporary obstack. We later
8061 copy this to the final obstack. */
8062 auto_obstack temp_obstack;
8063
8064 scoped_restore save_psymtabs_addrmap
8065 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8066 addrmap_create_mutable (&temp_obstack));
8067
8068 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
8069 {
8070 if (per_cu->v.psymtab != NULL)
8071 /* In case a forward DW_TAG_imported_unit has read the CU already. */
8072 continue;
8073 process_psymtab_comp_unit (per_cu, per_objfile, false,
8074 language_minimal);
8075 }
8076
8077 /* This has to wait until we read the CUs, we need the list of DWOs. */
8078 process_skeletonless_type_units (per_objfile);
8079
8080 /* Now that all TUs have been processed we can fill in the dependencies. */
8081 if (per_objfile->per_bfd->type_unit_groups != NULL)
8082 {
8083 htab_traverse_noresize (per_objfile->per_bfd->type_unit_groups.get (),
8084 build_type_psymtab_dependencies, per_objfile);
8085 }
8086
8087 if (dwarf_read_debug)
8088 print_tu_stats (per_objfile);
8089
8090 set_partial_user (per_objfile);
8091
8092 objfile->partial_symtabs->psymtabs_addrmap
8093 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8094 objfile->partial_symtabs->obstack ());
8095 /* At this point we want to keep the address map. */
8096 save_psymtabs_addrmap.release ();
8097
8098 if (dwarf_read_debug)
8099 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8100 objfile_name (objfile));
8101 }
8102
8103 /* Load the partial DIEs for a secondary CU into memory.
8104 This is also used when rereading a primary CU with load_all_dies. */
8105
8106 static void
8107 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
8108 dwarf2_per_objfile *per_objfile,
8109 dwarf2_cu *existing_cu)
8110 {
8111 cutu_reader reader (this_cu, per_objfile, nullptr, existing_cu, false);
8112
8113 if (!reader.dummy_p)
8114 {
8115 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8116 language_minimal);
8117
8118 /* Check if comp unit has_children.
8119 If so, read the rest of the partial symbols from this comp unit.
8120 If not, there's no more debug_info for this comp unit. */
8121 if (reader.comp_unit_die->has_children)
8122 load_partial_dies (&reader, reader.info_ptr, 0);
8123
8124 reader.keep ();
8125 }
8126 }
8127
8128 static void
8129 read_comp_units_from_section (dwarf2_per_objfile *per_objfile,
8130 struct dwarf2_section_info *section,
8131 struct dwarf2_section_info *abbrev_section,
8132 unsigned int is_dwz)
8133 {
8134 const gdb_byte *info_ptr;
8135 struct objfile *objfile = per_objfile->objfile;
8136
8137 if (dwarf_read_debug)
8138 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8139 section->get_name (),
8140 section->get_file_name ());
8141
8142 section->read (objfile);
8143
8144 info_ptr = section->buffer;
8145
8146 while (info_ptr < section->buffer + section->size)
8147 {
8148 struct dwarf2_per_cu_data *this_cu;
8149
8150 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8151
8152 comp_unit_head cu_header;
8153 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
8154 abbrev_section, info_ptr,
8155 rcuh_kind::COMPILE);
8156
8157 /* Save the compilation unit for later lookup. */
8158 if (cu_header.unit_type != DW_UT_type)
8159 this_cu = per_objfile->per_bfd->allocate_per_cu ();
8160 else
8161 {
8162 auto sig_type = per_objfile->per_bfd->allocate_signatured_type ();
8163 sig_type->signature = cu_header.signature;
8164 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8165 this_cu = &sig_type->per_cu;
8166 }
8167 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8168 this_cu->sect_off = sect_off;
8169 this_cu->length = cu_header.length + cu_header.initial_length_size;
8170 this_cu->is_dwz = is_dwz;
8171 this_cu->section = section;
8172
8173 per_objfile->per_bfd->all_comp_units.push_back (this_cu);
8174
8175 info_ptr = info_ptr + this_cu->length;
8176 }
8177 }
8178
8179 /* Create a list of all compilation units in OBJFILE.
8180 This is only done for -readnow and building partial symtabs. */
8181
8182 static void
8183 create_all_comp_units (dwarf2_per_objfile *per_objfile)
8184 {
8185 gdb_assert (per_objfile->per_bfd->all_comp_units.empty ());
8186 read_comp_units_from_section (per_objfile, &per_objfile->per_bfd->info,
8187 &per_objfile->per_bfd->abbrev, 0);
8188
8189 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
8190 if (dwz != NULL)
8191 read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1);
8192 }
8193
8194 /* Process all loaded DIEs for compilation unit CU, starting at
8195 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8196 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8197 DW_AT_ranges). See the comments of add_partial_subprogram on how
8198 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8199
8200 static void
8201 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8202 CORE_ADDR *highpc, int set_addrmap,
8203 struct dwarf2_cu *cu)
8204 {
8205 struct partial_die_info *pdi;
8206
8207 /* Now, march along the PDI's, descending into ones which have
8208 interesting children but skipping the children of the other ones,
8209 until we reach the end of the compilation unit. */
8210
8211 pdi = first_die;
8212
8213 while (pdi != NULL)
8214 {
8215 pdi->fixup (cu);
8216
8217 /* Anonymous namespaces or modules have no name but have interesting
8218 children, so we need to look at them. Ditto for anonymous
8219 enums. */
8220
8221 if (pdi->raw_name != NULL || pdi->tag == DW_TAG_namespace
8222 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8223 || pdi->tag == DW_TAG_imported_unit
8224 || pdi->tag == DW_TAG_inlined_subroutine)
8225 {
8226 switch (pdi->tag)
8227 {
8228 case DW_TAG_subprogram:
8229 case DW_TAG_inlined_subroutine:
8230 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8231 if (cu->language == language_cplus)
8232 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8233 set_addrmap, cu);
8234 break;
8235 case DW_TAG_constant:
8236 case DW_TAG_variable:
8237 case DW_TAG_typedef:
8238 case DW_TAG_union_type:
8239 if (!pdi->is_declaration
8240 || (pdi->tag == DW_TAG_variable && pdi->is_external))
8241 {
8242 add_partial_symbol (pdi, cu);
8243 }
8244 break;
8245 case DW_TAG_class_type:
8246 case DW_TAG_interface_type:
8247 case DW_TAG_structure_type:
8248 if (!pdi->is_declaration)
8249 {
8250 add_partial_symbol (pdi, cu);
8251 }
8252 if ((cu->language == language_rust
8253 || cu->language == language_cplus) && pdi->has_children)
8254 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8255 set_addrmap, cu);
8256 break;
8257 case DW_TAG_enumeration_type:
8258 if (!pdi->is_declaration)
8259 add_partial_enumeration (pdi, cu);
8260 break;
8261 case DW_TAG_base_type:
8262 case DW_TAG_subrange_type:
8263 /* File scope base type definitions are added to the partial
8264 symbol table. */
8265 add_partial_symbol (pdi, cu);
8266 break;
8267 case DW_TAG_namespace:
8268 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8269 break;
8270 case DW_TAG_module:
8271 if (!pdi->is_declaration)
8272 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8273 break;
8274 case DW_TAG_imported_unit:
8275 {
8276 struct dwarf2_per_cu_data *per_cu;
8277
8278 /* For now we don't handle imported units in type units. */
8279 if (cu->per_cu->is_debug_types)
8280 {
8281 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8282 " supported in type units [in module %s]"),
8283 objfile_name (cu->per_objfile->objfile));
8284 }
8285
8286 per_cu = dwarf2_find_containing_comp_unit
8287 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
8288
8289 /* Go read the partial unit, if needed. */
8290 if (per_cu->v.psymtab == NULL)
8291 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
8292 cu->language);
8293
8294 cu->per_cu->imported_symtabs_push (per_cu);
8295 }
8296 break;
8297 case DW_TAG_imported_declaration:
8298 add_partial_symbol (pdi, cu);
8299 break;
8300 default:
8301 break;
8302 }
8303 }
8304
8305 /* If the die has a sibling, skip to the sibling. */
8306
8307 pdi = pdi->die_sibling;
8308 }
8309 }
8310
8311 /* Functions used to compute the fully scoped name of a partial DIE.
8312
8313 Normally, this is simple. For C++, the parent DIE's fully scoped
8314 name is concatenated with "::" and the partial DIE's name.
8315 Enumerators are an exception; they use the scope of their parent
8316 enumeration type, i.e. the name of the enumeration type is not
8317 prepended to the enumerator.
8318
8319 There are two complexities. One is DW_AT_specification; in this
8320 case "parent" means the parent of the target of the specification,
8321 instead of the direct parent of the DIE. The other is compilers
8322 which do not emit DW_TAG_namespace; in this case we try to guess
8323 the fully qualified name of structure types from their members'
8324 linkage names. This must be done using the DIE's children rather
8325 than the children of any DW_AT_specification target. We only need
8326 to do this for structures at the top level, i.e. if the target of
8327 any DW_AT_specification (if any; otherwise the DIE itself) does not
8328 have a parent. */
8329
8330 /* Compute the scope prefix associated with PDI's parent, in
8331 compilation unit CU. The result will be allocated on CU's
8332 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8333 field. NULL is returned if no prefix is necessary. */
8334 static const char *
8335 partial_die_parent_scope (struct partial_die_info *pdi,
8336 struct dwarf2_cu *cu)
8337 {
8338 const char *grandparent_scope;
8339 struct partial_die_info *parent, *real_pdi;
8340
8341 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8342 then this means the parent of the specification DIE. */
8343
8344 real_pdi = pdi;
8345 while (real_pdi->has_specification)
8346 {
8347 auto res = find_partial_die (real_pdi->spec_offset,
8348 real_pdi->spec_is_dwz, cu);
8349 real_pdi = res.pdi;
8350 cu = res.cu;
8351 }
8352
8353 parent = real_pdi->die_parent;
8354 if (parent == NULL)
8355 return NULL;
8356
8357 if (parent->scope_set)
8358 return parent->scope;
8359
8360 parent->fixup (cu);
8361
8362 grandparent_scope = partial_die_parent_scope (parent, cu);
8363
8364 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8365 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8366 Work around this problem here. */
8367 if (cu->language == language_cplus
8368 && parent->tag == DW_TAG_namespace
8369 && strcmp (parent->name (cu), "::") == 0
8370 && grandparent_scope == NULL)
8371 {
8372 parent->scope = NULL;
8373 parent->scope_set = 1;
8374 return NULL;
8375 }
8376
8377 /* Nested subroutines in Fortran get a prefix. */
8378 if (pdi->tag == DW_TAG_enumerator)
8379 /* Enumerators should not get the name of the enumeration as a prefix. */
8380 parent->scope = grandparent_scope;
8381 else if (parent->tag == DW_TAG_namespace
8382 || parent->tag == DW_TAG_module
8383 || parent->tag == DW_TAG_structure_type
8384 || parent->tag == DW_TAG_class_type
8385 || parent->tag == DW_TAG_interface_type
8386 || parent->tag == DW_TAG_union_type
8387 || parent->tag == DW_TAG_enumeration_type
8388 || (cu->language == language_fortran
8389 && parent->tag == DW_TAG_subprogram
8390 && pdi->tag == DW_TAG_subprogram))
8391 {
8392 if (grandparent_scope == NULL)
8393 parent->scope = parent->name (cu);
8394 else
8395 parent->scope = typename_concat (&cu->comp_unit_obstack,
8396 grandparent_scope,
8397 parent->name (cu), 0, cu);
8398 }
8399 else
8400 {
8401 /* FIXME drow/2004-04-01: What should we be doing with
8402 function-local names? For partial symbols, we should probably be
8403 ignoring them. */
8404 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8405 dwarf_tag_name (parent->tag),
8406 sect_offset_str (pdi->sect_off));
8407 parent->scope = grandparent_scope;
8408 }
8409
8410 parent->scope_set = 1;
8411 return parent->scope;
8412 }
8413
8414 /* Return the fully scoped name associated with PDI, from compilation unit
8415 CU. The result will be allocated with malloc. */
8416
8417 static gdb::unique_xmalloc_ptr<char>
8418 partial_die_full_name (struct partial_die_info *pdi,
8419 struct dwarf2_cu *cu)
8420 {
8421 const char *parent_scope;
8422
8423 /* If this is a template instantiation, we can not work out the
8424 template arguments from partial DIEs. So, unfortunately, we have
8425 to go through the full DIEs. At least any work we do building
8426 types here will be reused if full symbols are loaded later. */
8427 if (pdi->has_template_arguments)
8428 {
8429 pdi->fixup (cu);
8430
8431 if (pdi->name (cu) != NULL && strchr (pdi->name (cu), '<') == NULL)
8432 {
8433 struct die_info *die;
8434 struct attribute attr;
8435 struct dwarf2_cu *ref_cu = cu;
8436
8437 /* DW_FORM_ref_addr is using section offset. */
8438 attr.name = (enum dwarf_attribute) 0;
8439 attr.form = DW_FORM_ref_addr;
8440 attr.u.unsnd = to_underlying (pdi->sect_off);
8441 die = follow_die_ref (NULL, &attr, &ref_cu);
8442
8443 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8444 }
8445 }
8446
8447 parent_scope = partial_die_parent_scope (pdi, cu);
8448 if (parent_scope == NULL)
8449 return NULL;
8450 else
8451 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8452 pdi->name (cu),
8453 0, cu));
8454 }
8455
8456 static void
8457 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8458 {
8459 dwarf2_per_objfile *per_objfile = cu->per_objfile;
8460 struct objfile *objfile = per_objfile->objfile;
8461 struct gdbarch *gdbarch = objfile->arch ();
8462 CORE_ADDR addr = 0;
8463 const char *actual_name = NULL;
8464 CORE_ADDR baseaddr;
8465
8466 baseaddr = objfile->text_section_offset ();
8467
8468 gdb::unique_xmalloc_ptr<char> built_actual_name
8469 = partial_die_full_name (pdi, cu);
8470 if (built_actual_name != NULL)
8471 actual_name = built_actual_name.get ();
8472
8473 if (actual_name == NULL)
8474 actual_name = pdi->name (cu);
8475
8476 partial_symbol psymbol;
8477 memset (&psymbol, 0, sizeof (psymbol));
8478 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8479 psymbol.ginfo.section = -1;
8480
8481 /* The code below indicates that the psymbol should be installed by
8482 setting this. */
8483 gdb::optional<psymbol_placement> where;
8484
8485 switch (pdi->tag)
8486 {
8487 case DW_TAG_inlined_subroutine:
8488 case DW_TAG_subprogram:
8489 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8490 - baseaddr);
8491 if (pdi->is_external
8492 || cu->language == language_ada
8493 || (cu->language == language_fortran
8494 && pdi->die_parent != NULL
8495 && pdi->die_parent->tag == DW_TAG_subprogram))
8496 {
8497 /* Normally, only "external" DIEs are part of the global scope.
8498 But in Ada and Fortran, we want to be able to access nested
8499 procedures globally. So all Ada and Fortran subprograms are
8500 stored in the global scope. */
8501 where = psymbol_placement::GLOBAL;
8502 }
8503 else
8504 where = psymbol_placement::STATIC;
8505
8506 psymbol.domain = VAR_DOMAIN;
8507 psymbol.aclass = LOC_BLOCK;
8508 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8509 psymbol.ginfo.value.address = addr;
8510
8511 if (pdi->main_subprogram && actual_name != NULL)
8512 set_objfile_main_name (objfile, actual_name, cu->language);
8513 break;
8514 case DW_TAG_constant:
8515 psymbol.domain = VAR_DOMAIN;
8516 psymbol.aclass = LOC_STATIC;
8517 where = (pdi->is_external
8518 ? psymbol_placement::GLOBAL
8519 : psymbol_placement::STATIC);
8520 break;
8521 case DW_TAG_variable:
8522 if (pdi->d.locdesc)
8523 addr = decode_locdesc (pdi->d.locdesc, cu);
8524
8525 if (pdi->d.locdesc
8526 && addr == 0
8527 && !per_objfile->per_bfd->has_section_at_zero)
8528 {
8529 /* A global or static variable may also have been stripped
8530 out by the linker if unused, in which case its address
8531 will be nullified; do not add such variables into partial
8532 symbol table then. */
8533 }
8534 else if (pdi->is_external)
8535 {
8536 /* Global Variable.
8537 Don't enter into the minimal symbol tables as there is
8538 a minimal symbol table entry from the ELF symbols already.
8539 Enter into partial symbol table if it has a location
8540 descriptor or a type.
8541 If the location descriptor is missing, new_symbol will create
8542 a LOC_UNRESOLVED symbol, the address of the variable will then
8543 be determined from the minimal symbol table whenever the variable
8544 is referenced.
8545 The address for the partial symbol table entry is not
8546 used by GDB, but it comes in handy for debugging partial symbol
8547 table building. */
8548
8549 if (pdi->d.locdesc || pdi->has_type)
8550 {
8551 psymbol.domain = VAR_DOMAIN;
8552 psymbol.aclass = LOC_STATIC;
8553 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8554 psymbol.ginfo.value.address = addr;
8555 where = psymbol_placement::GLOBAL;
8556 }
8557 }
8558 else
8559 {
8560 int has_loc = pdi->d.locdesc != NULL;
8561
8562 /* Static Variable. Skip symbols whose value we cannot know (those
8563 without location descriptors or constant values). */
8564 if (!has_loc && !pdi->has_const_value)
8565 return;
8566
8567 psymbol.domain = VAR_DOMAIN;
8568 psymbol.aclass = LOC_STATIC;
8569 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8570 if (has_loc)
8571 psymbol.ginfo.value.address = addr;
8572 where = psymbol_placement::STATIC;
8573 }
8574 break;
8575 case DW_TAG_typedef:
8576 case DW_TAG_base_type:
8577 case DW_TAG_subrange_type:
8578 psymbol.domain = VAR_DOMAIN;
8579 psymbol.aclass = LOC_TYPEDEF;
8580 where = psymbol_placement::STATIC;
8581 break;
8582 case DW_TAG_imported_declaration:
8583 case DW_TAG_namespace:
8584 psymbol.domain = VAR_DOMAIN;
8585 psymbol.aclass = LOC_TYPEDEF;
8586 where = psymbol_placement::GLOBAL;
8587 break;
8588 case DW_TAG_module:
8589 /* With Fortran 77 there might be a "BLOCK DATA" module
8590 available without any name. If so, we skip the module as it
8591 doesn't bring any value. */
8592 if (actual_name != nullptr)
8593 {
8594 psymbol.domain = MODULE_DOMAIN;
8595 psymbol.aclass = LOC_TYPEDEF;
8596 where = psymbol_placement::GLOBAL;
8597 }
8598 break;
8599 case DW_TAG_class_type:
8600 case DW_TAG_interface_type:
8601 case DW_TAG_structure_type:
8602 case DW_TAG_union_type:
8603 case DW_TAG_enumeration_type:
8604 /* Skip external references. The DWARF standard says in the section
8605 about "Structure, Union, and Class Type Entries": "An incomplete
8606 structure, union or class type is represented by a structure,
8607 union or class entry that does not have a byte size attribute
8608 and that has a DW_AT_declaration attribute." */
8609 if (!pdi->has_byte_size && pdi->is_declaration)
8610 return;
8611
8612 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8613 static vs. global. */
8614 psymbol.domain = STRUCT_DOMAIN;
8615 psymbol.aclass = LOC_TYPEDEF;
8616 where = (cu->language == language_cplus
8617 ? psymbol_placement::GLOBAL
8618 : psymbol_placement::STATIC);
8619 break;
8620 case DW_TAG_enumerator:
8621 psymbol.domain = VAR_DOMAIN;
8622 psymbol.aclass = LOC_CONST;
8623 where = (cu->language == language_cplus
8624 ? psymbol_placement::GLOBAL
8625 : psymbol_placement::STATIC);
8626 break;
8627 default:
8628 break;
8629 }
8630
8631 if (where.has_value ())
8632 {
8633 if (built_actual_name != nullptr)
8634 actual_name = objfile->intern (actual_name);
8635 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8636 psymbol.ginfo.set_linkage_name (actual_name);
8637 else
8638 {
8639 psymbol.ginfo.set_demangled_name (actual_name,
8640 &objfile->objfile_obstack);
8641 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8642 }
8643 add_psymbol_to_list (psymbol, *where, objfile);
8644 }
8645 }
8646
8647 /* Read a partial die corresponding to a namespace; also, add a symbol
8648 corresponding to that namespace to the symbol table. NAMESPACE is
8649 the name of the enclosing namespace. */
8650
8651 static void
8652 add_partial_namespace (struct partial_die_info *pdi,
8653 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8654 int set_addrmap, struct dwarf2_cu *cu)
8655 {
8656 /* Add a symbol for the namespace. */
8657
8658 add_partial_symbol (pdi, cu);
8659
8660 /* Now scan partial symbols in that namespace. */
8661
8662 if (pdi->has_children)
8663 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8664 }
8665
8666 /* Read a partial die corresponding to a Fortran module. */
8667
8668 static void
8669 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8670 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8671 {
8672 /* Add a symbol for the namespace. */
8673
8674 add_partial_symbol (pdi, cu);
8675
8676 /* Now scan partial symbols in that module. */
8677
8678 if (pdi->has_children)
8679 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8680 }
8681
8682 /* Read a partial die corresponding to a subprogram or an inlined
8683 subprogram and create a partial symbol for that subprogram.
8684 When the CU language allows it, this routine also defines a partial
8685 symbol for each nested subprogram that this subprogram contains.
8686 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8687 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8688
8689 PDI may also be a lexical block, in which case we simply search
8690 recursively for subprograms defined inside that lexical block.
8691 Again, this is only performed when the CU language allows this
8692 type of definitions. */
8693
8694 static void
8695 add_partial_subprogram (struct partial_die_info *pdi,
8696 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8697 int set_addrmap, struct dwarf2_cu *cu)
8698 {
8699 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8700 {
8701 if (pdi->has_pc_info)
8702 {
8703 if (pdi->lowpc < *lowpc)
8704 *lowpc = pdi->lowpc;
8705 if (pdi->highpc > *highpc)
8706 *highpc = pdi->highpc;
8707 if (set_addrmap)
8708 {
8709 struct objfile *objfile = cu->per_objfile->objfile;
8710 struct gdbarch *gdbarch = objfile->arch ();
8711 CORE_ADDR baseaddr;
8712 CORE_ADDR this_highpc;
8713 CORE_ADDR this_lowpc;
8714
8715 baseaddr = objfile->text_section_offset ();
8716 this_lowpc
8717 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8718 pdi->lowpc + baseaddr)
8719 - baseaddr);
8720 this_highpc
8721 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8722 pdi->highpc + baseaddr)
8723 - baseaddr);
8724 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8725 this_lowpc, this_highpc - 1,
8726 cu->per_cu->v.psymtab);
8727 }
8728 }
8729
8730 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8731 {
8732 if (!pdi->is_declaration)
8733 /* Ignore subprogram DIEs that do not have a name, they are
8734 illegal. Do not emit a complaint at this point, we will
8735 do so when we convert this psymtab into a symtab. */
8736 if (pdi->name (cu))
8737 add_partial_symbol (pdi, cu);
8738 }
8739 }
8740
8741 if (! pdi->has_children)
8742 return;
8743
8744 if (cu->language == language_ada || cu->language == language_fortran)
8745 {
8746 pdi = pdi->die_child;
8747 while (pdi != NULL)
8748 {
8749 pdi->fixup (cu);
8750 if (pdi->tag == DW_TAG_subprogram
8751 || pdi->tag == DW_TAG_inlined_subroutine
8752 || pdi->tag == DW_TAG_lexical_block)
8753 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8754 pdi = pdi->die_sibling;
8755 }
8756 }
8757 }
8758
8759 /* Read a partial die corresponding to an enumeration type. */
8760
8761 static void
8762 add_partial_enumeration (struct partial_die_info *enum_pdi,
8763 struct dwarf2_cu *cu)
8764 {
8765 struct partial_die_info *pdi;
8766
8767 if (enum_pdi->name (cu) != NULL)
8768 add_partial_symbol (enum_pdi, cu);
8769
8770 pdi = enum_pdi->die_child;
8771 while (pdi)
8772 {
8773 if (pdi->tag != DW_TAG_enumerator || pdi->raw_name == NULL)
8774 complaint (_("malformed enumerator DIE ignored"));
8775 else
8776 add_partial_symbol (pdi, cu);
8777 pdi = pdi->die_sibling;
8778 }
8779 }
8780
8781 /* Return the initial uleb128 in the die at INFO_PTR. */
8782
8783 static unsigned int
8784 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8785 {
8786 unsigned int bytes_read;
8787
8788 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8789 }
8790
8791 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8792 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8793
8794 Return the corresponding abbrev, or NULL if the number is zero (indicating
8795 an empty DIE). In either case *BYTES_READ will be set to the length of
8796 the initial number. */
8797
8798 static struct abbrev_info *
8799 peek_die_abbrev (const die_reader_specs &reader,
8800 const gdb_byte *info_ptr, unsigned int *bytes_read)
8801 {
8802 dwarf2_cu *cu = reader.cu;
8803 bfd *abfd = cu->per_objfile->objfile->obfd;
8804 unsigned int abbrev_number
8805 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8806
8807 if (abbrev_number == 0)
8808 return NULL;
8809
8810 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8811 if (!abbrev)
8812 {
8813 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8814 " at offset %s [in module %s]"),
8815 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8816 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8817 }
8818
8819 return abbrev;
8820 }
8821
8822 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8823 Returns a pointer to the end of a series of DIEs, terminated by an empty
8824 DIE. Any children of the skipped DIEs will also be skipped. */
8825
8826 static const gdb_byte *
8827 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8828 {
8829 while (1)
8830 {
8831 unsigned int bytes_read;
8832 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8833
8834 if (abbrev == NULL)
8835 return info_ptr + bytes_read;
8836 else
8837 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8838 }
8839 }
8840
8841 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8842 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8843 abbrev corresponding to that skipped uleb128 should be passed in
8844 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8845 children. */
8846
8847 static const gdb_byte *
8848 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8849 struct abbrev_info *abbrev)
8850 {
8851 unsigned int bytes_read;
8852 struct attribute attr;
8853 bfd *abfd = reader->abfd;
8854 struct dwarf2_cu *cu = reader->cu;
8855 const gdb_byte *buffer = reader->buffer;
8856 const gdb_byte *buffer_end = reader->buffer_end;
8857 unsigned int form, i;
8858
8859 for (i = 0; i < abbrev->num_attrs; i++)
8860 {
8861 /* The only abbrev we care about is DW_AT_sibling. */
8862 if (abbrev->attrs[i].name == DW_AT_sibling)
8863 {
8864 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8865 if (attr.form == DW_FORM_ref_addr)
8866 complaint (_("ignoring absolute DW_AT_sibling"));
8867 else
8868 {
8869 sect_offset off = attr.get_ref_die_offset ();
8870 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8871
8872 if (sibling_ptr < info_ptr)
8873 complaint (_("DW_AT_sibling points backwards"));
8874 else if (sibling_ptr > reader->buffer_end)
8875 reader->die_section->overflow_complaint ();
8876 else
8877 return sibling_ptr;
8878 }
8879 }
8880
8881 /* If it isn't DW_AT_sibling, skip this attribute. */
8882 form = abbrev->attrs[i].form;
8883 skip_attribute:
8884 switch (form)
8885 {
8886 case DW_FORM_ref_addr:
8887 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8888 and later it is offset sized. */
8889 if (cu->header.version == 2)
8890 info_ptr += cu->header.addr_size;
8891 else
8892 info_ptr += cu->header.offset_size;
8893 break;
8894 case DW_FORM_GNU_ref_alt:
8895 info_ptr += cu->header.offset_size;
8896 break;
8897 case DW_FORM_addr:
8898 info_ptr += cu->header.addr_size;
8899 break;
8900 case DW_FORM_data1:
8901 case DW_FORM_ref1:
8902 case DW_FORM_flag:
8903 case DW_FORM_strx1:
8904 info_ptr += 1;
8905 break;
8906 case DW_FORM_flag_present:
8907 case DW_FORM_implicit_const:
8908 break;
8909 case DW_FORM_data2:
8910 case DW_FORM_ref2:
8911 case DW_FORM_strx2:
8912 info_ptr += 2;
8913 break;
8914 case DW_FORM_strx3:
8915 info_ptr += 3;
8916 break;
8917 case DW_FORM_data4:
8918 case DW_FORM_ref4:
8919 case DW_FORM_strx4:
8920 info_ptr += 4;
8921 break;
8922 case DW_FORM_data8:
8923 case DW_FORM_ref8:
8924 case DW_FORM_ref_sig8:
8925 info_ptr += 8;
8926 break;
8927 case DW_FORM_data16:
8928 info_ptr += 16;
8929 break;
8930 case DW_FORM_string:
8931 read_direct_string (abfd, info_ptr, &bytes_read);
8932 info_ptr += bytes_read;
8933 break;
8934 case DW_FORM_sec_offset:
8935 case DW_FORM_strp:
8936 case DW_FORM_GNU_strp_alt:
8937 info_ptr += cu->header.offset_size;
8938 break;
8939 case DW_FORM_exprloc:
8940 case DW_FORM_block:
8941 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8942 info_ptr += bytes_read;
8943 break;
8944 case DW_FORM_block1:
8945 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8946 break;
8947 case DW_FORM_block2:
8948 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8949 break;
8950 case DW_FORM_block4:
8951 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8952 break;
8953 case DW_FORM_addrx:
8954 case DW_FORM_strx:
8955 case DW_FORM_sdata:
8956 case DW_FORM_udata:
8957 case DW_FORM_ref_udata:
8958 case DW_FORM_GNU_addr_index:
8959 case DW_FORM_GNU_str_index:
8960 case DW_FORM_rnglistx:
8961 case DW_FORM_loclistx:
8962 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8963 break;
8964 case DW_FORM_indirect:
8965 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8966 info_ptr += bytes_read;
8967 /* We need to continue parsing from here, so just go back to
8968 the top. */
8969 goto skip_attribute;
8970
8971 default:
8972 error (_("Dwarf Error: Cannot handle %s "
8973 "in DWARF reader [in module %s]"),
8974 dwarf_form_name (form),
8975 bfd_get_filename (abfd));
8976 }
8977 }
8978
8979 if (abbrev->has_children)
8980 return skip_children (reader, info_ptr);
8981 else
8982 return info_ptr;
8983 }
8984
8985 /* Locate ORIG_PDI's sibling.
8986 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8987
8988 static const gdb_byte *
8989 locate_pdi_sibling (const struct die_reader_specs *reader,
8990 struct partial_die_info *orig_pdi,
8991 const gdb_byte *info_ptr)
8992 {
8993 /* Do we know the sibling already? */
8994
8995 if (orig_pdi->sibling)
8996 return orig_pdi->sibling;
8997
8998 /* Are there any children to deal with? */
8999
9000 if (!orig_pdi->has_children)
9001 return info_ptr;
9002
9003 /* Skip the children the long way. */
9004
9005 return skip_children (reader, info_ptr);
9006 }
9007
9008 /* Expand this partial symbol table into a full symbol table. SELF is
9009 not NULL. */
9010
9011 void
9012 dwarf2_psymtab::read_symtab (struct objfile *objfile)
9013 {
9014 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9015
9016 gdb_assert (!per_objfile->symtab_set_p (per_cu_data));
9017
9018 /* If this psymtab is constructed from a debug-only objfile, the
9019 has_section_at_zero flag will not necessarily be correct. We
9020 can get the correct value for this flag by looking at the data
9021 associated with the (presumably stripped) associated objfile. */
9022 if (objfile->separate_debug_objfile_backlink)
9023 {
9024 dwarf2_per_objfile *per_objfile_backlink
9025 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9026
9027 per_objfile->per_bfd->has_section_at_zero
9028 = per_objfile_backlink->per_bfd->has_section_at_zero;
9029 }
9030
9031 expand_psymtab (objfile);
9032
9033 process_cu_includes (per_objfile);
9034 }
9035 \f
9036 /* Reading in full CUs. */
9037
9038 /* Add PER_CU to the queue. */
9039
9040 static void
9041 queue_comp_unit (dwarf2_per_cu_data *per_cu,
9042 dwarf2_per_objfile *per_objfile,
9043 enum language pretend_language)
9044 {
9045 per_cu->queued = 1;
9046 per_cu->per_bfd->queue.emplace (per_cu, per_objfile, pretend_language);
9047 }
9048
9049 /* If PER_CU is not yet queued, add it to the queue.
9050 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9051 dependency.
9052 The result is non-zero if PER_CU was queued, otherwise the result is zero
9053 meaning either PER_CU is already queued or it is already loaded.
9054
9055 N.B. There is an invariant here that if a CU is queued then it is loaded.
9056 The caller is required to load PER_CU if we return non-zero. */
9057
9058 static int
9059 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9060 dwarf2_per_cu_data *per_cu,
9061 dwarf2_per_objfile *per_objfile,
9062 enum language pretend_language)
9063 {
9064 /* We may arrive here during partial symbol reading, if we need full
9065 DIEs to process an unusual case (e.g. template arguments). Do
9066 not queue PER_CU, just tell our caller to load its DIEs. */
9067 if (per_cu->per_bfd->reading_partial_symbols)
9068 {
9069 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9070
9071 if (cu == NULL || cu->dies == NULL)
9072 return 1;
9073 return 0;
9074 }
9075
9076 /* Mark the dependence relation so that we don't flush PER_CU
9077 too early. */
9078 if (dependent_cu != NULL)
9079 dwarf2_add_dependence (dependent_cu, per_cu);
9080
9081 /* If it's already on the queue, we have nothing to do. */
9082 if (per_cu->queued)
9083 return 0;
9084
9085 /* If the compilation unit is already loaded, just mark it as
9086 used. */
9087 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9088 if (cu != nullptr)
9089 {
9090 cu->last_used = 0;
9091 return 0;
9092 }
9093
9094 /* Add it to the queue. */
9095 queue_comp_unit (per_cu, per_objfile, pretend_language);
9096
9097 return 1;
9098 }
9099
9100 /* Process the queue. */
9101
9102 static void
9103 process_queue (dwarf2_per_objfile *per_objfile)
9104 {
9105 if (dwarf_read_debug)
9106 {
9107 fprintf_unfiltered (gdb_stdlog,
9108 "Expanding one or more symtabs of objfile %s ...\n",
9109 objfile_name (per_objfile->objfile));
9110 }
9111
9112 /* The queue starts out with one item, but following a DIE reference
9113 may load a new CU, adding it to the end of the queue. */
9114 while (!per_objfile->per_bfd->queue.empty ())
9115 {
9116 dwarf2_queue_item &item = per_objfile->per_bfd->queue.front ();
9117 dwarf2_per_cu_data *per_cu = item.per_cu;
9118
9119 if (!per_objfile->symtab_set_p (per_cu))
9120 {
9121 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9122
9123 /* Skip dummy CUs. */
9124 if (cu != nullptr)
9125 {
9126 unsigned int debug_print_threshold;
9127 char buf[100];
9128
9129 if (per_cu->is_debug_types)
9130 {
9131 struct signatured_type *sig_type =
9132 (struct signatured_type *) per_cu;
9133
9134 sprintf (buf, "TU %s at offset %s",
9135 hex_string (sig_type->signature),
9136 sect_offset_str (per_cu->sect_off));
9137 /* There can be 100s of TUs.
9138 Only print them in verbose mode. */
9139 debug_print_threshold = 2;
9140 }
9141 else
9142 {
9143 sprintf (buf, "CU at offset %s",
9144 sect_offset_str (per_cu->sect_off));
9145 debug_print_threshold = 1;
9146 }
9147
9148 if (dwarf_read_debug >= debug_print_threshold)
9149 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9150
9151 if (per_cu->is_debug_types)
9152 process_full_type_unit (cu, item.pretend_language);
9153 else
9154 process_full_comp_unit (cu, item.pretend_language);
9155
9156 if (dwarf_read_debug >= debug_print_threshold)
9157 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9158 }
9159 }
9160
9161 per_cu->queued = 0;
9162 per_objfile->per_bfd->queue.pop ();
9163 }
9164
9165 if (dwarf_read_debug)
9166 {
9167 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9168 objfile_name (per_objfile->objfile));
9169 }
9170 }
9171
9172 /* Read in full symbols for PST, and anything it depends on. */
9173
9174 void
9175 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9176 {
9177 gdb_assert (!readin_p (objfile));
9178
9179 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9180 free_cached_comp_units freer (per_objfile);
9181 expand_dependencies (objfile);
9182
9183 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
9184 gdb_assert (get_compunit_symtab (objfile) != nullptr);
9185 }
9186
9187 /* See psympriv.h. */
9188
9189 bool
9190 dwarf2_psymtab::readin_p (struct objfile *objfile) const
9191 {
9192 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9193 return per_objfile->symtab_set_p (per_cu_data);
9194 }
9195
9196 /* See psympriv.h. */
9197
9198 compunit_symtab *
9199 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
9200 {
9201 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9202 return per_objfile->get_symtab (per_cu_data);
9203 }
9204
9205 /* Trivial hash function for die_info: the hash value of a DIE
9206 is its offset in .debug_info for this objfile. */
9207
9208 static hashval_t
9209 die_hash (const void *item)
9210 {
9211 const struct die_info *die = (const struct die_info *) item;
9212
9213 return to_underlying (die->sect_off);
9214 }
9215
9216 /* Trivial comparison function for die_info structures: two DIEs
9217 are equal if they have the same offset. */
9218
9219 static int
9220 die_eq (const void *item_lhs, const void *item_rhs)
9221 {
9222 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9223 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9224
9225 return die_lhs->sect_off == die_rhs->sect_off;
9226 }
9227
9228 /* Load the DIEs associated with PER_CU into memory. */
9229
9230 static void
9231 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
9232 dwarf2_per_objfile *per_objfile,
9233 bool skip_partial,
9234 enum language pretend_language)
9235 {
9236 gdb_assert (! this_cu->is_debug_types);
9237
9238 dwarf2_cu *existing_cu = per_objfile->get_cu (this_cu);
9239 cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial);
9240 if (reader.dummy_p)
9241 return;
9242
9243 struct dwarf2_cu *cu = reader.cu;
9244 const gdb_byte *info_ptr = reader.info_ptr;
9245
9246 gdb_assert (cu->die_hash == NULL);
9247 cu->die_hash =
9248 htab_create_alloc_ex (cu->header.length / 12,
9249 die_hash,
9250 die_eq,
9251 NULL,
9252 &cu->comp_unit_obstack,
9253 hashtab_obstack_allocate,
9254 dummy_obstack_deallocate);
9255
9256 if (reader.comp_unit_die->has_children)
9257 reader.comp_unit_die->child
9258 = read_die_and_siblings (&reader, reader.info_ptr,
9259 &info_ptr, reader.comp_unit_die);
9260 cu->dies = reader.comp_unit_die;
9261 /* comp_unit_die is not stored in die_hash, no need. */
9262
9263 /* We try not to read any attributes in this function, because not
9264 all CUs needed for references have been loaded yet, and symbol
9265 table processing isn't initialized. But we have to set the CU language,
9266 or we won't be able to build types correctly.
9267 Similarly, if we do not read the producer, we can not apply
9268 producer-specific interpretation. */
9269 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9270
9271 reader.keep ();
9272 }
9273
9274 /* Add a DIE to the delayed physname list. */
9275
9276 static void
9277 add_to_method_list (struct type *type, int fnfield_index, int index,
9278 const char *name, struct die_info *die,
9279 struct dwarf2_cu *cu)
9280 {
9281 struct delayed_method_info mi;
9282 mi.type = type;
9283 mi.fnfield_index = fnfield_index;
9284 mi.index = index;
9285 mi.name = name;
9286 mi.die = die;
9287 cu->method_list.push_back (mi);
9288 }
9289
9290 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9291 "const" / "volatile". If so, decrements LEN by the length of the
9292 modifier and return true. Otherwise return false. */
9293
9294 template<size_t N>
9295 static bool
9296 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9297 {
9298 size_t mod_len = sizeof (mod) - 1;
9299 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9300 {
9301 len -= mod_len;
9302 return true;
9303 }
9304 return false;
9305 }
9306
9307 /* Compute the physnames of any methods on the CU's method list.
9308
9309 The computation of method physnames is delayed in order to avoid the
9310 (bad) condition that one of the method's formal parameters is of an as yet
9311 incomplete type. */
9312
9313 static void
9314 compute_delayed_physnames (struct dwarf2_cu *cu)
9315 {
9316 /* Only C++ delays computing physnames. */
9317 if (cu->method_list.empty ())
9318 return;
9319 gdb_assert (cu->language == language_cplus);
9320
9321 for (const delayed_method_info &mi : cu->method_list)
9322 {
9323 const char *physname;
9324 struct fn_fieldlist *fn_flp
9325 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9326 physname = dwarf2_physname (mi.name, mi.die, cu);
9327 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9328 = physname ? physname : "";
9329
9330 /* Since there's no tag to indicate whether a method is a
9331 const/volatile overload, extract that information out of the
9332 demangled name. */
9333 if (physname != NULL)
9334 {
9335 size_t len = strlen (physname);
9336
9337 while (1)
9338 {
9339 if (physname[len] == ')') /* shortcut */
9340 break;
9341 else if (check_modifier (physname, len, " const"))
9342 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9343 else if (check_modifier (physname, len, " volatile"))
9344 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9345 else
9346 break;
9347 }
9348 }
9349 }
9350
9351 /* The list is no longer needed. */
9352 cu->method_list.clear ();
9353 }
9354
9355 /* Go objects should be embedded in a DW_TAG_module DIE,
9356 and it's not clear if/how imported objects will appear.
9357 To keep Go support simple until that's worked out,
9358 go back through what we've read and create something usable.
9359 We could do this while processing each DIE, and feels kinda cleaner,
9360 but that way is more invasive.
9361 This is to, for example, allow the user to type "p var" or "b main"
9362 without having to specify the package name, and allow lookups
9363 of module.object to work in contexts that use the expression
9364 parser. */
9365
9366 static void
9367 fixup_go_packaging (struct dwarf2_cu *cu)
9368 {
9369 gdb::unique_xmalloc_ptr<char> package_name;
9370 struct pending *list;
9371 int i;
9372
9373 for (list = *cu->get_builder ()->get_global_symbols ();
9374 list != NULL;
9375 list = list->next)
9376 {
9377 for (i = 0; i < list->nsyms; ++i)
9378 {
9379 struct symbol *sym = list->symbol[i];
9380
9381 if (sym->language () == language_go
9382 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9383 {
9384 gdb::unique_xmalloc_ptr<char> this_package_name
9385 (go_symbol_package_name (sym));
9386
9387 if (this_package_name == NULL)
9388 continue;
9389 if (package_name == NULL)
9390 package_name = std::move (this_package_name);
9391 else
9392 {
9393 struct objfile *objfile = cu->per_objfile->objfile;
9394 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9395 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9396 (symbol_symtab (sym) != NULL
9397 ? symtab_to_filename_for_display
9398 (symbol_symtab (sym))
9399 : objfile_name (objfile)),
9400 this_package_name.get (), package_name.get ());
9401 }
9402 }
9403 }
9404 }
9405
9406 if (package_name != NULL)
9407 {
9408 struct objfile *objfile = cu->per_objfile->objfile;
9409 const char *saved_package_name = objfile->intern (package_name.get ());
9410 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9411 saved_package_name);
9412 struct symbol *sym;
9413
9414 sym = new (&objfile->objfile_obstack) symbol;
9415 sym->set_language (language_go, &objfile->objfile_obstack);
9416 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9417 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9418 e.g., "main" finds the "main" module and not C's main(). */
9419 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9420 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9421 SYMBOL_TYPE (sym) = type;
9422
9423 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9424 }
9425 }
9426
9427 /* Allocate a fully-qualified name consisting of the two parts on the
9428 obstack. */
9429
9430 static const char *
9431 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9432 {
9433 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9434 }
9435
9436 /* A helper that allocates a variant part to attach to a Rust enum
9437 type. OBSTACK is where the results should be allocated. TYPE is
9438 the type we're processing. DISCRIMINANT_INDEX is the index of the
9439 discriminant. It must be the index of one of the fields of TYPE,
9440 or -1 to mean there is no discriminant (univariant enum).
9441 DEFAULT_INDEX is the index of the default field; or -1 if there is
9442 no default. RANGES is indexed by "effective" field number (the
9443 field index, but omitting the discriminant and default fields) and
9444 must hold the discriminant values used by the variants. Note that
9445 RANGES must have a lifetime at least as long as OBSTACK -- either
9446 already allocated on it, or static. */
9447
9448 static void
9449 alloc_rust_variant (struct obstack *obstack, struct type *type,
9450 int discriminant_index, int default_index,
9451 gdb::array_view<discriminant_range> ranges)
9452 {
9453 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. */
9454 gdb_assert (discriminant_index == -1
9455 || (discriminant_index >= 0
9456 && discriminant_index < type->num_fields ()));
9457 gdb_assert (default_index == -1
9458 || (default_index >= 0 && default_index < type->num_fields ()));
9459
9460 /* We have one variant for each non-discriminant field. */
9461 int n_variants = type->num_fields ();
9462 if (discriminant_index != -1)
9463 --n_variants;
9464
9465 variant *variants = new (obstack) variant[n_variants];
9466 int var_idx = 0;
9467 int range_idx = 0;
9468 for (int i = 0; i < type->num_fields (); ++i)
9469 {
9470 if (i == discriminant_index)
9471 continue;
9472
9473 variants[var_idx].first_field = i;
9474 variants[var_idx].last_field = i + 1;
9475
9476 /* The default field does not need a range, but other fields do.
9477 We skipped the discriminant above. */
9478 if (i != default_index)
9479 {
9480 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9481 ++range_idx;
9482 }
9483
9484 ++var_idx;
9485 }
9486
9487 gdb_assert (range_idx == ranges.size ());
9488 gdb_assert (var_idx == n_variants);
9489
9490 variant_part *part = new (obstack) variant_part;
9491 part->discriminant_index = discriminant_index;
9492 /* If there is no discriminant, then whether it is signed is of no
9493 consequence. */
9494 part->is_unsigned
9495 = (discriminant_index == -1
9496 ? false
9497 : type->field (discriminant_index).type ()->is_unsigned ());
9498 part->variants = gdb::array_view<variant> (variants, n_variants);
9499
9500 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9501 gdb::array_view<variant_part> *prop_value
9502 = new (storage) gdb::array_view<variant_part> (part, 1);
9503
9504 struct dynamic_prop prop;
9505 prop.set_variant_parts (prop_value);
9506
9507 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9508 }
9509
9510 /* Some versions of rustc emitted enums in an unusual way.
9511
9512 Ordinary enums were emitted as unions. The first element of each
9513 structure in the union was named "RUST$ENUM$DISR". This element
9514 held the discriminant.
9515
9516 These versions of Rust also implemented the "non-zero"
9517 optimization. When the enum had two values, and one is empty and
9518 the other holds a pointer that cannot be zero, the pointer is used
9519 as the discriminant, with a zero value meaning the empty variant.
9520 Here, the union's first member is of the form
9521 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9522 where the fieldnos are the indices of the fields that should be
9523 traversed in order to find the field (which may be several fields deep)
9524 and the variantname is the name of the variant of the case when the
9525 field is zero.
9526
9527 This function recognizes whether TYPE is of one of these forms,
9528 and, if so, smashes it to be a variant type. */
9529
9530 static void
9531 quirk_rust_enum (struct type *type, struct objfile *objfile)
9532 {
9533 gdb_assert (type->code () == TYPE_CODE_UNION);
9534
9535 /* We don't need to deal with empty enums. */
9536 if (type->num_fields () == 0)
9537 return;
9538
9539 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9540 if (type->num_fields () == 1
9541 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9542 {
9543 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9544
9545 /* Decode the field name to find the offset of the
9546 discriminant. */
9547 ULONGEST bit_offset = 0;
9548 struct type *field_type = type->field (0).type ();
9549 while (name[0] >= '0' && name[0] <= '9')
9550 {
9551 char *tail;
9552 unsigned long index = strtoul (name, &tail, 10);
9553 name = tail;
9554 if (*name != '$'
9555 || index >= field_type->num_fields ()
9556 || (TYPE_FIELD_LOC_KIND (field_type, index)
9557 != FIELD_LOC_KIND_BITPOS))
9558 {
9559 complaint (_("Could not parse Rust enum encoding string \"%s\""
9560 "[in module %s]"),
9561 TYPE_FIELD_NAME (type, 0),
9562 objfile_name (objfile));
9563 return;
9564 }
9565 ++name;
9566
9567 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9568 field_type = field_type->field (index).type ();
9569 }
9570
9571 /* Smash this type to be a structure type. We have to do this
9572 because the type has already been recorded. */
9573 type->set_code (TYPE_CODE_STRUCT);
9574 type->set_num_fields (3);
9575 /* Save the field we care about. */
9576 struct field saved_field = type->field (0);
9577 type->set_fields
9578 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9579
9580 /* Put the discriminant at index 0. */
9581 type->field (0).set_type (field_type);
9582 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9583 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9584 SET_FIELD_BITPOS (type->field (0), bit_offset);
9585
9586 /* The order of fields doesn't really matter, so put the real
9587 field at index 1 and the data-less field at index 2. */
9588 type->field (1) = saved_field;
9589 TYPE_FIELD_NAME (type, 1)
9590 = rust_last_path_segment (type->field (1).type ()->name ());
9591 type->field (1).type ()->set_name
9592 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9593 TYPE_FIELD_NAME (type, 1)));
9594
9595 const char *dataless_name
9596 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9597 name);
9598 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9599 dataless_name);
9600 type->field (2).set_type (dataless_type);
9601 /* NAME points into the original discriminant name, which
9602 already has the correct lifetime. */
9603 TYPE_FIELD_NAME (type, 2) = name;
9604 SET_FIELD_BITPOS (type->field (2), 0);
9605
9606 /* Indicate that this is a variant type. */
9607 static discriminant_range ranges[1] = { { 0, 0 } };
9608 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9609 }
9610 /* A union with a single anonymous field is probably an old-style
9611 univariant enum. */
9612 else if (type->num_fields () == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9613 {
9614 /* Smash this type to be a structure type. We have to do this
9615 because the type has already been recorded. */
9616 type->set_code (TYPE_CODE_STRUCT);
9617
9618 struct type *field_type = type->field (0).type ();
9619 const char *variant_name
9620 = rust_last_path_segment (field_type->name ());
9621 TYPE_FIELD_NAME (type, 0) = variant_name;
9622 field_type->set_name
9623 (rust_fully_qualify (&objfile->objfile_obstack,
9624 type->name (), variant_name));
9625
9626 alloc_rust_variant (&objfile->objfile_obstack, type, -1, 0, {});
9627 }
9628 else
9629 {
9630 struct type *disr_type = nullptr;
9631 for (int i = 0; i < type->num_fields (); ++i)
9632 {
9633 disr_type = type->field (i).type ();
9634
9635 if (disr_type->code () != TYPE_CODE_STRUCT)
9636 {
9637 /* All fields of a true enum will be structs. */
9638 return;
9639 }
9640 else if (disr_type->num_fields () == 0)
9641 {
9642 /* Could be data-less variant, so keep going. */
9643 disr_type = nullptr;
9644 }
9645 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9646 "RUST$ENUM$DISR") != 0)
9647 {
9648 /* Not a Rust enum. */
9649 return;
9650 }
9651 else
9652 {
9653 /* Found one. */
9654 break;
9655 }
9656 }
9657
9658 /* If we got here without a discriminant, then it's probably
9659 just a union. */
9660 if (disr_type == nullptr)
9661 return;
9662
9663 /* Smash this type to be a structure type. We have to do this
9664 because the type has already been recorded. */
9665 type->set_code (TYPE_CODE_STRUCT);
9666
9667 /* Make space for the discriminant field. */
9668 struct field *disr_field = &disr_type->field (0);
9669 field *new_fields
9670 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9671 * sizeof (struct field)));
9672 memcpy (new_fields + 1, type->fields (),
9673 type->num_fields () * sizeof (struct field));
9674 type->set_fields (new_fields);
9675 type->set_num_fields (type->num_fields () + 1);
9676
9677 /* Install the discriminant at index 0 in the union. */
9678 type->field (0) = *disr_field;
9679 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9680 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9681
9682 /* We need a way to find the correct discriminant given a
9683 variant name. For convenience we build a map here. */
9684 struct type *enum_type = disr_field->type ();
9685 std::unordered_map<std::string, ULONGEST> discriminant_map;
9686 for (int i = 0; i < enum_type->num_fields (); ++i)
9687 {
9688 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9689 {
9690 const char *name
9691 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9692 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9693 }
9694 }
9695
9696 int n_fields = type->num_fields ();
9697 /* We don't need a range entry for the discriminant, but we do
9698 need one for every other field, as there is no default
9699 variant. */
9700 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9701 discriminant_range,
9702 n_fields - 1);
9703 /* Skip the discriminant here. */
9704 for (int i = 1; i < n_fields; ++i)
9705 {
9706 /* Find the final word in the name of this variant's type.
9707 That name can be used to look up the correct
9708 discriminant. */
9709 const char *variant_name
9710 = rust_last_path_segment (type->field (i).type ()->name ());
9711
9712 auto iter = discriminant_map.find (variant_name);
9713 if (iter != discriminant_map.end ())
9714 {
9715 ranges[i - 1].low = iter->second;
9716 ranges[i - 1].high = iter->second;
9717 }
9718
9719 /* In Rust, each element should have the size of the
9720 enclosing enum. */
9721 TYPE_LENGTH (type->field (i).type ()) = TYPE_LENGTH (type);
9722
9723 /* Remove the discriminant field, if it exists. */
9724 struct type *sub_type = type->field (i).type ();
9725 if (sub_type->num_fields () > 0)
9726 {
9727 sub_type->set_num_fields (sub_type->num_fields () - 1);
9728 sub_type->set_fields (sub_type->fields () + 1);
9729 }
9730 TYPE_FIELD_NAME (type, i) = variant_name;
9731 sub_type->set_name
9732 (rust_fully_qualify (&objfile->objfile_obstack,
9733 type->name (), variant_name));
9734 }
9735
9736 /* Indicate that this is a variant type. */
9737 alloc_rust_variant (&objfile->objfile_obstack, type, 0, -1,
9738 gdb::array_view<discriminant_range> (ranges,
9739 n_fields - 1));
9740 }
9741 }
9742
9743 /* Rewrite some Rust unions to be structures with variants parts. */
9744
9745 static void
9746 rust_union_quirks (struct dwarf2_cu *cu)
9747 {
9748 gdb_assert (cu->language == language_rust);
9749 for (type *type_ : cu->rust_unions)
9750 quirk_rust_enum (type_, cu->per_objfile->objfile);
9751 /* We don't need this any more. */
9752 cu->rust_unions.clear ();
9753 }
9754
9755 /* See read.h. */
9756
9757 type_unit_group_unshareable *
9758 dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group)
9759 {
9760 auto iter = this->m_type_units.find (tu_group);
9761 if (iter != this->m_type_units.end ())
9762 return iter->second.get ();
9763
9764 type_unit_group_unshareable_up uniq (new type_unit_group_unshareable);
9765 type_unit_group_unshareable *result = uniq.get ();
9766 this->m_type_units[tu_group] = std::move (uniq);
9767 return result;
9768 }
9769
9770 struct type *
9771 dwarf2_per_objfile::get_type_for_signatured_type
9772 (signatured_type *sig_type) const
9773 {
9774 auto iter = this->m_type_map.find (sig_type);
9775 if (iter == this->m_type_map.end ())
9776 return nullptr;
9777
9778 return iter->second;
9779 }
9780
9781 void dwarf2_per_objfile::set_type_for_signatured_type
9782 (signatured_type *sig_type, struct type *type)
9783 {
9784 gdb_assert (this->m_type_map.find (sig_type) == this->m_type_map.end ());
9785
9786 this->m_type_map[sig_type] = type;
9787 }
9788
9789 /* A helper function for computing the list of all symbol tables
9790 included by PER_CU. */
9791
9792 static void
9793 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9794 htab_t all_children, htab_t all_type_symtabs,
9795 dwarf2_per_cu_data *per_cu,
9796 dwarf2_per_objfile *per_objfile,
9797 struct compunit_symtab *immediate_parent)
9798 {
9799 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9800 if (*slot != NULL)
9801 {
9802 /* This inclusion and its children have been processed. */
9803 return;
9804 }
9805
9806 *slot = per_cu;
9807
9808 /* Only add a CU if it has a symbol table. */
9809 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9810 if (cust != NULL)
9811 {
9812 /* If this is a type unit only add its symbol table if we haven't
9813 seen it yet (type unit per_cu's can share symtabs). */
9814 if (per_cu->is_debug_types)
9815 {
9816 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9817 if (*slot == NULL)
9818 {
9819 *slot = cust;
9820 result->push_back (cust);
9821 if (cust->user == NULL)
9822 cust->user = immediate_parent;
9823 }
9824 }
9825 else
9826 {
9827 result->push_back (cust);
9828 if (cust->user == NULL)
9829 cust->user = immediate_parent;
9830 }
9831 }
9832
9833 if (!per_cu->imported_symtabs_empty ())
9834 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9835 {
9836 recursively_compute_inclusions (result, all_children,
9837 all_type_symtabs, ptr, per_objfile,
9838 cust);
9839 }
9840 }
9841
9842 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9843 PER_CU. */
9844
9845 static void
9846 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9847 dwarf2_per_objfile *per_objfile)
9848 {
9849 gdb_assert (! per_cu->is_debug_types);
9850
9851 if (!per_cu->imported_symtabs_empty ())
9852 {
9853 int len;
9854 std::vector<compunit_symtab *> result_symtabs;
9855 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9856
9857 /* If we don't have a symtab, we can just skip this case. */
9858 if (cust == NULL)
9859 return;
9860
9861 htab_up all_children (htab_create_alloc (1, htab_hash_pointer,
9862 htab_eq_pointer,
9863 NULL, xcalloc, xfree));
9864 htab_up all_type_symtabs (htab_create_alloc (1, htab_hash_pointer,
9865 htab_eq_pointer,
9866 NULL, xcalloc, xfree));
9867
9868 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9869 {
9870 recursively_compute_inclusions (&result_symtabs, all_children.get (),
9871 all_type_symtabs.get (), ptr,
9872 per_objfile, cust);
9873 }
9874
9875 /* Now we have a transitive closure of all the included symtabs. */
9876 len = result_symtabs.size ();
9877 cust->includes
9878 = XOBNEWVEC (&per_objfile->objfile->objfile_obstack,
9879 struct compunit_symtab *, len + 1);
9880 memcpy (cust->includes, result_symtabs.data (),
9881 len * sizeof (compunit_symtab *));
9882 cust->includes[len] = NULL;
9883 }
9884 }
9885
9886 /* Compute the 'includes' field for the symtabs of all the CUs we just
9887 read. */
9888
9889 static void
9890 process_cu_includes (dwarf2_per_objfile *per_objfile)
9891 {
9892 for (dwarf2_per_cu_data *iter : per_objfile->per_bfd->just_read_cus)
9893 {
9894 if (! iter->is_debug_types)
9895 compute_compunit_symtab_includes (iter, per_objfile);
9896 }
9897
9898 per_objfile->per_bfd->just_read_cus.clear ();
9899 }
9900
9901 /* Generate full symbol information for CU, whose DIEs have
9902 already been loaded into memory. */
9903
9904 static void
9905 process_full_comp_unit (dwarf2_cu *cu, enum language pretend_language)
9906 {
9907 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9908 struct objfile *objfile = per_objfile->objfile;
9909 struct gdbarch *gdbarch = objfile->arch ();
9910 CORE_ADDR lowpc, highpc;
9911 struct compunit_symtab *cust;
9912 CORE_ADDR baseaddr;
9913 struct block *static_block;
9914 CORE_ADDR addr;
9915
9916 baseaddr = objfile->text_section_offset ();
9917
9918 /* Clear the list here in case something was left over. */
9919 cu->method_list.clear ();
9920
9921 cu->language = pretend_language;
9922 cu->language_defn = language_def (cu->language);
9923
9924 /* Do line number decoding in read_file_scope () */
9925 process_die (cu->dies, cu);
9926
9927 /* For now fudge the Go package. */
9928 if (cu->language == language_go)
9929 fixup_go_packaging (cu);
9930
9931 /* Now that we have processed all the DIEs in the CU, all the types
9932 should be complete, and it should now be safe to compute all of the
9933 physnames. */
9934 compute_delayed_physnames (cu);
9935
9936 if (cu->language == language_rust)
9937 rust_union_quirks (cu);
9938
9939 /* Some compilers don't define a DW_AT_high_pc attribute for the
9940 compilation unit. If the DW_AT_high_pc is missing, synthesize
9941 it, by scanning the DIE's below the compilation unit. */
9942 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9943
9944 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9945 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9946
9947 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9948 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9949 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9950 addrmap to help ensure it has an accurate map of pc values belonging to
9951 this comp unit. */
9952 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9953
9954 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9955 SECT_OFF_TEXT (objfile),
9956 0);
9957
9958 if (cust != NULL)
9959 {
9960 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9961
9962 /* Set symtab language to language from DW_AT_language. If the
9963 compilation is from a C file generated by language preprocessors, do
9964 not set the language if it was already deduced by start_subfile. */
9965 if (!(cu->language == language_c
9966 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9967 COMPUNIT_FILETABS (cust)->language = cu->language;
9968
9969 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9970 produce DW_AT_location with location lists but it can be possibly
9971 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9972 there were bugs in prologue debug info, fixed later in GCC-4.5
9973 by "unwind info for epilogues" patch (which is not directly related).
9974
9975 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9976 needed, it would be wrong due to missing DW_AT_producer there.
9977
9978 Still one can confuse GDB by using non-standard GCC compilation
9979 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9980 */
9981 if (cu->has_loclist && gcc_4_minor >= 5)
9982 cust->locations_valid = 1;
9983
9984 if (gcc_4_minor >= 5)
9985 cust->epilogue_unwind_valid = 1;
9986
9987 cust->call_site_htab = cu->call_site_htab;
9988 }
9989
9990 per_objfile->set_symtab (cu->per_cu, cust);
9991
9992 /* Push it for inclusion processing later. */
9993 per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu);
9994
9995 /* Not needed any more. */
9996 cu->reset_builder ();
9997 }
9998
9999 /* Generate full symbol information for type unit CU, whose DIEs have
10000 already been loaded into memory. */
10001
10002 static void
10003 process_full_type_unit (dwarf2_cu *cu,
10004 enum language pretend_language)
10005 {
10006 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10007 struct objfile *objfile = per_objfile->objfile;
10008 struct compunit_symtab *cust;
10009 struct signatured_type *sig_type;
10010
10011 gdb_assert (cu->per_cu->is_debug_types);
10012 sig_type = (struct signatured_type *) cu->per_cu;
10013
10014 /* Clear the list here in case something was left over. */
10015 cu->method_list.clear ();
10016
10017 cu->language = pretend_language;
10018 cu->language_defn = language_def (cu->language);
10019
10020 /* The symbol tables are set up in read_type_unit_scope. */
10021 process_die (cu->dies, cu);
10022
10023 /* For now fudge the Go package. */
10024 if (cu->language == language_go)
10025 fixup_go_packaging (cu);
10026
10027 /* Now that we have processed all the DIEs in the CU, all the types
10028 should be complete, and it should now be safe to compute all of the
10029 physnames. */
10030 compute_delayed_physnames (cu);
10031
10032 if (cu->language == language_rust)
10033 rust_union_quirks (cu);
10034
10035 /* TUs share symbol tables.
10036 If this is the first TU to use this symtab, complete the construction
10037 of it with end_expandable_symtab. Otherwise, complete the addition of
10038 this TU's symbols to the existing symtab. */
10039 type_unit_group_unshareable *tug_unshare =
10040 per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group);
10041 if (tug_unshare->compunit_symtab == NULL)
10042 {
10043 buildsym_compunit *builder = cu->get_builder ();
10044 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10045 tug_unshare->compunit_symtab = cust;
10046
10047 if (cust != NULL)
10048 {
10049 /* Set symtab language to language from DW_AT_language. If the
10050 compilation is from a C file generated by language preprocessors,
10051 do not set the language if it was already deduced by
10052 start_subfile. */
10053 if (!(cu->language == language_c
10054 && COMPUNIT_FILETABS (cust)->language != language_c))
10055 COMPUNIT_FILETABS (cust)->language = cu->language;
10056 }
10057 }
10058 else
10059 {
10060 cu->get_builder ()->augment_type_symtab ();
10061 cust = tug_unshare->compunit_symtab;
10062 }
10063
10064 per_objfile->set_symtab (cu->per_cu, cust);
10065
10066 /* Not needed any more. */
10067 cu->reset_builder ();
10068 }
10069
10070 /* Process an imported unit DIE. */
10071
10072 static void
10073 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10074 {
10075 struct attribute *attr;
10076
10077 /* For now we don't handle imported units in type units. */
10078 if (cu->per_cu->is_debug_types)
10079 {
10080 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10081 " supported in type units [in module %s]"),
10082 objfile_name (cu->per_objfile->objfile));
10083 }
10084
10085 attr = dwarf2_attr (die, DW_AT_import, cu);
10086 if (attr != NULL)
10087 {
10088 sect_offset sect_off = attr->get_ref_die_offset ();
10089 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10090 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10091 dwarf2_per_cu_data *per_cu
10092 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
10093
10094 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
10095 into another compilation unit, at root level. Regard this as a hint,
10096 and ignore it. */
10097 if (die->parent && die->parent->parent == NULL
10098 && per_cu->unit_type == DW_UT_compile
10099 && per_cu->lang == language_cplus)
10100 return;
10101
10102 /* If necessary, add it to the queue and load its DIEs. */
10103 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
10104 load_full_comp_unit (per_cu, per_objfile, false, cu->language);
10105
10106 cu->per_cu->imported_symtabs_push (per_cu);
10107 }
10108 }
10109
10110 /* RAII object that represents a process_die scope: i.e.,
10111 starts/finishes processing a DIE. */
10112 class process_die_scope
10113 {
10114 public:
10115 process_die_scope (die_info *die, dwarf2_cu *cu)
10116 : m_die (die), m_cu (cu)
10117 {
10118 /* We should only be processing DIEs not already in process. */
10119 gdb_assert (!m_die->in_process);
10120 m_die->in_process = true;
10121 }
10122
10123 ~process_die_scope ()
10124 {
10125 m_die->in_process = false;
10126
10127 /* If we're done processing the DIE for the CU that owns the line
10128 header, we don't need the line header anymore. */
10129 if (m_cu->line_header_die_owner == m_die)
10130 {
10131 delete m_cu->line_header;
10132 m_cu->line_header = NULL;
10133 m_cu->line_header_die_owner = NULL;
10134 }
10135 }
10136
10137 private:
10138 die_info *m_die;
10139 dwarf2_cu *m_cu;
10140 };
10141
10142 /* Process a die and its children. */
10143
10144 static void
10145 process_die (struct die_info *die, struct dwarf2_cu *cu)
10146 {
10147 process_die_scope scope (die, cu);
10148
10149 switch (die->tag)
10150 {
10151 case DW_TAG_padding:
10152 break;
10153 case DW_TAG_compile_unit:
10154 case DW_TAG_partial_unit:
10155 read_file_scope (die, cu);
10156 break;
10157 case DW_TAG_type_unit:
10158 read_type_unit_scope (die, cu);
10159 break;
10160 case DW_TAG_subprogram:
10161 /* Nested subprograms in Fortran get a prefix. */
10162 if (cu->language == language_fortran
10163 && die->parent != NULL
10164 && die->parent->tag == DW_TAG_subprogram)
10165 cu->processing_has_namespace_info = true;
10166 /* Fall through. */
10167 case DW_TAG_inlined_subroutine:
10168 read_func_scope (die, cu);
10169 break;
10170 case DW_TAG_lexical_block:
10171 case DW_TAG_try_block:
10172 case DW_TAG_catch_block:
10173 read_lexical_block_scope (die, cu);
10174 break;
10175 case DW_TAG_call_site:
10176 case DW_TAG_GNU_call_site:
10177 read_call_site_scope (die, cu);
10178 break;
10179 case DW_TAG_class_type:
10180 case DW_TAG_interface_type:
10181 case DW_TAG_structure_type:
10182 case DW_TAG_union_type:
10183 process_structure_scope (die, cu);
10184 break;
10185 case DW_TAG_enumeration_type:
10186 process_enumeration_scope (die, cu);
10187 break;
10188
10189 /* These dies have a type, but processing them does not create
10190 a symbol or recurse to process the children. Therefore we can
10191 read them on-demand through read_type_die. */
10192 case DW_TAG_subroutine_type:
10193 case DW_TAG_set_type:
10194 case DW_TAG_array_type:
10195 case DW_TAG_pointer_type:
10196 case DW_TAG_ptr_to_member_type:
10197 case DW_TAG_reference_type:
10198 case DW_TAG_rvalue_reference_type:
10199 case DW_TAG_string_type:
10200 break;
10201
10202 case DW_TAG_base_type:
10203 case DW_TAG_subrange_type:
10204 case DW_TAG_typedef:
10205 /* Add a typedef symbol for the type definition, if it has a
10206 DW_AT_name. */
10207 new_symbol (die, read_type_die (die, cu), cu);
10208 break;
10209 case DW_TAG_common_block:
10210 read_common_block (die, cu);
10211 break;
10212 case DW_TAG_common_inclusion:
10213 break;
10214 case DW_TAG_namespace:
10215 cu->processing_has_namespace_info = true;
10216 read_namespace (die, cu);
10217 break;
10218 case DW_TAG_module:
10219 cu->processing_has_namespace_info = true;
10220 read_module (die, cu);
10221 break;
10222 case DW_TAG_imported_declaration:
10223 cu->processing_has_namespace_info = true;
10224 if (read_namespace_alias (die, cu))
10225 break;
10226 /* The declaration is not a global namespace alias. */
10227 /* Fall through. */
10228 case DW_TAG_imported_module:
10229 cu->processing_has_namespace_info = true;
10230 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10231 || cu->language != language_fortran))
10232 complaint (_("Tag '%s' has unexpected children"),
10233 dwarf_tag_name (die->tag));
10234 read_import_statement (die, cu);
10235 break;
10236
10237 case DW_TAG_imported_unit:
10238 process_imported_unit_die (die, cu);
10239 break;
10240
10241 case DW_TAG_variable:
10242 read_variable (die, cu);
10243 break;
10244
10245 default:
10246 new_symbol (die, NULL, cu);
10247 break;
10248 }
10249 }
10250 \f
10251 /* DWARF name computation. */
10252
10253 /* A helper function for dwarf2_compute_name which determines whether DIE
10254 needs to have the name of the scope prepended to the name listed in the
10255 die. */
10256
10257 static int
10258 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10259 {
10260 struct attribute *attr;
10261
10262 switch (die->tag)
10263 {
10264 case DW_TAG_namespace:
10265 case DW_TAG_typedef:
10266 case DW_TAG_class_type:
10267 case DW_TAG_interface_type:
10268 case DW_TAG_structure_type:
10269 case DW_TAG_union_type:
10270 case DW_TAG_enumeration_type:
10271 case DW_TAG_enumerator:
10272 case DW_TAG_subprogram:
10273 case DW_TAG_inlined_subroutine:
10274 case DW_TAG_member:
10275 case DW_TAG_imported_declaration:
10276 return 1;
10277
10278 case DW_TAG_variable:
10279 case DW_TAG_constant:
10280 /* We only need to prefix "globally" visible variables. These include
10281 any variable marked with DW_AT_external or any variable that
10282 lives in a namespace. [Variables in anonymous namespaces
10283 require prefixing, but they are not DW_AT_external.] */
10284
10285 if (dwarf2_attr (die, DW_AT_specification, cu))
10286 {
10287 struct dwarf2_cu *spec_cu = cu;
10288
10289 return die_needs_namespace (die_specification (die, &spec_cu),
10290 spec_cu);
10291 }
10292
10293 attr = dwarf2_attr (die, DW_AT_external, cu);
10294 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10295 && die->parent->tag != DW_TAG_module)
10296 return 0;
10297 /* A variable in a lexical block of some kind does not need a
10298 namespace, even though in C++ such variables may be external
10299 and have a mangled name. */
10300 if (die->parent->tag == DW_TAG_lexical_block
10301 || die->parent->tag == DW_TAG_try_block
10302 || die->parent->tag == DW_TAG_catch_block
10303 || die->parent->tag == DW_TAG_subprogram)
10304 return 0;
10305 return 1;
10306
10307 default:
10308 return 0;
10309 }
10310 }
10311
10312 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10313 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10314 defined for the given DIE. */
10315
10316 static struct attribute *
10317 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10318 {
10319 struct attribute *attr;
10320
10321 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10322 if (attr == NULL)
10323 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10324
10325 return attr;
10326 }
10327
10328 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10329 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10330 defined for the given DIE. */
10331
10332 static const char *
10333 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10334 {
10335 const char *linkage_name;
10336
10337 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10338 if (linkage_name == NULL)
10339 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10340
10341 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10342 See https://github.com/rust-lang/rust/issues/32925. */
10343 if (cu->language == language_rust && linkage_name != NULL
10344 && strchr (linkage_name, '{') != NULL)
10345 linkage_name = NULL;
10346
10347 return linkage_name;
10348 }
10349
10350 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10351 compute the physname for the object, which include a method's:
10352 - formal parameters (C++),
10353 - receiver type (Go),
10354
10355 The term "physname" is a bit confusing.
10356 For C++, for example, it is the demangled name.
10357 For Go, for example, it's the mangled name.
10358
10359 For Ada, return the DIE's linkage name rather than the fully qualified
10360 name. PHYSNAME is ignored..
10361
10362 The result is allocated on the objfile->per_bfd's obstack and
10363 canonicalized. */
10364
10365 static const char *
10366 dwarf2_compute_name (const char *name,
10367 struct die_info *die, struct dwarf2_cu *cu,
10368 int physname)
10369 {
10370 struct objfile *objfile = cu->per_objfile->objfile;
10371
10372 if (name == NULL)
10373 name = dwarf2_name (die, cu);
10374
10375 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10376 but otherwise compute it by typename_concat inside GDB.
10377 FIXME: Actually this is not really true, or at least not always true.
10378 It's all very confusing. compute_and_set_names doesn't try to demangle
10379 Fortran names because there is no mangling standard. So new_symbol
10380 will set the demangled name to the result of dwarf2_full_name, and it is
10381 the demangled name that GDB uses if it exists. */
10382 if (cu->language == language_ada
10383 || (cu->language == language_fortran && physname))
10384 {
10385 /* For Ada unit, we prefer the linkage name over the name, as
10386 the former contains the exported name, which the user expects
10387 to be able to reference. Ideally, we want the user to be able
10388 to reference this entity using either natural or linkage name,
10389 but we haven't started looking at this enhancement yet. */
10390 const char *linkage_name = dw2_linkage_name (die, cu);
10391
10392 if (linkage_name != NULL)
10393 return linkage_name;
10394 }
10395
10396 /* These are the only languages we know how to qualify names in. */
10397 if (name != NULL
10398 && (cu->language == language_cplus
10399 || cu->language == language_fortran || cu->language == language_d
10400 || cu->language == language_rust))
10401 {
10402 if (die_needs_namespace (die, cu))
10403 {
10404 const char *prefix;
10405 const char *canonical_name = NULL;
10406
10407 string_file buf;
10408
10409 prefix = determine_prefix (die, cu);
10410 if (*prefix != '\0')
10411 {
10412 gdb::unique_xmalloc_ptr<char> prefixed_name
10413 (typename_concat (NULL, prefix, name, physname, cu));
10414
10415 buf.puts (prefixed_name.get ());
10416 }
10417 else
10418 buf.puts (name);
10419
10420 /* Template parameters may be specified in the DIE's DW_AT_name, or
10421 as children with DW_TAG_template_type_param or
10422 DW_TAG_value_type_param. If the latter, add them to the name
10423 here. If the name already has template parameters, then
10424 skip this step; some versions of GCC emit both, and
10425 it is more efficient to use the pre-computed name.
10426
10427 Something to keep in mind about this process: it is very
10428 unlikely, or in some cases downright impossible, to produce
10429 something that will match the mangled name of a function.
10430 If the definition of the function has the same debug info,
10431 we should be able to match up with it anyway. But fallbacks
10432 using the minimal symbol, for instance to find a method
10433 implemented in a stripped copy of libstdc++, will not work.
10434 If we do not have debug info for the definition, we will have to
10435 match them up some other way.
10436
10437 When we do name matching there is a related problem with function
10438 templates; two instantiated function templates are allowed to
10439 differ only by their return types, which we do not add here. */
10440
10441 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10442 {
10443 struct attribute *attr;
10444 struct die_info *child;
10445 int first = 1;
10446
10447 die->building_fullname = 1;
10448
10449 for (child = die->child; child != NULL; child = child->sibling)
10450 {
10451 struct type *type;
10452 LONGEST value;
10453 const gdb_byte *bytes;
10454 struct dwarf2_locexpr_baton *baton;
10455 struct value *v;
10456
10457 if (child->tag != DW_TAG_template_type_param
10458 && child->tag != DW_TAG_template_value_param)
10459 continue;
10460
10461 if (first)
10462 {
10463 buf.puts ("<");
10464 first = 0;
10465 }
10466 else
10467 buf.puts (", ");
10468
10469 attr = dwarf2_attr (child, DW_AT_type, cu);
10470 if (attr == NULL)
10471 {
10472 complaint (_("template parameter missing DW_AT_type"));
10473 buf.puts ("UNKNOWN_TYPE");
10474 continue;
10475 }
10476 type = die_type (child, cu);
10477
10478 if (child->tag == DW_TAG_template_type_param)
10479 {
10480 c_print_type (type, "", &buf, -1, 0, cu->language,
10481 &type_print_raw_options);
10482 continue;
10483 }
10484
10485 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10486 if (attr == NULL)
10487 {
10488 complaint (_("template parameter missing "
10489 "DW_AT_const_value"));
10490 buf.puts ("UNKNOWN_VALUE");
10491 continue;
10492 }
10493
10494 dwarf2_const_value_attr (attr, type, name,
10495 &cu->comp_unit_obstack, cu,
10496 &value, &bytes, &baton);
10497
10498 if (type->has_no_signedness ())
10499 /* GDB prints characters as NUMBER 'CHAR'. If that's
10500 changed, this can use value_print instead. */
10501 c_printchar (value, type, &buf);
10502 else
10503 {
10504 struct value_print_options opts;
10505
10506 if (baton != NULL)
10507 v = dwarf2_evaluate_loc_desc (type, NULL,
10508 baton->data,
10509 baton->size,
10510 baton->per_cu,
10511 baton->per_objfile);
10512 else if (bytes != NULL)
10513 {
10514 v = allocate_value (type);
10515 memcpy (value_contents_writeable (v), bytes,
10516 TYPE_LENGTH (type));
10517 }
10518 else
10519 v = value_from_longest (type, value);
10520
10521 /* Specify decimal so that we do not depend on
10522 the radix. */
10523 get_formatted_print_options (&opts, 'd');
10524 opts.raw = 1;
10525 value_print (v, &buf, &opts);
10526 release_value (v);
10527 }
10528 }
10529
10530 die->building_fullname = 0;
10531
10532 if (!first)
10533 {
10534 /* Close the argument list, with a space if necessary
10535 (nested templates). */
10536 if (!buf.empty () && buf.string ().back () == '>')
10537 buf.puts (" >");
10538 else
10539 buf.puts (">");
10540 }
10541 }
10542
10543 /* For C++ methods, append formal parameter type
10544 information, if PHYSNAME. */
10545
10546 if (physname && die->tag == DW_TAG_subprogram
10547 && cu->language == language_cplus)
10548 {
10549 struct type *type = read_type_die (die, cu);
10550
10551 c_type_print_args (type, &buf, 1, cu->language,
10552 &type_print_raw_options);
10553
10554 if (cu->language == language_cplus)
10555 {
10556 /* Assume that an artificial first parameter is
10557 "this", but do not crash if it is not. RealView
10558 marks unnamed (and thus unused) parameters as
10559 artificial; there is no way to differentiate
10560 the two cases. */
10561 if (type->num_fields () > 0
10562 && TYPE_FIELD_ARTIFICIAL (type, 0)
10563 && type->field (0).type ()->code () == TYPE_CODE_PTR
10564 && TYPE_CONST (TYPE_TARGET_TYPE (type->field (0).type ())))
10565 buf.puts (" const");
10566 }
10567 }
10568
10569 const std::string &intermediate_name = buf.string ();
10570
10571 if (cu->language == language_cplus)
10572 canonical_name
10573 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10574 objfile);
10575
10576 /* If we only computed INTERMEDIATE_NAME, or if
10577 INTERMEDIATE_NAME is already canonical, then we need to
10578 intern it. */
10579 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10580 name = objfile->intern (intermediate_name);
10581 else
10582 name = canonical_name;
10583 }
10584 }
10585
10586 return name;
10587 }
10588
10589 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10590 If scope qualifiers are appropriate they will be added. The result
10591 will be allocated on the storage_obstack, or NULL if the DIE does
10592 not have a name. NAME may either be from a previous call to
10593 dwarf2_name or NULL.
10594
10595 The output string will be canonicalized (if C++). */
10596
10597 static const char *
10598 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10599 {
10600 return dwarf2_compute_name (name, die, cu, 0);
10601 }
10602
10603 /* Construct a physname for the given DIE in CU. NAME may either be
10604 from a previous call to dwarf2_name or NULL. The result will be
10605 allocated on the objfile_objstack or NULL if the DIE does not have a
10606 name.
10607
10608 The output string will be canonicalized (if C++). */
10609
10610 static const char *
10611 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10612 {
10613 struct objfile *objfile = cu->per_objfile->objfile;
10614 const char *retval, *mangled = NULL, *canon = NULL;
10615 int need_copy = 1;
10616
10617 /* In this case dwarf2_compute_name is just a shortcut not building anything
10618 on its own. */
10619 if (!die_needs_namespace (die, cu))
10620 return dwarf2_compute_name (name, die, cu, 1);
10621
10622 if (cu->language != language_rust)
10623 mangled = dw2_linkage_name (die, cu);
10624
10625 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10626 has computed. */
10627 gdb::unique_xmalloc_ptr<char> demangled;
10628 if (mangled != NULL)
10629 {
10630
10631 if (language_def (cu->language)->store_sym_names_in_linkage_form_p ())
10632 {
10633 /* Do nothing (do not demangle the symbol name). */
10634 }
10635 else
10636 {
10637 /* Use DMGL_RET_DROP for C++ template functions to suppress
10638 their return type. It is easier for GDB users to search
10639 for such functions as `name(params)' than `long name(params)'.
10640 In such case the minimal symbol names do not match the full
10641 symbol names but for template functions there is never a need
10642 to look up their definition from their declaration so
10643 the only disadvantage remains the minimal symbol variant
10644 `long name(params)' does not have the proper inferior type. */
10645 demangled.reset (gdb_demangle (mangled,
10646 (DMGL_PARAMS | DMGL_ANSI
10647 | DMGL_RET_DROP)));
10648 }
10649 if (demangled)
10650 canon = demangled.get ();
10651 else
10652 {
10653 canon = mangled;
10654 need_copy = 0;
10655 }
10656 }
10657
10658 if (canon == NULL || check_physname)
10659 {
10660 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10661
10662 if (canon != NULL && strcmp (physname, canon) != 0)
10663 {
10664 /* It may not mean a bug in GDB. The compiler could also
10665 compute DW_AT_linkage_name incorrectly. But in such case
10666 GDB would need to be bug-to-bug compatible. */
10667
10668 complaint (_("Computed physname <%s> does not match demangled <%s> "
10669 "(from linkage <%s>) - DIE at %s [in module %s]"),
10670 physname, canon, mangled, sect_offset_str (die->sect_off),
10671 objfile_name (objfile));
10672
10673 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10674 is available here - over computed PHYSNAME. It is safer
10675 against both buggy GDB and buggy compilers. */
10676
10677 retval = canon;
10678 }
10679 else
10680 {
10681 retval = physname;
10682 need_copy = 0;
10683 }
10684 }
10685 else
10686 retval = canon;
10687
10688 if (need_copy)
10689 retval = objfile->intern (retval);
10690
10691 return retval;
10692 }
10693
10694 /* Inspect DIE in CU for a namespace alias. If one exists, record
10695 a new symbol for it.
10696
10697 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10698
10699 static int
10700 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10701 {
10702 struct attribute *attr;
10703
10704 /* If the die does not have a name, this is not a namespace
10705 alias. */
10706 attr = dwarf2_attr (die, DW_AT_name, cu);
10707 if (attr != NULL)
10708 {
10709 int num;
10710 struct die_info *d = die;
10711 struct dwarf2_cu *imported_cu = cu;
10712
10713 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10714 keep inspecting DIEs until we hit the underlying import. */
10715 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10716 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10717 {
10718 attr = dwarf2_attr (d, DW_AT_import, cu);
10719 if (attr == NULL)
10720 break;
10721
10722 d = follow_die_ref (d, attr, &imported_cu);
10723 if (d->tag != DW_TAG_imported_declaration)
10724 break;
10725 }
10726
10727 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10728 {
10729 complaint (_("DIE at %s has too many recursively imported "
10730 "declarations"), sect_offset_str (d->sect_off));
10731 return 0;
10732 }
10733
10734 if (attr != NULL)
10735 {
10736 struct type *type;
10737 sect_offset sect_off = attr->get_ref_die_offset ();
10738
10739 type = get_die_type_at_offset (sect_off, cu->per_cu, cu->per_objfile);
10740 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10741 {
10742 /* This declaration is a global namespace alias. Add
10743 a symbol for it whose type is the aliased namespace. */
10744 new_symbol (die, type, cu);
10745 return 1;
10746 }
10747 }
10748 }
10749
10750 return 0;
10751 }
10752
10753 /* Return the using directives repository (global or local?) to use in the
10754 current context for CU.
10755
10756 For Ada, imported declarations can materialize renamings, which *may* be
10757 global. However it is impossible (for now?) in DWARF to distinguish
10758 "external" imported declarations and "static" ones. As all imported
10759 declarations seem to be static in all other languages, make them all CU-wide
10760 global only in Ada. */
10761
10762 static struct using_direct **
10763 using_directives (struct dwarf2_cu *cu)
10764 {
10765 if (cu->language == language_ada
10766 && cu->get_builder ()->outermost_context_p ())
10767 return cu->get_builder ()->get_global_using_directives ();
10768 else
10769 return cu->get_builder ()->get_local_using_directives ();
10770 }
10771
10772 /* Read the import statement specified by the given die and record it. */
10773
10774 static void
10775 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10776 {
10777 struct objfile *objfile = cu->per_objfile->objfile;
10778 struct attribute *import_attr;
10779 struct die_info *imported_die, *child_die;
10780 struct dwarf2_cu *imported_cu;
10781 const char *imported_name;
10782 const char *imported_name_prefix;
10783 const char *canonical_name;
10784 const char *import_alias;
10785 const char *imported_declaration = NULL;
10786 const char *import_prefix;
10787 std::vector<const char *> excludes;
10788
10789 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10790 if (import_attr == NULL)
10791 {
10792 complaint (_("Tag '%s' has no DW_AT_import"),
10793 dwarf_tag_name (die->tag));
10794 return;
10795 }
10796
10797 imported_cu = cu;
10798 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10799 imported_name = dwarf2_name (imported_die, imported_cu);
10800 if (imported_name == NULL)
10801 {
10802 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10803
10804 The import in the following code:
10805 namespace A
10806 {
10807 typedef int B;
10808 }
10809
10810 int main ()
10811 {
10812 using A::B;
10813 B b;
10814 return b;
10815 }
10816
10817 ...
10818 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10819 <52> DW_AT_decl_file : 1
10820 <53> DW_AT_decl_line : 6
10821 <54> DW_AT_import : <0x75>
10822 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10823 <59> DW_AT_name : B
10824 <5b> DW_AT_decl_file : 1
10825 <5c> DW_AT_decl_line : 2
10826 <5d> DW_AT_type : <0x6e>
10827 ...
10828 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10829 <76> DW_AT_byte_size : 4
10830 <77> DW_AT_encoding : 5 (signed)
10831
10832 imports the wrong die ( 0x75 instead of 0x58 ).
10833 This case will be ignored until the gcc bug is fixed. */
10834 return;
10835 }
10836
10837 /* Figure out the local name after import. */
10838 import_alias = dwarf2_name (die, cu);
10839
10840 /* Figure out where the statement is being imported to. */
10841 import_prefix = determine_prefix (die, cu);
10842
10843 /* Figure out what the scope of the imported die is and prepend it
10844 to the name of the imported die. */
10845 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10846
10847 if (imported_die->tag != DW_TAG_namespace
10848 && imported_die->tag != DW_TAG_module)
10849 {
10850 imported_declaration = imported_name;
10851 canonical_name = imported_name_prefix;
10852 }
10853 else if (strlen (imported_name_prefix) > 0)
10854 canonical_name = obconcat (&objfile->objfile_obstack,
10855 imported_name_prefix,
10856 (cu->language == language_d ? "." : "::"),
10857 imported_name, (char *) NULL);
10858 else
10859 canonical_name = imported_name;
10860
10861 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10862 for (child_die = die->child; child_die && child_die->tag;
10863 child_die = child_die->sibling)
10864 {
10865 /* DWARF-4: A Fortran use statement with a “rename list” may be
10866 represented by an imported module entry with an import attribute
10867 referring to the module and owned entries corresponding to those
10868 entities that are renamed as part of being imported. */
10869
10870 if (child_die->tag != DW_TAG_imported_declaration)
10871 {
10872 complaint (_("child DW_TAG_imported_declaration expected "
10873 "- DIE at %s [in module %s]"),
10874 sect_offset_str (child_die->sect_off),
10875 objfile_name (objfile));
10876 continue;
10877 }
10878
10879 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10880 if (import_attr == NULL)
10881 {
10882 complaint (_("Tag '%s' has no DW_AT_import"),
10883 dwarf_tag_name (child_die->tag));
10884 continue;
10885 }
10886
10887 imported_cu = cu;
10888 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10889 &imported_cu);
10890 imported_name = dwarf2_name (imported_die, imported_cu);
10891 if (imported_name == NULL)
10892 {
10893 complaint (_("child DW_TAG_imported_declaration has unknown "
10894 "imported name - DIE at %s [in module %s]"),
10895 sect_offset_str (child_die->sect_off),
10896 objfile_name (objfile));
10897 continue;
10898 }
10899
10900 excludes.push_back (imported_name);
10901
10902 process_die (child_die, cu);
10903 }
10904
10905 add_using_directive (using_directives (cu),
10906 import_prefix,
10907 canonical_name,
10908 import_alias,
10909 imported_declaration,
10910 excludes,
10911 0,
10912 &objfile->objfile_obstack);
10913 }
10914
10915 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10916 types, but gives them a size of zero. Starting with version 14,
10917 ICC is compatible with GCC. */
10918
10919 static bool
10920 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10921 {
10922 if (!cu->checked_producer)
10923 check_producer (cu);
10924
10925 return cu->producer_is_icc_lt_14;
10926 }
10927
10928 /* ICC generates a DW_AT_type for C void functions. This was observed on
10929 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10930 which says that void functions should not have a DW_AT_type. */
10931
10932 static bool
10933 producer_is_icc (struct dwarf2_cu *cu)
10934 {
10935 if (!cu->checked_producer)
10936 check_producer (cu);
10937
10938 return cu->producer_is_icc;
10939 }
10940
10941 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10942 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10943 this, it was first present in GCC release 4.3.0. */
10944
10945 static bool
10946 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10947 {
10948 if (!cu->checked_producer)
10949 check_producer (cu);
10950
10951 return cu->producer_is_gcc_lt_4_3;
10952 }
10953
10954 static file_and_directory
10955 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10956 {
10957 file_and_directory res;
10958
10959 /* Find the filename. Do not use dwarf2_name here, since the filename
10960 is not a source language identifier. */
10961 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10962 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10963
10964 if (res.comp_dir == NULL
10965 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10966 && IS_ABSOLUTE_PATH (res.name))
10967 {
10968 res.comp_dir_storage = ldirname (res.name);
10969 if (!res.comp_dir_storage.empty ())
10970 res.comp_dir = res.comp_dir_storage.c_str ();
10971 }
10972 if (res.comp_dir != NULL)
10973 {
10974 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10975 directory, get rid of it. */
10976 const char *cp = strchr (res.comp_dir, ':');
10977
10978 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10979 res.comp_dir = cp + 1;
10980 }
10981
10982 if (res.name == NULL)
10983 res.name = "<unknown>";
10984
10985 return res;
10986 }
10987
10988 /* Handle DW_AT_stmt_list for a compilation unit.
10989 DIE is the DW_TAG_compile_unit die for CU.
10990 COMP_DIR is the compilation directory. LOWPC is passed to
10991 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10992
10993 static void
10994 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10995 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10996 {
10997 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10998 struct attribute *attr;
10999 struct line_header line_header_local;
11000 hashval_t line_header_local_hash;
11001 void **slot;
11002 int decode_mapping;
11003
11004 gdb_assert (! cu->per_cu->is_debug_types);
11005
11006 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11007 if (attr == NULL || !attr->form_is_unsigned ())
11008 return;
11009
11010 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
11011
11012 /* The line header hash table is only created if needed (it exists to
11013 prevent redundant reading of the line table for partial_units).
11014 If we're given a partial_unit, we'll need it. If we're given a
11015 compile_unit, then use the line header hash table if it's already
11016 created, but don't create one just yet. */
11017
11018 if (per_objfile->line_header_hash == NULL
11019 && die->tag == DW_TAG_partial_unit)
11020 {
11021 per_objfile->line_header_hash
11022 .reset (htab_create_alloc (127, line_header_hash_voidp,
11023 line_header_eq_voidp,
11024 free_line_header_voidp,
11025 xcalloc, xfree));
11026 }
11027
11028 line_header_local.sect_off = line_offset;
11029 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11030 line_header_local_hash = line_header_hash (&line_header_local);
11031 if (per_objfile->line_header_hash != NULL)
11032 {
11033 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
11034 &line_header_local,
11035 line_header_local_hash, NO_INSERT);
11036
11037 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11038 is not present in *SLOT (since if there is something in *SLOT then
11039 it will be for a partial_unit). */
11040 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11041 {
11042 gdb_assert (*slot != NULL);
11043 cu->line_header = (struct line_header *) *slot;
11044 return;
11045 }
11046 }
11047
11048 /* dwarf_decode_line_header does not yet provide sufficient information.
11049 We always have to call also dwarf_decode_lines for it. */
11050 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11051 if (lh == NULL)
11052 return;
11053
11054 cu->line_header = lh.release ();
11055 cu->line_header_die_owner = die;
11056
11057 if (per_objfile->line_header_hash == NULL)
11058 slot = NULL;
11059 else
11060 {
11061 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
11062 &line_header_local,
11063 line_header_local_hash, INSERT);
11064 gdb_assert (slot != NULL);
11065 }
11066 if (slot != NULL && *slot == NULL)
11067 {
11068 /* This newly decoded line number information unit will be owned
11069 by line_header_hash hash table. */
11070 *slot = cu->line_header;
11071 cu->line_header_die_owner = NULL;
11072 }
11073 else
11074 {
11075 /* We cannot free any current entry in (*slot) as that struct line_header
11076 may be already used by multiple CUs. Create only temporary decoded
11077 line_header for this CU - it may happen at most once for each line
11078 number information unit. And if we're not using line_header_hash
11079 then this is what we want as well. */
11080 gdb_assert (die->tag != DW_TAG_partial_unit);
11081 }
11082 decode_mapping = (die->tag != DW_TAG_partial_unit);
11083 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11084 decode_mapping);
11085
11086 }
11087
11088 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11089
11090 static void
11091 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11092 {
11093 dwarf2_per_objfile *per_objfile = cu->per_objfile;
11094 struct objfile *objfile = per_objfile->objfile;
11095 struct gdbarch *gdbarch = objfile->arch ();
11096 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11097 CORE_ADDR highpc = ((CORE_ADDR) 0);
11098 struct attribute *attr;
11099 struct die_info *child_die;
11100 CORE_ADDR baseaddr;
11101
11102 prepare_one_comp_unit (cu, die, cu->language);
11103 baseaddr = objfile->text_section_offset ();
11104
11105 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11106
11107 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11108 from finish_block. */
11109 if (lowpc == ((CORE_ADDR) -1))
11110 lowpc = highpc;
11111 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11112
11113 file_and_directory fnd = find_file_and_directory (die, cu);
11114
11115 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11116 standardised yet. As a workaround for the language detection we fall
11117 back to the DW_AT_producer string. */
11118 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11119 cu->language = language_opencl;
11120
11121 /* Similar hack for Go. */
11122 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11123 set_cu_language (DW_LANG_Go, cu);
11124
11125 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11126
11127 /* Decode line number information if present. We do this before
11128 processing child DIEs, so that the line header table is available
11129 for DW_AT_decl_file. */
11130 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11131
11132 /* Process all dies in compilation unit. */
11133 if (die->child != NULL)
11134 {
11135 child_die = die->child;
11136 while (child_die && child_die->tag)
11137 {
11138 process_die (child_die, cu);
11139 child_die = child_die->sibling;
11140 }
11141 }
11142
11143 /* Decode macro information, if present. Dwarf 2 macro information
11144 refers to information in the line number info statement program
11145 header, so we can only read it if we've read the header
11146 successfully. */
11147 attr = dwarf2_attr (die, DW_AT_macros, cu);
11148 if (attr == NULL)
11149 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11150 if (attr && cu->line_header)
11151 {
11152 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11153 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11154
11155 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11156 }
11157 else
11158 {
11159 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11160 if (attr && cu->line_header)
11161 {
11162 unsigned int macro_offset = DW_UNSND (attr);
11163
11164 dwarf_decode_macros (cu, macro_offset, 0);
11165 }
11166 }
11167 }
11168
11169 void
11170 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11171 {
11172 struct type_unit_group *tu_group;
11173 int first_time;
11174 struct attribute *attr;
11175 unsigned int i;
11176 struct signatured_type *sig_type;
11177
11178 gdb_assert (per_cu->is_debug_types);
11179 sig_type = (struct signatured_type *) per_cu;
11180
11181 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11182
11183 /* If we're using .gdb_index (includes -readnow) then
11184 per_cu->type_unit_group may not have been set up yet. */
11185 if (sig_type->type_unit_group == NULL)
11186 sig_type->type_unit_group = get_type_unit_group (this, attr);
11187 tu_group = sig_type->type_unit_group;
11188
11189 /* If we've already processed this stmt_list there's no real need to
11190 do it again, we could fake it and just recreate the part we need
11191 (file name,index -> symtab mapping). If data shows this optimization
11192 is useful we can do it then. */
11193 type_unit_group_unshareable *tug_unshare
11194 = per_objfile->get_type_unit_group_unshareable (tu_group);
11195 first_time = tug_unshare->compunit_symtab == NULL;
11196
11197 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11198 debug info. */
11199 line_header_up lh;
11200 if (attr != NULL && attr->form_is_unsigned ())
11201 {
11202 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
11203 lh = dwarf_decode_line_header (line_offset, this);
11204 }
11205 if (lh == NULL)
11206 {
11207 if (first_time)
11208 start_symtab ("", NULL, 0);
11209 else
11210 {
11211 gdb_assert (tug_unshare->symtabs == NULL);
11212 gdb_assert (m_builder == nullptr);
11213 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11214 m_builder.reset (new struct buildsym_compunit
11215 (COMPUNIT_OBJFILE (cust), "",
11216 COMPUNIT_DIRNAME (cust),
11217 compunit_language (cust),
11218 0, cust));
11219 list_in_scope = get_builder ()->get_file_symbols ();
11220 }
11221 return;
11222 }
11223
11224 line_header = lh.release ();
11225 line_header_die_owner = die;
11226
11227 if (first_time)
11228 {
11229 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11230
11231 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11232 still initializing it, and our caller (a few levels up)
11233 process_full_type_unit still needs to know if this is the first
11234 time. */
11235
11236 tug_unshare->symtabs
11237 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
11238 struct symtab *, line_header->file_names_size ());
11239
11240 auto &file_names = line_header->file_names ();
11241 for (i = 0; i < file_names.size (); ++i)
11242 {
11243 file_entry &fe = file_names[i];
11244 dwarf2_start_subfile (this, fe.name,
11245 fe.include_dir (line_header));
11246 buildsym_compunit *b = get_builder ();
11247 if (b->get_current_subfile ()->symtab == NULL)
11248 {
11249 /* NOTE: start_subfile will recognize when it's been
11250 passed a file it has already seen. So we can't
11251 assume there's a simple mapping from
11252 cu->line_header->file_names to subfiles, plus
11253 cu->line_header->file_names may contain dups. */
11254 b->get_current_subfile ()->symtab
11255 = allocate_symtab (cust, b->get_current_subfile ()->name);
11256 }
11257
11258 fe.symtab = b->get_current_subfile ()->symtab;
11259 tug_unshare->symtabs[i] = fe.symtab;
11260 }
11261 }
11262 else
11263 {
11264 gdb_assert (m_builder == nullptr);
11265 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11266 m_builder.reset (new struct buildsym_compunit
11267 (COMPUNIT_OBJFILE (cust), "",
11268 COMPUNIT_DIRNAME (cust),
11269 compunit_language (cust),
11270 0, cust));
11271 list_in_scope = get_builder ()->get_file_symbols ();
11272
11273 auto &file_names = line_header->file_names ();
11274 for (i = 0; i < file_names.size (); ++i)
11275 {
11276 file_entry &fe = file_names[i];
11277 fe.symtab = tug_unshare->symtabs[i];
11278 }
11279 }
11280
11281 /* The main symtab is allocated last. Type units don't have DW_AT_name
11282 so they don't have a "real" (so to speak) symtab anyway.
11283 There is later code that will assign the main symtab to all symbols
11284 that don't have one. We need to handle the case of a symbol with a
11285 missing symtab (DW_AT_decl_file) anyway. */
11286 }
11287
11288 /* Process DW_TAG_type_unit.
11289 For TUs we want to skip the first top level sibling if it's not the
11290 actual type being defined by this TU. In this case the first top
11291 level sibling is there to provide context only. */
11292
11293 static void
11294 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11295 {
11296 struct die_info *child_die;
11297
11298 prepare_one_comp_unit (cu, die, language_minimal);
11299
11300 /* Initialize (or reinitialize) the machinery for building symtabs.
11301 We do this before processing child DIEs, so that the line header table
11302 is available for DW_AT_decl_file. */
11303 cu->setup_type_unit_groups (die);
11304
11305 if (die->child != NULL)
11306 {
11307 child_die = die->child;
11308 while (child_die && child_die->tag)
11309 {
11310 process_die (child_die, cu);
11311 child_die = child_die->sibling;
11312 }
11313 }
11314 }
11315 \f
11316 /* DWO/DWP files.
11317
11318 http://gcc.gnu.org/wiki/DebugFission
11319 http://gcc.gnu.org/wiki/DebugFissionDWP
11320
11321 To simplify handling of both DWO files ("object" files with the DWARF info)
11322 and DWP files (a file with the DWOs packaged up into one file), we treat
11323 DWP files as having a collection of virtual DWO files. */
11324
11325 static hashval_t
11326 hash_dwo_file (const void *item)
11327 {
11328 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11329 hashval_t hash;
11330
11331 hash = htab_hash_string (dwo_file->dwo_name);
11332 if (dwo_file->comp_dir != NULL)
11333 hash += htab_hash_string (dwo_file->comp_dir);
11334 return hash;
11335 }
11336
11337 static int
11338 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11339 {
11340 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11341 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11342
11343 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11344 return 0;
11345 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11346 return lhs->comp_dir == rhs->comp_dir;
11347 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11348 }
11349
11350 /* Allocate a hash table for DWO files. */
11351
11352 static htab_up
11353 allocate_dwo_file_hash_table ()
11354 {
11355 auto delete_dwo_file = [] (void *item)
11356 {
11357 struct dwo_file *dwo_file = (struct dwo_file *) item;
11358
11359 delete dwo_file;
11360 };
11361
11362 return htab_up (htab_create_alloc (41,
11363 hash_dwo_file,
11364 eq_dwo_file,
11365 delete_dwo_file,
11366 xcalloc, xfree));
11367 }
11368
11369 /* Lookup DWO file DWO_NAME. */
11370
11371 static void **
11372 lookup_dwo_file_slot (dwarf2_per_objfile *per_objfile,
11373 const char *dwo_name,
11374 const char *comp_dir)
11375 {
11376 struct dwo_file find_entry;
11377 void **slot;
11378
11379 if (per_objfile->per_bfd->dwo_files == NULL)
11380 per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
11381
11382 find_entry.dwo_name = dwo_name;
11383 find_entry.comp_dir = comp_dir;
11384 slot = htab_find_slot (per_objfile->per_bfd->dwo_files.get (), &find_entry,
11385 INSERT);
11386
11387 return slot;
11388 }
11389
11390 static hashval_t
11391 hash_dwo_unit (const void *item)
11392 {
11393 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11394
11395 /* This drops the top 32 bits of the id, but is ok for a hash. */
11396 return dwo_unit->signature;
11397 }
11398
11399 static int
11400 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11401 {
11402 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11403 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11404
11405 /* The signature is assumed to be unique within the DWO file.
11406 So while object file CU dwo_id's always have the value zero,
11407 that's OK, assuming each object file DWO file has only one CU,
11408 and that's the rule for now. */
11409 return lhs->signature == rhs->signature;
11410 }
11411
11412 /* Allocate a hash table for DWO CUs,TUs.
11413 There is one of these tables for each of CUs,TUs for each DWO file. */
11414
11415 static htab_up
11416 allocate_dwo_unit_table ()
11417 {
11418 /* Start out with a pretty small number.
11419 Generally DWO files contain only one CU and maybe some TUs. */
11420 return htab_up (htab_create_alloc (3,
11421 hash_dwo_unit,
11422 eq_dwo_unit,
11423 NULL, xcalloc, xfree));
11424 }
11425
11426 /* die_reader_func for create_dwo_cu. */
11427
11428 static void
11429 create_dwo_cu_reader (const struct die_reader_specs *reader,
11430 const gdb_byte *info_ptr,
11431 struct die_info *comp_unit_die,
11432 struct dwo_file *dwo_file,
11433 struct dwo_unit *dwo_unit)
11434 {
11435 struct dwarf2_cu *cu = reader->cu;
11436 sect_offset sect_off = cu->per_cu->sect_off;
11437 struct dwarf2_section_info *section = cu->per_cu->section;
11438
11439 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11440 if (!signature.has_value ())
11441 {
11442 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11443 " its dwo_id [in module %s]"),
11444 sect_offset_str (sect_off), dwo_file->dwo_name);
11445 return;
11446 }
11447
11448 dwo_unit->dwo_file = dwo_file;
11449 dwo_unit->signature = *signature;
11450 dwo_unit->section = section;
11451 dwo_unit->sect_off = sect_off;
11452 dwo_unit->length = cu->per_cu->length;
11453
11454 if (dwarf_read_debug)
11455 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11456 sect_offset_str (sect_off),
11457 hex_string (dwo_unit->signature));
11458 }
11459
11460 /* Create the dwo_units for the CUs in a DWO_FILE.
11461 Note: This function processes DWO files only, not DWP files. */
11462
11463 static void
11464 create_cus_hash_table (dwarf2_per_objfile *per_objfile,
11465 dwarf2_cu *cu, struct dwo_file &dwo_file,
11466 dwarf2_section_info &section, htab_up &cus_htab)
11467 {
11468 struct objfile *objfile = per_objfile->objfile;
11469 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
11470 const gdb_byte *info_ptr, *end_ptr;
11471
11472 section.read (objfile);
11473 info_ptr = section.buffer;
11474
11475 if (info_ptr == NULL)
11476 return;
11477
11478 if (dwarf_read_debug)
11479 {
11480 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11481 section.get_name (),
11482 section.get_file_name ());
11483 }
11484
11485 end_ptr = info_ptr + section.size;
11486 while (info_ptr < end_ptr)
11487 {
11488 struct dwarf2_per_cu_data per_cu;
11489 struct dwo_unit read_unit {};
11490 struct dwo_unit *dwo_unit;
11491 void **slot;
11492 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11493
11494 memset (&per_cu, 0, sizeof (per_cu));
11495 per_cu.per_bfd = per_bfd;
11496 per_cu.is_debug_types = 0;
11497 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11498 per_cu.section = &section;
11499
11500 cutu_reader reader (&per_cu, per_objfile, cu, &dwo_file);
11501 if (!reader.dummy_p)
11502 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11503 &dwo_file, &read_unit);
11504 info_ptr += per_cu.length;
11505
11506 // If the unit could not be parsed, skip it.
11507 if (read_unit.dwo_file == NULL)
11508 continue;
11509
11510 if (cus_htab == NULL)
11511 cus_htab = allocate_dwo_unit_table ();
11512
11513 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
11514 struct dwo_unit);
11515 *dwo_unit = read_unit;
11516 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11517 gdb_assert (slot != NULL);
11518 if (*slot != NULL)
11519 {
11520 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11521 sect_offset dup_sect_off = dup_cu->sect_off;
11522
11523 complaint (_("debug cu entry at offset %s is duplicate to"
11524 " the entry at offset %s, signature %s"),
11525 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11526 hex_string (dwo_unit->signature));
11527 }
11528 *slot = (void *)dwo_unit;
11529 }
11530 }
11531
11532 /* DWP file .debug_{cu,tu}_index section format:
11533 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11534 [ref: http://dwarfstd.org/doc/DWARF5.pdf, sect 7.3.5 "DWARF Package Files"]
11535
11536 DWP Versions 1 & 2 are older, pre-standard format versions. The first
11537 officially standard DWP format was published with DWARF v5 and is called
11538 Version 5. There are no versions 3 or 4.
11539
11540 DWP Version 1:
11541
11542 Both index sections have the same format, and serve to map a 64-bit
11543 signature to a set of section numbers. Each section begins with a header,
11544 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11545 indexes, and a pool of 32-bit section numbers. The index sections will be
11546 aligned at 8-byte boundaries in the file.
11547
11548 The index section header consists of:
11549
11550 V, 32 bit version number
11551 -, 32 bits unused
11552 N, 32 bit number of compilation units or type units in the index
11553 M, 32 bit number of slots in the hash table
11554
11555 Numbers are recorded using the byte order of the application binary.
11556
11557 The hash table begins at offset 16 in the section, and consists of an array
11558 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11559 order of the application binary). Unused slots in the hash table are 0.
11560 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11561
11562 The parallel table begins immediately after the hash table
11563 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11564 array of 32-bit indexes (using the byte order of the application binary),
11565 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11566 table contains a 32-bit index into the pool of section numbers. For unused
11567 hash table slots, the corresponding entry in the parallel table will be 0.
11568
11569 The pool of section numbers begins immediately following the hash table
11570 (at offset 16 + 12 * M from the beginning of the section). The pool of
11571 section numbers consists of an array of 32-bit words (using the byte order
11572 of the application binary). Each item in the array is indexed starting
11573 from 0. The hash table entry provides the index of the first section
11574 number in the set. Additional section numbers in the set follow, and the
11575 set is terminated by a 0 entry (section number 0 is not used in ELF).
11576
11577 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11578 section must be the first entry in the set, and the .debug_abbrev.dwo must
11579 be the second entry. Other members of the set may follow in any order.
11580
11581 ---
11582
11583 DWP Versions 2 and 5:
11584
11585 DWP Versions 2 and 5 combine all the .debug_info, etc. sections into one,
11586 and the entries in the index tables are now offsets into these sections.
11587 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11588 section.
11589
11590 Index Section Contents:
11591 Header
11592 Hash Table of Signatures dwp_hash_table.hash_table
11593 Parallel Table of Indices dwp_hash_table.unit_table
11594 Table of Section Offsets dwp_hash_table.{v2|v5}.{section_ids,offsets}
11595 Table of Section Sizes dwp_hash_table.{v2|v5}.sizes
11596
11597 The index section header consists of:
11598
11599 V, 32 bit version number
11600 L, 32 bit number of columns in the table of section offsets
11601 N, 32 bit number of compilation units or type units in the index
11602 M, 32 bit number of slots in the hash table
11603
11604 Numbers are recorded using the byte order of the application binary.
11605
11606 The hash table has the same format as version 1.
11607 The parallel table of indices has the same format as version 1,
11608 except that the entries are origin-1 indices into the table of sections
11609 offsets and the table of section sizes.
11610
11611 The table of offsets begins immediately following the parallel table
11612 (at offset 16 + 12 * M from the beginning of the section). The table is
11613 a two-dimensional array of 32-bit words (using the byte order of the
11614 application binary), with L columns and N+1 rows, in row-major order.
11615 Each row in the array is indexed starting from 0. The first row provides
11616 a key to the remaining rows: each column in this row provides an identifier
11617 for a debug section, and the offsets in the same column of subsequent rows
11618 refer to that section. The section identifiers for Version 2 are:
11619
11620 DW_SECT_INFO 1 .debug_info.dwo
11621 DW_SECT_TYPES 2 .debug_types.dwo
11622 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11623 DW_SECT_LINE 4 .debug_line.dwo
11624 DW_SECT_LOC 5 .debug_loc.dwo
11625 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11626 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11627 DW_SECT_MACRO 8 .debug_macro.dwo
11628
11629 The section identifiers for Version 5 are:
11630
11631 DW_SECT_INFO_V5 1 .debug_info.dwo
11632 DW_SECT_RESERVED_V5 2 --
11633 DW_SECT_ABBREV_V5 3 .debug_abbrev.dwo
11634 DW_SECT_LINE_V5 4 .debug_line.dwo
11635 DW_SECT_LOCLISTS_V5 5 .debug_loclists.dwo
11636 DW_SECT_STR_OFFSETS_V5 6 .debug_str_offsets.dwo
11637 DW_SECT_MACRO_V5 7 .debug_macro.dwo
11638 DW_SECT_RNGLISTS_V5 8 .debug_rnglists.dwo
11639
11640 The offsets provided by the CU and TU index sections are the base offsets
11641 for the contributions made by each CU or TU to the corresponding section
11642 in the package file. Each CU and TU header contains an abbrev_offset
11643 field, used to find the abbreviations table for that CU or TU within the
11644 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11645 be interpreted as relative to the base offset given in the index section.
11646 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11647 should be interpreted as relative to the base offset for .debug_line.dwo,
11648 and offsets into other debug sections obtained from DWARF attributes should
11649 also be interpreted as relative to the corresponding base offset.
11650
11651 The table of sizes begins immediately following the table of offsets.
11652 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11653 with L columns and N rows, in row-major order. Each row in the array is
11654 indexed starting from 1 (row 0 is shared by the two tables).
11655
11656 ---
11657
11658 Hash table lookup is handled the same in version 1 and 2:
11659
11660 We assume that N and M will not exceed 2^32 - 1.
11661 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11662
11663 Given a 64-bit compilation unit signature or a type signature S, an entry
11664 in the hash table is located as follows:
11665
11666 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11667 the low-order k bits all set to 1.
11668
11669 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11670
11671 3) If the hash table entry at index H matches the signature, use that
11672 entry. If the hash table entry at index H is unused (all zeroes),
11673 terminate the search: the signature is not present in the table.
11674
11675 4) Let H = (H + H') modulo M. Repeat at Step 3.
11676
11677 Because M > N and H' and M are relatively prime, the search is guaranteed
11678 to stop at an unused slot or find the match. */
11679
11680 /* Create a hash table to map DWO IDs to their CU/TU entry in
11681 .debug_{info,types}.dwo in DWP_FILE.
11682 Returns NULL if there isn't one.
11683 Note: This function processes DWP files only, not DWO files. */
11684
11685 static struct dwp_hash_table *
11686 create_dwp_hash_table (dwarf2_per_objfile *per_objfile,
11687 struct dwp_file *dwp_file, int is_debug_types)
11688 {
11689 struct objfile *objfile = per_objfile->objfile;
11690 bfd *dbfd = dwp_file->dbfd.get ();
11691 const gdb_byte *index_ptr, *index_end;
11692 struct dwarf2_section_info *index;
11693 uint32_t version, nr_columns, nr_units, nr_slots;
11694 struct dwp_hash_table *htab;
11695
11696 if (is_debug_types)
11697 index = &dwp_file->sections.tu_index;
11698 else
11699 index = &dwp_file->sections.cu_index;
11700
11701 if (index->empty ())
11702 return NULL;
11703 index->read (objfile);
11704
11705 index_ptr = index->buffer;
11706 index_end = index_ptr + index->size;
11707
11708 /* For Version 5, the version is really 2 bytes of data & 2 bytes of padding.
11709 For now it's safe to just read 4 bytes (particularly as it's difficult to
11710 tell if you're dealing with Version 5 before you've read the version). */
11711 version = read_4_bytes (dbfd, index_ptr);
11712 index_ptr += 4;
11713 if (version == 2 || version == 5)
11714 nr_columns = read_4_bytes (dbfd, index_ptr);
11715 else
11716 nr_columns = 0;
11717 index_ptr += 4;
11718 nr_units = read_4_bytes (dbfd, index_ptr);
11719 index_ptr += 4;
11720 nr_slots = read_4_bytes (dbfd, index_ptr);
11721 index_ptr += 4;
11722
11723 if (version != 1 && version != 2 && version != 5)
11724 {
11725 error (_("Dwarf Error: unsupported DWP file version (%s)"
11726 " [in module %s]"),
11727 pulongest (version), dwp_file->name);
11728 }
11729 if (nr_slots != (nr_slots & -nr_slots))
11730 {
11731 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11732 " is not power of 2 [in module %s]"),
11733 pulongest (nr_slots), dwp_file->name);
11734 }
11735
11736 htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table);
11737 htab->version = version;
11738 htab->nr_columns = nr_columns;
11739 htab->nr_units = nr_units;
11740 htab->nr_slots = nr_slots;
11741 htab->hash_table = index_ptr;
11742 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11743
11744 /* Exit early if the table is empty. */
11745 if (nr_slots == 0 || nr_units == 0
11746 || (version == 2 && nr_columns == 0)
11747 || (version == 5 && nr_columns == 0))
11748 {
11749 /* All must be zero. */
11750 if (nr_slots != 0 || nr_units != 0
11751 || (version == 2 && nr_columns != 0)
11752 || (version == 5 && nr_columns != 0))
11753 {
11754 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11755 " all zero [in modules %s]"),
11756 dwp_file->name);
11757 }
11758 return htab;
11759 }
11760
11761 if (version == 1)
11762 {
11763 htab->section_pool.v1.indices =
11764 htab->unit_table + sizeof (uint32_t) * nr_slots;
11765 /* It's harder to decide whether the section is too small in v1.
11766 V1 is deprecated anyway so we punt. */
11767 }
11768 else if (version == 2)
11769 {
11770 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11771 int *ids = htab->section_pool.v2.section_ids;
11772 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11773 /* Reverse map for error checking. */
11774 int ids_seen[DW_SECT_MAX + 1];
11775 int i;
11776
11777 if (nr_columns < 2)
11778 {
11779 error (_("Dwarf Error: bad DWP hash table, too few columns"
11780 " in section table [in module %s]"),
11781 dwp_file->name);
11782 }
11783 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11784 {
11785 error (_("Dwarf Error: bad DWP hash table, too many columns"
11786 " in section table [in module %s]"),
11787 dwp_file->name);
11788 }
11789 memset (ids, 255, sizeof_ids);
11790 memset (ids_seen, 255, sizeof (ids_seen));
11791 for (i = 0; i < nr_columns; ++i)
11792 {
11793 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11794
11795 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11796 {
11797 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11798 " in section table [in module %s]"),
11799 id, dwp_file->name);
11800 }
11801 if (ids_seen[id] != -1)
11802 {
11803 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11804 " id %d in section table [in module %s]"),
11805 id, dwp_file->name);
11806 }
11807 ids_seen[id] = i;
11808 ids[i] = id;
11809 }
11810 /* Must have exactly one info or types section. */
11811 if (((ids_seen[DW_SECT_INFO] != -1)
11812 + (ids_seen[DW_SECT_TYPES] != -1))
11813 != 1)
11814 {
11815 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11816 " DWO info/types section [in module %s]"),
11817 dwp_file->name);
11818 }
11819 /* Must have an abbrev section. */
11820 if (ids_seen[DW_SECT_ABBREV] == -1)
11821 {
11822 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11823 " section [in module %s]"),
11824 dwp_file->name);
11825 }
11826 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11827 htab->section_pool.v2.sizes =
11828 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11829 * nr_units * nr_columns);
11830 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11831 * nr_units * nr_columns))
11832 > index_end)
11833 {
11834 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11835 " [in module %s]"),
11836 dwp_file->name);
11837 }
11838 }
11839 else /* version == 5 */
11840 {
11841 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11842 int *ids = htab->section_pool.v5.section_ids;
11843 size_t sizeof_ids = sizeof (htab->section_pool.v5.section_ids);
11844 /* Reverse map for error checking. */
11845 int ids_seen[DW_SECT_MAX_V5 + 1];
11846
11847 if (nr_columns < 2)
11848 {
11849 error (_("Dwarf Error: bad DWP hash table, too few columns"
11850 " in section table [in module %s]"),
11851 dwp_file->name);
11852 }
11853 if (nr_columns > MAX_NR_V5_DWO_SECTIONS)
11854 {
11855 error (_("Dwarf Error: bad DWP hash table, too many columns"
11856 " in section table [in module %s]"),
11857 dwp_file->name);
11858 }
11859 memset (ids, 255, sizeof_ids);
11860 memset (ids_seen, 255, sizeof (ids_seen));
11861 for (int i = 0; i < nr_columns; ++i)
11862 {
11863 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11864
11865 if (id < DW_SECT_MIN || id > DW_SECT_MAX_V5)
11866 {
11867 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11868 " in section table [in module %s]"),
11869 id, dwp_file->name);
11870 }
11871 if (ids_seen[id] != -1)
11872 {
11873 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11874 " id %d in section table [in module %s]"),
11875 id, dwp_file->name);
11876 }
11877 ids_seen[id] = i;
11878 ids[i] = id;
11879 }
11880 /* Must have seen an info section. */
11881 if (ids_seen[DW_SECT_INFO_V5] == -1)
11882 {
11883 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11884 " DWO info/types section [in module %s]"),
11885 dwp_file->name);
11886 }
11887 /* Must have an abbrev section. */
11888 if (ids_seen[DW_SECT_ABBREV_V5] == -1)
11889 {
11890 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11891 " section [in module %s]"),
11892 dwp_file->name);
11893 }
11894 htab->section_pool.v5.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11895 htab->section_pool.v5.sizes
11896 = htab->section_pool.v5.offsets + (sizeof (uint32_t)
11897 * nr_units * nr_columns);
11898 if ((htab->section_pool.v5.sizes + (sizeof (uint32_t)
11899 * nr_units * nr_columns))
11900 > index_end)
11901 {
11902 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11903 " [in module %s]"),
11904 dwp_file->name);
11905 }
11906 }
11907
11908 return htab;
11909 }
11910
11911 /* Update SECTIONS with the data from SECTP.
11912
11913 This function is like the other "locate" section routines, but in
11914 this context the sections to read comes from the DWP V1 hash table,
11915 not the full ELF section table.
11916
11917 The result is non-zero for success, or zero if an error was found. */
11918
11919 static int
11920 locate_v1_virtual_dwo_sections (asection *sectp,
11921 struct virtual_v1_dwo_sections *sections)
11922 {
11923 const struct dwop_section_names *names = &dwop_section_names;
11924
11925 if (section_is_p (sectp->name, &names->abbrev_dwo))
11926 {
11927 /* There can be only one. */
11928 if (sections->abbrev.s.section != NULL)
11929 return 0;
11930 sections->abbrev.s.section = sectp;
11931 sections->abbrev.size = bfd_section_size (sectp);
11932 }
11933 else if (section_is_p (sectp->name, &names->info_dwo)
11934 || section_is_p (sectp->name, &names->types_dwo))
11935 {
11936 /* There can be only one. */
11937 if (sections->info_or_types.s.section != NULL)
11938 return 0;
11939 sections->info_or_types.s.section = sectp;
11940 sections->info_or_types.size = bfd_section_size (sectp);
11941 }
11942 else if (section_is_p (sectp->name, &names->line_dwo))
11943 {
11944 /* There can be only one. */
11945 if (sections->line.s.section != NULL)
11946 return 0;
11947 sections->line.s.section = sectp;
11948 sections->line.size = bfd_section_size (sectp);
11949 }
11950 else if (section_is_p (sectp->name, &names->loc_dwo))
11951 {
11952 /* There can be only one. */
11953 if (sections->loc.s.section != NULL)
11954 return 0;
11955 sections->loc.s.section = sectp;
11956 sections->loc.size = bfd_section_size (sectp);
11957 }
11958 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11959 {
11960 /* There can be only one. */
11961 if (sections->macinfo.s.section != NULL)
11962 return 0;
11963 sections->macinfo.s.section = sectp;
11964 sections->macinfo.size = bfd_section_size (sectp);
11965 }
11966 else if (section_is_p (sectp->name, &names->macro_dwo))
11967 {
11968 /* There can be only one. */
11969 if (sections->macro.s.section != NULL)
11970 return 0;
11971 sections->macro.s.section = sectp;
11972 sections->macro.size = bfd_section_size (sectp);
11973 }
11974 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11975 {
11976 /* There can be only one. */
11977 if (sections->str_offsets.s.section != NULL)
11978 return 0;
11979 sections->str_offsets.s.section = sectp;
11980 sections->str_offsets.size = bfd_section_size (sectp);
11981 }
11982 else
11983 {
11984 /* No other kind of section is valid. */
11985 return 0;
11986 }
11987
11988 return 1;
11989 }
11990
11991 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11992 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11993 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11994 This is for DWP version 1 files. */
11995
11996 static struct dwo_unit *
11997 create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile *per_objfile,
11998 struct dwp_file *dwp_file,
11999 uint32_t unit_index,
12000 const char *comp_dir,
12001 ULONGEST signature, int is_debug_types)
12002 {
12003 const struct dwp_hash_table *dwp_htab =
12004 is_debug_types ? dwp_file->tus : dwp_file->cus;
12005 bfd *dbfd = dwp_file->dbfd.get ();
12006 const char *kind = is_debug_types ? "TU" : "CU";
12007 struct dwo_file *dwo_file;
12008 struct dwo_unit *dwo_unit;
12009 struct virtual_v1_dwo_sections sections;
12010 void **dwo_file_slot;
12011 int i;
12012
12013 gdb_assert (dwp_file->version == 1);
12014
12015 if (dwarf_read_debug)
12016 {
12017 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12018 kind,
12019 pulongest (unit_index), hex_string (signature),
12020 dwp_file->name);
12021 }
12022
12023 /* Fetch the sections of this DWO unit.
12024 Put a limit on the number of sections we look for so that bad data
12025 doesn't cause us to loop forever. */
12026
12027 #define MAX_NR_V1_DWO_SECTIONS \
12028 (1 /* .debug_info or .debug_types */ \
12029 + 1 /* .debug_abbrev */ \
12030 + 1 /* .debug_line */ \
12031 + 1 /* .debug_loc */ \
12032 + 1 /* .debug_str_offsets */ \
12033 + 1 /* .debug_macro or .debug_macinfo */ \
12034 + 1 /* trailing zero */)
12035
12036 memset (&sections, 0, sizeof (sections));
12037
12038 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12039 {
12040 asection *sectp;
12041 uint32_t section_nr =
12042 read_4_bytes (dbfd,
12043 dwp_htab->section_pool.v1.indices
12044 + (unit_index + i) * sizeof (uint32_t));
12045
12046 if (section_nr == 0)
12047 break;
12048 if (section_nr >= dwp_file->num_sections)
12049 {
12050 error (_("Dwarf Error: bad DWP hash table, section number too large"
12051 " [in module %s]"),
12052 dwp_file->name);
12053 }
12054
12055 sectp = dwp_file->elf_sections[section_nr];
12056 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12057 {
12058 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12059 " [in module %s]"),
12060 dwp_file->name);
12061 }
12062 }
12063
12064 if (i < 2
12065 || sections.info_or_types.empty ()
12066 || sections.abbrev.empty ())
12067 {
12068 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12069 " [in module %s]"),
12070 dwp_file->name);
12071 }
12072 if (i == MAX_NR_V1_DWO_SECTIONS)
12073 {
12074 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12075 " [in module %s]"),
12076 dwp_file->name);
12077 }
12078
12079 /* It's easier for the rest of the code if we fake a struct dwo_file and
12080 have dwo_unit "live" in that. At least for now.
12081
12082 The DWP file can be made up of a random collection of CUs and TUs.
12083 However, for each CU + set of TUs that came from the same original DWO
12084 file, we can combine them back into a virtual DWO file to save space
12085 (fewer struct dwo_file objects to allocate). Remember that for really
12086 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12087
12088 std::string virtual_dwo_name =
12089 string_printf ("virtual-dwo/%d-%d-%d-%d",
12090 sections.abbrev.get_id (),
12091 sections.line.get_id (),
12092 sections.loc.get_id (),
12093 sections.str_offsets.get_id ());
12094 /* Can we use an existing virtual DWO file? */
12095 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
12096 comp_dir);
12097 /* Create one if necessary. */
12098 if (*dwo_file_slot == NULL)
12099 {
12100 if (dwarf_read_debug)
12101 {
12102 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12103 virtual_dwo_name.c_str ());
12104 }
12105 dwo_file = new struct dwo_file;
12106 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12107 dwo_file->comp_dir = comp_dir;
12108 dwo_file->sections.abbrev = sections.abbrev;
12109 dwo_file->sections.line = sections.line;
12110 dwo_file->sections.loc = sections.loc;
12111 dwo_file->sections.macinfo = sections.macinfo;
12112 dwo_file->sections.macro = sections.macro;
12113 dwo_file->sections.str_offsets = sections.str_offsets;
12114 /* The "str" section is global to the entire DWP file. */
12115 dwo_file->sections.str = dwp_file->sections.str;
12116 /* The info or types section is assigned below to dwo_unit,
12117 there's no need to record it in dwo_file.
12118 Also, we can't simply record type sections in dwo_file because
12119 we record a pointer into the vector in dwo_unit. As we collect more
12120 types we'll grow the vector and eventually have to reallocate space
12121 for it, invalidating all copies of pointers into the previous
12122 contents. */
12123 *dwo_file_slot = dwo_file;
12124 }
12125 else
12126 {
12127 if (dwarf_read_debug)
12128 {
12129 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12130 virtual_dwo_name.c_str ());
12131 }
12132 dwo_file = (struct dwo_file *) *dwo_file_slot;
12133 }
12134
12135 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12136 dwo_unit->dwo_file = dwo_file;
12137 dwo_unit->signature = signature;
12138 dwo_unit->section =
12139 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12140 *dwo_unit->section = sections.info_or_types;
12141 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12142
12143 return dwo_unit;
12144 }
12145
12146 /* Subroutine of create_dwo_unit_in_dwp_v2 and create_dwo_unit_in_dwp_v5 to
12147 simplify them. Given a pointer to the containing section SECTION, and
12148 OFFSET,SIZE of the piece within that section used by a TU/CU, return a
12149 virtual section of just that piece. */
12150
12151 static struct dwarf2_section_info
12152 create_dwp_v2_or_v5_section (dwarf2_per_objfile *per_objfile,
12153 struct dwarf2_section_info *section,
12154 bfd_size_type offset, bfd_size_type size)
12155 {
12156 struct dwarf2_section_info result;
12157 asection *sectp;
12158
12159 gdb_assert (section != NULL);
12160 gdb_assert (!section->is_virtual);
12161
12162 memset (&result, 0, sizeof (result));
12163 result.s.containing_section = section;
12164 result.is_virtual = true;
12165
12166 if (size == 0)
12167 return result;
12168
12169 sectp = section->get_bfd_section ();
12170
12171 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12172 bounds of the real section. This is a pretty-rare event, so just
12173 flag an error (easier) instead of a warning and trying to cope. */
12174 if (sectp == NULL
12175 || offset + size > bfd_section_size (sectp))
12176 {
12177 error (_("Dwarf Error: Bad DWP V2 or V5 section info, doesn't fit"
12178 " in section %s [in module %s]"),
12179 sectp ? bfd_section_name (sectp) : "<unknown>",
12180 objfile_name (per_objfile->objfile));
12181 }
12182
12183 result.virtual_offset = offset;
12184 result.size = size;
12185 return result;
12186 }
12187
12188 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12189 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12190 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12191 This is for DWP version 2 files. */
12192
12193 static struct dwo_unit *
12194 create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile *per_objfile,
12195 struct dwp_file *dwp_file,
12196 uint32_t unit_index,
12197 const char *comp_dir,
12198 ULONGEST signature, int is_debug_types)
12199 {
12200 const struct dwp_hash_table *dwp_htab =
12201 is_debug_types ? dwp_file->tus : dwp_file->cus;
12202 bfd *dbfd = dwp_file->dbfd.get ();
12203 const char *kind = is_debug_types ? "TU" : "CU";
12204 struct dwo_file *dwo_file;
12205 struct dwo_unit *dwo_unit;
12206 struct virtual_v2_or_v5_dwo_sections sections;
12207 void **dwo_file_slot;
12208 int i;
12209
12210 gdb_assert (dwp_file->version == 2);
12211
12212 if (dwarf_read_debug)
12213 {
12214 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12215 kind,
12216 pulongest (unit_index), hex_string (signature),
12217 dwp_file->name);
12218 }
12219
12220 /* Fetch the section offsets of this DWO unit. */
12221
12222 memset (&sections, 0, sizeof (sections));
12223
12224 for (i = 0; i < dwp_htab->nr_columns; ++i)
12225 {
12226 uint32_t offset = read_4_bytes (dbfd,
12227 dwp_htab->section_pool.v2.offsets
12228 + (((unit_index - 1) * dwp_htab->nr_columns
12229 + i)
12230 * sizeof (uint32_t)));
12231 uint32_t size = read_4_bytes (dbfd,
12232 dwp_htab->section_pool.v2.sizes
12233 + (((unit_index - 1) * dwp_htab->nr_columns
12234 + i)
12235 * sizeof (uint32_t)));
12236
12237 switch (dwp_htab->section_pool.v2.section_ids[i])
12238 {
12239 case DW_SECT_INFO:
12240 case DW_SECT_TYPES:
12241 sections.info_or_types_offset = offset;
12242 sections.info_or_types_size = size;
12243 break;
12244 case DW_SECT_ABBREV:
12245 sections.abbrev_offset = offset;
12246 sections.abbrev_size = size;
12247 break;
12248 case DW_SECT_LINE:
12249 sections.line_offset = offset;
12250 sections.line_size = size;
12251 break;
12252 case DW_SECT_LOC:
12253 sections.loc_offset = offset;
12254 sections.loc_size = size;
12255 break;
12256 case DW_SECT_STR_OFFSETS:
12257 sections.str_offsets_offset = offset;
12258 sections.str_offsets_size = size;
12259 break;
12260 case DW_SECT_MACINFO:
12261 sections.macinfo_offset = offset;
12262 sections.macinfo_size = size;
12263 break;
12264 case DW_SECT_MACRO:
12265 sections.macro_offset = offset;
12266 sections.macro_size = size;
12267 break;
12268 }
12269 }
12270
12271 /* It's easier for the rest of the code if we fake a struct dwo_file and
12272 have dwo_unit "live" in that. At least for now.
12273
12274 The DWP file can be made up of a random collection of CUs and TUs.
12275 However, for each CU + set of TUs that came from the same original DWO
12276 file, we can combine them back into a virtual DWO file to save space
12277 (fewer struct dwo_file objects to allocate). Remember that for really
12278 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12279
12280 std::string virtual_dwo_name =
12281 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12282 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12283 (long) (sections.line_size ? sections.line_offset : 0),
12284 (long) (sections.loc_size ? sections.loc_offset : 0),
12285 (long) (sections.str_offsets_size
12286 ? sections.str_offsets_offset : 0));
12287 /* Can we use an existing virtual DWO file? */
12288 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
12289 comp_dir);
12290 /* Create one if necessary. */
12291 if (*dwo_file_slot == NULL)
12292 {
12293 if (dwarf_read_debug)
12294 {
12295 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12296 virtual_dwo_name.c_str ());
12297 }
12298 dwo_file = new struct dwo_file;
12299 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12300 dwo_file->comp_dir = comp_dir;
12301 dwo_file->sections.abbrev =
12302 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.abbrev,
12303 sections.abbrev_offset,
12304 sections.abbrev_size);
12305 dwo_file->sections.line =
12306 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.line,
12307 sections.line_offset,
12308 sections.line_size);
12309 dwo_file->sections.loc =
12310 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.loc,
12311 sections.loc_offset, sections.loc_size);
12312 dwo_file->sections.macinfo =
12313 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macinfo,
12314 sections.macinfo_offset,
12315 sections.macinfo_size);
12316 dwo_file->sections.macro =
12317 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macro,
12318 sections.macro_offset,
12319 sections.macro_size);
12320 dwo_file->sections.str_offsets =
12321 create_dwp_v2_or_v5_section (per_objfile,
12322 &dwp_file->sections.str_offsets,
12323 sections.str_offsets_offset,
12324 sections.str_offsets_size);
12325 /* The "str" section is global to the entire DWP file. */
12326 dwo_file->sections.str = dwp_file->sections.str;
12327 /* The info or types section is assigned below to dwo_unit,
12328 there's no need to record it in dwo_file.
12329 Also, we can't simply record type sections in dwo_file because
12330 we record a pointer into the vector in dwo_unit. As we collect more
12331 types we'll grow the vector and eventually have to reallocate space
12332 for it, invalidating all copies of pointers into the previous
12333 contents. */
12334 *dwo_file_slot = dwo_file;
12335 }
12336 else
12337 {
12338 if (dwarf_read_debug)
12339 {
12340 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12341 virtual_dwo_name.c_str ());
12342 }
12343 dwo_file = (struct dwo_file *) *dwo_file_slot;
12344 }
12345
12346 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12347 dwo_unit->dwo_file = dwo_file;
12348 dwo_unit->signature = signature;
12349 dwo_unit->section =
12350 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12351 *dwo_unit->section = create_dwp_v2_or_v5_section
12352 (per_objfile,
12353 is_debug_types
12354 ? &dwp_file->sections.types
12355 : &dwp_file->sections.info,
12356 sections.info_or_types_offset,
12357 sections.info_or_types_size);
12358 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12359
12360 return dwo_unit;
12361 }
12362
12363 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12364 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12365 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12366 This is for DWP version 5 files. */
12367
12368 static struct dwo_unit *
12369 create_dwo_unit_in_dwp_v5 (dwarf2_per_objfile *per_objfile,
12370 struct dwp_file *dwp_file,
12371 uint32_t unit_index,
12372 const char *comp_dir,
12373 ULONGEST signature, int is_debug_types)
12374 {
12375 const struct dwp_hash_table *dwp_htab
12376 = is_debug_types ? dwp_file->tus : dwp_file->cus;
12377 bfd *dbfd = dwp_file->dbfd.get ();
12378 const char *kind = is_debug_types ? "TU" : "CU";
12379 struct dwo_file *dwo_file;
12380 struct dwo_unit *dwo_unit;
12381 struct virtual_v2_or_v5_dwo_sections sections {};
12382 void **dwo_file_slot;
12383
12384 gdb_assert (dwp_file->version == 5);
12385
12386 if (dwarf_read_debug)
12387 {
12388 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V5 file: %s\n",
12389 kind,
12390 pulongest (unit_index), hex_string (signature),
12391 dwp_file->name);
12392 }
12393
12394 /* Fetch the section offsets of this DWO unit. */
12395
12396 /* memset (&sections, 0, sizeof (sections)); */
12397
12398 for (int i = 0; i < dwp_htab->nr_columns; ++i)
12399 {
12400 uint32_t offset = read_4_bytes (dbfd,
12401 dwp_htab->section_pool.v5.offsets
12402 + (((unit_index - 1)
12403 * dwp_htab->nr_columns
12404 + i)
12405 * sizeof (uint32_t)));
12406 uint32_t size = read_4_bytes (dbfd,
12407 dwp_htab->section_pool.v5.sizes
12408 + (((unit_index - 1) * dwp_htab->nr_columns
12409 + i)
12410 * sizeof (uint32_t)));
12411
12412 switch (dwp_htab->section_pool.v5.section_ids[i])
12413 {
12414 case DW_SECT_ABBREV_V5:
12415 sections.abbrev_offset = offset;
12416 sections.abbrev_size = size;
12417 break;
12418 case DW_SECT_INFO_V5:
12419 sections.info_or_types_offset = offset;
12420 sections.info_or_types_size = size;
12421 break;
12422 case DW_SECT_LINE_V5:
12423 sections.line_offset = offset;
12424 sections.line_size = size;
12425 break;
12426 case DW_SECT_LOCLISTS_V5:
12427 sections.loclists_offset = offset;
12428 sections.loclists_size = size;
12429 break;
12430 case DW_SECT_MACRO_V5:
12431 sections.macro_offset = offset;
12432 sections.macro_size = size;
12433 break;
12434 case DW_SECT_RNGLISTS_V5:
12435 sections.rnglists_offset = offset;
12436 sections.rnglists_size = size;
12437 break;
12438 case DW_SECT_STR_OFFSETS_V5:
12439 sections.str_offsets_offset = offset;
12440 sections.str_offsets_size = size;
12441 break;
12442 case DW_SECT_RESERVED_V5:
12443 default:
12444 break;
12445 }
12446 }
12447
12448 /* It's easier for the rest of the code if we fake a struct dwo_file and
12449 have dwo_unit "live" in that. At least for now.
12450
12451 The DWP file can be made up of a random collection of CUs and TUs.
12452 However, for each CU + set of TUs that came from the same original DWO
12453 file, we can combine them back into a virtual DWO file to save space
12454 (fewer struct dwo_file objects to allocate). Remember that for really
12455 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12456
12457 std::string virtual_dwo_name =
12458 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld-%ld-%ld",
12459 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12460 (long) (sections.line_size ? sections.line_offset : 0),
12461 (long) (sections.loclists_size ? sections.loclists_offset : 0),
12462 (long) (sections.str_offsets_size
12463 ? sections.str_offsets_offset : 0),
12464 (long) (sections.macro_size ? sections.macro_offset : 0),
12465 (long) (sections.rnglists_size ? sections.rnglists_offset: 0));
12466 /* Can we use an existing virtual DWO file? */
12467 dwo_file_slot = lookup_dwo_file_slot (per_objfile,
12468 virtual_dwo_name.c_str (),
12469 comp_dir);
12470 /* Create one if necessary. */
12471 if (*dwo_file_slot == NULL)
12472 {
12473 if (dwarf_read_debug)
12474 {
12475 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12476 virtual_dwo_name.c_str ());
12477 }
12478 dwo_file = new struct dwo_file;
12479 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12480 dwo_file->comp_dir = comp_dir;
12481 dwo_file->sections.abbrev =
12482 create_dwp_v2_or_v5_section (per_objfile,
12483 &dwp_file->sections.abbrev,
12484 sections.abbrev_offset,
12485 sections.abbrev_size);
12486 dwo_file->sections.line =
12487 create_dwp_v2_or_v5_section (per_objfile,
12488 &dwp_file->sections.line,
12489 sections.line_offset, sections.line_size);
12490 dwo_file->sections.macro =
12491 create_dwp_v2_or_v5_section (per_objfile,
12492 &dwp_file->sections.macro,
12493 sections.macro_offset,
12494 sections.macro_size);
12495 dwo_file->sections.loclists =
12496 create_dwp_v2_or_v5_section (per_objfile,
12497 &dwp_file->sections.loclists,
12498 sections.loclists_offset,
12499 sections.loclists_size);
12500 dwo_file->sections.rnglists =
12501 create_dwp_v2_or_v5_section (per_objfile,
12502 &dwp_file->sections.rnglists,
12503 sections.rnglists_offset,
12504 sections.rnglists_size);
12505 dwo_file->sections.str_offsets =
12506 create_dwp_v2_or_v5_section (per_objfile,
12507 &dwp_file->sections.str_offsets,
12508 sections.str_offsets_offset,
12509 sections.str_offsets_size);
12510 /* The "str" section is global to the entire DWP file. */
12511 dwo_file->sections.str = dwp_file->sections.str;
12512 /* The info or types section is assigned below to dwo_unit,
12513 there's no need to record it in dwo_file.
12514 Also, we can't simply record type sections in dwo_file because
12515 we record a pointer into the vector in dwo_unit. As we collect more
12516 types we'll grow the vector and eventually have to reallocate space
12517 for it, invalidating all copies of pointers into the previous
12518 contents. */
12519 *dwo_file_slot = dwo_file;
12520 }
12521 else
12522 {
12523 if (dwarf_read_debug)
12524 {
12525 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12526 virtual_dwo_name.c_str ());
12527 }
12528 dwo_file = (struct dwo_file *) *dwo_file_slot;
12529 }
12530
12531 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12532 dwo_unit->dwo_file = dwo_file;
12533 dwo_unit->signature = signature;
12534 dwo_unit->section
12535 = XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12536 *dwo_unit->section = create_dwp_v2_or_v5_section (per_objfile,
12537 &dwp_file->sections.info,
12538 sections.info_or_types_offset,
12539 sections.info_or_types_size);
12540 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12541
12542 return dwo_unit;
12543 }
12544
12545 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12546 Returns NULL if the signature isn't found. */
12547
12548 static struct dwo_unit *
12549 lookup_dwo_unit_in_dwp (dwarf2_per_objfile *per_objfile,
12550 struct dwp_file *dwp_file, const char *comp_dir,
12551 ULONGEST signature, int is_debug_types)
12552 {
12553 const struct dwp_hash_table *dwp_htab =
12554 is_debug_types ? dwp_file->tus : dwp_file->cus;
12555 bfd *dbfd = dwp_file->dbfd.get ();
12556 uint32_t mask = dwp_htab->nr_slots - 1;
12557 uint32_t hash = signature & mask;
12558 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12559 unsigned int i;
12560 void **slot;
12561 struct dwo_unit find_dwo_cu;
12562
12563 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12564 find_dwo_cu.signature = signature;
12565 slot = htab_find_slot (is_debug_types
12566 ? dwp_file->loaded_tus.get ()
12567 : dwp_file->loaded_cus.get (),
12568 &find_dwo_cu, INSERT);
12569
12570 if (*slot != NULL)
12571 return (struct dwo_unit *) *slot;
12572
12573 /* Use a for loop so that we don't loop forever on bad debug info. */
12574 for (i = 0; i < dwp_htab->nr_slots; ++i)
12575 {
12576 ULONGEST signature_in_table;
12577
12578 signature_in_table =
12579 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12580 if (signature_in_table == signature)
12581 {
12582 uint32_t unit_index =
12583 read_4_bytes (dbfd,
12584 dwp_htab->unit_table + hash * sizeof (uint32_t));
12585
12586 if (dwp_file->version == 1)
12587 {
12588 *slot = create_dwo_unit_in_dwp_v1 (per_objfile, dwp_file,
12589 unit_index, comp_dir,
12590 signature, is_debug_types);
12591 }
12592 else if (dwp_file->version == 2)
12593 {
12594 *slot = create_dwo_unit_in_dwp_v2 (per_objfile, dwp_file,
12595 unit_index, comp_dir,
12596 signature, is_debug_types);
12597 }
12598 else /* version == 5 */
12599 {
12600 *slot = create_dwo_unit_in_dwp_v5 (per_objfile, dwp_file,
12601 unit_index, comp_dir,
12602 signature, is_debug_types);
12603 }
12604 return (struct dwo_unit *) *slot;
12605 }
12606 if (signature_in_table == 0)
12607 return NULL;
12608 hash = (hash + hash2) & mask;
12609 }
12610
12611 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12612 " [in module %s]"),
12613 dwp_file->name);
12614 }
12615
12616 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12617 Open the file specified by FILE_NAME and hand it off to BFD for
12618 preliminary analysis. Return a newly initialized bfd *, which
12619 includes a canonicalized copy of FILE_NAME.
12620 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12621 SEARCH_CWD is true if the current directory is to be searched.
12622 It will be searched before debug-file-directory.
12623 If successful, the file is added to the bfd include table of the
12624 objfile's bfd (see gdb_bfd_record_inclusion).
12625 If unable to find/open the file, return NULL.
12626 NOTE: This function is derived from symfile_bfd_open. */
12627
12628 static gdb_bfd_ref_ptr
12629 try_open_dwop_file (dwarf2_per_objfile *per_objfile,
12630 const char *file_name, int is_dwp, int search_cwd)
12631 {
12632 int desc;
12633 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12634 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12635 to debug_file_directory. */
12636 const char *search_path;
12637 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12638
12639 gdb::unique_xmalloc_ptr<char> search_path_holder;
12640 if (search_cwd)
12641 {
12642 if (*debug_file_directory != '\0')
12643 {
12644 search_path_holder.reset (concat (".", dirname_separator_string,
12645 debug_file_directory,
12646 (char *) NULL));
12647 search_path = search_path_holder.get ();
12648 }
12649 else
12650 search_path = ".";
12651 }
12652 else
12653 search_path = debug_file_directory;
12654
12655 openp_flags flags = OPF_RETURN_REALPATH;
12656 if (is_dwp)
12657 flags |= OPF_SEARCH_IN_PATH;
12658
12659 gdb::unique_xmalloc_ptr<char> absolute_name;
12660 desc = openp (search_path, flags, file_name,
12661 O_RDONLY | O_BINARY, &absolute_name);
12662 if (desc < 0)
12663 return NULL;
12664
12665 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12666 gnutarget, desc));
12667 if (sym_bfd == NULL)
12668 return NULL;
12669 bfd_set_cacheable (sym_bfd.get (), 1);
12670
12671 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12672 return NULL;
12673
12674 /* Success. Record the bfd as having been included by the objfile's bfd.
12675 This is important because things like demangled_names_hash lives in the
12676 objfile's per_bfd space and may have references to things like symbol
12677 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12678 gdb_bfd_record_inclusion (per_objfile->objfile->obfd, sym_bfd.get ());
12679
12680 return sym_bfd;
12681 }
12682
12683 /* Try to open DWO file FILE_NAME.
12684 COMP_DIR is the DW_AT_comp_dir attribute.
12685 The result is the bfd handle of the file.
12686 If there is a problem finding or opening the file, return NULL.
12687 Upon success, the canonicalized path of the file is stored in the bfd,
12688 same as symfile_bfd_open. */
12689
12690 static gdb_bfd_ref_ptr
12691 open_dwo_file (dwarf2_per_objfile *per_objfile,
12692 const char *file_name, const char *comp_dir)
12693 {
12694 if (IS_ABSOLUTE_PATH (file_name))
12695 return try_open_dwop_file (per_objfile, file_name,
12696 0 /*is_dwp*/, 0 /*search_cwd*/);
12697
12698 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12699
12700 if (comp_dir != NULL)
12701 {
12702 gdb::unique_xmalloc_ptr<char> path_to_try
12703 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12704
12705 /* NOTE: If comp_dir is a relative path, this will also try the
12706 search path, which seems useful. */
12707 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, path_to_try.get (),
12708 0 /*is_dwp*/,
12709 1 /*search_cwd*/));
12710 if (abfd != NULL)
12711 return abfd;
12712 }
12713
12714 /* That didn't work, try debug-file-directory, which, despite its name,
12715 is a list of paths. */
12716
12717 if (*debug_file_directory == '\0')
12718 return NULL;
12719
12720 return try_open_dwop_file (per_objfile, file_name,
12721 0 /*is_dwp*/, 1 /*search_cwd*/);
12722 }
12723
12724 /* This function is mapped across the sections and remembers the offset and
12725 size of each of the DWO debugging sections we are interested in. */
12726
12727 static void
12728 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp,
12729 dwo_sections *dwo_sections)
12730 {
12731 const struct dwop_section_names *names = &dwop_section_names;
12732
12733 if (section_is_p (sectp->name, &names->abbrev_dwo))
12734 {
12735 dwo_sections->abbrev.s.section = sectp;
12736 dwo_sections->abbrev.size = bfd_section_size (sectp);
12737 }
12738 else if (section_is_p (sectp->name, &names->info_dwo))
12739 {
12740 dwo_sections->info.s.section = sectp;
12741 dwo_sections->info.size = bfd_section_size (sectp);
12742 }
12743 else if (section_is_p (sectp->name, &names->line_dwo))
12744 {
12745 dwo_sections->line.s.section = sectp;
12746 dwo_sections->line.size = bfd_section_size (sectp);
12747 }
12748 else if (section_is_p (sectp->name, &names->loc_dwo))
12749 {
12750 dwo_sections->loc.s.section = sectp;
12751 dwo_sections->loc.size = bfd_section_size (sectp);
12752 }
12753 else if (section_is_p (sectp->name, &names->loclists_dwo))
12754 {
12755 dwo_sections->loclists.s.section = sectp;
12756 dwo_sections->loclists.size = bfd_section_size (sectp);
12757 }
12758 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12759 {
12760 dwo_sections->macinfo.s.section = sectp;
12761 dwo_sections->macinfo.size = bfd_section_size (sectp);
12762 }
12763 else if (section_is_p (sectp->name, &names->macro_dwo))
12764 {
12765 dwo_sections->macro.s.section = sectp;
12766 dwo_sections->macro.size = bfd_section_size (sectp);
12767 }
12768 else if (section_is_p (sectp->name, &names->rnglists_dwo))
12769 {
12770 dwo_sections->rnglists.s.section = sectp;
12771 dwo_sections->rnglists.size = bfd_section_size (sectp);
12772 }
12773 else if (section_is_p (sectp->name, &names->str_dwo))
12774 {
12775 dwo_sections->str.s.section = sectp;
12776 dwo_sections->str.size = bfd_section_size (sectp);
12777 }
12778 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12779 {
12780 dwo_sections->str_offsets.s.section = sectp;
12781 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12782 }
12783 else if (section_is_p (sectp->name, &names->types_dwo))
12784 {
12785 struct dwarf2_section_info type_section;
12786
12787 memset (&type_section, 0, sizeof (type_section));
12788 type_section.s.section = sectp;
12789 type_section.size = bfd_section_size (sectp);
12790 dwo_sections->types.push_back (type_section);
12791 }
12792 }
12793
12794 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12795 by PER_CU. This is for the non-DWP case.
12796 The result is NULL if DWO_NAME can't be found. */
12797
12798 static struct dwo_file *
12799 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12800 const char *comp_dir)
12801 {
12802 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12803
12804 gdb_bfd_ref_ptr dbfd = open_dwo_file (per_objfile, dwo_name, comp_dir);
12805 if (dbfd == NULL)
12806 {
12807 if (dwarf_read_debug)
12808 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12809 return NULL;
12810 }
12811
12812 dwo_file_up dwo_file (new struct dwo_file);
12813 dwo_file->dwo_name = dwo_name;
12814 dwo_file->comp_dir = comp_dir;
12815 dwo_file->dbfd = std::move (dbfd);
12816
12817 for (asection *sec : gdb_bfd_sections (dwo_file->dbfd))
12818 dwarf2_locate_dwo_sections (dwo_file->dbfd.get (), sec,
12819 &dwo_file->sections);
12820
12821 create_cus_hash_table (per_objfile, cu, *dwo_file, dwo_file->sections.info,
12822 dwo_file->cus);
12823
12824 if (cu->per_cu->dwarf_version < 5)
12825 {
12826 create_debug_types_hash_table (per_objfile, dwo_file.get (),
12827 dwo_file->sections.types, dwo_file->tus);
12828 }
12829 else
12830 {
12831 create_debug_type_hash_table (per_objfile, dwo_file.get (),
12832 &dwo_file->sections.info, dwo_file->tus,
12833 rcuh_kind::TYPE);
12834 }
12835
12836 if (dwarf_read_debug)
12837 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12838
12839 return dwo_file.release ();
12840 }
12841
12842 /* This function is mapped across the sections and remembers the offset and
12843 size of each of the DWP debugging sections common to version 1 and 2 that
12844 we are interested in. */
12845
12846 static void
12847 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12848 dwp_file *dwp_file)
12849 {
12850 const struct dwop_section_names *names = &dwop_section_names;
12851 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12852
12853 /* Record the ELF section number for later lookup: this is what the
12854 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12855 gdb_assert (elf_section_nr < dwp_file->num_sections);
12856 dwp_file->elf_sections[elf_section_nr] = sectp;
12857
12858 /* Look for specific sections that we need. */
12859 if (section_is_p (sectp->name, &names->str_dwo))
12860 {
12861 dwp_file->sections.str.s.section = sectp;
12862 dwp_file->sections.str.size = bfd_section_size (sectp);
12863 }
12864 else if (section_is_p (sectp->name, &names->cu_index))
12865 {
12866 dwp_file->sections.cu_index.s.section = sectp;
12867 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12868 }
12869 else if (section_is_p (sectp->name, &names->tu_index))
12870 {
12871 dwp_file->sections.tu_index.s.section = sectp;
12872 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12873 }
12874 }
12875
12876 /* This function is mapped across the sections and remembers the offset and
12877 size of each of the DWP version 2 debugging sections that we are interested
12878 in. This is split into a separate function because we don't know if we
12879 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12880
12881 static void
12882 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12883 {
12884 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12885 const struct dwop_section_names *names = &dwop_section_names;
12886 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12887
12888 /* Record the ELF section number for later lookup: this is what the
12889 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12890 gdb_assert (elf_section_nr < dwp_file->num_sections);
12891 dwp_file->elf_sections[elf_section_nr] = sectp;
12892
12893 /* Look for specific sections that we need. */
12894 if (section_is_p (sectp->name, &names->abbrev_dwo))
12895 {
12896 dwp_file->sections.abbrev.s.section = sectp;
12897 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12898 }
12899 else if (section_is_p (sectp->name, &names->info_dwo))
12900 {
12901 dwp_file->sections.info.s.section = sectp;
12902 dwp_file->sections.info.size = bfd_section_size (sectp);
12903 }
12904 else if (section_is_p (sectp->name, &names->line_dwo))
12905 {
12906 dwp_file->sections.line.s.section = sectp;
12907 dwp_file->sections.line.size = bfd_section_size (sectp);
12908 }
12909 else if (section_is_p (sectp->name, &names->loc_dwo))
12910 {
12911 dwp_file->sections.loc.s.section = sectp;
12912 dwp_file->sections.loc.size = bfd_section_size (sectp);
12913 }
12914 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12915 {
12916 dwp_file->sections.macinfo.s.section = sectp;
12917 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12918 }
12919 else if (section_is_p (sectp->name, &names->macro_dwo))
12920 {
12921 dwp_file->sections.macro.s.section = sectp;
12922 dwp_file->sections.macro.size = bfd_section_size (sectp);
12923 }
12924 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12925 {
12926 dwp_file->sections.str_offsets.s.section = sectp;
12927 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12928 }
12929 else if (section_is_p (sectp->name, &names->types_dwo))
12930 {
12931 dwp_file->sections.types.s.section = sectp;
12932 dwp_file->sections.types.size = bfd_section_size (sectp);
12933 }
12934 }
12935
12936 /* This function is mapped across the sections and remembers the offset and
12937 size of each of the DWP version 5 debugging sections that we are interested
12938 in. This is split into a separate function because we don't know if we
12939 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12940
12941 static void
12942 dwarf2_locate_v5_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12943 {
12944 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12945 const struct dwop_section_names *names = &dwop_section_names;
12946 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12947
12948 /* Record the ELF section number for later lookup: this is what the
12949 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12950 gdb_assert (elf_section_nr < dwp_file->num_sections);
12951 dwp_file->elf_sections[elf_section_nr] = sectp;
12952
12953 /* Look for specific sections that we need. */
12954 if (section_is_p (sectp->name, &names->abbrev_dwo))
12955 {
12956 dwp_file->sections.abbrev.s.section = sectp;
12957 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->info_dwo))
12960 {
12961 dwp_file->sections.info.s.section = sectp;
12962 dwp_file->sections.info.size = bfd_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->line_dwo))
12965 {
12966 dwp_file->sections.line.s.section = sectp;
12967 dwp_file->sections.line.size = bfd_section_size (sectp);
12968 }
12969 else if (section_is_p (sectp->name, &names->loclists_dwo))
12970 {
12971 dwp_file->sections.loclists.s.section = sectp;
12972 dwp_file->sections.loclists.size = bfd_section_size (sectp);
12973 }
12974 else if (section_is_p (sectp->name, &names->macro_dwo))
12975 {
12976 dwp_file->sections.macro.s.section = sectp;
12977 dwp_file->sections.macro.size = bfd_section_size (sectp);
12978 }
12979 else if (section_is_p (sectp->name, &names->rnglists_dwo))
12980 {
12981 dwp_file->sections.rnglists.s.section = sectp;
12982 dwp_file->sections.rnglists.size = bfd_section_size (sectp);
12983 }
12984 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12985 {
12986 dwp_file->sections.str_offsets.s.section = sectp;
12987 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12988 }
12989 }
12990
12991 /* Hash function for dwp_file loaded CUs/TUs. */
12992
12993 static hashval_t
12994 hash_dwp_loaded_cutus (const void *item)
12995 {
12996 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12997
12998 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12999 return dwo_unit->signature;
13000 }
13001
13002 /* Equality function for dwp_file loaded CUs/TUs. */
13003
13004 static int
13005 eq_dwp_loaded_cutus (const void *a, const void *b)
13006 {
13007 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13008 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13009
13010 return dua->signature == dub->signature;
13011 }
13012
13013 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13014
13015 static htab_up
13016 allocate_dwp_loaded_cutus_table ()
13017 {
13018 return htab_up (htab_create_alloc (3,
13019 hash_dwp_loaded_cutus,
13020 eq_dwp_loaded_cutus,
13021 NULL, xcalloc, xfree));
13022 }
13023
13024 /* Try to open DWP file FILE_NAME.
13025 The result is the bfd handle of the file.
13026 If there is a problem finding or opening the file, return NULL.
13027 Upon success, the canonicalized path of the file is stored in the bfd,
13028 same as symfile_bfd_open. */
13029
13030 static gdb_bfd_ref_ptr
13031 open_dwp_file (dwarf2_per_objfile *per_objfile, const char *file_name)
13032 {
13033 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, file_name,
13034 1 /*is_dwp*/,
13035 1 /*search_cwd*/));
13036 if (abfd != NULL)
13037 return abfd;
13038
13039 /* Work around upstream bug 15652.
13040 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13041 [Whether that's a "bug" is debatable, but it is getting in our way.]
13042 We have no real idea where the dwp file is, because gdb's realpath-ing
13043 of the executable's path may have discarded the needed info.
13044 [IWBN if the dwp file name was recorded in the executable, akin to
13045 .gnu_debuglink, but that doesn't exist yet.]
13046 Strip the directory from FILE_NAME and search again. */
13047 if (*debug_file_directory != '\0')
13048 {
13049 /* Don't implicitly search the current directory here.
13050 If the user wants to search "." to handle this case,
13051 it must be added to debug-file-directory. */
13052 return try_open_dwop_file (per_objfile, lbasename (file_name),
13053 1 /*is_dwp*/,
13054 0 /*search_cwd*/);
13055 }
13056
13057 return NULL;
13058 }
13059
13060 /* Initialize the use of the DWP file for the current objfile.
13061 By convention the name of the DWP file is ${objfile}.dwp.
13062 The result is NULL if it can't be found. */
13063
13064 static std::unique_ptr<struct dwp_file>
13065 open_and_init_dwp_file (dwarf2_per_objfile *per_objfile)
13066 {
13067 struct objfile *objfile = per_objfile->objfile;
13068
13069 /* Try to find first .dwp for the binary file before any symbolic links
13070 resolving. */
13071
13072 /* If the objfile is a debug file, find the name of the real binary
13073 file and get the name of dwp file from there. */
13074 std::string dwp_name;
13075 if (objfile->separate_debug_objfile_backlink != NULL)
13076 {
13077 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13078 const char *backlink_basename = lbasename (backlink->original_name);
13079
13080 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13081 }
13082 else
13083 dwp_name = objfile->original_name;
13084
13085 dwp_name += ".dwp";
13086
13087 gdb_bfd_ref_ptr dbfd (open_dwp_file (per_objfile, dwp_name.c_str ()));
13088 if (dbfd == NULL
13089 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13090 {
13091 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13092 dwp_name = objfile_name (objfile);
13093 dwp_name += ".dwp";
13094 dbfd = open_dwp_file (per_objfile, dwp_name.c_str ());
13095 }
13096
13097 if (dbfd == NULL)
13098 {
13099 if (dwarf_read_debug)
13100 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13101 return std::unique_ptr<dwp_file> ();
13102 }
13103
13104 const char *name = bfd_get_filename (dbfd.get ());
13105 std::unique_ptr<struct dwp_file> dwp_file
13106 (new struct dwp_file (name, std::move (dbfd)));
13107
13108 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13109 dwp_file->elf_sections =
13110 OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
13111 dwp_file->num_sections, asection *);
13112
13113 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
13114 dwarf2_locate_common_dwp_sections (dwp_file->dbfd.get (), sec,
13115 dwp_file.get ());
13116
13117 dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0);
13118
13119 dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1);
13120
13121 /* The DWP file version is stored in the hash table. Oh well. */
13122 if (dwp_file->cus && dwp_file->tus
13123 && dwp_file->cus->version != dwp_file->tus->version)
13124 {
13125 /* Technically speaking, we should try to limp along, but this is
13126 pretty bizarre. We use pulongest here because that's the established
13127 portability solution (e.g, we cannot use %u for uint32_t). */
13128 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13129 " TU version %s [in DWP file %s]"),
13130 pulongest (dwp_file->cus->version),
13131 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13132 }
13133
13134 if (dwp_file->cus)
13135 dwp_file->version = dwp_file->cus->version;
13136 else if (dwp_file->tus)
13137 dwp_file->version = dwp_file->tus->version;
13138 else
13139 dwp_file->version = 2;
13140
13141 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
13142 {
13143 if (dwp_file->version == 2)
13144 dwarf2_locate_v2_dwp_sections (dwp_file->dbfd.get (), sec,
13145 dwp_file.get ());
13146 else
13147 dwarf2_locate_v5_dwp_sections (dwp_file->dbfd.get (), sec,
13148 dwp_file.get ());
13149 }
13150
13151 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
13152 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
13153
13154 if (dwarf_read_debug)
13155 {
13156 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13157 fprintf_unfiltered (gdb_stdlog,
13158 " %s CUs, %s TUs\n",
13159 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13160 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13161 }
13162
13163 return dwp_file;
13164 }
13165
13166 /* Wrapper around open_and_init_dwp_file, only open it once. */
13167
13168 static struct dwp_file *
13169 get_dwp_file (dwarf2_per_objfile *per_objfile)
13170 {
13171 if (!per_objfile->per_bfd->dwp_checked)
13172 {
13173 per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile);
13174 per_objfile->per_bfd->dwp_checked = 1;
13175 }
13176 return per_objfile->per_bfd->dwp_file.get ();
13177 }
13178
13179 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13180 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13181 or in the DWP file for the objfile, referenced by THIS_UNIT.
13182 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13183 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13184
13185 This is called, for example, when wanting to read a variable with a
13186 complex location. Therefore we don't want to do file i/o for every call.
13187 Therefore we don't want to look for a DWO file on every call.
13188 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13189 then we check if we've already seen DWO_NAME, and only THEN do we check
13190 for a DWO file.
13191
13192 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13193 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13194
13195 static struct dwo_unit *
13196 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
13197 ULONGEST signature, int is_debug_types)
13198 {
13199 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13200 struct objfile *objfile = per_objfile->objfile;
13201 const char *kind = is_debug_types ? "TU" : "CU";
13202 void **dwo_file_slot;
13203 struct dwo_file *dwo_file;
13204 struct dwp_file *dwp_file;
13205
13206 /* First see if there's a DWP file.
13207 If we have a DWP file but didn't find the DWO inside it, don't
13208 look for the original DWO file. It makes gdb behave differently
13209 depending on whether one is debugging in the build tree. */
13210
13211 dwp_file = get_dwp_file (per_objfile);
13212 if (dwp_file != NULL)
13213 {
13214 const struct dwp_hash_table *dwp_htab =
13215 is_debug_types ? dwp_file->tus : dwp_file->cus;
13216
13217 if (dwp_htab != NULL)
13218 {
13219 struct dwo_unit *dwo_cutu =
13220 lookup_dwo_unit_in_dwp (per_objfile, dwp_file, comp_dir, signature,
13221 is_debug_types);
13222
13223 if (dwo_cutu != NULL)
13224 {
13225 if (dwarf_read_debug)
13226 {
13227 fprintf_unfiltered (gdb_stdlog,
13228 "Virtual DWO %s %s found: @%s\n",
13229 kind, hex_string (signature),
13230 host_address_to_string (dwo_cutu));
13231 }
13232 return dwo_cutu;
13233 }
13234 }
13235 }
13236 else
13237 {
13238 /* No DWP file, look for the DWO file. */
13239
13240 dwo_file_slot = lookup_dwo_file_slot (per_objfile, dwo_name, comp_dir);
13241 if (*dwo_file_slot == NULL)
13242 {
13243 /* Read in the file and build a table of the CUs/TUs it contains. */
13244 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
13245 }
13246 /* NOTE: This will be NULL if unable to open the file. */
13247 dwo_file = (struct dwo_file *) *dwo_file_slot;
13248
13249 if (dwo_file != NULL)
13250 {
13251 struct dwo_unit *dwo_cutu = NULL;
13252
13253 if (is_debug_types && dwo_file->tus)
13254 {
13255 struct dwo_unit find_dwo_cutu;
13256
13257 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13258 find_dwo_cutu.signature = signature;
13259 dwo_cutu
13260 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
13261 &find_dwo_cutu);
13262 }
13263 else if (!is_debug_types && dwo_file->cus)
13264 {
13265 struct dwo_unit find_dwo_cutu;
13266
13267 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13268 find_dwo_cutu.signature = signature;
13269 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
13270 &find_dwo_cutu);
13271 }
13272
13273 if (dwo_cutu != NULL)
13274 {
13275 if (dwarf_read_debug)
13276 {
13277 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13278 kind, dwo_name, hex_string (signature),
13279 host_address_to_string (dwo_cutu));
13280 }
13281 return dwo_cutu;
13282 }
13283 }
13284 }
13285
13286 /* We didn't find it. This could mean a dwo_id mismatch, or
13287 someone deleted the DWO/DWP file, or the search path isn't set up
13288 correctly to find the file. */
13289
13290 if (dwarf_read_debug)
13291 {
13292 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13293 kind, dwo_name, hex_string (signature));
13294 }
13295
13296 /* This is a warning and not a complaint because it can be caused by
13297 pilot error (e.g., user accidentally deleting the DWO). */
13298 {
13299 /* Print the name of the DWP file if we looked there, helps the user
13300 better diagnose the problem. */
13301 std::string dwp_text;
13302
13303 if (dwp_file != NULL)
13304 dwp_text = string_printf (" [in DWP file %s]",
13305 lbasename (dwp_file->name));
13306
13307 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13308 " [in module %s]"),
13309 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
13310 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
13311 }
13312 return NULL;
13313 }
13314
13315 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13316 See lookup_dwo_cutu_unit for details. */
13317
13318 static struct dwo_unit *
13319 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
13320 ULONGEST signature)
13321 {
13322 gdb_assert (!cu->per_cu->is_debug_types);
13323
13324 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
13325 }
13326
13327 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13328 See lookup_dwo_cutu_unit for details. */
13329
13330 static struct dwo_unit *
13331 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
13332 {
13333 gdb_assert (cu->per_cu->is_debug_types);
13334
13335 signatured_type *sig_type = (signatured_type *) cu->per_cu;
13336
13337 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
13338 }
13339
13340 /* Traversal function for queue_and_load_all_dwo_tus. */
13341
13342 static int
13343 queue_and_load_dwo_tu (void **slot, void *info)
13344 {
13345 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13346 dwarf2_cu *cu = (dwarf2_cu *) info;
13347 ULONGEST signature = dwo_unit->signature;
13348 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
13349
13350 if (sig_type != NULL)
13351 {
13352 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13353
13354 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13355 a real dependency of PER_CU on SIG_TYPE. That is detected later
13356 while processing PER_CU. */
13357 if (maybe_queue_comp_unit (NULL, sig_cu, cu->per_objfile, cu->language))
13358 load_full_type_unit (sig_cu, cu->per_objfile);
13359 cu->per_cu->imported_symtabs_push (sig_cu);
13360 }
13361
13362 return 1;
13363 }
13364
13365 /* Queue all TUs contained in the DWO of CU to be read in.
13366 The DWO may have the only definition of the type, though it may not be
13367 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13368 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13369
13370 static void
13371 queue_and_load_all_dwo_tus (dwarf2_cu *cu)
13372 {
13373 struct dwo_unit *dwo_unit;
13374 struct dwo_file *dwo_file;
13375
13376 gdb_assert (cu != nullptr);
13377 gdb_assert (!cu->per_cu->is_debug_types);
13378 gdb_assert (get_dwp_file (cu->per_objfile) == nullptr);
13379
13380 dwo_unit = cu->dwo_unit;
13381 gdb_assert (dwo_unit != NULL);
13382
13383 dwo_file = dwo_unit->dwo_file;
13384 if (dwo_file->tus != NULL)
13385 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, cu);
13386 }
13387
13388 /* Read in various DIEs. */
13389
13390 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13391 Inherit only the children of the DW_AT_abstract_origin DIE not being
13392 already referenced by DW_AT_abstract_origin from the children of the
13393 current DIE. */
13394
13395 static void
13396 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13397 {
13398 struct die_info *child_die;
13399 sect_offset *offsetp;
13400 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13401 struct die_info *origin_die;
13402 /* Iterator of the ORIGIN_DIE children. */
13403 struct die_info *origin_child_die;
13404 struct attribute *attr;
13405 struct dwarf2_cu *origin_cu;
13406 struct pending **origin_previous_list_in_scope;
13407
13408 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13409 if (!attr)
13410 return;
13411
13412 /* Note that following die references may follow to a die in a
13413 different cu. */
13414
13415 origin_cu = cu;
13416 origin_die = follow_die_ref (die, attr, &origin_cu);
13417
13418 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13419 symbols in. */
13420 origin_previous_list_in_scope = origin_cu->list_in_scope;
13421 origin_cu->list_in_scope = cu->list_in_scope;
13422
13423 if (die->tag != origin_die->tag
13424 && !(die->tag == DW_TAG_inlined_subroutine
13425 && origin_die->tag == DW_TAG_subprogram))
13426 complaint (_("DIE %s and its abstract origin %s have different tags"),
13427 sect_offset_str (die->sect_off),
13428 sect_offset_str (origin_die->sect_off));
13429
13430 std::vector<sect_offset> offsets;
13431
13432 for (child_die = die->child;
13433 child_die && child_die->tag;
13434 child_die = child_die->sibling)
13435 {
13436 struct die_info *child_origin_die;
13437 struct dwarf2_cu *child_origin_cu;
13438
13439 /* We are trying to process concrete instance entries:
13440 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13441 it's not relevant to our analysis here. i.e. detecting DIEs that are
13442 present in the abstract instance but not referenced in the concrete
13443 one. */
13444 if (child_die->tag == DW_TAG_call_site
13445 || child_die->tag == DW_TAG_GNU_call_site)
13446 continue;
13447
13448 /* For each CHILD_DIE, find the corresponding child of
13449 ORIGIN_DIE. If there is more than one layer of
13450 DW_AT_abstract_origin, follow them all; there shouldn't be,
13451 but GCC versions at least through 4.4 generate this (GCC PR
13452 40573). */
13453 child_origin_die = child_die;
13454 child_origin_cu = cu;
13455 while (1)
13456 {
13457 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13458 child_origin_cu);
13459 if (attr == NULL)
13460 break;
13461 child_origin_die = follow_die_ref (child_origin_die, attr,
13462 &child_origin_cu);
13463 }
13464
13465 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13466 counterpart may exist. */
13467 if (child_origin_die != child_die)
13468 {
13469 if (child_die->tag != child_origin_die->tag
13470 && !(child_die->tag == DW_TAG_inlined_subroutine
13471 && child_origin_die->tag == DW_TAG_subprogram))
13472 complaint (_("Child DIE %s and its abstract origin %s have "
13473 "different tags"),
13474 sect_offset_str (child_die->sect_off),
13475 sect_offset_str (child_origin_die->sect_off));
13476 if (child_origin_die->parent != origin_die)
13477 complaint (_("Child DIE %s and its abstract origin %s have "
13478 "different parents"),
13479 sect_offset_str (child_die->sect_off),
13480 sect_offset_str (child_origin_die->sect_off));
13481 else
13482 offsets.push_back (child_origin_die->sect_off);
13483 }
13484 }
13485 std::sort (offsets.begin (), offsets.end ());
13486 sect_offset *offsets_end = offsets.data () + offsets.size ();
13487 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13488 if (offsetp[-1] == *offsetp)
13489 complaint (_("Multiple children of DIE %s refer "
13490 "to DIE %s as their abstract origin"),
13491 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13492
13493 offsetp = offsets.data ();
13494 origin_child_die = origin_die->child;
13495 while (origin_child_die && origin_child_die->tag)
13496 {
13497 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13498 while (offsetp < offsets_end
13499 && *offsetp < origin_child_die->sect_off)
13500 offsetp++;
13501 if (offsetp >= offsets_end
13502 || *offsetp > origin_child_die->sect_off)
13503 {
13504 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13505 Check whether we're already processing ORIGIN_CHILD_DIE.
13506 This can happen with mutually referenced abstract_origins.
13507 PR 16581. */
13508 if (!origin_child_die->in_process)
13509 process_die (origin_child_die, origin_cu);
13510 }
13511 origin_child_die = origin_child_die->sibling;
13512 }
13513 origin_cu->list_in_scope = origin_previous_list_in_scope;
13514
13515 if (cu != origin_cu)
13516 compute_delayed_physnames (origin_cu);
13517 }
13518
13519 static void
13520 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13521 {
13522 struct objfile *objfile = cu->per_objfile->objfile;
13523 struct gdbarch *gdbarch = objfile->arch ();
13524 struct context_stack *newobj;
13525 CORE_ADDR lowpc;
13526 CORE_ADDR highpc;
13527 struct die_info *child_die;
13528 struct attribute *attr, *call_line, *call_file;
13529 const char *name;
13530 CORE_ADDR baseaddr;
13531 struct block *block;
13532 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13533 std::vector<struct symbol *> template_args;
13534 struct template_symbol *templ_func = NULL;
13535
13536 if (inlined_func)
13537 {
13538 /* If we do not have call site information, we can't show the
13539 caller of this inlined function. That's too confusing, so
13540 only use the scope for local variables. */
13541 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13542 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13543 if (call_line == NULL || call_file == NULL)
13544 {
13545 read_lexical_block_scope (die, cu);
13546 return;
13547 }
13548 }
13549
13550 baseaddr = objfile->text_section_offset ();
13551
13552 name = dwarf2_name (die, cu);
13553
13554 /* Ignore functions with missing or empty names. These are actually
13555 illegal according to the DWARF standard. */
13556 if (name == NULL)
13557 {
13558 complaint (_("missing name for subprogram DIE at %s"),
13559 sect_offset_str (die->sect_off));
13560 return;
13561 }
13562
13563 /* Ignore functions with missing or invalid low and high pc attributes. */
13564 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13565 <= PC_BOUNDS_INVALID)
13566 {
13567 attr = dwarf2_attr (die, DW_AT_external, cu);
13568 if (!attr || !DW_UNSND (attr))
13569 complaint (_("cannot get low and high bounds "
13570 "for subprogram DIE at %s"),
13571 sect_offset_str (die->sect_off));
13572 return;
13573 }
13574
13575 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13576 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13577
13578 /* If we have any template arguments, then we must allocate a
13579 different sort of symbol. */
13580 for (child_die = die->child; child_die; child_die = child_die->sibling)
13581 {
13582 if (child_die->tag == DW_TAG_template_type_param
13583 || child_die->tag == DW_TAG_template_value_param)
13584 {
13585 templ_func = new (&objfile->objfile_obstack) template_symbol;
13586 templ_func->subclass = SYMBOL_TEMPLATE;
13587 break;
13588 }
13589 }
13590
13591 newobj = cu->get_builder ()->push_context (0, lowpc);
13592 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13593 (struct symbol *) templ_func);
13594
13595 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13596 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13597 cu->language);
13598
13599 /* If there is a location expression for DW_AT_frame_base, record
13600 it. */
13601 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13602 if (attr != nullptr)
13603 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13604
13605 /* If there is a location for the static link, record it. */
13606 newobj->static_link = NULL;
13607 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13608 if (attr != nullptr)
13609 {
13610 newobj->static_link
13611 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13612 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13613 cu->addr_type ());
13614 }
13615
13616 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13617
13618 if (die->child != NULL)
13619 {
13620 child_die = die->child;
13621 while (child_die && child_die->tag)
13622 {
13623 if (child_die->tag == DW_TAG_template_type_param
13624 || child_die->tag == DW_TAG_template_value_param)
13625 {
13626 struct symbol *arg = new_symbol (child_die, NULL, cu);
13627
13628 if (arg != NULL)
13629 template_args.push_back (arg);
13630 }
13631 else
13632 process_die (child_die, cu);
13633 child_die = child_die->sibling;
13634 }
13635 }
13636
13637 inherit_abstract_dies (die, cu);
13638
13639 /* If we have a DW_AT_specification, we might need to import using
13640 directives from the context of the specification DIE. See the
13641 comment in determine_prefix. */
13642 if (cu->language == language_cplus
13643 && dwarf2_attr (die, DW_AT_specification, cu))
13644 {
13645 struct dwarf2_cu *spec_cu = cu;
13646 struct die_info *spec_die = die_specification (die, &spec_cu);
13647
13648 while (spec_die)
13649 {
13650 child_die = spec_die->child;
13651 while (child_die && child_die->tag)
13652 {
13653 if (child_die->tag == DW_TAG_imported_module)
13654 process_die (child_die, spec_cu);
13655 child_die = child_die->sibling;
13656 }
13657
13658 /* In some cases, GCC generates specification DIEs that
13659 themselves contain DW_AT_specification attributes. */
13660 spec_die = die_specification (spec_die, &spec_cu);
13661 }
13662 }
13663
13664 struct context_stack cstk = cu->get_builder ()->pop_context ();
13665 /* Make a block for the local symbols within. */
13666 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13667 cstk.static_link, lowpc, highpc);
13668
13669 /* For C++, set the block's scope. */
13670 if ((cu->language == language_cplus
13671 || cu->language == language_fortran
13672 || cu->language == language_d
13673 || cu->language == language_rust)
13674 && cu->processing_has_namespace_info)
13675 block_set_scope (block, determine_prefix (die, cu),
13676 &objfile->objfile_obstack);
13677
13678 /* If we have address ranges, record them. */
13679 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13680
13681 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13682
13683 /* Attach template arguments to function. */
13684 if (!template_args.empty ())
13685 {
13686 gdb_assert (templ_func != NULL);
13687
13688 templ_func->n_template_arguments = template_args.size ();
13689 templ_func->template_arguments
13690 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13691 templ_func->n_template_arguments);
13692 memcpy (templ_func->template_arguments,
13693 template_args.data (),
13694 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13695
13696 /* Make sure that the symtab is set on the new symbols. Even
13697 though they don't appear in this symtab directly, other parts
13698 of gdb assume that symbols do, and this is reasonably
13699 true. */
13700 for (symbol *sym : template_args)
13701 symbol_set_symtab (sym, symbol_symtab (templ_func));
13702 }
13703
13704 /* In C++, we can have functions nested inside functions (e.g., when
13705 a function declares a class that has methods). This means that
13706 when we finish processing a function scope, we may need to go
13707 back to building a containing block's symbol lists. */
13708 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13709 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13710
13711 /* If we've finished processing a top-level function, subsequent
13712 symbols go in the file symbol list. */
13713 if (cu->get_builder ()->outermost_context_p ())
13714 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13715 }
13716
13717 /* Process all the DIES contained within a lexical block scope. Start
13718 a new scope, process the dies, and then close the scope. */
13719
13720 static void
13721 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13722 {
13723 struct objfile *objfile = cu->per_objfile->objfile;
13724 struct gdbarch *gdbarch = objfile->arch ();
13725 CORE_ADDR lowpc, highpc;
13726 struct die_info *child_die;
13727 CORE_ADDR baseaddr;
13728
13729 baseaddr = objfile->text_section_offset ();
13730
13731 /* Ignore blocks with missing or invalid low and high pc attributes. */
13732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13733 as multiple lexical blocks? Handling children in a sane way would
13734 be nasty. Might be easier to properly extend generic blocks to
13735 describe ranges. */
13736 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13737 {
13738 case PC_BOUNDS_NOT_PRESENT:
13739 /* DW_TAG_lexical_block has no attributes, process its children as if
13740 there was no wrapping by that DW_TAG_lexical_block.
13741 GCC does no longer produces such DWARF since GCC r224161. */
13742 for (child_die = die->child;
13743 child_die != NULL && child_die->tag;
13744 child_die = child_die->sibling)
13745 {
13746 /* We might already be processing this DIE. This can happen
13747 in an unusual circumstance -- where a subroutine A
13748 appears lexically in another subroutine B, but A actually
13749 inlines B. The recursion is broken here, rather than in
13750 inherit_abstract_dies, because it seems better to simply
13751 drop concrete children here. */
13752 if (!child_die->in_process)
13753 process_die (child_die, cu);
13754 }
13755 return;
13756 case PC_BOUNDS_INVALID:
13757 return;
13758 }
13759 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13760 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13761
13762 cu->get_builder ()->push_context (0, lowpc);
13763 if (die->child != NULL)
13764 {
13765 child_die = die->child;
13766 while (child_die && child_die->tag)
13767 {
13768 process_die (child_die, cu);
13769 child_die = child_die->sibling;
13770 }
13771 }
13772 inherit_abstract_dies (die, cu);
13773 struct context_stack cstk = cu->get_builder ()->pop_context ();
13774
13775 if (*cu->get_builder ()->get_local_symbols () != NULL
13776 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13777 {
13778 struct block *block
13779 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13780 cstk.start_addr, highpc);
13781
13782 /* Note that recording ranges after traversing children, as we
13783 do here, means that recording a parent's ranges entails
13784 walking across all its children's ranges as they appear in
13785 the address map, which is quadratic behavior.
13786
13787 It would be nicer to record the parent's ranges before
13788 traversing its children, simply overriding whatever you find
13789 there. But since we don't even decide whether to create a
13790 block until after we've traversed its children, that's hard
13791 to do. */
13792 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13793 }
13794 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13795 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13796 }
13797
13798 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13799
13800 static void
13801 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13802 {
13803 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13804 struct objfile *objfile = per_objfile->objfile;
13805 struct gdbarch *gdbarch = objfile->arch ();
13806 CORE_ADDR pc, baseaddr;
13807 struct attribute *attr;
13808 struct call_site *call_site, call_site_local;
13809 void **slot;
13810 int nparams;
13811 struct die_info *child_die;
13812
13813 baseaddr = objfile->text_section_offset ();
13814
13815 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13816 if (attr == NULL)
13817 {
13818 /* This was a pre-DWARF-5 GNU extension alias
13819 for DW_AT_call_return_pc. */
13820 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13821 }
13822 if (!attr)
13823 {
13824 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13825 "DIE %s [in module %s]"),
13826 sect_offset_str (die->sect_off), objfile_name (objfile));
13827 return;
13828 }
13829 pc = attr->as_address () + baseaddr;
13830 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13831
13832 if (cu->call_site_htab == NULL)
13833 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13834 NULL, &objfile->objfile_obstack,
13835 hashtab_obstack_allocate, NULL);
13836 call_site_local.pc = pc;
13837 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13838 if (*slot != NULL)
13839 {
13840 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13841 "DIE %s [in module %s]"),
13842 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13843 objfile_name (objfile));
13844 return;
13845 }
13846
13847 /* Count parameters at the caller. */
13848
13849 nparams = 0;
13850 for (child_die = die->child; child_die && child_die->tag;
13851 child_die = child_die->sibling)
13852 {
13853 if (child_die->tag != DW_TAG_call_site_parameter
13854 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13855 {
13856 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13857 "DW_TAG_call_site child DIE %s [in module %s]"),
13858 child_die->tag, sect_offset_str (child_die->sect_off),
13859 objfile_name (objfile));
13860 continue;
13861 }
13862
13863 nparams++;
13864 }
13865
13866 call_site
13867 = ((struct call_site *)
13868 obstack_alloc (&objfile->objfile_obstack,
13869 sizeof (*call_site)
13870 + (sizeof (*call_site->parameter) * (nparams - 1))));
13871 *slot = call_site;
13872 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13873 call_site->pc = pc;
13874
13875 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13876 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13877 {
13878 struct die_info *func_die;
13879
13880 /* Skip also over DW_TAG_inlined_subroutine. */
13881 for (func_die = die->parent;
13882 func_die && func_die->tag != DW_TAG_subprogram
13883 && func_die->tag != DW_TAG_subroutine_type;
13884 func_die = func_die->parent);
13885
13886 /* DW_AT_call_all_calls is a superset
13887 of DW_AT_call_all_tail_calls. */
13888 if (func_die
13889 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13890 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13891 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13892 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13893 {
13894 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13895 not complete. But keep CALL_SITE for look ups via call_site_htab,
13896 both the initial caller containing the real return address PC and
13897 the final callee containing the current PC of a chain of tail
13898 calls do not need to have the tail call list complete. But any
13899 function candidate for a virtual tail call frame searched via
13900 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13901 determined unambiguously. */
13902 }
13903 else
13904 {
13905 struct type *func_type = NULL;
13906
13907 if (func_die)
13908 func_type = get_die_type (func_die, cu);
13909 if (func_type != NULL)
13910 {
13911 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13912
13913 /* Enlist this call site to the function. */
13914 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13915 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13916 }
13917 else
13918 complaint (_("Cannot find function owning DW_TAG_call_site "
13919 "DIE %s [in module %s]"),
13920 sect_offset_str (die->sect_off), objfile_name (objfile));
13921 }
13922 }
13923
13924 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13925 if (attr == NULL)
13926 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13927 if (attr == NULL)
13928 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13929 if (attr == NULL)
13930 {
13931 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13932 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13933 }
13934 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13935 if (!attr || (attr->form_is_block () && attr->as_block ()->size == 0))
13936 /* Keep NULL DWARF_BLOCK. */;
13937 else if (attr->form_is_block ())
13938 {
13939 struct dwarf2_locexpr_baton *dlbaton;
13940 struct dwarf_block *block = attr->as_block ();
13941
13942 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13943 dlbaton->data = block->data;
13944 dlbaton->size = block->size;
13945 dlbaton->per_objfile = per_objfile;
13946 dlbaton->per_cu = cu->per_cu;
13947
13948 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13949 }
13950 else if (attr->form_is_ref ())
13951 {
13952 struct dwarf2_cu *target_cu = cu;
13953 struct die_info *target_die;
13954
13955 target_die = follow_die_ref (die, attr, &target_cu);
13956 gdb_assert (target_cu->per_objfile->objfile == objfile);
13957 if (die_is_declaration (target_die, target_cu))
13958 {
13959 const char *target_physname;
13960
13961 /* Prefer the mangled name; otherwise compute the demangled one. */
13962 target_physname = dw2_linkage_name (target_die, target_cu);
13963 if (target_physname == NULL)
13964 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13965 if (target_physname == NULL)
13966 complaint (_("DW_AT_call_target target DIE has invalid "
13967 "physname, for referencing DIE %s [in module %s]"),
13968 sect_offset_str (die->sect_off), objfile_name (objfile));
13969 else
13970 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13971 }
13972 else
13973 {
13974 CORE_ADDR lowpc;
13975
13976 /* DW_AT_entry_pc should be preferred. */
13977 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13978 <= PC_BOUNDS_INVALID)
13979 complaint (_("DW_AT_call_target target DIE has invalid "
13980 "low pc, for referencing DIE %s [in module %s]"),
13981 sect_offset_str (die->sect_off), objfile_name (objfile));
13982 else
13983 {
13984 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13985 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13986 }
13987 }
13988 }
13989 else
13990 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13991 "block nor reference, for DIE %s [in module %s]"),
13992 sect_offset_str (die->sect_off), objfile_name (objfile));
13993
13994 call_site->per_cu = cu->per_cu;
13995 call_site->per_objfile = per_objfile;
13996
13997 for (child_die = die->child;
13998 child_die && child_die->tag;
13999 child_die = child_die->sibling)
14000 {
14001 struct call_site_parameter *parameter;
14002 struct attribute *loc, *origin;
14003
14004 if (child_die->tag != DW_TAG_call_site_parameter
14005 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14006 {
14007 /* Already printed the complaint above. */
14008 continue;
14009 }
14010
14011 gdb_assert (call_site->parameter_count < nparams);
14012 parameter = &call_site->parameter[call_site->parameter_count];
14013
14014 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14015 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14016 register is contained in DW_AT_call_value. */
14017
14018 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14019 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14020 if (origin == NULL)
14021 {
14022 /* This was a pre-DWARF-5 GNU extension alias
14023 for DW_AT_call_parameter. */
14024 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14025 }
14026 if (loc == NULL && origin != NULL && origin->form_is_ref ())
14027 {
14028 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14029
14030 sect_offset sect_off = origin->get_ref_die_offset ();
14031 if (!cu->header.offset_in_cu_p (sect_off))
14032 {
14033 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14034 binding can be done only inside one CU. Such referenced DIE
14035 therefore cannot be even moved to DW_TAG_partial_unit. */
14036 complaint (_("DW_AT_call_parameter offset is not in CU for "
14037 "DW_TAG_call_site child DIE %s [in module %s]"),
14038 sect_offset_str (child_die->sect_off),
14039 objfile_name (objfile));
14040 continue;
14041 }
14042 parameter->u.param_cu_off
14043 = (cu_offset) (sect_off - cu->header.sect_off);
14044 }
14045 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
14046 {
14047 complaint (_("No DW_FORM_block* DW_AT_location for "
14048 "DW_TAG_call_site child DIE %s [in module %s]"),
14049 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14050 continue;
14051 }
14052 else
14053 {
14054 struct dwarf_block *block = loc->as_block ();
14055
14056 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14057 (block->data, &block->data[block->size]);
14058 if (parameter->u.dwarf_reg != -1)
14059 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14060 else if (dwarf_block_to_sp_offset (gdbarch, block->data,
14061 &block->data[block->size],
14062 &parameter->u.fb_offset))
14063 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14064 else
14065 {
14066 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14067 "for DW_FORM_block* DW_AT_location is supported for "
14068 "DW_TAG_call_site child DIE %s "
14069 "[in module %s]"),
14070 sect_offset_str (child_die->sect_off),
14071 objfile_name (objfile));
14072 continue;
14073 }
14074 }
14075
14076 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14077 if (attr == NULL)
14078 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14079 if (attr == NULL || !attr->form_is_block ())
14080 {
14081 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off),
14084 objfile_name (objfile));
14085 continue;
14086 }
14087
14088 struct dwarf_block *block = attr->as_block ();
14089 parameter->value = block->data;
14090 parameter->value_size = block->size;
14091
14092 /* Parameters are not pre-cleared by memset above. */
14093 parameter->data_value = NULL;
14094 parameter->data_value_size = 0;
14095 call_site->parameter_count++;
14096
14097 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14098 if (attr == NULL)
14099 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14100 if (attr != nullptr)
14101 {
14102 if (!attr->form_is_block ())
14103 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14104 "DW_TAG_call_site child DIE %s [in module %s]"),
14105 sect_offset_str (child_die->sect_off),
14106 objfile_name (objfile));
14107 else
14108 {
14109 block = attr->as_block ();
14110 parameter->data_value = block->data;
14111 parameter->data_value_size = block->size;
14112 }
14113 }
14114 }
14115 }
14116
14117 /* Helper function for read_variable. If DIE represents a virtual
14118 table, then return the type of the concrete object that is
14119 associated with the virtual table. Otherwise, return NULL. */
14120
14121 static struct type *
14122 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14123 {
14124 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14125 if (attr == NULL)
14126 return NULL;
14127
14128 /* Find the type DIE. */
14129 struct die_info *type_die = NULL;
14130 struct dwarf2_cu *type_cu = cu;
14131
14132 if (attr->form_is_ref ())
14133 type_die = follow_die_ref (die, attr, &type_cu);
14134 if (type_die == NULL)
14135 return NULL;
14136
14137 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14138 return NULL;
14139 return die_containing_type (type_die, type_cu);
14140 }
14141
14142 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14143
14144 static void
14145 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14146 {
14147 struct rust_vtable_symbol *storage = NULL;
14148
14149 if (cu->language == language_rust)
14150 {
14151 struct type *containing_type = rust_containing_type (die, cu);
14152
14153 if (containing_type != NULL)
14154 {
14155 struct objfile *objfile = cu->per_objfile->objfile;
14156
14157 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
14158 storage->concrete_type = containing_type;
14159 storage->subclass = SYMBOL_RUST_VTABLE;
14160 }
14161 }
14162
14163 struct symbol *res = new_symbol (die, NULL, cu, storage);
14164 struct attribute *abstract_origin
14165 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14166 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14167 if (res == NULL && loc && abstract_origin)
14168 {
14169 /* We have a variable without a name, but with a location and an abstract
14170 origin. This may be a concrete instance of an abstract variable
14171 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14172 later. */
14173 struct dwarf2_cu *origin_cu = cu;
14174 struct die_info *origin_die
14175 = follow_die_ref (die, abstract_origin, &origin_cu);
14176 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14177 per_objfile->per_bfd->abstract_to_concrete
14178 [origin_die->sect_off].push_back (die->sect_off);
14179 }
14180 }
14181
14182 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14183 reading .debug_rnglists.
14184 Callback's type should be:
14185 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14186 Return true if the attributes are present and valid, otherwise,
14187 return false. */
14188
14189 template <typename Callback>
14190 static bool
14191 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14192 dwarf_tag tag, Callback &&callback)
14193 {
14194 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14195 struct objfile *objfile = per_objfile->objfile;
14196 bfd *obfd = objfile->obfd;
14197 /* Base address selection entry. */
14198 gdb::optional<CORE_ADDR> base;
14199 const gdb_byte *buffer;
14200 CORE_ADDR baseaddr;
14201 bool overflow = false;
14202 ULONGEST addr_index;
14203 struct dwarf2_section_info *rnglists_section;
14204
14205 base = cu->base_address;
14206 rnglists_section = cu_debug_rnglists_section (cu, tag);
14207 rnglists_section->read (objfile);
14208
14209 if (offset >= rnglists_section->size)
14210 {
14211 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14212 offset);
14213 return false;
14214 }
14215 buffer = rnglists_section->buffer + offset;
14216
14217 baseaddr = objfile->text_section_offset ();
14218
14219 while (1)
14220 {
14221 /* Initialize it due to a false compiler warning. */
14222 CORE_ADDR range_beginning = 0, range_end = 0;
14223 const gdb_byte *buf_end = (rnglists_section->buffer
14224 + rnglists_section->size);
14225 unsigned int bytes_read;
14226
14227 if (buffer == buf_end)
14228 {
14229 overflow = true;
14230 break;
14231 }
14232 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14233 switch (rlet)
14234 {
14235 case DW_RLE_end_of_list:
14236 break;
14237 case DW_RLE_base_address:
14238 if (buffer + cu->header.addr_size > buf_end)
14239 {
14240 overflow = true;
14241 break;
14242 }
14243 base = cu->header.read_address (obfd, buffer, &bytes_read);
14244 buffer += bytes_read;
14245 break;
14246 case DW_RLE_base_addressx:
14247 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14248 buffer += bytes_read;
14249 base = read_addr_index (cu, addr_index);
14250 break;
14251 case DW_RLE_start_length:
14252 if (buffer + cu->header.addr_size > buf_end)
14253 {
14254 overflow = true;
14255 break;
14256 }
14257 range_beginning = cu->header.read_address (obfd, buffer,
14258 &bytes_read);
14259 buffer += bytes_read;
14260 range_end = (range_beginning
14261 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14262 buffer += bytes_read;
14263 if (buffer > buf_end)
14264 {
14265 overflow = true;
14266 break;
14267 }
14268 break;
14269 case DW_RLE_startx_length:
14270 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14271 buffer += bytes_read;
14272 range_beginning = read_addr_index (cu, addr_index);
14273 if (buffer > buf_end)
14274 {
14275 overflow = true;
14276 break;
14277 }
14278 range_end = (range_beginning
14279 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14280 buffer += bytes_read;
14281 break;
14282 case DW_RLE_offset_pair:
14283 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14284 buffer += bytes_read;
14285 if (buffer > buf_end)
14286 {
14287 overflow = true;
14288 break;
14289 }
14290 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14291 buffer += bytes_read;
14292 if (buffer > buf_end)
14293 {
14294 overflow = true;
14295 break;
14296 }
14297 break;
14298 case DW_RLE_start_end:
14299 if (buffer + 2 * cu->header.addr_size > buf_end)
14300 {
14301 overflow = true;
14302 break;
14303 }
14304 range_beginning = cu->header.read_address (obfd, buffer,
14305 &bytes_read);
14306 buffer += bytes_read;
14307 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
14308 buffer += bytes_read;
14309 break;
14310 case DW_RLE_startx_endx:
14311 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14312 buffer += bytes_read;
14313 range_beginning = read_addr_index (cu, addr_index);
14314 if (buffer > buf_end)
14315 {
14316 overflow = true;
14317 break;
14318 }
14319 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14320 buffer += bytes_read;
14321 range_end = read_addr_index (cu, addr_index);
14322 break;
14323 default:
14324 complaint (_("Invalid .debug_rnglists data (no base address)"));
14325 return false;
14326 }
14327 if (rlet == DW_RLE_end_of_list || overflow)
14328 break;
14329 if (rlet == DW_RLE_base_address)
14330 continue;
14331
14332 if (range_beginning > range_end)
14333 {
14334 /* Inverted range entries are invalid. */
14335 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14336 return false;
14337 }
14338
14339 /* Empty range entries have no effect. */
14340 if (range_beginning == range_end)
14341 continue;
14342
14343 /* Only DW_RLE_offset_pair needs the base address added. */
14344 if (rlet == DW_RLE_offset_pair)
14345 {
14346 if (!base.has_value ())
14347 {
14348 /* We have no valid base address for the DW_RLE_offset_pair. */
14349 complaint (_("Invalid .debug_rnglists data (no base address for "
14350 "DW_RLE_offset_pair)"));
14351 return false;
14352 }
14353
14354 range_beginning += *base;
14355 range_end += *base;
14356 }
14357
14358 /* A not-uncommon case of bad debug info.
14359 Don't pollute the addrmap with bad data. */
14360 if (range_beginning + baseaddr == 0
14361 && !per_objfile->per_bfd->has_section_at_zero)
14362 {
14363 complaint (_(".debug_rnglists entry has start address of zero"
14364 " [in module %s]"), objfile_name (objfile));
14365 continue;
14366 }
14367
14368 callback (range_beginning, range_end);
14369 }
14370
14371 if (overflow)
14372 {
14373 complaint (_("Offset %d is not terminated "
14374 "for DW_AT_ranges attribute"),
14375 offset);
14376 return false;
14377 }
14378
14379 return true;
14380 }
14381
14382 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14383 Callback's type should be:
14384 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14385 Return 1 if the attributes are present and valid, otherwise, return 0. */
14386
14387 template <typename Callback>
14388 static int
14389 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, dwarf_tag tag,
14390 Callback &&callback)
14391 {
14392 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14393 struct objfile *objfile = per_objfile->objfile;
14394 struct comp_unit_head *cu_header = &cu->header;
14395 bfd *obfd = objfile->obfd;
14396 unsigned int addr_size = cu_header->addr_size;
14397 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14398 /* Base address selection entry. */
14399 gdb::optional<CORE_ADDR> base;
14400 unsigned int dummy;
14401 const gdb_byte *buffer;
14402 CORE_ADDR baseaddr;
14403
14404 if (cu_header->version >= 5)
14405 return dwarf2_rnglists_process (offset, cu, tag, callback);
14406
14407 base = cu->base_address;
14408
14409 per_objfile->per_bfd->ranges.read (objfile);
14410 if (offset >= per_objfile->per_bfd->ranges.size)
14411 {
14412 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14413 offset);
14414 return 0;
14415 }
14416 buffer = per_objfile->per_bfd->ranges.buffer + offset;
14417
14418 baseaddr = objfile->text_section_offset ();
14419
14420 while (1)
14421 {
14422 CORE_ADDR range_beginning, range_end;
14423
14424 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
14425 buffer += addr_size;
14426 range_end = cu->header.read_address (obfd, buffer, &dummy);
14427 buffer += addr_size;
14428 offset += 2 * addr_size;
14429
14430 /* An end of list marker is a pair of zero addresses. */
14431 if (range_beginning == 0 && range_end == 0)
14432 /* Found the end of list entry. */
14433 break;
14434
14435 /* Each base address selection entry is a pair of 2 values.
14436 The first is the largest possible address, the second is
14437 the base address. Check for a base address here. */
14438 if ((range_beginning & mask) == mask)
14439 {
14440 /* If we found the largest possible address, then we already
14441 have the base address in range_end. */
14442 base = range_end;
14443 continue;
14444 }
14445
14446 if (!base.has_value ())
14447 {
14448 /* We have no valid base address for the ranges
14449 data. */
14450 complaint (_("Invalid .debug_ranges data (no base address)"));
14451 return 0;
14452 }
14453
14454 if (range_beginning > range_end)
14455 {
14456 /* Inverted range entries are invalid. */
14457 complaint (_("Invalid .debug_ranges data (inverted range)"));
14458 return 0;
14459 }
14460
14461 /* Empty range entries have no effect. */
14462 if (range_beginning == range_end)
14463 continue;
14464
14465 range_beginning += *base;
14466 range_end += *base;
14467
14468 /* A not-uncommon case of bad debug info.
14469 Don't pollute the addrmap with bad data. */
14470 if (range_beginning + baseaddr == 0
14471 && !per_objfile->per_bfd->has_section_at_zero)
14472 {
14473 complaint (_(".debug_ranges entry has start address of zero"
14474 " [in module %s]"), objfile_name (objfile));
14475 continue;
14476 }
14477
14478 callback (range_beginning, range_end);
14479 }
14480
14481 return 1;
14482 }
14483
14484 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14485 Return 1 if the attributes are present and valid, otherwise, return 0.
14486 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14487
14488 static int
14489 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14490 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14491 dwarf2_psymtab *ranges_pst, dwarf_tag tag)
14492 {
14493 struct objfile *objfile = cu->per_objfile->objfile;
14494 struct gdbarch *gdbarch = objfile->arch ();
14495 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14496 int low_set = 0;
14497 CORE_ADDR low = 0;
14498 CORE_ADDR high = 0;
14499 int retval;
14500
14501 retval = dwarf2_ranges_process (offset, cu, tag,
14502 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14503 {
14504 if (ranges_pst != NULL)
14505 {
14506 CORE_ADDR lowpc;
14507 CORE_ADDR highpc;
14508
14509 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14510 range_beginning + baseaddr)
14511 - baseaddr);
14512 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14513 range_end + baseaddr)
14514 - baseaddr);
14515 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14516 lowpc, highpc - 1, ranges_pst);
14517 }
14518
14519 /* FIXME: This is recording everything as a low-high
14520 segment of consecutive addresses. We should have a
14521 data structure for discontiguous block ranges
14522 instead. */
14523 if (! low_set)
14524 {
14525 low = range_beginning;
14526 high = range_end;
14527 low_set = 1;
14528 }
14529 else
14530 {
14531 if (range_beginning < low)
14532 low = range_beginning;
14533 if (range_end > high)
14534 high = range_end;
14535 }
14536 });
14537 if (!retval)
14538 return 0;
14539
14540 if (! low_set)
14541 /* If the first entry is an end-of-list marker, the range
14542 describes an empty scope, i.e. no instructions. */
14543 return 0;
14544
14545 if (low_return)
14546 *low_return = low;
14547 if (high_return)
14548 *high_return = high;
14549 return 1;
14550 }
14551
14552 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14553 definition for the return value. *LOWPC and *HIGHPC are set iff
14554 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14555
14556 static enum pc_bounds_kind
14557 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14558 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14559 dwarf2_psymtab *pst)
14560 {
14561 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14562 struct attribute *attr;
14563 struct attribute *attr_high;
14564 CORE_ADDR low = 0;
14565 CORE_ADDR high = 0;
14566 enum pc_bounds_kind ret;
14567
14568 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14569 if (attr_high)
14570 {
14571 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14572 if (attr != nullptr)
14573 {
14574 low = attr->as_address ();
14575 high = attr_high->as_address ();
14576 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14577 high += low;
14578 }
14579 else
14580 /* Found high w/o low attribute. */
14581 return PC_BOUNDS_INVALID;
14582
14583 /* Found consecutive range of addresses. */
14584 ret = PC_BOUNDS_HIGH_LOW;
14585 }
14586 else
14587 {
14588 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14589 if (attr != NULL)
14590 {
14591 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14592 We take advantage of the fact that DW_AT_ranges does not appear
14593 in DW_TAG_compile_unit of DWO files.
14594
14595 Attributes of the form DW_FORM_rnglistx have already had their
14596 value changed by read_rnglist_index and already include
14597 DW_AT_rnglists_base, so don't need to add the ranges base,
14598 either. */
14599 int need_ranges_base = (die->tag != DW_TAG_compile_unit
14600 && attr->form != DW_FORM_rnglistx);
14601 unsigned int ranges_offset = (DW_UNSND (attr)
14602 + (need_ranges_base
14603 ? cu->ranges_base
14604 : 0));
14605
14606 /* Value of the DW_AT_ranges attribute is the offset in the
14607 .debug_ranges section. */
14608 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst,
14609 die->tag))
14610 return PC_BOUNDS_INVALID;
14611 /* Found discontinuous range of addresses. */
14612 ret = PC_BOUNDS_RANGES;
14613 }
14614 else
14615 return PC_BOUNDS_NOT_PRESENT;
14616 }
14617
14618 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14619 if (high <= low)
14620 return PC_BOUNDS_INVALID;
14621
14622 /* When using the GNU linker, .gnu.linkonce. sections are used to
14623 eliminate duplicate copies of functions and vtables and such.
14624 The linker will arbitrarily choose one and discard the others.
14625 The AT_*_pc values for such functions refer to local labels in
14626 these sections. If the section from that file was discarded, the
14627 labels are not in the output, so the relocs get a value of 0.
14628 If this is a discarded function, mark the pc bounds as invalid,
14629 so that GDB will ignore it. */
14630 if (low == 0 && !per_objfile->per_bfd->has_section_at_zero)
14631 return PC_BOUNDS_INVALID;
14632
14633 *lowpc = low;
14634 if (highpc)
14635 *highpc = high;
14636 return ret;
14637 }
14638
14639 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14640 its low and high PC addresses. Do nothing if these addresses could not
14641 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14642 and HIGHPC to the high address if greater than HIGHPC. */
14643
14644 static void
14645 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14646 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14647 struct dwarf2_cu *cu)
14648 {
14649 CORE_ADDR low, high;
14650 struct die_info *child = die->child;
14651
14652 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14653 {
14654 *lowpc = std::min (*lowpc, low);
14655 *highpc = std::max (*highpc, high);
14656 }
14657
14658 /* If the language does not allow nested subprograms (either inside
14659 subprograms or lexical blocks), we're done. */
14660 if (cu->language != language_ada)
14661 return;
14662
14663 /* Check all the children of the given DIE. If it contains nested
14664 subprograms, then check their pc bounds. Likewise, we need to
14665 check lexical blocks as well, as they may also contain subprogram
14666 definitions. */
14667 while (child && child->tag)
14668 {
14669 if (child->tag == DW_TAG_subprogram
14670 || child->tag == DW_TAG_lexical_block)
14671 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14672 child = child->sibling;
14673 }
14674 }
14675
14676 /* Get the low and high pc's represented by the scope DIE, and store
14677 them in *LOWPC and *HIGHPC. If the correct values can't be
14678 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14679
14680 static void
14681 get_scope_pc_bounds (struct die_info *die,
14682 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14683 struct dwarf2_cu *cu)
14684 {
14685 CORE_ADDR best_low = (CORE_ADDR) -1;
14686 CORE_ADDR best_high = (CORE_ADDR) 0;
14687 CORE_ADDR current_low, current_high;
14688
14689 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14690 >= PC_BOUNDS_RANGES)
14691 {
14692 best_low = current_low;
14693 best_high = current_high;
14694 }
14695 else
14696 {
14697 struct die_info *child = die->child;
14698
14699 while (child && child->tag)
14700 {
14701 switch (child->tag) {
14702 case DW_TAG_subprogram:
14703 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14704 break;
14705 case DW_TAG_namespace:
14706 case DW_TAG_module:
14707 /* FIXME: carlton/2004-01-16: Should we do this for
14708 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14709 that current GCC's always emit the DIEs corresponding
14710 to definitions of methods of classes as children of a
14711 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14712 the DIEs giving the declarations, which could be
14713 anywhere). But I don't see any reason why the
14714 standards says that they have to be there. */
14715 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14716
14717 if (current_low != ((CORE_ADDR) -1))
14718 {
14719 best_low = std::min (best_low, current_low);
14720 best_high = std::max (best_high, current_high);
14721 }
14722 break;
14723 default:
14724 /* Ignore. */
14725 break;
14726 }
14727
14728 child = child->sibling;
14729 }
14730 }
14731
14732 *lowpc = best_low;
14733 *highpc = best_high;
14734 }
14735
14736 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14737 in DIE. */
14738
14739 static void
14740 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14741 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14742 {
14743 struct objfile *objfile = cu->per_objfile->objfile;
14744 struct gdbarch *gdbarch = objfile->arch ();
14745 struct attribute *attr;
14746 struct attribute *attr_high;
14747
14748 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14749 if (attr_high)
14750 {
14751 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14752 if (attr != nullptr)
14753 {
14754 CORE_ADDR low = attr->as_address ();
14755 CORE_ADDR high = attr_high->as_address ();
14756
14757 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14758 high += low;
14759
14760 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14761 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14762 cu->get_builder ()->record_block_range (block, low, high - 1);
14763 }
14764 }
14765
14766 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14767 if (attr != nullptr)
14768 {
14769 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14770 We take advantage of the fact that DW_AT_ranges does not appear
14771 in DW_TAG_compile_unit of DWO files.
14772
14773 Attributes of the form DW_FORM_rnglistx have already had their
14774 value changed by read_rnglist_index and already include
14775 DW_AT_rnglists_base, so don't need to add the ranges base,
14776 either. */
14777 int need_ranges_base = (die->tag != DW_TAG_compile_unit
14778 && attr->form != DW_FORM_rnglistx);
14779
14780 /* The value of the DW_AT_ranges attribute is the offset of the
14781 address range list in the .debug_ranges section. */
14782 unsigned long offset = (DW_UNSND (attr)
14783 + (need_ranges_base ? cu->ranges_base : 0));
14784
14785 std::vector<blockrange> blockvec;
14786 dwarf2_ranges_process (offset, cu, die->tag,
14787 [&] (CORE_ADDR start, CORE_ADDR end)
14788 {
14789 start += baseaddr;
14790 end += baseaddr;
14791 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14792 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14793 cu->get_builder ()->record_block_range (block, start, end - 1);
14794 blockvec.emplace_back (start, end);
14795 });
14796
14797 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14798 }
14799 }
14800
14801 /* Check whether the producer field indicates either of GCC < 4.6, or the
14802 Intel C/C++ compiler, and cache the result in CU. */
14803
14804 static void
14805 check_producer (struct dwarf2_cu *cu)
14806 {
14807 int major, minor;
14808
14809 if (cu->producer == NULL)
14810 {
14811 /* For unknown compilers expect their behavior is DWARF version
14812 compliant.
14813
14814 GCC started to support .debug_types sections by -gdwarf-4 since
14815 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14816 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14817 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14818 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14819 }
14820 else if (producer_is_gcc (cu->producer, &major, &minor))
14821 {
14822 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14823 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14824 }
14825 else if (producer_is_icc (cu->producer, &major, &minor))
14826 {
14827 cu->producer_is_icc = true;
14828 cu->producer_is_icc_lt_14 = major < 14;
14829 }
14830 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14831 cu->producer_is_codewarrior = true;
14832 else
14833 {
14834 /* For other non-GCC compilers, expect their behavior is DWARF version
14835 compliant. */
14836 }
14837
14838 cu->checked_producer = true;
14839 }
14840
14841 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14842 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14843 during 4.6.0 experimental. */
14844
14845 static bool
14846 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14847 {
14848 if (!cu->checked_producer)
14849 check_producer (cu);
14850
14851 return cu->producer_is_gxx_lt_4_6;
14852 }
14853
14854
14855 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14856 with incorrect is_stmt attributes. */
14857
14858 static bool
14859 producer_is_codewarrior (struct dwarf2_cu *cu)
14860 {
14861 if (!cu->checked_producer)
14862 check_producer (cu);
14863
14864 return cu->producer_is_codewarrior;
14865 }
14866
14867 /* Return the accessibility of DIE, as given by DW_AT_accessibility.
14868 If that attribute is not available, return the appropriate
14869 default. */
14870
14871 static enum dwarf_access_attribute
14872 dwarf2_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14873 {
14874 attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14875 if (attr != nullptr)
14876 {
14877 LONGEST value = attr->constant_value (-1);
14878 if (value == DW_ACCESS_public
14879 || value == DW_ACCESS_protected
14880 || value == DW_ACCESS_private)
14881 return (dwarf_access_attribute) value;
14882 complaint (_("Unhandled DW_AT_accessibility value (%s)"),
14883 plongest (value));
14884 }
14885
14886 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14887 {
14888 /* The default DWARF 2 accessibility for members is public, the default
14889 accessibility for inheritance is private. */
14890
14891 if (die->tag != DW_TAG_inheritance)
14892 return DW_ACCESS_public;
14893 else
14894 return DW_ACCESS_private;
14895 }
14896 else
14897 {
14898 /* DWARF 3+ defines the default accessibility a different way. The same
14899 rules apply now for DW_TAG_inheritance as for the members and it only
14900 depends on the container kind. */
14901
14902 if (die->parent->tag == DW_TAG_class_type)
14903 return DW_ACCESS_private;
14904 else
14905 return DW_ACCESS_public;
14906 }
14907 }
14908
14909 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14910 offset. If the attribute was not found return 0, otherwise return
14911 1. If it was found but could not properly be handled, set *OFFSET
14912 to 0. */
14913
14914 static int
14915 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14916 LONGEST *offset)
14917 {
14918 struct attribute *attr;
14919
14920 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14921 if (attr != NULL)
14922 {
14923 *offset = 0;
14924
14925 /* Note that we do not check for a section offset first here.
14926 This is because DW_AT_data_member_location is new in DWARF 4,
14927 so if we see it, we can assume that a constant form is really
14928 a constant and not a section offset. */
14929 if (attr->form_is_constant ())
14930 *offset = attr->constant_value (0);
14931 else if (attr->form_is_section_offset ())
14932 dwarf2_complex_location_expr_complaint ();
14933 else if (attr->form_is_block ())
14934 *offset = decode_locdesc (attr->as_block (), cu);
14935 else
14936 dwarf2_complex_location_expr_complaint ();
14937
14938 return 1;
14939 }
14940
14941 return 0;
14942 }
14943
14944 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14945
14946 static void
14947 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14948 struct field *field)
14949 {
14950 struct attribute *attr;
14951
14952 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14953 if (attr != NULL)
14954 {
14955 if (attr->form_is_constant ())
14956 {
14957 LONGEST offset = attr->constant_value (0);
14958 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14959 }
14960 else if (attr->form_is_section_offset ())
14961 dwarf2_complex_location_expr_complaint ();
14962 else if (attr->form_is_block ())
14963 {
14964 bool handled;
14965 CORE_ADDR offset = decode_locdesc (attr->as_block (), cu, &handled);
14966 if (handled)
14967 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14968 else
14969 {
14970 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14971 struct objfile *objfile = per_objfile->objfile;
14972 struct dwarf2_locexpr_baton *dlbaton
14973 = XOBNEW (&objfile->objfile_obstack,
14974 struct dwarf2_locexpr_baton);
14975 dlbaton->data = attr->as_block ()->data;
14976 dlbaton->size = attr->as_block ()->size;
14977 /* When using this baton, we want to compute the address
14978 of the field, not the value. This is why
14979 is_reference is set to false here. */
14980 dlbaton->is_reference = false;
14981 dlbaton->per_objfile = per_objfile;
14982 dlbaton->per_cu = cu->per_cu;
14983
14984 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14985 }
14986 }
14987 else
14988 dwarf2_complex_location_expr_complaint ();
14989 }
14990 }
14991
14992 /* Add an aggregate field to the field list. */
14993
14994 static void
14995 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14996 struct dwarf2_cu *cu)
14997 {
14998 struct objfile *objfile = cu->per_objfile->objfile;
14999 struct gdbarch *gdbarch = objfile->arch ();
15000 struct nextfield *new_field;
15001 struct attribute *attr;
15002 struct field *fp;
15003 const char *fieldname = "";
15004
15005 if (die->tag == DW_TAG_inheritance)
15006 {
15007 fip->baseclasses.emplace_back ();
15008 new_field = &fip->baseclasses.back ();
15009 }
15010 else
15011 {
15012 fip->fields.emplace_back ();
15013 new_field = &fip->fields.back ();
15014 }
15015
15016 new_field->offset = die->sect_off;
15017
15018 new_field->accessibility = dwarf2_access_attribute (die, cu);
15019 if (new_field->accessibility != DW_ACCESS_public)
15020 fip->non_public_fields = true;
15021
15022 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15023 if (attr != nullptr)
15024 new_field->virtuality = DW_UNSND (attr);
15025 else
15026 new_field->virtuality = DW_VIRTUALITY_none;
15027
15028 fp = &new_field->field;
15029
15030 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15031 {
15032 /* Data member other than a C++ static data member. */
15033
15034 /* Get type of field. */
15035 fp->set_type (die_type (die, cu));
15036
15037 SET_FIELD_BITPOS (*fp, 0);
15038
15039 /* Get bit size of field (zero if none). */
15040 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15041 if (attr != nullptr)
15042 {
15043 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15044 }
15045 else
15046 {
15047 FIELD_BITSIZE (*fp) = 0;
15048 }
15049
15050 /* Get bit offset of field. */
15051 handle_data_member_location (die, cu, fp);
15052 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15053 if (attr != nullptr)
15054 {
15055 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
15056 {
15057 /* For big endian bits, the DW_AT_bit_offset gives the
15058 additional bit offset from the MSB of the containing
15059 anonymous object to the MSB of the field. We don't
15060 have to do anything special since we don't need to
15061 know the size of the anonymous object. */
15062 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15063 }
15064 else
15065 {
15066 /* For little endian bits, compute the bit offset to the
15067 MSB of the anonymous object, subtract off the number of
15068 bits from the MSB of the field to the MSB of the
15069 object, and then subtract off the number of bits of
15070 the field itself. The result is the bit offset of
15071 the LSB of the field. */
15072 int anonymous_size;
15073 int bit_offset = DW_UNSND (attr);
15074
15075 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15076 if (attr != nullptr)
15077 {
15078 /* The size of the anonymous object containing
15079 the bit field is explicit, so use the
15080 indicated size (in bytes). */
15081 anonymous_size = DW_UNSND (attr);
15082 }
15083 else
15084 {
15085 /* The size of the anonymous object containing
15086 the bit field must be inferred from the type
15087 attribute of the data member containing the
15088 bit field. */
15089 anonymous_size = TYPE_LENGTH (fp->type ());
15090 }
15091 SET_FIELD_BITPOS (*fp,
15092 (FIELD_BITPOS (*fp)
15093 + anonymous_size * bits_per_byte
15094 - bit_offset - FIELD_BITSIZE (*fp)));
15095 }
15096 }
15097 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15098 if (attr != NULL)
15099 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15100 + attr->constant_value (0)));
15101
15102 /* Get name of field. */
15103 fieldname = dwarf2_name (die, cu);
15104 if (fieldname == NULL)
15105 fieldname = "";
15106
15107 /* The name is already allocated along with this objfile, so we don't
15108 need to duplicate it for the type. */
15109 fp->name = fieldname;
15110
15111 /* Change accessibility for artificial fields (e.g. virtual table
15112 pointer or virtual base class pointer) to private. */
15113 if (dwarf2_attr (die, DW_AT_artificial, cu))
15114 {
15115 FIELD_ARTIFICIAL (*fp) = 1;
15116 new_field->accessibility = DW_ACCESS_private;
15117 fip->non_public_fields = true;
15118 }
15119 }
15120 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15121 {
15122 /* C++ static member. */
15123
15124 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15125 is a declaration, but all versions of G++ as of this writing
15126 (so through at least 3.2.1) incorrectly generate
15127 DW_TAG_variable tags. */
15128
15129 const char *physname;
15130
15131 /* Get name of field. */
15132 fieldname = dwarf2_name (die, cu);
15133 if (fieldname == NULL)
15134 return;
15135
15136 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15137 if (attr
15138 /* Only create a symbol if this is an external value.
15139 new_symbol checks this and puts the value in the global symbol
15140 table, which we want. If it is not external, new_symbol
15141 will try to put the value in cu->list_in_scope which is wrong. */
15142 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15143 {
15144 /* A static const member, not much different than an enum as far as
15145 we're concerned, except that we can support more types. */
15146 new_symbol (die, NULL, cu);
15147 }
15148
15149 /* Get physical name. */
15150 physname = dwarf2_physname (fieldname, die, cu);
15151
15152 /* The name is already allocated along with this objfile, so we don't
15153 need to duplicate it for the type. */
15154 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15155 fp->set_type (die_type (die, cu));
15156 FIELD_NAME (*fp) = fieldname;
15157 }
15158 else if (die->tag == DW_TAG_inheritance)
15159 {
15160 /* C++ base class field. */
15161 handle_data_member_location (die, cu, fp);
15162 FIELD_BITSIZE (*fp) = 0;
15163 fp->set_type (die_type (die, cu));
15164 FIELD_NAME (*fp) = fp->type ()->name ();
15165 }
15166 else
15167 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15168 }
15169
15170 /* Can the type given by DIE define another type? */
15171
15172 static bool
15173 type_can_define_types (const struct die_info *die)
15174 {
15175 switch (die->tag)
15176 {
15177 case DW_TAG_typedef:
15178 case DW_TAG_class_type:
15179 case DW_TAG_structure_type:
15180 case DW_TAG_union_type:
15181 case DW_TAG_enumeration_type:
15182 return true;
15183
15184 default:
15185 return false;
15186 }
15187 }
15188
15189 /* Add a type definition defined in the scope of the FIP's class. */
15190
15191 static void
15192 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15193 struct dwarf2_cu *cu)
15194 {
15195 struct decl_field fp;
15196 memset (&fp, 0, sizeof (fp));
15197
15198 gdb_assert (type_can_define_types (die));
15199
15200 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15201 fp.name = dwarf2_name (die, cu);
15202 fp.type = read_type_die (die, cu);
15203
15204 /* Save accessibility. */
15205 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15206 switch (accessibility)
15207 {
15208 case DW_ACCESS_public:
15209 /* The assumed value if neither private nor protected. */
15210 break;
15211 case DW_ACCESS_private:
15212 fp.is_private = 1;
15213 break;
15214 case DW_ACCESS_protected:
15215 fp.is_protected = 1;
15216 break;
15217 }
15218
15219 if (die->tag == DW_TAG_typedef)
15220 fip->typedef_field_list.push_back (fp);
15221 else
15222 fip->nested_types_list.push_back (fp);
15223 }
15224
15225 /* A convenience typedef that's used when finding the discriminant
15226 field for a variant part. */
15227 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
15228 offset_map_type;
15229
15230 /* Compute the discriminant range for a given variant. OBSTACK is
15231 where the results will be stored. VARIANT is the variant to
15232 process. IS_UNSIGNED indicates whether the discriminant is signed
15233 or unsigned. */
15234
15235 static const gdb::array_view<discriminant_range>
15236 convert_variant_range (struct obstack *obstack, const variant_field &variant,
15237 bool is_unsigned)
15238 {
15239 std::vector<discriminant_range> ranges;
15240
15241 if (variant.default_branch)
15242 return {};
15243
15244 if (variant.discr_list_data == nullptr)
15245 {
15246 discriminant_range r
15247 = {variant.discriminant_value, variant.discriminant_value};
15248 ranges.push_back (r);
15249 }
15250 else
15251 {
15252 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
15253 variant.discr_list_data->size);
15254 while (!data.empty ())
15255 {
15256 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
15257 {
15258 complaint (_("invalid discriminant marker: %d"), data[0]);
15259 break;
15260 }
15261 bool is_range = data[0] == DW_DSC_range;
15262 data = data.slice (1);
15263
15264 ULONGEST low, high;
15265 unsigned int bytes_read;
15266
15267 if (data.empty ())
15268 {
15269 complaint (_("DW_AT_discr_list missing low value"));
15270 break;
15271 }
15272 if (is_unsigned)
15273 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
15274 else
15275 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
15276 &bytes_read);
15277 data = data.slice (bytes_read);
15278
15279 if (is_range)
15280 {
15281 if (data.empty ())
15282 {
15283 complaint (_("DW_AT_discr_list missing high value"));
15284 break;
15285 }
15286 if (is_unsigned)
15287 high = read_unsigned_leb128 (nullptr, data.data (),
15288 &bytes_read);
15289 else
15290 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
15291 &bytes_read);
15292 data = data.slice (bytes_read);
15293 }
15294 else
15295 high = low;
15296
15297 ranges.push_back ({ low, high });
15298 }
15299 }
15300
15301 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
15302 ranges.size ());
15303 std::copy (ranges.begin (), ranges.end (), result);
15304 return gdb::array_view<discriminant_range> (result, ranges.size ());
15305 }
15306
15307 static const gdb::array_view<variant_part> create_variant_parts
15308 (struct obstack *obstack,
15309 const offset_map_type &offset_map,
15310 struct field_info *fi,
15311 const std::vector<variant_part_builder> &variant_parts);
15312
15313 /* Fill in a "struct variant" for a given variant field. RESULT is
15314 the variant to fill in. OBSTACK is where any needed allocations
15315 will be done. OFFSET_MAP holds the mapping from section offsets to
15316 fields for the type. FI describes the fields of the type we're
15317 processing. FIELD is the variant field we're converting. */
15318
15319 static void
15320 create_one_variant (variant &result, struct obstack *obstack,
15321 const offset_map_type &offset_map,
15322 struct field_info *fi, const variant_field &field)
15323 {
15324 result.discriminants = convert_variant_range (obstack, field, false);
15325 result.first_field = field.first_field + fi->baseclasses.size ();
15326 result.last_field = field.last_field + fi->baseclasses.size ();
15327 result.parts = create_variant_parts (obstack, offset_map, fi,
15328 field.variant_parts);
15329 }
15330
15331 /* Fill in a "struct variant_part" for a given variant part. RESULT
15332 is the variant part to fill in. OBSTACK is where any needed
15333 allocations will be done. OFFSET_MAP holds the mapping from
15334 section offsets to fields for the type. FI describes the fields of
15335 the type we're processing. BUILDER is the variant part to be
15336 converted. */
15337
15338 static void
15339 create_one_variant_part (variant_part &result,
15340 struct obstack *obstack,
15341 const offset_map_type &offset_map,
15342 struct field_info *fi,
15343 const variant_part_builder &builder)
15344 {
15345 auto iter = offset_map.find (builder.discriminant_offset);
15346 if (iter == offset_map.end ())
15347 {
15348 result.discriminant_index = -1;
15349 /* Doesn't matter. */
15350 result.is_unsigned = false;
15351 }
15352 else
15353 {
15354 result.discriminant_index = iter->second;
15355 result.is_unsigned
15356 = fi->fields[result.discriminant_index].field.type ()->is_unsigned ();
15357 }
15358
15359 size_t n = builder.variants.size ();
15360 variant *output = new (obstack) variant[n];
15361 for (size_t i = 0; i < n; ++i)
15362 create_one_variant (output[i], obstack, offset_map, fi,
15363 builder.variants[i]);
15364
15365 result.variants = gdb::array_view<variant> (output, n);
15366 }
15367
15368 /* Create a vector of variant parts that can be attached to a type.
15369 OBSTACK is where any needed allocations will be done. OFFSET_MAP
15370 holds the mapping from section offsets to fields for the type. FI
15371 describes the fields of the type we're processing. VARIANT_PARTS
15372 is the vector to convert. */
15373
15374 static const gdb::array_view<variant_part>
15375 create_variant_parts (struct obstack *obstack,
15376 const offset_map_type &offset_map,
15377 struct field_info *fi,
15378 const std::vector<variant_part_builder> &variant_parts)
15379 {
15380 if (variant_parts.empty ())
15381 return {};
15382
15383 size_t n = variant_parts.size ();
15384 variant_part *result = new (obstack) variant_part[n];
15385 for (size_t i = 0; i < n; ++i)
15386 create_one_variant_part (result[i], obstack, offset_map, fi,
15387 variant_parts[i]);
15388
15389 return gdb::array_view<variant_part> (result, n);
15390 }
15391
15392 /* Compute the variant part vector for FIP, attaching it to TYPE when
15393 done. */
15394
15395 static void
15396 add_variant_property (struct field_info *fip, struct type *type,
15397 struct dwarf2_cu *cu)
15398 {
15399 /* Map section offsets of fields to their field index. Note the
15400 field index here does not take the number of baseclasses into
15401 account. */
15402 offset_map_type offset_map;
15403 for (int i = 0; i < fip->fields.size (); ++i)
15404 offset_map[fip->fields[i].offset] = i;
15405
15406 struct objfile *objfile = cu->per_objfile->objfile;
15407 gdb::array_view<variant_part> parts
15408 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
15409 fip->variant_parts);
15410
15411 struct dynamic_prop prop;
15412 prop.set_variant_parts ((gdb::array_view<variant_part> *)
15413 obstack_copy (&objfile->objfile_obstack, &parts,
15414 sizeof (parts)));
15415
15416 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
15417 }
15418
15419 /* Create the vector of fields, and attach it to the type. */
15420
15421 static void
15422 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15423 struct dwarf2_cu *cu)
15424 {
15425 int nfields = fip->nfields ();
15426
15427 /* Record the field count, allocate space for the array of fields,
15428 and create blank accessibility bitfields if necessary. */
15429 type->set_num_fields (nfields);
15430 type->set_fields
15431 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
15432
15433 if (fip->non_public_fields && cu->language != language_ada)
15434 {
15435 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15436
15437 TYPE_FIELD_PRIVATE_BITS (type) =
15438 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15439 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15440
15441 TYPE_FIELD_PROTECTED_BITS (type) =
15442 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15443 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15444
15445 TYPE_FIELD_IGNORE_BITS (type) =
15446 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15447 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15448 }
15449
15450 /* If the type has baseclasses, allocate and clear a bit vector for
15451 TYPE_FIELD_VIRTUAL_BITS. */
15452 if (!fip->baseclasses.empty () && cu->language != language_ada)
15453 {
15454 int num_bytes = B_BYTES (fip->baseclasses.size ());
15455 unsigned char *pointer;
15456
15457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15458 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15459 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15460 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15461 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15462 }
15463
15464 if (!fip->variant_parts.empty ())
15465 add_variant_property (fip, type, cu);
15466
15467 /* Copy the saved-up fields into the field vector. */
15468 for (int i = 0; i < nfields; ++i)
15469 {
15470 struct nextfield &field
15471 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15472 : fip->fields[i - fip->baseclasses.size ()]);
15473
15474 type->field (i) = field.field;
15475 switch (field.accessibility)
15476 {
15477 case DW_ACCESS_private:
15478 if (cu->language != language_ada)
15479 SET_TYPE_FIELD_PRIVATE (type, i);
15480 break;
15481
15482 case DW_ACCESS_protected:
15483 if (cu->language != language_ada)
15484 SET_TYPE_FIELD_PROTECTED (type, i);
15485 break;
15486
15487 case DW_ACCESS_public:
15488 break;
15489
15490 default:
15491 /* Unknown accessibility. Complain and treat it as public. */
15492 {
15493 complaint (_("unsupported accessibility %d"),
15494 field.accessibility);
15495 }
15496 break;
15497 }
15498 if (i < fip->baseclasses.size ())
15499 {
15500 switch (field.virtuality)
15501 {
15502 case DW_VIRTUALITY_virtual:
15503 case DW_VIRTUALITY_pure_virtual:
15504 if (cu->language == language_ada)
15505 error (_("unexpected virtuality in component of Ada type"));
15506 SET_TYPE_FIELD_VIRTUAL (type, i);
15507 break;
15508 }
15509 }
15510 }
15511 }
15512
15513 /* Return true if this member function is a constructor, false
15514 otherwise. */
15515
15516 static int
15517 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15518 {
15519 const char *fieldname;
15520 const char *type_name;
15521 int len;
15522
15523 if (die->parent == NULL)
15524 return 0;
15525
15526 if (die->parent->tag != DW_TAG_structure_type
15527 && die->parent->tag != DW_TAG_union_type
15528 && die->parent->tag != DW_TAG_class_type)
15529 return 0;
15530
15531 fieldname = dwarf2_name (die, cu);
15532 type_name = dwarf2_name (die->parent, cu);
15533 if (fieldname == NULL || type_name == NULL)
15534 return 0;
15535
15536 len = strlen (fieldname);
15537 return (strncmp (fieldname, type_name, len) == 0
15538 && (type_name[len] == '\0' || type_name[len] == '<'));
15539 }
15540
15541 /* Check if the given VALUE is a recognized enum
15542 dwarf_defaulted_attribute constant according to DWARF5 spec,
15543 Table 7.24. */
15544
15545 static bool
15546 is_valid_DW_AT_defaulted (ULONGEST value)
15547 {
15548 switch (value)
15549 {
15550 case DW_DEFAULTED_no:
15551 case DW_DEFAULTED_in_class:
15552 case DW_DEFAULTED_out_of_class:
15553 return true;
15554 }
15555
15556 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
15557 return false;
15558 }
15559
15560 /* Add a member function to the proper fieldlist. */
15561
15562 static void
15563 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15564 struct type *type, struct dwarf2_cu *cu)
15565 {
15566 struct objfile *objfile = cu->per_objfile->objfile;
15567 struct attribute *attr;
15568 int i;
15569 struct fnfieldlist *flp = nullptr;
15570 struct fn_field *fnp;
15571 const char *fieldname;
15572 struct type *this_type;
15573
15574 if (cu->language == language_ada)
15575 error (_("unexpected member function in Ada type"));
15576
15577 /* Get name of member function. */
15578 fieldname = dwarf2_name (die, cu);
15579 if (fieldname == NULL)
15580 return;
15581
15582 /* Look up member function name in fieldlist. */
15583 for (i = 0; i < fip->fnfieldlists.size (); i++)
15584 {
15585 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15586 {
15587 flp = &fip->fnfieldlists[i];
15588 break;
15589 }
15590 }
15591
15592 /* Create a new fnfieldlist if necessary. */
15593 if (flp == nullptr)
15594 {
15595 fip->fnfieldlists.emplace_back ();
15596 flp = &fip->fnfieldlists.back ();
15597 flp->name = fieldname;
15598 i = fip->fnfieldlists.size () - 1;
15599 }
15600
15601 /* Create a new member function field and add it to the vector of
15602 fnfieldlists. */
15603 flp->fnfields.emplace_back ();
15604 fnp = &flp->fnfields.back ();
15605
15606 /* Delay processing of the physname until later. */
15607 if (cu->language == language_cplus)
15608 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15609 die, cu);
15610 else
15611 {
15612 const char *physname = dwarf2_physname (fieldname, die, cu);
15613 fnp->physname = physname ? physname : "";
15614 }
15615
15616 fnp->type = alloc_type (objfile);
15617 this_type = read_type_die (die, cu);
15618 if (this_type && this_type->code () == TYPE_CODE_FUNC)
15619 {
15620 int nparams = this_type->num_fields ();
15621
15622 /* TYPE is the domain of this method, and THIS_TYPE is the type
15623 of the method itself (TYPE_CODE_METHOD). */
15624 smash_to_method_type (fnp->type, type,
15625 TYPE_TARGET_TYPE (this_type),
15626 this_type->fields (),
15627 this_type->num_fields (),
15628 this_type->has_varargs ());
15629
15630 /* Handle static member functions.
15631 Dwarf2 has no clean way to discern C++ static and non-static
15632 member functions. G++ helps GDB by marking the first
15633 parameter for non-static member functions (which is the this
15634 pointer) as artificial. We obtain this information from
15635 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15636 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15637 fnp->voffset = VOFFSET_STATIC;
15638 }
15639 else
15640 complaint (_("member function type missing for '%s'"),
15641 dwarf2_full_name (fieldname, die, cu));
15642
15643 /* Get fcontext from DW_AT_containing_type if present. */
15644 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15645 fnp->fcontext = die_containing_type (die, cu);
15646
15647 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15648 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15649
15650 /* Get accessibility. */
15651 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15652 switch (accessibility)
15653 {
15654 case DW_ACCESS_private:
15655 fnp->is_private = 1;
15656 break;
15657 case DW_ACCESS_protected:
15658 fnp->is_protected = 1;
15659 break;
15660 }
15661
15662 /* Check for artificial methods. */
15663 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15664 if (attr && DW_UNSND (attr) != 0)
15665 fnp->is_artificial = 1;
15666
15667 /* Check for defaulted methods. */
15668 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15669 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15670 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15671
15672 /* Check for deleted methods. */
15673 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15674 if (attr != nullptr && DW_UNSND (attr) != 0)
15675 fnp->is_deleted = 1;
15676
15677 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15678
15679 /* Get index in virtual function table if it is a virtual member
15680 function. For older versions of GCC, this is an offset in the
15681 appropriate virtual table, as specified by DW_AT_containing_type.
15682 For everyone else, it is an expression to be evaluated relative
15683 to the object address. */
15684
15685 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15686 if (attr != nullptr)
15687 {
15688 if (attr->form_is_block () && attr->as_block ()->size > 0)
15689 {
15690 struct dwarf_block *block = attr->as_block ();
15691
15692 if (block->data[0] == DW_OP_constu)
15693 {
15694 /* Old-style GCC. */
15695 fnp->voffset = decode_locdesc (block, cu) + 2;
15696 }
15697 else if (block->data[0] == DW_OP_deref
15698 || (block->size > 1
15699 && block->data[0] == DW_OP_deref_size
15700 && block->data[1] == cu->header.addr_size))
15701 {
15702 fnp->voffset = decode_locdesc (block, cu);
15703 if ((fnp->voffset % cu->header.addr_size) != 0)
15704 dwarf2_complex_location_expr_complaint ();
15705 else
15706 fnp->voffset /= cu->header.addr_size;
15707 fnp->voffset += 2;
15708 }
15709 else
15710 dwarf2_complex_location_expr_complaint ();
15711
15712 if (!fnp->fcontext)
15713 {
15714 /* If there is no `this' field and no DW_AT_containing_type,
15715 we cannot actually find a base class context for the
15716 vtable! */
15717 if (this_type->num_fields () == 0
15718 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15719 {
15720 complaint (_("cannot determine context for virtual member "
15721 "function \"%s\" (offset %s)"),
15722 fieldname, sect_offset_str (die->sect_off));
15723 }
15724 else
15725 {
15726 fnp->fcontext
15727 = TYPE_TARGET_TYPE (this_type->field (0).type ());
15728 }
15729 }
15730 }
15731 else if (attr->form_is_section_offset ())
15732 {
15733 dwarf2_complex_location_expr_complaint ();
15734 }
15735 else
15736 {
15737 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15738 fieldname);
15739 }
15740 }
15741 else
15742 {
15743 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15744 if (attr && DW_UNSND (attr))
15745 {
15746 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15747 complaint (_("Member function \"%s\" (offset %s) is virtual "
15748 "but the vtable offset is not specified"),
15749 fieldname, sect_offset_str (die->sect_off));
15750 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15751 TYPE_CPLUS_DYNAMIC (type) = 1;
15752 }
15753 }
15754 }
15755
15756 /* Create the vector of member function fields, and attach it to the type. */
15757
15758 static void
15759 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15760 struct dwarf2_cu *cu)
15761 {
15762 if (cu->language == language_ada)
15763 error (_("unexpected member functions in Ada type"));
15764
15765 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15766 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15767 TYPE_ALLOC (type,
15768 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15769
15770 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15771 {
15772 struct fnfieldlist &nf = fip->fnfieldlists[i];
15773 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15774
15775 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15776 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15777 fn_flp->fn_fields = (struct fn_field *)
15778 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15779
15780 for (int k = 0; k < nf.fnfields.size (); ++k)
15781 fn_flp->fn_fields[k] = nf.fnfields[k];
15782 }
15783
15784 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15785 }
15786
15787 /* Returns non-zero if NAME is the name of a vtable member in CU's
15788 language, zero otherwise. */
15789 static int
15790 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15791 {
15792 static const char vptr[] = "_vptr";
15793
15794 /* Look for the C++ form of the vtable. */
15795 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15796 return 1;
15797
15798 return 0;
15799 }
15800
15801 /* GCC outputs unnamed structures that are really pointers to member
15802 functions, with the ABI-specified layout. If TYPE describes
15803 such a structure, smash it into a member function type.
15804
15805 GCC shouldn't do this; it should just output pointer to member DIEs.
15806 This is GCC PR debug/28767. */
15807
15808 static void
15809 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15810 {
15811 struct type *pfn_type, *self_type, *new_type;
15812
15813 /* Check for a structure with no name and two children. */
15814 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15815 return;
15816
15817 /* Check for __pfn and __delta members. */
15818 if (TYPE_FIELD_NAME (type, 0) == NULL
15819 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15820 || TYPE_FIELD_NAME (type, 1) == NULL
15821 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15822 return;
15823
15824 /* Find the type of the method. */
15825 pfn_type = type->field (0).type ();
15826 if (pfn_type == NULL
15827 || pfn_type->code () != TYPE_CODE_PTR
15828 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15829 return;
15830
15831 /* Look for the "this" argument. */
15832 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15833 if (pfn_type->num_fields () == 0
15834 /* || pfn_type->field (0).type () == NULL */
15835 || pfn_type->field (0).type ()->code () != TYPE_CODE_PTR)
15836 return;
15837
15838 self_type = TYPE_TARGET_TYPE (pfn_type->field (0).type ());
15839 new_type = alloc_type (objfile);
15840 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15841 pfn_type->fields (), pfn_type->num_fields (),
15842 pfn_type->has_varargs ());
15843 smash_to_methodptr_type (type, new_type);
15844 }
15845
15846 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15847 appropriate error checking and issuing complaints if there is a
15848 problem. */
15849
15850 static ULONGEST
15851 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15852 {
15853 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15854
15855 if (attr == nullptr)
15856 return 0;
15857
15858 if (!attr->form_is_constant ())
15859 {
15860 complaint (_("DW_AT_alignment must have constant form"
15861 " - DIE at %s [in module %s]"),
15862 sect_offset_str (die->sect_off),
15863 objfile_name (cu->per_objfile->objfile));
15864 return 0;
15865 }
15866
15867 ULONGEST align;
15868 if (attr->form == DW_FORM_sdata)
15869 {
15870 LONGEST val = attr->as_signed ();
15871 if (val < 0)
15872 {
15873 complaint (_("DW_AT_alignment value must not be negative"
15874 " - DIE at %s [in module %s]"),
15875 sect_offset_str (die->sect_off),
15876 objfile_name (cu->per_objfile->objfile));
15877 return 0;
15878 }
15879 align = val;
15880 }
15881 else
15882 align = DW_UNSND (attr);
15883
15884 if (align == 0)
15885 {
15886 complaint (_("DW_AT_alignment value must not be zero"
15887 " - DIE at %s [in module %s]"),
15888 sect_offset_str (die->sect_off),
15889 objfile_name (cu->per_objfile->objfile));
15890 return 0;
15891 }
15892 if ((align & (align - 1)) != 0)
15893 {
15894 complaint (_("DW_AT_alignment value must be a power of 2"
15895 " - DIE at %s [in module %s]"),
15896 sect_offset_str (die->sect_off),
15897 objfile_name (cu->per_objfile->objfile));
15898 return 0;
15899 }
15900
15901 return align;
15902 }
15903
15904 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15905 the alignment for TYPE. */
15906
15907 static void
15908 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15909 struct type *type)
15910 {
15911 if (!set_type_align (type, get_alignment (cu, die)))
15912 complaint (_("DW_AT_alignment value too large"
15913 " - DIE at %s [in module %s]"),
15914 sect_offset_str (die->sect_off),
15915 objfile_name (cu->per_objfile->objfile));
15916 }
15917
15918 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15919 constant for a type, according to DWARF5 spec, Table 5.5. */
15920
15921 static bool
15922 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15923 {
15924 switch (value)
15925 {
15926 case DW_CC_normal:
15927 case DW_CC_pass_by_reference:
15928 case DW_CC_pass_by_value:
15929 return true;
15930
15931 default:
15932 complaint (_("unrecognized DW_AT_calling_convention value "
15933 "(%s) for a type"), pulongest (value));
15934 return false;
15935 }
15936 }
15937
15938 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15939 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15940 also according to GNU-specific values (see include/dwarf2.h). */
15941
15942 static bool
15943 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15944 {
15945 switch (value)
15946 {
15947 case DW_CC_normal:
15948 case DW_CC_program:
15949 case DW_CC_nocall:
15950 return true;
15951
15952 case DW_CC_GNU_renesas_sh:
15953 case DW_CC_GNU_borland_fastcall_i386:
15954 case DW_CC_GDB_IBM_OpenCL:
15955 return true;
15956
15957 default:
15958 complaint (_("unrecognized DW_AT_calling_convention value "
15959 "(%s) for a subroutine"), pulongest (value));
15960 return false;
15961 }
15962 }
15963
15964 /* Called when we find the DIE that starts a structure or union scope
15965 (definition) to create a type for the structure or union. Fill in
15966 the type's name and general properties; the members will not be
15967 processed until process_structure_scope. A symbol table entry for
15968 the type will also not be done until process_structure_scope (assuming
15969 the type has a name).
15970
15971 NOTE: we need to call these functions regardless of whether or not the
15972 DIE has a DW_AT_name attribute, since it might be an anonymous
15973 structure or union. This gets the type entered into our set of
15974 user defined types. */
15975
15976 static struct type *
15977 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15978 {
15979 struct objfile *objfile = cu->per_objfile->objfile;
15980 struct type *type;
15981 struct attribute *attr;
15982 const char *name;
15983
15984 /* If the definition of this type lives in .debug_types, read that type.
15985 Don't follow DW_AT_specification though, that will take us back up
15986 the chain and we want to go down. */
15987 attr = die->attr (DW_AT_signature);
15988 if (attr != nullptr)
15989 {
15990 type = get_DW_AT_signature_type (die, attr, cu);
15991
15992 /* The type's CU may not be the same as CU.
15993 Ensure TYPE is recorded with CU in die_type_hash. */
15994 return set_die_type (die, type, cu);
15995 }
15996
15997 type = alloc_type (objfile);
15998 INIT_CPLUS_SPECIFIC (type);
15999
16000 name = dwarf2_name (die, cu);
16001 if (name != NULL)
16002 {
16003 if (cu->language == language_cplus
16004 || cu->language == language_d
16005 || cu->language == language_rust)
16006 {
16007 const char *full_name = dwarf2_full_name (name, die, cu);
16008
16009 /* dwarf2_full_name might have already finished building the DIE's
16010 type. If so, there is no need to continue. */
16011 if (get_die_type (die, cu) != NULL)
16012 return get_die_type (die, cu);
16013
16014 type->set_name (full_name);
16015 }
16016 else
16017 {
16018 /* The name is already allocated along with this objfile, so
16019 we don't need to duplicate it for the type. */
16020 type->set_name (name);
16021 }
16022 }
16023
16024 if (die->tag == DW_TAG_structure_type)
16025 {
16026 type->set_code (TYPE_CODE_STRUCT);
16027 }
16028 else if (die->tag == DW_TAG_union_type)
16029 {
16030 type->set_code (TYPE_CODE_UNION);
16031 }
16032 else
16033 {
16034 type->set_code (TYPE_CODE_STRUCT);
16035 }
16036
16037 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
16038 TYPE_DECLARED_CLASS (type) = 1;
16039
16040 /* Store the calling convention in the type if it's available in
16041 the die. Otherwise the calling convention remains set to
16042 the default value DW_CC_normal. */
16043 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16044 if (attr != nullptr
16045 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
16046 {
16047 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16048 TYPE_CPLUS_CALLING_CONVENTION (type)
16049 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16050 }
16051
16052 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16053 if (attr != nullptr)
16054 {
16055 if (attr->form_is_constant ())
16056 TYPE_LENGTH (type) = DW_UNSND (attr);
16057 else
16058 {
16059 struct dynamic_prop prop;
16060 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
16061 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
16062 TYPE_LENGTH (type) = 0;
16063 }
16064 }
16065 else
16066 {
16067 TYPE_LENGTH (type) = 0;
16068 }
16069
16070 maybe_set_alignment (cu, die, type);
16071
16072 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
16073 {
16074 /* ICC<14 does not output the required DW_AT_declaration on
16075 incomplete types, but gives them a size of zero. */
16076 type->set_is_stub (true);
16077 }
16078 else
16079 type->set_stub_is_supported (true);
16080
16081 if (die_is_declaration (die, cu))
16082 type->set_is_stub (true);
16083 else if (attr == NULL && die->child == NULL
16084 && producer_is_realview (cu->producer))
16085 /* RealView does not output the required DW_AT_declaration
16086 on incomplete types. */
16087 type->set_is_stub (true);
16088
16089 /* We need to add the type field to the die immediately so we don't
16090 infinitely recurse when dealing with pointers to the structure
16091 type within the structure itself. */
16092 set_die_type (die, type, cu);
16093
16094 /* set_die_type should be already done. */
16095 set_descriptive_type (type, die, cu);
16096
16097 return type;
16098 }
16099
16100 static void handle_struct_member_die
16101 (struct die_info *child_die,
16102 struct type *type,
16103 struct field_info *fi,
16104 std::vector<struct symbol *> *template_args,
16105 struct dwarf2_cu *cu);
16106
16107 /* A helper for handle_struct_member_die that handles
16108 DW_TAG_variant_part. */
16109
16110 static void
16111 handle_variant_part (struct die_info *die, struct type *type,
16112 struct field_info *fi,
16113 std::vector<struct symbol *> *template_args,
16114 struct dwarf2_cu *cu)
16115 {
16116 variant_part_builder *new_part;
16117 if (fi->current_variant_part == nullptr)
16118 {
16119 fi->variant_parts.emplace_back ();
16120 new_part = &fi->variant_parts.back ();
16121 }
16122 else if (!fi->current_variant_part->processing_variant)
16123 {
16124 complaint (_("nested DW_TAG_variant_part seen "
16125 "- DIE at %s [in module %s]"),
16126 sect_offset_str (die->sect_off),
16127 objfile_name (cu->per_objfile->objfile));
16128 return;
16129 }
16130 else
16131 {
16132 variant_field &current = fi->current_variant_part->variants.back ();
16133 current.variant_parts.emplace_back ();
16134 new_part = &current.variant_parts.back ();
16135 }
16136
16137 /* When we recurse, we want callees to add to this new variant
16138 part. */
16139 scoped_restore save_current_variant_part
16140 = make_scoped_restore (&fi->current_variant_part, new_part);
16141
16142 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16143 if (discr == NULL)
16144 {
16145 /* It's a univariant form, an extension we support. */
16146 }
16147 else if (discr->form_is_ref ())
16148 {
16149 struct dwarf2_cu *target_cu = cu;
16150 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16151
16152 new_part->discriminant_offset = target_die->sect_off;
16153 }
16154 else
16155 {
16156 complaint (_("DW_AT_discr does not have DIE reference form"
16157 " - DIE at %s [in module %s]"),
16158 sect_offset_str (die->sect_off),
16159 objfile_name (cu->per_objfile->objfile));
16160 }
16161
16162 for (die_info *child_die = die->child;
16163 child_die != NULL;
16164 child_die = child_die->sibling)
16165 handle_struct_member_die (child_die, type, fi, template_args, cu);
16166 }
16167
16168 /* A helper for handle_struct_member_die that handles
16169 DW_TAG_variant. */
16170
16171 static void
16172 handle_variant (struct die_info *die, struct type *type,
16173 struct field_info *fi,
16174 std::vector<struct symbol *> *template_args,
16175 struct dwarf2_cu *cu)
16176 {
16177 if (fi->current_variant_part == nullptr)
16178 {
16179 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
16180 "- DIE at %s [in module %s]"),
16181 sect_offset_str (die->sect_off),
16182 objfile_name (cu->per_objfile->objfile));
16183 return;
16184 }
16185 if (fi->current_variant_part->processing_variant)
16186 {
16187 complaint (_("nested DW_TAG_variant seen "
16188 "- DIE at %s [in module %s]"),
16189 sect_offset_str (die->sect_off),
16190 objfile_name (cu->per_objfile->objfile));
16191 return;
16192 }
16193
16194 scoped_restore save_processing_variant
16195 = make_scoped_restore (&fi->current_variant_part->processing_variant,
16196 true);
16197
16198 fi->current_variant_part->variants.emplace_back ();
16199 variant_field &variant = fi->current_variant_part->variants.back ();
16200 variant.first_field = fi->fields.size ();
16201
16202 /* In a variant we want to get the discriminant and also add a
16203 field for our sole member child. */
16204 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
16205 if (discr == nullptr)
16206 {
16207 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
16208 if (discr == nullptr || discr->as_block ()->size == 0)
16209 variant.default_branch = true;
16210 else
16211 variant.discr_list_data = discr->as_block ();
16212 }
16213 else
16214 variant.discriminant_value = DW_UNSND (discr);
16215
16216 for (die_info *variant_child = die->child;
16217 variant_child != NULL;
16218 variant_child = variant_child->sibling)
16219 handle_struct_member_die (variant_child, type, fi, template_args, cu);
16220
16221 variant.last_field = fi->fields.size ();
16222 }
16223
16224 /* A helper for process_structure_scope that handles a single member
16225 DIE. */
16226
16227 static void
16228 handle_struct_member_die (struct die_info *child_die, struct type *type,
16229 struct field_info *fi,
16230 std::vector<struct symbol *> *template_args,
16231 struct dwarf2_cu *cu)
16232 {
16233 if (child_die->tag == DW_TAG_member
16234 || child_die->tag == DW_TAG_variable)
16235 {
16236 /* NOTE: carlton/2002-11-05: A C++ static data member
16237 should be a DW_TAG_member that is a declaration, but
16238 all versions of G++ as of this writing (so through at
16239 least 3.2.1) incorrectly generate DW_TAG_variable
16240 tags for them instead. */
16241 dwarf2_add_field (fi, child_die, cu);
16242 }
16243 else if (child_die->tag == DW_TAG_subprogram)
16244 {
16245 /* Rust doesn't have member functions in the C++ sense.
16246 However, it does emit ordinary functions as children
16247 of a struct DIE. */
16248 if (cu->language == language_rust)
16249 read_func_scope (child_die, cu);
16250 else
16251 {
16252 /* C++ member function. */
16253 dwarf2_add_member_fn (fi, child_die, type, cu);
16254 }
16255 }
16256 else if (child_die->tag == DW_TAG_inheritance)
16257 {
16258 /* C++ base class field. */
16259 dwarf2_add_field (fi, child_die, cu);
16260 }
16261 else if (type_can_define_types (child_die))
16262 dwarf2_add_type_defn (fi, child_die, cu);
16263 else if (child_die->tag == DW_TAG_template_type_param
16264 || child_die->tag == DW_TAG_template_value_param)
16265 {
16266 struct symbol *arg = new_symbol (child_die, NULL, cu);
16267
16268 if (arg != NULL)
16269 template_args->push_back (arg);
16270 }
16271 else if (child_die->tag == DW_TAG_variant_part)
16272 handle_variant_part (child_die, type, fi, template_args, cu);
16273 else if (child_die->tag == DW_TAG_variant)
16274 handle_variant (child_die, type, fi, template_args, cu);
16275 }
16276
16277 /* Finish creating a structure or union type, including filling in
16278 its members and creating a symbol for it. */
16279
16280 static void
16281 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16282 {
16283 struct objfile *objfile = cu->per_objfile->objfile;
16284 struct die_info *child_die;
16285 struct type *type;
16286
16287 type = get_die_type (die, cu);
16288 if (type == NULL)
16289 type = read_structure_type (die, cu);
16290
16291 bool has_template_parameters = false;
16292 if (die->child != NULL && ! die_is_declaration (die, cu))
16293 {
16294 struct field_info fi;
16295 std::vector<struct symbol *> template_args;
16296
16297 child_die = die->child;
16298
16299 while (child_die && child_die->tag)
16300 {
16301 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16302 child_die = child_die->sibling;
16303 }
16304
16305 /* Attach template arguments to type. */
16306 if (!template_args.empty ())
16307 {
16308 has_template_parameters = true;
16309 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16310 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16311 TYPE_TEMPLATE_ARGUMENTS (type)
16312 = XOBNEWVEC (&objfile->objfile_obstack,
16313 struct symbol *,
16314 TYPE_N_TEMPLATE_ARGUMENTS (type));
16315 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16316 template_args.data (),
16317 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16318 * sizeof (struct symbol *)));
16319 }
16320
16321 /* Attach fields and member functions to the type. */
16322 if (fi.nfields () > 0)
16323 dwarf2_attach_fields_to_type (&fi, type, cu);
16324 if (!fi.fnfieldlists.empty ())
16325 {
16326 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16327
16328 /* Get the type which refers to the base class (possibly this
16329 class itself) which contains the vtable pointer for the current
16330 class from the DW_AT_containing_type attribute. This use of
16331 DW_AT_containing_type is a GNU extension. */
16332
16333 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16334 {
16335 struct type *t = die_containing_type (die, cu);
16336
16337 set_type_vptr_basetype (type, t);
16338 if (type == t)
16339 {
16340 int i;
16341
16342 /* Our own class provides vtbl ptr. */
16343 for (i = t->num_fields () - 1;
16344 i >= TYPE_N_BASECLASSES (t);
16345 --i)
16346 {
16347 const char *fieldname = TYPE_FIELD_NAME (t, i);
16348
16349 if (is_vtable_name (fieldname, cu))
16350 {
16351 set_type_vptr_fieldno (type, i);
16352 break;
16353 }
16354 }
16355
16356 /* Complain if virtual function table field not found. */
16357 if (i < TYPE_N_BASECLASSES (t))
16358 complaint (_("virtual function table pointer "
16359 "not found when defining class '%s'"),
16360 type->name () ? type->name () : "");
16361 }
16362 else
16363 {
16364 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16365 }
16366 }
16367 else if (cu->producer
16368 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16369 {
16370 /* The IBM XLC compiler does not provide direct indication
16371 of the containing type, but the vtable pointer is
16372 always named __vfp. */
16373
16374 int i;
16375
16376 for (i = type->num_fields () - 1;
16377 i >= TYPE_N_BASECLASSES (type);
16378 --i)
16379 {
16380 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16381 {
16382 set_type_vptr_fieldno (type, i);
16383 set_type_vptr_basetype (type, type);
16384 break;
16385 }
16386 }
16387 }
16388 }
16389
16390 /* Copy fi.typedef_field_list linked list elements content into the
16391 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16392 if (!fi.typedef_field_list.empty ())
16393 {
16394 int count = fi.typedef_field_list.size ();
16395
16396 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16397 TYPE_TYPEDEF_FIELD_ARRAY (type)
16398 = ((struct decl_field *)
16399 TYPE_ALLOC (type,
16400 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16401 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16402
16403 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16404 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16405 }
16406
16407 /* Copy fi.nested_types_list linked list elements content into the
16408 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16409 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16410 {
16411 int count = fi.nested_types_list.size ();
16412
16413 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16414 TYPE_NESTED_TYPES_ARRAY (type)
16415 = ((struct decl_field *)
16416 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16417 TYPE_NESTED_TYPES_COUNT (type) = count;
16418
16419 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16420 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16421 }
16422 }
16423
16424 quirk_gcc_member_function_pointer (type, objfile);
16425 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16426 cu->rust_unions.push_back (type);
16427
16428 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16429 snapshots) has been known to create a die giving a declaration
16430 for a class that has, as a child, a die giving a definition for a
16431 nested class. So we have to process our children even if the
16432 current die is a declaration. Normally, of course, a declaration
16433 won't have any children at all. */
16434
16435 child_die = die->child;
16436
16437 while (child_die != NULL && child_die->tag)
16438 {
16439 if (child_die->tag == DW_TAG_member
16440 || child_die->tag == DW_TAG_variable
16441 || child_die->tag == DW_TAG_inheritance
16442 || child_die->tag == DW_TAG_template_value_param
16443 || child_die->tag == DW_TAG_template_type_param)
16444 {
16445 /* Do nothing. */
16446 }
16447 else
16448 process_die (child_die, cu);
16449
16450 child_die = child_die->sibling;
16451 }
16452
16453 /* Do not consider external references. According to the DWARF standard,
16454 these DIEs are identified by the fact that they have no byte_size
16455 attribute, and a declaration attribute. */
16456 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16457 || !die_is_declaration (die, cu)
16458 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
16459 {
16460 struct symbol *sym = new_symbol (die, type, cu);
16461
16462 if (has_template_parameters)
16463 {
16464 struct symtab *symtab;
16465 if (sym != nullptr)
16466 symtab = symbol_symtab (sym);
16467 else if (cu->line_header != nullptr)
16468 {
16469 /* Any related symtab will do. */
16470 symtab
16471 = cu->line_header->file_names ()[0].symtab;
16472 }
16473 else
16474 {
16475 symtab = nullptr;
16476 complaint (_("could not find suitable "
16477 "symtab for template parameter"
16478 " - DIE at %s [in module %s]"),
16479 sect_offset_str (die->sect_off),
16480 objfile_name (objfile));
16481 }
16482
16483 if (symtab != nullptr)
16484 {
16485 /* Make sure that the symtab is set on the new symbols.
16486 Even though they don't appear in this symtab directly,
16487 other parts of gdb assume that symbols do, and this is
16488 reasonably true. */
16489 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16490 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16491 }
16492 }
16493 }
16494 }
16495
16496 /* Assuming DIE is an enumeration type, and TYPE is its associated
16497 type, update TYPE using some information only available in DIE's
16498 children. In particular, the fields are computed. */
16499
16500 static void
16501 update_enumeration_type_from_children (struct die_info *die,
16502 struct type *type,
16503 struct dwarf2_cu *cu)
16504 {
16505 struct die_info *child_die;
16506 int unsigned_enum = 1;
16507 int flag_enum = 1;
16508
16509 auto_obstack obstack;
16510 std::vector<struct field> fields;
16511
16512 for (child_die = die->child;
16513 child_die != NULL && child_die->tag;
16514 child_die = child_die->sibling)
16515 {
16516 struct attribute *attr;
16517 LONGEST value;
16518 const gdb_byte *bytes;
16519 struct dwarf2_locexpr_baton *baton;
16520 const char *name;
16521
16522 if (child_die->tag != DW_TAG_enumerator)
16523 continue;
16524
16525 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16526 if (attr == NULL)
16527 continue;
16528
16529 name = dwarf2_name (child_die, cu);
16530 if (name == NULL)
16531 name = "<anonymous enumerator>";
16532
16533 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16534 &value, &bytes, &baton);
16535 if (value < 0)
16536 {
16537 unsigned_enum = 0;
16538 flag_enum = 0;
16539 }
16540 else
16541 {
16542 if (count_one_bits_ll (value) >= 2)
16543 flag_enum = 0;
16544 }
16545
16546 fields.emplace_back ();
16547 struct field &field = fields.back ();
16548 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
16549 SET_FIELD_ENUMVAL (field, value);
16550 }
16551
16552 if (!fields.empty ())
16553 {
16554 type->set_num_fields (fields.size ());
16555 type->set_fields
16556 ((struct field *)
16557 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16558 memcpy (type->fields (), fields.data (),
16559 sizeof (struct field) * fields.size ());
16560 }
16561
16562 if (unsigned_enum)
16563 type->set_is_unsigned (true);
16564
16565 if (flag_enum)
16566 TYPE_FLAG_ENUM (type) = 1;
16567 }
16568
16569 /* Given a DW_AT_enumeration_type die, set its type. We do not
16570 complete the type's fields yet, or create any symbols. */
16571
16572 static struct type *
16573 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16574 {
16575 struct objfile *objfile = cu->per_objfile->objfile;
16576 struct type *type;
16577 struct attribute *attr;
16578 const char *name;
16579
16580 /* If the definition of this type lives in .debug_types, read that type.
16581 Don't follow DW_AT_specification though, that will take us back up
16582 the chain and we want to go down. */
16583 attr = die->attr (DW_AT_signature);
16584 if (attr != nullptr)
16585 {
16586 type = get_DW_AT_signature_type (die, attr, cu);
16587
16588 /* The type's CU may not be the same as CU.
16589 Ensure TYPE is recorded with CU in die_type_hash. */
16590 return set_die_type (die, type, cu);
16591 }
16592
16593 type = alloc_type (objfile);
16594
16595 type->set_code (TYPE_CODE_ENUM);
16596 name = dwarf2_full_name (NULL, die, cu);
16597 if (name != NULL)
16598 type->set_name (name);
16599
16600 attr = dwarf2_attr (die, DW_AT_type, cu);
16601 if (attr != NULL)
16602 {
16603 struct type *underlying_type = die_type (die, cu);
16604
16605 TYPE_TARGET_TYPE (type) = underlying_type;
16606 }
16607
16608 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16609 if (attr != nullptr)
16610 {
16611 TYPE_LENGTH (type) = DW_UNSND (attr);
16612 }
16613 else
16614 {
16615 TYPE_LENGTH (type) = 0;
16616 }
16617
16618 maybe_set_alignment (cu, die, type);
16619
16620 /* The enumeration DIE can be incomplete. In Ada, any type can be
16621 declared as private in the package spec, and then defined only
16622 inside the package body. Such types are known as Taft Amendment
16623 Types. When another package uses such a type, an incomplete DIE
16624 may be generated by the compiler. */
16625 if (die_is_declaration (die, cu))
16626 type->set_is_stub (true);
16627
16628 /* If this type has an underlying type that is not a stub, then we
16629 may use its attributes. We always use the "unsigned" attribute
16630 in this situation, because ordinarily we guess whether the type
16631 is unsigned -- but the guess can be wrong and the underlying type
16632 can tell us the reality. However, we defer to a local size
16633 attribute if one exists, because this lets the compiler override
16634 the underlying type if needed. */
16635 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_TARGET_TYPE (type)->is_stub ())
16636 {
16637 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16638 underlying_type = check_typedef (underlying_type);
16639
16640 type->set_is_unsigned (underlying_type->is_unsigned ());
16641
16642 if (TYPE_LENGTH (type) == 0)
16643 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16644
16645 if (TYPE_RAW_ALIGN (type) == 0
16646 && TYPE_RAW_ALIGN (underlying_type) != 0)
16647 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16648 }
16649
16650 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16651
16652 set_die_type (die, type, cu);
16653
16654 /* Finish the creation of this type by using the enum's children.
16655 Note that, as usual, this must come after set_die_type to avoid
16656 infinite recursion when trying to compute the names of the
16657 enumerators. */
16658 update_enumeration_type_from_children (die, type, cu);
16659
16660 return type;
16661 }
16662
16663 /* Given a pointer to a die which begins an enumeration, process all
16664 the dies that define the members of the enumeration, and create the
16665 symbol for the enumeration type.
16666
16667 NOTE: We reverse the order of the element list. */
16668
16669 static void
16670 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16671 {
16672 struct type *this_type;
16673
16674 this_type = get_die_type (die, cu);
16675 if (this_type == NULL)
16676 this_type = read_enumeration_type (die, cu);
16677
16678 if (die->child != NULL)
16679 {
16680 struct die_info *child_die;
16681 const char *name;
16682
16683 child_die = die->child;
16684 while (child_die && child_die->tag)
16685 {
16686 if (child_die->tag != DW_TAG_enumerator)
16687 {
16688 process_die (child_die, cu);
16689 }
16690 else
16691 {
16692 name = dwarf2_name (child_die, cu);
16693 if (name)
16694 new_symbol (child_die, this_type, cu);
16695 }
16696
16697 child_die = child_die->sibling;
16698 }
16699 }
16700
16701 /* If we are reading an enum from a .debug_types unit, and the enum
16702 is a declaration, and the enum is not the signatured type in the
16703 unit, then we do not want to add a symbol for it. Adding a
16704 symbol would in some cases obscure the true definition of the
16705 enum, giving users an incomplete type when the definition is
16706 actually available. Note that we do not want to do this for all
16707 enums which are just declarations, because C++0x allows forward
16708 enum declarations. */
16709 if (cu->per_cu->is_debug_types
16710 && die_is_declaration (die, cu))
16711 {
16712 struct signatured_type *sig_type;
16713
16714 sig_type = (struct signatured_type *) cu->per_cu;
16715 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16716 if (sig_type->type_offset_in_section != die->sect_off)
16717 return;
16718 }
16719
16720 new_symbol (die, this_type, cu);
16721 }
16722
16723 /* Extract all information from a DW_TAG_array_type DIE and put it in
16724 the DIE's type field. For now, this only handles one dimensional
16725 arrays. */
16726
16727 static struct type *
16728 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16729 {
16730 struct objfile *objfile = cu->per_objfile->objfile;
16731 struct die_info *child_die;
16732 struct type *type;
16733 struct type *element_type, *range_type, *index_type;
16734 struct attribute *attr;
16735 const char *name;
16736 struct dynamic_prop *byte_stride_prop = NULL;
16737 unsigned int bit_stride = 0;
16738
16739 element_type = die_type (die, cu);
16740
16741 /* The die_type call above may have already set the type for this DIE. */
16742 type = get_die_type (die, cu);
16743 if (type)
16744 return type;
16745
16746 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16747 if (attr != NULL)
16748 {
16749 int stride_ok;
16750 struct type *prop_type = cu->addr_sized_int_type (false);
16751
16752 byte_stride_prop
16753 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16754 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16755 prop_type);
16756 if (!stride_ok)
16757 {
16758 complaint (_("unable to read array DW_AT_byte_stride "
16759 " - DIE at %s [in module %s]"),
16760 sect_offset_str (die->sect_off),
16761 objfile_name (cu->per_objfile->objfile));
16762 /* Ignore this attribute. We will likely not be able to print
16763 arrays of this type correctly, but there is little we can do
16764 to help if we cannot read the attribute's value. */
16765 byte_stride_prop = NULL;
16766 }
16767 }
16768
16769 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16770 if (attr != NULL)
16771 bit_stride = DW_UNSND (attr);
16772
16773 /* Irix 6.2 native cc creates array types without children for
16774 arrays with unspecified length. */
16775 if (die->child == NULL)
16776 {
16777 index_type = objfile_type (objfile)->builtin_int;
16778 range_type = create_static_range_type (NULL, index_type, 0, -1);
16779 type = create_array_type_with_stride (NULL, element_type, range_type,
16780 byte_stride_prop, bit_stride);
16781 return set_die_type (die, type, cu);
16782 }
16783
16784 std::vector<struct type *> range_types;
16785 child_die = die->child;
16786 while (child_die && child_die->tag)
16787 {
16788 if (child_die->tag == DW_TAG_subrange_type)
16789 {
16790 struct type *child_type = read_type_die (child_die, cu);
16791
16792 if (child_type != NULL)
16793 {
16794 /* The range type was succesfully read. Save it for the
16795 array type creation. */
16796 range_types.push_back (child_type);
16797 }
16798 }
16799 child_die = child_die->sibling;
16800 }
16801
16802 /* Dwarf2 dimensions are output from left to right, create the
16803 necessary array types in backwards order. */
16804
16805 type = element_type;
16806
16807 if (read_array_order (die, cu) == DW_ORD_col_major)
16808 {
16809 int i = 0;
16810
16811 while (i < range_types.size ())
16812 type = create_array_type_with_stride (NULL, type, range_types[i++],
16813 byte_stride_prop, bit_stride);
16814 }
16815 else
16816 {
16817 size_t ndim = range_types.size ();
16818 while (ndim-- > 0)
16819 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16820 byte_stride_prop, bit_stride);
16821 }
16822
16823 /* Understand Dwarf2 support for vector types (like they occur on
16824 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16825 array type. This is not part of the Dwarf2/3 standard yet, but a
16826 custom vendor extension. The main difference between a regular
16827 array and the vector variant is that vectors are passed by value
16828 to functions. */
16829 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16830 if (attr != nullptr)
16831 make_vector_type (type);
16832
16833 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16834 implementation may choose to implement triple vectors using this
16835 attribute. */
16836 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16837 if (attr != nullptr)
16838 {
16839 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16840 TYPE_LENGTH (type) = DW_UNSND (attr);
16841 else
16842 complaint (_("DW_AT_byte_size for array type smaller "
16843 "than the total size of elements"));
16844 }
16845
16846 name = dwarf2_name (die, cu);
16847 if (name)
16848 type->set_name (name);
16849
16850 maybe_set_alignment (cu, die, type);
16851
16852 /* Install the type in the die. */
16853 set_die_type (die, type, cu);
16854
16855 /* set_die_type should be already done. */
16856 set_descriptive_type (type, die, cu);
16857
16858 return type;
16859 }
16860
16861 static enum dwarf_array_dim_ordering
16862 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16863 {
16864 struct attribute *attr;
16865
16866 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16867
16868 if (attr != nullptr)
16869 {
16870 LONGEST val = attr->constant_value (-1);
16871 if (val == DW_ORD_row_major || val == DW_ORD_col_major)
16872 return (enum dwarf_array_dim_ordering) val;
16873 }
16874
16875 /* GNU F77 is a special case, as at 08/2004 array type info is the
16876 opposite order to the dwarf2 specification, but data is still
16877 laid out as per normal fortran.
16878
16879 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16880 version checking. */
16881
16882 if (cu->language == language_fortran
16883 && cu->producer && strstr (cu->producer, "GNU F77"))
16884 {
16885 return DW_ORD_row_major;
16886 }
16887
16888 switch (cu->language_defn->array_ordering ())
16889 {
16890 case array_column_major:
16891 return DW_ORD_col_major;
16892 case array_row_major:
16893 default:
16894 return DW_ORD_row_major;
16895 };
16896 }
16897
16898 /* Extract all information from a DW_TAG_set_type DIE and put it in
16899 the DIE's type field. */
16900
16901 static struct type *
16902 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16903 {
16904 struct type *domain_type, *set_type;
16905 struct attribute *attr;
16906
16907 domain_type = die_type (die, cu);
16908
16909 /* The die_type call above may have already set the type for this DIE. */
16910 set_type = get_die_type (die, cu);
16911 if (set_type)
16912 return set_type;
16913
16914 set_type = create_set_type (NULL, domain_type);
16915
16916 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16917 if (attr != nullptr)
16918 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16919
16920 maybe_set_alignment (cu, die, set_type);
16921
16922 return set_die_type (die, set_type, cu);
16923 }
16924
16925 /* A helper for read_common_block that creates a locexpr baton.
16926 SYM is the symbol which we are marking as computed.
16927 COMMON_DIE is the DIE for the common block.
16928 COMMON_LOC is the location expression attribute for the common
16929 block itself.
16930 MEMBER_LOC is the location expression attribute for the particular
16931 member of the common block that we are processing.
16932 CU is the CU from which the above come. */
16933
16934 static void
16935 mark_common_block_symbol_computed (struct symbol *sym,
16936 struct die_info *common_die,
16937 struct attribute *common_loc,
16938 struct attribute *member_loc,
16939 struct dwarf2_cu *cu)
16940 {
16941 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16942 struct objfile *objfile = per_objfile->objfile;
16943 struct dwarf2_locexpr_baton *baton;
16944 gdb_byte *ptr;
16945 unsigned int cu_off;
16946 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16947 LONGEST offset = 0;
16948
16949 gdb_assert (common_loc && member_loc);
16950 gdb_assert (common_loc->form_is_block ());
16951 gdb_assert (member_loc->form_is_block ()
16952 || member_loc->form_is_constant ());
16953
16954 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16955 baton->per_objfile = per_objfile;
16956 baton->per_cu = cu->per_cu;
16957 gdb_assert (baton->per_cu);
16958
16959 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16960
16961 if (member_loc->form_is_constant ())
16962 {
16963 offset = member_loc->constant_value (0);
16964 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16965 }
16966 else
16967 baton->size += member_loc->as_block ()->size;
16968
16969 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16970 baton->data = ptr;
16971
16972 *ptr++ = DW_OP_call4;
16973 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16974 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16975 ptr += 4;
16976
16977 if (member_loc->form_is_constant ())
16978 {
16979 *ptr++ = DW_OP_addr;
16980 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16981 ptr += cu->header.addr_size;
16982 }
16983 else
16984 {
16985 /* We have to copy the data here, because DW_OP_call4 will only
16986 use a DW_AT_location attribute. */
16987 struct dwarf_block *block = member_loc->as_block ();
16988 memcpy (ptr, block->data, block->size);
16989 ptr += block->size;
16990 }
16991
16992 *ptr++ = DW_OP_plus;
16993 gdb_assert (ptr - baton->data == baton->size);
16994
16995 SYMBOL_LOCATION_BATON (sym) = baton;
16996 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16997 }
16998
16999 /* Create appropriate locally-scoped variables for all the
17000 DW_TAG_common_block entries. Also create a struct common_block
17001 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
17002 is used to separate the common blocks name namespace from regular
17003 variable names. */
17004
17005 static void
17006 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
17007 {
17008 struct attribute *attr;
17009
17010 attr = dwarf2_attr (die, DW_AT_location, cu);
17011 if (attr != nullptr)
17012 {
17013 /* Support the .debug_loc offsets. */
17014 if (attr->form_is_block ())
17015 {
17016 /* Ok. */
17017 }
17018 else if (attr->form_is_section_offset ())
17019 {
17020 dwarf2_complex_location_expr_complaint ();
17021 attr = NULL;
17022 }
17023 else
17024 {
17025 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17026 "common block member");
17027 attr = NULL;
17028 }
17029 }
17030
17031 if (die->child != NULL)
17032 {
17033 struct objfile *objfile = cu->per_objfile->objfile;
17034 struct die_info *child_die;
17035 size_t n_entries = 0, size;
17036 struct common_block *common_block;
17037 struct symbol *sym;
17038
17039 for (child_die = die->child;
17040 child_die && child_die->tag;
17041 child_die = child_die->sibling)
17042 ++n_entries;
17043
17044 size = (sizeof (struct common_block)
17045 + (n_entries - 1) * sizeof (struct symbol *));
17046 common_block
17047 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
17048 size);
17049 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
17050 common_block->n_entries = 0;
17051
17052 for (child_die = die->child;
17053 child_die && child_die->tag;
17054 child_die = child_die->sibling)
17055 {
17056 /* Create the symbol in the DW_TAG_common_block block in the current
17057 symbol scope. */
17058 sym = new_symbol (child_die, NULL, cu);
17059 if (sym != NULL)
17060 {
17061 struct attribute *member_loc;
17062
17063 common_block->contents[common_block->n_entries++] = sym;
17064
17065 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
17066 cu);
17067 if (member_loc)
17068 {
17069 /* GDB has handled this for a long time, but it is
17070 not specified by DWARF. It seems to have been
17071 emitted by gfortran at least as recently as:
17072 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
17073 complaint (_("Variable in common block has "
17074 "DW_AT_data_member_location "
17075 "- DIE at %s [in module %s]"),
17076 sect_offset_str (child_die->sect_off),
17077 objfile_name (objfile));
17078
17079 if (member_loc->form_is_section_offset ())
17080 dwarf2_complex_location_expr_complaint ();
17081 else if (member_loc->form_is_constant ()
17082 || member_loc->form_is_block ())
17083 {
17084 if (attr != nullptr)
17085 mark_common_block_symbol_computed (sym, die, attr,
17086 member_loc, cu);
17087 }
17088 else
17089 dwarf2_complex_location_expr_complaint ();
17090 }
17091 }
17092 }
17093
17094 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
17095 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
17096 }
17097 }
17098
17099 /* Create a type for a C++ namespace. */
17100
17101 static struct type *
17102 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
17103 {
17104 struct objfile *objfile = cu->per_objfile->objfile;
17105 const char *previous_prefix, *name;
17106 int is_anonymous;
17107 struct type *type;
17108
17109 /* For extensions, reuse the type of the original namespace. */
17110 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
17111 {
17112 struct die_info *ext_die;
17113 struct dwarf2_cu *ext_cu = cu;
17114
17115 ext_die = dwarf2_extension (die, &ext_cu);
17116 type = read_type_die (ext_die, ext_cu);
17117
17118 /* EXT_CU may not be the same as CU.
17119 Ensure TYPE is recorded with CU in die_type_hash. */
17120 return set_die_type (die, type, cu);
17121 }
17122
17123 name = namespace_name (die, &is_anonymous, cu);
17124
17125 /* Now build the name of the current namespace. */
17126
17127 previous_prefix = determine_prefix (die, cu);
17128 if (previous_prefix[0] != '\0')
17129 name = typename_concat (&objfile->objfile_obstack,
17130 previous_prefix, name, 0, cu);
17131
17132 /* Create the type. */
17133 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17134
17135 return set_die_type (die, type, cu);
17136 }
17137
17138 /* Read a namespace scope. */
17139
17140 static void
17141 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17142 {
17143 struct objfile *objfile = cu->per_objfile->objfile;
17144 int is_anonymous;
17145
17146 /* Add a symbol associated to this if we haven't seen the namespace
17147 before. Also, add a using directive if it's an anonymous
17148 namespace. */
17149
17150 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17151 {
17152 struct type *type;
17153
17154 type = read_type_die (die, cu);
17155 new_symbol (die, type, cu);
17156
17157 namespace_name (die, &is_anonymous, cu);
17158 if (is_anonymous)
17159 {
17160 const char *previous_prefix = determine_prefix (die, cu);
17161
17162 std::vector<const char *> excludes;
17163 add_using_directive (using_directives (cu),
17164 previous_prefix, type->name (), NULL,
17165 NULL, excludes, 0, &objfile->objfile_obstack);
17166 }
17167 }
17168
17169 if (die->child != NULL)
17170 {
17171 struct die_info *child_die = die->child;
17172
17173 while (child_die && child_die->tag)
17174 {
17175 process_die (child_die, cu);
17176 child_die = child_die->sibling;
17177 }
17178 }
17179 }
17180
17181 /* Read a Fortran module as type. This DIE can be only a declaration used for
17182 imported module. Still we need that type as local Fortran "use ... only"
17183 declaration imports depend on the created type in determine_prefix. */
17184
17185 static struct type *
17186 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17187 {
17188 struct objfile *objfile = cu->per_objfile->objfile;
17189 const char *module_name;
17190 struct type *type;
17191
17192 module_name = dwarf2_name (die, cu);
17193 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17194
17195 return set_die_type (die, type, cu);
17196 }
17197
17198 /* Read a Fortran module. */
17199
17200 static void
17201 read_module (struct die_info *die, struct dwarf2_cu *cu)
17202 {
17203 struct die_info *child_die = die->child;
17204 struct type *type;
17205
17206 type = read_type_die (die, cu);
17207 new_symbol (die, type, cu);
17208
17209 while (child_die && child_die->tag)
17210 {
17211 process_die (child_die, cu);
17212 child_die = child_die->sibling;
17213 }
17214 }
17215
17216 /* Return the name of the namespace represented by DIE. Set
17217 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17218 namespace. */
17219
17220 static const char *
17221 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17222 {
17223 struct die_info *current_die;
17224 const char *name = NULL;
17225
17226 /* Loop through the extensions until we find a name. */
17227
17228 for (current_die = die;
17229 current_die != NULL;
17230 current_die = dwarf2_extension (die, &cu))
17231 {
17232 /* We don't use dwarf2_name here so that we can detect the absence
17233 of a name -> anonymous namespace. */
17234 name = dwarf2_string_attr (die, DW_AT_name, cu);
17235
17236 if (name != NULL)
17237 break;
17238 }
17239
17240 /* Is it an anonymous namespace? */
17241
17242 *is_anonymous = (name == NULL);
17243 if (*is_anonymous)
17244 name = CP_ANONYMOUS_NAMESPACE_STR;
17245
17246 return name;
17247 }
17248
17249 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17250 the user defined type vector. */
17251
17252 static struct type *
17253 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17254 {
17255 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
17256 struct comp_unit_head *cu_header = &cu->header;
17257 struct type *type;
17258 struct attribute *attr_byte_size;
17259 struct attribute *attr_address_class;
17260 int byte_size, addr_class;
17261 struct type *target_type;
17262
17263 target_type = die_type (die, cu);
17264
17265 /* The die_type call above may have already set the type for this DIE. */
17266 type = get_die_type (die, cu);
17267 if (type)
17268 return type;
17269
17270 type = lookup_pointer_type (target_type);
17271
17272 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17273 if (attr_byte_size)
17274 byte_size = DW_UNSND (attr_byte_size);
17275 else
17276 byte_size = cu_header->addr_size;
17277
17278 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17279 if (attr_address_class)
17280 addr_class = DW_UNSND (attr_address_class);
17281 else
17282 addr_class = DW_ADDR_none;
17283
17284 ULONGEST alignment = get_alignment (cu, die);
17285
17286 /* If the pointer size, alignment, or address class is different
17287 than the default, create a type variant marked as such and set
17288 the length accordingly. */
17289 if (TYPE_LENGTH (type) != byte_size
17290 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17291 && alignment != TYPE_RAW_ALIGN (type))
17292 || addr_class != DW_ADDR_none)
17293 {
17294 if (gdbarch_address_class_type_flags_p (gdbarch))
17295 {
17296 type_instance_flags type_flags
17297 = gdbarch_address_class_type_flags (gdbarch, byte_size,
17298 addr_class);
17299 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17300 == 0);
17301 type = make_type_with_address_space (type, type_flags);
17302 }
17303 else if (TYPE_LENGTH (type) != byte_size)
17304 {
17305 complaint (_("invalid pointer size %d"), byte_size);
17306 }
17307 else if (TYPE_RAW_ALIGN (type) != alignment)
17308 {
17309 complaint (_("Invalid DW_AT_alignment"
17310 " - DIE at %s [in module %s]"),
17311 sect_offset_str (die->sect_off),
17312 objfile_name (cu->per_objfile->objfile));
17313 }
17314 else
17315 {
17316 /* Should we also complain about unhandled address classes? */
17317 }
17318 }
17319
17320 TYPE_LENGTH (type) = byte_size;
17321 set_type_align (type, alignment);
17322 return set_die_type (die, type, cu);
17323 }
17324
17325 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17326 the user defined type vector. */
17327
17328 static struct type *
17329 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17330 {
17331 struct type *type;
17332 struct type *to_type;
17333 struct type *domain;
17334
17335 to_type = die_type (die, cu);
17336 domain = die_containing_type (die, cu);
17337
17338 /* The calls above may have already set the type for this DIE. */
17339 type = get_die_type (die, cu);
17340 if (type)
17341 return type;
17342
17343 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
17344 type = lookup_methodptr_type (to_type);
17345 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
17346 {
17347 struct type *new_type = alloc_type (cu->per_objfile->objfile);
17348
17349 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17350 to_type->fields (), to_type->num_fields (),
17351 to_type->has_varargs ());
17352 type = lookup_methodptr_type (new_type);
17353 }
17354 else
17355 type = lookup_memberptr_type (to_type, domain);
17356
17357 return set_die_type (die, type, cu);
17358 }
17359
17360 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17361 the user defined type vector. */
17362
17363 static struct type *
17364 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17365 enum type_code refcode)
17366 {
17367 struct comp_unit_head *cu_header = &cu->header;
17368 struct type *type, *target_type;
17369 struct attribute *attr;
17370
17371 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17372
17373 target_type = die_type (die, cu);
17374
17375 /* The die_type call above may have already set the type for this DIE. */
17376 type = get_die_type (die, cu);
17377 if (type)
17378 return type;
17379
17380 type = lookup_reference_type (target_type, refcode);
17381 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17382 if (attr != nullptr)
17383 {
17384 TYPE_LENGTH (type) = DW_UNSND (attr);
17385 }
17386 else
17387 {
17388 TYPE_LENGTH (type) = cu_header->addr_size;
17389 }
17390 maybe_set_alignment (cu, die, type);
17391 return set_die_type (die, type, cu);
17392 }
17393
17394 /* Add the given cv-qualifiers to the element type of the array. GCC
17395 outputs DWARF type qualifiers that apply to an array, not the
17396 element type. But GDB relies on the array element type to carry
17397 the cv-qualifiers. This mimics section 6.7.3 of the C99
17398 specification. */
17399
17400 static struct type *
17401 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17402 struct type *base_type, int cnst, int voltl)
17403 {
17404 struct type *el_type, *inner_array;
17405
17406 base_type = copy_type (base_type);
17407 inner_array = base_type;
17408
17409 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
17410 {
17411 TYPE_TARGET_TYPE (inner_array) =
17412 copy_type (TYPE_TARGET_TYPE (inner_array));
17413 inner_array = TYPE_TARGET_TYPE (inner_array);
17414 }
17415
17416 el_type = TYPE_TARGET_TYPE (inner_array);
17417 cnst |= TYPE_CONST (el_type);
17418 voltl |= TYPE_VOLATILE (el_type);
17419 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17420
17421 return set_die_type (die, base_type, cu);
17422 }
17423
17424 static struct type *
17425 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17426 {
17427 struct type *base_type, *cv_type;
17428
17429 base_type = die_type (die, cu);
17430
17431 /* The die_type call above may have already set the type for this DIE. */
17432 cv_type = get_die_type (die, cu);
17433 if (cv_type)
17434 return cv_type;
17435
17436 /* In case the const qualifier is applied to an array type, the element type
17437 is so qualified, not the array type (section 6.7.3 of C99). */
17438 if (base_type->code () == TYPE_CODE_ARRAY)
17439 return add_array_cv_type (die, cu, base_type, 1, 0);
17440
17441 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17442 return set_die_type (die, cv_type, cu);
17443 }
17444
17445 static struct type *
17446 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17447 {
17448 struct type *base_type, *cv_type;
17449
17450 base_type = die_type (die, cu);
17451
17452 /* The die_type call above may have already set the type for this DIE. */
17453 cv_type = get_die_type (die, cu);
17454 if (cv_type)
17455 return cv_type;
17456
17457 /* In case the volatile qualifier is applied to an array type, the
17458 element type is so qualified, not the array type (section 6.7.3
17459 of C99). */
17460 if (base_type->code () == TYPE_CODE_ARRAY)
17461 return add_array_cv_type (die, cu, base_type, 0, 1);
17462
17463 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17464 return set_die_type (die, cv_type, cu);
17465 }
17466
17467 /* Handle DW_TAG_restrict_type. */
17468
17469 static struct type *
17470 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17471 {
17472 struct type *base_type, *cv_type;
17473
17474 base_type = die_type (die, cu);
17475
17476 /* The die_type call above may have already set the type for this DIE. */
17477 cv_type = get_die_type (die, cu);
17478 if (cv_type)
17479 return cv_type;
17480
17481 cv_type = make_restrict_type (base_type);
17482 return set_die_type (die, cv_type, cu);
17483 }
17484
17485 /* Handle DW_TAG_atomic_type. */
17486
17487 static struct type *
17488 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17489 {
17490 struct type *base_type, *cv_type;
17491
17492 base_type = die_type (die, cu);
17493
17494 /* The die_type call above may have already set the type for this DIE. */
17495 cv_type = get_die_type (die, cu);
17496 if (cv_type)
17497 return cv_type;
17498
17499 cv_type = make_atomic_type (base_type);
17500 return set_die_type (die, cv_type, cu);
17501 }
17502
17503 /* Extract all information from a DW_TAG_string_type DIE and add to
17504 the user defined type vector. It isn't really a user defined type,
17505 but it behaves like one, with other DIE's using an AT_user_def_type
17506 attribute to reference it. */
17507
17508 static struct type *
17509 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17510 {
17511 struct objfile *objfile = cu->per_objfile->objfile;
17512 struct gdbarch *gdbarch = objfile->arch ();
17513 struct type *type, *range_type, *index_type, *char_type;
17514 struct attribute *attr;
17515 struct dynamic_prop prop;
17516 bool length_is_constant = true;
17517 LONGEST length;
17518
17519 /* There are a couple of places where bit sizes might be made use of
17520 when parsing a DW_TAG_string_type, however, no producer that we know
17521 of make use of these. Handling bit sizes that are a multiple of the
17522 byte size is easy enough, but what about other bit sizes? Lets deal
17523 with that problem when we have to. Warn about these attributes being
17524 unsupported, then parse the type and ignore them like we always
17525 have. */
17526 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17527 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17528 {
17529 static bool warning_printed = false;
17530 if (!warning_printed)
17531 {
17532 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17533 "currently supported on DW_TAG_string_type."));
17534 warning_printed = true;
17535 }
17536 }
17537
17538 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17539 if (attr != nullptr && !attr->form_is_constant ())
17540 {
17541 /* The string length describes the location at which the length of
17542 the string can be found. The size of the length field can be
17543 specified with one of the attributes below. */
17544 struct type *prop_type;
17545 struct attribute *len
17546 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17547 if (len == nullptr)
17548 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17549 if (len != nullptr && len->form_is_constant ())
17550 {
17551 /* Pass 0 as the default as we know this attribute is constant
17552 and the default value will not be returned. */
17553 LONGEST sz = len->constant_value (0);
17554 prop_type = cu->per_objfile->int_type (sz, true);
17555 }
17556 else
17557 {
17558 /* If the size is not specified then we assume it is the size of
17559 an address on this target. */
17560 prop_type = cu->addr_sized_int_type (true);
17561 }
17562
17563 /* Convert the attribute into a dynamic property. */
17564 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17565 length = 1;
17566 else
17567 length_is_constant = false;
17568 }
17569 else if (attr != nullptr)
17570 {
17571 /* This DW_AT_string_length just contains the length with no
17572 indirection. There's no need to create a dynamic property in this
17573 case. Pass 0 for the default value as we know it will not be
17574 returned in this case. */
17575 length = attr->constant_value (0);
17576 }
17577 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17578 {
17579 /* We don't currently support non-constant byte sizes for strings. */
17580 length = attr->constant_value (1);
17581 }
17582 else
17583 {
17584 /* Use 1 as a fallback length if we have nothing else. */
17585 length = 1;
17586 }
17587
17588 index_type = objfile_type (objfile)->builtin_int;
17589 if (length_is_constant)
17590 range_type = create_static_range_type (NULL, index_type, 1, length);
17591 else
17592 {
17593 struct dynamic_prop low_bound;
17594
17595 low_bound.set_const_val (1);
17596 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17597 }
17598 char_type = language_string_char_type (cu->language_defn, gdbarch);
17599 type = create_string_type (NULL, char_type, range_type);
17600
17601 return set_die_type (die, type, cu);
17602 }
17603
17604 /* Assuming that DIE corresponds to a function, returns nonzero
17605 if the function is prototyped. */
17606
17607 static int
17608 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17609 {
17610 struct attribute *attr;
17611
17612 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17613 if (attr && (DW_UNSND (attr) != 0))
17614 return 1;
17615
17616 /* The DWARF standard implies that the DW_AT_prototyped attribute
17617 is only meaningful for C, but the concept also extends to other
17618 languages that allow unprototyped functions (Eg: Objective C).
17619 For all other languages, assume that functions are always
17620 prototyped. */
17621 if (cu->language != language_c
17622 && cu->language != language_objc
17623 && cu->language != language_opencl)
17624 return 1;
17625
17626 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17627 prototyped and unprototyped functions; default to prototyped,
17628 since that is more common in modern code (and RealView warns
17629 about unprototyped functions). */
17630 if (producer_is_realview (cu->producer))
17631 return 1;
17632
17633 return 0;
17634 }
17635
17636 /* Handle DIES due to C code like:
17637
17638 struct foo
17639 {
17640 int (*funcp)(int a, long l);
17641 int b;
17642 };
17643
17644 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17645
17646 static struct type *
17647 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17648 {
17649 struct objfile *objfile = cu->per_objfile->objfile;
17650 struct type *type; /* Type that this function returns. */
17651 struct type *ftype; /* Function that returns above type. */
17652 struct attribute *attr;
17653
17654 type = die_type (die, cu);
17655
17656 /* The die_type call above may have already set the type for this DIE. */
17657 ftype = get_die_type (die, cu);
17658 if (ftype)
17659 return ftype;
17660
17661 ftype = lookup_function_type (type);
17662
17663 if (prototyped_function_p (die, cu))
17664 ftype->set_is_prototyped (true);
17665
17666 /* Store the calling convention in the type if it's available in
17667 the subroutine die. Otherwise set the calling convention to
17668 the default value DW_CC_normal. */
17669 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17670 if (attr != nullptr
17671 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17672 TYPE_CALLING_CONVENTION (ftype)
17673 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17674 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17675 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17676 else
17677 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17678
17679 /* Record whether the function returns normally to its caller or not
17680 if the DWARF producer set that information. */
17681 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17682 if (attr && (DW_UNSND (attr) != 0))
17683 TYPE_NO_RETURN (ftype) = 1;
17684
17685 /* We need to add the subroutine type to the die immediately so
17686 we don't infinitely recurse when dealing with parameters
17687 declared as the same subroutine type. */
17688 set_die_type (die, ftype, cu);
17689
17690 if (die->child != NULL)
17691 {
17692 struct type *void_type = objfile_type (objfile)->builtin_void;
17693 struct die_info *child_die;
17694 int nparams, iparams;
17695
17696 /* Count the number of parameters.
17697 FIXME: GDB currently ignores vararg functions, but knows about
17698 vararg member functions. */
17699 nparams = 0;
17700 child_die = die->child;
17701 while (child_die && child_die->tag)
17702 {
17703 if (child_die->tag == DW_TAG_formal_parameter)
17704 nparams++;
17705 else if (child_die->tag == DW_TAG_unspecified_parameters)
17706 ftype->set_has_varargs (true);
17707
17708 child_die = child_die->sibling;
17709 }
17710
17711 /* Allocate storage for parameters and fill them in. */
17712 ftype->set_num_fields (nparams);
17713 ftype->set_fields
17714 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17715
17716 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17717 even if we error out during the parameters reading below. */
17718 for (iparams = 0; iparams < nparams; iparams++)
17719 ftype->field (iparams).set_type (void_type);
17720
17721 iparams = 0;
17722 child_die = die->child;
17723 while (child_die && child_die->tag)
17724 {
17725 if (child_die->tag == DW_TAG_formal_parameter)
17726 {
17727 struct type *arg_type;
17728
17729 /* DWARF version 2 has no clean way to discern C++
17730 static and non-static member functions. G++ helps
17731 GDB by marking the first parameter for non-static
17732 member functions (which is the this pointer) as
17733 artificial. We pass this information to
17734 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17735
17736 DWARF version 3 added DW_AT_object_pointer, which GCC
17737 4.5 does not yet generate. */
17738 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17739 if (attr != nullptr)
17740 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17741 else
17742 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17743 arg_type = die_type (child_die, cu);
17744
17745 /* RealView does not mark THIS as const, which the testsuite
17746 expects. GCC marks THIS as const in method definitions,
17747 but not in the class specifications (GCC PR 43053). */
17748 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17749 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17750 {
17751 int is_this = 0;
17752 struct dwarf2_cu *arg_cu = cu;
17753 const char *name = dwarf2_name (child_die, cu);
17754
17755 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17756 if (attr != nullptr)
17757 {
17758 /* If the compiler emits this, use it. */
17759 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17760 is_this = 1;
17761 }
17762 else if (name && strcmp (name, "this") == 0)
17763 /* Function definitions will have the argument names. */
17764 is_this = 1;
17765 else if (name == NULL && iparams == 0)
17766 /* Declarations may not have the names, so like
17767 elsewhere in GDB, assume an artificial first
17768 argument is "this". */
17769 is_this = 1;
17770
17771 if (is_this)
17772 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17773 arg_type, 0);
17774 }
17775
17776 ftype->field (iparams).set_type (arg_type);
17777 iparams++;
17778 }
17779 child_die = child_die->sibling;
17780 }
17781 }
17782
17783 return ftype;
17784 }
17785
17786 static struct type *
17787 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17788 {
17789 struct objfile *objfile = cu->per_objfile->objfile;
17790 const char *name = NULL;
17791 struct type *this_type, *target_type;
17792
17793 name = dwarf2_full_name (NULL, die, cu);
17794 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17795 this_type->set_target_is_stub (true);
17796 set_die_type (die, this_type, cu);
17797 target_type = die_type (die, cu);
17798 if (target_type != this_type)
17799 TYPE_TARGET_TYPE (this_type) = target_type;
17800 else
17801 {
17802 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17803 spec and cause infinite loops in GDB. */
17804 complaint (_("Self-referential DW_TAG_typedef "
17805 "- DIE at %s [in module %s]"),
17806 sect_offset_str (die->sect_off), objfile_name (objfile));
17807 TYPE_TARGET_TYPE (this_type) = NULL;
17808 }
17809 if (name == NULL)
17810 {
17811 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17812 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17813 Handle these by just returning the target type, rather than
17814 constructing an anonymous typedef type and trying to handle this
17815 elsewhere. */
17816 set_die_type (die, target_type, cu);
17817 return target_type;
17818 }
17819 return this_type;
17820 }
17821
17822 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17823 (which may be different from NAME) to the architecture back-end to allow
17824 it to guess the correct format if necessary. */
17825
17826 static struct type *
17827 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17828 const char *name_hint, enum bfd_endian byte_order)
17829 {
17830 struct gdbarch *gdbarch = objfile->arch ();
17831 const struct floatformat **format;
17832 struct type *type;
17833
17834 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17835 if (format)
17836 type = init_float_type (objfile, bits, name, format, byte_order);
17837 else
17838 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17839
17840 return type;
17841 }
17842
17843 /* Allocate an integer type of size BITS and name NAME. */
17844
17845 static struct type *
17846 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17847 int bits, int unsigned_p, const char *name)
17848 {
17849 struct type *type;
17850
17851 /* Versions of Intel's C Compiler generate an integer type called "void"
17852 instead of using DW_TAG_unspecified_type. This has been seen on
17853 at least versions 14, 17, and 18. */
17854 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17855 && strcmp (name, "void") == 0)
17856 type = objfile_type (objfile)->builtin_void;
17857 else
17858 type = init_integer_type (objfile, bits, unsigned_p, name);
17859
17860 return type;
17861 }
17862
17863 /* Initialise and return a floating point type of size BITS suitable for
17864 use as a component of a complex number. The NAME_HINT is passed through
17865 when initialising the floating point type and is the name of the complex
17866 type.
17867
17868 As DWARF doesn't currently provide an explicit name for the components
17869 of a complex number, but it can be helpful to have these components
17870 named, we try to select a suitable name based on the size of the
17871 component. */
17872 static struct type *
17873 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17874 struct objfile *objfile,
17875 int bits, const char *name_hint,
17876 enum bfd_endian byte_order)
17877 {
17878 gdbarch *gdbarch = objfile->arch ();
17879 struct type *tt = nullptr;
17880
17881 /* Try to find a suitable floating point builtin type of size BITS.
17882 We're going to use the name of this type as the name for the complex
17883 target type that we are about to create. */
17884 switch (cu->language)
17885 {
17886 case language_fortran:
17887 switch (bits)
17888 {
17889 case 32:
17890 tt = builtin_f_type (gdbarch)->builtin_real;
17891 break;
17892 case 64:
17893 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17894 break;
17895 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17896 case 128:
17897 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17898 break;
17899 }
17900 break;
17901 default:
17902 switch (bits)
17903 {
17904 case 32:
17905 tt = builtin_type (gdbarch)->builtin_float;
17906 break;
17907 case 64:
17908 tt = builtin_type (gdbarch)->builtin_double;
17909 break;
17910 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17911 case 128:
17912 tt = builtin_type (gdbarch)->builtin_long_double;
17913 break;
17914 }
17915 break;
17916 }
17917
17918 /* If the type we found doesn't match the size we were looking for, then
17919 pretend we didn't find a type at all, the complex target type we
17920 create will then be nameless. */
17921 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17922 tt = nullptr;
17923
17924 const char *name = (tt == nullptr) ? nullptr : tt->name ();
17925 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17926 }
17927
17928 /* Find a representation of a given base type and install
17929 it in the TYPE field of the die. */
17930
17931 static struct type *
17932 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17933 {
17934 struct objfile *objfile = cu->per_objfile->objfile;
17935 struct type *type;
17936 struct attribute *attr;
17937 int encoding = 0, bits = 0;
17938 const char *name;
17939 gdbarch *arch;
17940
17941 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17942 if (attr != nullptr)
17943 encoding = DW_UNSND (attr);
17944 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17945 if (attr != nullptr)
17946 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17947 name = dwarf2_name (die, cu);
17948 if (!name)
17949 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17950
17951 arch = objfile->arch ();
17952 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17953
17954 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17955 if (attr)
17956 {
17957 int endianity = DW_UNSND (attr);
17958
17959 switch (endianity)
17960 {
17961 case DW_END_big:
17962 byte_order = BFD_ENDIAN_BIG;
17963 break;
17964 case DW_END_little:
17965 byte_order = BFD_ENDIAN_LITTLE;
17966 break;
17967 default:
17968 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17969 break;
17970 }
17971 }
17972
17973 switch (encoding)
17974 {
17975 case DW_ATE_address:
17976 /* Turn DW_ATE_address into a void * pointer. */
17977 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17978 type = init_pointer_type (objfile, bits, name, type);
17979 break;
17980 case DW_ATE_boolean:
17981 type = init_boolean_type (objfile, bits, 1, name);
17982 break;
17983 case DW_ATE_complex_float:
17984 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17985 byte_order);
17986 if (type->code () == TYPE_CODE_ERROR)
17987 {
17988 if (name == nullptr)
17989 {
17990 struct obstack *obstack
17991 = &cu->per_objfile->objfile->objfile_obstack;
17992 name = obconcat (obstack, "_Complex ", type->name (),
17993 nullptr);
17994 }
17995 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17996 }
17997 else
17998 type = init_complex_type (name, type);
17999 break;
18000 case DW_ATE_decimal_float:
18001 type = init_decfloat_type (objfile, bits, name);
18002 break;
18003 case DW_ATE_float:
18004 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
18005 break;
18006 case DW_ATE_signed:
18007 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18008 break;
18009 case DW_ATE_unsigned:
18010 if (cu->language == language_fortran
18011 && name
18012 && startswith (name, "character("))
18013 type = init_character_type (objfile, bits, 1, name);
18014 else
18015 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18016 break;
18017 case DW_ATE_signed_char:
18018 if (cu->language == language_ada || cu->language == language_m2
18019 || cu->language == language_pascal
18020 || cu->language == language_fortran)
18021 type = init_character_type (objfile, bits, 0, name);
18022 else
18023 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18024 break;
18025 case DW_ATE_unsigned_char:
18026 if (cu->language == language_ada || cu->language == language_m2
18027 || cu->language == language_pascal
18028 || cu->language == language_fortran
18029 || cu->language == language_rust)
18030 type = init_character_type (objfile, bits, 1, name);
18031 else
18032 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18033 break;
18034 case DW_ATE_UTF:
18035 {
18036 if (bits == 16)
18037 type = builtin_type (arch)->builtin_char16;
18038 else if (bits == 32)
18039 type = builtin_type (arch)->builtin_char32;
18040 else
18041 {
18042 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
18043 bits);
18044 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18045 }
18046 return set_die_type (die, type, cu);
18047 }
18048 break;
18049
18050 default:
18051 complaint (_("unsupported DW_AT_encoding: '%s'"),
18052 dwarf_type_encoding_name (encoding));
18053 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18054 break;
18055 }
18056
18057 if (name && strcmp (name, "char") == 0)
18058 type->set_has_no_signedness (true);
18059
18060 maybe_set_alignment (cu, die, type);
18061
18062 type->set_endianity_is_not_default (gdbarch_byte_order (arch) != byte_order);
18063
18064 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_INT)
18065 {
18066 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
18067 if (attr != nullptr && DW_UNSND (attr) <= 8 * TYPE_LENGTH (type))
18068 {
18069 unsigned real_bit_size = DW_UNSND (attr);
18070 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
18071 /* Only use the attributes if they make sense together. */
18072 if (attr == nullptr
18073 || DW_UNSND (attr) + real_bit_size <= 8 * TYPE_LENGTH (type))
18074 {
18075 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_size
18076 = real_bit_size;
18077 if (attr != nullptr)
18078 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_offset
18079 = DW_UNSND (attr);
18080 }
18081 }
18082 }
18083
18084 return set_die_type (die, type, cu);
18085 }
18086
18087 /* Parse dwarf attribute if it's a block, reference or constant and put the
18088 resulting value of the attribute into struct bound_prop.
18089 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18090
18091 static int
18092 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18093 struct dwarf2_cu *cu, struct dynamic_prop *prop,
18094 struct type *default_type)
18095 {
18096 struct dwarf2_property_baton *baton;
18097 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18098 struct objfile *objfile = per_objfile->objfile;
18099 struct obstack *obstack = &objfile->objfile_obstack;
18100
18101 gdb_assert (default_type != NULL);
18102
18103 if (attr == NULL || prop == NULL)
18104 return 0;
18105
18106 if (attr->form_is_block ())
18107 {
18108 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18109 baton->property_type = default_type;
18110 baton->locexpr.per_cu = cu->per_cu;
18111 baton->locexpr.per_objfile = per_objfile;
18112
18113 struct dwarf_block *block = attr->as_block ();
18114 baton->locexpr.size = block->size;
18115 baton->locexpr.data = block->data;
18116 switch (attr->name)
18117 {
18118 case DW_AT_string_length:
18119 baton->locexpr.is_reference = true;
18120 break;
18121 default:
18122 baton->locexpr.is_reference = false;
18123 break;
18124 }
18125
18126 prop->set_locexpr (baton);
18127 gdb_assert (prop->baton () != NULL);
18128 }
18129 else if (attr->form_is_ref ())
18130 {
18131 struct dwarf2_cu *target_cu = cu;
18132 struct die_info *target_die;
18133 struct attribute *target_attr;
18134
18135 target_die = follow_die_ref (die, attr, &target_cu);
18136 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18137 if (target_attr == NULL)
18138 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18139 target_cu);
18140 if (target_attr == NULL)
18141 return 0;
18142
18143 switch (target_attr->name)
18144 {
18145 case DW_AT_location:
18146 if (target_attr->form_is_section_offset ())
18147 {
18148 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18149 baton->property_type = die_type (target_die, target_cu);
18150 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18151 prop->set_loclist (baton);
18152 gdb_assert (prop->baton () != NULL);
18153 }
18154 else if (target_attr->form_is_block ())
18155 {
18156 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18157 baton->property_type = die_type (target_die, target_cu);
18158 baton->locexpr.per_cu = cu->per_cu;
18159 baton->locexpr.per_objfile = per_objfile;
18160 struct dwarf_block *block = target_attr->as_block ();
18161 baton->locexpr.size = block->size;
18162 baton->locexpr.data = block->data;
18163 baton->locexpr.is_reference = true;
18164 prop->set_locexpr (baton);
18165 gdb_assert (prop->baton () != NULL);
18166 }
18167 else
18168 {
18169 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18170 "dynamic property");
18171 return 0;
18172 }
18173 break;
18174 case DW_AT_data_member_location:
18175 {
18176 LONGEST offset;
18177
18178 if (!handle_data_member_location (target_die, target_cu,
18179 &offset))
18180 return 0;
18181
18182 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18183 baton->property_type = read_type_die (target_die->parent,
18184 target_cu);
18185 baton->offset_info.offset = offset;
18186 baton->offset_info.type = die_type (target_die, target_cu);
18187 prop->set_addr_offset (baton);
18188 break;
18189 }
18190 }
18191 }
18192 else if (attr->form_is_constant ())
18193 prop->set_const_val (attr->constant_value (0));
18194 else
18195 {
18196 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18197 dwarf2_name (die, cu));
18198 return 0;
18199 }
18200
18201 return 1;
18202 }
18203
18204 /* See read.h. */
18205
18206 struct type *
18207 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
18208 {
18209 struct type *int_type;
18210
18211 /* Helper macro to examine the various builtin types. */
18212 #define TRY_TYPE(F) \
18213 int_type = (unsigned_p \
18214 ? objfile_type (objfile)->builtin_unsigned_ ## F \
18215 : objfile_type (objfile)->builtin_ ## F); \
18216 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
18217 return int_type
18218
18219 TRY_TYPE (char);
18220 TRY_TYPE (short);
18221 TRY_TYPE (int);
18222 TRY_TYPE (long);
18223 TRY_TYPE (long_long);
18224
18225 #undef TRY_TYPE
18226
18227 gdb_assert_not_reached ("unable to find suitable integer type");
18228 }
18229
18230 /* See read.h. */
18231
18232 struct type *
18233 dwarf2_cu::addr_sized_int_type (bool unsigned_p) const
18234 {
18235 int addr_size = this->per_cu->addr_size ();
18236 return this->per_objfile->int_type (addr_size, unsigned_p);
18237 }
18238
18239 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18240 present (which is valid) then compute the default type based on the
18241 compilation units address size. */
18242
18243 static struct type *
18244 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18245 {
18246 struct type *index_type = die_type (die, cu);
18247
18248 /* Dwarf-2 specifications explicitly allows to create subrange types
18249 without specifying a base type.
18250 In that case, the base type must be set to the type of
18251 the lower bound, upper bound or count, in that order, if any of these
18252 three attributes references an object that has a type.
18253 If no base type is found, the Dwarf-2 specifications say that
18254 a signed integer type of size equal to the size of an address should
18255 be used.
18256 For the following C code: `extern char gdb_int [];'
18257 GCC produces an empty range DIE.
18258 FIXME: muller/2010-05-28: Possible references to object for low bound,
18259 high bound or count are not yet handled by this code. */
18260 if (index_type->code () == TYPE_CODE_VOID)
18261 index_type = cu->addr_sized_int_type (false);
18262
18263 return index_type;
18264 }
18265
18266 /* Read the given DW_AT_subrange DIE. */
18267
18268 static struct type *
18269 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18270 {
18271 struct type *base_type, *orig_base_type;
18272 struct type *range_type;
18273 struct attribute *attr;
18274 struct dynamic_prop low, high;
18275 int low_default_is_valid;
18276 int high_bound_is_count = 0;
18277 const char *name;
18278 ULONGEST negative_mask;
18279
18280 orig_base_type = read_subrange_index_type (die, cu);
18281
18282 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18283 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18284 creating the range type, but we use the result of check_typedef
18285 when examining properties of the type. */
18286 base_type = check_typedef (orig_base_type);
18287
18288 /* The die_type call above may have already set the type for this DIE. */
18289 range_type = get_die_type (die, cu);
18290 if (range_type)
18291 return range_type;
18292
18293 high.set_const_val (0);
18294
18295 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18296 omitting DW_AT_lower_bound. */
18297 switch (cu->language)
18298 {
18299 case language_c:
18300 case language_cplus:
18301 low.set_const_val (0);
18302 low_default_is_valid = 1;
18303 break;
18304 case language_fortran:
18305 low.set_const_val (1);
18306 low_default_is_valid = 1;
18307 break;
18308 case language_d:
18309 case language_objc:
18310 case language_rust:
18311 low.set_const_val (0);
18312 low_default_is_valid = (cu->header.version >= 4);
18313 break;
18314 case language_ada:
18315 case language_m2:
18316 case language_pascal:
18317 low.set_const_val (1);
18318 low_default_is_valid = (cu->header.version >= 4);
18319 break;
18320 default:
18321 low.set_const_val (0);
18322 low_default_is_valid = 0;
18323 break;
18324 }
18325
18326 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18327 if (attr != nullptr)
18328 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18329 else if (!low_default_is_valid)
18330 complaint (_("Missing DW_AT_lower_bound "
18331 "- DIE at %s [in module %s]"),
18332 sect_offset_str (die->sect_off),
18333 objfile_name (cu->per_objfile->objfile));
18334
18335 struct attribute *attr_ub, *attr_count;
18336 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18337 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18338 {
18339 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18340 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18341 {
18342 /* If bounds are constant do the final calculation here. */
18343 if (low.kind () == PROP_CONST && high.kind () == PROP_CONST)
18344 high.set_const_val (low.const_val () + high.const_val () - 1);
18345 else
18346 high_bound_is_count = 1;
18347 }
18348 else
18349 {
18350 if (attr_ub != NULL)
18351 complaint (_("Unresolved DW_AT_upper_bound "
18352 "- DIE at %s [in module %s]"),
18353 sect_offset_str (die->sect_off),
18354 objfile_name (cu->per_objfile->objfile));
18355 if (attr_count != NULL)
18356 complaint (_("Unresolved DW_AT_count "
18357 "- DIE at %s [in module %s]"),
18358 sect_offset_str (die->sect_off),
18359 objfile_name (cu->per_objfile->objfile));
18360 }
18361 }
18362
18363 LONGEST bias = 0;
18364 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18365 if (bias_attr != nullptr && bias_attr->form_is_constant ())
18366 bias = bias_attr->constant_value (0);
18367
18368 /* Normally, the DWARF producers are expected to use a signed
18369 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18370 But this is unfortunately not always the case, as witnessed
18371 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18372 is used instead. To work around that ambiguity, we treat
18373 the bounds as signed, and thus sign-extend their values, when
18374 the base type is signed. */
18375 negative_mask =
18376 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18377 if (low.kind () == PROP_CONST
18378 && !base_type->is_unsigned () && (low.const_val () & negative_mask))
18379 low.set_const_val (low.const_val () | negative_mask);
18380 if (high.kind () == PROP_CONST
18381 && !base_type->is_unsigned () && (high.const_val () & negative_mask))
18382 high.set_const_val (high.const_val () | negative_mask);
18383
18384 /* Check for bit and byte strides. */
18385 struct dynamic_prop byte_stride_prop;
18386 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18387 if (attr_byte_stride != nullptr)
18388 {
18389 struct type *prop_type = cu->addr_sized_int_type (false);
18390 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18391 prop_type);
18392 }
18393
18394 struct dynamic_prop bit_stride_prop;
18395 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18396 if (attr_bit_stride != nullptr)
18397 {
18398 /* It only makes sense to have either a bit or byte stride. */
18399 if (attr_byte_stride != nullptr)
18400 {
18401 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18402 "- DIE at %s [in module %s]"),
18403 sect_offset_str (die->sect_off),
18404 objfile_name (cu->per_objfile->objfile));
18405 attr_bit_stride = nullptr;
18406 }
18407 else
18408 {
18409 struct type *prop_type = cu->addr_sized_int_type (false);
18410 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18411 prop_type);
18412 }
18413 }
18414
18415 if (attr_byte_stride != nullptr
18416 || attr_bit_stride != nullptr)
18417 {
18418 bool byte_stride_p = (attr_byte_stride != nullptr);
18419 struct dynamic_prop *stride
18420 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18421
18422 range_type
18423 = create_range_type_with_stride (NULL, orig_base_type, &low,
18424 &high, bias, stride, byte_stride_p);
18425 }
18426 else
18427 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18428
18429 if (high_bound_is_count)
18430 range_type->bounds ()->flag_upper_bound_is_count = 1;
18431
18432 /* Ada expects an empty array on no boundary attributes. */
18433 if (attr == NULL && cu->language != language_ada)
18434 range_type->bounds ()->high.set_undefined ();
18435
18436 name = dwarf2_name (die, cu);
18437 if (name)
18438 range_type->set_name (name);
18439
18440 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18441 if (attr != nullptr)
18442 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18443
18444 maybe_set_alignment (cu, die, range_type);
18445
18446 set_die_type (die, range_type, cu);
18447
18448 /* set_die_type should be already done. */
18449 set_descriptive_type (range_type, die, cu);
18450
18451 return range_type;
18452 }
18453
18454 static struct type *
18455 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18456 {
18457 struct type *type;
18458
18459 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
18460 type->set_name (dwarf2_name (die, cu));
18461
18462 /* In Ada, an unspecified type is typically used when the description
18463 of the type is deferred to a different unit. When encountering
18464 such a type, we treat it as a stub, and try to resolve it later on,
18465 when needed. */
18466 if (cu->language == language_ada)
18467 type->set_is_stub (true);
18468
18469 return set_die_type (die, type, cu);
18470 }
18471
18472 /* Read a single die and all its descendents. Set the die's sibling
18473 field to NULL; set other fields in the die correctly, and set all
18474 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18475 location of the info_ptr after reading all of those dies. PARENT
18476 is the parent of the die in question. */
18477
18478 static struct die_info *
18479 read_die_and_children (const struct die_reader_specs *reader,
18480 const gdb_byte *info_ptr,
18481 const gdb_byte **new_info_ptr,
18482 struct die_info *parent)
18483 {
18484 struct die_info *die;
18485 const gdb_byte *cur_ptr;
18486
18487 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
18488 if (die == NULL)
18489 {
18490 *new_info_ptr = cur_ptr;
18491 return NULL;
18492 }
18493 store_in_ref_table (die, reader->cu);
18494
18495 if (die->has_children)
18496 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18497 else
18498 {
18499 die->child = NULL;
18500 *new_info_ptr = cur_ptr;
18501 }
18502
18503 die->sibling = NULL;
18504 die->parent = parent;
18505 return die;
18506 }
18507
18508 /* Read a die, all of its descendents, and all of its siblings; set
18509 all of the fields of all of the dies correctly. Arguments are as
18510 in read_die_and_children. */
18511
18512 static struct die_info *
18513 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18514 const gdb_byte *info_ptr,
18515 const gdb_byte **new_info_ptr,
18516 struct die_info *parent)
18517 {
18518 struct die_info *first_die, *last_sibling;
18519 const gdb_byte *cur_ptr;
18520
18521 cur_ptr = info_ptr;
18522 first_die = last_sibling = NULL;
18523
18524 while (1)
18525 {
18526 struct die_info *die
18527 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18528
18529 if (die == NULL)
18530 {
18531 *new_info_ptr = cur_ptr;
18532 return first_die;
18533 }
18534
18535 if (!first_die)
18536 first_die = die;
18537 else
18538 last_sibling->sibling = die;
18539
18540 last_sibling = die;
18541 }
18542 }
18543
18544 /* Read a die, all of its descendents, and all of its siblings; set
18545 all of the fields of all of the dies correctly. Arguments are as
18546 in read_die_and_children.
18547 This the main entry point for reading a DIE and all its children. */
18548
18549 static struct die_info *
18550 read_die_and_siblings (const struct die_reader_specs *reader,
18551 const gdb_byte *info_ptr,
18552 const gdb_byte **new_info_ptr,
18553 struct die_info *parent)
18554 {
18555 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18556 new_info_ptr, parent);
18557
18558 if (dwarf_die_debug)
18559 {
18560 fprintf_unfiltered (gdb_stdlog,
18561 "Read die from %s@0x%x of %s:\n",
18562 reader->die_section->get_name (),
18563 (unsigned) (info_ptr - reader->die_section->buffer),
18564 bfd_get_filename (reader->abfd));
18565 dump_die (die, dwarf_die_debug);
18566 }
18567
18568 return die;
18569 }
18570
18571 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18572 attributes.
18573 The caller is responsible for filling in the extra attributes
18574 and updating (*DIEP)->num_attrs.
18575 Set DIEP to point to a newly allocated die with its information,
18576 except for its child, sibling, and parent fields. */
18577
18578 static const gdb_byte *
18579 read_full_die_1 (const struct die_reader_specs *reader,
18580 struct die_info **diep, const gdb_byte *info_ptr,
18581 int num_extra_attrs)
18582 {
18583 unsigned int abbrev_number, bytes_read, i;
18584 struct abbrev_info *abbrev;
18585 struct die_info *die;
18586 struct dwarf2_cu *cu = reader->cu;
18587 bfd *abfd = reader->abfd;
18588
18589 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18590 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18591 info_ptr += bytes_read;
18592 if (!abbrev_number)
18593 {
18594 *diep = NULL;
18595 return info_ptr;
18596 }
18597
18598 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18599 if (!abbrev)
18600 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18601 abbrev_number,
18602 bfd_get_filename (abfd));
18603
18604 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18605 die->sect_off = sect_off;
18606 die->tag = abbrev->tag;
18607 die->abbrev = abbrev_number;
18608 die->has_children = abbrev->has_children;
18609
18610 /* Make the result usable.
18611 The caller needs to update num_attrs after adding the extra
18612 attributes. */
18613 die->num_attrs = abbrev->num_attrs;
18614
18615 bool any_need_reprocess = false;
18616 for (i = 0; i < abbrev->num_attrs; ++i)
18617 {
18618 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18619 info_ptr);
18620 if (die->attrs[i].requires_reprocessing_p ())
18621 any_need_reprocess = true;
18622 }
18623
18624 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18625 if (attr != nullptr)
18626 cu->str_offsets_base = DW_UNSND (attr);
18627
18628 attr = die->attr (DW_AT_loclists_base);
18629 if (attr != nullptr)
18630 cu->loclist_base = DW_UNSND (attr);
18631
18632 auto maybe_addr_base = die->addr_base ();
18633 if (maybe_addr_base.has_value ())
18634 cu->addr_base = *maybe_addr_base;
18635
18636 attr = die->attr (DW_AT_rnglists_base);
18637 if (attr != nullptr)
18638 cu->ranges_base = DW_UNSND (attr);
18639
18640 if (any_need_reprocess)
18641 {
18642 for (i = 0; i < abbrev->num_attrs; ++i)
18643 {
18644 if (die->attrs[i].requires_reprocessing_p ())
18645 read_attribute_reprocess (reader, &die->attrs[i], die->tag);
18646 }
18647 }
18648 *diep = die;
18649 return info_ptr;
18650 }
18651
18652 /* Read a die and all its attributes.
18653 Set DIEP to point to a newly allocated die with its information,
18654 except for its child, sibling, and parent fields. */
18655
18656 static const gdb_byte *
18657 read_full_die (const struct die_reader_specs *reader,
18658 struct die_info **diep, const gdb_byte *info_ptr)
18659 {
18660 const gdb_byte *result;
18661
18662 result = read_full_die_1 (reader, diep, info_ptr, 0);
18663
18664 if (dwarf_die_debug)
18665 {
18666 fprintf_unfiltered (gdb_stdlog,
18667 "Read die from %s@0x%x of %s:\n",
18668 reader->die_section->get_name (),
18669 (unsigned) (info_ptr - reader->die_section->buffer),
18670 bfd_get_filename (reader->abfd));
18671 dump_die (*diep, dwarf_die_debug);
18672 }
18673
18674 return result;
18675 }
18676 \f
18677
18678 /* Returns nonzero if TAG represents a type that we might generate a partial
18679 symbol for. */
18680
18681 static int
18682 is_type_tag_for_partial (int tag)
18683 {
18684 switch (tag)
18685 {
18686 #if 0
18687 /* Some types that would be reasonable to generate partial symbols for,
18688 that we don't at present. */
18689 case DW_TAG_array_type:
18690 case DW_TAG_file_type:
18691 case DW_TAG_ptr_to_member_type:
18692 case DW_TAG_set_type:
18693 case DW_TAG_string_type:
18694 case DW_TAG_subroutine_type:
18695 #endif
18696 case DW_TAG_base_type:
18697 case DW_TAG_class_type:
18698 case DW_TAG_interface_type:
18699 case DW_TAG_enumeration_type:
18700 case DW_TAG_structure_type:
18701 case DW_TAG_subrange_type:
18702 case DW_TAG_typedef:
18703 case DW_TAG_union_type:
18704 return 1;
18705 default:
18706 return 0;
18707 }
18708 }
18709
18710 /* Load all DIEs that are interesting for partial symbols into memory. */
18711
18712 static struct partial_die_info *
18713 load_partial_dies (const struct die_reader_specs *reader,
18714 const gdb_byte *info_ptr, int building_psymtab)
18715 {
18716 struct dwarf2_cu *cu = reader->cu;
18717 struct objfile *objfile = cu->per_objfile->objfile;
18718 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18719 unsigned int bytes_read;
18720 unsigned int load_all = 0;
18721 int nesting_level = 1;
18722
18723 parent_die = NULL;
18724 last_die = NULL;
18725
18726 gdb_assert (cu->per_cu != NULL);
18727 if (cu->per_cu->load_all_dies)
18728 load_all = 1;
18729
18730 cu->partial_dies
18731 = htab_create_alloc_ex (cu->header.length / 12,
18732 partial_die_hash,
18733 partial_die_eq,
18734 NULL,
18735 &cu->comp_unit_obstack,
18736 hashtab_obstack_allocate,
18737 dummy_obstack_deallocate);
18738
18739 while (1)
18740 {
18741 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18742
18743 /* A NULL abbrev means the end of a series of children. */
18744 if (abbrev == NULL)
18745 {
18746 if (--nesting_level == 0)
18747 return first_die;
18748
18749 info_ptr += bytes_read;
18750 last_die = parent_die;
18751 parent_die = parent_die->die_parent;
18752 continue;
18753 }
18754
18755 /* Check for template arguments. We never save these; if
18756 they're seen, we just mark the parent, and go on our way. */
18757 if (parent_die != NULL
18758 && cu->language == language_cplus
18759 && (abbrev->tag == DW_TAG_template_type_param
18760 || abbrev->tag == DW_TAG_template_value_param))
18761 {
18762 parent_die->has_template_arguments = 1;
18763
18764 if (!load_all)
18765 {
18766 /* We don't need a partial DIE for the template argument. */
18767 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18768 continue;
18769 }
18770 }
18771
18772 /* We only recurse into c++ subprograms looking for template arguments.
18773 Skip their other children. */
18774 if (!load_all
18775 && cu->language == language_cplus
18776 && parent_die != NULL
18777 && parent_die->tag == DW_TAG_subprogram
18778 && abbrev->tag != DW_TAG_inlined_subroutine)
18779 {
18780 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18781 continue;
18782 }
18783
18784 /* Check whether this DIE is interesting enough to save. Normally
18785 we would not be interested in members here, but there may be
18786 later variables referencing them via DW_AT_specification (for
18787 static members). */
18788 if (!load_all
18789 && !is_type_tag_for_partial (abbrev->tag)
18790 && abbrev->tag != DW_TAG_constant
18791 && abbrev->tag != DW_TAG_enumerator
18792 && abbrev->tag != DW_TAG_subprogram
18793 && abbrev->tag != DW_TAG_inlined_subroutine
18794 && abbrev->tag != DW_TAG_lexical_block
18795 && abbrev->tag != DW_TAG_variable
18796 && abbrev->tag != DW_TAG_namespace
18797 && abbrev->tag != DW_TAG_module
18798 && abbrev->tag != DW_TAG_member
18799 && abbrev->tag != DW_TAG_imported_unit
18800 && abbrev->tag != DW_TAG_imported_declaration)
18801 {
18802 /* Otherwise we skip to the next sibling, if any. */
18803 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18804 continue;
18805 }
18806
18807 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18808 abbrev);
18809
18810 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18811
18812 /* This two-pass algorithm for processing partial symbols has a
18813 high cost in cache pressure. Thus, handle some simple cases
18814 here which cover the majority of C partial symbols. DIEs
18815 which neither have specification tags in them, nor could have
18816 specification tags elsewhere pointing at them, can simply be
18817 processed and discarded.
18818
18819 This segment is also optional; scan_partial_symbols and
18820 add_partial_symbol will handle these DIEs if we chain
18821 them in normally. When compilers which do not emit large
18822 quantities of duplicate debug information are more common,
18823 this code can probably be removed. */
18824
18825 /* Any complete simple types at the top level (pretty much all
18826 of them, for a language without namespaces), can be processed
18827 directly. */
18828 if (parent_die == NULL
18829 && pdi.has_specification == 0
18830 && pdi.is_declaration == 0
18831 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18832 || pdi.tag == DW_TAG_base_type
18833 || pdi.tag == DW_TAG_subrange_type))
18834 {
18835 if (building_psymtab && pdi.raw_name != NULL)
18836 add_partial_symbol (&pdi, cu);
18837
18838 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18839 continue;
18840 }
18841
18842 /* The exception for DW_TAG_typedef with has_children above is
18843 a workaround of GCC PR debug/47510. In the case of this complaint
18844 type_name_or_error will error on such types later.
18845
18846 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18847 it could not find the child DIEs referenced later, this is checked
18848 above. In correct DWARF DW_TAG_typedef should have no children. */
18849
18850 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18851 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18852 "- DIE at %s [in module %s]"),
18853 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18854
18855 /* If we're at the second level, and we're an enumerator, and
18856 our parent has no specification (meaning possibly lives in a
18857 namespace elsewhere), then we can add the partial symbol now
18858 instead of queueing it. */
18859 if (pdi.tag == DW_TAG_enumerator
18860 && parent_die != NULL
18861 && parent_die->die_parent == NULL
18862 && parent_die->tag == DW_TAG_enumeration_type
18863 && parent_die->has_specification == 0)
18864 {
18865 if (pdi.raw_name == NULL)
18866 complaint (_("malformed enumerator DIE ignored"));
18867 else if (building_psymtab)
18868 add_partial_symbol (&pdi, cu);
18869
18870 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18871 continue;
18872 }
18873
18874 struct partial_die_info *part_die
18875 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18876
18877 /* We'll save this DIE so link it in. */
18878 part_die->die_parent = parent_die;
18879 part_die->die_sibling = NULL;
18880 part_die->die_child = NULL;
18881
18882 if (last_die && last_die == parent_die)
18883 last_die->die_child = part_die;
18884 else if (last_die)
18885 last_die->die_sibling = part_die;
18886
18887 last_die = part_die;
18888
18889 if (first_die == NULL)
18890 first_die = part_die;
18891
18892 /* Maybe add the DIE to the hash table. Not all DIEs that we
18893 find interesting need to be in the hash table, because we
18894 also have the parent/sibling/child chains; only those that we
18895 might refer to by offset later during partial symbol reading.
18896
18897 For now this means things that might have be the target of a
18898 DW_AT_specification, DW_AT_abstract_origin, or
18899 DW_AT_extension. DW_AT_extension will refer only to
18900 namespaces; DW_AT_abstract_origin refers to functions (and
18901 many things under the function DIE, but we do not recurse
18902 into function DIEs during partial symbol reading) and
18903 possibly variables as well; DW_AT_specification refers to
18904 declarations. Declarations ought to have the DW_AT_declaration
18905 flag. It happens that GCC forgets to put it in sometimes, but
18906 only for functions, not for types.
18907
18908 Adding more things than necessary to the hash table is harmless
18909 except for the performance cost. Adding too few will result in
18910 wasted time in find_partial_die, when we reread the compilation
18911 unit with load_all_dies set. */
18912
18913 if (load_all
18914 || abbrev->tag == DW_TAG_constant
18915 || abbrev->tag == DW_TAG_subprogram
18916 || abbrev->tag == DW_TAG_variable
18917 || abbrev->tag == DW_TAG_namespace
18918 || part_die->is_declaration)
18919 {
18920 void **slot;
18921
18922 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18923 to_underlying (part_die->sect_off),
18924 INSERT);
18925 *slot = part_die;
18926 }
18927
18928 /* For some DIEs we want to follow their children (if any). For C
18929 we have no reason to follow the children of structures; for other
18930 languages we have to, so that we can get at method physnames
18931 to infer fully qualified class names, for DW_AT_specification,
18932 and for C++ template arguments. For C++, we also look one level
18933 inside functions to find template arguments (if the name of the
18934 function does not already contain the template arguments).
18935
18936 For Ada and Fortran, we need to scan the children of subprograms
18937 and lexical blocks as well because these languages allow the
18938 definition of nested entities that could be interesting for the
18939 debugger, such as nested subprograms for instance. */
18940 if (last_die->has_children
18941 && (load_all
18942 || last_die->tag == DW_TAG_namespace
18943 || last_die->tag == DW_TAG_module
18944 || last_die->tag == DW_TAG_enumeration_type
18945 || (cu->language == language_cplus
18946 && last_die->tag == DW_TAG_subprogram
18947 && (last_die->raw_name == NULL
18948 || strchr (last_die->raw_name, '<') == NULL))
18949 || (cu->language != language_c
18950 && (last_die->tag == DW_TAG_class_type
18951 || last_die->tag == DW_TAG_interface_type
18952 || last_die->tag == DW_TAG_structure_type
18953 || last_die->tag == DW_TAG_union_type))
18954 || ((cu->language == language_ada
18955 || cu->language == language_fortran)
18956 && (last_die->tag == DW_TAG_subprogram
18957 || last_die->tag == DW_TAG_lexical_block))))
18958 {
18959 nesting_level++;
18960 parent_die = last_die;
18961 continue;
18962 }
18963
18964 /* Otherwise we skip to the next sibling, if any. */
18965 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18966
18967 /* Back to the top, do it again. */
18968 }
18969 }
18970
18971 partial_die_info::partial_die_info (sect_offset sect_off_,
18972 struct abbrev_info *abbrev)
18973 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18974 {
18975 }
18976
18977 /* See class definition. */
18978
18979 const char *
18980 partial_die_info::name (dwarf2_cu *cu)
18981 {
18982 if (!canonical_name && raw_name != nullptr)
18983 {
18984 struct objfile *objfile = cu->per_objfile->objfile;
18985 raw_name = dwarf2_canonicalize_name (raw_name, cu, objfile);
18986 canonical_name = 1;
18987 }
18988
18989 return raw_name;
18990 }
18991
18992 /* Read a minimal amount of information into the minimal die structure.
18993 INFO_PTR should point just after the initial uleb128 of a DIE. */
18994
18995 const gdb_byte *
18996 partial_die_info::read (const struct die_reader_specs *reader,
18997 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18998 {
18999 struct dwarf2_cu *cu = reader->cu;
19000 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19001 unsigned int i;
19002 int has_low_pc_attr = 0;
19003 int has_high_pc_attr = 0;
19004 int high_pc_relative = 0;
19005
19006 for (i = 0; i < abbrev.num_attrs; ++i)
19007 {
19008 attribute attr;
19009 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
19010 /* String and address offsets that need to do the reprocessing have
19011 already been read at this point, so there is no need to wait until
19012 the loop terminates to do the reprocessing. */
19013 if (attr.requires_reprocessing_p ())
19014 read_attribute_reprocess (reader, &attr, tag);
19015 /* Store the data if it is of an attribute we want to keep in a
19016 partial symbol table. */
19017 switch (attr.name)
19018 {
19019 case DW_AT_name:
19020 switch (tag)
19021 {
19022 case DW_TAG_compile_unit:
19023 case DW_TAG_partial_unit:
19024 case DW_TAG_type_unit:
19025 /* Compilation units have a DW_AT_name that is a filename, not
19026 a source language identifier. */
19027 case DW_TAG_enumeration_type:
19028 case DW_TAG_enumerator:
19029 /* These tags always have simple identifiers already; no need
19030 to canonicalize them. */
19031 canonical_name = 1;
19032 raw_name = attr.as_string ();
19033 break;
19034 default:
19035 canonical_name = 0;
19036 raw_name = attr.as_string ();
19037 break;
19038 }
19039 break;
19040 case DW_AT_linkage_name:
19041 case DW_AT_MIPS_linkage_name:
19042 /* Note that both forms of linkage name might appear. We
19043 assume they will be the same, and we only store the last
19044 one we see. */
19045 linkage_name = attr.as_string ();
19046 break;
19047 case DW_AT_low_pc:
19048 has_low_pc_attr = 1;
19049 lowpc = attr.as_address ();
19050 break;
19051 case DW_AT_high_pc:
19052 has_high_pc_attr = 1;
19053 highpc = attr.as_address ();
19054 if (cu->header.version >= 4 && attr.form_is_constant ())
19055 high_pc_relative = 1;
19056 break;
19057 case DW_AT_location:
19058 /* Support the .debug_loc offsets. */
19059 if (attr.form_is_block ())
19060 {
19061 d.locdesc = attr.as_block ();
19062 }
19063 else if (attr.form_is_section_offset ())
19064 {
19065 dwarf2_complex_location_expr_complaint ();
19066 }
19067 else
19068 {
19069 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19070 "partial symbol information");
19071 }
19072 break;
19073 case DW_AT_external:
19074 is_external = DW_UNSND (&attr);
19075 break;
19076 case DW_AT_declaration:
19077 is_declaration = DW_UNSND (&attr);
19078 break;
19079 case DW_AT_type:
19080 has_type = 1;
19081 break;
19082 case DW_AT_abstract_origin:
19083 case DW_AT_specification:
19084 case DW_AT_extension:
19085 has_specification = 1;
19086 spec_offset = attr.get_ref_die_offset ();
19087 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19088 || cu->per_cu->is_dwz);
19089 break;
19090 case DW_AT_sibling:
19091 /* Ignore absolute siblings, they might point outside of
19092 the current compile unit. */
19093 if (attr.form == DW_FORM_ref_addr)
19094 complaint (_("ignoring absolute DW_AT_sibling"));
19095 else
19096 {
19097 const gdb_byte *buffer = reader->buffer;
19098 sect_offset off = attr.get_ref_die_offset ();
19099 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19100
19101 if (sibling_ptr < info_ptr)
19102 complaint (_("DW_AT_sibling points backwards"));
19103 else if (sibling_ptr > reader->buffer_end)
19104 reader->die_section->overflow_complaint ();
19105 else
19106 sibling = sibling_ptr;
19107 }
19108 break;
19109 case DW_AT_byte_size:
19110 has_byte_size = 1;
19111 break;
19112 case DW_AT_const_value:
19113 has_const_value = 1;
19114 break;
19115 case DW_AT_calling_convention:
19116 /* DWARF doesn't provide a way to identify a program's source-level
19117 entry point. DW_AT_calling_convention attributes are only meant
19118 to describe functions' calling conventions.
19119
19120 However, because it's a necessary piece of information in
19121 Fortran, and before DWARF 4 DW_CC_program was the only
19122 piece of debugging information whose definition refers to
19123 a 'main program' at all, several compilers marked Fortran
19124 main programs with DW_CC_program --- even when those
19125 functions use the standard calling conventions.
19126
19127 Although DWARF now specifies a way to provide this
19128 information, we support this practice for backward
19129 compatibility. */
19130 if (DW_UNSND (&attr) == DW_CC_program
19131 && cu->language == language_fortran)
19132 main_subprogram = 1;
19133 break;
19134 case DW_AT_inline:
19135 if (DW_UNSND (&attr) == DW_INL_inlined
19136 || DW_UNSND (&attr) == DW_INL_declared_inlined)
19137 may_be_inlined = 1;
19138 break;
19139
19140 case DW_AT_import:
19141 if (tag == DW_TAG_imported_unit)
19142 {
19143 d.sect_off = attr.get_ref_die_offset ();
19144 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19145 || cu->per_cu->is_dwz);
19146 }
19147 break;
19148
19149 case DW_AT_main_subprogram:
19150 main_subprogram = DW_UNSND (&attr);
19151 break;
19152
19153 case DW_AT_ranges:
19154 {
19155 /* DW_AT_rnglists_base does not apply to DIEs from the DWO
19156 skeleton. We take advantage of the fact the DW_AT_ranges
19157 does not appear in DW_TAG_compile_unit of DWO files.
19158
19159 Attributes of the form DW_FORM_rnglistx have already had
19160 their value changed by read_rnglist_index and already
19161 include DW_AT_rnglists_base, so don't need to add the ranges
19162 base, either. */
19163 int need_ranges_base = (tag != DW_TAG_compile_unit
19164 && attr.form != DW_FORM_rnglistx);
19165 unsigned int ranges_offset = (DW_UNSND (&attr)
19166 + (need_ranges_base
19167 ? cu->ranges_base
19168 : 0));
19169
19170 /* Value of the DW_AT_ranges attribute is the offset in the
19171 .debug_ranges section. */
19172 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
19173 nullptr, tag))
19174 has_pc_info = 1;
19175 }
19176 break;
19177
19178 default:
19179 break;
19180 }
19181 }
19182
19183 /* For Ada, if both the name and the linkage name appear, we prefer
19184 the latter. This lets "catch exception" work better, regardless
19185 of the order in which the name and linkage name were emitted.
19186 Really, though, this is just a workaround for the fact that gdb
19187 doesn't store both the name and the linkage name. */
19188 if (cu->language == language_ada && linkage_name != nullptr)
19189 raw_name = linkage_name;
19190
19191 if (high_pc_relative)
19192 highpc += lowpc;
19193
19194 if (has_low_pc_attr && has_high_pc_attr)
19195 {
19196 /* When using the GNU linker, .gnu.linkonce. sections are used to
19197 eliminate duplicate copies of functions and vtables and such.
19198 The linker will arbitrarily choose one and discard the others.
19199 The AT_*_pc values for such functions refer to local labels in
19200 these sections. If the section from that file was discarded, the
19201 labels are not in the output, so the relocs get a value of 0.
19202 If this is a discarded function, mark the pc bounds as invalid,
19203 so that GDB will ignore it. */
19204 if (lowpc == 0 && !per_objfile->per_bfd->has_section_at_zero)
19205 {
19206 struct objfile *objfile = per_objfile->objfile;
19207 struct gdbarch *gdbarch = objfile->arch ();
19208
19209 complaint (_("DW_AT_low_pc %s is zero "
19210 "for DIE at %s [in module %s]"),
19211 paddress (gdbarch, lowpc),
19212 sect_offset_str (sect_off),
19213 objfile_name (objfile));
19214 }
19215 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19216 else if (lowpc >= highpc)
19217 {
19218 struct objfile *objfile = per_objfile->objfile;
19219 struct gdbarch *gdbarch = objfile->arch ();
19220
19221 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19222 "for DIE at %s [in module %s]"),
19223 paddress (gdbarch, lowpc),
19224 paddress (gdbarch, highpc),
19225 sect_offset_str (sect_off),
19226 objfile_name (objfile));
19227 }
19228 else
19229 has_pc_info = 1;
19230 }
19231
19232 return info_ptr;
19233 }
19234
19235 /* Find a cached partial DIE at OFFSET in CU. */
19236
19237 struct partial_die_info *
19238 dwarf2_cu::find_partial_die (sect_offset sect_off)
19239 {
19240 struct partial_die_info *lookup_die = NULL;
19241 struct partial_die_info part_die (sect_off);
19242
19243 lookup_die = ((struct partial_die_info *)
19244 htab_find_with_hash (partial_dies, &part_die,
19245 to_underlying (sect_off)));
19246
19247 return lookup_die;
19248 }
19249
19250 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19251 except in the case of .debug_types DIEs which do not reference
19252 outside their CU (they do however referencing other types via
19253 DW_FORM_ref_sig8). */
19254
19255 static const struct cu_partial_die_info
19256 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19257 {
19258 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19259 struct objfile *objfile = per_objfile->objfile;
19260 struct partial_die_info *pd = NULL;
19261
19262 if (offset_in_dwz == cu->per_cu->is_dwz
19263 && cu->header.offset_in_cu_p (sect_off))
19264 {
19265 pd = cu->find_partial_die (sect_off);
19266 if (pd != NULL)
19267 return { cu, pd };
19268 /* We missed recording what we needed.
19269 Load all dies and try again. */
19270 }
19271 else
19272 {
19273 /* TUs don't reference other CUs/TUs (except via type signatures). */
19274 if (cu->per_cu->is_debug_types)
19275 {
19276 error (_("Dwarf Error: Type Unit at offset %s contains"
19277 " external reference to offset %s [in module %s].\n"),
19278 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19279 bfd_get_filename (objfile->obfd));
19280 }
19281 dwarf2_per_cu_data *per_cu
19282 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19283 per_objfile);
19284
19285 cu = per_objfile->get_cu (per_cu);
19286 if (cu == NULL || cu->partial_dies == NULL)
19287 load_partial_comp_unit (per_cu, per_objfile, nullptr);
19288
19289 cu = per_objfile->get_cu (per_cu);
19290
19291 cu->last_used = 0;
19292 pd = cu->find_partial_die (sect_off);
19293 }
19294
19295 /* If we didn't find it, and not all dies have been loaded,
19296 load them all and try again. */
19297
19298 if (pd == NULL && cu->per_cu->load_all_dies == 0)
19299 {
19300 cu->per_cu->load_all_dies = 1;
19301
19302 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19303 THIS_CU->cu may already be in use. So we can't just free it and
19304 replace its DIEs with the ones we read in. Instead, we leave those
19305 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19306 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19307 set. */
19308 load_partial_comp_unit (cu->per_cu, per_objfile, cu);
19309
19310 pd = cu->find_partial_die (sect_off);
19311 }
19312
19313 if (pd == NULL)
19314 error (_("Dwarf Error: Cannot not find DIE at %s [from module %s]\n"),
19315 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19316 return { cu, pd };
19317 }
19318
19319 /* See if we can figure out if the class lives in a namespace. We do
19320 this by looking for a member function; its demangled name will
19321 contain namespace info, if there is any. */
19322
19323 static void
19324 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19325 struct dwarf2_cu *cu)
19326 {
19327 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19328 what template types look like, because the demangler
19329 frequently doesn't give the same name as the debug info. We
19330 could fix this by only using the demangled name to get the
19331 prefix (but see comment in read_structure_type). */
19332
19333 struct partial_die_info *real_pdi;
19334 struct partial_die_info *child_pdi;
19335
19336 /* If this DIE (this DIE's specification, if any) has a parent, then
19337 we should not do this. We'll prepend the parent's fully qualified
19338 name when we create the partial symbol. */
19339
19340 real_pdi = struct_pdi;
19341 while (real_pdi->has_specification)
19342 {
19343 auto res = find_partial_die (real_pdi->spec_offset,
19344 real_pdi->spec_is_dwz, cu);
19345 real_pdi = res.pdi;
19346 cu = res.cu;
19347 }
19348
19349 if (real_pdi->die_parent != NULL)
19350 return;
19351
19352 for (child_pdi = struct_pdi->die_child;
19353 child_pdi != NULL;
19354 child_pdi = child_pdi->die_sibling)
19355 {
19356 if (child_pdi->tag == DW_TAG_subprogram
19357 && child_pdi->linkage_name != NULL)
19358 {
19359 gdb::unique_xmalloc_ptr<char> actual_class_name
19360 (cu->language_defn->class_name_from_physname
19361 (child_pdi->linkage_name));
19362 if (actual_class_name != NULL)
19363 {
19364 struct objfile *objfile = cu->per_objfile->objfile;
19365 struct_pdi->raw_name = objfile->intern (actual_class_name.get ());
19366 struct_pdi->canonical_name = 1;
19367 }
19368 break;
19369 }
19370 }
19371 }
19372
19373 /* Return true if a DIE with TAG may have the DW_AT_const_value
19374 attribute. */
19375
19376 static bool
19377 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
19378 {
19379 switch (tag)
19380 {
19381 case DW_TAG_constant:
19382 case DW_TAG_enumerator:
19383 case DW_TAG_formal_parameter:
19384 case DW_TAG_template_value_param:
19385 case DW_TAG_variable:
19386 return true;
19387 }
19388
19389 return false;
19390 }
19391
19392 void
19393 partial_die_info::fixup (struct dwarf2_cu *cu)
19394 {
19395 /* Once we've fixed up a die, there's no point in doing so again.
19396 This also avoids a memory leak if we were to call
19397 guess_partial_die_structure_name multiple times. */
19398 if (fixup_called)
19399 return;
19400
19401 /* If we found a reference attribute and the DIE has no name, try
19402 to find a name in the referred to DIE. */
19403
19404 if (raw_name == NULL && has_specification)
19405 {
19406 struct partial_die_info *spec_die;
19407
19408 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19409 spec_die = res.pdi;
19410 cu = res.cu;
19411
19412 spec_die->fixup (cu);
19413
19414 if (spec_die->raw_name)
19415 {
19416 raw_name = spec_die->raw_name;
19417 canonical_name = spec_die->canonical_name;
19418
19419 /* Copy DW_AT_external attribute if it is set. */
19420 if (spec_die->is_external)
19421 is_external = spec_die->is_external;
19422 }
19423 }
19424
19425 if (!has_const_value && has_specification
19426 && can_have_DW_AT_const_value_p (tag))
19427 {
19428 struct partial_die_info *spec_die;
19429
19430 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19431 spec_die = res.pdi;
19432 cu = res.cu;
19433
19434 spec_die->fixup (cu);
19435
19436 if (spec_die->has_const_value)
19437 {
19438 /* Copy DW_AT_const_value attribute if it is set. */
19439 has_const_value = spec_die->has_const_value;
19440 }
19441 }
19442
19443 /* Set default names for some unnamed DIEs. */
19444
19445 if (raw_name == NULL && tag == DW_TAG_namespace)
19446 {
19447 raw_name = CP_ANONYMOUS_NAMESPACE_STR;
19448 canonical_name = 1;
19449 }
19450
19451 /* If there is no parent die to provide a namespace, and there are
19452 children, see if we can determine the namespace from their linkage
19453 name. */
19454 if (cu->language == language_cplus
19455 && !cu->per_objfile->per_bfd->types.empty ()
19456 && die_parent == NULL
19457 && has_children
19458 && (tag == DW_TAG_class_type
19459 || tag == DW_TAG_structure_type
19460 || tag == DW_TAG_union_type))
19461 guess_partial_die_structure_name (this, cu);
19462
19463 /* GCC might emit a nameless struct or union that has a linkage
19464 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19465 if (raw_name == NULL
19466 && (tag == DW_TAG_class_type
19467 || tag == DW_TAG_interface_type
19468 || tag == DW_TAG_structure_type
19469 || tag == DW_TAG_union_type)
19470 && linkage_name != NULL)
19471 {
19472 gdb::unique_xmalloc_ptr<char> demangled
19473 (gdb_demangle (linkage_name, DMGL_TYPES));
19474 if (demangled != nullptr)
19475 {
19476 const char *base;
19477
19478 /* Strip any leading namespaces/classes, keep only the base name.
19479 DW_AT_name for named DIEs does not contain the prefixes. */
19480 base = strrchr (demangled.get (), ':');
19481 if (base && base > demangled.get () && base[-1] == ':')
19482 base++;
19483 else
19484 base = demangled.get ();
19485
19486 struct objfile *objfile = cu->per_objfile->objfile;
19487 raw_name = objfile->intern (base);
19488 canonical_name = 1;
19489 }
19490 }
19491
19492 fixup_called = 1;
19493 }
19494
19495 /* Read the .debug_loclists or .debug_rnglists header (they are the same format)
19496 contents from the given SECTION in the HEADER. */
19497 static void
19498 read_loclists_rnglists_header (struct loclists_rnglists_header *header,
19499 struct dwarf2_section_info *section)
19500 {
19501 unsigned int bytes_read;
19502 bfd *abfd = section->get_bfd_owner ();
19503 const gdb_byte *info_ptr = section->buffer;
19504 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
19505 info_ptr += bytes_read;
19506 header->version = read_2_bytes (abfd, info_ptr);
19507 info_ptr += 2;
19508 header->addr_size = read_1_byte (abfd, info_ptr);
19509 info_ptr += 1;
19510 header->segment_collector_size = read_1_byte (abfd, info_ptr);
19511 info_ptr += 1;
19512 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
19513 }
19514
19515 /* Return the DW_AT_loclists_base value for the CU. */
19516 static ULONGEST
19517 lookup_loclist_base (struct dwarf2_cu *cu)
19518 {
19519 /* For the .dwo unit, the loclist_base points to the first offset following
19520 the header. The header consists of the following entities-
19521 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
19522 bit format)
19523 2. version (2 bytes)
19524 3. address size (1 byte)
19525 4. segment selector size (1 byte)
19526 5. offset entry count (4 bytes)
19527 These sizes are derived as per the DWARFv5 standard. */
19528 if (cu->dwo_unit != nullptr)
19529 {
19530 if (cu->header.initial_length_size == 4)
19531 return LOCLIST_HEADER_SIZE32;
19532 return LOCLIST_HEADER_SIZE64;
19533 }
19534 return cu->loclist_base;
19535 }
19536
19537 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
19538 array of offsets in the .debug_loclists section. */
19539 static CORE_ADDR
19540 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
19541 {
19542 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19543 struct objfile *objfile = per_objfile->objfile;
19544 bfd *abfd = objfile->obfd;
19545 ULONGEST loclist_base = lookup_loclist_base (cu);
19546 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19547
19548 section->read (objfile);
19549 if (section->buffer == NULL)
19550 complaint (_("DW_FORM_loclistx used without .debug_loclists "
19551 "section [in module %s]"), objfile_name (objfile));
19552 struct loclists_rnglists_header header;
19553 read_loclists_rnglists_header (&header, section);
19554 if (loclist_index >= header.offset_entry_count)
19555 complaint (_("DW_FORM_loclistx pointing outside of "
19556 ".debug_loclists offset array [in module %s]"),
19557 objfile_name (objfile));
19558 if (loclist_base + loclist_index * cu->header.offset_size
19559 >= section->size)
19560 complaint (_("DW_FORM_loclistx pointing outside of "
19561 ".debug_loclists section [in module %s]"),
19562 objfile_name (objfile));
19563 const gdb_byte *info_ptr
19564 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
19565
19566 if (cu->header.offset_size == 4)
19567 return bfd_get_32 (abfd, info_ptr) + loclist_base;
19568 else
19569 return bfd_get_64 (abfd, info_ptr) + loclist_base;
19570 }
19571
19572 /* Given a DW_FORM_rnglistx value RNGLIST_INDEX, fetch the offset from the
19573 array of offsets in the .debug_rnglists section. */
19574 static CORE_ADDR
19575 read_rnglist_index (struct dwarf2_cu *cu, ULONGEST rnglist_index,
19576 dwarf_tag tag)
19577 {
19578 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19579 struct objfile *objfile = dwarf2_per_objfile->objfile;
19580 bfd *abfd = objfile->obfd;
19581 ULONGEST rnglist_header_size =
19582 (cu->header.initial_length_size == 4 ? RNGLIST_HEADER_SIZE32
19583 : RNGLIST_HEADER_SIZE64);
19584 ULONGEST rnglist_base =
19585 (cu->dwo_unit != nullptr) ? rnglist_header_size : cu->ranges_base;
19586 ULONGEST start_offset =
19587 rnglist_base + rnglist_index * cu->header.offset_size;
19588
19589 /* Get rnglists section. */
19590 struct dwarf2_section_info *section = cu_debug_rnglists_section (cu, tag);
19591
19592 /* Read the rnglists section content. */
19593 section->read (objfile);
19594 if (section->buffer == nullptr)
19595 error (_("DW_FORM_rnglistx used without .debug_rnglists section "
19596 "[in module %s]"),
19597 objfile_name (objfile));
19598
19599 /* Verify the rnglist index is valid. */
19600 struct loclists_rnglists_header header;
19601 read_loclists_rnglists_header (&header, section);
19602 if (rnglist_index >= header.offset_entry_count)
19603 error (_("DW_FORM_rnglistx index pointing outside of "
19604 ".debug_rnglists offset array [in module %s]"),
19605 objfile_name (objfile));
19606
19607 /* Validate that the offset is within the section's range. */
19608 if (start_offset >= section->size)
19609 error (_("DW_FORM_rnglistx pointing outside of "
19610 ".debug_rnglists section [in module %s]"),
19611 objfile_name (objfile));
19612
19613 /* Validate that reading won't go beyond the end of the section. */
19614 if (start_offset + cu->header.offset_size > rnglist_base + section->size)
19615 error (_("Reading DW_FORM_rnglistx index beyond end of"
19616 ".debug_rnglists section [in module %s]"),
19617 objfile_name (objfile));
19618
19619 const gdb_byte *info_ptr = section->buffer + start_offset;
19620
19621 if (cu->header.offset_size == 4)
19622 return read_4_bytes (abfd, info_ptr) + rnglist_base;
19623 else
19624 return read_8_bytes (abfd, info_ptr) + rnglist_base;
19625 }
19626
19627 /* Process the attributes that had to be skipped in the first round. These
19628 attributes are the ones that need str_offsets_base or addr_base attributes.
19629 They could not have been processed in the first round, because at the time
19630 the values of str_offsets_base or addr_base may not have been known. */
19631 static void
19632 read_attribute_reprocess (const struct die_reader_specs *reader,
19633 struct attribute *attr, dwarf_tag tag)
19634 {
19635 struct dwarf2_cu *cu = reader->cu;
19636 switch (attr->form)
19637 {
19638 case DW_FORM_addrx:
19639 case DW_FORM_GNU_addr_index:
19640 attr->set_address (read_addr_index (cu,
19641 attr->as_unsigned_reprocess ()));
19642 break;
19643 case DW_FORM_loclistx:
19644 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
19645 break;
19646 case DW_FORM_rnglistx:
19647 DW_UNSND (attr) = read_rnglist_index (cu, DW_UNSND (attr), tag);
19648 break;
19649 case DW_FORM_strx:
19650 case DW_FORM_strx1:
19651 case DW_FORM_strx2:
19652 case DW_FORM_strx3:
19653 case DW_FORM_strx4:
19654 case DW_FORM_GNU_str_index:
19655 {
19656 unsigned int str_index = attr->as_unsigned_reprocess ();
19657 gdb_assert (!attr->canonical_string_p ());
19658 if (reader->dwo_file != NULL)
19659 attr->set_string_noncanonical (read_dwo_str_index (reader,
19660 str_index));
19661 else
19662 attr->set_string_noncanonical (read_stub_str_index (cu,
19663 str_index));
19664 break;
19665 }
19666 default:
19667 gdb_assert_not_reached (_("Unexpected DWARF form."));
19668 }
19669 }
19670
19671 /* Read an attribute value described by an attribute form. */
19672
19673 static const gdb_byte *
19674 read_attribute_value (const struct die_reader_specs *reader,
19675 struct attribute *attr, unsigned form,
19676 LONGEST implicit_const, const gdb_byte *info_ptr)
19677 {
19678 struct dwarf2_cu *cu = reader->cu;
19679 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19680 struct objfile *objfile = per_objfile->objfile;
19681 bfd *abfd = reader->abfd;
19682 struct comp_unit_head *cu_header = &cu->header;
19683 unsigned int bytes_read;
19684 struct dwarf_block *blk;
19685
19686 attr->form = (enum dwarf_form) form;
19687 switch (form)
19688 {
19689 case DW_FORM_ref_addr:
19690 if (cu->header.version == 2)
19691 attr->set_unsigned (cu->header.read_address (abfd, info_ptr,
19692 &bytes_read));
19693 else
19694 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19695 &bytes_read));
19696 info_ptr += bytes_read;
19697 break;
19698 case DW_FORM_GNU_ref_alt:
19699 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19700 &bytes_read));
19701 info_ptr += bytes_read;
19702 break;
19703 case DW_FORM_addr:
19704 {
19705 struct gdbarch *gdbarch = objfile->arch ();
19706 CORE_ADDR addr = cu->header.read_address (abfd, info_ptr, &bytes_read);
19707 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
19708 attr->set_address (addr);
19709 info_ptr += bytes_read;
19710 }
19711 break;
19712 case DW_FORM_block2:
19713 blk = dwarf_alloc_block (cu);
19714 blk->size = read_2_bytes (abfd, info_ptr);
19715 info_ptr += 2;
19716 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19717 info_ptr += blk->size;
19718 attr->set_block (blk);
19719 break;
19720 case DW_FORM_block4:
19721 blk = dwarf_alloc_block (cu);
19722 blk->size = read_4_bytes (abfd, info_ptr);
19723 info_ptr += 4;
19724 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19725 info_ptr += blk->size;
19726 attr->set_block (blk);
19727 break;
19728 case DW_FORM_data2:
19729 attr->set_unsigned (read_2_bytes (abfd, info_ptr));
19730 info_ptr += 2;
19731 break;
19732 case DW_FORM_data4:
19733 attr->set_unsigned (read_4_bytes (abfd, info_ptr));
19734 info_ptr += 4;
19735 break;
19736 case DW_FORM_data8:
19737 attr->set_unsigned (read_8_bytes (abfd, info_ptr));
19738 info_ptr += 8;
19739 break;
19740 case DW_FORM_data16:
19741 blk = dwarf_alloc_block (cu);
19742 blk->size = 16;
19743 blk->data = read_n_bytes (abfd, info_ptr, 16);
19744 info_ptr += 16;
19745 attr->set_block (blk);
19746 break;
19747 case DW_FORM_sec_offset:
19748 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19749 &bytes_read));
19750 info_ptr += bytes_read;
19751 break;
19752 case DW_FORM_loclistx:
19753 {
19754 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19755 &bytes_read));
19756 info_ptr += bytes_read;
19757 }
19758 break;
19759 case DW_FORM_string:
19760 attr->set_string_noncanonical (read_direct_string (abfd, info_ptr,
19761 &bytes_read));
19762 info_ptr += bytes_read;
19763 break;
19764 case DW_FORM_strp:
19765 if (!cu->per_cu->is_dwz)
19766 {
19767 attr->set_string_noncanonical
19768 (read_indirect_string (per_objfile,
19769 abfd, info_ptr, cu_header,
19770 &bytes_read));
19771 info_ptr += bytes_read;
19772 break;
19773 }
19774 /* FALLTHROUGH */
19775 case DW_FORM_line_strp:
19776 if (!cu->per_cu->is_dwz)
19777 {
19778 attr->set_string_noncanonical
19779 (per_objfile->read_line_string (info_ptr, cu_header,
19780 &bytes_read));
19781 info_ptr += bytes_read;
19782 break;
19783 }
19784 /* FALLTHROUGH */
19785 case DW_FORM_GNU_strp_alt:
19786 {
19787 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
19788 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19789 &bytes_read);
19790
19791 attr->set_string_noncanonical
19792 (dwz->read_string (objfile, str_offset));
19793 info_ptr += bytes_read;
19794 }
19795 break;
19796 case DW_FORM_exprloc:
19797 case DW_FORM_block:
19798 blk = dwarf_alloc_block (cu);
19799 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19800 info_ptr += bytes_read;
19801 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19802 info_ptr += blk->size;
19803 attr->set_block (blk);
19804 break;
19805 case DW_FORM_block1:
19806 blk = dwarf_alloc_block (cu);
19807 blk->size = read_1_byte (abfd, info_ptr);
19808 info_ptr += 1;
19809 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19810 info_ptr += blk->size;
19811 attr->set_block (blk);
19812 break;
19813 case DW_FORM_data1:
19814 case DW_FORM_flag:
19815 attr->set_unsigned (read_1_byte (abfd, info_ptr));
19816 info_ptr += 1;
19817 break;
19818 case DW_FORM_flag_present:
19819 attr->set_unsigned (1);
19820 break;
19821 case DW_FORM_sdata:
19822 attr->set_signed (read_signed_leb128 (abfd, info_ptr, &bytes_read));
19823 info_ptr += bytes_read;
19824 break;
19825 case DW_FORM_rnglistx:
19826 {
19827 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19828 &bytes_read));
19829 info_ptr += bytes_read;
19830 }
19831 break;
19832 case DW_FORM_udata:
19833 attr->set_unsigned (read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19834 info_ptr += bytes_read;
19835 break;
19836 case DW_FORM_ref1:
19837 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19838 + read_1_byte (abfd, info_ptr)));
19839 info_ptr += 1;
19840 break;
19841 case DW_FORM_ref2:
19842 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19843 + read_2_bytes (abfd, info_ptr)));
19844 info_ptr += 2;
19845 break;
19846 case DW_FORM_ref4:
19847 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19848 + read_4_bytes (abfd, info_ptr)));
19849 info_ptr += 4;
19850 break;
19851 case DW_FORM_ref8:
19852 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19853 + read_8_bytes (abfd, info_ptr)));
19854 info_ptr += 8;
19855 break;
19856 case DW_FORM_ref_sig8:
19857 attr->set_signature (read_8_bytes (abfd, info_ptr));
19858 info_ptr += 8;
19859 break;
19860 case DW_FORM_ref_udata:
19861 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19862 + read_unsigned_leb128 (abfd, info_ptr,
19863 &bytes_read)));
19864 info_ptr += bytes_read;
19865 break;
19866 case DW_FORM_indirect:
19867 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19868 info_ptr += bytes_read;
19869 if (form == DW_FORM_implicit_const)
19870 {
19871 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19872 info_ptr += bytes_read;
19873 }
19874 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19875 info_ptr);
19876 break;
19877 case DW_FORM_implicit_const:
19878 attr->set_signed (implicit_const);
19879 break;
19880 case DW_FORM_addrx:
19881 case DW_FORM_GNU_addr_index:
19882 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19883 &bytes_read));
19884 info_ptr += bytes_read;
19885 break;
19886 case DW_FORM_strx:
19887 case DW_FORM_strx1:
19888 case DW_FORM_strx2:
19889 case DW_FORM_strx3:
19890 case DW_FORM_strx4:
19891 case DW_FORM_GNU_str_index:
19892 {
19893 ULONGEST str_index;
19894 if (form == DW_FORM_strx1)
19895 {
19896 str_index = read_1_byte (abfd, info_ptr);
19897 info_ptr += 1;
19898 }
19899 else if (form == DW_FORM_strx2)
19900 {
19901 str_index = read_2_bytes (abfd, info_ptr);
19902 info_ptr += 2;
19903 }
19904 else if (form == DW_FORM_strx3)
19905 {
19906 str_index = read_3_bytes (abfd, info_ptr);
19907 info_ptr += 3;
19908 }
19909 else if (form == DW_FORM_strx4)
19910 {
19911 str_index = read_4_bytes (abfd, info_ptr);
19912 info_ptr += 4;
19913 }
19914 else
19915 {
19916 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19917 info_ptr += bytes_read;
19918 }
19919 attr->set_unsigned_reprocess (str_index);
19920 }
19921 break;
19922 default:
19923 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19924 dwarf_form_name (form),
19925 bfd_get_filename (abfd));
19926 }
19927
19928 /* Super hack. */
19929 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19930 attr->form = DW_FORM_GNU_ref_alt;
19931
19932 /* We have seen instances where the compiler tried to emit a byte
19933 size attribute of -1 which ended up being encoded as an unsigned
19934 0xffffffff. Although 0xffffffff is technically a valid size value,
19935 an object of this size seems pretty unlikely so we can relatively
19936 safely treat these cases as if the size attribute was invalid and
19937 treat them as zero by default. */
19938 if (attr->name == DW_AT_byte_size
19939 && form == DW_FORM_data4
19940 && DW_UNSND (attr) >= 0xffffffff)
19941 {
19942 complaint
19943 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19944 hex_string (DW_UNSND (attr)));
19945 attr->set_unsigned (0);
19946 }
19947
19948 return info_ptr;
19949 }
19950
19951 /* Read an attribute described by an abbreviated attribute. */
19952
19953 static const gdb_byte *
19954 read_attribute (const struct die_reader_specs *reader,
19955 struct attribute *attr, struct attr_abbrev *abbrev,
19956 const gdb_byte *info_ptr)
19957 {
19958 attr->name = abbrev->name;
19959 attr->string_is_canonical = 0;
19960 attr->requires_reprocessing = 0;
19961 return read_attribute_value (reader, attr, abbrev->form,
19962 abbrev->implicit_const, info_ptr);
19963 }
19964
19965 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19966
19967 static const char *
19968 read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile,
19969 LONGEST str_offset)
19970 {
19971 return per_objfile->per_bfd->str.read_string (per_objfile->objfile,
19972 str_offset, "DW_FORM_strp");
19973 }
19974
19975 /* Return pointer to string at .debug_str offset as read from BUF.
19976 BUF is assumed to be in a compilation unit described by CU_HEADER.
19977 Return *BYTES_READ_PTR count of bytes read from BUF. */
19978
19979 static const char *
19980 read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd,
19981 const gdb_byte *buf,
19982 const struct comp_unit_head *cu_header,
19983 unsigned int *bytes_read_ptr)
19984 {
19985 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19986
19987 return read_indirect_string_at_offset (per_objfile, str_offset);
19988 }
19989
19990 /* See read.h. */
19991
19992 const char *
19993 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19994 const struct comp_unit_head *cu_header,
19995 unsigned int *bytes_read_ptr)
19996 {
19997 bfd *abfd = objfile->obfd;
19998 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19999
20000 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
20001 }
20002
20003 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
20004 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
20005 ADDR_SIZE is the size of addresses from the CU header. */
20006
20007 static CORE_ADDR
20008 read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index,
20009 gdb::optional<ULONGEST> addr_base, int addr_size)
20010 {
20011 struct objfile *objfile = per_objfile->objfile;
20012 bfd *abfd = objfile->obfd;
20013 const gdb_byte *info_ptr;
20014 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
20015
20016 per_objfile->per_bfd->addr.read (objfile);
20017 if (per_objfile->per_bfd->addr.buffer == NULL)
20018 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20019 objfile_name (objfile));
20020 if (addr_base_or_zero + addr_index * addr_size
20021 >= per_objfile->per_bfd->addr.size)
20022 error (_("DW_FORM_addr_index pointing outside of "
20023 ".debug_addr section [in module %s]"),
20024 objfile_name (objfile));
20025 info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero
20026 + addr_index * addr_size);
20027 if (addr_size == 4)
20028 return bfd_get_32 (abfd, info_ptr);
20029 else
20030 return bfd_get_64 (abfd, info_ptr);
20031 }
20032
20033 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20034
20035 static CORE_ADDR
20036 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20037 {
20038 return read_addr_index_1 (cu->per_objfile, addr_index,
20039 cu->addr_base, cu->header.addr_size);
20040 }
20041
20042 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20043
20044 static CORE_ADDR
20045 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20046 unsigned int *bytes_read)
20047 {
20048 bfd *abfd = cu->per_objfile->objfile->obfd;
20049 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20050
20051 return read_addr_index (cu, addr_index);
20052 }
20053
20054 /* See read.h. */
20055
20056 CORE_ADDR
20057 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu,
20058 dwarf2_per_objfile *per_objfile,
20059 unsigned int addr_index)
20060 {
20061 struct dwarf2_cu *cu = per_objfile->get_cu (per_cu);
20062 gdb::optional<ULONGEST> addr_base;
20063 int addr_size;
20064
20065 /* We need addr_base and addr_size.
20066 If we don't have PER_CU->cu, we have to get it.
20067 Nasty, but the alternative is storing the needed info in PER_CU,
20068 which at this point doesn't seem justified: it's not clear how frequently
20069 it would get used and it would increase the size of every PER_CU.
20070 Entry points like dwarf2_per_cu_addr_size do a similar thing
20071 so we're not in uncharted territory here.
20072 Alas we need to be a bit more complicated as addr_base is contained
20073 in the DIE.
20074
20075 We don't need to read the entire CU(/TU).
20076 We just need the header and top level die.
20077
20078 IWBN to use the aging mechanism to let us lazily later discard the CU.
20079 For now we skip this optimization. */
20080
20081 if (cu != NULL)
20082 {
20083 addr_base = cu->addr_base;
20084 addr_size = cu->header.addr_size;
20085 }
20086 else
20087 {
20088 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
20089 addr_base = reader.cu->addr_base;
20090 addr_size = reader.cu->header.addr_size;
20091 }
20092
20093 return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size);
20094 }
20095
20096 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
20097 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
20098 DWO file. */
20099
20100 static const char *
20101 read_str_index (struct dwarf2_cu *cu,
20102 struct dwarf2_section_info *str_section,
20103 struct dwarf2_section_info *str_offsets_section,
20104 ULONGEST str_offsets_base, ULONGEST str_index)
20105 {
20106 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20107 struct objfile *objfile = per_objfile->objfile;
20108 const char *objf_name = objfile_name (objfile);
20109 bfd *abfd = objfile->obfd;
20110 const gdb_byte *info_ptr;
20111 ULONGEST str_offset;
20112 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20113
20114 str_section->read (objfile);
20115 str_offsets_section->read (objfile);
20116 if (str_section->buffer == NULL)
20117 error (_("%s used without %s section"
20118 " in CU at offset %s [in module %s]"),
20119 form_name, str_section->get_name (),
20120 sect_offset_str (cu->header.sect_off), objf_name);
20121 if (str_offsets_section->buffer == NULL)
20122 error (_("%s used without %s section"
20123 " in CU at offset %s [in module %s]"),
20124 form_name, str_section->get_name (),
20125 sect_offset_str (cu->header.sect_off), objf_name);
20126 info_ptr = (str_offsets_section->buffer
20127 + str_offsets_base
20128 + str_index * cu->header.offset_size);
20129 if (cu->header.offset_size == 4)
20130 str_offset = bfd_get_32 (abfd, info_ptr);
20131 else
20132 str_offset = bfd_get_64 (abfd, info_ptr);
20133 if (str_offset >= str_section->size)
20134 error (_("Offset from %s pointing outside of"
20135 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20136 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20137 return (const char *) (str_section->buffer + str_offset);
20138 }
20139
20140 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
20141
20142 static const char *
20143 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20144 {
20145 ULONGEST str_offsets_base = reader->cu->header.version >= 5
20146 ? reader->cu->header.addr_size : 0;
20147 return read_str_index (reader->cu,
20148 &reader->dwo_file->sections.str,
20149 &reader->dwo_file->sections.str_offsets,
20150 str_offsets_base, str_index);
20151 }
20152
20153 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
20154
20155 static const char *
20156 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
20157 {
20158 struct objfile *objfile = cu->per_objfile->objfile;
20159 const char *objf_name = objfile_name (objfile);
20160 static const char form_name[] = "DW_FORM_GNU_str_index";
20161 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
20162
20163 if (!cu->str_offsets_base.has_value ())
20164 error (_("%s used in Fission stub without %s"
20165 " in CU at offset 0x%lx [in module %s]"),
20166 form_name, str_offsets_attr_name,
20167 (long) cu->header.offset_size, objf_name);
20168
20169 return read_str_index (cu,
20170 &cu->per_objfile->per_bfd->str,
20171 &cu->per_objfile->per_bfd->str_offsets,
20172 *cu->str_offsets_base, str_index);
20173 }
20174
20175 /* Return the length of an LEB128 number in BUF. */
20176
20177 static int
20178 leb128_size (const gdb_byte *buf)
20179 {
20180 const gdb_byte *begin = buf;
20181 gdb_byte byte;
20182
20183 while (1)
20184 {
20185 byte = *buf++;
20186 if ((byte & 128) == 0)
20187 return buf - begin;
20188 }
20189 }
20190
20191 static void
20192 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20193 {
20194 switch (lang)
20195 {
20196 case DW_LANG_C89:
20197 case DW_LANG_C99:
20198 case DW_LANG_C11:
20199 case DW_LANG_C:
20200 case DW_LANG_UPC:
20201 cu->language = language_c;
20202 break;
20203 case DW_LANG_Java:
20204 case DW_LANG_C_plus_plus:
20205 case DW_LANG_C_plus_plus_11:
20206 case DW_LANG_C_plus_plus_14:
20207 cu->language = language_cplus;
20208 break;
20209 case DW_LANG_D:
20210 cu->language = language_d;
20211 break;
20212 case DW_LANG_Fortran77:
20213 case DW_LANG_Fortran90:
20214 case DW_LANG_Fortran95:
20215 case DW_LANG_Fortran03:
20216 case DW_LANG_Fortran08:
20217 cu->language = language_fortran;
20218 break;
20219 case DW_LANG_Go:
20220 cu->language = language_go;
20221 break;
20222 case DW_LANG_Mips_Assembler:
20223 cu->language = language_asm;
20224 break;
20225 case DW_LANG_Ada83:
20226 case DW_LANG_Ada95:
20227 cu->language = language_ada;
20228 break;
20229 case DW_LANG_Modula2:
20230 cu->language = language_m2;
20231 break;
20232 case DW_LANG_Pascal83:
20233 cu->language = language_pascal;
20234 break;
20235 case DW_LANG_ObjC:
20236 cu->language = language_objc;
20237 break;
20238 case DW_LANG_Rust:
20239 case DW_LANG_Rust_old:
20240 cu->language = language_rust;
20241 break;
20242 case DW_LANG_Cobol74:
20243 case DW_LANG_Cobol85:
20244 default:
20245 cu->language = language_minimal;
20246 break;
20247 }
20248 cu->language_defn = language_def (cu->language);
20249 }
20250
20251 /* Return the named attribute or NULL if not there. */
20252
20253 static struct attribute *
20254 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20255 {
20256 for (;;)
20257 {
20258 unsigned int i;
20259 struct attribute *spec = NULL;
20260
20261 for (i = 0; i < die->num_attrs; ++i)
20262 {
20263 if (die->attrs[i].name == name)
20264 return &die->attrs[i];
20265 if (die->attrs[i].name == DW_AT_specification
20266 || die->attrs[i].name == DW_AT_abstract_origin)
20267 spec = &die->attrs[i];
20268 }
20269
20270 if (!spec)
20271 break;
20272
20273 die = follow_die_ref (die, spec, &cu);
20274 }
20275
20276 return NULL;
20277 }
20278
20279 /* Return the string associated with a string-typed attribute, or NULL if it
20280 is either not found or is of an incorrect type. */
20281
20282 static const char *
20283 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20284 {
20285 struct attribute *attr;
20286 const char *str = NULL;
20287
20288 attr = dwarf2_attr (die, name, cu);
20289
20290 if (attr != NULL)
20291 {
20292 str = attr->as_string ();
20293 if (str == nullptr)
20294 complaint (_("string type expected for attribute %s for "
20295 "DIE at %s in module %s"),
20296 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20297 objfile_name (cu->per_objfile->objfile));
20298 }
20299
20300 return str;
20301 }
20302
20303 /* Return the dwo name or NULL if not present. If present, it is in either
20304 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20305 static const char *
20306 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20307 {
20308 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20309 if (dwo_name == nullptr)
20310 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20311 return dwo_name;
20312 }
20313
20314 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20315 and holds a non-zero value. This function should only be used for
20316 DW_FORM_flag or DW_FORM_flag_present attributes. */
20317
20318 static int
20319 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20320 {
20321 struct attribute *attr = dwarf2_attr (die, name, cu);
20322
20323 return (attr && DW_UNSND (attr));
20324 }
20325
20326 static int
20327 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20328 {
20329 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20330 which value is non-zero. However, we have to be careful with
20331 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20332 (via dwarf2_flag_true_p) follows this attribute. So we may
20333 end up accidently finding a declaration attribute that belongs
20334 to a different DIE referenced by the specification attribute,
20335 even though the given DIE does not have a declaration attribute. */
20336 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20337 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20338 }
20339
20340 /* Return the die giving the specification for DIE, if there is
20341 one. *SPEC_CU is the CU containing DIE on input, and the CU
20342 containing the return value on output. If there is no
20343 specification, but there is an abstract origin, that is
20344 returned. */
20345
20346 static struct die_info *
20347 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20348 {
20349 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20350 *spec_cu);
20351
20352 if (spec_attr == NULL)
20353 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20354
20355 if (spec_attr == NULL)
20356 return NULL;
20357 else
20358 return follow_die_ref (die, spec_attr, spec_cu);
20359 }
20360
20361 /* Stub for free_line_header to match void * callback types. */
20362
20363 static void
20364 free_line_header_voidp (void *arg)
20365 {
20366 struct line_header *lh = (struct line_header *) arg;
20367
20368 delete lh;
20369 }
20370
20371 /* A convenience function to find the proper .debug_line section for a CU. */
20372
20373 static struct dwarf2_section_info *
20374 get_debug_line_section (struct dwarf2_cu *cu)
20375 {
20376 struct dwarf2_section_info *section;
20377 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20378
20379 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20380 DWO file. */
20381 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20382 section = &cu->dwo_unit->dwo_file->sections.line;
20383 else if (cu->per_cu->is_dwz)
20384 {
20385 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
20386
20387 section = &dwz->line;
20388 }
20389 else
20390 section = &per_objfile->per_bfd->line;
20391
20392 return section;
20393 }
20394
20395 /* Read the statement program header starting at OFFSET in
20396 .debug_line, or .debug_line.dwo. Return a pointer
20397 to a struct line_header, allocated using xmalloc.
20398 Returns NULL if there is a problem reading the header, e.g., if it
20399 has a version we don't understand.
20400
20401 NOTE: the strings in the include directory and file name tables of
20402 the returned object point into the dwarf line section buffer,
20403 and must not be freed. */
20404
20405 static line_header_up
20406 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20407 {
20408 struct dwarf2_section_info *section;
20409 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20410
20411 section = get_debug_line_section (cu);
20412 section->read (per_objfile->objfile);
20413 if (section->buffer == NULL)
20414 {
20415 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20416 complaint (_("missing .debug_line.dwo section"));
20417 else
20418 complaint (_("missing .debug_line section"));
20419 return 0;
20420 }
20421
20422 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
20423 per_objfile, section, &cu->header);
20424 }
20425
20426 /* Subroutine of dwarf_decode_lines to simplify it.
20427 Return the file name of the psymtab for the given file_entry.
20428 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20429 If space for the result is malloc'd, *NAME_HOLDER will be set.
20430 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20431
20432 static const char *
20433 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20434 const dwarf2_psymtab *pst,
20435 const char *comp_dir,
20436 gdb::unique_xmalloc_ptr<char> *name_holder)
20437 {
20438 const char *include_name = fe.name;
20439 const char *include_name_to_compare = include_name;
20440 const char *pst_filename;
20441 int file_is_pst;
20442
20443 const char *dir_name = fe.include_dir (lh);
20444
20445 gdb::unique_xmalloc_ptr<char> hold_compare;
20446 if (!IS_ABSOLUTE_PATH (include_name)
20447 && (dir_name != NULL || comp_dir != NULL))
20448 {
20449 /* Avoid creating a duplicate psymtab for PST.
20450 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20451 Before we do the comparison, however, we need to account
20452 for DIR_NAME and COMP_DIR.
20453 First prepend dir_name (if non-NULL). If we still don't
20454 have an absolute path prepend comp_dir (if non-NULL).
20455 However, the directory we record in the include-file's
20456 psymtab does not contain COMP_DIR (to match the
20457 corresponding symtab(s)).
20458
20459 Example:
20460
20461 bash$ cd /tmp
20462 bash$ gcc -g ./hello.c
20463 include_name = "hello.c"
20464 dir_name = "."
20465 DW_AT_comp_dir = comp_dir = "/tmp"
20466 DW_AT_name = "./hello.c"
20467
20468 */
20469
20470 if (dir_name != NULL)
20471 {
20472 name_holder->reset (concat (dir_name, SLASH_STRING,
20473 include_name, (char *) NULL));
20474 include_name = name_holder->get ();
20475 include_name_to_compare = include_name;
20476 }
20477 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20478 {
20479 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20480 include_name, (char *) NULL));
20481 include_name_to_compare = hold_compare.get ();
20482 }
20483 }
20484
20485 pst_filename = pst->filename;
20486 gdb::unique_xmalloc_ptr<char> copied_name;
20487 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20488 {
20489 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20490 pst_filename, (char *) NULL));
20491 pst_filename = copied_name.get ();
20492 }
20493
20494 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20495
20496 if (file_is_pst)
20497 return NULL;
20498 return include_name;
20499 }
20500
20501 /* State machine to track the state of the line number program. */
20502
20503 class lnp_state_machine
20504 {
20505 public:
20506 /* Initialize a machine state for the start of a line number
20507 program. */
20508 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20509 bool record_lines_p);
20510
20511 file_entry *current_file ()
20512 {
20513 /* lh->file_names is 0-based, but the file name numbers in the
20514 statement program are 1-based. */
20515 return m_line_header->file_name_at (m_file);
20516 }
20517
20518 /* Record the line in the state machine. END_SEQUENCE is true if
20519 we're processing the end of a sequence. */
20520 void record_line (bool end_sequence);
20521
20522 /* Check ADDRESS is -1, or zero and less than UNRELOCATED_LOWPC, and if true
20523 nop-out rest of the lines in this sequence. */
20524 void check_line_address (struct dwarf2_cu *cu,
20525 const gdb_byte *line_ptr,
20526 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20527
20528 void handle_set_discriminator (unsigned int discriminator)
20529 {
20530 m_discriminator = discriminator;
20531 m_line_has_non_zero_discriminator |= discriminator != 0;
20532 }
20533
20534 /* Handle DW_LNE_set_address. */
20535 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20536 {
20537 m_op_index = 0;
20538 address += baseaddr;
20539 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20540 }
20541
20542 /* Handle DW_LNS_advance_pc. */
20543 void handle_advance_pc (CORE_ADDR adjust);
20544
20545 /* Handle a special opcode. */
20546 void handle_special_opcode (unsigned char op_code);
20547
20548 /* Handle DW_LNS_advance_line. */
20549 void handle_advance_line (int line_delta)
20550 {
20551 advance_line (line_delta);
20552 }
20553
20554 /* Handle DW_LNS_set_file. */
20555 void handle_set_file (file_name_index file);
20556
20557 /* Handle DW_LNS_negate_stmt. */
20558 void handle_negate_stmt ()
20559 {
20560 m_is_stmt = !m_is_stmt;
20561 }
20562
20563 /* Handle DW_LNS_const_add_pc. */
20564 void handle_const_add_pc ();
20565
20566 /* Handle DW_LNS_fixed_advance_pc. */
20567 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20568 {
20569 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20570 m_op_index = 0;
20571 }
20572
20573 /* Handle DW_LNS_copy. */
20574 void handle_copy ()
20575 {
20576 record_line (false);
20577 m_discriminator = 0;
20578 }
20579
20580 /* Handle DW_LNE_end_sequence. */
20581 void handle_end_sequence ()
20582 {
20583 m_currently_recording_lines = true;
20584 }
20585
20586 private:
20587 /* Advance the line by LINE_DELTA. */
20588 void advance_line (int line_delta)
20589 {
20590 m_line += line_delta;
20591
20592 if (line_delta != 0)
20593 m_line_has_non_zero_discriminator = m_discriminator != 0;
20594 }
20595
20596 struct dwarf2_cu *m_cu;
20597
20598 gdbarch *m_gdbarch;
20599
20600 /* True if we're recording lines.
20601 Otherwise we're building partial symtabs and are just interested in
20602 finding include files mentioned by the line number program. */
20603 bool m_record_lines_p;
20604
20605 /* The line number header. */
20606 line_header *m_line_header;
20607
20608 /* These are part of the standard DWARF line number state machine,
20609 and initialized according to the DWARF spec. */
20610
20611 unsigned char m_op_index = 0;
20612 /* The line table index of the current file. */
20613 file_name_index m_file = 1;
20614 unsigned int m_line = 1;
20615
20616 /* These are initialized in the constructor. */
20617
20618 CORE_ADDR m_address;
20619 bool m_is_stmt;
20620 unsigned int m_discriminator;
20621
20622 /* Additional bits of state we need to track. */
20623
20624 /* The last file that we called dwarf2_start_subfile for.
20625 This is only used for TLLs. */
20626 unsigned int m_last_file = 0;
20627 /* The last file a line number was recorded for. */
20628 struct subfile *m_last_subfile = NULL;
20629
20630 /* The address of the last line entry. */
20631 CORE_ADDR m_last_address;
20632
20633 /* Set to true when a previous line at the same address (using
20634 m_last_address) had m_is_stmt true. This is reset to false when a
20635 line entry at a new address (m_address different to m_last_address) is
20636 processed. */
20637 bool m_stmt_at_address = false;
20638
20639 /* When true, record the lines we decode. */
20640 bool m_currently_recording_lines = false;
20641
20642 /* The last line number that was recorded, used to coalesce
20643 consecutive entries for the same line. This can happen, for
20644 example, when discriminators are present. PR 17276. */
20645 unsigned int m_last_line = 0;
20646 bool m_line_has_non_zero_discriminator = false;
20647 };
20648
20649 void
20650 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20651 {
20652 CORE_ADDR addr_adj = (((m_op_index + adjust)
20653 / m_line_header->maximum_ops_per_instruction)
20654 * m_line_header->minimum_instruction_length);
20655 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20656 m_op_index = ((m_op_index + adjust)
20657 % m_line_header->maximum_ops_per_instruction);
20658 }
20659
20660 void
20661 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20662 {
20663 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20664 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20665 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20666 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20667 / m_line_header->maximum_ops_per_instruction)
20668 * m_line_header->minimum_instruction_length);
20669 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20670 m_op_index = ((m_op_index + adj_opcode_d)
20671 % m_line_header->maximum_ops_per_instruction);
20672
20673 int line_delta = m_line_header->line_base + adj_opcode_r;
20674 advance_line (line_delta);
20675 record_line (false);
20676 m_discriminator = 0;
20677 }
20678
20679 void
20680 lnp_state_machine::handle_set_file (file_name_index file)
20681 {
20682 m_file = file;
20683
20684 const file_entry *fe = current_file ();
20685 if (fe == NULL)
20686 dwarf2_debug_line_missing_file_complaint ();
20687 else if (m_record_lines_p)
20688 {
20689 const char *dir = fe->include_dir (m_line_header);
20690
20691 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20692 m_line_has_non_zero_discriminator = m_discriminator != 0;
20693 dwarf2_start_subfile (m_cu, fe->name, dir);
20694 }
20695 }
20696
20697 void
20698 lnp_state_machine::handle_const_add_pc ()
20699 {
20700 CORE_ADDR adjust
20701 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20702
20703 CORE_ADDR addr_adj
20704 = (((m_op_index + adjust)
20705 / m_line_header->maximum_ops_per_instruction)
20706 * m_line_header->minimum_instruction_length);
20707
20708 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20709 m_op_index = ((m_op_index + adjust)
20710 % m_line_header->maximum_ops_per_instruction);
20711 }
20712
20713 /* Return non-zero if we should add LINE to the line number table.
20714 LINE is the line to add, LAST_LINE is the last line that was added,
20715 LAST_SUBFILE is the subfile for LAST_LINE.
20716 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20717 had a non-zero discriminator.
20718
20719 We have to be careful in the presence of discriminators.
20720 E.g., for this line:
20721
20722 for (i = 0; i < 100000; i++);
20723
20724 clang can emit four line number entries for that one line,
20725 each with a different discriminator.
20726 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20727
20728 However, we want gdb to coalesce all four entries into one.
20729 Otherwise the user could stepi into the middle of the line and
20730 gdb would get confused about whether the pc really was in the
20731 middle of the line.
20732
20733 Things are further complicated by the fact that two consecutive
20734 line number entries for the same line is a heuristic used by gcc
20735 to denote the end of the prologue. So we can't just discard duplicate
20736 entries, we have to be selective about it. The heuristic we use is
20737 that we only collapse consecutive entries for the same line if at least
20738 one of those entries has a non-zero discriminator. PR 17276.
20739
20740 Note: Addresses in the line number state machine can never go backwards
20741 within one sequence, thus this coalescing is ok. */
20742
20743 static int
20744 dwarf_record_line_p (struct dwarf2_cu *cu,
20745 unsigned int line, unsigned int last_line,
20746 int line_has_non_zero_discriminator,
20747 struct subfile *last_subfile)
20748 {
20749 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20750 return 1;
20751 if (line != last_line)
20752 return 1;
20753 /* Same line for the same file that we've seen already.
20754 As a last check, for pr 17276, only record the line if the line
20755 has never had a non-zero discriminator. */
20756 if (!line_has_non_zero_discriminator)
20757 return 1;
20758 return 0;
20759 }
20760
20761 /* Use the CU's builder to record line number LINE beginning at
20762 address ADDRESS in the line table of subfile SUBFILE. */
20763
20764 static void
20765 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20766 unsigned int line, CORE_ADDR address, bool is_stmt,
20767 struct dwarf2_cu *cu)
20768 {
20769 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20770
20771 if (dwarf_line_debug)
20772 {
20773 fprintf_unfiltered (gdb_stdlog,
20774 "Recording line %u, file %s, address %s\n",
20775 line, lbasename (subfile->name),
20776 paddress (gdbarch, address));
20777 }
20778
20779 if (cu != nullptr)
20780 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20781 }
20782
20783 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20784 Mark the end of a set of line number records.
20785 The arguments are the same as for dwarf_record_line_1.
20786 If SUBFILE is NULL the request is ignored. */
20787
20788 static void
20789 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20790 CORE_ADDR address, struct dwarf2_cu *cu)
20791 {
20792 if (subfile == NULL)
20793 return;
20794
20795 if (dwarf_line_debug)
20796 {
20797 fprintf_unfiltered (gdb_stdlog,
20798 "Finishing current line, file %s, address %s\n",
20799 lbasename (subfile->name),
20800 paddress (gdbarch, address));
20801 }
20802
20803 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20804 }
20805
20806 void
20807 lnp_state_machine::record_line (bool end_sequence)
20808 {
20809 if (dwarf_line_debug)
20810 {
20811 fprintf_unfiltered (gdb_stdlog,
20812 "Processing actual line %u: file %u,"
20813 " address %s, is_stmt %u, discrim %u%s\n",
20814 m_line, m_file,
20815 paddress (m_gdbarch, m_address),
20816 m_is_stmt, m_discriminator,
20817 (end_sequence ? "\t(end sequence)" : ""));
20818 }
20819
20820 file_entry *fe = current_file ();
20821
20822 if (fe == NULL)
20823 dwarf2_debug_line_missing_file_complaint ();
20824 /* For now we ignore lines not starting on an instruction boundary.
20825 But not when processing end_sequence for compatibility with the
20826 previous version of the code. */
20827 else if (m_op_index == 0 || end_sequence)
20828 {
20829 fe->included_p = 1;
20830 if (m_record_lines_p)
20831 {
20832 /* When we switch files we insert an end maker in the first file,
20833 switch to the second file and add a new line entry. The
20834 problem is that the end marker inserted in the first file will
20835 discard any previous line entries at the same address. If the
20836 line entries in the first file are marked as is-stmt, while
20837 the new line in the second file is non-stmt, then this means
20838 the end marker will discard is-stmt lines so we can have a
20839 non-stmt line. This means that there are less addresses at
20840 which the user can insert a breakpoint.
20841
20842 To improve this we track the last address in m_last_address,
20843 and whether we have seen an is-stmt at this address. Then
20844 when switching files, if we have seen a stmt at the current
20845 address, and we are switching to create a non-stmt line, then
20846 discard the new line. */
20847 bool file_changed
20848 = m_last_subfile != m_cu->get_builder ()->get_current_subfile ();
20849 bool ignore_this_line
20850 = ((file_changed && !end_sequence && m_last_address == m_address
20851 && !m_is_stmt && m_stmt_at_address)
20852 || (!end_sequence && m_line == 0));
20853
20854 if ((file_changed && !ignore_this_line) || end_sequence)
20855 {
20856 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20857 m_currently_recording_lines ? m_cu : nullptr);
20858 }
20859
20860 if (!end_sequence && !ignore_this_line)
20861 {
20862 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20863
20864 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20865 m_line_has_non_zero_discriminator,
20866 m_last_subfile))
20867 {
20868 buildsym_compunit *builder = m_cu->get_builder ();
20869 dwarf_record_line_1 (m_gdbarch,
20870 builder->get_current_subfile (),
20871 m_line, m_address, is_stmt,
20872 m_currently_recording_lines ? m_cu : nullptr);
20873 }
20874 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20875 m_last_line = m_line;
20876 }
20877 }
20878 }
20879
20880 /* Track whether we have seen any m_is_stmt true at m_address in case we
20881 have multiple line table entries all at m_address. */
20882 if (m_last_address != m_address)
20883 {
20884 m_stmt_at_address = false;
20885 m_last_address = m_address;
20886 }
20887 m_stmt_at_address |= m_is_stmt;
20888 }
20889
20890 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20891 line_header *lh, bool record_lines_p)
20892 {
20893 m_cu = cu;
20894 m_gdbarch = arch;
20895 m_record_lines_p = record_lines_p;
20896 m_line_header = lh;
20897
20898 m_currently_recording_lines = true;
20899
20900 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20901 was a line entry for it so that the backend has a chance to adjust it
20902 and also record it in case it needs it. This is currently used by MIPS
20903 code, cf. `mips_adjust_dwarf2_line'. */
20904 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20905 m_is_stmt = lh->default_is_stmt;
20906 m_discriminator = 0;
20907
20908 m_last_address = m_address;
20909 m_stmt_at_address = false;
20910 }
20911
20912 void
20913 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20914 const gdb_byte *line_ptr,
20915 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20916 {
20917 /* Linkers resolve a symbolic relocation referencing a GC'd function to 0 or
20918 -1. If ADDRESS is 0, ignoring the opcode will err if the text section is
20919 located at 0x0. In this case, additionally check that if
20920 ADDRESS < UNRELOCATED_LOWPC. */
20921
20922 if ((address == 0 && address < unrelocated_lowpc)
20923 || address == (CORE_ADDR) -1)
20924 {
20925 /* This line table is for a function which has been
20926 GCd by the linker. Ignore it. PR gdb/12528 */
20927
20928 struct objfile *objfile = cu->per_objfile->objfile;
20929 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20930
20931 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20932 line_offset, objfile_name (objfile));
20933 m_currently_recording_lines = false;
20934 /* Note: m_currently_recording_lines is left as false until we see
20935 DW_LNE_end_sequence. */
20936 }
20937 }
20938
20939 /* Subroutine of dwarf_decode_lines to simplify it.
20940 Process the line number information in LH.
20941 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20942 program in order to set included_p for every referenced header. */
20943
20944 static void
20945 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20946 const int decode_for_pst_p, CORE_ADDR lowpc)
20947 {
20948 const gdb_byte *line_ptr, *extended_end;
20949 const gdb_byte *line_end;
20950 unsigned int bytes_read, extended_len;
20951 unsigned char op_code, extended_op;
20952 CORE_ADDR baseaddr;
20953 struct objfile *objfile = cu->per_objfile->objfile;
20954 bfd *abfd = objfile->obfd;
20955 struct gdbarch *gdbarch = objfile->arch ();
20956 /* True if we're recording line info (as opposed to building partial
20957 symtabs and just interested in finding include files mentioned by
20958 the line number program). */
20959 bool record_lines_p = !decode_for_pst_p;
20960
20961 baseaddr = objfile->text_section_offset ();
20962
20963 line_ptr = lh->statement_program_start;
20964 line_end = lh->statement_program_end;
20965
20966 /* Read the statement sequences until there's nothing left. */
20967 while (line_ptr < line_end)
20968 {
20969 /* The DWARF line number program state machine. Reset the state
20970 machine at the start of each sequence. */
20971 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20972 bool end_sequence = false;
20973
20974 if (record_lines_p)
20975 {
20976 /* Start a subfile for the current file of the state
20977 machine. */
20978 const file_entry *fe = state_machine.current_file ();
20979
20980 if (fe != NULL)
20981 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20982 }
20983
20984 /* Decode the table. */
20985 while (line_ptr < line_end && !end_sequence)
20986 {
20987 op_code = read_1_byte (abfd, line_ptr);
20988 line_ptr += 1;
20989
20990 if (op_code >= lh->opcode_base)
20991 {
20992 /* Special opcode. */
20993 state_machine.handle_special_opcode (op_code);
20994 }
20995 else switch (op_code)
20996 {
20997 case DW_LNS_extended_op:
20998 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20999 &bytes_read);
21000 line_ptr += bytes_read;
21001 extended_end = line_ptr + extended_len;
21002 extended_op = read_1_byte (abfd, line_ptr);
21003 line_ptr += 1;
21004 if (DW_LNE_lo_user <= extended_op
21005 && extended_op <= DW_LNE_hi_user)
21006 {
21007 /* Vendor extension, ignore. */
21008 line_ptr = extended_end;
21009 break;
21010 }
21011 switch (extended_op)
21012 {
21013 case DW_LNE_end_sequence:
21014 state_machine.handle_end_sequence ();
21015 end_sequence = true;
21016 break;
21017 case DW_LNE_set_address:
21018 {
21019 CORE_ADDR address
21020 = cu->header.read_address (abfd, line_ptr, &bytes_read);
21021 line_ptr += bytes_read;
21022
21023 state_machine.check_line_address (cu, line_ptr,
21024 lowpc - baseaddr, address);
21025 state_machine.handle_set_address (baseaddr, address);
21026 }
21027 break;
21028 case DW_LNE_define_file:
21029 {
21030 const char *cur_file;
21031 unsigned int mod_time, length;
21032 dir_index dindex;
21033
21034 cur_file = read_direct_string (abfd, line_ptr,
21035 &bytes_read);
21036 line_ptr += bytes_read;
21037 dindex = (dir_index)
21038 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21039 line_ptr += bytes_read;
21040 mod_time =
21041 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21042 line_ptr += bytes_read;
21043 length =
21044 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21045 line_ptr += bytes_read;
21046 lh->add_file_name (cur_file, dindex, mod_time, length);
21047 }
21048 break;
21049 case DW_LNE_set_discriminator:
21050 {
21051 /* The discriminator is not interesting to the
21052 debugger; just ignore it. We still need to
21053 check its value though:
21054 if there are consecutive entries for the same
21055 (non-prologue) line we want to coalesce them.
21056 PR 17276. */
21057 unsigned int discr
21058 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21059 line_ptr += bytes_read;
21060
21061 state_machine.handle_set_discriminator (discr);
21062 }
21063 break;
21064 default:
21065 complaint (_("mangled .debug_line section"));
21066 return;
21067 }
21068 /* Make sure that we parsed the extended op correctly. If e.g.
21069 we expected a different address size than the producer used,
21070 we may have read the wrong number of bytes. */
21071 if (line_ptr != extended_end)
21072 {
21073 complaint (_("mangled .debug_line section"));
21074 return;
21075 }
21076 break;
21077 case DW_LNS_copy:
21078 state_machine.handle_copy ();
21079 break;
21080 case DW_LNS_advance_pc:
21081 {
21082 CORE_ADDR adjust
21083 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21084 line_ptr += bytes_read;
21085
21086 state_machine.handle_advance_pc (adjust);
21087 }
21088 break;
21089 case DW_LNS_advance_line:
21090 {
21091 int line_delta
21092 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21093 line_ptr += bytes_read;
21094
21095 state_machine.handle_advance_line (line_delta);
21096 }
21097 break;
21098 case DW_LNS_set_file:
21099 {
21100 file_name_index file
21101 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21102 &bytes_read);
21103 line_ptr += bytes_read;
21104
21105 state_machine.handle_set_file (file);
21106 }
21107 break;
21108 case DW_LNS_set_column:
21109 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21110 line_ptr += bytes_read;
21111 break;
21112 case DW_LNS_negate_stmt:
21113 state_machine.handle_negate_stmt ();
21114 break;
21115 case DW_LNS_set_basic_block:
21116 break;
21117 /* Add to the address register of the state machine the
21118 address increment value corresponding to special opcode
21119 255. I.e., this value is scaled by the minimum
21120 instruction length since special opcode 255 would have
21121 scaled the increment. */
21122 case DW_LNS_const_add_pc:
21123 state_machine.handle_const_add_pc ();
21124 break;
21125 case DW_LNS_fixed_advance_pc:
21126 {
21127 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21128 line_ptr += 2;
21129
21130 state_machine.handle_fixed_advance_pc (addr_adj);
21131 }
21132 break;
21133 default:
21134 {
21135 /* Unknown standard opcode, ignore it. */
21136 int i;
21137
21138 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21139 {
21140 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21141 line_ptr += bytes_read;
21142 }
21143 }
21144 }
21145 }
21146
21147 if (!end_sequence)
21148 dwarf2_debug_line_missing_end_sequence_complaint ();
21149
21150 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21151 in which case we still finish recording the last line). */
21152 state_machine.record_line (true);
21153 }
21154 }
21155
21156 /* Decode the Line Number Program (LNP) for the given line_header
21157 structure and CU. The actual information extracted and the type
21158 of structures created from the LNP depends on the value of PST.
21159
21160 1. If PST is NULL, then this procedure uses the data from the program
21161 to create all necessary symbol tables, and their linetables.
21162
21163 2. If PST is not NULL, this procedure reads the program to determine
21164 the list of files included by the unit represented by PST, and
21165 builds all the associated partial symbol tables.
21166
21167 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21168 It is used for relative paths in the line table.
21169 NOTE: When processing partial symtabs (pst != NULL),
21170 comp_dir == pst->dirname.
21171
21172 NOTE: It is important that psymtabs have the same file name (via strcmp)
21173 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21174 symtab we don't use it in the name of the psymtabs we create.
21175 E.g. expand_line_sal requires this when finding psymtabs to expand.
21176 A good testcase for this is mb-inline.exp.
21177
21178 LOWPC is the lowest address in CU (or 0 if not known).
21179
21180 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21181 for its PC<->lines mapping information. Otherwise only the filename
21182 table is read in. */
21183
21184 static void
21185 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21186 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
21187 CORE_ADDR lowpc, int decode_mapping)
21188 {
21189 struct objfile *objfile = cu->per_objfile->objfile;
21190 const int decode_for_pst_p = (pst != NULL);
21191
21192 if (decode_mapping)
21193 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21194
21195 if (decode_for_pst_p)
21196 {
21197 /* Now that we're done scanning the Line Header Program, we can
21198 create the psymtab of each included file. */
21199 for (auto &file_entry : lh->file_names ())
21200 if (file_entry.included_p == 1)
21201 {
21202 gdb::unique_xmalloc_ptr<char> name_holder;
21203 const char *include_name =
21204 psymtab_include_file_name (lh, file_entry, pst,
21205 comp_dir, &name_holder);
21206 if (include_name != NULL)
21207 dwarf2_create_include_psymtab (include_name, pst, objfile);
21208 }
21209 }
21210 else
21211 {
21212 /* Make sure a symtab is created for every file, even files
21213 which contain only variables (i.e. no code with associated
21214 line numbers). */
21215 buildsym_compunit *builder = cu->get_builder ();
21216 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21217
21218 for (auto &fe : lh->file_names ())
21219 {
21220 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21221 if (builder->get_current_subfile ()->symtab == NULL)
21222 {
21223 builder->get_current_subfile ()->symtab
21224 = allocate_symtab (cust,
21225 builder->get_current_subfile ()->name);
21226 }
21227 fe.symtab = builder->get_current_subfile ()->symtab;
21228 }
21229 }
21230 }
21231
21232 /* Start a subfile for DWARF. FILENAME is the name of the file and
21233 DIRNAME the name of the source directory which contains FILENAME
21234 or NULL if not known.
21235 This routine tries to keep line numbers from identical absolute and
21236 relative file names in a common subfile.
21237
21238 Using the `list' example from the GDB testsuite, which resides in
21239 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21240 of /srcdir/list0.c yields the following debugging information for list0.c:
21241
21242 DW_AT_name: /srcdir/list0.c
21243 DW_AT_comp_dir: /compdir
21244 files.files[0].name: list0.h
21245 files.files[0].dir: /srcdir
21246 files.files[1].name: list0.c
21247 files.files[1].dir: /srcdir
21248
21249 The line number information for list0.c has to end up in a single
21250 subfile, so that `break /srcdir/list0.c:1' works as expected.
21251 start_subfile will ensure that this happens provided that we pass the
21252 concatenation of files.files[1].dir and files.files[1].name as the
21253 subfile's name. */
21254
21255 static void
21256 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21257 const char *dirname)
21258 {
21259 gdb::unique_xmalloc_ptr<char> copy;
21260
21261 /* In order not to lose the line information directory,
21262 we concatenate it to the filename when it makes sense.
21263 Note that the Dwarf3 standard says (speaking of filenames in line
21264 information): ``The directory index is ignored for file names
21265 that represent full path names''. Thus ignoring dirname in the
21266 `else' branch below isn't an issue. */
21267
21268 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21269 {
21270 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21271 filename = copy.get ();
21272 }
21273
21274 cu->get_builder ()->start_subfile (filename);
21275 }
21276
21277 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21278 buildsym_compunit constructor. */
21279
21280 struct compunit_symtab *
21281 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21282 CORE_ADDR low_pc)
21283 {
21284 gdb_assert (m_builder == nullptr);
21285
21286 m_builder.reset (new struct buildsym_compunit
21287 (this->per_objfile->objfile,
21288 name, comp_dir, language, low_pc));
21289
21290 list_in_scope = get_builder ()->get_file_symbols ();
21291
21292 get_builder ()->record_debugformat ("DWARF 2");
21293 get_builder ()->record_producer (producer);
21294
21295 processing_has_namespace_info = false;
21296
21297 return get_builder ()->get_compunit_symtab ();
21298 }
21299
21300 static void
21301 var_decode_location (struct attribute *attr, struct symbol *sym,
21302 struct dwarf2_cu *cu)
21303 {
21304 struct objfile *objfile = cu->per_objfile->objfile;
21305 struct comp_unit_head *cu_header = &cu->header;
21306
21307 /* NOTE drow/2003-01-30: There used to be a comment and some special
21308 code here to turn a symbol with DW_AT_external and a
21309 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21310 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21311 with some versions of binutils) where shared libraries could have
21312 relocations against symbols in their debug information - the
21313 minimal symbol would have the right address, but the debug info
21314 would not. It's no longer necessary, because we will explicitly
21315 apply relocations when we read in the debug information now. */
21316
21317 /* A DW_AT_location attribute with no contents indicates that a
21318 variable has been optimized away. */
21319 if (attr->form_is_block () && attr->as_block ()->size == 0)
21320 {
21321 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21322 return;
21323 }
21324
21325 /* Handle one degenerate form of location expression specially, to
21326 preserve GDB's previous behavior when section offsets are
21327 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21328 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21329
21330 if (attr->form_is_block ())
21331 {
21332 struct dwarf_block *block = attr->as_block ();
21333
21334 if ((block->data[0] == DW_OP_addr
21335 && block->size == 1 + cu_header->addr_size)
21336 || ((block->data[0] == DW_OP_GNU_addr_index
21337 || block->data[0] == DW_OP_addrx)
21338 && (block->size
21339 == 1 + leb128_size (&block->data[1]))))
21340 {
21341 unsigned int dummy;
21342
21343 if (block->data[0] == DW_OP_addr)
21344 SET_SYMBOL_VALUE_ADDRESS
21345 (sym, cu->header.read_address (objfile->obfd,
21346 block->data + 1,
21347 &dummy));
21348 else
21349 SET_SYMBOL_VALUE_ADDRESS
21350 (sym, read_addr_index_from_leb128 (cu, block->data + 1,
21351 &dummy));
21352 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21353 fixup_symbol_section (sym, objfile);
21354 SET_SYMBOL_VALUE_ADDRESS
21355 (sym,
21356 SYMBOL_VALUE_ADDRESS (sym)
21357 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
21358 return;
21359 }
21360 }
21361
21362 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21363 expression evaluator, and use LOC_COMPUTED only when necessary
21364 (i.e. when the value of a register or memory location is
21365 referenced, or a thread-local block, etc.). Then again, it might
21366 not be worthwhile. I'm assuming that it isn't unless performance
21367 or memory numbers show me otherwise. */
21368
21369 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21370
21371 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21372 cu->has_loclist = true;
21373 }
21374
21375 /* Given a pointer to a DWARF information entry, figure out if we need
21376 to make a symbol table entry for it, and if so, create a new entry
21377 and return a pointer to it.
21378 If TYPE is NULL, determine symbol type from the die, otherwise
21379 used the passed type.
21380 If SPACE is not NULL, use it to hold the new symbol. If it is
21381 NULL, allocate a new symbol on the objfile's obstack. */
21382
21383 static struct symbol *
21384 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21385 struct symbol *space)
21386 {
21387 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21388 struct objfile *objfile = per_objfile->objfile;
21389 struct gdbarch *gdbarch = objfile->arch ();
21390 struct symbol *sym = NULL;
21391 const char *name;
21392 struct attribute *attr = NULL;
21393 struct attribute *attr2 = NULL;
21394 CORE_ADDR baseaddr;
21395 struct pending **list_to_add = NULL;
21396
21397 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21398
21399 baseaddr = objfile->text_section_offset ();
21400
21401 name = dwarf2_name (die, cu);
21402 if (name)
21403 {
21404 int suppress_add = 0;
21405
21406 if (space)
21407 sym = space;
21408 else
21409 sym = new (&objfile->objfile_obstack) symbol;
21410 OBJSTAT (objfile, n_syms++);
21411
21412 /* Cache this symbol's name and the name's demangled form (if any). */
21413 sym->set_language (cu->language, &objfile->objfile_obstack);
21414 /* Fortran does not have mangling standard and the mangling does differ
21415 between gfortran, iFort etc. */
21416 const char *physname
21417 = (cu->language == language_fortran
21418 ? dwarf2_full_name (name, die, cu)
21419 : dwarf2_physname (name, die, cu));
21420 const char *linkagename = dw2_linkage_name (die, cu);
21421
21422 if (linkagename == nullptr || cu->language == language_ada)
21423 sym->set_linkage_name (physname);
21424 else
21425 {
21426 sym->set_demangled_name (physname, &objfile->objfile_obstack);
21427 sym->set_linkage_name (linkagename);
21428 }
21429
21430 /* Default assumptions.
21431 Use the passed type or decode it from the die. */
21432 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21433 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21434 if (type != NULL)
21435 SYMBOL_TYPE (sym) = type;
21436 else
21437 SYMBOL_TYPE (sym) = die_type (die, cu);
21438 attr = dwarf2_attr (die,
21439 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21440 cu);
21441 if (attr != nullptr)
21442 {
21443 SYMBOL_LINE (sym) = DW_UNSND (attr);
21444 }
21445
21446 attr = dwarf2_attr (die,
21447 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21448 cu);
21449 if (attr != nullptr)
21450 {
21451 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21452 struct file_entry *fe;
21453
21454 if (cu->line_header != NULL)
21455 fe = cu->line_header->file_name_at (file_index);
21456 else
21457 fe = NULL;
21458
21459 if (fe == NULL)
21460 complaint (_("file index out of range"));
21461 else
21462 symbol_set_symtab (sym, fe->symtab);
21463 }
21464
21465 switch (die->tag)
21466 {
21467 case DW_TAG_label:
21468 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21469 if (attr != nullptr)
21470 {
21471 CORE_ADDR addr;
21472
21473 addr = attr->as_address ();
21474 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21475 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21476 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21477 }
21478 else
21479 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21480 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21481 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21482 add_symbol_to_list (sym, cu->list_in_scope);
21483 break;
21484 case DW_TAG_subprogram:
21485 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21486 finish_block. */
21487 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21488 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21489 if ((attr2 && (DW_UNSND (attr2) != 0))
21490 || cu->language == language_ada
21491 || cu->language == language_fortran)
21492 {
21493 /* Subprograms marked external are stored as a global symbol.
21494 Ada and Fortran subprograms, whether marked external or
21495 not, are always stored as a global symbol, because we want
21496 to be able to access them globally. For instance, we want
21497 to be able to break on a nested subprogram without having
21498 to specify the context. */
21499 list_to_add = cu->get_builder ()->get_global_symbols ();
21500 }
21501 else
21502 {
21503 list_to_add = cu->list_in_scope;
21504 }
21505 break;
21506 case DW_TAG_inlined_subroutine:
21507 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21508 finish_block. */
21509 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21510 SYMBOL_INLINED (sym) = 1;
21511 list_to_add = cu->list_in_scope;
21512 break;
21513 case DW_TAG_template_value_param:
21514 suppress_add = 1;
21515 /* Fall through. */
21516 case DW_TAG_constant:
21517 case DW_TAG_variable:
21518 case DW_TAG_member:
21519 /* Compilation with minimal debug info may result in
21520 variables with missing type entries. Change the
21521 misleading `void' type to something sensible. */
21522 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
21523 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21524
21525 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21526 /* In the case of DW_TAG_member, we should only be called for
21527 static const members. */
21528 if (die->tag == DW_TAG_member)
21529 {
21530 /* dwarf2_add_field uses die_is_declaration,
21531 so we do the same. */
21532 gdb_assert (die_is_declaration (die, cu));
21533 gdb_assert (attr);
21534 }
21535 if (attr != nullptr)
21536 {
21537 dwarf2_const_value (attr, sym, cu);
21538 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21539 if (!suppress_add)
21540 {
21541 if (attr2 && (DW_UNSND (attr2) != 0))
21542 list_to_add = cu->get_builder ()->get_global_symbols ();
21543 else
21544 list_to_add = cu->list_in_scope;
21545 }
21546 break;
21547 }
21548 attr = dwarf2_attr (die, DW_AT_location, cu);
21549 if (attr != nullptr)
21550 {
21551 var_decode_location (attr, sym, cu);
21552 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21553
21554 /* Fortran explicitly imports any global symbols to the local
21555 scope by DW_TAG_common_block. */
21556 if (cu->language == language_fortran && die->parent
21557 && die->parent->tag == DW_TAG_common_block)
21558 attr2 = NULL;
21559
21560 if (SYMBOL_CLASS (sym) == LOC_STATIC
21561 && SYMBOL_VALUE_ADDRESS (sym) == 0
21562 && !per_objfile->per_bfd->has_section_at_zero)
21563 {
21564 /* When a static variable is eliminated by the linker,
21565 the corresponding debug information is not stripped
21566 out, but the variable address is set to null;
21567 do not add such variables into symbol table. */
21568 }
21569 else if (attr2 && (DW_UNSND (attr2) != 0))
21570 {
21571 if (SYMBOL_CLASS (sym) == LOC_STATIC
21572 && (objfile->flags & OBJF_MAINLINE) == 0
21573 && per_objfile->per_bfd->can_copy)
21574 {
21575 /* A global static variable might be subject to
21576 copy relocation. We first check for a local
21577 minsym, though, because maybe the symbol was
21578 marked hidden, in which case this would not
21579 apply. */
21580 bound_minimal_symbol found
21581 = (lookup_minimal_symbol_linkage
21582 (sym->linkage_name (), objfile));
21583 if (found.minsym != nullptr)
21584 sym->maybe_copied = 1;
21585 }
21586
21587 /* A variable with DW_AT_external is never static,
21588 but it may be block-scoped. */
21589 list_to_add
21590 = ((cu->list_in_scope
21591 == cu->get_builder ()->get_file_symbols ())
21592 ? cu->get_builder ()->get_global_symbols ()
21593 : cu->list_in_scope);
21594 }
21595 else
21596 list_to_add = cu->list_in_scope;
21597 }
21598 else
21599 {
21600 /* We do not know the address of this symbol.
21601 If it is an external symbol and we have type information
21602 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21603 The address of the variable will then be determined from
21604 the minimal symbol table whenever the variable is
21605 referenced. */
21606 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21607
21608 /* Fortran explicitly imports any global symbols to the local
21609 scope by DW_TAG_common_block. */
21610 if (cu->language == language_fortran && die->parent
21611 && die->parent->tag == DW_TAG_common_block)
21612 {
21613 /* SYMBOL_CLASS doesn't matter here because
21614 read_common_block is going to reset it. */
21615 if (!suppress_add)
21616 list_to_add = cu->list_in_scope;
21617 }
21618 else if (attr2 && (DW_UNSND (attr2) != 0)
21619 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21620 {
21621 /* A variable with DW_AT_external is never static, but it
21622 may be block-scoped. */
21623 list_to_add
21624 = ((cu->list_in_scope
21625 == cu->get_builder ()->get_file_symbols ())
21626 ? cu->get_builder ()->get_global_symbols ()
21627 : cu->list_in_scope);
21628
21629 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21630 }
21631 else if (!die_is_declaration (die, cu))
21632 {
21633 /* Use the default LOC_OPTIMIZED_OUT class. */
21634 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21635 if (!suppress_add)
21636 list_to_add = cu->list_in_scope;
21637 }
21638 }
21639 break;
21640 case DW_TAG_formal_parameter:
21641 {
21642 /* If we are inside a function, mark this as an argument. If
21643 not, we might be looking at an argument to an inlined function
21644 when we do not have enough information to show inlined frames;
21645 pretend it's a local variable in that case so that the user can
21646 still see it. */
21647 struct context_stack *curr
21648 = cu->get_builder ()->get_current_context_stack ();
21649 if (curr != nullptr && curr->name != nullptr)
21650 SYMBOL_IS_ARGUMENT (sym) = 1;
21651 attr = dwarf2_attr (die, DW_AT_location, cu);
21652 if (attr != nullptr)
21653 {
21654 var_decode_location (attr, sym, cu);
21655 }
21656 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21657 if (attr != nullptr)
21658 {
21659 dwarf2_const_value (attr, sym, cu);
21660 }
21661
21662 list_to_add = cu->list_in_scope;
21663 }
21664 break;
21665 case DW_TAG_unspecified_parameters:
21666 /* From varargs functions; gdb doesn't seem to have any
21667 interest in this information, so just ignore it for now.
21668 (FIXME?) */
21669 break;
21670 case DW_TAG_template_type_param:
21671 suppress_add = 1;
21672 /* Fall through. */
21673 case DW_TAG_class_type:
21674 case DW_TAG_interface_type:
21675 case DW_TAG_structure_type:
21676 case DW_TAG_union_type:
21677 case DW_TAG_set_type:
21678 case DW_TAG_enumeration_type:
21679 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21680 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21681
21682 {
21683 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21684 really ever be static objects: otherwise, if you try
21685 to, say, break of a class's method and you're in a file
21686 which doesn't mention that class, it won't work unless
21687 the check for all static symbols in lookup_symbol_aux
21688 saves you. See the OtherFileClass tests in
21689 gdb.c++/namespace.exp. */
21690
21691 if (!suppress_add)
21692 {
21693 buildsym_compunit *builder = cu->get_builder ();
21694 list_to_add
21695 = (cu->list_in_scope == builder->get_file_symbols ()
21696 && cu->language == language_cplus
21697 ? builder->get_global_symbols ()
21698 : cu->list_in_scope);
21699
21700 /* The semantics of C++ state that "struct foo {
21701 ... }" also defines a typedef for "foo". */
21702 if (cu->language == language_cplus
21703 || cu->language == language_ada
21704 || cu->language == language_d
21705 || cu->language == language_rust)
21706 {
21707 /* The symbol's name is already allocated along
21708 with this objfile, so we don't need to
21709 duplicate it for the type. */
21710 if (SYMBOL_TYPE (sym)->name () == 0)
21711 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
21712 }
21713 }
21714 }
21715 break;
21716 case DW_TAG_typedef:
21717 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21718 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21719 list_to_add = cu->list_in_scope;
21720 break;
21721 case DW_TAG_base_type:
21722 case DW_TAG_subrange_type:
21723 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21724 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21725 list_to_add = cu->list_in_scope;
21726 break;
21727 case DW_TAG_enumerator:
21728 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21729 if (attr != nullptr)
21730 {
21731 dwarf2_const_value (attr, sym, cu);
21732 }
21733 {
21734 /* NOTE: carlton/2003-11-10: See comment above in the
21735 DW_TAG_class_type, etc. block. */
21736
21737 list_to_add
21738 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21739 && cu->language == language_cplus
21740 ? cu->get_builder ()->get_global_symbols ()
21741 : cu->list_in_scope);
21742 }
21743 break;
21744 case DW_TAG_imported_declaration:
21745 case DW_TAG_namespace:
21746 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21747 list_to_add = cu->get_builder ()->get_global_symbols ();
21748 break;
21749 case DW_TAG_module:
21750 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21751 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21752 list_to_add = cu->get_builder ()->get_global_symbols ();
21753 break;
21754 case DW_TAG_common_block:
21755 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21756 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21757 add_symbol_to_list (sym, cu->list_in_scope);
21758 break;
21759 default:
21760 /* Not a tag we recognize. Hopefully we aren't processing
21761 trash data, but since we must specifically ignore things
21762 we don't recognize, there is nothing else we should do at
21763 this point. */
21764 complaint (_("unsupported tag: '%s'"),
21765 dwarf_tag_name (die->tag));
21766 break;
21767 }
21768
21769 if (suppress_add)
21770 {
21771 sym->hash_next = objfile->template_symbols;
21772 objfile->template_symbols = sym;
21773 list_to_add = NULL;
21774 }
21775
21776 if (list_to_add != NULL)
21777 add_symbol_to_list (sym, list_to_add);
21778
21779 /* For the benefit of old versions of GCC, check for anonymous
21780 namespaces based on the demangled name. */
21781 if (!cu->processing_has_namespace_info
21782 && cu->language == language_cplus)
21783 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21784 }
21785 return (sym);
21786 }
21787
21788 /* Given an attr with a DW_FORM_dataN value in host byte order,
21789 zero-extend it as appropriate for the symbol's type. The DWARF
21790 standard (v4) is not entirely clear about the meaning of using
21791 DW_FORM_dataN for a constant with a signed type, where the type is
21792 wider than the data. The conclusion of a discussion on the DWARF
21793 list was that this is unspecified. We choose to always zero-extend
21794 because that is the interpretation long in use by GCC. */
21795
21796 static gdb_byte *
21797 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21798 struct dwarf2_cu *cu, LONGEST *value, int bits)
21799 {
21800 struct objfile *objfile = cu->per_objfile->objfile;
21801 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21802 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21803 LONGEST l = DW_UNSND (attr);
21804
21805 if (bits < sizeof (*value) * 8)
21806 {
21807 l &= ((LONGEST) 1 << bits) - 1;
21808 *value = l;
21809 }
21810 else if (bits == sizeof (*value) * 8)
21811 *value = l;
21812 else
21813 {
21814 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21815 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21816 return bytes;
21817 }
21818
21819 return NULL;
21820 }
21821
21822 /* Read a constant value from an attribute. Either set *VALUE, or if
21823 the value does not fit in *VALUE, set *BYTES - either already
21824 allocated on the objfile obstack, or newly allocated on OBSTACK,
21825 or, set *BATON, if we translated the constant to a location
21826 expression. */
21827
21828 static void
21829 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21830 const char *name, struct obstack *obstack,
21831 struct dwarf2_cu *cu,
21832 LONGEST *value, const gdb_byte **bytes,
21833 struct dwarf2_locexpr_baton **baton)
21834 {
21835 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21836 struct objfile *objfile = per_objfile->objfile;
21837 struct comp_unit_head *cu_header = &cu->header;
21838 struct dwarf_block *blk;
21839 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21840 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21841
21842 *value = 0;
21843 *bytes = NULL;
21844 *baton = NULL;
21845
21846 switch (attr->form)
21847 {
21848 case DW_FORM_addr:
21849 case DW_FORM_addrx:
21850 case DW_FORM_GNU_addr_index:
21851 {
21852 gdb_byte *data;
21853
21854 if (TYPE_LENGTH (type) != cu_header->addr_size)
21855 dwarf2_const_value_length_mismatch_complaint (name,
21856 cu_header->addr_size,
21857 TYPE_LENGTH (type));
21858 /* Symbols of this form are reasonably rare, so we just
21859 piggyback on the existing location code rather than writing
21860 a new implementation of symbol_computed_ops. */
21861 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21862 (*baton)->per_objfile = per_objfile;
21863 (*baton)->per_cu = cu->per_cu;
21864 gdb_assert ((*baton)->per_cu);
21865
21866 (*baton)->size = 2 + cu_header->addr_size;
21867 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21868 (*baton)->data = data;
21869
21870 data[0] = DW_OP_addr;
21871 store_unsigned_integer (&data[1], cu_header->addr_size,
21872 byte_order, attr->as_address ());
21873 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21874 }
21875 break;
21876 case DW_FORM_string:
21877 case DW_FORM_strp:
21878 case DW_FORM_strx:
21879 case DW_FORM_GNU_str_index:
21880 case DW_FORM_GNU_strp_alt:
21881 /* The string is already allocated on the objfile obstack, point
21882 directly to it. */
21883 *bytes = (const gdb_byte *) attr->as_string ();
21884 break;
21885 case DW_FORM_block1:
21886 case DW_FORM_block2:
21887 case DW_FORM_block4:
21888 case DW_FORM_block:
21889 case DW_FORM_exprloc:
21890 case DW_FORM_data16:
21891 blk = attr->as_block ();
21892 if (TYPE_LENGTH (type) != blk->size)
21893 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21894 TYPE_LENGTH (type));
21895 *bytes = blk->data;
21896 break;
21897
21898 /* The DW_AT_const_value attributes are supposed to carry the
21899 symbol's value "represented as it would be on the target
21900 architecture." By the time we get here, it's already been
21901 converted to host endianness, so we just need to sign- or
21902 zero-extend it as appropriate. */
21903 case DW_FORM_data1:
21904 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21905 break;
21906 case DW_FORM_data2:
21907 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21908 break;
21909 case DW_FORM_data4:
21910 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21911 break;
21912 case DW_FORM_data8:
21913 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21914 break;
21915
21916 case DW_FORM_sdata:
21917 case DW_FORM_implicit_const:
21918 *value = attr->as_signed ();
21919 break;
21920
21921 case DW_FORM_udata:
21922 *value = DW_UNSND (attr);
21923 break;
21924
21925 default:
21926 complaint (_("unsupported const value attribute form: '%s'"),
21927 dwarf_form_name (attr->form));
21928 *value = 0;
21929 break;
21930 }
21931 }
21932
21933
21934 /* Copy constant value from an attribute to a symbol. */
21935
21936 static void
21937 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21938 struct dwarf2_cu *cu)
21939 {
21940 struct objfile *objfile = cu->per_objfile->objfile;
21941 LONGEST value;
21942 const gdb_byte *bytes;
21943 struct dwarf2_locexpr_baton *baton;
21944
21945 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21946 sym->print_name (),
21947 &objfile->objfile_obstack, cu,
21948 &value, &bytes, &baton);
21949
21950 if (baton != NULL)
21951 {
21952 SYMBOL_LOCATION_BATON (sym) = baton;
21953 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21954 }
21955 else if (bytes != NULL)
21956 {
21957 SYMBOL_VALUE_BYTES (sym) = bytes;
21958 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21959 }
21960 else
21961 {
21962 SYMBOL_VALUE (sym) = value;
21963 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21964 }
21965 }
21966
21967 /* Return the type of the die in question using its DW_AT_type attribute. */
21968
21969 static struct type *
21970 die_type (struct die_info *die, struct dwarf2_cu *cu)
21971 {
21972 struct attribute *type_attr;
21973
21974 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21975 if (!type_attr)
21976 {
21977 struct objfile *objfile = cu->per_objfile->objfile;
21978 /* A missing DW_AT_type represents a void type. */
21979 return objfile_type (objfile)->builtin_void;
21980 }
21981
21982 return lookup_die_type (die, type_attr, cu);
21983 }
21984
21985 /* True iff CU's producer generates GNAT Ada auxiliary information
21986 that allows to find parallel types through that information instead
21987 of having to do expensive parallel lookups by type name. */
21988
21989 static int
21990 need_gnat_info (struct dwarf2_cu *cu)
21991 {
21992 /* Assume that the Ada compiler was GNAT, which always produces
21993 the auxiliary information. */
21994 return (cu->language == language_ada);
21995 }
21996
21997 /* Return the auxiliary type of the die in question using its
21998 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21999 attribute is not present. */
22000
22001 static struct type *
22002 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22003 {
22004 struct attribute *type_attr;
22005
22006 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22007 if (!type_attr)
22008 return NULL;
22009
22010 return lookup_die_type (die, type_attr, cu);
22011 }
22012
22013 /* If DIE has a descriptive_type attribute, then set the TYPE's
22014 descriptive type accordingly. */
22015
22016 static void
22017 set_descriptive_type (struct type *type, struct die_info *die,
22018 struct dwarf2_cu *cu)
22019 {
22020 struct type *descriptive_type = die_descriptive_type (die, cu);
22021
22022 if (descriptive_type)
22023 {
22024 ALLOCATE_GNAT_AUX_TYPE (type);
22025 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22026 }
22027 }
22028
22029 /* Return the containing type of the die in question using its
22030 DW_AT_containing_type attribute. */
22031
22032 static struct type *
22033 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22034 {
22035 struct attribute *type_attr;
22036 struct objfile *objfile = cu->per_objfile->objfile;
22037
22038 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22039 if (!type_attr)
22040 error (_("Dwarf Error: Problem turning containing type into gdb type "
22041 "[in module %s]"), objfile_name (objfile));
22042
22043 return lookup_die_type (die, type_attr, cu);
22044 }
22045
22046 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22047
22048 static struct type *
22049 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22050 {
22051 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22052 struct objfile *objfile = per_objfile->objfile;
22053 char *saved;
22054
22055 std::string message
22056 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22057 objfile_name (objfile),
22058 sect_offset_str (cu->header.sect_off),
22059 sect_offset_str (die->sect_off));
22060 saved = obstack_strdup (&objfile->objfile_obstack, message);
22061
22062 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22063 }
22064
22065 /* Look up the type of DIE in CU using its type attribute ATTR.
22066 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22067 DW_AT_containing_type.
22068 If there is no type substitute an error marker. */
22069
22070 static struct type *
22071 lookup_die_type (struct die_info *die, const struct attribute *attr,
22072 struct dwarf2_cu *cu)
22073 {
22074 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22075 struct objfile *objfile = per_objfile->objfile;
22076 struct type *this_type;
22077
22078 gdb_assert (attr->name == DW_AT_type
22079 || attr->name == DW_AT_GNAT_descriptive_type
22080 || attr->name == DW_AT_containing_type);
22081
22082 /* First see if we have it cached. */
22083
22084 if (attr->form == DW_FORM_GNU_ref_alt)
22085 {
22086 struct dwarf2_per_cu_data *per_cu;
22087 sect_offset sect_off = attr->get_ref_die_offset ();
22088
22089 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile);
22090 this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile);
22091 }
22092 else if (attr->form_is_ref ())
22093 {
22094 sect_offset sect_off = attr->get_ref_die_offset ();
22095
22096 this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile);
22097 }
22098 else if (attr->form == DW_FORM_ref_sig8)
22099 {
22100 ULONGEST signature = attr->as_signature ();
22101
22102 return get_signatured_type (die, signature, cu);
22103 }
22104 else
22105 {
22106 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22107 " at %s [in module %s]"),
22108 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22109 objfile_name (objfile));
22110 return build_error_marker_type (cu, die);
22111 }
22112
22113 /* If not cached we need to read it in. */
22114
22115 if (this_type == NULL)
22116 {
22117 struct die_info *type_die = NULL;
22118 struct dwarf2_cu *type_cu = cu;
22119
22120 if (attr->form_is_ref ())
22121 type_die = follow_die_ref (die, attr, &type_cu);
22122 if (type_die == NULL)
22123 return build_error_marker_type (cu, die);
22124 /* If we find the type now, it's probably because the type came
22125 from an inter-CU reference and the type's CU got expanded before
22126 ours. */
22127 this_type = read_type_die (type_die, type_cu);
22128 }
22129
22130 /* If we still don't have a type use an error marker. */
22131
22132 if (this_type == NULL)
22133 return build_error_marker_type (cu, die);
22134
22135 return this_type;
22136 }
22137
22138 /* Return the type in DIE, CU.
22139 Returns NULL for invalid types.
22140
22141 This first does a lookup in die_type_hash,
22142 and only reads the die in if necessary.
22143
22144 NOTE: This can be called when reading in partial or full symbols. */
22145
22146 static struct type *
22147 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22148 {
22149 struct type *this_type;
22150
22151 this_type = get_die_type (die, cu);
22152 if (this_type)
22153 return this_type;
22154
22155 return read_type_die_1 (die, cu);
22156 }
22157
22158 /* Read the type in DIE, CU.
22159 Returns NULL for invalid types. */
22160
22161 static struct type *
22162 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22163 {
22164 struct type *this_type = NULL;
22165
22166 switch (die->tag)
22167 {
22168 case DW_TAG_class_type:
22169 case DW_TAG_interface_type:
22170 case DW_TAG_structure_type:
22171 case DW_TAG_union_type:
22172 this_type = read_structure_type (die, cu);
22173 break;
22174 case DW_TAG_enumeration_type:
22175 this_type = read_enumeration_type (die, cu);
22176 break;
22177 case DW_TAG_subprogram:
22178 case DW_TAG_subroutine_type:
22179 case DW_TAG_inlined_subroutine:
22180 this_type = read_subroutine_type (die, cu);
22181 break;
22182 case DW_TAG_array_type:
22183 this_type = read_array_type (die, cu);
22184 break;
22185 case DW_TAG_set_type:
22186 this_type = read_set_type (die, cu);
22187 break;
22188 case DW_TAG_pointer_type:
22189 this_type = read_tag_pointer_type (die, cu);
22190 break;
22191 case DW_TAG_ptr_to_member_type:
22192 this_type = read_tag_ptr_to_member_type (die, cu);
22193 break;
22194 case DW_TAG_reference_type:
22195 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22196 break;
22197 case DW_TAG_rvalue_reference_type:
22198 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22199 break;
22200 case DW_TAG_const_type:
22201 this_type = read_tag_const_type (die, cu);
22202 break;
22203 case DW_TAG_volatile_type:
22204 this_type = read_tag_volatile_type (die, cu);
22205 break;
22206 case DW_TAG_restrict_type:
22207 this_type = read_tag_restrict_type (die, cu);
22208 break;
22209 case DW_TAG_string_type:
22210 this_type = read_tag_string_type (die, cu);
22211 break;
22212 case DW_TAG_typedef:
22213 this_type = read_typedef (die, cu);
22214 break;
22215 case DW_TAG_subrange_type:
22216 this_type = read_subrange_type (die, cu);
22217 break;
22218 case DW_TAG_base_type:
22219 this_type = read_base_type (die, cu);
22220 break;
22221 case DW_TAG_unspecified_type:
22222 this_type = read_unspecified_type (die, cu);
22223 break;
22224 case DW_TAG_namespace:
22225 this_type = read_namespace_type (die, cu);
22226 break;
22227 case DW_TAG_module:
22228 this_type = read_module_type (die, cu);
22229 break;
22230 case DW_TAG_atomic_type:
22231 this_type = read_tag_atomic_type (die, cu);
22232 break;
22233 default:
22234 complaint (_("unexpected tag in read_type_die: '%s'"),
22235 dwarf_tag_name (die->tag));
22236 break;
22237 }
22238
22239 return this_type;
22240 }
22241
22242 /* See if we can figure out if the class lives in a namespace. We do
22243 this by looking for a member function; its demangled name will
22244 contain namespace info, if there is any.
22245 Return the computed name or NULL.
22246 Space for the result is allocated on the objfile's obstack.
22247 This is the full-die version of guess_partial_die_structure_name.
22248 In this case we know DIE has no useful parent. */
22249
22250 static const char *
22251 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22252 {
22253 struct die_info *spec_die;
22254 struct dwarf2_cu *spec_cu;
22255 struct die_info *child;
22256 struct objfile *objfile = cu->per_objfile->objfile;
22257
22258 spec_cu = cu;
22259 spec_die = die_specification (die, &spec_cu);
22260 if (spec_die != NULL)
22261 {
22262 die = spec_die;
22263 cu = spec_cu;
22264 }
22265
22266 for (child = die->child;
22267 child != NULL;
22268 child = child->sibling)
22269 {
22270 if (child->tag == DW_TAG_subprogram)
22271 {
22272 const char *linkage_name = dw2_linkage_name (child, cu);
22273
22274 if (linkage_name != NULL)
22275 {
22276 gdb::unique_xmalloc_ptr<char> actual_name
22277 (cu->language_defn->class_name_from_physname (linkage_name));
22278 const char *name = NULL;
22279
22280 if (actual_name != NULL)
22281 {
22282 const char *die_name = dwarf2_name (die, cu);
22283
22284 if (die_name != NULL
22285 && strcmp (die_name, actual_name.get ()) != 0)
22286 {
22287 /* Strip off the class name from the full name.
22288 We want the prefix. */
22289 int die_name_len = strlen (die_name);
22290 int actual_name_len = strlen (actual_name.get ());
22291 const char *ptr = actual_name.get ();
22292
22293 /* Test for '::' as a sanity check. */
22294 if (actual_name_len > die_name_len + 2
22295 && ptr[actual_name_len - die_name_len - 1] == ':')
22296 name = obstack_strndup (
22297 &objfile->per_bfd->storage_obstack,
22298 ptr, actual_name_len - die_name_len - 2);
22299 }
22300 }
22301 return name;
22302 }
22303 }
22304 }
22305
22306 return NULL;
22307 }
22308
22309 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22310 prefix part in such case. See
22311 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22312
22313 static const char *
22314 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22315 {
22316 struct attribute *attr;
22317 const char *base;
22318
22319 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22320 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22321 return NULL;
22322
22323 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22324 return NULL;
22325
22326 attr = dw2_linkage_name_attr (die, cu);
22327 const char *attr_name = attr->as_string ();
22328 if (attr == NULL || attr_name == NULL)
22329 return NULL;
22330
22331 /* dwarf2_name had to be already called. */
22332 gdb_assert (attr->canonical_string_p ());
22333
22334 /* Strip the base name, keep any leading namespaces/classes. */
22335 base = strrchr (attr_name, ':');
22336 if (base == NULL || base == attr_name || base[-1] != ':')
22337 return "";
22338
22339 struct objfile *objfile = cu->per_objfile->objfile;
22340 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22341 attr_name,
22342 &base[-1] - attr_name);
22343 }
22344
22345 /* Return the name of the namespace/class that DIE is defined within,
22346 or "" if we can't tell. The caller should not xfree the result.
22347
22348 For example, if we're within the method foo() in the following
22349 code:
22350
22351 namespace N {
22352 class C {
22353 void foo () {
22354 }
22355 };
22356 }
22357
22358 then determine_prefix on foo's die will return "N::C". */
22359
22360 static const char *
22361 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22362 {
22363 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22364 struct die_info *parent, *spec_die;
22365 struct dwarf2_cu *spec_cu;
22366 struct type *parent_type;
22367 const char *retval;
22368
22369 if (cu->language != language_cplus
22370 && cu->language != language_fortran && cu->language != language_d
22371 && cu->language != language_rust)
22372 return "";
22373
22374 retval = anonymous_struct_prefix (die, cu);
22375 if (retval)
22376 return retval;
22377
22378 /* We have to be careful in the presence of DW_AT_specification.
22379 For example, with GCC 3.4, given the code
22380
22381 namespace N {
22382 void foo() {
22383 // Definition of N::foo.
22384 }
22385 }
22386
22387 then we'll have a tree of DIEs like this:
22388
22389 1: DW_TAG_compile_unit
22390 2: DW_TAG_namespace // N
22391 3: DW_TAG_subprogram // declaration of N::foo
22392 4: DW_TAG_subprogram // definition of N::foo
22393 DW_AT_specification // refers to die #3
22394
22395 Thus, when processing die #4, we have to pretend that we're in
22396 the context of its DW_AT_specification, namely the contex of die
22397 #3. */
22398 spec_cu = cu;
22399 spec_die = die_specification (die, &spec_cu);
22400 if (spec_die == NULL)
22401 parent = die->parent;
22402 else
22403 {
22404 parent = spec_die->parent;
22405 cu = spec_cu;
22406 }
22407
22408 if (parent == NULL)
22409 return "";
22410 else if (parent->building_fullname)
22411 {
22412 const char *name;
22413 const char *parent_name;
22414
22415 /* It has been seen on RealView 2.2 built binaries,
22416 DW_TAG_template_type_param types actually _defined_ as
22417 children of the parent class:
22418
22419 enum E {};
22420 template class <class Enum> Class{};
22421 Class<enum E> class_e;
22422
22423 1: DW_TAG_class_type (Class)
22424 2: DW_TAG_enumeration_type (E)
22425 3: DW_TAG_enumerator (enum1:0)
22426 3: DW_TAG_enumerator (enum2:1)
22427 ...
22428 2: DW_TAG_template_type_param
22429 DW_AT_type DW_FORM_ref_udata (E)
22430
22431 Besides being broken debug info, it can put GDB into an
22432 infinite loop. Consider:
22433
22434 When we're building the full name for Class<E>, we'll start
22435 at Class, and go look over its template type parameters,
22436 finding E. We'll then try to build the full name of E, and
22437 reach here. We're now trying to build the full name of E,
22438 and look over the parent DIE for containing scope. In the
22439 broken case, if we followed the parent DIE of E, we'd again
22440 find Class, and once again go look at its template type
22441 arguments, etc., etc. Simply don't consider such parent die
22442 as source-level parent of this die (it can't be, the language
22443 doesn't allow it), and break the loop here. */
22444 name = dwarf2_name (die, cu);
22445 parent_name = dwarf2_name (parent, cu);
22446 complaint (_("template param type '%s' defined within parent '%s'"),
22447 name ? name : "<unknown>",
22448 parent_name ? parent_name : "<unknown>");
22449 return "";
22450 }
22451 else
22452 switch (parent->tag)
22453 {
22454 case DW_TAG_namespace:
22455 parent_type = read_type_die (parent, cu);
22456 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22457 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22458 Work around this problem here. */
22459 if (cu->language == language_cplus
22460 && strcmp (parent_type->name (), "::") == 0)
22461 return "";
22462 /* We give a name to even anonymous namespaces. */
22463 return parent_type->name ();
22464 case DW_TAG_class_type:
22465 case DW_TAG_interface_type:
22466 case DW_TAG_structure_type:
22467 case DW_TAG_union_type:
22468 case DW_TAG_module:
22469 parent_type = read_type_die (parent, cu);
22470 if (parent_type->name () != NULL)
22471 return parent_type->name ();
22472 else
22473 /* An anonymous structure is only allowed non-static data
22474 members; no typedefs, no member functions, et cetera.
22475 So it does not need a prefix. */
22476 return "";
22477 case DW_TAG_compile_unit:
22478 case DW_TAG_partial_unit:
22479 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22480 if (cu->language == language_cplus
22481 && !per_objfile->per_bfd->types.empty ()
22482 && die->child != NULL
22483 && (die->tag == DW_TAG_class_type
22484 || die->tag == DW_TAG_structure_type
22485 || die->tag == DW_TAG_union_type))
22486 {
22487 const char *name = guess_full_die_structure_name (die, cu);
22488 if (name != NULL)
22489 return name;
22490 }
22491 return "";
22492 case DW_TAG_subprogram:
22493 /* Nested subroutines in Fortran get a prefix with the name
22494 of the parent's subroutine. */
22495 if (cu->language == language_fortran)
22496 {
22497 if ((die->tag == DW_TAG_subprogram)
22498 && (dwarf2_name (parent, cu) != NULL))
22499 return dwarf2_name (parent, cu);
22500 }
22501 return determine_prefix (parent, cu);
22502 case DW_TAG_enumeration_type:
22503 parent_type = read_type_die (parent, cu);
22504 if (TYPE_DECLARED_CLASS (parent_type))
22505 {
22506 if (parent_type->name () != NULL)
22507 return parent_type->name ();
22508 return "";
22509 }
22510 /* Fall through. */
22511 default:
22512 return determine_prefix (parent, cu);
22513 }
22514 }
22515
22516 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22517 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22518 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22519 an obconcat, otherwise allocate storage for the result. The CU argument is
22520 used to determine the language and hence, the appropriate separator. */
22521
22522 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22523
22524 static char *
22525 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22526 int physname, struct dwarf2_cu *cu)
22527 {
22528 const char *lead = "";
22529 const char *sep;
22530
22531 if (suffix == NULL || suffix[0] == '\0'
22532 || prefix == NULL || prefix[0] == '\0')
22533 sep = "";
22534 else if (cu->language == language_d)
22535 {
22536 /* For D, the 'main' function could be defined in any module, but it
22537 should never be prefixed. */
22538 if (strcmp (suffix, "D main") == 0)
22539 {
22540 prefix = "";
22541 sep = "";
22542 }
22543 else
22544 sep = ".";
22545 }
22546 else if (cu->language == language_fortran && physname)
22547 {
22548 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22549 DW_AT_MIPS_linkage_name is preferred and used instead. */
22550
22551 lead = "__";
22552 sep = "_MOD_";
22553 }
22554 else
22555 sep = "::";
22556
22557 if (prefix == NULL)
22558 prefix = "";
22559 if (suffix == NULL)
22560 suffix = "";
22561
22562 if (obs == NULL)
22563 {
22564 char *retval
22565 = ((char *)
22566 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22567
22568 strcpy (retval, lead);
22569 strcat (retval, prefix);
22570 strcat (retval, sep);
22571 strcat (retval, suffix);
22572 return retval;
22573 }
22574 else
22575 {
22576 /* We have an obstack. */
22577 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22578 }
22579 }
22580
22581 /* Get name of a die, return NULL if not found. */
22582
22583 static const char *
22584 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22585 struct objfile *objfile)
22586 {
22587 if (name && cu->language == language_cplus)
22588 {
22589 gdb::unique_xmalloc_ptr<char> canon_name
22590 = cp_canonicalize_string (name);
22591
22592 if (canon_name != nullptr)
22593 name = objfile->intern (canon_name.get ());
22594 }
22595
22596 return name;
22597 }
22598
22599 /* Get name of a die, return NULL if not found.
22600 Anonymous namespaces are converted to their magic string. */
22601
22602 static const char *
22603 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22604 {
22605 struct attribute *attr;
22606 struct objfile *objfile = cu->per_objfile->objfile;
22607
22608 attr = dwarf2_attr (die, DW_AT_name, cu);
22609 const char *attr_name = attr == nullptr ? nullptr : attr->as_string ();
22610 if (attr_name == nullptr
22611 && die->tag != DW_TAG_namespace
22612 && die->tag != DW_TAG_class_type
22613 && die->tag != DW_TAG_interface_type
22614 && die->tag != DW_TAG_structure_type
22615 && die->tag != DW_TAG_union_type)
22616 return NULL;
22617
22618 switch (die->tag)
22619 {
22620 case DW_TAG_compile_unit:
22621 case DW_TAG_partial_unit:
22622 /* Compilation units have a DW_AT_name that is a filename, not
22623 a source language identifier. */
22624 case DW_TAG_enumeration_type:
22625 case DW_TAG_enumerator:
22626 /* These tags always have simple identifiers already; no need
22627 to canonicalize them. */
22628 return attr_name;
22629
22630 case DW_TAG_namespace:
22631 if (attr_name != nullptr)
22632 return attr_name;
22633 return CP_ANONYMOUS_NAMESPACE_STR;
22634
22635 case DW_TAG_class_type:
22636 case DW_TAG_interface_type:
22637 case DW_TAG_structure_type:
22638 case DW_TAG_union_type:
22639 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22640 structures or unions. These were of the form "._%d" in GCC 4.1,
22641 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22642 and GCC 4.4. We work around this problem by ignoring these. */
22643 if (attr_name != nullptr
22644 && (startswith (attr_name, "._")
22645 || startswith (attr_name, "<anonymous")))
22646 return NULL;
22647
22648 /* GCC might emit a nameless typedef that has a linkage name. See
22649 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22650 if (!attr || attr_name == NULL)
22651 {
22652 attr = dw2_linkage_name_attr (die, cu);
22653 if (attr == NULL || attr_name == NULL)
22654 return NULL;
22655
22656 /* Avoid demangling attr_name the second time on a second
22657 call for the same DIE. */
22658 if (!attr->canonical_string_p ())
22659 {
22660 gdb::unique_xmalloc_ptr<char> demangled
22661 (gdb_demangle (attr_name, DMGL_TYPES));
22662 if (demangled == nullptr)
22663 return nullptr;
22664
22665 attr->set_string_canonical (objfile->intern (demangled.get ()));
22666 }
22667
22668 /* Strip any leading namespaces/classes, keep only the
22669 base name. DW_AT_name for named DIEs does not
22670 contain the prefixes. */
22671 const char *base = strrchr (attr_name, ':');
22672 if (base && base > attr_name && base[-1] == ':')
22673 return &base[1];
22674 else
22675 return attr_name;
22676 }
22677 break;
22678
22679 default:
22680 break;
22681 }
22682
22683 if (!attr->canonical_string_p ())
22684 attr->set_string_canonical (dwarf2_canonicalize_name (attr_name, cu,
22685 objfile));
22686 return attr->as_string ();
22687 }
22688
22689 /* Return the die that this die in an extension of, or NULL if there
22690 is none. *EXT_CU is the CU containing DIE on input, and the CU
22691 containing the return value on output. */
22692
22693 static struct die_info *
22694 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22695 {
22696 struct attribute *attr;
22697
22698 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22699 if (attr == NULL)
22700 return NULL;
22701
22702 return follow_die_ref (die, attr, ext_cu);
22703 }
22704
22705 static void
22706 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22707 {
22708 unsigned int i;
22709
22710 print_spaces (indent, f);
22711 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22712 dwarf_tag_name (die->tag), die->abbrev,
22713 sect_offset_str (die->sect_off));
22714
22715 if (die->parent != NULL)
22716 {
22717 print_spaces (indent, f);
22718 fprintf_unfiltered (f, " parent at offset: %s\n",
22719 sect_offset_str (die->parent->sect_off));
22720 }
22721
22722 print_spaces (indent, f);
22723 fprintf_unfiltered (f, " has children: %s\n",
22724 dwarf_bool_name (die->child != NULL));
22725
22726 print_spaces (indent, f);
22727 fprintf_unfiltered (f, " attributes:\n");
22728
22729 for (i = 0; i < die->num_attrs; ++i)
22730 {
22731 print_spaces (indent, f);
22732 fprintf_unfiltered (f, " %s (%s) ",
22733 dwarf_attr_name (die->attrs[i].name),
22734 dwarf_form_name (die->attrs[i].form));
22735
22736 switch (die->attrs[i].form)
22737 {
22738 case DW_FORM_addr:
22739 case DW_FORM_addrx:
22740 case DW_FORM_GNU_addr_index:
22741 fprintf_unfiltered (f, "address: ");
22742 fputs_filtered (hex_string (die->attrs[i].as_address ()), f);
22743 break;
22744 case DW_FORM_block2:
22745 case DW_FORM_block4:
22746 case DW_FORM_block:
22747 case DW_FORM_block1:
22748 fprintf_unfiltered (f, "block: size %s",
22749 pulongest (die->attrs[i].as_block ()->size));
22750 break;
22751 case DW_FORM_exprloc:
22752 fprintf_unfiltered (f, "expression: size %s",
22753 pulongest (die->attrs[i].as_block ()->size));
22754 break;
22755 case DW_FORM_data16:
22756 fprintf_unfiltered (f, "constant of 16 bytes");
22757 break;
22758 case DW_FORM_ref_addr:
22759 fprintf_unfiltered (f, "ref address: ");
22760 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22761 break;
22762 case DW_FORM_GNU_ref_alt:
22763 fprintf_unfiltered (f, "alt ref address: ");
22764 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22765 break;
22766 case DW_FORM_ref1:
22767 case DW_FORM_ref2:
22768 case DW_FORM_ref4:
22769 case DW_FORM_ref8:
22770 case DW_FORM_ref_udata:
22771 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22772 (long) (DW_UNSND (&die->attrs[i])));
22773 break;
22774 case DW_FORM_data1:
22775 case DW_FORM_data2:
22776 case DW_FORM_data4:
22777 case DW_FORM_data8:
22778 case DW_FORM_udata:
22779 fprintf_unfiltered (f, "constant: %s",
22780 pulongest (DW_UNSND (&die->attrs[i])));
22781 break;
22782 case DW_FORM_sec_offset:
22783 fprintf_unfiltered (f, "section offset: %s",
22784 pulongest (DW_UNSND (&die->attrs[i])));
22785 break;
22786 case DW_FORM_ref_sig8:
22787 fprintf_unfiltered (f, "signature: %s",
22788 hex_string (die->attrs[i].as_signature ()));
22789 break;
22790 case DW_FORM_string:
22791 case DW_FORM_strp:
22792 case DW_FORM_line_strp:
22793 case DW_FORM_strx:
22794 case DW_FORM_GNU_str_index:
22795 case DW_FORM_GNU_strp_alt:
22796 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22797 die->attrs[i].as_string ()
22798 ? die->attrs[i].as_string () : "",
22799 die->attrs[i].canonical_string_p () ? "is" : "not");
22800 break;
22801 case DW_FORM_flag:
22802 if (DW_UNSND (&die->attrs[i]))
22803 fprintf_unfiltered (f, "flag: TRUE");
22804 else
22805 fprintf_unfiltered (f, "flag: FALSE");
22806 break;
22807 case DW_FORM_flag_present:
22808 fprintf_unfiltered (f, "flag: TRUE");
22809 break;
22810 case DW_FORM_indirect:
22811 /* The reader will have reduced the indirect form to
22812 the "base form" so this form should not occur. */
22813 fprintf_unfiltered (f,
22814 "unexpected attribute form: DW_FORM_indirect");
22815 break;
22816 case DW_FORM_sdata:
22817 case DW_FORM_implicit_const:
22818 fprintf_unfiltered (f, "constant: %s",
22819 plongest (die->attrs[i].as_signed ()));
22820 break;
22821 default:
22822 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22823 die->attrs[i].form);
22824 break;
22825 }
22826 fprintf_unfiltered (f, "\n");
22827 }
22828 }
22829
22830 static void
22831 dump_die_for_error (struct die_info *die)
22832 {
22833 dump_die_shallow (gdb_stderr, 0, die);
22834 }
22835
22836 static void
22837 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22838 {
22839 int indent = level * 4;
22840
22841 gdb_assert (die != NULL);
22842
22843 if (level >= max_level)
22844 return;
22845
22846 dump_die_shallow (f, indent, die);
22847
22848 if (die->child != NULL)
22849 {
22850 print_spaces (indent, f);
22851 fprintf_unfiltered (f, " Children:");
22852 if (level + 1 < max_level)
22853 {
22854 fprintf_unfiltered (f, "\n");
22855 dump_die_1 (f, level + 1, max_level, die->child);
22856 }
22857 else
22858 {
22859 fprintf_unfiltered (f,
22860 " [not printed, max nesting level reached]\n");
22861 }
22862 }
22863
22864 if (die->sibling != NULL && level > 0)
22865 {
22866 dump_die_1 (f, level, max_level, die->sibling);
22867 }
22868 }
22869
22870 /* This is called from the pdie macro in gdbinit.in.
22871 It's not static so gcc will keep a copy callable from gdb. */
22872
22873 void
22874 dump_die (struct die_info *die, int max_level)
22875 {
22876 dump_die_1 (gdb_stdlog, 0, max_level, die);
22877 }
22878
22879 static void
22880 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22881 {
22882 void **slot;
22883
22884 slot = htab_find_slot_with_hash (cu->die_hash, die,
22885 to_underlying (die->sect_off),
22886 INSERT);
22887
22888 *slot = die;
22889 }
22890
22891 /* Follow reference or signature attribute ATTR of SRC_DIE.
22892 On entry *REF_CU is the CU of SRC_DIE.
22893 On exit *REF_CU is the CU of the result. */
22894
22895 static struct die_info *
22896 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22897 struct dwarf2_cu **ref_cu)
22898 {
22899 struct die_info *die;
22900
22901 if (attr->form_is_ref ())
22902 die = follow_die_ref (src_die, attr, ref_cu);
22903 else if (attr->form == DW_FORM_ref_sig8)
22904 die = follow_die_sig (src_die, attr, ref_cu);
22905 else
22906 {
22907 dump_die_for_error (src_die);
22908 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22909 objfile_name ((*ref_cu)->per_objfile->objfile));
22910 }
22911
22912 return die;
22913 }
22914
22915 /* Follow reference OFFSET.
22916 On entry *REF_CU is the CU of the source die referencing OFFSET.
22917 On exit *REF_CU is the CU of the result.
22918 Returns NULL if OFFSET is invalid. */
22919
22920 static struct die_info *
22921 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22922 struct dwarf2_cu **ref_cu)
22923 {
22924 struct die_info temp_die;
22925 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22926 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22927
22928 gdb_assert (cu->per_cu != NULL);
22929
22930 target_cu = cu;
22931
22932 if (cu->per_cu->is_debug_types)
22933 {
22934 /* .debug_types CUs cannot reference anything outside their CU.
22935 If they need to, they have to reference a signatured type via
22936 DW_FORM_ref_sig8. */
22937 if (!cu->header.offset_in_cu_p (sect_off))
22938 return NULL;
22939 }
22940 else if (offset_in_dwz != cu->per_cu->is_dwz
22941 || !cu->header.offset_in_cu_p (sect_off))
22942 {
22943 struct dwarf2_per_cu_data *per_cu;
22944
22945 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22946 per_objfile);
22947
22948 /* If necessary, add it to the queue and load its DIEs. */
22949 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
22950 load_full_comp_unit (per_cu, per_objfile, false, cu->language);
22951
22952 target_cu = per_objfile->get_cu (per_cu);
22953 }
22954 else if (cu->dies == NULL)
22955 {
22956 /* We're loading full DIEs during partial symbol reading. */
22957 gdb_assert (per_objfile->per_bfd->reading_partial_symbols);
22958 load_full_comp_unit (cu->per_cu, per_objfile, false, language_minimal);
22959 }
22960
22961 *ref_cu = target_cu;
22962 temp_die.sect_off = sect_off;
22963
22964 if (target_cu != cu)
22965 target_cu->ancestor = cu;
22966
22967 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22968 &temp_die,
22969 to_underlying (sect_off));
22970 }
22971
22972 /* Follow reference attribute ATTR of SRC_DIE.
22973 On entry *REF_CU is the CU of SRC_DIE.
22974 On exit *REF_CU is the CU of the result. */
22975
22976 static struct die_info *
22977 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22978 struct dwarf2_cu **ref_cu)
22979 {
22980 sect_offset sect_off = attr->get_ref_die_offset ();
22981 struct dwarf2_cu *cu = *ref_cu;
22982 struct die_info *die;
22983
22984 die = follow_die_offset (sect_off,
22985 (attr->form == DW_FORM_GNU_ref_alt
22986 || cu->per_cu->is_dwz),
22987 ref_cu);
22988 if (!die)
22989 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22990 "at %s [in module %s]"),
22991 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22992 objfile_name (cu->per_objfile->objfile));
22993
22994 return die;
22995 }
22996
22997 /* See read.h. */
22998
22999 struct dwarf2_locexpr_baton
23000 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23001 dwarf2_per_cu_data *per_cu,
23002 dwarf2_per_objfile *per_objfile,
23003 gdb::function_view<CORE_ADDR ()> get_frame_pc,
23004 bool resolve_abstract_p)
23005 {
23006 struct die_info *die;
23007 struct attribute *attr;
23008 struct dwarf2_locexpr_baton retval;
23009 struct objfile *objfile = per_objfile->objfile;
23010
23011 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23012 if (cu == nullptr)
23013 cu = load_cu (per_cu, per_objfile, false);
23014
23015 if (cu == nullptr)
23016 {
23017 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23018 Instead just throw an error, not much else we can do. */
23019 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23020 sect_offset_str (sect_off), objfile_name (objfile));
23021 }
23022
23023 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23024 if (!die)
23025 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23026 sect_offset_str (sect_off), objfile_name (objfile));
23027
23028 attr = dwarf2_attr (die, DW_AT_location, cu);
23029 if (!attr && resolve_abstract_p
23030 && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
23031 != per_objfile->per_bfd->abstract_to_concrete.end ()))
23032 {
23033 CORE_ADDR pc = get_frame_pc ();
23034 CORE_ADDR baseaddr = objfile->text_section_offset ();
23035 struct gdbarch *gdbarch = objfile->arch ();
23036
23037 for (const auto &cand_off
23038 : per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
23039 {
23040 struct dwarf2_cu *cand_cu = cu;
23041 struct die_info *cand
23042 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23043 if (!cand
23044 || !cand->parent
23045 || cand->parent->tag != DW_TAG_subprogram)
23046 continue;
23047
23048 CORE_ADDR pc_low, pc_high;
23049 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23050 if (pc_low == ((CORE_ADDR) -1))
23051 continue;
23052 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23053 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23054 if (!(pc_low <= pc && pc < pc_high))
23055 continue;
23056
23057 die = cand;
23058 attr = dwarf2_attr (die, DW_AT_location, cu);
23059 break;
23060 }
23061 }
23062
23063 if (!attr)
23064 {
23065 /* DWARF: "If there is no such attribute, then there is no effect.".
23066 DATA is ignored if SIZE is 0. */
23067
23068 retval.data = NULL;
23069 retval.size = 0;
23070 }
23071 else if (attr->form_is_section_offset ())
23072 {
23073 struct dwarf2_loclist_baton loclist_baton;
23074 CORE_ADDR pc = get_frame_pc ();
23075 size_t size;
23076
23077 fill_in_loclist_baton (cu, &loclist_baton, attr);
23078
23079 retval.data = dwarf2_find_location_expression (&loclist_baton,
23080 &size, pc);
23081 retval.size = size;
23082 }
23083 else
23084 {
23085 if (!attr->form_is_block ())
23086 error (_("Dwarf Error: DIE at %s referenced in module %s "
23087 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23088 sect_offset_str (sect_off), objfile_name (objfile));
23089
23090 struct dwarf_block *block = attr->as_block ();
23091 retval.data = block->data;
23092 retval.size = block->size;
23093 }
23094 retval.per_objfile = per_objfile;
23095 retval.per_cu = cu->per_cu;
23096
23097 per_objfile->age_comp_units ();
23098
23099 return retval;
23100 }
23101
23102 /* See read.h. */
23103
23104 struct dwarf2_locexpr_baton
23105 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23106 dwarf2_per_cu_data *per_cu,
23107 dwarf2_per_objfile *per_objfile,
23108 gdb::function_view<CORE_ADDR ()> get_frame_pc)
23109 {
23110 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23111
23112 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile,
23113 get_frame_pc);
23114 }
23115
23116 /* Write a constant of a given type as target-ordered bytes into
23117 OBSTACK. */
23118
23119 static const gdb_byte *
23120 write_constant_as_bytes (struct obstack *obstack,
23121 enum bfd_endian byte_order,
23122 struct type *type,
23123 ULONGEST value,
23124 LONGEST *len)
23125 {
23126 gdb_byte *result;
23127
23128 *len = TYPE_LENGTH (type);
23129 result = (gdb_byte *) obstack_alloc (obstack, *len);
23130 store_unsigned_integer (result, *len, byte_order, value);
23131
23132 return result;
23133 }
23134
23135 /* See read.h. */
23136
23137 const gdb_byte *
23138 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23139 dwarf2_per_cu_data *per_cu,
23140 dwarf2_per_objfile *per_objfile,
23141 obstack *obstack,
23142 LONGEST *len)
23143 {
23144 struct die_info *die;
23145 struct attribute *attr;
23146 const gdb_byte *result = NULL;
23147 struct type *type;
23148 LONGEST value;
23149 enum bfd_endian byte_order;
23150 struct objfile *objfile = per_objfile->objfile;
23151
23152 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23153 if (cu == nullptr)
23154 cu = load_cu (per_cu, per_objfile, false);
23155
23156 if (cu == nullptr)
23157 {
23158 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23159 Instead just throw an error, not much else we can do. */
23160 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23161 sect_offset_str (sect_off), objfile_name (objfile));
23162 }
23163
23164 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23165 if (!die)
23166 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23167 sect_offset_str (sect_off), objfile_name (objfile));
23168
23169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23170 if (attr == NULL)
23171 return NULL;
23172
23173 byte_order = (bfd_big_endian (objfile->obfd)
23174 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23175
23176 switch (attr->form)
23177 {
23178 case DW_FORM_addr:
23179 case DW_FORM_addrx:
23180 case DW_FORM_GNU_addr_index:
23181 {
23182 gdb_byte *tem;
23183
23184 *len = cu->header.addr_size;
23185 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23186 store_unsigned_integer (tem, *len, byte_order, attr->as_address ());
23187 result = tem;
23188 }
23189 break;
23190 case DW_FORM_string:
23191 case DW_FORM_strp:
23192 case DW_FORM_strx:
23193 case DW_FORM_GNU_str_index:
23194 case DW_FORM_GNU_strp_alt:
23195 /* The string is already allocated on the objfile obstack, point
23196 directly to it. */
23197 {
23198 const char *attr_name = attr->as_string ();
23199 result = (const gdb_byte *) attr_name;
23200 *len = strlen (attr_name);
23201 }
23202 break;
23203 case DW_FORM_block1:
23204 case DW_FORM_block2:
23205 case DW_FORM_block4:
23206 case DW_FORM_block:
23207 case DW_FORM_exprloc:
23208 case DW_FORM_data16:
23209 {
23210 struct dwarf_block *block = attr->as_block ();
23211 result = block->data;
23212 *len = block->size;
23213 }
23214 break;
23215
23216 /* The DW_AT_const_value attributes are supposed to carry the
23217 symbol's value "represented as it would be on the target
23218 architecture." By the time we get here, it's already been
23219 converted to host endianness, so we just need to sign- or
23220 zero-extend it as appropriate. */
23221 case DW_FORM_data1:
23222 type = die_type (die, cu);
23223 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23224 if (result == NULL)
23225 result = write_constant_as_bytes (obstack, byte_order,
23226 type, value, len);
23227 break;
23228 case DW_FORM_data2:
23229 type = die_type (die, cu);
23230 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23231 if (result == NULL)
23232 result = write_constant_as_bytes (obstack, byte_order,
23233 type, value, len);
23234 break;
23235 case DW_FORM_data4:
23236 type = die_type (die, cu);
23237 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23238 if (result == NULL)
23239 result = write_constant_as_bytes (obstack, byte_order,
23240 type, value, len);
23241 break;
23242 case DW_FORM_data8:
23243 type = die_type (die, cu);
23244 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23245 if (result == NULL)
23246 result = write_constant_as_bytes (obstack, byte_order,
23247 type, value, len);
23248 break;
23249
23250 case DW_FORM_sdata:
23251 case DW_FORM_implicit_const:
23252 type = die_type (die, cu);
23253 result = write_constant_as_bytes (obstack, byte_order,
23254 type, attr->as_signed (), len);
23255 break;
23256
23257 case DW_FORM_udata:
23258 type = die_type (die, cu);
23259 result = write_constant_as_bytes (obstack, byte_order,
23260 type, DW_UNSND (attr), len);
23261 break;
23262
23263 default:
23264 complaint (_("unsupported const value attribute form: '%s'"),
23265 dwarf_form_name (attr->form));
23266 break;
23267 }
23268
23269 return result;
23270 }
23271
23272 /* See read.h. */
23273
23274 struct type *
23275 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23276 dwarf2_per_cu_data *per_cu,
23277 dwarf2_per_objfile *per_objfile)
23278 {
23279 struct die_info *die;
23280
23281 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23282 if (cu == nullptr)
23283 cu = load_cu (per_cu, per_objfile, false);
23284
23285 if (cu == nullptr)
23286 return nullptr;
23287
23288 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23289 if (!die)
23290 return NULL;
23291
23292 return die_type (die, cu);
23293 }
23294
23295 /* See read.h. */
23296
23297 struct type *
23298 dwarf2_get_die_type (cu_offset die_offset,
23299 dwarf2_per_cu_data *per_cu,
23300 dwarf2_per_objfile *per_objfile)
23301 {
23302 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23303 return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile);
23304 }
23305
23306 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23307 On entry *REF_CU is the CU of SRC_DIE.
23308 On exit *REF_CU is the CU of the result.
23309 Returns NULL if the referenced DIE isn't found. */
23310
23311 static struct die_info *
23312 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23313 struct dwarf2_cu **ref_cu)
23314 {
23315 struct die_info temp_die;
23316 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23317 struct die_info *die;
23318 dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile;
23319
23320
23321 /* While it might be nice to assert sig_type->type == NULL here,
23322 we can get here for DW_AT_imported_declaration where we need
23323 the DIE not the type. */
23324
23325 /* If necessary, add it to the queue and load its DIEs. */
23326
23327 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, per_objfile,
23328 language_minimal))
23329 read_signatured_type (sig_type, per_objfile);
23330
23331 sig_cu = per_objfile->get_cu (&sig_type->per_cu);
23332 gdb_assert (sig_cu != NULL);
23333 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23334 temp_die.sect_off = sig_type->type_offset_in_section;
23335 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23336 to_underlying (temp_die.sect_off));
23337 if (die)
23338 {
23339 /* For .gdb_index version 7 keep track of included TUs.
23340 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23341 if (per_objfile->per_bfd->index_table != NULL
23342 && per_objfile->per_bfd->index_table->version <= 7)
23343 {
23344 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23345 }
23346
23347 *ref_cu = sig_cu;
23348 if (sig_cu != cu)
23349 sig_cu->ancestor = cu;
23350
23351 return die;
23352 }
23353
23354 return NULL;
23355 }
23356
23357 /* Follow signatured type referenced by ATTR in SRC_DIE.
23358 On entry *REF_CU is the CU of SRC_DIE.
23359 On exit *REF_CU is the CU of the result.
23360 The result is the DIE of the type.
23361 If the referenced type cannot be found an error is thrown. */
23362
23363 static struct die_info *
23364 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23365 struct dwarf2_cu **ref_cu)
23366 {
23367 ULONGEST signature = attr->as_signature ();
23368 struct signatured_type *sig_type;
23369 struct die_info *die;
23370
23371 gdb_assert (attr->form == DW_FORM_ref_sig8);
23372
23373 sig_type = lookup_signatured_type (*ref_cu, signature);
23374 /* sig_type will be NULL if the signatured type is missing from
23375 the debug info. */
23376 if (sig_type == NULL)
23377 {
23378 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23379 " from DIE at %s [in module %s]"),
23380 hex_string (signature), sect_offset_str (src_die->sect_off),
23381 objfile_name ((*ref_cu)->per_objfile->objfile));
23382 }
23383
23384 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23385 if (die == NULL)
23386 {
23387 dump_die_for_error (src_die);
23388 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23389 " from DIE at %s [in module %s]"),
23390 hex_string (signature), sect_offset_str (src_die->sect_off),
23391 objfile_name ((*ref_cu)->per_objfile->objfile));
23392 }
23393
23394 return die;
23395 }
23396
23397 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23398 reading in and processing the type unit if necessary. */
23399
23400 static struct type *
23401 get_signatured_type (struct die_info *die, ULONGEST signature,
23402 struct dwarf2_cu *cu)
23403 {
23404 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23405 struct signatured_type *sig_type;
23406 struct dwarf2_cu *type_cu;
23407 struct die_info *type_die;
23408 struct type *type;
23409
23410 sig_type = lookup_signatured_type (cu, signature);
23411 /* sig_type will be NULL if the signatured type is missing from
23412 the debug info. */
23413 if (sig_type == NULL)
23414 {
23415 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23416 " from DIE at %s [in module %s]"),
23417 hex_string (signature), sect_offset_str (die->sect_off),
23418 objfile_name (per_objfile->objfile));
23419 return build_error_marker_type (cu, die);
23420 }
23421
23422 /* If we already know the type we're done. */
23423 type = per_objfile->get_type_for_signatured_type (sig_type);
23424 if (type != nullptr)
23425 return type;
23426
23427 type_cu = cu;
23428 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23429 if (type_die != NULL)
23430 {
23431 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23432 is created. This is important, for example, because for c++ classes
23433 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23434 type = read_type_die (type_die, type_cu);
23435 if (type == NULL)
23436 {
23437 complaint (_("Dwarf Error: Cannot build signatured type %s"
23438 " referenced from DIE at %s [in module %s]"),
23439 hex_string (signature), sect_offset_str (die->sect_off),
23440 objfile_name (per_objfile->objfile));
23441 type = build_error_marker_type (cu, die);
23442 }
23443 }
23444 else
23445 {
23446 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23447 " from DIE at %s [in module %s]"),
23448 hex_string (signature), sect_offset_str (die->sect_off),
23449 objfile_name (per_objfile->objfile));
23450 type = build_error_marker_type (cu, die);
23451 }
23452
23453 per_objfile->set_type_for_signatured_type (sig_type, type);
23454
23455 return type;
23456 }
23457
23458 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23459 reading in and processing the type unit if necessary. */
23460
23461 static struct type *
23462 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23463 struct dwarf2_cu *cu) /* ARI: editCase function */
23464 {
23465 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23466 if (attr->form_is_ref ())
23467 {
23468 struct dwarf2_cu *type_cu = cu;
23469 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23470
23471 return read_type_die (type_die, type_cu);
23472 }
23473 else if (attr->form == DW_FORM_ref_sig8)
23474 {
23475 return get_signatured_type (die, attr->as_signature (), cu);
23476 }
23477 else
23478 {
23479 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23480
23481 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23482 " at %s [in module %s]"),
23483 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23484 objfile_name (per_objfile->objfile));
23485 return build_error_marker_type (cu, die);
23486 }
23487 }
23488
23489 /* Load the DIEs associated with type unit PER_CU into memory. */
23490
23491 static void
23492 load_full_type_unit (dwarf2_per_cu_data *per_cu,
23493 dwarf2_per_objfile *per_objfile)
23494 {
23495 struct signatured_type *sig_type;
23496
23497 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23498 gdb_assert (! per_cu->type_unit_group_p ());
23499
23500 /* We have the per_cu, but we need the signatured_type.
23501 Fortunately this is an easy translation. */
23502 gdb_assert (per_cu->is_debug_types);
23503 sig_type = (struct signatured_type *) per_cu;
23504
23505 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23506
23507 read_signatured_type (sig_type, per_objfile);
23508
23509 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
23510 }
23511
23512 /* Read in a signatured type and build its CU and DIEs.
23513 If the type is a stub for the real type in a DWO file,
23514 read in the real type from the DWO file as well. */
23515
23516 static void
23517 read_signatured_type (signatured_type *sig_type,
23518 dwarf2_per_objfile *per_objfile)
23519 {
23520 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23521
23522 gdb_assert (per_cu->is_debug_types);
23523 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23524
23525 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
23526
23527 if (!reader.dummy_p)
23528 {
23529 struct dwarf2_cu *cu = reader.cu;
23530 const gdb_byte *info_ptr = reader.info_ptr;
23531
23532 gdb_assert (cu->die_hash == NULL);
23533 cu->die_hash =
23534 htab_create_alloc_ex (cu->header.length / 12,
23535 die_hash,
23536 die_eq,
23537 NULL,
23538 &cu->comp_unit_obstack,
23539 hashtab_obstack_allocate,
23540 dummy_obstack_deallocate);
23541
23542 if (reader.comp_unit_die->has_children)
23543 reader.comp_unit_die->child
23544 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23545 reader.comp_unit_die);
23546 cu->dies = reader.comp_unit_die;
23547 /* comp_unit_die is not stored in die_hash, no need. */
23548
23549 /* We try not to read any attributes in this function, because
23550 not all CUs needed for references have been loaded yet, and
23551 symbol table processing isn't initialized. But we have to
23552 set the CU language, or we won't be able to build types
23553 correctly. Similarly, if we do not read the producer, we can
23554 not apply producer-specific interpretation. */
23555 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23556
23557 reader.keep ();
23558 }
23559
23560 sig_type->per_cu.tu_read = 1;
23561 }
23562
23563 /* Decode simple location descriptions.
23564 Given a pointer to a dwarf block that defines a location, compute
23565 the location and return the value. If COMPUTED is non-null, it is
23566 set to true to indicate that decoding was successful, and false
23567 otherwise. If COMPUTED is null, then this function may emit a
23568 complaint. */
23569
23570 static CORE_ADDR
23571 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
23572 {
23573 struct objfile *objfile = cu->per_objfile->objfile;
23574 size_t i;
23575 size_t size = blk->size;
23576 const gdb_byte *data = blk->data;
23577 CORE_ADDR stack[64];
23578 int stacki;
23579 unsigned int bytes_read, unsnd;
23580 gdb_byte op;
23581
23582 if (computed != nullptr)
23583 *computed = false;
23584
23585 i = 0;
23586 stacki = 0;
23587 stack[stacki] = 0;
23588 stack[++stacki] = 0;
23589
23590 while (i < size)
23591 {
23592 op = data[i++];
23593 switch (op)
23594 {
23595 case DW_OP_lit0:
23596 case DW_OP_lit1:
23597 case DW_OP_lit2:
23598 case DW_OP_lit3:
23599 case DW_OP_lit4:
23600 case DW_OP_lit5:
23601 case DW_OP_lit6:
23602 case DW_OP_lit7:
23603 case DW_OP_lit8:
23604 case DW_OP_lit9:
23605 case DW_OP_lit10:
23606 case DW_OP_lit11:
23607 case DW_OP_lit12:
23608 case DW_OP_lit13:
23609 case DW_OP_lit14:
23610 case DW_OP_lit15:
23611 case DW_OP_lit16:
23612 case DW_OP_lit17:
23613 case DW_OP_lit18:
23614 case DW_OP_lit19:
23615 case DW_OP_lit20:
23616 case DW_OP_lit21:
23617 case DW_OP_lit22:
23618 case DW_OP_lit23:
23619 case DW_OP_lit24:
23620 case DW_OP_lit25:
23621 case DW_OP_lit26:
23622 case DW_OP_lit27:
23623 case DW_OP_lit28:
23624 case DW_OP_lit29:
23625 case DW_OP_lit30:
23626 case DW_OP_lit31:
23627 stack[++stacki] = op - DW_OP_lit0;
23628 break;
23629
23630 case DW_OP_reg0:
23631 case DW_OP_reg1:
23632 case DW_OP_reg2:
23633 case DW_OP_reg3:
23634 case DW_OP_reg4:
23635 case DW_OP_reg5:
23636 case DW_OP_reg6:
23637 case DW_OP_reg7:
23638 case DW_OP_reg8:
23639 case DW_OP_reg9:
23640 case DW_OP_reg10:
23641 case DW_OP_reg11:
23642 case DW_OP_reg12:
23643 case DW_OP_reg13:
23644 case DW_OP_reg14:
23645 case DW_OP_reg15:
23646 case DW_OP_reg16:
23647 case DW_OP_reg17:
23648 case DW_OP_reg18:
23649 case DW_OP_reg19:
23650 case DW_OP_reg20:
23651 case DW_OP_reg21:
23652 case DW_OP_reg22:
23653 case DW_OP_reg23:
23654 case DW_OP_reg24:
23655 case DW_OP_reg25:
23656 case DW_OP_reg26:
23657 case DW_OP_reg27:
23658 case DW_OP_reg28:
23659 case DW_OP_reg29:
23660 case DW_OP_reg30:
23661 case DW_OP_reg31:
23662 stack[++stacki] = op - DW_OP_reg0;
23663 if (i < size)
23664 {
23665 if (computed == nullptr)
23666 dwarf2_complex_location_expr_complaint ();
23667 else
23668 return 0;
23669 }
23670 break;
23671
23672 case DW_OP_regx:
23673 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23674 i += bytes_read;
23675 stack[++stacki] = unsnd;
23676 if (i < size)
23677 {
23678 if (computed == nullptr)
23679 dwarf2_complex_location_expr_complaint ();
23680 else
23681 return 0;
23682 }
23683 break;
23684
23685 case DW_OP_addr:
23686 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
23687 &bytes_read);
23688 i += bytes_read;
23689 break;
23690
23691 case DW_OP_const1u:
23692 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23693 i += 1;
23694 break;
23695
23696 case DW_OP_const1s:
23697 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23698 i += 1;
23699 break;
23700
23701 case DW_OP_const2u:
23702 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23703 i += 2;
23704 break;
23705
23706 case DW_OP_const2s:
23707 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23708 i += 2;
23709 break;
23710
23711 case DW_OP_const4u:
23712 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23713 i += 4;
23714 break;
23715
23716 case DW_OP_const4s:
23717 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23718 i += 4;
23719 break;
23720
23721 case DW_OP_const8u:
23722 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23723 i += 8;
23724 break;
23725
23726 case DW_OP_constu:
23727 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23728 &bytes_read);
23729 i += bytes_read;
23730 break;
23731
23732 case DW_OP_consts:
23733 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23734 i += bytes_read;
23735 break;
23736
23737 case DW_OP_dup:
23738 stack[stacki + 1] = stack[stacki];
23739 stacki++;
23740 break;
23741
23742 case DW_OP_plus:
23743 stack[stacki - 1] += stack[stacki];
23744 stacki--;
23745 break;
23746
23747 case DW_OP_plus_uconst:
23748 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23749 &bytes_read);
23750 i += bytes_read;
23751 break;
23752
23753 case DW_OP_minus:
23754 stack[stacki - 1] -= stack[stacki];
23755 stacki--;
23756 break;
23757
23758 case DW_OP_deref:
23759 /* If we're not the last op, then we definitely can't encode
23760 this using GDB's address_class enum. This is valid for partial
23761 global symbols, although the variable's address will be bogus
23762 in the psymtab. */
23763 if (i < size)
23764 {
23765 if (computed == nullptr)
23766 dwarf2_complex_location_expr_complaint ();
23767 else
23768 return 0;
23769 }
23770 break;
23771
23772 case DW_OP_GNU_push_tls_address:
23773 case DW_OP_form_tls_address:
23774 /* The top of the stack has the offset from the beginning
23775 of the thread control block at which the variable is located. */
23776 /* Nothing should follow this operator, so the top of stack would
23777 be returned. */
23778 /* This is valid for partial global symbols, but the variable's
23779 address will be bogus in the psymtab. Make it always at least
23780 non-zero to not look as a variable garbage collected by linker
23781 which have DW_OP_addr 0. */
23782 if (i < size)
23783 {
23784 if (computed == nullptr)
23785 dwarf2_complex_location_expr_complaint ();
23786 else
23787 return 0;
23788 }
23789 stack[stacki]++;
23790 break;
23791
23792 case DW_OP_GNU_uninit:
23793 if (computed != nullptr)
23794 return 0;
23795 break;
23796
23797 case DW_OP_addrx:
23798 case DW_OP_GNU_addr_index:
23799 case DW_OP_GNU_const_index:
23800 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23801 &bytes_read);
23802 i += bytes_read;
23803 break;
23804
23805 default:
23806 if (computed == nullptr)
23807 {
23808 const char *name = get_DW_OP_name (op);
23809
23810 if (name)
23811 complaint (_("unsupported stack op: '%s'"),
23812 name);
23813 else
23814 complaint (_("unsupported stack op: '%02x'"),
23815 op);
23816 }
23817
23818 return (stack[stacki]);
23819 }
23820
23821 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23822 outside of the allocated space. Also enforce minimum>0. */
23823 if (stacki >= ARRAY_SIZE (stack) - 1)
23824 {
23825 if (computed == nullptr)
23826 complaint (_("location description stack overflow"));
23827 return 0;
23828 }
23829
23830 if (stacki <= 0)
23831 {
23832 if (computed == nullptr)
23833 complaint (_("location description stack underflow"));
23834 return 0;
23835 }
23836 }
23837
23838 if (computed != nullptr)
23839 *computed = true;
23840 return (stack[stacki]);
23841 }
23842
23843 /* memory allocation interface */
23844
23845 static struct dwarf_block *
23846 dwarf_alloc_block (struct dwarf2_cu *cu)
23847 {
23848 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23849 }
23850
23851 static struct die_info *
23852 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23853 {
23854 struct die_info *die;
23855 size_t size = sizeof (struct die_info);
23856
23857 if (num_attrs > 1)
23858 size += (num_attrs - 1) * sizeof (struct attribute);
23859
23860 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23861 memset (die, 0, sizeof (struct die_info));
23862 return (die);
23863 }
23864
23865 \f
23866
23867 /* Macro support. */
23868
23869 /* An overload of dwarf_decode_macros that finds the correct section
23870 and ensures it is read in before calling the other overload. */
23871
23872 static void
23873 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23874 int section_is_gnu)
23875 {
23876 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23877 struct objfile *objfile = per_objfile->objfile;
23878 const struct line_header *lh = cu->line_header;
23879 unsigned int offset_size = cu->header.offset_size;
23880 struct dwarf2_section_info *section;
23881 const char *section_name;
23882
23883 if (cu->dwo_unit != nullptr)
23884 {
23885 if (section_is_gnu)
23886 {
23887 section = &cu->dwo_unit->dwo_file->sections.macro;
23888 section_name = ".debug_macro.dwo";
23889 }
23890 else
23891 {
23892 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23893 section_name = ".debug_macinfo.dwo";
23894 }
23895 }
23896 else
23897 {
23898 if (section_is_gnu)
23899 {
23900 section = &per_objfile->per_bfd->macro;
23901 section_name = ".debug_macro";
23902 }
23903 else
23904 {
23905 section = &per_objfile->per_bfd->macinfo;
23906 section_name = ".debug_macinfo";
23907 }
23908 }
23909
23910 section->read (objfile);
23911 if (section->buffer == nullptr)
23912 {
23913 complaint (_("missing %s section"), section_name);
23914 return;
23915 }
23916
23917 buildsym_compunit *builder = cu->get_builder ();
23918
23919 dwarf_decode_macros (per_objfile, builder, section, lh,
23920 offset_size, offset, section_is_gnu);
23921 }
23922
23923 /* Return the .debug_loc section to use for CU.
23924 For DWO files use .debug_loc.dwo. */
23925
23926 static struct dwarf2_section_info *
23927 cu_debug_loc_section (struct dwarf2_cu *cu)
23928 {
23929 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23930
23931 if (cu->dwo_unit)
23932 {
23933 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23934
23935 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23936 }
23937 return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists
23938 : &per_objfile->per_bfd->loc);
23939 }
23940
23941 /* Return the .debug_rnglists section to use for CU. */
23942 static struct dwarf2_section_info *
23943 cu_debug_rnglists_section (struct dwarf2_cu *cu, dwarf_tag tag)
23944 {
23945 if (cu->header.version < 5)
23946 error (_(".debug_rnglists section cannot be used in DWARF %d"),
23947 cu->header.version);
23948 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23949
23950 /* Make sure we read the .debug_rnglists section from the file that
23951 contains the DW_AT_ranges attribute we are reading. Normally that
23952 would be the .dwo file, if there is one. However for DW_TAG_compile_unit
23953 or DW_TAG_skeleton unit, we always want to read from objfile/linked
23954 program. */
23955 if (cu->dwo_unit != nullptr
23956 && tag != DW_TAG_compile_unit
23957 && tag != DW_TAG_skeleton_unit)
23958 {
23959 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23960
23961 if (sections->rnglists.size > 0)
23962 return &sections->rnglists;
23963 else
23964 error (_(".debug_rnglists section is missing from .dwo file."));
23965 }
23966 return &dwarf2_per_objfile->per_bfd->rnglists;
23967 }
23968
23969 /* A helper function that fills in a dwarf2_loclist_baton. */
23970
23971 static void
23972 fill_in_loclist_baton (struct dwarf2_cu *cu,
23973 struct dwarf2_loclist_baton *baton,
23974 const struct attribute *attr)
23975 {
23976 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23977 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23978
23979 section->read (per_objfile->objfile);
23980
23981 baton->per_objfile = per_objfile;
23982 baton->per_cu = cu->per_cu;
23983 gdb_assert (baton->per_cu);
23984 /* We don't know how long the location list is, but make sure we
23985 don't run off the edge of the section. */
23986 baton->size = section->size - attr->as_unsigned ();
23987 baton->data = section->buffer + attr->as_unsigned ();
23988 if (cu->base_address.has_value ())
23989 baton->base_address = *cu->base_address;
23990 else
23991 baton->base_address = 0;
23992 baton->from_dwo = cu->dwo_unit != NULL;
23993 }
23994
23995 static void
23996 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23997 struct dwarf2_cu *cu, int is_block)
23998 {
23999 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24000 struct objfile *objfile = per_objfile->objfile;
24001 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24002
24003 if (attr->form_is_section_offset ()
24004 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24005 the section. If so, fall through to the complaint in the
24006 other branch. */
24007 && attr->as_unsigned () < section->get_size (objfile))
24008 {
24009 struct dwarf2_loclist_baton *baton;
24010
24011 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24012
24013 fill_in_loclist_baton (cu, baton, attr);
24014
24015 if (!cu->base_address.has_value ())
24016 complaint (_("Location list used without "
24017 "specifying the CU base address."));
24018
24019 SYMBOL_ACLASS_INDEX (sym) = (is_block
24020 ? dwarf2_loclist_block_index
24021 : dwarf2_loclist_index);
24022 SYMBOL_LOCATION_BATON (sym) = baton;
24023 }
24024 else
24025 {
24026 struct dwarf2_locexpr_baton *baton;
24027
24028 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24029 baton->per_objfile = per_objfile;
24030 baton->per_cu = cu->per_cu;
24031 gdb_assert (baton->per_cu);
24032
24033 if (attr->form_is_block ())
24034 {
24035 /* Note that we're just copying the block's data pointer
24036 here, not the actual data. We're still pointing into the
24037 info_buffer for SYM's objfile; right now we never release
24038 that buffer, but when we do clean up properly this may
24039 need to change. */
24040 struct dwarf_block *block = attr->as_block ();
24041 baton->size = block->size;
24042 baton->data = block->data;
24043 }
24044 else
24045 {
24046 dwarf2_invalid_attrib_class_complaint ("location description",
24047 sym->natural_name ());
24048 baton->size = 0;
24049 }
24050
24051 SYMBOL_ACLASS_INDEX (sym) = (is_block
24052 ? dwarf2_locexpr_block_index
24053 : dwarf2_locexpr_index);
24054 SYMBOL_LOCATION_BATON (sym) = baton;
24055 }
24056 }
24057
24058 /* See read.h. */
24059
24060 const comp_unit_head *
24061 dwarf2_per_cu_data::get_header () const
24062 {
24063 if (!m_header_read_in)
24064 {
24065 const gdb_byte *info_ptr
24066 = this->section->buffer + to_underlying (this->sect_off);
24067
24068 memset (&m_header, 0, sizeof (m_header));
24069
24070 read_comp_unit_head (&m_header, info_ptr, this->section,
24071 rcuh_kind::COMPILE);
24072 }
24073
24074 return &m_header;
24075 }
24076
24077 /* See read.h. */
24078
24079 int
24080 dwarf2_per_cu_data::addr_size () const
24081 {
24082 return this->get_header ()->addr_size;
24083 }
24084
24085 /* See read.h. */
24086
24087 int
24088 dwarf2_per_cu_data::offset_size () const
24089 {
24090 return this->get_header ()->offset_size;
24091 }
24092
24093 /* See read.h. */
24094
24095 int
24096 dwarf2_per_cu_data::ref_addr_size () const
24097 {
24098 const comp_unit_head *header = this->get_header ();
24099
24100 if (header->version == 2)
24101 return header->addr_size;
24102 else
24103 return header->offset_size;
24104 }
24105
24106 /* See read.h. */
24107
24108 struct type *
24109 dwarf2_cu::addr_type () const
24110 {
24111 struct objfile *objfile = this->per_objfile->objfile;
24112 struct type *void_type = objfile_type (objfile)->builtin_void;
24113 struct type *addr_type = lookup_pointer_type (void_type);
24114 int addr_size = this->per_cu->addr_size ();
24115
24116 if (TYPE_LENGTH (addr_type) == addr_size)
24117 return addr_type;
24118
24119 addr_type = addr_sized_int_type (addr_type->is_unsigned ());
24120 return addr_type;
24121 }
24122
24123 /* A helper function for dwarf2_find_containing_comp_unit that returns
24124 the index of the result, and that searches a vector. It will
24125 return a result even if the offset in question does not actually
24126 occur in any CU. This is separate so that it can be unit
24127 tested. */
24128
24129 static int
24130 dwarf2_find_containing_comp_unit
24131 (sect_offset sect_off,
24132 unsigned int offset_in_dwz,
24133 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24134 {
24135 int low, high;
24136
24137 low = 0;
24138 high = all_comp_units.size () - 1;
24139 while (high > low)
24140 {
24141 struct dwarf2_per_cu_data *mid_cu;
24142 int mid = low + (high - low) / 2;
24143
24144 mid_cu = all_comp_units[mid];
24145 if (mid_cu->is_dwz > offset_in_dwz
24146 || (mid_cu->is_dwz == offset_in_dwz
24147 && mid_cu->sect_off + mid_cu->length > sect_off))
24148 high = mid;
24149 else
24150 low = mid + 1;
24151 }
24152 gdb_assert (low == high);
24153 return low;
24154 }
24155
24156 /* Locate the .debug_info compilation unit from CU's objfile which contains
24157 the DIE at OFFSET. Raises an error on failure. */
24158
24159 static struct dwarf2_per_cu_data *
24160 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24161 unsigned int offset_in_dwz,
24162 dwarf2_per_objfile *per_objfile)
24163 {
24164 int low = dwarf2_find_containing_comp_unit
24165 (sect_off, offset_in_dwz, per_objfile->per_bfd->all_comp_units);
24166 dwarf2_per_cu_data *this_cu = per_objfile->per_bfd->all_comp_units[low];
24167
24168 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24169 {
24170 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24171 error (_("Dwarf Error: could not find partial DIE containing "
24172 "offset %s [in module %s]"),
24173 sect_offset_str (sect_off),
24174 bfd_get_filename (per_objfile->objfile->obfd));
24175
24176 gdb_assert (per_objfile->per_bfd->all_comp_units[low-1]->sect_off
24177 <= sect_off);
24178 return per_objfile->per_bfd->all_comp_units[low-1];
24179 }
24180 else
24181 {
24182 if (low == per_objfile->per_bfd->all_comp_units.size () - 1
24183 && sect_off >= this_cu->sect_off + this_cu->length)
24184 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24185 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24186 return this_cu;
24187 }
24188 }
24189
24190 #if GDB_SELF_TEST
24191
24192 namespace selftests {
24193 namespace find_containing_comp_unit {
24194
24195 static void
24196 run_test ()
24197 {
24198 struct dwarf2_per_cu_data one {};
24199 struct dwarf2_per_cu_data two {};
24200 struct dwarf2_per_cu_data three {};
24201 struct dwarf2_per_cu_data four {};
24202
24203 one.length = 5;
24204 two.sect_off = sect_offset (one.length);
24205 two.length = 7;
24206
24207 three.length = 5;
24208 three.is_dwz = 1;
24209 four.sect_off = sect_offset (three.length);
24210 four.length = 7;
24211 four.is_dwz = 1;
24212
24213 std::vector<dwarf2_per_cu_data *> units;
24214 units.push_back (&one);
24215 units.push_back (&two);
24216 units.push_back (&three);
24217 units.push_back (&four);
24218
24219 int result;
24220
24221 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24222 SELF_CHECK (units[result] == &one);
24223 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24224 SELF_CHECK (units[result] == &one);
24225 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24226 SELF_CHECK (units[result] == &two);
24227
24228 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24229 SELF_CHECK (units[result] == &three);
24230 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24231 SELF_CHECK (units[result] == &three);
24232 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24233 SELF_CHECK (units[result] == &four);
24234 }
24235
24236 }
24237 }
24238
24239 #endif /* GDB_SELF_TEST */
24240
24241 /* Initialize dwarf2_cu to read PER_CU, in the context of PER_OBJFILE. */
24242
24243 dwarf2_cu::dwarf2_cu (dwarf2_per_cu_data *per_cu,
24244 dwarf2_per_objfile *per_objfile)
24245 : per_cu (per_cu),
24246 per_objfile (per_objfile),
24247 mark (false),
24248 has_loclist (false),
24249 checked_producer (false),
24250 producer_is_gxx_lt_4_6 (false),
24251 producer_is_gcc_lt_4_3 (false),
24252 producer_is_icc (false),
24253 producer_is_icc_lt_14 (false),
24254 producer_is_codewarrior (false),
24255 processing_has_namespace_info (false)
24256 {
24257 }
24258
24259 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24260
24261 static void
24262 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24263 enum language pretend_language)
24264 {
24265 struct attribute *attr;
24266
24267 /* Set the language we're debugging. */
24268 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24269 if (attr != nullptr)
24270 set_cu_language (DW_UNSND (attr), cu);
24271 else
24272 {
24273 cu->language = pretend_language;
24274 cu->language_defn = language_def (cu->language);
24275 }
24276
24277 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24278 }
24279
24280 /* See read.h. */
24281
24282 dwarf2_cu *
24283 dwarf2_per_objfile::get_cu (dwarf2_per_cu_data *per_cu)
24284 {
24285 auto it = m_dwarf2_cus.find (per_cu);
24286 if (it == m_dwarf2_cus.end ())
24287 return nullptr;
24288
24289 return it->second;
24290 }
24291
24292 /* See read.h. */
24293
24294 void
24295 dwarf2_per_objfile::set_cu (dwarf2_per_cu_data *per_cu, dwarf2_cu *cu)
24296 {
24297 gdb_assert (this->get_cu (per_cu) == nullptr);
24298
24299 m_dwarf2_cus[per_cu] = cu;
24300 }
24301
24302 /* See read.h. */
24303
24304 void
24305 dwarf2_per_objfile::age_comp_units ()
24306 {
24307 /* Start by clearing all marks. */
24308 for (auto pair : m_dwarf2_cus)
24309 pair.second->mark = false;
24310
24311 /* Traverse all CUs, mark them and their dependencies if used recently
24312 enough. */
24313 for (auto pair : m_dwarf2_cus)
24314 {
24315 dwarf2_cu *cu = pair.second;
24316
24317 cu->last_used++;
24318 if (cu->last_used <= dwarf_max_cache_age)
24319 dwarf2_mark (cu);
24320 }
24321
24322 /* Delete all CUs still not marked. */
24323 for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();)
24324 {
24325 dwarf2_cu *cu = it->second;
24326
24327 if (!cu->mark)
24328 {
24329 delete cu;
24330 it = m_dwarf2_cus.erase (it);
24331 }
24332 else
24333 it++;
24334 }
24335 }
24336
24337 /* See read.h. */
24338
24339 void
24340 dwarf2_per_objfile::remove_cu (dwarf2_per_cu_data *per_cu)
24341 {
24342 auto it = m_dwarf2_cus.find (per_cu);
24343 if (it == m_dwarf2_cus.end ())
24344 return;
24345
24346 delete it->second;
24347
24348 m_dwarf2_cus.erase (it);
24349 }
24350
24351 dwarf2_per_objfile::~dwarf2_per_objfile ()
24352 {
24353 remove_all_cus ();
24354 }
24355
24356 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24357 We store these in a hash table separate from the DIEs, and preserve them
24358 when the DIEs are flushed out of cache.
24359
24360 The CU "per_cu" pointer is needed because offset alone is not enough to
24361 uniquely identify the type. A file may have multiple .debug_types sections,
24362 or the type may come from a DWO file. Furthermore, while it's more logical
24363 to use per_cu->section+offset, with Fission the section with the data is in
24364 the DWO file but we don't know that section at the point we need it.
24365 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24366 because we can enter the lookup routine, get_die_type_at_offset, from
24367 outside this file, and thus won't necessarily have PER_CU->cu.
24368 Fortunately, PER_CU is stable for the life of the objfile. */
24369
24370 struct dwarf2_per_cu_offset_and_type
24371 {
24372 const struct dwarf2_per_cu_data *per_cu;
24373 sect_offset sect_off;
24374 struct type *type;
24375 };
24376
24377 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24378
24379 static hashval_t
24380 per_cu_offset_and_type_hash (const void *item)
24381 {
24382 const struct dwarf2_per_cu_offset_and_type *ofs
24383 = (const struct dwarf2_per_cu_offset_and_type *) item;
24384
24385 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24386 }
24387
24388 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24389
24390 static int
24391 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24392 {
24393 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24394 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24395 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24396 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24397
24398 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24399 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24400 }
24401
24402 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24403 table if necessary. For convenience, return TYPE.
24404
24405 The DIEs reading must have careful ordering to:
24406 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24407 reading current DIE.
24408 * Not trying to dereference contents of still incompletely read in types
24409 while reading in other DIEs.
24410 * Enable referencing still incompletely read in types just by a pointer to
24411 the type without accessing its fields.
24412
24413 Therefore caller should follow these rules:
24414 * Try to fetch any prerequisite types we may need to build this DIE type
24415 before building the type and calling set_die_type.
24416 * After building type call set_die_type for current DIE as soon as
24417 possible before fetching more types to complete the current type.
24418 * Make the type as complete as possible before fetching more types. */
24419
24420 static struct type *
24421 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24422 {
24423 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24424 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24425 struct objfile *objfile = per_objfile->objfile;
24426 struct attribute *attr;
24427 struct dynamic_prop prop;
24428
24429 /* For Ada types, make sure that the gnat-specific data is always
24430 initialized (if not already set). There are a few types where
24431 we should not be doing so, because the type-specific area is
24432 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24433 where the type-specific area is used to store the floatformat).
24434 But this is not a problem, because the gnat-specific information
24435 is actually not needed for these types. */
24436 if (need_gnat_info (cu)
24437 && type->code () != TYPE_CODE_FUNC
24438 && type->code () != TYPE_CODE_FLT
24439 && type->code () != TYPE_CODE_METHODPTR
24440 && type->code () != TYPE_CODE_MEMBERPTR
24441 && type->code () != TYPE_CODE_METHOD
24442 && !HAVE_GNAT_AUX_INFO (type))
24443 INIT_GNAT_SPECIFIC (type);
24444
24445 /* Read DW_AT_allocated and set in type. */
24446 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24447 if (attr != NULL)
24448 {
24449 struct type *prop_type = cu->addr_sized_int_type (false);
24450 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24451 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
24452 }
24453
24454 /* Read DW_AT_associated and set in type. */
24455 attr = dwarf2_attr (die, DW_AT_associated, cu);
24456 if (attr != NULL)
24457 {
24458 struct type *prop_type = cu->addr_sized_int_type (false);
24459 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24460 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
24461 }
24462
24463 /* Read DW_AT_data_location and set in type. */
24464 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24465 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
24466 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
24467
24468 if (per_objfile->die_type_hash == NULL)
24469 per_objfile->die_type_hash
24470 = htab_up (htab_create_alloc (127,
24471 per_cu_offset_and_type_hash,
24472 per_cu_offset_and_type_eq,
24473 NULL, xcalloc, xfree));
24474
24475 ofs.per_cu = cu->per_cu;
24476 ofs.sect_off = die->sect_off;
24477 ofs.type = type;
24478 slot = (struct dwarf2_per_cu_offset_and_type **)
24479 htab_find_slot (per_objfile->die_type_hash.get (), &ofs, INSERT);
24480 if (*slot)
24481 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24482 sect_offset_str (die->sect_off));
24483 *slot = XOBNEW (&objfile->objfile_obstack,
24484 struct dwarf2_per_cu_offset_and_type);
24485 **slot = ofs;
24486 return type;
24487 }
24488
24489 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24490 or return NULL if the die does not have a saved type. */
24491
24492 static struct type *
24493 get_die_type_at_offset (sect_offset sect_off,
24494 dwarf2_per_cu_data *per_cu,
24495 dwarf2_per_objfile *per_objfile)
24496 {
24497 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24498
24499 if (per_objfile->die_type_hash == NULL)
24500 return NULL;
24501
24502 ofs.per_cu = per_cu;
24503 ofs.sect_off = sect_off;
24504 slot = ((struct dwarf2_per_cu_offset_and_type *)
24505 htab_find (per_objfile->die_type_hash.get (), &ofs));
24506 if (slot)
24507 return slot->type;
24508 else
24509 return NULL;
24510 }
24511
24512 /* Look up the type for DIE in CU in die_type_hash,
24513 or return NULL if DIE does not have a saved type. */
24514
24515 static struct type *
24516 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24517 {
24518 return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile);
24519 }
24520
24521 /* Add a dependence relationship from CU to REF_PER_CU. */
24522
24523 static void
24524 dwarf2_add_dependence (struct dwarf2_cu *cu,
24525 struct dwarf2_per_cu_data *ref_per_cu)
24526 {
24527 void **slot;
24528
24529 if (cu->dependencies == NULL)
24530 cu->dependencies
24531 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24532 NULL, &cu->comp_unit_obstack,
24533 hashtab_obstack_allocate,
24534 dummy_obstack_deallocate);
24535
24536 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24537 if (*slot == NULL)
24538 *slot = ref_per_cu;
24539 }
24540
24541 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24542 Set the mark field in every compilation unit in the
24543 cache that we must keep because we are keeping CU.
24544
24545 DATA is the dwarf2_per_objfile object in which to look up CUs. */
24546
24547 static int
24548 dwarf2_mark_helper (void **slot, void *data)
24549 {
24550 dwarf2_per_cu_data *per_cu = (dwarf2_per_cu_data *) *slot;
24551 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) data;
24552 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
24553
24554 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24555 reading of the chain. As such dependencies remain valid it is not much
24556 useful to track and undo them during QUIT cleanups. */
24557 if (cu == nullptr)
24558 return 1;
24559
24560 if (cu->mark)
24561 return 1;
24562
24563 cu->mark = true;
24564
24565 if (cu->dependencies != nullptr)
24566 htab_traverse (cu->dependencies, dwarf2_mark_helper, per_objfile);
24567
24568 return 1;
24569 }
24570
24571 /* Set the mark field in CU and in every other compilation unit in the
24572 cache that we must keep because we are keeping CU. */
24573
24574 static void
24575 dwarf2_mark (struct dwarf2_cu *cu)
24576 {
24577 if (cu->mark)
24578 return;
24579
24580 cu->mark = true;
24581
24582 if (cu->dependencies != nullptr)
24583 htab_traverse (cu->dependencies, dwarf2_mark_helper, cu->per_objfile);
24584 }
24585
24586 /* Trivial hash function for partial_die_info: the hash value of a DIE
24587 is its offset in .debug_info for this objfile. */
24588
24589 static hashval_t
24590 partial_die_hash (const void *item)
24591 {
24592 const struct partial_die_info *part_die
24593 = (const struct partial_die_info *) item;
24594
24595 return to_underlying (part_die->sect_off);
24596 }
24597
24598 /* Trivial comparison function for partial_die_info structures: two DIEs
24599 are equal if they have the same offset. */
24600
24601 static int
24602 partial_die_eq (const void *item_lhs, const void *item_rhs)
24603 {
24604 const struct partial_die_info *part_die_lhs
24605 = (const struct partial_die_info *) item_lhs;
24606 const struct partial_die_info *part_die_rhs
24607 = (const struct partial_die_info *) item_rhs;
24608
24609 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24610 }
24611
24612 struct cmd_list_element *set_dwarf_cmdlist;
24613 struct cmd_list_element *show_dwarf_cmdlist;
24614
24615 static void
24616 show_check_physname (struct ui_file *file, int from_tty,
24617 struct cmd_list_element *c, const char *value)
24618 {
24619 fprintf_filtered (file,
24620 _("Whether to check \"physname\" is %s.\n"),
24621 value);
24622 }
24623
24624 void _initialize_dwarf2_read ();
24625 void
24626 _initialize_dwarf2_read ()
24627 {
24628 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
24629 Set DWARF specific variables.\n\
24630 Configure DWARF variables such as the cache size."),
24631 &set_dwarf_cmdlist, "maintenance set dwarf ",
24632 0/*allow-unknown*/, &maintenance_set_cmdlist);
24633
24634 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
24635 Show DWARF specific variables.\n\
24636 Show DWARF variables such as the cache size."),
24637 &show_dwarf_cmdlist, "maintenance show dwarf ",
24638 0/*allow-unknown*/, &maintenance_show_cmdlist);
24639
24640 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24641 &dwarf_max_cache_age, _("\
24642 Set the upper bound on the age of cached DWARF compilation units."), _("\
24643 Show the upper bound on the age of cached DWARF compilation units."), _("\
24644 A higher limit means that cached compilation units will be stored\n\
24645 in memory longer, and more total memory will be used. Zero disables\n\
24646 caching, which can slow down startup."),
24647 NULL,
24648 show_dwarf_max_cache_age,
24649 &set_dwarf_cmdlist,
24650 &show_dwarf_cmdlist);
24651
24652 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24653 Set debugging of the DWARF reader."), _("\
24654 Show debugging of the DWARF reader."), _("\
24655 When enabled (non-zero), debugging messages are printed during DWARF\n\
24656 reading and symtab expansion. A value of 1 (one) provides basic\n\
24657 information. A value greater than 1 provides more verbose information."),
24658 NULL,
24659 NULL,
24660 &setdebuglist, &showdebuglist);
24661
24662 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24663 Set debugging of the DWARF DIE reader."), _("\
24664 Show debugging of the DWARF DIE reader."), _("\
24665 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24666 The value is the maximum depth to print."),
24667 NULL,
24668 NULL,
24669 &setdebuglist, &showdebuglist);
24670
24671 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24672 Set debugging of the dwarf line reader."), _("\
24673 Show debugging of the dwarf line reader."), _("\
24674 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24675 A value of 1 (one) provides basic information.\n\
24676 A value greater than 1 provides more verbose information."),
24677 NULL,
24678 NULL,
24679 &setdebuglist, &showdebuglist);
24680
24681 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24682 Set cross-checking of \"physname\" code against demangler."), _("\
24683 Show cross-checking of \"physname\" code against demangler."), _("\
24684 When enabled, GDB's internal \"physname\" code is checked against\n\
24685 the demangler."),
24686 NULL, show_check_physname,
24687 &setdebuglist, &showdebuglist);
24688
24689 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24690 no_class, &use_deprecated_index_sections, _("\
24691 Set whether to use deprecated gdb_index sections."), _("\
24692 Show whether to use deprecated gdb_index sections."), _("\
24693 When enabled, deprecated .gdb_index sections are used anyway.\n\
24694 Normally they are ignored either because of a missing feature or\n\
24695 performance issue.\n\
24696 Warning: This option must be enabled before gdb reads the file."),
24697 NULL,
24698 NULL,
24699 &setlist, &showlist);
24700
24701 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24702 &dwarf2_locexpr_funcs);
24703 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24704 &dwarf2_loclist_funcs);
24705
24706 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24707 &dwarf2_block_frame_base_locexpr_funcs);
24708 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24709 &dwarf2_block_frame_base_loclist_funcs);
24710
24711 #if GDB_SELF_TEST
24712 selftests::register_test ("dw2_expand_symtabs_matching",
24713 selftests::dw2_expand_symtabs_matching::run_test);
24714 selftests::register_test ("dwarf2_find_containing_comp_unit",
24715 selftests::find_containing_comp_unit::run_test);
24716 #endif
24717 }
This page took 0.508089 seconds and 5 git commands to generate.