* inferior.h (read_sp): Remove prototype.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "value.h"
36
37 #include "gdb_assert.h"
38 #include "gdb_string.h"
39
40 #include "complaints.h"
41 #include "dwarf2-frame.h"
42
43 /* Call Frame Information (CFI). */
44
45 /* Common Information Entry (CIE). */
46
47 struct dwarf2_cie
48 {
49 /* Offset into the .debug_frame section where this CIE was found.
50 Used to identify this CIE. */
51 ULONGEST cie_pointer;
52
53 /* Constant that is factored out of all advance location
54 instructions. */
55 ULONGEST code_alignment_factor;
56
57 /* Constants that is factored out of all offset instructions. */
58 LONGEST data_alignment_factor;
59
60 /* Return address column. */
61 ULONGEST return_address_register;
62
63 /* Instruction sequence to initialize a register set. */
64 gdb_byte *initial_instructions;
65 gdb_byte *end;
66
67 /* Saved augmentation, in case it's needed later. */
68 char *augmentation;
69
70 /* Encoding of addresses. */
71 gdb_byte encoding;
72
73 /* True if a 'z' augmentation existed. */
74 unsigned char saw_z_augmentation;
75
76 /* True if an 'S' augmentation existed. */
77 unsigned char signal_frame;
78
79 /* The version recorded in the CIE. */
80 unsigned char version;
81
82 struct dwarf2_cie *next;
83 };
84
85 /* Frame Description Entry (FDE). */
86
87 struct dwarf2_fde
88 {
89 /* CIE for this FDE. */
90 struct dwarf2_cie *cie;
91
92 /* First location associated with this FDE. */
93 CORE_ADDR initial_location;
94
95 /* Number of bytes of program instructions described by this FDE. */
96 CORE_ADDR address_range;
97
98 /* Instruction sequence. */
99 gdb_byte *instructions;
100 gdb_byte *end;
101
102 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
103 section. */
104 unsigned char eh_frame_p;
105
106 struct dwarf2_fde *next;
107 };
108
109 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
110
111 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
112 int eh_frame_p);
113 \f
114
115 /* Structure describing a frame state. */
116
117 struct dwarf2_frame_state
118 {
119 /* Each register save state can be described in terms of a CFA slot,
120 another register, or a location expression. */
121 struct dwarf2_frame_state_reg_info
122 {
123 struct dwarf2_frame_state_reg *reg;
124 int num_regs;
125
126 /* Used to implement DW_CFA_remember_state. */
127 struct dwarf2_frame_state_reg_info *prev;
128 } regs;
129
130 LONGEST cfa_offset;
131 ULONGEST cfa_reg;
132 gdb_byte *cfa_exp;
133 enum {
134 CFA_UNSET,
135 CFA_REG_OFFSET,
136 CFA_EXP
137 } cfa_how;
138
139 /* The PC described by the current frame state. */
140 CORE_ADDR pc;
141
142 /* Initial register set from the CIE.
143 Used to implement DW_CFA_restore. */
144 struct dwarf2_frame_state_reg_info initial;
145
146 /* The information we care about from the CIE. */
147 LONGEST data_align;
148 ULONGEST code_align;
149 ULONGEST retaddr_column;
150
151 /* Flags for known producer quirks. */
152
153 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
154 and DW_CFA_def_cfa_offset takes a factored offset. */
155 int armcc_cfa_offsets_sf;
156
157 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
158 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
159 int armcc_cfa_offsets_reversed;
160 };
161
162 /* Store the length the expression for the CFA in the `cfa_reg' field,
163 which is unused in that case. */
164 #define cfa_exp_len cfa_reg
165
166 /* Assert that the register set RS is large enough to store NUM_REGS
167 columns. If necessary, enlarge the register set. */
168
169 static void
170 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
171 int num_regs)
172 {
173 size_t size = sizeof (struct dwarf2_frame_state_reg);
174
175 if (num_regs <= rs->num_regs)
176 return;
177
178 rs->reg = (struct dwarf2_frame_state_reg *)
179 xrealloc (rs->reg, num_regs * size);
180
181 /* Initialize newly allocated registers. */
182 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
183 rs->num_regs = num_regs;
184 }
185
186 /* Copy the register columns in register set RS into newly allocated
187 memory and return a pointer to this newly created copy. */
188
189 static struct dwarf2_frame_state_reg *
190 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
191 {
192 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
193 struct dwarf2_frame_state_reg *reg;
194
195 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
196 memcpy (reg, rs->reg, size);
197
198 return reg;
199 }
200
201 /* Release the memory allocated to register set RS. */
202
203 static void
204 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
205 {
206 if (rs)
207 {
208 dwarf2_frame_state_free_regs (rs->prev);
209
210 xfree (rs->reg);
211 xfree (rs);
212 }
213 }
214
215 /* Release the memory allocated to the frame state FS. */
216
217 static void
218 dwarf2_frame_state_free (void *p)
219 {
220 struct dwarf2_frame_state *fs = p;
221
222 dwarf2_frame_state_free_regs (fs->initial.prev);
223 dwarf2_frame_state_free_regs (fs->regs.prev);
224 xfree (fs->initial.reg);
225 xfree (fs->regs.reg);
226 xfree (fs);
227 }
228 \f
229
230 /* Helper functions for execute_stack_op. */
231
232 static CORE_ADDR
233 read_reg (void *baton, int reg)
234 {
235 struct frame_info *next_frame = (struct frame_info *) baton;
236 struct gdbarch *gdbarch = get_frame_arch (next_frame);
237 int regnum;
238 gdb_byte *buf;
239
240 regnum = DWARF2_REG_TO_REGNUM (reg);
241
242 buf = alloca (register_size (gdbarch, regnum));
243 frame_unwind_register (next_frame, regnum, buf);
244
245 /* Convert the register to an integer. This returns a LONGEST
246 rather than a CORE_ADDR, but unpack_pointer does the same thing
247 under the covers, and this makes more sense for non-pointer
248 registers. Maybe read_reg and the associated interfaces should
249 deal with "struct value" instead of CORE_ADDR. */
250 return unpack_long (register_type (gdbarch, regnum), buf);
251 }
252
253 static void
254 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
255 {
256 read_memory (addr, buf, len);
257 }
258
259 static void
260 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
261 {
262 internal_error (__FILE__, __LINE__,
263 _("Support for DW_OP_fbreg is unimplemented"));
264 }
265
266 static CORE_ADDR
267 no_get_tls_address (void *baton, CORE_ADDR offset)
268 {
269 internal_error (__FILE__, __LINE__,
270 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
271 }
272
273 static CORE_ADDR
274 execute_stack_op (gdb_byte *exp, ULONGEST len,
275 struct frame_info *next_frame, CORE_ADDR initial)
276 {
277 struct dwarf_expr_context *ctx;
278 CORE_ADDR result;
279
280 ctx = new_dwarf_expr_context ();
281 ctx->baton = next_frame;
282 ctx->read_reg = read_reg;
283 ctx->read_mem = read_mem;
284 ctx->get_frame_base = no_get_frame_base;
285 ctx->get_tls_address = no_get_tls_address;
286
287 dwarf_expr_push (ctx, initial);
288 dwarf_expr_eval (ctx, exp, len);
289 result = dwarf_expr_fetch (ctx, 0);
290
291 if (ctx->in_reg)
292 result = read_reg (next_frame, result);
293
294 free_dwarf_expr_context (ctx);
295
296 return result;
297 }
298 \f
299
300 static void
301 execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
302 struct frame_info *next_frame,
303 struct dwarf2_frame_state *fs, int eh_frame_p)
304 {
305 CORE_ADDR pc = frame_pc_unwind (next_frame);
306 int bytes_read;
307 struct gdbarch *gdbarch = get_frame_arch (next_frame);
308
309 while (insn_ptr < insn_end && fs->pc <= pc)
310 {
311 gdb_byte insn = *insn_ptr++;
312 ULONGEST utmp, reg;
313 LONGEST offset;
314
315 if ((insn & 0xc0) == DW_CFA_advance_loc)
316 fs->pc += (insn & 0x3f) * fs->code_align;
317 else if ((insn & 0xc0) == DW_CFA_offset)
318 {
319 reg = insn & 0x3f;
320 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
321 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
322 offset = utmp * fs->data_align;
323 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
324 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
325 fs->regs.reg[reg].loc.offset = offset;
326 }
327 else if ((insn & 0xc0) == DW_CFA_restore)
328 {
329 gdb_assert (fs->initial.reg);
330 reg = insn & 0x3f;
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 complaint (&symfile_complaints, _("\
340 incomplete CFI data; DW_CFA_restore unspecified\n\
341 register %s (#%d) at 0x%s"),
342 REGISTER_NAME(DWARF2_REG_TO_REGNUM(reg)),
343 DWARF2_REG_TO_REGNUM(reg), paddr (fs->pc));
344 }
345 else
346 {
347 switch (insn)
348 {
349 case DW_CFA_set_loc:
350 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
351 insn_ptr += bytes_read;
352 break;
353
354 case DW_CFA_advance_loc1:
355 utmp = extract_unsigned_integer (insn_ptr, 1);
356 fs->pc += utmp * fs->code_align;
357 insn_ptr++;
358 break;
359 case DW_CFA_advance_loc2:
360 utmp = extract_unsigned_integer (insn_ptr, 2);
361 fs->pc += utmp * fs->code_align;
362 insn_ptr += 2;
363 break;
364 case DW_CFA_advance_loc4:
365 utmp = extract_unsigned_integer (insn_ptr, 4);
366 fs->pc += utmp * fs->code_align;
367 insn_ptr += 4;
368 break;
369
370 case DW_CFA_offset_extended:
371 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
372 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
373 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
374 offset = utmp * fs->data_align;
375 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
376 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
377 fs->regs.reg[reg].loc.offset = offset;
378 break;
379
380 case DW_CFA_restore_extended:
381 gdb_assert (fs->initial.reg);
382 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
383 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
384 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
385 fs->regs.reg[reg] = fs->initial.reg[reg];
386 break;
387
388 case DW_CFA_undefined:
389 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
390 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
391 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
392 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
393 break;
394
395 case DW_CFA_same_value:
396 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
397 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
398 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
399 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
400 break;
401
402 case DW_CFA_register:
403 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
404 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
405 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
406 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
407 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
408 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
409 fs->regs.reg[reg].loc.reg = utmp;
410 break;
411
412 case DW_CFA_remember_state:
413 {
414 struct dwarf2_frame_state_reg_info *new_rs;
415
416 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
417 *new_rs = fs->regs;
418 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
419 fs->regs.prev = new_rs;
420 }
421 break;
422
423 case DW_CFA_restore_state:
424 {
425 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
426
427 if (old_rs == NULL)
428 {
429 complaint (&symfile_complaints, _("\
430 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
431 }
432 else
433 {
434 xfree (fs->regs.reg);
435 fs->regs = *old_rs;
436 xfree (old_rs);
437 }
438 }
439 break;
440
441 case DW_CFA_def_cfa:
442 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
444
445 if (fs->armcc_cfa_offsets_sf)
446 utmp *= fs->data_align;
447
448 fs->cfa_offset = utmp;
449 fs->cfa_how = CFA_REG_OFFSET;
450 break;
451
452 case DW_CFA_def_cfa_register:
453 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
454 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
455 eh_frame_p);
456 fs->cfa_how = CFA_REG_OFFSET;
457 break;
458
459 case DW_CFA_def_cfa_offset:
460 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
461
462 if (fs->armcc_cfa_offsets_sf)
463 utmp *= fs->data_align;
464
465 fs->cfa_offset = utmp;
466 /* cfa_how deliberately not set. */
467 break;
468
469 case DW_CFA_nop:
470 break;
471
472 case DW_CFA_def_cfa_expression:
473 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
474 fs->cfa_exp = insn_ptr;
475 fs->cfa_how = CFA_EXP;
476 insn_ptr += fs->cfa_exp_len;
477 break;
478
479 case DW_CFA_expression:
480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
481 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
482 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
483 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
484 fs->regs.reg[reg].loc.exp = insn_ptr;
485 fs->regs.reg[reg].exp_len = utmp;
486 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
487 insn_ptr += utmp;
488 break;
489
490 case DW_CFA_offset_extended_sf:
491 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
492 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
493 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
494 offset *= fs->data_align;
495 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
496 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
497 fs->regs.reg[reg].loc.offset = offset;
498 break;
499
500 case DW_CFA_val_offset:
501 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
502 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
503 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
504 offset = utmp * fs->data_align;
505 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
506 fs->regs.reg[reg].loc.offset = offset;
507 break;
508
509 case DW_CFA_val_offset_sf:
510 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
511 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
512 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
513 offset *= fs->data_align;
514 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
515 fs->regs.reg[reg].loc.offset = offset;
516 break;
517
518 case DW_CFA_val_expression:
519 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
520 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
521 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
522 fs->regs.reg[reg].loc.exp = insn_ptr;
523 fs->regs.reg[reg].exp_len = utmp;
524 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
525 insn_ptr += utmp;
526 break;
527
528 case DW_CFA_def_cfa_sf:
529 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
530 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
531 eh_frame_p);
532 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
533 fs->cfa_offset = offset * fs->data_align;
534 fs->cfa_how = CFA_REG_OFFSET;
535 break;
536
537 case DW_CFA_def_cfa_offset_sf:
538 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
539 fs->cfa_offset = offset * fs->data_align;
540 /* cfa_how deliberately not set. */
541 break;
542
543 case DW_CFA_GNU_window_save:
544 /* This is SPARC-specific code, and contains hard-coded
545 constants for the register numbering scheme used by
546 GCC. Rather than having a architecture-specific
547 operation that's only ever used by a single
548 architecture, we provide the implementation here.
549 Incidentally that's what GCC does too in its
550 unwinder. */
551 {
552 struct gdbarch *gdbarch = get_frame_arch (next_frame);
553 int size = register_size(gdbarch, 0);
554 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
555 for (reg = 8; reg < 16; reg++)
556 {
557 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
558 fs->regs.reg[reg].loc.reg = reg + 16;
559 }
560 for (reg = 16; reg < 32; reg++)
561 {
562 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
563 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
564 }
565 }
566 break;
567
568 case DW_CFA_GNU_args_size:
569 /* Ignored. */
570 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
571 break;
572
573 case DW_CFA_GNU_negative_offset_extended:
574 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
575 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
577 offset *= fs->data_align;
578 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
579 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
580 fs->regs.reg[reg].loc.offset = -offset;
581 break;
582
583 default:
584 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
585 }
586 }
587 }
588
589 /* Don't allow remember/restore between CIE and FDE programs. */
590 dwarf2_frame_state_free_regs (fs->regs.prev);
591 fs->regs.prev = NULL;
592 }
593 \f
594
595 /* Architecture-specific operations. */
596
597 /* Per-architecture data key. */
598 static struct gdbarch_data *dwarf2_frame_data;
599
600 struct dwarf2_frame_ops
601 {
602 /* Pre-initialize the register state REG for register REGNUM. */
603 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
604 struct frame_info *);
605
606 /* Check whether the frame preceding NEXT_FRAME will be a signal
607 trampoline. */
608 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
609
610 /* Convert .eh_frame register number to DWARF register number, or
611 adjust .debug_frame register number. */
612 int (*adjust_regnum) (struct gdbarch *, int, int);
613 };
614
615 /* Default architecture-specific register state initialization
616 function. */
617
618 static void
619 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
620 struct dwarf2_frame_state_reg *reg,
621 struct frame_info *next_frame)
622 {
623 /* If we have a register that acts as a program counter, mark it as
624 a destination for the return address. If we have a register that
625 serves as the stack pointer, arrange for it to be filled with the
626 call frame address (CFA). The other registers are marked as
627 unspecified.
628
629 We copy the return address to the program counter, since many
630 parts in GDB assume that it is possible to get the return address
631 by unwinding the program counter register. However, on ISA's
632 with a dedicated return address register, the CFI usually only
633 contains information to unwind that return address register.
634
635 The reason we're treating the stack pointer special here is
636 because in many cases GCC doesn't emit CFI for the stack pointer
637 and implicitly assumes that it is equal to the CFA. This makes
638 some sense since the DWARF specification (version 3, draft 8,
639 p. 102) says that:
640
641 "Typically, the CFA is defined to be the value of the stack
642 pointer at the call site in the previous frame (which may be
643 different from its value on entry to the current frame)."
644
645 However, this isn't true for all platforms supported by GCC
646 (e.g. IBM S/390 and zSeries). Those architectures should provide
647 their own architecture-specific initialization function. */
648
649 if (regnum == PC_REGNUM)
650 reg->how = DWARF2_FRAME_REG_RA;
651 else if (regnum == SP_REGNUM)
652 reg->how = DWARF2_FRAME_REG_CFA;
653 }
654
655 /* Return a default for the architecture-specific operations. */
656
657 static void *
658 dwarf2_frame_init (struct obstack *obstack)
659 {
660 struct dwarf2_frame_ops *ops;
661
662 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
663 ops->init_reg = dwarf2_frame_default_init_reg;
664 return ops;
665 }
666
667 /* Set the architecture-specific register state initialization
668 function for GDBARCH to INIT_REG. */
669
670 void
671 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
672 void (*init_reg) (struct gdbarch *, int,
673 struct dwarf2_frame_state_reg *,
674 struct frame_info *))
675 {
676 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
677
678 ops->init_reg = init_reg;
679 }
680
681 /* Pre-initialize the register state REG for register REGNUM. */
682
683 static void
684 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
685 struct dwarf2_frame_state_reg *reg,
686 struct frame_info *next_frame)
687 {
688 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
689
690 ops->init_reg (gdbarch, regnum, reg, next_frame);
691 }
692
693 /* Set the architecture-specific signal trampoline recognition
694 function for GDBARCH to SIGNAL_FRAME_P. */
695
696 void
697 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
698 int (*signal_frame_p) (struct gdbarch *,
699 struct frame_info *))
700 {
701 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
702
703 ops->signal_frame_p = signal_frame_p;
704 }
705
706 /* Query the architecture-specific signal frame recognizer for
707 NEXT_FRAME. */
708
709 static int
710 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
711 struct frame_info *next_frame)
712 {
713 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
714
715 if (ops->signal_frame_p == NULL)
716 return 0;
717 return ops->signal_frame_p (gdbarch, next_frame);
718 }
719
720 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
721 register numbers. */
722
723 void
724 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
725 int (*adjust_regnum) (struct gdbarch *,
726 int, int))
727 {
728 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
729
730 ops->adjust_regnum = adjust_regnum;
731 }
732
733 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
734 register. */
735
736 static int
737 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
738 {
739 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
740
741 if (ops->adjust_regnum == NULL)
742 return regnum;
743 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
744 }
745
746 static void
747 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
748 struct dwarf2_fde *fde)
749 {
750 static const char *arm_idents[] = {
751 "ARM C Compiler, ADS",
752 "Thumb C Compiler, ADS",
753 "ARM C++ Compiler, ADS",
754 "Thumb C++ Compiler, ADS",
755 "ARM/Thumb C/C++ Compiler, RVCT"
756 };
757 int i;
758
759 struct symtab *s;
760
761 s = find_pc_symtab (fs->pc);
762 if (s == NULL || s->producer == NULL)
763 return;
764
765 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
766 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
767 {
768 if (fde->cie->version == 1)
769 fs->armcc_cfa_offsets_sf = 1;
770
771 if (fde->cie->version == 1)
772 fs->armcc_cfa_offsets_reversed = 1;
773
774 /* The reversed offset problem is present in some compilers
775 using DWARF3, but it was eventually fixed. Check the ARM
776 defined augmentations, which are in the format "armcc" followed
777 by a list of one-character options. The "+" option means
778 this problem is fixed (no quirk needed). If the armcc
779 augmentation is missing, the quirk is needed. */
780 if (fde->cie->version == 3
781 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
782 || strchr (fde->cie->augmentation + 5, '+') == NULL))
783 fs->armcc_cfa_offsets_reversed = 1;
784
785 return;
786 }
787 }
788 \f
789
790 struct dwarf2_frame_cache
791 {
792 /* DWARF Call Frame Address. */
793 CORE_ADDR cfa;
794
795 /* Set if the return address column was marked as undefined. */
796 int undefined_retaddr;
797
798 /* Saved registers, indexed by GDB register number, not by DWARF
799 register number. */
800 struct dwarf2_frame_state_reg *reg;
801
802 /* Return address register. */
803 struct dwarf2_frame_state_reg retaddr_reg;
804 };
805
806 static struct dwarf2_frame_cache *
807 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
808 {
809 struct cleanup *old_chain;
810 struct gdbarch *gdbarch = get_frame_arch (next_frame);
811 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
812 struct dwarf2_frame_cache *cache;
813 struct dwarf2_frame_state *fs;
814 struct dwarf2_fde *fde;
815
816 if (*this_cache)
817 return *this_cache;
818
819 /* Allocate a new cache. */
820 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
821 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
822
823 /* Allocate and initialize the frame state. */
824 fs = XMALLOC (struct dwarf2_frame_state);
825 memset (fs, 0, sizeof (struct dwarf2_frame_state));
826 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
827
828 /* Unwind the PC.
829
830 Note that if NEXT_FRAME is never supposed to return (i.e. a call
831 to abort), the compiler might optimize away the instruction at
832 NEXT_FRAME's return address. As a result the return address will
833 point at some random instruction, and the CFI for that
834 instruction is probably worthless to us. GCC's unwinder solves
835 this problem by substracting 1 from the return address to get an
836 address in the middle of a presumed call instruction (or the
837 instruction in the associated delay slot). This should only be
838 done for "normal" frames and not for resume-type frames (signal
839 handlers, sentinel frames, dummy frames). The function
840 frame_unwind_address_in_block does just this. It's not clear how
841 reliable the method is though; there is the potential for the
842 register state pre-call being different to that on return. */
843 fs->pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
844
845 /* Find the correct FDE. */
846 fde = dwarf2_frame_find_fde (&fs->pc);
847 gdb_assert (fde != NULL);
848
849 /* Extract any interesting information from the CIE. */
850 fs->data_align = fde->cie->data_alignment_factor;
851 fs->code_align = fde->cie->code_alignment_factor;
852 fs->retaddr_column = fde->cie->return_address_register;
853
854 /* Check for "quirks" - known bugs in producers. */
855 dwarf2_frame_find_quirks (fs, fde);
856
857 /* First decode all the insns in the CIE. */
858 execute_cfa_program (fde->cie->initial_instructions,
859 fde->cie->end, next_frame, fs, fde->eh_frame_p);
860
861 /* Save the initialized register set. */
862 fs->initial = fs->regs;
863 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
864
865 /* Then decode the insns in the FDE up to our target PC. */
866 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
867 fde->eh_frame_p);
868
869 /* Caclulate the CFA. */
870 switch (fs->cfa_how)
871 {
872 case CFA_REG_OFFSET:
873 cache->cfa = read_reg (next_frame, fs->cfa_reg);
874 if (fs->armcc_cfa_offsets_reversed)
875 cache->cfa -= fs->cfa_offset;
876 else
877 cache->cfa += fs->cfa_offset;
878 break;
879
880 case CFA_EXP:
881 cache->cfa =
882 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
883 break;
884
885 default:
886 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
887 }
888
889 /* Initialize the register state. */
890 {
891 int regnum;
892
893 for (regnum = 0; regnum < num_regs; regnum++)
894 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
895 }
896
897 /* Go through the DWARF2 CFI generated table and save its register
898 location information in the cache. Note that we don't skip the
899 return address column; it's perfectly all right for it to
900 correspond to a real register. If it doesn't correspond to a
901 real register, or if we shouldn't treat it as such,
902 DWARF2_REG_TO_REGNUM should be defined to return a number outside
903 the range [0, NUM_REGS). */
904 {
905 int column; /* CFI speak for "register number". */
906
907 for (column = 0; column < fs->regs.num_regs; column++)
908 {
909 /* Use the GDB register number as the destination index. */
910 int regnum = DWARF2_REG_TO_REGNUM (column);
911
912 /* If there's no corresponding GDB register, ignore it. */
913 if (regnum < 0 || regnum >= num_regs)
914 continue;
915
916 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
917 of all debug info registers. If it doesn't, complain (but
918 not too loudly). It turns out that GCC assumes that an
919 unspecified register implies "same value" when CFI (draft
920 7) specifies nothing at all. Such a register could equally
921 be interpreted as "undefined". Also note that this check
922 isn't sufficient; it only checks that all registers in the
923 range [0 .. max column] are specified, and won't detect
924 problems when a debug info register falls outside of the
925 table. We need a way of iterating through all the valid
926 DWARF2 register numbers. */
927 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
928 {
929 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
930 complaint (&symfile_complaints, _("\
931 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
932 gdbarch_register_name (gdbarch, regnum),
933 paddr_nz (fs->pc));
934 }
935 else
936 cache->reg[regnum] = fs->regs.reg[column];
937 }
938 }
939
940 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
941 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
942 {
943 int regnum;
944
945 for (regnum = 0; regnum < num_regs; regnum++)
946 {
947 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
948 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
949 {
950 struct dwarf2_frame_state_reg *retaddr_reg =
951 &fs->regs.reg[fs->retaddr_column];
952
953 /* It seems rather bizarre to specify an "empty" column as
954 the return adress column. However, this is exactly
955 what GCC does on some targets. It turns out that GCC
956 assumes that the return address can be found in the
957 register corresponding to the return address column.
958 Incidentally, that's how we should treat a return
959 address column specifying "same value" too. */
960 if (fs->retaddr_column < fs->regs.num_regs
961 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
962 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
963 {
964 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
965 cache->reg[regnum] = *retaddr_reg;
966 else
967 cache->retaddr_reg = *retaddr_reg;
968 }
969 else
970 {
971 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
972 {
973 cache->reg[regnum].loc.reg = fs->retaddr_column;
974 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
975 }
976 else
977 {
978 cache->retaddr_reg.loc.reg = fs->retaddr_column;
979 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
980 }
981 }
982 }
983 }
984 }
985
986 if (fs->retaddr_column < fs->regs.num_regs
987 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
988 cache->undefined_retaddr = 1;
989
990 do_cleanups (old_chain);
991
992 *this_cache = cache;
993 return cache;
994 }
995
996 static void
997 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
998 struct frame_id *this_id)
999 {
1000 struct dwarf2_frame_cache *cache =
1001 dwarf2_frame_cache (next_frame, this_cache);
1002
1003 if (cache->undefined_retaddr)
1004 return;
1005
1006 (*this_id) = frame_id_build (cache->cfa,
1007 frame_func_unwind (next_frame, NORMAL_FRAME));
1008 }
1009
1010 static void
1011 dwarf2_signal_frame_this_id (struct frame_info *next_frame, void **this_cache,
1012 struct frame_id *this_id)
1013 {
1014 struct dwarf2_frame_cache *cache =
1015 dwarf2_frame_cache (next_frame, this_cache);
1016
1017 if (cache->undefined_retaddr)
1018 return;
1019
1020 (*this_id) = frame_id_build (cache->cfa,
1021 frame_func_unwind (next_frame, SIGTRAMP_FRAME));
1022 }
1023
1024 static void
1025 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1026 int regnum, int *optimizedp,
1027 enum lval_type *lvalp, CORE_ADDR *addrp,
1028 int *realnump, gdb_byte *valuep)
1029 {
1030 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1031 struct dwarf2_frame_cache *cache =
1032 dwarf2_frame_cache (next_frame, this_cache);
1033
1034 switch (cache->reg[regnum].how)
1035 {
1036 case DWARF2_FRAME_REG_UNDEFINED:
1037 /* If CFI explicitly specified that the value isn't defined,
1038 mark it as optimized away; the value isn't available. */
1039 *optimizedp = 1;
1040 *lvalp = not_lval;
1041 *addrp = 0;
1042 *realnump = -1;
1043 if (valuep)
1044 {
1045 /* In some cases, for example %eflags on the i386, we have
1046 to provide a sane value, even though this register wasn't
1047 saved. Assume we can get it from NEXT_FRAME. */
1048 frame_unwind_register (next_frame, regnum, valuep);
1049 }
1050 break;
1051
1052 case DWARF2_FRAME_REG_SAVED_OFFSET:
1053 *optimizedp = 0;
1054 *lvalp = lval_memory;
1055 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
1056 *realnump = -1;
1057 if (valuep)
1058 {
1059 /* Read the value in from memory. */
1060 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1061 }
1062 break;
1063
1064 case DWARF2_FRAME_REG_SAVED_REG:
1065 *optimizedp = 0;
1066 *lvalp = lval_register;
1067 *addrp = 0;
1068 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
1069 if (valuep)
1070 frame_unwind_register (next_frame, (*realnump), valuep);
1071 break;
1072
1073 case DWARF2_FRAME_REG_SAVED_EXP:
1074 *optimizedp = 0;
1075 *lvalp = lval_memory;
1076 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
1077 cache->reg[regnum].exp_len,
1078 next_frame, cache->cfa);
1079 *realnump = -1;
1080 if (valuep)
1081 {
1082 /* Read the value in from memory. */
1083 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1084 }
1085 break;
1086
1087 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1088 *optimizedp = 0;
1089 *lvalp = not_lval;
1090 *addrp = 0;
1091 *realnump = -1;
1092 if (valuep)
1093 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1094 cache->cfa + cache->reg[regnum].loc.offset);
1095 break;
1096
1097 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1098 *optimizedp = 0;
1099 *lvalp = not_lval;
1100 *addrp = 0;
1101 *realnump = -1;
1102 if (valuep)
1103 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1104 execute_stack_op (cache->reg[regnum].loc.exp,
1105 cache->reg[regnum].exp_len,
1106 next_frame, cache->cfa));
1107 break;
1108
1109 case DWARF2_FRAME_REG_UNSPECIFIED:
1110 /* GCC, in its infinite wisdom decided to not provide unwind
1111 information for registers that are "same value". Since
1112 DWARF2 (3 draft 7) doesn't define such behavior, said
1113 registers are actually undefined (which is different to CFI
1114 "undefined"). Code above issues a complaint about this.
1115 Here just fudge the books, assume GCC, and that the value is
1116 more inner on the stack. */
1117 *optimizedp = 0;
1118 *lvalp = lval_register;
1119 *addrp = 0;
1120 *realnump = regnum;
1121 if (valuep)
1122 frame_unwind_register (next_frame, (*realnump), valuep);
1123 break;
1124
1125 case DWARF2_FRAME_REG_SAME_VALUE:
1126 *optimizedp = 0;
1127 *lvalp = lval_register;
1128 *addrp = 0;
1129 *realnump = regnum;
1130 if (valuep)
1131 frame_unwind_register (next_frame, (*realnump), valuep);
1132 break;
1133
1134 case DWARF2_FRAME_REG_CFA:
1135 *optimizedp = 0;
1136 *lvalp = not_lval;
1137 *addrp = 0;
1138 *realnump = -1;
1139 if (valuep)
1140 {
1141 /* Store the value. */
1142 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
1143 }
1144 break;
1145
1146 case DWARF2_FRAME_REG_CFA_OFFSET:
1147 *optimizedp = 0;
1148 *lvalp = not_lval;
1149 *addrp = 0;
1150 *realnump = -1;
1151 if (valuep)
1152 {
1153 /* Store the value. */
1154 store_typed_address (valuep, builtin_type_void_data_ptr,
1155 cache->cfa + cache->reg[regnum].loc.offset);
1156 }
1157 break;
1158
1159 case DWARF2_FRAME_REG_RA_OFFSET:
1160 *optimizedp = 0;
1161 *lvalp = not_lval;
1162 *addrp = 0;
1163 *realnump = -1;
1164 if (valuep)
1165 {
1166 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1167
1168 regnum = DWARF2_REG_TO_REGNUM (cache->retaddr_reg.loc.reg);
1169 pc += frame_unwind_register_unsigned (next_frame, regnum);
1170 store_typed_address (valuep, builtin_type_void_func_ptr, pc);
1171 }
1172 break;
1173
1174 default:
1175 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1176 }
1177 }
1178
1179 static const struct frame_unwind dwarf2_frame_unwind =
1180 {
1181 NORMAL_FRAME,
1182 dwarf2_frame_this_id,
1183 dwarf2_frame_prev_register
1184 };
1185
1186 static const struct frame_unwind dwarf2_signal_frame_unwind =
1187 {
1188 SIGTRAMP_FRAME,
1189 dwarf2_signal_frame_this_id,
1190 dwarf2_frame_prev_register
1191 };
1192
1193 const struct frame_unwind *
1194 dwarf2_frame_sniffer (struct frame_info *next_frame)
1195 {
1196 /* Grab an address that is guarenteed to reside somewhere within the
1197 function. frame_pc_unwind(), for a no-return next function, can
1198 end up returning something past the end of this function's body.
1199 If the frame we're sniffing for is a signal frame whose start
1200 address is placed on the stack by the OS, its FDE must
1201 extend one byte before its start address or we will miss it. */
1202 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1203 NORMAL_FRAME);
1204 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1205 if (!fde)
1206 return NULL;
1207
1208 /* On some targets, signal trampolines may have unwind information.
1209 We need to recognize them so that we set the frame type
1210 correctly. */
1211
1212 if (fde->cie->signal_frame
1213 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1214 next_frame))
1215 return &dwarf2_signal_frame_unwind;
1216
1217 return &dwarf2_frame_unwind;
1218 }
1219 \f
1220
1221 /* There is no explicitly defined relationship between the CFA and the
1222 location of frame's local variables and arguments/parameters.
1223 Therefore, frame base methods on this page should probably only be
1224 used as a last resort, just to avoid printing total garbage as a
1225 response to the "info frame" command. */
1226
1227 static CORE_ADDR
1228 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1229 {
1230 struct dwarf2_frame_cache *cache =
1231 dwarf2_frame_cache (next_frame, this_cache);
1232
1233 return cache->cfa;
1234 }
1235
1236 static const struct frame_base dwarf2_frame_base =
1237 {
1238 &dwarf2_frame_unwind,
1239 dwarf2_frame_base_address,
1240 dwarf2_frame_base_address,
1241 dwarf2_frame_base_address
1242 };
1243
1244 const struct frame_base *
1245 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
1246 {
1247 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1248 NORMAL_FRAME);
1249 if (dwarf2_frame_find_fde (&block_addr))
1250 return &dwarf2_frame_base;
1251
1252 return NULL;
1253 }
1254 \f
1255 /* A minimal decoding of DWARF2 compilation units. We only decode
1256 what's needed to get to the call frame information. */
1257
1258 struct comp_unit
1259 {
1260 /* Keep the bfd convenient. */
1261 bfd *abfd;
1262
1263 struct objfile *objfile;
1264
1265 /* Linked list of CIEs for this object. */
1266 struct dwarf2_cie *cie;
1267
1268 /* Pointer to the .debug_frame section loaded into memory. */
1269 gdb_byte *dwarf_frame_buffer;
1270
1271 /* Length of the loaded .debug_frame section. */
1272 unsigned long dwarf_frame_size;
1273
1274 /* Pointer to the .debug_frame section. */
1275 asection *dwarf_frame_section;
1276
1277 /* Base for DW_EH_PE_datarel encodings. */
1278 bfd_vma dbase;
1279
1280 /* Base for DW_EH_PE_textrel encodings. */
1281 bfd_vma tbase;
1282 };
1283
1284 const struct objfile_data *dwarf2_frame_objfile_data;
1285
1286 static unsigned int
1287 read_1_byte (bfd *abfd, gdb_byte *buf)
1288 {
1289 return bfd_get_8 (abfd, buf);
1290 }
1291
1292 static unsigned int
1293 read_4_bytes (bfd *abfd, gdb_byte *buf)
1294 {
1295 return bfd_get_32 (abfd, buf);
1296 }
1297
1298 static ULONGEST
1299 read_8_bytes (bfd *abfd, gdb_byte *buf)
1300 {
1301 return bfd_get_64 (abfd, buf);
1302 }
1303
1304 static ULONGEST
1305 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1306 {
1307 ULONGEST result;
1308 unsigned int num_read;
1309 int shift;
1310 gdb_byte byte;
1311
1312 result = 0;
1313 shift = 0;
1314 num_read = 0;
1315
1316 do
1317 {
1318 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1319 buf++;
1320 num_read++;
1321 result |= ((byte & 0x7f) << shift);
1322 shift += 7;
1323 }
1324 while (byte & 0x80);
1325
1326 *bytes_read_ptr = num_read;
1327
1328 return result;
1329 }
1330
1331 static LONGEST
1332 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1333 {
1334 LONGEST result;
1335 int shift;
1336 unsigned int num_read;
1337 gdb_byte byte;
1338
1339 result = 0;
1340 shift = 0;
1341 num_read = 0;
1342
1343 do
1344 {
1345 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1346 buf++;
1347 num_read++;
1348 result |= ((byte & 0x7f) << shift);
1349 shift += 7;
1350 }
1351 while (byte & 0x80);
1352
1353 if (shift < 8 * sizeof (result) && (byte & 0x40))
1354 result |= -(((LONGEST)1) << shift);
1355
1356 *bytes_read_ptr = num_read;
1357
1358 return result;
1359 }
1360
1361 static ULONGEST
1362 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1363 {
1364 LONGEST result;
1365
1366 result = bfd_get_32 (abfd, buf);
1367 if (result == 0xffffffff)
1368 {
1369 result = bfd_get_64 (abfd, buf + 4);
1370 *bytes_read_ptr = 12;
1371 }
1372 else
1373 *bytes_read_ptr = 4;
1374
1375 return result;
1376 }
1377 \f
1378
1379 /* Pointer encoding helper functions. */
1380
1381 /* GCC supports exception handling based on DWARF2 CFI. However, for
1382 technical reasons, it encodes addresses in its FDE's in a different
1383 way. Several "pointer encodings" are supported. The encoding
1384 that's used for a particular FDE is determined by the 'R'
1385 augmentation in the associated CIE. The argument of this
1386 augmentation is a single byte.
1387
1388 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1389 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1390 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1391 address should be interpreted (absolute, relative to the current
1392 position in the FDE, ...). Bit 7, indicates that the address
1393 should be dereferenced. */
1394
1395 static gdb_byte
1396 encoding_for_size (unsigned int size)
1397 {
1398 switch (size)
1399 {
1400 case 2:
1401 return DW_EH_PE_udata2;
1402 case 4:
1403 return DW_EH_PE_udata4;
1404 case 8:
1405 return DW_EH_PE_udata8;
1406 default:
1407 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1408 }
1409 }
1410
1411 static unsigned int
1412 size_of_encoded_value (gdb_byte encoding)
1413 {
1414 if (encoding == DW_EH_PE_omit)
1415 return 0;
1416
1417 switch (encoding & 0x07)
1418 {
1419 case DW_EH_PE_absptr:
1420 return TYPE_LENGTH (builtin_type_void_data_ptr);
1421 case DW_EH_PE_udata2:
1422 return 2;
1423 case DW_EH_PE_udata4:
1424 return 4;
1425 case DW_EH_PE_udata8:
1426 return 8;
1427 default:
1428 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1429 }
1430 }
1431
1432 static CORE_ADDR
1433 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1434 gdb_byte *buf, unsigned int *bytes_read_ptr)
1435 {
1436 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1437 ptrdiff_t offset;
1438 CORE_ADDR base;
1439
1440 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1441 FDE's. */
1442 if (encoding & DW_EH_PE_indirect)
1443 internal_error (__FILE__, __LINE__,
1444 _("Unsupported encoding: DW_EH_PE_indirect"));
1445
1446 *bytes_read_ptr = 0;
1447
1448 switch (encoding & 0x70)
1449 {
1450 case DW_EH_PE_absptr:
1451 base = 0;
1452 break;
1453 case DW_EH_PE_pcrel:
1454 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1455 base += (buf - unit->dwarf_frame_buffer);
1456 break;
1457 case DW_EH_PE_datarel:
1458 base = unit->dbase;
1459 break;
1460 case DW_EH_PE_textrel:
1461 base = unit->tbase;
1462 break;
1463 case DW_EH_PE_funcrel:
1464 /* FIXME: kettenis/20040501: For now just pretend
1465 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1466 reading the initial location of an FDE it should be treated
1467 as such, and currently that's the only place where this code
1468 is used. */
1469 base = 0;
1470 break;
1471 case DW_EH_PE_aligned:
1472 base = 0;
1473 offset = buf - unit->dwarf_frame_buffer;
1474 if ((offset % ptr_len) != 0)
1475 {
1476 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1477 buf += *bytes_read_ptr;
1478 }
1479 break;
1480 default:
1481 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1482 }
1483
1484 if ((encoding & 0x07) == 0x00)
1485 encoding |= encoding_for_size (ptr_len);
1486
1487 switch (encoding & 0x0f)
1488 {
1489 case DW_EH_PE_uleb128:
1490 {
1491 ULONGEST value;
1492 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1493 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1494 return base + value;
1495 }
1496 case DW_EH_PE_udata2:
1497 *bytes_read_ptr += 2;
1498 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1499 case DW_EH_PE_udata4:
1500 *bytes_read_ptr += 4;
1501 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1502 case DW_EH_PE_udata8:
1503 *bytes_read_ptr += 8;
1504 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1505 case DW_EH_PE_sleb128:
1506 {
1507 LONGEST value;
1508 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1509 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1510 return base + value;
1511 }
1512 case DW_EH_PE_sdata2:
1513 *bytes_read_ptr += 2;
1514 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1515 case DW_EH_PE_sdata4:
1516 *bytes_read_ptr += 4;
1517 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1518 case DW_EH_PE_sdata8:
1519 *bytes_read_ptr += 8;
1520 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1521 default:
1522 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1523 }
1524 }
1525 \f
1526
1527 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1528 That's why we use a simple linked list here. */
1529
1530 static struct dwarf2_cie *
1531 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1532 {
1533 struct dwarf2_cie *cie = unit->cie;
1534
1535 while (cie)
1536 {
1537 if (cie->cie_pointer == cie_pointer)
1538 return cie;
1539
1540 cie = cie->next;
1541 }
1542
1543 return NULL;
1544 }
1545
1546 static void
1547 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1548 {
1549 cie->next = unit->cie;
1550 unit->cie = cie;
1551 }
1552
1553 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1554 inital location associated with it into *PC. */
1555
1556 static struct dwarf2_fde *
1557 dwarf2_frame_find_fde (CORE_ADDR *pc)
1558 {
1559 struct objfile *objfile;
1560
1561 ALL_OBJFILES (objfile)
1562 {
1563 struct dwarf2_fde *fde;
1564 CORE_ADDR offset;
1565
1566 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1567 if (fde == NULL)
1568 continue;
1569
1570 gdb_assert (objfile->section_offsets);
1571 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1572
1573 while (fde)
1574 {
1575 if (*pc >= fde->initial_location + offset
1576 && *pc < fde->initial_location + offset + fde->address_range)
1577 {
1578 *pc = fde->initial_location + offset;
1579 return fde;
1580 }
1581
1582 fde = fde->next;
1583 }
1584 }
1585
1586 return NULL;
1587 }
1588
1589 static void
1590 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1591 {
1592 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1593 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1594 }
1595
1596 #ifdef CC_HAS_LONG_LONG
1597 #define DW64_CIE_ID 0xffffffffffffffffULL
1598 #else
1599 #define DW64_CIE_ID ~0
1600 #endif
1601
1602 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1603 int eh_frame_p);
1604
1605 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1606 the next byte to be processed. */
1607 static gdb_byte *
1608 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1609 {
1610 gdb_byte *buf, *end;
1611 LONGEST length;
1612 unsigned int bytes_read;
1613 int dwarf64_p;
1614 ULONGEST cie_id;
1615 ULONGEST cie_pointer;
1616
1617 buf = start;
1618 length = read_initial_length (unit->abfd, buf, &bytes_read);
1619 buf += bytes_read;
1620 end = buf + length;
1621
1622 /* Are we still within the section? */
1623 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1624 return NULL;
1625
1626 if (length == 0)
1627 return end;
1628
1629 /* Distinguish between 32 and 64-bit encoded frame info. */
1630 dwarf64_p = (bytes_read == 12);
1631
1632 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1633 if (eh_frame_p)
1634 cie_id = 0;
1635 else if (dwarf64_p)
1636 cie_id = DW64_CIE_ID;
1637 else
1638 cie_id = DW_CIE_ID;
1639
1640 if (dwarf64_p)
1641 {
1642 cie_pointer = read_8_bytes (unit->abfd, buf);
1643 buf += 8;
1644 }
1645 else
1646 {
1647 cie_pointer = read_4_bytes (unit->abfd, buf);
1648 buf += 4;
1649 }
1650
1651 if (cie_pointer == cie_id)
1652 {
1653 /* This is a CIE. */
1654 struct dwarf2_cie *cie;
1655 char *augmentation;
1656 unsigned int cie_version;
1657
1658 /* Record the offset into the .debug_frame section of this CIE. */
1659 cie_pointer = start - unit->dwarf_frame_buffer;
1660
1661 /* Check whether we've already read it. */
1662 if (find_cie (unit, cie_pointer))
1663 return end;
1664
1665 cie = (struct dwarf2_cie *)
1666 obstack_alloc (&unit->objfile->objfile_obstack,
1667 sizeof (struct dwarf2_cie));
1668 cie->initial_instructions = NULL;
1669 cie->cie_pointer = cie_pointer;
1670
1671 /* The encoding for FDE's in a normal .debug_frame section
1672 depends on the target address size. */
1673 cie->encoding = DW_EH_PE_absptr;
1674
1675 /* We'll determine the final value later, but we need to
1676 initialize it conservatively. */
1677 cie->signal_frame = 0;
1678
1679 /* Check version number. */
1680 cie_version = read_1_byte (unit->abfd, buf);
1681 if (cie_version != 1 && cie_version != 3)
1682 return NULL;
1683 cie->version = cie_version;
1684 buf += 1;
1685
1686 /* Interpret the interesting bits of the augmentation. */
1687 cie->augmentation = augmentation = (char *) buf;
1688 buf += (strlen (augmentation) + 1);
1689
1690 /* Ignore armcc augmentations. We only use them for quirks,
1691 and that doesn't happen until later. */
1692 if (strncmp (augmentation, "armcc", 5) == 0)
1693 augmentation += strlen (augmentation);
1694
1695 /* The GCC 2.x "eh" augmentation has a pointer immediately
1696 following the augmentation string, so it must be handled
1697 first. */
1698 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1699 {
1700 /* Skip. */
1701 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1702 augmentation += 2;
1703 }
1704
1705 cie->code_alignment_factor =
1706 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1707 buf += bytes_read;
1708
1709 cie->data_alignment_factor =
1710 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1711 buf += bytes_read;
1712
1713 if (cie_version == 1)
1714 {
1715 cie->return_address_register = read_1_byte (unit->abfd, buf);
1716 bytes_read = 1;
1717 }
1718 else
1719 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1720 &bytes_read);
1721 cie->return_address_register
1722 = dwarf2_frame_adjust_regnum (current_gdbarch,
1723 cie->return_address_register,
1724 eh_frame_p);
1725
1726 buf += bytes_read;
1727
1728 cie->saw_z_augmentation = (*augmentation == 'z');
1729 if (cie->saw_z_augmentation)
1730 {
1731 ULONGEST length;
1732
1733 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1734 buf += bytes_read;
1735 if (buf > end)
1736 return NULL;
1737 cie->initial_instructions = buf + length;
1738 augmentation++;
1739 }
1740
1741 while (*augmentation)
1742 {
1743 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1744 if (*augmentation == 'L')
1745 {
1746 /* Skip. */
1747 buf++;
1748 augmentation++;
1749 }
1750
1751 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1752 else if (*augmentation == 'R')
1753 {
1754 cie->encoding = *buf++;
1755 augmentation++;
1756 }
1757
1758 /* "P" indicates a personality routine in the CIE augmentation. */
1759 else if (*augmentation == 'P')
1760 {
1761 /* Skip. Avoid indirection since we throw away the result. */
1762 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1763 read_encoded_value (unit, encoding, buf, &bytes_read);
1764 buf += bytes_read;
1765 augmentation++;
1766 }
1767
1768 /* "S" indicates a signal frame, such that the return
1769 address must not be decremented to locate the call frame
1770 info for the previous frame; it might even be the first
1771 instruction of a function, so decrementing it would take
1772 us to a different function. */
1773 else if (*augmentation == 'S')
1774 {
1775 cie->signal_frame = 1;
1776 augmentation++;
1777 }
1778
1779 /* Otherwise we have an unknown augmentation. Assume that either
1780 there is no augmentation data, or we saw a 'z' prefix. */
1781 else
1782 {
1783 if (cie->initial_instructions)
1784 buf = cie->initial_instructions;
1785 break;
1786 }
1787 }
1788
1789 cie->initial_instructions = buf;
1790 cie->end = end;
1791
1792 add_cie (unit, cie);
1793 }
1794 else
1795 {
1796 /* This is a FDE. */
1797 struct dwarf2_fde *fde;
1798
1799 /* In an .eh_frame section, the CIE pointer is the delta between the
1800 address within the FDE where the CIE pointer is stored and the
1801 address of the CIE. Convert it to an offset into the .eh_frame
1802 section. */
1803 if (eh_frame_p)
1804 {
1805 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1806 cie_pointer -= (dwarf64_p ? 8 : 4);
1807 }
1808
1809 /* In either case, validate the result is still within the section. */
1810 if (cie_pointer >= unit->dwarf_frame_size)
1811 return NULL;
1812
1813 fde = (struct dwarf2_fde *)
1814 obstack_alloc (&unit->objfile->objfile_obstack,
1815 sizeof (struct dwarf2_fde));
1816 fde->cie = find_cie (unit, cie_pointer);
1817 if (fde->cie == NULL)
1818 {
1819 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1820 eh_frame_p);
1821 fde->cie = find_cie (unit, cie_pointer);
1822 }
1823
1824 gdb_assert (fde->cie != NULL);
1825
1826 fde->initial_location =
1827 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1828 buf += bytes_read;
1829
1830 fde->address_range =
1831 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1832 buf += bytes_read;
1833
1834 /* A 'z' augmentation in the CIE implies the presence of an
1835 augmentation field in the FDE as well. The only thing known
1836 to be in here at present is the LSDA entry for EH. So we
1837 can skip the whole thing. */
1838 if (fde->cie->saw_z_augmentation)
1839 {
1840 ULONGEST length;
1841
1842 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1843 buf += bytes_read + length;
1844 if (buf > end)
1845 return NULL;
1846 }
1847
1848 fde->instructions = buf;
1849 fde->end = end;
1850
1851 fde->eh_frame_p = eh_frame_p;
1852
1853 add_fde (unit, fde);
1854 }
1855
1856 return end;
1857 }
1858
1859 /* Read a CIE or FDE in BUF and decode it. */
1860 static gdb_byte *
1861 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1862 {
1863 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1864 gdb_byte *ret;
1865 const char *msg;
1866 ptrdiff_t start_offset;
1867
1868 while (1)
1869 {
1870 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1871 if (ret != NULL)
1872 break;
1873
1874 /* We have corrupt input data of some form. */
1875
1876 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1877 and mismatches wrt padding and alignment of debug sections. */
1878 /* Note that there is no requirement in the standard for any
1879 alignment at all in the frame unwind sections. Testing for
1880 alignment before trying to interpret data would be incorrect.
1881
1882 However, GCC traditionally arranged for frame sections to be
1883 sized such that the FDE length and CIE fields happen to be
1884 aligned (in theory, for performance). This, unfortunately,
1885 was done with .align directives, which had the side effect of
1886 forcing the section to be aligned by the linker.
1887
1888 This becomes a problem when you have some other producer that
1889 creates frame sections that are not as strictly aligned. That
1890 produces a hole in the frame info that gets filled by the
1891 linker with zeros.
1892
1893 The GCC behaviour is arguably a bug, but it's effectively now
1894 part of the ABI, so we're now stuck with it, at least at the
1895 object file level. A smart linker may decide, in the process
1896 of compressing duplicate CIE information, that it can rewrite
1897 the entire output section without this extra padding. */
1898
1899 start_offset = start - unit->dwarf_frame_buffer;
1900 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1901 {
1902 start += 4 - (start_offset & 3);
1903 workaround = ALIGN4;
1904 continue;
1905 }
1906 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1907 {
1908 start += 8 - (start_offset & 7);
1909 workaround = ALIGN8;
1910 continue;
1911 }
1912
1913 /* Nothing left to try. Arrange to return as if we've consumed
1914 the entire input section. Hopefully we'll get valid info from
1915 the other of .debug_frame/.eh_frame. */
1916 workaround = FAIL;
1917 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1918 break;
1919 }
1920
1921 switch (workaround)
1922 {
1923 case NONE:
1924 break;
1925
1926 case ALIGN4:
1927 complaint (&symfile_complaints,
1928 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1929 unit->dwarf_frame_section->owner->filename,
1930 unit->dwarf_frame_section->name);
1931 break;
1932
1933 case ALIGN8:
1934 complaint (&symfile_complaints,
1935 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1936 unit->dwarf_frame_section->owner->filename,
1937 unit->dwarf_frame_section->name);
1938 break;
1939
1940 default:
1941 complaint (&symfile_complaints,
1942 _("Corrupt data in %s:%s"),
1943 unit->dwarf_frame_section->owner->filename,
1944 unit->dwarf_frame_section->name);
1945 break;
1946 }
1947
1948 return ret;
1949 }
1950 \f
1951
1952 /* FIXME: kettenis/20030504: This still needs to be integrated with
1953 dwarf2read.c in a better way. */
1954
1955 /* Imported from dwarf2read.c. */
1956 extern asection *dwarf_frame_section;
1957 extern asection *dwarf_eh_frame_section;
1958
1959 /* Imported from dwarf2read.c. */
1960 extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1961
1962 void
1963 dwarf2_build_frame_info (struct objfile *objfile)
1964 {
1965 struct comp_unit unit;
1966 gdb_byte *frame_ptr;
1967
1968 /* Build a minimal decoding of the DWARF2 compilation unit. */
1969 unit.abfd = objfile->obfd;
1970 unit.objfile = objfile;
1971 unit.dbase = 0;
1972 unit.tbase = 0;
1973
1974 /* First add the information from the .eh_frame section. That way,
1975 the FDEs from that section are searched last. */
1976 if (dwarf_eh_frame_section)
1977 {
1978 asection *got, *txt;
1979
1980 unit.cie = NULL;
1981 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1982 dwarf_eh_frame_section);
1983
1984 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1985 unit.dwarf_frame_section = dwarf_eh_frame_section;
1986
1987 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1988 that is used for the i386/amd64 target, which currently is
1989 the only target in GCC that supports/uses the
1990 DW_EH_PE_datarel encoding. */
1991 got = bfd_get_section_by_name (unit.abfd, ".got");
1992 if (got)
1993 unit.dbase = got->vma;
1994
1995 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1996 so far. */
1997 txt = bfd_get_section_by_name (unit.abfd, ".text");
1998 if (txt)
1999 unit.tbase = txt->vma;
2000
2001 frame_ptr = unit.dwarf_frame_buffer;
2002 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2003 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
2004 }
2005
2006 if (dwarf_frame_section)
2007 {
2008 unit.cie = NULL;
2009 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
2010 dwarf_frame_section);
2011 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
2012 unit.dwarf_frame_section = dwarf_frame_section;
2013
2014 frame_ptr = unit.dwarf_frame_buffer;
2015 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2016 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
2017 }
2018 }
2019
2020 /* Provide a prototype to silence -Wmissing-prototypes. */
2021 void _initialize_dwarf2_frame (void);
2022
2023 void
2024 _initialize_dwarf2_frame (void)
2025 {
2026 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2027 dwarf2_frame_objfile_data = register_objfile_data ();
2028 }
This page took 0.076588 seconds and 4 git commands to generate.