02afcdf339bf6e07b6a9df8ed3a119fd499b712e
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 extern int dwarf2_always_disassemble;
46
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
49
50 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
51
52 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
53 struct frame_info *frame,
54 const gdb_byte *data,
55 size_t size,
56 struct dwarf2_per_cu_data *per_cu,
57 LONGEST byte_offset);
58
59 /* Until these have formal names, we define these here.
60 ref: http://gcc.gnu.org/wiki/DebugFission
61 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
62 and is then followed by data specific to that entry. */
63
64 enum debug_loc_kind
65 {
66 /* Indicates the end of the list of entries. */
67 DEBUG_LOC_END_OF_LIST = 0,
68
69 /* This is followed by an unsigned LEB128 number that is an index into
70 .debug_addr and specifies the base address for all following entries. */
71 DEBUG_LOC_BASE_ADDRESS = 1,
72
73 /* This is followed by two unsigned LEB128 numbers that are indices into
74 .debug_addr and specify the beginning and ending addresses, and then
75 a normal location expression as in .debug_loc. */
76 DEBUG_LOC_START_END = 2,
77
78 /* This is followed by an unsigned LEB128 number that is an index into
79 .debug_addr and specifies the beginning address, and a 4 byte unsigned
80 number that specifies the length, and then a normal location expression
81 as in .debug_loc. */
82 DEBUG_LOC_START_LENGTH = 3,
83
84 /* An internal value indicating there is insufficient data. */
85 DEBUG_LOC_BUFFER_OVERFLOW = -1,
86
87 /* An internal value indicating an invalid kind of entry was found. */
88 DEBUG_LOC_INVALID_ENTRY = -2
89 };
90
91 /* Helper function which throws an error if a synthetic pointer is
92 invalid. */
93
94 static void
95 invalid_synthetic_pointer (void)
96 {
97 error (_("access outside bounds of object "
98 "referenced via synthetic pointer"));
99 }
100
101 /* Decode the addresses in a non-dwo .debug_loc entry.
102 A pointer to the next byte to examine is returned in *NEW_PTR.
103 The encoded low,high addresses are return in *LOW,*HIGH.
104 The result indicates the kind of entry found. */
105
106 static enum debug_loc_kind
107 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
108 const gdb_byte **new_ptr,
109 CORE_ADDR *low, CORE_ADDR *high,
110 enum bfd_endian byte_order,
111 unsigned int addr_size,
112 int signed_addr_p)
113 {
114 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
115
116 if (buf_end - loc_ptr < 2 * addr_size)
117 return DEBUG_LOC_BUFFER_OVERFLOW;
118
119 if (signed_addr_p)
120 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 if (signed_addr_p)
126 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
127 else
128 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
129 loc_ptr += addr_size;
130
131 *new_ptr = loc_ptr;
132
133 /* A base-address-selection entry. */
134 if ((*low & base_mask) == base_mask)
135 return DEBUG_LOC_BASE_ADDRESS;
136
137 /* An end-of-list entry. */
138 if (*low == 0 && *high == 0)
139 return DEBUG_LOC_END_OF_LIST;
140
141 return DEBUG_LOC_START_END;
142 }
143
144 /* Decode the addresses in .debug_loc.dwo entry.
145 A pointer to the next byte to examine is returned in *NEW_PTR.
146 The encoded low,high addresses are return in *LOW,*HIGH.
147 The result indicates the kind of entry found. */
148
149 static enum debug_loc_kind
150 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
151 const gdb_byte *loc_ptr,
152 const gdb_byte *buf_end,
153 const gdb_byte **new_ptr,
154 CORE_ADDR *low, CORE_ADDR *high,
155 enum bfd_endian byte_order)
156 {
157 uint64_t low_index, high_index;
158
159 if (loc_ptr == buf_end)
160 return DEBUG_LOC_BUFFER_OVERFLOW;
161
162 switch (*loc_ptr++)
163 {
164 case DEBUG_LOC_END_OF_LIST:
165 *new_ptr = loc_ptr;
166 return DEBUG_LOC_END_OF_LIST;
167 case DEBUG_LOC_BASE_ADDRESS:
168 *low = 0;
169 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
170 if (loc_ptr == NULL)
171 return DEBUG_LOC_BUFFER_OVERFLOW;
172 *high = dwarf2_read_addr_index (per_cu, high_index);
173 *new_ptr = loc_ptr;
174 return DEBUG_LOC_BASE_ADDRESS;
175 case DEBUG_LOC_START_END:
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *low = dwarf2_read_addr_index (per_cu, low_index);
180 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
181 if (loc_ptr == NULL)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 *high = dwarf2_read_addr_index (per_cu, high_index);
184 *new_ptr = loc_ptr;
185 return DEBUG_LOC_START_END;
186 case DEBUG_LOC_START_LENGTH:
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
188 if (loc_ptr == NULL)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *low = dwarf2_read_addr_index (per_cu, low_index);
191 if (loc_ptr + 4 > buf_end)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
193 *high = *low;
194 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
195 *new_ptr = loc_ptr + 4;
196 return DEBUG_LOC_START_LENGTH;
197 default:
198 return DEBUG_LOC_INVALID_ENTRY;
199 }
200 }
201
202 /* A function for dealing with location lists. Given a
203 symbol baton (BATON) and a pc value (PC), find the appropriate
204 location expression, set *LOCEXPR_LENGTH, and return a pointer
205 to the beginning of the expression. Returns NULL on failure.
206
207 For now, only return the first matching location expression; there
208 can be more than one in the list. */
209
210 const gdb_byte *
211 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
212 size_t *locexpr_length, CORE_ADDR pc)
213 {
214 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
217 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
218 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
219 /* Adjust base_address for relocatable objects. */
220 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
221 CORE_ADDR base_address = baton->base_address + base_offset;
222 const gdb_byte *loc_ptr, *buf_end;
223
224 loc_ptr = baton->data;
225 buf_end = baton->data + baton->size;
226
227 while (1)
228 {
229 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
230 int length;
231 enum debug_loc_kind kind;
232 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
233
234 if (baton->from_dwo)
235 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
236 loc_ptr, buf_end, &new_ptr,
237 &low, &high, byte_order);
238 else
239 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
240 &low, &high,
241 byte_order, addr_size,
242 signed_addr_p);
243 loc_ptr = new_ptr;
244 switch (kind)
245 {
246 case DEBUG_LOC_END_OF_LIST:
247 *locexpr_length = 0;
248 return NULL;
249 case DEBUG_LOC_BASE_ADDRESS:
250 base_address = high + base_offset;
251 continue;
252 case DEBUG_LOC_START_END:
253 case DEBUG_LOC_START_LENGTH:
254 break;
255 case DEBUG_LOC_BUFFER_OVERFLOW:
256 case DEBUG_LOC_INVALID_ENTRY:
257 error (_("dwarf2_find_location_expression: "
258 "Corrupted DWARF expression."));
259 default:
260 gdb_assert_not_reached ("bad debug_loc_kind");
261 }
262
263 /* Otherwise, a location expression entry.
264 If the entry is from a DWO, don't add base address: the entry is
265 from .debug_addr which has absolute addresses. */
266 if (! baton->from_dwo)
267 {
268 low += base_address;
269 high += base_address;
270 }
271
272 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
273 loc_ptr += 2;
274
275 if (low == high && pc == low)
276 {
277 /* This is entry PC record present only at entry point
278 of a function. Verify it is really the function entry point. */
279
280 struct block *pc_block = block_for_pc (pc);
281 struct symbol *pc_func = NULL;
282
283 if (pc_block)
284 pc_func = block_linkage_function (pc_block);
285
286 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
287 {
288 *locexpr_length = length;
289 return loc_ptr;
290 }
291 }
292
293 if (pc >= low && pc < high)
294 {
295 *locexpr_length = length;
296 return loc_ptr;
297 }
298
299 loc_ptr += length;
300 }
301 }
302
303 /* This is the baton used when performing dwarf2 expression
304 evaluation. */
305 struct dwarf_expr_baton
306 {
307 struct frame_info *frame;
308 struct dwarf2_per_cu_data *per_cu;
309 };
310
311 /* Helper functions for dwarf2_evaluate_loc_desc. */
312
313 /* Using the frame specified in BATON, return the value of register
314 REGNUM, treated as a pointer. */
315 static CORE_ADDR
316 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
317 {
318 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
319 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
320 CORE_ADDR result;
321 int regnum;
322
323 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
324 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
325 regnum, debaton->frame);
326 return result;
327 }
328
329 /* Read memory at ADDR (length LEN) into BUF. */
330
331 static void
332 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
333 {
334 read_memory (addr, buf, len);
335 }
336
337 /* Using the frame specified in BATON, find the location expression
338 describing the frame base. Return a pointer to it in START and
339 its length in LENGTH. */
340 static void
341 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
342 {
343 /* FIXME: cagney/2003-03-26: This code should be using
344 get_frame_base_address(), and then implement a dwarf2 specific
345 this_base method. */
346 struct symbol *framefunc;
347 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
348 struct block *bl = get_frame_block (debaton->frame, NULL);
349
350 if (bl == NULL)
351 error (_("frame address is not available."));
352
353 /* Use block_linkage_function, which returns a real (not inlined)
354 function, instead of get_frame_function, which may return an
355 inlined function. */
356 framefunc = block_linkage_function (bl);
357
358 /* If we found a frame-relative symbol then it was certainly within
359 some function associated with a frame. If we can't find the frame,
360 something has gone wrong. */
361 gdb_assert (framefunc != NULL);
362
363 dwarf_expr_frame_base_1 (framefunc,
364 get_frame_address_in_block (debaton->frame),
365 start, length);
366 }
367
368 /* Implement find_frame_base_location method for LOC_BLOCK functions using
369 DWARF expression for its DW_AT_frame_base. */
370
371 static void
372 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
373 const gdb_byte **start, size_t *length)
374 {
375 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
376
377 *length = symbaton->size;
378 *start = symbaton->data;
379 }
380
381 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
382 function uses DWARF expression for its DW_AT_frame_base. */
383
384 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
385 {
386 locexpr_find_frame_base_location
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF location list for its DW_AT_frame_base. */
391
392 static void
393 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
397
398 *start = dwarf2_find_location_expression (symbaton, length, pc);
399 }
400
401 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
402 function uses DWARF location list for its DW_AT_frame_base. */
403
404 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
405 {
406 loclist_find_frame_base_location
407 };
408
409 static void
410 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
411 const gdb_byte **start, size_t *length)
412 {
413 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
414 {
415 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
416
417 ops_block->find_frame_base_location (framefunc, pc, start, length);
418 }
419 else
420 *length = 0;
421
422 if (*length == 0)
423 error (_("Could not find the frame base for \"%s\"."),
424 SYMBOL_NATURAL_NAME (framefunc));
425 }
426
427 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
428 the frame in BATON. */
429
430 static CORE_ADDR
431 dwarf_expr_frame_cfa (void *baton)
432 {
433 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
434
435 return dwarf2_frame_cfa (debaton->frame);
436 }
437
438 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
439 the frame in BATON. */
440
441 static CORE_ADDR
442 dwarf_expr_frame_pc (void *baton)
443 {
444 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
445
446 return get_frame_address_in_block (debaton->frame);
447 }
448
449 /* Using the objfile specified in BATON, find the address for the
450 current thread's thread-local storage with offset OFFSET. */
451 static CORE_ADDR
452 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
453 {
454 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
455 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
456
457 return target_translate_tls_address (objfile, offset);
458 }
459
460 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
461 current CU (as is PER_CU). State of the CTX is not affected by the
462 call and return. */
463
464 static void
465 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
466 struct dwarf2_per_cu_data *per_cu,
467 CORE_ADDR (*get_frame_pc) (void *baton),
468 void *baton)
469 {
470 struct dwarf2_locexpr_baton block;
471
472 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
473
474 /* DW_OP_call_ref is currently not supported. */
475 gdb_assert (block.per_cu == per_cu);
476
477 dwarf_expr_eval (ctx, block.data, block.size);
478 }
479
480 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
481
482 static void
483 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
484 {
485 struct dwarf_expr_baton *debaton = ctx->baton;
486
487 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
488 ctx->funcs->get_frame_pc, ctx->baton);
489 }
490
491 /* Callback function for dwarf2_evaluate_loc_desc. */
492
493 static struct type *
494 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
495 cu_offset die_offset)
496 {
497 struct dwarf_expr_baton *debaton = ctx->baton;
498
499 return dwarf2_get_die_type (die_offset, debaton->per_cu);
500 }
501
502 /* See dwarf2loc.h. */
503
504 unsigned int entry_values_debug = 0;
505
506 /* Helper to set entry_values_debug. */
507
508 static void
509 show_entry_values_debug (struct ui_file *file, int from_tty,
510 struct cmd_list_element *c, const char *value)
511 {
512 fprintf_filtered (file,
513 _("Entry values and tail call frames debugging is %s.\n"),
514 value);
515 }
516
517 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
518 CALLER_FRAME (for registers) can be NULL if it is not known. This function
519 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
520
521 static CORE_ADDR
522 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
523 struct call_site *call_site,
524 struct frame_info *caller_frame)
525 {
526 switch (FIELD_LOC_KIND (call_site->target))
527 {
528 case FIELD_LOC_KIND_DWARF_BLOCK:
529 {
530 struct dwarf2_locexpr_baton *dwarf_block;
531 struct value *val;
532 struct type *caller_core_addr_type;
533 struct gdbarch *caller_arch;
534
535 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
536 if (dwarf_block == NULL)
537 {
538 struct bound_minimal_symbol msym;
539
540 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
541 throw_error (NO_ENTRY_VALUE_ERROR,
542 _("DW_AT_GNU_call_site_target is not specified "
543 "at %s in %s"),
544 paddress (call_site_gdbarch, call_site->pc),
545 (msym.minsym == NULL ? "???"
546 : SYMBOL_PRINT_NAME (msym.minsym)));
547
548 }
549 if (caller_frame == NULL)
550 {
551 struct bound_minimal_symbol msym;
552
553 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
554 throw_error (NO_ENTRY_VALUE_ERROR,
555 _("DW_AT_GNU_call_site_target DWARF block resolving "
556 "requires known frame which is currently not "
557 "available at %s in %s"),
558 paddress (call_site_gdbarch, call_site->pc),
559 (msym.minsym == NULL ? "???"
560 : SYMBOL_PRINT_NAME (msym.minsym)));
561
562 }
563 caller_arch = get_frame_arch (caller_frame);
564 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
565 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
566 dwarf_block->data, dwarf_block->size,
567 dwarf_block->per_cu);
568 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
569 location. */
570 if (VALUE_LVAL (val) == lval_memory)
571 return value_address (val);
572 else
573 return value_as_address (val);
574 }
575
576 case FIELD_LOC_KIND_PHYSNAME:
577 {
578 const char *physname;
579 struct minimal_symbol *msym;
580
581 physname = FIELD_STATIC_PHYSNAME (call_site->target);
582
583 /* Handle both the mangled and demangled PHYSNAME. */
584 msym = lookup_minimal_symbol (physname, NULL, NULL);
585 if (msym == NULL)
586 {
587 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1).minsym;
588 throw_error (NO_ENTRY_VALUE_ERROR,
589 _("Cannot find function \"%s\" for a call site target "
590 "at %s in %s"),
591 physname, paddress (call_site_gdbarch, call_site->pc),
592 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
593
594 }
595 return SYMBOL_VALUE_ADDRESS (msym);
596 }
597
598 case FIELD_LOC_KIND_PHYSADDR:
599 return FIELD_STATIC_PHYSADDR (call_site->target);
600
601 default:
602 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
603 }
604 }
605
606 /* Convert function entry point exact address ADDR to the function which is
607 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
608 NO_ENTRY_VALUE_ERROR otherwise. */
609
610 static struct symbol *
611 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
612 {
613 struct symbol *sym = find_pc_function (addr);
614 struct type *type;
615
616 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
617 throw_error (NO_ENTRY_VALUE_ERROR,
618 _("DW_TAG_GNU_call_site resolving failed to find function "
619 "name for address %s"),
620 paddress (gdbarch, addr));
621
622 type = SYMBOL_TYPE (sym);
623 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
624 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
625
626 return sym;
627 }
628
629 /* Verify function with entry point exact address ADDR can never call itself
630 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
631 can call itself via tail calls.
632
633 If a funtion can tail call itself its entry value based parameters are
634 unreliable. There is no verification whether the value of some/all
635 parameters is unchanged through the self tail call, we expect if there is
636 a self tail call all the parameters can be modified. */
637
638 static void
639 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
640 {
641 struct obstack addr_obstack;
642 struct cleanup *old_chain;
643 CORE_ADDR addr;
644
645 /* Track here CORE_ADDRs which were already visited. */
646 htab_t addr_hash;
647
648 /* The verification is completely unordered. Track here function addresses
649 which still need to be iterated. */
650 VEC (CORE_ADDR) *todo = NULL;
651
652 obstack_init (&addr_obstack);
653 old_chain = make_cleanup_obstack_free (&addr_obstack);
654 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
655 &addr_obstack, hashtab_obstack_allocate,
656 NULL);
657 make_cleanup_htab_delete (addr_hash);
658
659 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
660
661 VEC_safe_push (CORE_ADDR, todo, verify_addr);
662 while (!VEC_empty (CORE_ADDR, todo))
663 {
664 struct symbol *func_sym;
665 struct call_site *call_site;
666
667 addr = VEC_pop (CORE_ADDR, todo);
668
669 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
670
671 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
672 call_site; call_site = call_site->tail_call_next)
673 {
674 CORE_ADDR target_addr;
675 void **slot;
676
677 /* CALLER_FRAME with registers is not available for tail-call jumped
678 frames. */
679 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
680
681 if (target_addr == verify_addr)
682 {
683 struct bound_minimal_symbol msym;
684
685 msym = lookup_minimal_symbol_by_pc (verify_addr);
686 throw_error (NO_ENTRY_VALUE_ERROR,
687 _("DW_OP_GNU_entry_value resolving has found "
688 "function \"%s\" at %s can call itself via tail "
689 "calls"),
690 (msym.minsym == NULL ? "???"
691 : SYMBOL_PRINT_NAME (msym.minsym)),
692 paddress (gdbarch, verify_addr));
693 }
694
695 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
696 if (*slot == NULL)
697 {
698 *slot = obstack_copy (&addr_obstack, &target_addr,
699 sizeof (target_addr));
700 VEC_safe_push (CORE_ADDR, todo, target_addr);
701 }
702 }
703 }
704
705 do_cleanups (old_chain);
706 }
707
708 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
709 ENTRY_VALUES_DEBUG. */
710
711 static void
712 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
713 {
714 CORE_ADDR addr = call_site->pc;
715 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
716
717 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
718 (msym.minsym == NULL ? "???"
719 : SYMBOL_PRINT_NAME (msym.minsym)));
720
721 }
722
723 /* vec.h needs single word type name, typedef it. */
724 typedef struct call_site *call_sitep;
725
726 /* Define VEC (call_sitep) functions. */
727 DEF_VEC_P (call_sitep);
728
729 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
730 only top callers and bottom callees which are present in both. GDBARCH is
731 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
732 no remaining possibilities to provide unambiguous non-trivial result.
733 RESULTP should point to NULL on the first (initialization) call. Caller is
734 responsible for xfree of any RESULTP data. */
735
736 static void
737 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
738 VEC (call_sitep) *chain)
739 {
740 struct call_site_chain *result = *resultp;
741 long length = VEC_length (call_sitep, chain);
742 int callers, callees, idx;
743
744 if (result == NULL)
745 {
746 /* Create the initial chain containing all the passed PCs. */
747
748 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
749 * (length - 1));
750 result->length = length;
751 result->callers = result->callees = length;
752 memcpy (result->call_site, VEC_address (call_sitep, chain),
753 sizeof (*result->call_site) * length);
754 *resultp = result;
755
756 if (entry_values_debug)
757 {
758 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
759 for (idx = 0; idx < length; idx++)
760 tailcall_dump (gdbarch, result->call_site[idx]);
761 fputc_unfiltered ('\n', gdb_stdlog);
762 }
763
764 return;
765 }
766
767 if (entry_values_debug)
768 {
769 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
770 for (idx = 0; idx < length; idx++)
771 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
772 fputc_unfiltered ('\n', gdb_stdlog);
773 }
774
775 /* Intersect callers. */
776
777 callers = min (result->callers, length);
778 for (idx = 0; idx < callers; idx++)
779 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
780 {
781 result->callers = idx;
782 break;
783 }
784
785 /* Intersect callees. */
786
787 callees = min (result->callees, length);
788 for (idx = 0; idx < callees; idx++)
789 if (result->call_site[result->length - 1 - idx]
790 != VEC_index (call_sitep, chain, length - 1 - idx))
791 {
792 result->callees = idx;
793 break;
794 }
795
796 if (entry_values_debug)
797 {
798 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
799 for (idx = 0; idx < result->callers; idx++)
800 tailcall_dump (gdbarch, result->call_site[idx]);
801 fputs_unfiltered (" |", gdb_stdlog);
802 for (idx = 0; idx < result->callees; idx++)
803 tailcall_dump (gdbarch, result->call_site[result->length
804 - result->callees + idx]);
805 fputc_unfiltered ('\n', gdb_stdlog);
806 }
807
808 if (result->callers == 0 && result->callees == 0)
809 {
810 /* There are no common callers or callees. It could be also a direct
811 call (which has length 0) with ambiguous possibility of an indirect
812 call - CALLERS == CALLEES == 0 is valid during the first allocation
813 but any subsequence processing of such entry means ambiguity. */
814 xfree (result);
815 *resultp = NULL;
816 return;
817 }
818
819 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
820 PC again. In such case there must be two different code paths to reach
821 it, therefore some of the former determined intermediate PCs must differ
822 and the unambiguous chain gets shortened. */
823 gdb_assert (result->callers + result->callees < result->length);
824 }
825
826 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
827 assumed frames between them use GDBARCH. Use depth first search so we can
828 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
829 would have needless GDB stack overhead. Caller is responsible for xfree of
830 the returned result. Any unreliability results in thrown
831 NO_ENTRY_VALUE_ERROR. */
832
833 static struct call_site_chain *
834 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
835 CORE_ADDR callee_pc)
836 {
837 CORE_ADDR save_callee_pc = callee_pc;
838 struct obstack addr_obstack;
839 struct cleanup *back_to_retval, *back_to_workdata;
840 struct call_site_chain *retval = NULL;
841 struct call_site *call_site;
842
843 /* Mark CALL_SITEs so we do not visit the same ones twice. */
844 htab_t addr_hash;
845
846 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
847 call_site nor any possible call_site at CALLEE_PC's function is there.
848 Any CALL_SITE in CHAIN will be iterated to its siblings - via
849 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
850 VEC (call_sitep) *chain = NULL;
851
852 /* We are not interested in the specific PC inside the callee function. */
853 callee_pc = get_pc_function_start (callee_pc);
854 if (callee_pc == 0)
855 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
856 paddress (gdbarch, save_callee_pc));
857
858 back_to_retval = make_cleanup (free_current_contents, &retval);
859
860 obstack_init (&addr_obstack);
861 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
862 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
863 &addr_obstack, hashtab_obstack_allocate,
864 NULL);
865 make_cleanup_htab_delete (addr_hash);
866
867 make_cleanup (VEC_cleanup (call_sitep), &chain);
868
869 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
870 at the target's function. All the possible tail call sites in the
871 target's function will get iterated as already pushed into CHAIN via their
872 TAIL_CALL_NEXT. */
873 call_site = call_site_for_pc (gdbarch, caller_pc);
874
875 while (call_site)
876 {
877 CORE_ADDR target_func_addr;
878 struct call_site *target_call_site;
879
880 /* CALLER_FRAME with registers is not available for tail-call jumped
881 frames. */
882 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
883
884 if (target_func_addr == callee_pc)
885 {
886 chain_candidate (gdbarch, &retval, chain);
887 if (retval == NULL)
888 break;
889
890 /* There is no way to reach CALLEE_PC again as we would prevent
891 entering it twice as being already marked in ADDR_HASH. */
892 target_call_site = NULL;
893 }
894 else
895 {
896 struct symbol *target_func;
897
898 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
899 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
900 }
901
902 do
903 {
904 /* Attempt to visit TARGET_CALL_SITE. */
905
906 if (target_call_site)
907 {
908 void **slot;
909
910 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
911 if (*slot == NULL)
912 {
913 /* Successfully entered TARGET_CALL_SITE. */
914
915 *slot = &target_call_site->pc;
916 VEC_safe_push (call_sitep, chain, target_call_site);
917 break;
918 }
919 }
920
921 /* Backtrack (without revisiting the originating call_site). Try the
922 callers's sibling; if there isn't any try the callers's callers's
923 sibling etc. */
924
925 target_call_site = NULL;
926 while (!VEC_empty (call_sitep, chain))
927 {
928 call_site = VEC_pop (call_sitep, chain);
929
930 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
931 NO_INSERT) != NULL);
932 htab_remove_elt (addr_hash, &call_site->pc);
933
934 target_call_site = call_site->tail_call_next;
935 if (target_call_site)
936 break;
937 }
938 }
939 while (target_call_site);
940
941 if (VEC_empty (call_sitep, chain))
942 call_site = NULL;
943 else
944 call_site = VEC_last (call_sitep, chain);
945 }
946
947 if (retval == NULL)
948 {
949 struct bound_minimal_symbol msym_caller, msym_callee;
950
951 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
952 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
953 throw_error (NO_ENTRY_VALUE_ERROR,
954 _("There are no unambiguously determinable intermediate "
955 "callers or callees between caller function \"%s\" at %s "
956 "and callee function \"%s\" at %s"),
957 (msym_caller.minsym == NULL
958 ? "???" : SYMBOL_PRINT_NAME (msym_caller.minsym)),
959 paddress (gdbarch, caller_pc),
960 (msym_callee.minsym == NULL
961 ? "???" : SYMBOL_PRINT_NAME (msym_callee.minsym)),
962 paddress (gdbarch, callee_pc));
963 }
964
965 do_cleanups (back_to_workdata);
966 discard_cleanups (back_to_retval);
967 return retval;
968 }
969
970 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
971 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
972 constructed return NULL. Caller is responsible for xfree of the returned
973 result. */
974
975 struct call_site_chain *
976 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
977 CORE_ADDR callee_pc)
978 {
979 volatile struct gdb_exception e;
980 struct call_site_chain *retval = NULL;
981
982 TRY_CATCH (e, RETURN_MASK_ERROR)
983 {
984 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
985 }
986 if (e.reason < 0)
987 {
988 if (e.error == NO_ENTRY_VALUE_ERROR)
989 {
990 if (entry_values_debug)
991 exception_print (gdb_stdout, e);
992
993 return NULL;
994 }
995 else
996 throw_exception (e);
997 }
998 return retval;
999 }
1000
1001 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1002
1003 static int
1004 call_site_parameter_matches (struct call_site_parameter *parameter,
1005 enum call_site_parameter_kind kind,
1006 union call_site_parameter_u kind_u)
1007 {
1008 if (kind == parameter->kind)
1009 switch (kind)
1010 {
1011 case CALL_SITE_PARAMETER_DWARF_REG:
1012 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1013 case CALL_SITE_PARAMETER_FB_OFFSET:
1014 return kind_u.fb_offset == parameter->u.fb_offset;
1015 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1016 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1017 }
1018 return 0;
1019 }
1020
1021 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1022 FRAME is for callee.
1023
1024 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1025 otherwise. */
1026
1027 static struct call_site_parameter *
1028 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1029 enum call_site_parameter_kind kind,
1030 union call_site_parameter_u kind_u,
1031 struct dwarf2_per_cu_data **per_cu_return)
1032 {
1033 CORE_ADDR func_addr, caller_pc;
1034 struct gdbarch *gdbarch;
1035 struct frame_info *caller_frame;
1036 struct call_site *call_site;
1037 int iparams;
1038 /* Initialize it just to avoid a GCC false warning. */
1039 struct call_site_parameter *parameter = NULL;
1040 CORE_ADDR target_addr;
1041
1042 while (get_frame_type (frame) == INLINE_FRAME)
1043 {
1044 frame = get_prev_frame (frame);
1045 gdb_assert (frame != NULL);
1046 }
1047
1048 func_addr = get_frame_func (frame);
1049 gdbarch = get_frame_arch (frame);
1050 caller_frame = get_prev_frame (frame);
1051 if (gdbarch != frame_unwind_arch (frame))
1052 {
1053 struct bound_minimal_symbol msym
1054 = lookup_minimal_symbol_by_pc (func_addr);
1055 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1056
1057 throw_error (NO_ENTRY_VALUE_ERROR,
1058 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1059 "(of %s (%s)) does not match caller gdbarch %s"),
1060 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1061 paddress (gdbarch, func_addr),
1062 (msym.minsym == NULL ? "???"
1063 : SYMBOL_PRINT_NAME (msym.minsym)),
1064 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1065 }
1066
1067 if (caller_frame == NULL)
1068 {
1069 struct bound_minimal_symbol msym
1070 = lookup_minimal_symbol_by_pc (func_addr);
1071
1072 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1073 "requires caller of %s (%s)"),
1074 paddress (gdbarch, func_addr),
1075 (msym.minsym == NULL ? "???"
1076 : SYMBOL_PRINT_NAME (msym.minsym)));
1077 }
1078 caller_pc = get_frame_pc (caller_frame);
1079 call_site = call_site_for_pc (gdbarch, caller_pc);
1080
1081 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1082 if (target_addr != func_addr)
1083 {
1084 struct minimal_symbol *target_msym, *func_msym;
1085
1086 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1087 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1088 throw_error (NO_ENTRY_VALUE_ERROR,
1089 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1090 "but the called frame is for %s at %s"),
1091 (target_msym == NULL ? "???"
1092 : SYMBOL_PRINT_NAME (target_msym)),
1093 paddress (gdbarch, target_addr),
1094 func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym),
1095 paddress (gdbarch, func_addr));
1096 }
1097
1098 /* No entry value based parameters would be reliable if this function can
1099 call itself via tail calls. */
1100 func_verify_no_selftailcall (gdbarch, func_addr);
1101
1102 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1103 {
1104 parameter = &call_site->parameter[iparams];
1105 if (call_site_parameter_matches (parameter, kind, kind_u))
1106 break;
1107 }
1108 if (iparams == call_site->parameter_count)
1109 {
1110 struct minimal_symbol *msym
1111 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1112
1113 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1114 determine its value. */
1115 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1116 "at DW_TAG_GNU_call_site %s at %s"),
1117 paddress (gdbarch, caller_pc),
1118 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
1119 }
1120
1121 *per_cu_return = call_site->per_cu;
1122 return parameter;
1123 }
1124
1125 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1126 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1127 DW_AT_GNU_call_site_data_value (dereferenced) block.
1128
1129 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1130 struct value.
1131
1132 Function always returns non-NULL, non-optimized out value. It throws
1133 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1134
1135 static struct value *
1136 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1137 CORE_ADDR deref_size, struct type *type,
1138 struct frame_info *caller_frame,
1139 struct dwarf2_per_cu_data *per_cu)
1140 {
1141 const gdb_byte *data_src;
1142 gdb_byte *data;
1143 size_t size;
1144
1145 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1146 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1147
1148 /* DEREF_SIZE size is not verified here. */
1149 if (data_src == NULL)
1150 throw_error (NO_ENTRY_VALUE_ERROR,
1151 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1152
1153 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1154 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1155 DWARF block. */
1156 data = alloca (size + 1);
1157 memcpy (data, data_src, size);
1158 data[size] = DW_OP_stack_value;
1159
1160 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1161 }
1162
1163 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1164 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1165 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1166
1167 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1168 can be more simple as it does not support cross-CU DWARF executions. */
1169
1170 static void
1171 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1172 enum call_site_parameter_kind kind,
1173 union call_site_parameter_u kind_u,
1174 int deref_size)
1175 {
1176 struct dwarf_expr_baton *debaton;
1177 struct frame_info *frame, *caller_frame;
1178 struct dwarf2_per_cu_data *caller_per_cu;
1179 struct dwarf_expr_baton baton_local;
1180 struct dwarf_expr_context saved_ctx;
1181 struct call_site_parameter *parameter;
1182 const gdb_byte *data_src;
1183 size_t size;
1184
1185 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1186 debaton = ctx->baton;
1187 frame = debaton->frame;
1188 caller_frame = get_prev_frame (frame);
1189
1190 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1191 &caller_per_cu);
1192 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1193 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1194
1195 /* DEREF_SIZE size is not verified here. */
1196 if (data_src == NULL)
1197 throw_error (NO_ENTRY_VALUE_ERROR,
1198 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1199
1200 baton_local.frame = caller_frame;
1201 baton_local.per_cu = caller_per_cu;
1202
1203 saved_ctx.gdbarch = ctx->gdbarch;
1204 saved_ctx.addr_size = ctx->addr_size;
1205 saved_ctx.offset = ctx->offset;
1206 saved_ctx.baton = ctx->baton;
1207 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1208 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1209 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1210 ctx->baton = &baton_local;
1211
1212 dwarf_expr_eval (ctx, data_src, size);
1213
1214 ctx->gdbarch = saved_ctx.gdbarch;
1215 ctx->addr_size = saved_ctx.addr_size;
1216 ctx->offset = saved_ctx.offset;
1217 ctx->baton = saved_ctx.baton;
1218 }
1219
1220 /* Callback function for dwarf2_evaluate_loc_desc.
1221 Fetch the address indexed by DW_OP_GNU_addr_index. */
1222
1223 static CORE_ADDR
1224 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1225 {
1226 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1227
1228 return dwarf2_read_addr_index (debaton->per_cu, index);
1229 }
1230
1231 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1232 the indirect method on it, that is use its stored target value, the sole
1233 purpose of entry_data_value_funcs.. */
1234
1235 static struct value *
1236 entry_data_value_coerce_ref (const struct value *value)
1237 {
1238 struct type *checked_type = check_typedef (value_type (value));
1239 struct value *target_val;
1240
1241 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1242 return NULL;
1243
1244 target_val = value_computed_closure (value);
1245 value_incref (target_val);
1246 return target_val;
1247 }
1248
1249 /* Implement copy_closure. */
1250
1251 static void *
1252 entry_data_value_copy_closure (const struct value *v)
1253 {
1254 struct value *target_val = value_computed_closure (v);
1255
1256 value_incref (target_val);
1257 return target_val;
1258 }
1259
1260 /* Implement free_closure. */
1261
1262 static void
1263 entry_data_value_free_closure (struct value *v)
1264 {
1265 struct value *target_val = value_computed_closure (v);
1266
1267 value_free (target_val);
1268 }
1269
1270 /* Vector for methods for an entry value reference where the referenced value
1271 is stored in the caller. On the first dereference use
1272 DW_AT_GNU_call_site_data_value in the caller. */
1273
1274 static const struct lval_funcs entry_data_value_funcs =
1275 {
1276 NULL, /* read */
1277 NULL, /* write */
1278 NULL, /* check_validity */
1279 NULL, /* check_any_valid */
1280 NULL, /* indirect */
1281 entry_data_value_coerce_ref,
1282 NULL, /* check_synthetic_pointer */
1283 entry_data_value_copy_closure,
1284 entry_data_value_free_closure
1285 };
1286
1287 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1288 are used to match DW_AT_location at the caller's
1289 DW_TAG_GNU_call_site_parameter.
1290
1291 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1292 cannot resolve the parameter for any reason. */
1293
1294 static struct value *
1295 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1296 enum call_site_parameter_kind kind,
1297 union call_site_parameter_u kind_u)
1298 {
1299 struct type *checked_type = check_typedef (type);
1300 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1301 struct frame_info *caller_frame = get_prev_frame (frame);
1302 struct value *outer_val, *target_val, *val;
1303 struct call_site_parameter *parameter;
1304 struct dwarf2_per_cu_data *caller_per_cu;
1305 CORE_ADDR addr;
1306
1307 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1308 &caller_per_cu);
1309
1310 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1311 type, caller_frame,
1312 caller_per_cu);
1313
1314 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1315 used and it is not available do not fall back to OUTER_VAL - dereferencing
1316 TYPE_CODE_REF with non-entry data value would give current value - not the
1317 entry value. */
1318
1319 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1320 || TYPE_TARGET_TYPE (checked_type) == NULL)
1321 return outer_val;
1322
1323 target_val = dwarf_entry_parameter_to_value (parameter,
1324 TYPE_LENGTH (target_type),
1325 target_type, caller_frame,
1326 caller_per_cu);
1327
1328 /* value_as_address dereferences TYPE_CODE_REF. */
1329 addr = extract_typed_address (value_contents (outer_val), checked_type);
1330
1331 /* The target entry value has artificial address of the entry value
1332 reference. */
1333 VALUE_LVAL (target_val) = lval_memory;
1334 set_value_address (target_val, addr);
1335
1336 release_value (target_val);
1337 val = allocate_computed_value (type, &entry_data_value_funcs,
1338 target_val /* closure */);
1339
1340 /* Copy the referencing pointer to the new computed value. */
1341 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1342 TYPE_LENGTH (checked_type));
1343 set_value_lazy (val, 0);
1344
1345 return val;
1346 }
1347
1348 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1349 SIZE are DWARF block used to match DW_AT_location at the caller's
1350 DW_TAG_GNU_call_site_parameter.
1351
1352 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1353 cannot resolve the parameter for any reason. */
1354
1355 static struct value *
1356 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1357 const gdb_byte *block, size_t block_len)
1358 {
1359 union call_site_parameter_u kind_u;
1360
1361 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1362 if (kind_u.dwarf_reg != -1)
1363 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1364 kind_u);
1365
1366 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1367 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1368 kind_u);
1369
1370 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1371 suppressed during normal operation. The expression can be arbitrary if
1372 there is no caller-callee entry value binding expected. */
1373 throw_error (NO_ENTRY_VALUE_ERROR,
1374 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1375 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1376 }
1377
1378 struct piece_closure
1379 {
1380 /* Reference count. */
1381 int refc;
1382
1383 /* The CU from which this closure's expression came. */
1384 struct dwarf2_per_cu_data *per_cu;
1385
1386 /* The number of pieces used to describe this variable. */
1387 int n_pieces;
1388
1389 /* The target address size, used only for DWARF_VALUE_STACK. */
1390 int addr_size;
1391
1392 /* The pieces themselves. */
1393 struct dwarf_expr_piece *pieces;
1394 };
1395
1396 /* Allocate a closure for a value formed from separately-described
1397 PIECES. */
1398
1399 static struct piece_closure *
1400 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1401 int n_pieces, struct dwarf_expr_piece *pieces,
1402 int addr_size)
1403 {
1404 struct piece_closure *c = XZALLOC (struct piece_closure);
1405 int i;
1406
1407 c->refc = 1;
1408 c->per_cu = per_cu;
1409 c->n_pieces = n_pieces;
1410 c->addr_size = addr_size;
1411 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
1412
1413 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1414 for (i = 0; i < n_pieces; ++i)
1415 if (c->pieces[i].location == DWARF_VALUE_STACK)
1416 value_incref (c->pieces[i].v.value);
1417
1418 return c;
1419 }
1420
1421 /* The lowest-level function to extract bits from a byte buffer.
1422 SOURCE is the buffer. It is updated if we read to the end of a
1423 byte.
1424 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1425 updated to reflect the number of bits actually read.
1426 NBITS is the number of bits we want to read. It is updated to
1427 reflect the number of bits actually read. This function may read
1428 fewer bits.
1429 BITS_BIG_ENDIAN is taken directly from gdbarch.
1430 This function returns the extracted bits. */
1431
1432 static unsigned int
1433 extract_bits_primitive (const gdb_byte **source,
1434 unsigned int *source_offset_bits,
1435 int *nbits, int bits_big_endian)
1436 {
1437 unsigned int avail, mask, datum;
1438
1439 gdb_assert (*source_offset_bits < 8);
1440
1441 avail = 8 - *source_offset_bits;
1442 if (avail > *nbits)
1443 avail = *nbits;
1444
1445 mask = (1 << avail) - 1;
1446 datum = **source;
1447 if (bits_big_endian)
1448 datum >>= 8 - (*source_offset_bits + *nbits);
1449 else
1450 datum >>= *source_offset_bits;
1451 datum &= mask;
1452
1453 *nbits -= avail;
1454 *source_offset_bits += avail;
1455 if (*source_offset_bits >= 8)
1456 {
1457 *source_offset_bits -= 8;
1458 ++*source;
1459 }
1460
1461 return datum;
1462 }
1463
1464 /* Extract some bits from a source buffer and move forward in the
1465 buffer.
1466
1467 SOURCE is the source buffer. It is updated as bytes are read.
1468 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1469 bits are read.
1470 NBITS is the number of bits to read.
1471 BITS_BIG_ENDIAN is taken directly from gdbarch.
1472
1473 This function returns the bits that were read. */
1474
1475 static unsigned int
1476 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1477 int nbits, int bits_big_endian)
1478 {
1479 unsigned int datum;
1480
1481 gdb_assert (nbits > 0 && nbits <= 8);
1482
1483 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1484 bits_big_endian);
1485 if (nbits > 0)
1486 {
1487 unsigned int more;
1488
1489 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1490 bits_big_endian);
1491 if (bits_big_endian)
1492 datum <<= nbits;
1493 else
1494 more <<= nbits;
1495 datum |= more;
1496 }
1497
1498 return datum;
1499 }
1500
1501 /* Write some bits into a buffer and move forward in the buffer.
1502
1503 DATUM is the bits to write. The low-order bits of DATUM are used.
1504 DEST is the destination buffer. It is updated as bytes are
1505 written.
1506 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1507 done.
1508 NBITS is the number of valid bits in DATUM.
1509 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1510
1511 static void
1512 insert_bits (unsigned int datum,
1513 gdb_byte *dest, unsigned int dest_offset_bits,
1514 int nbits, int bits_big_endian)
1515 {
1516 unsigned int mask;
1517
1518 gdb_assert (dest_offset_bits + nbits <= 8);
1519
1520 mask = (1 << nbits) - 1;
1521 if (bits_big_endian)
1522 {
1523 datum <<= 8 - (dest_offset_bits + nbits);
1524 mask <<= 8 - (dest_offset_bits + nbits);
1525 }
1526 else
1527 {
1528 datum <<= dest_offset_bits;
1529 mask <<= dest_offset_bits;
1530 }
1531
1532 gdb_assert ((datum & ~mask) == 0);
1533
1534 *dest = (*dest & ~mask) | datum;
1535 }
1536
1537 /* Copy bits from a source to a destination.
1538
1539 DEST is where the bits should be written.
1540 DEST_OFFSET_BITS is the bit offset into DEST.
1541 SOURCE is the source of bits.
1542 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1543 BIT_COUNT is the number of bits to copy.
1544 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1545
1546 static void
1547 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1548 const gdb_byte *source, unsigned int source_offset_bits,
1549 unsigned int bit_count,
1550 int bits_big_endian)
1551 {
1552 unsigned int dest_avail;
1553 int datum;
1554
1555 /* Reduce everything to byte-size pieces. */
1556 dest += dest_offset_bits / 8;
1557 dest_offset_bits %= 8;
1558 source += source_offset_bits / 8;
1559 source_offset_bits %= 8;
1560
1561 dest_avail = 8 - dest_offset_bits % 8;
1562
1563 /* See if we can fill the first destination byte. */
1564 if (dest_avail < bit_count)
1565 {
1566 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1567 bits_big_endian);
1568 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1569 ++dest;
1570 dest_offset_bits = 0;
1571 bit_count -= dest_avail;
1572 }
1573
1574 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1575 than 8 bits remaining. */
1576 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1577 for (; bit_count >= 8; bit_count -= 8)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1580 *dest++ = (gdb_byte) datum;
1581 }
1582
1583 /* Finally, we may have a few leftover bits. */
1584 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1585 if (bit_count > 0)
1586 {
1587 datum = extract_bits (&source, &source_offset_bits, bit_count,
1588 bits_big_endian);
1589 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1590 }
1591 }
1592
1593 static void
1594 read_pieced_value (struct value *v)
1595 {
1596 int i;
1597 long offset = 0;
1598 ULONGEST bits_to_skip;
1599 gdb_byte *contents;
1600 struct piece_closure *c
1601 = (struct piece_closure *) value_computed_closure (v);
1602 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1603 size_t type_len;
1604 size_t buffer_size = 0;
1605 gdb_byte *buffer = NULL;
1606 struct cleanup *cleanup;
1607 int bits_big_endian
1608 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1609
1610 if (value_type (v) != value_enclosing_type (v))
1611 internal_error (__FILE__, __LINE__,
1612 _("Should not be able to create a lazy value with "
1613 "an enclosing type"));
1614
1615 cleanup = make_cleanup (free_current_contents, &buffer);
1616
1617 contents = value_contents_raw (v);
1618 bits_to_skip = 8 * value_offset (v);
1619 if (value_bitsize (v))
1620 {
1621 bits_to_skip += value_bitpos (v);
1622 type_len = value_bitsize (v);
1623 }
1624 else
1625 type_len = 8 * TYPE_LENGTH (value_type (v));
1626
1627 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1628 {
1629 struct dwarf_expr_piece *p = &c->pieces[i];
1630 size_t this_size, this_size_bits;
1631 long dest_offset_bits, source_offset_bits, source_offset;
1632 const gdb_byte *intermediate_buffer;
1633
1634 /* Compute size, source, and destination offsets for copying, in
1635 bits. */
1636 this_size_bits = p->size;
1637 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1638 {
1639 bits_to_skip -= this_size_bits;
1640 continue;
1641 }
1642 if (bits_to_skip > 0)
1643 {
1644 dest_offset_bits = 0;
1645 source_offset_bits = bits_to_skip;
1646 this_size_bits -= bits_to_skip;
1647 bits_to_skip = 0;
1648 }
1649 else
1650 {
1651 dest_offset_bits = offset;
1652 source_offset_bits = 0;
1653 }
1654 if (this_size_bits > type_len - offset)
1655 this_size_bits = type_len - offset;
1656
1657 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1658 source_offset = source_offset_bits / 8;
1659 if (buffer_size < this_size)
1660 {
1661 buffer_size = this_size;
1662 buffer = xrealloc (buffer, buffer_size);
1663 }
1664 intermediate_buffer = buffer;
1665
1666 /* Copy from the source to DEST_BUFFER. */
1667 switch (p->location)
1668 {
1669 case DWARF_VALUE_REGISTER:
1670 {
1671 struct gdbarch *arch = get_frame_arch (frame);
1672 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1673 int reg_offset = source_offset;
1674
1675 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1676 && this_size < register_size (arch, gdb_regnum))
1677 {
1678 /* Big-endian, and we want less than full size. */
1679 reg_offset = register_size (arch, gdb_regnum) - this_size;
1680 /* We want the lower-order THIS_SIZE_BITS of the bytes
1681 we extract from the register. */
1682 source_offset_bits += 8 * this_size - this_size_bits;
1683 }
1684
1685 if (gdb_regnum != -1)
1686 {
1687 int optim, unavail;
1688
1689 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1690 this_size, buffer,
1691 &optim, &unavail))
1692 {
1693 /* Just so garbage doesn't ever shine through. */
1694 memset (buffer, 0, this_size);
1695
1696 if (optim)
1697 set_value_optimized_out (v, 1);
1698 if (unavail)
1699 mark_value_bytes_unavailable (v, offset, this_size);
1700 }
1701 }
1702 else
1703 {
1704 error (_("Unable to access DWARF register number %s"),
1705 paddress (arch, p->v.regno));
1706 }
1707 }
1708 break;
1709
1710 case DWARF_VALUE_MEMORY:
1711 read_value_memory (v, offset,
1712 p->v.mem.in_stack_memory,
1713 p->v.mem.addr + source_offset,
1714 buffer, this_size);
1715 break;
1716
1717 case DWARF_VALUE_STACK:
1718 {
1719 size_t n = this_size;
1720
1721 if (n > c->addr_size - source_offset)
1722 n = (c->addr_size >= source_offset
1723 ? c->addr_size - source_offset
1724 : 0);
1725 if (n == 0)
1726 {
1727 /* Nothing. */
1728 }
1729 else
1730 {
1731 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1732
1733 intermediate_buffer = val_bytes + source_offset;
1734 }
1735 }
1736 break;
1737
1738 case DWARF_VALUE_LITERAL:
1739 {
1740 size_t n = this_size;
1741
1742 if (n > p->v.literal.length - source_offset)
1743 n = (p->v.literal.length >= source_offset
1744 ? p->v.literal.length - source_offset
1745 : 0);
1746 if (n != 0)
1747 intermediate_buffer = p->v.literal.data + source_offset;
1748 }
1749 break;
1750
1751 /* These bits show up as zeros -- but do not cause the value
1752 to be considered optimized-out. */
1753 case DWARF_VALUE_IMPLICIT_POINTER:
1754 break;
1755
1756 case DWARF_VALUE_OPTIMIZED_OUT:
1757 set_value_optimized_out (v, 1);
1758 break;
1759
1760 default:
1761 internal_error (__FILE__, __LINE__, _("invalid location type"));
1762 }
1763
1764 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1765 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1766 copy_bitwise (contents, dest_offset_bits,
1767 intermediate_buffer, source_offset_bits % 8,
1768 this_size_bits, bits_big_endian);
1769
1770 offset += this_size_bits;
1771 }
1772
1773 do_cleanups (cleanup);
1774 }
1775
1776 static void
1777 write_pieced_value (struct value *to, struct value *from)
1778 {
1779 int i;
1780 long offset = 0;
1781 ULONGEST bits_to_skip;
1782 const gdb_byte *contents;
1783 struct piece_closure *c
1784 = (struct piece_closure *) value_computed_closure (to);
1785 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1786 size_t type_len;
1787 size_t buffer_size = 0;
1788 gdb_byte *buffer = NULL;
1789 struct cleanup *cleanup;
1790 int bits_big_endian
1791 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1792
1793 if (frame == NULL)
1794 {
1795 set_value_optimized_out (to, 1);
1796 return;
1797 }
1798
1799 cleanup = make_cleanup (free_current_contents, &buffer);
1800
1801 contents = value_contents (from);
1802 bits_to_skip = 8 * value_offset (to);
1803 if (value_bitsize (to))
1804 {
1805 bits_to_skip += value_bitpos (to);
1806 type_len = value_bitsize (to);
1807 }
1808 else
1809 type_len = 8 * TYPE_LENGTH (value_type (to));
1810
1811 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1812 {
1813 struct dwarf_expr_piece *p = &c->pieces[i];
1814 size_t this_size_bits, this_size;
1815 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1816 int need_bitwise;
1817 const gdb_byte *source_buffer;
1818
1819 this_size_bits = p->size;
1820 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1821 {
1822 bits_to_skip -= this_size_bits;
1823 continue;
1824 }
1825 if (this_size_bits > type_len - offset)
1826 this_size_bits = type_len - offset;
1827 if (bits_to_skip > 0)
1828 {
1829 dest_offset_bits = bits_to_skip;
1830 source_offset_bits = 0;
1831 this_size_bits -= bits_to_skip;
1832 bits_to_skip = 0;
1833 }
1834 else
1835 {
1836 dest_offset_bits = 0;
1837 source_offset_bits = offset;
1838 }
1839
1840 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1841 source_offset = source_offset_bits / 8;
1842 dest_offset = dest_offset_bits / 8;
1843 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1844 {
1845 source_buffer = contents + source_offset;
1846 need_bitwise = 0;
1847 }
1848 else
1849 {
1850 if (buffer_size < this_size)
1851 {
1852 buffer_size = this_size;
1853 buffer = xrealloc (buffer, buffer_size);
1854 }
1855 source_buffer = buffer;
1856 need_bitwise = 1;
1857 }
1858
1859 switch (p->location)
1860 {
1861 case DWARF_VALUE_REGISTER:
1862 {
1863 struct gdbarch *arch = get_frame_arch (frame);
1864 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1865 int reg_offset = dest_offset;
1866
1867 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1868 && this_size <= register_size (arch, gdb_regnum))
1869 /* Big-endian, and we want less than full size. */
1870 reg_offset = register_size (arch, gdb_regnum) - this_size;
1871
1872 if (gdb_regnum != -1)
1873 {
1874 if (need_bitwise)
1875 {
1876 int optim, unavail;
1877
1878 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1879 this_size, buffer,
1880 &optim, &unavail))
1881 {
1882 if (optim)
1883 error (_("Can't do read-modify-write to "
1884 "update bitfield; containing word has been "
1885 "optimized out"));
1886 if (unavail)
1887 throw_error (NOT_AVAILABLE_ERROR,
1888 _("Can't do read-modify-write to update "
1889 "bitfield; containing word "
1890 "is unavailable"));
1891 }
1892 copy_bitwise (buffer, dest_offset_bits,
1893 contents, source_offset_bits,
1894 this_size_bits,
1895 bits_big_endian);
1896 }
1897
1898 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1899 this_size, source_buffer);
1900 }
1901 else
1902 {
1903 error (_("Unable to write to DWARF register number %s"),
1904 paddress (arch, p->v.regno));
1905 }
1906 }
1907 break;
1908 case DWARF_VALUE_MEMORY:
1909 if (need_bitwise)
1910 {
1911 /* Only the first and last bytes can possibly have any
1912 bits reused. */
1913 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1914 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1915 buffer + this_size - 1, 1);
1916 copy_bitwise (buffer, dest_offset_bits,
1917 contents, source_offset_bits,
1918 this_size_bits,
1919 bits_big_endian);
1920 }
1921
1922 write_memory (p->v.mem.addr + dest_offset,
1923 source_buffer, this_size);
1924 break;
1925 default:
1926 set_value_optimized_out (to, 1);
1927 break;
1928 }
1929 offset += this_size_bits;
1930 }
1931
1932 do_cleanups (cleanup);
1933 }
1934
1935 /* A helper function that checks bit validity in a pieced value.
1936 CHECK_FOR indicates the kind of validity checking.
1937 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1938 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1939 optimized out.
1940 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1941 implicit pointer. */
1942
1943 static int
1944 check_pieced_value_bits (const struct value *value, int bit_offset,
1945 int bit_length,
1946 enum dwarf_value_location check_for)
1947 {
1948 struct piece_closure *c
1949 = (struct piece_closure *) value_computed_closure (value);
1950 int i;
1951 int validity = (check_for == DWARF_VALUE_MEMORY
1952 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1953
1954 bit_offset += 8 * value_offset (value);
1955 if (value_bitsize (value))
1956 bit_offset += value_bitpos (value);
1957
1958 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1959 {
1960 struct dwarf_expr_piece *p = &c->pieces[i];
1961 size_t this_size_bits = p->size;
1962
1963 if (bit_offset > 0)
1964 {
1965 if (bit_offset >= this_size_bits)
1966 {
1967 bit_offset -= this_size_bits;
1968 continue;
1969 }
1970
1971 bit_length -= this_size_bits - bit_offset;
1972 bit_offset = 0;
1973 }
1974 else
1975 bit_length -= this_size_bits;
1976
1977 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1978 {
1979 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1980 return 0;
1981 }
1982 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1983 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1984 {
1985 if (validity)
1986 return 0;
1987 }
1988 else
1989 {
1990 if (!validity)
1991 return 1;
1992 }
1993 }
1994
1995 return validity;
1996 }
1997
1998 static int
1999 check_pieced_value_validity (const struct value *value, int bit_offset,
2000 int bit_length)
2001 {
2002 return check_pieced_value_bits (value, bit_offset, bit_length,
2003 DWARF_VALUE_MEMORY);
2004 }
2005
2006 static int
2007 check_pieced_value_invalid (const struct value *value)
2008 {
2009 return check_pieced_value_bits (value, 0,
2010 8 * TYPE_LENGTH (value_type (value)),
2011 DWARF_VALUE_OPTIMIZED_OUT);
2012 }
2013
2014 /* An implementation of an lval_funcs method to see whether a value is
2015 a synthetic pointer. */
2016
2017 static int
2018 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2019 int bit_length)
2020 {
2021 return check_pieced_value_bits (value, bit_offset, bit_length,
2022 DWARF_VALUE_IMPLICIT_POINTER);
2023 }
2024
2025 /* A wrapper function for get_frame_address_in_block. */
2026
2027 static CORE_ADDR
2028 get_frame_address_in_block_wrapper (void *baton)
2029 {
2030 return get_frame_address_in_block (baton);
2031 }
2032
2033 /* An implementation of an lval_funcs method to indirect through a
2034 pointer. This handles the synthetic pointer case when needed. */
2035
2036 static struct value *
2037 indirect_pieced_value (struct value *value)
2038 {
2039 struct piece_closure *c
2040 = (struct piece_closure *) value_computed_closure (value);
2041 struct type *type;
2042 struct frame_info *frame;
2043 struct dwarf2_locexpr_baton baton;
2044 int i, bit_offset, bit_length;
2045 struct dwarf_expr_piece *piece = NULL;
2046 LONGEST byte_offset;
2047
2048 type = check_typedef (value_type (value));
2049 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2050 return NULL;
2051
2052 bit_length = 8 * TYPE_LENGTH (type);
2053 bit_offset = 8 * value_offset (value);
2054 if (value_bitsize (value))
2055 bit_offset += value_bitpos (value);
2056
2057 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2058 {
2059 struct dwarf_expr_piece *p = &c->pieces[i];
2060 size_t this_size_bits = p->size;
2061
2062 if (bit_offset > 0)
2063 {
2064 if (bit_offset >= this_size_bits)
2065 {
2066 bit_offset -= this_size_bits;
2067 continue;
2068 }
2069
2070 bit_length -= this_size_bits - bit_offset;
2071 bit_offset = 0;
2072 }
2073 else
2074 bit_length -= this_size_bits;
2075
2076 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2077 return NULL;
2078
2079 if (bit_length != 0)
2080 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2081
2082 piece = p;
2083 break;
2084 }
2085
2086 frame = get_selected_frame (_("No frame selected."));
2087
2088 /* This is an offset requested by GDB, such as value subscripts.
2089 However, due to how synthetic pointers are implemented, this is
2090 always presented to us as a pointer type. This means we have to
2091 sign-extend it manually as appropriate. */
2092 byte_offset = value_as_address (value);
2093 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2094 byte_offset = gdb_sign_extend (byte_offset,
2095 8 * TYPE_LENGTH (value_type (value)));
2096 byte_offset += piece->v.ptr.offset;
2097
2098 gdb_assert (piece);
2099 baton
2100 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2101 get_frame_address_in_block_wrapper,
2102 frame);
2103
2104 if (baton.data != NULL)
2105 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2106 baton.data, baton.size, baton.per_cu,
2107 byte_offset);
2108
2109 {
2110 struct obstack temp_obstack;
2111 struct cleanup *cleanup;
2112 const gdb_byte *bytes;
2113 LONGEST len;
2114 struct value *result;
2115
2116 obstack_init (&temp_obstack);
2117 cleanup = make_cleanup_obstack_free (&temp_obstack);
2118
2119 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2120 &temp_obstack, &len);
2121 if (bytes == NULL)
2122 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2123 else
2124 {
2125 if (byte_offset < 0
2126 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2127 invalid_synthetic_pointer ();
2128 bytes += byte_offset;
2129 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2130 }
2131
2132 do_cleanups (cleanup);
2133 return result;
2134 }
2135 }
2136
2137 static void *
2138 copy_pieced_value_closure (const struct value *v)
2139 {
2140 struct piece_closure *c
2141 = (struct piece_closure *) value_computed_closure (v);
2142
2143 ++c->refc;
2144 return c;
2145 }
2146
2147 static void
2148 free_pieced_value_closure (struct value *v)
2149 {
2150 struct piece_closure *c
2151 = (struct piece_closure *) value_computed_closure (v);
2152
2153 --c->refc;
2154 if (c->refc == 0)
2155 {
2156 int i;
2157
2158 for (i = 0; i < c->n_pieces; ++i)
2159 if (c->pieces[i].location == DWARF_VALUE_STACK)
2160 value_free (c->pieces[i].v.value);
2161
2162 xfree (c->pieces);
2163 xfree (c);
2164 }
2165 }
2166
2167 /* Functions for accessing a variable described by DW_OP_piece. */
2168 static const struct lval_funcs pieced_value_funcs = {
2169 read_pieced_value,
2170 write_pieced_value,
2171 check_pieced_value_validity,
2172 check_pieced_value_invalid,
2173 indirect_pieced_value,
2174 NULL, /* coerce_ref */
2175 check_pieced_synthetic_pointer,
2176 copy_pieced_value_closure,
2177 free_pieced_value_closure
2178 };
2179
2180 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2181
2182 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2183 {
2184 dwarf_expr_read_reg,
2185 dwarf_expr_read_mem,
2186 dwarf_expr_frame_base,
2187 dwarf_expr_frame_cfa,
2188 dwarf_expr_frame_pc,
2189 dwarf_expr_tls_address,
2190 dwarf_expr_dwarf_call,
2191 dwarf_expr_get_base_type,
2192 dwarf_expr_push_dwarf_reg_entry_value,
2193 dwarf_expr_get_addr_index
2194 };
2195
2196 /* Evaluate a location description, starting at DATA and with length
2197 SIZE, to find the current location of variable of TYPE in the
2198 context of FRAME. BYTE_OFFSET is applied after the contents are
2199 computed. */
2200
2201 static struct value *
2202 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2203 const gdb_byte *data, size_t size,
2204 struct dwarf2_per_cu_data *per_cu,
2205 LONGEST byte_offset)
2206 {
2207 struct value *retval;
2208 struct dwarf_expr_baton baton;
2209 struct dwarf_expr_context *ctx;
2210 struct cleanup *old_chain, *value_chain;
2211 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2212 volatile struct gdb_exception ex;
2213
2214 if (byte_offset < 0)
2215 invalid_synthetic_pointer ();
2216
2217 if (size == 0)
2218 return allocate_optimized_out_value (type);
2219
2220 baton.frame = frame;
2221 baton.per_cu = per_cu;
2222
2223 ctx = new_dwarf_expr_context ();
2224 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2225 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2226
2227 ctx->gdbarch = get_objfile_arch (objfile);
2228 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2229 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2230 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2231 ctx->baton = &baton;
2232 ctx->funcs = &dwarf_expr_ctx_funcs;
2233
2234 TRY_CATCH (ex, RETURN_MASK_ERROR)
2235 {
2236 dwarf_expr_eval (ctx, data, size);
2237 }
2238 if (ex.reason < 0)
2239 {
2240 if (ex.error == NOT_AVAILABLE_ERROR)
2241 {
2242 do_cleanups (old_chain);
2243 retval = allocate_value (type);
2244 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2245 return retval;
2246 }
2247 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2248 {
2249 if (entry_values_debug)
2250 exception_print (gdb_stdout, ex);
2251 do_cleanups (old_chain);
2252 return allocate_optimized_out_value (type);
2253 }
2254 else
2255 throw_exception (ex);
2256 }
2257
2258 if (ctx->num_pieces > 0)
2259 {
2260 struct piece_closure *c;
2261 struct frame_id frame_id = get_frame_id (frame);
2262 ULONGEST bit_size = 0;
2263 int i;
2264
2265 for (i = 0; i < ctx->num_pieces; ++i)
2266 bit_size += ctx->pieces[i].size;
2267 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2268 invalid_synthetic_pointer ();
2269
2270 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2271 ctx->addr_size);
2272 /* We must clean up the value chain after creating the piece
2273 closure but before allocating the result. */
2274 do_cleanups (value_chain);
2275 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2276 VALUE_FRAME_ID (retval) = frame_id;
2277 set_value_offset (retval, byte_offset);
2278 }
2279 else
2280 {
2281 switch (ctx->location)
2282 {
2283 case DWARF_VALUE_REGISTER:
2284 {
2285 struct gdbarch *arch = get_frame_arch (frame);
2286 ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0));
2287 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2288
2289 if (byte_offset != 0)
2290 error (_("cannot use offset on synthetic pointer to register"));
2291 do_cleanups (value_chain);
2292 if (gdb_regnum != -1)
2293 retval = value_from_register (type, gdb_regnum, frame);
2294 else
2295 error (_("Unable to access DWARF register number %s"),
2296 paddress (arch, dwarf_regnum));
2297 }
2298 break;
2299
2300 case DWARF_VALUE_MEMORY:
2301 {
2302 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2303 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2304
2305 do_cleanups (value_chain);
2306 retval = allocate_value_lazy (type);
2307 VALUE_LVAL (retval) = lval_memory;
2308 if (in_stack_memory)
2309 set_value_stack (retval, 1);
2310 set_value_address (retval, address + byte_offset);
2311 }
2312 break;
2313
2314 case DWARF_VALUE_STACK:
2315 {
2316 struct value *value = dwarf_expr_fetch (ctx, 0);
2317 gdb_byte *contents;
2318 const gdb_byte *val_bytes;
2319 size_t n = TYPE_LENGTH (value_type (value));
2320
2321 if (byte_offset + TYPE_LENGTH (type) > n)
2322 invalid_synthetic_pointer ();
2323
2324 val_bytes = value_contents_all (value);
2325 val_bytes += byte_offset;
2326 n -= byte_offset;
2327
2328 /* Preserve VALUE because we are going to free values back
2329 to the mark, but we still need the value contents
2330 below. */
2331 value_incref (value);
2332 do_cleanups (value_chain);
2333 make_cleanup_value_free (value);
2334
2335 retval = allocate_value (type);
2336 contents = value_contents_raw (retval);
2337 if (n > TYPE_LENGTH (type))
2338 {
2339 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2340
2341 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2342 val_bytes += n - TYPE_LENGTH (type);
2343 n = TYPE_LENGTH (type);
2344 }
2345 memcpy (contents, val_bytes, n);
2346 }
2347 break;
2348
2349 case DWARF_VALUE_LITERAL:
2350 {
2351 bfd_byte *contents;
2352 const bfd_byte *ldata;
2353 size_t n = ctx->len;
2354
2355 if (byte_offset + TYPE_LENGTH (type) > n)
2356 invalid_synthetic_pointer ();
2357
2358 do_cleanups (value_chain);
2359 retval = allocate_value (type);
2360 contents = value_contents_raw (retval);
2361
2362 ldata = ctx->data + byte_offset;
2363 n -= byte_offset;
2364
2365 if (n > TYPE_LENGTH (type))
2366 {
2367 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2368
2369 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2370 ldata += n - TYPE_LENGTH (type);
2371 n = TYPE_LENGTH (type);
2372 }
2373 memcpy (contents, ldata, n);
2374 }
2375 break;
2376
2377 case DWARF_VALUE_OPTIMIZED_OUT:
2378 do_cleanups (value_chain);
2379 retval = allocate_optimized_out_value (type);
2380 break;
2381
2382 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2383 operation by execute_stack_op. */
2384 case DWARF_VALUE_IMPLICIT_POINTER:
2385 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2386 it can only be encountered when making a piece. */
2387 default:
2388 internal_error (__FILE__, __LINE__, _("invalid location type"));
2389 }
2390 }
2391
2392 set_value_initialized (retval, ctx->initialized);
2393
2394 do_cleanups (old_chain);
2395
2396 return retval;
2397 }
2398
2399 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2400 passes 0 as the byte_offset. */
2401
2402 struct value *
2403 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2404 const gdb_byte *data, size_t size,
2405 struct dwarf2_per_cu_data *per_cu)
2406 {
2407 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2408 }
2409
2410 \f
2411 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2412
2413 struct needs_frame_baton
2414 {
2415 int needs_frame;
2416 struct dwarf2_per_cu_data *per_cu;
2417 };
2418
2419 /* Reads from registers do require a frame. */
2420 static CORE_ADDR
2421 needs_frame_read_reg (void *baton, int regnum)
2422 {
2423 struct needs_frame_baton *nf_baton = baton;
2424
2425 nf_baton->needs_frame = 1;
2426 return 1;
2427 }
2428
2429 /* Reads from memory do not require a frame. */
2430 static void
2431 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2432 {
2433 memset (buf, 0, len);
2434 }
2435
2436 /* Frame-relative accesses do require a frame. */
2437 static void
2438 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2439 {
2440 static gdb_byte lit0 = DW_OP_lit0;
2441 struct needs_frame_baton *nf_baton = baton;
2442
2443 *start = &lit0;
2444 *length = 1;
2445
2446 nf_baton->needs_frame = 1;
2447 }
2448
2449 /* CFA accesses require a frame. */
2450
2451 static CORE_ADDR
2452 needs_frame_frame_cfa (void *baton)
2453 {
2454 struct needs_frame_baton *nf_baton = baton;
2455
2456 nf_baton->needs_frame = 1;
2457 return 1;
2458 }
2459
2460 /* Thread-local accesses do require a frame. */
2461 static CORE_ADDR
2462 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2463 {
2464 struct needs_frame_baton *nf_baton = baton;
2465
2466 nf_baton->needs_frame = 1;
2467 return 1;
2468 }
2469
2470 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2471
2472 static void
2473 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2474 {
2475 struct needs_frame_baton *nf_baton = ctx->baton;
2476
2477 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2478 ctx->funcs->get_frame_pc, ctx->baton);
2479 }
2480
2481 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2482
2483 static void
2484 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2485 enum call_site_parameter_kind kind,
2486 union call_site_parameter_u kind_u, int deref_size)
2487 {
2488 struct needs_frame_baton *nf_baton = ctx->baton;
2489
2490 nf_baton->needs_frame = 1;
2491
2492 /* The expression may require some stub values on DWARF stack. */
2493 dwarf_expr_push_address (ctx, 0, 0);
2494 }
2495
2496 /* DW_OP_GNU_addr_index doesn't require a frame. */
2497
2498 static CORE_ADDR
2499 needs_get_addr_index (void *baton, unsigned int index)
2500 {
2501 /* Nothing to do. */
2502 return 1;
2503 }
2504
2505 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2506
2507 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2508 {
2509 needs_frame_read_reg,
2510 needs_frame_read_mem,
2511 needs_frame_frame_base,
2512 needs_frame_frame_cfa,
2513 needs_frame_frame_cfa, /* get_frame_pc */
2514 needs_frame_tls_address,
2515 needs_frame_dwarf_call,
2516 NULL, /* get_base_type */
2517 needs_dwarf_reg_entry_value,
2518 needs_get_addr_index
2519 };
2520
2521 /* Return non-zero iff the location expression at DATA (length SIZE)
2522 requires a frame to evaluate. */
2523
2524 static int
2525 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2526 struct dwarf2_per_cu_data *per_cu)
2527 {
2528 struct needs_frame_baton baton;
2529 struct dwarf_expr_context *ctx;
2530 int in_reg;
2531 struct cleanup *old_chain;
2532 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2533
2534 baton.needs_frame = 0;
2535 baton.per_cu = per_cu;
2536
2537 ctx = new_dwarf_expr_context ();
2538 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2539 make_cleanup_value_free_to_mark (value_mark ());
2540
2541 ctx->gdbarch = get_objfile_arch (objfile);
2542 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2543 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2544 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2545 ctx->baton = &baton;
2546 ctx->funcs = &needs_frame_ctx_funcs;
2547
2548 dwarf_expr_eval (ctx, data, size);
2549
2550 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2551
2552 if (ctx->num_pieces > 0)
2553 {
2554 int i;
2555
2556 /* If the location has several pieces, and any of them are in
2557 registers, then we will need a frame to fetch them from. */
2558 for (i = 0; i < ctx->num_pieces; i++)
2559 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2560 in_reg = 1;
2561 }
2562
2563 do_cleanups (old_chain);
2564
2565 return baton.needs_frame || in_reg;
2566 }
2567
2568 /* A helper function that throws an unimplemented error mentioning a
2569 given DWARF operator. */
2570
2571 static void
2572 unimplemented (unsigned int op)
2573 {
2574 const char *name = get_DW_OP_name (op);
2575
2576 if (name)
2577 error (_("DWARF operator %s cannot be translated to an agent expression"),
2578 name);
2579 else
2580 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2581 "to an agent expression"),
2582 op);
2583 }
2584
2585 /* A helper function to convert a DWARF register to an arch register.
2586 ARCH is the architecture.
2587 DWARF_REG is the register.
2588 This will throw an exception if the DWARF register cannot be
2589 translated to an architecture register. */
2590
2591 static int
2592 translate_register (struct gdbarch *arch, int dwarf_reg)
2593 {
2594 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2595 if (reg == -1)
2596 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2597 return reg;
2598 }
2599
2600 /* A helper function that emits an access to memory. ARCH is the
2601 target architecture. EXPR is the expression which we are building.
2602 NBITS is the number of bits we want to read. This emits the
2603 opcodes needed to read the memory and then extract the desired
2604 bits. */
2605
2606 static void
2607 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2608 {
2609 ULONGEST nbytes = (nbits + 7) / 8;
2610
2611 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2612
2613 if (expr->tracing)
2614 ax_trace_quick (expr, nbytes);
2615
2616 if (nbits <= 8)
2617 ax_simple (expr, aop_ref8);
2618 else if (nbits <= 16)
2619 ax_simple (expr, aop_ref16);
2620 else if (nbits <= 32)
2621 ax_simple (expr, aop_ref32);
2622 else
2623 ax_simple (expr, aop_ref64);
2624
2625 /* If we read exactly the number of bytes we wanted, we're done. */
2626 if (8 * nbytes == nbits)
2627 return;
2628
2629 if (gdbarch_bits_big_endian (arch))
2630 {
2631 /* On a bits-big-endian machine, we want the high-order
2632 NBITS. */
2633 ax_const_l (expr, 8 * nbytes - nbits);
2634 ax_simple (expr, aop_rsh_unsigned);
2635 }
2636 else
2637 {
2638 /* On a bits-little-endian box, we want the low-order NBITS. */
2639 ax_zero_ext (expr, nbits);
2640 }
2641 }
2642
2643 /* A helper function to return the frame's PC. */
2644
2645 static CORE_ADDR
2646 get_ax_pc (void *baton)
2647 {
2648 struct agent_expr *expr = baton;
2649
2650 return expr->scope;
2651 }
2652
2653 /* Compile a DWARF location expression to an agent expression.
2654
2655 EXPR is the agent expression we are building.
2656 LOC is the agent value we modify.
2657 ARCH is the architecture.
2658 ADDR_SIZE is the size of addresses, in bytes.
2659 OP_PTR is the start of the location expression.
2660 OP_END is one past the last byte of the location expression.
2661
2662 This will throw an exception for various kinds of errors -- for
2663 example, if the expression cannot be compiled, or if the expression
2664 is invalid. */
2665
2666 void
2667 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2668 struct gdbarch *arch, unsigned int addr_size,
2669 const gdb_byte *op_ptr, const gdb_byte *op_end,
2670 struct dwarf2_per_cu_data *per_cu)
2671 {
2672 struct cleanup *cleanups;
2673 int i, *offsets;
2674 VEC(int) *dw_labels = NULL, *patches = NULL;
2675 const gdb_byte * const base = op_ptr;
2676 const gdb_byte *previous_piece = op_ptr;
2677 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2678 ULONGEST bits_collected = 0;
2679 unsigned int addr_size_bits = 8 * addr_size;
2680 int bits_big_endian = gdbarch_bits_big_endian (arch);
2681
2682 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2683 cleanups = make_cleanup (xfree, offsets);
2684
2685 for (i = 0; i < op_end - op_ptr; ++i)
2686 offsets[i] = -1;
2687
2688 make_cleanup (VEC_cleanup (int), &dw_labels);
2689 make_cleanup (VEC_cleanup (int), &patches);
2690
2691 /* By default we are making an address. */
2692 loc->kind = axs_lvalue_memory;
2693
2694 while (op_ptr < op_end)
2695 {
2696 enum dwarf_location_atom op = *op_ptr;
2697 uint64_t uoffset, reg;
2698 int64_t offset;
2699 int i;
2700
2701 offsets[op_ptr - base] = expr->len;
2702 ++op_ptr;
2703
2704 /* Our basic approach to code generation is to map DWARF
2705 operations directly to AX operations. However, there are
2706 some differences.
2707
2708 First, DWARF works on address-sized units, but AX always uses
2709 LONGEST. For most operations we simply ignore this
2710 difference; instead we generate sign extensions as needed
2711 before division and comparison operations. It would be nice
2712 to omit the sign extensions, but there is no way to determine
2713 the size of the target's LONGEST. (This code uses the size
2714 of the host LONGEST in some cases -- that is a bug but it is
2715 difficult to fix.)
2716
2717 Second, some DWARF operations cannot be translated to AX.
2718 For these we simply fail. See
2719 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2720 switch (op)
2721 {
2722 case DW_OP_lit0:
2723 case DW_OP_lit1:
2724 case DW_OP_lit2:
2725 case DW_OP_lit3:
2726 case DW_OP_lit4:
2727 case DW_OP_lit5:
2728 case DW_OP_lit6:
2729 case DW_OP_lit7:
2730 case DW_OP_lit8:
2731 case DW_OP_lit9:
2732 case DW_OP_lit10:
2733 case DW_OP_lit11:
2734 case DW_OP_lit12:
2735 case DW_OP_lit13:
2736 case DW_OP_lit14:
2737 case DW_OP_lit15:
2738 case DW_OP_lit16:
2739 case DW_OP_lit17:
2740 case DW_OP_lit18:
2741 case DW_OP_lit19:
2742 case DW_OP_lit20:
2743 case DW_OP_lit21:
2744 case DW_OP_lit22:
2745 case DW_OP_lit23:
2746 case DW_OP_lit24:
2747 case DW_OP_lit25:
2748 case DW_OP_lit26:
2749 case DW_OP_lit27:
2750 case DW_OP_lit28:
2751 case DW_OP_lit29:
2752 case DW_OP_lit30:
2753 case DW_OP_lit31:
2754 ax_const_l (expr, op - DW_OP_lit0);
2755 break;
2756
2757 case DW_OP_addr:
2758 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2759 op_ptr += addr_size;
2760 /* Some versions of GCC emit DW_OP_addr before
2761 DW_OP_GNU_push_tls_address. In this case the value is an
2762 index, not an address. We don't support things like
2763 branching between the address and the TLS op. */
2764 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2765 uoffset += dwarf2_per_cu_text_offset (per_cu);
2766 ax_const_l (expr, uoffset);
2767 break;
2768
2769 case DW_OP_const1u:
2770 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2771 op_ptr += 1;
2772 break;
2773 case DW_OP_const1s:
2774 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2775 op_ptr += 1;
2776 break;
2777 case DW_OP_const2u:
2778 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2779 op_ptr += 2;
2780 break;
2781 case DW_OP_const2s:
2782 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2783 op_ptr += 2;
2784 break;
2785 case DW_OP_const4u:
2786 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2787 op_ptr += 4;
2788 break;
2789 case DW_OP_const4s:
2790 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2791 op_ptr += 4;
2792 break;
2793 case DW_OP_const8u:
2794 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2795 op_ptr += 8;
2796 break;
2797 case DW_OP_const8s:
2798 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2799 op_ptr += 8;
2800 break;
2801 case DW_OP_constu:
2802 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2803 ax_const_l (expr, uoffset);
2804 break;
2805 case DW_OP_consts:
2806 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2807 ax_const_l (expr, offset);
2808 break;
2809
2810 case DW_OP_reg0:
2811 case DW_OP_reg1:
2812 case DW_OP_reg2:
2813 case DW_OP_reg3:
2814 case DW_OP_reg4:
2815 case DW_OP_reg5:
2816 case DW_OP_reg6:
2817 case DW_OP_reg7:
2818 case DW_OP_reg8:
2819 case DW_OP_reg9:
2820 case DW_OP_reg10:
2821 case DW_OP_reg11:
2822 case DW_OP_reg12:
2823 case DW_OP_reg13:
2824 case DW_OP_reg14:
2825 case DW_OP_reg15:
2826 case DW_OP_reg16:
2827 case DW_OP_reg17:
2828 case DW_OP_reg18:
2829 case DW_OP_reg19:
2830 case DW_OP_reg20:
2831 case DW_OP_reg21:
2832 case DW_OP_reg22:
2833 case DW_OP_reg23:
2834 case DW_OP_reg24:
2835 case DW_OP_reg25:
2836 case DW_OP_reg26:
2837 case DW_OP_reg27:
2838 case DW_OP_reg28:
2839 case DW_OP_reg29:
2840 case DW_OP_reg30:
2841 case DW_OP_reg31:
2842 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2843 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2844 loc->kind = axs_lvalue_register;
2845 break;
2846
2847 case DW_OP_regx:
2848 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2849 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2850 loc->u.reg = translate_register (arch, reg);
2851 loc->kind = axs_lvalue_register;
2852 break;
2853
2854 case DW_OP_implicit_value:
2855 {
2856 uint64_t len;
2857
2858 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2859 if (op_ptr + len > op_end)
2860 error (_("DW_OP_implicit_value: too few bytes available."));
2861 if (len > sizeof (ULONGEST))
2862 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2863 (int) len);
2864
2865 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2866 byte_order));
2867 op_ptr += len;
2868 dwarf_expr_require_composition (op_ptr, op_end,
2869 "DW_OP_implicit_value");
2870
2871 loc->kind = axs_rvalue;
2872 }
2873 break;
2874
2875 case DW_OP_stack_value:
2876 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
2877 loc->kind = axs_rvalue;
2878 break;
2879
2880 case DW_OP_breg0:
2881 case DW_OP_breg1:
2882 case DW_OP_breg2:
2883 case DW_OP_breg3:
2884 case DW_OP_breg4:
2885 case DW_OP_breg5:
2886 case DW_OP_breg6:
2887 case DW_OP_breg7:
2888 case DW_OP_breg8:
2889 case DW_OP_breg9:
2890 case DW_OP_breg10:
2891 case DW_OP_breg11:
2892 case DW_OP_breg12:
2893 case DW_OP_breg13:
2894 case DW_OP_breg14:
2895 case DW_OP_breg15:
2896 case DW_OP_breg16:
2897 case DW_OP_breg17:
2898 case DW_OP_breg18:
2899 case DW_OP_breg19:
2900 case DW_OP_breg20:
2901 case DW_OP_breg21:
2902 case DW_OP_breg22:
2903 case DW_OP_breg23:
2904 case DW_OP_breg24:
2905 case DW_OP_breg25:
2906 case DW_OP_breg26:
2907 case DW_OP_breg27:
2908 case DW_OP_breg28:
2909 case DW_OP_breg29:
2910 case DW_OP_breg30:
2911 case DW_OP_breg31:
2912 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2913 i = translate_register (arch, op - DW_OP_breg0);
2914 ax_reg (expr, i);
2915 if (offset != 0)
2916 {
2917 ax_const_l (expr, offset);
2918 ax_simple (expr, aop_add);
2919 }
2920 break;
2921 case DW_OP_bregx:
2922 {
2923 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2924 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2925 i = translate_register (arch, reg);
2926 ax_reg (expr, i);
2927 if (offset != 0)
2928 {
2929 ax_const_l (expr, offset);
2930 ax_simple (expr, aop_add);
2931 }
2932 }
2933 break;
2934 case DW_OP_fbreg:
2935 {
2936 const gdb_byte *datastart;
2937 size_t datalen;
2938 struct block *b;
2939 struct symbol *framefunc;
2940
2941 b = block_for_pc (expr->scope);
2942
2943 if (!b)
2944 error (_("No block found for address"));
2945
2946 framefunc = block_linkage_function (b);
2947
2948 if (!framefunc)
2949 error (_("No function found for block"));
2950
2951 dwarf_expr_frame_base_1 (framefunc, expr->scope,
2952 &datastart, &datalen);
2953
2954 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2955 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
2956 datastart + datalen, per_cu);
2957 if (loc->kind == axs_lvalue_register)
2958 require_rvalue (expr, loc);
2959
2960 if (offset != 0)
2961 {
2962 ax_const_l (expr, offset);
2963 ax_simple (expr, aop_add);
2964 }
2965
2966 loc->kind = axs_lvalue_memory;
2967 }
2968 break;
2969
2970 case DW_OP_dup:
2971 ax_simple (expr, aop_dup);
2972 break;
2973
2974 case DW_OP_drop:
2975 ax_simple (expr, aop_pop);
2976 break;
2977
2978 case DW_OP_pick:
2979 offset = *op_ptr++;
2980 ax_pick (expr, offset);
2981 break;
2982
2983 case DW_OP_swap:
2984 ax_simple (expr, aop_swap);
2985 break;
2986
2987 case DW_OP_over:
2988 ax_pick (expr, 1);
2989 break;
2990
2991 case DW_OP_rot:
2992 ax_simple (expr, aop_rot);
2993 break;
2994
2995 case DW_OP_deref:
2996 case DW_OP_deref_size:
2997 {
2998 int size;
2999
3000 if (op == DW_OP_deref_size)
3001 size = *op_ptr++;
3002 else
3003 size = addr_size;
3004
3005 if (size != 1 && size != 2 && size != 4 && size != 8)
3006 error (_("Unsupported size %d in %s"),
3007 size, get_DW_OP_name (op));
3008 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3009 }
3010 break;
3011
3012 case DW_OP_abs:
3013 /* Sign extend the operand. */
3014 ax_ext (expr, addr_size_bits);
3015 ax_simple (expr, aop_dup);
3016 ax_const_l (expr, 0);
3017 ax_simple (expr, aop_less_signed);
3018 ax_simple (expr, aop_log_not);
3019 i = ax_goto (expr, aop_if_goto);
3020 /* We have to emit 0 - X. */
3021 ax_const_l (expr, 0);
3022 ax_simple (expr, aop_swap);
3023 ax_simple (expr, aop_sub);
3024 ax_label (expr, i, expr->len);
3025 break;
3026
3027 case DW_OP_neg:
3028 /* No need to sign extend here. */
3029 ax_const_l (expr, 0);
3030 ax_simple (expr, aop_swap);
3031 ax_simple (expr, aop_sub);
3032 break;
3033
3034 case DW_OP_not:
3035 /* Sign extend the operand. */
3036 ax_ext (expr, addr_size_bits);
3037 ax_simple (expr, aop_bit_not);
3038 break;
3039
3040 case DW_OP_plus_uconst:
3041 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3042 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3043 but we micro-optimize anyhow. */
3044 if (reg != 0)
3045 {
3046 ax_const_l (expr, reg);
3047 ax_simple (expr, aop_add);
3048 }
3049 break;
3050
3051 case DW_OP_and:
3052 ax_simple (expr, aop_bit_and);
3053 break;
3054
3055 case DW_OP_div:
3056 /* Sign extend the operands. */
3057 ax_ext (expr, addr_size_bits);
3058 ax_simple (expr, aop_swap);
3059 ax_ext (expr, addr_size_bits);
3060 ax_simple (expr, aop_swap);
3061 ax_simple (expr, aop_div_signed);
3062 break;
3063
3064 case DW_OP_minus:
3065 ax_simple (expr, aop_sub);
3066 break;
3067
3068 case DW_OP_mod:
3069 ax_simple (expr, aop_rem_unsigned);
3070 break;
3071
3072 case DW_OP_mul:
3073 ax_simple (expr, aop_mul);
3074 break;
3075
3076 case DW_OP_or:
3077 ax_simple (expr, aop_bit_or);
3078 break;
3079
3080 case DW_OP_plus:
3081 ax_simple (expr, aop_add);
3082 break;
3083
3084 case DW_OP_shl:
3085 ax_simple (expr, aop_lsh);
3086 break;
3087
3088 case DW_OP_shr:
3089 ax_simple (expr, aop_rsh_unsigned);
3090 break;
3091
3092 case DW_OP_shra:
3093 ax_simple (expr, aop_rsh_signed);
3094 break;
3095
3096 case DW_OP_xor:
3097 ax_simple (expr, aop_bit_xor);
3098 break;
3099
3100 case DW_OP_le:
3101 /* Sign extend the operands. */
3102 ax_ext (expr, addr_size_bits);
3103 ax_simple (expr, aop_swap);
3104 ax_ext (expr, addr_size_bits);
3105 /* Note no swap here: A <= B is !(B < A). */
3106 ax_simple (expr, aop_less_signed);
3107 ax_simple (expr, aop_log_not);
3108 break;
3109
3110 case DW_OP_ge:
3111 /* Sign extend the operands. */
3112 ax_ext (expr, addr_size_bits);
3113 ax_simple (expr, aop_swap);
3114 ax_ext (expr, addr_size_bits);
3115 ax_simple (expr, aop_swap);
3116 /* A >= B is !(A < B). */
3117 ax_simple (expr, aop_less_signed);
3118 ax_simple (expr, aop_log_not);
3119 break;
3120
3121 case DW_OP_eq:
3122 /* Sign extend the operands. */
3123 ax_ext (expr, addr_size_bits);
3124 ax_simple (expr, aop_swap);
3125 ax_ext (expr, addr_size_bits);
3126 /* No need for a second swap here. */
3127 ax_simple (expr, aop_equal);
3128 break;
3129
3130 case DW_OP_lt:
3131 /* Sign extend the operands. */
3132 ax_ext (expr, addr_size_bits);
3133 ax_simple (expr, aop_swap);
3134 ax_ext (expr, addr_size_bits);
3135 ax_simple (expr, aop_swap);
3136 ax_simple (expr, aop_less_signed);
3137 break;
3138
3139 case DW_OP_gt:
3140 /* Sign extend the operands. */
3141 ax_ext (expr, addr_size_bits);
3142 ax_simple (expr, aop_swap);
3143 ax_ext (expr, addr_size_bits);
3144 /* Note no swap here: A > B is B < A. */
3145 ax_simple (expr, aop_less_signed);
3146 break;
3147
3148 case DW_OP_ne:
3149 /* Sign extend the operands. */
3150 ax_ext (expr, addr_size_bits);
3151 ax_simple (expr, aop_swap);
3152 ax_ext (expr, addr_size_bits);
3153 /* No need for a swap here. */
3154 ax_simple (expr, aop_equal);
3155 ax_simple (expr, aop_log_not);
3156 break;
3157
3158 case DW_OP_call_frame_cfa:
3159 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3160 loc->kind = axs_lvalue_memory;
3161 break;
3162
3163 case DW_OP_GNU_push_tls_address:
3164 unimplemented (op);
3165 break;
3166
3167 case DW_OP_skip:
3168 offset = extract_signed_integer (op_ptr, 2, byte_order);
3169 op_ptr += 2;
3170 i = ax_goto (expr, aop_goto);
3171 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3172 VEC_safe_push (int, patches, i);
3173 break;
3174
3175 case DW_OP_bra:
3176 offset = extract_signed_integer (op_ptr, 2, byte_order);
3177 op_ptr += 2;
3178 /* Zero extend the operand. */
3179 ax_zero_ext (expr, addr_size_bits);
3180 i = ax_goto (expr, aop_if_goto);
3181 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3182 VEC_safe_push (int, patches, i);
3183 break;
3184
3185 case DW_OP_nop:
3186 break;
3187
3188 case DW_OP_piece:
3189 case DW_OP_bit_piece:
3190 {
3191 uint64_t size, offset;
3192
3193 if (op_ptr - 1 == previous_piece)
3194 error (_("Cannot translate empty pieces to agent expressions"));
3195 previous_piece = op_ptr - 1;
3196
3197 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3198 if (op == DW_OP_piece)
3199 {
3200 size *= 8;
3201 offset = 0;
3202 }
3203 else
3204 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3205
3206 if (bits_collected + size > 8 * sizeof (LONGEST))
3207 error (_("Expression pieces exceed word size"));
3208
3209 /* Access the bits. */
3210 switch (loc->kind)
3211 {
3212 case axs_lvalue_register:
3213 ax_reg (expr, loc->u.reg);
3214 break;
3215
3216 case axs_lvalue_memory:
3217 /* Offset the pointer, if needed. */
3218 if (offset > 8)
3219 {
3220 ax_const_l (expr, offset / 8);
3221 ax_simple (expr, aop_add);
3222 offset %= 8;
3223 }
3224 access_memory (arch, expr, size);
3225 break;
3226 }
3227
3228 /* For a bits-big-endian target, shift up what we already
3229 have. For a bits-little-endian target, shift up the
3230 new data. Note that there is a potential bug here if
3231 the DWARF expression leaves multiple values on the
3232 stack. */
3233 if (bits_collected > 0)
3234 {
3235 if (bits_big_endian)
3236 {
3237 ax_simple (expr, aop_swap);
3238 ax_const_l (expr, size);
3239 ax_simple (expr, aop_lsh);
3240 /* We don't need a second swap here, because
3241 aop_bit_or is symmetric. */
3242 }
3243 else
3244 {
3245 ax_const_l (expr, size);
3246 ax_simple (expr, aop_lsh);
3247 }
3248 ax_simple (expr, aop_bit_or);
3249 }
3250
3251 bits_collected += size;
3252 loc->kind = axs_rvalue;
3253 }
3254 break;
3255
3256 case DW_OP_GNU_uninit:
3257 unimplemented (op);
3258
3259 case DW_OP_call2:
3260 case DW_OP_call4:
3261 {
3262 struct dwarf2_locexpr_baton block;
3263 int size = (op == DW_OP_call2 ? 2 : 4);
3264 cu_offset offset;
3265
3266 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3267 op_ptr += size;
3268
3269 offset.cu_off = uoffset;
3270 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3271 get_ax_pc, expr);
3272
3273 /* DW_OP_call_ref is currently not supported. */
3274 gdb_assert (block.per_cu == per_cu);
3275
3276 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3277 block.data, block.data + block.size,
3278 per_cu);
3279 }
3280 break;
3281
3282 case DW_OP_call_ref:
3283 unimplemented (op);
3284
3285 default:
3286 unimplemented (op);
3287 }
3288 }
3289
3290 /* Patch all the branches we emitted. */
3291 for (i = 0; i < VEC_length (int, patches); ++i)
3292 {
3293 int targ = offsets[VEC_index (int, dw_labels, i)];
3294 if (targ == -1)
3295 internal_error (__FILE__, __LINE__, _("invalid label"));
3296 ax_label (expr, VEC_index (int, patches, i), targ);
3297 }
3298
3299 do_cleanups (cleanups);
3300 }
3301
3302 \f
3303 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3304 evaluator to calculate the location. */
3305 static struct value *
3306 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3307 {
3308 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3309 struct value *val;
3310
3311 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3312 dlbaton->size, dlbaton->per_cu);
3313
3314 return val;
3315 }
3316
3317 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3318 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3319 will be thrown. */
3320
3321 static struct value *
3322 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3323 {
3324 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3325
3326 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3327 dlbaton->size);
3328 }
3329
3330 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3331 static int
3332 locexpr_read_needs_frame (struct symbol *symbol)
3333 {
3334 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3335
3336 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3337 dlbaton->per_cu);
3338 }
3339
3340 /* Return true if DATA points to the end of a piece. END is one past
3341 the last byte in the expression. */
3342
3343 static int
3344 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3345 {
3346 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3347 }
3348
3349 /* Helper for locexpr_describe_location_piece that finds the name of a
3350 DWARF register. */
3351
3352 static const char *
3353 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3354 {
3355 int regnum;
3356
3357 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3358 return gdbarch_register_name (gdbarch, regnum);
3359 }
3360
3361 /* Nicely describe a single piece of a location, returning an updated
3362 position in the bytecode sequence. This function cannot recognize
3363 all locations; if a location is not recognized, it simply returns
3364 DATA. If there is an error during reading, e.g. we run off the end
3365 of the buffer, an error is thrown. */
3366
3367 static const gdb_byte *
3368 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3369 CORE_ADDR addr, struct objfile *objfile,
3370 struct dwarf2_per_cu_data *per_cu,
3371 const gdb_byte *data, const gdb_byte *end,
3372 unsigned int addr_size)
3373 {
3374 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3375 size_t leb128_size;
3376
3377 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3378 {
3379 fprintf_filtered (stream, _("a variable in $%s"),
3380 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3381 data += 1;
3382 }
3383 else if (data[0] == DW_OP_regx)
3384 {
3385 uint64_t reg;
3386
3387 data = safe_read_uleb128 (data + 1, end, &reg);
3388 fprintf_filtered (stream, _("a variable in $%s"),
3389 locexpr_regname (gdbarch, reg));
3390 }
3391 else if (data[0] == DW_OP_fbreg)
3392 {
3393 struct block *b;
3394 struct symbol *framefunc;
3395 int frame_reg = 0;
3396 int64_t frame_offset;
3397 const gdb_byte *base_data, *new_data, *save_data = data;
3398 size_t base_size;
3399 int64_t base_offset = 0;
3400
3401 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3402 if (!piece_end_p (new_data, end))
3403 return data;
3404 data = new_data;
3405
3406 b = block_for_pc (addr);
3407
3408 if (!b)
3409 error (_("No block found for address for symbol \"%s\"."),
3410 SYMBOL_PRINT_NAME (symbol));
3411
3412 framefunc = block_linkage_function (b);
3413
3414 if (!framefunc)
3415 error (_("No function found for block for symbol \"%s\"."),
3416 SYMBOL_PRINT_NAME (symbol));
3417
3418 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3419
3420 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3421 {
3422 const gdb_byte *buf_end;
3423
3424 frame_reg = base_data[0] - DW_OP_breg0;
3425 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3426 &base_offset);
3427 if (buf_end != base_data + base_size)
3428 error (_("Unexpected opcode after "
3429 "DW_OP_breg%u for symbol \"%s\"."),
3430 frame_reg, SYMBOL_PRINT_NAME (symbol));
3431 }
3432 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3433 {
3434 /* The frame base is just the register, with no offset. */
3435 frame_reg = base_data[0] - DW_OP_reg0;
3436 base_offset = 0;
3437 }
3438 else
3439 {
3440 /* We don't know what to do with the frame base expression,
3441 so we can't trace this variable; give up. */
3442 return save_data;
3443 }
3444
3445 fprintf_filtered (stream,
3446 _("a variable at frame base reg $%s offset %s+%s"),
3447 locexpr_regname (gdbarch, frame_reg),
3448 plongest (base_offset), plongest (frame_offset));
3449 }
3450 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3451 && piece_end_p (data, end))
3452 {
3453 int64_t offset;
3454
3455 data = safe_read_sleb128 (data + 1, end, &offset);
3456
3457 fprintf_filtered (stream,
3458 _("a variable at offset %s from base reg $%s"),
3459 plongest (offset),
3460 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3461 }
3462
3463 /* The location expression for a TLS variable looks like this (on a
3464 64-bit LE machine):
3465
3466 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3467 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3468
3469 0x3 is the encoding for DW_OP_addr, which has an operand as long
3470 as the size of an address on the target machine (here is 8
3471 bytes). Note that more recent version of GCC emit DW_OP_const4u
3472 or DW_OP_const8u, depending on address size, rather than
3473 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3474 The operand represents the offset at which the variable is within
3475 the thread local storage. */
3476
3477 else if (data + 1 + addr_size < end
3478 && (data[0] == DW_OP_addr
3479 || (addr_size == 4 && data[0] == DW_OP_const4u)
3480 || (addr_size == 8 && data[0] == DW_OP_const8u))
3481 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3482 && piece_end_p (data + 2 + addr_size, end))
3483 {
3484 ULONGEST offset;
3485 offset = extract_unsigned_integer (data + 1, addr_size,
3486 gdbarch_byte_order (gdbarch));
3487
3488 fprintf_filtered (stream,
3489 _("a thread-local variable at offset 0x%s "
3490 "in the thread-local storage for `%s'"),
3491 phex_nz (offset, addr_size), objfile->name);
3492
3493 data += 1 + addr_size + 1;
3494 }
3495
3496 /* With -gsplit-dwarf a TLS variable can also look like this:
3497 DW_AT_location : 3 byte block: fc 4 e0
3498 (DW_OP_GNU_const_index: 4;
3499 DW_OP_GNU_push_tls_address) */
3500 else if (data + 3 <= end
3501 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3502 && data[0] == DW_OP_GNU_const_index
3503 && leb128_size > 0
3504 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3505 && piece_end_p (data + 2 + leb128_size, end))
3506 {
3507 uint64_t offset;
3508
3509 data = safe_read_uleb128 (data + 1, end, &offset);
3510 offset = dwarf2_read_addr_index (per_cu, offset);
3511 fprintf_filtered (stream,
3512 _("a thread-local variable at offset 0x%s "
3513 "in the thread-local storage for `%s'"),
3514 phex_nz (offset, addr_size), objfile->name);
3515 ++data;
3516 }
3517
3518 else if (data[0] >= DW_OP_lit0
3519 && data[0] <= DW_OP_lit31
3520 && data + 1 < end
3521 && data[1] == DW_OP_stack_value)
3522 {
3523 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3524 data += 2;
3525 }
3526
3527 return data;
3528 }
3529
3530 /* Disassemble an expression, stopping at the end of a piece or at the
3531 end of the expression. Returns a pointer to the next unread byte
3532 in the input expression. If ALL is nonzero, then this function
3533 will keep going until it reaches the end of the expression.
3534 If there is an error during reading, e.g. we run off the end
3535 of the buffer, an error is thrown. */
3536
3537 static const gdb_byte *
3538 disassemble_dwarf_expression (struct ui_file *stream,
3539 struct gdbarch *arch, unsigned int addr_size,
3540 int offset_size, const gdb_byte *start,
3541 const gdb_byte *data, const gdb_byte *end,
3542 int indent, int all,
3543 struct dwarf2_per_cu_data *per_cu)
3544 {
3545 while (data < end
3546 && (all
3547 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3548 {
3549 enum dwarf_location_atom op = *data++;
3550 uint64_t ul;
3551 int64_t l;
3552 const char *name;
3553
3554 name = get_DW_OP_name (op);
3555
3556 if (!name)
3557 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3558 op, (long) (data - 1 - start));
3559 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3560 (long) (data - 1 - start), name);
3561
3562 switch (op)
3563 {
3564 case DW_OP_addr:
3565 ul = extract_unsigned_integer (data, addr_size,
3566 gdbarch_byte_order (arch));
3567 data += addr_size;
3568 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3569 break;
3570
3571 case DW_OP_const1u:
3572 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3573 data += 1;
3574 fprintf_filtered (stream, " %s", pulongest (ul));
3575 break;
3576 case DW_OP_const1s:
3577 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3578 data += 1;
3579 fprintf_filtered (stream, " %s", plongest (l));
3580 break;
3581 case DW_OP_const2u:
3582 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3583 data += 2;
3584 fprintf_filtered (stream, " %s", pulongest (ul));
3585 break;
3586 case DW_OP_const2s:
3587 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3588 data += 2;
3589 fprintf_filtered (stream, " %s", plongest (l));
3590 break;
3591 case DW_OP_const4u:
3592 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3593 data += 4;
3594 fprintf_filtered (stream, " %s", pulongest (ul));
3595 break;
3596 case DW_OP_const4s:
3597 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3598 data += 4;
3599 fprintf_filtered (stream, " %s", plongest (l));
3600 break;
3601 case DW_OP_const8u:
3602 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3603 data += 8;
3604 fprintf_filtered (stream, " %s", pulongest (ul));
3605 break;
3606 case DW_OP_const8s:
3607 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3608 data += 8;
3609 fprintf_filtered (stream, " %s", plongest (l));
3610 break;
3611 case DW_OP_constu:
3612 data = safe_read_uleb128 (data, end, &ul);
3613 fprintf_filtered (stream, " %s", pulongest (ul));
3614 break;
3615 case DW_OP_consts:
3616 data = safe_read_sleb128 (data, end, &l);
3617 fprintf_filtered (stream, " %s", plongest (l));
3618 break;
3619
3620 case DW_OP_reg0:
3621 case DW_OP_reg1:
3622 case DW_OP_reg2:
3623 case DW_OP_reg3:
3624 case DW_OP_reg4:
3625 case DW_OP_reg5:
3626 case DW_OP_reg6:
3627 case DW_OP_reg7:
3628 case DW_OP_reg8:
3629 case DW_OP_reg9:
3630 case DW_OP_reg10:
3631 case DW_OP_reg11:
3632 case DW_OP_reg12:
3633 case DW_OP_reg13:
3634 case DW_OP_reg14:
3635 case DW_OP_reg15:
3636 case DW_OP_reg16:
3637 case DW_OP_reg17:
3638 case DW_OP_reg18:
3639 case DW_OP_reg19:
3640 case DW_OP_reg20:
3641 case DW_OP_reg21:
3642 case DW_OP_reg22:
3643 case DW_OP_reg23:
3644 case DW_OP_reg24:
3645 case DW_OP_reg25:
3646 case DW_OP_reg26:
3647 case DW_OP_reg27:
3648 case DW_OP_reg28:
3649 case DW_OP_reg29:
3650 case DW_OP_reg30:
3651 case DW_OP_reg31:
3652 fprintf_filtered (stream, " [$%s]",
3653 locexpr_regname (arch, op - DW_OP_reg0));
3654 break;
3655
3656 case DW_OP_regx:
3657 data = safe_read_uleb128 (data, end, &ul);
3658 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3659 locexpr_regname (arch, (int) ul));
3660 break;
3661
3662 case DW_OP_implicit_value:
3663 data = safe_read_uleb128 (data, end, &ul);
3664 data += ul;
3665 fprintf_filtered (stream, " %s", pulongest (ul));
3666 break;
3667
3668 case DW_OP_breg0:
3669 case DW_OP_breg1:
3670 case DW_OP_breg2:
3671 case DW_OP_breg3:
3672 case DW_OP_breg4:
3673 case DW_OP_breg5:
3674 case DW_OP_breg6:
3675 case DW_OP_breg7:
3676 case DW_OP_breg8:
3677 case DW_OP_breg9:
3678 case DW_OP_breg10:
3679 case DW_OP_breg11:
3680 case DW_OP_breg12:
3681 case DW_OP_breg13:
3682 case DW_OP_breg14:
3683 case DW_OP_breg15:
3684 case DW_OP_breg16:
3685 case DW_OP_breg17:
3686 case DW_OP_breg18:
3687 case DW_OP_breg19:
3688 case DW_OP_breg20:
3689 case DW_OP_breg21:
3690 case DW_OP_breg22:
3691 case DW_OP_breg23:
3692 case DW_OP_breg24:
3693 case DW_OP_breg25:
3694 case DW_OP_breg26:
3695 case DW_OP_breg27:
3696 case DW_OP_breg28:
3697 case DW_OP_breg29:
3698 case DW_OP_breg30:
3699 case DW_OP_breg31:
3700 data = safe_read_sleb128 (data, end, &l);
3701 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3702 locexpr_regname (arch, op - DW_OP_breg0));
3703 break;
3704
3705 case DW_OP_bregx:
3706 data = safe_read_uleb128 (data, end, &ul);
3707 data = safe_read_sleb128 (data, end, &l);
3708 fprintf_filtered (stream, " register %s [$%s] offset %s",
3709 pulongest (ul),
3710 locexpr_regname (arch, (int) ul),
3711 plongest (l));
3712 break;
3713
3714 case DW_OP_fbreg:
3715 data = safe_read_sleb128 (data, end, &l);
3716 fprintf_filtered (stream, " %s", plongest (l));
3717 break;
3718
3719 case DW_OP_xderef_size:
3720 case DW_OP_deref_size:
3721 case DW_OP_pick:
3722 fprintf_filtered (stream, " %d", *data);
3723 ++data;
3724 break;
3725
3726 case DW_OP_plus_uconst:
3727 data = safe_read_uleb128 (data, end, &ul);
3728 fprintf_filtered (stream, " %s", pulongest (ul));
3729 break;
3730
3731 case DW_OP_skip:
3732 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3733 data += 2;
3734 fprintf_filtered (stream, " to %ld",
3735 (long) (data + l - start));
3736 break;
3737
3738 case DW_OP_bra:
3739 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3740 data += 2;
3741 fprintf_filtered (stream, " %ld",
3742 (long) (data + l - start));
3743 break;
3744
3745 case DW_OP_call2:
3746 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3747 data += 2;
3748 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3749 break;
3750
3751 case DW_OP_call4:
3752 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3753 data += 4;
3754 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3755 break;
3756
3757 case DW_OP_call_ref:
3758 ul = extract_unsigned_integer (data, offset_size,
3759 gdbarch_byte_order (arch));
3760 data += offset_size;
3761 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3762 break;
3763
3764 case DW_OP_piece:
3765 data = safe_read_uleb128 (data, end, &ul);
3766 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3767 break;
3768
3769 case DW_OP_bit_piece:
3770 {
3771 uint64_t offset;
3772
3773 data = safe_read_uleb128 (data, end, &ul);
3774 data = safe_read_uleb128 (data, end, &offset);
3775 fprintf_filtered (stream, " size %s offset %s (bits)",
3776 pulongest (ul), pulongest (offset));
3777 }
3778 break;
3779
3780 case DW_OP_GNU_implicit_pointer:
3781 {
3782 ul = extract_unsigned_integer (data, offset_size,
3783 gdbarch_byte_order (arch));
3784 data += offset_size;
3785
3786 data = safe_read_sleb128 (data, end, &l);
3787
3788 fprintf_filtered (stream, " DIE %s offset %s",
3789 phex_nz (ul, offset_size),
3790 plongest (l));
3791 }
3792 break;
3793
3794 case DW_OP_GNU_deref_type:
3795 {
3796 int addr_size = *data++;
3797 cu_offset offset;
3798 struct type *type;
3799
3800 data = safe_read_uleb128 (data, end, &ul);
3801 offset.cu_off = ul;
3802 type = dwarf2_get_die_type (offset, per_cu);
3803 fprintf_filtered (stream, "<");
3804 type_print (type, "", stream, -1);
3805 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3806 addr_size);
3807 }
3808 break;
3809
3810 case DW_OP_GNU_const_type:
3811 {
3812 cu_offset type_die;
3813 struct type *type;
3814
3815 data = safe_read_uleb128 (data, end, &ul);
3816 type_die.cu_off = ul;
3817 type = dwarf2_get_die_type (type_die, per_cu);
3818 fprintf_filtered (stream, "<");
3819 type_print (type, "", stream, -1);
3820 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3821 }
3822 break;
3823
3824 case DW_OP_GNU_regval_type:
3825 {
3826 uint64_t reg;
3827 cu_offset type_die;
3828 struct type *type;
3829
3830 data = safe_read_uleb128 (data, end, &reg);
3831 data = safe_read_uleb128 (data, end, &ul);
3832 type_die.cu_off = ul;
3833
3834 type = dwarf2_get_die_type (type_die, per_cu);
3835 fprintf_filtered (stream, "<");
3836 type_print (type, "", stream, -1);
3837 fprintf_filtered (stream, " [0x%s]> [$%s]",
3838 phex_nz (type_die.cu_off, 0),
3839 locexpr_regname (arch, reg));
3840 }
3841 break;
3842
3843 case DW_OP_GNU_convert:
3844 case DW_OP_GNU_reinterpret:
3845 {
3846 cu_offset type_die;
3847
3848 data = safe_read_uleb128 (data, end, &ul);
3849 type_die.cu_off = ul;
3850
3851 if (type_die.cu_off == 0)
3852 fprintf_filtered (stream, "<0>");
3853 else
3854 {
3855 struct type *type;
3856
3857 type = dwarf2_get_die_type (type_die, per_cu);
3858 fprintf_filtered (stream, "<");
3859 type_print (type, "", stream, -1);
3860 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3861 }
3862 }
3863 break;
3864
3865 case DW_OP_GNU_entry_value:
3866 data = safe_read_uleb128 (data, end, &ul);
3867 fputc_filtered ('\n', stream);
3868 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3869 start, data, data + ul, indent + 2,
3870 all, per_cu);
3871 data += ul;
3872 continue;
3873
3874 case DW_OP_GNU_parameter_ref:
3875 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3876 data += 4;
3877 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3878 break;
3879
3880 case DW_OP_GNU_addr_index:
3881 data = safe_read_uleb128 (data, end, &ul);
3882 ul = dwarf2_read_addr_index (per_cu, ul);
3883 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3884 break;
3885 case DW_OP_GNU_const_index:
3886 data = safe_read_uleb128 (data, end, &ul);
3887 ul = dwarf2_read_addr_index (per_cu, ul);
3888 fprintf_filtered (stream, " %s", pulongest (ul));
3889 break;
3890 }
3891
3892 fprintf_filtered (stream, "\n");
3893 }
3894
3895 return data;
3896 }
3897
3898 /* Describe a single location, which may in turn consist of multiple
3899 pieces. */
3900
3901 static void
3902 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
3903 struct ui_file *stream,
3904 const gdb_byte *data, size_t size,
3905 struct objfile *objfile, unsigned int addr_size,
3906 int offset_size, struct dwarf2_per_cu_data *per_cu)
3907 {
3908 const gdb_byte *end = data + size;
3909 int first_piece = 1, bad = 0;
3910
3911 while (data < end)
3912 {
3913 const gdb_byte *here = data;
3914 int disassemble = 1;
3915
3916 if (first_piece)
3917 first_piece = 0;
3918 else
3919 fprintf_filtered (stream, _(", and "));
3920
3921 if (!dwarf2_always_disassemble)
3922 {
3923 data = locexpr_describe_location_piece (symbol, stream,
3924 addr, objfile, per_cu,
3925 data, end, addr_size);
3926 /* If we printed anything, or if we have an empty piece,
3927 then don't disassemble. */
3928 if (data != here
3929 || data[0] == DW_OP_piece
3930 || data[0] == DW_OP_bit_piece)
3931 disassemble = 0;
3932 }
3933 if (disassemble)
3934 {
3935 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
3936 data = disassemble_dwarf_expression (stream,
3937 get_objfile_arch (objfile),
3938 addr_size, offset_size, data,
3939 data, end, 0,
3940 dwarf2_always_disassemble,
3941 per_cu);
3942 }
3943
3944 if (data < end)
3945 {
3946 int empty = data == here;
3947
3948 if (disassemble)
3949 fprintf_filtered (stream, " ");
3950 if (data[0] == DW_OP_piece)
3951 {
3952 uint64_t bytes;
3953
3954 data = safe_read_uleb128 (data + 1, end, &bytes);
3955
3956 if (empty)
3957 fprintf_filtered (stream, _("an empty %s-byte piece"),
3958 pulongest (bytes));
3959 else
3960 fprintf_filtered (stream, _(" [%s-byte piece]"),
3961 pulongest (bytes));
3962 }
3963 else if (data[0] == DW_OP_bit_piece)
3964 {
3965 uint64_t bits, offset;
3966
3967 data = safe_read_uleb128 (data + 1, end, &bits);
3968 data = safe_read_uleb128 (data, end, &offset);
3969
3970 if (empty)
3971 fprintf_filtered (stream,
3972 _("an empty %s-bit piece"),
3973 pulongest (bits));
3974 else
3975 fprintf_filtered (stream,
3976 _(" [%s-bit piece, offset %s bits]"),
3977 pulongest (bits), pulongest (offset));
3978 }
3979 else
3980 {
3981 bad = 1;
3982 break;
3983 }
3984 }
3985 }
3986
3987 if (bad || data > end)
3988 error (_("Corrupted DWARF2 expression for \"%s\"."),
3989 SYMBOL_PRINT_NAME (symbol));
3990 }
3991
3992 /* Print a natural-language description of SYMBOL to STREAM. This
3993 version is for a symbol with a single location. */
3994
3995 static void
3996 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
3997 struct ui_file *stream)
3998 {
3999 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4000 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4001 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4002 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4003
4004 locexpr_describe_location_1 (symbol, addr, stream,
4005 dlbaton->data, dlbaton->size,
4006 objfile, addr_size, offset_size,
4007 dlbaton->per_cu);
4008 }
4009
4010 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4011 any necessary bytecode in AX. */
4012
4013 static void
4014 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4015 struct agent_expr *ax, struct axs_value *value)
4016 {
4017 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4018 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4019
4020 if (dlbaton->size == 0)
4021 value->optimized_out = 1;
4022 else
4023 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4024 dlbaton->data, dlbaton->data + dlbaton->size,
4025 dlbaton->per_cu);
4026 }
4027
4028 /* The set of location functions used with the DWARF-2 expression
4029 evaluator. */
4030 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4031 locexpr_read_variable,
4032 locexpr_read_variable_at_entry,
4033 locexpr_read_needs_frame,
4034 locexpr_describe_location,
4035 0, /* location_has_loclist */
4036 locexpr_tracepoint_var_ref
4037 };
4038
4039
4040 /* Wrapper functions for location lists. These generally find
4041 the appropriate location expression and call something above. */
4042
4043 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4044 evaluator to calculate the location. */
4045 static struct value *
4046 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4047 {
4048 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4049 struct value *val;
4050 const gdb_byte *data;
4051 size_t size;
4052 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4053
4054 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4055 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4056 dlbaton->per_cu);
4057
4058 return val;
4059 }
4060
4061 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4062 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4063 will be thrown.
4064
4065 Function always returns non-NULL value, it may be marked optimized out if
4066 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4067 if it cannot resolve the parameter for any reason. */
4068
4069 static struct value *
4070 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4071 {
4072 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4073 const gdb_byte *data;
4074 size_t size;
4075 CORE_ADDR pc;
4076
4077 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4078 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4079
4080 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4081 if (data == NULL)
4082 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4083
4084 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4085 }
4086
4087 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4088 static int
4089 loclist_read_needs_frame (struct symbol *symbol)
4090 {
4091 /* If there's a location list, then assume we need to have a frame
4092 to choose the appropriate location expression. With tracking of
4093 global variables this is not necessarily true, but such tracking
4094 is disabled in GCC at the moment until we figure out how to
4095 represent it. */
4096
4097 return 1;
4098 }
4099
4100 /* Print a natural-language description of SYMBOL to STREAM. This
4101 version applies when there is a list of different locations, each
4102 with a specified address range. */
4103
4104 static void
4105 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4106 struct ui_file *stream)
4107 {
4108 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4109 const gdb_byte *loc_ptr, *buf_end;
4110 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4111 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4113 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4114 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4115 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4116 /* Adjust base_address for relocatable objects. */
4117 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4118 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4119 int done = 0;
4120
4121 loc_ptr = dlbaton->data;
4122 buf_end = dlbaton->data + dlbaton->size;
4123
4124 fprintf_filtered (stream, _("multi-location:\n"));
4125
4126 /* Iterate through locations until we run out. */
4127 while (!done)
4128 {
4129 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4130 int length;
4131 enum debug_loc_kind kind;
4132 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4133
4134 if (dlbaton->from_dwo)
4135 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4136 loc_ptr, buf_end, &new_ptr,
4137 &low, &high, byte_order);
4138 else
4139 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4140 &low, &high,
4141 byte_order, addr_size,
4142 signed_addr_p);
4143 loc_ptr = new_ptr;
4144 switch (kind)
4145 {
4146 case DEBUG_LOC_END_OF_LIST:
4147 done = 1;
4148 continue;
4149 case DEBUG_LOC_BASE_ADDRESS:
4150 base_address = high + base_offset;
4151 fprintf_filtered (stream, _(" Base address %s"),
4152 paddress (gdbarch, base_address));
4153 continue;
4154 case DEBUG_LOC_START_END:
4155 case DEBUG_LOC_START_LENGTH:
4156 break;
4157 case DEBUG_LOC_BUFFER_OVERFLOW:
4158 case DEBUG_LOC_INVALID_ENTRY:
4159 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4160 SYMBOL_PRINT_NAME (symbol));
4161 default:
4162 gdb_assert_not_reached ("bad debug_loc_kind");
4163 }
4164
4165 /* Otherwise, a location expression entry. */
4166 low += base_address;
4167 high += base_address;
4168
4169 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4170 loc_ptr += 2;
4171
4172 /* (It would improve readability to print only the minimum
4173 necessary digits of the second number of the range.) */
4174 fprintf_filtered (stream, _(" Range %s-%s: "),
4175 paddress (gdbarch, low), paddress (gdbarch, high));
4176
4177 /* Now describe this particular location. */
4178 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4179 objfile, addr_size, offset_size,
4180 dlbaton->per_cu);
4181
4182 fprintf_filtered (stream, "\n");
4183
4184 loc_ptr += length;
4185 }
4186 }
4187
4188 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4189 any necessary bytecode in AX. */
4190 static void
4191 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4192 struct agent_expr *ax, struct axs_value *value)
4193 {
4194 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4195 const gdb_byte *data;
4196 size_t size;
4197 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4198
4199 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4200 if (size == 0)
4201 value->optimized_out = 1;
4202 else
4203 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4204 dlbaton->per_cu);
4205 }
4206
4207 /* The set of location functions used with the DWARF-2 expression
4208 evaluator and location lists. */
4209 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4210 loclist_read_variable,
4211 loclist_read_variable_at_entry,
4212 loclist_read_needs_frame,
4213 loclist_describe_location,
4214 1, /* location_has_loclist */
4215 loclist_tracepoint_var_ref
4216 };
4217
4218 /* Provide a prototype to silence -Wmissing-prototypes. */
4219 extern initialize_file_ftype _initialize_dwarf2loc;
4220
4221 void
4222 _initialize_dwarf2loc (void)
4223 {
4224 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4225 &entry_values_debug,
4226 _("Set entry values and tail call frames "
4227 "debugging."),
4228 _("Show entry values and tail call frames "
4229 "debugging."),
4230 _("When non-zero, the process of determining "
4231 "parameter values from function entry point "
4232 "and tail call frames will be printed."),
4233 NULL,
4234 show_entry_values_debug,
4235 &setdebuglist, &showdebuglist);
4236 }
This page took 0.118917 seconds and 4 git commands to generate.