gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2expr.c
1 /* DWARF 2 Expression Evaluator.
2
3 Copyright (C) 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Daniel Berlin (dan@dberlin.org)
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "dwarf2.h"
29 #include "dwarf2expr.h"
30 #include "gdb_assert.h"
31
32 /* Local prototypes. */
33
34 static void execute_stack_op (struct dwarf_expr_context *,
35 const gdb_byte *, const gdb_byte *);
36
37 /* Cookie for gdbarch data. */
38
39 static struct gdbarch_data *dwarf_arch_cookie;
40
41 /* This holds gdbarch-specific types used by the DWARF expression
42 evaluator. See comments in execute_stack_op. */
43
44 struct dwarf_gdbarch_types
45 {
46 struct type *dw_types[3];
47 };
48
49 /* Allocate and fill in dwarf_gdbarch_types for an arch. */
50
51 static void *
52 dwarf_gdbarch_types_init (struct gdbarch *gdbarch)
53 {
54 struct dwarf_gdbarch_types *types
55 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct dwarf_gdbarch_types);
56
57 /* The types themselves are lazily initialized. */
58
59 return types;
60 }
61
62 /* Return the type used for DWARF operations where the type is
63 unspecified in the DWARF spec. Only certain sizes are
64 supported. */
65
66 static struct type *
67 dwarf_expr_address_type (struct dwarf_expr_context *ctx)
68 {
69 struct dwarf_gdbarch_types *types = gdbarch_data (ctx->gdbarch,
70 dwarf_arch_cookie);
71 int ndx;
72
73 if (ctx->addr_size == 2)
74 ndx = 0;
75 else if (ctx->addr_size == 4)
76 ndx = 1;
77 else if (ctx->addr_size == 8)
78 ndx = 2;
79 else
80 error (_("Unsupported address size in DWARF expressions: %d bits"),
81 8 * ctx->addr_size);
82
83 if (types->dw_types[ndx] == NULL)
84 types->dw_types[ndx]
85 = arch_integer_type (ctx->gdbarch,
86 8 * ctx->addr_size,
87 0, "<signed DWARF address type>");
88
89 return types->dw_types[ndx];
90 }
91
92 /* Create a new context for the expression evaluator. */
93
94 struct dwarf_expr_context *
95 new_dwarf_expr_context (void)
96 {
97 struct dwarf_expr_context *retval;
98
99 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
100 retval->stack_len = 0;
101 retval->stack_allocated = 10;
102 retval->stack = xmalloc (retval->stack_allocated
103 * sizeof (struct dwarf_stack_value));
104 retval->num_pieces = 0;
105 retval->pieces = 0;
106 retval->max_recursion_depth = 0x100;
107 return retval;
108 }
109
110 /* Release the memory allocated to CTX. */
111
112 void
113 free_dwarf_expr_context (struct dwarf_expr_context *ctx)
114 {
115 xfree (ctx->stack);
116 xfree (ctx->pieces);
117 xfree (ctx);
118 }
119
120 /* Helper for make_cleanup_free_dwarf_expr_context. */
121
122 static void
123 free_dwarf_expr_context_cleanup (void *arg)
124 {
125 free_dwarf_expr_context (arg);
126 }
127
128 /* Return a cleanup that calls free_dwarf_expr_context. */
129
130 struct cleanup *
131 make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
132 {
133 return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
134 }
135
136 /* Expand the memory allocated to CTX's stack to contain at least
137 NEED more elements than are currently used. */
138
139 static void
140 dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
141 {
142 if (ctx->stack_len + need > ctx->stack_allocated)
143 {
144 size_t newlen = ctx->stack_len + need + 10;
145
146 ctx->stack = xrealloc (ctx->stack,
147 newlen * sizeof (struct dwarf_stack_value));
148 ctx->stack_allocated = newlen;
149 }
150 }
151
152 /* Push VALUE onto CTX's stack. */
153
154 static void
155 dwarf_expr_push (struct dwarf_expr_context *ctx, struct value *value,
156 int in_stack_memory)
157 {
158 struct dwarf_stack_value *v;
159
160 dwarf_expr_grow_stack (ctx, 1);
161 v = &ctx->stack[ctx->stack_len++];
162 v->value = value;
163 v->in_stack_memory = in_stack_memory;
164 }
165
166 /* Push VALUE onto CTX's stack. */
167
168 void
169 dwarf_expr_push_address (struct dwarf_expr_context *ctx, CORE_ADDR value,
170 int in_stack_memory)
171 {
172 dwarf_expr_push (ctx,
173 value_from_ulongest (dwarf_expr_address_type (ctx), value),
174 in_stack_memory);
175 }
176
177 /* Pop the top item off of CTX's stack. */
178
179 static void
180 dwarf_expr_pop (struct dwarf_expr_context *ctx)
181 {
182 if (ctx->stack_len <= 0)
183 error (_("dwarf expression stack underflow"));
184 ctx->stack_len--;
185 }
186
187 /* Retrieve the N'th item on CTX's stack. */
188
189 struct value *
190 dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
191 {
192 if (ctx->stack_len <= n)
193 error (_("Asked for position %d of stack, "
194 "stack only has %d elements on it."),
195 n, ctx->stack_len);
196 return ctx->stack[ctx->stack_len - (1 + n)].value;
197 }
198
199 /* Require that TYPE be an integral type; throw an exception if not. */
200
201 static void
202 dwarf_require_integral (struct type *type)
203 {
204 if (TYPE_CODE (type) != TYPE_CODE_INT
205 && TYPE_CODE (type) != TYPE_CODE_CHAR
206 && TYPE_CODE (type) != TYPE_CODE_BOOL)
207 error (_("integral type expected in DWARF expression"));
208 }
209
210 /* Return the unsigned form of TYPE. TYPE is necessarily an integral
211 type. */
212
213 static struct type *
214 get_unsigned_type (struct gdbarch *gdbarch, struct type *type)
215 {
216 switch (TYPE_LENGTH (type))
217 {
218 case 1:
219 return builtin_type (gdbarch)->builtin_uint8;
220 case 2:
221 return builtin_type (gdbarch)->builtin_uint16;
222 case 4:
223 return builtin_type (gdbarch)->builtin_uint32;
224 case 8:
225 return builtin_type (gdbarch)->builtin_uint64;
226 default:
227 error (_("no unsigned variant found for type, while evaluating "
228 "DWARF expression"));
229 }
230 }
231
232 /* Return the signed form of TYPE. TYPE is necessarily an integral
233 type. */
234
235 static struct type *
236 get_signed_type (struct gdbarch *gdbarch, struct type *type)
237 {
238 switch (TYPE_LENGTH (type))
239 {
240 case 1:
241 return builtin_type (gdbarch)->builtin_int8;
242 case 2:
243 return builtin_type (gdbarch)->builtin_int16;
244 case 4:
245 return builtin_type (gdbarch)->builtin_int32;
246 case 8:
247 return builtin_type (gdbarch)->builtin_int64;
248 default:
249 error (_("no signed variant found for type, while evaluating "
250 "DWARF expression"));
251 }
252 }
253
254 /* Retrieve the N'th item on CTX's stack, converted to an address. */
255
256 CORE_ADDR
257 dwarf_expr_fetch_address (struct dwarf_expr_context *ctx, int n)
258 {
259 struct value *result_val = dwarf_expr_fetch (ctx, n);
260 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
261 ULONGEST result;
262
263 dwarf_require_integral (value_type (result_val));
264 result = extract_unsigned_integer (value_contents (result_val),
265 TYPE_LENGTH (value_type (result_val)),
266 byte_order);
267
268 /* For most architectures, calling extract_unsigned_integer() alone
269 is sufficient for extracting an address. However, some
270 architectures (e.g. MIPS) use signed addresses and using
271 extract_unsigned_integer() will not produce a correct
272 result. Make sure we invoke gdbarch_integer_to_address()
273 for those architectures which require it. */
274 if (gdbarch_integer_to_address_p (ctx->gdbarch))
275 {
276 gdb_byte *buf = alloca (ctx->addr_size);
277 struct type *int_type = get_unsigned_type (ctx->gdbarch,
278 value_type (result_val));
279
280 store_unsigned_integer (buf, ctx->addr_size, byte_order, result);
281 return gdbarch_integer_to_address (ctx->gdbarch, int_type, buf);
282 }
283
284 return (CORE_ADDR) result;
285 }
286
287 /* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
288
289 int
290 dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
291 {
292 if (ctx->stack_len <= n)
293 error (_("Asked for position %d of stack, "
294 "stack only has %d elements on it."),
295 n, ctx->stack_len);
296 return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
297 }
298
299 /* Return true if the expression stack is empty. */
300
301 static int
302 dwarf_expr_stack_empty_p (struct dwarf_expr_context *ctx)
303 {
304 return ctx->stack_len == 0;
305 }
306
307 /* Add a new piece to CTX's piece list. */
308 static void
309 add_piece (struct dwarf_expr_context *ctx, ULONGEST size, ULONGEST offset)
310 {
311 struct dwarf_expr_piece *p;
312
313 ctx->num_pieces++;
314
315 ctx->pieces = xrealloc (ctx->pieces,
316 (ctx->num_pieces
317 * sizeof (struct dwarf_expr_piece)));
318
319 p = &ctx->pieces[ctx->num_pieces - 1];
320 p->location = ctx->location;
321 p->size = size;
322 p->offset = offset;
323
324 if (p->location == DWARF_VALUE_LITERAL)
325 {
326 p->v.literal.data = ctx->data;
327 p->v.literal.length = ctx->len;
328 }
329 else if (dwarf_expr_stack_empty_p (ctx))
330 {
331 p->location = DWARF_VALUE_OPTIMIZED_OUT;
332 /* Also reset the context's location, for our callers. This is
333 a somewhat strange approach, but this lets us avoid setting
334 the location to DWARF_VALUE_MEMORY in all the individual
335 cases in the evaluator. */
336 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
337 }
338 else if (p->location == DWARF_VALUE_MEMORY)
339 {
340 p->v.mem.addr = dwarf_expr_fetch_address (ctx, 0);
341 p->v.mem.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
342 }
343 else if (p->location == DWARF_VALUE_IMPLICIT_POINTER)
344 {
345 p->v.ptr.die = ctx->len;
346 p->v.ptr.offset = value_as_long (dwarf_expr_fetch (ctx, 0));
347 }
348 else if (p->location == DWARF_VALUE_REGISTER)
349 p->v.regno = value_as_long (dwarf_expr_fetch (ctx, 0));
350 else
351 {
352 p->v.value = dwarf_expr_fetch (ctx, 0);
353 }
354 }
355
356 /* Evaluate the expression at ADDR (LEN bytes long) using the context
357 CTX. */
358
359 void
360 dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
361 size_t len)
362 {
363 int old_recursion_depth = ctx->recursion_depth;
364
365 execute_stack_op (ctx, addr, addr + len);
366
367 /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
368
369 gdb_assert (ctx->recursion_depth == old_recursion_depth);
370 }
371
372 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
373 by R, and return the new value of BUF. Verify that it doesn't extend
374 past BUF_END. */
375
376 const gdb_byte *
377 read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end, ULONGEST * r)
378 {
379 unsigned shift = 0;
380 ULONGEST result = 0;
381 gdb_byte byte;
382
383 while (1)
384 {
385 if (buf >= buf_end)
386 error (_("read_uleb128: Corrupted DWARF expression."));
387
388 byte = *buf++;
389 result |= ((ULONGEST) (byte & 0x7f)) << shift;
390 if ((byte & 0x80) == 0)
391 break;
392 shift += 7;
393 }
394 *r = result;
395 return buf;
396 }
397
398 /* Decode the signed LEB128 constant at BUF into the variable pointed to
399 by R, and return the new value of BUF. Verify that it doesn't extend
400 past BUF_END. */
401
402 const gdb_byte *
403 read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end, LONGEST * r)
404 {
405 unsigned shift = 0;
406 LONGEST result = 0;
407 gdb_byte byte;
408
409 while (1)
410 {
411 if (buf >= buf_end)
412 error (_("read_sleb128: Corrupted DWARF expression."));
413
414 byte = *buf++;
415 result |= ((ULONGEST) (byte & 0x7f)) << shift;
416 shift += 7;
417 if ((byte & 0x80) == 0)
418 break;
419 }
420 if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
421 result |= -(((LONGEST) 1) << shift);
422
423 *r = result;
424 return buf;
425 }
426 \f
427
428 /* Check that the current operator is either at the end of an
429 expression, or that it is followed by a composition operator. */
430
431 void
432 dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
433 const char *op_name)
434 {
435 /* It seems like DW_OP_GNU_uninit should be handled here. However,
436 it doesn't seem to make sense for DW_OP_*_value, and it was not
437 checked at the other place that this function is called. */
438 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
439 error (_("DWARF-2 expression error: `%s' operations must be "
440 "used either alone or in conjunction with DW_OP_piece "
441 "or DW_OP_bit_piece."),
442 op_name);
443 }
444
445 /* Return true iff the types T1 and T2 are "the same". This only does
446 checks that might reasonably be needed to compare DWARF base
447 types. */
448
449 static int
450 base_types_equal_p (struct type *t1, struct type *t2)
451 {
452 if (TYPE_CODE (t1) != TYPE_CODE (t2))
453 return 0;
454 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
455 return 0;
456 return TYPE_LENGTH (t1) == TYPE_LENGTH (t2);
457 }
458
459 /* A convenience function to call get_base_type on CTX and return the
460 result. DIE is the DIE whose type we need. SIZE is non-zero if
461 this function should verify that the resulting type has the correct
462 size. */
463
464 static struct type *
465 dwarf_get_base_type (struct dwarf_expr_context *ctx, ULONGEST die, int size)
466 {
467 struct type *result;
468
469 if (ctx->funcs->get_base_type)
470 {
471 result = ctx->funcs->get_base_type (ctx, die);
472 if (result == NULL)
473 error (_("Could not find type for DW_OP_GNU_const_type"));
474 if (size != 0 && TYPE_LENGTH (result) != size)
475 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
476 }
477 else
478 /* Anything will do. */
479 result = builtin_type (ctx->gdbarch)->builtin_int;
480
481 return result;
482 }
483
484 /* The engine for the expression evaluator. Using the context in CTX,
485 evaluate the expression between OP_PTR and OP_END. */
486
487 static void
488 execute_stack_op (struct dwarf_expr_context *ctx,
489 const gdb_byte *op_ptr, const gdb_byte *op_end)
490 {
491 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
492 /* Old-style "untyped" DWARF values need special treatment in a
493 couple of places, specifically DW_OP_mod and DW_OP_shr. We need
494 a special type for these values so we can distinguish them from
495 values that have an explicit type, because explicitly-typed
496 values do not need special treatment. This special type must be
497 different (in the `==' sense) from any base type coming from the
498 CU. */
499 struct type *address_type = dwarf_expr_address_type (ctx);
500
501 ctx->location = DWARF_VALUE_MEMORY;
502 ctx->initialized = 1; /* Default is initialized. */
503
504 if (ctx->recursion_depth > ctx->max_recursion_depth)
505 error (_("DWARF-2 expression error: Loop detected (%d)."),
506 ctx->recursion_depth);
507 ctx->recursion_depth++;
508
509 while (op_ptr < op_end)
510 {
511 enum dwarf_location_atom op = *op_ptr++;
512 ULONGEST result;
513 /* Assume the value is not in stack memory.
514 Code that knows otherwise sets this to 1.
515 Some arithmetic on stack addresses can probably be assumed to still
516 be a stack address, but we skip this complication for now.
517 This is just an optimization, so it's always ok to punt
518 and leave this as 0. */
519 int in_stack_memory = 0;
520 ULONGEST uoffset, reg;
521 LONGEST offset;
522 struct value *result_val = NULL;
523
524 /* The DWARF expression might have a bug causing an infinite
525 loop. In that case, quitting is the only way out. */
526 QUIT;
527
528 switch (op)
529 {
530 case DW_OP_lit0:
531 case DW_OP_lit1:
532 case DW_OP_lit2:
533 case DW_OP_lit3:
534 case DW_OP_lit4:
535 case DW_OP_lit5:
536 case DW_OP_lit6:
537 case DW_OP_lit7:
538 case DW_OP_lit8:
539 case DW_OP_lit9:
540 case DW_OP_lit10:
541 case DW_OP_lit11:
542 case DW_OP_lit12:
543 case DW_OP_lit13:
544 case DW_OP_lit14:
545 case DW_OP_lit15:
546 case DW_OP_lit16:
547 case DW_OP_lit17:
548 case DW_OP_lit18:
549 case DW_OP_lit19:
550 case DW_OP_lit20:
551 case DW_OP_lit21:
552 case DW_OP_lit22:
553 case DW_OP_lit23:
554 case DW_OP_lit24:
555 case DW_OP_lit25:
556 case DW_OP_lit26:
557 case DW_OP_lit27:
558 case DW_OP_lit28:
559 case DW_OP_lit29:
560 case DW_OP_lit30:
561 case DW_OP_lit31:
562 result = op - DW_OP_lit0;
563 result_val = value_from_ulongest (address_type, result);
564 break;
565
566 case DW_OP_addr:
567 result = extract_unsigned_integer (op_ptr,
568 ctx->addr_size, byte_order);
569 op_ptr += ctx->addr_size;
570 /* Some versions of GCC emit DW_OP_addr before
571 DW_OP_GNU_push_tls_address. In this case the value is an
572 index, not an address. We don't support things like
573 branching between the address and the TLS op. */
574 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
575 result += ctx->offset;
576 result_val = value_from_ulongest (address_type, result);
577 break;
578
579 case DW_OP_const1u:
580 result = extract_unsigned_integer (op_ptr, 1, byte_order);
581 result_val = value_from_ulongest (address_type, result);
582 op_ptr += 1;
583 break;
584 case DW_OP_const1s:
585 result = extract_signed_integer (op_ptr, 1, byte_order);
586 result_val = value_from_ulongest (address_type, result);
587 op_ptr += 1;
588 break;
589 case DW_OP_const2u:
590 result = extract_unsigned_integer (op_ptr, 2, byte_order);
591 result_val = value_from_ulongest (address_type, result);
592 op_ptr += 2;
593 break;
594 case DW_OP_const2s:
595 result = extract_signed_integer (op_ptr, 2, byte_order);
596 result_val = value_from_ulongest (address_type, result);
597 op_ptr += 2;
598 break;
599 case DW_OP_const4u:
600 result = extract_unsigned_integer (op_ptr, 4, byte_order);
601 result_val = value_from_ulongest (address_type, result);
602 op_ptr += 4;
603 break;
604 case DW_OP_const4s:
605 result = extract_signed_integer (op_ptr, 4, byte_order);
606 result_val = value_from_ulongest (address_type, result);
607 op_ptr += 4;
608 break;
609 case DW_OP_const8u:
610 result = extract_unsigned_integer (op_ptr, 8, byte_order);
611 result_val = value_from_ulongest (address_type, result);
612 op_ptr += 8;
613 break;
614 case DW_OP_const8s:
615 result = extract_signed_integer (op_ptr, 8, byte_order);
616 result_val = value_from_ulongest (address_type, result);
617 op_ptr += 8;
618 break;
619 case DW_OP_constu:
620 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
621 result = uoffset;
622 result_val = value_from_ulongest (address_type, result);
623 break;
624 case DW_OP_consts:
625 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
626 result = offset;
627 result_val = value_from_ulongest (address_type, result);
628 break;
629
630 /* The DW_OP_reg operations are required to occur alone in
631 location expressions. */
632 case DW_OP_reg0:
633 case DW_OP_reg1:
634 case DW_OP_reg2:
635 case DW_OP_reg3:
636 case DW_OP_reg4:
637 case DW_OP_reg5:
638 case DW_OP_reg6:
639 case DW_OP_reg7:
640 case DW_OP_reg8:
641 case DW_OP_reg9:
642 case DW_OP_reg10:
643 case DW_OP_reg11:
644 case DW_OP_reg12:
645 case DW_OP_reg13:
646 case DW_OP_reg14:
647 case DW_OP_reg15:
648 case DW_OP_reg16:
649 case DW_OP_reg17:
650 case DW_OP_reg18:
651 case DW_OP_reg19:
652 case DW_OP_reg20:
653 case DW_OP_reg21:
654 case DW_OP_reg22:
655 case DW_OP_reg23:
656 case DW_OP_reg24:
657 case DW_OP_reg25:
658 case DW_OP_reg26:
659 case DW_OP_reg27:
660 case DW_OP_reg28:
661 case DW_OP_reg29:
662 case DW_OP_reg30:
663 case DW_OP_reg31:
664 if (op_ptr != op_end
665 && *op_ptr != DW_OP_piece
666 && *op_ptr != DW_OP_bit_piece
667 && *op_ptr != DW_OP_GNU_uninit)
668 error (_("DWARF-2 expression error: DW_OP_reg operations must be "
669 "used either alone or in conjunction with DW_OP_piece "
670 "or DW_OP_bit_piece."));
671
672 result = op - DW_OP_reg0;
673 result_val = value_from_ulongest (address_type, result);
674 ctx->location = DWARF_VALUE_REGISTER;
675 break;
676
677 case DW_OP_regx:
678 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
679 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
680
681 result = reg;
682 result_val = value_from_ulongest (address_type, result);
683 ctx->location = DWARF_VALUE_REGISTER;
684 break;
685
686 case DW_OP_implicit_value:
687 {
688 ULONGEST len;
689
690 op_ptr = read_uleb128 (op_ptr, op_end, &len);
691 if (op_ptr + len > op_end)
692 error (_("DW_OP_implicit_value: too few bytes available."));
693 ctx->len = len;
694 ctx->data = op_ptr;
695 ctx->location = DWARF_VALUE_LITERAL;
696 op_ptr += len;
697 dwarf_expr_require_composition (op_ptr, op_end,
698 "DW_OP_implicit_value");
699 }
700 goto no_push;
701
702 case DW_OP_stack_value:
703 ctx->location = DWARF_VALUE_STACK;
704 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
705 goto no_push;
706
707 case DW_OP_GNU_implicit_pointer:
708 {
709 ULONGEST die;
710 LONGEST len;
711
712 /* The referred-to DIE. */
713 ctx->len = extract_unsigned_integer (op_ptr, ctx->addr_size,
714 byte_order);
715 op_ptr += ctx->addr_size;
716
717 /* The byte offset into the data. */
718 op_ptr = read_sleb128 (op_ptr, op_end, &len);
719 result = (ULONGEST) len;
720 result_val = value_from_ulongest (address_type, result);
721
722 ctx->location = DWARF_VALUE_IMPLICIT_POINTER;
723 dwarf_expr_require_composition (op_ptr, op_end,
724 "DW_OP_GNU_implicit_pointer");
725 }
726 break;
727
728 case DW_OP_breg0:
729 case DW_OP_breg1:
730 case DW_OP_breg2:
731 case DW_OP_breg3:
732 case DW_OP_breg4:
733 case DW_OP_breg5:
734 case DW_OP_breg6:
735 case DW_OP_breg7:
736 case DW_OP_breg8:
737 case DW_OP_breg9:
738 case DW_OP_breg10:
739 case DW_OP_breg11:
740 case DW_OP_breg12:
741 case DW_OP_breg13:
742 case DW_OP_breg14:
743 case DW_OP_breg15:
744 case DW_OP_breg16:
745 case DW_OP_breg17:
746 case DW_OP_breg18:
747 case DW_OP_breg19:
748 case DW_OP_breg20:
749 case DW_OP_breg21:
750 case DW_OP_breg22:
751 case DW_OP_breg23:
752 case DW_OP_breg24:
753 case DW_OP_breg25:
754 case DW_OP_breg26:
755 case DW_OP_breg27:
756 case DW_OP_breg28:
757 case DW_OP_breg29:
758 case DW_OP_breg30:
759 case DW_OP_breg31:
760 {
761 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
762 result = (ctx->funcs->read_reg) (ctx->baton, op - DW_OP_breg0);
763 result += offset;
764 result_val = value_from_ulongest (address_type, result);
765 }
766 break;
767 case DW_OP_bregx:
768 {
769 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
770 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
771 result = (ctx->funcs->read_reg) (ctx->baton, reg);
772 result += offset;
773 result_val = value_from_ulongest (address_type, result);
774 }
775 break;
776 case DW_OP_fbreg:
777 {
778 const gdb_byte *datastart;
779 size_t datalen;
780 unsigned int before_stack_len;
781
782 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
783 /* Rather than create a whole new context, we simply
784 record the stack length before execution, then reset it
785 afterwards, effectively erasing whatever the recursive
786 call put there. */
787 before_stack_len = ctx->stack_len;
788 /* FIXME: cagney/2003-03-26: This code should be using
789 get_frame_base_address(), and then implement a dwarf2
790 specific this_base method. */
791 (ctx->funcs->get_frame_base) (ctx->baton, &datastart, &datalen);
792 dwarf_expr_eval (ctx, datastart, datalen);
793 if (ctx->location == DWARF_VALUE_MEMORY)
794 result = dwarf_expr_fetch_address (ctx, 0);
795 else if (ctx->location == DWARF_VALUE_REGISTER)
796 result = (ctx->funcs->read_reg) (ctx->baton,
797 value_as_long (dwarf_expr_fetch (ctx, 0)));
798 else
799 error (_("Not implemented: computing frame "
800 "base using explicit value operator"));
801 result = result + offset;
802 result_val = value_from_ulongest (address_type, result);
803 in_stack_memory = 1;
804 ctx->stack_len = before_stack_len;
805 ctx->location = DWARF_VALUE_MEMORY;
806 }
807 break;
808
809 case DW_OP_dup:
810 result_val = dwarf_expr_fetch (ctx, 0);
811 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
812 break;
813
814 case DW_OP_drop:
815 dwarf_expr_pop (ctx);
816 goto no_push;
817
818 case DW_OP_pick:
819 offset = *op_ptr++;
820 result_val = dwarf_expr_fetch (ctx, offset);
821 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
822 break;
823
824 case DW_OP_swap:
825 {
826 struct dwarf_stack_value t1, t2;
827
828 if (ctx->stack_len < 2)
829 error (_("Not enough elements for "
830 "DW_OP_swap. Need 2, have %d."),
831 ctx->stack_len);
832 t1 = ctx->stack[ctx->stack_len - 1];
833 t2 = ctx->stack[ctx->stack_len - 2];
834 ctx->stack[ctx->stack_len - 1] = t2;
835 ctx->stack[ctx->stack_len - 2] = t1;
836 goto no_push;
837 }
838
839 case DW_OP_over:
840 result_val = dwarf_expr_fetch (ctx, 1);
841 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
842 break;
843
844 case DW_OP_rot:
845 {
846 struct dwarf_stack_value t1, t2, t3;
847
848 if (ctx->stack_len < 3)
849 error (_("Not enough elements for "
850 "DW_OP_rot. Need 3, have %d."),
851 ctx->stack_len);
852 t1 = ctx->stack[ctx->stack_len - 1];
853 t2 = ctx->stack[ctx->stack_len - 2];
854 t3 = ctx->stack[ctx->stack_len - 3];
855 ctx->stack[ctx->stack_len - 1] = t2;
856 ctx->stack[ctx->stack_len - 2] = t3;
857 ctx->stack[ctx->stack_len - 3] = t1;
858 goto no_push;
859 }
860
861 case DW_OP_deref:
862 case DW_OP_deref_size:
863 case DW_OP_GNU_deref_type:
864 {
865 int addr_size = (op == DW_OP_deref ? ctx->addr_size : *op_ptr++);
866 gdb_byte *buf = alloca (addr_size);
867 CORE_ADDR addr = dwarf_expr_fetch_address (ctx, 0);
868 struct type *type;
869
870 dwarf_expr_pop (ctx);
871
872 if (op == DW_OP_GNU_deref_type)
873 {
874 ULONGEST type_die;
875
876 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
877 type = dwarf_get_base_type (ctx, type_die, 0);
878 }
879 else
880 type = address_type;
881
882 (ctx->funcs->read_mem) (ctx->baton, buf, addr, addr_size);
883
884 /* If the size of the object read from memory is different
885 from the type length, we need to zero-extend it. */
886 if (TYPE_LENGTH (type) != addr_size)
887 {
888 ULONGEST result =
889 extract_unsigned_integer (buf, addr_size, byte_order);
890
891 buf = alloca (TYPE_LENGTH (type));
892 store_unsigned_integer (buf, TYPE_LENGTH (type),
893 byte_order, result);
894 }
895
896 result_val = value_from_contents_and_address (type, buf, addr);
897 break;
898 }
899
900 case DW_OP_abs:
901 case DW_OP_neg:
902 case DW_OP_not:
903 case DW_OP_plus_uconst:
904 {
905 /* Unary operations. */
906 result_val = dwarf_expr_fetch (ctx, 0);
907 dwarf_expr_pop (ctx);
908
909 switch (op)
910 {
911 case DW_OP_abs:
912 if (value_less (result_val,
913 value_zero (value_type (result_val), not_lval)))
914 result_val = value_neg (result_val);
915 break;
916 case DW_OP_neg:
917 result_val = value_neg (result_val);
918 break;
919 case DW_OP_not:
920 dwarf_require_integral (value_type (result_val));
921 result_val = value_complement (result_val);
922 break;
923 case DW_OP_plus_uconst:
924 dwarf_require_integral (value_type (result_val));
925 result = value_as_long (result_val);
926 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
927 result += reg;
928 result_val = value_from_ulongest (address_type, result);
929 break;
930 }
931 }
932 break;
933
934 case DW_OP_and:
935 case DW_OP_div:
936 case DW_OP_minus:
937 case DW_OP_mod:
938 case DW_OP_mul:
939 case DW_OP_or:
940 case DW_OP_plus:
941 case DW_OP_shl:
942 case DW_OP_shr:
943 case DW_OP_shra:
944 case DW_OP_xor:
945 case DW_OP_le:
946 case DW_OP_ge:
947 case DW_OP_eq:
948 case DW_OP_lt:
949 case DW_OP_gt:
950 case DW_OP_ne:
951 {
952 /* Binary operations. */
953 struct value *first, *second;
954
955 second = dwarf_expr_fetch (ctx, 0);
956 dwarf_expr_pop (ctx);
957
958 first = dwarf_expr_fetch (ctx, 0);
959 dwarf_expr_pop (ctx);
960
961 if (! base_types_equal_p (value_type (first), value_type (second)))
962 error (_("Incompatible types on DWARF stack"));
963
964 switch (op)
965 {
966 case DW_OP_and:
967 dwarf_require_integral (value_type (first));
968 dwarf_require_integral (value_type (second));
969 result_val = value_binop (first, second, BINOP_BITWISE_AND);
970 break;
971 case DW_OP_div:
972 result_val = value_binop (first, second, BINOP_DIV);
973 break;
974 case DW_OP_minus:
975 result_val = value_binop (first, second, BINOP_SUB);
976 break;
977 case DW_OP_mod:
978 {
979 int cast_back = 0;
980 struct type *orig_type = value_type (first);
981
982 /* We have to special-case "old-style" untyped values
983 -- these must have mod computed using unsigned
984 math. */
985 if (orig_type == address_type)
986 {
987 struct type *utype
988 = get_unsigned_type (ctx->gdbarch, orig_type);
989
990 cast_back = 1;
991 first = value_cast (utype, first);
992 second = value_cast (utype, second);
993 }
994 /* Note that value_binop doesn't handle float or
995 decimal float here. This seems unimportant. */
996 result_val = value_binop (first, second, BINOP_MOD);
997 if (cast_back)
998 result_val = value_cast (orig_type, result_val);
999 }
1000 break;
1001 case DW_OP_mul:
1002 result_val = value_binop (first, second, BINOP_MUL);
1003 break;
1004 case DW_OP_or:
1005 dwarf_require_integral (value_type (first));
1006 dwarf_require_integral (value_type (second));
1007 result_val = value_binop (first, second, BINOP_BITWISE_IOR);
1008 break;
1009 case DW_OP_plus:
1010 result_val = value_binop (first, second, BINOP_ADD);
1011 break;
1012 case DW_OP_shl:
1013 dwarf_require_integral (value_type (first));
1014 dwarf_require_integral (value_type (second));
1015 result_val = value_binop (first, second, BINOP_LSH);
1016 break;
1017 case DW_OP_shr:
1018 dwarf_require_integral (value_type (first));
1019 dwarf_require_integral (value_type (second));
1020 if (!TYPE_UNSIGNED (value_type (first)))
1021 {
1022 struct type *utype
1023 = get_unsigned_type (ctx->gdbarch, value_type (first));
1024
1025 first = value_cast (utype, first);
1026 }
1027
1028 result_val = value_binop (first, second, BINOP_RSH);
1029 /* Make sure we wind up with the same type we started
1030 with. */
1031 if (value_type (result_val) != value_type (second))
1032 result_val = value_cast (value_type (second), result_val);
1033 break;
1034 case DW_OP_shra:
1035 dwarf_require_integral (value_type (first));
1036 dwarf_require_integral (value_type (second));
1037 if (TYPE_UNSIGNED (value_type (first)))
1038 {
1039 struct type *stype
1040 = get_signed_type (ctx->gdbarch, value_type (first));
1041
1042 first = value_cast (stype, first);
1043 }
1044
1045 result_val = value_binop (first, second, BINOP_RSH);
1046 /* Make sure we wind up with the same type we started
1047 with. */
1048 if (value_type (result_val) != value_type (second))
1049 result_val = value_cast (value_type (second), result_val);
1050 break;
1051 case DW_OP_xor:
1052 dwarf_require_integral (value_type (first));
1053 dwarf_require_integral (value_type (second));
1054 result_val = value_binop (first, second, BINOP_BITWISE_XOR);
1055 break;
1056 case DW_OP_le:
1057 /* A <= B is !(B < A). */
1058 result = ! value_less (second, first);
1059 result_val = value_from_ulongest (address_type, result);
1060 break;
1061 case DW_OP_ge:
1062 /* A >= B is !(A < B). */
1063 result = ! value_less (first, second);
1064 result_val = value_from_ulongest (address_type, result);
1065 break;
1066 case DW_OP_eq:
1067 result = value_equal (first, second);
1068 result_val = value_from_ulongest (address_type, result);
1069 break;
1070 case DW_OP_lt:
1071 result = value_less (first, second);
1072 result_val = value_from_ulongest (address_type, result);
1073 break;
1074 case DW_OP_gt:
1075 /* A > B is B < A. */
1076 result = value_less (second, first);
1077 result_val = value_from_ulongest (address_type, result);
1078 break;
1079 case DW_OP_ne:
1080 result = ! value_equal (first, second);
1081 result_val = value_from_ulongest (address_type, result);
1082 break;
1083 default:
1084 internal_error (__FILE__, __LINE__,
1085 _("Can't be reached."));
1086 }
1087 }
1088 break;
1089
1090 case DW_OP_call_frame_cfa:
1091 result = (ctx->funcs->get_frame_cfa) (ctx->baton);
1092 result_val = value_from_ulongest (address_type, result);
1093 in_stack_memory = 1;
1094 break;
1095
1096 case DW_OP_GNU_push_tls_address:
1097 /* Variable is at a constant offset in the thread-local
1098 storage block into the objfile for the current thread and
1099 the dynamic linker module containing this expression. Here
1100 we return returns the offset from that base. The top of the
1101 stack has the offset from the beginning of the thread
1102 control block at which the variable is located. Nothing
1103 should follow this operator, so the top of stack would be
1104 returned. */
1105 result = value_as_long (dwarf_expr_fetch (ctx, 0));
1106 dwarf_expr_pop (ctx);
1107 result = (ctx->funcs->get_tls_address) (ctx->baton, result);
1108 result_val = value_from_ulongest (address_type, result);
1109 break;
1110
1111 case DW_OP_skip:
1112 offset = extract_signed_integer (op_ptr, 2, byte_order);
1113 op_ptr += 2;
1114 op_ptr += offset;
1115 goto no_push;
1116
1117 case DW_OP_bra:
1118 {
1119 struct value *val;
1120
1121 offset = extract_signed_integer (op_ptr, 2, byte_order);
1122 op_ptr += 2;
1123 val = dwarf_expr_fetch (ctx, 0);
1124 dwarf_require_integral (value_type (val));
1125 if (value_as_long (val) != 0)
1126 op_ptr += offset;
1127 dwarf_expr_pop (ctx);
1128 }
1129 goto no_push;
1130
1131 case DW_OP_nop:
1132 goto no_push;
1133
1134 case DW_OP_piece:
1135 {
1136 ULONGEST size;
1137
1138 /* Record the piece. */
1139 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1140 add_piece (ctx, 8 * size, 0);
1141
1142 /* Pop off the address/regnum, and reset the location
1143 type. */
1144 if (ctx->location != DWARF_VALUE_LITERAL
1145 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1146 dwarf_expr_pop (ctx);
1147 ctx->location = DWARF_VALUE_MEMORY;
1148 }
1149 goto no_push;
1150
1151 case DW_OP_bit_piece:
1152 {
1153 ULONGEST size, offset;
1154
1155 /* Record the piece. */
1156 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1157 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
1158 add_piece (ctx, size, offset);
1159
1160 /* Pop off the address/regnum, and reset the location
1161 type. */
1162 if (ctx->location != DWARF_VALUE_LITERAL
1163 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1164 dwarf_expr_pop (ctx);
1165 ctx->location = DWARF_VALUE_MEMORY;
1166 }
1167 goto no_push;
1168
1169 case DW_OP_GNU_uninit:
1170 if (op_ptr != op_end)
1171 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
1172 "be the very last op."));
1173
1174 ctx->initialized = 0;
1175 goto no_push;
1176
1177 case DW_OP_call2:
1178 result = extract_unsigned_integer (op_ptr, 2, byte_order);
1179 op_ptr += 2;
1180 ctx->funcs->dwarf_call (ctx, result);
1181 goto no_push;
1182
1183 case DW_OP_call4:
1184 result = extract_unsigned_integer (op_ptr, 4, byte_order);
1185 op_ptr += 4;
1186 ctx->funcs->dwarf_call (ctx, result);
1187 goto no_push;
1188
1189 case DW_OP_GNU_entry_value:
1190 /* This operation is not yet supported by GDB. */
1191 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
1192 ctx->stack_len = 0;
1193 ctx->num_pieces = 0;
1194 goto abort_expression;
1195
1196 case DW_OP_GNU_const_type:
1197 {
1198 ULONGEST type_die;
1199 int n;
1200 const gdb_byte *data;
1201 struct type *type;
1202
1203 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1204 n = *op_ptr++;
1205 data = op_ptr;
1206 op_ptr += n;
1207
1208 type = dwarf_get_base_type (ctx, type_die, n);
1209 result_val = value_from_contents (type, data);
1210 }
1211 break;
1212
1213 case DW_OP_GNU_regval_type:
1214 {
1215 ULONGEST type_die;
1216 struct type *type;
1217
1218 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1219 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1220
1221 type = dwarf_get_base_type (ctx, type_die, 0);
1222 result = (ctx->funcs->read_reg) (ctx->baton, reg);
1223 result_val = value_from_ulongest (address_type, result);
1224 result_val = value_from_contents (type,
1225 value_contents_all (result_val));
1226 }
1227 break;
1228
1229 case DW_OP_GNU_convert:
1230 case DW_OP_GNU_reinterpret:
1231 {
1232 ULONGEST type_die;
1233 struct type *type;
1234
1235 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1236
1237 if (type_die == 0)
1238 type = address_type;
1239 else
1240 type = dwarf_get_base_type (ctx, type_die, 0);
1241
1242 result_val = dwarf_expr_fetch (ctx, 0);
1243 dwarf_expr_pop (ctx);
1244
1245 if (op == DW_OP_GNU_convert)
1246 result_val = value_cast (type, result_val);
1247 else if (type == value_type (result_val))
1248 {
1249 /* Nothing. */
1250 }
1251 else if (TYPE_LENGTH (type)
1252 != TYPE_LENGTH (value_type (result_val)))
1253 error (_("DW_OP_GNU_reinterpret has wrong size"));
1254 else
1255 result_val
1256 = value_from_contents (type,
1257 value_contents_all (result_val));
1258 }
1259 break;
1260
1261 default:
1262 error (_("Unhandled dwarf expression opcode 0x%x"), op);
1263 }
1264
1265 /* Most things push a result value. */
1266 gdb_assert (result_val != NULL);
1267 dwarf_expr_push (ctx, result_val, in_stack_memory);
1268 no_push:
1269 ;
1270 }
1271
1272 /* To simplify our main caller, if the result is an implicit
1273 pointer, then make a pieced value. This is ok because we can't
1274 have implicit pointers in contexts where pieces are invalid. */
1275 if (ctx->location == DWARF_VALUE_IMPLICIT_POINTER)
1276 add_piece (ctx, 8 * ctx->addr_size, 0);
1277
1278 abort_expression:
1279 ctx->recursion_depth--;
1280 gdb_assert (ctx->recursion_depth >= 0);
1281 }
1282
1283 void
1284 _initialize_dwarf2expr (void)
1285 {
1286 dwarf_arch_cookie
1287 = gdbarch_data_register_post_init (dwarf_gdbarch_types_init);
1288 }
This page took 0.074102 seconds and 5 git commands to generate.