* breakpoint.c (parse_breakpoint_sals): Remove unused variable
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 static void
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
311 {
312 read_memory (addr, buf, len);
313 }
314
315 /* Execute the required actions for both the DW_CFA_restore and
316 DW_CFA_restore_extended instructions. */
317 static void
318 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320 {
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337 incomplete CFI data; DW_CFA_restore unspecified\n\
338 register %s (#%d) at %s"),
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
342 paddress (gdbarch, fs->pc));
343 }
344
345 /* Virtual method table for execute_stack_op below. */
346
347 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348 {
349 read_reg,
350 read_mem,
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
359 };
360
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
365 {
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
369
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
373
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
380
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
383
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 uint64_t utmp, reg;
420 int64_t offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
548 break;
549
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
630 eh_frame_p);
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
640 break;
641
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
651 int size = register_size (gdbarch, 0);
652
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
670 break;
671
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
682 default:
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
685 }
686 }
687 }
688
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
697 }
698 \f
699
700 /* Architecture-specific operations. */
701
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
704
705 struct dwarf2_frame_ops
706 {
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
710
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
713
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
717 };
718
719 /* Default architecture-specific register state initialization
720 function. */
721
722 static void
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
726 {
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
752
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
757 }
758
759 /* Return a default for the architecture-specific operations. */
760
761 static void *
762 dwarf2_frame_init (struct obstack *obstack)
763 {
764 struct dwarf2_frame_ops *ops;
765
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769 }
770
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774 void
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
779 {
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781
782 ops->init_reg = init_reg;
783 }
784
785 /* Pre-initialize the register state REG for register REGNUM. */
786
787 static void
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
791 {
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
793
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
795 }
796
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800 void
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808 }
809
810 /* Query the architecture-specific signal frame recognizer for
811 THIS_FRAME. */
812
813 static int
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
816 {
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
821 return ops->signal_frame_p (gdbarch, this_frame);
822 }
823
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
826
827 void
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
831 {
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
834 ops->adjust_regnum = adjust_regnum;
835 }
836
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
839
840 static int
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
843 {
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
846 if (ops->adjust_regnum == NULL)
847 return regnum;
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
849 }
850
851 static void
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854 {
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
858 if (s == NULL)
859 return;
860
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
882 }
883 \f
884
885 void
886 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890 {
891 const int num_regs = gdbarch_num_regs (gdbarch)
892 + gdbarch_num_pseudo_regs (gdbarch);
893 struct dwarf2_fde *fde;
894 CORE_ADDR text_offset;
895 struct dwarf2_frame_state fs;
896 int addr_size;
897
898 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
899
900 fs.pc = pc;
901
902 /* Find the correct FDE. */
903 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
904 if (fde == NULL)
905 error (_("Could not compute CFA; needed to translate this expression"));
906
907 /* Extract any interesting information from the CIE. */
908 fs.data_align = fde->cie->data_alignment_factor;
909 fs.code_align = fde->cie->code_alignment_factor;
910 fs.retaddr_column = fde->cie->return_address_register;
911 addr_size = fde->cie->addr_size;
912
913 /* Check for "quirks" - known bugs in producers. */
914 dwarf2_frame_find_quirks (&fs, fde);
915
916 /* First decode all the insns in the CIE. */
917 execute_cfa_program (fde, fde->cie->initial_instructions,
918 fde->cie->end, gdbarch, pc, &fs);
919
920 /* Save the initialized register set. */
921 fs.initial = fs.regs;
922 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
923
924 /* Then decode the insns in the FDE up to our target PC. */
925 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
926
927 /* Calculate the CFA. */
928 switch (fs.regs.cfa_how)
929 {
930 case CFA_REG_OFFSET:
931 {
932 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
933
934 if (regnum == -1)
935 error (_("Unable to access DWARF register number %d"),
936 (int) fs.regs.cfa_reg); /* FIXME */
937 ax_reg (expr, regnum);
938
939 if (fs.regs.cfa_offset != 0)
940 {
941 if (fs.armcc_cfa_offsets_reversed)
942 ax_const_l (expr, -fs.regs.cfa_offset);
943 else
944 ax_const_l (expr, fs.regs.cfa_offset);
945 ax_simple (expr, aop_add);
946 }
947 }
948 break;
949
950 case CFA_EXP:
951 ax_const_l (expr, text_offset);
952 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
953 fs.regs.cfa_exp,
954 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
955 data);
956 break;
957
958 default:
959 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
960 }
961 }
962
963 \f
964 struct dwarf2_frame_cache
965 {
966 /* DWARF Call Frame Address. */
967 CORE_ADDR cfa;
968
969 /* Set if the return address column was marked as unavailable
970 (required non-collected memory or registers to compute). */
971 int unavailable_retaddr;
972
973 /* Set if the return address column was marked as undefined. */
974 int undefined_retaddr;
975
976 /* Saved registers, indexed by GDB register number, not by DWARF
977 register number. */
978 struct dwarf2_frame_state_reg *reg;
979
980 /* Return address register. */
981 struct dwarf2_frame_state_reg retaddr_reg;
982
983 /* Target address size in bytes. */
984 int addr_size;
985
986 /* The .text offset. */
987 CORE_ADDR text_offset;
988
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
995 };
996
997 /* A cleanup that sets a pointer to NULL. */
998
999 static void
1000 clear_pointer_cleanup (void *arg)
1001 {
1002 void **ptr = arg;
1003
1004 *ptr = NULL;
1005 }
1006
1007 static struct dwarf2_frame_cache *
1008 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1009 {
1010 struct cleanup *reset_cache_cleanup, *old_chain;
1011 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1012 const int num_regs = gdbarch_num_regs (gdbarch)
1013 + gdbarch_num_pseudo_regs (gdbarch);
1014 struct dwarf2_frame_cache *cache;
1015 struct dwarf2_frame_state *fs;
1016 struct dwarf2_fde *fde;
1017 volatile struct gdb_exception ex;
1018 CORE_ADDR entry_pc;
1019 LONGEST entry_cfa_sp_offset;
1020 int entry_cfa_sp_offset_p = 0;
1021 const gdb_byte *instr;
1022
1023 if (*this_cache)
1024 return *this_cache;
1025
1026 /* Allocate a new cache. */
1027 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1028 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1029 *this_cache = cache;
1030 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1031
1032 /* Allocate and initialize the frame state. */
1033 fs = XZALLOC (struct dwarf2_frame_state);
1034 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1035
1036 /* Unwind the PC.
1037
1038 Note that if the next frame is never supposed to return (i.e. a call
1039 to abort), the compiler might optimize away the instruction at
1040 its return address. As a result the return address will
1041 point at some random instruction, and the CFI for that
1042 instruction is probably worthless to us. GCC's unwinder solves
1043 this problem by substracting 1 from the return address to get an
1044 address in the middle of a presumed call instruction (or the
1045 instruction in the associated delay slot). This should only be
1046 done for "normal" frames and not for resume-type frames (signal
1047 handlers, sentinel frames, dummy frames). The function
1048 get_frame_address_in_block does just this. It's not clear how
1049 reliable the method is though; there is the potential for the
1050 register state pre-call being different to that on return. */
1051 fs->pc = get_frame_address_in_block (this_frame);
1052
1053 /* Find the correct FDE. */
1054 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1055 gdb_assert (fde != NULL);
1056
1057 /* Extract any interesting information from the CIE. */
1058 fs->data_align = fde->cie->data_alignment_factor;
1059 fs->code_align = fde->cie->code_alignment_factor;
1060 fs->retaddr_column = fde->cie->return_address_register;
1061 cache->addr_size = fde->cie->addr_size;
1062
1063 /* Check for "quirks" - known bugs in producers. */
1064 dwarf2_frame_find_quirks (fs, fde);
1065
1066 /* First decode all the insns in the CIE. */
1067 execute_cfa_program (fde, fde->cie->initial_instructions,
1068 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
1069
1070 /* Save the initialized register set. */
1071 fs->initial = fs->regs;
1072 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1073
1074 if (get_frame_func_if_available (this_frame, &entry_pc))
1075 {
1076 /* Decode the insns in the FDE up to the entry PC. */
1077 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1078 entry_pc, fs);
1079
1080 if (fs->regs.cfa_how == CFA_REG_OFFSET
1081 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1082 == gdbarch_sp_regnum (gdbarch)))
1083 {
1084 entry_cfa_sp_offset = fs->regs.cfa_offset;
1085 entry_cfa_sp_offset_p = 1;
1086 }
1087 }
1088 else
1089 instr = fde->instructions;
1090
1091 /* Then decode the insns in the FDE up to our target PC. */
1092 execute_cfa_program (fde, instr, fde->end, gdbarch,
1093 get_frame_pc (this_frame), fs);
1094
1095 TRY_CATCH (ex, RETURN_MASK_ERROR)
1096 {
1097 /* Calculate the CFA. */
1098 switch (fs->regs.cfa_how)
1099 {
1100 case CFA_REG_OFFSET:
1101 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1102 if (fs->armcc_cfa_offsets_reversed)
1103 cache->cfa -= fs->regs.cfa_offset;
1104 else
1105 cache->cfa += fs->regs.cfa_offset;
1106 break;
1107
1108 case CFA_EXP:
1109 cache->cfa =
1110 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1111 cache->addr_size, cache->text_offset,
1112 this_frame, 0, 0);
1113 break;
1114
1115 default:
1116 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1117 }
1118 }
1119 if (ex.reason < 0)
1120 {
1121 if (ex.error == NOT_AVAILABLE_ERROR)
1122 {
1123 cache->unavailable_retaddr = 1;
1124 do_cleanups (old_chain);
1125 discard_cleanups (reset_cache_cleanup);
1126 return cache;
1127 }
1128
1129 throw_exception (ex);
1130 }
1131
1132 /* Initialize the register state. */
1133 {
1134 int regnum;
1135
1136 for (regnum = 0; regnum < num_regs; regnum++)
1137 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1138 }
1139
1140 /* Go through the DWARF2 CFI generated table and save its register
1141 location information in the cache. Note that we don't skip the
1142 return address column; it's perfectly all right for it to
1143 correspond to a real register. If it doesn't correspond to a
1144 real register, or if we shouldn't treat it as such,
1145 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1146 the range [0, gdbarch_num_regs). */
1147 {
1148 int column; /* CFI speak for "register number". */
1149
1150 for (column = 0; column < fs->regs.num_regs; column++)
1151 {
1152 /* Use the GDB register number as the destination index. */
1153 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1154
1155 /* If there's no corresponding GDB register, ignore it. */
1156 if (regnum < 0 || regnum >= num_regs)
1157 continue;
1158
1159 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1160 of all debug info registers. If it doesn't, complain (but
1161 not too loudly). It turns out that GCC assumes that an
1162 unspecified register implies "same value" when CFI (draft
1163 7) specifies nothing at all. Such a register could equally
1164 be interpreted as "undefined". Also note that this check
1165 isn't sufficient; it only checks that all registers in the
1166 range [0 .. max column] are specified, and won't detect
1167 problems when a debug info register falls outside of the
1168 table. We need a way of iterating through all the valid
1169 DWARF2 register numbers. */
1170 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1171 {
1172 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1173 complaint (&symfile_complaints, _("\
1174 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1175 gdbarch_register_name (gdbarch, regnum),
1176 paddress (gdbarch, fs->pc));
1177 }
1178 else
1179 cache->reg[regnum] = fs->regs.reg[column];
1180 }
1181 }
1182
1183 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1184 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1185 {
1186 int regnum;
1187
1188 for (regnum = 0; regnum < num_regs; regnum++)
1189 {
1190 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1191 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1192 {
1193 struct dwarf2_frame_state_reg *retaddr_reg =
1194 &fs->regs.reg[fs->retaddr_column];
1195
1196 /* It seems rather bizarre to specify an "empty" column as
1197 the return adress column. However, this is exactly
1198 what GCC does on some targets. It turns out that GCC
1199 assumes that the return address can be found in the
1200 register corresponding to the return address column.
1201 Incidentally, that's how we should treat a return
1202 address column specifying "same value" too. */
1203 if (fs->retaddr_column < fs->regs.num_regs
1204 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1205 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1206 {
1207 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1208 cache->reg[regnum] = *retaddr_reg;
1209 else
1210 cache->retaddr_reg = *retaddr_reg;
1211 }
1212 else
1213 {
1214 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1215 {
1216 cache->reg[regnum].loc.reg = fs->retaddr_column;
1217 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1218 }
1219 else
1220 {
1221 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1222 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1223 }
1224 }
1225 }
1226 }
1227 }
1228
1229 if (fs->retaddr_column < fs->regs.num_regs
1230 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1231 cache->undefined_retaddr = 1;
1232
1233 do_cleanups (old_chain);
1234
1235 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1236 starting at THIS_FRAME. */
1237 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1238 (entry_cfa_sp_offset_p
1239 ? &entry_cfa_sp_offset : NULL));
1240
1241 discard_cleanups (reset_cache_cleanup);
1242 return cache;
1243 }
1244
1245 static enum unwind_stop_reason
1246 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1247 void **this_cache)
1248 {
1249 struct dwarf2_frame_cache *cache
1250 = dwarf2_frame_cache (this_frame, this_cache);
1251
1252 if (cache->unavailable_retaddr)
1253 return UNWIND_UNAVAILABLE;
1254
1255 if (cache->undefined_retaddr)
1256 return UNWIND_OUTERMOST;
1257
1258 return UNWIND_NO_REASON;
1259 }
1260
1261 static void
1262 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1263 struct frame_id *this_id)
1264 {
1265 struct dwarf2_frame_cache *cache =
1266 dwarf2_frame_cache (this_frame, this_cache);
1267
1268 if (cache->unavailable_retaddr)
1269 return;
1270
1271 if (cache->undefined_retaddr)
1272 return;
1273
1274 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1275 }
1276
1277 static struct value *
1278 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1279 int regnum)
1280 {
1281 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1282 struct dwarf2_frame_cache *cache =
1283 dwarf2_frame_cache (this_frame, this_cache);
1284 CORE_ADDR addr;
1285 int realnum;
1286
1287 /* Non-bottom frames of a virtual tail call frames chain use
1288 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1289 them. If dwarf2_tailcall_prev_register_first does not have specific value
1290 unwind the register, tail call frames are assumed to have the register set
1291 of the top caller. */
1292 if (cache->tailcall_cache)
1293 {
1294 struct value *val;
1295
1296 val = dwarf2_tailcall_prev_register_first (this_frame,
1297 &cache->tailcall_cache,
1298 regnum);
1299 if (val)
1300 return val;
1301 }
1302
1303 switch (cache->reg[regnum].how)
1304 {
1305 case DWARF2_FRAME_REG_UNDEFINED:
1306 /* If CFI explicitly specified that the value isn't defined,
1307 mark it as optimized away; the value isn't available. */
1308 return frame_unwind_got_optimized (this_frame, regnum);
1309
1310 case DWARF2_FRAME_REG_SAVED_OFFSET:
1311 addr = cache->cfa + cache->reg[regnum].loc.offset;
1312 return frame_unwind_got_memory (this_frame, regnum, addr);
1313
1314 case DWARF2_FRAME_REG_SAVED_REG:
1315 realnum
1316 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1317 return frame_unwind_got_register (this_frame, regnum, realnum);
1318
1319 case DWARF2_FRAME_REG_SAVED_EXP:
1320 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1321 cache->reg[regnum].exp_len,
1322 cache->addr_size, cache->text_offset,
1323 this_frame, cache->cfa, 1);
1324 return frame_unwind_got_memory (this_frame, regnum, addr);
1325
1326 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1327 addr = cache->cfa + cache->reg[regnum].loc.offset;
1328 return frame_unwind_got_constant (this_frame, regnum, addr);
1329
1330 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1331 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1332 cache->reg[regnum].exp_len,
1333 cache->addr_size, cache->text_offset,
1334 this_frame, cache->cfa, 1);
1335 return frame_unwind_got_constant (this_frame, regnum, addr);
1336
1337 case DWARF2_FRAME_REG_UNSPECIFIED:
1338 /* GCC, in its infinite wisdom decided to not provide unwind
1339 information for registers that are "same value". Since
1340 DWARF2 (3 draft 7) doesn't define such behavior, said
1341 registers are actually undefined (which is different to CFI
1342 "undefined"). Code above issues a complaint about this.
1343 Here just fudge the books, assume GCC, and that the value is
1344 more inner on the stack. */
1345 return frame_unwind_got_register (this_frame, regnum, regnum);
1346
1347 case DWARF2_FRAME_REG_SAME_VALUE:
1348 return frame_unwind_got_register (this_frame, regnum, regnum);
1349
1350 case DWARF2_FRAME_REG_CFA:
1351 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1352
1353 case DWARF2_FRAME_REG_CFA_OFFSET:
1354 addr = cache->cfa + cache->reg[regnum].loc.offset;
1355 return frame_unwind_got_address (this_frame, regnum, addr);
1356
1357 case DWARF2_FRAME_REG_RA_OFFSET:
1358 addr = cache->reg[regnum].loc.offset;
1359 regnum = gdbarch_dwarf2_reg_to_regnum
1360 (gdbarch, cache->retaddr_reg.loc.reg);
1361 addr += get_frame_register_unsigned (this_frame, regnum);
1362 return frame_unwind_got_address (this_frame, regnum, addr);
1363
1364 case DWARF2_FRAME_REG_FN:
1365 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1366
1367 default:
1368 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1369 }
1370 }
1371
1372 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1373 call frames chain. */
1374
1375 static void
1376 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1377 {
1378 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1379
1380 if (cache->tailcall_cache)
1381 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1382 }
1383
1384 static int
1385 dwarf2_frame_sniffer (const struct frame_unwind *self,
1386 struct frame_info *this_frame, void **this_cache)
1387 {
1388 /* Grab an address that is guarenteed to reside somewhere within the
1389 function. get_frame_pc(), with a no-return next function, can
1390 end up returning something past the end of this function's body.
1391 If the frame we're sniffing for is a signal frame whose start
1392 address is placed on the stack by the OS, its FDE must
1393 extend one byte before its start address or we could potentially
1394 select the FDE of the previous function. */
1395 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1396 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1397
1398 if (!fde)
1399 return 0;
1400
1401 /* On some targets, signal trampolines may have unwind information.
1402 We need to recognize them so that we set the frame type
1403 correctly. */
1404
1405 if (fde->cie->signal_frame
1406 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1407 this_frame))
1408 return self->type == SIGTRAMP_FRAME;
1409
1410 if (self->type != NORMAL_FRAME)
1411 return 0;
1412
1413 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1414 dwarf2_tailcall_sniffer_first. */
1415 dwarf2_frame_cache (this_frame, this_cache);
1416
1417 return 1;
1418 }
1419
1420 static const struct frame_unwind dwarf2_frame_unwind =
1421 {
1422 NORMAL_FRAME,
1423 dwarf2_frame_unwind_stop_reason,
1424 dwarf2_frame_this_id,
1425 dwarf2_frame_prev_register,
1426 NULL,
1427 dwarf2_frame_sniffer,
1428 dwarf2_frame_dealloc_cache
1429 };
1430
1431 static const struct frame_unwind dwarf2_signal_frame_unwind =
1432 {
1433 SIGTRAMP_FRAME,
1434 dwarf2_frame_unwind_stop_reason,
1435 dwarf2_frame_this_id,
1436 dwarf2_frame_prev_register,
1437 NULL,
1438 dwarf2_frame_sniffer,
1439
1440 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1441 NULL
1442 };
1443
1444 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1445
1446 void
1447 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1448 {
1449 /* TAILCALL_FRAME must be first to find the record by
1450 dwarf2_tailcall_sniffer_first. */
1451 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1452
1453 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1454 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1455 }
1456 \f
1457
1458 /* There is no explicitly defined relationship between the CFA and the
1459 location of frame's local variables and arguments/parameters.
1460 Therefore, frame base methods on this page should probably only be
1461 used as a last resort, just to avoid printing total garbage as a
1462 response to the "info frame" command. */
1463
1464 static CORE_ADDR
1465 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1466 {
1467 struct dwarf2_frame_cache *cache =
1468 dwarf2_frame_cache (this_frame, this_cache);
1469
1470 return cache->cfa;
1471 }
1472
1473 static const struct frame_base dwarf2_frame_base =
1474 {
1475 &dwarf2_frame_unwind,
1476 dwarf2_frame_base_address,
1477 dwarf2_frame_base_address,
1478 dwarf2_frame_base_address
1479 };
1480
1481 const struct frame_base *
1482 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1483 {
1484 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1485
1486 if (dwarf2_frame_find_fde (&block_addr, NULL))
1487 return &dwarf2_frame_base;
1488
1489 return NULL;
1490 }
1491
1492 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1493 the DWARF unwinder. This is used to implement
1494 DW_OP_call_frame_cfa. */
1495
1496 CORE_ADDR
1497 dwarf2_frame_cfa (struct frame_info *this_frame)
1498 {
1499 while (get_frame_type (this_frame) == INLINE_FRAME)
1500 this_frame = get_prev_frame (this_frame);
1501 /* This restriction could be lifted if other unwinders are known to
1502 compute the frame base in a way compatible with the DWARF
1503 unwinder. */
1504 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1505 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1506 error (_("can't compute CFA for this frame"));
1507 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1508 throw_error (NOT_AVAILABLE_ERROR,
1509 _("can't compute CFA for this frame: "
1510 "required registers or memory are unavailable"));
1511 return get_frame_base (this_frame);
1512 }
1513 \f
1514 const struct objfile_data *dwarf2_frame_objfile_data;
1515
1516 static unsigned int
1517 read_1_byte (bfd *abfd, const gdb_byte *buf)
1518 {
1519 return bfd_get_8 (abfd, buf);
1520 }
1521
1522 static unsigned int
1523 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1524 {
1525 return bfd_get_32 (abfd, buf);
1526 }
1527
1528 static ULONGEST
1529 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1530 {
1531 return bfd_get_64 (abfd, buf);
1532 }
1533
1534 static ULONGEST
1535 read_initial_length (bfd *abfd, const gdb_byte *buf,
1536 unsigned int *bytes_read_ptr)
1537 {
1538 LONGEST result;
1539
1540 result = bfd_get_32 (abfd, buf);
1541 if (result == 0xffffffff)
1542 {
1543 result = bfd_get_64 (abfd, buf + 4);
1544 *bytes_read_ptr = 12;
1545 }
1546 else
1547 *bytes_read_ptr = 4;
1548
1549 return result;
1550 }
1551 \f
1552
1553 /* Pointer encoding helper functions. */
1554
1555 /* GCC supports exception handling based on DWARF2 CFI. However, for
1556 technical reasons, it encodes addresses in its FDE's in a different
1557 way. Several "pointer encodings" are supported. The encoding
1558 that's used for a particular FDE is determined by the 'R'
1559 augmentation in the associated CIE. The argument of this
1560 augmentation is a single byte.
1561
1562 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1563 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1564 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1565 address should be interpreted (absolute, relative to the current
1566 position in the FDE, ...). Bit 7, indicates that the address
1567 should be dereferenced. */
1568
1569 static gdb_byte
1570 encoding_for_size (unsigned int size)
1571 {
1572 switch (size)
1573 {
1574 case 2:
1575 return DW_EH_PE_udata2;
1576 case 4:
1577 return DW_EH_PE_udata4;
1578 case 8:
1579 return DW_EH_PE_udata8;
1580 default:
1581 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1582 }
1583 }
1584
1585 static CORE_ADDR
1586 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1587 int ptr_len, const gdb_byte *buf,
1588 unsigned int *bytes_read_ptr,
1589 CORE_ADDR func_base)
1590 {
1591 ptrdiff_t offset;
1592 CORE_ADDR base;
1593
1594 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1595 FDE's. */
1596 if (encoding & DW_EH_PE_indirect)
1597 internal_error (__FILE__, __LINE__,
1598 _("Unsupported encoding: DW_EH_PE_indirect"));
1599
1600 *bytes_read_ptr = 0;
1601
1602 switch (encoding & 0x70)
1603 {
1604 case DW_EH_PE_absptr:
1605 base = 0;
1606 break;
1607 case DW_EH_PE_pcrel:
1608 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1609 base += (buf - unit->dwarf_frame_buffer);
1610 break;
1611 case DW_EH_PE_datarel:
1612 base = unit->dbase;
1613 break;
1614 case DW_EH_PE_textrel:
1615 base = unit->tbase;
1616 break;
1617 case DW_EH_PE_funcrel:
1618 base = func_base;
1619 break;
1620 case DW_EH_PE_aligned:
1621 base = 0;
1622 offset = buf - unit->dwarf_frame_buffer;
1623 if ((offset % ptr_len) != 0)
1624 {
1625 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1626 buf += *bytes_read_ptr;
1627 }
1628 break;
1629 default:
1630 internal_error (__FILE__, __LINE__,
1631 _("Invalid or unsupported encoding"));
1632 }
1633
1634 if ((encoding & 0x07) == 0x00)
1635 {
1636 encoding |= encoding_for_size (ptr_len);
1637 if (bfd_get_sign_extend_vma (unit->abfd))
1638 encoding |= DW_EH_PE_signed;
1639 }
1640
1641 switch (encoding & 0x0f)
1642 {
1643 case DW_EH_PE_uleb128:
1644 {
1645 uint64_t value;
1646 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1647
1648 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1649 return base + value;
1650 }
1651 case DW_EH_PE_udata2:
1652 *bytes_read_ptr += 2;
1653 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1654 case DW_EH_PE_udata4:
1655 *bytes_read_ptr += 4;
1656 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1657 case DW_EH_PE_udata8:
1658 *bytes_read_ptr += 8;
1659 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1660 case DW_EH_PE_sleb128:
1661 {
1662 int64_t value;
1663 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1664
1665 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1666 return base + value;
1667 }
1668 case DW_EH_PE_sdata2:
1669 *bytes_read_ptr += 2;
1670 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_sdata4:
1672 *bytes_read_ptr += 4;
1673 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_sdata8:
1675 *bytes_read_ptr += 8;
1676 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1677 default:
1678 internal_error (__FILE__, __LINE__,
1679 _("Invalid or unsupported encoding"));
1680 }
1681 }
1682 \f
1683
1684 static int
1685 bsearch_cie_cmp (const void *key, const void *element)
1686 {
1687 ULONGEST cie_pointer = *(ULONGEST *) key;
1688 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1689
1690 if (cie_pointer == cie->cie_pointer)
1691 return 0;
1692
1693 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1694 }
1695
1696 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1697 static struct dwarf2_cie *
1698 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1699 {
1700 struct dwarf2_cie **p_cie;
1701
1702 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1703 bsearch be non-NULL. */
1704 if (cie_table->entries == NULL)
1705 {
1706 gdb_assert (cie_table->num_entries == 0);
1707 return NULL;
1708 }
1709
1710 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1711 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1712 if (p_cie != NULL)
1713 return *p_cie;
1714 return NULL;
1715 }
1716
1717 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1718 static void
1719 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1720 {
1721 const int n = cie_table->num_entries;
1722
1723 gdb_assert (n < 1
1724 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1725
1726 cie_table->entries =
1727 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1728 cie_table->entries[n] = cie;
1729 cie_table->num_entries = n + 1;
1730 }
1731
1732 static int
1733 bsearch_fde_cmp (const void *key, const void *element)
1734 {
1735 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1736 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1737
1738 if (seek_pc < fde->initial_location)
1739 return -1;
1740 if (seek_pc < fde->initial_location + fde->address_range)
1741 return 0;
1742 return 1;
1743 }
1744
1745 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1746 inital location associated with it into *PC. */
1747
1748 static struct dwarf2_fde *
1749 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1750 {
1751 struct objfile *objfile;
1752
1753 ALL_OBJFILES (objfile)
1754 {
1755 struct dwarf2_fde_table *fde_table;
1756 struct dwarf2_fde **p_fde;
1757 CORE_ADDR offset;
1758 CORE_ADDR seek_pc;
1759
1760 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1761 if (fde_table == NULL)
1762 {
1763 dwarf2_build_frame_info (objfile);
1764 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1765 }
1766 gdb_assert (fde_table != NULL);
1767
1768 if (fde_table->num_entries == 0)
1769 continue;
1770
1771 gdb_assert (objfile->section_offsets);
1772 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1773
1774 gdb_assert (fde_table->num_entries > 0);
1775 if (*pc < offset + fde_table->entries[0]->initial_location)
1776 continue;
1777
1778 seek_pc = *pc - offset;
1779 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1780 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1781 if (p_fde != NULL)
1782 {
1783 *pc = (*p_fde)->initial_location + offset;
1784 if (out_offset)
1785 *out_offset = offset;
1786 return *p_fde;
1787 }
1788 }
1789 return NULL;
1790 }
1791
1792 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1793 static void
1794 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1795 {
1796 if (fde->address_range == 0)
1797 /* Discard useless FDEs. */
1798 return;
1799
1800 fde_table->num_entries += 1;
1801 fde_table->entries =
1802 xrealloc (fde_table->entries,
1803 fde_table->num_entries * sizeof (fde_table->entries[0]));
1804 fde_table->entries[fde_table->num_entries - 1] = fde;
1805 }
1806
1807 #ifdef CC_HAS_LONG_LONG
1808 #define DW64_CIE_ID 0xffffffffffffffffULL
1809 #else
1810 #define DW64_CIE_ID ~0
1811 #endif
1812
1813 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1814 or any of them. */
1815
1816 enum eh_frame_type
1817 {
1818 EH_CIE_TYPE_ID = 1 << 0,
1819 EH_FDE_TYPE_ID = 1 << 1,
1820 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1821 };
1822
1823 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1824 const gdb_byte *start,
1825 int eh_frame_p,
1826 struct dwarf2_cie_table *cie_table,
1827 struct dwarf2_fde_table *fde_table,
1828 enum eh_frame_type entry_type);
1829
1830 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1831 Return NULL if invalid input, otherwise the next byte to be processed. */
1832
1833 static const gdb_byte *
1834 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1835 int eh_frame_p,
1836 struct dwarf2_cie_table *cie_table,
1837 struct dwarf2_fde_table *fde_table,
1838 enum eh_frame_type entry_type)
1839 {
1840 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1841 const gdb_byte *buf, *end;
1842 LONGEST length;
1843 unsigned int bytes_read;
1844 int dwarf64_p;
1845 ULONGEST cie_id;
1846 ULONGEST cie_pointer;
1847 int64_t sleb128;
1848 uint64_t uleb128;
1849
1850 buf = start;
1851 length = read_initial_length (unit->abfd, buf, &bytes_read);
1852 buf += bytes_read;
1853 end = buf + length;
1854
1855 /* Are we still within the section? */
1856 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1857 return NULL;
1858
1859 if (length == 0)
1860 return end;
1861
1862 /* Distinguish between 32 and 64-bit encoded frame info. */
1863 dwarf64_p = (bytes_read == 12);
1864
1865 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1866 if (eh_frame_p)
1867 cie_id = 0;
1868 else if (dwarf64_p)
1869 cie_id = DW64_CIE_ID;
1870 else
1871 cie_id = DW_CIE_ID;
1872
1873 if (dwarf64_p)
1874 {
1875 cie_pointer = read_8_bytes (unit->abfd, buf);
1876 buf += 8;
1877 }
1878 else
1879 {
1880 cie_pointer = read_4_bytes (unit->abfd, buf);
1881 buf += 4;
1882 }
1883
1884 if (cie_pointer == cie_id)
1885 {
1886 /* This is a CIE. */
1887 struct dwarf2_cie *cie;
1888 char *augmentation;
1889 unsigned int cie_version;
1890
1891 /* Check that a CIE was expected. */
1892 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1893 error (_("Found a CIE when not expecting it."));
1894
1895 /* Record the offset into the .debug_frame section of this CIE. */
1896 cie_pointer = start - unit->dwarf_frame_buffer;
1897
1898 /* Check whether we've already read it. */
1899 if (find_cie (cie_table, cie_pointer))
1900 return end;
1901
1902 cie = (struct dwarf2_cie *)
1903 obstack_alloc (&unit->objfile->objfile_obstack,
1904 sizeof (struct dwarf2_cie));
1905 cie->initial_instructions = NULL;
1906 cie->cie_pointer = cie_pointer;
1907
1908 /* The encoding for FDE's in a normal .debug_frame section
1909 depends on the target address size. */
1910 cie->encoding = DW_EH_PE_absptr;
1911
1912 /* We'll determine the final value later, but we need to
1913 initialize it conservatively. */
1914 cie->signal_frame = 0;
1915
1916 /* Check version number. */
1917 cie_version = read_1_byte (unit->abfd, buf);
1918 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1919 return NULL;
1920 cie->version = cie_version;
1921 buf += 1;
1922
1923 /* Interpret the interesting bits of the augmentation. */
1924 cie->augmentation = augmentation = (char *) buf;
1925 buf += (strlen (augmentation) + 1);
1926
1927 /* Ignore armcc augmentations. We only use them for quirks,
1928 and that doesn't happen until later. */
1929 if (strncmp (augmentation, "armcc", 5) == 0)
1930 augmentation += strlen (augmentation);
1931
1932 /* The GCC 2.x "eh" augmentation has a pointer immediately
1933 following the augmentation string, so it must be handled
1934 first. */
1935 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1936 {
1937 /* Skip. */
1938 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1939 augmentation += 2;
1940 }
1941
1942 if (cie->version >= 4)
1943 {
1944 /* FIXME: check that this is the same as from the CU header. */
1945 cie->addr_size = read_1_byte (unit->abfd, buf);
1946 ++buf;
1947 cie->segment_size = read_1_byte (unit->abfd, buf);
1948 ++buf;
1949 }
1950 else
1951 {
1952 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1953 cie->segment_size = 0;
1954 }
1955 /* Address values in .eh_frame sections are defined to have the
1956 target's pointer size. Watchout: This breaks frame info for
1957 targets with pointer size < address size, unless a .debug_frame
1958 section exists as well. */
1959 if (eh_frame_p)
1960 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1961 else
1962 cie->ptr_size = cie->addr_size;
1963
1964 buf = gdb_read_uleb128 (buf, end, &uleb128);
1965 if (buf == NULL)
1966 return NULL;
1967 cie->code_alignment_factor = uleb128;
1968
1969 buf = gdb_read_sleb128 (buf, end, &sleb128);
1970 if (buf == NULL)
1971 return NULL;
1972 cie->data_alignment_factor = sleb128;
1973
1974 if (cie_version == 1)
1975 {
1976 cie->return_address_register = read_1_byte (unit->abfd, buf);
1977 ++buf;
1978 }
1979 else
1980 {
1981 buf = gdb_read_uleb128 (buf, end, &uleb128);
1982 if (buf == NULL)
1983 return NULL;
1984 cie->return_address_register = uleb128;
1985 }
1986
1987 cie->return_address_register
1988 = dwarf2_frame_adjust_regnum (gdbarch,
1989 cie->return_address_register,
1990 eh_frame_p);
1991
1992 cie->saw_z_augmentation = (*augmentation == 'z');
1993 if (cie->saw_z_augmentation)
1994 {
1995 uint64_t length;
1996
1997 buf = gdb_read_uleb128 (buf, end, &length);
1998 if (buf == NULL)
1999 return NULL;
2000 cie->initial_instructions = buf + length;
2001 augmentation++;
2002 }
2003
2004 while (*augmentation)
2005 {
2006 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2007 if (*augmentation == 'L')
2008 {
2009 /* Skip. */
2010 buf++;
2011 augmentation++;
2012 }
2013
2014 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2015 else if (*augmentation == 'R')
2016 {
2017 cie->encoding = *buf++;
2018 augmentation++;
2019 }
2020
2021 /* "P" indicates a personality routine in the CIE augmentation. */
2022 else if (*augmentation == 'P')
2023 {
2024 /* Skip. Avoid indirection since we throw away the result. */
2025 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2026 read_encoded_value (unit, encoding, cie->ptr_size,
2027 buf, &bytes_read, 0);
2028 buf += bytes_read;
2029 augmentation++;
2030 }
2031
2032 /* "S" indicates a signal frame, such that the return
2033 address must not be decremented to locate the call frame
2034 info for the previous frame; it might even be the first
2035 instruction of a function, so decrementing it would take
2036 us to a different function. */
2037 else if (*augmentation == 'S')
2038 {
2039 cie->signal_frame = 1;
2040 augmentation++;
2041 }
2042
2043 /* Otherwise we have an unknown augmentation. Assume that either
2044 there is no augmentation data, or we saw a 'z' prefix. */
2045 else
2046 {
2047 if (cie->initial_instructions)
2048 buf = cie->initial_instructions;
2049 break;
2050 }
2051 }
2052
2053 cie->initial_instructions = buf;
2054 cie->end = end;
2055 cie->unit = unit;
2056
2057 add_cie (cie_table, cie);
2058 }
2059 else
2060 {
2061 /* This is a FDE. */
2062 struct dwarf2_fde *fde;
2063
2064 /* Check that an FDE was expected. */
2065 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2066 error (_("Found an FDE when not expecting it."));
2067
2068 /* In an .eh_frame section, the CIE pointer is the delta between the
2069 address within the FDE where the CIE pointer is stored and the
2070 address of the CIE. Convert it to an offset into the .eh_frame
2071 section. */
2072 if (eh_frame_p)
2073 {
2074 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2075 cie_pointer -= (dwarf64_p ? 8 : 4);
2076 }
2077
2078 /* In either case, validate the result is still within the section. */
2079 if (cie_pointer >= unit->dwarf_frame_size)
2080 return NULL;
2081
2082 fde = (struct dwarf2_fde *)
2083 obstack_alloc (&unit->objfile->objfile_obstack,
2084 sizeof (struct dwarf2_fde));
2085 fde->cie = find_cie (cie_table, cie_pointer);
2086 if (fde->cie == NULL)
2087 {
2088 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2089 eh_frame_p, cie_table, fde_table,
2090 EH_CIE_TYPE_ID);
2091 fde->cie = find_cie (cie_table, cie_pointer);
2092 }
2093
2094 gdb_assert (fde->cie != NULL);
2095
2096 fde->initial_location =
2097 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2098 buf, &bytes_read, 0);
2099 buf += bytes_read;
2100
2101 fde->address_range =
2102 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2103 fde->cie->ptr_size, buf, &bytes_read, 0);
2104 buf += bytes_read;
2105
2106 /* A 'z' augmentation in the CIE implies the presence of an
2107 augmentation field in the FDE as well. The only thing known
2108 to be in here at present is the LSDA entry for EH. So we
2109 can skip the whole thing. */
2110 if (fde->cie->saw_z_augmentation)
2111 {
2112 uint64_t length;
2113
2114 buf = gdb_read_uleb128 (buf, end, &length);
2115 if (buf == NULL)
2116 return NULL;
2117 buf += length;
2118 if (buf > end)
2119 return NULL;
2120 }
2121
2122 fde->instructions = buf;
2123 fde->end = end;
2124
2125 fde->eh_frame_p = eh_frame_p;
2126
2127 add_fde (fde_table, fde);
2128 }
2129
2130 return end;
2131 }
2132
2133 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2134 expect an FDE or a CIE. */
2135
2136 static const gdb_byte *
2137 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2138 int eh_frame_p,
2139 struct dwarf2_cie_table *cie_table,
2140 struct dwarf2_fde_table *fde_table,
2141 enum eh_frame_type entry_type)
2142 {
2143 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2144 const gdb_byte *ret;
2145 ptrdiff_t start_offset;
2146
2147 while (1)
2148 {
2149 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2150 cie_table, fde_table, entry_type);
2151 if (ret != NULL)
2152 break;
2153
2154 /* We have corrupt input data of some form. */
2155
2156 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2157 and mismatches wrt padding and alignment of debug sections. */
2158 /* Note that there is no requirement in the standard for any
2159 alignment at all in the frame unwind sections. Testing for
2160 alignment before trying to interpret data would be incorrect.
2161
2162 However, GCC traditionally arranged for frame sections to be
2163 sized such that the FDE length and CIE fields happen to be
2164 aligned (in theory, for performance). This, unfortunately,
2165 was done with .align directives, which had the side effect of
2166 forcing the section to be aligned by the linker.
2167
2168 This becomes a problem when you have some other producer that
2169 creates frame sections that are not as strictly aligned. That
2170 produces a hole in the frame info that gets filled by the
2171 linker with zeros.
2172
2173 The GCC behaviour is arguably a bug, but it's effectively now
2174 part of the ABI, so we're now stuck with it, at least at the
2175 object file level. A smart linker may decide, in the process
2176 of compressing duplicate CIE information, that it can rewrite
2177 the entire output section without this extra padding. */
2178
2179 start_offset = start - unit->dwarf_frame_buffer;
2180 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2181 {
2182 start += 4 - (start_offset & 3);
2183 workaround = ALIGN4;
2184 continue;
2185 }
2186 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2187 {
2188 start += 8 - (start_offset & 7);
2189 workaround = ALIGN8;
2190 continue;
2191 }
2192
2193 /* Nothing left to try. Arrange to return as if we've consumed
2194 the entire input section. Hopefully we'll get valid info from
2195 the other of .debug_frame/.eh_frame. */
2196 workaround = FAIL;
2197 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2198 break;
2199 }
2200
2201 switch (workaround)
2202 {
2203 case NONE:
2204 break;
2205
2206 case ALIGN4:
2207 complaint (&symfile_complaints, _("\
2208 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2209 unit->dwarf_frame_section->owner->filename,
2210 unit->dwarf_frame_section->name);
2211 break;
2212
2213 case ALIGN8:
2214 complaint (&symfile_complaints, _("\
2215 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2216 unit->dwarf_frame_section->owner->filename,
2217 unit->dwarf_frame_section->name);
2218 break;
2219
2220 default:
2221 complaint (&symfile_complaints,
2222 _("Corrupt data in %s:%s"),
2223 unit->dwarf_frame_section->owner->filename,
2224 unit->dwarf_frame_section->name);
2225 break;
2226 }
2227
2228 return ret;
2229 }
2230 \f
2231 static int
2232 qsort_fde_cmp (const void *a, const void *b)
2233 {
2234 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2235 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2236
2237 if (aa->initial_location == bb->initial_location)
2238 {
2239 if (aa->address_range != bb->address_range
2240 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2241 /* Linker bug, e.g. gold/10400.
2242 Work around it by keeping stable sort order. */
2243 return (a < b) ? -1 : 1;
2244 else
2245 /* Put eh_frame entries after debug_frame ones. */
2246 return aa->eh_frame_p - bb->eh_frame_p;
2247 }
2248
2249 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2250 }
2251
2252 void
2253 dwarf2_build_frame_info (struct objfile *objfile)
2254 {
2255 struct comp_unit *unit;
2256 const gdb_byte *frame_ptr;
2257 struct dwarf2_cie_table cie_table;
2258 struct dwarf2_fde_table fde_table;
2259 struct dwarf2_fde_table *fde_table2;
2260 volatile struct gdb_exception e;
2261
2262 cie_table.num_entries = 0;
2263 cie_table.entries = NULL;
2264
2265 fde_table.num_entries = 0;
2266 fde_table.entries = NULL;
2267
2268 /* Build a minimal decoding of the DWARF2 compilation unit. */
2269 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2270 sizeof (struct comp_unit));
2271 unit->abfd = objfile->obfd;
2272 unit->objfile = objfile;
2273 unit->dbase = 0;
2274 unit->tbase = 0;
2275
2276 if (objfile->separate_debug_objfile_backlink == NULL)
2277 {
2278 /* Do not read .eh_frame from separate file as they must be also
2279 present in the main file. */
2280 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2281 &unit->dwarf_frame_section,
2282 &unit->dwarf_frame_buffer,
2283 &unit->dwarf_frame_size);
2284 if (unit->dwarf_frame_size)
2285 {
2286 asection *got, *txt;
2287
2288 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2289 that is used for the i386/amd64 target, which currently is
2290 the only target in GCC that supports/uses the
2291 DW_EH_PE_datarel encoding. */
2292 got = bfd_get_section_by_name (unit->abfd, ".got");
2293 if (got)
2294 unit->dbase = got->vma;
2295
2296 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2297 so far. */
2298 txt = bfd_get_section_by_name (unit->abfd, ".text");
2299 if (txt)
2300 unit->tbase = txt->vma;
2301
2302 TRY_CATCH (e, RETURN_MASK_ERROR)
2303 {
2304 frame_ptr = unit->dwarf_frame_buffer;
2305 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2306 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2307 &cie_table, &fde_table,
2308 EH_CIE_OR_FDE_TYPE_ID);
2309 }
2310
2311 if (e.reason < 0)
2312 {
2313 warning (_("skipping .eh_frame info of %s: %s"),
2314 objfile->name, e.message);
2315
2316 if (fde_table.num_entries != 0)
2317 {
2318 xfree (fde_table.entries);
2319 fde_table.entries = NULL;
2320 fde_table.num_entries = 0;
2321 }
2322 /* The cie_table is discarded by the next if. */
2323 }
2324
2325 if (cie_table.num_entries != 0)
2326 {
2327 /* Reinit cie_table: debug_frame has different CIEs. */
2328 xfree (cie_table.entries);
2329 cie_table.num_entries = 0;
2330 cie_table.entries = NULL;
2331 }
2332 }
2333 }
2334
2335 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2336 &unit->dwarf_frame_section,
2337 &unit->dwarf_frame_buffer,
2338 &unit->dwarf_frame_size);
2339 if (unit->dwarf_frame_size)
2340 {
2341 int num_old_fde_entries = fde_table.num_entries;
2342
2343 TRY_CATCH (e, RETURN_MASK_ERROR)
2344 {
2345 frame_ptr = unit->dwarf_frame_buffer;
2346 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2347 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2348 &cie_table, &fde_table,
2349 EH_CIE_OR_FDE_TYPE_ID);
2350 }
2351 if (e.reason < 0)
2352 {
2353 warning (_("skipping .debug_frame info of %s: %s"),
2354 objfile->name, e.message);
2355
2356 if (fde_table.num_entries != 0)
2357 {
2358 fde_table.num_entries = num_old_fde_entries;
2359 if (num_old_fde_entries == 0)
2360 {
2361 xfree (fde_table.entries);
2362 fde_table.entries = NULL;
2363 }
2364 else
2365 {
2366 fde_table.entries = xrealloc (fde_table.entries,
2367 fde_table.num_entries *
2368 sizeof (fde_table.entries[0]));
2369 }
2370 }
2371 fde_table.num_entries = num_old_fde_entries;
2372 /* The cie_table is discarded by the next if. */
2373 }
2374 }
2375
2376 /* Discard the cie_table, it is no longer needed. */
2377 if (cie_table.num_entries != 0)
2378 {
2379 xfree (cie_table.entries);
2380 cie_table.entries = NULL; /* Paranoia. */
2381 cie_table.num_entries = 0; /* Paranoia. */
2382 }
2383
2384 /* Copy fde_table to obstack: it is needed at runtime. */
2385 fde_table2 = (struct dwarf2_fde_table *)
2386 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2387
2388 if (fde_table.num_entries == 0)
2389 {
2390 fde_table2->entries = NULL;
2391 fde_table2->num_entries = 0;
2392 }
2393 else
2394 {
2395 struct dwarf2_fde *fde_prev = NULL;
2396 struct dwarf2_fde *first_non_zero_fde = NULL;
2397 int i;
2398
2399 /* Prepare FDE table for lookups. */
2400 qsort (fde_table.entries, fde_table.num_entries,
2401 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2402
2403 /* Check for leftovers from --gc-sections. The GNU linker sets
2404 the relevant symbols to zero, but doesn't zero the FDE *end*
2405 ranges because there's no relocation there. It's (offset,
2406 length), not (start, end). On targets where address zero is
2407 just another valid address this can be a problem, since the
2408 FDEs appear to be non-empty in the output --- we could pick
2409 out the wrong FDE. To work around this, when overlaps are
2410 detected, we prefer FDEs that do not start at zero.
2411
2412 Start by finding the first FDE with non-zero start. Below
2413 we'll discard all FDEs that start at zero and overlap this
2414 one. */
2415 for (i = 0; i < fde_table.num_entries; i++)
2416 {
2417 struct dwarf2_fde *fde = fde_table.entries[i];
2418
2419 if (fde->initial_location != 0)
2420 {
2421 first_non_zero_fde = fde;
2422 break;
2423 }
2424 }
2425
2426 /* Since we'll be doing bsearch, squeeze out identical (except
2427 for eh_frame_p) fde entries so bsearch result is predictable.
2428 Also discard leftovers from --gc-sections. */
2429 fde_table2->num_entries = 0;
2430 for (i = 0; i < fde_table.num_entries; i++)
2431 {
2432 struct dwarf2_fde *fde = fde_table.entries[i];
2433
2434 if (fde->initial_location == 0
2435 && first_non_zero_fde != NULL
2436 && (first_non_zero_fde->initial_location
2437 < fde->initial_location + fde->address_range))
2438 continue;
2439
2440 if (fde_prev != NULL
2441 && fde_prev->initial_location == fde->initial_location)
2442 continue;
2443
2444 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2445 sizeof (fde_table.entries[0]));
2446 ++fde_table2->num_entries;
2447 fde_prev = fde;
2448 }
2449 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2450
2451 /* Discard the original fde_table. */
2452 xfree (fde_table.entries);
2453 }
2454
2455 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2456 }
2457
2458 /* Provide a prototype to silence -Wmissing-prototypes. */
2459 void _initialize_dwarf2_frame (void);
2460
2461 void
2462 _initialize_dwarf2_frame (void)
2463 {
2464 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2465 dwarf2_frame_objfile_data = register_objfile_data ();
2466 }
This page took 0.096753 seconds and 4 git commands to generate.