Run --gc-sections tests only if supported.
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "ui-out.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "inferior.h"
30 #include "ax.h"
31 #include "ax-gdb.h"
32 #include "regcache.h"
33 #include "objfiles.h"
34 #include "exceptions.h"
35 #include "block.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 extern int dwarf2_always_disassemble;
46
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 unsigned short size,
54 struct dwarf2_per_cu_data *per_cu,
55 LONGEST byte_offset);
56
57 /* A function for dealing with location lists. Given a
58 symbol baton (BATON) and a pc value (PC), find the appropriate
59 location expression, set *LOCEXPR_LENGTH, and return a pointer
60 to the beginning of the expression. Returns NULL on failure.
61
62 For now, only return the first matching location expression; there
63 can be more than one in the list. */
64
65 const gdb_byte *
66 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
67 size_t *locexpr_length, CORE_ADDR pc)
68 {
69 CORE_ADDR low, high;
70 const gdb_byte *loc_ptr, *buf_end;
71 int length;
72 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
73 struct gdbarch *gdbarch = get_objfile_arch (objfile);
74 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
75 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
76 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
77 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
78 /* Adjust base_address for relocatable objects. */
79 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
80 CORE_ADDR base_address = baton->base_address + base_offset;
81
82 loc_ptr = baton->data;
83 buf_end = baton->data + baton->size;
84
85 while (1)
86 {
87 if (buf_end - loc_ptr < 2 * addr_size)
88 error (_("dwarf2_find_location_expression: "
89 "Corrupted DWARF expression."));
90
91 if (signed_addr_p)
92 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
93 else
94 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
95 loc_ptr += addr_size;
96
97 if (signed_addr_p)
98 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
99 else
100 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
101 loc_ptr += addr_size;
102
103 /* A base-address-selection entry. */
104 if ((low & base_mask) == base_mask)
105 {
106 base_address = high + base_offset;
107 continue;
108 }
109
110 /* An end-of-list entry. */
111 if (low == 0 && high == 0)
112 return NULL;
113
114 /* Otherwise, a location expression entry. */
115 low += base_address;
116 high += base_address;
117
118 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
119 loc_ptr += 2;
120
121 if (pc >= low && pc < high)
122 {
123 *locexpr_length = length;
124 return loc_ptr;
125 }
126
127 loc_ptr += length;
128 }
129 }
130
131 /* This is the baton used when performing dwarf2 expression
132 evaluation. */
133 struct dwarf_expr_baton
134 {
135 struct frame_info *frame;
136 struct dwarf2_per_cu_data *per_cu;
137 };
138
139 /* Helper functions for dwarf2_evaluate_loc_desc. */
140
141 /* Using the frame specified in BATON, return the value of register
142 REGNUM, treated as a pointer. */
143 static CORE_ADDR
144 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
145 {
146 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
147 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
148 CORE_ADDR result;
149 int regnum;
150
151 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
152 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
153 regnum, debaton->frame);
154 return result;
155 }
156
157 /* Read memory at ADDR (length LEN) into BUF. */
158
159 static void
160 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
161 {
162 read_memory (addr, buf, len);
163 }
164
165 /* Using the frame specified in BATON, find the location expression
166 describing the frame base. Return a pointer to it in START and
167 its length in LENGTH. */
168 static void
169 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
170 {
171 /* FIXME: cagney/2003-03-26: This code should be using
172 get_frame_base_address(), and then implement a dwarf2 specific
173 this_base method. */
174 struct symbol *framefunc;
175 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
176
177 /* Use block_linkage_function, which returns a real (not inlined)
178 function, instead of get_frame_function, which may return an
179 inlined function. */
180 framefunc = block_linkage_function (get_frame_block (debaton->frame, NULL));
181
182 /* If we found a frame-relative symbol then it was certainly within
183 some function associated with a frame. If we can't find the frame,
184 something has gone wrong. */
185 gdb_assert (framefunc != NULL);
186
187 dwarf_expr_frame_base_1 (framefunc,
188 get_frame_address_in_block (debaton->frame),
189 start, length);
190 }
191
192 static void
193 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
194 const gdb_byte **start, size_t *length)
195 {
196 if (SYMBOL_LOCATION_BATON (framefunc) == NULL)
197 *start = NULL;
198 else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs)
199 {
200 struct dwarf2_loclist_baton *symbaton;
201
202 symbaton = SYMBOL_LOCATION_BATON (framefunc);
203 *start = dwarf2_find_location_expression (symbaton, length, pc);
204 }
205 else
206 {
207 struct dwarf2_locexpr_baton *symbaton;
208
209 symbaton = SYMBOL_LOCATION_BATON (framefunc);
210 if (symbaton != NULL)
211 {
212 *length = symbaton->size;
213 *start = symbaton->data;
214 }
215 else
216 *start = NULL;
217 }
218
219 if (*start == NULL)
220 error (_("Could not find the frame base for \"%s\"."),
221 SYMBOL_NATURAL_NAME (framefunc));
222 }
223
224 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
225 the frame in BATON. */
226
227 static CORE_ADDR
228 dwarf_expr_frame_cfa (void *baton)
229 {
230 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
231
232 return dwarf2_frame_cfa (debaton->frame);
233 }
234
235 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
236 the frame in BATON. */
237
238 static CORE_ADDR
239 dwarf_expr_frame_pc (void *baton)
240 {
241 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
242
243 return get_frame_address_in_block (debaton->frame);
244 }
245
246 /* Using the objfile specified in BATON, find the address for the
247 current thread's thread-local storage with offset OFFSET. */
248 static CORE_ADDR
249 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
250 {
251 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
252 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
253
254 return target_translate_tls_address (objfile, offset);
255 }
256
257 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
258 current CU (as is PER_CU). State of the CTX is not affected by the
259 call and return. */
260
261 static void
262 per_cu_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset,
263 struct dwarf2_per_cu_data *per_cu,
264 CORE_ADDR (*get_frame_pc) (void *baton),
265 void *baton)
266 {
267 struct dwarf2_locexpr_baton block;
268
269 block = dwarf2_fetch_die_location_block (die_offset, per_cu,
270 get_frame_pc, baton);
271
272 /* DW_OP_call_ref is currently not supported. */
273 gdb_assert (block.per_cu == per_cu);
274
275 dwarf_expr_eval (ctx, block.data, block.size);
276 }
277
278 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
279
280 static void
281 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
282 {
283 struct dwarf_expr_baton *debaton = ctx->baton;
284
285 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
286 ctx->funcs->get_frame_pc, ctx->baton);
287 }
288
289 /* Callback function for dwarf2_evaluate_loc_desc. */
290
291 static struct type *
292 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx, size_t die_offset)
293 {
294 struct dwarf_expr_baton *debaton = ctx->baton;
295
296 return dwarf2_get_die_type (die_offset, debaton->per_cu);
297 }
298
299 struct piece_closure
300 {
301 /* Reference count. */
302 int refc;
303
304 /* The CU from which this closure's expression came. */
305 struct dwarf2_per_cu_data *per_cu;
306
307 /* The number of pieces used to describe this variable. */
308 int n_pieces;
309
310 /* The target address size, used only for DWARF_VALUE_STACK. */
311 int addr_size;
312
313 /* The pieces themselves. */
314 struct dwarf_expr_piece *pieces;
315 };
316
317 /* Allocate a closure for a value formed from separately-described
318 PIECES. */
319
320 static struct piece_closure *
321 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
322 int n_pieces, struct dwarf_expr_piece *pieces,
323 int addr_size)
324 {
325 struct piece_closure *c = XZALLOC (struct piece_closure);
326 int i;
327
328 c->refc = 1;
329 c->per_cu = per_cu;
330 c->n_pieces = n_pieces;
331 c->addr_size = addr_size;
332 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
333
334 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
335 for (i = 0; i < n_pieces; ++i)
336 if (c->pieces[i].location == DWARF_VALUE_STACK)
337 value_incref (c->pieces[i].v.value);
338
339 return c;
340 }
341
342 /* The lowest-level function to extract bits from a byte buffer.
343 SOURCE is the buffer. It is updated if we read to the end of a
344 byte.
345 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
346 updated to reflect the number of bits actually read.
347 NBITS is the number of bits we want to read. It is updated to
348 reflect the number of bits actually read. This function may read
349 fewer bits.
350 BITS_BIG_ENDIAN is taken directly from gdbarch.
351 This function returns the extracted bits. */
352
353 static unsigned int
354 extract_bits_primitive (const gdb_byte **source,
355 unsigned int *source_offset_bits,
356 int *nbits, int bits_big_endian)
357 {
358 unsigned int avail, mask, datum;
359
360 gdb_assert (*source_offset_bits < 8);
361
362 avail = 8 - *source_offset_bits;
363 if (avail > *nbits)
364 avail = *nbits;
365
366 mask = (1 << avail) - 1;
367 datum = **source;
368 if (bits_big_endian)
369 datum >>= 8 - (*source_offset_bits + *nbits);
370 else
371 datum >>= *source_offset_bits;
372 datum &= mask;
373
374 *nbits -= avail;
375 *source_offset_bits += avail;
376 if (*source_offset_bits >= 8)
377 {
378 *source_offset_bits -= 8;
379 ++*source;
380 }
381
382 return datum;
383 }
384
385 /* Extract some bits from a source buffer and move forward in the
386 buffer.
387
388 SOURCE is the source buffer. It is updated as bytes are read.
389 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
390 bits are read.
391 NBITS is the number of bits to read.
392 BITS_BIG_ENDIAN is taken directly from gdbarch.
393
394 This function returns the bits that were read. */
395
396 static unsigned int
397 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
398 int nbits, int bits_big_endian)
399 {
400 unsigned int datum;
401
402 gdb_assert (nbits > 0 && nbits <= 8);
403
404 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
405 bits_big_endian);
406 if (nbits > 0)
407 {
408 unsigned int more;
409
410 more = extract_bits_primitive (source, source_offset_bits, &nbits,
411 bits_big_endian);
412 if (bits_big_endian)
413 datum <<= nbits;
414 else
415 more <<= nbits;
416 datum |= more;
417 }
418
419 return datum;
420 }
421
422 /* Write some bits into a buffer and move forward in the buffer.
423
424 DATUM is the bits to write. The low-order bits of DATUM are used.
425 DEST is the destination buffer. It is updated as bytes are
426 written.
427 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
428 done.
429 NBITS is the number of valid bits in DATUM.
430 BITS_BIG_ENDIAN is taken directly from gdbarch. */
431
432 static void
433 insert_bits (unsigned int datum,
434 gdb_byte *dest, unsigned int dest_offset_bits,
435 int nbits, int bits_big_endian)
436 {
437 unsigned int mask;
438
439 gdb_assert (dest_offset_bits + nbits <= 8);
440
441 mask = (1 << nbits) - 1;
442 if (bits_big_endian)
443 {
444 datum <<= 8 - (dest_offset_bits + nbits);
445 mask <<= 8 - (dest_offset_bits + nbits);
446 }
447 else
448 {
449 datum <<= dest_offset_bits;
450 mask <<= dest_offset_bits;
451 }
452
453 gdb_assert ((datum & ~mask) == 0);
454
455 *dest = (*dest & ~mask) | datum;
456 }
457
458 /* Copy bits from a source to a destination.
459
460 DEST is where the bits should be written.
461 DEST_OFFSET_BITS is the bit offset into DEST.
462 SOURCE is the source of bits.
463 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
464 BIT_COUNT is the number of bits to copy.
465 BITS_BIG_ENDIAN is taken directly from gdbarch. */
466
467 static void
468 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
469 const gdb_byte *source, unsigned int source_offset_bits,
470 unsigned int bit_count,
471 int bits_big_endian)
472 {
473 unsigned int dest_avail;
474 int datum;
475
476 /* Reduce everything to byte-size pieces. */
477 dest += dest_offset_bits / 8;
478 dest_offset_bits %= 8;
479 source += source_offset_bits / 8;
480 source_offset_bits %= 8;
481
482 dest_avail = 8 - dest_offset_bits % 8;
483
484 /* See if we can fill the first destination byte. */
485 if (dest_avail < bit_count)
486 {
487 datum = extract_bits (&source, &source_offset_bits, dest_avail,
488 bits_big_endian);
489 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
490 ++dest;
491 dest_offset_bits = 0;
492 bit_count -= dest_avail;
493 }
494
495 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
496 than 8 bits remaining. */
497 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
498 for (; bit_count >= 8; bit_count -= 8)
499 {
500 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
501 *dest++ = (gdb_byte) datum;
502 }
503
504 /* Finally, we may have a few leftover bits. */
505 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
506 if (bit_count > 0)
507 {
508 datum = extract_bits (&source, &source_offset_bits, bit_count,
509 bits_big_endian);
510 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
511 }
512 }
513
514 static void
515 read_pieced_value (struct value *v)
516 {
517 int i;
518 long offset = 0;
519 ULONGEST bits_to_skip;
520 gdb_byte *contents;
521 struct piece_closure *c
522 = (struct piece_closure *) value_computed_closure (v);
523 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
524 size_t type_len;
525 size_t buffer_size = 0;
526 char *buffer = NULL;
527 struct cleanup *cleanup;
528 int bits_big_endian
529 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
530
531 if (value_type (v) != value_enclosing_type (v))
532 internal_error (__FILE__, __LINE__,
533 _("Should not be able to create a lazy value with "
534 "an enclosing type"));
535
536 cleanup = make_cleanup (free_current_contents, &buffer);
537
538 contents = value_contents_raw (v);
539 bits_to_skip = 8 * value_offset (v);
540 if (value_bitsize (v))
541 {
542 bits_to_skip += value_bitpos (v);
543 type_len = value_bitsize (v);
544 }
545 else
546 type_len = 8 * TYPE_LENGTH (value_type (v));
547
548 for (i = 0; i < c->n_pieces && offset < type_len; i++)
549 {
550 struct dwarf_expr_piece *p = &c->pieces[i];
551 size_t this_size, this_size_bits;
552 long dest_offset_bits, source_offset_bits, source_offset;
553 const gdb_byte *intermediate_buffer;
554
555 /* Compute size, source, and destination offsets for copying, in
556 bits. */
557 this_size_bits = p->size;
558 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
559 {
560 bits_to_skip -= this_size_bits;
561 continue;
562 }
563 if (this_size_bits > type_len - offset)
564 this_size_bits = type_len - offset;
565 if (bits_to_skip > 0)
566 {
567 dest_offset_bits = 0;
568 source_offset_bits = bits_to_skip;
569 this_size_bits -= bits_to_skip;
570 bits_to_skip = 0;
571 }
572 else
573 {
574 dest_offset_bits = offset;
575 source_offset_bits = 0;
576 }
577
578 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
579 source_offset = source_offset_bits / 8;
580 if (buffer_size < this_size)
581 {
582 buffer_size = this_size;
583 buffer = xrealloc (buffer, buffer_size);
584 }
585 intermediate_buffer = buffer;
586
587 /* Copy from the source to DEST_BUFFER. */
588 switch (p->location)
589 {
590 case DWARF_VALUE_REGISTER:
591 {
592 struct gdbarch *arch = get_frame_arch (frame);
593 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
594 int reg_offset = source_offset;
595
596 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
597 && this_size < register_size (arch, gdb_regnum))
598 {
599 /* Big-endian, and we want less than full size. */
600 reg_offset = register_size (arch, gdb_regnum) - this_size;
601 /* We want the lower-order THIS_SIZE_BITS of the bytes
602 we extract from the register. */
603 source_offset_bits += 8 * this_size - this_size_bits;
604 }
605
606 if (gdb_regnum != -1)
607 {
608 int optim, unavail;
609
610 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
611 this_size, buffer,
612 &optim, &unavail))
613 {
614 /* Just so garbage doesn't ever shine through. */
615 memset (buffer, 0, this_size);
616
617 if (optim)
618 set_value_optimized_out (v, 1);
619 if (unavail)
620 mark_value_bytes_unavailable (v, offset, this_size);
621 }
622 }
623 else
624 {
625 error (_("Unable to access DWARF register number %s"),
626 paddress (arch, p->v.regno));
627 }
628 }
629 break;
630
631 case DWARF_VALUE_MEMORY:
632 read_value_memory (v, offset,
633 p->v.mem.in_stack_memory,
634 p->v.mem.addr + source_offset,
635 buffer, this_size);
636 break;
637
638 case DWARF_VALUE_STACK:
639 {
640 size_t n = this_size;
641
642 if (n > c->addr_size - source_offset)
643 n = (c->addr_size >= source_offset
644 ? c->addr_size - source_offset
645 : 0);
646 if (n == 0)
647 {
648 /* Nothing. */
649 }
650 else
651 {
652 const gdb_byte *val_bytes = value_contents_all (p->v.value);
653
654 intermediate_buffer = val_bytes + source_offset;
655 }
656 }
657 break;
658
659 case DWARF_VALUE_LITERAL:
660 {
661 size_t n = this_size;
662
663 if (n > p->v.literal.length - source_offset)
664 n = (p->v.literal.length >= source_offset
665 ? p->v.literal.length - source_offset
666 : 0);
667 if (n != 0)
668 intermediate_buffer = p->v.literal.data + source_offset;
669 }
670 break;
671
672 /* These bits show up as zeros -- but do not cause the value
673 to be considered optimized-out. */
674 case DWARF_VALUE_IMPLICIT_POINTER:
675 break;
676
677 case DWARF_VALUE_OPTIMIZED_OUT:
678 set_value_optimized_out (v, 1);
679 break;
680
681 default:
682 internal_error (__FILE__, __LINE__, _("invalid location type"));
683 }
684
685 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
686 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
687 copy_bitwise (contents, dest_offset_bits,
688 intermediate_buffer, source_offset_bits % 8,
689 this_size_bits, bits_big_endian);
690
691 offset += this_size_bits;
692 }
693
694 do_cleanups (cleanup);
695 }
696
697 static void
698 write_pieced_value (struct value *to, struct value *from)
699 {
700 int i;
701 long offset = 0;
702 ULONGEST bits_to_skip;
703 const gdb_byte *contents;
704 struct piece_closure *c
705 = (struct piece_closure *) value_computed_closure (to);
706 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
707 size_t type_len;
708 size_t buffer_size = 0;
709 char *buffer = NULL;
710 struct cleanup *cleanup;
711 int bits_big_endian
712 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
713
714 if (frame == NULL)
715 {
716 set_value_optimized_out (to, 1);
717 return;
718 }
719
720 cleanup = make_cleanup (free_current_contents, &buffer);
721
722 contents = value_contents (from);
723 bits_to_skip = 8 * value_offset (to);
724 if (value_bitsize (to))
725 {
726 bits_to_skip += value_bitpos (to);
727 type_len = value_bitsize (to);
728 }
729 else
730 type_len = 8 * TYPE_LENGTH (value_type (to));
731
732 for (i = 0; i < c->n_pieces && offset < type_len; i++)
733 {
734 struct dwarf_expr_piece *p = &c->pieces[i];
735 size_t this_size_bits, this_size;
736 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
737 int need_bitwise;
738 const gdb_byte *source_buffer;
739
740 this_size_bits = p->size;
741 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
742 {
743 bits_to_skip -= this_size_bits;
744 continue;
745 }
746 if (this_size_bits > type_len - offset)
747 this_size_bits = type_len - offset;
748 if (bits_to_skip > 0)
749 {
750 dest_offset_bits = bits_to_skip;
751 source_offset_bits = 0;
752 this_size_bits -= bits_to_skip;
753 bits_to_skip = 0;
754 }
755 else
756 {
757 dest_offset_bits = 0;
758 source_offset_bits = offset;
759 }
760
761 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
762 source_offset = source_offset_bits / 8;
763 dest_offset = dest_offset_bits / 8;
764 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
765 {
766 source_buffer = contents + source_offset;
767 need_bitwise = 0;
768 }
769 else
770 {
771 if (buffer_size < this_size)
772 {
773 buffer_size = this_size;
774 buffer = xrealloc (buffer, buffer_size);
775 }
776 source_buffer = buffer;
777 need_bitwise = 1;
778 }
779
780 switch (p->location)
781 {
782 case DWARF_VALUE_REGISTER:
783 {
784 struct gdbarch *arch = get_frame_arch (frame);
785 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
786 int reg_offset = dest_offset;
787
788 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
789 && this_size <= register_size (arch, gdb_regnum))
790 /* Big-endian, and we want less than full size. */
791 reg_offset = register_size (arch, gdb_regnum) - this_size;
792
793 if (gdb_regnum != -1)
794 {
795 if (need_bitwise)
796 {
797 int optim, unavail;
798
799 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
800 this_size, buffer,
801 &optim, &unavail))
802 {
803 if (optim)
804 error (_("Can't do read-modify-write to "
805 "update bitfield; containing word has been "
806 "optimized out"));
807 if (unavail)
808 throw_error (NOT_AVAILABLE_ERROR,
809 _("Can't do read-modify-write to update "
810 "bitfield; containing word "
811 "is unavailable"));
812 }
813 copy_bitwise (buffer, dest_offset_bits,
814 contents, source_offset_bits,
815 this_size_bits,
816 bits_big_endian);
817 }
818
819 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
820 this_size, source_buffer);
821 }
822 else
823 {
824 error (_("Unable to write to DWARF register number %s"),
825 paddress (arch, p->v.regno));
826 }
827 }
828 break;
829 case DWARF_VALUE_MEMORY:
830 if (need_bitwise)
831 {
832 /* Only the first and last bytes can possibly have any
833 bits reused. */
834 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
835 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
836 buffer + this_size - 1, 1);
837 copy_bitwise (buffer, dest_offset_bits,
838 contents, source_offset_bits,
839 this_size_bits,
840 bits_big_endian);
841 }
842
843 write_memory (p->v.mem.addr + dest_offset,
844 source_buffer, this_size);
845 break;
846 default:
847 set_value_optimized_out (to, 1);
848 break;
849 }
850 offset += this_size_bits;
851 }
852
853 do_cleanups (cleanup);
854 }
855
856 /* A helper function that checks bit validity in a pieced value.
857 CHECK_FOR indicates the kind of validity checking.
858 DWARF_VALUE_MEMORY means to check whether any bit is valid.
859 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
860 optimized out.
861 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
862 implicit pointer. */
863
864 static int
865 check_pieced_value_bits (const struct value *value, int bit_offset,
866 int bit_length,
867 enum dwarf_value_location check_for)
868 {
869 struct piece_closure *c
870 = (struct piece_closure *) value_computed_closure (value);
871 int i;
872 int validity = (check_for == DWARF_VALUE_MEMORY
873 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
874
875 bit_offset += 8 * value_offset (value);
876 if (value_bitsize (value))
877 bit_offset += value_bitpos (value);
878
879 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
880 {
881 struct dwarf_expr_piece *p = &c->pieces[i];
882 size_t this_size_bits = p->size;
883
884 if (bit_offset > 0)
885 {
886 if (bit_offset >= this_size_bits)
887 {
888 bit_offset -= this_size_bits;
889 continue;
890 }
891
892 bit_length -= this_size_bits - bit_offset;
893 bit_offset = 0;
894 }
895 else
896 bit_length -= this_size_bits;
897
898 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
899 {
900 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
901 return 0;
902 }
903 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
904 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
905 {
906 if (validity)
907 return 0;
908 }
909 else
910 {
911 if (!validity)
912 return 1;
913 }
914 }
915
916 return validity;
917 }
918
919 static int
920 check_pieced_value_validity (const struct value *value, int bit_offset,
921 int bit_length)
922 {
923 return check_pieced_value_bits (value, bit_offset, bit_length,
924 DWARF_VALUE_MEMORY);
925 }
926
927 static int
928 check_pieced_value_invalid (const struct value *value)
929 {
930 return check_pieced_value_bits (value, 0,
931 8 * TYPE_LENGTH (value_type (value)),
932 DWARF_VALUE_OPTIMIZED_OUT);
933 }
934
935 /* An implementation of an lval_funcs method to see whether a value is
936 a synthetic pointer. */
937
938 static int
939 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
940 int bit_length)
941 {
942 return check_pieced_value_bits (value, bit_offset, bit_length,
943 DWARF_VALUE_IMPLICIT_POINTER);
944 }
945
946 /* A wrapper function for get_frame_address_in_block. */
947
948 static CORE_ADDR
949 get_frame_address_in_block_wrapper (void *baton)
950 {
951 return get_frame_address_in_block (baton);
952 }
953
954 /* An implementation of an lval_funcs method to indirect through a
955 pointer. This handles the synthetic pointer case when needed. */
956
957 static struct value *
958 indirect_pieced_value (struct value *value)
959 {
960 struct piece_closure *c
961 = (struct piece_closure *) value_computed_closure (value);
962 struct type *type;
963 struct frame_info *frame;
964 struct dwarf2_locexpr_baton baton;
965 int i, bit_offset, bit_length;
966 struct dwarf_expr_piece *piece = NULL;
967 LONGEST byte_offset;
968
969 type = check_typedef (value_type (value));
970 if (TYPE_CODE (type) != TYPE_CODE_PTR)
971 return NULL;
972
973 bit_length = 8 * TYPE_LENGTH (type);
974 bit_offset = 8 * value_offset (value);
975 if (value_bitsize (value))
976 bit_offset += value_bitpos (value);
977
978 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
979 {
980 struct dwarf_expr_piece *p = &c->pieces[i];
981 size_t this_size_bits = p->size;
982
983 if (bit_offset > 0)
984 {
985 if (bit_offset >= this_size_bits)
986 {
987 bit_offset -= this_size_bits;
988 continue;
989 }
990
991 bit_length -= this_size_bits - bit_offset;
992 bit_offset = 0;
993 }
994 else
995 bit_length -= this_size_bits;
996
997 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
998 return NULL;
999
1000 if (bit_length != 0)
1001 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
1002
1003 piece = p;
1004 break;
1005 }
1006
1007 frame = get_selected_frame (_("No frame selected."));
1008
1009 /* This is an offset requested by GDB, such as value subcripts. */
1010 byte_offset = value_as_address (value);
1011
1012 gdb_assert (piece);
1013 baton = dwarf2_fetch_die_location_block (piece->v.ptr.die, c->per_cu,
1014 get_frame_address_in_block_wrapper,
1015 frame);
1016
1017 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
1018 baton.data, baton.size, baton.per_cu,
1019 piece->v.ptr.offset + byte_offset);
1020 }
1021
1022 static void *
1023 copy_pieced_value_closure (const struct value *v)
1024 {
1025 struct piece_closure *c
1026 = (struct piece_closure *) value_computed_closure (v);
1027
1028 ++c->refc;
1029 return c;
1030 }
1031
1032 static void
1033 free_pieced_value_closure (struct value *v)
1034 {
1035 struct piece_closure *c
1036 = (struct piece_closure *) value_computed_closure (v);
1037
1038 --c->refc;
1039 if (c->refc == 0)
1040 {
1041 int i;
1042
1043 for (i = 0; i < c->n_pieces; ++i)
1044 if (c->pieces[i].location == DWARF_VALUE_STACK)
1045 value_free (c->pieces[i].v.value);
1046
1047 xfree (c->pieces);
1048 xfree (c);
1049 }
1050 }
1051
1052 /* Functions for accessing a variable described by DW_OP_piece. */
1053 static const struct lval_funcs pieced_value_funcs = {
1054 read_pieced_value,
1055 write_pieced_value,
1056 check_pieced_value_validity,
1057 check_pieced_value_invalid,
1058 indirect_pieced_value,
1059 check_pieced_synthetic_pointer,
1060 copy_pieced_value_closure,
1061 free_pieced_value_closure
1062 };
1063
1064 /* Helper function which throws an error if a synthetic pointer is
1065 invalid. */
1066
1067 static void
1068 invalid_synthetic_pointer (void)
1069 {
1070 error (_("access outside bounds of object "
1071 "referenced via synthetic pointer"));
1072 }
1073
1074 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
1075
1076 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
1077 {
1078 dwarf_expr_read_reg,
1079 dwarf_expr_read_mem,
1080 dwarf_expr_frame_base,
1081 dwarf_expr_frame_cfa,
1082 dwarf_expr_frame_pc,
1083 dwarf_expr_tls_address,
1084 dwarf_expr_dwarf_call,
1085 dwarf_expr_get_base_type
1086 };
1087
1088 /* Evaluate a location description, starting at DATA and with length
1089 SIZE, to find the current location of variable of TYPE in the
1090 context of FRAME. BYTE_OFFSET is applied after the contents are
1091 computed. */
1092
1093 static struct value *
1094 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
1095 const gdb_byte *data, unsigned short size,
1096 struct dwarf2_per_cu_data *per_cu,
1097 LONGEST byte_offset)
1098 {
1099 struct value *retval;
1100 struct dwarf_expr_baton baton;
1101 struct dwarf_expr_context *ctx;
1102 struct cleanup *old_chain, *value_chain;
1103 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
1104 volatile struct gdb_exception ex;
1105
1106 if (byte_offset < 0)
1107 invalid_synthetic_pointer ();
1108
1109 if (size == 0)
1110 return allocate_optimized_out_value (type);
1111
1112 baton.frame = frame;
1113 baton.per_cu = per_cu;
1114
1115 ctx = new_dwarf_expr_context ();
1116 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
1117 value_chain = make_cleanup_value_free_to_mark (value_mark ());
1118
1119 ctx->gdbarch = get_objfile_arch (objfile);
1120 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
1121 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
1122 ctx->baton = &baton;
1123 ctx->funcs = &dwarf_expr_ctx_funcs;
1124
1125 TRY_CATCH (ex, RETURN_MASK_ERROR)
1126 {
1127 dwarf_expr_eval (ctx, data, size);
1128 }
1129 if (ex.reason < 0)
1130 {
1131 if (ex.error == NOT_AVAILABLE_ERROR)
1132 {
1133 do_cleanups (old_chain);
1134 retval = allocate_value (type);
1135 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
1136 return retval;
1137 }
1138 else
1139 throw_exception (ex);
1140 }
1141
1142 if (ctx->num_pieces > 0)
1143 {
1144 struct piece_closure *c;
1145 struct frame_id frame_id = get_frame_id (frame);
1146 ULONGEST bit_size = 0;
1147 int i;
1148
1149 for (i = 0; i < ctx->num_pieces; ++i)
1150 bit_size += ctx->pieces[i].size;
1151 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
1152 invalid_synthetic_pointer ();
1153
1154 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
1155 ctx->addr_size);
1156 /* We must clean up the value chain after creating the piece
1157 closure but before allocating the result. */
1158 do_cleanups (value_chain);
1159 retval = allocate_computed_value (type, &pieced_value_funcs, c);
1160 VALUE_FRAME_ID (retval) = frame_id;
1161 set_value_offset (retval, byte_offset);
1162 }
1163 else
1164 {
1165 switch (ctx->location)
1166 {
1167 case DWARF_VALUE_REGISTER:
1168 {
1169 struct gdbarch *arch = get_frame_arch (frame);
1170 ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0));
1171 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
1172
1173 if (byte_offset != 0)
1174 error (_("cannot use offset on synthetic pointer to register"));
1175 do_cleanups (value_chain);
1176 if (gdb_regnum != -1)
1177 retval = value_from_register (type, gdb_regnum, frame);
1178 else
1179 error (_("Unable to access DWARF register number %s"),
1180 paddress (arch, dwarf_regnum));
1181 }
1182 break;
1183
1184 case DWARF_VALUE_MEMORY:
1185 {
1186 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
1187 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
1188
1189 do_cleanups (value_chain);
1190 retval = allocate_value_lazy (type);
1191 VALUE_LVAL (retval) = lval_memory;
1192 if (in_stack_memory)
1193 set_value_stack (retval, 1);
1194 set_value_address (retval, address + byte_offset);
1195 }
1196 break;
1197
1198 case DWARF_VALUE_STACK:
1199 {
1200 struct value *value = dwarf_expr_fetch (ctx, 0);
1201 gdb_byte *contents;
1202 const gdb_byte *val_bytes;
1203 size_t n = TYPE_LENGTH (value_type (value));
1204
1205 if (byte_offset + TYPE_LENGTH (type) > n)
1206 invalid_synthetic_pointer ();
1207
1208 val_bytes = value_contents_all (value);
1209 val_bytes += byte_offset;
1210 n -= byte_offset;
1211
1212 /* Preserve VALUE because we are going to free values back
1213 to the mark, but we still need the value contents
1214 below. */
1215 value_incref (value);
1216 do_cleanups (value_chain);
1217 make_cleanup_value_free (value);
1218
1219 retval = allocate_value (type);
1220 contents = value_contents_raw (retval);
1221 if (n > TYPE_LENGTH (type))
1222 {
1223 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1224
1225 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1226 val_bytes += n - TYPE_LENGTH (type);
1227 n = TYPE_LENGTH (type);
1228 }
1229 memcpy (contents, val_bytes, n);
1230 }
1231 break;
1232
1233 case DWARF_VALUE_LITERAL:
1234 {
1235 bfd_byte *contents;
1236 const bfd_byte *ldata;
1237 size_t n = ctx->len;
1238
1239 if (byte_offset + TYPE_LENGTH (type) > n)
1240 invalid_synthetic_pointer ();
1241
1242 do_cleanups (value_chain);
1243 retval = allocate_value (type);
1244 contents = value_contents_raw (retval);
1245
1246 ldata = ctx->data + byte_offset;
1247 n -= byte_offset;
1248
1249 if (n > TYPE_LENGTH (type))
1250 {
1251 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1252
1253 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1254 ldata += n - TYPE_LENGTH (type);
1255 n = TYPE_LENGTH (type);
1256 }
1257 memcpy (contents, ldata, n);
1258 }
1259 break;
1260
1261 case DWARF_VALUE_OPTIMIZED_OUT:
1262 do_cleanups (value_chain);
1263 retval = allocate_optimized_out_value (type);
1264 break;
1265
1266 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
1267 operation by execute_stack_op. */
1268 case DWARF_VALUE_IMPLICIT_POINTER:
1269 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
1270 it can only be encountered when making a piece. */
1271 default:
1272 internal_error (__FILE__, __LINE__, _("invalid location type"));
1273 }
1274 }
1275
1276 set_value_initialized (retval, ctx->initialized);
1277
1278 do_cleanups (old_chain);
1279
1280 return retval;
1281 }
1282
1283 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
1284 passes 0 as the byte_offset. */
1285
1286 struct value *
1287 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
1288 const gdb_byte *data, unsigned short size,
1289 struct dwarf2_per_cu_data *per_cu)
1290 {
1291 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
1292 }
1293
1294 \f
1295 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
1296
1297 struct needs_frame_baton
1298 {
1299 int needs_frame;
1300 struct dwarf2_per_cu_data *per_cu;
1301 };
1302
1303 /* Reads from registers do require a frame. */
1304 static CORE_ADDR
1305 needs_frame_read_reg (void *baton, int regnum)
1306 {
1307 struct needs_frame_baton *nf_baton = baton;
1308
1309 nf_baton->needs_frame = 1;
1310 return 1;
1311 }
1312
1313 /* Reads from memory do not require a frame. */
1314 static void
1315 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
1316 {
1317 memset (buf, 0, len);
1318 }
1319
1320 /* Frame-relative accesses do require a frame. */
1321 static void
1322 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
1323 {
1324 static gdb_byte lit0 = DW_OP_lit0;
1325 struct needs_frame_baton *nf_baton = baton;
1326
1327 *start = &lit0;
1328 *length = 1;
1329
1330 nf_baton->needs_frame = 1;
1331 }
1332
1333 /* CFA accesses require a frame. */
1334
1335 static CORE_ADDR
1336 needs_frame_frame_cfa (void *baton)
1337 {
1338 struct needs_frame_baton *nf_baton = baton;
1339
1340 nf_baton->needs_frame = 1;
1341 return 1;
1342 }
1343
1344 /* Thread-local accesses do require a frame. */
1345 static CORE_ADDR
1346 needs_frame_tls_address (void *baton, CORE_ADDR offset)
1347 {
1348 struct needs_frame_baton *nf_baton = baton;
1349
1350 nf_baton->needs_frame = 1;
1351 return 1;
1352 }
1353
1354 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
1355
1356 static void
1357 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
1358 {
1359 struct needs_frame_baton *nf_baton = ctx->baton;
1360
1361 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
1362 ctx->funcs->get_frame_pc, ctx->baton);
1363 }
1364
1365 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
1366
1367 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
1368 {
1369 needs_frame_read_reg,
1370 needs_frame_read_mem,
1371 needs_frame_frame_base,
1372 needs_frame_frame_cfa,
1373 needs_frame_frame_cfa, /* get_frame_pc */
1374 needs_frame_tls_address,
1375 needs_frame_dwarf_call,
1376 NULL /* get_base_type */
1377 };
1378
1379 /* Return non-zero iff the location expression at DATA (length SIZE)
1380 requires a frame to evaluate. */
1381
1382 static int
1383 dwarf2_loc_desc_needs_frame (const gdb_byte *data, unsigned short size,
1384 struct dwarf2_per_cu_data *per_cu)
1385 {
1386 struct needs_frame_baton baton;
1387 struct dwarf_expr_context *ctx;
1388 int in_reg;
1389 struct cleanup *old_chain;
1390 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
1391
1392 baton.needs_frame = 0;
1393 baton.per_cu = per_cu;
1394
1395 ctx = new_dwarf_expr_context ();
1396 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
1397 make_cleanup_value_free_to_mark (value_mark ());
1398
1399 ctx->gdbarch = get_objfile_arch (objfile);
1400 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
1401 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
1402 ctx->baton = &baton;
1403 ctx->funcs = &needs_frame_ctx_funcs;
1404
1405 dwarf_expr_eval (ctx, data, size);
1406
1407 in_reg = ctx->location == DWARF_VALUE_REGISTER;
1408
1409 if (ctx->num_pieces > 0)
1410 {
1411 int i;
1412
1413 /* If the location has several pieces, and any of them are in
1414 registers, then we will need a frame to fetch them from. */
1415 for (i = 0; i < ctx->num_pieces; i++)
1416 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
1417 in_reg = 1;
1418 }
1419
1420 do_cleanups (old_chain);
1421
1422 return baton.needs_frame || in_reg;
1423 }
1424
1425 /* A helper function that throws an unimplemented error mentioning a
1426 given DWARF operator. */
1427
1428 static void
1429 unimplemented (unsigned int op)
1430 {
1431 const char *name = dwarf_stack_op_name (op);
1432
1433 if (name)
1434 error (_("DWARF operator %s cannot be translated to an agent expression"),
1435 name);
1436 else
1437 error (_("Unknown DWARF operator 0x%02x cannot be translated "
1438 "to an agent expression"),
1439 op);
1440 }
1441
1442 /* A helper function to convert a DWARF register to an arch register.
1443 ARCH is the architecture.
1444 DWARF_REG is the register.
1445 This will throw an exception if the DWARF register cannot be
1446 translated to an architecture register. */
1447
1448 static int
1449 translate_register (struct gdbarch *arch, int dwarf_reg)
1450 {
1451 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
1452 if (reg == -1)
1453 error (_("Unable to access DWARF register number %d"), dwarf_reg);
1454 return reg;
1455 }
1456
1457 /* A helper function that emits an access to memory. ARCH is the
1458 target architecture. EXPR is the expression which we are building.
1459 NBITS is the number of bits we want to read. This emits the
1460 opcodes needed to read the memory and then extract the desired
1461 bits. */
1462
1463 static void
1464 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
1465 {
1466 ULONGEST nbytes = (nbits + 7) / 8;
1467
1468 gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST));
1469
1470 if (trace_kludge)
1471 ax_trace_quick (expr, nbytes);
1472
1473 if (nbits <= 8)
1474 ax_simple (expr, aop_ref8);
1475 else if (nbits <= 16)
1476 ax_simple (expr, aop_ref16);
1477 else if (nbits <= 32)
1478 ax_simple (expr, aop_ref32);
1479 else
1480 ax_simple (expr, aop_ref64);
1481
1482 /* If we read exactly the number of bytes we wanted, we're done. */
1483 if (8 * nbytes == nbits)
1484 return;
1485
1486 if (gdbarch_bits_big_endian (arch))
1487 {
1488 /* On a bits-big-endian machine, we want the high-order
1489 NBITS. */
1490 ax_const_l (expr, 8 * nbytes - nbits);
1491 ax_simple (expr, aop_rsh_unsigned);
1492 }
1493 else
1494 {
1495 /* On a bits-little-endian box, we want the low-order NBITS. */
1496 ax_zero_ext (expr, nbits);
1497 }
1498 }
1499
1500 /* A helper function to return the frame's PC. */
1501
1502 static CORE_ADDR
1503 get_ax_pc (void *baton)
1504 {
1505 struct agent_expr *expr = baton;
1506
1507 return expr->scope;
1508 }
1509
1510 /* Compile a DWARF location expression to an agent expression.
1511
1512 EXPR is the agent expression we are building.
1513 LOC is the agent value we modify.
1514 ARCH is the architecture.
1515 ADDR_SIZE is the size of addresses, in bytes.
1516 OP_PTR is the start of the location expression.
1517 OP_END is one past the last byte of the location expression.
1518
1519 This will throw an exception for various kinds of errors -- for
1520 example, if the expression cannot be compiled, or if the expression
1521 is invalid. */
1522
1523 void
1524 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
1525 struct gdbarch *arch, unsigned int addr_size,
1526 const gdb_byte *op_ptr, const gdb_byte *op_end,
1527 struct dwarf2_per_cu_data *per_cu)
1528 {
1529 struct cleanup *cleanups;
1530 int i, *offsets;
1531 VEC(int) *dw_labels = NULL, *patches = NULL;
1532 const gdb_byte * const base = op_ptr;
1533 const gdb_byte *previous_piece = op_ptr;
1534 enum bfd_endian byte_order = gdbarch_byte_order (arch);
1535 ULONGEST bits_collected = 0;
1536 unsigned int addr_size_bits = 8 * addr_size;
1537 int bits_big_endian = gdbarch_bits_big_endian (arch);
1538
1539 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
1540 cleanups = make_cleanup (xfree, offsets);
1541
1542 for (i = 0; i < op_end - op_ptr; ++i)
1543 offsets[i] = -1;
1544
1545 make_cleanup (VEC_cleanup (int), &dw_labels);
1546 make_cleanup (VEC_cleanup (int), &patches);
1547
1548 /* By default we are making an address. */
1549 loc->kind = axs_lvalue_memory;
1550
1551 while (op_ptr < op_end)
1552 {
1553 enum dwarf_location_atom op = *op_ptr;
1554 ULONGEST uoffset, reg;
1555 LONGEST offset;
1556 int i;
1557
1558 offsets[op_ptr - base] = expr->len;
1559 ++op_ptr;
1560
1561 /* Our basic approach to code generation is to map DWARF
1562 operations directly to AX operations. However, there are
1563 some differences.
1564
1565 First, DWARF works on address-sized units, but AX always uses
1566 LONGEST. For most operations we simply ignore this
1567 difference; instead we generate sign extensions as needed
1568 before division and comparison operations. It would be nice
1569 to omit the sign extensions, but there is no way to determine
1570 the size of the target's LONGEST. (This code uses the size
1571 of the host LONGEST in some cases -- that is a bug but it is
1572 difficult to fix.)
1573
1574 Second, some DWARF operations cannot be translated to AX.
1575 For these we simply fail. See
1576 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
1577 switch (op)
1578 {
1579 case DW_OP_lit0:
1580 case DW_OP_lit1:
1581 case DW_OP_lit2:
1582 case DW_OP_lit3:
1583 case DW_OP_lit4:
1584 case DW_OP_lit5:
1585 case DW_OP_lit6:
1586 case DW_OP_lit7:
1587 case DW_OP_lit8:
1588 case DW_OP_lit9:
1589 case DW_OP_lit10:
1590 case DW_OP_lit11:
1591 case DW_OP_lit12:
1592 case DW_OP_lit13:
1593 case DW_OP_lit14:
1594 case DW_OP_lit15:
1595 case DW_OP_lit16:
1596 case DW_OP_lit17:
1597 case DW_OP_lit18:
1598 case DW_OP_lit19:
1599 case DW_OP_lit20:
1600 case DW_OP_lit21:
1601 case DW_OP_lit22:
1602 case DW_OP_lit23:
1603 case DW_OP_lit24:
1604 case DW_OP_lit25:
1605 case DW_OP_lit26:
1606 case DW_OP_lit27:
1607 case DW_OP_lit28:
1608 case DW_OP_lit29:
1609 case DW_OP_lit30:
1610 case DW_OP_lit31:
1611 ax_const_l (expr, op - DW_OP_lit0);
1612 break;
1613
1614 case DW_OP_addr:
1615 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
1616 op_ptr += addr_size;
1617 /* Some versions of GCC emit DW_OP_addr before
1618 DW_OP_GNU_push_tls_address. In this case the value is an
1619 index, not an address. We don't support things like
1620 branching between the address and the TLS op. */
1621 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
1622 uoffset += dwarf2_per_cu_text_offset (per_cu);
1623 ax_const_l (expr, uoffset);
1624 break;
1625
1626 case DW_OP_const1u:
1627 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
1628 op_ptr += 1;
1629 break;
1630 case DW_OP_const1s:
1631 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
1632 op_ptr += 1;
1633 break;
1634 case DW_OP_const2u:
1635 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
1636 op_ptr += 2;
1637 break;
1638 case DW_OP_const2s:
1639 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
1640 op_ptr += 2;
1641 break;
1642 case DW_OP_const4u:
1643 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
1644 op_ptr += 4;
1645 break;
1646 case DW_OP_const4s:
1647 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
1648 op_ptr += 4;
1649 break;
1650 case DW_OP_const8u:
1651 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
1652 op_ptr += 8;
1653 break;
1654 case DW_OP_const8s:
1655 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
1656 op_ptr += 8;
1657 break;
1658 case DW_OP_constu:
1659 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
1660 ax_const_l (expr, uoffset);
1661 break;
1662 case DW_OP_consts:
1663 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1664 ax_const_l (expr, offset);
1665 break;
1666
1667 case DW_OP_reg0:
1668 case DW_OP_reg1:
1669 case DW_OP_reg2:
1670 case DW_OP_reg3:
1671 case DW_OP_reg4:
1672 case DW_OP_reg5:
1673 case DW_OP_reg6:
1674 case DW_OP_reg7:
1675 case DW_OP_reg8:
1676 case DW_OP_reg9:
1677 case DW_OP_reg10:
1678 case DW_OP_reg11:
1679 case DW_OP_reg12:
1680 case DW_OP_reg13:
1681 case DW_OP_reg14:
1682 case DW_OP_reg15:
1683 case DW_OP_reg16:
1684 case DW_OP_reg17:
1685 case DW_OP_reg18:
1686 case DW_OP_reg19:
1687 case DW_OP_reg20:
1688 case DW_OP_reg21:
1689 case DW_OP_reg22:
1690 case DW_OP_reg23:
1691 case DW_OP_reg24:
1692 case DW_OP_reg25:
1693 case DW_OP_reg26:
1694 case DW_OP_reg27:
1695 case DW_OP_reg28:
1696 case DW_OP_reg29:
1697 case DW_OP_reg30:
1698 case DW_OP_reg31:
1699 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
1700 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
1701 loc->kind = axs_lvalue_register;
1702 break;
1703
1704 case DW_OP_regx:
1705 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1706 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
1707 loc->u.reg = translate_register (arch, reg);
1708 loc->kind = axs_lvalue_register;
1709 break;
1710
1711 case DW_OP_implicit_value:
1712 {
1713 ULONGEST len;
1714
1715 op_ptr = read_uleb128 (op_ptr, op_end, &len);
1716 if (op_ptr + len > op_end)
1717 error (_("DW_OP_implicit_value: too few bytes available."));
1718 if (len > sizeof (ULONGEST))
1719 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
1720 (int) len);
1721
1722 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
1723 byte_order));
1724 op_ptr += len;
1725 dwarf_expr_require_composition (op_ptr, op_end,
1726 "DW_OP_implicit_value");
1727
1728 loc->kind = axs_rvalue;
1729 }
1730 break;
1731
1732 case DW_OP_stack_value:
1733 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
1734 loc->kind = axs_rvalue;
1735 break;
1736
1737 case DW_OP_breg0:
1738 case DW_OP_breg1:
1739 case DW_OP_breg2:
1740 case DW_OP_breg3:
1741 case DW_OP_breg4:
1742 case DW_OP_breg5:
1743 case DW_OP_breg6:
1744 case DW_OP_breg7:
1745 case DW_OP_breg8:
1746 case DW_OP_breg9:
1747 case DW_OP_breg10:
1748 case DW_OP_breg11:
1749 case DW_OP_breg12:
1750 case DW_OP_breg13:
1751 case DW_OP_breg14:
1752 case DW_OP_breg15:
1753 case DW_OP_breg16:
1754 case DW_OP_breg17:
1755 case DW_OP_breg18:
1756 case DW_OP_breg19:
1757 case DW_OP_breg20:
1758 case DW_OP_breg21:
1759 case DW_OP_breg22:
1760 case DW_OP_breg23:
1761 case DW_OP_breg24:
1762 case DW_OP_breg25:
1763 case DW_OP_breg26:
1764 case DW_OP_breg27:
1765 case DW_OP_breg28:
1766 case DW_OP_breg29:
1767 case DW_OP_breg30:
1768 case DW_OP_breg31:
1769 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1770 i = translate_register (arch, op - DW_OP_breg0);
1771 ax_reg (expr, i);
1772 if (offset != 0)
1773 {
1774 ax_const_l (expr, offset);
1775 ax_simple (expr, aop_add);
1776 }
1777 break;
1778 case DW_OP_bregx:
1779 {
1780 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1781 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1782 i = translate_register (arch, reg);
1783 ax_reg (expr, i);
1784 if (offset != 0)
1785 {
1786 ax_const_l (expr, offset);
1787 ax_simple (expr, aop_add);
1788 }
1789 }
1790 break;
1791 case DW_OP_fbreg:
1792 {
1793 const gdb_byte *datastart;
1794 size_t datalen;
1795 unsigned int before_stack_len;
1796 struct block *b;
1797 struct symbol *framefunc;
1798 LONGEST base_offset = 0;
1799
1800 b = block_for_pc (expr->scope);
1801
1802 if (!b)
1803 error (_("No block found for address"));
1804
1805 framefunc = block_linkage_function (b);
1806
1807 if (!framefunc)
1808 error (_("No function found for block"));
1809
1810 dwarf_expr_frame_base_1 (framefunc, expr->scope,
1811 &datastart, &datalen);
1812
1813 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1814 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
1815 datastart + datalen, per_cu);
1816
1817 if (offset != 0)
1818 {
1819 ax_const_l (expr, offset);
1820 ax_simple (expr, aop_add);
1821 }
1822
1823 loc->kind = axs_lvalue_memory;
1824 }
1825 break;
1826
1827 case DW_OP_dup:
1828 ax_simple (expr, aop_dup);
1829 break;
1830
1831 case DW_OP_drop:
1832 ax_simple (expr, aop_pop);
1833 break;
1834
1835 case DW_OP_pick:
1836 offset = *op_ptr++;
1837 ax_pick (expr, offset);
1838 break;
1839
1840 case DW_OP_swap:
1841 ax_simple (expr, aop_swap);
1842 break;
1843
1844 case DW_OP_over:
1845 ax_pick (expr, 1);
1846 break;
1847
1848 case DW_OP_rot:
1849 ax_simple (expr, aop_rot);
1850 break;
1851
1852 case DW_OP_deref:
1853 case DW_OP_deref_size:
1854 {
1855 int size;
1856
1857 if (op == DW_OP_deref_size)
1858 size = *op_ptr++;
1859 else
1860 size = addr_size;
1861
1862 switch (size)
1863 {
1864 case 8:
1865 ax_simple (expr, aop_ref8);
1866 break;
1867 case 16:
1868 ax_simple (expr, aop_ref16);
1869 break;
1870 case 32:
1871 ax_simple (expr, aop_ref32);
1872 break;
1873 case 64:
1874 ax_simple (expr, aop_ref64);
1875 break;
1876 default:
1877 /* Note that dwarf_stack_op_name will never return
1878 NULL here. */
1879 error (_("Unsupported size %d in %s"),
1880 size, dwarf_stack_op_name (op));
1881 }
1882 }
1883 break;
1884
1885 case DW_OP_abs:
1886 /* Sign extend the operand. */
1887 ax_ext (expr, addr_size_bits);
1888 ax_simple (expr, aop_dup);
1889 ax_const_l (expr, 0);
1890 ax_simple (expr, aop_less_signed);
1891 ax_simple (expr, aop_log_not);
1892 i = ax_goto (expr, aop_if_goto);
1893 /* We have to emit 0 - X. */
1894 ax_const_l (expr, 0);
1895 ax_simple (expr, aop_swap);
1896 ax_simple (expr, aop_sub);
1897 ax_label (expr, i, expr->len);
1898 break;
1899
1900 case DW_OP_neg:
1901 /* No need to sign extend here. */
1902 ax_const_l (expr, 0);
1903 ax_simple (expr, aop_swap);
1904 ax_simple (expr, aop_sub);
1905 break;
1906
1907 case DW_OP_not:
1908 /* Sign extend the operand. */
1909 ax_ext (expr, addr_size_bits);
1910 ax_simple (expr, aop_bit_not);
1911 break;
1912
1913 case DW_OP_plus_uconst:
1914 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1915 /* It would be really weird to emit `DW_OP_plus_uconst 0',
1916 but we micro-optimize anyhow. */
1917 if (reg != 0)
1918 {
1919 ax_const_l (expr, reg);
1920 ax_simple (expr, aop_add);
1921 }
1922 break;
1923
1924 case DW_OP_and:
1925 ax_simple (expr, aop_bit_and);
1926 break;
1927
1928 case DW_OP_div:
1929 /* Sign extend the operands. */
1930 ax_ext (expr, addr_size_bits);
1931 ax_simple (expr, aop_swap);
1932 ax_ext (expr, addr_size_bits);
1933 ax_simple (expr, aop_swap);
1934 ax_simple (expr, aop_div_signed);
1935 break;
1936
1937 case DW_OP_minus:
1938 ax_simple (expr, aop_sub);
1939 break;
1940
1941 case DW_OP_mod:
1942 ax_simple (expr, aop_rem_unsigned);
1943 break;
1944
1945 case DW_OP_mul:
1946 ax_simple (expr, aop_mul);
1947 break;
1948
1949 case DW_OP_or:
1950 ax_simple (expr, aop_bit_or);
1951 break;
1952
1953 case DW_OP_plus:
1954 ax_simple (expr, aop_add);
1955 break;
1956
1957 case DW_OP_shl:
1958 ax_simple (expr, aop_lsh);
1959 break;
1960
1961 case DW_OP_shr:
1962 ax_simple (expr, aop_rsh_unsigned);
1963 break;
1964
1965 case DW_OP_shra:
1966 ax_simple (expr, aop_rsh_signed);
1967 break;
1968
1969 case DW_OP_xor:
1970 ax_simple (expr, aop_bit_xor);
1971 break;
1972
1973 case DW_OP_le:
1974 /* Sign extend the operands. */
1975 ax_ext (expr, addr_size_bits);
1976 ax_simple (expr, aop_swap);
1977 ax_ext (expr, addr_size_bits);
1978 /* Note no swap here: A <= B is !(B < A). */
1979 ax_simple (expr, aop_less_signed);
1980 ax_simple (expr, aop_log_not);
1981 break;
1982
1983 case DW_OP_ge:
1984 /* Sign extend the operands. */
1985 ax_ext (expr, addr_size_bits);
1986 ax_simple (expr, aop_swap);
1987 ax_ext (expr, addr_size_bits);
1988 ax_simple (expr, aop_swap);
1989 /* A >= B is !(A < B). */
1990 ax_simple (expr, aop_less_signed);
1991 ax_simple (expr, aop_log_not);
1992 break;
1993
1994 case DW_OP_eq:
1995 /* Sign extend the operands. */
1996 ax_ext (expr, addr_size_bits);
1997 ax_simple (expr, aop_swap);
1998 ax_ext (expr, addr_size_bits);
1999 /* No need for a second swap here. */
2000 ax_simple (expr, aop_equal);
2001 break;
2002
2003 case DW_OP_lt:
2004 /* Sign extend the operands. */
2005 ax_ext (expr, addr_size_bits);
2006 ax_simple (expr, aop_swap);
2007 ax_ext (expr, addr_size_bits);
2008 ax_simple (expr, aop_swap);
2009 ax_simple (expr, aop_less_signed);
2010 break;
2011
2012 case DW_OP_gt:
2013 /* Sign extend the operands. */
2014 ax_ext (expr, addr_size_bits);
2015 ax_simple (expr, aop_swap);
2016 ax_ext (expr, addr_size_bits);
2017 /* Note no swap here: A > B is B < A. */
2018 ax_simple (expr, aop_less_signed);
2019 break;
2020
2021 case DW_OP_ne:
2022 /* Sign extend the operands. */
2023 ax_ext (expr, addr_size_bits);
2024 ax_simple (expr, aop_swap);
2025 ax_ext (expr, addr_size_bits);
2026 /* No need for a swap here. */
2027 ax_simple (expr, aop_equal);
2028 ax_simple (expr, aop_log_not);
2029 break;
2030
2031 case DW_OP_call_frame_cfa:
2032 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
2033 loc->kind = axs_lvalue_memory;
2034 break;
2035
2036 case DW_OP_GNU_push_tls_address:
2037 unimplemented (op);
2038 break;
2039
2040 case DW_OP_skip:
2041 offset = extract_signed_integer (op_ptr, 2, byte_order);
2042 op_ptr += 2;
2043 i = ax_goto (expr, aop_goto);
2044 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
2045 VEC_safe_push (int, patches, i);
2046 break;
2047
2048 case DW_OP_bra:
2049 offset = extract_signed_integer (op_ptr, 2, byte_order);
2050 op_ptr += 2;
2051 /* Zero extend the operand. */
2052 ax_zero_ext (expr, addr_size_bits);
2053 i = ax_goto (expr, aop_if_goto);
2054 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
2055 VEC_safe_push (int, patches, i);
2056 break;
2057
2058 case DW_OP_nop:
2059 break;
2060
2061 case DW_OP_piece:
2062 case DW_OP_bit_piece:
2063 {
2064 ULONGEST size, offset;
2065
2066 if (op_ptr - 1 == previous_piece)
2067 error (_("Cannot translate empty pieces to agent expressions"));
2068 previous_piece = op_ptr - 1;
2069
2070 op_ptr = read_uleb128 (op_ptr, op_end, &size);
2071 if (op == DW_OP_piece)
2072 {
2073 size *= 8;
2074 offset = 0;
2075 }
2076 else
2077 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
2078
2079 if (bits_collected + size > 8 * sizeof (LONGEST))
2080 error (_("Expression pieces exceed word size"));
2081
2082 /* Access the bits. */
2083 switch (loc->kind)
2084 {
2085 case axs_lvalue_register:
2086 ax_reg (expr, loc->u.reg);
2087 break;
2088
2089 case axs_lvalue_memory:
2090 /* Offset the pointer, if needed. */
2091 if (offset > 8)
2092 {
2093 ax_const_l (expr, offset / 8);
2094 ax_simple (expr, aop_add);
2095 offset %= 8;
2096 }
2097 access_memory (arch, expr, size);
2098 break;
2099 }
2100
2101 /* For a bits-big-endian target, shift up what we already
2102 have. For a bits-little-endian target, shift up the
2103 new data. Note that there is a potential bug here if
2104 the DWARF expression leaves multiple values on the
2105 stack. */
2106 if (bits_collected > 0)
2107 {
2108 if (bits_big_endian)
2109 {
2110 ax_simple (expr, aop_swap);
2111 ax_const_l (expr, size);
2112 ax_simple (expr, aop_lsh);
2113 /* We don't need a second swap here, because
2114 aop_bit_or is symmetric. */
2115 }
2116 else
2117 {
2118 ax_const_l (expr, size);
2119 ax_simple (expr, aop_lsh);
2120 }
2121 ax_simple (expr, aop_bit_or);
2122 }
2123
2124 bits_collected += size;
2125 loc->kind = axs_rvalue;
2126 }
2127 break;
2128
2129 case DW_OP_GNU_uninit:
2130 unimplemented (op);
2131
2132 case DW_OP_call2:
2133 case DW_OP_call4:
2134 {
2135 struct dwarf2_locexpr_baton block;
2136 int size = (op == DW_OP_call2 ? 2 : 4);
2137
2138 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
2139 op_ptr += size;
2140
2141 block = dwarf2_fetch_die_location_block (uoffset, per_cu,
2142 get_ax_pc, expr);
2143
2144 /* DW_OP_call_ref is currently not supported. */
2145 gdb_assert (block.per_cu == per_cu);
2146
2147 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
2148 block.data, block.data + block.size,
2149 per_cu);
2150 }
2151 break;
2152
2153 case DW_OP_call_ref:
2154 unimplemented (op);
2155
2156 default:
2157 unimplemented (op);
2158 }
2159 }
2160
2161 /* Patch all the branches we emitted. */
2162 for (i = 0; i < VEC_length (int, patches); ++i)
2163 {
2164 int targ = offsets[VEC_index (int, dw_labels, i)];
2165 if (targ == -1)
2166 internal_error (__FILE__, __LINE__, _("invalid label"));
2167 ax_label (expr, VEC_index (int, patches, i), targ);
2168 }
2169
2170 do_cleanups (cleanups);
2171 }
2172
2173 \f
2174 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
2175 evaluator to calculate the location. */
2176 static struct value *
2177 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
2178 {
2179 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2180 struct value *val;
2181
2182 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
2183 dlbaton->size, dlbaton->per_cu);
2184
2185 return val;
2186 }
2187
2188 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
2189 static int
2190 locexpr_read_needs_frame (struct symbol *symbol)
2191 {
2192 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2193
2194 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
2195 dlbaton->per_cu);
2196 }
2197
2198 /* Return true if DATA points to the end of a piece. END is one past
2199 the last byte in the expression. */
2200
2201 static int
2202 piece_end_p (const gdb_byte *data, const gdb_byte *end)
2203 {
2204 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
2205 }
2206
2207 /* Helper for locexpr_describe_location_piece that finds the name of a
2208 DWARF register. */
2209
2210 static const char *
2211 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
2212 {
2213 int regnum;
2214
2215 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
2216 return gdbarch_register_name (gdbarch, regnum);
2217 }
2218
2219 /* Nicely describe a single piece of a location, returning an updated
2220 position in the bytecode sequence. This function cannot recognize
2221 all locations; if a location is not recognized, it simply returns
2222 DATA. */
2223
2224 static const gdb_byte *
2225 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
2226 CORE_ADDR addr, struct objfile *objfile,
2227 const gdb_byte *data, const gdb_byte *end,
2228 unsigned int addr_size)
2229 {
2230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2231
2232 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
2233 {
2234 fprintf_filtered (stream, _("a variable in $%s"),
2235 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
2236 data += 1;
2237 }
2238 else if (data[0] == DW_OP_regx)
2239 {
2240 ULONGEST reg;
2241
2242 data = read_uleb128 (data + 1, end, &reg);
2243 fprintf_filtered (stream, _("a variable in $%s"),
2244 locexpr_regname (gdbarch, reg));
2245 }
2246 else if (data[0] == DW_OP_fbreg)
2247 {
2248 struct block *b;
2249 struct symbol *framefunc;
2250 int frame_reg = 0;
2251 LONGEST frame_offset;
2252 const gdb_byte *base_data, *new_data, *save_data = data;
2253 size_t base_size;
2254 LONGEST base_offset = 0;
2255
2256 new_data = read_sleb128 (data + 1, end, &frame_offset);
2257 if (!piece_end_p (new_data, end))
2258 return data;
2259 data = new_data;
2260
2261 b = block_for_pc (addr);
2262
2263 if (!b)
2264 error (_("No block found for address for symbol \"%s\"."),
2265 SYMBOL_PRINT_NAME (symbol));
2266
2267 framefunc = block_linkage_function (b);
2268
2269 if (!framefunc)
2270 error (_("No function found for block for symbol \"%s\"."),
2271 SYMBOL_PRINT_NAME (symbol));
2272
2273 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
2274
2275 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
2276 {
2277 const gdb_byte *buf_end;
2278
2279 frame_reg = base_data[0] - DW_OP_breg0;
2280 buf_end = read_sleb128 (base_data + 1,
2281 base_data + base_size, &base_offset);
2282 if (buf_end != base_data + base_size)
2283 error (_("Unexpected opcode after "
2284 "DW_OP_breg%u for symbol \"%s\"."),
2285 frame_reg, SYMBOL_PRINT_NAME (symbol));
2286 }
2287 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
2288 {
2289 /* The frame base is just the register, with no offset. */
2290 frame_reg = base_data[0] - DW_OP_reg0;
2291 base_offset = 0;
2292 }
2293 else
2294 {
2295 /* We don't know what to do with the frame base expression,
2296 so we can't trace this variable; give up. */
2297 return save_data;
2298 }
2299
2300 fprintf_filtered (stream,
2301 _("a variable at frame base reg $%s offset %s+%s"),
2302 locexpr_regname (gdbarch, frame_reg),
2303 plongest (base_offset), plongest (frame_offset));
2304 }
2305 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
2306 && piece_end_p (data, end))
2307 {
2308 LONGEST offset;
2309
2310 data = read_sleb128 (data + 1, end, &offset);
2311
2312 fprintf_filtered (stream,
2313 _("a variable at offset %s from base reg $%s"),
2314 plongest (offset),
2315 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
2316 }
2317
2318 /* The location expression for a TLS variable looks like this (on a
2319 64-bit LE machine):
2320
2321 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
2322 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
2323
2324 0x3 is the encoding for DW_OP_addr, which has an operand as long
2325 as the size of an address on the target machine (here is 8
2326 bytes). Note that more recent version of GCC emit DW_OP_const4u
2327 or DW_OP_const8u, depending on address size, rather than
2328 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
2329 The operand represents the offset at which the variable is within
2330 the thread local storage. */
2331
2332 else if (data + 1 + addr_size < end
2333 && (data[0] == DW_OP_addr
2334 || (addr_size == 4 && data[0] == DW_OP_const4u)
2335 || (addr_size == 8 && data[0] == DW_OP_const8u))
2336 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
2337 && piece_end_p (data + 2 + addr_size, end))
2338 {
2339 ULONGEST offset;
2340 offset = extract_unsigned_integer (data + 1, addr_size,
2341 gdbarch_byte_order (gdbarch));
2342
2343 fprintf_filtered (stream,
2344 _("a thread-local variable at offset 0x%s "
2345 "in the thread-local storage for `%s'"),
2346 phex_nz (offset, addr_size), objfile->name);
2347
2348 data += 1 + addr_size + 1;
2349 }
2350 else if (data[0] >= DW_OP_lit0
2351 && data[0] <= DW_OP_lit31
2352 && data + 1 < end
2353 && data[1] == DW_OP_stack_value)
2354 {
2355 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
2356 data += 2;
2357 }
2358
2359 return data;
2360 }
2361
2362 /* Disassemble an expression, stopping at the end of a piece or at the
2363 end of the expression. Returns a pointer to the next unread byte
2364 in the input expression. If ALL is nonzero, then this function
2365 will keep going until it reaches the end of the expression. */
2366
2367 static const gdb_byte *
2368 disassemble_dwarf_expression (struct ui_file *stream,
2369 struct gdbarch *arch, unsigned int addr_size,
2370 int offset_size,
2371 const gdb_byte *data, const gdb_byte *end,
2372 int all,
2373 struct dwarf2_per_cu_data *per_cu)
2374 {
2375 const gdb_byte *start = data;
2376
2377 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
2378
2379 while (data < end
2380 && (all
2381 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
2382 {
2383 enum dwarf_location_atom op = *data++;
2384 ULONGEST ul;
2385 LONGEST l;
2386 const char *name;
2387
2388 name = dwarf_stack_op_name (op);
2389
2390 if (!name)
2391 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
2392 op, (long) (data - 1 - start));
2393 fprintf_filtered (stream, " % 4ld: %s", (long) (data - 1 - start), name);
2394
2395 switch (op)
2396 {
2397 case DW_OP_addr:
2398 ul = extract_unsigned_integer (data, addr_size,
2399 gdbarch_byte_order (arch));
2400 data += addr_size;
2401 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
2402 break;
2403
2404 case DW_OP_const1u:
2405 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
2406 data += 1;
2407 fprintf_filtered (stream, " %s", pulongest (ul));
2408 break;
2409 case DW_OP_const1s:
2410 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
2411 data += 1;
2412 fprintf_filtered (stream, " %s", plongest (l));
2413 break;
2414 case DW_OP_const2u:
2415 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
2416 data += 2;
2417 fprintf_filtered (stream, " %s", pulongest (ul));
2418 break;
2419 case DW_OP_const2s:
2420 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2421 data += 2;
2422 fprintf_filtered (stream, " %s", plongest (l));
2423 break;
2424 case DW_OP_const4u:
2425 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
2426 data += 4;
2427 fprintf_filtered (stream, " %s", pulongest (ul));
2428 break;
2429 case DW_OP_const4s:
2430 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
2431 data += 4;
2432 fprintf_filtered (stream, " %s", plongest (l));
2433 break;
2434 case DW_OP_const8u:
2435 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
2436 data += 8;
2437 fprintf_filtered (stream, " %s", pulongest (ul));
2438 break;
2439 case DW_OP_const8s:
2440 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
2441 data += 8;
2442 fprintf_filtered (stream, " %s", plongest (l));
2443 break;
2444 case DW_OP_constu:
2445 data = read_uleb128 (data, end, &ul);
2446 fprintf_filtered (stream, " %s", pulongest (ul));
2447 break;
2448 case DW_OP_consts:
2449 data = read_sleb128 (data, end, &l);
2450 fprintf_filtered (stream, " %s", plongest (l));
2451 break;
2452
2453 case DW_OP_reg0:
2454 case DW_OP_reg1:
2455 case DW_OP_reg2:
2456 case DW_OP_reg3:
2457 case DW_OP_reg4:
2458 case DW_OP_reg5:
2459 case DW_OP_reg6:
2460 case DW_OP_reg7:
2461 case DW_OP_reg8:
2462 case DW_OP_reg9:
2463 case DW_OP_reg10:
2464 case DW_OP_reg11:
2465 case DW_OP_reg12:
2466 case DW_OP_reg13:
2467 case DW_OP_reg14:
2468 case DW_OP_reg15:
2469 case DW_OP_reg16:
2470 case DW_OP_reg17:
2471 case DW_OP_reg18:
2472 case DW_OP_reg19:
2473 case DW_OP_reg20:
2474 case DW_OP_reg21:
2475 case DW_OP_reg22:
2476 case DW_OP_reg23:
2477 case DW_OP_reg24:
2478 case DW_OP_reg25:
2479 case DW_OP_reg26:
2480 case DW_OP_reg27:
2481 case DW_OP_reg28:
2482 case DW_OP_reg29:
2483 case DW_OP_reg30:
2484 case DW_OP_reg31:
2485 fprintf_filtered (stream, " [$%s]",
2486 locexpr_regname (arch, op - DW_OP_reg0));
2487 break;
2488
2489 case DW_OP_regx:
2490 data = read_uleb128 (data, end, &ul);
2491 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
2492 locexpr_regname (arch, (int) ul));
2493 break;
2494
2495 case DW_OP_implicit_value:
2496 data = read_uleb128 (data, end, &ul);
2497 data += ul;
2498 fprintf_filtered (stream, " %s", pulongest (ul));
2499 break;
2500
2501 case DW_OP_breg0:
2502 case DW_OP_breg1:
2503 case DW_OP_breg2:
2504 case DW_OP_breg3:
2505 case DW_OP_breg4:
2506 case DW_OP_breg5:
2507 case DW_OP_breg6:
2508 case DW_OP_breg7:
2509 case DW_OP_breg8:
2510 case DW_OP_breg9:
2511 case DW_OP_breg10:
2512 case DW_OP_breg11:
2513 case DW_OP_breg12:
2514 case DW_OP_breg13:
2515 case DW_OP_breg14:
2516 case DW_OP_breg15:
2517 case DW_OP_breg16:
2518 case DW_OP_breg17:
2519 case DW_OP_breg18:
2520 case DW_OP_breg19:
2521 case DW_OP_breg20:
2522 case DW_OP_breg21:
2523 case DW_OP_breg22:
2524 case DW_OP_breg23:
2525 case DW_OP_breg24:
2526 case DW_OP_breg25:
2527 case DW_OP_breg26:
2528 case DW_OP_breg27:
2529 case DW_OP_breg28:
2530 case DW_OP_breg29:
2531 case DW_OP_breg30:
2532 case DW_OP_breg31:
2533 data = read_sleb128 (data, end, &l);
2534 fprintf_filtered (stream, " %s [$%s]", plongest (l),
2535 locexpr_regname (arch, op - DW_OP_breg0));
2536 break;
2537
2538 case DW_OP_bregx:
2539 data = read_uleb128 (data, end, &ul);
2540 data = read_sleb128 (data, end, &l);
2541 fprintf_filtered (stream, " register %s [$%s] offset %s",
2542 pulongest (ul),
2543 locexpr_regname (arch, (int) ul),
2544 plongest (l));
2545 break;
2546
2547 case DW_OP_fbreg:
2548 data = read_sleb128 (data, end, &l);
2549 fprintf_filtered (stream, " %s", plongest (l));
2550 break;
2551
2552 case DW_OP_xderef_size:
2553 case DW_OP_deref_size:
2554 case DW_OP_pick:
2555 fprintf_filtered (stream, " %d", *data);
2556 ++data;
2557 break;
2558
2559 case DW_OP_plus_uconst:
2560 data = read_uleb128 (data, end, &ul);
2561 fprintf_filtered (stream, " %s", pulongest (ul));
2562 break;
2563
2564 case DW_OP_skip:
2565 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2566 data += 2;
2567 fprintf_filtered (stream, " to %ld",
2568 (long) (data + l - start));
2569 break;
2570
2571 case DW_OP_bra:
2572 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2573 data += 2;
2574 fprintf_filtered (stream, " %ld",
2575 (long) (data + l - start));
2576 break;
2577
2578 case DW_OP_call2:
2579 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
2580 data += 2;
2581 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
2582 break;
2583
2584 case DW_OP_call4:
2585 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
2586 data += 4;
2587 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
2588 break;
2589
2590 case DW_OP_call_ref:
2591 ul = extract_unsigned_integer (data, offset_size,
2592 gdbarch_byte_order (arch));
2593 data += offset_size;
2594 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
2595 break;
2596
2597 case DW_OP_piece:
2598 data = read_uleb128 (data, end, &ul);
2599 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
2600 break;
2601
2602 case DW_OP_bit_piece:
2603 {
2604 ULONGEST offset;
2605
2606 data = read_uleb128 (data, end, &ul);
2607 data = read_uleb128 (data, end, &offset);
2608 fprintf_filtered (stream, " size %s offset %s (bits)",
2609 pulongest (ul), pulongest (offset));
2610 }
2611 break;
2612
2613 case DW_OP_GNU_implicit_pointer:
2614 {
2615 ul = extract_unsigned_integer (data, offset_size,
2616 gdbarch_byte_order (arch));
2617 data += offset_size;
2618
2619 data = read_sleb128 (data, end, &l);
2620
2621 fprintf_filtered (stream, " DIE %s offset %s",
2622 phex_nz (ul, offset_size),
2623 plongest (l));
2624 }
2625 break;
2626
2627 case DW_OP_GNU_deref_type:
2628 {
2629 int addr_size = *data++;
2630 ULONGEST offset;
2631 struct type *type;
2632
2633 data = read_uleb128 (data, end, &offset);
2634 type = dwarf2_get_die_type (offset, per_cu);
2635 fprintf_filtered (stream, "<");
2636 type_print (type, "", stream, -1);
2637 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset, 0),
2638 addr_size);
2639 }
2640 break;
2641
2642 case DW_OP_GNU_const_type:
2643 {
2644 ULONGEST type_die;
2645 struct type *type;
2646
2647 data = read_uleb128 (data, end, &type_die);
2648 type = dwarf2_get_die_type (type_die, per_cu);
2649 fprintf_filtered (stream, "<");
2650 type_print (type, "", stream, -1);
2651 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die, 0));
2652 }
2653 break;
2654
2655 case DW_OP_GNU_regval_type:
2656 {
2657 ULONGEST type_die, reg;
2658 struct type *type;
2659
2660 data = read_uleb128 (data, end, &reg);
2661 data = read_uleb128 (data, end, &type_die);
2662
2663 type = dwarf2_get_die_type (type_die, per_cu);
2664 fprintf_filtered (stream, "<");
2665 type_print (type, "", stream, -1);
2666 fprintf_filtered (stream, " [0x%s]> [$%s]", phex_nz (type_die, 0),
2667 locexpr_regname (arch, reg));
2668 }
2669 break;
2670
2671 case DW_OP_GNU_convert:
2672 case DW_OP_GNU_reinterpret:
2673 {
2674 ULONGEST type_die;
2675
2676 data = read_uleb128 (data, end, &type_die);
2677
2678 if (type_die == 0)
2679 fprintf_filtered (stream, "<0>");
2680 else
2681 {
2682 struct type *type;
2683
2684 type = dwarf2_get_die_type (type_die, per_cu);
2685 fprintf_filtered (stream, "<");
2686 type_print (type, "", stream, -1);
2687 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die, 0));
2688 }
2689 }
2690 break;
2691 }
2692
2693 fprintf_filtered (stream, "\n");
2694 }
2695
2696 return data;
2697 }
2698
2699 /* Describe a single location, which may in turn consist of multiple
2700 pieces. */
2701
2702 static void
2703 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
2704 struct ui_file *stream,
2705 const gdb_byte *data, int size,
2706 struct objfile *objfile, unsigned int addr_size,
2707 int offset_size, struct dwarf2_per_cu_data *per_cu)
2708 {
2709 const gdb_byte *end = data + size;
2710 int first_piece = 1, bad = 0;
2711
2712 while (data < end)
2713 {
2714 const gdb_byte *here = data;
2715 int disassemble = 1;
2716
2717 if (first_piece)
2718 first_piece = 0;
2719 else
2720 fprintf_filtered (stream, _(", and "));
2721
2722 if (!dwarf2_always_disassemble)
2723 {
2724 data = locexpr_describe_location_piece (symbol, stream,
2725 addr, objfile,
2726 data, end, addr_size);
2727 /* If we printed anything, or if we have an empty piece,
2728 then don't disassemble. */
2729 if (data != here
2730 || data[0] == DW_OP_piece
2731 || data[0] == DW_OP_bit_piece)
2732 disassemble = 0;
2733 }
2734 if (disassemble)
2735 data = disassemble_dwarf_expression (stream,
2736 get_objfile_arch (objfile),
2737 addr_size, offset_size, data, end,
2738 dwarf2_always_disassemble,
2739 per_cu);
2740
2741 if (data < end)
2742 {
2743 int empty = data == here;
2744
2745 if (disassemble)
2746 fprintf_filtered (stream, " ");
2747 if (data[0] == DW_OP_piece)
2748 {
2749 ULONGEST bytes;
2750
2751 data = read_uleb128 (data + 1, end, &bytes);
2752
2753 if (empty)
2754 fprintf_filtered (stream, _("an empty %s-byte piece"),
2755 pulongest (bytes));
2756 else
2757 fprintf_filtered (stream, _(" [%s-byte piece]"),
2758 pulongest (bytes));
2759 }
2760 else if (data[0] == DW_OP_bit_piece)
2761 {
2762 ULONGEST bits, offset;
2763
2764 data = read_uleb128 (data + 1, end, &bits);
2765 data = read_uleb128 (data, end, &offset);
2766
2767 if (empty)
2768 fprintf_filtered (stream,
2769 _("an empty %s-bit piece"),
2770 pulongest (bits));
2771 else
2772 fprintf_filtered (stream,
2773 _(" [%s-bit piece, offset %s bits]"),
2774 pulongest (bits), pulongest (offset));
2775 }
2776 else
2777 {
2778 bad = 1;
2779 break;
2780 }
2781 }
2782 }
2783
2784 if (bad || data > end)
2785 error (_("Corrupted DWARF2 expression for \"%s\"."),
2786 SYMBOL_PRINT_NAME (symbol));
2787 }
2788
2789 /* Print a natural-language description of SYMBOL to STREAM. This
2790 version is for a symbol with a single location. */
2791
2792 static void
2793 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
2794 struct ui_file *stream)
2795 {
2796 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2797 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2798 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2799 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
2800
2801 locexpr_describe_location_1 (symbol, addr, stream,
2802 dlbaton->data, dlbaton->size,
2803 objfile, addr_size, offset_size,
2804 dlbaton->per_cu);
2805 }
2806
2807 /* Describe the location of SYMBOL as an agent value in VALUE, generating
2808 any necessary bytecode in AX. */
2809
2810 static void
2811 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
2812 struct agent_expr *ax, struct axs_value *value)
2813 {
2814 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2815 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2816
2817 if (dlbaton->data == NULL || dlbaton->size == 0)
2818 value->optimized_out = 1;
2819 else
2820 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
2821 dlbaton->data, dlbaton->data + dlbaton->size,
2822 dlbaton->per_cu);
2823 }
2824
2825 /* The set of location functions used with the DWARF-2 expression
2826 evaluator. */
2827 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
2828 locexpr_read_variable,
2829 locexpr_read_needs_frame,
2830 locexpr_describe_location,
2831 locexpr_tracepoint_var_ref
2832 };
2833
2834
2835 /* Wrapper functions for location lists. These generally find
2836 the appropriate location expression and call something above. */
2837
2838 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
2839 evaluator to calculate the location. */
2840 static struct value *
2841 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
2842 {
2843 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2844 struct value *val;
2845 const gdb_byte *data;
2846 size_t size;
2847 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
2848
2849 data = dwarf2_find_location_expression (dlbaton, &size, pc);
2850 if (data == NULL)
2851 val = allocate_optimized_out_value (SYMBOL_TYPE (symbol));
2852 else
2853 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
2854 dlbaton->per_cu);
2855
2856 return val;
2857 }
2858
2859 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
2860 static int
2861 loclist_read_needs_frame (struct symbol *symbol)
2862 {
2863 /* If there's a location list, then assume we need to have a frame
2864 to choose the appropriate location expression. With tracking of
2865 global variables this is not necessarily true, but such tracking
2866 is disabled in GCC at the moment until we figure out how to
2867 represent it. */
2868
2869 return 1;
2870 }
2871
2872 /* Print a natural-language description of SYMBOL to STREAM. This
2873 version applies when there is a list of different locations, each
2874 with a specified address range. */
2875
2876 static void
2877 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
2878 struct ui_file *stream)
2879 {
2880 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2881 CORE_ADDR low, high;
2882 const gdb_byte *loc_ptr, *buf_end;
2883 int length, first = 1;
2884 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2886 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2887 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2888 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
2889 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
2890 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2891 /* Adjust base_address for relocatable objects. */
2892 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2893 CORE_ADDR base_address = dlbaton->base_address + base_offset;
2894
2895 loc_ptr = dlbaton->data;
2896 buf_end = dlbaton->data + dlbaton->size;
2897
2898 fprintf_filtered (stream, _("multi-location:\n"));
2899
2900 /* Iterate through locations until we run out. */
2901 while (1)
2902 {
2903 if (buf_end - loc_ptr < 2 * addr_size)
2904 error (_("Corrupted DWARF expression for symbol \"%s\"."),
2905 SYMBOL_PRINT_NAME (symbol));
2906
2907 if (signed_addr_p)
2908 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
2909 else
2910 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
2911 loc_ptr += addr_size;
2912
2913 if (signed_addr_p)
2914 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
2915 else
2916 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
2917 loc_ptr += addr_size;
2918
2919 /* A base-address-selection entry. */
2920 if ((low & base_mask) == base_mask)
2921 {
2922 base_address = high + base_offset;
2923 fprintf_filtered (stream, _(" Base address %s"),
2924 paddress (gdbarch, base_address));
2925 continue;
2926 }
2927
2928 /* An end-of-list entry. */
2929 if (low == 0 && high == 0)
2930 break;
2931
2932 /* Otherwise, a location expression entry. */
2933 low += base_address;
2934 high += base_address;
2935
2936 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
2937 loc_ptr += 2;
2938
2939 /* (It would improve readability to print only the minimum
2940 necessary digits of the second number of the range.) */
2941 fprintf_filtered (stream, _(" Range %s-%s: "),
2942 paddress (gdbarch, low), paddress (gdbarch, high));
2943
2944 /* Now describe this particular location. */
2945 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
2946 objfile, addr_size, offset_size,
2947 dlbaton->per_cu);
2948
2949 fprintf_filtered (stream, "\n");
2950
2951 loc_ptr += length;
2952 }
2953 }
2954
2955 /* Describe the location of SYMBOL as an agent value in VALUE, generating
2956 any necessary bytecode in AX. */
2957 static void
2958 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
2959 struct agent_expr *ax, struct axs_value *value)
2960 {
2961 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2962 const gdb_byte *data;
2963 size_t size;
2964 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2965
2966 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
2967 if (data == NULL || size == 0)
2968 value->optimized_out = 1;
2969 else
2970 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
2971 dlbaton->per_cu);
2972 }
2973
2974 /* The set of location functions used with the DWARF-2 expression
2975 evaluator and location lists. */
2976 const struct symbol_computed_ops dwarf2_loclist_funcs = {
2977 loclist_read_variable,
2978 loclist_read_needs_frame,
2979 loclist_describe_location,
2980 loclist_tracepoint_var_ref
2981 };
This page took 0.092022 seconds and 4 git commands to generate.