Improve process exit status macros on MinGW
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "dwarf2read.h"
39 #include "ax.h"
40 #include "dwarf2loc.h"
41 #include "dwarf2-frame-tailcall.h"
42 #include "gdbsupport/gdb_binary_search.h"
43 #if GDB_SELF_TEST
44 #include "gdbsupport/selftest.h"
45 #include "selftest-arch.h"
46 #endif
47 #include <unordered_map>
48
49 #include <algorithm>
50
51 struct comp_unit;
52
53 /* Call Frame Information (CFI). */
54
55 /* Common Information Entry (CIE). */
56
57 struct dwarf2_cie
58 {
59 /* Computation Unit for this CIE. */
60 struct comp_unit *unit;
61
62 /* Offset into the .debug_frame section where this CIE was found.
63 Used to identify this CIE. */
64 ULONGEST cie_pointer;
65
66 /* Constant that is factored out of all advance location
67 instructions. */
68 ULONGEST code_alignment_factor;
69
70 /* Constants that is factored out of all offset instructions. */
71 LONGEST data_alignment_factor;
72
73 /* Return address column. */
74 ULONGEST return_address_register;
75
76 /* Instruction sequence to initialize a register set. */
77 const gdb_byte *initial_instructions;
78 const gdb_byte *end;
79
80 /* Saved augmentation, in case it's needed later. */
81 char *augmentation;
82
83 /* Encoding of addresses. */
84 gdb_byte encoding;
85
86 /* Target address size in bytes. */
87 int addr_size;
88
89 /* Target pointer size in bytes. */
90 int ptr_size;
91
92 /* True if a 'z' augmentation existed. */
93 unsigned char saw_z_augmentation;
94
95 /* True if an 'S' augmentation existed. */
96 unsigned char signal_frame;
97
98 /* The version recorded in the CIE. */
99 unsigned char version;
100
101 /* The segment size. */
102 unsigned char segment_size;
103 };
104
105 /* The CIE table is used to find CIEs during parsing, but then
106 discarded. It maps from the CIE's offset to the CIE. */
107 typedef std::unordered_map<ULONGEST, dwarf2_cie *> dwarf2_cie_table;
108
109 /* Frame Description Entry (FDE). */
110
111 struct dwarf2_fde
112 {
113 /* CIE for this FDE. */
114 struct dwarf2_cie *cie;
115
116 /* First location associated with this FDE. */
117 CORE_ADDR initial_location;
118
119 /* Number of bytes of program instructions described by this FDE. */
120 CORE_ADDR address_range;
121
122 /* Instruction sequence. */
123 const gdb_byte *instructions;
124 const gdb_byte *end;
125
126 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
127 section. */
128 unsigned char eh_frame_p;
129 };
130
131 struct dwarf2_fde_table
132 {
133 int num_entries;
134 struct dwarf2_fde **entries;
135 };
136
137 /* A minimal decoding of DWARF2 compilation units. We only decode
138 what's needed to get to the call frame information. */
139
140 struct comp_unit
141 {
142 /* Keep the bfd convenient. */
143 bfd *abfd;
144
145 struct objfile *objfile;
146
147 /* Pointer to the .debug_frame section loaded into memory. */
148 const gdb_byte *dwarf_frame_buffer;
149
150 /* Length of the loaded .debug_frame section. */
151 bfd_size_type dwarf_frame_size;
152
153 /* Pointer to the .debug_frame section. */
154 asection *dwarf_frame_section;
155
156 /* Base for DW_EH_PE_datarel encodings. */
157 bfd_vma dbase;
158
159 /* Base for DW_EH_PE_textrel encodings. */
160 bfd_vma tbase;
161 };
162
163 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
164 CORE_ADDR *out_offset);
165
166 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
167 int eh_frame_p);
168
169 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
170 int ptr_len, const gdb_byte *buf,
171 unsigned int *bytes_read_ptr,
172 CORE_ADDR func_base);
173 \f
174
175 /* See dwarf2-frame.h. */
176 bool dwarf2_frame_unwinders_enabled_p = true;
177
178 /* Store the length the expression for the CFA in the `cfa_reg' field,
179 which is unused in that case. */
180 #define cfa_exp_len cfa_reg
181
182 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
183 : pc (pc_), data_align (cie->data_alignment_factor),
184 code_align (cie->code_alignment_factor),
185 retaddr_column (cie->return_address_register)
186 {
187 }
188 \f
189
190 /* Helper functions for execute_stack_op. */
191
192 static CORE_ADDR
193 read_addr_from_reg (struct frame_info *this_frame, int reg)
194 {
195 struct gdbarch *gdbarch = get_frame_arch (this_frame);
196 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
197
198 return address_from_register (regnum, this_frame);
199 }
200
201 /* Execute the required actions for both the DW_CFA_restore and
202 DW_CFA_restore_extended instructions. */
203 static void
204 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
205 struct dwarf2_frame_state *fs, int eh_frame_p)
206 {
207 ULONGEST reg;
208
209 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
210 fs->regs.alloc_regs (reg + 1);
211
212 /* Check if this register was explicitly initialized in the
213 CIE initial instructions. If not, default the rule to
214 UNSPECIFIED. */
215 if (reg < fs->initial.reg.size ())
216 fs->regs.reg[reg] = fs->initial.reg[reg];
217 else
218 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
219
220 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
221 {
222 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
223
224 complaint (_("\
225 incomplete CFI data; DW_CFA_restore unspecified\n\
226 register %s (#%d) at %s"),
227 gdbarch_register_name (gdbarch, regnum), regnum,
228 paddress (gdbarch, fs->pc));
229 }
230 }
231
232 class dwarf_expr_executor : public dwarf_expr_context
233 {
234 public:
235
236 struct frame_info *this_frame;
237
238 CORE_ADDR read_addr_from_reg (int reg) override
239 {
240 return ::read_addr_from_reg (this_frame, reg);
241 }
242
243 struct value *get_reg_value (struct type *type, int reg) override
244 {
245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
246 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
247
248 return value_from_register (type, regnum, this_frame);
249 }
250
251 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
252 {
253 read_memory (addr, buf, len);
254 }
255
256 void get_frame_base (const gdb_byte **start, size_t *length) override
257 {
258 invalid ("DW_OP_fbreg");
259 }
260
261 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
262 union call_site_parameter_u kind_u,
263 int deref_size) override
264 {
265 invalid ("DW_OP_entry_value");
266 }
267
268 CORE_ADDR get_object_address () override
269 {
270 invalid ("DW_OP_push_object_address");
271 }
272
273 CORE_ADDR get_frame_cfa () override
274 {
275 invalid ("DW_OP_call_frame_cfa");
276 }
277
278 CORE_ADDR get_tls_address (CORE_ADDR offset) override
279 {
280 invalid ("DW_OP_form_tls_address");
281 }
282
283 void dwarf_call (cu_offset die_offset) override
284 {
285 invalid ("DW_OP_call*");
286 }
287
288 struct value *dwarf_variable_value (sect_offset sect_off) override
289 {
290 invalid ("DW_OP_GNU_variable_value");
291 }
292
293 CORE_ADDR get_addr_index (unsigned int index) override
294 {
295 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
296 }
297
298 private:
299
300 void invalid (const char *op) ATTRIBUTE_NORETURN
301 {
302 error (_("%s is invalid in this context"), op);
303 }
304 };
305
306 static CORE_ADDR
307 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
308 CORE_ADDR offset, struct frame_info *this_frame,
309 CORE_ADDR initial, int initial_in_stack_memory)
310 {
311 CORE_ADDR result;
312
313 dwarf_expr_executor ctx;
314 scoped_value_mark free_values;
315
316 ctx.this_frame = this_frame;
317 ctx.gdbarch = get_frame_arch (this_frame);
318 ctx.addr_size = addr_size;
319 ctx.ref_addr_size = -1;
320 ctx.offset = offset;
321
322 ctx.push_address (initial, initial_in_stack_memory);
323 ctx.eval (exp, len);
324
325 if (ctx.location == DWARF_VALUE_MEMORY)
326 result = ctx.fetch_address (0);
327 else if (ctx.location == DWARF_VALUE_REGISTER)
328 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
329 else
330 {
331 /* This is actually invalid DWARF, but if we ever do run across
332 it somehow, we might as well support it. So, instead, report
333 it as unimplemented. */
334 error (_("\
335 Not implemented: computing unwound register using explicit value operator"));
336 }
337
338 return result;
339 }
340 \f
341
342 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
343 PC. Modify FS state accordingly. Return current INSN_PTR where the
344 execution has stopped, one can resume it on the next call. */
345
346 static const gdb_byte *
347 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
348 const gdb_byte *insn_end, struct gdbarch *gdbarch,
349 CORE_ADDR pc, struct dwarf2_frame_state *fs)
350 {
351 int eh_frame_p = fde->eh_frame_p;
352 unsigned int bytes_read;
353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
354
355 while (insn_ptr < insn_end && fs->pc <= pc)
356 {
357 gdb_byte insn = *insn_ptr++;
358 uint64_t utmp, reg;
359 int64_t offset;
360
361 if ((insn & 0xc0) == DW_CFA_advance_loc)
362 fs->pc += (insn & 0x3f) * fs->code_align;
363 else if ((insn & 0xc0) == DW_CFA_offset)
364 {
365 reg = insn & 0x3f;
366 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
367 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
368 offset = utmp * fs->data_align;
369 fs->regs.alloc_regs (reg + 1);
370 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
371 fs->regs.reg[reg].loc.offset = offset;
372 }
373 else if ((insn & 0xc0) == DW_CFA_restore)
374 {
375 reg = insn & 0x3f;
376 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
377 }
378 else
379 {
380 switch (insn)
381 {
382 case DW_CFA_set_loc:
383 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
384 fde->cie->ptr_size, insn_ptr,
385 &bytes_read, fde->initial_location);
386 /* Apply the objfile offset for relocatable objects. */
387 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
388 SECT_OFF_TEXT (fde->cie->unit->objfile));
389 insn_ptr += bytes_read;
390 break;
391
392 case DW_CFA_advance_loc1:
393 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
394 fs->pc += utmp * fs->code_align;
395 insn_ptr++;
396 break;
397 case DW_CFA_advance_loc2:
398 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
399 fs->pc += utmp * fs->code_align;
400 insn_ptr += 2;
401 break;
402 case DW_CFA_advance_loc4:
403 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
404 fs->pc += utmp * fs->code_align;
405 insn_ptr += 4;
406 break;
407
408 case DW_CFA_offset_extended:
409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
410 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
411 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
412 offset = utmp * fs->data_align;
413 fs->regs.alloc_regs (reg + 1);
414 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
415 fs->regs.reg[reg].loc.offset = offset;
416 break;
417
418 case DW_CFA_restore_extended:
419 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
420 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
421 break;
422
423 case DW_CFA_undefined:
424 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
425 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
426 fs->regs.alloc_regs (reg + 1);
427 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
428 break;
429
430 case DW_CFA_same_value:
431 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
433 fs->regs.alloc_regs (reg + 1);
434 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
435 break;
436
437 case DW_CFA_register:
438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
439 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
440 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
441 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
442 fs->regs.alloc_regs (reg + 1);
443 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
444 fs->regs.reg[reg].loc.reg = utmp;
445 break;
446
447 case DW_CFA_remember_state:
448 {
449 struct dwarf2_frame_state_reg_info *new_rs;
450
451 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
452 fs->regs.prev = new_rs;
453 }
454 break;
455
456 case DW_CFA_restore_state:
457 {
458 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
459
460 if (old_rs == NULL)
461 {
462 complaint (_("\
463 bad CFI data; mismatched DW_CFA_restore_state at %s"),
464 paddress (gdbarch, fs->pc));
465 }
466 else
467 fs->regs = std::move (*old_rs);
468 }
469 break;
470
471 case DW_CFA_def_cfa:
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
473 fs->regs.cfa_reg = reg;
474 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
475
476 if (fs->armcc_cfa_offsets_sf)
477 utmp *= fs->data_align;
478
479 fs->regs.cfa_offset = utmp;
480 fs->regs.cfa_how = CFA_REG_OFFSET;
481 break;
482
483 case DW_CFA_def_cfa_register:
484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
485 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
486 eh_frame_p);
487 fs->regs.cfa_how = CFA_REG_OFFSET;
488 break;
489
490 case DW_CFA_def_cfa_offset:
491 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
492
493 if (fs->armcc_cfa_offsets_sf)
494 utmp *= fs->data_align;
495
496 fs->regs.cfa_offset = utmp;
497 /* cfa_how deliberately not set. */
498 break;
499
500 case DW_CFA_nop:
501 break;
502
503 case DW_CFA_def_cfa_expression:
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
505 fs->regs.cfa_exp_len = utmp;
506 fs->regs.cfa_exp = insn_ptr;
507 fs->regs.cfa_how = CFA_EXP;
508 insn_ptr += fs->regs.cfa_exp_len;
509 break;
510
511 case DW_CFA_expression:
512 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
513 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
514 fs->regs.alloc_regs (reg + 1);
515 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
516 fs->regs.reg[reg].loc.exp.start = insn_ptr;
517 fs->regs.reg[reg].loc.exp.len = utmp;
518 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
519 insn_ptr += utmp;
520 break;
521
522 case DW_CFA_offset_extended_sf:
523 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
524 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
525 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
526 offset *= fs->data_align;
527 fs->regs.alloc_regs (reg + 1);
528 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
529 fs->regs.reg[reg].loc.offset = offset;
530 break;
531
532 case DW_CFA_val_offset:
533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
534 fs->regs.alloc_regs (reg + 1);
535 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
536 offset = utmp * fs->data_align;
537 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
538 fs->regs.reg[reg].loc.offset = offset;
539 break;
540
541 case DW_CFA_val_offset_sf:
542 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
543 fs->regs.alloc_regs (reg + 1);
544 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
545 offset *= fs->data_align;
546 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
547 fs->regs.reg[reg].loc.offset = offset;
548 break;
549
550 case DW_CFA_val_expression:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.alloc_regs (reg + 1);
553 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
554 fs->regs.reg[reg].loc.exp.start = insn_ptr;
555 fs->regs.reg[reg].loc.exp.len = utmp;
556 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
557 insn_ptr += utmp;
558 break;
559
560 case DW_CFA_def_cfa_sf:
561 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
562 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
563 eh_frame_p);
564 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
565 fs->regs.cfa_offset = offset * fs->data_align;
566 fs->regs.cfa_how = CFA_REG_OFFSET;
567 break;
568
569 case DW_CFA_def_cfa_offset_sf:
570 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
571 fs->regs.cfa_offset = offset * fs->data_align;
572 /* cfa_how deliberately not set. */
573 break;
574
575 case DW_CFA_GNU_args_size:
576 /* Ignored. */
577 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
578 break;
579
580 case DW_CFA_GNU_negative_offset_extended:
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
582 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
584 offset = utmp * fs->data_align;
585 fs->regs.alloc_regs (reg + 1);
586 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
587 fs->regs.reg[reg].loc.offset = -offset;
588 break;
589
590 default:
591 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
592 {
593 /* Handle vendor-specific CFI for different architectures. */
594 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
595 error (_("Call Frame Instruction op %d in vendor extension "
596 "space is not handled on this architecture."),
597 insn);
598 }
599 else
600 internal_error (__FILE__, __LINE__,
601 _("Unknown CFI encountered."));
602 }
603 }
604 }
605
606 if (fs->initial.reg.empty ())
607 {
608 /* Don't allow remember/restore between CIE and FDE programs. */
609 delete fs->regs.prev;
610 fs->regs.prev = NULL;
611 }
612
613 return insn_ptr;
614 }
615
616 #if GDB_SELF_TEST
617
618 namespace selftests {
619
620 /* Unit test to function execute_cfa_program. */
621
622 static void
623 execute_cfa_program_test (struct gdbarch *gdbarch)
624 {
625 struct dwarf2_fde fde;
626 struct dwarf2_cie cie;
627
628 memset (&fde, 0, sizeof fde);
629 memset (&cie, 0, sizeof cie);
630
631 cie.data_alignment_factor = -4;
632 cie.code_alignment_factor = 2;
633 fde.cie = &cie;
634
635 dwarf2_frame_state fs (0, fde.cie);
636
637 gdb_byte insns[] =
638 {
639 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
640 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
641 DW_CFA_remember_state,
642 DW_CFA_restore_state,
643 };
644
645 const gdb_byte *insn_end = insns + sizeof (insns);
646 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
647 0, &fs);
648
649 SELF_CHECK (out == insn_end);
650 SELF_CHECK (fs.pc == 0);
651
652 /* The instructions above only use r1 and r2, but the register numbers
653 used are adjusted by dwarf2_frame_adjust_regnum. */
654 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
655 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
656
657 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
658
659 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
660 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
661
662 for (auto i = 0; i < fs.regs.reg.size (); i++)
663 if (i != r2)
664 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
665
666 SELF_CHECK (fs.regs.cfa_reg == 1);
667 SELF_CHECK (fs.regs.cfa_offset == 4);
668 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
669 SELF_CHECK (fs.regs.cfa_exp == NULL);
670 SELF_CHECK (fs.regs.prev == NULL);
671 }
672
673 } // namespace selftests
674 #endif /* GDB_SELF_TEST */
675
676 \f
677
678 /* Architecture-specific operations. */
679
680 /* Per-architecture data key. */
681 static struct gdbarch_data *dwarf2_frame_data;
682
683 struct dwarf2_frame_ops
684 {
685 /* Pre-initialize the register state REG for register REGNUM. */
686 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
687 struct frame_info *);
688
689 /* Check whether the THIS_FRAME is a signal trampoline. */
690 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
691
692 /* Convert .eh_frame register number to DWARF register number, or
693 adjust .debug_frame register number. */
694 int (*adjust_regnum) (struct gdbarch *, int, int);
695 };
696
697 /* Default architecture-specific register state initialization
698 function. */
699
700 static void
701 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
702 struct dwarf2_frame_state_reg *reg,
703 struct frame_info *this_frame)
704 {
705 /* If we have a register that acts as a program counter, mark it as
706 a destination for the return address. If we have a register that
707 serves as the stack pointer, arrange for it to be filled with the
708 call frame address (CFA). The other registers are marked as
709 unspecified.
710
711 We copy the return address to the program counter, since many
712 parts in GDB assume that it is possible to get the return address
713 by unwinding the program counter register. However, on ISA's
714 with a dedicated return address register, the CFI usually only
715 contains information to unwind that return address register.
716
717 The reason we're treating the stack pointer special here is
718 because in many cases GCC doesn't emit CFI for the stack pointer
719 and implicitly assumes that it is equal to the CFA. This makes
720 some sense since the DWARF specification (version 3, draft 8,
721 p. 102) says that:
722
723 "Typically, the CFA is defined to be the value of the stack
724 pointer at the call site in the previous frame (which may be
725 different from its value on entry to the current frame)."
726
727 However, this isn't true for all platforms supported by GCC
728 (e.g. IBM S/390 and zSeries). Those architectures should provide
729 their own architecture-specific initialization function. */
730
731 if (regnum == gdbarch_pc_regnum (gdbarch))
732 reg->how = DWARF2_FRAME_REG_RA;
733 else if (regnum == gdbarch_sp_regnum (gdbarch))
734 reg->how = DWARF2_FRAME_REG_CFA;
735 }
736
737 /* Return a default for the architecture-specific operations. */
738
739 static void *
740 dwarf2_frame_init (struct obstack *obstack)
741 {
742 struct dwarf2_frame_ops *ops;
743
744 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
745 ops->init_reg = dwarf2_frame_default_init_reg;
746 return ops;
747 }
748
749 /* Set the architecture-specific register state initialization
750 function for GDBARCH to INIT_REG. */
751
752 void
753 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
754 void (*init_reg) (struct gdbarch *, int,
755 struct dwarf2_frame_state_reg *,
756 struct frame_info *))
757 {
758 struct dwarf2_frame_ops *ops
759 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
760
761 ops->init_reg = init_reg;
762 }
763
764 /* Pre-initialize the register state REG for register REGNUM. */
765
766 static void
767 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
768 struct dwarf2_frame_state_reg *reg,
769 struct frame_info *this_frame)
770 {
771 struct dwarf2_frame_ops *ops
772 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
773
774 ops->init_reg (gdbarch, regnum, reg, this_frame);
775 }
776
777 /* Set the architecture-specific signal trampoline recognition
778 function for GDBARCH to SIGNAL_FRAME_P. */
779
780 void
781 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
782 int (*signal_frame_p) (struct gdbarch *,
783 struct frame_info *))
784 {
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
787
788 ops->signal_frame_p = signal_frame_p;
789 }
790
791 /* Query the architecture-specific signal frame recognizer for
792 THIS_FRAME. */
793
794 static int
795 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
796 struct frame_info *this_frame)
797 {
798 struct dwarf2_frame_ops *ops
799 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
800
801 if (ops->signal_frame_p == NULL)
802 return 0;
803 return ops->signal_frame_p (gdbarch, this_frame);
804 }
805
806 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
807 register numbers. */
808
809 void
810 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
811 int (*adjust_regnum) (struct gdbarch *,
812 int, int))
813 {
814 struct dwarf2_frame_ops *ops
815 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
816
817 ops->adjust_regnum = adjust_regnum;
818 }
819
820 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
821 register. */
822
823 static int
824 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
825 int regnum, int eh_frame_p)
826 {
827 struct dwarf2_frame_ops *ops
828 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
829
830 if (ops->adjust_regnum == NULL)
831 return regnum;
832 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
833 }
834
835 static void
836 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
837 struct dwarf2_fde *fde)
838 {
839 struct compunit_symtab *cust;
840
841 cust = find_pc_compunit_symtab (fs->pc);
842 if (cust == NULL)
843 return;
844
845 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
846 {
847 if (fde->cie->version == 1)
848 fs->armcc_cfa_offsets_sf = 1;
849
850 if (fde->cie->version == 1)
851 fs->armcc_cfa_offsets_reversed = 1;
852
853 /* The reversed offset problem is present in some compilers
854 using DWARF3, but it was eventually fixed. Check the ARM
855 defined augmentations, which are in the format "armcc" followed
856 by a list of one-character options. The "+" option means
857 this problem is fixed (no quirk needed). If the armcc
858 augmentation is missing, the quirk is needed. */
859 if (fde->cie->version == 3
860 && (!startswith (fde->cie->augmentation, "armcc")
861 || strchr (fde->cie->augmentation + 5, '+') == NULL))
862 fs->armcc_cfa_offsets_reversed = 1;
863
864 return;
865 }
866 }
867 \f
868
869 /* See dwarf2-frame.h. */
870
871 int
872 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
873 struct dwarf2_per_cu_data *data,
874 int *regnum_out, LONGEST *offset_out,
875 CORE_ADDR *text_offset_out,
876 const gdb_byte **cfa_start_out,
877 const gdb_byte **cfa_end_out)
878 {
879 struct dwarf2_fde *fde;
880 CORE_ADDR text_offset;
881 CORE_ADDR pc1 = pc;
882
883 /* Find the correct FDE. */
884 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
885 if (fde == NULL)
886 error (_("Could not compute CFA; needed to translate this expression"));
887
888 dwarf2_frame_state fs (pc1, fde->cie);
889
890 /* Check for "quirks" - known bugs in producers. */
891 dwarf2_frame_find_quirks (&fs, fde);
892
893 /* First decode all the insns in the CIE. */
894 execute_cfa_program (fde, fde->cie->initial_instructions,
895 fde->cie->end, gdbarch, pc, &fs);
896
897 /* Save the initialized register set. */
898 fs.initial = fs.regs;
899
900 /* Then decode the insns in the FDE up to our target PC. */
901 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
902
903 /* Calculate the CFA. */
904 switch (fs.regs.cfa_how)
905 {
906 case CFA_REG_OFFSET:
907 {
908 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
909
910 *regnum_out = regnum;
911 if (fs.armcc_cfa_offsets_reversed)
912 *offset_out = -fs.regs.cfa_offset;
913 else
914 *offset_out = fs.regs.cfa_offset;
915 return 1;
916 }
917
918 case CFA_EXP:
919 *text_offset_out = text_offset;
920 *cfa_start_out = fs.regs.cfa_exp;
921 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
922 return 0;
923
924 default:
925 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
926 }
927 }
928
929 \f
930 struct dwarf2_frame_cache
931 {
932 /* DWARF Call Frame Address. */
933 CORE_ADDR cfa;
934
935 /* Set if the return address column was marked as unavailable
936 (required non-collected memory or registers to compute). */
937 int unavailable_retaddr;
938
939 /* Set if the return address column was marked as undefined. */
940 int undefined_retaddr;
941
942 /* Saved registers, indexed by GDB register number, not by DWARF
943 register number. */
944 struct dwarf2_frame_state_reg *reg;
945
946 /* Return address register. */
947 struct dwarf2_frame_state_reg retaddr_reg;
948
949 /* Target address size in bytes. */
950 int addr_size;
951
952 /* The .text offset. */
953 CORE_ADDR text_offset;
954
955 /* True if we already checked whether this frame is the bottom frame
956 of a virtual tail call frame chain. */
957 int checked_tailcall_bottom;
958
959 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
960 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
961 involved. Non-bottom frames of a virtual tail call frames chain use
962 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
963 them. */
964 void *tailcall_cache;
965
966 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
967 base to get the SP, to simulate the return address pushed on the
968 stack. */
969 LONGEST entry_cfa_sp_offset;
970 int entry_cfa_sp_offset_p;
971 };
972
973 static struct dwarf2_frame_cache *
974 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
975 {
976 struct gdbarch *gdbarch = get_frame_arch (this_frame);
977 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
978 struct dwarf2_frame_cache *cache;
979 struct dwarf2_fde *fde;
980 CORE_ADDR entry_pc;
981 const gdb_byte *instr;
982
983 if (*this_cache)
984 return (struct dwarf2_frame_cache *) *this_cache;
985
986 /* Allocate a new cache. */
987 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
988 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
989 *this_cache = cache;
990
991 /* Unwind the PC.
992
993 Note that if the next frame is never supposed to return (i.e. a call
994 to abort), the compiler might optimize away the instruction at
995 its return address. As a result the return address will
996 point at some random instruction, and the CFI for that
997 instruction is probably worthless to us. GCC's unwinder solves
998 this problem by substracting 1 from the return address to get an
999 address in the middle of a presumed call instruction (or the
1000 instruction in the associated delay slot). This should only be
1001 done for "normal" frames and not for resume-type frames (signal
1002 handlers, sentinel frames, dummy frames). The function
1003 get_frame_address_in_block does just this. It's not clear how
1004 reliable the method is though; there is the potential for the
1005 register state pre-call being different to that on return. */
1006 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1007
1008 /* Find the correct FDE. */
1009 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1010 gdb_assert (fde != NULL);
1011
1012 /* Allocate and initialize the frame state. */
1013 struct dwarf2_frame_state fs (pc1, fde->cie);
1014
1015 cache->addr_size = fde->cie->addr_size;
1016
1017 /* Check for "quirks" - known bugs in producers. */
1018 dwarf2_frame_find_quirks (&fs, fde);
1019
1020 /* First decode all the insns in the CIE. */
1021 execute_cfa_program (fde, fde->cie->initial_instructions,
1022 fde->cie->end, gdbarch,
1023 get_frame_address_in_block (this_frame), &fs);
1024
1025 /* Save the initialized register set. */
1026 fs.initial = fs.regs;
1027
1028 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1029 in an address that's within the range of FDE locations. This
1030 is due to the possibility of the function occupying non-contiguous
1031 ranges. */
1032 if (get_frame_func_if_available (this_frame, &entry_pc)
1033 && fde->initial_location <= entry_pc
1034 && entry_pc < fde->initial_location + fde->address_range)
1035 {
1036 /* Decode the insns in the FDE up to the entry PC. */
1037 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1038 entry_pc, &fs);
1039
1040 if (fs.regs.cfa_how == CFA_REG_OFFSET
1041 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1042 == gdbarch_sp_regnum (gdbarch)))
1043 {
1044 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1045 cache->entry_cfa_sp_offset_p = 1;
1046 }
1047 }
1048 else
1049 instr = fde->instructions;
1050
1051 /* Then decode the insns in the FDE up to our target PC. */
1052 execute_cfa_program (fde, instr, fde->end, gdbarch,
1053 get_frame_address_in_block (this_frame), &fs);
1054
1055 try
1056 {
1057 /* Calculate the CFA. */
1058 switch (fs.regs.cfa_how)
1059 {
1060 case CFA_REG_OFFSET:
1061 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1062 if (fs.armcc_cfa_offsets_reversed)
1063 cache->cfa -= fs.regs.cfa_offset;
1064 else
1065 cache->cfa += fs.regs.cfa_offset;
1066 break;
1067
1068 case CFA_EXP:
1069 cache->cfa =
1070 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1071 cache->addr_size, cache->text_offset,
1072 this_frame, 0, 0);
1073 break;
1074
1075 default:
1076 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1077 }
1078 }
1079 catch (const gdb_exception_error &ex)
1080 {
1081 if (ex.error == NOT_AVAILABLE_ERROR)
1082 {
1083 cache->unavailable_retaddr = 1;
1084 return cache;
1085 }
1086
1087 throw;
1088 }
1089
1090 /* Initialize the register state. */
1091 {
1092 int regnum;
1093
1094 for (regnum = 0; regnum < num_regs; regnum++)
1095 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1096 }
1097
1098 /* Go through the DWARF2 CFI generated table and save its register
1099 location information in the cache. Note that we don't skip the
1100 return address column; it's perfectly all right for it to
1101 correspond to a real register. */
1102 {
1103 int column; /* CFI speak for "register number". */
1104
1105 for (column = 0; column < fs.regs.reg.size (); column++)
1106 {
1107 /* Use the GDB register number as the destination index. */
1108 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1109
1110 /* Protect against a target returning a bad register. */
1111 if (regnum < 0 || regnum >= num_regs)
1112 continue;
1113
1114 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1115 of all debug info registers. If it doesn't, complain (but
1116 not too loudly). It turns out that GCC assumes that an
1117 unspecified register implies "same value" when CFI (draft
1118 7) specifies nothing at all. Such a register could equally
1119 be interpreted as "undefined". Also note that this check
1120 isn't sufficient; it only checks that all registers in the
1121 range [0 .. max column] are specified, and won't detect
1122 problems when a debug info register falls outside of the
1123 table. We need a way of iterating through all the valid
1124 DWARF2 register numbers. */
1125 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1126 {
1127 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1128 complaint (_("\
1129 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1130 gdbarch_register_name (gdbarch, regnum),
1131 paddress (gdbarch, fs.pc));
1132 }
1133 else
1134 cache->reg[regnum] = fs.regs.reg[column];
1135 }
1136 }
1137
1138 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1139 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1140 {
1141 int regnum;
1142
1143 for (regnum = 0; regnum < num_regs; regnum++)
1144 {
1145 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1146 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1147 {
1148 const std::vector<struct dwarf2_frame_state_reg> &regs
1149 = fs.regs.reg;
1150 ULONGEST retaddr_column = fs.retaddr_column;
1151
1152 /* It seems rather bizarre to specify an "empty" column as
1153 the return adress column. However, this is exactly
1154 what GCC does on some targets. It turns out that GCC
1155 assumes that the return address can be found in the
1156 register corresponding to the return address column.
1157 Incidentally, that's how we should treat a return
1158 address column specifying "same value" too. */
1159 if (fs.retaddr_column < fs.regs.reg.size ()
1160 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1161 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1162 {
1163 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1164 cache->reg[regnum] = regs[retaddr_column];
1165 else
1166 cache->retaddr_reg = regs[retaddr_column];
1167 }
1168 else
1169 {
1170 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1171 {
1172 cache->reg[regnum].loc.reg = fs.retaddr_column;
1173 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1174 }
1175 else
1176 {
1177 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1178 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1179 }
1180 }
1181 }
1182 }
1183 }
1184
1185 if (fs.retaddr_column < fs.regs.reg.size ()
1186 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1187 cache->undefined_retaddr = 1;
1188
1189 return cache;
1190 }
1191
1192 static enum unwind_stop_reason
1193 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1194 void **this_cache)
1195 {
1196 struct dwarf2_frame_cache *cache
1197 = dwarf2_frame_cache (this_frame, this_cache);
1198
1199 if (cache->unavailable_retaddr)
1200 return UNWIND_UNAVAILABLE;
1201
1202 if (cache->undefined_retaddr)
1203 return UNWIND_OUTERMOST;
1204
1205 return UNWIND_NO_REASON;
1206 }
1207
1208 static void
1209 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1210 struct frame_id *this_id)
1211 {
1212 struct dwarf2_frame_cache *cache =
1213 dwarf2_frame_cache (this_frame, this_cache);
1214
1215 if (cache->unavailable_retaddr)
1216 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1217 else if (cache->undefined_retaddr)
1218 return;
1219 else
1220 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1221 }
1222
1223 static struct value *
1224 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1225 int regnum)
1226 {
1227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1228 struct dwarf2_frame_cache *cache =
1229 dwarf2_frame_cache (this_frame, this_cache);
1230 CORE_ADDR addr;
1231 int realnum;
1232
1233 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1234 call frame chain. */
1235 if (!cache->checked_tailcall_bottom)
1236 {
1237 cache->checked_tailcall_bottom = 1;
1238 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1239 (cache->entry_cfa_sp_offset_p
1240 ? &cache->entry_cfa_sp_offset : NULL));
1241 }
1242
1243 /* Non-bottom frames of a virtual tail call frames chain use
1244 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1245 them. If dwarf2_tailcall_prev_register_first does not have specific value
1246 unwind the register, tail call frames are assumed to have the register set
1247 of the top caller. */
1248 if (cache->tailcall_cache)
1249 {
1250 struct value *val;
1251
1252 val = dwarf2_tailcall_prev_register_first (this_frame,
1253 &cache->tailcall_cache,
1254 regnum);
1255 if (val)
1256 return val;
1257 }
1258
1259 switch (cache->reg[regnum].how)
1260 {
1261 case DWARF2_FRAME_REG_UNDEFINED:
1262 /* If CFI explicitly specified that the value isn't defined,
1263 mark it as optimized away; the value isn't available. */
1264 return frame_unwind_got_optimized (this_frame, regnum);
1265
1266 case DWARF2_FRAME_REG_SAVED_OFFSET:
1267 addr = cache->cfa + cache->reg[regnum].loc.offset;
1268 return frame_unwind_got_memory (this_frame, regnum, addr);
1269
1270 case DWARF2_FRAME_REG_SAVED_REG:
1271 realnum = dwarf_reg_to_regnum_or_error
1272 (gdbarch, cache->reg[regnum].loc.reg);
1273 return frame_unwind_got_register (this_frame, regnum, realnum);
1274
1275 case DWARF2_FRAME_REG_SAVED_EXP:
1276 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1277 cache->reg[regnum].loc.exp.len,
1278 cache->addr_size, cache->text_offset,
1279 this_frame, cache->cfa, 1);
1280 return frame_unwind_got_memory (this_frame, regnum, addr);
1281
1282 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1283 addr = cache->cfa + cache->reg[regnum].loc.offset;
1284 return frame_unwind_got_constant (this_frame, regnum, addr);
1285
1286 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1287 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1288 cache->reg[regnum].loc.exp.len,
1289 cache->addr_size, cache->text_offset,
1290 this_frame, cache->cfa, 1);
1291 return frame_unwind_got_constant (this_frame, regnum, addr);
1292
1293 case DWARF2_FRAME_REG_UNSPECIFIED:
1294 /* GCC, in its infinite wisdom decided to not provide unwind
1295 information for registers that are "same value". Since
1296 DWARF2 (3 draft 7) doesn't define such behavior, said
1297 registers are actually undefined (which is different to CFI
1298 "undefined"). Code above issues a complaint about this.
1299 Here just fudge the books, assume GCC, and that the value is
1300 more inner on the stack. */
1301 return frame_unwind_got_register (this_frame, regnum, regnum);
1302
1303 case DWARF2_FRAME_REG_SAME_VALUE:
1304 return frame_unwind_got_register (this_frame, regnum, regnum);
1305
1306 case DWARF2_FRAME_REG_CFA:
1307 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1308
1309 case DWARF2_FRAME_REG_CFA_OFFSET:
1310 addr = cache->cfa + cache->reg[regnum].loc.offset;
1311 return frame_unwind_got_address (this_frame, regnum, addr);
1312
1313 case DWARF2_FRAME_REG_RA_OFFSET:
1314 addr = cache->reg[regnum].loc.offset;
1315 regnum = dwarf_reg_to_regnum_or_error
1316 (gdbarch, cache->retaddr_reg.loc.reg);
1317 addr += get_frame_register_unsigned (this_frame, regnum);
1318 return frame_unwind_got_address (this_frame, regnum, addr);
1319
1320 case DWARF2_FRAME_REG_FN:
1321 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1322
1323 default:
1324 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1325 }
1326 }
1327
1328 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1329 call frames chain. */
1330
1331 static void
1332 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1333 {
1334 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1335
1336 if (cache->tailcall_cache)
1337 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1338 }
1339
1340 static int
1341 dwarf2_frame_sniffer (const struct frame_unwind *self,
1342 struct frame_info *this_frame, void **this_cache)
1343 {
1344 if (!dwarf2_frame_unwinders_enabled_p)
1345 return 0;
1346
1347 /* Grab an address that is guaranteed to reside somewhere within the
1348 function. get_frame_pc(), with a no-return next function, can
1349 end up returning something past the end of this function's body.
1350 If the frame we're sniffing for is a signal frame whose start
1351 address is placed on the stack by the OS, its FDE must
1352 extend one byte before its start address or we could potentially
1353 select the FDE of the previous function. */
1354 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1355 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1356
1357 if (!fde)
1358 return 0;
1359
1360 /* On some targets, signal trampolines may have unwind information.
1361 We need to recognize them so that we set the frame type
1362 correctly. */
1363
1364 if (fde->cie->signal_frame
1365 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1366 this_frame))
1367 return self->type == SIGTRAMP_FRAME;
1368
1369 if (self->type != NORMAL_FRAME)
1370 return 0;
1371
1372 return 1;
1373 }
1374
1375 static const struct frame_unwind dwarf2_frame_unwind =
1376 {
1377 NORMAL_FRAME,
1378 dwarf2_frame_unwind_stop_reason,
1379 dwarf2_frame_this_id,
1380 dwarf2_frame_prev_register,
1381 NULL,
1382 dwarf2_frame_sniffer,
1383 dwarf2_frame_dealloc_cache
1384 };
1385
1386 static const struct frame_unwind dwarf2_signal_frame_unwind =
1387 {
1388 SIGTRAMP_FRAME,
1389 dwarf2_frame_unwind_stop_reason,
1390 dwarf2_frame_this_id,
1391 dwarf2_frame_prev_register,
1392 NULL,
1393 dwarf2_frame_sniffer,
1394
1395 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1396 NULL
1397 };
1398
1399 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1400
1401 void
1402 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1403 {
1404 /* TAILCALL_FRAME must be first to find the record by
1405 dwarf2_tailcall_sniffer_first. */
1406 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1407
1408 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1409 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1410 }
1411 \f
1412
1413 /* There is no explicitly defined relationship between the CFA and the
1414 location of frame's local variables and arguments/parameters.
1415 Therefore, frame base methods on this page should probably only be
1416 used as a last resort, just to avoid printing total garbage as a
1417 response to the "info frame" command. */
1418
1419 static CORE_ADDR
1420 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1421 {
1422 struct dwarf2_frame_cache *cache =
1423 dwarf2_frame_cache (this_frame, this_cache);
1424
1425 return cache->cfa;
1426 }
1427
1428 static const struct frame_base dwarf2_frame_base =
1429 {
1430 &dwarf2_frame_unwind,
1431 dwarf2_frame_base_address,
1432 dwarf2_frame_base_address,
1433 dwarf2_frame_base_address
1434 };
1435
1436 const struct frame_base *
1437 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1438 {
1439 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1440
1441 if (dwarf2_frame_find_fde (&block_addr, NULL))
1442 return &dwarf2_frame_base;
1443
1444 return NULL;
1445 }
1446
1447 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1448 the DWARF unwinder. This is used to implement
1449 DW_OP_call_frame_cfa. */
1450
1451 CORE_ADDR
1452 dwarf2_frame_cfa (struct frame_info *this_frame)
1453 {
1454 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1455 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1456 throw_error (NOT_AVAILABLE_ERROR,
1457 _("cfa not available for record btrace target"));
1458
1459 while (get_frame_type (this_frame) == INLINE_FRAME)
1460 this_frame = get_prev_frame (this_frame);
1461 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1462 throw_error (NOT_AVAILABLE_ERROR,
1463 _("can't compute CFA for this frame: "
1464 "required registers or memory are unavailable"));
1465
1466 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1467 throw_error (NOT_AVAILABLE_ERROR,
1468 _("can't compute CFA for this frame: "
1469 "frame base not available"));
1470
1471 return get_frame_base (this_frame);
1472 }
1473 \f
1474 const struct objfile_key<dwarf2_fde_table,
1475 gdb::noop_deleter<dwarf2_fde_table>>
1476 dwarf2_frame_objfile_data;
1477
1478 static unsigned int
1479 read_1_byte (bfd *abfd, const gdb_byte *buf)
1480 {
1481 return bfd_get_8 (abfd, buf);
1482 }
1483
1484 static unsigned int
1485 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1486 {
1487 return bfd_get_32 (abfd, buf);
1488 }
1489
1490 static ULONGEST
1491 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1492 {
1493 return bfd_get_64 (abfd, buf);
1494 }
1495
1496 static ULONGEST
1497 read_initial_length (bfd *abfd, const gdb_byte *buf,
1498 unsigned int *bytes_read_ptr)
1499 {
1500 ULONGEST result;
1501
1502 result = bfd_get_32 (abfd, buf);
1503 if (result == 0xffffffff)
1504 {
1505 result = bfd_get_64 (abfd, buf + 4);
1506 *bytes_read_ptr = 12;
1507 }
1508 else
1509 *bytes_read_ptr = 4;
1510
1511 return result;
1512 }
1513 \f
1514
1515 /* Pointer encoding helper functions. */
1516
1517 /* GCC supports exception handling based on DWARF2 CFI. However, for
1518 technical reasons, it encodes addresses in its FDE's in a different
1519 way. Several "pointer encodings" are supported. The encoding
1520 that's used for a particular FDE is determined by the 'R'
1521 augmentation in the associated CIE. The argument of this
1522 augmentation is a single byte.
1523
1524 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1525 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1526 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1527 address should be interpreted (absolute, relative to the current
1528 position in the FDE, ...). Bit 7, indicates that the address
1529 should be dereferenced. */
1530
1531 static gdb_byte
1532 encoding_for_size (unsigned int size)
1533 {
1534 switch (size)
1535 {
1536 case 2:
1537 return DW_EH_PE_udata2;
1538 case 4:
1539 return DW_EH_PE_udata4;
1540 case 8:
1541 return DW_EH_PE_udata8;
1542 default:
1543 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1544 }
1545 }
1546
1547 static CORE_ADDR
1548 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1549 int ptr_len, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr,
1551 CORE_ADDR func_base)
1552 {
1553 ptrdiff_t offset;
1554 CORE_ADDR base;
1555
1556 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1557 FDE's. */
1558 if (encoding & DW_EH_PE_indirect)
1559 internal_error (__FILE__, __LINE__,
1560 _("Unsupported encoding: DW_EH_PE_indirect"));
1561
1562 *bytes_read_ptr = 0;
1563
1564 switch (encoding & 0x70)
1565 {
1566 case DW_EH_PE_absptr:
1567 base = 0;
1568 break;
1569 case DW_EH_PE_pcrel:
1570 base = bfd_section_vma (unit->dwarf_frame_section);
1571 base += (buf - unit->dwarf_frame_buffer);
1572 break;
1573 case DW_EH_PE_datarel:
1574 base = unit->dbase;
1575 break;
1576 case DW_EH_PE_textrel:
1577 base = unit->tbase;
1578 break;
1579 case DW_EH_PE_funcrel:
1580 base = func_base;
1581 break;
1582 case DW_EH_PE_aligned:
1583 base = 0;
1584 offset = buf - unit->dwarf_frame_buffer;
1585 if ((offset % ptr_len) != 0)
1586 {
1587 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1588 buf += *bytes_read_ptr;
1589 }
1590 break;
1591 default:
1592 internal_error (__FILE__, __LINE__,
1593 _("Invalid or unsupported encoding"));
1594 }
1595
1596 if ((encoding & 0x07) == 0x00)
1597 {
1598 encoding |= encoding_for_size (ptr_len);
1599 if (bfd_get_sign_extend_vma (unit->abfd))
1600 encoding |= DW_EH_PE_signed;
1601 }
1602
1603 switch (encoding & 0x0f)
1604 {
1605 case DW_EH_PE_uleb128:
1606 {
1607 uint64_t value;
1608 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1609
1610 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1611 return base + value;
1612 }
1613 case DW_EH_PE_udata2:
1614 *bytes_read_ptr += 2;
1615 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1616 case DW_EH_PE_udata4:
1617 *bytes_read_ptr += 4;
1618 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1619 case DW_EH_PE_udata8:
1620 *bytes_read_ptr += 8;
1621 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1622 case DW_EH_PE_sleb128:
1623 {
1624 int64_t value;
1625 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1626
1627 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1628 return base + value;
1629 }
1630 case DW_EH_PE_sdata2:
1631 *bytes_read_ptr += 2;
1632 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1633 case DW_EH_PE_sdata4:
1634 *bytes_read_ptr += 4;
1635 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1636 case DW_EH_PE_sdata8:
1637 *bytes_read_ptr += 8;
1638 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1639 default:
1640 internal_error (__FILE__, __LINE__,
1641 _("Invalid or unsupported encoding"));
1642 }
1643 }
1644 \f
1645
1646 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1647 static struct dwarf2_cie *
1648 find_cie (const dwarf2_cie_table &cie_table, ULONGEST cie_pointer)
1649 {
1650 auto iter = cie_table.find (cie_pointer);
1651 if (iter != cie_table.end ())
1652 return iter->second;
1653 return NULL;
1654 }
1655
1656 static inline int
1657 bsearch_fde_cmp (const dwarf2_fde *fde, CORE_ADDR seek_pc)
1658 {
1659 if (fde->initial_location + fde->address_range <= seek_pc)
1660 return -1;
1661 if (fde->initial_location <= seek_pc)
1662 return 0;
1663 return 1;
1664 }
1665
1666 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1667 initial location associated with it into *PC. */
1668
1669 static struct dwarf2_fde *
1670 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1671 {
1672 for (objfile *objfile : current_program_space->objfiles ())
1673 {
1674 struct dwarf2_fde_table *fde_table;
1675 CORE_ADDR offset;
1676 CORE_ADDR seek_pc;
1677
1678 fde_table = dwarf2_frame_objfile_data.get (objfile);
1679 if (fde_table == NULL)
1680 {
1681 dwarf2_build_frame_info (objfile);
1682 fde_table = dwarf2_frame_objfile_data.get (objfile);
1683 }
1684 gdb_assert (fde_table != NULL);
1685
1686 if (fde_table->num_entries == 0)
1687 continue;
1688
1689 gdb_assert (objfile->section_offsets);
1690 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1691
1692 gdb_assert (fde_table->num_entries > 0);
1693 if (*pc < offset + fde_table->entries[0]->initial_location)
1694 continue;
1695
1696 seek_pc = *pc - offset;
1697 auto end = fde_table->entries + fde_table->num_entries;
1698 auto it = gdb::binary_search (fde_table->entries, end, seek_pc, bsearch_fde_cmp);
1699 if (it != end)
1700 {
1701 *pc = (*it)->initial_location + offset;
1702 if (out_offset)
1703 *out_offset = offset;
1704 return *it;
1705 }
1706 }
1707 return NULL;
1708 }
1709
1710 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1711 static void
1712 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1713 {
1714 if (fde->address_range == 0)
1715 /* Discard useless FDEs. */
1716 return;
1717
1718 fde_table->num_entries += 1;
1719 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1720 fde_table->num_entries);
1721 fde_table->entries[fde_table->num_entries - 1] = fde;
1722 }
1723
1724 #define DW64_CIE_ID 0xffffffffffffffffULL
1725
1726 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1727 or any of them. */
1728
1729 enum eh_frame_type
1730 {
1731 EH_CIE_TYPE_ID = 1 << 0,
1732 EH_FDE_TYPE_ID = 1 << 1,
1733 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1734 };
1735
1736 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1737 const gdb_byte *start,
1738 int eh_frame_p,
1739 dwarf2_cie_table &cie_table,
1740 struct dwarf2_fde_table *fde_table,
1741 enum eh_frame_type entry_type);
1742
1743 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1744 Return NULL if invalid input, otherwise the next byte to be processed. */
1745
1746 static const gdb_byte *
1747 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1748 int eh_frame_p,
1749 dwarf2_cie_table &cie_table,
1750 struct dwarf2_fde_table *fde_table,
1751 enum eh_frame_type entry_type)
1752 {
1753 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1754 const gdb_byte *buf, *end;
1755 ULONGEST length;
1756 unsigned int bytes_read;
1757 int dwarf64_p;
1758 ULONGEST cie_id;
1759 ULONGEST cie_pointer;
1760 int64_t sleb128;
1761 uint64_t uleb128;
1762
1763 buf = start;
1764 length = read_initial_length (unit->abfd, buf, &bytes_read);
1765 buf += bytes_read;
1766 end = buf + (size_t) length;
1767
1768 if (length == 0)
1769 return end;
1770
1771 /* Are we still within the section? */
1772 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1773 return NULL;
1774
1775 /* Distinguish between 32 and 64-bit encoded frame info. */
1776 dwarf64_p = (bytes_read == 12);
1777
1778 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1779 if (eh_frame_p)
1780 cie_id = 0;
1781 else if (dwarf64_p)
1782 cie_id = DW64_CIE_ID;
1783 else
1784 cie_id = DW_CIE_ID;
1785
1786 if (dwarf64_p)
1787 {
1788 cie_pointer = read_8_bytes (unit->abfd, buf);
1789 buf += 8;
1790 }
1791 else
1792 {
1793 cie_pointer = read_4_bytes (unit->abfd, buf);
1794 buf += 4;
1795 }
1796
1797 if (cie_pointer == cie_id)
1798 {
1799 /* This is a CIE. */
1800 struct dwarf2_cie *cie;
1801 char *augmentation;
1802 unsigned int cie_version;
1803
1804 /* Check that a CIE was expected. */
1805 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1806 error (_("Found a CIE when not expecting it."));
1807
1808 /* Record the offset into the .debug_frame section of this CIE. */
1809 cie_pointer = start - unit->dwarf_frame_buffer;
1810
1811 /* Check whether we've already read it. */
1812 if (find_cie (cie_table, cie_pointer))
1813 return end;
1814
1815 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1816 cie->initial_instructions = NULL;
1817 cie->cie_pointer = cie_pointer;
1818
1819 /* The encoding for FDE's in a normal .debug_frame section
1820 depends on the target address size. */
1821 cie->encoding = DW_EH_PE_absptr;
1822
1823 /* We'll determine the final value later, but we need to
1824 initialize it conservatively. */
1825 cie->signal_frame = 0;
1826
1827 /* Check version number. */
1828 cie_version = read_1_byte (unit->abfd, buf);
1829 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1830 return NULL;
1831 cie->version = cie_version;
1832 buf += 1;
1833
1834 /* Interpret the interesting bits of the augmentation. */
1835 cie->augmentation = augmentation = (char *) buf;
1836 buf += (strlen (augmentation) + 1);
1837
1838 /* Ignore armcc augmentations. We only use them for quirks,
1839 and that doesn't happen until later. */
1840 if (startswith (augmentation, "armcc"))
1841 augmentation += strlen (augmentation);
1842
1843 /* The GCC 2.x "eh" augmentation has a pointer immediately
1844 following the augmentation string, so it must be handled
1845 first. */
1846 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1847 {
1848 /* Skip. */
1849 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1850 augmentation += 2;
1851 }
1852
1853 if (cie->version >= 4)
1854 {
1855 /* FIXME: check that this is the same as from the CU header. */
1856 cie->addr_size = read_1_byte (unit->abfd, buf);
1857 ++buf;
1858 cie->segment_size = read_1_byte (unit->abfd, buf);
1859 ++buf;
1860 }
1861 else
1862 {
1863 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1864 cie->segment_size = 0;
1865 }
1866 /* Address values in .eh_frame sections are defined to have the
1867 target's pointer size. Watchout: This breaks frame info for
1868 targets with pointer size < address size, unless a .debug_frame
1869 section exists as well. */
1870 if (eh_frame_p)
1871 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1872 else
1873 cie->ptr_size = cie->addr_size;
1874
1875 buf = gdb_read_uleb128 (buf, end, &uleb128);
1876 if (buf == NULL)
1877 return NULL;
1878 cie->code_alignment_factor = uleb128;
1879
1880 buf = gdb_read_sleb128 (buf, end, &sleb128);
1881 if (buf == NULL)
1882 return NULL;
1883 cie->data_alignment_factor = sleb128;
1884
1885 if (cie_version == 1)
1886 {
1887 cie->return_address_register = read_1_byte (unit->abfd, buf);
1888 ++buf;
1889 }
1890 else
1891 {
1892 buf = gdb_read_uleb128 (buf, end, &uleb128);
1893 if (buf == NULL)
1894 return NULL;
1895 cie->return_address_register = uleb128;
1896 }
1897
1898 cie->return_address_register
1899 = dwarf2_frame_adjust_regnum (gdbarch,
1900 cie->return_address_register,
1901 eh_frame_p);
1902
1903 cie->saw_z_augmentation = (*augmentation == 'z');
1904 if (cie->saw_z_augmentation)
1905 {
1906 uint64_t uleb_length;
1907
1908 buf = gdb_read_uleb128 (buf, end, &uleb_length);
1909 if (buf == NULL)
1910 return NULL;
1911 cie->initial_instructions = buf + uleb_length;
1912 augmentation++;
1913 }
1914
1915 while (*augmentation)
1916 {
1917 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1918 if (*augmentation == 'L')
1919 {
1920 /* Skip. */
1921 buf++;
1922 augmentation++;
1923 }
1924
1925 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1926 else if (*augmentation == 'R')
1927 {
1928 cie->encoding = *buf++;
1929 augmentation++;
1930 }
1931
1932 /* "P" indicates a personality routine in the CIE augmentation. */
1933 else if (*augmentation == 'P')
1934 {
1935 /* Skip. Avoid indirection since we throw away the result. */
1936 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1937 read_encoded_value (unit, encoding, cie->ptr_size,
1938 buf, &bytes_read, 0);
1939 buf += bytes_read;
1940 augmentation++;
1941 }
1942
1943 /* "S" indicates a signal frame, such that the return
1944 address must not be decremented to locate the call frame
1945 info for the previous frame; it might even be the first
1946 instruction of a function, so decrementing it would take
1947 us to a different function. */
1948 else if (*augmentation == 'S')
1949 {
1950 cie->signal_frame = 1;
1951 augmentation++;
1952 }
1953
1954 /* Otherwise we have an unknown augmentation. Assume that either
1955 there is no augmentation data, or we saw a 'z' prefix. */
1956 else
1957 {
1958 if (cie->initial_instructions)
1959 buf = cie->initial_instructions;
1960 break;
1961 }
1962 }
1963
1964 cie->initial_instructions = buf;
1965 cie->end = end;
1966 cie->unit = unit;
1967
1968 cie_table[cie->cie_pointer] = cie;
1969 }
1970 else
1971 {
1972 /* This is a FDE. */
1973 struct dwarf2_fde *fde;
1974 CORE_ADDR addr;
1975
1976 /* Check that an FDE was expected. */
1977 if ((entry_type & EH_FDE_TYPE_ID) == 0)
1978 error (_("Found an FDE when not expecting it."));
1979
1980 /* In an .eh_frame section, the CIE pointer is the delta between the
1981 address within the FDE where the CIE pointer is stored and the
1982 address of the CIE. Convert it to an offset into the .eh_frame
1983 section. */
1984 if (eh_frame_p)
1985 {
1986 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1987 cie_pointer -= (dwarf64_p ? 8 : 4);
1988 }
1989
1990 /* In either case, validate the result is still within the section. */
1991 if (cie_pointer >= unit->dwarf_frame_size)
1992 return NULL;
1993
1994 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
1995 fde->cie = find_cie (cie_table, cie_pointer);
1996 if (fde->cie == NULL)
1997 {
1998 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1999 eh_frame_p, cie_table, fde_table,
2000 EH_CIE_TYPE_ID);
2001 fde->cie = find_cie (cie_table, cie_pointer);
2002 }
2003
2004 gdb_assert (fde->cie != NULL);
2005
2006 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2007 buf, &bytes_read, 0);
2008 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2009 buf += bytes_read;
2010
2011 fde->address_range =
2012 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2013 fde->cie->ptr_size, buf, &bytes_read, 0);
2014 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2015 fde->address_range = addr - fde->initial_location;
2016 buf += bytes_read;
2017
2018 /* A 'z' augmentation in the CIE implies the presence of an
2019 augmentation field in the FDE as well. The only thing known
2020 to be in here at present is the LSDA entry for EH. So we
2021 can skip the whole thing. */
2022 if (fde->cie->saw_z_augmentation)
2023 {
2024 uint64_t uleb_length;
2025
2026 buf = gdb_read_uleb128 (buf, end, &uleb_length);
2027 if (buf == NULL)
2028 return NULL;
2029 buf += uleb_length;
2030 if (buf > end)
2031 return NULL;
2032 }
2033
2034 fde->instructions = buf;
2035 fde->end = end;
2036
2037 fde->eh_frame_p = eh_frame_p;
2038
2039 add_fde (fde_table, fde);
2040 }
2041
2042 return end;
2043 }
2044
2045 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2046 expect an FDE or a CIE. */
2047
2048 static const gdb_byte *
2049 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2050 int eh_frame_p,
2051 dwarf2_cie_table &cie_table,
2052 struct dwarf2_fde_table *fde_table,
2053 enum eh_frame_type entry_type)
2054 {
2055 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2056 const gdb_byte *ret;
2057 ptrdiff_t start_offset;
2058
2059 while (1)
2060 {
2061 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2062 cie_table, fde_table, entry_type);
2063 if (ret != NULL)
2064 break;
2065
2066 /* We have corrupt input data of some form. */
2067
2068 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2069 and mismatches wrt padding and alignment of debug sections. */
2070 /* Note that there is no requirement in the standard for any
2071 alignment at all in the frame unwind sections. Testing for
2072 alignment before trying to interpret data would be incorrect.
2073
2074 However, GCC traditionally arranged for frame sections to be
2075 sized such that the FDE length and CIE fields happen to be
2076 aligned (in theory, for performance). This, unfortunately,
2077 was done with .align directives, which had the side effect of
2078 forcing the section to be aligned by the linker.
2079
2080 This becomes a problem when you have some other producer that
2081 creates frame sections that are not as strictly aligned. That
2082 produces a hole in the frame info that gets filled by the
2083 linker with zeros.
2084
2085 The GCC behaviour is arguably a bug, but it's effectively now
2086 part of the ABI, so we're now stuck with it, at least at the
2087 object file level. A smart linker may decide, in the process
2088 of compressing duplicate CIE information, that it can rewrite
2089 the entire output section without this extra padding. */
2090
2091 start_offset = start - unit->dwarf_frame_buffer;
2092 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2093 {
2094 start += 4 - (start_offset & 3);
2095 workaround = ALIGN4;
2096 continue;
2097 }
2098 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2099 {
2100 start += 8 - (start_offset & 7);
2101 workaround = ALIGN8;
2102 continue;
2103 }
2104
2105 /* Nothing left to try. Arrange to return as if we've consumed
2106 the entire input section. Hopefully we'll get valid info from
2107 the other of .debug_frame/.eh_frame. */
2108 workaround = FAIL;
2109 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2110 break;
2111 }
2112
2113 switch (workaround)
2114 {
2115 case NONE:
2116 break;
2117
2118 case ALIGN4:
2119 complaint (_("\
2120 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2121 unit->dwarf_frame_section->owner->filename,
2122 unit->dwarf_frame_section->name);
2123 break;
2124
2125 case ALIGN8:
2126 complaint (_("\
2127 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2128 unit->dwarf_frame_section->owner->filename,
2129 unit->dwarf_frame_section->name);
2130 break;
2131
2132 default:
2133 complaint (_("Corrupt data in %s:%s"),
2134 unit->dwarf_frame_section->owner->filename,
2135 unit->dwarf_frame_section->name);
2136 break;
2137 }
2138
2139 return ret;
2140 }
2141 \f
2142 static bool
2143 fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb)
2144 {
2145 if (aa->initial_location == bb->initial_location)
2146 {
2147 if (aa->address_range != bb->address_range
2148 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2149 /* Linker bug, e.g. gold/10400.
2150 Work around it by keeping stable sort order. */
2151 return aa < bb;
2152 else
2153 /* Put eh_frame entries after debug_frame ones. */
2154 return aa->eh_frame_p < bb->eh_frame_p;
2155 }
2156
2157 return aa->initial_location < bb->initial_location;
2158 }
2159
2160 void
2161 dwarf2_build_frame_info (struct objfile *objfile)
2162 {
2163 struct comp_unit *unit;
2164 const gdb_byte *frame_ptr;
2165 dwarf2_cie_table cie_table;
2166 struct dwarf2_fde_table fde_table;
2167 struct dwarf2_fde_table *fde_table2;
2168
2169 fde_table.num_entries = 0;
2170 fde_table.entries = NULL;
2171
2172 /* Build a minimal decoding of the DWARF2 compilation unit. */
2173 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
2174 unit->abfd = objfile->obfd;
2175 unit->objfile = objfile;
2176 unit->dbase = 0;
2177 unit->tbase = 0;
2178
2179 if (objfile->separate_debug_objfile_backlink == NULL)
2180 {
2181 /* Do not read .eh_frame from separate file as they must be also
2182 present in the main file. */
2183 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2184 &unit->dwarf_frame_section,
2185 &unit->dwarf_frame_buffer,
2186 &unit->dwarf_frame_size);
2187 if (unit->dwarf_frame_size)
2188 {
2189 asection *got, *txt;
2190
2191 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2192 that is used for the i386/amd64 target, which currently is
2193 the only target in GCC that supports/uses the
2194 DW_EH_PE_datarel encoding. */
2195 got = bfd_get_section_by_name (unit->abfd, ".got");
2196 if (got)
2197 unit->dbase = got->vma;
2198
2199 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2200 so far. */
2201 txt = bfd_get_section_by_name (unit->abfd, ".text");
2202 if (txt)
2203 unit->tbase = txt->vma;
2204
2205 try
2206 {
2207 frame_ptr = unit->dwarf_frame_buffer;
2208 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2209 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2210 cie_table, &fde_table,
2211 EH_CIE_OR_FDE_TYPE_ID);
2212 }
2213
2214 catch (const gdb_exception_error &e)
2215 {
2216 warning (_("skipping .eh_frame info of %s: %s"),
2217 objfile_name (objfile), e.what ());
2218
2219 if (fde_table.num_entries != 0)
2220 {
2221 xfree (fde_table.entries);
2222 fde_table.entries = NULL;
2223 fde_table.num_entries = 0;
2224 }
2225 /* The cie_table is discarded below. */
2226 }
2227
2228 cie_table.clear ();
2229 }
2230 }
2231
2232 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2233 &unit->dwarf_frame_section,
2234 &unit->dwarf_frame_buffer,
2235 &unit->dwarf_frame_size);
2236 if (unit->dwarf_frame_size)
2237 {
2238 int num_old_fde_entries = fde_table.num_entries;
2239
2240 try
2241 {
2242 frame_ptr = unit->dwarf_frame_buffer;
2243 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2244 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2245 cie_table, &fde_table,
2246 EH_CIE_OR_FDE_TYPE_ID);
2247 }
2248 catch (const gdb_exception_error &e)
2249 {
2250 warning (_("skipping .debug_frame info of %s: %s"),
2251 objfile_name (objfile), e.what ());
2252
2253 if (fde_table.num_entries != 0)
2254 {
2255 fde_table.num_entries = num_old_fde_entries;
2256 if (num_old_fde_entries == 0)
2257 {
2258 xfree (fde_table.entries);
2259 fde_table.entries = NULL;
2260 }
2261 else
2262 {
2263 fde_table.entries
2264 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2265 fde_table.num_entries);
2266 }
2267 }
2268 fde_table.num_entries = num_old_fde_entries;
2269 }
2270 }
2271
2272 /* Copy fde_table to obstack: it is needed at runtime. */
2273 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2274
2275 if (fde_table.num_entries == 0)
2276 {
2277 fde_table2->entries = NULL;
2278 fde_table2->num_entries = 0;
2279 }
2280 else
2281 {
2282 struct dwarf2_fde *fde_prev = NULL;
2283 struct dwarf2_fde *first_non_zero_fde = NULL;
2284 int i;
2285
2286 /* Prepare FDE table for lookups. */
2287 std::sort (fde_table.entries, fde_table.entries + fde_table.num_entries,
2288 fde_is_less_than);
2289
2290 /* Check for leftovers from --gc-sections. The GNU linker sets
2291 the relevant symbols to zero, but doesn't zero the FDE *end*
2292 ranges because there's no relocation there. It's (offset,
2293 length), not (start, end). On targets where address zero is
2294 just another valid address this can be a problem, since the
2295 FDEs appear to be non-empty in the output --- we could pick
2296 out the wrong FDE. To work around this, when overlaps are
2297 detected, we prefer FDEs that do not start at zero.
2298
2299 Start by finding the first FDE with non-zero start. Below
2300 we'll discard all FDEs that start at zero and overlap this
2301 one. */
2302 for (i = 0; i < fde_table.num_entries; i++)
2303 {
2304 struct dwarf2_fde *fde = fde_table.entries[i];
2305
2306 if (fde->initial_location != 0)
2307 {
2308 first_non_zero_fde = fde;
2309 break;
2310 }
2311 }
2312
2313 /* Since we'll be doing bsearch, squeeze out identical (except
2314 for eh_frame_p) fde entries so bsearch result is predictable.
2315 Also discard leftovers from --gc-sections. */
2316 fde_table2->num_entries = 0;
2317 for (i = 0; i < fde_table.num_entries; i++)
2318 {
2319 struct dwarf2_fde *fde = fde_table.entries[i];
2320
2321 if (fde->initial_location == 0
2322 && first_non_zero_fde != NULL
2323 && (first_non_zero_fde->initial_location
2324 < fde->initial_location + fde->address_range))
2325 continue;
2326
2327 if (fde_prev != NULL
2328 && fde_prev->initial_location == fde->initial_location)
2329 continue;
2330
2331 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2332 sizeof (fde_table.entries[0]));
2333 ++fde_table2->num_entries;
2334 fde_prev = fde;
2335 }
2336 fde_table2->entries
2337 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2338
2339 /* Discard the original fde_table. */
2340 xfree (fde_table.entries);
2341 }
2342
2343 dwarf2_frame_objfile_data.set (objfile, fde_table2);
2344 }
2345
2346 /* Handle 'maintenance show dwarf unwinders'. */
2347
2348 static void
2349 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2350 struct cmd_list_element *c,
2351 const char *value)
2352 {
2353 fprintf_filtered (file,
2354 _("The DWARF stack unwinders are currently %s.\n"),
2355 value);
2356 }
2357
2358 void
2359 _initialize_dwarf2_frame (void)
2360 {
2361 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2362
2363 add_setshow_boolean_cmd ("unwinders", class_obscure,
2364 &dwarf2_frame_unwinders_enabled_p , _("\
2365 Set whether the DWARF stack frame unwinders are used."), _("\
2366 Show whether the DWARF stack frame unwinders are used."), _("\
2367 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2368 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2369 architecture that doesn't support them will have no effect."),
2370 NULL,
2371 show_dwarf_unwinders_enabled_p,
2372 &set_dwarf_cmdlist,
2373 &show_dwarf_cmdlist);
2374
2375 #if GDB_SELF_TEST
2376 selftests::register_test_foreach_arch ("execute_cfa_program",
2377 selftests::execute_cfa_program_test);
2378 #endif
2379 }
This page took 0.078866 seconds and 4 git commands to generate.