01e06702e4d9011f0eff1171694492566304c9a9
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include <string.h>
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 const gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_addr_from_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
294
295 return address_from_register (regnum, this_frame);
296 }
297
298 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
299
300 static struct value *
301 get_reg_value (void *baton, struct type *type, int reg)
302 {
303 struct frame_info *this_frame = (struct frame_info *) baton;
304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
305 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
306
307 return value_from_register (type, regnum, this_frame);
308 }
309
310 static void
311 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
312 {
313 read_memory (addr, buf, len);
314 }
315
316 /* Execute the required actions for both the DW_CFA_restore and
317 DW_CFA_restore_extended instructions. */
318 static void
319 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
320 struct dwarf2_frame_state *fs, int eh_frame_p)
321 {
322 ULONGEST reg;
323
324 gdb_assert (fs->initial.reg);
325 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
326 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
327
328 /* Check if this register was explicitly initialized in the
329 CIE initial instructions. If not, default the rule to
330 UNSPECIFIED. */
331 if (reg < fs->initial.num_regs)
332 fs->regs.reg[reg] = fs->initial.reg[reg];
333 else
334 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335
336 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
337 complaint (&symfile_complaints, _("\
338 incomplete CFI data; DW_CFA_restore unspecified\n\
339 register %s (#%d) at %s"),
340 gdbarch_register_name
341 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
342 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
343 paddress (gdbarch, fs->pc));
344 }
345
346 /* Virtual method table for execute_stack_op below. */
347
348 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
349 {
350 read_addr_from_reg,
351 get_reg_value,
352 read_mem,
353 ctx_no_get_frame_base,
354 ctx_no_get_frame_cfa,
355 ctx_no_get_frame_pc,
356 ctx_no_get_tls_address,
357 ctx_no_dwarf_call,
358 ctx_no_get_base_type,
359 ctx_no_push_dwarf_reg_entry_value,
360 ctx_no_get_addr_index
361 };
362
363 static CORE_ADDR
364 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
365 CORE_ADDR offset, struct frame_info *this_frame,
366 CORE_ADDR initial, int initial_in_stack_memory)
367 {
368 struct dwarf_expr_context *ctx;
369 CORE_ADDR result;
370 struct cleanup *old_chain;
371
372 ctx = new_dwarf_expr_context ();
373 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
374 make_cleanup_value_free_to_mark (value_mark ());
375
376 ctx->gdbarch = get_frame_arch (this_frame);
377 ctx->addr_size = addr_size;
378 ctx->ref_addr_size = -1;
379 ctx->offset = offset;
380 ctx->baton = this_frame;
381 ctx->funcs = &dwarf2_frame_ctx_funcs;
382
383 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
384 dwarf_expr_eval (ctx, exp, len);
385
386 if (ctx->location == DWARF_VALUE_MEMORY)
387 result = dwarf_expr_fetch_address (ctx, 0);
388 else if (ctx->location == DWARF_VALUE_REGISTER)
389 result = read_addr_from_reg (this_frame,
390 value_as_long (dwarf_expr_fetch (ctx, 0)));
391 else
392 {
393 /* This is actually invalid DWARF, but if we ever do run across
394 it somehow, we might as well support it. So, instead, report
395 it as unimplemented. */
396 error (_("\
397 Not implemented: computing unwound register using explicit value operator"));
398 }
399
400 do_cleanups (old_chain);
401
402 return result;
403 }
404 \f
405
406 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
407 PC. Modify FS state accordingly. Return current INSN_PTR where the
408 execution has stopped, one can resume it on the next call. */
409
410 static const gdb_byte *
411 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
412 const gdb_byte *insn_end, struct gdbarch *gdbarch,
413 CORE_ADDR pc, struct dwarf2_frame_state *fs)
414 {
415 int eh_frame_p = fde->eh_frame_p;
416 unsigned int bytes_read;
417 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
418
419 while (insn_ptr < insn_end && fs->pc <= pc)
420 {
421 gdb_byte insn = *insn_ptr++;
422 uint64_t utmp, reg;
423 int64_t offset;
424
425 if ((insn & 0xc0) == DW_CFA_advance_loc)
426 fs->pc += (insn & 0x3f) * fs->code_align;
427 else if ((insn & 0xc0) == DW_CFA_offset)
428 {
429 reg = insn & 0x3f;
430 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
431 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
432 offset = utmp * fs->data_align;
433 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
434 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
435 fs->regs.reg[reg].loc.offset = offset;
436 }
437 else if ((insn & 0xc0) == DW_CFA_restore)
438 {
439 reg = insn & 0x3f;
440 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
441 }
442 else
443 {
444 switch (insn)
445 {
446 case DW_CFA_set_loc:
447 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
448 fde->cie->ptr_size, insn_ptr,
449 &bytes_read, fde->initial_location);
450 /* Apply the objfile offset for relocatable objects. */
451 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
452 SECT_OFF_TEXT (fde->cie->unit->objfile));
453 insn_ptr += bytes_read;
454 break;
455
456 case DW_CFA_advance_loc1:
457 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
458 fs->pc += utmp * fs->code_align;
459 insn_ptr++;
460 break;
461 case DW_CFA_advance_loc2:
462 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
463 fs->pc += utmp * fs->code_align;
464 insn_ptr += 2;
465 break;
466 case DW_CFA_advance_loc4:
467 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
468 fs->pc += utmp * fs->code_align;
469 insn_ptr += 4;
470 break;
471
472 case DW_CFA_offset_extended:
473 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
474 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
475 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
476 offset = utmp * fs->data_align;
477 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
478 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
479 fs->regs.reg[reg].loc.offset = offset;
480 break;
481
482 case DW_CFA_restore_extended:
483 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
484 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
485 break;
486
487 case DW_CFA_undefined:
488 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
489 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
490 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
491 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
492 break;
493
494 case DW_CFA_same_value:
495 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
496 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
497 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
498 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
499 break;
500
501 case DW_CFA_register:
502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
503 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
505 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
506 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
507 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
508 fs->regs.reg[reg].loc.reg = utmp;
509 break;
510
511 case DW_CFA_remember_state:
512 {
513 struct dwarf2_frame_state_reg_info *new_rs;
514
515 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
516 *new_rs = fs->regs;
517 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
518 fs->regs.prev = new_rs;
519 }
520 break;
521
522 case DW_CFA_restore_state:
523 {
524 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
525
526 if (old_rs == NULL)
527 {
528 complaint (&symfile_complaints, _("\
529 bad CFI data; mismatched DW_CFA_restore_state at %s"),
530 paddress (gdbarch, fs->pc));
531 }
532 else
533 {
534 xfree (fs->regs.reg);
535 fs->regs = *old_rs;
536 xfree (old_rs);
537 }
538 }
539 break;
540
541 case DW_CFA_def_cfa:
542 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
543 fs->regs.cfa_reg = reg;
544 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
545
546 if (fs->armcc_cfa_offsets_sf)
547 utmp *= fs->data_align;
548
549 fs->regs.cfa_offset = utmp;
550 fs->regs.cfa_how = CFA_REG_OFFSET;
551 break;
552
553 case DW_CFA_def_cfa_register:
554 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
555 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
556 eh_frame_p);
557 fs->regs.cfa_how = CFA_REG_OFFSET;
558 break;
559
560 case DW_CFA_def_cfa_offset:
561 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
562
563 if (fs->armcc_cfa_offsets_sf)
564 utmp *= fs->data_align;
565
566 fs->regs.cfa_offset = utmp;
567 /* cfa_how deliberately not set. */
568 break;
569
570 case DW_CFA_nop:
571 break;
572
573 case DW_CFA_def_cfa_expression:
574 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
575 fs->regs.cfa_exp_len = utmp;
576 fs->regs.cfa_exp = insn_ptr;
577 fs->regs.cfa_how = CFA_EXP;
578 insn_ptr += fs->regs.cfa_exp_len;
579 break;
580
581 case DW_CFA_expression:
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
583 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
584 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
585 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
586 fs->regs.reg[reg].loc.exp = insn_ptr;
587 fs->regs.reg[reg].exp_len = utmp;
588 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
589 insn_ptr += utmp;
590 break;
591
592 case DW_CFA_offset_extended_sf:
593 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
594 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
595 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
596 offset *= fs->data_align;
597 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
598 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
599 fs->regs.reg[reg].loc.offset = offset;
600 break;
601
602 case DW_CFA_val_offset:
603 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
604 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
605 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
606 offset = utmp * fs->data_align;
607 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
608 fs->regs.reg[reg].loc.offset = offset;
609 break;
610
611 case DW_CFA_val_offset_sf:
612 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
613 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
614 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
615 offset *= fs->data_align;
616 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
617 fs->regs.reg[reg].loc.offset = offset;
618 break;
619
620 case DW_CFA_val_expression:
621 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
622 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
624 fs->regs.reg[reg].loc.exp = insn_ptr;
625 fs->regs.reg[reg].exp_len = utmp;
626 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
627 insn_ptr += utmp;
628 break;
629
630 case DW_CFA_def_cfa_sf:
631 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
632 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
633 eh_frame_p);
634 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
635 fs->regs.cfa_offset = offset * fs->data_align;
636 fs->regs.cfa_how = CFA_REG_OFFSET;
637 break;
638
639 case DW_CFA_def_cfa_offset_sf:
640 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
641 fs->regs.cfa_offset = offset * fs->data_align;
642 /* cfa_how deliberately not set. */
643 break;
644
645 case DW_CFA_GNU_window_save:
646 /* This is SPARC-specific code, and contains hard-coded
647 constants for the register numbering scheme used by
648 GCC. Rather than having a architecture-specific
649 operation that's only ever used by a single
650 architecture, we provide the implementation here.
651 Incidentally that's what GCC does too in its
652 unwinder. */
653 {
654 int size = register_size (gdbarch, 0);
655
656 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
657 for (reg = 8; reg < 16; reg++)
658 {
659 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
660 fs->regs.reg[reg].loc.reg = reg + 16;
661 }
662 for (reg = 16; reg < 32; reg++)
663 {
664 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
665 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
666 }
667 }
668 break;
669
670 case DW_CFA_GNU_args_size:
671 /* Ignored. */
672 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
673 break;
674
675 case DW_CFA_GNU_negative_offset_extended:
676 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
677 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
679 offset = utmp * fs->data_align;
680 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
681 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
682 fs->regs.reg[reg].loc.offset = -offset;
683 break;
684
685 default:
686 internal_error (__FILE__, __LINE__,
687 _("Unknown CFI encountered."));
688 }
689 }
690 }
691
692 if (fs->initial.reg == NULL)
693 {
694 /* Don't allow remember/restore between CIE and FDE programs. */
695 dwarf2_frame_state_free_regs (fs->regs.prev);
696 fs->regs.prev = NULL;
697 }
698
699 return insn_ptr;
700 }
701 \f
702
703 /* Architecture-specific operations. */
704
705 /* Per-architecture data key. */
706 static struct gdbarch_data *dwarf2_frame_data;
707
708 struct dwarf2_frame_ops
709 {
710 /* Pre-initialize the register state REG for register REGNUM. */
711 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
712 struct frame_info *);
713
714 /* Check whether the THIS_FRAME is a signal trampoline. */
715 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
716
717 /* Convert .eh_frame register number to DWARF register number, or
718 adjust .debug_frame register number. */
719 int (*adjust_regnum) (struct gdbarch *, int, int);
720 };
721
722 /* Default architecture-specific register state initialization
723 function. */
724
725 static void
726 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
727 struct dwarf2_frame_state_reg *reg,
728 struct frame_info *this_frame)
729 {
730 /* If we have a register that acts as a program counter, mark it as
731 a destination for the return address. If we have a register that
732 serves as the stack pointer, arrange for it to be filled with the
733 call frame address (CFA). The other registers are marked as
734 unspecified.
735
736 We copy the return address to the program counter, since many
737 parts in GDB assume that it is possible to get the return address
738 by unwinding the program counter register. However, on ISA's
739 with a dedicated return address register, the CFI usually only
740 contains information to unwind that return address register.
741
742 The reason we're treating the stack pointer special here is
743 because in many cases GCC doesn't emit CFI for the stack pointer
744 and implicitly assumes that it is equal to the CFA. This makes
745 some sense since the DWARF specification (version 3, draft 8,
746 p. 102) says that:
747
748 "Typically, the CFA is defined to be the value of the stack
749 pointer at the call site in the previous frame (which may be
750 different from its value on entry to the current frame)."
751
752 However, this isn't true for all platforms supported by GCC
753 (e.g. IBM S/390 and zSeries). Those architectures should provide
754 their own architecture-specific initialization function. */
755
756 if (regnum == gdbarch_pc_regnum (gdbarch))
757 reg->how = DWARF2_FRAME_REG_RA;
758 else if (regnum == gdbarch_sp_regnum (gdbarch))
759 reg->how = DWARF2_FRAME_REG_CFA;
760 }
761
762 /* Return a default for the architecture-specific operations. */
763
764 static void *
765 dwarf2_frame_init (struct obstack *obstack)
766 {
767 struct dwarf2_frame_ops *ops;
768
769 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
770 ops->init_reg = dwarf2_frame_default_init_reg;
771 return ops;
772 }
773
774 /* Set the architecture-specific register state initialization
775 function for GDBARCH to INIT_REG. */
776
777 void
778 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
779 void (*init_reg) (struct gdbarch *, int,
780 struct dwarf2_frame_state_reg *,
781 struct frame_info *))
782 {
783 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
784
785 ops->init_reg = init_reg;
786 }
787
788 /* Pre-initialize the register state REG for register REGNUM. */
789
790 static void
791 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
792 struct dwarf2_frame_state_reg *reg,
793 struct frame_info *this_frame)
794 {
795 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
796
797 ops->init_reg (gdbarch, regnum, reg, this_frame);
798 }
799
800 /* Set the architecture-specific signal trampoline recognition
801 function for GDBARCH to SIGNAL_FRAME_P. */
802
803 void
804 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
805 int (*signal_frame_p) (struct gdbarch *,
806 struct frame_info *))
807 {
808 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
809
810 ops->signal_frame_p = signal_frame_p;
811 }
812
813 /* Query the architecture-specific signal frame recognizer for
814 THIS_FRAME. */
815
816 static int
817 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
818 struct frame_info *this_frame)
819 {
820 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
821
822 if (ops->signal_frame_p == NULL)
823 return 0;
824 return ops->signal_frame_p (gdbarch, this_frame);
825 }
826
827 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
828 register numbers. */
829
830 void
831 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
832 int (*adjust_regnum) (struct gdbarch *,
833 int, int))
834 {
835 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
836
837 ops->adjust_regnum = adjust_regnum;
838 }
839
840 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
841 register. */
842
843 static int
844 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
845 int regnum, int eh_frame_p)
846 {
847 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
848
849 if (ops->adjust_regnum == NULL)
850 return regnum;
851 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
852 }
853
854 static void
855 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
856 struct dwarf2_fde *fde)
857 {
858 struct symtab *s;
859
860 s = find_pc_symtab (fs->pc);
861 if (s == NULL)
862 return;
863
864 if (producer_is_realview (s->producer))
865 {
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_sf = 1;
868
869 if (fde->cie->version == 1)
870 fs->armcc_cfa_offsets_reversed = 1;
871
872 /* The reversed offset problem is present in some compilers
873 using DWARF3, but it was eventually fixed. Check the ARM
874 defined augmentations, which are in the format "armcc" followed
875 by a list of one-character options. The "+" option means
876 this problem is fixed (no quirk needed). If the armcc
877 augmentation is missing, the quirk is needed. */
878 if (fde->cie->version == 3
879 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
880 || strchr (fde->cie->augmentation + 5, '+') == NULL))
881 fs->armcc_cfa_offsets_reversed = 1;
882
883 return;
884 }
885 }
886 \f
887
888 void
889 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
890 struct gdbarch *gdbarch,
891 CORE_ADDR pc,
892 struct dwarf2_per_cu_data *data)
893 {
894 struct dwarf2_fde *fde;
895 CORE_ADDR text_offset;
896 struct dwarf2_frame_state fs;
897 int addr_size;
898
899 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
900
901 fs.pc = pc;
902
903 /* Find the correct FDE. */
904 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
905 if (fde == NULL)
906 error (_("Could not compute CFA; needed to translate this expression"));
907
908 /* Extract any interesting information from the CIE. */
909 fs.data_align = fde->cie->data_alignment_factor;
910 fs.code_align = fde->cie->code_alignment_factor;
911 fs.retaddr_column = fde->cie->return_address_register;
912 addr_size = fde->cie->addr_size;
913
914 /* Check for "quirks" - known bugs in producers. */
915 dwarf2_frame_find_quirks (&fs, fde);
916
917 /* First decode all the insns in the CIE. */
918 execute_cfa_program (fde, fde->cie->initial_instructions,
919 fde->cie->end, gdbarch, pc, &fs);
920
921 /* Save the initialized register set. */
922 fs.initial = fs.regs;
923 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
924
925 /* Then decode the insns in the FDE up to our target PC. */
926 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
927
928 /* Calculate the CFA. */
929 switch (fs.regs.cfa_how)
930 {
931 case CFA_REG_OFFSET:
932 {
933 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
934
935 if (regnum == -1)
936 error (_("Unable to access DWARF register number %d"),
937 (int) fs.regs.cfa_reg); /* FIXME */
938 ax_reg (expr, regnum);
939
940 if (fs.regs.cfa_offset != 0)
941 {
942 if (fs.armcc_cfa_offsets_reversed)
943 ax_const_l (expr, -fs.regs.cfa_offset);
944 else
945 ax_const_l (expr, fs.regs.cfa_offset);
946 ax_simple (expr, aop_add);
947 }
948 }
949 break;
950
951 case CFA_EXP:
952 ax_const_l (expr, text_offset);
953 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
954 fs.regs.cfa_exp,
955 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
956 data);
957 break;
958
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
961 }
962 }
963
964 \f
965 struct dwarf2_frame_cache
966 {
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
969
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
973
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
976
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
980
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
983
984 /* Target address size in bytes. */
985 int addr_size;
986
987 /* The .text offset. */
988 CORE_ADDR text_offset;
989
990 /* True if we already checked whether this frame is the bottom frame
991 of a virtual tail call frame chain. */
992 int checked_tailcall_bottom;
993
994 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
995 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
996 involved. Non-bottom frames of a virtual tail call frames chain use
997 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
998 them. */
999 void *tailcall_cache;
1000
1001 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1002 base to get the SP, to simulate the return address pushed on the
1003 stack. */
1004 LONGEST entry_cfa_sp_offset;
1005 int entry_cfa_sp_offset_p;
1006 };
1007
1008 /* A cleanup that sets a pointer to NULL. */
1009
1010 static void
1011 clear_pointer_cleanup (void *arg)
1012 {
1013 void **ptr = arg;
1014
1015 *ptr = NULL;
1016 }
1017
1018 static struct dwarf2_frame_cache *
1019 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1020 {
1021 struct cleanup *reset_cache_cleanup, *old_chain;
1022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1023 const int num_regs = gdbarch_num_regs (gdbarch)
1024 + gdbarch_num_pseudo_regs (gdbarch);
1025 struct dwarf2_frame_cache *cache;
1026 struct dwarf2_frame_state *fs;
1027 struct dwarf2_fde *fde;
1028 volatile struct gdb_exception ex;
1029 CORE_ADDR entry_pc;
1030 const gdb_byte *instr;
1031
1032 if (*this_cache)
1033 return *this_cache;
1034
1035 /* Allocate a new cache. */
1036 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1037 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1038 *this_cache = cache;
1039 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1040
1041 /* Allocate and initialize the frame state. */
1042 fs = XCNEW (struct dwarf2_frame_state);
1043 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1044
1045 /* Unwind the PC.
1046
1047 Note that if the next frame is never supposed to return (i.e. a call
1048 to abort), the compiler might optimize away the instruction at
1049 its return address. As a result the return address will
1050 point at some random instruction, and the CFI for that
1051 instruction is probably worthless to us. GCC's unwinder solves
1052 this problem by substracting 1 from the return address to get an
1053 address in the middle of a presumed call instruction (or the
1054 instruction in the associated delay slot). This should only be
1055 done for "normal" frames and not for resume-type frames (signal
1056 handlers, sentinel frames, dummy frames). The function
1057 get_frame_address_in_block does just this. It's not clear how
1058 reliable the method is though; there is the potential for the
1059 register state pre-call being different to that on return. */
1060 fs->pc = get_frame_address_in_block (this_frame);
1061
1062 /* Find the correct FDE. */
1063 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1064 gdb_assert (fde != NULL);
1065
1066 /* Extract any interesting information from the CIE. */
1067 fs->data_align = fde->cie->data_alignment_factor;
1068 fs->code_align = fde->cie->code_alignment_factor;
1069 fs->retaddr_column = fde->cie->return_address_register;
1070 cache->addr_size = fde->cie->addr_size;
1071
1072 /* Check for "quirks" - known bugs in producers. */
1073 dwarf2_frame_find_quirks (fs, fde);
1074
1075 /* First decode all the insns in the CIE. */
1076 execute_cfa_program (fde, fde->cie->initial_instructions,
1077 fde->cie->end, gdbarch,
1078 get_frame_address_in_block (this_frame), fs);
1079
1080 /* Save the initialized register set. */
1081 fs->initial = fs->regs;
1082 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1083
1084 if (get_frame_func_if_available (this_frame, &entry_pc))
1085 {
1086 /* Decode the insns in the FDE up to the entry PC. */
1087 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1088 entry_pc, fs);
1089
1090 if (fs->regs.cfa_how == CFA_REG_OFFSET
1091 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1092 == gdbarch_sp_regnum (gdbarch)))
1093 {
1094 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1095 cache->entry_cfa_sp_offset_p = 1;
1096 }
1097 }
1098 else
1099 instr = fde->instructions;
1100
1101 /* Then decode the insns in the FDE up to our target PC. */
1102 execute_cfa_program (fde, instr, fde->end, gdbarch,
1103 get_frame_address_in_block (this_frame), fs);
1104
1105 TRY_CATCH (ex, RETURN_MASK_ERROR)
1106 {
1107 /* Calculate the CFA. */
1108 switch (fs->regs.cfa_how)
1109 {
1110 case CFA_REG_OFFSET:
1111 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1112 if (fs->armcc_cfa_offsets_reversed)
1113 cache->cfa -= fs->regs.cfa_offset;
1114 else
1115 cache->cfa += fs->regs.cfa_offset;
1116 break;
1117
1118 case CFA_EXP:
1119 cache->cfa =
1120 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1121 cache->addr_size, cache->text_offset,
1122 this_frame, 0, 0);
1123 break;
1124
1125 default:
1126 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1127 }
1128 }
1129 if (ex.reason < 0)
1130 {
1131 if (ex.error == NOT_AVAILABLE_ERROR)
1132 {
1133 cache->unavailable_retaddr = 1;
1134 do_cleanups (old_chain);
1135 discard_cleanups (reset_cache_cleanup);
1136 return cache;
1137 }
1138
1139 throw_exception (ex);
1140 }
1141
1142 /* Initialize the register state. */
1143 {
1144 int regnum;
1145
1146 for (regnum = 0; regnum < num_regs; regnum++)
1147 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1148 }
1149
1150 /* Go through the DWARF2 CFI generated table and save its register
1151 location information in the cache. Note that we don't skip the
1152 return address column; it's perfectly all right for it to
1153 correspond to a real register. If it doesn't correspond to a
1154 real register, or if we shouldn't treat it as such,
1155 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1156 the range [0, gdbarch_num_regs). */
1157 {
1158 int column; /* CFI speak for "register number". */
1159
1160 for (column = 0; column < fs->regs.num_regs; column++)
1161 {
1162 /* Use the GDB register number as the destination index. */
1163 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1164
1165 /* If there's no corresponding GDB register, ignore it. */
1166 if (regnum < 0 || regnum >= num_regs)
1167 continue;
1168
1169 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1170 of all debug info registers. If it doesn't, complain (but
1171 not too loudly). It turns out that GCC assumes that an
1172 unspecified register implies "same value" when CFI (draft
1173 7) specifies nothing at all. Such a register could equally
1174 be interpreted as "undefined". Also note that this check
1175 isn't sufficient; it only checks that all registers in the
1176 range [0 .. max column] are specified, and won't detect
1177 problems when a debug info register falls outside of the
1178 table. We need a way of iterating through all the valid
1179 DWARF2 register numbers. */
1180 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1181 {
1182 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1183 complaint (&symfile_complaints, _("\
1184 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1185 gdbarch_register_name (gdbarch, regnum),
1186 paddress (gdbarch, fs->pc));
1187 }
1188 else
1189 cache->reg[regnum] = fs->regs.reg[column];
1190 }
1191 }
1192
1193 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1194 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1195 {
1196 int regnum;
1197
1198 for (regnum = 0; regnum < num_regs; regnum++)
1199 {
1200 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1201 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1202 {
1203 struct dwarf2_frame_state_reg *retaddr_reg =
1204 &fs->regs.reg[fs->retaddr_column];
1205
1206 /* It seems rather bizarre to specify an "empty" column as
1207 the return adress column. However, this is exactly
1208 what GCC does on some targets. It turns out that GCC
1209 assumes that the return address can be found in the
1210 register corresponding to the return address column.
1211 Incidentally, that's how we should treat a return
1212 address column specifying "same value" too. */
1213 if (fs->retaddr_column < fs->regs.num_regs
1214 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1215 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1216 {
1217 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1218 cache->reg[regnum] = *retaddr_reg;
1219 else
1220 cache->retaddr_reg = *retaddr_reg;
1221 }
1222 else
1223 {
1224 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1225 {
1226 cache->reg[regnum].loc.reg = fs->retaddr_column;
1227 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1228 }
1229 else
1230 {
1231 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1232 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1233 }
1234 }
1235 }
1236 }
1237 }
1238
1239 if (fs->retaddr_column < fs->regs.num_regs
1240 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1241 cache->undefined_retaddr = 1;
1242
1243 do_cleanups (old_chain);
1244 discard_cleanups (reset_cache_cleanup);
1245 return cache;
1246 }
1247
1248 static enum unwind_stop_reason
1249 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1250 void **this_cache)
1251 {
1252 struct dwarf2_frame_cache *cache
1253 = dwarf2_frame_cache (this_frame, this_cache);
1254
1255 if (cache->unavailable_retaddr)
1256 return UNWIND_UNAVAILABLE;
1257
1258 if (cache->undefined_retaddr)
1259 return UNWIND_OUTERMOST;
1260
1261 return UNWIND_NO_REASON;
1262 }
1263
1264 static void
1265 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1266 struct frame_id *this_id)
1267 {
1268 struct dwarf2_frame_cache *cache =
1269 dwarf2_frame_cache (this_frame, this_cache);
1270
1271 if (cache->unavailable_retaddr)
1272 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1273 else if (cache->undefined_retaddr)
1274 return;
1275 else
1276 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1277 }
1278
1279 static struct value *
1280 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1281 int regnum)
1282 {
1283 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1284 struct dwarf2_frame_cache *cache =
1285 dwarf2_frame_cache (this_frame, this_cache);
1286 CORE_ADDR addr;
1287 int realnum;
1288
1289 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1290 call frame chain. */
1291 if (!cache->checked_tailcall_bottom)
1292 {
1293 cache->checked_tailcall_bottom = 1;
1294 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1295 (cache->entry_cfa_sp_offset_p
1296 ? &cache->entry_cfa_sp_offset : NULL));
1297 }
1298
1299 /* Non-bottom frames of a virtual tail call frames chain use
1300 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1301 them. If dwarf2_tailcall_prev_register_first does not have specific value
1302 unwind the register, tail call frames are assumed to have the register set
1303 of the top caller. */
1304 if (cache->tailcall_cache)
1305 {
1306 struct value *val;
1307
1308 val = dwarf2_tailcall_prev_register_first (this_frame,
1309 &cache->tailcall_cache,
1310 regnum);
1311 if (val)
1312 return val;
1313 }
1314
1315 switch (cache->reg[regnum].how)
1316 {
1317 case DWARF2_FRAME_REG_UNDEFINED:
1318 /* If CFI explicitly specified that the value isn't defined,
1319 mark it as optimized away; the value isn't available. */
1320 return frame_unwind_got_optimized (this_frame, regnum);
1321
1322 case DWARF2_FRAME_REG_SAVED_OFFSET:
1323 addr = cache->cfa + cache->reg[regnum].loc.offset;
1324 return frame_unwind_got_memory (this_frame, regnum, addr);
1325
1326 case DWARF2_FRAME_REG_SAVED_REG:
1327 realnum
1328 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1329 return frame_unwind_got_register (this_frame, regnum, realnum);
1330
1331 case DWARF2_FRAME_REG_SAVED_EXP:
1332 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1333 cache->reg[regnum].exp_len,
1334 cache->addr_size, cache->text_offset,
1335 this_frame, cache->cfa, 1);
1336 return frame_unwind_got_memory (this_frame, regnum, addr);
1337
1338 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1339 addr = cache->cfa + cache->reg[regnum].loc.offset;
1340 return frame_unwind_got_constant (this_frame, regnum, addr);
1341
1342 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1343 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1344 cache->reg[regnum].exp_len,
1345 cache->addr_size, cache->text_offset,
1346 this_frame, cache->cfa, 1);
1347 return frame_unwind_got_constant (this_frame, regnum, addr);
1348
1349 case DWARF2_FRAME_REG_UNSPECIFIED:
1350 /* GCC, in its infinite wisdom decided to not provide unwind
1351 information for registers that are "same value". Since
1352 DWARF2 (3 draft 7) doesn't define such behavior, said
1353 registers are actually undefined (which is different to CFI
1354 "undefined"). Code above issues a complaint about this.
1355 Here just fudge the books, assume GCC, and that the value is
1356 more inner on the stack. */
1357 return frame_unwind_got_register (this_frame, regnum, regnum);
1358
1359 case DWARF2_FRAME_REG_SAME_VALUE:
1360 return frame_unwind_got_register (this_frame, regnum, regnum);
1361
1362 case DWARF2_FRAME_REG_CFA:
1363 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1364
1365 case DWARF2_FRAME_REG_CFA_OFFSET:
1366 addr = cache->cfa + cache->reg[regnum].loc.offset;
1367 return frame_unwind_got_address (this_frame, regnum, addr);
1368
1369 case DWARF2_FRAME_REG_RA_OFFSET:
1370 addr = cache->reg[regnum].loc.offset;
1371 regnum = gdbarch_dwarf2_reg_to_regnum
1372 (gdbarch, cache->retaddr_reg.loc.reg);
1373 addr += get_frame_register_unsigned (this_frame, regnum);
1374 return frame_unwind_got_address (this_frame, regnum, addr);
1375
1376 case DWARF2_FRAME_REG_FN:
1377 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1378
1379 default:
1380 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1381 }
1382 }
1383
1384 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1385 call frames chain. */
1386
1387 static void
1388 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1389 {
1390 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1391
1392 if (cache->tailcall_cache)
1393 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1394 }
1395
1396 static int
1397 dwarf2_frame_sniffer (const struct frame_unwind *self,
1398 struct frame_info *this_frame, void **this_cache)
1399 {
1400 /* Grab an address that is guarenteed to reside somewhere within the
1401 function. get_frame_pc(), with a no-return next function, can
1402 end up returning something past the end of this function's body.
1403 If the frame we're sniffing for is a signal frame whose start
1404 address is placed on the stack by the OS, its FDE must
1405 extend one byte before its start address or we could potentially
1406 select the FDE of the previous function. */
1407 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1408 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1409
1410 if (!fde)
1411 return 0;
1412
1413 /* On some targets, signal trampolines may have unwind information.
1414 We need to recognize them so that we set the frame type
1415 correctly. */
1416
1417 if (fde->cie->signal_frame
1418 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1419 this_frame))
1420 return self->type == SIGTRAMP_FRAME;
1421
1422 if (self->type != NORMAL_FRAME)
1423 return 0;
1424
1425 return 1;
1426 }
1427
1428 static const struct frame_unwind dwarf2_frame_unwind =
1429 {
1430 NORMAL_FRAME,
1431 dwarf2_frame_unwind_stop_reason,
1432 dwarf2_frame_this_id,
1433 dwarf2_frame_prev_register,
1434 NULL,
1435 dwarf2_frame_sniffer,
1436 dwarf2_frame_dealloc_cache
1437 };
1438
1439 static const struct frame_unwind dwarf2_signal_frame_unwind =
1440 {
1441 SIGTRAMP_FRAME,
1442 dwarf2_frame_unwind_stop_reason,
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
1446 dwarf2_frame_sniffer,
1447
1448 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1449 NULL
1450 };
1451
1452 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1453
1454 void
1455 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1456 {
1457 /* TAILCALL_FRAME must be first to find the record by
1458 dwarf2_tailcall_sniffer_first. */
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1460
1461 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1463 }
1464 \f
1465
1466 /* There is no explicitly defined relationship between the CFA and the
1467 location of frame's local variables and arguments/parameters.
1468 Therefore, frame base methods on this page should probably only be
1469 used as a last resort, just to avoid printing total garbage as a
1470 response to the "info frame" command. */
1471
1472 static CORE_ADDR
1473 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1474 {
1475 struct dwarf2_frame_cache *cache =
1476 dwarf2_frame_cache (this_frame, this_cache);
1477
1478 return cache->cfa;
1479 }
1480
1481 static const struct frame_base dwarf2_frame_base =
1482 {
1483 &dwarf2_frame_unwind,
1484 dwarf2_frame_base_address,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address
1487 };
1488
1489 const struct frame_base *
1490 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1491 {
1492 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1493
1494 if (dwarf2_frame_find_fde (&block_addr, NULL))
1495 return &dwarf2_frame_base;
1496
1497 return NULL;
1498 }
1499
1500 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1501 the DWARF unwinder. This is used to implement
1502 DW_OP_call_frame_cfa. */
1503
1504 CORE_ADDR
1505 dwarf2_frame_cfa (struct frame_info *this_frame)
1506 {
1507 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1508 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1509 throw_error (NOT_AVAILABLE_ERROR,
1510 _("cfa not available for record btrace target"));
1511
1512 while (get_frame_type (this_frame) == INLINE_FRAME)
1513 this_frame = get_prev_frame (this_frame);
1514 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1515 throw_error (NOT_AVAILABLE_ERROR,
1516 _("can't compute CFA for this frame: "
1517 "required registers or memory are unavailable"));
1518 /* This restriction could be lifted if other unwinders are known to
1519 compute the frame base in a way compatible with the DWARF
1520 unwinder. */
1521 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1522 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1523 error (_("can't compute CFA for this frame"));
1524 return get_frame_base (this_frame);
1525 }
1526 \f
1527 const struct objfile_data *dwarf2_frame_objfile_data;
1528
1529 static unsigned int
1530 read_1_byte (bfd *abfd, const gdb_byte *buf)
1531 {
1532 return bfd_get_8 (abfd, buf);
1533 }
1534
1535 static unsigned int
1536 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1537 {
1538 return bfd_get_32 (abfd, buf);
1539 }
1540
1541 static ULONGEST
1542 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1543 {
1544 return bfd_get_64 (abfd, buf);
1545 }
1546
1547 static ULONGEST
1548 read_initial_length (bfd *abfd, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr)
1550 {
1551 LONGEST result;
1552
1553 result = bfd_get_32 (abfd, buf);
1554 if (result == 0xffffffff)
1555 {
1556 result = bfd_get_64 (abfd, buf + 4);
1557 *bytes_read_ptr = 12;
1558 }
1559 else
1560 *bytes_read_ptr = 4;
1561
1562 return result;
1563 }
1564 \f
1565
1566 /* Pointer encoding helper functions. */
1567
1568 /* GCC supports exception handling based on DWARF2 CFI. However, for
1569 technical reasons, it encodes addresses in its FDE's in a different
1570 way. Several "pointer encodings" are supported. The encoding
1571 that's used for a particular FDE is determined by the 'R'
1572 augmentation in the associated CIE. The argument of this
1573 augmentation is a single byte.
1574
1575 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1576 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1577 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1578 address should be interpreted (absolute, relative to the current
1579 position in the FDE, ...). Bit 7, indicates that the address
1580 should be dereferenced. */
1581
1582 static gdb_byte
1583 encoding_for_size (unsigned int size)
1584 {
1585 switch (size)
1586 {
1587 case 2:
1588 return DW_EH_PE_udata2;
1589 case 4:
1590 return DW_EH_PE_udata4;
1591 case 8:
1592 return DW_EH_PE_udata8;
1593 default:
1594 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1595 }
1596 }
1597
1598 static CORE_ADDR
1599 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1600 int ptr_len, const gdb_byte *buf,
1601 unsigned int *bytes_read_ptr,
1602 CORE_ADDR func_base)
1603 {
1604 ptrdiff_t offset;
1605 CORE_ADDR base;
1606
1607 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1608 FDE's. */
1609 if (encoding & DW_EH_PE_indirect)
1610 internal_error (__FILE__, __LINE__,
1611 _("Unsupported encoding: DW_EH_PE_indirect"));
1612
1613 *bytes_read_ptr = 0;
1614
1615 switch (encoding & 0x70)
1616 {
1617 case DW_EH_PE_absptr:
1618 base = 0;
1619 break;
1620 case DW_EH_PE_pcrel:
1621 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1622 base += (buf - unit->dwarf_frame_buffer);
1623 break;
1624 case DW_EH_PE_datarel:
1625 base = unit->dbase;
1626 break;
1627 case DW_EH_PE_textrel:
1628 base = unit->tbase;
1629 break;
1630 case DW_EH_PE_funcrel:
1631 base = func_base;
1632 break;
1633 case DW_EH_PE_aligned:
1634 base = 0;
1635 offset = buf - unit->dwarf_frame_buffer;
1636 if ((offset % ptr_len) != 0)
1637 {
1638 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1639 buf += *bytes_read_ptr;
1640 }
1641 break;
1642 default:
1643 internal_error (__FILE__, __LINE__,
1644 _("Invalid or unsupported encoding"));
1645 }
1646
1647 if ((encoding & 0x07) == 0x00)
1648 {
1649 encoding |= encoding_for_size (ptr_len);
1650 if (bfd_get_sign_extend_vma (unit->abfd))
1651 encoding |= DW_EH_PE_signed;
1652 }
1653
1654 switch (encoding & 0x0f)
1655 {
1656 case DW_EH_PE_uleb128:
1657 {
1658 uint64_t value;
1659 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1660
1661 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1662 return base + value;
1663 }
1664 case DW_EH_PE_udata2:
1665 *bytes_read_ptr += 2;
1666 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata4:
1668 *bytes_read_ptr += 4;
1669 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_udata8:
1671 *bytes_read_ptr += 8;
1672 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_sleb128:
1674 {
1675 int64_t value;
1676 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1677
1678 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1679 return base + value;
1680 }
1681 case DW_EH_PE_sdata2:
1682 *bytes_read_ptr += 2;
1683 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata4:
1685 *bytes_read_ptr += 4;
1686 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1687 case DW_EH_PE_sdata8:
1688 *bytes_read_ptr += 8;
1689 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1690 default:
1691 internal_error (__FILE__, __LINE__,
1692 _("Invalid or unsupported encoding"));
1693 }
1694 }
1695 \f
1696
1697 static int
1698 bsearch_cie_cmp (const void *key, const void *element)
1699 {
1700 ULONGEST cie_pointer = *(ULONGEST *) key;
1701 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1702
1703 if (cie_pointer == cie->cie_pointer)
1704 return 0;
1705
1706 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1707 }
1708
1709 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1710 static struct dwarf2_cie *
1711 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1712 {
1713 struct dwarf2_cie **p_cie;
1714
1715 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1716 bsearch be non-NULL. */
1717 if (cie_table->entries == NULL)
1718 {
1719 gdb_assert (cie_table->num_entries == 0);
1720 return NULL;
1721 }
1722
1723 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1724 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1725 if (p_cie != NULL)
1726 return *p_cie;
1727 return NULL;
1728 }
1729
1730 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1731 static void
1732 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1733 {
1734 const int n = cie_table->num_entries;
1735
1736 gdb_assert (n < 1
1737 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1738
1739 cie_table->entries =
1740 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1741 cie_table->entries[n] = cie;
1742 cie_table->num_entries = n + 1;
1743 }
1744
1745 static int
1746 bsearch_fde_cmp (const void *key, const void *element)
1747 {
1748 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1749 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1750
1751 if (seek_pc < fde->initial_location)
1752 return -1;
1753 if (seek_pc < fde->initial_location + fde->address_range)
1754 return 0;
1755 return 1;
1756 }
1757
1758 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1759 inital location associated with it into *PC. */
1760
1761 static struct dwarf2_fde *
1762 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1763 {
1764 struct objfile *objfile;
1765
1766 ALL_OBJFILES (objfile)
1767 {
1768 struct dwarf2_fde_table *fde_table;
1769 struct dwarf2_fde **p_fde;
1770 CORE_ADDR offset;
1771 CORE_ADDR seek_pc;
1772
1773 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1774 if (fde_table == NULL)
1775 {
1776 dwarf2_build_frame_info (objfile);
1777 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1778 }
1779 gdb_assert (fde_table != NULL);
1780
1781 if (fde_table->num_entries == 0)
1782 continue;
1783
1784 gdb_assert (objfile->section_offsets);
1785 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1786
1787 gdb_assert (fde_table->num_entries > 0);
1788 if (*pc < offset + fde_table->entries[0]->initial_location)
1789 continue;
1790
1791 seek_pc = *pc - offset;
1792 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1793 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1794 if (p_fde != NULL)
1795 {
1796 *pc = (*p_fde)->initial_location + offset;
1797 if (out_offset)
1798 *out_offset = offset;
1799 return *p_fde;
1800 }
1801 }
1802 return NULL;
1803 }
1804
1805 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1806 static void
1807 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1808 {
1809 if (fde->address_range == 0)
1810 /* Discard useless FDEs. */
1811 return;
1812
1813 fde_table->num_entries += 1;
1814 fde_table->entries =
1815 xrealloc (fde_table->entries,
1816 fde_table->num_entries * sizeof (fde_table->entries[0]));
1817 fde_table->entries[fde_table->num_entries - 1] = fde;
1818 }
1819
1820 #define DW64_CIE_ID 0xffffffffffffffffULL
1821
1822 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1823 or any of them. */
1824
1825 enum eh_frame_type
1826 {
1827 EH_CIE_TYPE_ID = 1 << 0,
1828 EH_FDE_TYPE_ID = 1 << 1,
1829 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1830 };
1831
1832 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1833 const gdb_byte *start,
1834 int eh_frame_p,
1835 struct dwarf2_cie_table *cie_table,
1836 struct dwarf2_fde_table *fde_table,
1837 enum eh_frame_type entry_type);
1838
1839 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1840 Return NULL if invalid input, otherwise the next byte to be processed. */
1841
1842 static const gdb_byte *
1843 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1844 int eh_frame_p,
1845 struct dwarf2_cie_table *cie_table,
1846 struct dwarf2_fde_table *fde_table,
1847 enum eh_frame_type entry_type)
1848 {
1849 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1850 const gdb_byte *buf, *end;
1851 LONGEST length;
1852 unsigned int bytes_read;
1853 int dwarf64_p;
1854 ULONGEST cie_id;
1855 ULONGEST cie_pointer;
1856 int64_t sleb128;
1857 uint64_t uleb128;
1858
1859 buf = start;
1860 length = read_initial_length (unit->abfd, buf, &bytes_read);
1861 buf += bytes_read;
1862 end = buf + length;
1863
1864 /* Are we still within the section? */
1865 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1866 return NULL;
1867
1868 if (length == 0)
1869 return end;
1870
1871 /* Distinguish between 32 and 64-bit encoded frame info. */
1872 dwarf64_p = (bytes_read == 12);
1873
1874 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1875 if (eh_frame_p)
1876 cie_id = 0;
1877 else if (dwarf64_p)
1878 cie_id = DW64_CIE_ID;
1879 else
1880 cie_id = DW_CIE_ID;
1881
1882 if (dwarf64_p)
1883 {
1884 cie_pointer = read_8_bytes (unit->abfd, buf);
1885 buf += 8;
1886 }
1887 else
1888 {
1889 cie_pointer = read_4_bytes (unit->abfd, buf);
1890 buf += 4;
1891 }
1892
1893 if (cie_pointer == cie_id)
1894 {
1895 /* This is a CIE. */
1896 struct dwarf2_cie *cie;
1897 char *augmentation;
1898 unsigned int cie_version;
1899
1900 /* Check that a CIE was expected. */
1901 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1902 error (_("Found a CIE when not expecting it."));
1903
1904 /* Record the offset into the .debug_frame section of this CIE. */
1905 cie_pointer = start - unit->dwarf_frame_buffer;
1906
1907 /* Check whether we've already read it. */
1908 if (find_cie (cie_table, cie_pointer))
1909 return end;
1910
1911 cie = (struct dwarf2_cie *)
1912 obstack_alloc (&unit->objfile->objfile_obstack,
1913 sizeof (struct dwarf2_cie));
1914 cie->initial_instructions = NULL;
1915 cie->cie_pointer = cie_pointer;
1916
1917 /* The encoding for FDE's in a normal .debug_frame section
1918 depends on the target address size. */
1919 cie->encoding = DW_EH_PE_absptr;
1920
1921 /* We'll determine the final value later, but we need to
1922 initialize it conservatively. */
1923 cie->signal_frame = 0;
1924
1925 /* Check version number. */
1926 cie_version = read_1_byte (unit->abfd, buf);
1927 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1928 return NULL;
1929 cie->version = cie_version;
1930 buf += 1;
1931
1932 /* Interpret the interesting bits of the augmentation. */
1933 cie->augmentation = augmentation = (char *) buf;
1934 buf += (strlen (augmentation) + 1);
1935
1936 /* Ignore armcc augmentations. We only use them for quirks,
1937 and that doesn't happen until later. */
1938 if (strncmp (augmentation, "armcc", 5) == 0)
1939 augmentation += strlen (augmentation);
1940
1941 /* The GCC 2.x "eh" augmentation has a pointer immediately
1942 following the augmentation string, so it must be handled
1943 first. */
1944 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1945 {
1946 /* Skip. */
1947 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1948 augmentation += 2;
1949 }
1950
1951 if (cie->version >= 4)
1952 {
1953 /* FIXME: check that this is the same as from the CU header. */
1954 cie->addr_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 cie->segment_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1958 }
1959 else
1960 {
1961 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1962 cie->segment_size = 0;
1963 }
1964 /* Address values in .eh_frame sections are defined to have the
1965 target's pointer size. Watchout: This breaks frame info for
1966 targets with pointer size < address size, unless a .debug_frame
1967 section exists as well. */
1968 if (eh_frame_p)
1969 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1970 else
1971 cie->ptr_size = cie->addr_size;
1972
1973 buf = gdb_read_uleb128 (buf, end, &uleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->code_alignment_factor = uleb128;
1977
1978 buf = gdb_read_sleb128 (buf, end, &sleb128);
1979 if (buf == NULL)
1980 return NULL;
1981 cie->data_alignment_factor = sleb128;
1982
1983 if (cie_version == 1)
1984 {
1985 cie->return_address_register = read_1_byte (unit->abfd, buf);
1986 ++buf;
1987 }
1988 else
1989 {
1990 buf = gdb_read_uleb128 (buf, end, &uleb128);
1991 if (buf == NULL)
1992 return NULL;
1993 cie->return_address_register = uleb128;
1994 }
1995
1996 cie->return_address_register
1997 = dwarf2_frame_adjust_regnum (gdbarch,
1998 cie->return_address_register,
1999 eh_frame_p);
2000
2001 cie->saw_z_augmentation = (*augmentation == 'z');
2002 if (cie->saw_z_augmentation)
2003 {
2004 uint64_t length;
2005
2006 buf = gdb_read_uleb128 (buf, end, &length);
2007 if (buf == NULL)
2008 return NULL;
2009 cie->initial_instructions = buf + length;
2010 augmentation++;
2011 }
2012
2013 while (*augmentation)
2014 {
2015 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2016 if (*augmentation == 'L')
2017 {
2018 /* Skip. */
2019 buf++;
2020 augmentation++;
2021 }
2022
2023 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2024 else if (*augmentation == 'R')
2025 {
2026 cie->encoding = *buf++;
2027 augmentation++;
2028 }
2029
2030 /* "P" indicates a personality routine in the CIE augmentation. */
2031 else if (*augmentation == 'P')
2032 {
2033 /* Skip. Avoid indirection since we throw away the result. */
2034 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2035 read_encoded_value (unit, encoding, cie->ptr_size,
2036 buf, &bytes_read, 0);
2037 buf += bytes_read;
2038 augmentation++;
2039 }
2040
2041 /* "S" indicates a signal frame, such that the return
2042 address must not be decremented to locate the call frame
2043 info for the previous frame; it might even be the first
2044 instruction of a function, so decrementing it would take
2045 us to a different function. */
2046 else if (*augmentation == 'S')
2047 {
2048 cie->signal_frame = 1;
2049 augmentation++;
2050 }
2051
2052 /* Otherwise we have an unknown augmentation. Assume that either
2053 there is no augmentation data, or we saw a 'z' prefix. */
2054 else
2055 {
2056 if (cie->initial_instructions)
2057 buf = cie->initial_instructions;
2058 break;
2059 }
2060 }
2061
2062 cie->initial_instructions = buf;
2063 cie->end = end;
2064 cie->unit = unit;
2065
2066 add_cie (cie_table, cie);
2067 }
2068 else
2069 {
2070 /* This is a FDE. */
2071 struct dwarf2_fde *fde;
2072
2073 /* Check that an FDE was expected. */
2074 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2075 error (_("Found an FDE when not expecting it."));
2076
2077 /* In an .eh_frame section, the CIE pointer is the delta between the
2078 address within the FDE where the CIE pointer is stored and the
2079 address of the CIE. Convert it to an offset into the .eh_frame
2080 section. */
2081 if (eh_frame_p)
2082 {
2083 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2084 cie_pointer -= (dwarf64_p ? 8 : 4);
2085 }
2086
2087 /* In either case, validate the result is still within the section. */
2088 if (cie_pointer >= unit->dwarf_frame_size)
2089 return NULL;
2090
2091 fde = (struct dwarf2_fde *)
2092 obstack_alloc (&unit->objfile->objfile_obstack,
2093 sizeof (struct dwarf2_fde));
2094 fde->cie = find_cie (cie_table, cie_pointer);
2095 if (fde->cie == NULL)
2096 {
2097 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2098 eh_frame_p, cie_table, fde_table,
2099 EH_CIE_TYPE_ID);
2100 fde->cie = find_cie (cie_table, cie_pointer);
2101 }
2102
2103 gdb_assert (fde->cie != NULL);
2104
2105 fde->initial_location =
2106 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2107 buf, &bytes_read, 0);
2108 buf += bytes_read;
2109
2110 fde->address_range =
2111 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2112 fde->cie->ptr_size, buf, &bytes_read, 0);
2113 buf += bytes_read;
2114
2115 /* A 'z' augmentation in the CIE implies the presence of an
2116 augmentation field in the FDE as well. The only thing known
2117 to be in here at present is the LSDA entry for EH. So we
2118 can skip the whole thing. */
2119 if (fde->cie->saw_z_augmentation)
2120 {
2121 uint64_t length;
2122
2123 buf = gdb_read_uleb128 (buf, end, &length);
2124 if (buf == NULL)
2125 return NULL;
2126 buf += length;
2127 if (buf > end)
2128 return NULL;
2129 }
2130
2131 fde->instructions = buf;
2132 fde->end = end;
2133
2134 fde->eh_frame_p = eh_frame_p;
2135
2136 add_fde (fde_table, fde);
2137 }
2138
2139 return end;
2140 }
2141
2142 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2143 expect an FDE or a CIE. */
2144
2145 static const gdb_byte *
2146 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2147 int eh_frame_p,
2148 struct dwarf2_cie_table *cie_table,
2149 struct dwarf2_fde_table *fde_table,
2150 enum eh_frame_type entry_type)
2151 {
2152 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2153 const gdb_byte *ret;
2154 ptrdiff_t start_offset;
2155
2156 while (1)
2157 {
2158 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2159 cie_table, fde_table, entry_type);
2160 if (ret != NULL)
2161 break;
2162
2163 /* We have corrupt input data of some form. */
2164
2165 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2166 and mismatches wrt padding and alignment of debug sections. */
2167 /* Note that there is no requirement in the standard for any
2168 alignment at all in the frame unwind sections. Testing for
2169 alignment before trying to interpret data would be incorrect.
2170
2171 However, GCC traditionally arranged for frame sections to be
2172 sized such that the FDE length and CIE fields happen to be
2173 aligned (in theory, for performance). This, unfortunately,
2174 was done with .align directives, which had the side effect of
2175 forcing the section to be aligned by the linker.
2176
2177 This becomes a problem when you have some other producer that
2178 creates frame sections that are not as strictly aligned. That
2179 produces a hole in the frame info that gets filled by the
2180 linker with zeros.
2181
2182 The GCC behaviour is arguably a bug, but it's effectively now
2183 part of the ABI, so we're now stuck with it, at least at the
2184 object file level. A smart linker may decide, in the process
2185 of compressing duplicate CIE information, that it can rewrite
2186 the entire output section without this extra padding. */
2187
2188 start_offset = start - unit->dwarf_frame_buffer;
2189 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2190 {
2191 start += 4 - (start_offset & 3);
2192 workaround = ALIGN4;
2193 continue;
2194 }
2195 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2196 {
2197 start += 8 - (start_offset & 7);
2198 workaround = ALIGN8;
2199 continue;
2200 }
2201
2202 /* Nothing left to try. Arrange to return as if we've consumed
2203 the entire input section. Hopefully we'll get valid info from
2204 the other of .debug_frame/.eh_frame. */
2205 workaround = FAIL;
2206 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2207 break;
2208 }
2209
2210 switch (workaround)
2211 {
2212 case NONE:
2213 break;
2214
2215 case ALIGN4:
2216 complaint (&symfile_complaints, _("\
2217 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2218 unit->dwarf_frame_section->owner->filename,
2219 unit->dwarf_frame_section->name);
2220 break;
2221
2222 case ALIGN8:
2223 complaint (&symfile_complaints, _("\
2224 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2225 unit->dwarf_frame_section->owner->filename,
2226 unit->dwarf_frame_section->name);
2227 break;
2228
2229 default:
2230 complaint (&symfile_complaints,
2231 _("Corrupt data in %s:%s"),
2232 unit->dwarf_frame_section->owner->filename,
2233 unit->dwarf_frame_section->name);
2234 break;
2235 }
2236
2237 return ret;
2238 }
2239 \f
2240 static int
2241 qsort_fde_cmp (const void *a, const void *b)
2242 {
2243 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2244 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2245
2246 if (aa->initial_location == bb->initial_location)
2247 {
2248 if (aa->address_range != bb->address_range
2249 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2250 /* Linker bug, e.g. gold/10400.
2251 Work around it by keeping stable sort order. */
2252 return (a < b) ? -1 : 1;
2253 else
2254 /* Put eh_frame entries after debug_frame ones. */
2255 return aa->eh_frame_p - bb->eh_frame_p;
2256 }
2257
2258 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2259 }
2260
2261 void
2262 dwarf2_build_frame_info (struct objfile *objfile)
2263 {
2264 struct comp_unit *unit;
2265 const gdb_byte *frame_ptr;
2266 struct dwarf2_cie_table cie_table;
2267 struct dwarf2_fde_table fde_table;
2268 struct dwarf2_fde_table *fde_table2;
2269 volatile struct gdb_exception e;
2270
2271 cie_table.num_entries = 0;
2272 cie_table.entries = NULL;
2273
2274 fde_table.num_entries = 0;
2275 fde_table.entries = NULL;
2276
2277 /* Build a minimal decoding of the DWARF2 compilation unit. */
2278 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2279 sizeof (struct comp_unit));
2280 unit->abfd = objfile->obfd;
2281 unit->objfile = objfile;
2282 unit->dbase = 0;
2283 unit->tbase = 0;
2284
2285 if (objfile->separate_debug_objfile_backlink == NULL)
2286 {
2287 /* Do not read .eh_frame from separate file as they must be also
2288 present in the main file. */
2289 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2290 &unit->dwarf_frame_section,
2291 &unit->dwarf_frame_buffer,
2292 &unit->dwarf_frame_size);
2293 if (unit->dwarf_frame_size)
2294 {
2295 asection *got, *txt;
2296
2297 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2298 that is used for the i386/amd64 target, which currently is
2299 the only target in GCC that supports/uses the
2300 DW_EH_PE_datarel encoding. */
2301 got = bfd_get_section_by_name (unit->abfd, ".got");
2302 if (got)
2303 unit->dbase = got->vma;
2304
2305 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2306 so far. */
2307 txt = bfd_get_section_by_name (unit->abfd, ".text");
2308 if (txt)
2309 unit->tbase = txt->vma;
2310
2311 TRY_CATCH (e, RETURN_MASK_ERROR)
2312 {
2313 frame_ptr = unit->dwarf_frame_buffer;
2314 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2315 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2316 &cie_table, &fde_table,
2317 EH_CIE_OR_FDE_TYPE_ID);
2318 }
2319
2320 if (e.reason < 0)
2321 {
2322 warning (_("skipping .eh_frame info of %s: %s"),
2323 objfile_name (objfile), e.message);
2324
2325 if (fde_table.num_entries != 0)
2326 {
2327 xfree (fde_table.entries);
2328 fde_table.entries = NULL;
2329 fde_table.num_entries = 0;
2330 }
2331 /* The cie_table is discarded by the next if. */
2332 }
2333
2334 if (cie_table.num_entries != 0)
2335 {
2336 /* Reinit cie_table: debug_frame has different CIEs. */
2337 xfree (cie_table.entries);
2338 cie_table.num_entries = 0;
2339 cie_table.entries = NULL;
2340 }
2341 }
2342 }
2343
2344 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2345 &unit->dwarf_frame_section,
2346 &unit->dwarf_frame_buffer,
2347 &unit->dwarf_frame_size);
2348 if (unit->dwarf_frame_size)
2349 {
2350 int num_old_fde_entries = fde_table.num_entries;
2351
2352 TRY_CATCH (e, RETURN_MASK_ERROR)
2353 {
2354 frame_ptr = unit->dwarf_frame_buffer;
2355 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2356 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2357 &cie_table, &fde_table,
2358 EH_CIE_OR_FDE_TYPE_ID);
2359 }
2360 if (e.reason < 0)
2361 {
2362 warning (_("skipping .debug_frame info of %s: %s"),
2363 objfile_name (objfile), e.message);
2364
2365 if (fde_table.num_entries != 0)
2366 {
2367 fde_table.num_entries = num_old_fde_entries;
2368 if (num_old_fde_entries == 0)
2369 {
2370 xfree (fde_table.entries);
2371 fde_table.entries = NULL;
2372 }
2373 else
2374 {
2375 fde_table.entries = xrealloc (fde_table.entries,
2376 fde_table.num_entries *
2377 sizeof (fde_table.entries[0]));
2378 }
2379 }
2380 fde_table.num_entries = num_old_fde_entries;
2381 /* The cie_table is discarded by the next if. */
2382 }
2383 }
2384
2385 /* Discard the cie_table, it is no longer needed. */
2386 if (cie_table.num_entries != 0)
2387 {
2388 xfree (cie_table.entries);
2389 cie_table.entries = NULL; /* Paranoia. */
2390 cie_table.num_entries = 0; /* Paranoia. */
2391 }
2392
2393 /* Copy fde_table to obstack: it is needed at runtime. */
2394 fde_table2 = (struct dwarf2_fde_table *)
2395 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2396
2397 if (fde_table.num_entries == 0)
2398 {
2399 fde_table2->entries = NULL;
2400 fde_table2->num_entries = 0;
2401 }
2402 else
2403 {
2404 struct dwarf2_fde *fde_prev = NULL;
2405 struct dwarf2_fde *first_non_zero_fde = NULL;
2406 int i;
2407
2408 /* Prepare FDE table for lookups. */
2409 qsort (fde_table.entries, fde_table.num_entries,
2410 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2411
2412 /* Check for leftovers from --gc-sections. The GNU linker sets
2413 the relevant symbols to zero, but doesn't zero the FDE *end*
2414 ranges because there's no relocation there. It's (offset,
2415 length), not (start, end). On targets where address zero is
2416 just another valid address this can be a problem, since the
2417 FDEs appear to be non-empty in the output --- we could pick
2418 out the wrong FDE. To work around this, when overlaps are
2419 detected, we prefer FDEs that do not start at zero.
2420
2421 Start by finding the first FDE with non-zero start. Below
2422 we'll discard all FDEs that start at zero and overlap this
2423 one. */
2424 for (i = 0; i < fde_table.num_entries; i++)
2425 {
2426 struct dwarf2_fde *fde = fde_table.entries[i];
2427
2428 if (fde->initial_location != 0)
2429 {
2430 first_non_zero_fde = fde;
2431 break;
2432 }
2433 }
2434
2435 /* Since we'll be doing bsearch, squeeze out identical (except
2436 for eh_frame_p) fde entries so bsearch result is predictable.
2437 Also discard leftovers from --gc-sections. */
2438 fde_table2->num_entries = 0;
2439 for (i = 0; i < fde_table.num_entries; i++)
2440 {
2441 struct dwarf2_fde *fde = fde_table.entries[i];
2442
2443 if (fde->initial_location == 0
2444 && first_non_zero_fde != NULL
2445 && (first_non_zero_fde->initial_location
2446 < fde->initial_location + fde->address_range))
2447 continue;
2448
2449 if (fde_prev != NULL
2450 && fde_prev->initial_location == fde->initial_location)
2451 continue;
2452
2453 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2454 sizeof (fde_table.entries[0]));
2455 ++fde_table2->num_entries;
2456 fde_prev = fde;
2457 }
2458 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2459
2460 /* Discard the original fde_table. */
2461 xfree (fde_table.entries);
2462 }
2463
2464 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2465 }
2466
2467 /* Provide a prototype to silence -Wmissing-prototypes. */
2468 void _initialize_dwarf2_frame (void);
2469
2470 void
2471 _initialize_dwarf2_frame (void)
2472 {
2473 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2474 dwarf2_frame_objfile_data = register_objfile_data ();
2475 }
This page took 0.101081 seconds and 4 git commands to generate.