2007-10-08 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "elf/dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40
41 /* Call Frame Information (CFI). */
42
43 /* Common Information Entry (CIE). */
44
45 struct dwarf2_cie
46 {
47 /* Offset into the .debug_frame section where this CIE was found.
48 Used to identify this CIE. */
49 ULONGEST cie_pointer;
50
51 /* Constant that is factored out of all advance location
52 instructions. */
53 ULONGEST code_alignment_factor;
54
55 /* Constants that is factored out of all offset instructions. */
56 LONGEST data_alignment_factor;
57
58 /* Return address column. */
59 ULONGEST return_address_register;
60
61 /* Instruction sequence to initialize a register set. */
62 gdb_byte *initial_instructions;
63 gdb_byte *end;
64
65 /* Saved augmentation, in case it's needed later. */
66 char *augmentation;
67
68 /* Encoding of addresses. */
69 gdb_byte encoding;
70
71 /* True if a 'z' augmentation existed. */
72 unsigned char saw_z_augmentation;
73
74 /* True if an 'S' augmentation existed. */
75 unsigned char signal_frame;
76
77 /* The version recorded in the CIE. */
78 unsigned char version;
79
80 struct dwarf2_cie *next;
81 };
82
83 /* Frame Description Entry (FDE). */
84
85 struct dwarf2_fde
86 {
87 /* CIE for this FDE. */
88 struct dwarf2_cie *cie;
89
90 /* First location associated with this FDE. */
91 CORE_ADDR initial_location;
92
93 /* Number of bytes of program instructions described by this FDE. */
94 CORE_ADDR address_range;
95
96 /* Instruction sequence. */
97 gdb_byte *instructions;
98 gdb_byte *end;
99
100 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
101 section. */
102 unsigned char eh_frame_p;
103
104 struct dwarf2_fde *next;
105 };
106
107 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
108
109 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
110 int eh_frame_p);
111 \f
112
113 /* Structure describing a frame state. */
114
115 struct dwarf2_frame_state
116 {
117 /* Each register save state can be described in terms of a CFA slot,
118 another register, or a location expression. */
119 struct dwarf2_frame_state_reg_info
120 {
121 struct dwarf2_frame_state_reg *reg;
122 int num_regs;
123
124 /* Used to implement DW_CFA_remember_state. */
125 struct dwarf2_frame_state_reg_info *prev;
126 } regs;
127
128 LONGEST cfa_offset;
129 ULONGEST cfa_reg;
130 gdb_byte *cfa_exp;
131 enum {
132 CFA_UNSET,
133 CFA_REG_OFFSET,
134 CFA_EXP
135 } cfa_how;
136
137 /* The PC described by the current frame state. */
138 CORE_ADDR pc;
139
140 /* Initial register set from the CIE.
141 Used to implement DW_CFA_restore. */
142 struct dwarf2_frame_state_reg_info initial;
143
144 /* The information we care about from the CIE. */
145 LONGEST data_align;
146 ULONGEST code_align;
147 ULONGEST retaddr_column;
148
149 /* Flags for known producer quirks. */
150
151 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
152 and DW_CFA_def_cfa_offset takes a factored offset. */
153 int armcc_cfa_offsets_sf;
154
155 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
156 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
157 int armcc_cfa_offsets_reversed;
158 };
159
160 /* Store the length the expression for the CFA in the `cfa_reg' field,
161 which is unused in that case. */
162 #define cfa_exp_len cfa_reg
163
164 /* Assert that the register set RS is large enough to store gdbarch_num_regs
165 columns. If necessary, enlarge the register set. */
166
167 static void
168 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
169 int num_regs)
170 {
171 size_t size = sizeof (struct dwarf2_frame_state_reg);
172
173 if (num_regs <= rs->num_regs)
174 return;
175
176 rs->reg = (struct dwarf2_frame_state_reg *)
177 xrealloc (rs->reg, num_regs * size);
178
179 /* Initialize newly allocated registers. */
180 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
181 rs->num_regs = num_regs;
182 }
183
184 /* Copy the register columns in register set RS into newly allocated
185 memory and return a pointer to this newly created copy. */
186
187 static struct dwarf2_frame_state_reg *
188 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
189 {
190 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
191 struct dwarf2_frame_state_reg *reg;
192
193 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
194 memcpy (reg, rs->reg, size);
195
196 return reg;
197 }
198
199 /* Release the memory allocated to register set RS. */
200
201 static void
202 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
203 {
204 if (rs)
205 {
206 dwarf2_frame_state_free_regs (rs->prev);
207
208 xfree (rs->reg);
209 xfree (rs);
210 }
211 }
212
213 /* Release the memory allocated to the frame state FS. */
214
215 static void
216 dwarf2_frame_state_free (void *p)
217 {
218 struct dwarf2_frame_state *fs = p;
219
220 dwarf2_frame_state_free_regs (fs->initial.prev);
221 dwarf2_frame_state_free_regs (fs->regs.prev);
222 xfree (fs->initial.reg);
223 xfree (fs->regs.reg);
224 xfree (fs);
225 }
226 \f
227
228 /* Helper functions for execute_stack_op. */
229
230 static CORE_ADDR
231 read_reg (void *baton, int reg)
232 {
233 struct frame_info *next_frame = (struct frame_info *) baton;
234 struct gdbarch *gdbarch = get_frame_arch (next_frame);
235 int regnum;
236 gdb_byte *buf;
237
238 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
239
240 buf = alloca (register_size (gdbarch, regnum));
241 frame_unwind_register (next_frame, regnum, buf);
242
243 /* Convert the register to an integer. This returns a LONGEST
244 rather than a CORE_ADDR, but unpack_pointer does the same thing
245 under the covers, and this makes more sense for non-pointer
246 registers. Maybe read_reg and the associated interfaces should
247 deal with "struct value" instead of CORE_ADDR. */
248 return unpack_long (register_type (gdbarch, regnum), buf);
249 }
250
251 static void
252 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
253 {
254 read_memory (addr, buf, len);
255 }
256
257 static void
258 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
259 {
260 internal_error (__FILE__, __LINE__,
261 _("Support for DW_OP_fbreg is unimplemented"));
262 }
263
264 static CORE_ADDR
265 no_get_tls_address (void *baton, CORE_ADDR offset)
266 {
267 internal_error (__FILE__, __LINE__,
268 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
269 }
270
271 static CORE_ADDR
272 execute_stack_op (gdb_byte *exp, ULONGEST len,
273 struct frame_info *next_frame, CORE_ADDR initial)
274 {
275 struct dwarf_expr_context *ctx;
276 CORE_ADDR result;
277
278 ctx = new_dwarf_expr_context ();
279 ctx->baton = next_frame;
280 ctx->read_reg = read_reg;
281 ctx->read_mem = read_mem;
282 ctx->get_frame_base = no_get_frame_base;
283 ctx->get_tls_address = no_get_tls_address;
284
285 dwarf_expr_push (ctx, initial);
286 dwarf_expr_eval (ctx, exp, len);
287 result = dwarf_expr_fetch (ctx, 0);
288
289 if (ctx->in_reg)
290 result = read_reg (next_frame, result);
291
292 free_dwarf_expr_context (ctx);
293
294 return result;
295 }
296 \f
297
298 static void
299 execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
300 struct frame_info *next_frame,
301 struct dwarf2_frame_state *fs, int eh_frame_p)
302 {
303 CORE_ADDR pc = frame_pc_unwind (next_frame);
304 int bytes_read;
305 struct gdbarch *gdbarch = get_frame_arch (next_frame);
306
307 while (insn_ptr < insn_end && fs->pc <= pc)
308 {
309 gdb_byte insn = *insn_ptr++;
310 ULONGEST utmp, reg;
311 LONGEST offset;
312
313 if ((insn & 0xc0) == DW_CFA_advance_loc)
314 fs->pc += (insn & 0x3f) * fs->code_align;
315 else if ((insn & 0xc0) == DW_CFA_offset)
316 {
317 reg = insn & 0x3f;
318 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
319 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
320 offset = utmp * fs->data_align;
321 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
322 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
323 fs->regs.reg[reg].loc.offset = offset;
324 }
325 else if ((insn & 0xc0) == DW_CFA_restore)
326 {
327 gdb_assert (fs->initial.reg);
328 reg = insn & 0x3f;
329 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
330 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
331 if (reg < fs->initial.num_regs)
332 fs->regs.reg[reg] = fs->initial.reg[reg];
333 else
334 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335
336 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
337 complaint (&symfile_complaints, _("\
338 incomplete CFI data; DW_CFA_restore unspecified\n\
339 register %s (#%d) at 0x%s"),
340 gdbarch_register_name
341 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
342 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
343 paddr (fs->pc));
344 }
345 else
346 {
347 switch (insn)
348 {
349 case DW_CFA_set_loc:
350 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
351 insn_ptr += bytes_read;
352 break;
353
354 case DW_CFA_advance_loc1:
355 utmp = extract_unsigned_integer (insn_ptr, 1);
356 fs->pc += utmp * fs->code_align;
357 insn_ptr++;
358 break;
359 case DW_CFA_advance_loc2:
360 utmp = extract_unsigned_integer (insn_ptr, 2);
361 fs->pc += utmp * fs->code_align;
362 insn_ptr += 2;
363 break;
364 case DW_CFA_advance_loc4:
365 utmp = extract_unsigned_integer (insn_ptr, 4);
366 fs->pc += utmp * fs->code_align;
367 insn_ptr += 4;
368 break;
369
370 case DW_CFA_offset_extended:
371 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
372 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
373 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
374 offset = utmp * fs->data_align;
375 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
376 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
377 fs->regs.reg[reg].loc.offset = offset;
378 break;
379
380 case DW_CFA_restore_extended:
381 gdb_assert (fs->initial.reg);
382 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
383 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
384 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
385 fs->regs.reg[reg] = fs->initial.reg[reg];
386 break;
387
388 case DW_CFA_undefined:
389 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
390 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
391 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
392 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
393 break;
394
395 case DW_CFA_same_value:
396 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
397 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
398 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
399 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
400 break;
401
402 case DW_CFA_register:
403 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
404 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
405 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
406 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
407 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
408 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
409 fs->regs.reg[reg].loc.reg = utmp;
410 break;
411
412 case DW_CFA_remember_state:
413 {
414 struct dwarf2_frame_state_reg_info *new_rs;
415
416 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
417 *new_rs = fs->regs;
418 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
419 fs->regs.prev = new_rs;
420 }
421 break;
422
423 case DW_CFA_restore_state:
424 {
425 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
426
427 if (old_rs == NULL)
428 {
429 complaint (&symfile_complaints, _("\
430 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
431 }
432 else
433 {
434 xfree (fs->regs.reg);
435 fs->regs = *old_rs;
436 xfree (old_rs);
437 }
438 }
439 break;
440
441 case DW_CFA_def_cfa:
442 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
444
445 if (fs->armcc_cfa_offsets_sf)
446 utmp *= fs->data_align;
447
448 fs->cfa_offset = utmp;
449 fs->cfa_how = CFA_REG_OFFSET;
450 break;
451
452 case DW_CFA_def_cfa_register:
453 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
454 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
455 eh_frame_p);
456 fs->cfa_how = CFA_REG_OFFSET;
457 break;
458
459 case DW_CFA_def_cfa_offset:
460 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
461
462 if (fs->armcc_cfa_offsets_sf)
463 utmp *= fs->data_align;
464
465 fs->cfa_offset = utmp;
466 /* cfa_how deliberately not set. */
467 break;
468
469 case DW_CFA_nop:
470 break;
471
472 case DW_CFA_def_cfa_expression:
473 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
474 fs->cfa_exp = insn_ptr;
475 fs->cfa_how = CFA_EXP;
476 insn_ptr += fs->cfa_exp_len;
477 break;
478
479 case DW_CFA_expression:
480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
481 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
482 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
483 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
484 fs->regs.reg[reg].loc.exp = insn_ptr;
485 fs->regs.reg[reg].exp_len = utmp;
486 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
487 insn_ptr += utmp;
488 break;
489
490 case DW_CFA_offset_extended_sf:
491 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
492 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
493 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
494 offset *= fs->data_align;
495 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
496 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
497 fs->regs.reg[reg].loc.offset = offset;
498 break;
499
500 case DW_CFA_val_offset:
501 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
502 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
503 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
504 offset = utmp * fs->data_align;
505 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
506 fs->regs.reg[reg].loc.offset = offset;
507 break;
508
509 case DW_CFA_val_offset_sf:
510 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
511 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
512 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
513 offset *= fs->data_align;
514 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
515 fs->regs.reg[reg].loc.offset = offset;
516 break;
517
518 case DW_CFA_val_expression:
519 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
520 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
521 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
522 fs->regs.reg[reg].loc.exp = insn_ptr;
523 fs->regs.reg[reg].exp_len = utmp;
524 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
525 insn_ptr += utmp;
526 break;
527
528 case DW_CFA_def_cfa_sf:
529 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
530 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
531 eh_frame_p);
532 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
533 fs->cfa_offset = offset * fs->data_align;
534 fs->cfa_how = CFA_REG_OFFSET;
535 break;
536
537 case DW_CFA_def_cfa_offset_sf:
538 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
539 fs->cfa_offset = offset * fs->data_align;
540 /* cfa_how deliberately not set. */
541 break;
542
543 case DW_CFA_GNU_window_save:
544 /* This is SPARC-specific code, and contains hard-coded
545 constants for the register numbering scheme used by
546 GCC. Rather than having a architecture-specific
547 operation that's only ever used by a single
548 architecture, we provide the implementation here.
549 Incidentally that's what GCC does too in its
550 unwinder. */
551 {
552 struct gdbarch *gdbarch = get_frame_arch (next_frame);
553 int size = register_size(gdbarch, 0);
554 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
555 for (reg = 8; reg < 16; reg++)
556 {
557 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
558 fs->regs.reg[reg].loc.reg = reg + 16;
559 }
560 for (reg = 16; reg < 32; reg++)
561 {
562 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
563 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
564 }
565 }
566 break;
567
568 case DW_CFA_GNU_args_size:
569 /* Ignored. */
570 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
571 break;
572
573 case DW_CFA_GNU_negative_offset_extended:
574 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
575 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
577 offset *= fs->data_align;
578 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
579 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
580 fs->regs.reg[reg].loc.offset = -offset;
581 break;
582
583 default:
584 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
585 }
586 }
587 }
588
589 /* Don't allow remember/restore between CIE and FDE programs. */
590 dwarf2_frame_state_free_regs (fs->regs.prev);
591 fs->regs.prev = NULL;
592 }
593 \f
594
595 /* Architecture-specific operations. */
596
597 /* Per-architecture data key. */
598 static struct gdbarch_data *dwarf2_frame_data;
599
600 struct dwarf2_frame_ops
601 {
602 /* Pre-initialize the register state REG for register REGNUM. */
603 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
604 struct frame_info *);
605
606 /* Check whether the frame preceding NEXT_FRAME will be a signal
607 trampoline. */
608 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
609
610 /* Convert .eh_frame register number to DWARF register number, or
611 adjust .debug_frame register number. */
612 int (*adjust_regnum) (struct gdbarch *, int, int);
613 };
614
615 /* Default architecture-specific register state initialization
616 function. */
617
618 static void
619 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
620 struct dwarf2_frame_state_reg *reg,
621 struct frame_info *next_frame)
622 {
623 /* If we have a register that acts as a program counter, mark it as
624 a destination for the return address. If we have a register that
625 serves as the stack pointer, arrange for it to be filled with the
626 call frame address (CFA). The other registers are marked as
627 unspecified.
628
629 We copy the return address to the program counter, since many
630 parts in GDB assume that it is possible to get the return address
631 by unwinding the program counter register. However, on ISA's
632 with a dedicated return address register, the CFI usually only
633 contains information to unwind that return address register.
634
635 The reason we're treating the stack pointer special here is
636 because in many cases GCC doesn't emit CFI for the stack pointer
637 and implicitly assumes that it is equal to the CFA. This makes
638 some sense since the DWARF specification (version 3, draft 8,
639 p. 102) says that:
640
641 "Typically, the CFA is defined to be the value of the stack
642 pointer at the call site in the previous frame (which may be
643 different from its value on entry to the current frame)."
644
645 However, this isn't true for all platforms supported by GCC
646 (e.g. IBM S/390 and zSeries). Those architectures should provide
647 their own architecture-specific initialization function. */
648
649 if (regnum == gdbarch_pc_regnum (gdbarch))
650 reg->how = DWARF2_FRAME_REG_RA;
651 else if (regnum == gdbarch_sp_regnum (gdbarch))
652 reg->how = DWARF2_FRAME_REG_CFA;
653 }
654
655 /* Return a default for the architecture-specific operations. */
656
657 static void *
658 dwarf2_frame_init (struct obstack *obstack)
659 {
660 struct dwarf2_frame_ops *ops;
661
662 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
663 ops->init_reg = dwarf2_frame_default_init_reg;
664 return ops;
665 }
666
667 /* Set the architecture-specific register state initialization
668 function for GDBARCH to INIT_REG. */
669
670 void
671 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
672 void (*init_reg) (struct gdbarch *, int,
673 struct dwarf2_frame_state_reg *,
674 struct frame_info *))
675 {
676 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
677
678 ops->init_reg = init_reg;
679 }
680
681 /* Pre-initialize the register state REG for register REGNUM. */
682
683 static void
684 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
685 struct dwarf2_frame_state_reg *reg,
686 struct frame_info *next_frame)
687 {
688 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
689
690 ops->init_reg (gdbarch, regnum, reg, next_frame);
691 }
692
693 /* Set the architecture-specific signal trampoline recognition
694 function for GDBARCH to SIGNAL_FRAME_P. */
695
696 void
697 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
698 int (*signal_frame_p) (struct gdbarch *,
699 struct frame_info *))
700 {
701 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
702
703 ops->signal_frame_p = signal_frame_p;
704 }
705
706 /* Query the architecture-specific signal frame recognizer for
707 NEXT_FRAME. */
708
709 static int
710 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
711 struct frame_info *next_frame)
712 {
713 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
714
715 if (ops->signal_frame_p == NULL)
716 return 0;
717 return ops->signal_frame_p (gdbarch, next_frame);
718 }
719
720 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
721 register numbers. */
722
723 void
724 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
725 int (*adjust_regnum) (struct gdbarch *,
726 int, int))
727 {
728 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
729
730 ops->adjust_regnum = adjust_regnum;
731 }
732
733 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
734 register. */
735
736 static int
737 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
738 {
739 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
740
741 if (ops->adjust_regnum == NULL)
742 return regnum;
743 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
744 }
745
746 static void
747 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
748 struct dwarf2_fde *fde)
749 {
750 static const char *arm_idents[] = {
751 "ARM C Compiler, ADS",
752 "Thumb C Compiler, ADS",
753 "ARM C++ Compiler, ADS",
754 "Thumb C++ Compiler, ADS",
755 "ARM/Thumb C/C++ Compiler, RVCT"
756 };
757 int i;
758
759 struct symtab *s;
760
761 s = find_pc_symtab (fs->pc);
762 if (s == NULL || s->producer == NULL)
763 return;
764
765 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
766 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
767 {
768 if (fde->cie->version == 1)
769 fs->armcc_cfa_offsets_sf = 1;
770
771 if (fde->cie->version == 1)
772 fs->armcc_cfa_offsets_reversed = 1;
773
774 /* The reversed offset problem is present in some compilers
775 using DWARF3, but it was eventually fixed. Check the ARM
776 defined augmentations, which are in the format "armcc" followed
777 by a list of one-character options. The "+" option means
778 this problem is fixed (no quirk needed). If the armcc
779 augmentation is missing, the quirk is needed. */
780 if (fde->cie->version == 3
781 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
782 || strchr (fde->cie->augmentation + 5, '+') == NULL))
783 fs->armcc_cfa_offsets_reversed = 1;
784
785 return;
786 }
787 }
788 \f
789
790 struct dwarf2_frame_cache
791 {
792 /* DWARF Call Frame Address. */
793 CORE_ADDR cfa;
794
795 /* Set if the return address column was marked as undefined. */
796 int undefined_retaddr;
797
798 /* Saved registers, indexed by GDB register number, not by DWARF
799 register number. */
800 struct dwarf2_frame_state_reg *reg;
801
802 /* Return address register. */
803 struct dwarf2_frame_state_reg retaddr_reg;
804 };
805
806 static struct dwarf2_frame_cache *
807 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
808 {
809 struct cleanup *old_chain;
810 struct gdbarch *gdbarch = get_frame_arch (next_frame);
811 const int num_regs = gdbarch_num_regs (gdbarch)
812 + gdbarch_num_pseudo_regs (gdbarch);
813 struct dwarf2_frame_cache *cache;
814 struct dwarf2_frame_state *fs;
815 struct dwarf2_fde *fde;
816
817 if (*this_cache)
818 return *this_cache;
819
820 /* Allocate a new cache. */
821 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
822 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
823
824 /* Allocate and initialize the frame state. */
825 fs = XMALLOC (struct dwarf2_frame_state);
826 memset (fs, 0, sizeof (struct dwarf2_frame_state));
827 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
828
829 /* Unwind the PC.
830
831 Note that if NEXT_FRAME is never supposed to return (i.e. a call
832 to abort), the compiler might optimize away the instruction at
833 NEXT_FRAME's return address. As a result the return address will
834 point at some random instruction, and the CFI for that
835 instruction is probably worthless to us. GCC's unwinder solves
836 this problem by substracting 1 from the return address to get an
837 address in the middle of a presumed call instruction (or the
838 instruction in the associated delay slot). This should only be
839 done for "normal" frames and not for resume-type frames (signal
840 handlers, sentinel frames, dummy frames). The function
841 frame_unwind_address_in_block does just this. It's not clear how
842 reliable the method is though; there is the potential for the
843 register state pre-call being different to that on return. */
844 fs->pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
845
846 /* Find the correct FDE. */
847 fde = dwarf2_frame_find_fde (&fs->pc);
848 gdb_assert (fde != NULL);
849
850 /* Extract any interesting information from the CIE. */
851 fs->data_align = fde->cie->data_alignment_factor;
852 fs->code_align = fde->cie->code_alignment_factor;
853 fs->retaddr_column = fde->cie->return_address_register;
854
855 /* Check for "quirks" - known bugs in producers. */
856 dwarf2_frame_find_quirks (fs, fde);
857
858 /* First decode all the insns in the CIE. */
859 execute_cfa_program (fde->cie->initial_instructions,
860 fde->cie->end, next_frame, fs, fde->eh_frame_p);
861
862 /* Save the initialized register set. */
863 fs->initial = fs->regs;
864 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
865
866 /* Then decode the insns in the FDE up to our target PC. */
867 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
868 fde->eh_frame_p);
869
870 /* Caclulate the CFA. */
871 switch (fs->cfa_how)
872 {
873 case CFA_REG_OFFSET:
874 cache->cfa = read_reg (next_frame, fs->cfa_reg);
875 if (fs->armcc_cfa_offsets_reversed)
876 cache->cfa -= fs->cfa_offset;
877 else
878 cache->cfa += fs->cfa_offset;
879 break;
880
881 case CFA_EXP:
882 cache->cfa =
883 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
884 break;
885
886 default:
887 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
888 }
889
890 /* Initialize the register state. */
891 {
892 int regnum;
893
894 for (regnum = 0; regnum < num_regs; regnum++)
895 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
896 }
897
898 /* Go through the DWARF2 CFI generated table and save its register
899 location information in the cache. Note that we don't skip the
900 return address column; it's perfectly all right for it to
901 correspond to a real register. If it doesn't correspond to a
902 real register, or if we shouldn't treat it as such,
903 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
904 the range [0, gdbarch_num_regs). */
905 {
906 int column; /* CFI speak for "register number". */
907
908 for (column = 0; column < fs->regs.num_regs; column++)
909 {
910 /* Use the GDB register number as the destination index. */
911 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
912
913 /* If there's no corresponding GDB register, ignore it. */
914 if (regnum < 0 || regnum >= num_regs)
915 continue;
916
917 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
918 of all debug info registers. If it doesn't, complain (but
919 not too loudly). It turns out that GCC assumes that an
920 unspecified register implies "same value" when CFI (draft
921 7) specifies nothing at all. Such a register could equally
922 be interpreted as "undefined". Also note that this check
923 isn't sufficient; it only checks that all registers in the
924 range [0 .. max column] are specified, and won't detect
925 problems when a debug info register falls outside of the
926 table. We need a way of iterating through all the valid
927 DWARF2 register numbers. */
928 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
929 {
930 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
931 complaint (&symfile_complaints, _("\
932 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
933 gdbarch_register_name (gdbarch, regnum),
934 paddr_nz (fs->pc));
935 }
936 else
937 cache->reg[regnum] = fs->regs.reg[column];
938 }
939 }
940
941 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
942 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
943 {
944 int regnum;
945
946 for (regnum = 0; regnum < num_regs; regnum++)
947 {
948 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
949 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
950 {
951 struct dwarf2_frame_state_reg *retaddr_reg =
952 &fs->regs.reg[fs->retaddr_column];
953
954 /* It seems rather bizarre to specify an "empty" column as
955 the return adress column. However, this is exactly
956 what GCC does on some targets. It turns out that GCC
957 assumes that the return address can be found in the
958 register corresponding to the return address column.
959 Incidentally, that's how we should treat a return
960 address column specifying "same value" too. */
961 if (fs->retaddr_column < fs->regs.num_regs
962 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
963 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
964 {
965 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
966 cache->reg[regnum] = *retaddr_reg;
967 else
968 cache->retaddr_reg = *retaddr_reg;
969 }
970 else
971 {
972 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
973 {
974 cache->reg[regnum].loc.reg = fs->retaddr_column;
975 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
976 }
977 else
978 {
979 cache->retaddr_reg.loc.reg = fs->retaddr_column;
980 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
981 }
982 }
983 }
984 }
985 }
986
987 if (fs->retaddr_column < fs->regs.num_regs
988 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
989 cache->undefined_retaddr = 1;
990
991 do_cleanups (old_chain);
992
993 *this_cache = cache;
994 return cache;
995 }
996
997 static void
998 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
999 struct frame_id *this_id)
1000 {
1001 struct dwarf2_frame_cache *cache =
1002 dwarf2_frame_cache (next_frame, this_cache);
1003
1004 if (cache->undefined_retaddr)
1005 return;
1006
1007 (*this_id) = frame_id_build (cache->cfa,
1008 frame_func_unwind (next_frame, NORMAL_FRAME));
1009 }
1010
1011 static void
1012 dwarf2_signal_frame_this_id (struct frame_info *next_frame, void **this_cache,
1013 struct frame_id *this_id)
1014 {
1015 struct dwarf2_frame_cache *cache =
1016 dwarf2_frame_cache (next_frame, this_cache);
1017
1018 if (cache->undefined_retaddr)
1019 return;
1020
1021 (*this_id) = frame_id_build (cache->cfa,
1022 frame_func_unwind (next_frame, SIGTRAMP_FRAME));
1023 }
1024
1025 static void
1026 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1027 int regnum, int *optimizedp,
1028 enum lval_type *lvalp, CORE_ADDR *addrp,
1029 int *realnump, gdb_byte *valuep)
1030 {
1031 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1032 struct dwarf2_frame_cache *cache =
1033 dwarf2_frame_cache (next_frame, this_cache);
1034
1035 switch (cache->reg[regnum].how)
1036 {
1037 case DWARF2_FRAME_REG_UNDEFINED:
1038 /* If CFI explicitly specified that the value isn't defined,
1039 mark it as optimized away; the value isn't available. */
1040 *optimizedp = 1;
1041 *lvalp = not_lval;
1042 *addrp = 0;
1043 *realnump = -1;
1044 if (valuep)
1045 {
1046 /* In some cases, for example %eflags on the i386, we have
1047 to provide a sane value, even though this register wasn't
1048 saved. Assume we can get it from NEXT_FRAME. */
1049 frame_unwind_register (next_frame, regnum, valuep);
1050 }
1051 break;
1052
1053 case DWARF2_FRAME_REG_SAVED_OFFSET:
1054 *optimizedp = 0;
1055 *lvalp = lval_memory;
1056 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
1057 *realnump = -1;
1058 if (valuep)
1059 {
1060 /* Read the value in from memory. */
1061 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1062 }
1063 break;
1064
1065 case DWARF2_FRAME_REG_SAVED_REG:
1066 *optimizedp = 0;
1067 *lvalp = lval_register;
1068 *addrp = 0;
1069 *realnump = gdbarch_dwarf2_reg_to_regnum
1070 (gdbarch, cache->reg[regnum].loc.reg);
1071 if (valuep)
1072 frame_unwind_register (next_frame, (*realnump), valuep);
1073 break;
1074
1075 case DWARF2_FRAME_REG_SAVED_EXP:
1076 *optimizedp = 0;
1077 *lvalp = lval_memory;
1078 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
1079 cache->reg[regnum].exp_len,
1080 next_frame, cache->cfa);
1081 *realnump = -1;
1082 if (valuep)
1083 {
1084 /* Read the value in from memory. */
1085 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1086 }
1087 break;
1088
1089 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1090 *optimizedp = 0;
1091 *lvalp = not_lval;
1092 *addrp = 0;
1093 *realnump = -1;
1094 if (valuep)
1095 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1096 cache->cfa + cache->reg[regnum].loc.offset);
1097 break;
1098
1099 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1100 *optimizedp = 0;
1101 *lvalp = not_lval;
1102 *addrp = 0;
1103 *realnump = -1;
1104 if (valuep)
1105 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1106 execute_stack_op (cache->reg[regnum].loc.exp,
1107 cache->reg[regnum].exp_len,
1108 next_frame, cache->cfa));
1109 break;
1110
1111 case DWARF2_FRAME_REG_UNSPECIFIED:
1112 /* GCC, in its infinite wisdom decided to not provide unwind
1113 information for registers that are "same value". Since
1114 DWARF2 (3 draft 7) doesn't define such behavior, said
1115 registers are actually undefined (which is different to CFI
1116 "undefined"). Code above issues a complaint about this.
1117 Here just fudge the books, assume GCC, and that the value is
1118 more inner on the stack. */
1119 *optimizedp = 0;
1120 *lvalp = lval_register;
1121 *addrp = 0;
1122 *realnump = regnum;
1123 if (valuep)
1124 frame_unwind_register (next_frame, (*realnump), valuep);
1125 break;
1126
1127 case DWARF2_FRAME_REG_SAME_VALUE:
1128 *optimizedp = 0;
1129 *lvalp = lval_register;
1130 *addrp = 0;
1131 *realnump = regnum;
1132 if (valuep)
1133 frame_unwind_register (next_frame, (*realnump), valuep);
1134 break;
1135
1136 case DWARF2_FRAME_REG_CFA:
1137 *optimizedp = 0;
1138 *lvalp = not_lval;
1139 *addrp = 0;
1140 *realnump = -1;
1141 if (valuep)
1142 pack_long (valuep, register_type (gdbarch, regnum), cache->cfa);
1143 break;
1144
1145 case DWARF2_FRAME_REG_CFA_OFFSET:
1146 *optimizedp = 0;
1147 *lvalp = not_lval;
1148 *addrp = 0;
1149 *realnump = -1;
1150 if (valuep)
1151 pack_long (valuep, register_type (gdbarch, regnum),
1152 cache->cfa + cache->reg[regnum].loc.offset);
1153 break;
1154
1155 case DWARF2_FRAME_REG_RA_OFFSET:
1156 *optimizedp = 0;
1157 *lvalp = not_lval;
1158 *addrp = 0;
1159 *realnump = -1;
1160 if (valuep)
1161 {
1162 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1163
1164 regnum = gdbarch_dwarf2_reg_to_regnum
1165 (gdbarch, cache->retaddr_reg.loc.reg);
1166 pc += frame_unwind_register_unsigned (next_frame, regnum);
1167 pack_long (valuep, register_type (gdbarch, regnum), pc);
1168 }
1169 break;
1170
1171 default:
1172 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1173 }
1174 }
1175
1176 static const struct frame_unwind dwarf2_frame_unwind =
1177 {
1178 NORMAL_FRAME,
1179 dwarf2_frame_this_id,
1180 dwarf2_frame_prev_register
1181 };
1182
1183 static const struct frame_unwind dwarf2_signal_frame_unwind =
1184 {
1185 SIGTRAMP_FRAME,
1186 dwarf2_signal_frame_this_id,
1187 dwarf2_frame_prev_register
1188 };
1189
1190 const struct frame_unwind *
1191 dwarf2_frame_sniffer (struct frame_info *next_frame)
1192 {
1193 /* Grab an address that is guarenteed to reside somewhere within the
1194 function. frame_pc_unwind(), for a no-return next function, can
1195 end up returning something past the end of this function's body.
1196 If the frame we're sniffing for is a signal frame whose start
1197 address is placed on the stack by the OS, its FDE must
1198 extend one byte before its start address or we will miss it. */
1199 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1200 NORMAL_FRAME);
1201 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1202 if (!fde)
1203 return NULL;
1204
1205 /* On some targets, signal trampolines may have unwind information.
1206 We need to recognize them so that we set the frame type
1207 correctly. */
1208
1209 if (fde->cie->signal_frame
1210 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1211 next_frame))
1212 return &dwarf2_signal_frame_unwind;
1213
1214 return &dwarf2_frame_unwind;
1215 }
1216 \f
1217
1218 /* There is no explicitly defined relationship between the CFA and the
1219 location of frame's local variables and arguments/parameters.
1220 Therefore, frame base methods on this page should probably only be
1221 used as a last resort, just to avoid printing total garbage as a
1222 response to the "info frame" command. */
1223
1224 static CORE_ADDR
1225 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1226 {
1227 struct dwarf2_frame_cache *cache =
1228 dwarf2_frame_cache (next_frame, this_cache);
1229
1230 return cache->cfa;
1231 }
1232
1233 static const struct frame_base dwarf2_frame_base =
1234 {
1235 &dwarf2_frame_unwind,
1236 dwarf2_frame_base_address,
1237 dwarf2_frame_base_address,
1238 dwarf2_frame_base_address
1239 };
1240
1241 const struct frame_base *
1242 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
1243 {
1244 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1245 NORMAL_FRAME);
1246 if (dwarf2_frame_find_fde (&block_addr))
1247 return &dwarf2_frame_base;
1248
1249 return NULL;
1250 }
1251 \f
1252 /* A minimal decoding of DWARF2 compilation units. We only decode
1253 what's needed to get to the call frame information. */
1254
1255 struct comp_unit
1256 {
1257 /* Keep the bfd convenient. */
1258 bfd *abfd;
1259
1260 struct objfile *objfile;
1261
1262 /* Linked list of CIEs for this object. */
1263 struct dwarf2_cie *cie;
1264
1265 /* Pointer to the .debug_frame section loaded into memory. */
1266 gdb_byte *dwarf_frame_buffer;
1267
1268 /* Length of the loaded .debug_frame section. */
1269 unsigned long dwarf_frame_size;
1270
1271 /* Pointer to the .debug_frame section. */
1272 asection *dwarf_frame_section;
1273
1274 /* Base for DW_EH_PE_datarel encodings. */
1275 bfd_vma dbase;
1276
1277 /* Base for DW_EH_PE_textrel encodings. */
1278 bfd_vma tbase;
1279 };
1280
1281 const struct objfile_data *dwarf2_frame_objfile_data;
1282
1283 static unsigned int
1284 read_1_byte (bfd *abfd, gdb_byte *buf)
1285 {
1286 return bfd_get_8 (abfd, buf);
1287 }
1288
1289 static unsigned int
1290 read_4_bytes (bfd *abfd, gdb_byte *buf)
1291 {
1292 return bfd_get_32 (abfd, buf);
1293 }
1294
1295 static ULONGEST
1296 read_8_bytes (bfd *abfd, gdb_byte *buf)
1297 {
1298 return bfd_get_64 (abfd, buf);
1299 }
1300
1301 static ULONGEST
1302 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1303 {
1304 ULONGEST result;
1305 unsigned int num_read;
1306 int shift;
1307 gdb_byte byte;
1308
1309 result = 0;
1310 shift = 0;
1311 num_read = 0;
1312
1313 do
1314 {
1315 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1316 buf++;
1317 num_read++;
1318 result |= ((byte & 0x7f) << shift);
1319 shift += 7;
1320 }
1321 while (byte & 0x80);
1322
1323 *bytes_read_ptr = num_read;
1324
1325 return result;
1326 }
1327
1328 static LONGEST
1329 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1330 {
1331 LONGEST result;
1332 int shift;
1333 unsigned int num_read;
1334 gdb_byte byte;
1335
1336 result = 0;
1337 shift = 0;
1338 num_read = 0;
1339
1340 do
1341 {
1342 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1343 buf++;
1344 num_read++;
1345 result |= ((byte & 0x7f) << shift);
1346 shift += 7;
1347 }
1348 while (byte & 0x80);
1349
1350 if (shift < 8 * sizeof (result) && (byte & 0x40))
1351 result |= -(((LONGEST)1) << shift);
1352
1353 *bytes_read_ptr = num_read;
1354
1355 return result;
1356 }
1357
1358 static ULONGEST
1359 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1360 {
1361 LONGEST result;
1362
1363 result = bfd_get_32 (abfd, buf);
1364 if (result == 0xffffffff)
1365 {
1366 result = bfd_get_64 (abfd, buf + 4);
1367 *bytes_read_ptr = 12;
1368 }
1369 else
1370 *bytes_read_ptr = 4;
1371
1372 return result;
1373 }
1374 \f
1375
1376 /* Pointer encoding helper functions. */
1377
1378 /* GCC supports exception handling based on DWARF2 CFI. However, for
1379 technical reasons, it encodes addresses in its FDE's in a different
1380 way. Several "pointer encodings" are supported. The encoding
1381 that's used for a particular FDE is determined by the 'R'
1382 augmentation in the associated CIE. The argument of this
1383 augmentation is a single byte.
1384
1385 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1386 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1387 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1388 address should be interpreted (absolute, relative to the current
1389 position in the FDE, ...). Bit 7, indicates that the address
1390 should be dereferenced. */
1391
1392 static gdb_byte
1393 encoding_for_size (unsigned int size)
1394 {
1395 switch (size)
1396 {
1397 case 2:
1398 return DW_EH_PE_udata2;
1399 case 4:
1400 return DW_EH_PE_udata4;
1401 case 8:
1402 return DW_EH_PE_udata8;
1403 default:
1404 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1405 }
1406 }
1407
1408 static unsigned int
1409 size_of_encoded_value (gdb_byte encoding)
1410 {
1411 if (encoding == DW_EH_PE_omit)
1412 return 0;
1413
1414 switch (encoding & 0x07)
1415 {
1416 case DW_EH_PE_absptr:
1417 return TYPE_LENGTH (builtin_type_void_data_ptr);
1418 case DW_EH_PE_udata2:
1419 return 2;
1420 case DW_EH_PE_udata4:
1421 return 4;
1422 case DW_EH_PE_udata8:
1423 return 8;
1424 default:
1425 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1426 }
1427 }
1428
1429 static CORE_ADDR
1430 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1431 gdb_byte *buf, unsigned int *bytes_read_ptr)
1432 {
1433 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1434 ptrdiff_t offset;
1435 CORE_ADDR base;
1436
1437 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1438 FDE's. */
1439 if (encoding & DW_EH_PE_indirect)
1440 internal_error (__FILE__, __LINE__,
1441 _("Unsupported encoding: DW_EH_PE_indirect"));
1442
1443 *bytes_read_ptr = 0;
1444
1445 switch (encoding & 0x70)
1446 {
1447 case DW_EH_PE_absptr:
1448 base = 0;
1449 break;
1450 case DW_EH_PE_pcrel:
1451 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1452 base += (buf - unit->dwarf_frame_buffer);
1453 break;
1454 case DW_EH_PE_datarel:
1455 base = unit->dbase;
1456 break;
1457 case DW_EH_PE_textrel:
1458 base = unit->tbase;
1459 break;
1460 case DW_EH_PE_funcrel:
1461 /* FIXME: kettenis/20040501: For now just pretend
1462 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1463 reading the initial location of an FDE it should be treated
1464 as such, and currently that's the only place where this code
1465 is used. */
1466 base = 0;
1467 break;
1468 case DW_EH_PE_aligned:
1469 base = 0;
1470 offset = buf - unit->dwarf_frame_buffer;
1471 if ((offset % ptr_len) != 0)
1472 {
1473 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1474 buf += *bytes_read_ptr;
1475 }
1476 break;
1477 default:
1478 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1479 }
1480
1481 if ((encoding & 0x07) == 0x00)
1482 {
1483 encoding |= encoding_for_size (ptr_len);
1484 if (bfd_get_sign_extend_vma (unit->abfd))
1485 encoding |= DW_EH_PE_signed;
1486 }
1487
1488 switch (encoding & 0x0f)
1489 {
1490 case DW_EH_PE_uleb128:
1491 {
1492 ULONGEST value;
1493 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1494 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1495 return base + value;
1496 }
1497 case DW_EH_PE_udata2:
1498 *bytes_read_ptr += 2;
1499 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1500 case DW_EH_PE_udata4:
1501 *bytes_read_ptr += 4;
1502 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1503 case DW_EH_PE_udata8:
1504 *bytes_read_ptr += 8;
1505 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1506 case DW_EH_PE_sleb128:
1507 {
1508 LONGEST value;
1509 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1510 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1511 return base + value;
1512 }
1513 case DW_EH_PE_sdata2:
1514 *bytes_read_ptr += 2;
1515 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1516 case DW_EH_PE_sdata4:
1517 *bytes_read_ptr += 4;
1518 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1519 case DW_EH_PE_sdata8:
1520 *bytes_read_ptr += 8;
1521 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1522 default:
1523 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1524 }
1525 }
1526 \f
1527
1528 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1529 That's why we use a simple linked list here. */
1530
1531 static struct dwarf2_cie *
1532 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1533 {
1534 struct dwarf2_cie *cie = unit->cie;
1535
1536 while (cie)
1537 {
1538 if (cie->cie_pointer == cie_pointer)
1539 return cie;
1540
1541 cie = cie->next;
1542 }
1543
1544 return NULL;
1545 }
1546
1547 static void
1548 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1549 {
1550 cie->next = unit->cie;
1551 unit->cie = cie;
1552 }
1553
1554 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1555 inital location associated with it into *PC. */
1556
1557 static struct dwarf2_fde *
1558 dwarf2_frame_find_fde (CORE_ADDR *pc)
1559 {
1560 struct objfile *objfile;
1561
1562 ALL_OBJFILES (objfile)
1563 {
1564 struct dwarf2_fde *fde;
1565 CORE_ADDR offset;
1566
1567 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1568 if (fde == NULL)
1569 continue;
1570
1571 gdb_assert (objfile->section_offsets);
1572 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1573
1574 while (fde)
1575 {
1576 if (*pc >= fde->initial_location + offset
1577 && *pc < fde->initial_location + offset + fde->address_range)
1578 {
1579 *pc = fde->initial_location + offset;
1580 return fde;
1581 }
1582
1583 fde = fde->next;
1584 }
1585 }
1586
1587 return NULL;
1588 }
1589
1590 static void
1591 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1592 {
1593 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1594 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1595 }
1596
1597 #ifdef CC_HAS_LONG_LONG
1598 #define DW64_CIE_ID 0xffffffffffffffffULL
1599 #else
1600 #define DW64_CIE_ID ~0
1601 #endif
1602
1603 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1604 int eh_frame_p);
1605
1606 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1607 the next byte to be processed. */
1608 static gdb_byte *
1609 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1610 {
1611 gdb_byte *buf, *end;
1612 LONGEST length;
1613 unsigned int bytes_read;
1614 int dwarf64_p;
1615 ULONGEST cie_id;
1616 ULONGEST cie_pointer;
1617
1618 buf = start;
1619 length = read_initial_length (unit->abfd, buf, &bytes_read);
1620 buf += bytes_read;
1621 end = buf + length;
1622
1623 /* Are we still within the section? */
1624 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1625 return NULL;
1626
1627 if (length == 0)
1628 return end;
1629
1630 /* Distinguish between 32 and 64-bit encoded frame info. */
1631 dwarf64_p = (bytes_read == 12);
1632
1633 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1634 if (eh_frame_p)
1635 cie_id = 0;
1636 else if (dwarf64_p)
1637 cie_id = DW64_CIE_ID;
1638 else
1639 cie_id = DW_CIE_ID;
1640
1641 if (dwarf64_p)
1642 {
1643 cie_pointer = read_8_bytes (unit->abfd, buf);
1644 buf += 8;
1645 }
1646 else
1647 {
1648 cie_pointer = read_4_bytes (unit->abfd, buf);
1649 buf += 4;
1650 }
1651
1652 if (cie_pointer == cie_id)
1653 {
1654 /* This is a CIE. */
1655 struct dwarf2_cie *cie;
1656 char *augmentation;
1657 unsigned int cie_version;
1658
1659 /* Record the offset into the .debug_frame section of this CIE. */
1660 cie_pointer = start - unit->dwarf_frame_buffer;
1661
1662 /* Check whether we've already read it. */
1663 if (find_cie (unit, cie_pointer))
1664 return end;
1665
1666 cie = (struct dwarf2_cie *)
1667 obstack_alloc (&unit->objfile->objfile_obstack,
1668 sizeof (struct dwarf2_cie));
1669 cie->initial_instructions = NULL;
1670 cie->cie_pointer = cie_pointer;
1671
1672 /* The encoding for FDE's in a normal .debug_frame section
1673 depends on the target address size. */
1674 cie->encoding = DW_EH_PE_absptr;
1675
1676 /* We'll determine the final value later, but we need to
1677 initialize it conservatively. */
1678 cie->signal_frame = 0;
1679
1680 /* Check version number. */
1681 cie_version = read_1_byte (unit->abfd, buf);
1682 if (cie_version != 1 && cie_version != 3)
1683 return NULL;
1684 cie->version = cie_version;
1685 buf += 1;
1686
1687 /* Interpret the interesting bits of the augmentation. */
1688 cie->augmentation = augmentation = (char *) buf;
1689 buf += (strlen (augmentation) + 1);
1690
1691 /* Ignore armcc augmentations. We only use them for quirks,
1692 and that doesn't happen until later. */
1693 if (strncmp (augmentation, "armcc", 5) == 0)
1694 augmentation += strlen (augmentation);
1695
1696 /* The GCC 2.x "eh" augmentation has a pointer immediately
1697 following the augmentation string, so it must be handled
1698 first. */
1699 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1700 {
1701 /* Skip. */
1702 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1703 augmentation += 2;
1704 }
1705
1706 cie->code_alignment_factor =
1707 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1708 buf += bytes_read;
1709
1710 cie->data_alignment_factor =
1711 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1712 buf += bytes_read;
1713
1714 if (cie_version == 1)
1715 {
1716 cie->return_address_register = read_1_byte (unit->abfd, buf);
1717 bytes_read = 1;
1718 }
1719 else
1720 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1721 &bytes_read);
1722 cie->return_address_register
1723 = dwarf2_frame_adjust_regnum (current_gdbarch,
1724 cie->return_address_register,
1725 eh_frame_p);
1726
1727 buf += bytes_read;
1728
1729 cie->saw_z_augmentation = (*augmentation == 'z');
1730 if (cie->saw_z_augmentation)
1731 {
1732 ULONGEST length;
1733
1734 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1735 buf += bytes_read;
1736 if (buf > end)
1737 return NULL;
1738 cie->initial_instructions = buf + length;
1739 augmentation++;
1740 }
1741
1742 while (*augmentation)
1743 {
1744 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1745 if (*augmentation == 'L')
1746 {
1747 /* Skip. */
1748 buf++;
1749 augmentation++;
1750 }
1751
1752 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1753 else if (*augmentation == 'R')
1754 {
1755 cie->encoding = *buf++;
1756 augmentation++;
1757 }
1758
1759 /* "P" indicates a personality routine in the CIE augmentation. */
1760 else if (*augmentation == 'P')
1761 {
1762 /* Skip. Avoid indirection since we throw away the result. */
1763 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1764 read_encoded_value (unit, encoding, buf, &bytes_read);
1765 buf += bytes_read;
1766 augmentation++;
1767 }
1768
1769 /* "S" indicates a signal frame, such that the return
1770 address must not be decremented to locate the call frame
1771 info for the previous frame; it might even be the first
1772 instruction of a function, so decrementing it would take
1773 us to a different function. */
1774 else if (*augmentation == 'S')
1775 {
1776 cie->signal_frame = 1;
1777 augmentation++;
1778 }
1779
1780 /* Otherwise we have an unknown augmentation. Assume that either
1781 there is no augmentation data, or we saw a 'z' prefix. */
1782 else
1783 {
1784 if (cie->initial_instructions)
1785 buf = cie->initial_instructions;
1786 break;
1787 }
1788 }
1789
1790 cie->initial_instructions = buf;
1791 cie->end = end;
1792
1793 add_cie (unit, cie);
1794 }
1795 else
1796 {
1797 /* This is a FDE. */
1798 struct dwarf2_fde *fde;
1799
1800 /* In an .eh_frame section, the CIE pointer is the delta between the
1801 address within the FDE where the CIE pointer is stored and the
1802 address of the CIE. Convert it to an offset into the .eh_frame
1803 section. */
1804 if (eh_frame_p)
1805 {
1806 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1807 cie_pointer -= (dwarf64_p ? 8 : 4);
1808 }
1809
1810 /* In either case, validate the result is still within the section. */
1811 if (cie_pointer >= unit->dwarf_frame_size)
1812 return NULL;
1813
1814 fde = (struct dwarf2_fde *)
1815 obstack_alloc (&unit->objfile->objfile_obstack,
1816 sizeof (struct dwarf2_fde));
1817 fde->cie = find_cie (unit, cie_pointer);
1818 if (fde->cie == NULL)
1819 {
1820 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1821 eh_frame_p);
1822 fde->cie = find_cie (unit, cie_pointer);
1823 }
1824
1825 gdb_assert (fde->cie != NULL);
1826
1827 fde->initial_location =
1828 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1829 buf += bytes_read;
1830
1831 fde->address_range =
1832 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1833 buf += bytes_read;
1834
1835 /* A 'z' augmentation in the CIE implies the presence of an
1836 augmentation field in the FDE as well. The only thing known
1837 to be in here at present is the LSDA entry for EH. So we
1838 can skip the whole thing. */
1839 if (fde->cie->saw_z_augmentation)
1840 {
1841 ULONGEST length;
1842
1843 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1844 buf += bytes_read + length;
1845 if (buf > end)
1846 return NULL;
1847 }
1848
1849 fde->instructions = buf;
1850 fde->end = end;
1851
1852 fde->eh_frame_p = eh_frame_p;
1853
1854 add_fde (unit, fde);
1855 }
1856
1857 return end;
1858 }
1859
1860 /* Read a CIE or FDE in BUF and decode it. */
1861 static gdb_byte *
1862 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1863 {
1864 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1865 gdb_byte *ret;
1866 const char *msg;
1867 ptrdiff_t start_offset;
1868
1869 while (1)
1870 {
1871 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1872 if (ret != NULL)
1873 break;
1874
1875 /* We have corrupt input data of some form. */
1876
1877 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1878 and mismatches wrt padding and alignment of debug sections. */
1879 /* Note that there is no requirement in the standard for any
1880 alignment at all in the frame unwind sections. Testing for
1881 alignment before trying to interpret data would be incorrect.
1882
1883 However, GCC traditionally arranged for frame sections to be
1884 sized such that the FDE length and CIE fields happen to be
1885 aligned (in theory, for performance). This, unfortunately,
1886 was done with .align directives, which had the side effect of
1887 forcing the section to be aligned by the linker.
1888
1889 This becomes a problem when you have some other producer that
1890 creates frame sections that are not as strictly aligned. That
1891 produces a hole in the frame info that gets filled by the
1892 linker with zeros.
1893
1894 The GCC behaviour is arguably a bug, but it's effectively now
1895 part of the ABI, so we're now stuck with it, at least at the
1896 object file level. A smart linker may decide, in the process
1897 of compressing duplicate CIE information, that it can rewrite
1898 the entire output section without this extra padding. */
1899
1900 start_offset = start - unit->dwarf_frame_buffer;
1901 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1902 {
1903 start += 4 - (start_offset & 3);
1904 workaround = ALIGN4;
1905 continue;
1906 }
1907 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1908 {
1909 start += 8 - (start_offset & 7);
1910 workaround = ALIGN8;
1911 continue;
1912 }
1913
1914 /* Nothing left to try. Arrange to return as if we've consumed
1915 the entire input section. Hopefully we'll get valid info from
1916 the other of .debug_frame/.eh_frame. */
1917 workaround = FAIL;
1918 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1919 break;
1920 }
1921
1922 switch (workaround)
1923 {
1924 case NONE:
1925 break;
1926
1927 case ALIGN4:
1928 complaint (&symfile_complaints,
1929 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1930 unit->dwarf_frame_section->owner->filename,
1931 unit->dwarf_frame_section->name);
1932 break;
1933
1934 case ALIGN8:
1935 complaint (&symfile_complaints,
1936 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1937 unit->dwarf_frame_section->owner->filename,
1938 unit->dwarf_frame_section->name);
1939 break;
1940
1941 default:
1942 complaint (&symfile_complaints,
1943 _("Corrupt data in %s:%s"),
1944 unit->dwarf_frame_section->owner->filename,
1945 unit->dwarf_frame_section->name);
1946 break;
1947 }
1948
1949 return ret;
1950 }
1951 \f
1952
1953 /* FIXME: kettenis/20030504: This still needs to be integrated with
1954 dwarf2read.c in a better way. */
1955
1956 /* Imported from dwarf2read.c. */
1957 extern asection *dwarf_frame_section;
1958 extern asection *dwarf_eh_frame_section;
1959
1960 /* Imported from dwarf2read.c. */
1961 extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1962
1963 void
1964 dwarf2_build_frame_info (struct objfile *objfile)
1965 {
1966 struct comp_unit unit;
1967 gdb_byte *frame_ptr;
1968
1969 /* Build a minimal decoding of the DWARF2 compilation unit. */
1970 unit.abfd = objfile->obfd;
1971 unit.objfile = objfile;
1972 unit.dbase = 0;
1973 unit.tbase = 0;
1974
1975 /* First add the information from the .eh_frame section. That way,
1976 the FDEs from that section are searched last. */
1977 if (dwarf_eh_frame_section)
1978 {
1979 asection *got, *txt;
1980
1981 unit.cie = NULL;
1982 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1983 dwarf_eh_frame_section);
1984
1985 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1986 unit.dwarf_frame_section = dwarf_eh_frame_section;
1987
1988 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1989 that is used for the i386/amd64 target, which currently is
1990 the only target in GCC that supports/uses the
1991 DW_EH_PE_datarel encoding. */
1992 got = bfd_get_section_by_name (unit.abfd, ".got");
1993 if (got)
1994 unit.dbase = got->vma;
1995
1996 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1997 so far. */
1998 txt = bfd_get_section_by_name (unit.abfd, ".text");
1999 if (txt)
2000 unit.tbase = txt->vma;
2001
2002 frame_ptr = unit.dwarf_frame_buffer;
2003 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2004 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
2005 }
2006
2007 if (dwarf_frame_section)
2008 {
2009 unit.cie = NULL;
2010 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
2011 dwarf_frame_section);
2012 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
2013 unit.dwarf_frame_section = dwarf_frame_section;
2014
2015 frame_ptr = unit.dwarf_frame_buffer;
2016 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2017 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
2018 }
2019 }
2020
2021 /* Provide a prototype to silence -Wmissing-prototypes. */
2022 void _initialize_dwarf2_frame (void);
2023
2024 void
2025 _initialize_dwarf2_frame (void)
2026 {
2027 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2028 dwarf2_frame_objfile_data = register_objfile_data ();
2029 }
This page took 0.098045 seconds and 4 git commands to generate.