*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "dwarf2expr.h"
25 #include "dwarf2.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
86 /* The version recorded in the CIE. */
87 unsigned char version;
88
89 /* The segment size. */
90 unsigned char segment_size;
91 };
92
93 struct dwarf2_cie_table
94 {
95 int num_entries;
96 struct dwarf2_cie **entries;
97 };
98
99 /* Frame Description Entry (FDE). */
100
101 struct dwarf2_fde
102 {
103 /* CIE for this FDE. */
104 struct dwarf2_cie *cie;
105
106 /* First location associated with this FDE. */
107 CORE_ADDR initial_location;
108
109 /* Number of bytes of program instructions described by this FDE. */
110 CORE_ADDR address_range;
111
112 /* Instruction sequence. */
113 gdb_byte *instructions;
114 gdb_byte *end;
115
116 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
117 section. */
118 unsigned char eh_frame_p;
119 };
120
121 struct dwarf2_fde_table
122 {
123 int num_entries;
124 struct dwarf2_fde **entries;
125 };
126
127 /* A minimal decoding of DWARF2 compilation units. We only decode
128 what's needed to get to the call frame information. */
129
130 struct comp_unit
131 {
132 /* Keep the bfd convenient. */
133 bfd *abfd;
134
135 struct objfile *objfile;
136
137 /* Pointer to the .debug_frame section loaded into memory. */
138 gdb_byte *dwarf_frame_buffer;
139
140 /* Length of the loaded .debug_frame section. */
141 bfd_size_type dwarf_frame_size;
142
143 /* Pointer to the .debug_frame section. */
144 asection *dwarf_frame_section;
145
146 /* Base for DW_EH_PE_datarel encodings. */
147 bfd_vma dbase;
148
149 /* Base for DW_EH_PE_textrel encodings. */
150 bfd_vma tbase;
151 };
152
153 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
154
155 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
156 int eh_frame_p);
157
158 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
159 int ptr_len, const gdb_byte *buf,
160 unsigned int *bytes_read_ptr,
161 CORE_ADDR func_base);
162 \f
163
164 /* Structure describing a frame state. */
165
166 struct dwarf2_frame_state
167 {
168 /* Each register save state can be described in terms of a CFA slot,
169 another register, or a location expression. */
170 struct dwarf2_frame_state_reg_info
171 {
172 struct dwarf2_frame_state_reg *reg;
173 int num_regs;
174
175 LONGEST cfa_offset;
176 ULONGEST cfa_reg;
177 enum {
178 CFA_UNSET,
179 CFA_REG_OFFSET,
180 CFA_EXP
181 } cfa_how;
182 const gdb_byte *cfa_exp;
183
184 /* Used to implement DW_CFA_remember_state. */
185 struct dwarf2_frame_state_reg_info *prev;
186 } regs;
187
188 /* The PC described by the current frame state. */
189 CORE_ADDR pc;
190
191 /* Initial register set from the CIE.
192 Used to implement DW_CFA_restore. */
193 struct dwarf2_frame_state_reg_info initial;
194
195 /* The information we care about from the CIE. */
196 LONGEST data_align;
197 ULONGEST code_align;
198 ULONGEST retaddr_column;
199
200 /* Flags for known producer quirks. */
201
202 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
203 and DW_CFA_def_cfa_offset takes a factored offset. */
204 int armcc_cfa_offsets_sf;
205
206 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
207 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
208 int armcc_cfa_offsets_reversed;
209 };
210
211 /* Store the length the expression for the CFA in the `cfa_reg' field,
212 which is unused in that case. */
213 #define cfa_exp_len cfa_reg
214
215 /* Assert that the register set RS is large enough to store gdbarch_num_regs
216 columns. If necessary, enlarge the register set. */
217
218 static void
219 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
220 int num_regs)
221 {
222 size_t size = sizeof (struct dwarf2_frame_state_reg);
223
224 if (num_regs <= rs->num_regs)
225 return;
226
227 rs->reg = (struct dwarf2_frame_state_reg *)
228 xrealloc (rs->reg, num_regs * size);
229
230 /* Initialize newly allocated registers. */
231 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
232 rs->num_regs = num_regs;
233 }
234
235 /* Copy the register columns in register set RS into newly allocated
236 memory and return a pointer to this newly created copy. */
237
238 static struct dwarf2_frame_state_reg *
239 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
240 {
241 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
242 struct dwarf2_frame_state_reg *reg;
243
244 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
245 memcpy (reg, rs->reg, size);
246
247 return reg;
248 }
249
250 /* Release the memory allocated to register set RS. */
251
252 static void
253 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
254 {
255 if (rs)
256 {
257 dwarf2_frame_state_free_regs (rs->prev);
258
259 xfree (rs->reg);
260 xfree (rs);
261 }
262 }
263
264 /* Release the memory allocated to the frame state FS. */
265
266 static void
267 dwarf2_frame_state_free (void *p)
268 {
269 struct dwarf2_frame_state *fs = p;
270
271 dwarf2_frame_state_free_regs (fs->initial.prev);
272 dwarf2_frame_state_free_regs (fs->regs.prev);
273 xfree (fs->initial.reg);
274 xfree (fs->regs.reg);
275 xfree (fs);
276 }
277 \f
278
279 /* Helper functions for execute_stack_op. */
280
281 static CORE_ADDR
282 read_reg (void *baton, int reg)
283 {
284 struct frame_info *this_frame = (struct frame_info *) baton;
285 struct gdbarch *gdbarch = get_frame_arch (this_frame);
286 int regnum;
287 gdb_byte *buf;
288
289 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
290
291 buf = alloca (register_size (gdbarch, regnum));
292 get_frame_register (this_frame, regnum, buf);
293
294 /* Convert the register to an integer. This returns a LONGEST
295 rather than a CORE_ADDR, but unpack_pointer does the same thing
296 under the covers, and this makes more sense for non-pointer
297 registers. Maybe read_reg and the associated interfaces should
298 deal with "struct value" instead of CORE_ADDR. */
299 return unpack_long (register_type (gdbarch, regnum), buf);
300 }
301
302 static void
303 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
304 {
305 read_memory (addr, buf, len);
306 }
307
308 static void
309 no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
310 {
311 internal_error (__FILE__, __LINE__,
312 _("Support for DW_OP_fbreg is unimplemented"));
313 }
314
315 /* Helper function for execute_stack_op. */
316
317 static CORE_ADDR
318 no_get_frame_cfa (void *baton)
319 {
320 internal_error (__FILE__, __LINE__,
321 _("Support for DW_OP_call_frame_cfa is unimplemented"));
322 }
323
324 static CORE_ADDR
325 no_get_tls_address (void *baton, CORE_ADDR offset)
326 {
327 internal_error (__FILE__, __LINE__,
328 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
329 }
330
331 /* Helper function for execute_stack_op. */
332
333 static void
334 no_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
335 {
336 internal_error (__FILE__, __LINE__,
337 _("Support for DW_OP_call* is invalid in CFI"));
338 }
339
340 /* Execute the required actions for both the DW_CFA_restore and
341 DW_CFA_restore_extended instructions. */
342 static void
343 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
344 struct dwarf2_frame_state *fs, int eh_frame_p)
345 {
346 ULONGEST reg;
347
348 gdb_assert (fs->initial.reg);
349 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
350 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
351
352 /* Check if this register was explicitly initialized in the
353 CIE initial instructions. If not, default the rule to
354 UNSPECIFIED. */
355 if (reg < fs->initial.num_regs)
356 fs->regs.reg[reg] = fs->initial.reg[reg];
357 else
358 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
359
360 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
361 complaint (&symfile_complaints, _("\
362 incomplete CFI data; DW_CFA_restore unspecified\n\
363 register %s (#%d) at %s"),
364 gdbarch_register_name
365 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
366 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
367 paddress (gdbarch, fs->pc));
368 }
369
370 static CORE_ADDR
371 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
372 struct frame_info *this_frame, CORE_ADDR initial,
373 int initial_in_stack_memory)
374 {
375 struct dwarf_expr_context *ctx;
376 CORE_ADDR result;
377 struct cleanup *old_chain;
378
379 ctx = new_dwarf_expr_context ();
380 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
381
382 ctx->gdbarch = get_frame_arch (this_frame);
383 ctx->addr_size = addr_size;
384 ctx->baton = this_frame;
385 ctx->read_reg = read_reg;
386 ctx->read_mem = read_mem;
387 ctx->get_frame_base = no_get_frame_base;
388 ctx->get_frame_cfa = no_get_frame_cfa;
389 ctx->get_tls_address = no_get_tls_address;
390 ctx->dwarf_call = no_dwarf_call;
391
392 dwarf_expr_push (ctx, initial, initial_in_stack_memory);
393 dwarf_expr_eval (ctx, exp, len);
394
395 if (ctx->location == DWARF_VALUE_MEMORY)
396 result = dwarf_expr_fetch_address (ctx, 0);
397 else if (ctx->location == DWARF_VALUE_REGISTER)
398 result = read_reg (this_frame, dwarf_expr_fetch (ctx, 0));
399 else
400 {
401 /* This is actually invalid DWARF, but if we ever do run across
402 it somehow, we might as well support it. So, instead, report
403 it as unimplemented. */
404 error (_("Not implemented: computing unwound register using explicit value operator"));
405 }
406
407 do_cleanups (old_chain);
408
409 return result;
410 }
411 \f
412
413 static void
414 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
415 const gdb_byte *insn_end, struct frame_info *this_frame,
416 struct dwarf2_frame_state *fs)
417 {
418 int eh_frame_p = fde->eh_frame_p;
419 CORE_ADDR pc = get_frame_pc (this_frame);
420 int bytes_read;
421 struct gdbarch *gdbarch = get_frame_arch (this_frame);
422 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
423
424 while (insn_ptr < insn_end && fs->pc <= pc)
425 {
426 gdb_byte insn = *insn_ptr++;
427 ULONGEST utmp, reg;
428 LONGEST offset;
429
430 if ((insn & 0xc0) == DW_CFA_advance_loc)
431 fs->pc += (insn & 0x3f) * fs->code_align;
432 else if ((insn & 0xc0) == DW_CFA_offset)
433 {
434 reg = insn & 0x3f;
435 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
437 offset = utmp * fs->data_align;
438 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
439 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
440 fs->regs.reg[reg].loc.offset = offset;
441 }
442 else if ((insn & 0xc0) == DW_CFA_restore)
443 {
444 reg = insn & 0x3f;
445 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
446 }
447 else
448 {
449 switch (insn)
450 {
451 case DW_CFA_set_loc:
452 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
453 fde->cie->addr_size, insn_ptr,
454 &bytes_read, fde->initial_location);
455 /* Apply the objfile offset for relocatable objects. */
456 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
457 SECT_OFF_TEXT (fde->cie->unit->objfile));
458 insn_ptr += bytes_read;
459 break;
460
461 case DW_CFA_advance_loc1:
462 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
463 fs->pc += utmp * fs->code_align;
464 insn_ptr++;
465 break;
466 case DW_CFA_advance_loc2:
467 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
468 fs->pc += utmp * fs->code_align;
469 insn_ptr += 2;
470 break;
471 case DW_CFA_advance_loc4:
472 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
473 fs->pc += utmp * fs->code_align;
474 insn_ptr += 4;
475 break;
476
477 case DW_CFA_offset_extended:
478 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
479 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
481 offset = utmp * fs->data_align;
482 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
483 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
484 fs->regs.reg[reg].loc.offset = offset;
485 break;
486
487 case DW_CFA_restore_extended:
488 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
489 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
490 break;
491
492 case DW_CFA_undefined:
493 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
494 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
495 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
496 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
497 break;
498
499 case DW_CFA_same_value:
500 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
501 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
502 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
503 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
504 break;
505
506 case DW_CFA_register:
507 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
508 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
509 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
510 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
511 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
512 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
513 fs->regs.reg[reg].loc.reg = utmp;
514 break;
515
516 case DW_CFA_remember_state:
517 {
518 struct dwarf2_frame_state_reg_info *new_rs;
519
520 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
521 *new_rs = fs->regs;
522 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
523 fs->regs.prev = new_rs;
524 }
525 break;
526
527 case DW_CFA_restore_state:
528 {
529 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
530
531 if (old_rs == NULL)
532 {
533 complaint (&symfile_complaints, _("\
534 bad CFI data; mismatched DW_CFA_restore_state at %s"),
535 paddress (gdbarch, fs->pc));
536 }
537 else
538 {
539 xfree (fs->regs.reg);
540 fs->regs = *old_rs;
541 xfree (old_rs);
542 }
543 }
544 break;
545
546 case DW_CFA_def_cfa:
547 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
548 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
549
550 if (fs->armcc_cfa_offsets_sf)
551 utmp *= fs->data_align;
552
553 fs->regs.cfa_offset = utmp;
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_register:
558 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
559 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
560 fs->regs.cfa_reg,
561 eh_frame_p);
562 fs->regs.cfa_how = CFA_REG_OFFSET;
563 break;
564
565 case DW_CFA_def_cfa_offset:
566 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
567
568 if (fs->armcc_cfa_offsets_sf)
569 utmp *= fs->data_align;
570
571 fs->regs.cfa_offset = utmp;
572 /* cfa_how deliberately not set. */
573 break;
574
575 case DW_CFA_nop:
576 break;
577
578 case DW_CFA_def_cfa_expression:
579 insn_ptr = read_uleb128 (insn_ptr, insn_end,
580 &fs->regs.cfa_exp_len);
581 fs->regs.cfa_exp = insn_ptr;
582 fs->regs.cfa_how = CFA_EXP;
583 insn_ptr += fs->regs.cfa_exp_len;
584 break;
585
586 case DW_CFA_expression:
587 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
588 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
589 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
590 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
591 fs->regs.reg[reg].loc.exp = insn_ptr;
592 fs->regs.reg[reg].exp_len = utmp;
593 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
594 insn_ptr += utmp;
595 break;
596
597 case DW_CFA_offset_extended_sf:
598 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
599 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
600 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
601 offset *= fs->data_align;
602 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
603 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
604 fs->regs.reg[reg].loc.offset = offset;
605 break;
606
607 case DW_CFA_val_offset:
608 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
609 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
610 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
611 offset = utmp * fs->data_align;
612 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
613 fs->regs.reg[reg].loc.offset = offset;
614 break;
615
616 case DW_CFA_val_offset_sf:
617 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
618 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
619 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
620 offset *= fs->data_align;
621 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
622 fs->regs.reg[reg].loc.offset = offset;
623 break;
624
625 case DW_CFA_val_expression:
626 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
627 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
628 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
629 fs->regs.reg[reg].loc.exp = insn_ptr;
630 fs->regs.reg[reg].exp_len = utmp;
631 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
632 insn_ptr += utmp;
633 break;
634
635 case DW_CFA_def_cfa_sf:
636 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
637 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
638 fs->regs.cfa_reg,
639 eh_frame_p);
640 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
641 fs->regs.cfa_offset = offset * fs->data_align;
642 fs->regs.cfa_how = CFA_REG_OFFSET;
643 break;
644
645 case DW_CFA_def_cfa_offset_sf:
646 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
647 fs->regs.cfa_offset = offset * fs->data_align;
648 /* cfa_how deliberately not set. */
649 break;
650
651 case DW_CFA_GNU_window_save:
652 /* This is SPARC-specific code, and contains hard-coded
653 constants for the register numbering scheme used by
654 GCC. Rather than having a architecture-specific
655 operation that's only ever used by a single
656 architecture, we provide the implementation here.
657 Incidentally that's what GCC does too in its
658 unwinder. */
659 {
660 int size = register_size (gdbarch, 0);
661
662 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
663 for (reg = 8; reg < 16; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
666 fs->regs.reg[reg].loc.reg = reg + 16;
667 }
668 for (reg = 16; reg < 32; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
672 }
673 }
674 break;
675
676 case DW_CFA_GNU_args_size:
677 /* Ignored. */
678 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
679 break;
680
681 case DW_CFA_GNU_negative_offset_extended:
682 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
683 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
684 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
685 offset *= fs->data_align;
686 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = -offset;
689 break;
690
691 default:
692 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
693 }
694 }
695 }
696
697 /* Don't allow remember/restore between CIE and FDE programs. */
698 dwarf2_frame_state_free_regs (fs->regs.prev);
699 fs->regs.prev = NULL;
700 }
701 \f
702
703 /* Architecture-specific operations. */
704
705 /* Per-architecture data key. */
706 static struct gdbarch_data *dwarf2_frame_data;
707
708 struct dwarf2_frame_ops
709 {
710 /* Pre-initialize the register state REG for register REGNUM. */
711 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
712 struct frame_info *);
713
714 /* Check whether the THIS_FRAME is a signal trampoline. */
715 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
716
717 /* Convert .eh_frame register number to DWARF register number, or
718 adjust .debug_frame register number. */
719 int (*adjust_regnum) (struct gdbarch *, int, int);
720 };
721
722 /* Default architecture-specific register state initialization
723 function. */
724
725 static void
726 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
727 struct dwarf2_frame_state_reg *reg,
728 struct frame_info *this_frame)
729 {
730 /* If we have a register that acts as a program counter, mark it as
731 a destination for the return address. If we have a register that
732 serves as the stack pointer, arrange for it to be filled with the
733 call frame address (CFA). The other registers are marked as
734 unspecified.
735
736 We copy the return address to the program counter, since many
737 parts in GDB assume that it is possible to get the return address
738 by unwinding the program counter register. However, on ISA's
739 with a dedicated return address register, the CFI usually only
740 contains information to unwind that return address register.
741
742 The reason we're treating the stack pointer special here is
743 because in many cases GCC doesn't emit CFI for the stack pointer
744 and implicitly assumes that it is equal to the CFA. This makes
745 some sense since the DWARF specification (version 3, draft 8,
746 p. 102) says that:
747
748 "Typically, the CFA is defined to be the value of the stack
749 pointer at the call site in the previous frame (which may be
750 different from its value on entry to the current frame)."
751
752 However, this isn't true for all platforms supported by GCC
753 (e.g. IBM S/390 and zSeries). Those architectures should provide
754 their own architecture-specific initialization function. */
755
756 if (regnum == gdbarch_pc_regnum (gdbarch))
757 reg->how = DWARF2_FRAME_REG_RA;
758 else if (regnum == gdbarch_sp_regnum (gdbarch))
759 reg->how = DWARF2_FRAME_REG_CFA;
760 }
761
762 /* Return a default for the architecture-specific operations. */
763
764 static void *
765 dwarf2_frame_init (struct obstack *obstack)
766 {
767 struct dwarf2_frame_ops *ops;
768
769 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
770 ops->init_reg = dwarf2_frame_default_init_reg;
771 return ops;
772 }
773
774 /* Set the architecture-specific register state initialization
775 function for GDBARCH to INIT_REG. */
776
777 void
778 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
779 void (*init_reg) (struct gdbarch *, int,
780 struct dwarf2_frame_state_reg *,
781 struct frame_info *))
782 {
783 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
784
785 ops->init_reg = init_reg;
786 }
787
788 /* Pre-initialize the register state REG for register REGNUM. */
789
790 static void
791 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
792 struct dwarf2_frame_state_reg *reg,
793 struct frame_info *this_frame)
794 {
795 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
796
797 ops->init_reg (gdbarch, regnum, reg, this_frame);
798 }
799
800 /* Set the architecture-specific signal trampoline recognition
801 function for GDBARCH to SIGNAL_FRAME_P. */
802
803 void
804 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
805 int (*signal_frame_p) (struct gdbarch *,
806 struct frame_info *))
807 {
808 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
809
810 ops->signal_frame_p = signal_frame_p;
811 }
812
813 /* Query the architecture-specific signal frame recognizer for
814 THIS_FRAME. */
815
816 static int
817 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
818 struct frame_info *this_frame)
819 {
820 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
821
822 if (ops->signal_frame_p == NULL)
823 return 0;
824 return ops->signal_frame_p (gdbarch, this_frame);
825 }
826
827 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
828 register numbers. */
829
830 void
831 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
832 int (*adjust_regnum) (struct gdbarch *,
833 int, int))
834 {
835 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
836
837 ops->adjust_regnum = adjust_regnum;
838 }
839
840 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
841 register. */
842
843 static int
844 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
845 {
846 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
847
848 if (ops->adjust_regnum == NULL)
849 return regnum;
850 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
851 }
852
853 static void
854 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
855 struct dwarf2_fde *fde)
856 {
857 struct symtab *s;
858
859 s = find_pc_symtab (fs->pc);
860 if (s == NULL)
861 return;
862
863 if (producer_is_realview (s->producer))
864 {
865 if (fde->cie->version == 1)
866 fs->armcc_cfa_offsets_sf = 1;
867
868 if (fde->cie->version == 1)
869 fs->armcc_cfa_offsets_reversed = 1;
870
871 /* The reversed offset problem is present in some compilers
872 using DWARF3, but it was eventually fixed. Check the ARM
873 defined augmentations, which are in the format "armcc" followed
874 by a list of one-character options. The "+" option means
875 this problem is fixed (no quirk needed). If the armcc
876 augmentation is missing, the quirk is needed. */
877 if (fde->cie->version == 3
878 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
879 || strchr (fde->cie->augmentation + 5, '+') == NULL))
880 fs->armcc_cfa_offsets_reversed = 1;
881
882 return;
883 }
884 }
885 \f
886
887 struct dwarf2_frame_cache
888 {
889 /* DWARF Call Frame Address. */
890 CORE_ADDR cfa;
891
892 /* Set if the return address column was marked as undefined. */
893 int undefined_retaddr;
894
895 /* Saved registers, indexed by GDB register number, not by DWARF
896 register number. */
897 struct dwarf2_frame_state_reg *reg;
898
899 /* Return address register. */
900 struct dwarf2_frame_state_reg retaddr_reg;
901
902 /* Target address size in bytes. */
903 int addr_size;
904 };
905
906 static struct dwarf2_frame_cache *
907 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
908 {
909 struct cleanup *old_chain;
910 struct gdbarch *gdbarch = get_frame_arch (this_frame);
911 const int num_regs = gdbarch_num_regs (gdbarch)
912 + gdbarch_num_pseudo_regs (gdbarch);
913 struct dwarf2_frame_cache *cache;
914 struct dwarf2_frame_state *fs;
915 struct dwarf2_fde *fde;
916
917 if (*this_cache)
918 return *this_cache;
919
920 /* Allocate a new cache. */
921 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
922 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
923
924 /* Allocate and initialize the frame state. */
925 fs = XMALLOC (struct dwarf2_frame_state);
926 memset (fs, 0, sizeof (struct dwarf2_frame_state));
927 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
928
929 /* Unwind the PC.
930
931 Note that if the next frame is never supposed to return (i.e. a call
932 to abort), the compiler might optimize away the instruction at
933 its return address. As a result the return address will
934 point at some random instruction, and the CFI for that
935 instruction is probably worthless to us. GCC's unwinder solves
936 this problem by substracting 1 from the return address to get an
937 address in the middle of a presumed call instruction (or the
938 instruction in the associated delay slot). This should only be
939 done for "normal" frames and not for resume-type frames (signal
940 handlers, sentinel frames, dummy frames). The function
941 get_frame_address_in_block does just this. It's not clear how
942 reliable the method is though; there is the potential for the
943 register state pre-call being different to that on return. */
944 fs->pc = get_frame_address_in_block (this_frame);
945
946 /* Find the correct FDE. */
947 fde = dwarf2_frame_find_fde (&fs->pc);
948 gdb_assert (fde != NULL);
949
950 /* Extract any interesting information from the CIE. */
951 fs->data_align = fde->cie->data_alignment_factor;
952 fs->code_align = fde->cie->code_alignment_factor;
953 fs->retaddr_column = fde->cie->return_address_register;
954 cache->addr_size = fde->cie->addr_size;
955
956 /* Check for "quirks" - known bugs in producers. */
957 dwarf2_frame_find_quirks (fs, fde);
958
959 /* First decode all the insns in the CIE. */
960 execute_cfa_program (fde, fde->cie->initial_instructions,
961 fde->cie->end, this_frame, fs);
962
963 /* Save the initialized register set. */
964 fs->initial = fs->regs;
965 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
966
967 /* Then decode the insns in the FDE up to our target PC. */
968 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
969
970 /* Calculate the CFA. */
971 switch (fs->regs.cfa_how)
972 {
973 case CFA_REG_OFFSET:
974 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
975 if (fs->armcc_cfa_offsets_reversed)
976 cache->cfa -= fs->regs.cfa_offset;
977 else
978 cache->cfa += fs->regs.cfa_offset;
979 break;
980
981 case CFA_EXP:
982 cache->cfa =
983 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
984 cache->addr_size, this_frame, 0, 0);
985 break;
986
987 default:
988 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
989 }
990
991 /* Initialize the register state. */
992 {
993 int regnum;
994
995 for (regnum = 0; regnum < num_regs; regnum++)
996 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
997 }
998
999 /* Go through the DWARF2 CFI generated table and save its register
1000 location information in the cache. Note that we don't skip the
1001 return address column; it's perfectly all right for it to
1002 correspond to a real register. If it doesn't correspond to a
1003 real register, or if we shouldn't treat it as such,
1004 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1005 the range [0, gdbarch_num_regs). */
1006 {
1007 int column; /* CFI speak for "register number". */
1008
1009 for (column = 0; column < fs->regs.num_regs; column++)
1010 {
1011 /* Use the GDB register number as the destination index. */
1012 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1013
1014 /* If there's no corresponding GDB register, ignore it. */
1015 if (regnum < 0 || regnum >= num_regs)
1016 continue;
1017
1018 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1019 of all debug info registers. If it doesn't, complain (but
1020 not too loudly). It turns out that GCC assumes that an
1021 unspecified register implies "same value" when CFI (draft
1022 7) specifies nothing at all. Such a register could equally
1023 be interpreted as "undefined". Also note that this check
1024 isn't sufficient; it only checks that all registers in the
1025 range [0 .. max column] are specified, and won't detect
1026 problems when a debug info register falls outside of the
1027 table. We need a way of iterating through all the valid
1028 DWARF2 register numbers. */
1029 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1030 {
1031 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1032 complaint (&symfile_complaints, _("\
1033 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1034 gdbarch_register_name (gdbarch, regnum),
1035 paddress (gdbarch, fs->pc));
1036 }
1037 else
1038 cache->reg[regnum] = fs->regs.reg[column];
1039 }
1040 }
1041
1042 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1043 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1044 {
1045 int regnum;
1046
1047 for (regnum = 0; regnum < num_regs; regnum++)
1048 {
1049 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1050 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1051 {
1052 struct dwarf2_frame_state_reg *retaddr_reg =
1053 &fs->regs.reg[fs->retaddr_column];
1054
1055 /* It seems rather bizarre to specify an "empty" column as
1056 the return adress column. However, this is exactly
1057 what GCC does on some targets. It turns out that GCC
1058 assumes that the return address can be found in the
1059 register corresponding to the return address column.
1060 Incidentally, that's how we should treat a return
1061 address column specifying "same value" too. */
1062 if (fs->retaddr_column < fs->regs.num_regs
1063 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1064 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1065 {
1066 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1067 cache->reg[regnum] = *retaddr_reg;
1068 else
1069 cache->retaddr_reg = *retaddr_reg;
1070 }
1071 else
1072 {
1073 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1074 {
1075 cache->reg[regnum].loc.reg = fs->retaddr_column;
1076 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1077 }
1078 else
1079 {
1080 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1081 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1082 }
1083 }
1084 }
1085 }
1086 }
1087
1088 if (fs->retaddr_column < fs->regs.num_regs
1089 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1090 cache->undefined_retaddr = 1;
1091
1092 do_cleanups (old_chain);
1093
1094 *this_cache = cache;
1095 return cache;
1096 }
1097
1098 static void
1099 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1100 struct frame_id *this_id)
1101 {
1102 struct dwarf2_frame_cache *cache =
1103 dwarf2_frame_cache (this_frame, this_cache);
1104
1105 if (cache->undefined_retaddr)
1106 return;
1107
1108 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1109 }
1110
1111 static struct value *
1112 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1113 int regnum)
1114 {
1115 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1116 struct dwarf2_frame_cache *cache =
1117 dwarf2_frame_cache (this_frame, this_cache);
1118 CORE_ADDR addr;
1119 int realnum;
1120
1121 switch (cache->reg[regnum].how)
1122 {
1123 case DWARF2_FRAME_REG_UNDEFINED:
1124 /* If CFI explicitly specified that the value isn't defined,
1125 mark it as optimized away; the value isn't available. */
1126 return frame_unwind_got_optimized (this_frame, regnum);
1127
1128 case DWARF2_FRAME_REG_SAVED_OFFSET:
1129 addr = cache->cfa + cache->reg[regnum].loc.offset;
1130 return frame_unwind_got_memory (this_frame, regnum, addr);
1131
1132 case DWARF2_FRAME_REG_SAVED_REG:
1133 realnum
1134 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1135 return frame_unwind_got_register (this_frame, regnum, realnum);
1136
1137 case DWARF2_FRAME_REG_SAVED_EXP:
1138 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1139 cache->reg[regnum].exp_len,
1140 cache->addr_size, this_frame, cache->cfa, 1);
1141 return frame_unwind_got_memory (this_frame, regnum, addr);
1142
1143 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1144 addr = cache->cfa + cache->reg[regnum].loc.offset;
1145 return frame_unwind_got_constant (this_frame, regnum, addr);
1146
1147 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1148 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1149 cache->reg[regnum].exp_len,
1150 cache->addr_size, this_frame, cache->cfa, 1);
1151 return frame_unwind_got_constant (this_frame, regnum, addr);
1152
1153 case DWARF2_FRAME_REG_UNSPECIFIED:
1154 /* GCC, in its infinite wisdom decided to not provide unwind
1155 information for registers that are "same value". Since
1156 DWARF2 (3 draft 7) doesn't define such behavior, said
1157 registers are actually undefined (which is different to CFI
1158 "undefined"). Code above issues a complaint about this.
1159 Here just fudge the books, assume GCC, and that the value is
1160 more inner on the stack. */
1161 return frame_unwind_got_register (this_frame, regnum, regnum);
1162
1163 case DWARF2_FRAME_REG_SAME_VALUE:
1164 return frame_unwind_got_register (this_frame, regnum, regnum);
1165
1166 case DWARF2_FRAME_REG_CFA:
1167 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1168
1169 case DWARF2_FRAME_REG_CFA_OFFSET:
1170 addr = cache->cfa + cache->reg[regnum].loc.offset;
1171 return frame_unwind_got_address (this_frame, regnum, addr);
1172
1173 case DWARF2_FRAME_REG_RA_OFFSET:
1174 addr = cache->reg[regnum].loc.offset;
1175 regnum = gdbarch_dwarf2_reg_to_regnum
1176 (gdbarch, cache->retaddr_reg.loc.reg);
1177 addr += get_frame_register_unsigned (this_frame, regnum);
1178 return frame_unwind_got_address (this_frame, regnum, addr);
1179
1180 case DWARF2_FRAME_REG_FN:
1181 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1182
1183 default:
1184 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1185 }
1186 }
1187
1188 static int
1189 dwarf2_frame_sniffer (const struct frame_unwind *self,
1190 struct frame_info *this_frame, void **this_cache)
1191 {
1192 /* Grab an address that is guarenteed to reside somewhere within the
1193 function. get_frame_pc(), with a no-return next function, can
1194 end up returning something past the end of this function's body.
1195 If the frame we're sniffing for is a signal frame whose start
1196 address is placed on the stack by the OS, its FDE must
1197 extend one byte before its start address or we could potentially
1198 select the FDE of the previous function. */
1199 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1200 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1201
1202 if (!fde)
1203 return 0;
1204
1205 /* On some targets, signal trampolines may have unwind information.
1206 We need to recognize them so that we set the frame type
1207 correctly. */
1208
1209 if (fde->cie->signal_frame
1210 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1211 this_frame))
1212 return self->type == SIGTRAMP_FRAME;
1213
1214 return self->type != SIGTRAMP_FRAME;
1215 }
1216
1217 static const struct frame_unwind dwarf2_frame_unwind =
1218 {
1219 NORMAL_FRAME,
1220 dwarf2_frame_this_id,
1221 dwarf2_frame_prev_register,
1222 NULL,
1223 dwarf2_frame_sniffer
1224 };
1225
1226 static const struct frame_unwind dwarf2_signal_frame_unwind =
1227 {
1228 SIGTRAMP_FRAME,
1229 dwarf2_frame_this_id,
1230 dwarf2_frame_prev_register,
1231 NULL,
1232 dwarf2_frame_sniffer
1233 };
1234
1235 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1236
1237 void
1238 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1239 {
1240 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1241 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1242 }
1243 \f
1244
1245 /* There is no explicitly defined relationship between the CFA and the
1246 location of frame's local variables and arguments/parameters.
1247 Therefore, frame base methods on this page should probably only be
1248 used as a last resort, just to avoid printing total garbage as a
1249 response to the "info frame" command. */
1250
1251 static CORE_ADDR
1252 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1253 {
1254 struct dwarf2_frame_cache *cache =
1255 dwarf2_frame_cache (this_frame, this_cache);
1256
1257 return cache->cfa;
1258 }
1259
1260 static const struct frame_base dwarf2_frame_base =
1261 {
1262 &dwarf2_frame_unwind,
1263 dwarf2_frame_base_address,
1264 dwarf2_frame_base_address,
1265 dwarf2_frame_base_address
1266 };
1267
1268 const struct frame_base *
1269 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1270 {
1271 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1272
1273 if (dwarf2_frame_find_fde (&block_addr))
1274 return &dwarf2_frame_base;
1275
1276 return NULL;
1277 }
1278
1279 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1280 the DWARF unwinder. This is used to implement
1281 DW_OP_call_frame_cfa. */
1282
1283 CORE_ADDR
1284 dwarf2_frame_cfa (struct frame_info *this_frame)
1285 {
1286 while (get_frame_type (this_frame) == INLINE_FRAME)
1287 this_frame = get_prev_frame (this_frame);
1288 /* This restriction could be lifted if other unwinders are known to
1289 compute the frame base in a way compatible with the DWARF
1290 unwinder. */
1291 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1292 error (_("can't compute CFA for this frame"));
1293 return get_frame_base (this_frame);
1294 }
1295 \f
1296 const struct objfile_data *dwarf2_frame_objfile_data;
1297
1298 static unsigned int
1299 read_1_byte (bfd *abfd, gdb_byte *buf)
1300 {
1301 return bfd_get_8 (abfd, buf);
1302 }
1303
1304 static unsigned int
1305 read_4_bytes (bfd *abfd, gdb_byte *buf)
1306 {
1307 return bfd_get_32 (abfd, buf);
1308 }
1309
1310 static ULONGEST
1311 read_8_bytes (bfd *abfd, gdb_byte *buf)
1312 {
1313 return bfd_get_64 (abfd, buf);
1314 }
1315
1316 static ULONGEST
1317 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1318 {
1319 ULONGEST result;
1320 unsigned int num_read;
1321 int shift;
1322 gdb_byte byte;
1323
1324 result = 0;
1325 shift = 0;
1326 num_read = 0;
1327
1328 do
1329 {
1330 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1331 buf++;
1332 num_read++;
1333 result |= ((byte & 0x7f) << shift);
1334 shift += 7;
1335 }
1336 while (byte & 0x80);
1337
1338 *bytes_read_ptr = num_read;
1339
1340 return result;
1341 }
1342
1343 static LONGEST
1344 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1345 {
1346 LONGEST result;
1347 int shift;
1348 unsigned int num_read;
1349 gdb_byte byte;
1350
1351 result = 0;
1352 shift = 0;
1353 num_read = 0;
1354
1355 do
1356 {
1357 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1358 buf++;
1359 num_read++;
1360 result |= ((byte & 0x7f) << shift);
1361 shift += 7;
1362 }
1363 while (byte & 0x80);
1364
1365 if (shift < 8 * sizeof (result) && (byte & 0x40))
1366 result |= -(((LONGEST)1) << shift);
1367
1368 *bytes_read_ptr = num_read;
1369
1370 return result;
1371 }
1372
1373 static ULONGEST
1374 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1375 {
1376 LONGEST result;
1377
1378 result = bfd_get_32 (abfd, buf);
1379 if (result == 0xffffffff)
1380 {
1381 result = bfd_get_64 (abfd, buf + 4);
1382 *bytes_read_ptr = 12;
1383 }
1384 else
1385 *bytes_read_ptr = 4;
1386
1387 return result;
1388 }
1389 \f
1390
1391 /* Pointer encoding helper functions. */
1392
1393 /* GCC supports exception handling based on DWARF2 CFI. However, for
1394 technical reasons, it encodes addresses in its FDE's in a different
1395 way. Several "pointer encodings" are supported. The encoding
1396 that's used for a particular FDE is determined by the 'R'
1397 augmentation in the associated CIE. The argument of this
1398 augmentation is a single byte.
1399
1400 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1401 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1402 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1403 address should be interpreted (absolute, relative to the current
1404 position in the FDE, ...). Bit 7, indicates that the address
1405 should be dereferenced. */
1406
1407 static gdb_byte
1408 encoding_for_size (unsigned int size)
1409 {
1410 switch (size)
1411 {
1412 case 2:
1413 return DW_EH_PE_udata2;
1414 case 4:
1415 return DW_EH_PE_udata4;
1416 case 8:
1417 return DW_EH_PE_udata8;
1418 default:
1419 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1420 }
1421 }
1422
1423 static CORE_ADDR
1424 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1425 int ptr_len, const gdb_byte *buf,
1426 unsigned int *bytes_read_ptr,
1427 CORE_ADDR func_base)
1428 {
1429 ptrdiff_t offset;
1430 CORE_ADDR base;
1431
1432 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1433 FDE's. */
1434 if (encoding & DW_EH_PE_indirect)
1435 internal_error (__FILE__, __LINE__,
1436 _("Unsupported encoding: DW_EH_PE_indirect"));
1437
1438 *bytes_read_ptr = 0;
1439
1440 switch (encoding & 0x70)
1441 {
1442 case DW_EH_PE_absptr:
1443 base = 0;
1444 break;
1445 case DW_EH_PE_pcrel:
1446 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1447 base += (buf - unit->dwarf_frame_buffer);
1448 break;
1449 case DW_EH_PE_datarel:
1450 base = unit->dbase;
1451 break;
1452 case DW_EH_PE_textrel:
1453 base = unit->tbase;
1454 break;
1455 case DW_EH_PE_funcrel:
1456 base = func_base;
1457 break;
1458 case DW_EH_PE_aligned:
1459 base = 0;
1460 offset = buf - unit->dwarf_frame_buffer;
1461 if ((offset % ptr_len) != 0)
1462 {
1463 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1464 buf += *bytes_read_ptr;
1465 }
1466 break;
1467 default:
1468 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1469 }
1470
1471 if ((encoding & 0x07) == 0x00)
1472 {
1473 encoding |= encoding_for_size (ptr_len);
1474 if (bfd_get_sign_extend_vma (unit->abfd))
1475 encoding |= DW_EH_PE_signed;
1476 }
1477
1478 switch (encoding & 0x0f)
1479 {
1480 case DW_EH_PE_uleb128:
1481 {
1482 ULONGEST value;
1483 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1484
1485 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1486 return base + value;
1487 }
1488 case DW_EH_PE_udata2:
1489 *bytes_read_ptr += 2;
1490 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1491 case DW_EH_PE_udata4:
1492 *bytes_read_ptr += 4;
1493 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1494 case DW_EH_PE_udata8:
1495 *bytes_read_ptr += 8;
1496 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1497 case DW_EH_PE_sleb128:
1498 {
1499 LONGEST value;
1500 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1501
1502 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1503 return base + value;
1504 }
1505 case DW_EH_PE_sdata2:
1506 *bytes_read_ptr += 2;
1507 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1508 case DW_EH_PE_sdata4:
1509 *bytes_read_ptr += 4;
1510 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1511 case DW_EH_PE_sdata8:
1512 *bytes_read_ptr += 8;
1513 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1514 default:
1515 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1516 }
1517 }
1518 \f
1519
1520 static int
1521 bsearch_cie_cmp (const void *key, const void *element)
1522 {
1523 ULONGEST cie_pointer = *(ULONGEST *) key;
1524 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1525
1526 if (cie_pointer == cie->cie_pointer)
1527 return 0;
1528
1529 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1530 }
1531
1532 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1533 static struct dwarf2_cie *
1534 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1535 {
1536 struct dwarf2_cie **p_cie;
1537
1538 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1539 bsearch be non-NULL. */
1540 if (cie_table->entries == NULL)
1541 {
1542 gdb_assert (cie_table->num_entries == 0);
1543 return NULL;
1544 }
1545
1546 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1547 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1548 if (p_cie != NULL)
1549 return *p_cie;
1550 return NULL;
1551 }
1552
1553 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1554 static void
1555 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1556 {
1557 const int n = cie_table->num_entries;
1558
1559 gdb_assert (n < 1
1560 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1561
1562 cie_table->entries =
1563 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1564 cie_table->entries[n] = cie;
1565 cie_table->num_entries = n + 1;
1566 }
1567
1568 static int
1569 bsearch_fde_cmp (const void *key, const void *element)
1570 {
1571 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1572 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1573
1574 if (seek_pc < fde->initial_location)
1575 return -1;
1576 if (seek_pc < fde->initial_location + fde->address_range)
1577 return 0;
1578 return 1;
1579 }
1580
1581 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1582 inital location associated with it into *PC. */
1583
1584 static struct dwarf2_fde *
1585 dwarf2_frame_find_fde (CORE_ADDR *pc)
1586 {
1587 struct objfile *objfile;
1588
1589 ALL_OBJFILES (objfile)
1590 {
1591 struct dwarf2_fde_table *fde_table;
1592 struct dwarf2_fde **p_fde;
1593 CORE_ADDR offset;
1594 CORE_ADDR seek_pc;
1595
1596 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1597 if (fde_table == NULL)
1598 {
1599 dwarf2_build_frame_info (objfile);
1600 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1601 }
1602 gdb_assert (fde_table != NULL);
1603
1604 if (fde_table->num_entries == 0)
1605 continue;
1606
1607 gdb_assert (objfile->section_offsets);
1608 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1609
1610 gdb_assert (fde_table->num_entries > 0);
1611 if (*pc < offset + fde_table->entries[0]->initial_location)
1612 continue;
1613
1614 seek_pc = *pc - offset;
1615 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1616 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1617 if (p_fde != NULL)
1618 {
1619 *pc = (*p_fde)->initial_location + offset;
1620 return *p_fde;
1621 }
1622 }
1623 return NULL;
1624 }
1625
1626 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1627 static void
1628 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1629 {
1630 if (fde->address_range == 0)
1631 /* Discard useless FDEs. */
1632 return;
1633
1634 fde_table->num_entries += 1;
1635 fde_table->entries =
1636 xrealloc (fde_table->entries,
1637 fde_table->num_entries * sizeof (fde_table->entries[0]));
1638 fde_table->entries[fde_table->num_entries - 1] = fde;
1639 }
1640
1641 #ifdef CC_HAS_LONG_LONG
1642 #define DW64_CIE_ID 0xffffffffffffffffULL
1643 #else
1644 #define DW64_CIE_ID ~0
1645 #endif
1646
1647 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1648 int eh_frame_p,
1649 struct dwarf2_cie_table *cie_table,
1650 struct dwarf2_fde_table *fde_table);
1651
1652 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1653 the next byte to be processed. */
1654 static gdb_byte *
1655 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1656 struct dwarf2_cie_table *cie_table,
1657 struct dwarf2_fde_table *fde_table)
1658 {
1659 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1660 gdb_byte *buf, *end;
1661 LONGEST length;
1662 unsigned int bytes_read;
1663 int dwarf64_p;
1664 ULONGEST cie_id;
1665 ULONGEST cie_pointer;
1666
1667 buf = start;
1668 length = read_initial_length (unit->abfd, buf, &bytes_read);
1669 buf += bytes_read;
1670 end = buf + length;
1671
1672 /* Are we still within the section? */
1673 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1674 return NULL;
1675
1676 if (length == 0)
1677 return end;
1678
1679 /* Distinguish between 32 and 64-bit encoded frame info. */
1680 dwarf64_p = (bytes_read == 12);
1681
1682 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1683 if (eh_frame_p)
1684 cie_id = 0;
1685 else if (dwarf64_p)
1686 cie_id = DW64_CIE_ID;
1687 else
1688 cie_id = DW_CIE_ID;
1689
1690 if (dwarf64_p)
1691 {
1692 cie_pointer = read_8_bytes (unit->abfd, buf);
1693 buf += 8;
1694 }
1695 else
1696 {
1697 cie_pointer = read_4_bytes (unit->abfd, buf);
1698 buf += 4;
1699 }
1700
1701 if (cie_pointer == cie_id)
1702 {
1703 /* This is a CIE. */
1704 struct dwarf2_cie *cie;
1705 char *augmentation;
1706 unsigned int cie_version;
1707
1708 /* Record the offset into the .debug_frame section of this CIE. */
1709 cie_pointer = start - unit->dwarf_frame_buffer;
1710
1711 /* Check whether we've already read it. */
1712 if (find_cie (cie_table, cie_pointer))
1713 return end;
1714
1715 cie = (struct dwarf2_cie *)
1716 obstack_alloc (&unit->objfile->objfile_obstack,
1717 sizeof (struct dwarf2_cie));
1718 cie->initial_instructions = NULL;
1719 cie->cie_pointer = cie_pointer;
1720
1721 /* The encoding for FDE's in a normal .debug_frame section
1722 depends on the target address size. */
1723 cie->encoding = DW_EH_PE_absptr;
1724
1725 /* The target address size. For .eh_frame FDEs this is considered
1726 equal to the size of a target pointer. For .dwarf_frame FDEs,
1727 this is supposed to be the target address size from the associated
1728 CU header. FIXME: We do not have a good way to determine the
1729 latter. Always use the target pointer size for now. */
1730 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1731
1732 /* We'll determine the final value later, but we need to
1733 initialize it conservatively. */
1734 cie->signal_frame = 0;
1735
1736 /* Check version number. */
1737 cie_version = read_1_byte (unit->abfd, buf);
1738 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1739 return NULL;
1740 cie->version = cie_version;
1741 buf += 1;
1742
1743 /* Interpret the interesting bits of the augmentation. */
1744 cie->augmentation = augmentation = (char *) buf;
1745 buf += (strlen (augmentation) + 1);
1746
1747 /* Ignore armcc augmentations. We only use them for quirks,
1748 and that doesn't happen until later. */
1749 if (strncmp (augmentation, "armcc", 5) == 0)
1750 augmentation += strlen (augmentation);
1751
1752 /* The GCC 2.x "eh" augmentation has a pointer immediately
1753 following the augmentation string, so it must be handled
1754 first. */
1755 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1756 {
1757 /* Skip. */
1758 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1759 augmentation += 2;
1760 }
1761
1762 if (cie->version >= 4)
1763 {
1764 /* FIXME: check that this is the same as from the CU header. */
1765 cie->addr_size = read_1_byte (unit->abfd, buf);
1766 ++buf;
1767 cie->segment_size = read_1_byte (unit->abfd, buf);
1768 ++buf;
1769 }
1770 else
1771 {
1772 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1773 cie->segment_size = 0;
1774 }
1775
1776 cie->code_alignment_factor =
1777 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1778 buf += bytes_read;
1779
1780 cie->data_alignment_factor =
1781 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1782 buf += bytes_read;
1783
1784 if (cie_version == 1)
1785 {
1786 cie->return_address_register = read_1_byte (unit->abfd, buf);
1787 bytes_read = 1;
1788 }
1789 else
1790 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1791 &bytes_read);
1792 cie->return_address_register
1793 = dwarf2_frame_adjust_regnum (gdbarch,
1794 cie->return_address_register,
1795 eh_frame_p);
1796
1797 buf += bytes_read;
1798
1799 cie->saw_z_augmentation = (*augmentation == 'z');
1800 if (cie->saw_z_augmentation)
1801 {
1802 ULONGEST length;
1803
1804 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1805 buf += bytes_read;
1806 if (buf > end)
1807 return NULL;
1808 cie->initial_instructions = buf + length;
1809 augmentation++;
1810 }
1811
1812 while (*augmentation)
1813 {
1814 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1815 if (*augmentation == 'L')
1816 {
1817 /* Skip. */
1818 buf++;
1819 augmentation++;
1820 }
1821
1822 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1823 else if (*augmentation == 'R')
1824 {
1825 cie->encoding = *buf++;
1826 augmentation++;
1827 }
1828
1829 /* "P" indicates a personality routine in the CIE augmentation. */
1830 else if (*augmentation == 'P')
1831 {
1832 /* Skip. Avoid indirection since we throw away the result. */
1833 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1834 read_encoded_value (unit, encoding, cie->addr_size,
1835 buf, &bytes_read, 0);
1836 buf += bytes_read;
1837 augmentation++;
1838 }
1839
1840 /* "S" indicates a signal frame, such that the return
1841 address must not be decremented to locate the call frame
1842 info for the previous frame; it might even be the first
1843 instruction of a function, so decrementing it would take
1844 us to a different function. */
1845 else if (*augmentation == 'S')
1846 {
1847 cie->signal_frame = 1;
1848 augmentation++;
1849 }
1850
1851 /* Otherwise we have an unknown augmentation. Assume that either
1852 there is no augmentation data, or we saw a 'z' prefix. */
1853 else
1854 {
1855 if (cie->initial_instructions)
1856 buf = cie->initial_instructions;
1857 break;
1858 }
1859 }
1860
1861 cie->initial_instructions = buf;
1862 cie->end = end;
1863 cie->unit = unit;
1864
1865 add_cie (cie_table, cie);
1866 }
1867 else
1868 {
1869 /* This is a FDE. */
1870 struct dwarf2_fde *fde;
1871
1872 /* In an .eh_frame section, the CIE pointer is the delta between the
1873 address within the FDE where the CIE pointer is stored and the
1874 address of the CIE. Convert it to an offset into the .eh_frame
1875 section. */
1876 if (eh_frame_p)
1877 {
1878 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1879 cie_pointer -= (dwarf64_p ? 8 : 4);
1880 }
1881
1882 /* In either case, validate the result is still within the section. */
1883 if (cie_pointer >= unit->dwarf_frame_size)
1884 return NULL;
1885
1886 fde = (struct dwarf2_fde *)
1887 obstack_alloc (&unit->objfile->objfile_obstack,
1888 sizeof (struct dwarf2_fde));
1889 fde->cie = find_cie (cie_table, cie_pointer);
1890 if (fde->cie == NULL)
1891 {
1892 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1893 eh_frame_p, cie_table, fde_table);
1894 fde->cie = find_cie (cie_table, cie_pointer);
1895 }
1896
1897 gdb_assert (fde->cie != NULL);
1898
1899 fde->initial_location =
1900 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1901 buf, &bytes_read, 0);
1902 buf += bytes_read;
1903
1904 fde->address_range =
1905 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1906 fde->cie->addr_size, buf, &bytes_read, 0);
1907 buf += bytes_read;
1908
1909 /* A 'z' augmentation in the CIE implies the presence of an
1910 augmentation field in the FDE as well. The only thing known
1911 to be in here at present is the LSDA entry for EH. So we
1912 can skip the whole thing. */
1913 if (fde->cie->saw_z_augmentation)
1914 {
1915 ULONGEST length;
1916
1917 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1918 buf += bytes_read + length;
1919 if (buf > end)
1920 return NULL;
1921 }
1922
1923 fde->instructions = buf;
1924 fde->end = end;
1925
1926 fde->eh_frame_p = eh_frame_p;
1927
1928 add_fde (fde_table, fde);
1929 }
1930
1931 return end;
1932 }
1933
1934 /* Read a CIE or FDE in BUF and decode it. */
1935 static gdb_byte *
1936 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1937 struct dwarf2_cie_table *cie_table,
1938 struct dwarf2_fde_table *fde_table)
1939 {
1940 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1941 gdb_byte *ret;
1942 ptrdiff_t start_offset;
1943
1944 while (1)
1945 {
1946 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1947 cie_table, fde_table);
1948 if (ret != NULL)
1949 break;
1950
1951 /* We have corrupt input data of some form. */
1952
1953 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1954 and mismatches wrt padding and alignment of debug sections. */
1955 /* Note that there is no requirement in the standard for any
1956 alignment at all in the frame unwind sections. Testing for
1957 alignment before trying to interpret data would be incorrect.
1958
1959 However, GCC traditionally arranged for frame sections to be
1960 sized such that the FDE length and CIE fields happen to be
1961 aligned (in theory, for performance). This, unfortunately,
1962 was done with .align directives, which had the side effect of
1963 forcing the section to be aligned by the linker.
1964
1965 This becomes a problem when you have some other producer that
1966 creates frame sections that are not as strictly aligned. That
1967 produces a hole in the frame info that gets filled by the
1968 linker with zeros.
1969
1970 The GCC behaviour is arguably a bug, but it's effectively now
1971 part of the ABI, so we're now stuck with it, at least at the
1972 object file level. A smart linker may decide, in the process
1973 of compressing duplicate CIE information, that it can rewrite
1974 the entire output section without this extra padding. */
1975
1976 start_offset = start - unit->dwarf_frame_buffer;
1977 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1978 {
1979 start += 4 - (start_offset & 3);
1980 workaround = ALIGN4;
1981 continue;
1982 }
1983 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1984 {
1985 start += 8 - (start_offset & 7);
1986 workaround = ALIGN8;
1987 continue;
1988 }
1989
1990 /* Nothing left to try. Arrange to return as if we've consumed
1991 the entire input section. Hopefully we'll get valid info from
1992 the other of .debug_frame/.eh_frame. */
1993 workaround = FAIL;
1994 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1995 break;
1996 }
1997
1998 switch (workaround)
1999 {
2000 case NONE:
2001 break;
2002
2003 case ALIGN4:
2004 complaint (&symfile_complaints,
2005 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2006 unit->dwarf_frame_section->owner->filename,
2007 unit->dwarf_frame_section->name);
2008 break;
2009
2010 case ALIGN8:
2011 complaint (&symfile_complaints,
2012 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2013 unit->dwarf_frame_section->owner->filename,
2014 unit->dwarf_frame_section->name);
2015 break;
2016
2017 default:
2018 complaint (&symfile_complaints,
2019 _("Corrupt data in %s:%s"),
2020 unit->dwarf_frame_section->owner->filename,
2021 unit->dwarf_frame_section->name);
2022 break;
2023 }
2024
2025 return ret;
2026 }
2027 \f
2028
2029 /* Imported from dwarf2read.c. */
2030 extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
2031 gdb_byte **, bfd_size_type *);
2032
2033 static int
2034 qsort_fde_cmp (const void *a, const void *b)
2035 {
2036 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2037 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2038
2039 if (aa->initial_location == bb->initial_location)
2040 {
2041 if (aa->address_range != bb->address_range
2042 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2043 /* Linker bug, e.g. gold/10400.
2044 Work around it by keeping stable sort order. */
2045 return (a < b) ? -1 : 1;
2046 else
2047 /* Put eh_frame entries after debug_frame ones. */
2048 return aa->eh_frame_p - bb->eh_frame_p;
2049 }
2050
2051 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2052 }
2053
2054 void
2055 dwarf2_build_frame_info (struct objfile *objfile)
2056 {
2057 struct comp_unit *unit;
2058 gdb_byte *frame_ptr;
2059 struct dwarf2_cie_table cie_table;
2060 struct dwarf2_fde_table fde_table;
2061 struct dwarf2_fde_table *fde_table2;
2062
2063 cie_table.num_entries = 0;
2064 cie_table.entries = NULL;
2065
2066 fde_table.num_entries = 0;
2067 fde_table.entries = NULL;
2068
2069 /* Build a minimal decoding of the DWARF2 compilation unit. */
2070 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2071 sizeof (struct comp_unit));
2072 unit->abfd = objfile->obfd;
2073 unit->objfile = objfile;
2074 unit->dbase = 0;
2075 unit->tbase = 0;
2076
2077 dwarf2_get_section_info (objfile, ".eh_frame",
2078 &unit->dwarf_frame_section,
2079 &unit->dwarf_frame_buffer,
2080 &unit->dwarf_frame_size);
2081 if (unit->dwarf_frame_size)
2082 {
2083 asection *got, *txt;
2084
2085 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2086 that is used for the i386/amd64 target, which currently is
2087 the only target in GCC that supports/uses the
2088 DW_EH_PE_datarel encoding. */
2089 got = bfd_get_section_by_name (unit->abfd, ".got");
2090 if (got)
2091 unit->dbase = got->vma;
2092
2093 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2094 so far. */
2095 txt = bfd_get_section_by_name (unit->abfd, ".text");
2096 if (txt)
2097 unit->tbase = txt->vma;
2098
2099 frame_ptr = unit->dwarf_frame_buffer;
2100 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2101 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2102 &cie_table, &fde_table);
2103
2104 if (cie_table.num_entries != 0)
2105 {
2106 /* Reinit cie_table: debug_frame has different CIEs. */
2107 xfree (cie_table.entries);
2108 cie_table.num_entries = 0;
2109 cie_table.entries = NULL;
2110 }
2111 }
2112
2113 dwarf2_get_section_info (objfile, ".debug_frame",
2114 &unit->dwarf_frame_section,
2115 &unit->dwarf_frame_buffer,
2116 &unit->dwarf_frame_size);
2117 if (unit->dwarf_frame_size)
2118 {
2119 frame_ptr = unit->dwarf_frame_buffer;
2120 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2121 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2122 &cie_table, &fde_table);
2123 }
2124
2125 /* Discard the cie_table, it is no longer needed. */
2126 if (cie_table.num_entries != 0)
2127 {
2128 xfree (cie_table.entries);
2129 cie_table.entries = NULL; /* Paranoia. */
2130 cie_table.num_entries = 0; /* Paranoia. */
2131 }
2132
2133 /* Copy fde_table to obstack: it is needed at runtime. */
2134 fde_table2 = (struct dwarf2_fde_table *)
2135 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2136
2137 if (fde_table.num_entries == 0)
2138 {
2139 fde_table2->entries = NULL;
2140 fde_table2->num_entries = 0;
2141 }
2142 else
2143 {
2144 struct dwarf2_fde *fde_prev = NULL;
2145 struct dwarf2_fde *first_non_zero_fde = NULL;
2146 int i;
2147
2148 /* Prepare FDE table for lookups. */
2149 qsort (fde_table.entries, fde_table.num_entries,
2150 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2151
2152 /* Check for leftovers from --gc-sections. The GNU linker sets
2153 the relevant symbols to zero, but doesn't zero the FDE *end*
2154 ranges because there's no relocation there. It's (offset,
2155 length), not (start, end). On targets where address zero is
2156 just another valid address this can be a problem, since the
2157 FDEs appear to be non-empty in the output --- we could pick
2158 out the wrong FDE. To work around this, when overlaps are
2159 detected, we prefer FDEs that do not start at zero.
2160
2161 Start by finding the first FDE with non-zero start. Below
2162 we'll discard all FDEs that start at zero and overlap this
2163 one. */
2164 for (i = 0; i < fde_table.num_entries; i++)
2165 {
2166 struct dwarf2_fde *fde = fde_table.entries[i];
2167
2168 if (fde->initial_location != 0)
2169 {
2170 first_non_zero_fde = fde;
2171 break;
2172 }
2173 }
2174
2175 /* Since we'll be doing bsearch, squeeze out identical (except
2176 for eh_frame_p) fde entries so bsearch result is predictable.
2177 Also discard leftovers from --gc-sections. */
2178 fde_table2->num_entries = 0;
2179 for (i = 0; i < fde_table.num_entries; i++)
2180 {
2181 struct dwarf2_fde *fde = fde_table.entries[i];
2182
2183 if (fde->initial_location == 0
2184 && first_non_zero_fde != NULL
2185 && (first_non_zero_fde->initial_location
2186 < fde->initial_location + fde->address_range))
2187 continue;
2188
2189 if (fde_prev != NULL
2190 && fde_prev->initial_location == fde->initial_location)
2191 continue;
2192
2193 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2194 sizeof (fde_table.entries[0]));
2195 ++fde_table2->num_entries;
2196 fde_prev = fde;
2197 }
2198 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2199
2200 /* Discard the original fde_table. */
2201 xfree (fde_table.entries);
2202 }
2203
2204 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2205 }
2206
2207 /* Provide a prototype to silence -Wmissing-prototypes. */
2208 void _initialize_dwarf2_frame (void);
2209
2210 void
2211 _initialize_dwarf2_frame (void)
2212 {
2213 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2214 dwarf2_frame_objfile_data = register_objfile_data ();
2215 }
This page took 0.075361 seconds and 4 git commands to generate.