* python/py-frame.c (frapy_block): Fix error message text.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include <string.h>
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 const gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_addr_from_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 return unpack_pointer (register_type (gdbarch, regnum), buf);
302 }
303
304 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
305
306 static struct value *
307 get_reg_value (void *baton, struct type *type, int reg)
308 {
309 struct frame_info *this_frame = (struct frame_info *) baton;
310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
311 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
312
313 return value_from_register (type, regnum, this_frame);
314 }
315
316 static void
317 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
318 {
319 read_memory (addr, buf, len);
320 }
321
322 /* Execute the required actions for both the DW_CFA_restore and
323 DW_CFA_restore_extended instructions. */
324 static void
325 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
326 struct dwarf2_frame_state *fs, int eh_frame_p)
327 {
328 ULONGEST reg;
329
330 gdb_assert (fs->initial.reg);
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333
334 /* Check if this register was explicitly initialized in the
335 CIE initial instructions. If not, default the rule to
336 UNSPECIFIED. */
337 if (reg < fs->initial.num_regs)
338 fs->regs.reg[reg] = fs->initial.reg[reg];
339 else
340 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
341
342 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
343 complaint (&symfile_complaints, _("\
344 incomplete CFI data; DW_CFA_restore unspecified\n\
345 register %s (#%d) at %s"),
346 gdbarch_register_name
347 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
348 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
349 paddress (gdbarch, fs->pc));
350 }
351
352 /* Virtual method table for execute_stack_op below. */
353
354 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
355 {
356 read_addr_from_reg,
357 get_reg_value,
358 read_mem,
359 ctx_no_get_frame_base,
360 ctx_no_get_frame_cfa,
361 ctx_no_get_frame_pc,
362 ctx_no_get_tls_address,
363 ctx_no_dwarf_call,
364 ctx_no_get_base_type,
365 ctx_no_push_dwarf_reg_entry_value,
366 ctx_no_get_addr_index
367 };
368
369 static CORE_ADDR
370 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
371 CORE_ADDR offset, struct frame_info *this_frame,
372 CORE_ADDR initial, int initial_in_stack_memory)
373 {
374 struct dwarf_expr_context *ctx;
375 CORE_ADDR result;
376 struct cleanup *old_chain;
377
378 ctx = new_dwarf_expr_context ();
379 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
380 make_cleanup_value_free_to_mark (value_mark ());
381
382 ctx->gdbarch = get_frame_arch (this_frame);
383 ctx->addr_size = addr_size;
384 ctx->ref_addr_size = -1;
385 ctx->offset = offset;
386 ctx->baton = this_frame;
387 ctx->funcs = &dwarf2_frame_ctx_funcs;
388
389 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
390 dwarf_expr_eval (ctx, exp, len);
391
392 if (ctx->location == DWARF_VALUE_MEMORY)
393 result = dwarf_expr_fetch_address (ctx, 0);
394 else if (ctx->location == DWARF_VALUE_REGISTER)
395 result = read_addr_from_reg (this_frame,
396 value_as_long (dwarf_expr_fetch (ctx, 0)));
397 else
398 {
399 /* This is actually invalid DWARF, but if we ever do run across
400 it somehow, we might as well support it. So, instead, report
401 it as unimplemented. */
402 error (_("\
403 Not implemented: computing unwound register using explicit value operator"));
404 }
405
406 do_cleanups (old_chain);
407
408 return result;
409 }
410 \f
411
412 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
413 PC. Modify FS state accordingly. Return current INSN_PTR where the
414 execution has stopped, one can resume it on the next call. */
415
416 static const gdb_byte *
417 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
418 const gdb_byte *insn_end, struct gdbarch *gdbarch,
419 CORE_ADDR pc, struct dwarf2_frame_state *fs)
420 {
421 int eh_frame_p = fde->eh_frame_p;
422 unsigned int bytes_read;
423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
424
425 while (insn_ptr < insn_end && fs->pc <= pc)
426 {
427 gdb_byte insn = *insn_ptr++;
428 uint64_t utmp, reg;
429 int64_t offset;
430
431 if ((insn & 0xc0) == DW_CFA_advance_loc)
432 fs->pc += (insn & 0x3f) * fs->code_align;
433 else if ((insn & 0xc0) == DW_CFA_offset)
434 {
435 reg = insn & 0x3f;
436 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
438 offset = utmp * fs->data_align;
439 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
440 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
441 fs->regs.reg[reg].loc.offset = offset;
442 }
443 else if ((insn & 0xc0) == DW_CFA_restore)
444 {
445 reg = insn & 0x3f;
446 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
447 }
448 else
449 {
450 switch (insn)
451 {
452 case DW_CFA_set_loc:
453 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
454 fde->cie->ptr_size, insn_ptr,
455 &bytes_read, fde->initial_location);
456 /* Apply the objfile offset for relocatable objects. */
457 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
458 SECT_OFF_TEXT (fde->cie->unit->objfile));
459 insn_ptr += bytes_read;
460 break;
461
462 case DW_CFA_advance_loc1:
463 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
464 fs->pc += utmp * fs->code_align;
465 insn_ptr++;
466 break;
467 case DW_CFA_advance_loc2:
468 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
469 fs->pc += utmp * fs->code_align;
470 insn_ptr += 2;
471 break;
472 case DW_CFA_advance_loc4:
473 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 4;
476 break;
477
478 case DW_CFA_offset_extended:
479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
482 offset = utmp * fs->data_align;
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
484 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
485 fs->regs.reg[reg].loc.offset = offset;
486 break;
487
488 case DW_CFA_restore_extended:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
490 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
491 break;
492
493 case DW_CFA_undefined:
494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
495 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
498 break;
499
500 case DW_CFA_same_value:
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
502 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
505 break;
506
507 case DW_CFA_register:
508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
509 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
511 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
514 fs->regs.reg[reg].loc.reg = utmp;
515 break;
516
517 case DW_CFA_remember_state:
518 {
519 struct dwarf2_frame_state_reg_info *new_rs;
520
521 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
522 *new_rs = fs->regs;
523 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
524 fs->regs.prev = new_rs;
525 }
526 break;
527
528 case DW_CFA_restore_state:
529 {
530 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
531
532 if (old_rs == NULL)
533 {
534 complaint (&symfile_complaints, _("\
535 bad CFI data; mismatched DW_CFA_restore_state at %s"),
536 paddress (gdbarch, fs->pc));
537 }
538 else
539 {
540 xfree (fs->regs.reg);
541 fs->regs = *old_rs;
542 xfree (old_rs);
543 }
544 }
545 break;
546
547 case DW_CFA_def_cfa:
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
549 fs->regs.cfa_reg = reg;
550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
551
552 if (fs->armcc_cfa_offsets_sf)
553 utmp *= fs->data_align;
554
555 fs->regs.cfa_offset = utmp;
556 fs->regs.cfa_how = CFA_REG_OFFSET;
557 break;
558
559 case DW_CFA_def_cfa_register:
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
562 eh_frame_p);
563 fs->regs.cfa_how = CFA_REG_OFFSET;
564 break;
565
566 case DW_CFA_def_cfa_offset:
567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
568
569 if (fs->armcc_cfa_offsets_sf)
570 utmp *= fs->data_align;
571
572 fs->regs.cfa_offset = utmp;
573 /* cfa_how deliberately not set. */
574 break;
575
576 case DW_CFA_nop:
577 break;
578
579 case DW_CFA_def_cfa_expression:
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
581 fs->regs.cfa_exp_len = utmp;
582 fs->regs.cfa_exp = insn_ptr;
583 fs->regs.cfa_how = CFA_EXP;
584 insn_ptr += fs->regs.cfa_exp_len;
585 break;
586
587 case DW_CFA_expression:
588 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
589 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
590 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
592 fs->regs.reg[reg].loc.exp = insn_ptr;
593 fs->regs.reg[reg].exp_len = utmp;
594 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
595 insn_ptr += utmp;
596 break;
597
598 case DW_CFA_offset_extended_sf:
599 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
600 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
601 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
602 offset *= fs->data_align;
603 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
612 offset = utmp * fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_offset_sf:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
621 offset *= fs->data_align;
622 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
623 fs->regs.reg[reg].loc.offset = offset;
624 break;
625
626 case DW_CFA_val_expression:
627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
628 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
629 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
630 fs->regs.reg[reg].loc.exp = insn_ptr;
631 fs->regs.reg[reg].exp_len = utmp;
632 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
633 insn_ptr += utmp;
634 break;
635
636 case DW_CFA_def_cfa_sf:
637 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
638 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
639 eh_frame_p);
640 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
641 fs->regs.cfa_offset = offset * fs->data_align;
642 fs->regs.cfa_how = CFA_REG_OFFSET;
643 break;
644
645 case DW_CFA_def_cfa_offset_sf:
646 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
647 fs->regs.cfa_offset = offset * fs->data_align;
648 /* cfa_how deliberately not set. */
649 break;
650
651 case DW_CFA_GNU_window_save:
652 /* This is SPARC-specific code, and contains hard-coded
653 constants for the register numbering scheme used by
654 GCC. Rather than having a architecture-specific
655 operation that's only ever used by a single
656 architecture, we provide the implementation here.
657 Incidentally that's what GCC does too in its
658 unwinder. */
659 {
660 int size = register_size (gdbarch, 0);
661
662 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
663 for (reg = 8; reg < 16; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
666 fs->regs.reg[reg].loc.reg = reg + 16;
667 }
668 for (reg = 16; reg < 32; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
672 }
673 }
674 break;
675
676 case DW_CFA_GNU_args_size:
677 /* Ignored. */
678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
679 break;
680
681 case DW_CFA_GNU_negative_offset_extended:
682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
683 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
684 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
685 offset = utmp * fs->data_align;
686 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = -offset;
689 break;
690
691 default:
692 internal_error (__FILE__, __LINE__,
693 _("Unknown CFI encountered."));
694 }
695 }
696 }
697
698 if (fs->initial.reg == NULL)
699 {
700 /* Don't allow remember/restore between CIE and FDE programs. */
701 dwarf2_frame_state_free_regs (fs->regs.prev);
702 fs->regs.prev = NULL;
703 }
704
705 return insn_ptr;
706 }
707 \f
708
709 /* Architecture-specific operations. */
710
711 /* Per-architecture data key. */
712 static struct gdbarch_data *dwarf2_frame_data;
713
714 struct dwarf2_frame_ops
715 {
716 /* Pre-initialize the register state REG for register REGNUM. */
717 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
718 struct frame_info *);
719
720 /* Check whether the THIS_FRAME is a signal trampoline. */
721 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
722
723 /* Convert .eh_frame register number to DWARF register number, or
724 adjust .debug_frame register number. */
725 int (*adjust_regnum) (struct gdbarch *, int, int);
726 };
727
728 /* Default architecture-specific register state initialization
729 function. */
730
731 static void
732 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
733 struct dwarf2_frame_state_reg *reg,
734 struct frame_info *this_frame)
735 {
736 /* If we have a register that acts as a program counter, mark it as
737 a destination for the return address. If we have a register that
738 serves as the stack pointer, arrange for it to be filled with the
739 call frame address (CFA). The other registers are marked as
740 unspecified.
741
742 We copy the return address to the program counter, since many
743 parts in GDB assume that it is possible to get the return address
744 by unwinding the program counter register. However, on ISA's
745 with a dedicated return address register, the CFI usually only
746 contains information to unwind that return address register.
747
748 The reason we're treating the stack pointer special here is
749 because in many cases GCC doesn't emit CFI for the stack pointer
750 and implicitly assumes that it is equal to the CFA. This makes
751 some sense since the DWARF specification (version 3, draft 8,
752 p. 102) says that:
753
754 "Typically, the CFA is defined to be the value of the stack
755 pointer at the call site in the previous frame (which may be
756 different from its value on entry to the current frame)."
757
758 However, this isn't true for all platforms supported by GCC
759 (e.g. IBM S/390 and zSeries). Those architectures should provide
760 their own architecture-specific initialization function. */
761
762 if (regnum == gdbarch_pc_regnum (gdbarch))
763 reg->how = DWARF2_FRAME_REG_RA;
764 else if (regnum == gdbarch_sp_regnum (gdbarch))
765 reg->how = DWARF2_FRAME_REG_CFA;
766 }
767
768 /* Return a default for the architecture-specific operations. */
769
770 static void *
771 dwarf2_frame_init (struct obstack *obstack)
772 {
773 struct dwarf2_frame_ops *ops;
774
775 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
776 ops->init_reg = dwarf2_frame_default_init_reg;
777 return ops;
778 }
779
780 /* Set the architecture-specific register state initialization
781 function for GDBARCH to INIT_REG. */
782
783 void
784 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
785 void (*init_reg) (struct gdbarch *, int,
786 struct dwarf2_frame_state_reg *,
787 struct frame_info *))
788 {
789 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
790
791 ops->init_reg = init_reg;
792 }
793
794 /* Pre-initialize the register state REG for register REGNUM. */
795
796 static void
797 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
798 struct dwarf2_frame_state_reg *reg,
799 struct frame_info *this_frame)
800 {
801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
802
803 ops->init_reg (gdbarch, regnum, reg, this_frame);
804 }
805
806 /* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809 void
810 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813 {
814 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->signal_frame_p = signal_frame_p;
817 }
818
819 /* Query the architecture-specific signal frame recognizer for
820 THIS_FRAME. */
821
822 static int
823 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
824 struct frame_info *this_frame)
825 {
826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
830 return ops->signal_frame_p (gdbarch, this_frame);
831 }
832
833 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
835
836 void
837 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
840 {
841 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
842
843 ops->adjust_regnum = adjust_regnum;
844 }
845
846 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
847 register. */
848
849 static int
850 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
851 int regnum, int eh_frame_p)
852 {
853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
854
855 if (ops->adjust_regnum == NULL)
856 return regnum;
857 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
858 }
859
860 static void
861 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
862 struct dwarf2_fde *fde)
863 {
864 struct symtab *s;
865
866 s = find_pc_symtab (fs->pc);
867 if (s == NULL)
868 return;
869
870 if (producer_is_realview (s->producer))
871 {
872 if (fde->cie->version == 1)
873 fs->armcc_cfa_offsets_sf = 1;
874
875 if (fde->cie->version == 1)
876 fs->armcc_cfa_offsets_reversed = 1;
877
878 /* The reversed offset problem is present in some compilers
879 using DWARF3, but it was eventually fixed. Check the ARM
880 defined augmentations, which are in the format "armcc" followed
881 by a list of one-character options. The "+" option means
882 this problem is fixed (no quirk needed). If the armcc
883 augmentation is missing, the quirk is needed. */
884 if (fde->cie->version == 3
885 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
886 || strchr (fde->cie->augmentation + 5, '+') == NULL))
887 fs->armcc_cfa_offsets_reversed = 1;
888
889 return;
890 }
891 }
892 \f
893
894 void
895 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
896 struct gdbarch *gdbarch,
897 CORE_ADDR pc,
898 struct dwarf2_per_cu_data *data)
899 {
900 struct dwarf2_fde *fde;
901 CORE_ADDR text_offset;
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
944 ax_reg (expr, regnum);
945
946 if (fs.regs.cfa_offset != 0)
947 {
948 if (fs.armcc_cfa_offsets_reversed)
949 ax_const_l (expr, -fs.regs.cfa_offset);
950 else
951 ax_const_l (expr, fs.regs.cfa_offset);
952 ax_simple (expr, aop_add);
953 }
954 }
955 break;
956
957 case CFA_EXP:
958 ax_const_l (expr, text_offset);
959 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
960 fs.regs.cfa_exp,
961 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
962 data);
963 break;
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968 }
969
970 \f
971 struct dwarf2_frame_cache
972 {
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
989
990 /* Target address size in bytes. */
991 int addr_size;
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
995
996 /* True if we already checked whether this frame is the bottom frame
997 of a virtual tail call frame chain. */
998 int checked_tailcall_bottom;
999
1000 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1001 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1002 involved. Non-bottom frames of a virtual tail call frames chain use
1003 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1004 them. */
1005 void *tailcall_cache;
1006
1007 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1008 base to get the SP, to simulate the return address pushed on the
1009 stack. */
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p;
1012 };
1013
1014 /* A cleanup that sets a pointer to NULL. */
1015
1016 static void
1017 clear_pointer_cleanup (void *arg)
1018 {
1019 void **ptr = arg;
1020
1021 *ptr = NULL;
1022 }
1023
1024 static struct dwarf2_frame_cache *
1025 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1026 {
1027 struct cleanup *reset_cache_cleanup, *old_chain;
1028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1029 const int num_regs = gdbarch_num_regs (gdbarch)
1030 + gdbarch_num_pseudo_regs (gdbarch);
1031 struct dwarf2_frame_cache *cache;
1032 struct dwarf2_frame_state *fs;
1033 struct dwarf2_fde *fde;
1034 volatile struct gdb_exception ex;
1035 CORE_ADDR entry_pc;
1036 const gdb_byte *instr;
1037
1038 if (*this_cache)
1039 return *this_cache;
1040
1041 /* Allocate a new cache. */
1042 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1043 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1044 *this_cache = cache;
1045 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1046
1047 /* Allocate and initialize the frame state. */
1048 fs = XZALLOC (struct dwarf2_frame_state);
1049 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1050
1051 /* Unwind the PC.
1052
1053 Note that if the next frame is never supposed to return (i.e. a call
1054 to abort), the compiler might optimize away the instruction at
1055 its return address. As a result the return address will
1056 point at some random instruction, and the CFI for that
1057 instruction is probably worthless to us. GCC's unwinder solves
1058 this problem by substracting 1 from the return address to get an
1059 address in the middle of a presumed call instruction (or the
1060 instruction in the associated delay slot). This should only be
1061 done for "normal" frames and not for resume-type frames (signal
1062 handlers, sentinel frames, dummy frames). The function
1063 get_frame_address_in_block does just this. It's not clear how
1064 reliable the method is though; there is the potential for the
1065 register state pre-call being different to that on return. */
1066 fs->pc = get_frame_address_in_block (this_frame);
1067
1068 /* Find the correct FDE. */
1069 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1070 gdb_assert (fde != NULL);
1071
1072 /* Extract any interesting information from the CIE. */
1073 fs->data_align = fde->cie->data_alignment_factor;
1074 fs->code_align = fde->cie->code_alignment_factor;
1075 fs->retaddr_column = fde->cie->return_address_register;
1076 cache->addr_size = fde->cie->addr_size;
1077
1078 /* Check for "quirks" - known bugs in producers. */
1079 dwarf2_frame_find_quirks (fs, fde);
1080
1081 /* First decode all the insns in the CIE. */
1082 execute_cfa_program (fde, fde->cie->initial_instructions,
1083 fde->cie->end, gdbarch,
1084 get_frame_address_in_block (this_frame), fs);
1085
1086 /* Save the initialized register set. */
1087 fs->initial = fs->regs;
1088 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1089
1090 if (get_frame_func_if_available (this_frame, &entry_pc))
1091 {
1092 /* Decode the insns in the FDE up to the entry PC. */
1093 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1094 entry_pc, fs);
1095
1096 if (fs->regs.cfa_how == CFA_REG_OFFSET
1097 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1098 == gdbarch_sp_regnum (gdbarch)))
1099 {
1100 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1101 cache->entry_cfa_sp_offset_p = 1;
1102 }
1103 }
1104 else
1105 instr = fde->instructions;
1106
1107 /* Then decode the insns in the FDE up to our target PC. */
1108 execute_cfa_program (fde, instr, fde->end, gdbarch,
1109 get_frame_address_in_block (this_frame), fs);
1110
1111 TRY_CATCH (ex, RETURN_MASK_ERROR)
1112 {
1113 /* Calculate the CFA. */
1114 switch (fs->regs.cfa_how)
1115 {
1116 case CFA_REG_OFFSET:
1117 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1118 if (fs->armcc_cfa_offsets_reversed)
1119 cache->cfa -= fs->regs.cfa_offset;
1120 else
1121 cache->cfa += fs->regs.cfa_offset;
1122 break;
1123
1124 case CFA_EXP:
1125 cache->cfa =
1126 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1127 cache->addr_size, cache->text_offset,
1128 this_frame, 0, 0);
1129 break;
1130
1131 default:
1132 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1133 }
1134 }
1135 if (ex.reason < 0)
1136 {
1137 if (ex.error == NOT_AVAILABLE_ERROR)
1138 {
1139 cache->unavailable_retaddr = 1;
1140 do_cleanups (old_chain);
1141 discard_cleanups (reset_cache_cleanup);
1142 return cache;
1143 }
1144
1145 throw_exception (ex);
1146 }
1147
1148 /* Initialize the register state. */
1149 {
1150 int regnum;
1151
1152 for (regnum = 0; regnum < num_regs; regnum++)
1153 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1154 }
1155
1156 /* Go through the DWARF2 CFI generated table and save its register
1157 location information in the cache. Note that we don't skip the
1158 return address column; it's perfectly all right for it to
1159 correspond to a real register. If it doesn't correspond to a
1160 real register, or if we shouldn't treat it as such,
1161 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1162 the range [0, gdbarch_num_regs). */
1163 {
1164 int column; /* CFI speak for "register number". */
1165
1166 for (column = 0; column < fs->regs.num_regs; column++)
1167 {
1168 /* Use the GDB register number as the destination index. */
1169 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1170
1171 /* If there's no corresponding GDB register, ignore it. */
1172 if (regnum < 0 || regnum >= num_regs)
1173 continue;
1174
1175 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1176 of all debug info registers. If it doesn't, complain (but
1177 not too loudly). It turns out that GCC assumes that an
1178 unspecified register implies "same value" when CFI (draft
1179 7) specifies nothing at all. Such a register could equally
1180 be interpreted as "undefined". Also note that this check
1181 isn't sufficient; it only checks that all registers in the
1182 range [0 .. max column] are specified, and won't detect
1183 problems when a debug info register falls outside of the
1184 table. We need a way of iterating through all the valid
1185 DWARF2 register numbers. */
1186 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1187 {
1188 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1189 complaint (&symfile_complaints, _("\
1190 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1191 gdbarch_register_name (gdbarch, regnum),
1192 paddress (gdbarch, fs->pc));
1193 }
1194 else
1195 cache->reg[regnum] = fs->regs.reg[column];
1196 }
1197 }
1198
1199 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1200 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1201 {
1202 int regnum;
1203
1204 for (regnum = 0; regnum < num_regs; regnum++)
1205 {
1206 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1207 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1208 {
1209 struct dwarf2_frame_state_reg *retaddr_reg =
1210 &fs->regs.reg[fs->retaddr_column];
1211
1212 /* It seems rather bizarre to specify an "empty" column as
1213 the return adress column. However, this is exactly
1214 what GCC does on some targets. It turns out that GCC
1215 assumes that the return address can be found in the
1216 register corresponding to the return address column.
1217 Incidentally, that's how we should treat a return
1218 address column specifying "same value" too. */
1219 if (fs->retaddr_column < fs->regs.num_regs
1220 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1221 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1222 {
1223 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1224 cache->reg[regnum] = *retaddr_reg;
1225 else
1226 cache->retaddr_reg = *retaddr_reg;
1227 }
1228 else
1229 {
1230 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1231 {
1232 cache->reg[regnum].loc.reg = fs->retaddr_column;
1233 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 else
1236 {
1237 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1238 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1239 }
1240 }
1241 }
1242 }
1243 }
1244
1245 if (fs->retaddr_column < fs->regs.num_regs
1246 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1247 cache->undefined_retaddr = 1;
1248 else if (fs->retaddr_column >= fs->regs.num_regs
1249 || (fs->regs.reg[fs->retaddr_column].how
1250 == DWARF2_FRAME_REG_UNSPECIFIED))
1251 cache->undefined_retaddr = 1;
1252
1253 do_cleanups (old_chain);
1254 discard_cleanups (reset_cache_cleanup);
1255 return cache;
1256 }
1257
1258 static enum unwind_stop_reason
1259 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1260 void **this_cache)
1261 {
1262 struct dwarf2_frame_cache *cache
1263 = dwarf2_frame_cache (this_frame, this_cache);
1264
1265 if (cache->unavailable_retaddr)
1266 return UNWIND_UNAVAILABLE;
1267
1268 if (cache->undefined_retaddr)
1269 return UNWIND_OUTERMOST;
1270
1271 return UNWIND_NO_REASON;
1272 }
1273
1274 static void
1275 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1276 struct frame_id *this_id)
1277 {
1278 struct dwarf2_frame_cache *cache =
1279 dwarf2_frame_cache (this_frame, this_cache);
1280
1281 if (cache->unavailable_retaddr)
1282 return;
1283
1284 if (cache->undefined_retaddr)
1285 return;
1286
1287 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1288 }
1289
1290 static struct value *
1291 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1292 int regnum)
1293 {
1294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1295 struct dwarf2_frame_cache *cache =
1296 dwarf2_frame_cache (this_frame, this_cache);
1297 CORE_ADDR addr;
1298 int realnum;
1299
1300 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1301 call frame chain. */
1302 if (!cache->checked_tailcall_bottom)
1303 {
1304 cache->checked_tailcall_bottom = 1;
1305 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1306 (cache->entry_cfa_sp_offset_p
1307 ? &cache->entry_cfa_sp_offset : NULL));
1308 }
1309
1310 /* Non-bottom frames of a virtual tail call frames chain use
1311 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1312 them. If dwarf2_tailcall_prev_register_first does not have specific value
1313 unwind the register, tail call frames are assumed to have the register set
1314 of the top caller. */
1315 if (cache->tailcall_cache)
1316 {
1317 struct value *val;
1318
1319 val = dwarf2_tailcall_prev_register_first (this_frame,
1320 &cache->tailcall_cache,
1321 regnum);
1322 if (val)
1323 return val;
1324 }
1325
1326 switch (cache->reg[regnum].how)
1327 {
1328 case DWARF2_FRAME_REG_UNDEFINED:
1329 /* If CFI explicitly specified that the value isn't defined,
1330 mark it as optimized away; the value isn't available. */
1331 return frame_unwind_got_optimized (this_frame, regnum);
1332
1333 case DWARF2_FRAME_REG_SAVED_OFFSET:
1334 addr = cache->cfa + cache->reg[regnum].loc.offset;
1335 return frame_unwind_got_memory (this_frame, regnum, addr);
1336
1337 case DWARF2_FRAME_REG_SAVED_REG:
1338 realnum
1339 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1340 return frame_unwind_got_register (this_frame, regnum, realnum);
1341
1342 case DWARF2_FRAME_REG_SAVED_EXP:
1343 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1344 cache->reg[regnum].exp_len,
1345 cache->addr_size, cache->text_offset,
1346 this_frame, cache->cfa, 1);
1347 return frame_unwind_got_memory (this_frame, regnum, addr);
1348
1349 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1350 addr = cache->cfa + cache->reg[regnum].loc.offset;
1351 return frame_unwind_got_constant (this_frame, regnum, addr);
1352
1353 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1354 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1355 cache->reg[regnum].exp_len,
1356 cache->addr_size, cache->text_offset,
1357 this_frame, cache->cfa, 1);
1358 return frame_unwind_got_constant (this_frame, regnum, addr);
1359
1360 case DWARF2_FRAME_REG_UNSPECIFIED:
1361 /* GCC, in its infinite wisdom decided to not provide unwind
1362 information for registers that are "same value". Since
1363 DWARF2 (3 draft 7) doesn't define such behavior, said
1364 registers are actually undefined (which is different to CFI
1365 "undefined"). Code above issues a complaint about this.
1366 Here just fudge the books, assume GCC, and that the value is
1367 more inner on the stack. */
1368 return frame_unwind_got_register (this_frame, regnum, regnum);
1369
1370 case DWARF2_FRAME_REG_SAME_VALUE:
1371 return frame_unwind_got_register (this_frame, regnum, regnum);
1372
1373 case DWARF2_FRAME_REG_CFA:
1374 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1375
1376 case DWARF2_FRAME_REG_CFA_OFFSET:
1377 addr = cache->cfa + cache->reg[regnum].loc.offset;
1378 return frame_unwind_got_address (this_frame, regnum, addr);
1379
1380 case DWARF2_FRAME_REG_RA_OFFSET:
1381 addr = cache->reg[regnum].loc.offset;
1382 regnum = gdbarch_dwarf2_reg_to_regnum
1383 (gdbarch, cache->retaddr_reg.loc.reg);
1384 addr += get_frame_register_unsigned (this_frame, regnum);
1385 return frame_unwind_got_address (this_frame, regnum, addr);
1386
1387 case DWARF2_FRAME_REG_FN:
1388 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1389
1390 default:
1391 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1392 }
1393 }
1394
1395 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1396 call frames chain. */
1397
1398 static void
1399 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1400 {
1401 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1402
1403 if (cache->tailcall_cache)
1404 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1405 }
1406
1407 static int
1408 dwarf2_frame_sniffer (const struct frame_unwind *self,
1409 struct frame_info *this_frame, void **this_cache)
1410 {
1411 /* Grab an address that is guarenteed to reside somewhere within the
1412 function. get_frame_pc(), with a no-return next function, can
1413 end up returning something past the end of this function's body.
1414 If the frame we're sniffing for is a signal frame whose start
1415 address is placed on the stack by the OS, its FDE must
1416 extend one byte before its start address or we could potentially
1417 select the FDE of the previous function. */
1418 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1419 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1420
1421 if (!fde)
1422 return 0;
1423
1424 /* On some targets, signal trampolines may have unwind information.
1425 We need to recognize them so that we set the frame type
1426 correctly. */
1427
1428 if (fde->cie->signal_frame
1429 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1430 this_frame))
1431 return self->type == SIGTRAMP_FRAME;
1432
1433 if (self->type != NORMAL_FRAME)
1434 return 0;
1435
1436 return 1;
1437 }
1438
1439 static const struct frame_unwind dwarf2_frame_unwind =
1440 {
1441 NORMAL_FRAME,
1442 dwarf2_frame_unwind_stop_reason,
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
1446 dwarf2_frame_sniffer,
1447 dwarf2_frame_dealloc_cache
1448 };
1449
1450 static const struct frame_unwind dwarf2_signal_frame_unwind =
1451 {
1452 SIGTRAMP_FRAME,
1453 dwarf2_frame_unwind_stop_reason,
1454 dwarf2_frame_this_id,
1455 dwarf2_frame_prev_register,
1456 NULL,
1457 dwarf2_frame_sniffer,
1458
1459 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1460 NULL
1461 };
1462
1463 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1464
1465 void
1466 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1467 {
1468 /* TAILCALL_FRAME must be first to find the record by
1469 dwarf2_tailcall_sniffer_first. */
1470 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1471
1472 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1473 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1474 }
1475 \f
1476
1477 /* There is no explicitly defined relationship between the CFA and the
1478 location of frame's local variables and arguments/parameters.
1479 Therefore, frame base methods on this page should probably only be
1480 used as a last resort, just to avoid printing total garbage as a
1481 response to the "info frame" command. */
1482
1483 static CORE_ADDR
1484 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1485 {
1486 struct dwarf2_frame_cache *cache =
1487 dwarf2_frame_cache (this_frame, this_cache);
1488
1489 return cache->cfa;
1490 }
1491
1492 static const struct frame_base dwarf2_frame_base =
1493 {
1494 &dwarf2_frame_unwind,
1495 dwarf2_frame_base_address,
1496 dwarf2_frame_base_address,
1497 dwarf2_frame_base_address
1498 };
1499
1500 const struct frame_base *
1501 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1502 {
1503 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1504
1505 if (dwarf2_frame_find_fde (&block_addr, NULL))
1506 return &dwarf2_frame_base;
1507
1508 return NULL;
1509 }
1510
1511 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1512 the DWARF unwinder. This is used to implement
1513 DW_OP_call_frame_cfa. */
1514
1515 CORE_ADDR
1516 dwarf2_frame_cfa (struct frame_info *this_frame)
1517 {
1518 while (get_frame_type (this_frame) == INLINE_FRAME)
1519 this_frame = get_prev_frame (this_frame);
1520 /* This restriction could be lifted if other unwinders are known to
1521 compute the frame base in a way compatible with the DWARF
1522 unwinder. */
1523 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1524 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1525 error (_("can't compute CFA for this frame"));
1526 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1527 throw_error (NOT_AVAILABLE_ERROR,
1528 _("can't compute CFA for this frame: "
1529 "required registers or memory are unavailable"));
1530 return get_frame_base (this_frame);
1531 }
1532 \f
1533 const struct objfile_data *dwarf2_frame_objfile_data;
1534
1535 static unsigned int
1536 read_1_byte (bfd *abfd, const gdb_byte *buf)
1537 {
1538 return bfd_get_8 (abfd, buf);
1539 }
1540
1541 static unsigned int
1542 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1543 {
1544 return bfd_get_32 (abfd, buf);
1545 }
1546
1547 static ULONGEST
1548 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1549 {
1550 return bfd_get_64 (abfd, buf);
1551 }
1552
1553 static ULONGEST
1554 read_initial_length (bfd *abfd, const gdb_byte *buf,
1555 unsigned int *bytes_read_ptr)
1556 {
1557 LONGEST result;
1558
1559 result = bfd_get_32 (abfd, buf);
1560 if (result == 0xffffffff)
1561 {
1562 result = bfd_get_64 (abfd, buf + 4);
1563 *bytes_read_ptr = 12;
1564 }
1565 else
1566 *bytes_read_ptr = 4;
1567
1568 return result;
1569 }
1570 \f
1571
1572 /* Pointer encoding helper functions. */
1573
1574 /* GCC supports exception handling based on DWARF2 CFI. However, for
1575 technical reasons, it encodes addresses in its FDE's in a different
1576 way. Several "pointer encodings" are supported. The encoding
1577 that's used for a particular FDE is determined by the 'R'
1578 augmentation in the associated CIE. The argument of this
1579 augmentation is a single byte.
1580
1581 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1582 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1583 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1584 address should be interpreted (absolute, relative to the current
1585 position in the FDE, ...). Bit 7, indicates that the address
1586 should be dereferenced. */
1587
1588 static gdb_byte
1589 encoding_for_size (unsigned int size)
1590 {
1591 switch (size)
1592 {
1593 case 2:
1594 return DW_EH_PE_udata2;
1595 case 4:
1596 return DW_EH_PE_udata4;
1597 case 8:
1598 return DW_EH_PE_udata8;
1599 default:
1600 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1601 }
1602 }
1603
1604 static CORE_ADDR
1605 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1606 int ptr_len, const gdb_byte *buf,
1607 unsigned int *bytes_read_ptr,
1608 CORE_ADDR func_base)
1609 {
1610 ptrdiff_t offset;
1611 CORE_ADDR base;
1612
1613 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1614 FDE's. */
1615 if (encoding & DW_EH_PE_indirect)
1616 internal_error (__FILE__, __LINE__,
1617 _("Unsupported encoding: DW_EH_PE_indirect"));
1618
1619 *bytes_read_ptr = 0;
1620
1621 switch (encoding & 0x70)
1622 {
1623 case DW_EH_PE_absptr:
1624 base = 0;
1625 break;
1626 case DW_EH_PE_pcrel:
1627 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1628 base += (buf - unit->dwarf_frame_buffer);
1629 break;
1630 case DW_EH_PE_datarel:
1631 base = unit->dbase;
1632 break;
1633 case DW_EH_PE_textrel:
1634 base = unit->tbase;
1635 break;
1636 case DW_EH_PE_funcrel:
1637 base = func_base;
1638 break;
1639 case DW_EH_PE_aligned:
1640 base = 0;
1641 offset = buf - unit->dwarf_frame_buffer;
1642 if ((offset % ptr_len) != 0)
1643 {
1644 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1645 buf += *bytes_read_ptr;
1646 }
1647 break;
1648 default:
1649 internal_error (__FILE__, __LINE__,
1650 _("Invalid or unsupported encoding"));
1651 }
1652
1653 if ((encoding & 0x07) == 0x00)
1654 {
1655 encoding |= encoding_for_size (ptr_len);
1656 if (bfd_get_sign_extend_vma (unit->abfd))
1657 encoding |= DW_EH_PE_signed;
1658 }
1659
1660 switch (encoding & 0x0f)
1661 {
1662 case DW_EH_PE_uleb128:
1663 {
1664 uint64_t value;
1665 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1666
1667 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1668 return base + value;
1669 }
1670 case DW_EH_PE_udata2:
1671 *bytes_read_ptr += 2;
1672 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_udata4:
1674 *bytes_read_ptr += 4;
1675 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1676 case DW_EH_PE_udata8:
1677 *bytes_read_ptr += 8;
1678 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1679 case DW_EH_PE_sleb128:
1680 {
1681 int64_t value;
1682 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1683
1684 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1685 return base + value;
1686 }
1687 case DW_EH_PE_sdata2:
1688 *bytes_read_ptr += 2;
1689 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1690 case DW_EH_PE_sdata4:
1691 *bytes_read_ptr += 4;
1692 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1693 case DW_EH_PE_sdata8:
1694 *bytes_read_ptr += 8;
1695 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1696 default:
1697 internal_error (__FILE__, __LINE__,
1698 _("Invalid or unsupported encoding"));
1699 }
1700 }
1701 \f
1702
1703 static int
1704 bsearch_cie_cmp (const void *key, const void *element)
1705 {
1706 ULONGEST cie_pointer = *(ULONGEST *) key;
1707 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1708
1709 if (cie_pointer == cie->cie_pointer)
1710 return 0;
1711
1712 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1713 }
1714
1715 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1716 static struct dwarf2_cie *
1717 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1718 {
1719 struct dwarf2_cie **p_cie;
1720
1721 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1722 bsearch be non-NULL. */
1723 if (cie_table->entries == NULL)
1724 {
1725 gdb_assert (cie_table->num_entries == 0);
1726 return NULL;
1727 }
1728
1729 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1730 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1731 if (p_cie != NULL)
1732 return *p_cie;
1733 return NULL;
1734 }
1735
1736 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1737 static void
1738 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1739 {
1740 const int n = cie_table->num_entries;
1741
1742 gdb_assert (n < 1
1743 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1744
1745 cie_table->entries =
1746 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1747 cie_table->entries[n] = cie;
1748 cie_table->num_entries = n + 1;
1749 }
1750
1751 static int
1752 bsearch_fde_cmp (const void *key, const void *element)
1753 {
1754 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1755 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1756
1757 if (seek_pc < fde->initial_location)
1758 return -1;
1759 if (seek_pc < fde->initial_location + fde->address_range)
1760 return 0;
1761 return 1;
1762 }
1763
1764 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1765 inital location associated with it into *PC. */
1766
1767 static struct dwarf2_fde *
1768 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1769 {
1770 struct objfile *objfile;
1771
1772 ALL_OBJFILES (objfile)
1773 {
1774 struct dwarf2_fde_table *fde_table;
1775 struct dwarf2_fde **p_fde;
1776 CORE_ADDR offset;
1777 CORE_ADDR seek_pc;
1778
1779 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1780 if (fde_table == NULL)
1781 {
1782 dwarf2_build_frame_info (objfile);
1783 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1784 }
1785 gdb_assert (fde_table != NULL);
1786
1787 if (fde_table->num_entries == 0)
1788 continue;
1789
1790 gdb_assert (objfile->section_offsets);
1791 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1792
1793 gdb_assert (fde_table->num_entries > 0);
1794 if (*pc < offset + fde_table->entries[0]->initial_location)
1795 continue;
1796
1797 seek_pc = *pc - offset;
1798 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1799 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1800 if (p_fde != NULL)
1801 {
1802 *pc = (*p_fde)->initial_location + offset;
1803 if (out_offset)
1804 *out_offset = offset;
1805 return *p_fde;
1806 }
1807 }
1808 return NULL;
1809 }
1810
1811 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1812 static void
1813 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1814 {
1815 if (fde->address_range == 0)
1816 /* Discard useless FDEs. */
1817 return;
1818
1819 fde_table->num_entries += 1;
1820 fde_table->entries =
1821 xrealloc (fde_table->entries,
1822 fde_table->num_entries * sizeof (fde_table->entries[0]));
1823 fde_table->entries[fde_table->num_entries - 1] = fde;
1824 }
1825
1826 #define DW64_CIE_ID 0xffffffffffffffffULL
1827
1828 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1829 or any of them. */
1830
1831 enum eh_frame_type
1832 {
1833 EH_CIE_TYPE_ID = 1 << 0,
1834 EH_FDE_TYPE_ID = 1 << 1,
1835 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1836 };
1837
1838 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1839 const gdb_byte *start,
1840 int eh_frame_p,
1841 struct dwarf2_cie_table *cie_table,
1842 struct dwarf2_fde_table *fde_table,
1843 enum eh_frame_type entry_type);
1844
1845 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1846 Return NULL if invalid input, otherwise the next byte to be processed. */
1847
1848 static const gdb_byte *
1849 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1850 int eh_frame_p,
1851 struct dwarf2_cie_table *cie_table,
1852 struct dwarf2_fde_table *fde_table,
1853 enum eh_frame_type entry_type)
1854 {
1855 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1856 const gdb_byte *buf, *end;
1857 LONGEST length;
1858 unsigned int bytes_read;
1859 int dwarf64_p;
1860 ULONGEST cie_id;
1861 ULONGEST cie_pointer;
1862 int64_t sleb128;
1863 uint64_t uleb128;
1864
1865 buf = start;
1866 length = read_initial_length (unit->abfd, buf, &bytes_read);
1867 buf += bytes_read;
1868 end = buf + length;
1869
1870 /* Are we still within the section? */
1871 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1872 return NULL;
1873
1874 if (length == 0)
1875 return end;
1876
1877 /* Distinguish between 32 and 64-bit encoded frame info. */
1878 dwarf64_p = (bytes_read == 12);
1879
1880 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1881 if (eh_frame_p)
1882 cie_id = 0;
1883 else if (dwarf64_p)
1884 cie_id = DW64_CIE_ID;
1885 else
1886 cie_id = DW_CIE_ID;
1887
1888 if (dwarf64_p)
1889 {
1890 cie_pointer = read_8_bytes (unit->abfd, buf);
1891 buf += 8;
1892 }
1893 else
1894 {
1895 cie_pointer = read_4_bytes (unit->abfd, buf);
1896 buf += 4;
1897 }
1898
1899 if (cie_pointer == cie_id)
1900 {
1901 /* This is a CIE. */
1902 struct dwarf2_cie *cie;
1903 char *augmentation;
1904 unsigned int cie_version;
1905
1906 /* Check that a CIE was expected. */
1907 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1908 error (_("Found a CIE when not expecting it."));
1909
1910 /* Record the offset into the .debug_frame section of this CIE. */
1911 cie_pointer = start - unit->dwarf_frame_buffer;
1912
1913 /* Check whether we've already read it. */
1914 if (find_cie (cie_table, cie_pointer))
1915 return end;
1916
1917 cie = (struct dwarf2_cie *)
1918 obstack_alloc (&unit->objfile->objfile_obstack,
1919 sizeof (struct dwarf2_cie));
1920 cie->initial_instructions = NULL;
1921 cie->cie_pointer = cie_pointer;
1922
1923 /* The encoding for FDE's in a normal .debug_frame section
1924 depends on the target address size. */
1925 cie->encoding = DW_EH_PE_absptr;
1926
1927 /* We'll determine the final value later, but we need to
1928 initialize it conservatively. */
1929 cie->signal_frame = 0;
1930
1931 /* Check version number. */
1932 cie_version = read_1_byte (unit->abfd, buf);
1933 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1934 return NULL;
1935 cie->version = cie_version;
1936 buf += 1;
1937
1938 /* Interpret the interesting bits of the augmentation. */
1939 cie->augmentation = augmentation = (char *) buf;
1940 buf += (strlen (augmentation) + 1);
1941
1942 /* Ignore armcc augmentations. We only use them for quirks,
1943 and that doesn't happen until later. */
1944 if (strncmp (augmentation, "armcc", 5) == 0)
1945 augmentation += strlen (augmentation);
1946
1947 /* The GCC 2.x "eh" augmentation has a pointer immediately
1948 following the augmentation string, so it must be handled
1949 first. */
1950 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1951 {
1952 /* Skip. */
1953 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1954 augmentation += 2;
1955 }
1956
1957 if (cie->version >= 4)
1958 {
1959 /* FIXME: check that this is the same as from the CU header. */
1960 cie->addr_size = read_1_byte (unit->abfd, buf);
1961 ++buf;
1962 cie->segment_size = read_1_byte (unit->abfd, buf);
1963 ++buf;
1964 }
1965 else
1966 {
1967 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1968 cie->segment_size = 0;
1969 }
1970 /* Address values in .eh_frame sections are defined to have the
1971 target's pointer size. Watchout: This breaks frame info for
1972 targets with pointer size < address size, unless a .debug_frame
1973 section exists as well. */
1974 if (eh_frame_p)
1975 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1976 else
1977 cie->ptr_size = cie->addr_size;
1978
1979 buf = gdb_read_uleb128 (buf, end, &uleb128);
1980 if (buf == NULL)
1981 return NULL;
1982 cie->code_alignment_factor = uleb128;
1983
1984 buf = gdb_read_sleb128 (buf, end, &sleb128);
1985 if (buf == NULL)
1986 return NULL;
1987 cie->data_alignment_factor = sleb128;
1988
1989 if (cie_version == 1)
1990 {
1991 cie->return_address_register = read_1_byte (unit->abfd, buf);
1992 ++buf;
1993 }
1994 else
1995 {
1996 buf = gdb_read_uleb128 (buf, end, &uleb128);
1997 if (buf == NULL)
1998 return NULL;
1999 cie->return_address_register = uleb128;
2000 }
2001
2002 cie->return_address_register
2003 = dwarf2_frame_adjust_regnum (gdbarch,
2004 cie->return_address_register,
2005 eh_frame_p);
2006
2007 cie->saw_z_augmentation = (*augmentation == 'z');
2008 if (cie->saw_z_augmentation)
2009 {
2010 uint64_t length;
2011
2012 buf = gdb_read_uleb128 (buf, end, &length);
2013 if (buf == NULL)
2014 return NULL;
2015 cie->initial_instructions = buf + length;
2016 augmentation++;
2017 }
2018
2019 while (*augmentation)
2020 {
2021 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2022 if (*augmentation == 'L')
2023 {
2024 /* Skip. */
2025 buf++;
2026 augmentation++;
2027 }
2028
2029 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2030 else if (*augmentation == 'R')
2031 {
2032 cie->encoding = *buf++;
2033 augmentation++;
2034 }
2035
2036 /* "P" indicates a personality routine in the CIE augmentation. */
2037 else if (*augmentation == 'P')
2038 {
2039 /* Skip. Avoid indirection since we throw away the result. */
2040 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2041 read_encoded_value (unit, encoding, cie->ptr_size,
2042 buf, &bytes_read, 0);
2043 buf += bytes_read;
2044 augmentation++;
2045 }
2046
2047 /* "S" indicates a signal frame, such that the return
2048 address must not be decremented to locate the call frame
2049 info for the previous frame; it might even be the first
2050 instruction of a function, so decrementing it would take
2051 us to a different function. */
2052 else if (*augmentation == 'S')
2053 {
2054 cie->signal_frame = 1;
2055 augmentation++;
2056 }
2057
2058 /* Otherwise we have an unknown augmentation. Assume that either
2059 there is no augmentation data, or we saw a 'z' prefix. */
2060 else
2061 {
2062 if (cie->initial_instructions)
2063 buf = cie->initial_instructions;
2064 break;
2065 }
2066 }
2067
2068 cie->initial_instructions = buf;
2069 cie->end = end;
2070 cie->unit = unit;
2071
2072 add_cie (cie_table, cie);
2073 }
2074 else
2075 {
2076 /* This is a FDE. */
2077 struct dwarf2_fde *fde;
2078
2079 /* Check that an FDE was expected. */
2080 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2081 error (_("Found an FDE when not expecting it."));
2082
2083 /* In an .eh_frame section, the CIE pointer is the delta between the
2084 address within the FDE where the CIE pointer is stored and the
2085 address of the CIE. Convert it to an offset into the .eh_frame
2086 section. */
2087 if (eh_frame_p)
2088 {
2089 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2090 cie_pointer -= (dwarf64_p ? 8 : 4);
2091 }
2092
2093 /* In either case, validate the result is still within the section. */
2094 if (cie_pointer >= unit->dwarf_frame_size)
2095 return NULL;
2096
2097 fde = (struct dwarf2_fde *)
2098 obstack_alloc (&unit->objfile->objfile_obstack,
2099 sizeof (struct dwarf2_fde));
2100 fde->cie = find_cie (cie_table, cie_pointer);
2101 if (fde->cie == NULL)
2102 {
2103 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2104 eh_frame_p, cie_table, fde_table,
2105 EH_CIE_TYPE_ID);
2106 fde->cie = find_cie (cie_table, cie_pointer);
2107 }
2108
2109 gdb_assert (fde->cie != NULL);
2110
2111 fde->initial_location =
2112 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2113 buf, &bytes_read, 0);
2114 buf += bytes_read;
2115
2116 fde->address_range =
2117 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2118 fde->cie->ptr_size, buf, &bytes_read, 0);
2119 buf += bytes_read;
2120
2121 /* A 'z' augmentation in the CIE implies the presence of an
2122 augmentation field in the FDE as well. The only thing known
2123 to be in here at present is the LSDA entry for EH. So we
2124 can skip the whole thing. */
2125 if (fde->cie->saw_z_augmentation)
2126 {
2127 uint64_t length;
2128
2129 buf = gdb_read_uleb128 (buf, end, &length);
2130 if (buf == NULL)
2131 return NULL;
2132 buf += length;
2133 if (buf > end)
2134 return NULL;
2135 }
2136
2137 fde->instructions = buf;
2138 fde->end = end;
2139
2140 fde->eh_frame_p = eh_frame_p;
2141
2142 add_fde (fde_table, fde);
2143 }
2144
2145 return end;
2146 }
2147
2148 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2149 expect an FDE or a CIE. */
2150
2151 static const gdb_byte *
2152 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2153 int eh_frame_p,
2154 struct dwarf2_cie_table *cie_table,
2155 struct dwarf2_fde_table *fde_table,
2156 enum eh_frame_type entry_type)
2157 {
2158 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2159 const gdb_byte *ret;
2160 ptrdiff_t start_offset;
2161
2162 while (1)
2163 {
2164 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2165 cie_table, fde_table, entry_type);
2166 if (ret != NULL)
2167 break;
2168
2169 /* We have corrupt input data of some form. */
2170
2171 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2172 and mismatches wrt padding and alignment of debug sections. */
2173 /* Note that there is no requirement in the standard for any
2174 alignment at all in the frame unwind sections. Testing for
2175 alignment before trying to interpret data would be incorrect.
2176
2177 However, GCC traditionally arranged for frame sections to be
2178 sized such that the FDE length and CIE fields happen to be
2179 aligned (in theory, for performance). This, unfortunately,
2180 was done with .align directives, which had the side effect of
2181 forcing the section to be aligned by the linker.
2182
2183 This becomes a problem when you have some other producer that
2184 creates frame sections that are not as strictly aligned. That
2185 produces a hole in the frame info that gets filled by the
2186 linker with zeros.
2187
2188 The GCC behaviour is arguably a bug, but it's effectively now
2189 part of the ABI, so we're now stuck with it, at least at the
2190 object file level. A smart linker may decide, in the process
2191 of compressing duplicate CIE information, that it can rewrite
2192 the entire output section without this extra padding. */
2193
2194 start_offset = start - unit->dwarf_frame_buffer;
2195 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2196 {
2197 start += 4 - (start_offset & 3);
2198 workaround = ALIGN4;
2199 continue;
2200 }
2201 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2202 {
2203 start += 8 - (start_offset & 7);
2204 workaround = ALIGN8;
2205 continue;
2206 }
2207
2208 /* Nothing left to try. Arrange to return as if we've consumed
2209 the entire input section. Hopefully we'll get valid info from
2210 the other of .debug_frame/.eh_frame. */
2211 workaround = FAIL;
2212 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2213 break;
2214 }
2215
2216 switch (workaround)
2217 {
2218 case NONE:
2219 break;
2220
2221 case ALIGN4:
2222 complaint (&symfile_complaints, _("\
2223 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2224 unit->dwarf_frame_section->owner->filename,
2225 unit->dwarf_frame_section->name);
2226 break;
2227
2228 case ALIGN8:
2229 complaint (&symfile_complaints, _("\
2230 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2231 unit->dwarf_frame_section->owner->filename,
2232 unit->dwarf_frame_section->name);
2233 break;
2234
2235 default:
2236 complaint (&symfile_complaints,
2237 _("Corrupt data in %s:%s"),
2238 unit->dwarf_frame_section->owner->filename,
2239 unit->dwarf_frame_section->name);
2240 break;
2241 }
2242
2243 return ret;
2244 }
2245 \f
2246 static int
2247 qsort_fde_cmp (const void *a, const void *b)
2248 {
2249 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2250 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2251
2252 if (aa->initial_location == bb->initial_location)
2253 {
2254 if (aa->address_range != bb->address_range
2255 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2256 /* Linker bug, e.g. gold/10400.
2257 Work around it by keeping stable sort order. */
2258 return (a < b) ? -1 : 1;
2259 else
2260 /* Put eh_frame entries after debug_frame ones. */
2261 return aa->eh_frame_p - bb->eh_frame_p;
2262 }
2263
2264 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2265 }
2266
2267 void
2268 dwarf2_build_frame_info (struct objfile *objfile)
2269 {
2270 struct comp_unit *unit;
2271 const gdb_byte *frame_ptr;
2272 struct dwarf2_cie_table cie_table;
2273 struct dwarf2_fde_table fde_table;
2274 struct dwarf2_fde_table *fde_table2;
2275 volatile struct gdb_exception e;
2276
2277 cie_table.num_entries = 0;
2278 cie_table.entries = NULL;
2279
2280 fde_table.num_entries = 0;
2281 fde_table.entries = NULL;
2282
2283 /* Build a minimal decoding of the DWARF2 compilation unit. */
2284 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2285 sizeof (struct comp_unit));
2286 unit->abfd = objfile->obfd;
2287 unit->objfile = objfile;
2288 unit->dbase = 0;
2289 unit->tbase = 0;
2290
2291 if (objfile->separate_debug_objfile_backlink == NULL)
2292 {
2293 /* Do not read .eh_frame from separate file as they must be also
2294 present in the main file. */
2295 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2296 &unit->dwarf_frame_section,
2297 &unit->dwarf_frame_buffer,
2298 &unit->dwarf_frame_size);
2299 if (unit->dwarf_frame_size)
2300 {
2301 asection *got, *txt;
2302
2303 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2304 that is used for the i386/amd64 target, which currently is
2305 the only target in GCC that supports/uses the
2306 DW_EH_PE_datarel encoding. */
2307 got = bfd_get_section_by_name (unit->abfd, ".got");
2308 if (got)
2309 unit->dbase = got->vma;
2310
2311 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2312 so far. */
2313 txt = bfd_get_section_by_name (unit->abfd, ".text");
2314 if (txt)
2315 unit->tbase = txt->vma;
2316
2317 TRY_CATCH (e, RETURN_MASK_ERROR)
2318 {
2319 frame_ptr = unit->dwarf_frame_buffer;
2320 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2321 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2322 &cie_table, &fde_table,
2323 EH_CIE_OR_FDE_TYPE_ID);
2324 }
2325
2326 if (e.reason < 0)
2327 {
2328 warning (_("skipping .eh_frame info of %s: %s"),
2329 objfile_name (objfile), e.message);
2330
2331 if (fde_table.num_entries != 0)
2332 {
2333 xfree (fde_table.entries);
2334 fde_table.entries = NULL;
2335 fde_table.num_entries = 0;
2336 }
2337 /* The cie_table is discarded by the next if. */
2338 }
2339
2340 if (cie_table.num_entries != 0)
2341 {
2342 /* Reinit cie_table: debug_frame has different CIEs. */
2343 xfree (cie_table.entries);
2344 cie_table.num_entries = 0;
2345 cie_table.entries = NULL;
2346 }
2347 }
2348 }
2349
2350 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2351 &unit->dwarf_frame_section,
2352 &unit->dwarf_frame_buffer,
2353 &unit->dwarf_frame_size);
2354 if (unit->dwarf_frame_size)
2355 {
2356 int num_old_fde_entries = fde_table.num_entries;
2357
2358 TRY_CATCH (e, RETURN_MASK_ERROR)
2359 {
2360 frame_ptr = unit->dwarf_frame_buffer;
2361 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2362 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2363 &cie_table, &fde_table,
2364 EH_CIE_OR_FDE_TYPE_ID);
2365 }
2366 if (e.reason < 0)
2367 {
2368 warning (_("skipping .debug_frame info of %s: %s"),
2369 objfile_name (objfile), e.message);
2370
2371 if (fde_table.num_entries != 0)
2372 {
2373 fde_table.num_entries = num_old_fde_entries;
2374 if (num_old_fde_entries == 0)
2375 {
2376 xfree (fde_table.entries);
2377 fde_table.entries = NULL;
2378 }
2379 else
2380 {
2381 fde_table.entries = xrealloc (fde_table.entries,
2382 fde_table.num_entries *
2383 sizeof (fde_table.entries[0]));
2384 }
2385 }
2386 fde_table.num_entries = num_old_fde_entries;
2387 /* The cie_table is discarded by the next if. */
2388 }
2389 }
2390
2391 /* Discard the cie_table, it is no longer needed. */
2392 if (cie_table.num_entries != 0)
2393 {
2394 xfree (cie_table.entries);
2395 cie_table.entries = NULL; /* Paranoia. */
2396 cie_table.num_entries = 0; /* Paranoia. */
2397 }
2398
2399 /* Copy fde_table to obstack: it is needed at runtime. */
2400 fde_table2 = (struct dwarf2_fde_table *)
2401 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2402
2403 if (fde_table.num_entries == 0)
2404 {
2405 fde_table2->entries = NULL;
2406 fde_table2->num_entries = 0;
2407 }
2408 else
2409 {
2410 struct dwarf2_fde *fde_prev = NULL;
2411 struct dwarf2_fde *first_non_zero_fde = NULL;
2412 int i;
2413
2414 /* Prepare FDE table for lookups. */
2415 qsort (fde_table.entries, fde_table.num_entries,
2416 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2417
2418 /* Check for leftovers from --gc-sections. The GNU linker sets
2419 the relevant symbols to zero, but doesn't zero the FDE *end*
2420 ranges because there's no relocation there. It's (offset,
2421 length), not (start, end). On targets where address zero is
2422 just another valid address this can be a problem, since the
2423 FDEs appear to be non-empty in the output --- we could pick
2424 out the wrong FDE. To work around this, when overlaps are
2425 detected, we prefer FDEs that do not start at zero.
2426
2427 Start by finding the first FDE with non-zero start. Below
2428 we'll discard all FDEs that start at zero and overlap this
2429 one. */
2430 for (i = 0; i < fde_table.num_entries; i++)
2431 {
2432 struct dwarf2_fde *fde = fde_table.entries[i];
2433
2434 if (fde->initial_location != 0)
2435 {
2436 first_non_zero_fde = fde;
2437 break;
2438 }
2439 }
2440
2441 /* Since we'll be doing bsearch, squeeze out identical (except
2442 for eh_frame_p) fde entries so bsearch result is predictable.
2443 Also discard leftovers from --gc-sections. */
2444 fde_table2->num_entries = 0;
2445 for (i = 0; i < fde_table.num_entries; i++)
2446 {
2447 struct dwarf2_fde *fde = fde_table.entries[i];
2448
2449 if (fde->initial_location == 0
2450 && first_non_zero_fde != NULL
2451 && (first_non_zero_fde->initial_location
2452 < fde->initial_location + fde->address_range))
2453 continue;
2454
2455 if (fde_prev != NULL
2456 && fde_prev->initial_location == fde->initial_location)
2457 continue;
2458
2459 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2460 sizeof (fde_table.entries[0]));
2461 ++fde_table2->num_entries;
2462 fde_prev = fde;
2463 }
2464 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2465
2466 /* Discard the original fde_table. */
2467 xfree (fde_table.entries);
2468 }
2469
2470 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2471 }
2472
2473 /* Provide a prototype to silence -Wmissing-prototypes. */
2474 void _initialize_dwarf2_frame (void);
2475
2476 void
2477 _initialize_dwarf2_frame (void)
2478 {
2479 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2480 dwarf2_frame_objfile_data = register_objfile_data ();
2481 }
This page took 0.082111 seconds and 4 git commands to generate.