2004-10-31 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 /* Call Frame Information (CFI). */
43
44 /* Common Information Entry (CIE). */
45
46 struct dwarf2_cie
47 {
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
72 struct dwarf2_cie *next;
73 };
74
75 /* Frame Description Entry (FDE). */
76
77 struct dwarf2_fde
78 {
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93 };
94
95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96 \f
97
98 /* Structure describing a frame state. */
99
100 struct dwarf2_frame_state
101 {
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
106 struct dwarf2_frame_state_reg *reg;
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133 };
134
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
138
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142 static void
143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145 {
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156 rs->num_regs = num_regs;
157 }
158
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162 static struct dwarf2_frame_state_reg *
163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164 {
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172 }
173
174 /* Release the memory allocated to register set RS. */
175
176 static void
177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178 {
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186 }
187
188 /* Release the memory allocated to the frame state FS. */
189
190 static void
191 dwarf2_frame_state_free (void *p)
192 {
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200 }
201 \f
202
203 /* Helper functions for execute_stack_op. */
204
205 static CORE_ADDR
206 read_reg (void *baton, int reg)
207 {
208 struct frame_info *next_frame = (struct frame_info *) baton;
209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
215 buf = (char *) alloca (register_size (gdbarch, regnum));
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218 }
219
220 static void
221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222 {
223 read_memory (addr, buf, len);
224 }
225
226 static void
227 no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228 {
229 internal_error (__FILE__, __LINE__,
230 "Support for DW_OP_fbreg is unimplemented");
231 }
232
233 static CORE_ADDR
234 no_get_tls_address (void *baton, CORE_ADDR offset)
235 {
236 internal_error (__FILE__, __LINE__,
237 "Support for DW_OP_GNU_push_tls_address is unimplemented");
238 }
239
240 static CORE_ADDR
241 execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243 {
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264 }
265 \f
266
267 static void
268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271 {
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375 if (old_rs == NULL)
376 {
377 complaint (&symfile_complaints, "\
378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc));
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
406 case DW_CFA_nop:
407 break;
408
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
423 insn_ptr += utmp;
424 break;
425
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
429 offset *= fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
446 break;
447
448 case DW_CFA_GNU_args_size:
449 /* Ignored. */
450 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
451 break;
452
453 default:
454 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
455 }
456 }
457 }
458
459 /* Don't allow remember/restore between CIE and FDE programs. */
460 dwarf2_frame_state_free_regs (fs->regs.prev);
461 fs->regs.prev = NULL;
462 }
463 \f
464
465 /* Architecture-specific operations. */
466
467 /* Per-architecture data key. */
468 static struct gdbarch_data *dwarf2_frame_data;
469
470 struct dwarf2_frame_ops
471 {
472 /* Pre-initialize the register state REG for register REGNUM. */
473 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
474 };
475
476 /* Default architecture-specific register state initialization
477 function. */
478
479 static void
480 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
481 struct dwarf2_frame_state_reg *reg)
482 {
483 /* If we have a register that acts as a program counter, mark it as
484 a destination for the return address. If we have a register that
485 serves as the stack pointer, arrange for it to be filled with the
486 call frame address (CFA). The other registers are marked as
487 unspecified.
488
489 We copy the return address to the program counter, since many
490 parts in GDB assume that it is possible to get the return address
491 by unwinding the program counter register. However, on ISA's
492 with a dedicated return address register, the CFI usually only
493 contains information to unwind that return address register.
494
495 The reason we're treating the stack pointer special here is
496 because in many cases GCC doesn't emit CFI for the stack pointer
497 and implicitly assumes that it is equal to the CFA. This makes
498 some sense since the DWARF specification (version 3, draft 8,
499 p. 102) says that:
500
501 "Typically, the CFA is defined to be the value of the stack
502 pointer at the call site in the previous frame (which may be
503 different from its value on entry to the current frame)."
504
505 However, this isn't true for all platforms supported by GCC
506 (e.g. IBM S/390 and zSeries). Those architectures should provide
507 their own architecture-specific initialization function. */
508
509 if (regnum == PC_REGNUM)
510 reg->how = DWARF2_FRAME_REG_RA;
511 else if (regnum == SP_REGNUM)
512 reg->how = DWARF2_FRAME_REG_CFA;
513 }
514
515 /* Return a default for the architecture-specific operations. */
516
517 static void *
518 dwarf2_frame_init (struct obstack *obstack)
519 {
520 struct dwarf2_frame_ops *ops;
521
522 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
523 ops->init_reg = dwarf2_frame_default_init_reg;
524 return ops;
525 }
526
527 /* Set the architecture-specific register state initialization
528 function for GDBARCH to INIT_REG. */
529
530 void
531 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
532 void (*init_reg) (struct gdbarch *, int,
533 struct dwarf2_frame_state_reg *))
534 {
535 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
536
537 ops->init_reg = init_reg;
538 }
539
540 /* Pre-initialize the register state REG for register REGNUM. */
541
542 static void
543 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
544 struct dwarf2_frame_state_reg *reg)
545 {
546 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
547
548 ops->init_reg (gdbarch, regnum, reg);
549 }
550 \f
551
552 struct dwarf2_frame_cache
553 {
554 /* DWARF Call Frame Address. */
555 CORE_ADDR cfa;
556
557 /* Saved registers, indexed by GDB register number, not by DWARF
558 register number. */
559 struct dwarf2_frame_state_reg *reg;
560 };
561
562 static struct dwarf2_frame_cache *
563 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
564 {
565 struct cleanup *old_chain;
566 struct gdbarch *gdbarch = get_frame_arch (next_frame);
567 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
568 struct dwarf2_frame_cache *cache;
569 struct dwarf2_frame_state *fs;
570 struct dwarf2_fde *fde;
571
572 if (*this_cache)
573 return *this_cache;
574
575 /* Allocate a new cache. */
576 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
577 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
578
579 /* Allocate and initialize the frame state. */
580 fs = XMALLOC (struct dwarf2_frame_state);
581 memset (fs, 0, sizeof (struct dwarf2_frame_state));
582 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
583
584 /* Unwind the PC.
585
586 Note that if NEXT_FRAME is never supposed to return (i.e. a call
587 to abort), the compiler might optimize away the instruction at
588 NEXT_FRAME's return address. As a result the return address will
589 point at some random instruction, and the CFI for that
590 instruction is probably worthless to us. GCC's unwinder solves
591 this problem by substracting 1 from the return address to get an
592 address in the middle of a presumed call instruction (or the
593 instruction in the associated delay slot). This should only be
594 done for "normal" frames and not for resume-type frames (signal
595 handlers, sentinel frames, dummy frames). The function
596 frame_unwind_address_in_block does just this. It's not clear how
597 reliable the method is though; there is the potential for the
598 register state pre-call being different to that on return. */
599 fs->pc = frame_unwind_address_in_block (next_frame);
600
601 /* Find the correct FDE. */
602 fde = dwarf2_frame_find_fde (&fs->pc);
603 gdb_assert (fde != NULL);
604
605 /* Extract any interesting information from the CIE. */
606 fs->data_align = fde->cie->data_alignment_factor;
607 fs->code_align = fde->cie->code_alignment_factor;
608 fs->retaddr_column = fde->cie->return_address_register;
609
610 /* First decode all the insns in the CIE. */
611 execute_cfa_program (fde->cie->initial_instructions,
612 fde->cie->end, next_frame, fs);
613
614 /* Save the initialized register set. */
615 fs->initial = fs->regs;
616 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
617
618 /* Then decode the insns in the FDE up to our target PC. */
619 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
620
621 /* Caclulate the CFA. */
622 switch (fs->cfa_how)
623 {
624 case CFA_REG_OFFSET:
625 cache->cfa = read_reg (next_frame, fs->cfa_reg);
626 cache->cfa += fs->cfa_offset;
627 break;
628
629 case CFA_EXP:
630 cache->cfa =
631 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
632 break;
633
634 default:
635 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
636 }
637
638 /* Initialize the register state. */
639 {
640 int regnum;
641
642 for (regnum = 0; regnum < num_regs; regnum++)
643 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
644 }
645
646 /* Go through the DWARF2 CFI generated table and save its register
647 location information in the cache. Note that we don't skip the
648 return address column; it's perfectly all right for it to
649 correspond to a real register. If it doesn't correspond to a
650 real register, or if we shouldn't treat it as such,
651 DWARF2_REG_TO_REGNUM should be defined to return a number outside
652 the range [0, NUM_REGS). */
653 {
654 int column; /* CFI speak for "register number". */
655
656 for (column = 0; column < fs->regs.num_regs; column++)
657 {
658 /* Use the GDB register number as the destination index. */
659 int regnum = DWARF2_REG_TO_REGNUM (column);
660
661 /* If there's no corresponding GDB register, ignore it. */
662 if (regnum < 0 || regnum >= num_regs)
663 continue;
664
665 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
666 of all debug info registers. If it doesn't, complain (but
667 not too loudly). It turns out that GCC assumes that an
668 unspecified register implies "same value" when CFI (draft
669 7) specifies nothing at all. Such a register could equally
670 be interpreted as "undefined". Also note that this check
671 isn't sufficient; it only checks that all registers in the
672 range [0 .. max column] are specified, and won't detect
673 problems when a debug info register falls outside of the
674 table. We need a way of iterating through all the valid
675 DWARF2 register numbers. */
676 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
677 complaint (&symfile_complaints,
678 "Incomplete CFI data; unspecified registers at 0x%s",
679 paddr (fs->pc));
680 else
681 cache->reg[regnum] = fs->regs.reg[column];
682 }
683 }
684
685 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
686 {
687 int regnum;
688
689 for (regnum = 0; regnum < num_regs; regnum++)
690 {
691 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
692 {
693 struct dwarf2_frame_state_reg *retaddr_reg =
694 &fs->regs.reg[fs->retaddr_column];
695
696 /* It seems rather bizarre to specify an "empty" column as
697 the return adress column. However, this is exactly
698 what GCC does on some targets. It turns out that GCC
699 assumes that the return address can be found in the
700 register corresponding to the return address column.
701 Incidentally, that's how should treat a return address
702 column specifying "same value" too. */
703 if (fs->retaddr_column < fs->regs.num_regs
704 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
705 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
706 cache->reg[regnum] = *retaddr_reg;
707 else
708 {
709 cache->reg[regnum].loc.reg = fs->retaddr_column;
710 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
711 }
712 }
713 }
714 }
715
716 do_cleanups (old_chain);
717
718 *this_cache = cache;
719 return cache;
720 }
721
722 static void
723 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
724 struct frame_id *this_id)
725 {
726 struct dwarf2_frame_cache *cache =
727 dwarf2_frame_cache (next_frame, this_cache);
728
729 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
730 }
731
732 static void
733 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
734 int regnum, int *optimizedp,
735 enum lval_type *lvalp, CORE_ADDR *addrp,
736 int *realnump, void *valuep)
737 {
738 struct gdbarch *gdbarch = get_frame_arch (next_frame);
739 struct dwarf2_frame_cache *cache =
740 dwarf2_frame_cache (next_frame, this_cache);
741
742 switch (cache->reg[regnum].how)
743 {
744 case DWARF2_FRAME_REG_UNDEFINED:
745 /* If CFI explicitly specified that the value isn't defined,
746 mark it as optimized away; the value isn't available. */
747 *optimizedp = 1;
748 *lvalp = not_lval;
749 *addrp = 0;
750 *realnump = -1;
751 if (valuep)
752 {
753 /* In some cases, for example %eflags on the i386, we have
754 to provide a sane value, even though this register wasn't
755 saved. Assume we can get it from NEXT_FRAME. */
756 frame_unwind_register (next_frame, regnum, valuep);
757 }
758 break;
759
760 case DWARF2_FRAME_REG_SAVED_OFFSET:
761 *optimizedp = 0;
762 *lvalp = lval_memory;
763 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
764 *realnump = -1;
765 if (valuep)
766 {
767 /* Read the value in from memory. */
768 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
769 }
770 break;
771
772 case DWARF2_FRAME_REG_SAVED_REG:
773 *optimizedp = 0;
774 *lvalp = lval_register;
775 *addrp = 0;
776 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
777 if (valuep)
778 frame_unwind_register (next_frame, (*realnump), valuep);
779 break;
780
781 case DWARF2_FRAME_REG_SAVED_EXP:
782 *optimizedp = 0;
783 *lvalp = lval_memory;
784 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
785 cache->reg[regnum].exp_len,
786 next_frame, cache->cfa);
787 *realnump = -1;
788 if (valuep)
789 {
790 /* Read the value in from memory. */
791 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
792 }
793 break;
794
795 case DWARF2_FRAME_REG_UNSPECIFIED:
796 /* GCC, in its infinite wisdom decided to not provide unwind
797 information for registers that are "same value". Since
798 DWARF2 (3 draft 7) doesn't define such behavior, said
799 registers are actually undefined (which is different to CFI
800 "undefined"). Code above issues a complaint about this.
801 Here just fudge the books, assume GCC, and that the value is
802 more inner on the stack. */
803 *optimizedp = 0;
804 *lvalp = lval_register;
805 *addrp = 0;
806 *realnump = regnum;
807 if (valuep)
808 frame_unwind_register (next_frame, (*realnump), valuep);
809 break;
810
811 case DWARF2_FRAME_REG_SAME_VALUE:
812 *optimizedp = 0;
813 *lvalp = lval_register;
814 *addrp = 0;
815 *realnump = regnum;
816 if (valuep)
817 frame_unwind_register (next_frame, (*realnump), valuep);
818 break;
819
820 case DWARF2_FRAME_REG_CFA:
821 *optimizedp = 0;
822 *lvalp = not_lval;
823 *addrp = 0;
824 *realnump = -1;
825 if (valuep)
826 {
827 /* Store the value. */
828 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
829 }
830 break;
831
832 default:
833 internal_error (__FILE__, __LINE__, "Unknown register rule.");
834 }
835 }
836
837 static const struct frame_unwind dwarf2_frame_unwind =
838 {
839 NORMAL_FRAME,
840 dwarf2_frame_this_id,
841 dwarf2_frame_prev_register
842 };
843
844 const struct frame_unwind *
845 dwarf2_frame_sniffer (struct frame_info *next_frame)
846 {
847 /* Grab an address that is guarenteed to reside somewhere within the
848 function. frame_pc_unwind(), for a no-return next function, can
849 end up returning something past the end of this function's body. */
850 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
851 if (dwarf2_frame_find_fde (&block_addr))
852 return &dwarf2_frame_unwind;
853
854 return NULL;
855 }
856 \f
857
858 /* There is no explicitly defined relationship between the CFA and the
859 location of frame's local variables and arguments/parameters.
860 Therefore, frame base methods on this page should probably only be
861 used as a last resort, just to avoid printing total garbage as a
862 response to the "info frame" command. */
863
864 static CORE_ADDR
865 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
866 {
867 struct dwarf2_frame_cache *cache =
868 dwarf2_frame_cache (next_frame, this_cache);
869
870 return cache->cfa;
871 }
872
873 static const struct frame_base dwarf2_frame_base =
874 {
875 &dwarf2_frame_unwind,
876 dwarf2_frame_base_address,
877 dwarf2_frame_base_address,
878 dwarf2_frame_base_address
879 };
880
881 const struct frame_base *
882 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
883 {
884 CORE_ADDR pc = frame_pc_unwind (next_frame);
885 if (dwarf2_frame_find_fde (&pc))
886 return &dwarf2_frame_base;
887
888 return NULL;
889 }
890 \f
891 /* A minimal decoding of DWARF2 compilation units. We only decode
892 what's needed to get to the call frame information. */
893
894 struct comp_unit
895 {
896 /* Keep the bfd convenient. */
897 bfd *abfd;
898
899 struct objfile *objfile;
900
901 /* Linked list of CIEs for this object. */
902 struct dwarf2_cie *cie;
903
904 /* Pointer to the .debug_frame section loaded into memory. */
905 char *dwarf_frame_buffer;
906
907 /* Length of the loaded .debug_frame section. */
908 unsigned long dwarf_frame_size;
909
910 /* Pointer to the .debug_frame section. */
911 asection *dwarf_frame_section;
912
913 /* Base for DW_EH_PE_datarel encodings. */
914 bfd_vma dbase;
915
916 /* Base for DW_EH_PE_textrel encodings. */
917 bfd_vma tbase;
918 };
919
920 const struct objfile_data *dwarf2_frame_objfile_data;
921
922 static unsigned int
923 read_1_byte (bfd *bfd, char *buf)
924 {
925 return bfd_get_8 (abfd, (bfd_byte *) buf);
926 }
927
928 static unsigned int
929 read_4_bytes (bfd *abfd, char *buf)
930 {
931 return bfd_get_32 (abfd, (bfd_byte *) buf);
932 }
933
934 static ULONGEST
935 read_8_bytes (bfd *abfd, char *buf)
936 {
937 return bfd_get_64 (abfd, (bfd_byte *) buf);
938 }
939
940 static ULONGEST
941 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
942 {
943 ULONGEST result;
944 unsigned int num_read;
945 int shift;
946 unsigned char byte;
947
948 result = 0;
949 shift = 0;
950 num_read = 0;
951
952 do
953 {
954 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
955 buf++;
956 num_read++;
957 result |= ((byte & 0x7f) << shift);
958 shift += 7;
959 }
960 while (byte & 0x80);
961
962 *bytes_read_ptr = num_read;
963
964 return result;
965 }
966
967 static LONGEST
968 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
969 {
970 LONGEST result;
971 int shift;
972 unsigned int num_read;
973 unsigned char byte;
974
975 result = 0;
976 shift = 0;
977 num_read = 0;
978
979 do
980 {
981 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
982 buf++;
983 num_read++;
984 result |= ((byte & 0x7f) << shift);
985 shift += 7;
986 }
987 while (byte & 0x80);
988
989 if ((shift < 32) && (byte & 0x40))
990 result |= -(1 << shift);
991
992 *bytes_read_ptr = num_read;
993
994 return result;
995 }
996
997 static ULONGEST
998 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
999 {
1000 LONGEST result;
1001
1002 result = bfd_get_32 (abfd, (bfd_byte *) buf);
1003 if (result == 0xffffffff)
1004 {
1005 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1006 *bytes_read_ptr = 12;
1007 }
1008 else
1009 *bytes_read_ptr = 4;
1010
1011 return result;
1012 }
1013 \f
1014
1015 /* Pointer encoding helper functions. */
1016
1017 /* GCC supports exception handling based on DWARF2 CFI. However, for
1018 technical reasons, it encodes addresses in its FDE's in a different
1019 way. Several "pointer encodings" are supported. The encoding
1020 that's used for a particular FDE is determined by the 'R'
1021 augmentation in the associated CIE. The argument of this
1022 augmentation is a single byte.
1023
1024 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1025 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1026 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1027 address should be interpreted (absolute, relative to the current
1028 position in the FDE, ...). Bit 7, indicates that the address
1029 should be dereferenced. */
1030
1031 static unsigned char
1032 encoding_for_size (unsigned int size)
1033 {
1034 switch (size)
1035 {
1036 case 2:
1037 return DW_EH_PE_udata2;
1038 case 4:
1039 return DW_EH_PE_udata4;
1040 case 8:
1041 return DW_EH_PE_udata8;
1042 default:
1043 internal_error (__FILE__, __LINE__, "Unsupported address size");
1044 }
1045 }
1046
1047 static unsigned int
1048 size_of_encoded_value (unsigned char encoding)
1049 {
1050 if (encoding == DW_EH_PE_omit)
1051 return 0;
1052
1053 switch (encoding & 0x07)
1054 {
1055 case DW_EH_PE_absptr:
1056 return TYPE_LENGTH (builtin_type_void_data_ptr);
1057 case DW_EH_PE_udata2:
1058 return 2;
1059 case DW_EH_PE_udata4:
1060 return 4;
1061 case DW_EH_PE_udata8:
1062 return 8;
1063 default:
1064 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1065 }
1066 }
1067
1068 static CORE_ADDR
1069 read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1070 char *buf, unsigned int *bytes_read_ptr)
1071 {
1072 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1073 ptrdiff_t offset;
1074 CORE_ADDR base;
1075
1076 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1077 FDE's. */
1078 if (encoding & DW_EH_PE_indirect)
1079 internal_error (__FILE__, __LINE__,
1080 "Unsupported encoding: DW_EH_PE_indirect");
1081
1082 *bytes_read_ptr = 0;
1083
1084 switch (encoding & 0x70)
1085 {
1086 case DW_EH_PE_absptr:
1087 base = 0;
1088 break;
1089 case DW_EH_PE_pcrel:
1090 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1091 base += (buf - unit->dwarf_frame_buffer);
1092 break;
1093 case DW_EH_PE_datarel:
1094 base = unit->dbase;
1095 break;
1096 case DW_EH_PE_textrel:
1097 base = unit->tbase;
1098 break;
1099 case DW_EH_PE_funcrel:
1100 /* FIXME: kettenis/20040501: For now just pretend
1101 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1102 reading the initial location of an FDE it should be treated
1103 as such, and currently that's the only place where this code
1104 is used. */
1105 base = 0;
1106 break;
1107 case DW_EH_PE_aligned:
1108 base = 0;
1109 offset = buf - unit->dwarf_frame_buffer;
1110 if ((offset % ptr_len) != 0)
1111 {
1112 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1113 buf += *bytes_read_ptr;
1114 }
1115 break;
1116 default:
1117 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1118 }
1119
1120 if ((encoding & 0x0f) == 0x00)
1121 encoding |= encoding_for_size (ptr_len);
1122
1123 switch (encoding & 0x0f)
1124 {
1125 case DW_EH_PE_udata2:
1126 *bytes_read_ptr += 2;
1127 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1128 case DW_EH_PE_udata4:
1129 *bytes_read_ptr += 4;
1130 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1131 case DW_EH_PE_udata8:
1132 *bytes_read_ptr += 8;
1133 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1134 case DW_EH_PE_sdata2:
1135 *bytes_read_ptr += 2;
1136 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1137 case DW_EH_PE_sdata4:
1138 *bytes_read_ptr += 4;
1139 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1140 case DW_EH_PE_sdata8:
1141 *bytes_read_ptr += 8;
1142 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1143 default:
1144 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1145 }
1146 }
1147 \f
1148
1149 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1150 That's why we use a simple linked list here. */
1151
1152 static struct dwarf2_cie *
1153 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1154 {
1155 struct dwarf2_cie *cie = unit->cie;
1156
1157 while (cie)
1158 {
1159 if (cie->cie_pointer == cie_pointer)
1160 return cie;
1161
1162 cie = cie->next;
1163 }
1164
1165 return NULL;
1166 }
1167
1168 static void
1169 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1170 {
1171 cie->next = unit->cie;
1172 unit->cie = cie;
1173 }
1174
1175 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1176 inital location associated with it into *PC. */
1177
1178 static struct dwarf2_fde *
1179 dwarf2_frame_find_fde (CORE_ADDR *pc)
1180 {
1181 struct objfile *objfile;
1182
1183 ALL_OBJFILES (objfile)
1184 {
1185 struct dwarf2_fde *fde;
1186 CORE_ADDR offset;
1187
1188 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1189 if (fde == NULL)
1190 continue;
1191
1192 gdb_assert (objfile->section_offsets);
1193 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1194
1195 while (fde)
1196 {
1197 if (*pc >= fde->initial_location + offset
1198 && *pc < fde->initial_location + offset + fde->address_range)
1199 {
1200 *pc = fde->initial_location + offset;
1201 return fde;
1202 }
1203
1204 fde = fde->next;
1205 }
1206 }
1207
1208 return NULL;
1209 }
1210
1211 static void
1212 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1213 {
1214 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1215 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1216 }
1217
1218 #ifdef CC_HAS_LONG_LONG
1219 #define DW64_CIE_ID 0xffffffffffffffffULL
1220 #else
1221 #define DW64_CIE_ID ~0
1222 #endif
1223
1224 static char *decode_frame_entry (struct comp_unit *unit, char *start,
1225 int eh_frame_p);
1226
1227 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1228 the next byte to be processed. */
1229 static char *
1230 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1231 {
1232 char *buf;
1233 LONGEST length;
1234 unsigned int bytes_read;
1235 int dwarf64_p;
1236 ULONGEST cie_id;
1237 ULONGEST cie_pointer;
1238 char *end;
1239
1240 buf = start;
1241 length = read_initial_length (unit->abfd, buf, &bytes_read);
1242 buf += bytes_read;
1243 end = buf + length;
1244
1245 /* Are we still within the section? */
1246 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1247 return NULL;
1248
1249 if (length == 0)
1250 return end;
1251
1252 /* Distinguish between 32 and 64-bit encoded frame info. */
1253 dwarf64_p = (bytes_read == 12);
1254
1255 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1256 if (eh_frame_p)
1257 cie_id = 0;
1258 else if (dwarf64_p)
1259 cie_id = DW64_CIE_ID;
1260 else
1261 cie_id = DW_CIE_ID;
1262
1263 if (dwarf64_p)
1264 {
1265 cie_pointer = read_8_bytes (unit->abfd, buf);
1266 buf += 8;
1267 }
1268 else
1269 {
1270 cie_pointer = read_4_bytes (unit->abfd, buf);
1271 buf += 4;
1272 }
1273
1274 if (cie_pointer == cie_id)
1275 {
1276 /* This is a CIE. */
1277 struct dwarf2_cie *cie;
1278 char *augmentation;
1279 unsigned int cie_version;
1280
1281 /* Record the offset into the .debug_frame section of this CIE. */
1282 cie_pointer = start - unit->dwarf_frame_buffer;
1283
1284 /* Check whether we've already read it. */
1285 if (find_cie (unit, cie_pointer))
1286 return end;
1287
1288 cie = (struct dwarf2_cie *)
1289 obstack_alloc (&unit->objfile->objfile_obstack,
1290 sizeof (struct dwarf2_cie));
1291 cie->initial_instructions = NULL;
1292 cie->cie_pointer = cie_pointer;
1293
1294 /* The encoding for FDE's in a normal .debug_frame section
1295 depends on the target address size. */
1296 cie->encoding = DW_EH_PE_absptr;
1297
1298 /* Check version number. */
1299 cie_version = read_1_byte (unit->abfd, buf);
1300 if (cie_version != 1 && cie_version != 3)
1301 return NULL;
1302 buf += 1;
1303
1304 /* Interpret the interesting bits of the augmentation. */
1305 augmentation = buf;
1306 buf = augmentation + strlen (augmentation) + 1;
1307
1308 /* The GCC 2.x "eh" augmentation has a pointer immediately
1309 following the augmentation string, so it must be handled
1310 first. */
1311 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1312 {
1313 /* Skip. */
1314 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1315 augmentation += 2;
1316 }
1317
1318 cie->code_alignment_factor =
1319 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1320 buf += bytes_read;
1321
1322 cie->data_alignment_factor =
1323 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1324 buf += bytes_read;
1325
1326 if (cie_version == 1)
1327 {
1328 cie->return_address_register = read_1_byte (unit->abfd, buf);
1329 bytes_read = 1;
1330 }
1331 else
1332 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1333 &bytes_read);
1334 buf += bytes_read;
1335
1336 cie->saw_z_augmentation = (*augmentation == 'z');
1337 if (cie->saw_z_augmentation)
1338 {
1339 ULONGEST length;
1340
1341 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1342 buf += bytes_read;
1343 if (buf > end)
1344 return NULL;
1345 cie->initial_instructions = buf + length;
1346 augmentation++;
1347 }
1348
1349 while (*augmentation)
1350 {
1351 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1352 if (*augmentation == 'L')
1353 {
1354 /* Skip. */
1355 buf++;
1356 augmentation++;
1357 }
1358
1359 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1360 else if (*augmentation == 'R')
1361 {
1362 cie->encoding = *buf++;
1363 augmentation++;
1364 }
1365
1366 /* "P" indicates a personality routine in the CIE augmentation. */
1367 else if (*augmentation == 'P')
1368 {
1369 /* Skip. */
1370 buf += size_of_encoded_value (*buf++);
1371 augmentation++;
1372 }
1373
1374 /* Otherwise we have an unknown augmentation.
1375 Bail out unless we saw a 'z' prefix. */
1376 else
1377 {
1378 if (cie->initial_instructions == NULL)
1379 return end;
1380
1381 /* Skip unknown augmentations. */
1382 buf = cie->initial_instructions;
1383 break;
1384 }
1385 }
1386
1387 cie->initial_instructions = buf;
1388 cie->end = end;
1389
1390 add_cie (unit, cie);
1391 }
1392 else
1393 {
1394 /* This is a FDE. */
1395 struct dwarf2_fde *fde;
1396
1397 /* In an .eh_frame section, the CIE pointer is the delta between the
1398 address within the FDE where the CIE pointer is stored and the
1399 address of the CIE. Convert it to an offset into the .eh_frame
1400 section. */
1401 if (eh_frame_p)
1402 {
1403 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1404 cie_pointer -= (dwarf64_p ? 8 : 4);
1405 }
1406
1407 /* In either case, validate the result is still within the section. */
1408 if (cie_pointer >= unit->dwarf_frame_size)
1409 return NULL;
1410
1411 fde = (struct dwarf2_fde *)
1412 obstack_alloc (&unit->objfile->objfile_obstack,
1413 sizeof (struct dwarf2_fde));
1414 fde->cie = find_cie (unit, cie_pointer);
1415 if (fde->cie == NULL)
1416 {
1417 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1418 eh_frame_p);
1419 fde->cie = find_cie (unit, cie_pointer);
1420 }
1421
1422 gdb_assert (fde->cie != NULL);
1423
1424 fde->initial_location =
1425 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1426 buf += bytes_read;
1427
1428 fde->address_range =
1429 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1430 buf += bytes_read;
1431
1432 /* A 'z' augmentation in the CIE implies the presence of an
1433 augmentation field in the FDE as well. The only thing known
1434 to be in here at present is the LSDA entry for EH. So we
1435 can skip the whole thing. */
1436 if (fde->cie->saw_z_augmentation)
1437 {
1438 ULONGEST length;
1439
1440 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1441 buf += bytes_read + length;
1442 if (buf > end)
1443 return NULL;
1444 }
1445
1446 fde->instructions = buf;
1447 fde->end = end;
1448
1449 add_fde (unit, fde);
1450 }
1451
1452 return end;
1453 }
1454
1455 /* Read a CIE or FDE in BUF and decode it. */
1456 static char *
1457 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1458 {
1459 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1460 char *ret;
1461 const char *msg;
1462 ptrdiff_t start_offset;
1463
1464 while (1)
1465 {
1466 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1467 if (ret != NULL)
1468 break;
1469
1470 /* We have corrupt input data of some form. */
1471
1472 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1473 and mismatches wrt padding and alignment of debug sections. */
1474 /* Note that there is no requirement in the standard for any
1475 alignment at all in the frame unwind sections. Testing for
1476 alignment before trying to interpret data would be incorrect.
1477
1478 However, GCC traditionally arranged for frame sections to be
1479 sized such that the FDE length and CIE fields happen to be
1480 aligned (in theory, for performance). This, unfortunately,
1481 was done with .align directives, which had the side effect of
1482 forcing the section to be aligned by the linker.
1483
1484 This becomes a problem when you have some other producer that
1485 creates frame sections that are not as strictly aligned. That
1486 produces a hole in the frame info that gets filled by the
1487 linker with zeros.
1488
1489 The GCC behaviour is arguably a bug, but it's effectively now
1490 part of the ABI, so we're now stuck with it, at least at the
1491 object file level. A smart linker may decide, in the process
1492 of compressing duplicate CIE information, that it can rewrite
1493 the entire output section without this extra padding. */
1494
1495 start_offset = start - unit->dwarf_frame_buffer;
1496 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1497 {
1498 start += 4 - (start_offset & 3);
1499 workaround = ALIGN4;
1500 continue;
1501 }
1502 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1503 {
1504 start += 8 - (start_offset & 7);
1505 workaround = ALIGN8;
1506 continue;
1507 }
1508
1509 /* Nothing left to try. Arrange to return as if we've consumed
1510 the entire input section. Hopefully we'll get valid info from
1511 the other of .debug_frame/.eh_frame. */
1512 workaround = FAIL;
1513 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1514 break;
1515 }
1516
1517 switch (workaround)
1518 {
1519 case NONE:
1520 break;
1521
1522 case ALIGN4:
1523 complaint (&symfile_complaints,
1524 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1525 unit->dwarf_frame_section->owner->filename,
1526 unit->dwarf_frame_section->name);
1527 break;
1528
1529 case ALIGN8:
1530 complaint (&symfile_complaints,
1531 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1532 unit->dwarf_frame_section->owner->filename,
1533 unit->dwarf_frame_section->name);
1534 break;
1535
1536 default:
1537 complaint (&symfile_complaints,
1538 "Corrupt data in %s:%s",
1539 unit->dwarf_frame_section->owner->filename,
1540 unit->dwarf_frame_section->name);
1541 break;
1542 }
1543
1544 return ret;
1545 }
1546 \f
1547
1548 /* FIXME: kettenis/20030504: This still needs to be integrated with
1549 dwarf2read.c in a better way. */
1550
1551 /* Imported from dwarf2read.c. */
1552 extern asection *dwarf_frame_section;
1553 extern asection *dwarf_eh_frame_section;
1554
1555 /* Imported from dwarf2read.c. */
1556 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1557
1558 void
1559 dwarf2_build_frame_info (struct objfile *objfile)
1560 {
1561 struct comp_unit unit;
1562 char *frame_ptr;
1563
1564 /* Build a minimal decoding of the DWARF2 compilation unit. */
1565 unit.abfd = objfile->obfd;
1566 unit.objfile = objfile;
1567 unit.dbase = 0;
1568 unit.tbase = 0;
1569
1570 /* First add the information from the .eh_frame section. That way,
1571 the FDEs from that section are searched last. */
1572 if (dwarf_eh_frame_section)
1573 {
1574 asection *got, *txt;
1575
1576 unit.cie = NULL;
1577 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1578 dwarf_eh_frame_section);
1579
1580 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1581 unit.dwarf_frame_section = dwarf_eh_frame_section;
1582
1583 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1584 that is used for the i386/amd64 target, which currently is
1585 the only target in GCC that supports/uses the
1586 DW_EH_PE_datarel encoding. */
1587 got = bfd_get_section_by_name (unit.abfd, ".got");
1588 if (got)
1589 unit.dbase = got->vma;
1590
1591 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1592 so far. */
1593 txt = bfd_get_section_by_name (unit.abfd, ".text");
1594 if (txt)
1595 unit.tbase = txt->vma;
1596
1597 frame_ptr = unit.dwarf_frame_buffer;
1598 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1599 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1600 }
1601
1602 if (dwarf_frame_section)
1603 {
1604 unit.cie = NULL;
1605 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1606 dwarf_frame_section);
1607 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
1608 unit.dwarf_frame_section = dwarf_frame_section;
1609
1610 frame_ptr = unit.dwarf_frame_buffer;
1611 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1612 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1613 }
1614 }
1615
1616 /* Provide a prototype to silence -Wmissing-prototypes. */
1617 void _initialize_dwarf2_frame (void);
1618
1619 void
1620 _initialize_dwarf2_frame (void)
1621 {
1622 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1623 dwarf2_frame_objfile_data = register_objfile_data ();
1624 }
This page took 0.06172 seconds and 4 git commands to generate.