FRV Linux: Fill 'collect_regset' in regset structures.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "exceptions.h"
41 #include "dwarf2-frame-tailcall.h"
42
43 struct comp_unit;
44
45 /* Call Frame Information (CFI). */
46
47 /* Common Information Entry (CIE). */
48
49 struct dwarf2_cie
50 {
51 /* Computation Unit for this CIE. */
52 struct comp_unit *unit;
53
54 /* Offset into the .debug_frame section where this CIE was found.
55 Used to identify this CIE. */
56 ULONGEST cie_pointer;
57
58 /* Constant that is factored out of all advance location
59 instructions. */
60 ULONGEST code_alignment_factor;
61
62 /* Constants that is factored out of all offset instructions. */
63 LONGEST data_alignment_factor;
64
65 /* Return address column. */
66 ULONGEST return_address_register;
67
68 /* Instruction sequence to initialize a register set. */
69 const gdb_byte *initial_instructions;
70 const gdb_byte *end;
71
72 /* Saved augmentation, in case it's needed later. */
73 char *augmentation;
74
75 /* Encoding of addresses. */
76 gdb_byte encoding;
77
78 /* Target address size in bytes. */
79 int addr_size;
80
81 /* Target pointer size in bytes. */
82 int ptr_size;
83
84 /* True if a 'z' augmentation existed. */
85 unsigned char saw_z_augmentation;
86
87 /* True if an 'S' augmentation existed. */
88 unsigned char signal_frame;
89
90 /* The version recorded in the CIE. */
91 unsigned char version;
92
93 /* The segment size. */
94 unsigned char segment_size;
95 };
96
97 struct dwarf2_cie_table
98 {
99 int num_entries;
100 struct dwarf2_cie **entries;
101 };
102
103 /* Frame Description Entry (FDE). */
104
105 struct dwarf2_fde
106 {
107 /* CIE for this FDE. */
108 struct dwarf2_cie *cie;
109
110 /* First location associated with this FDE. */
111 CORE_ADDR initial_location;
112
113 /* Number of bytes of program instructions described by this FDE. */
114 CORE_ADDR address_range;
115
116 /* Instruction sequence. */
117 const gdb_byte *instructions;
118 const gdb_byte *end;
119
120 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
121 section. */
122 unsigned char eh_frame_p;
123 };
124
125 struct dwarf2_fde_table
126 {
127 int num_entries;
128 struct dwarf2_fde **entries;
129 };
130
131 /* A minimal decoding of DWARF2 compilation units. We only decode
132 what's needed to get to the call frame information. */
133
134 struct comp_unit
135 {
136 /* Keep the bfd convenient. */
137 bfd *abfd;
138
139 struct objfile *objfile;
140
141 /* Pointer to the .debug_frame section loaded into memory. */
142 const gdb_byte *dwarf_frame_buffer;
143
144 /* Length of the loaded .debug_frame section. */
145 bfd_size_type dwarf_frame_size;
146
147 /* Pointer to the .debug_frame section. */
148 asection *dwarf_frame_section;
149
150 /* Base for DW_EH_PE_datarel encodings. */
151 bfd_vma dbase;
152
153 /* Base for DW_EH_PE_textrel encodings. */
154 bfd_vma tbase;
155 };
156
157 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
158 CORE_ADDR *out_offset);
159
160 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
161 int eh_frame_p);
162
163 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
164 int ptr_len, const gdb_byte *buf,
165 unsigned int *bytes_read_ptr,
166 CORE_ADDR func_base);
167 \f
168
169 /* Structure describing a frame state. */
170
171 struct dwarf2_frame_state
172 {
173 /* Each register save state can be described in terms of a CFA slot,
174 another register, or a location expression. */
175 struct dwarf2_frame_state_reg_info
176 {
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum {
183 CFA_UNSET,
184 CFA_REG_OFFSET,
185 CFA_EXP
186 } cfa_how;
187 const gdb_byte *cfa_exp;
188
189 /* Used to implement DW_CFA_remember_state. */
190 struct dwarf2_frame_state_reg_info *prev;
191 } regs;
192
193 /* The PC described by the current frame state. */
194 CORE_ADDR pc;
195
196 /* Initial register set from the CIE.
197 Used to implement DW_CFA_restore. */
198 struct dwarf2_frame_state_reg_info initial;
199
200 /* The information we care about from the CIE. */
201 LONGEST data_align;
202 ULONGEST code_align;
203 ULONGEST retaddr_column;
204
205 /* Flags for known producer quirks. */
206
207 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
208 and DW_CFA_def_cfa_offset takes a factored offset. */
209 int armcc_cfa_offsets_sf;
210
211 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
212 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
213 int armcc_cfa_offsets_reversed;
214 };
215
216 /* Store the length the expression for the CFA in the `cfa_reg' field,
217 which is unused in that case. */
218 #define cfa_exp_len cfa_reg
219
220 /* Assert that the register set RS is large enough to store gdbarch_num_regs
221 columns. If necessary, enlarge the register set. */
222
223 static void
224 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
225 int num_regs)
226 {
227 size_t size = sizeof (struct dwarf2_frame_state_reg);
228
229 if (num_regs <= rs->num_regs)
230 return;
231
232 rs->reg = (struct dwarf2_frame_state_reg *)
233 xrealloc (rs->reg, num_regs * size);
234
235 /* Initialize newly allocated registers. */
236 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
237 rs->num_regs = num_regs;
238 }
239
240 /* Copy the register columns in register set RS into newly allocated
241 memory and return a pointer to this newly created copy. */
242
243 static struct dwarf2_frame_state_reg *
244 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
245 {
246 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
247 struct dwarf2_frame_state_reg *reg;
248
249 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
250 memcpy (reg, rs->reg, size);
251
252 return reg;
253 }
254
255 /* Release the memory allocated to register set RS. */
256
257 static void
258 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
259 {
260 if (rs)
261 {
262 dwarf2_frame_state_free_regs (rs->prev);
263
264 xfree (rs->reg);
265 xfree (rs);
266 }
267 }
268
269 /* Release the memory allocated to the frame state FS. */
270
271 static void
272 dwarf2_frame_state_free (void *p)
273 {
274 struct dwarf2_frame_state *fs = p;
275
276 dwarf2_frame_state_free_regs (fs->initial.prev);
277 dwarf2_frame_state_free_regs (fs->regs.prev);
278 xfree (fs->initial.reg);
279 xfree (fs->regs.reg);
280 xfree (fs);
281 }
282 \f
283
284 /* Helper functions for execute_stack_op. */
285
286 static CORE_ADDR
287 read_addr_from_reg (void *baton, int reg)
288 {
289 struct frame_info *this_frame = (struct frame_info *) baton;
290 struct gdbarch *gdbarch = get_frame_arch (this_frame);
291 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
292
293 return address_from_register (regnum, this_frame);
294 }
295
296 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
297
298 static struct value *
299 get_reg_value (void *baton, struct type *type, int reg)
300 {
301 struct frame_info *this_frame = (struct frame_info *) baton;
302 struct gdbarch *gdbarch = get_frame_arch (this_frame);
303 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
304
305 return value_from_register (type, regnum, this_frame);
306 }
307
308 static void
309 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
310 {
311 read_memory (addr, buf, len);
312 }
313
314 /* Execute the required actions for both the DW_CFA_restore and
315 DW_CFA_restore_extended instructions. */
316 static void
317 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
318 struct dwarf2_frame_state *fs, int eh_frame_p)
319 {
320 ULONGEST reg;
321
322 gdb_assert (fs->initial.reg);
323 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
324 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
325
326 /* Check if this register was explicitly initialized in the
327 CIE initial instructions. If not, default the rule to
328 UNSPECIFIED. */
329 if (reg < fs->initial.num_regs)
330 fs->regs.reg[reg] = fs->initial.reg[reg];
331 else
332 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
333
334 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
335 complaint (&symfile_complaints, _("\
336 incomplete CFI data; DW_CFA_restore unspecified\n\
337 register %s (#%d) at %s"),
338 gdbarch_register_name
339 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
340 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
341 paddress (gdbarch, fs->pc));
342 }
343
344 /* Virtual method table for execute_stack_op below. */
345
346 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
347 {
348 read_addr_from_reg,
349 get_reg_value,
350 read_mem,
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
359 };
360
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
365 {
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
369
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
373
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
380
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
383
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_addr_from_reg (this_frame,
388 value_as_long (dwarf_expr_fetch (ctx, 0)));
389 else
390 {
391 /* This is actually invalid DWARF, but if we ever do run across
392 it somehow, we might as well support it. So, instead, report
393 it as unimplemented. */
394 error (_("\
395 Not implemented: computing unwound register using explicit value operator"));
396 }
397
398 do_cleanups (old_chain);
399
400 return result;
401 }
402 \f
403
404 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
405 PC. Modify FS state accordingly. Return current INSN_PTR where the
406 execution has stopped, one can resume it on the next call. */
407
408 static const gdb_byte *
409 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
410 const gdb_byte *insn_end, struct gdbarch *gdbarch,
411 CORE_ADDR pc, struct dwarf2_frame_state *fs)
412 {
413 int eh_frame_p = fde->eh_frame_p;
414 unsigned int bytes_read;
415 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
416
417 while (insn_ptr < insn_end && fs->pc <= pc)
418 {
419 gdb_byte insn = *insn_ptr++;
420 uint64_t utmp, reg;
421 int64_t offset;
422
423 if ((insn & 0xc0) == DW_CFA_advance_loc)
424 fs->pc += (insn & 0x3f) * fs->code_align;
425 else if ((insn & 0xc0) == DW_CFA_offset)
426 {
427 reg = insn & 0x3f;
428 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
429 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
430 offset = utmp * fs->data_align;
431 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
432 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
433 fs->regs.reg[reg].loc.offset = offset;
434 }
435 else if ((insn & 0xc0) == DW_CFA_restore)
436 {
437 reg = insn & 0x3f;
438 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
439 }
440 else
441 {
442 switch (insn)
443 {
444 case DW_CFA_set_loc:
445 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
446 fde->cie->ptr_size, insn_ptr,
447 &bytes_read, fde->initial_location);
448 /* Apply the objfile offset for relocatable objects. */
449 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
450 SECT_OFF_TEXT (fde->cie->unit->objfile));
451 insn_ptr += bytes_read;
452 break;
453
454 case DW_CFA_advance_loc1:
455 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
456 fs->pc += utmp * fs->code_align;
457 insn_ptr++;
458 break;
459 case DW_CFA_advance_loc2:
460 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
461 fs->pc += utmp * fs->code_align;
462 insn_ptr += 2;
463 break;
464 case DW_CFA_advance_loc4:
465 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
466 fs->pc += utmp * fs->code_align;
467 insn_ptr += 4;
468 break;
469
470 case DW_CFA_offset_extended:
471 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
472 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
473 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
474 offset = utmp * fs->data_align;
475 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
476 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
477 fs->regs.reg[reg].loc.offset = offset;
478 break;
479
480 case DW_CFA_restore_extended:
481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
482 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
483 break;
484
485 case DW_CFA_undefined:
486 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
487 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
488 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
489 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
490 break;
491
492 case DW_CFA_same_value:
493 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
494 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
495 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
496 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
497 break;
498
499 case DW_CFA_register:
500 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
501 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
503 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
504 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
505 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
506 fs->regs.reg[reg].loc.reg = utmp;
507 break;
508
509 case DW_CFA_remember_state:
510 {
511 struct dwarf2_frame_state_reg_info *new_rs;
512
513 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
514 *new_rs = fs->regs;
515 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
516 fs->regs.prev = new_rs;
517 }
518 break;
519
520 case DW_CFA_restore_state:
521 {
522 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
523
524 if (old_rs == NULL)
525 {
526 complaint (&symfile_complaints, _("\
527 bad CFI data; mismatched DW_CFA_restore_state at %s"),
528 paddress (gdbarch, fs->pc));
529 }
530 else
531 {
532 xfree (fs->regs.reg);
533 fs->regs = *old_rs;
534 xfree (old_rs);
535 }
536 }
537 break;
538
539 case DW_CFA_def_cfa:
540 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
541 fs->regs.cfa_reg = reg;
542 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
543
544 if (fs->armcc_cfa_offsets_sf)
545 utmp *= fs->data_align;
546
547 fs->regs.cfa_offset = utmp;
548 fs->regs.cfa_how = CFA_REG_OFFSET;
549 break;
550
551 case DW_CFA_def_cfa_register:
552 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
553 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
554 eh_frame_p);
555 fs->regs.cfa_how = CFA_REG_OFFSET;
556 break;
557
558 case DW_CFA_def_cfa_offset:
559 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
560
561 if (fs->armcc_cfa_offsets_sf)
562 utmp *= fs->data_align;
563
564 fs->regs.cfa_offset = utmp;
565 /* cfa_how deliberately not set. */
566 break;
567
568 case DW_CFA_nop:
569 break;
570
571 case DW_CFA_def_cfa_expression:
572 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
573 fs->regs.cfa_exp_len = utmp;
574 fs->regs.cfa_exp = insn_ptr;
575 fs->regs.cfa_how = CFA_EXP;
576 insn_ptr += fs->regs.cfa_exp_len;
577 break;
578
579 case DW_CFA_expression:
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
581 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
582 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
584 fs->regs.reg[reg].loc.exp = insn_ptr;
585 fs->regs.reg[reg].exp_len = utmp;
586 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
587 insn_ptr += utmp;
588 break;
589
590 case DW_CFA_offset_extended_sf:
591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
592 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
593 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
594 offset *= fs->data_align;
595 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
596 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
597 fs->regs.reg[reg].loc.offset = offset;
598 break;
599
600 case DW_CFA_val_offset:
601 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
602 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
603 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
604 offset = utmp * fs->data_align;
605 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
606 fs->regs.reg[reg].loc.offset = offset;
607 break;
608
609 case DW_CFA_val_offset_sf:
610 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
611 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
612 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
613 offset *= fs->data_align;
614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
615 fs->regs.reg[reg].loc.offset = offset;
616 break;
617
618 case DW_CFA_val_expression:
619 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
620 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
621 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
622 fs->regs.reg[reg].loc.exp = insn_ptr;
623 fs->regs.reg[reg].exp_len = utmp;
624 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
625 insn_ptr += utmp;
626 break;
627
628 case DW_CFA_def_cfa_sf:
629 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
630 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
631 eh_frame_p);
632 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
633 fs->regs.cfa_offset = offset * fs->data_align;
634 fs->regs.cfa_how = CFA_REG_OFFSET;
635 break;
636
637 case DW_CFA_def_cfa_offset_sf:
638 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
639 fs->regs.cfa_offset = offset * fs->data_align;
640 /* cfa_how deliberately not set. */
641 break;
642
643 case DW_CFA_GNU_window_save:
644 /* This is SPARC-specific code, and contains hard-coded
645 constants for the register numbering scheme used by
646 GCC. Rather than having a architecture-specific
647 operation that's only ever used by a single
648 architecture, we provide the implementation here.
649 Incidentally that's what GCC does too in its
650 unwinder. */
651 {
652 int size = register_size (gdbarch, 0);
653
654 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
655 for (reg = 8; reg < 16; reg++)
656 {
657 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
658 fs->regs.reg[reg].loc.reg = reg + 16;
659 }
660 for (reg = 16; reg < 32; reg++)
661 {
662 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
663 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
664 }
665 }
666 break;
667
668 case DW_CFA_GNU_args_size:
669 /* Ignored. */
670 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
671 break;
672
673 case DW_CFA_GNU_negative_offset_extended:
674 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
675 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
676 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
677 offset = utmp * fs->data_align;
678 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
679 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
680 fs->regs.reg[reg].loc.offset = -offset;
681 break;
682
683 default:
684 internal_error (__FILE__, __LINE__,
685 _("Unknown CFI encountered."));
686 }
687 }
688 }
689
690 if (fs->initial.reg == NULL)
691 {
692 /* Don't allow remember/restore between CIE and FDE programs. */
693 dwarf2_frame_state_free_regs (fs->regs.prev);
694 fs->regs.prev = NULL;
695 }
696
697 return insn_ptr;
698 }
699 \f
700
701 /* Architecture-specific operations. */
702
703 /* Per-architecture data key. */
704 static struct gdbarch_data *dwarf2_frame_data;
705
706 struct dwarf2_frame_ops
707 {
708 /* Pre-initialize the register state REG for register REGNUM. */
709 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
710 struct frame_info *);
711
712 /* Check whether the THIS_FRAME is a signal trampoline. */
713 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
714
715 /* Convert .eh_frame register number to DWARF register number, or
716 adjust .debug_frame register number. */
717 int (*adjust_regnum) (struct gdbarch *, int, int);
718 };
719
720 /* Default architecture-specific register state initialization
721 function. */
722
723 static void
724 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
725 struct dwarf2_frame_state_reg *reg,
726 struct frame_info *this_frame)
727 {
728 /* If we have a register that acts as a program counter, mark it as
729 a destination for the return address. If we have a register that
730 serves as the stack pointer, arrange for it to be filled with the
731 call frame address (CFA). The other registers are marked as
732 unspecified.
733
734 We copy the return address to the program counter, since many
735 parts in GDB assume that it is possible to get the return address
736 by unwinding the program counter register. However, on ISA's
737 with a dedicated return address register, the CFI usually only
738 contains information to unwind that return address register.
739
740 The reason we're treating the stack pointer special here is
741 because in many cases GCC doesn't emit CFI for the stack pointer
742 and implicitly assumes that it is equal to the CFA. This makes
743 some sense since the DWARF specification (version 3, draft 8,
744 p. 102) says that:
745
746 "Typically, the CFA is defined to be the value of the stack
747 pointer at the call site in the previous frame (which may be
748 different from its value on entry to the current frame)."
749
750 However, this isn't true for all platforms supported by GCC
751 (e.g. IBM S/390 and zSeries). Those architectures should provide
752 their own architecture-specific initialization function. */
753
754 if (regnum == gdbarch_pc_regnum (gdbarch))
755 reg->how = DWARF2_FRAME_REG_RA;
756 else if (regnum == gdbarch_sp_regnum (gdbarch))
757 reg->how = DWARF2_FRAME_REG_CFA;
758 }
759
760 /* Return a default for the architecture-specific operations. */
761
762 static void *
763 dwarf2_frame_init (struct obstack *obstack)
764 {
765 struct dwarf2_frame_ops *ops;
766
767 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
768 ops->init_reg = dwarf2_frame_default_init_reg;
769 return ops;
770 }
771
772 /* Set the architecture-specific register state initialization
773 function for GDBARCH to INIT_REG. */
774
775 void
776 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
777 void (*init_reg) (struct gdbarch *, int,
778 struct dwarf2_frame_state_reg *,
779 struct frame_info *))
780 {
781 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
782
783 ops->init_reg = init_reg;
784 }
785
786 /* Pre-initialize the register state REG for register REGNUM. */
787
788 static void
789 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
790 struct dwarf2_frame_state_reg *reg,
791 struct frame_info *this_frame)
792 {
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
795 ops->init_reg (gdbarch, regnum, reg, this_frame);
796 }
797
798 /* Set the architecture-specific signal trampoline recognition
799 function for GDBARCH to SIGNAL_FRAME_P. */
800
801 void
802 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
803 int (*signal_frame_p) (struct gdbarch *,
804 struct frame_info *))
805 {
806 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807
808 ops->signal_frame_p = signal_frame_p;
809 }
810
811 /* Query the architecture-specific signal frame recognizer for
812 THIS_FRAME. */
813
814 static int
815 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
816 struct frame_info *this_frame)
817 {
818 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
819
820 if (ops->signal_frame_p == NULL)
821 return 0;
822 return ops->signal_frame_p (gdbarch, this_frame);
823 }
824
825 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
826 register numbers. */
827
828 void
829 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
830 int (*adjust_regnum) (struct gdbarch *,
831 int, int))
832 {
833 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
834
835 ops->adjust_regnum = adjust_regnum;
836 }
837
838 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
839 register. */
840
841 static int
842 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
843 int regnum, int eh_frame_p)
844 {
845 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
846
847 if (ops->adjust_regnum == NULL)
848 return regnum;
849 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
850 }
851
852 static void
853 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
854 struct dwarf2_fde *fde)
855 {
856 struct symtab *s;
857
858 s = find_pc_symtab (fs->pc);
859 if (s == NULL)
860 return;
861
862 if (producer_is_realview (s->producer))
863 {
864 if (fde->cie->version == 1)
865 fs->armcc_cfa_offsets_sf = 1;
866
867 if (fde->cie->version == 1)
868 fs->armcc_cfa_offsets_reversed = 1;
869
870 /* The reversed offset problem is present in some compilers
871 using DWARF3, but it was eventually fixed. Check the ARM
872 defined augmentations, which are in the format "armcc" followed
873 by a list of one-character options. The "+" option means
874 this problem is fixed (no quirk needed). If the armcc
875 augmentation is missing, the quirk is needed. */
876 if (fde->cie->version == 3
877 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
878 || strchr (fde->cie->augmentation + 5, '+') == NULL))
879 fs->armcc_cfa_offsets_reversed = 1;
880
881 return;
882 }
883 }
884 \f
885
886 void
887 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
888 struct gdbarch *gdbarch,
889 CORE_ADDR pc,
890 struct dwarf2_per_cu_data *data)
891 {
892 struct dwarf2_fde *fde;
893 CORE_ADDR text_offset;
894 struct dwarf2_frame_state fs;
895 int addr_size;
896
897 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
898
899 fs.pc = pc;
900
901 /* Find the correct FDE. */
902 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
903 if (fde == NULL)
904 error (_("Could not compute CFA; needed to translate this expression"));
905
906 /* Extract any interesting information from the CIE. */
907 fs.data_align = fde->cie->data_alignment_factor;
908 fs.code_align = fde->cie->code_alignment_factor;
909 fs.retaddr_column = fde->cie->return_address_register;
910 addr_size = fde->cie->addr_size;
911
912 /* Check for "quirks" - known bugs in producers. */
913 dwarf2_frame_find_quirks (&fs, fde);
914
915 /* First decode all the insns in the CIE. */
916 execute_cfa_program (fde, fde->cie->initial_instructions,
917 fde->cie->end, gdbarch, pc, &fs);
918
919 /* Save the initialized register set. */
920 fs.initial = fs.regs;
921 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
922
923 /* Then decode the insns in the FDE up to our target PC. */
924 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
925
926 /* Calculate the CFA. */
927 switch (fs.regs.cfa_how)
928 {
929 case CFA_REG_OFFSET:
930 {
931 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
932
933 if (regnum == -1)
934 error (_("Unable to access DWARF register number %d"),
935 (int) fs.regs.cfa_reg); /* FIXME */
936 ax_reg (expr, regnum);
937
938 if (fs.regs.cfa_offset != 0)
939 {
940 if (fs.armcc_cfa_offsets_reversed)
941 ax_const_l (expr, -fs.regs.cfa_offset);
942 else
943 ax_const_l (expr, fs.regs.cfa_offset);
944 ax_simple (expr, aop_add);
945 }
946 }
947 break;
948
949 case CFA_EXP:
950 ax_const_l (expr, text_offset);
951 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
952 fs.regs.cfa_exp,
953 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
954 data);
955 break;
956
957 default:
958 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
959 }
960 }
961
962 \f
963 struct dwarf2_frame_cache
964 {
965 /* DWARF Call Frame Address. */
966 CORE_ADDR cfa;
967
968 /* Set if the return address column was marked as unavailable
969 (required non-collected memory or registers to compute). */
970 int unavailable_retaddr;
971
972 /* Set if the return address column was marked as undefined. */
973 int undefined_retaddr;
974
975 /* Saved registers, indexed by GDB register number, not by DWARF
976 register number. */
977 struct dwarf2_frame_state_reg *reg;
978
979 /* Return address register. */
980 struct dwarf2_frame_state_reg retaddr_reg;
981
982 /* Target address size in bytes. */
983 int addr_size;
984
985 /* The .text offset. */
986 CORE_ADDR text_offset;
987
988 /* True if we already checked whether this frame is the bottom frame
989 of a virtual tail call frame chain. */
990 int checked_tailcall_bottom;
991
992 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
993 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
994 involved. Non-bottom frames of a virtual tail call frames chain use
995 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
996 them. */
997 void *tailcall_cache;
998
999 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1000 base to get the SP, to simulate the return address pushed on the
1001 stack. */
1002 LONGEST entry_cfa_sp_offset;
1003 int entry_cfa_sp_offset_p;
1004 };
1005
1006 /* A cleanup that sets a pointer to NULL. */
1007
1008 static void
1009 clear_pointer_cleanup (void *arg)
1010 {
1011 void **ptr = arg;
1012
1013 *ptr = NULL;
1014 }
1015
1016 static struct dwarf2_frame_cache *
1017 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1018 {
1019 struct cleanup *reset_cache_cleanup, *old_chain;
1020 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1021 const int num_regs = gdbarch_num_regs (gdbarch)
1022 + gdbarch_num_pseudo_regs (gdbarch);
1023 struct dwarf2_frame_cache *cache;
1024 struct dwarf2_frame_state *fs;
1025 struct dwarf2_fde *fde;
1026 volatile struct gdb_exception ex;
1027 CORE_ADDR entry_pc;
1028 const gdb_byte *instr;
1029
1030 if (*this_cache)
1031 return *this_cache;
1032
1033 /* Allocate a new cache. */
1034 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1035 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1036 *this_cache = cache;
1037 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1038
1039 /* Allocate and initialize the frame state. */
1040 fs = XCNEW (struct dwarf2_frame_state);
1041 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1042
1043 /* Unwind the PC.
1044
1045 Note that if the next frame is never supposed to return (i.e. a call
1046 to abort), the compiler might optimize away the instruction at
1047 its return address. As a result the return address will
1048 point at some random instruction, and the CFI for that
1049 instruction is probably worthless to us. GCC's unwinder solves
1050 this problem by substracting 1 from the return address to get an
1051 address in the middle of a presumed call instruction (or the
1052 instruction in the associated delay slot). This should only be
1053 done for "normal" frames and not for resume-type frames (signal
1054 handlers, sentinel frames, dummy frames). The function
1055 get_frame_address_in_block does just this. It's not clear how
1056 reliable the method is though; there is the potential for the
1057 register state pre-call being different to that on return. */
1058 fs->pc = get_frame_address_in_block (this_frame);
1059
1060 /* Find the correct FDE. */
1061 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1062 gdb_assert (fde != NULL);
1063
1064 /* Extract any interesting information from the CIE. */
1065 fs->data_align = fde->cie->data_alignment_factor;
1066 fs->code_align = fde->cie->code_alignment_factor;
1067 fs->retaddr_column = fde->cie->return_address_register;
1068 cache->addr_size = fde->cie->addr_size;
1069
1070 /* Check for "quirks" - known bugs in producers. */
1071 dwarf2_frame_find_quirks (fs, fde);
1072
1073 /* First decode all the insns in the CIE. */
1074 execute_cfa_program (fde, fde->cie->initial_instructions,
1075 fde->cie->end, gdbarch,
1076 get_frame_address_in_block (this_frame), fs);
1077
1078 /* Save the initialized register set. */
1079 fs->initial = fs->regs;
1080 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1081
1082 if (get_frame_func_if_available (this_frame, &entry_pc))
1083 {
1084 /* Decode the insns in the FDE up to the entry PC. */
1085 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1086 entry_pc, fs);
1087
1088 if (fs->regs.cfa_how == CFA_REG_OFFSET
1089 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1090 == gdbarch_sp_regnum (gdbarch)))
1091 {
1092 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1093 cache->entry_cfa_sp_offset_p = 1;
1094 }
1095 }
1096 else
1097 instr = fde->instructions;
1098
1099 /* Then decode the insns in the FDE up to our target PC. */
1100 execute_cfa_program (fde, instr, fde->end, gdbarch,
1101 get_frame_address_in_block (this_frame), fs);
1102
1103 TRY_CATCH (ex, RETURN_MASK_ERROR)
1104 {
1105 /* Calculate the CFA. */
1106 switch (fs->regs.cfa_how)
1107 {
1108 case CFA_REG_OFFSET:
1109 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1110 if (fs->armcc_cfa_offsets_reversed)
1111 cache->cfa -= fs->regs.cfa_offset;
1112 else
1113 cache->cfa += fs->regs.cfa_offset;
1114 break;
1115
1116 case CFA_EXP:
1117 cache->cfa =
1118 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1119 cache->addr_size, cache->text_offset,
1120 this_frame, 0, 0);
1121 break;
1122
1123 default:
1124 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1125 }
1126 }
1127 if (ex.reason < 0)
1128 {
1129 if (ex.error == NOT_AVAILABLE_ERROR)
1130 {
1131 cache->unavailable_retaddr = 1;
1132 do_cleanups (old_chain);
1133 discard_cleanups (reset_cache_cleanup);
1134 return cache;
1135 }
1136
1137 throw_exception (ex);
1138 }
1139
1140 /* Initialize the register state. */
1141 {
1142 int regnum;
1143
1144 for (regnum = 0; regnum < num_regs; regnum++)
1145 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1146 }
1147
1148 /* Go through the DWARF2 CFI generated table and save its register
1149 location information in the cache. Note that we don't skip the
1150 return address column; it's perfectly all right for it to
1151 correspond to a real register. If it doesn't correspond to a
1152 real register, or if we shouldn't treat it as such,
1153 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1154 the range [0, gdbarch_num_regs). */
1155 {
1156 int column; /* CFI speak for "register number". */
1157
1158 for (column = 0; column < fs->regs.num_regs; column++)
1159 {
1160 /* Use the GDB register number as the destination index. */
1161 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1162
1163 /* If there's no corresponding GDB register, ignore it. */
1164 if (regnum < 0 || regnum >= num_regs)
1165 continue;
1166
1167 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1168 of all debug info registers. If it doesn't, complain (but
1169 not too loudly). It turns out that GCC assumes that an
1170 unspecified register implies "same value" when CFI (draft
1171 7) specifies nothing at all. Such a register could equally
1172 be interpreted as "undefined". Also note that this check
1173 isn't sufficient; it only checks that all registers in the
1174 range [0 .. max column] are specified, and won't detect
1175 problems when a debug info register falls outside of the
1176 table. We need a way of iterating through all the valid
1177 DWARF2 register numbers. */
1178 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1179 {
1180 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1181 complaint (&symfile_complaints, _("\
1182 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1183 gdbarch_register_name (gdbarch, regnum),
1184 paddress (gdbarch, fs->pc));
1185 }
1186 else
1187 cache->reg[regnum] = fs->regs.reg[column];
1188 }
1189 }
1190
1191 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1192 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1193 {
1194 int regnum;
1195
1196 for (regnum = 0; regnum < num_regs; regnum++)
1197 {
1198 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1199 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1200 {
1201 struct dwarf2_frame_state_reg *retaddr_reg =
1202 &fs->regs.reg[fs->retaddr_column];
1203
1204 /* It seems rather bizarre to specify an "empty" column as
1205 the return adress column. However, this is exactly
1206 what GCC does on some targets. It turns out that GCC
1207 assumes that the return address can be found in the
1208 register corresponding to the return address column.
1209 Incidentally, that's how we should treat a return
1210 address column specifying "same value" too. */
1211 if (fs->retaddr_column < fs->regs.num_regs
1212 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1213 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1214 {
1215 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1216 cache->reg[regnum] = *retaddr_reg;
1217 else
1218 cache->retaddr_reg = *retaddr_reg;
1219 }
1220 else
1221 {
1222 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1223 {
1224 cache->reg[regnum].loc.reg = fs->retaddr_column;
1225 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1226 }
1227 else
1228 {
1229 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1230 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1231 }
1232 }
1233 }
1234 }
1235 }
1236
1237 if (fs->retaddr_column < fs->regs.num_regs
1238 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1239 cache->undefined_retaddr = 1;
1240
1241 do_cleanups (old_chain);
1242 discard_cleanups (reset_cache_cleanup);
1243 return cache;
1244 }
1245
1246 static enum unwind_stop_reason
1247 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1248 void **this_cache)
1249 {
1250 struct dwarf2_frame_cache *cache
1251 = dwarf2_frame_cache (this_frame, this_cache);
1252
1253 if (cache->unavailable_retaddr)
1254 return UNWIND_UNAVAILABLE;
1255
1256 if (cache->undefined_retaddr)
1257 return UNWIND_OUTERMOST;
1258
1259 return UNWIND_NO_REASON;
1260 }
1261
1262 static void
1263 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1264 struct frame_id *this_id)
1265 {
1266 struct dwarf2_frame_cache *cache =
1267 dwarf2_frame_cache (this_frame, this_cache);
1268
1269 if (cache->unavailable_retaddr)
1270 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1271 else if (cache->undefined_retaddr)
1272 return;
1273 else
1274 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1275 }
1276
1277 static struct value *
1278 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1279 int regnum)
1280 {
1281 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1282 struct dwarf2_frame_cache *cache =
1283 dwarf2_frame_cache (this_frame, this_cache);
1284 CORE_ADDR addr;
1285 int realnum;
1286
1287 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1288 call frame chain. */
1289 if (!cache->checked_tailcall_bottom)
1290 {
1291 cache->checked_tailcall_bottom = 1;
1292 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1293 (cache->entry_cfa_sp_offset_p
1294 ? &cache->entry_cfa_sp_offset : NULL));
1295 }
1296
1297 /* Non-bottom frames of a virtual tail call frames chain use
1298 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1299 them. If dwarf2_tailcall_prev_register_first does not have specific value
1300 unwind the register, tail call frames are assumed to have the register set
1301 of the top caller. */
1302 if (cache->tailcall_cache)
1303 {
1304 struct value *val;
1305
1306 val = dwarf2_tailcall_prev_register_first (this_frame,
1307 &cache->tailcall_cache,
1308 regnum);
1309 if (val)
1310 return val;
1311 }
1312
1313 switch (cache->reg[regnum].how)
1314 {
1315 case DWARF2_FRAME_REG_UNDEFINED:
1316 /* If CFI explicitly specified that the value isn't defined,
1317 mark it as optimized away; the value isn't available. */
1318 return frame_unwind_got_optimized (this_frame, regnum);
1319
1320 case DWARF2_FRAME_REG_SAVED_OFFSET:
1321 addr = cache->cfa + cache->reg[regnum].loc.offset;
1322 return frame_unwind_got_memory (this_frame, regnum, addr);
1323
1324 case DWARF2_FRAME_REG_SAVED_REG:
1325 realnum
1326 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1327 return frame_unwind_got_register (this_frame, regnum, realnum);
1328
1329 case DWARF2_FRAME_REG_SAVED_EXP:
1330 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1331 cache->reg[regnum].exp_len,
1332 cache->addr_size, cache->text_offset,
1333 this_frame, cache->cfa, 1);
1334 return frame_unwind_got_memory (this_frame, regnum, addr);
1335
1336 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1337 addr = cache->cfa + cache->reg[regnum].loc.offset;
1338 return frame_unwind_got_constant (this_frame, regnum, addr);
1339
1340 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1341 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1342 cache->reg[regnum].exp_len,
1343 cache->addr_size, cache->text_offset,
1344 this_frame, cache->cfa, 1);
1345 return frame_unwind_got_constant (this_frame, regnum, addr);
1346
1347 case DWARF2_FRAME_REG_UNSPECIFIED:
1348 /* GCC, in its infinite wisdom decided to not provide unwind
1349 information for registers that are "same value". Since
1350 DWARF2 (3 draft 7) doesn't define such behavior, said
1351 registers are actually undefined (which is different to CFI
1352 "undefined"). Code above issues a complaint about this.
1353 Here just fudge the books, assume GCC, and that the value is
1354 more inner on the stack. */
1355 return frame_unwind_got_register (this_frame, regnum, regnum);
1356
1357 case DWARF2_FRAME_REG_SAME_VALUE:
1358 return frame_unwind_got_register (this_frame, regnum, regnum);
1359
1360 case DWARF2_FRAME_REG_CFA:
1361 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1362
1363 case DWARF2_FRAME_REG_CFA_OFFSET:
1364 addr = cache->cfa + cache->reg[regnum].loc.offset;
1365 return frame_unwind_got_address (this_frame, regnum, addr);
1366
1367 case DWARF2_FRAME_REG_RA_OFFSET:
1368 addr = cache->reg[regnum].loc.offset;
1369 regnum = gdbarch_dwarf2_reg_to_regnum
1370 (gdbarch, cache->retaddr_reg.loc.reg);
1371 addr += get_frame_register_unsigned (this_frame, regnum);
1372 return frame_unwind_got_address (this_frame, regnum, addr);
1373
1374 case DWARF2_FRAME_REG_FN:
1375 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1376
1377 default:
1378 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1379 }
1380 }
1381
1382 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1383 call frames chain. */
1384
1385 static void
1386 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1387 {
1388 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1389
1390 if (cache->tailcall_cache)
1391 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1392 }
1393
1394 static int
1395 dwarf2_frame_sniffer (const struct frame_unwind *self,
1396 struct frame_info *this_frame, void **this_cache)
1397 {
1398 /* Grab an address that is guarenteed to reside somewhere within the
1399 function. get_frame_pc(), with a no-return next function, can
1400 end up returning something past the end of this function's body.
1401 If the frame we're sniffing for is a signal frame whose start
1402 address is placed on the stack by the OS, its FDE must
1403 extend one byte before its start address or we could potentially
1404 select the FDE of the previous function. */
1405 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1406 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1407
1408 if (!fde)
1409 return 0;
1410
1411 /* On some targets, signal trampolines may have unwind information.
1412 We need to recognize them so that we set the frame type
1413 correctly. */
1414
1415 if (fde->cie->signal_frame
1416 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1417 this_frame))
1418 return self->type == SIGTRAMP_FRAME;
1419
1420 if (self->type != NORMAL_FRAME)
1421 return 0;
1422
1423 return 1;
1424 }
1425
1426 static const struct frame_unwind dwarf2_frame_unwind =
1427 {
1428 NORMAL_FRAME,
1429 dwarf2_frame_unwind_stop_reason,
1430 dwarf2_frame_this_id,
1431 dwarf2_frame_prev_register,
1432 NULL,
1433 dwarf2_frame_sniffer,
1434 dwarf2_frame_dealloc_cache
1435 };
1436
1437 static const struct frame_unwind dwarf2_signal_frame_unwind =
1438 {
1439 SIGTRAMP_FRAME,
1440 dwarf2_frame_unwind_stop_reason,
1441 dwarf2_frame_this_id,
1442 dwarf2_frame_prev_register,
1443 NULL,
1444 dwarf2_frame_sniffer,
1445
1446 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1447 NULL
1448 };
1449
1450 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1451
1452 void
1453 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1454 {
1455 /* TAILCALL_FRAME must be first to find the record by
1456 dwarf2_tailcall_sniffer_first. */
1457 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1458
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1460 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1461 }
1462 \f
1463
1464 /* There is no explicitly defined relationship between the CFA and the
1465 location of frame's local variables and arguments/parameters.
1466 Therefore, frame base methods on this page should probably only be
1467 used as a last resort, just to avoid printing total garbage as a
1468 response to the "info frame" command. */
1469
1470 static CORE_ADDR
1471 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1472 {
1473 struct dwarf2_frame_cache *cache =
1474 dwarf2_frame_cache (this_frame, this_cache);
1475
1476 return cache->cfa;
1477 }
1478
1479 static const struct frame_base dwarf2_frame_base =
1480 {
1481 &dwarf2_frame_unwind,
1482 dwarf2_frame_base_address,
1483 dwarf2_frame_base_address,
1484 dwarf2_frame_base_address
1485 };
1486
1487 const struct frame_base *
1488 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1489 {
1490 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1491
1492 if (dwarf2_frame_find_fde (&block_addr, NULL))
1493 return &dwarf2_frame_base;
1494
1495 return NULL;
1496 }
1497
1498 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1499 the DWARF unwinder. This is used to implement
1500 DW_OP_call_frame_cfa. */
1501
1502 CORE_ADDR
1503 dwarf2_frame_cfa (struct frame_info *this_frame)
1504 {
1505 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1506 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1507 throw_error (NOT_AVAILABLE_ERROR,
1508 _("cfa not available for record btrace target"));
1509
1510 while (get_frame_type (this_frame) == INLINE_FRAME)
1511 this_frame = get_prev_frame (this_frame);
1512 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1513 throw_error (NOT_AVAILABLE_ERROR,
1514 _("can't compute CFA for this frame: "
1515 "required registers or memory are unavailable"));
1516 /* This restriction could be lifted if other unwinders are known to
1517 compute the frame base in a way compatible with the DWARF
1518 unwinder. */
1519 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1520 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1521 error (_("can't compute CFA for this frame"));
1522 return get_frame_base (this_frame);
1523 }
1524 \f
1525 const struct objfile_data *dwarf2_frame_objfile_data;
1526
1527 static unsigned int
1528 read_1_byte (bfd *abfd, const gdb_byte *buf)
1529 {
1530 return bfd_get_8 (abfd, buf);
1531 }
1532
1533 static unsigned int
1534 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1535 {
1536 return bfd_get_32 (abfd, buf);
1537 }
1538
1539 static ULONGEST
1540 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1541 {
1542 return bfd_get_64 (abfd, buf);
1543 }
1544
1545 static ULONGEST
1546 read_initial_length (bfd *abfd, const gdb_byte *buf,
1547 unsigned int *bytes_read_ptr)
1548 {
1549 LONGEST result;
1550
1551 result = bfd_get_32 (abfd, buf);
1552 if (result == 0xffffffff)
1553 {
1554 result = bfd_get_64 (abfd, buf + 4);
1555 *bytes_read_ptr = 12;
1556 }
1557 else
1558 *bytes_read_ptr = 4;
1559
1560 return result;
1561 }
1562 \f
1563
1564 /* Pointer encoding helper functions. */
1565
1566 /* GCC supports exception handling based on DWARF2 CFI. However, for
1567 technical reasons, it encodes addresses in its FDE's in a different
1568 way. Several "pointer encodings" are supported. The encoding
1569 that's used for a particular FDE is determined by the 'R'
1570 augmentation in the associated CIE. The argument of this
1571 augmentation is a single byte.
1572
1573 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1574 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1575 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1576 address should be interpreted (absolute, relative to the current
1577 position in the FDE, ...). Bit 7, indicates that the address
1578 should be dereferenced. */
1579
1580 static gdb_byte
1581 encoding_for_size (unsigned int size)
1582 {
1583 switch (size)
1584 {
1585 case 2:
1586 return DW_EH_PE_udata2;
1587 case 4:
1588 return DW_EH_PE_udata4;
1589 case 8:
1590 return DW_EH_PE_udata8;
1591 default:
1592 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1593 }
1594 }
1595
1596 static CORE_ADDR
1597 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1598 int ptr_len, const gdb_byte *buf,
1599 unsigned int *bytes_read_ptr,
1600 CORE_ADDR func_base)
1601 {
1602 ptrdiff_t offset;
1603 CORE_ADDR base;
1604
1605 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1606 FDE's. */
1607 if (encoding & DW_EH_PE_indirect)
1608 internal_error (__FILE__, __LINE__,
1609 _("Unsupported encoding: DW_EH_PE_indirect"));
1610
1611 *bytes_read_ptr = 0;
1612
1613 switch (encoding & 0x70)
1614 {
1615 case DW_EH_PE_absptr:
1616 base = 0;
1617 break;
1618 case DW_EH_PE_pcrel:
1619 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1620 base += (buf - unit->dwarf_frame_buffer);
1621 break;
1622 case DW_EH_PE_datarel:
1623 base = unit->dbase;
1624 break;
1625 case DW_EH_PE_textrel:
1626 base = unit->tbase;
1627 break;
1628 case DW_EH_PE_funcrel:
1629 base = func_base;
1630 break;
1631 case DW_EH_PE_aligned:
1632 base = 0;
1633 offset = buf - unit->dwarf_frame_buffer;
1634 if ((offset % ptr_len) != 0)
1635 {
1636 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1637 buf += *bytes_read_ptr;
1638 }
1639 break;
1640 default:
1641 internal_error (__FILE__, __LINE__,
1642 _("Invalid or unsupported encoding"));
1643 }
1644
1645 if ((encoding & 0x07) == 0x00)
1646 {
1647 encoding |= encoding_for_size (ptr_len);
1648 if (bfd_get_sign_extend_vma (unit->abfd))
1649 encoding |= DW_EH_PE_signed;
1650 }
1651
1652 switch (encoding & 0x0f)
1653 {
1654 case DW_EH_PE_uleb128:
1655 {
1656 uint64_t value;
1657 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1658
1659 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1660 return base + value;
1661 }
1662 case DW_EH_PE_udata2:
1663 *bytes_read_ptr += 2;
1664 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1665 case DW_EH_PE_udata4:
1666 *bytes_read_ptr += 4;
1667 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_udata8:
1669 *bytes_read_ptr += 8;
1670 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_sleb128:
1672 {
1673 int64_t value;
1674 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1675
1676 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1677 return base + value;
1678 }
1679 case DW_EH_PE_sdata2:
1680 *bytes_read_ptr += 2;
1681 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1682 case DW_EH_PE_sdata4:
1683 *bytes_read_ptr += 4;
1684 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1685 case DW_EH_PE_sdata8:
1686 *bytes_read_ptr += 8;
1687 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1688 default:
1689 internal_error (__FILE__, __LINE__,
1690 _("Invalid or unsupported encoding"));
1691 }
1692 }
1693 \f
1694
1695 static int
1696 bsearch_cie_cmp (const void *key, const void *element)
1697 {
1698 ULONGEST cie_pointer = *(ULONGEST *) key;
1699 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1700
1701 if (cie_pointer == cie->cie_pointer)
1702 return 0;
1703
1704 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1705 }
1706
1707 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1708 static struct dwarf2_cie *
1709 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1710 {
1711 struct dwarf2_cie **p_cie;
1712
1713 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1714 bsearch be non-NULL. */
1715 if (cie_table->entries == NULL)
1716 {
1717 gdb_assert (cie_table->num_entries == 0);
1718 return NULL;
1719 }
1720
1721 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1722 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1723 if (p_cie != NULL)
1724 return *p_cie;
1725 return NULL;
1726 }
1727
1728 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1729 static void
1730 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1731 {
1732 const int n = cie_table->num_entries;
1733
1734 gdb_assert (n < 1
1735 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1736
1737 cie_table->entries =
1738 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1739 cie_table->entries[n] = cie;
1740 cie_table->num_entries = n + 1;
1741 }
1742
1743 static int
1744 bsearch_fde_cmp (const void *key, const void *element)
1745 {
1746 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1747 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1748
1749 if (seek_pc < fde->initial_location)
1750 return -1;
1751 if (seek_pc < fde->initial_location + fde->address_range)
1752 return 0;
1753 return 1;
1754 }
1755
1756 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1757 inital location associated with it into *PC. */
1758
1759 static struct dwarf2_fde *
1760 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1761 {
1762 struct objfile *objfile;
1763
1764 ALL_OBJFILES (objfile)
1765 {
1766 struct dwarf2_fde_table *fde_table;
1767 struct dwarf2_fde **p_fde;
1768 CORE_ADDR offset;
1769 CORE_ADDR seek_pc;
1770
1771 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1772 if (fde_table == NULL)
1773 {
1774 dwarf2_build_frame_info (objfile);
1775 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1776 }
1777 gdb_assert (fde_table != NULL);
1778
1779 if (fde_table->num_entries == 0)
1780 continue;
1781
1782 gdb_assert (objfile->section_offsets);
1783 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1784
1785 gdb_assert (fde_table->num_entries > 0);
1786 if (*pc < offset + fde_table->entries[0]->initial_location)
1787 continue;
1788
1789 seek_pc = *pc - offset;
1790 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1791 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1792 if (p_fde != NULL)
1793 {
1794 *pc = (*p_fde)->initial_location + offset;
1795 if (out_offset)
1796 *out_offset = offset;
1797 return *p_fde;
1798 }
1799 }
1800 return NULL;
1801 }
1802
1803 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1804 static void
1805 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1806 {
1807 if (fde->address_range == 0)
1808 /* Discard useless FDEs. */
1809 return;
1810
1811 fde_table->num_entries += 1;
1812 fde_table->entries =
1813 xrealloc (fde_table->entries,
1814 fde_table->num_entries * sizeof (fde_table->entries[0]));
1815 fde_table->entries[fde_table->num_entries - 1] = fde;
1816 }
1817
1818 #define DW64_CIE_ID 0xffffffffffffffffULL
1819
1820 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1821 or any of them. */
1822
1823 enum eh_frame_type
1824 {
1825 EH_CIE_TYPE_ID = 1 << 0,
1826 EH_FDE_TYPE_ID = 1 << 1,
1827 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1828 };
1829
1830 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1831 const gdb_byte *start,
1832 int eh_frame_p,
1833 struct dwarf2_cie_table *cie_table,
1834 struct dwarf2_fde_table *fde_table,
1835 enum eh_frame_type entry_type);
1836
1837 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1838 Return NULL if invalid input, otherwise the next byte to be processed. */
1839
1840 static const gdb_byte *
1841 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1842 int eh_frame_p,
1843 struct dwarf2_cie_table *cie_table,
1844 struct dwarf2_fde_table *fde_table,
1845 enum eh_frame_type entry_type)
1846 {
1847 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1848 const gdb_byte *buf, *end;
1849 LONGEST length;
1850 unsigned int bytes_read;
1851 int dwarf64_p;
1852 ULONGEST cie_id;
1853 ULONGEST cie_pointer;
1854 int64_t sleb128;
1855 uint64_t uleb128;
1856
1857 buf = start;
1858 length = read_initial_length (unit->abfd, buf, &bytes_read);
1859 buf += bytes_read;
1860 end = buf + length;
1861
1862 /* Are we still within the section? */
1863 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1864 return NULL;
1865
1866 if (length == 0)
1867 return end;
1868
1869 /* Distinguish between 32 and 64-bit encoded frame info. */
1870 dwarf64_p = (bytes_read == 12);
1871
1872 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1873 if (eh_frame_p)
1874 cie_id = 0;
1875 else if (dwarf64_p)
1876 cie_id = DW64_CIE_ID;
1877 else
1878 cie_id = DW_CIE_ID;
1879
1880 if (dwarf64_p)
1881 {
1882 cie_pointer = read_8_bytes (unit->abfd, buf);
1883 buf += 8;
1884 }
1885 else
1886 {
1887 cie_pointer = read_4_bytes (unit->abfd, buf);
1888 buf += 4;
1889 }
1890
1891 if (cie_pointer == cie_id)
1892 {
1893 /* This is a CIE. */
1894 struct dwarf2_cie *cie;
1895 char *augmentation;
1896 unsigned int cie_version;
1897
1898 /* Check that a CIE was expected. */
1899 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1900 error (_("Found a CIE when not expecting it."));
1901
1902 /* Record the offset into the .debug_frame section of this CIE. */
1903 cie_pointer = start - unit->dwarf_frame_buffer;
1904
1905 /* Check whether we've already read it. */
1906 if (find_cie (cie_table, cie_pointer))
1907 return end;
1908
1909 cie = (struct dwarf2_cie *)
1910 obstack_alloc (&unit->objfile->objfile_obstack,
1911 sizeof (struct dwarf2_cie));
1912 cie->initial_instructions = NULL;
1913 cie->cie_pointer = cie_pointer;
1914
1915 /* The encoding for FDE's in a normal .debug_frame section
1916 depends on the target address size. */
1917 cie->encoding = DW_EH_PE_absptr;
1918
1919 /* We'll determine the final value later, but we need to
1920 initialize it conservatively. */
1921 cie->signal_frame = 0;
1922
1923 /* Check version number. */
1924 cie_version = read_1_byte (unit->abfd, buf);
1925 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1926 return NULL;
1927 cie->version = cie_version;
1928 buf += 1;
1929
1930 /* Interpret the interesting bits of the augmentation. */
1931 cie->augmentation = augmentation = (char *) buf;
1932 buf += (strlen (augmentation) + 1);
1933
1934 /* Ignore armcc augmentations. We only use them for quirks,
1935 and that doesn't happen until later. */
1936 if (strncmp (augmentation, "armcc", 5) == 0)
1937 augmentation += strlen (augmentation);
1938
1939 /* The GCC 2.x "eh" augmentation has a pointer immediately
1940 following the augmentation string, so it must be handled
1941 first. */
1942 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1943 {
1944 /* Skip. */
1945 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1946 augmentation += 2;
1947 }
1948
1949 if (cie->version >= 4)
1950 {
1951 /* FIXME: check that this is the same as from the CU header. */
1952 cie->addr_size = read_1_byte (unit->abfd, buf);
1953 ++buf;
1954 cie->segment_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 }
1957 else
1958 {
1959 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1960 cie->segment_size = 0;
1961 }
1962 /* Address values in .eh_frame sections are defined to have the
1963 target's pointer size. Watchout: This breaks frame info for
1964 targets with pointer size < address size, unless a .debug_frame
1965 section exists as well. */
1966 if (eh_frame_p)
1967 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1968 else
1969 cie->ptr_size = cie->addr_size;
1970
1971 buf = gdb_read_uleb128 (buf, end, &uleb128);
1972 if (buf == NULL)
1973 return NULL;
1974 cie->code_alignment_factor = uleb128;
1975
1976 buf = gdb_read_sleb128 (buf, end, &sleb128);
1977 if (buf == NULL)
1978 return NULL;
1979 cie->data_alignment_factor = sleb128;
1980
1981 if (cie_version == 1)
1982 {
1983 cie->return_address_register = read_1_byte (unit->abfd, buf);
1984 ++buf;
1985 }
1986 else
1987 {
1988 buf = gdb_read_uleb128 (buf, end, &uleb128);
1989 if (buf == NULL)
1990 return NULL;
1991 cie->return_address_register = uleb128;
1992 }
1993
1994 cie->return_address_register
1995 = dwarf2_frame_adjust_regnum (gdbarch,
1996 cie->return_address_register,
1997 eh_frame_p);
1998
1999 cie->saw_z_augmentation = (*augmentation == 'z');
2000 if (cie->saw_z_augmentation)
2001 {
2002 uint64_t length;
2003
2004 buf = gdb_read_uleb128 (buf, end, &length);
2005 if (buf == NULL)
2006 return NULL;
2007 cie->initial_instructions = buf + length;
2008 augmentation++;
2009 }
2010
2011 while (*augmentation)
2012 {
2013 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2014 if (*augmentation == 'L')
2015 {
2016 /* Skip. */
2017 buf++;
2018 augmentation++;
2019 }
2020
2021 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2022 else if (*augmentation == 'R')
2023 {
2024 cie->encoding = *buf++;
2025 augmentation++;
2026 }
2027
2028 /* "P" indicates a personality routine in the CIE augmentation. */
2029 else if (*augmentation == 'P')
2030 {
2031 /* Skip. Avoid indirection since we throw away the result. */
2032 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2033 read_encoded_value (unit, encoding, cie->ptr_size,
2034 buf, &bytes_read, 0);
2035 buf += bytes_read;
2036 augmentation++;
2037 }
2038
2039 /* "S" indicates a signal frame, such that the return
2040 address must not be decremented to locate the call frame
2041 info for the previous frame; it might even be the first
2042 instruction of a function, so decrementing it would take
2043 us to a different function. */
2044 else if (*augmentation == 'S')
2045 {
2046 cie->signal_frame = 1;
2047 augmentation++;
2048 }
2049
2050 /* Otherwise we have an unknown augmentation. Assume that either
2051 there is no augmentation data, or we saw a 'z' prefix. */
2052 else
2053 {
2054 if (cie->initial_instructions)
2055 buf = cie->initial_instructions;
2056 break;
2057 }
2058 }
2059
2060 cie->initial_instructions = buf;
2061 cie->end = end;
2062 cie->unit = unit;
2063
2064 add_cie (cie_table, cie);
2065 }
2066 else
2067 {
2068 /* This is a FDE. */
2069 struct dwarf2_fde *fde;
2070
2071 /* Check that an FDE was expected. */
2072 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2073 error (_("Found an FDE when not expecting it."));
2074
2075 /* In an .eh_frame section, the CIE pointer is the delta between the
2076 address within the FDE where the CIE pointer is stored and the
2077 address of the CIE. Convert it to an offset into the .eh_frame
2078 section. */
2079 if (eh_frame_p)
2080 {
2081 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2082 cie_pointer -= (dwarf64_p ? 8 : 4);
2083 }
2084
2085 /* In either case, validate the result is still within the section. */
2086 if (cie_pointer >= unit->dwarf_frame_size)
2087 return NULL;
2088
2089 fde = (struct dwarf2_fde *)
2090 obstack_alloc (&unit->objfile->objfile_obstack,
2091 sizeof (struct dwarf2_fde));
2092 fde->cie = find_cie (cie_table, cie_pointer);
2093 if (fde->cie == NULL)
2094 {
2095 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2096 eh_frame_p, cie_table, fde_table,
2097 EH_CIE_TYPE_ID);
2098 fde->cie = find_cie (cie_table, cie_pointer);
2099 }
2100
2101 gdb_assert (fde->cie != NULL);
2102
2103 fde->initial_location =
2104 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2105 buf, &bytes_read, 0);
2106 buf += bytes_read;
2107
2108 fde->address_range =
2109 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2110 fde->cie->ptr_size, buf, &bytes_read, 0);
2111 buf += bytes_read;
2112
2113 /* A 'z' augmentation in the CIE implies the presence of an
2114 augmentation field in the FDE as well. The only thing known
2115 to be in here at present is the LSDA entry for EH. So we
2116 can skip the whole thing. */
2117 if (fde->cie->saw_z_augmentation)
2118 {
2119 uint64_t length;
2120
2121 buf = gdb_read_uleb128 (buf, end, &length);
2122 if (buf == NULL)
2123 return NULL;
2124 buf += length;
2125 if (buf > end)
2126 return NULL;
2127 }
2128
2129 fde->instructions = buf;
2130 fde->end = end;
2131
2132 fde->eh_frame_p = eh_frame_p;
2133
2134 add_fde (fde_table, fde);
2135 }
2136
2137 return end;
2138 }
2139
2140 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2141 expect an FDE or a CIE. */
2142
2143 static const gdb_byte *
2144 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2145 int eh_frame_p,
2146 struct dwarf2_cie_table *cie_table,
2147 struct dwarf2_fde_table *fde_table,
2148 enum eh_frame_type entry_type)
2149 {
2150 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2151 const gdb_byte *ret;
2152 ptrdiff_t start_offset;
2153
2154 while (1)
2155 {
2156 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2157 cie_table, fde_table, entry_type);
2158 if (ret != NULL)
2159 break;
2160
2161 /* We have corrupt input data of some form. */
2162
2163 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2164 and mismatches wrt padding and alignment of debug sections. */
2165 /* Note that there is no requirement in the standard for any
2166 alignment at all in the frame unwind sections. Testing for
2167 alignment before trying to interpret data would be incorrect.
2168
2169 However, GCC traditionally arranged for frame sections to be
2170 sized such that the FDE length and CIE fields happen to be
2171 aligned (in theory, for performance). This, unfortunately,
2172 was done with .align directives, which had the side effect of
2173 forcing the section to be aligned by the linker.
2174
2175 This becomes a problem when you have some other producer that
2176 creates frame sections that are not as strictly aligned. That
2177 produces a hole in the frame info that gets filled by the
2178 linker with zeros.
2179
2180 The GCC behaviour is arguably a bug, but it's effectively now
2181 part of the ABI, so we're now stuck with it, at least at the
2182 object file level. A smart linker may decide, in the process
2183 of compressing duplicate CIE information, that it can rewrite
2184 the entire output section without this extra padding. */
2185
2186 start_offset = start - unit->dwarf_frame_buffer;
2187 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2188 {
2189 start += 4 - (start_offset & 3);
2190 workaround = ALIGN4;
2191 continue;
2192 }
2193 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2194 {
2195 start += 8 - (start_offset & 7);
2196 workaround = ALIGN8;
2197 continue;
2198 }
2199
2200 /* Nothing left to try. Arrange to return as if we've consumed
2201 the entire input section. Hopefully we'll get valid info from
2202 the other of .debug_frame/.eh_frame. */
2203 workaround = FAIL;
2204 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2205 break;
2206 }
2207
2208 switch (workaround)
2209 {
2210 case NONE:
2211 break;
2212
2213 case ALIGN4:
2214 complaint (&symfile_complaints, _("\
2215 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2216 unit->dwarf_frame_section->owner->filename,
2217 unit->dwarf_frame_section->name);
2218 break;
2219
2220 case ALIGN8:
2221 complaint (&symfile_complaints, _("\
2222 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2223 unit->dwarf_frame_section->owner->filename,
2224 unit->dwarf_frame_section->name);
2225 break;
2226
2227 default:
2228 complaint (&symfile_complaints,
2229 _("Corrupt data in %s:%s"),
2230 unit->dwarf_frame_section->owner->filename,
2231 unit->dwarf_frame_section->name);
2232 break;
2233 }
2234
2235 return ret;
2236 }
2237 \f
2238 static int
2239 qsort_fde_cmp (const void *a, const void *b)
2240 {
2241 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2242 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2243
2244 if (aa->initial_location == bb->initial_location)
2245 {
2246 if (aa->address_range != bb->address_range
2247 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2248 /* Linker bug, e.g. gold/10400.
2249 Work around it by keeping stable sort order. */
2250 return (a < b) ? -1 : 1;
2251 else
2252 /* Put eh_frame entries after debug_frame ones. */
2253 return aa->eh_frame_p - bb->eh_frame_p;
2254 }
2255
2256 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2257 }
2258
2259 void
2260 dwarf2_build_frame_info (struct objfile *objfile)
2261 {
2262 struct comp_unit *unit;
2263 const gdb_byte *frame_ptr;
2264 struct dwarf2_cie_table cie_table;
2265 struct dwarf2_fde_table fde_table;
2266 struct dwarf2_fde_table *fde_table2;
2267 volatile struct gdb_exception e;
2268
2269 cie_table.num_entries = 0;
2270 cie_table.entries = NULL;
2271
2272 fde_table.num_entries = 0;
2273 fde_table.entries = NULL;
2274
2275 /* Build a minimal decoding of the DWARF2 compilation unit. */
2276 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2277 sizeof (struct comp_unit));
2278 unit->abfd = objfile->obfd;
2279 unit->objfile = objfile;
2280 unit->dbase = 0;
2281 unit->tbase = 0;
2282
2283 if (objfile->separate_debug_objfile_backlink == NULL)
2284 {
2285 /* Do not read .eh_frame from separate file as they must be also
2286 present in the main file. */
2287 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2288 &unit->dwarf_frame_section,
2289 &unit->dwarf_frame_buffer,
2290 &unit->dwarf_frame_size);
2291 if (unit->dwarf_frame_size)
2292 {
2293 asection *got, *txt;
2294
2295 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2296 that is used for the i386/amd64 target, which currently is
2297 the only target in GCC that supports/uses the
2298 DW_EH_PE_datarel encoding. */
2299 got = bfd_get_section_by_name (unit->abfd, ".got");
2300 if (got)
2301 unit->dbase = got->vma;
2302
2303 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2304 so far. */
2305 txt = bfd_get_section_by_name (unit->abfd, ".text");
2306 if (txt)
2307 unit->tbase = txt->vma;
2308
2309 TRY_CATCH (e, RETURN_MASK_ERROR)
2310 {
2311 frame_ptr = unit->dwarf_frame_buffer;
2312 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2313 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2314 &cie_table, &fde_table,
2315 EH_CIE_OR_FDE_TYPE_ID);
2316 }
2317
2318 if (e.reason < 0)
2319 {
2320 warning (_("skipping .eh_frame info of %s: %s"),
2321 objfile_name (objfile), e.message);
2322
2323 if (fde_table.num_entries != 0)
2324 {
2325 xfree (fde_table.entries);
2326 fde_table.entries = NULL;
2327 fde_table.num_entries = 0;
2328 }
2329 /* The cie_table is discarded by the next if. */
2330 }
2331
2332 if (cie_table.num_entries != 0)
2333 {
2334 /* Reinit cie_table: debug_frame has different CIEs. */
2335 xfree (cie_table.entries);
2336 cie_table.num_entries = 0;
2337 cie_table.entries = NULL;
2338 }
2339 }
2340 }
2341
2342 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2343 &unit->dwarf_frame_section,
2344 &unit->dwarf_frame_buffer,
2345 &unit->dwarf_frame_size);
2346 if (unit->dwarf_frame_size)
2347 {
2348 int num_old_fde_entries = fde_table.num_entries;
2349
2350 TRY_CATCH (e, RETURN_MASK_ERROR)
2351 {
2352 frame_ptr = unit->dwarf_frame_buffer;
2353 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2354 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2355 &cie_table, &fde_table,
2356 EH_CIE_OR_FDE_TYPE_ID);
2357 }
2358 if (e.reason < 0)
2359 {
2360 warning (_("skipping .debug_frame info of %s: %s"),
2361 objfile_name (objfile), e.message);
2362
2363 if (fde_table.num_entries != 0)
2364 {
2365 fde_table.num_entries = num_old_fde_entries;
2366 if (num_old_fde_entries == 0)
2367 {
2368 xfree (fde_table.entries);
2369 fde_table.entries = NULL;
2370 }
2371 else
2372 {
2373 fde_table.entries = xrealloc (fde_table.entries,
2374 fde_table.num_entries *
2375 sizeof (fde_table.entries[0]));
2376 }
2377 }
2378 fde_table.num_entries = num_old_fde_entries;
2379 /* The cie_table is discarded by the next if. */
2380 }
2381 }
2382
2383 /* Discard the cie_table, it is no longer needed. */
2384 if (cie_table.num_entries != 0)
2385 {
2386 xfree (cie_table.entries);
2387 cie_table.entries = NULL; /* Paranoia. */
2388 cie_table.num_entries = 0; /* Paranoia. */
2389 }
2390
2391 /* Copy fde_table to obstack: it is needed at runtime. */
2392 fde_table2 = (struct dwarf2_fde_table *)
2393 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2394
2395 if (fde_table.num_entries == 0)
2396 {
2397 fde_table2->entries = NULL;
2398 fde_table2->num_entries = 0;
2399 }
2400 else
2401 {
2402 struct dwarf2_fde *fde_prev = NULL;
2403 struct dwarf2_fde *first_non_zero_fde = NULL;
2404 int i;
2405
2406 /* Prepare FDE table for lookups. */
2407 qsort (fde_table.entries, fde_table.num_entries,
2408 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2409
2410 /* Check for leftovers from --gc-sections. The GNU linker sets
2411 the relevant symbols to zero, but doesn't zero the FDE *end*
2412 ranges because there's no relocation there. It's (offset,
2413 length), not (start, end). On targets where address zero is
2414 just another valid address this can be a problem, since the
2415 FDEs appear to be non-empty in the output --- we could pick
2416 out the wrong FDE. To work around this, when overlaps are
2417 detected, we prefer FDEs that do not start at zero.
2418
2419 Start by finding the first FDE with non-zero start. Below
2420 we'll discard all FDEs that start at zero and overlap this
2421 one. */
2422 for (i = 0; i < fde_table.num_entries; i++)
2423 {
2424 struct dwarf2_fde *fde = fde_table.entries[i];
2425
2426 if (fde->initial_location != 0)
2427 {
2428 first_non_zero_fde = fde;
2429 break;
2430 }
2431 }
2432
2433 /* Since we'll be doing bsearch, squeeze out identical (except
2434 for eh_frame_p) fde entries so bsearch result is predictable.
2435 Also discard leftovers from --gc-sections. */
2436 fde_table2->num_entries = 0;
2437 for (i = 0; i < fde_table.num_entries; i++)
2438 {
2439 struct dwarf2_fde *fde = fde_table.entries[i];
2440
2441 if (fde->initial_location == 0
2442 && first_non_zero_fde != NULL
2443 && (first_non_zero_fde->initial_location
2444 < fde->initial_location + fde->address_range))
2445 continue;
2446
2447 if (fde_prev != NULL
2448 && fde_prev->initial_location == fde->initial_location)
2449 continue;
2450
2451 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2452 sizeof (fde_table.entries[0]));
2453 ++fde_table2->num_entries;
2454 fde_prev = fde;
2455 }
2456 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2457
2458 /* Discard the original fde_table. */
2459 xfree (fde_table.entries);
2460 }
2461
2462 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2463 }
2464
2465 /* Provide a prototype to silence -Wmissing-prototypes. */
2466 void _initialize_dwarf2_frame (void);
2467
2468 void
2469 _initialize_dwarf2_frame (void)
2470 {
2471 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2472 dwarf2_frame_objfile_data = register_objfile_data ();
2473 }
This page took 0.083248 seconds and 4 git commands to generate.