print_percentage: Use floating point to avoid incorrect results when
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 /* Call Frame Information (CFI). */
43
44 /* Common Information Entry (CIE). */
45
46 struct dwarf2_cie
47 {
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
72 struct dwarf2_cie *next;
73 };
74
75 /* Frame Description Entry (FDE). */
76
77 struct dwarf2_fde
78 {
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93 };
94
95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96 \f
97
98 /* Structure describing a frame state. */
99
100 struct dwarf2_frame_state
101 {
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
106 struct dwarf2_frame_state_reg *reg;
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133 };
134
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
138
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142 static void
143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145 {
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156 rs->num_regs = num_regs;
157 }
158
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162 static struct dwarf2_frame_state_reg *
163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164 {
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172 }
173
174 /* Release the memory allocated to register set RS. */
175
176 static void
177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178 {
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186 }
187
188 /* Release the memory allocated to the frame state FS. */
189
190 static void
191 dwarf2_frame_state_free (void *p)
192 {
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200 }
201 \f
202
203 /* Helper functions for execute_stack_op. */
204
205 static CORE_ADDR
206 read_reg (void *baton, int reg)
207 {
208 struct frame_info *next_frame = (struct frame_info *) baton;
209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
215 buf = (char *) alloca (register_size (gdbarch, regnum));
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218 }
219
220 static void
221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222 {
223 read_memory (addr, buf, len);
224 }
225
226 static void
227 no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228 {
229 internal_error (__FILE__, __LINE__,
230 "Support for DW_OP_fbreg is unimplemented");
231 }
232
233 static CORE_ADDR
234 no_get_tls_address (void *baton, CORE_ADDR offset)
235 {
236 internal_error (__FILE__, __LINE__,
237 "Support for DW_OP_GNU_push_tls_address is unimplemented");
238 }
239
240 static CORE_ADDR
241 execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243 {
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264 }
265 \f
266
267 static void
268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271 {
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375 gdb_assert (old_rs);
376
377 xfree (fs->regs.reg);
378 fs->regs = *old_rs;
379 xfree (old_rs);
380 }
381 break;
382
383 case DW_CFA_def_cfa:
384 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
385 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
386 fs->cfa_offset = utmp;
387 fs->cfa_how = CFA_REG_OFFSET;
388 break;
389
390 case DW_CFA_def_cfa_register:
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
392 fs->cfa_how = CFA_REG_OFFSET;
393 break;
394
395 case DW_CFA_def_cfa_offset:
396 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
397 /* cfa_how deliberately not set. */
398 break;
399
400 case DW_CFA_nop:
401 break;
402
403 case DW_CFA_def_cfa_expression:
404 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
405 fs->cfa_exp = insn_ptr;
406 fs->cfa_how = CFA_EXP;
407 insn_ptr += fs->cfa_exp_len;
408 break;
409
410 case DW_CFA_expression:
411 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
412 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
413 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
414 fs->regs.reg[reg].loc.exp = insn_ptr;
415 fs->regs.reg[reg].exp_len = utmp;
416 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
417 insn_ptr += utmp;
418 break;
419
420 case DW_CFA_offset_extended_sf:
421 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
422 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
423 offset += fs->data_align;
424 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
425 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
426 fs->regs.reg[reg].loc.offset = offset;
427 break;
428
429 case DW_CFA_def_cfa_sf:
430 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
431 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
432 fs->cfa_offset = offset * fs->data_align;
433 fs->cfa_how = CFA_REG_OFFSET;
434 break;
435
436 case DW_CFA_def_cfa_offset_sf:
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 /* cfa_how deliberately not set. */
440 break;
441
442 case DW_CFA_GNU_args_size:
443 /* Ignored. */
444 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
445 break;
446
447 default:
448 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
449 }
450 }
451 }
452
453 /* Don't allow remember/restore between CIE and FDE programs. */
454 dwarf2_frame_state_free_regs (fs->regs.prev);
455 fs->regs.prev = NULL;
456 }
457 \f
458
459 /* Architecture-specific operations. */
460
461 /* Per-architecture data key. */
462 static struct gdbarch_data *dwarf2_frame_data;
463
464 struct dwarf2_frame_ops
465 {
466 /* Pre-initialize the register state REG for register REGNUM. */
467 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
468 };
469
470 /* Default architecture-specific register state initialization
471 function. */
472
473 static void
474 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
475 struct dwarf2_frame_state_reg *reg)
476 {
477 /* If we have a register that acts as a program counter, mark it as
478 a destination for the return address. If we have a register that
479 serves as the stack pointer, arrange for it to be filled with the
480 call frame address (CFA). The other registers are marked as
481 unspecified.
482
483 We copy the return address to the program counter, since many
484 parts in GDB assume that it is possible to get the return address
485 by unwinding the program counter register. However, on ISA's
486 with a dedicated return address register, the CFI usually only
487 contains information to unwind that return address register.
488
489 The reason we're treating the stack pointer special here is
490 because in many cases GCC doesn't emit CFI for the stack pointer
491 and implicitly assumes that it is equal to the CFA. This makes
492 some sense since the DWARF specification (version 3, draft 8,
493 p. 102) says that:
494
495 "Typically, the CFA is defined to be the value of the stack
496 pointer at the call site in the previous frame (which may be
497 different from its value on entry to the current frame)."
498
499 However, this isn't true for all platforms supported by GCC
500 (e.g. IBM S/390 and zSeries). Those architectures should provide
501 their own architecture-specific initialization function. */
502
503 if (regnum == PC_REGNUM)
504 reg->how = DWARF2_FRAME_REG_RA;
505 else if (regnum == SP_REGNUM)
506 reg->how = DWARF2_FRAME_REG_CFA;
507 }
508
509 /* Return a default for the architecture-specific operations. */
510
511 static void *
512 dwarf2_frame_init (struct obstack *obstack)
513 {
514 struct dwarf2_frame_ops *ops;
515
516 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
517 ops->init_reg = dwarf2_frame_default_init_reg;
518 return ops;
519 }
520
521 /* Set the architecture-specific register state initialization
522 function for GDBARCH to INIT_REG. */
523
524 void
525 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
526 void (*init_reg) (struct gdbarch *, int,
527 struct dwarf2_frame_state_reg *))
528 {
529 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
530
531 ops->init_reg = init_reg;
532 }
533
534 /* Pre-initialize the register state REG for register REGNUM. */
535
536 static void
537 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
538 struct dwarf2_frame_state_reg *reg)
539 {
540 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
541
542 ops->init_reg (gdbarch, regnum, reg);
543 }
544 \f
545
546 struct dwarf2_frame_cache
547 {
548 /* DWARF Call Frame Address. */
549 CORE_ADDR cfa;
550
551 /* Saved registers, indexed by GDB register number, not by DWARF
552 register number. */
553 struct dwarf2_frame_state_reg *reg;
554 };
555
556 static struct dwarf2_frame_cache *
557 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
558 {
559 struct cleanup *old_chain;
560 struct gdbarch *gdbarch = get_frame_arch (next_frame);
561 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
562 struct dwarf2_frame_cache *cache;
563 struct dwarf2_frame_state *fs;
564 struct dwarf2_fde *fde;
565
566 if (*this_cache)
567 return *this_cache;
568
569 /* Allocate a new cache. */
570 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
571 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
572
573 /* Allocate and initialize the frame state. */
574 fs = XMALLOC (struct dwarf2_frame_state);
575 memset (fs, 0, sizeof (struct dwarf2_frame_state));
576 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
577
578 /* Unwind the PC.
579
580 Note that if NEXT_FRAME is never supposed to return (i.e. a call
581 to abort), the compiler might optimize away the instruction at
582 NEXT_FRAME's return address. As a result the return address will
583 point at some random instruction, and the CFI for that
584 instruction is probably worthless to us. GCC's unwinder solves
585 this problem by substracting 1 from the return address to get an
586 address in the middle of a presumed call instruction (or the
587 instruction in the associated delay slot). This should only be
588 done for "normal" frames and not for resume-type frames (signal
589 handlers, sentinel frames, dummy frames). The function
590 frame_unwind_address_in_block does just this. It's not clear how
591 reliable the method is though; there is the potential for the
592 register state pre-call being different to that on return. */
593 fs->pc = frame_unwind_address_in_block (next_frame);
594
595 /* Find the correct FDE. */
596 fde = dwarf2_frame_find_fde (&fs->pc);
597 gdb_assert (fde != NULL);
598
599 /* Extract any interesting information from the CIE. */
600 fs->data_align = fde->cie->data_alignment_factor;
601 fs->code_align = fde->cie->code_alignment_factor;
602 fs->retaddr_column = fde->cie->return_address_register;
603
604 /* First decode all the insns in the CIE. */
605 execute_cfa_program (fde->cie->initial_instructions,
606 fde->cie->end, next_frame, fs);
607
608 /* Save the initialized register set. */
609 fs->initial = fs->regs;
610 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
611
612 /* Then decode the insns in the FDE up to our target PC. */
613 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
614
615 /* Caclulate the CFA. */
616 switch (fs->cfa_how)
617 {
618 case CFA_REG_OFFSET:
619 cache->cfa = read_reg (next_frame, fs->cfa_reg);
620 cache->cfa += fs->cfa_offset;
621 break;
622
623 case CFA_EXP:
624 cache->cfa =
625 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
626 break;
627
628 default:
629 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
630 }
631
632 /* Initialize the register state. */
633 {
634 int regnum;
635
636 for (regnum = 0; regnum < num_regs; regnum++)
637 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
638 }
639
640 /* Go through the DWARF2 CFI generated table and save its register
641 location information in the cache. Note that we don't skip the
642 return address column; it's perfectly all right for it to
643 correspond to a real register. If it doesn't correspond to a
644 real register, or if we shouldn't treat it as such,
645 DWARF2_REG_TO_REGNUM should be defined to return a number outside
646 the range [0, NUM_REGS). */
647 {
648 int column; /* CFI speak for "register number". */
649
650 for (column = 0; column < fs->regs.num_regs; column++)
651 {
652 /* Use the GDB register number as the destination index. */
653 int regnum = DWARF2_REG_TO_REGNUM (column);
654
655 /* If there's no corresponding GDB register, ignore it. */
656 if (regnum < 0 || regnum >= num_regs)
657 continue;
658
659 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
660 of all debug info registers. If it doesn't, complain (but
661 not too loudly). It turns out that GCC assumes that an
662 unspecified register implies "same value" when CFI (draft
663 7) specifies nothing at all. Such a register could equally
664 be interpreted as "undefined". Also note that this check
665 isn't sufficient; it only checks that all registers in the
666 range [0 .. max column] are specified, and won't detect
667 problems when a debug info register falls outside of the
668 table. We need a way of iterating through all the valid
669 DWARF2 register numbers. */
670 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
671 complaint (&symfile_complaints,
672 "Incomplete CFI data; unspecified registers at 0x%s",
673 paddr (fs->pc));
674 else
675 cache->reg[regnum] = fs->regs.reg[column];
676 }
677 }
678
679 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
680 {
681 int regnum;
682
683 for (regnum = 0; regnum < num_regs; regnum++)
684 {
685 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
686 {
687 struct dwarf2_frame_state_reg *retaddr_reg =
688 &fs->regs.reg[fs->retaddr_column];
689
690 /* It seems rather bizarre to specify an "empty" column as
691 the return adress column. However, this is exactly
692 what GCC does on some targets. It turns out that GCC
693 assumes that the return address can be found in the
694 register corresponding to the return address column.
695 Incidentally, that's how should treat a return address
696 column specifying "same value" too. */
697 if (fs->retaddr_column < fs->regs.num_regs
698 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
699 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
700 cache->reg[regnum] = *retaddr_reg;
701 else
702 {
703 cache->reg[regnum].loc.reg = fs->retaddr_column;
704 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
705 }
706 }
707 }
708 }
709
710 do_cleanups (old_chain);
711
712 *this_cache = cache;
713 return cache;
714 }
715
716 static void
717 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
718 struct frame_id *this_id)
719 {
720 struct dwarf2_frame_cache *cache =
721 dwarf2_frame_cache (next_frame, this_cache);
722
723 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
724 }
725
726 static void
727 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
728 int regnum, int *optimizedp,
729 enum lval_type *lvalp, CORE_ADDR *addrp,
730 int *realnump, void *valuep)
731 {
732 struct gdbarch *gdbarch = get_frame_arch (next_frame);
733 struct dwarf2_frame_cache *cache =
734 dwarf2_frame_cache (next_frame, this_cache);
735
736 switch (cache->reg[regnum].how)
737 {
738 case DWARF2_FRAME_REG_UNDEFINED:
739 /* If CFI explicitly specified that the value isn't defined,
740 mark it as optimized away; the value isn't available. */
741 *optimizedp = 1;
742 *lvalp = not_lval;
743 *addrp = 0;
744 *realnump = -1;
745 if (valuep)
746 {
747 /* In some cases, for example %eflags on the i386, we have
748 to provide a sane value, even though this register wasn't
749 saved. Assume we can get it from NEXT_FRAME. */
750 frame_unwind_register (next_frame, regnum, valuep);
751 }
752 break;
753
754 case DWARF2_FRAME_REG_SAVED_OFFSET:
755 *optimizedp = 0;
756 *lvalp = lval_memory;
757 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
758 *realnump = -1;
759 if (valuep)
760 {
761 /* Read the value in from memory. */
762 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
763 }
764 break;
765
766 case DWARF2_FRAME_REG_SAVED_REG:
767 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
768 frame_register_unwind (next_frame, regnum,
769 optimizedp, lvalp, addrp, realnump, valuep);
770 break;
771
772 case DWARF2_FRAME_REG_SAVED_EXP:
773 *optimizedp = 0;
774 *lvalp = lval_memory;
775 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
776 cache->reg[regnum].exp_len,
777 next_frame, cache->cfa);
778 *realnump = -1;
779 if (valuep)
780 {
781 /* Read the value in from memory. */
782 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
783 }
784 break;
785
786 case DWARF2_FRAME_REG_UNSPECIFIED:
787 /* GCC, in its infinite wisdom decided to not provide unwind
788 information for registers that are "same value". Since
789 DWARF2 (3 draft 7) doesn't define such behavior, said
790 registers are actually undefined (which is different to CFI
791 "undefined"). Code above issues a complaint about this.
792 Here just fudge the books, assume GCC, and that the value is
793 more inner on the stack. */
794 frame_register_unwind (next_frame, regnum,
795 optimizedp, lvalp, addrp, realnump, valuep);
796 break;
797
798 case DWARF2_FRAME_REG_SAME_VALUE:
799 frame_register_unwind (next_frame, regnum,
800 optimizedp, lvalp, addrp, realnump, valuep);
801 break;
802
803 case DWARF2_FRAME_REG_CFA:
804 *optimizedp = 0;
805 *lvalp = not_lval;
806 *addrp = 0;
807 *realnump = -1;
808 if (valuep)
809 {
810 /* Store the value. */
811 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
812 }
813 break;
814
815 default:
816 internal_error (__FILE__, __LINE__, "Unknown register rule.");
817 }
818 }
819
820 static const struct frame_unwind dwarf2_frame_unwind =
821 {
822 NORMAL_FRAME,
823 dwarf2_frame_this_id,
824 dwarf2_frame_prev_register
825 };
826
827 const struct frame_unwind *
828 dwarf2_frame_sniffer (struct frame_info *next_frame)
829 {
830 /* Grab an address that is guarenteed to reside somewhere within the
831 function. frame_pc_unwind(), for a no-return next function, can
832 end up returning something past the end of this function's body. */
833 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
834 if (dwarf2_frame_find_fde (&block_addr))
835 return &dwarf2_frame_unwind;
836
837 return NULL;
838 }
839 \f
840
841 /* There is no explicitly defined relationship between the CFA and the
842 location of frame's local variables and arguments/parameters.
843 Therefore, frame base methods on this page should probably only be
844 used as a last resort, just to avoid printing total garbage as a
845 response to the "info frame" command. */
846
847 static CORE_ADDR
848 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
849 {
850 struct dwarf2_frame_cache *cache =
851 dwarf2_frame_cache (next_frame, this_cache);
852
853 return cache->cfa;
854 }
855
856 static const struct frame_base dwarf2_frame_base =
857 {
858 &dwarf2_frame_unwind,
859 dwarf2_frame_base_address,
860 dwarf2_frame_base_address,
861 dwarf2_frame_base_address
862 };
863
864 const struct frame_base *
865 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
866 {
867 CORE_ADDR pc = frame_pc_unwind (next_frame);
868 if (dwarf2_frame_find_fde (&pc))
869 return &dwarf2_frame_base;
870
871 return NULL;
872 }
873 \f
874 /* A minimal decoding of DWARF2 compilation units. We only decode
875 what's needed to get to the call frame information. */
876
877 struct comp_unit
878 {
879 /* Keep the bfd convenient. */
880 bfd *abfd;
881
882 struct objfile *objfile;
883
884 /* Linked list of CIEs for this object. */
885 struct dwarf2_cie *cie;
886
887 /* Address size for this unit - from unit header. */
888 unsigned char addr_size;
889
890 /* Pointer to the .debug_frame section loaded into memory. */
891 char *dwarf_frame_buffer;
892
893 /* Length of the loaded .debug_frame section. */
894 unsigned long dwarf_frame_size;
895
896 /* Pointer to the .debug_frame section. */
897 asection *dwarf_frame_section;
898
899 /* Base for DW_EH_PE_datarel encodings. */
900 bfd_vma dbase;
901
902 /* Base for DW_EH_PE_textrel encodings. */
903 bfd_vma tbase;
904 };
905
906 const struct objfile_data *dwarf2_frame_objfile_data;
907
908 static unsigned int
909 read_1_byte (bfd *bfd, char *buf)
910 {
911 return bfd_get_8 (abfd, (bfd_byte *) buf);
912 }
913
914 static unsigned int
915 read_4_bytes (bfd *abfd, char *buf)
916 {
917 return bfd_get_32 (abfd, (bfd_byte *) buf);
918 }
919
920 static ULONGEST
921 read_8_bytes (bfd *abfd, char *buf)
922 {
923 return bfd_get_64 (abfd, (bfd_byte *) buf);
924 }
925
926 static ULONGEST
927 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
928 {
929 ULONGEST result;
930 unsigned int num_read;
931 int shift;
932 unsigned char byte;
933
934 result = 0;
935 shift = 0;
936 num_read = 0;
937
938 do
939 {
940 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
941 buf++;
942 num_read++;
943 result |= ((byte & 0x7f) << shift);
944 shift += 7;
945 }
946 while (byte & 0x80);
947
948 *bytes_read_ptr = num_read;
949
950 return result;
951 }
952
953 static LONGEST
954 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
955 {
956 LONGEST result;
957 int shift;
958 unsigned int num_read;
959 unsigned char byte;
960
961 result = 0;
962 shift = 0;
963 num_read = 0;
964
965 do
966 {
967 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
968 buf++;
969 num_read++;
970 result |= ((byte & 0x7f) << shift);
971 shift += 7;
972 }
973 while (byte & 0x80);
974
975 if ((shift < 32) && (byte & 0x40))
976 result |= -(1 << shift);
977
978 *bytes_read_ptr = num_read;
979
980 return result;
981 }
982
983 static ULONGEST
984 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
985 {
986 LONGEST result;
987
988 result = bfd_get_32 (abfd, (bfd_byte *) buf);
989 if (result == 0xffffffff)
990 {
991 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
992 *bytes_read_ptr = 12;
993 }
994 else
995 *bytes_read_ptr = 4;
996
997 return result;
998 }
999 \f
1000
1001 /* Pointer encoding helper functions. */
1002
1003 /* GCC supports exception handling based on DWARF2 CFI. However, for
1004 technical reasons, it encodes addresses in its FDE's in a different
1005 way. Several "pointer encodings" are supported. The encoding
1006 that's used for a particular FDE is determined by the 'R'
1007 augmentation in the associated CIE. The argument of this
1008 augmentation is a single byte.
1009
1010 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1011 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1012 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1013 address should be interpreted (absolute, relative to the current
1014 position in the FDE, ...). Bit 7, indicates that the address
1015 should be dereferenced. */
1016
1017 static unsigned char
1018 encoding_for_size (unsigned int size)
1019 {
1020 switch (size)
1021 {
1022 case 2:
1023 return DW_EH_PE_udata2;
1024 case 4:
1025 return DW_EH_PE_udata4;
1026 case 8:
1027 return DW_EH_PE_udata8;
1028 default:
1029 internal_error (__FILE__, __LINE__, "Unsupported address size");
1030 }
1031 }
1032
1033 static unsigned int
1034 size_of_encoded_value (unsigned char encoding)
1035 {
1036 if (encoding == DW_EH_PE_omit)
1037 return 0;
1038
1039 switch (encoding & 0x07)
1040 {
1041 case DW_EH_PE_absptr:
1042 return TYPE_LENGTH (builtin_type_void_data_ptr);
1043 case DW_EH_PE_udata2:
1044 return 2;
1045 case DW_EH_PE_udata4:
1046 return 4;
1047 case DW_EH_PE_udata8:
1048 return 8;
1049 default:
1050 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1051 }
1052 }
1053
1054 static CORE_ADDR
1055 read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1056 char *buf, unsigned int *bytes_read_ptr)
1057 {
1058 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1059 ptrdiff_t offset;
1060 CORE_ADDR base;
1061
1062 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1063 FDE's. */
1064 if (encoding & DW_EH_PE_indirect)
1065 internal_error (__FILE__, __LINE__,
1066 "Unsupported encoding: DW_EH_PE_indirect");
1067
1068 *bytes_read_ptr = 0;
1069
1070 switch (encoding & 0x70)
1071 {
1072 case DW_EH_PE_absptr:
1073 base = 0;
1074 break;
1075 case DW_EH_PE_pcrel:
1076 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1077 base += (buf - unit->dwarf_frame_buffer);
1078 break;
1079 case DW_EH_PE_datarel:
1080 base = unit->dbase;
1081 break;
1082 case DW_EH_PE_textrel:
1083 base = unit->tbase;
1084 break;
1085 case DW_EH_PE_aligned:
1086 base = 0;
1087 offset = buf - unit->dwarf_frame_buffer;
1088 if ((offset % ptr_len) != 0)
1089 {
1090 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1091 buf += *bytes_read_ptr;
1092 }
1093 break;
1094 default:
1095 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1096 }
1097
1098 if ((encoding & 0x0f) == 0x00)
1099 encoding |= encoding_for_size (ptr_len);
1100
1101 switch (encoding & 0x0f)
1102 {
1103 case DW_EH_PE_udata2:
1104 *bytes_read_ptr += 2;
1105 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1106 case DW_EH_PE_udata4:
1107 *bytes_read_ptr += 4;
1108 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1109 case DW_EH_PE_udata8:
1110 *bytes_read_ptr += 8;
1111 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1112 case DW_EH_PE_sdata2:
1113 *bytes_read_ptr += 2;
1114 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1115 case DW_EH_PE_sdata4:
1116 *bytes_read_ptr += 4;
1117 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1118 case DW_EH_PE_sdata8:
1119 *bytes_read_ptr += 8;
1120 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1121 default:
1122 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1123 }
1124 }
1125 \f
1126
1127 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1128 That's why we use a simple linked list here. */
1129
1130 static struct dwarf2_cie *
1131 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1132 {
1133 struct dwarf2_cie *cie = unit->cie;
1134
1135 while (cie)
1136 {
1137 if (cie->cie_pointer == cie_pointer)
1138 return cie;
1139
1140 cie = cie->next;
1141 }
1142
1143 return NULL;
1144 }
1145
1146 static void
1147 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1148 {
1149 cie->next = unit->cie;
1150 unit->cie = cie;
1151 }
1152
1153 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1154 inital location associated with it into *PC. */
1155
1156 static struct dwarf2_fde *
1157 dwarf2_frame_find_fde (CORE_ADDR *pc)
1158 {
1159 struct objfile *objfile;
1160
1161 ALL_OBJFILES (objfile)
1162 {
1163 struct dwarf2_fde *fde;
1164 CORE_ADDR offset;
1165
1166 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1167 if (fde == NULL)
1168 continue;
1169
1170 gdb_assert (objfile->section_offsets);
1171 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1172
1173 while (fde)
1174 {
1175 if (*pc >= fde->initial_location + offset
1176 && *pc < fde->initial_location + offset + fde->address_range)
1177 {
1178 *pc = fde->initial_location + offset;
1179 return fde;
1180 }
1181
1182 fde = fde->next;
1183 }
1184 }
1185
1186 return NULL;
1187 }
1188
1189 static void
1190 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1191 {
1192 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1193 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1194 }
1195
1196 #ifdef CC_HAS_LONG_LONG
1197 #define DW64_CIE_ID 0xffffffffffffffffULL
1198 #else
1199 #define DW64_CIE_ID ~0
1200 #endif
1201
1202 static char *decode_frame_entry (struct comp_unit *unit, char *start,
1203 int eh_frame_p);
1204
1205 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1206 the next byte to be processed. */
1207 static char *
1208 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1209 {
1210 char *buf;
1211 LONGEST length;
1212 unsigned int bytes_read;
1213 int dwarf64_p;
1214 ULONGEST cie_id;
1215 ULONGEST cie_pointer;
1216 char *end;
1217
1218 buf = start;
1219 length = read_initial_length (unit->abfd, buf, &bytes_read);
1220 buf += bytes_read;
1221 end = buf + length;
1222
1223 /* Are we still within the section? */
1224 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1225 return NULL;
1226
1227 if (length == 0)
1228 return end;
1229
1230 /* Distinguish between 32 and 64-bit encoded frame info. */
1231 dwarf64_p = (bytes_read == 12);
1232
1233 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1234 if (eh_frame_p)
1235 cie_id = 0;
1236 else if (dwarf64_p)
1237 cie_id = DW64_CIE_ID;
1238 else
1239 cie_id = DW_CIE_ID;
1240
1241 if (dwarf64_p)
1242 {
1243 cie_pointer = read_8_bytes (unit->abfd, buf);
1244 buf += 8;
1245 }
1246 else
1247 {
1248 cie_pointer = read_4_bytes (unit->abfd, buf);
1249 buf += 4;
1250 }
1251
1252 if (cie_pointer == cie_id)
1253 {
1254 /* This is a CIE. */
1255 struct dwarf2_cie *cie;
1256 char *augmentation;
1257
1258 /* Record the offset into the .debug_frame section of this CIE. */
1259 cie_pointer = start - unit->dwarf_frame_buffer;
1260
1261 /* Check whether we've already read it. */
1262 if (find_cie (unit, cie_pointer))
1263 return end;
1264
1265 cie = (struct dwarf2_cie *)
1266 obstack_alloc (&unit->objfile->objfile_obstack,
1267 sizeof (struct dwarf2_cie));
1268 cie->initial_instructions = NULL;
1269 cie->cie_pointer = cie_pointer;
1270
1271 /* The encoding for FDE's in a normal .debug_frame section
1272 depends on the target address size as specified in the
1273 Compilation Unit Header. */
1274 cie->encoding = encoding_for_size (unit->addr_size);
1275
1276 /* Check version number. */
1277 if (read_1_byte (unit->abfd, buf) != DW_CIE_VERSION)
1278 return NULL;
1279 buf += 1;
1280
1281 /* Interpret the interesting bits of the augmentation. */
1282 augmentation = buf;
1283 buf = augmentation + strlen (augmentation) + 1;
1284
1285 /* The GCC 2.x "eh" augmentation has a pointer immediately
1286 following the augmentation string, so it must be handled
1287 first. */
1288 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1289 {
1290 /* Skip. */
1291 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1292 augmentation += 2;
1293 }
1294
1295 cie->code_alignment_factor =
1296 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1297 buf += bytes_read;
1298
1299 cie->data_alignment_factor =
1300 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1301 buf += bytes_read;
1302
1303 cie->return_address_register = read_1_byte (unit->abfd, buf);
1304 buf += 1;
1305
1306 cie->saw_z_augmentation = (*augmentation == 'z');
1307 if (cie->saw_z_augmentation)
1308 {
1309 ULONGEST length;
1310
1311 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1312 buf += bytes_read;
1313 if (buf > end)
1314 return NULL;
1315 cie->initial_instructions = buf + length;
1316 augmentation++;
1317 }
1318
1319 while (*augmentation)
1320 {
1321 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1322 if (*augmentation == 'L')
1323 {
1324 /* Skip. */
1325 buf++;
1326 augmentation++;
1327 }
1328
1329 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1330 else if (*augmentation == 'R')
1331 {
1332 cie->encoding = *buf++;
1333 augmentation++;
1334 }
1335
1336 /* "P" indicates a personality routine in the CIE augmentation. */
1337 else if (*augmentation == 'P')
1338 {
1339 /* Skip. */
1340 buf += size_of_encoded_value (*buf++);
1341 augmentation++;
1342 }
1343
1344 /* Otherwise we have an unknown augmentation.
1345 Bail out unless we saw a 'z' prefix. */
1346 else
1347 {
1348 if (cie->initial_instructions == NULL)
1349 return end;
1350
1351 /* Skip unknown augmentations. */
1352 buf = cie->initial_instructions;
1353 break;
1354 }
1355 }
1356
1357 cie->initial_instructions = buf;
1358 cie->end = end;
1359
1360 add_cie (unit, cie);
1361 }
1362 else
1363 {
1364 /* This is a FDE. */
1365 struct dwarf2_fde *fde;
1366
1367 /* In an .eh_frame section, the CIE pointer is the delta between the
1368 address within the FDE where the CIE pointer is stored and the
1369 address of the CIE. Convert it to an offset into the .eh_frame
1370 section. */
1371 if (eh_frame_p)
1372 {
1373 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1374 cie_pointer -= (dwarf64_p ? 8 : 4);
1375 }
1376
1377 /* In either case, validate the result is still within the section. */
1378 if (cie_pointer >= unit->dwarf_frame_size)
1379 return NULL;
1380
1381 fde = (struct dwarf2_fde *)
1382 obstack_alloc (&unit->objfile->objfile_obstack,
1383 sizeof (struct dwarf2_fde));
1384 fde->cie = find_cie (unit, cie_pointer);
1385 if (fde->cie == NULL)
1386 {
1387 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1388 eh_frame_p);
1389 fde->cie = find_cie (unit, cie_pointer);
1390 }
1391
1392 gdb_assert (fde->cie != NULL);
1393
1394 fde->initial_location =
1395 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1396 buf += bytes_read;
1397
1398 fde->address_range =
1399 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1400 buf += bytes_read;
1401
1402 /* A 'z' augmentation in the CIE implies the presence of an
1403 augmentation field in the FDE as well. The only thing known
1404 to be in here at present is the LSDA entry for EH. So we
1405 can skip the whole thing. */
1406 if (fde->cie->saw_z_augmentation)
1407 {
1408 ULONGEST length;
1409
1410 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1411 buf += bytes_read + length;
1412 if (buf > end)
1413 return NULL;
1414 }
1415
1416 fde->instructions = buf;
1417 fde->end = end;
1418
1419 add_fde (unit, fde);
1420 }
1421
1422 return end;
1423 }
1424
1425 /* Read a CIE or FDE in BUF and decode it. */
1426 static char *
1427 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1428 {
1429 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1430 char *ret;
1431 const char *msg;
1432 ptrdiff_t start_offset;
1433
1434 while (1)
1435 {
1436 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1437 if (ret != NULL)
1438 break;
1439
1440 /* We have corrupt input data of some form. */
1441
1442 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1443 and mismatches wrt padding and alignment of debug sections. */
1444 /* Note that there is no requirement in the standard for any
1445 alignment at all in the frame unwind sections. Testing for
1446 alignment before trying to interpret data would be incorrect.
1447
1448 However, GCC traditionally arranged for frame sections to be
1449 sized such that the FDE length and CIE fields happen to be
1450 aligned (in theory, for performance). This, unfortunately,
1451 was done with .align directives, which had the side effect of
1452 forcing the section to be aligned by the linker.
1453
1454 This becomes a problem when you have some other producer that
1455 creates frame sections that are not as strictly aligned. That
1456 produces a hole in the frame info that gets filled by the
1457 linker with zeros.
1458
1459 The GCC behaviour is arguably a bug, but it's effectively now
1460 part of the ABI, so we're now stuck with it, at least at the
1461 object file level. A smart linker may decide, in the process
1462 of compressing duplicate CIE information, that it can rewrite
1463 the entire output section without this extra padding. */
1464
1465 start_offset = start - unit->dwarf_frame_buffer;
1466 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1467 {
1468 start += 4 - (start_offset & 3);
1469 workaround = ALIGN4;
1470 continue;
1471 }
1472 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1473 {
1474 start += 8 - (start_offset & 7);
1475 workaround = ALIGN8;
1476 continue;
1477 }
1478
1479 /* Nothing left to try. Arrange to return as if we've consumed
1480 the entire input section. Hopefully we'll get valid info from
1481 the other of .debug_frame/.eh_frame. */
1482 workaround = FAIL;
1483 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1484 break;
1485 }
1486
1487 switch (workaround)
1488 {
1489 case NONE:
1490 break;
1491
1492 case ALIGN4:
1493 complaint (&symfile_complaints,
1494 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1495 unit->dwarf_frame_section->owner->filename,
1496 unit->dwarf_frame_section->name);
1497 break;
1498
1499 case ALIGN8:
1500 complaint (&symfile_complaints,
1501 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1502 unit->dwarf_frame_section->owner->filename,
1503 unit->dwarf_frame_section->name);
1504 break;
1505
1506 default:
1507 complaint (&symfile_complaints,
1508 "Corrupt data in %s:%s",
1509 unit->dwarf_frame_section->owner->filename,
1510 unit->dwarf_frame_section->name);
1511 break;
1512 }
1513
1514 return ret;
1515 }
1516 \f
1517
1518 /* FIXME: kettenis/20030504: This still needs to be integrated with
1519 dwarf2read.c in a better way. */
1520
1521 /* Imported from dwarf2read.c. */
1522 extern asection *dwarf_frame_section;
1523 extern asection *dwarf_eh_frame_section;
1524
1525 /* Imported from dwarf2read.c. */
1526 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1527
1528 void
1529 dwarf2_build_frame_info (struct objfile *objfile)
1530 {
1531 struct comp_unit unit;
1532 char *frame_ptr;
1533
1534 /* Build a minimal decoding of the DWARF2 compilation unit. */
1535 unit.abfd = objfile->obfd;
1536 unit.objfile = objfile;
1537 unit.addr_size = objfile->obfd->arch_info->bits_per_address / 8;
1538 unit.dbase = 0;
1539 unit.tbase = 0;
1540
1541 /* First add the information from the .eh_frame section. That way,
1542 the FDEs from that section are searched last. */
1543 if (dwarf_eh_frame_section)
1544 {
1545 asection *got, *txt;
1546
1547 unit.cie = NULL;
1548 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1549 dwarf_eh_frame_section);
1550
1551 unit.dwarf_frame_size
1552 = bfd_get_section_size_before_reloc (dwarf_eh_frame_section);
1553 unit.dwarf_frame_section = dwarf_eh_frame_section;
1554
1555 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1556 that is used for the i386/amd64 target, which currently is
1557 the only target in GCC that supports/uses the
1558 DW_EH_PE_datarel encoding. */
1559 got = bfd_get_section_by_name (unit.abfd, ".got");
1560 if (got)
1561 unit.dbase = got->vma;
1562
1563 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1564 so far. */
1565 txt = bfd_get_section_by_name (unit.abfd, ".text");
1566 if (txt)
1567 unit.tbase = txt->vma;
1568
1569 frame_ptr = unit.dwarf_frame_buffer;
1570 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1571 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1572 }
1573
1574 if (dwarf_frame_section)
1575 {
1576 unit.cie = NULL;
1577 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1578 dwarf_frame_section);
1579 unit.dwarf_frame_size
1580 = bfd_get_section_size_before_reloc (dwarf_frame_section);
1581 unit.dwarf_frame_section = dwarf_frame_section;
1582
1583 frame_ptr = unit.dwarf_frame_buffer;
1584 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1585 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1586 }
1587 }
1588
1589 /* Provide a prototype to silence -Wmissing-prototypes. */
1590 void _initialize_dwarf2_frame (void);
1591
1592 void
1593 _initialize_dwarf2_frame (void)
1594 {
1595 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1596 dwarf2_frame_objfile_data = register_objfile_data ();
1597 }
This page took 0.120538 seconds and 4 git commands to generate.