o * ppc.h (ppc_cpu_t): Typedef to uint64_t.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "dwarf2expr.h"
25 #include "dwarf2.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
86 /* The version recorded in the CIE. */
87 unsigned char version;
88 };
89
90 struct dwarf2_cie_table
91 {
92 int num_entries;
93 struct dwarf2_cie **entries;
94 };
95
96 /* Frame Description Entry (FDE). */
97
98 struct dwarf2_fde
99 {
100 /* CIE for this FDE. */
101 struct dwarf2_cie *cie;
102
103 /* First location associated with this FDE. */
104 CORE_ADDR initial_location;
105
106 /* Number of bytes of program instructions described by this FDE. */
107 CORE_ADDR address_range;
108
109 /* Instruction sequence. */
110 gdb_byte *instructions;
111 gdb_byte *end;
112
113 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
114 section. */
115 unsigned char eh_frame_p;
116 };
117
118 struct dwarf2_fde_table
119 {
120 int num_entries;
121 struct dwarf2_fde **entries;
122 };
123
124 /* A minimal decoding of DWARF2 compilation units. We only decode
125 what's needed to get to the call frame information. */
126
127 struct comp_unit
128 {
129 /* Keep the bfd convenient. */
130 bfd *abfd;
131
132 struct objfile *objfile;
133
134 /* Pointer to the .debug_frame section loaded into memory. */
135 gdb_byte *dwarf_frame_buffer;
136
137 /* Length of the loaded .debug_frame section. */
138 bfd_size_type dwarf_frame_size;
139
140 /* Pointer to the .debug_frame section. */
141 asection *dwarf_frame_section;
142
143 /* Base for DW_EH_PE_datarel encodings. */
144 bfd_vma dbase;
145
146 /* Base for DW_EH_PE_textrel encodings. */
147 bfd_vma tbase;
148 };
149
150 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
151
152 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
153 int eh_frame_p);
154
155 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
156 int ptr_len, gdb_byte *buf,
157 unsigned int *bytes_read_ptr,
158 CORE_ADDR func_base);
159 \f
160
161 /* Structure describing a frame state. */
162
163 struct dwarf2_frame_state
164 {
165 /* Each register save state can be described in terms of a CFA slot,
166 another register, or a location expression. */
167 struct dwarf2_frame_state_reg_info
168 {
169 struct dwarf2_frame_state_reg *reg;
170 int num_regs;
171
172 LONGEST cfa_offset;
173 ULONGEST cfa_reg;
174 enum {
175 CFA_UNSET,
176 CFA_REG_OFFSET,
177 CFA_EXP
178 } cfa_how;
179 gdb_byte *cfa_exp;
180
181 /* Used to implement DW_CFA_remember_state. */
182 struct dwarf2_frame_state_reg_info *prev;
183 } regs;
184
185 /* The PC described by the current frame state. */
186 CORE_ADDR pc;
187
188 /* Initial register set from the CIE.
189 Used to implement DW_CFA_restore. */
190 struct dwarf2_frame_state_reg_info initial;
191
192 /* The information we care about from the CIE. */
193 LONGEST data_align;
194 ULONGEST code_align;
195 ULONGEST retaddr_column;
196
197 /* Flags for known producer quirks. */
198
199 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
200 and DW_CFA_def_cfa_offset takes a factored offset. */
201 int armcc_cfa_offsets_sf;
202
203 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
204 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
205 int armcc_cfa_offsets_reversed;
206 };
207
208 /* Store the length the expression for the CFA in the `cfa_reg' field,
209 which is unused in that case. */
210 #define cfa_exp_len cfa_reg
211
212 /* Assert that the register set RS is large enough to store gdbarch_num_regs
213 columns. If necessary, enlarge the register set. */
214
215 static void
216 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
217 int num_regs)
218 {
219 size_t size = sizeof (struct dwarf2_frame_state_reg);
220
221 if (num_regs <= rs->num_regs)
222 return;
223
224 rs->reg = (struct dwarf2_frame_state_reg *)
225 xrealloc (rs->reg, num_regs * size);
226
227 /* Initialize newly allocated registers. */
228 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
229 rs->num_regs = num_regs;
230 }
231
232 /* Copy the register columns in register set RS into newly allocated
233 memory and return a pointer to this newly created copy. */
234
235 static struct dwarf2_frame_state_reg *
236 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
237 {
238 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
239 struct dwarf2_frame_state_reg *reg;
240
241 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
242 memcpy (reg, rs->reg, size);
243
244 return reg;
245 }
246
247 /* Release the memory allocated to register set RS. */
248
249 static void
250 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
251 {
252 if (rs)
253 {
254 dwarf2_frame_state_free_regs (rs->prev);
255
256 xfree (rs->reg);
257 xfree (rs);
258 }
259 }
260
261 /* Release the memory allocated to the frame state FS. */
262
263 static void
264 dwarf2_frame_state_free (void *p)
265 {
266 struct dwarf2_frame_state *fs = p;
267
268 dwarf2_frame_state_free_regs (fs->initial.prev);
269 dwarf2_frame_state_free_regs (fs->regs.prev);
270 xfree (fs->initial.reg);
271 xfree (fs->regs.reg);
272 xfree (fs);
273 }
274 \f
275
276 /* Helper functions for execute_stack_op. */
277
278 static CORE_ADDR
279 read_reg (void *baton, int reg)
280 {
281 struct frame_info *this_frame = (struct frame_info *) baton;
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
283 int regnum;
284 gdb_byte *buf;
285
286 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
287
288 buf = alloca (register_size (gdbarch, regnum));
289 get_frame_register (this_frame, regnum, buf);
290
291 /* Convert the register to an integer. This returns a LONGEST
292 rather than a CORE_ADDR, but unpack_pointer does the same thing
293 under the covers, and this makes more sense for non-pointer
294 registers. Maybe read_reg and the associated interfaces should
295 deal with "struct value" instead of CORE_ADDR. */
296 return unpack_long (register_type (gdbarch, regnum), buf);
297 }
298
299 static void
300 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
301 {
302 read_memory (addr, buf, len);
303 }
304
305 static void
306 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
307 {
308 internal_error (__FILE__, __LINE__,
309 _("Support for DW_OP_fbreg is unimplemented"));
310 }
311
312 /* Helper function for execute_stack_op. */
313
314 static CORE_ADDR
315 no_get_frame_cfa (void *baton)
316 {
317 internal_error (__FILE__, __LINE__,
318 _("Support for DW_OP_call_frame_cfa is unimplemented"));
319 }
320
321 static CORE_ADDR
322 no_get_tls_address (void *baton, CORE_ADDR offset)
323 {
324 internal_error (__FILE__, __LINE__,
325 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
326 }
327
328 /* Execute the required actions for both the DW_CFA_restore and
329 DW_CFA_restore_extended instructions. */
330 static void
331 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
332 struct dwarf2_frame_state *fs, int eh_frame_p)
333 {
334 ULONGEST reg;
335
336 gdb_assert (fs->initial.reg);
337 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
338 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
339
340 /* Check if this register was explicitly initialized in the
341 CIE initial instructions. If not, default the rule to
342 UNSPECIFIED. */
343 if (reg < fs->initial.num_regs)
344 fs->regs.reg[reg] = fs->initial.reg[reg];
345 else
346 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
347
348 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
349 complaint (&symfile_complaints, _("\
350 incomplete CFI data; DW_CFA_restore unspecified\n\
351 register %s (#%d) at %s"),
352 gdbarch_register_name
353 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
354 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
355 paddress (gdbarch, fs->pc));
356 }
357
358 static CORE_ADDR
359 execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
360 struct frame_info *this_frame, CORE_ADDR initial,
361 int initial_in_stack_memory)
362 {
363 struct dwarf_expr_context *ctx;
364 CORE_ADDR result;
365 struct cleanup *old_chain;
366
367 ctx = new_dwarf_expr_context ();
368 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
369
370 ctx->gdbarch = get_frame_arch (this_frame);
371 ctx->addr_size = addr_size;
372 ctx->baton = this_frame;
373 ctx->read_reg = read_reg;
374 ctx->read_mem = read_mem;
375 ctx->get_frame_base = no_get_frame_base;
376 ctx->get_frame_cfa = no_get_frame_cfa;
377 ctx->get_tls_address = no_get_tls_address;
378
379 dwarf_expr_push (ctx, initial, initial_in_stack_memory);
380 dwarf_expr_eval (ctx, exp, len);
381 result = dwarf_expr_fetch (ctx, 0);
382
383 if (ctx->location == DWARF_VALUE_REGISTER)
384 result = read_reg (this_frame, result);
385 else if (ctx->location != DWARF_VALUE_MEMORY)
386 {
387 /* This is actually invalid DWARF, but if we ever do run across
388 it somehow, we might as well support it. So, instead, report
389 it as unimplemented. */
390 error (_("Not implemented: computing unwound register using explicit value operator"));
391 }
392
393 do_cleanups (old_chain);
394
395 return result;
396 }
397 \f
398
399 static void
400 execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
401 gdb_byte *insn_end, struct frame_info *this_frame,
402 struct dwarf2_frame_state *fs)
403 {
404 int eh_frame_p = fde->eh_frame_p;
405 CORE_ADDR pc = get_frame_pc (this_frame);
406 int bytes_read;
407 struct gdbarch *gdbarch = get_frame_arch (this_frame);
408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
409
410 while (insn_ptr < insn_end && fs->pc <= pc)
411 {
412 gdb_byte insn = *insn_ptr++;
413 ULONGEST utmp, reg;
414 LONGEST offset;
415
416 if ((insn & 0xc0) == DW_CFA_advance_loc)
417 fs->pc += (insn & 0x3f) * fs->code_align;
418 else if ((insn & 0xc0) == DW_CFA_offset)
419 {
420 reg = insn & 0x3f;
421 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
422 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
423 offset = utmp * fs->data_align;
424 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
425 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
426 fs->regs.reg[reg].loc.offset = offset;
427 }
428 else if ((insn & 0xc0) == DW_CFA_restore)
429 {
430 reg = insn & 0x3f;
431 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
432 }
433 else
434 {
435 switch (insn)
436 {
437 case DW_CFA_set_loc:
438 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
439 fde->cie->addr_size, insn_ptr,
440 &bytes_read, fde->initial_location);
441 /* Apply the objfile offset for relocatable objects. */
442 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
443 SECT_OFF_TEXT (fde->cie->unit->objfile));
444 insn_ptr += bytes_read;
445 break;
446
447 case DW_CFA_advance_loc1:
448 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
449 fs->pc += utmp * fs->code_align;
450 insn_ptr++;
451 break;
452 case DW_CFA_advance_loc2:
453 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
454 fs->pc += utmp * fs->code_align;
455 insn_ptr += 2;
456 break;
457 case DW_CFA_advance_loc4:
458 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
459 fs->pc += utmp * fs->code_align;
460 insn_ptr += 4;
461 break;
462
463 case DW_CFA_offset_extended:
464 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
465 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
466 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
467 offset = utmp * fs->data_align;
468 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
469 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
470 fs->regs.reg[reg].loc.offset = offset;
471 break;
472
473 case DW_CFA_restore_extended:
474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
475 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
476 break;
477
478 case DW_CFA_undefined:
479 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
481 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
482 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
483 break;
484
485 case DW_CFA_same_value:
486 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
487 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
488 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
489 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
490 break;
491
492 case DW_CFA_register:
493 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
494 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
495 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
496 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
497 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
498 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
499 fs->regs.reg[reg].loc.reg = utmp;
500 break;
501
502 case DW_CFA_remember_state:
503 {
504 struct dwarf2_frame_state_reg_info *new_rs;
505
506 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
507 *new_rs = fs->regs;
508 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
509 fs->regs.prev = new_rs;
510 }
511 break;
512
513 case DW_CFA_restore_state:
514 {
515 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
516
517 if (old_rs == NULL)
518 {
519 complaint (&symfile_complaints, _("\
520 bad CFI data; mismatched DW_CFA_restore_state at %s"),
521 paddress (gdbarch, fs->pc));
522 }
523 else
524 {
525 xfree (fs->regs.reg);
526 fs->regs = *old_rs;
527 xfree (old_rs);
528 }
529 }
530 break;
531
532 case DW_CFA_def_cfa:
533 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
534 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
535
536 if (fs->armcc_cfa_offsets_sf)
537 utmp *= fs->data_align;
538
539 fs->regs.cfa_offset = utmp;
540 fs->regs.cfa_how = CFA_REG_OFFSET;
541 break;
542
543 case DW_CFA_def_cfa_register:
544 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
545 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
546 fs->regs.cfa_reg,
547 eh_frame_p);
548 fs->regs.cfa_how = CFA_REG_OFFSET;
549 break;
550
551 case DW_CFA_def_cfa_offset:
552 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
553
554 if (fs->armcc_cfa_offsets_sf)
555 utmp *= fs->data_align;
556
557 fs->regs.cfa_offset = utmp;
558 /* cfa_how deliberately not set. */
559 break;
560
561 case DW_CFA_nop:
562 break;
563
564 case DW_CFA_def_cfa_expression:
565 insn_ptr = read_uleb128 (insn_ptr, insn_end,
566 &fs->regs.cfa_exp_len);
567 fs->regs.cfa_exp = insn_ptr;
568 fs->regs.cfa_how = CFA_EXP;
569 insn_ptr += fs->regs.cfa_exp_len;
570 break;
571
572 case DW_CFA_expression:
573 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
574 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
575 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.reg[reg].loc.exp = insn_ptr;
578 fs->regs.reg[reg].exp_len = utmp;
579 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
580 insn_ptr += utmp;
581 break;
582
583 case DW_CFA_offset_extended_sf:
584 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
586 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
587 offset *= fs->data_align;
588 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
589 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
590 fs->regs.reg[reg].loc.offset = offset;
591 break;
592
593 case DW_CFA_val_offset:
594 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
595 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
596 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
597 offset = utmp * fs->data_align;
598 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
599 fs->regs.reg[reg].loc.offset = offset;
600 break;
601
602 case DW_CFA_val_offset_sf:
603 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
604 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
605 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
606 offset *= fs->data_align;
607 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
608 fs->regs.reg[reg].loc.offset = offset;
609 break;
610
611 case DW_CFA_val_expression:
612 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
613 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
614 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
615 fs->regs.reg[reg].loc.exp = insn_ptr;
616 fs->regs.reg[reg].exp_len = utmp;
617 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
618 insn_ptr += utmp;
619 break;
620
621 case DW_CFA_def_cfa_sf:
622 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
623 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
624 fs->regs.cfa_reg,
625 eh_frame_p);
626 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
627 fs->regs.cfa_offset = offset * fs->data_align;
628 fs->regs.cfa_how = CFA_REG_OFFSET;
629 break;
630
631 case DW_CFA_def_cfa_offset_sf:
632 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
633 fs->regs.cfa_offset = offset * fs->data_align;
634 /* cfa_how deliberately not set. */
635 break;
636
637 case DW_CFA_GNU_window_save:
638 /* This is SPARC-specific code, and contains hard-coded
639 constants for the register numbering scheme used by
640 GCC. Rather than having a architecture-specific
641 operation that's only ever used by a single
642 architecture, we provide the implementation here.
643 Incidentally that's what GCC does too in its
644 unwinder. */
645 {
646 int size = register_size (gdbarch, 0);
647 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
648 for (reg = 8; reg < 16; reg++)
649 {
650 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
651 fs->regs.reg[reg].loc.reg = reg + 16;
652 }
653 for (reg = 16; reg < 32; reg++)
654 {
655 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
656 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
657 }
658 }
659 break;
660
661 case DW_CFA_GNU_args_size:
662 /* Ignored. */
663 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
664 break;
665
666 case DW_CFA_GNU_negative_offset_extended:
667 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
668 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
669 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
670 offset *= fs->data_align;
671 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
672 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
673 fs->regs.reg[reg].loc.offset = -offset;
674 break;
675
676 default:
677 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
678 }
679 }
680 }
681
682 /* Don't allow remember/restore between CIE and FDE programs. */
683 dwarf2_frame_state_free_regs (fs->regs.prev);
684 fs->regs.prev = NULL;
685 }
686 \f
687
688 /* Architecture-specific operations. */
689
690 /* Per-architecture data key. */
691 static struct gdbarch_data *dwarf2_frame_data;
692
693 struct dwarf2_frame_ops
694 {
695 /* Pre-initialize the register state REG for register REGNUM. */
696 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
697 struct frame_info *);
698
699 /* Check whether the THIS_FRAME is a signal trampoline. */
700 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
701
702 /* Convert .eh_frame register number to DWARF register number, or
703 adjust .debug_frame register number. */
704 int (*adjust_regnum) (struct gdbarch *, int, int);
705 };
706
707 /* Default architecture-specific register state initialization
708 function. */
709
710 static void
711 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
712 struct dwarf2_frame_state_reg *reg,
713 struct frame_info *this_frame)
714 {
715 /* If we have a register that acts as a program counter, mark it as
716 a destination for the return address. If we have a register that
717 serves as the stack pointer, arrange for it to be filled with the
718 call frame address (CFA). The other registers are marked as
719 unspecified.
720
721 We copy the return address to the program counter, since many
722 parts in GDB assume that it is possible to get the return address
723 by unwinding the program counter register. However, on ISA's
724 with a dedicated return address register, the CFI usually only
725 contains information to unwind that return address register.
726
727 The reason we're treating the stack pointer special here is
728 because in many cases GCC doesn't emit CFI for the stack pointer
729 and implicitly assumes that it is equal to the CFA. This makes
730 some sense since the DWARF specification (version 3, draft 8,
731 p. 102) says that:
732
733 "Typically, the CFA is defined to be the value of the stack
734 pointer at the call site in the previous frame (which may be
735 different from its value on entry to the current frame)."
736
737 However, this isn't true for all platforms supported by GCC
738 (e.g. IBM S/390 and zSeries). Those architectures should provide
739 their own architecture-specific initialization function. */
740
741 if (regnum == gdbarch_pc_regnum (gdbarch))
742 reg->how = DWARF2_FRAME_REG_RA;
743 else if (regnum == gdbarch_sp_regnum (gdbarch))
744 reg->how = DWARF2_FRAME_REG_CFA;
745 }
746
747 /* Return a default for the architecture-specific operations. */
748
749 static void *
750 dwarf2_frame_init (struct obstack *obstack)
751 {
752 struct dwarf2_frame_ops *ops;
753
754 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
755 ops->init_reg = dwarf2_frame_default_init_reg;
756 return ops;
757 }
758
759 /* Set the architecture-specific register state initialization
760 function for GDBARCH to INIT_REG. */
761
762 void
763 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
764 void (*init_reg) (struct gdbarch *, int,
765 struct dwarf2_frame_state_reg *,
766 struct frame_info *))
767 {
768 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
769
770 ops->init_reg = init_reg;
771 }
772
773 /* Pre-initialize the register state REG for register REGNUM. */
774
775 static void
776 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
777 struct dwarf2_frame_state_reg *reg,
778 struct frame_info *this_frame)
779 {
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781
782 ops->init_reg (gdbarch, regnum, reg, this_frame);
783 }
784
785 /* Set the architecture-specific signal trampoline recognition
786 function for GDBARCH to SIGNAL_FRAME_P. */
787
788 void
789 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
790 int (*signal_frame_p) (struct gdbarch *,
791 struct frame_info *))
792 {
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
795 ops->signal_frame_p = signal_frame_p;
796 }
797
798 /* Query the architecture-specific signal frame recognizer for
799 THIS_FRAME. */
800
801 static int
802 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
803 struct frame_info *this_frame)
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 if (ops->signal_frame_p == NULL)
808 return 0;
809 return ops->signal_frame_p (gdbarch, this_frame);
810 }
811
812 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
813 register numbers. */
814
815 void
816 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
817 int (*adjust_regnum) (struct gdbarch *,
818 int, int))
819 {
820 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
821
822 ops->adjust_regnum = adjust_regnum;
823 }
824
825 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
826 register. */
827
828 static int
829 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
830 {
831 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
832
833 if (ops->adjust_regnum == NULL)
834 return regnum;
835 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
836 }
837
838 static void
839 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
840 struct dwarf2_fde *fde)
841 {
842 static const char *arm_idents[] = {
843 "ARM C Compiler, ADS",
844 "Thumb C Compiler, ADS",
845 "ARM C++ Compiler, ADS",
846 "Thumb C++ Compiler, ADS",
847 "ARM/Thumb C/C++ Compiler, RVCT"
848 };
849 int i;
850
851 struct symtab *s;
852
853 s = find_pc_symtab (fs->pc);
854 if (s == NULL || s->producer == NULL)
855 return;
856
857 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
858 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
859 {
860 if (fde->cie->version == 1)
861 fs->armcc_cfa_offsets_sf = 1;
862
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_reversed = 1;
865
866 /* The reversed offset problem is present in some compilers
867 using DWARF3, but it was eventually fixed. Check the ARM
868 defined augmentations, which are in the format "armcc" followed
869 by a list of one-character options. The "+" option means
870 this problem is fixed (no quirk needed). If the armcc
871 augmentation is missing, the quirk is needed. */
872 if (fde->cie->version == 3
873 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
874 || strchr (fde->cie->augmentation + 5, '+') == NULL))
875 fs->armcc_cfa_offsets_reversed = 1;
876
877 return;
878 }
879 }
880 \f
881
882 struct dwarf2_frame_cache
883 {
884 /* DWARF Call Frame Address. */
885 CORE_ADDR cfa;
886
887 /* Set if the return address column was marked as undefined. */
888 int undefined_retaddr;
889
890 /* Saved registers, indexed by GDB register number, not by DWARF
891 register number. */
892 struct dwarf2_frame_state_reg *reg;
893
894 /* Return address register. */
895 struct dwarf2_frame_state_reg retaddr_reg;
896
897 /* Target address size in bytes. */
898 int addr_size;
899 };
900
901 static struct dwarf2_frame_cache *
902 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
903 {
904 struct cleanup *old_chain;
905 struct gdbarch *gdbarch = get_frame_arch (this_frame);
906 const int num_regs = gdbarch_num_regs (gdbarch)
907 + gdbarch_num_pseudo_regs (gdbarch);
908 struct dwarf2_frame_cache *cache;
909 struct dwarf2_frame_state *fs;
910 struct dwarf2_fde *fde;
911
912 if (*this_cache)
913 return *this_cache;
914
915 /* Allocate a new cache. */
916 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
917 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
918
919 /* Allocate and initialize the frame state. */
920 fs = XMALLOC (struct dwarf2_frame_state);
921 memset (fs, 0, sizeof (struct dwarf2_frame_state));
922 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
923
924 /* Unwind the PC.
925
926 Note that if the next frame is never supposed to return (i.e. a call
927 to abort), the compiler might optimize away the instruction at
928 its return address. As a result the return address will
929 point at some random instruction, and the CFI for that
930 instruction is probably worthless to us. GCC's unwinder solves
931 this problem by substracting 1 from the return address to get an
932 address in the middle of a presumed call instruction (or the
933 instruction in the associated delay slot). This should only be
934 done for "normal" frames and not for resume-type frames (signal
935 handlers, sentinel frames, dummy frames). The function
936 get_frame_address_in_block does just this. It's not clear how
937 reliable the method is though; there is the potential for the
938 register state pre-call being different to that on return. */
939 fs->pc = get_frame_address_in_block (this_frame);
940
941 /* Find the correct FDE. */
942 fde = dwarf2_frame_find_fde (&fs->pc);
943 gdb_assert (fde != NULL);
944
945 /* Extract any interesting information from the CIE. */
946 fs->data_align = fde->cie->data_alignment_factor;
947 fs->code_align = fde->cie->code_alignment_factor;
948 fs->retaddr_column = fde->cie->return_address_register;
949 cache->addr_size = fde->cie->addr_size;
950
951 /* Check for "quirks" - known bugs in producers. */
952 dwarf2_frame_find_quirks (fs, fde);
953
954 /* First decode all the insns in the CIE. */
955 execute_cfa_program (fde, fde->cie->initial_instructions,
956 fde->cie->end, this_frame, fs);
957
958 /* Save the initialized register set. */
959 fs->initial = fs->regs;
960 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
961
962 /* Then decode the insns in the FDE up to our target PC. */
963 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
964
965 /* Calculate the CFA. */
966 switch (fs->regs.cfa_how)
967 {
968 case CFA_REG_OFFSET:
969 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
970 if (fs->armcc_cfa_offsets_reversed)
971 cache->cfa -= fs->regs.cfa_offset;
972 else
973 cache->cfa += fs->regs.cfa_offset;
974 break;
975
976 case CFA_EXP:
977 cache->cfa =
978 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
979 cache->addr_size, this_frame, 0, 0);
980 break;
981
982 default:
983 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
984 }
985
986 /* Initialize the register state. */
987 {
988 int regnum;
989
990 for (regnum = 0; regnum < num_regs; regnum++)
991 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
992 }
993
994 /* Go through the DWARF2 CFI generated table and save its register
995 location information in the cache. Note that we don't skip the
996 return address column; it's perfectly all right for it to
997 correspond to a real register. If it doesn't correspond to a
998 real register, or if we shouldn't treat it as such,
999 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1000 the range [0, gdbarch_num_regs). */
1001 {
1002 int column; /* CFI speak for "register number". */
1003
1004 for (column = 0; column < fs->regs.num_regs; column++)
1005 {
1006 /* Use the GDB register number as the destination index. */
1007 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1008
1009 /* If there's no corresponding GDB register, ignore it. */
1010 if (regnum < 0 || regnum >= num_regs)
1011 continue;
1012
1013 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1014 of all debug info registers. If it doesn't, complain (but
1015 not too loudly). It turns out that GCC assumes that an
1016 unspecified register implies "same value" when CFI (draft
1017 7) specifies nothing at all. Such a register could equally
1018 be interpreted as "undefined". Also note that this check
1019 isn't sufficient; it only checks that all registers in the
1020 range [0 .. max column] are specified, and won't detect
1021 problems when a debug info register falls outside of the
1022 table. We need a way of iterating through all the valid
1023 DWARF2 register numbers. */
1024 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1025 {
1026 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1027 complaint (&symfile_complaints, _("\
1028 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1029 gdbarch_register_name (gdbarch, regnum),
1030 paddress (gdbarch, fs->pc));
1031 }
1032 else
1033 cache->reg[regnum] = fs->regs.reg[column];
1034 }
1035 }
1036
1037 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1038 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1039 {
1040 int regnum;
1041
1042 for (regnum = 0; regnum < num_regs; regnum++)
1043 {
1044 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1045 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1046 {
1047 struct dwarf2_frame_state_reg *retaddr_reg =
1048 &fs->regs.reg[fs->retaddr_column];
1049
1050 /* It seems rather bizarre to specify an "empty" column as
1051 the return adress column. However, this is exactly
1052 what GCC does on some targets. It turns out that GCC
1053 assumes that the return address can be found in the
1054 register corresponding to the return address column.
1055 Incidentally, that's how we should treat a return
1056 address column specifying "same value" too. */
1057 if (fs->retaddr_column < fs->regs.num_regs
1058 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1059 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1060 {
1061 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1062 cache->reg[regnum] = *retaddr_reg;
1063 else
1064 cache->retaddr_reg = *retaddr_reg;
1065 }
1066 else
1067 {
1068 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1069 {
1070 cache->reg[regnum].loc.reg = fs->retaddr_column;
1071 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1072 }
1073 else
1074 {
1075 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1076 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1077 }
1078 }
1079 }
1080 }
1081 }
1082
1083 if (fs->retaddr_column < fs->regs.num_regs
1084 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1085 cache->undefined_retaddr = 1;
1086
1087 do_cleanups (old_chain);
1088
1089 *this_cache = cache;
1090 return cache;
1091 }
1092
1093 static void
1094 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1095 struct frame_id *this_id)
1096 {
1097 struct dwarf2_frame_cache *cache =
1098 dwarf2_frame_cache (this_frame, this_cache);
1099
1100 if (cache->undefined_retaddr)
1101 return;
1102
1103 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1104 }
1105
1106 static struct value *
1107 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1108 int regnum)
1109 {
1110 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1111 struct dwarf2_frame_cache *cache =
1112 dwarf2_frame_cache (this_frame, this_cache);
1113 CORE_ADDR addr;
1114 int realnum;
1115
1116 switch (cache->reg[regnum].how)
1117 {
1118 case DWARF2_FRAME_REG_UNDEFINED:
1119 /* If CFI explicitly specified that the value isn't defined,
1120 mark it as optimized away; the value isn't available. */
1121 return frame_unwind_got_optimized (this_frame, regnum);
1122
1123 case DWARF2_FRAME_REG_SAVED_OFFSET:
1124 addr = cache->cfa + cache->reg[regnum].loc.offset;
1125 return frame_unwind_got_memory (this_frame, regnum, addr);
1126
1127 case DWARF2_FRAME_REG_SAVED_REG:
1128 realnum
1129 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1130 return frame_unwind_got_register (this_frame, regnum, realnum);
1131
1132 case DWARF2_FRAME_REG_SAVED_EXP:
1133 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1134 cache->reg[regnum].exp_len,
1135 cache->addr_size, this_frame, cache->cfa, 1);
1136 return frame_unwind_got_memory (this_frame, regnum, addr);
1137
1138 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1139 addr = cache->cfa + cache->reg[regnum].loc.offset;
1140 return frame_unwind_got_constant (this_frame, regnum, addr);
1141
1142 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1143 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1144 cache->reg[regnum].exp_len,
1145 cache->addr_size, this_frame, cache->cfa, 1);
1146 return frame_unwind_got_constant (this_frame, regnum, addr);
1147
1148 case DWARF2_FRAME_REG_UNSPECIFIED:
1149 /* GCC, in its infinite wisdom decided to not provide unwind
1150 information for registers that are "same value". Since
1151 DWARF2 (3 draft 7) doesn't define such behavior, said
1152 registers are actually undefined (which is different to CFI
1153 "undefined"). Code above issues a complaint about this.
1154 Here just fudge the books, assume GCC, and that the value is
1155 more inner on the stack. */
1156 return frame_unwind_got_register (this_frame, regnum, regnum);
1157
1158 case DWARF2_FRAME_REG_SAME_VALUE:
1159 return frame_unwind_got_register (this_frame, regnum, regnum);
1160
1161 case DWARF2_FRAME_REG_CFA:
1162 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1163
1164 case DWARF2_FRAME_REG_CFA_OFFSET:
1165 addr = cache->cfa + cache->reg[regnum].loc.offset;
1166 return frame_unwind_got_address (this_frame, regnum, addr);
1167
1168 case DWARF2_FRAME_REG_RA_OFFSET:
1169 addr = cache->reg[regnum].loc.offset;
1170 regnum = gdbarch_dwarf2_reg_to_regnum
1171 (gdbarch, cache->retaddr_reg.loc.reg);
1172 addr += get_frame_register_unsigned (this_frame, regnum);
1173 return frame_unwind_got_address (this_frame, regnum, addr);
1174
1175 case DWARF2_FRAME_REG_FN:
1176 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1177
1178 default:
1179 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1180 }
1181 }
1182
1183 static int
1184 dwarf2_frame_sniffer (const struct frame_unwind *self,
1185 struct frame_info *this_frame, void **this_cache)
1186 {
1187 /* Grab an address that is guarenteed to reside somewhere within the
1188 function. get_frame_pc(), with a no-return next function, can
1189 end up returning something past the end of this function's body.
1190 If the frame we're sniffing for is a signal frame whose start
1191 address is placed on the stack by the OS, its FDE must
1192 extend one byte before its start address or we could potentially
1193 select the FDE of the previous function. */
1194 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1195 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1196 if (!fde)
1197 return 0;
1198
1199 /* On some targets, signal trampolines may have unwind information.
1200 We need to recognize them so that we set the frame type
1201 correctly. */
1202
1203 if (fde->cie->signal_frame
1204 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1205 this_frame))
1206 return self->type == SIGTRAMP_FRAME;
1207
1208 return self->type != SIGTRAMP_FRAME;
1209 }
1210
1211 static const struct frame_unwind dwarf2_frame_unwind =
1212 {
1213 NORMAL_FRAME,
1214 dwarf2_frame_this_id,
1215 dwarf2_frame_prev_register,
1216 NULL,
1217 dwarf2_frame_sniffer
1218 };
1219
1220 static const struct frame_unwind dwarf2_signal_frame_unwind =
1221 {
1222 SIGTRAMP_FRAME,
1223 dwarf2_frame_this_id,
1224 dwarf2_frame_prev_register,
1225 NULL,
1226 dwarf2_frame_sniffer
1227 };
1228
1229 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1230
1231 void
1232 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1233 {
1234 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1235 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1236 }
1237 \f
1238
1239 /* There is no explicitly defined relationship between the CFA and the
1240 location of frame's local variables and arguments/parameters.
1241 Therefore, frame base methods on this page should probably only be
1242 used as a last resort, just to avoid printing total garbage as a
1243 response to the "info frame" command. */
1244
1245 static CORE_ADDR
1246 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1247 {
1248 struct dwarf2_frame_cache *cache =
1249 dwarf2_frame_cache (this_frame, this_cache);
1250
1251 return cache->cfa;
1252 }
1253
1254 static const struct frame_base dwarf2_frame_base =
1255 {
1256 &dwarf2_frame_unwind,
1257 dwarf2_frame_base_address,
1258 dwarf2_frame_base_address,
1259 dwarf2_frame_base_address
1260 };
1261
1262 const struct frame_base *
1263 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1264 {
1265 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1266 if (dwarf2_frame_find_fde (&block_addr))
1267 return &dwarf2_frame_base;
1268
1269 return NULL;
1270 }
1271
1272 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1273 the DWARF unwinder. This is used to implement
1274 DW_OP_call_frame_cfa. */
1275
1276 CORE_ADDR
1277 dwarf2_frame_cfa (struct frame_info *this_frame)
1278 {
1279 while (get_frame_type (this_frame) == INLINE_FRAME)
1280 this_frame = get_prev_frame (this_frame);
1281 /* This restriction could be lifted if other unwinders are known to
1282 compute the frame base in a way compatible with the DWARF
1283 unwinder. */
1284 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1285 error (_("can't compute CFA for this frame"));
1286 return get_frame_base (this_frame);
1287 }
1288 \f
1289 const struct objfile_data *dwarf2_frame_objfile_data;
1290
1291 static unsigned int
1292 read_1_byte (bfd *abfd, gdb_byte *buf)
1293 {
1294 return bfd_get_8 (abfd, buf);
1295 }
1296
1297 static unsigned int
1298 read_4_bytes (bfd *abfd, gdb_byte *buf)
1299 {
1300 return bfd_get_32 (abfd, buf);
1301 }
1302
1303 static ULONGEST
1304 read_8_bytes (bfd *abfd, gdb_byte *buf)
1305 {
1306 return bfd_get_64 (abfd, buf);
1307 }
1308
1309 static ULONGEST
1310 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1311 {
1312 ULONGEST result;
1313 unsigned int num_read;
1314 int shift;
1315 gdb_byte byte;
1316
1317 result = 0;
1318 shift = 0;
1319 num_read = 0;
1320
1321 do
1322 {
1323 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1324 buf++;
1325 num_read++;
1326 result |= ((byte & 0x7f) << shift);
1327 shift += 7;
1328 }
1329 while (byte & 0x80);
1330
1331 *bytes_read_ptr = num_read;
1332
1333 return result;
1334 }
1335
1336 static LONGEST
1337 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1338 {
1339 LONGEST result;
1340 int shift;
1341 unsigned int num_read;
1342 gdb_byte byte;
1343
1344 result = 0;
1345 shift = 0;
1346 num_read = 0;
1347
1348 do
1349 {
1350 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1351 buf++;
1352 num_read++;
1353 result |= ((byte & 0x7f) << shift);
1354 shift += 7;
1355 }
1356 while (byte & 0x80);
1357
1358 if (shift < 8 * sizeof (result) && (byte & 0x40))
1359 result |= -(((LONGEST)1) << shift);
1360
1361 *bytes_read_ptr = num_read;
1362
1363 return result;
1364 }
1365
1366 static ULONGEST
1367 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1368 {
1369 LONGEST result;
1370
1371 result = bfd_get_32 (abfd, buf);
1372 if (result == 0xffffffff)
1373 {
1374 result = bfd_get_64 (abfd, buf + 4);
1375 *bytes_read_ptr = 12;
1376 }
1377 else
1378 *bytes_read_ptr = 4;
1379
1380 return result;
1381 }
1382 \f
1383
1384 /* Pointer encoding helper functions. */
1385
1386 /* GCC supports exception handling based on DWARF2 CFI. However, for
1387 technical reasons, it encodes addresses in its FDE's in a different
1388 way. Several "pointer encodings" are supported. The encoding
1389 that's used for a particular FDE is determined by the 'R'
1390 augmentation in the associated CIE. The argument of this
1391 augmentation is a single byte.
1392
1393 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1394 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1395 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1396 address should be interpreted (absolute, relative to the current
1397 position in the FDE, ...). Bit 7, indicates that the address
1398 should be dereferenced. */
1399
1400 static gdb_byte
1401 encoding_for_size (unsigned int size)
1402 {
1403 switch (size)
1404 {
1405 case 2:
1406 return DW_EH_PE_udata2;
1407 case 4:
1408 return DW_EH_PE_udata4;
1409 case 8:
1410 return DW_EH_PE_udata8;
1411 default:
1412 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1413 }
1414 }
1415
1416 static CORE_ADDR
1417 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1418 int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1419 CORE_ADDR func_base)
1420 {
1421 ptrdiff_t offset;
1422 CORE_ADDR base;
1423
1424 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1425 FDE's. */
1426 if (encoding & DW_EH_PE_indirect)
1427 internal_error (__FILE__, __LINE__,
1428 _("Unsupported encoding: DW_EH_PE_indirect"));
1429
1430 *bytes_read_ptr = 0;
1431
1432 switch (encoding & 0x70)
1433 {
1434 case DW_EH_PE_absptr:
1435 base = 0;
1436 break;
1437 case DW_EH_PE_pcrel:
1438 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1439 base += (buf - unit->dwarf_frame_buffer);
1440 break;
1441 case DW_EH_PE_datarel:
1442 base = unit->dbase;
1443 break;
1444 case DW_EH_PE_textrel:
1445 base = unit->tbase;
1446 break;
1447 case DW_EH_PE_funcrel:
1448 base = func_base;
1449 break;
1450 case DW_EH_PE_aligned:
1451 base = 0;
1452 offset = buf - unit->dwarf_frame_buffer;
1453 if ((offset % ptr_len) != 0)
1454 {
1455 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1456 buf += *bytes_read_ptr;
1457 }
1458 break;
1459 default:
1460 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1461 }
1462
1463 if ((encoding & 0x07) == 0x00)
1464 {
1465 encoding |= encoding_for_size (ptr_len);
1466 if (bfd_get_sign_extend_vma (unit->abfd))
1467 encoding |= DW_EH_PE_signed;
1468 }
1469
1470 switch (encoding & 0x0f)
1471 {
1472 case DW_EH_PE_uleb128:
1473 {
1474 ULONGEST value;
1475 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1476 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1477 return base + value;
1478 }
1479 case DW_EH_PE_udata2:
1480 *bytes_read_ptr += 2;
1481 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1482 case DW_EH_PE_udata4:
1483 *bytes_read_ptr += 4;
1484 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1485 case DW_EH_PE_udata8:
1486 *bytes_read_ptr += 8;
1487 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1488 case DW_EH_PE_sleb128:
1489 {
1490 LONGEST value;
1491 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1492 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1493 return base + value;
1494 }
1495 case DW_EH_PE_sdata2:
1496 *bytes_read_ptr += 2;
1497 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1498 case DW_EH_PE_sdata4:
1499 *bytes_read_ptr += 4;
1500 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1501 case DW_EH_PE_sdata8:
1502 *bytes_read_ptr += 8;
1503 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1504 default:
1505 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1506 }
1507 }
1508 \f
1509
1510 static int
1511 bsearch_cie_cmp (const void *key, const void *element)
1512 {
1513 ULONGEST cie_pointer = *(ULONGEST *) key;
1514 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1515
1516 if (cie_pointer == cie->cie_pointer)
1517 return 0;
1518
1519 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1520 }
1521
1522 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1523 static struct dwarf2_cie *
1524 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1525 {
1526 struct dwarf2_cie **p_cie;
1527
1528 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1529 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1530 if (p_cie != NULL)
1531 return *p_cie;
1532 return NULL;
1533 }
1534
1535 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1536 static void
1537 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1538 {
1539 const int n = cie_table->num_entries;
1540
1541 gdb_assert (n < 1
1542 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1543
1544 cie_table->entries =
1545 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1546 cie_table->entries[n] = cie;
1547 cie_table->num_entries = n + 1;
1548 }
1549
1550 static int
1551 bsearch_fde_cmp (const void *key, const void *element)
1552 {
1553 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1554 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1555 if (seek_pc < fde->initial_location)
1556 return -1;
1557 if (seek_pc < fde->initial_location + fde->address_range)
1558 return 0;
1559 return 1;
1560 }
1561
1562 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1563 inital location associated with it into *PC. */
1564
1565 static struct dwarf2_fde *
1566 dwarf2_frame_find_fde (CORE_ADDR *pc)
1567 {
1568 struct objfile *objfile;
1569
1570 ALL_OBJFILES (objfile)
1571 {
1572 struct dwarf2_fde_table *fde_table;
1573 struct dwarf2_fde **p_fde;
1574 CORE_ADDR offset;
1575 CORE_ADDR seek_pc;
1576
1577 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1578 if (fde_table == NULL)
1579 continue;
1580
1581 gdb_assert (objfile->section_offsets);
1582 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1583
1584 gdb_assert (fde_table->num_entries > 0);
1585 if (*pc < offset + fde_table->entries[0]->initial_location)
1586 continue;
1587
1588 seek_pc = *pc - offset;
1589 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1590 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1591 if (p_fde != NULL)
1592 {
1593 *pc = (*p_fde)->initial_location + offset;
1594 return *p_fde;
1595 }
1596 }
1597 return NULL;
1598 }
1599
1600 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1601 static void
1602 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1603 {
1604 if (fde->address_range == 0)
1605 /* Discard useless FDEs. */
1606 return;
1607
1608 fde_table->num_entries += 1;
1609 fde_table->entries =
1610 xrealloc (fde_table->entries,
1611 fde_table->num_entries * sizeof (fde_table->entries[0]));
1612 fde_table->entries[fde_table->num_entries - 1] = fde;
1613 }
1614
1615 #ifdef CC_HAS_LONG_LONG
1616 #define DW64_CIE_ID 0xffffffffffffffffULL
1617 #else
1618 #define DW64_CIE_ID ~0
1619 #endif
1620
1621 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1622 int eh_frame_p,
1623 struct dwarf2_cie_table *cie_table,
1624 struct dwarf2_fde_table *fde_table);
1625
1626 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1627 the next byte to be processed. */
1628 static gdb_byte *
1629 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1630 struct dwarf2_cie_table *cie_table,
1631 struct dwarf2_fde_table *fde_table)
1632 {
1633 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1634 gdb_byte *buf, *end;
1635 LONGEST length;
1636 unsigned int bytes_read;
1637 int dwarf64_p;
1638 ULONGEST cie_id;
1639 ULONGEST cie_pointer;
1640
1641 buf = start;
1642 length = read_initial_length (unit->abfd, buf, &bytes_read);
1643 buf += bytes_read;
1644 end = buf + length;
1645
1646 /* Are we still within the section? */
1647 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1648 return NULL;
1649
1650 if (length == 0)
1651 return end;
1652
1653 /* Distinguish between 32 and 64-bit encoded frame info. */
1654 dwarf64_p = (bytes_read == 12);
1655
1656 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1657 if (eh_frame_p)
1658 cie_id = 0;
1659 else if (dwarf64_p)
1660 cie_id = DW64_CIE_ID;
1661 else
1662 cie_id = DW_CIE_ID;
1663
1664 if (dwarf64_p)
1665 {
1666 cie_pointer = read_8_bytes (unit->abfd, buf);
1667 buf += 8;
1668 }
1669 else
1670 {
1671 cie_pointer = read_4_bytes (unit->abfd, buf);
1672 buf += 4;
1673 }
1674
1675 if (cie_pointer == cie_id)
1676 {
1677 /* This is a CIE. */
1678 struct dwarf2_cie *cie;
1679 char *augmentation;
1680 unsigned int cie_version;
1681
1682 /* Record the offset into the .debug_frame section of this CIE. */
1683 cie_pointer = start - unit->dwarf_frame_buffer;
1684
1685 /* Check whether we've already read it. */
1686 if (find_cie (cie_table, cie_pointer))
1687 return end;
1688
1689 cie = (struct dwarf2_cie *)
1690 obstack_alloc (&unit->objfile->objfile_obstack,
1691 sizeof (struct dwarf2_cie));
1692 cie->initial_instructions = NULL;
1693 cie->cie_pointer = cie_pointer;
1694
1695 /* The encoding for FDE's in a normal .debug_frame section
1696 depends on the target address size. */
1697 cie->encoding = DW_EH_PE_absptr;
1698
1699 /* The target address size. For .eh_frame FDEs this is considered
1700 equal to the size of a target pointer. For .dwarf_frame FDEs,
1701 this is supposed to be the target address size from the associated
1702 CU header. FIXME: We do not have a good way to determine the
1703 latter. Always use the target pointer size for now. */
1704 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1705
1706 /* We'll determine the final value later, but we need to
1707 initialize it conservatively. */
1708 cie->signal_frame = 0;
1709
1710 /* Check version number. */
1711 cie_version = read_1_byte (unit->abfd, buf);
1712 if (cie_version != 1 && cie_version != 3)
1713 return NULL;
1714 cie->version = cie_version;
1715 buf += 1;
1716
1717 /* Interpret the interesting bits of the augmentation. */
1718 cie->augmentation = augmentation = (char *) buf;
1719 buf += (strlen (augmentation) + 1);
1720
1721 /* Ignore armcc augmentations. We only use them for quirks,
1722 and that doesn't happen until later. */
1723 if (strncmp (augmentation, "armcc", 5) == 0)
1724 augmentation += strlen (augmentation);
1725
1726 /* The GCC 2.x "eh" augmentation has a pointer immediately
1727 following the augmentation string, so it must be handled
1728 first. */
1729 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1730 {
1731 /* Skip. */
1732 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1733 augmentation += 2;
1734 }
1735
1736 cie->code_alignment_factor =
1737 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1738 buf += bytes_read;
1739
1740 cie->data_alignment_factor =
1741 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1742 buf += bytes_read;
1743
1744 if (cie_version == 1)
1745 {
1746 cie->return_address_register = read_1_byte (unit->abfd, buf);
1747 bytes_read = 1;
1748 }
1749 else
1750 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1751 &bytes_read);
1752 cie->return_address_register
1753 = dwarf2_frame_adjust_regnum (gdbarch,
1754 cie->return_address_register,
1755 eh_frame_p);
1756
1757 buf += bytes_read;
1758
1759 cie->saw_z_augmentation = (*augmentation == 'z');
1760 if (cie->saw_z_augmentation)
1761 {
1762 ULONGEST length;
1763
1764 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1765 buf += bytes_read;
1766 if (buf > end)
1767 return NULL;
1768 cie->initial_instructions = buf + length;
1769 augmentation++;
1770 }
1771
1772 while (*augmentation)
1773 {
1774 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1775 if (*augmentation == 'L')
1776 {
1777 /* Skip. */
1778 buf++;
1779 augmentation++;
1780 }
1781
1782 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1783 else if (*augmentation == 'R')
1784 {
1785 cie->encoding = *buf++;
1786 augmentation++;
1787 }
1788
1789 /* "P" indicates a personality routine in the CIE augmentation. */
1790 else if (*augmentation == 'P')
1791 {
1792 /* Skip. Avoid indirection since we throw away the result. */
1793 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1794 read_encoded_value (unit, encoding, cie->addr_size,
1795 buf, &bytes_read, 0);
1796 buf += bytes_read;
1797 augmentation++;
1798 }
1799
1800 /* "S" indicates a signal frame, such that the return
1801 address must not be decremented to locate the call frame
1802 info for the previous frame; it might even be the first
1803 instruction of a function, so decrementing it would take
1804 us to a different function. */
1805 else if (*augmentation == 'S')
1806 {
1807 cie->signal_frame = 1;
1808 augmentation++;
1809 }
1810
1811 /* Otherwise we have an unknown augmentation. Assume that either
1812 there is no augmentation data, or we saw a 'z' prefix. */
1813 else
1814 {
1815 if (cie->initial_instructions)
1816 buf = cie->initial_instructions;
1817 break;
1818 }
1819 }
1820
1821 cie->initial_instructions = buf;
1822 cie->end = end;
1823 cie->unit = unit;
1824
1825 add_cie (cie_table, cie);
1826 }
1827 else
1828 {
1829 /* This is a FDE. */
1830 struct dwarf2_fde *fde;
1831
1832 /* In an .eh_frame section, the CIE pointer is the delta between the
1833 address within the FDE where the CIE pointer is stored and the
1834 address of the CIE. Convert it to an offset into the .eh_frame
1835 section. */
1836 if (eh_frame_p)
1837 {
1838 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1839 cie_pointer -= (dwarf64_p ? 8 : 4);
1840 }
1841
1842 /* In either case, validate the result is still within the section. */
1843 if (cie_pointer >= unit->dwarf_frame_size)
1844 return NULL;
1845
1846 fde = (struct dwarf2_fde *)
1847 obstack_alloc (&unit->objfile->objfile_obstack,
1848 sizeof (struct dwarf2_fde));
1849 fde->cie = find_cie (cie_table, cie_pointer);
1850 if (fde->cie == NULL)
1851 {
1852 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1853 eh_frame_p, cie_table, fde_table);
1854 fde->cie = find_cie (cie_table, cie_pointer);
1855 }
1856
1857 gdb_assert (fde->cie != NULL);
1858
1859 fde->initial_location =
1860 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1861 buf, &bytes_read, 0);
1862 buf += bytes_read;
1863
1864 fde->address_range =
1865 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1866 fde->cie->addr_size, buf, &bytes_read, 0);
1867 buf += bytes_read;
1868
1869 /* A 'z' augmentation in the CIE implies the presence of an
1870 augmentation field in the FDE as well. The only thing known
1871 to be in here at present is the LSDA entry for EH. So we
1872 can skip the whole thing. */
1873 if (fde->cie->saw_z_augmentation)
1874 {
1875 ULONGEST length;
1876
1877 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1878 buf += bytes_read + length;
1879 if (buf > end)
1880 return NULL;
1881 }
1882
1883 fde->instructions = buf;
1884 fde->end = end;
1885
1886 fde->eh_frame_p = eh_frame_p;
1887
1888 add_fde (fde_table, fde);
1889 }
1890
1891 return end;
1892 }
1893
1894 /* Read a CIE or FDE in BUF and decode it. */
1895 static gdb_byte *
1896 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1897 struct dwarf2_cie_table *cie_table,
1898 struct dwarf2_fde_table *fde_table)
1899 {
1900 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1901 gdb_byte *ret;
1902 const char *msg;
1903 ptrdiff_t start_offset;
1904
1905 while (1)
1906 {
1907 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1908 cie_table, fde_table);
1909 if (ret != NULL)
1910 break;
1911
1912 /* We have corrupt input data of some form. */
1913
1914 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1915 and mismatches wrt padding and alignment of debug sections. */
1916 /* Note that there is no requirement in the standard for any
1917 alignment at all in the frame unwind sections. Testing for
1918 alignment before trying to interpret data would be incorrect.
1919
1920 However, GCC traditionally arranged for frame sections to be
1921 sized such that the FDE length and CIE fields happen to be
1922 aligned (in theory, for performance). This, unfortunately,
1923 was done with .align directives, which had the side effect of
1924 forcing the section to be aligned by the linker.
1925
1926 This becomes a problem when you have some other producer that
1927 creates frame sections that are not as strictly aligned. That
1928 produces a hole in the frame info that gets filled by the
1929 linker with zeros.
1930
1931 The GCC behaviour is arguably a bug, but it's effectively now
1932 part of the ABI, so we're now stuck with it, at least at the
1933 object file level. A smart linker may decide, in the process
1934 of compressing duplicate CIE information, that it can rewrite
1935 the entire output section without this extra padding. */
1936
1937 start_offset = start - unit->dwarf_frame_buffer;
1938 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1939 {
1940 start += 4 - (start_offset & 3);
1941 workaround = ALIGN4;
1942 continue;
1943 }
1944 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1945 {
1946 start += 8 - (start_offset & 7);
1947 workaround = ALIGN8;
1948 continue;
1949 }
1950
1951 /* Nothing left to try. Arrange to return as if we've consumed
1952 the entire input section. Hopefully we'll get valid info from
1953 the other of .debug_frame/.eh_frame. */
1954 workaround = FAIL;
1955 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1956 break;
1957 }
1958
1959 switch (workaround)
1960 {
1961 case NONE:
1962 break;
1963
1964 case ALIGN4:
1965 complaint (&symfile_complaints,
1966 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1967 unit->dwarf_frame_section->owner->filename,
1968 unit->dwarf_frame_section->name);
1969 break;
1970
1971 case ALIGN8:
1972 complaint (&symfile_complaints,
1973 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1974 unit->dwarf_frame_section->owner->filename,
1975 unit->dwarf_frame_section->name);
1976 break;
1977
1978 default:
1979 complaint (&symfile_complaints,
1980 _("Corrupt data in %s:%s"),
1981 unit->dwarf_frame_section->owner->filename,
1982 unit->dwarf_frame_section->name);
1983 break;
1984 }
1985
1986 return ret;
1987 }
1988 \f
1989
1990 /* Imported from dwarf2read.c. */
1991 extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
1992 gdb_byte **, bfd_size_type *);
1993
1994 static int
1995 qsort_fde_cmp (const void *a, const void *b)
1996 {
1997 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
1998 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
1999
2000 if (aa->initial_location == bb->initial_location)
2001 {
2002 if (aa->address_range != bb->address_range
2003 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2004 /* Linker bug, e.g. gold/10400.
2005 Work around it by keeping stable sort order. */
2006 return (a < b) ? -1 : 1;
2007 else
2008 /* Put eh_frame entries after debug_frame ones. */
2009 return aa->eh_frame_p - bb->eh_frame_p;
2010 }
2011
2012 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2013 }
2014
2015 void
2016 dwarf2_build_frame_info (struct objfile *objfile)
2017 {
2018 struct comp_unit *unit;
2019 gdb_byte *frame_ptr;
2020 struct dwarf2_cie_table cie_table;
2021 struct dwarf2_fde_table fde_table;
2022
2023 cie_table.num_entries = 0;
2024 cie_table.entries = NULL;
2025
2026 fde_table.num_entries = 0;
2027 fde_table.entries = NULL;
2028
2029 /* Build a minimal decoding of the DWARF2 compilation unit. */
2030 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2031 sizeof (struct comp_unit));
2032 unit->abfd = objfile->obfd;
2033 unit->objfile = objfile;
2034 unit->dbase = 0;
2035 unit->tbase = 0;
2036
2037 dwarf2_get_section_info (objfile, ".eh_frame",
2038 &unit->dwarf_frame_section,
2039 &unit->dwarf_frame_buffer,
2040 &unit->dwarf_frame_size);
2041 if (unit->dwarf_frame_size)
2042 {
2043 asection *got, *txt;
2044
2045 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2046 that is used for the i386/amd64 target, which currently is
2047 the only target in GCC that supports/uses the
2048 DW_EH_PE_datarel encoding. */
2049 got = bfd_get_section_by_name (unit->abfd, ".got");
2050 if (got)
2051 unit->dbase = got->vma;
2052
2053 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2054 so far. */
2055 txt = bfd_get_section_by_name (unit->abfd, ".text");
2056 if (txt)
2057 unit->tbase = txt->vma;
2058
2059 frame_ptr = unit->dwarf_frame_buffer;
2060 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2061 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2062 &cie_table, &fde_table);
2063
2064 if (cie_table.num_entries != 0)
2065 {
2066 /* Reinit cie_table: debug_frame has different CIEs. */
2067 xfree (cie_table.entries);
2068 cie_table.num_entries = 0;
2069 cie_table.entries = NULL;
2070 }
2071 }
2072
2073 dwarf2_get_section_info (objfile, ".debug_frame",
2074 &unit->dwarf_frame_section,
2075 &unit->dwarf_frame_buffer,
2076 &unit->dwarf_frame_size);
2077 if (unit->dwarf_frame_size)
2078 {
2079 frame_ptr = unit->dwarf_frame_buffer;
2080 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2081 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2082 &cie_table, &fde_table);
2083 }
2084
2085 /* Discard the cie_table, it is no longer needed. */
2086 if (cie_table.num_entries != 0)
2087 {
2088 xfree (cie_table.entries);
2089 cie_table.entries = NULL; /* Paranoia. */
2090 cie_table.num_entries = 0; /* Paranoia. */
2091 }
2092
2093 if (fde_table.num_entries != 0)
2094 {
2095 struct dwarf2_fde_table *fde_table2;
2096 int i, j;
2097
2098 /* Prepare FDE table for lookups. */
2099 qsort (fde_table.entries, fde_table.num_entries,
2100 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2101
2102 /* Copy fde_table to obstack: it is needed at runtime. */
2103 fde_table2 = (struct dwarf2_fde_table *)
2104 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2105
2106 /* Since we'll be doing bsearch, squeeze out identical (except for
2107 eh_frame_p) fde entries so bsearch result is predictable. */
2108 for (i = 0, j = 0; j < fde_table.num_entries; ++i)
2109 {
2110 const int k = j;
2111
2112 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[j],
2113 sizeof (fde_table.entries[0]));
2114 while (++j < fde_table.num_entries
2115 && (fde_table.entries[k]->initial_location ==
2116 fde_table.entries[j]->initial_location))
2117 /* Skip. */;
2118 }
2119 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2120 fde_table2->num_entries = i;
2121 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2122
2123 /* Discard the original fde_table. */
2124 xfree (fde_table.entries);
2125 }
2126 }
2127
2128 /* Provide a prototype to silence -Wmissing-prototypes. */
2129 void _initialize_dwarf2_frame (void);
2130
2131 void
2132 _initialize_dwarf2_frame (void)
2133 {
2134 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2135 dwarf2_frame_objfile_data = register_objfile_data ();
2136 }
This page took 0.079885 seconds and 4 git commands to generate.