* amd64-sol2-tdep.c (amd64_sol2_gregset_reg_offset): Correct
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003, 2005, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 extern int dwarf2_always_disassemble;
46
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
49
50 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
51
52 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
53 struct frame_info *frame,
54 const gdb_byte *data,
55 unsigned short size,
56 struct dwarf2_per_cu_data *per_cu,
57 LONGEST byte_offset);
58
59 /* A function for dealing with location lists. Given a
60 symbol baton (BATON) and a pc value (PC), find the appropriate
61 location expression, set *LOCEXPR_LENGTH, and return a pointer
62 to the beginning of the expression. Returns NULL on failure.
63
64 For now, only return the first matching location expression; there
65 can be more than one in the list. */
66
67 const gdb_byte *
68 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
69 size_t *locexpr_length, CORE_ADDR pc)
70 {
71 CORE_ADDR low, high;
72 const gdb_byte *loc_ptr, *buf_end;
73 int length;
74 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
75 struct gdbarch *gdbarch = get_objfile_arch (objfile);
76 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
77 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
78 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
79 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
80 /* Adjust base_address for relocatable objects. */
81 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
82 CORE_ADDR base_address = baton->base_address + base_offset;
83
84 loc_ptr = baton->data;
85 buf_end = baton->data + baton->size;
86
87 while (1)
88 {
89 if (buf_end - loc_ptr < 2 * addr_size)
90 error (_("dwarf2_find_location_expression: "
91 "Corrupted DWARF expression."));
92
93 if (signed_addr_p)
94 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
95 else
96 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
97 loc_ptr += addr_size;
98
99 if (signed_addr_p)
100 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
101 else
102 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
103 loc_ptr += addr_size;
104
105 /* A base-address-selection entry. */
106 if ((low & base_mask) == base_mask)
107 {
108 base_address = high + base_offset;
109 continue;
110 }
111
112 /* An end-of-list entry. */
113 if (low == 0 && high == 0)
114 {
115 *locexpr_length = 0;
116 return NULL;
117 }
118
119 /* Otherwise, a location expression entry. */
120 low += base_address;
121 high += base_address;
122
123 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
124 loc_ptr += 2;
125
126 if (low == high && pc == low)
127 {
128 /* This is entry PC record present only at entry point
129 of a function. Verify it is really the function entry point. */
130
131 struct block *pc_block = block_for_pc (pc);
132 struct symbol *pc_func = NULL;
133
134 if (pc_block)
135 pc_func = block_linkage_function (pc_block);
136
137 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
138 {
139 *locexpr_length = length;
140 return loc_ptr;
141 }
142 }
143
144 if (pc >= low && pc < high)
145 {
146 *locexpr_length = length;
147 return loc_ptr;
148 }
149
150 loc_ptr += length;
151 }
152 }
153
154 /* This is the baton used when performing dwarf2 expression
155 evaluation. */
156 struct dwarf_expr_baton
157 {
158 struct frame_info *frame;
159 struct dwarf2_per_cu_data *per_cu;
160 };
161
162 /* Helper functions for dwarf2_evaluate_loc_desc. */
163
164 /* Using the frame specified in BATON, return the value of register
165 REGNUM, treated as a pointer. */
166 static CORE_ADDR
167 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
168 {
169 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
170 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
171 CORE_ADDR result;
172 int regnum;
173
174 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
175 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
176 regnum, debaton->frame);
177 return result;
178 }
179
180 /* Read memory at ADDR (length LEN) into BUF. */
181
182 static void
183 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
184 {
185 read_memory (addr, buf, len);
186 }
187
188 /* Using the frame specified in BATON, find the location expression
189 describing the frame base. Return a pointer to it in START and
190 its length in LENGTH. */
191 static void
192 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
193 {
194 /* FIXME: cagney/2003-03-26: This code should be using
195 get_frame_base_address(), and then implement a dwarf2 specific
196 this_base method. */
197 struct symbol *framefunc;
198 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
199
200 /* Use block_linkage_function, which returns a real (not inlined)
201 function, instead of get_frame_function, which may return an
202 inlined function. */
203 framefunc = block_linkage_function (get_frame_block (debaton->frame, NULL));
204
205 /* If we found a frame-relative symbol then it was certainly within
206 some function associated with a frame. If we can't find the frame,
207 something has gone wrong. */
208 gdb_assert (framefunc != NULL);
209
210 dwarf_expr_frame_base_1 (framefunc,
211 get_frame_address_in_block (debaton->frame),
212 start, length);
213 }
214
215 static void
216 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
217 const gdb_byte **start, size_t *length)
218 {
219 if (SYMBOL_LOCATION_BATON (framefunc) == NULL)
220 *length = 0;
221 else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs)
222 {
223 struct dwarf2_loclist_baton *symbaton;
224
225 symbaton = SYMBOL_LOCATION_BATON (framefunc);
226 *start = dwarf2_find_location_expression (symbaton, length, pc);
227 }
228 else
229 {
230 struct dwarf2_locexpr_baton *symbaton;
231
232 symbaton = SYMBOL_LOCATION_BATON (framefunc);
233 if (symbaton != NULL)
234 {
235 *length = symbaton->size;
236 *start = symbaton->data;
237 }
238 else
239 *length = 0;
240 }
241
242 if (*length == 0)
243 error (_("Could not find the frame base for \"%s\"."),
244 SYMBOL_NATURAL_NAME (framefunc));
245 }
246
247 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
248 the frame in BATON. */
249
250 static CORE_ADDR
251 dwarf_expr_frame_cfa (void *baton)
252 {
253 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
254
255 return dwarf2_frame_cfa (debaton->frame);
256 }
257
258 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
259 the frame in BATON. */
260
261 static CORE_ADDR
262 dwarf_expr_frame_pc (void *baton)
263 {
264 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
265
266 return get_frame_address_in_block (debaton->frame);
267 }
268
269 /* Using the objfile specified in BATON, find the address for the
270 current thread's thread-local storage with offset OFFSET. */
271 static CORE_ADDR
272 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
273 {
274 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
275 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
276
277 return target_translate_tls_address (objfile, offset);
278 }
279
280 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
281 current CU (as is PER_CU). State of the CTX is not affected by the
282 call and return. */
283
284 static void
285 per_cu_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset,
286 struct dwarf2_per_cu_data *per_cu,
287 CORE_ADDR (*get_frame_pc) (void *baton),
288 void *baton)
289 {
290 struct dwarf2_locexpr_baton block;
291
292 block = dwarf2_fetch_die_location_block (die_offset, per_cu,
293 get_frame_pc, baton);
294
295 /* DW_OP_call_ref is currently not supported. */
296 gdb_assert (block.per_cu == per_cu);
297
298 dwarf_expr_eval (ctx, block.data, block.size);
299 }
300
301 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
302
303 static void
304 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
305 {
306 struct dwarf_expr_baton *debaton = ctx->baton;
307
308 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
309 ctx->funcs->get_frame_pc, ctx->baton);
310 }
311
312 /* Callback function for dwarf2_evaluate_loc_desc. */
313
314 static struct type *
315 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx, size_t die_offset)
316 {
317 struct dwarf_expr_baton *debaton = ctx->baton;
318
319 return dwarf2_get_die_type (die_offset, debaton->per_cu);
320 }
321
322 /* See dwarf2loc.h. */
323
324 int entry_values_debug = 0;
325
326 /* Helper to set entry_values_debug. */
327
328 static void
329 show_entry_values_debug (struct ui_file *file, int from_tty,
330 struct cmd_list_element *c, const char *value)
331 {
332 fprintf_filtered (file,
333 _("Entry values and tail call frames debugging is %s.\n"),
334 value);
335 }
336
337 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
338 CALLER_FRAME (for registers) can be NULL if it is not known. This function
339 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
340
341 static CORE_ADDR
342 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
343 struct call_site *call_site,
344 struct frame_info *caller_frame)
345 {
346 switch (FIELD_LOC_KIND (call_site->target))
347 {
348 case FIELD_LOC_KIND_DWARF_BLOCK:
349 {
350 struct dwarf2_locexpr_baton *dwarf_block;
351 struct value *val;
352 struct type *caller_core_addr_type;
353 struct gdbarch *caller_arch;
354
355 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
356 if (dwarf_block == NULL)
357 {
358 struct minimal_symbol *msym;
359
360 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
361 throw_error (NO_ENTRY_VALUE_ERROR,
362 _("DW_AT_GNU_call_site_target is not specified "
363 "at %s in %s"),
364 paddress (call_site_gdbarch, call_site->pc),
365 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
366
367 }
368 if (caller_frame == NULL)
369 {
370 struct minimal_symbol *msym;
371
372 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
373 throw_error (NO_ENTRY_VALUE_ERROR,
374 _("DW_AT_GNU_call_site_target DWARF block resolving "
375 "requires known frame which is currently not "
376 "available at %s in %s"),
377 paddress (call_site_gdbarch, call_site->pc),
378 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
379
380 }
381 caller_arch = get_frame_arch (caller_frame);
382 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
383 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
384 dwarf_block->data, dwarf_block->size,
385 dwarf_block->per_cu);
386 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
387 location. */
388 if (VALUE_LVAL (val) == lval_memory)
389 return value_address (val);
390 else
391 return value_as_address (val);
392 }
393
394 case FIELD_LOC_KIND_PHYSNAME:
395 {
396 const char *physname;
397 struct minimal_symbol *msym;
398
399 physname = FIELD_STATIC_PHYSNAME (call_site->target);
400 msym = lookup_minimal_symbol_text (physname, NULL);
401 if (msym == NULL)
402 {
403 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
404 throw_error (NO_ENTRY_VALUE_ERROR,
405 _("Cannot find function \"%s\" for a call site target "
406 "at %s in %s"),
407 physname, paddress (call_site_gdbarch, call_site->pc),
408 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
409
410 }
411 return SYMBOL_VALUE_ADDRESS (msym);
412 }
413
414 case FIELD_LOC_KIND_PHYSADDR:
415 return FIELD_STATIC_PHYSADDR (call_site->target);
416
417 default:
418 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
419 }
420 }
421
422 /* Convert function entry point exact address ADDR to the function which is
423 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
424 NO_ENTRY_VALUE_ERROR otherwise. */
425
426 static struct symbol *
427 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
428 {
429 struct symbol *sym = find_pc_function (addr);
430 struct type *type;
431
432 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
433 throw_error (NO_ENTRY_VALUE_ERROR,
434 _("DW_TAG_GNU_call_site resolving failed to find function "
435 "name for address %s"),
436 paddress (gdbarch, addr));
437
438 type = SYMBOL_TYPE (sym);
439 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
440 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
441
442 return sym;
443 }
444
445 /* Verify function with entry point exact address ADDR can never call itself
446 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
447 can call itself via tail calls.
448
449 If a funtion can tail call itself its entry value based parameters are
450 unreliable. There is no verification whether the value of some/all
451 parameters is unchanged through the self tail call, we expect if there is
452 a self tail call all the parameters can be modified. */
453
454 static void
455 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
456 {
457 struct obstack addr_obstack;
458 struct cleanup *old_chain;
459 CORE_ADDR addr;
460
461 /* Track here CORE_ADDRs which were already visited. */
462 htab_t addr_hash;
463
464 /* The verification is completely unordered. Track here function addresses
465 which still need to be iterated. */
466 VEC (CORE_ADDR) *todo = NULL;
467
468 obstack_init (&addr_obstack);
469 old_chain = make_cleanup_obstack_free (&addr_obstack);
470 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
471 &addr_obstack, hashtab_obstack_allocate,
472 NULL);
473 make_cleanup_htab_delete (addr_hash);
474
475 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
476
477 VEC_safe_push (CORE_ADDR, todo, verify_addr);
478 while (!VEC_empty (CORE_ADDR, todo))
479 {
480 struct symbol *func_sym;
481 struct call_site *call_site;
482
483 addr = VEC_pop (CORE_ADDR, todo);
484
485 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
486
487 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
488 call_site; call_site = call_site->tail_call_next)
489 {
490 CORE_ADDR target_addr;
491 void **slot;
492
493 /* CALLER_FRAME with registers is not available for tail-call jumped
494 frames. */
495 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
496
497 if (target_addr == verify_addr)
498 {
499 struct minimal_symbol *msym;
500
501 msym = lookup_minimal_symbol_by_pc (verify_addr);
502 throw_error (NO_ENTRY_VALUE_ERROR,
503 _("DW_OP_GNU_entry_value resolving has found "
504 "function \"%s\" at %s can call itself via tail "
505 "calls"),
506 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym),
507 paddress (gdbarch, verify_addr));
508 }
509
510 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
511 if (*slot == NULL)
512 {
513 *slot = obstack_copy (&addr_obstack, &target_addr,
514 sizeof (target_addr));
515 VEC_safe_push (CORE_ADDR, todo, target_addr);
516 }
517 }
518 }
519
520 do_cleanups (old_chain);
521 }
522
523 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
524 ENTRY_VALUES_DEBUG. */
525
526 static void
527 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
528 {
529 CORE_ADDR addr = call_site->pc;
530 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (addr - 1);
531
532 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
533 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
534
535 }
536
537 /* vec.h needs single word type name, typedef it. */
538 typedef struct call_site *call_sitep;
539
540 /* Define VEC (call_sitep) functions. */
541 DEF_VEC_P (call_sitep);
542
543 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
544 only top callers and bottom callees which are present in both. GDBARCH is
545 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
546 no remaining possibilities to provide unambiguous non-trivial result.
547 RESULTP should point to NULL on the first (initialization) call. Caller is
548 responsible for xfree of any RESULTP data. */
549
550 static void
551 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
552 VEC (call_sitep) *chain)
553 {
554 struct call_site_chain *result = *resultp;
555 long length = VEC_length (call_sitep, chain);
556 int callers, callees, idx;
557
558 if (result == NULL)
559 {
560 /* Create the initial chain containing all the passed PCs. */
561
562 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
563 * (length - 1));
564 result->length = length;
565 result->callers = result->callees = length;
566 memcpy (result->call_site, VEC_address (call_sitep, chain),
567 sizeof (*result->call_site) * length);
568 *resultp = result;
569
570 if (entry_values_debug)
571 {
572 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
573 for (idx = 0; idx < length; idx++)
574 tailcall_dump (gdbarch, result->call_site[idx]);
575 fputc_unfiltered ('\n', gdb_stdlog);
576 }
577
578 return;
579 }
580
581 if (entry_values_debug)
582 {
583 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
584 for (idx = 0; idx < length; idx++)
585 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
586 fputc_unfiltered ('\n', gdb_stdlog);
587 }
588
589 /* Intersect callers. */
590
591 callers = min (result->callers, length);
592 for (idx = 0; idx < callers; idx++)
593 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
594 {
595 result->callers = idx;
596 break;
597 }
598
599 /* Intersect callees. */
600
601 callees = min (result->callees, length);
602 for (idx = 0; idx < callees; idx++)
603 if (result->call_site[result->length - 1 - idx]
604 != VEC_index (call_sitep, chain, length - 1 - idx))
605 {
606 result->callees = idx;
607 break;
608 }
609
610 if (entry_values_debug)
611 {
612 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
613 for (idx = 0; idx < result->callers; idx++)
614 tailcall_dump (gdbarch, result->call_site[idx]);
615 fputs_unfiltered (" |", gdb_stdlog);
616 for (idx = 0; idx < result->callees; idx++)
617 tailcall_dump (gdbarch, result->call_site[result->length
618 - result->callees + idx]);
619 fputc_unfiltered ('\n', gdb_stdlog);
620 }
621
622 if (result->callers == 0 && result->callees == 0)
623 {
624 /* There are no common callers or callees. It could be also a direct
625 call (which has length 0) with ambiguous possibility of an indirect
626 call - CALLERS == CALLEES == 0 is valid during the first allocation
627 but any subsequence processing of such entry means ambiguity. */
628 xfree (result);
629 *resultp = NULL;
630 return;
631 }
632
633 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
634 PC again. In such case there must be two different code paths to reach
635 it, therefore some of the former determined intermediate PCs must differ
636 and the unambiguous chain gets shortened. */
637 gdb_assert (result->callers + result->callees < result->length);
638 }
639
640 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
641 assumed frames between them use GDBARCH. Use depth first search so we can
642 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
643 would have needless GDB stack overhead. Caller is responsible for xfree of
644 the returned result. Any unreliability results in thrown
645 NO_ENTRY_VALUE_ERROR. */
646
647 static struct call_site_chain *
648 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
649 CORE_ADDR callee_pc)
650 {
651 struct func_type *func_specific;
652 struct obstack addr_obstack;
653 struct cleanup *back_to_retval, *back_to_workdata;
654 struct call_site_chain *retval = NULL;
655 struct call_site *call_site;
656
657 /* Mark CALL_SITEs so we do not visit the same ones twice. */
658 htab_t addr_hash;
659
660 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
661 call_site nor any possible call_site at CALLEE_PC's function is there.
662 Any CALL_SITE in CHAIN will be iterated to its siblings - via
663 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
664 VEC (call_sitep) *chain = NULL;
665
666 /* We are not interested in the specific PC inside the callee function. */
667 callee_pc = get_pc_function_start (callee_pc);
668 if (callee_pc == 0)
669 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
670 paddress (gdbarch, callee_pc));
671
672 back_to_retval = make_cleanup (free_current_contents, &retval);
673
674 obstack_init (&addr_obstack);
675 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
676 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
677 &addr_obstack, hashtab_obstack_allocate,
678 NULL);
679 make_cleanup_htab_delete (addr_hash);
680
681 make_cleanup (VEC_cleanup (call_sitep), &chain);
682
683 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
684 at the target's function. All the possible tail call sites in the
685 target's function will get iterated as already pushed into CHAIN via their
686 TAIL_CALL_NEXT. */
687 call_site = call_site_for_pc (gdbarch, caller_pc);
688
689 while (call_site)
690 {
691 CORE_ADDR target_func_addr;
692 struct call_site *target_call_site;
693
694 /* CALLER_FRAME with registers is not available for tail-call jumped
695 frames. */
696 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
697
698 if (target_func_addr == callee_pc)
699 {
700 chain_candidate (gdbarch, &retval, chain);
701 if (retval == NULL)
702 break;
703
704 /* There is no way to reach CALLEE_PC again as we would prevent
705 entering it twice as being already marked in ADDR_HASH. */
706 target_call_site = NULL;
707 }
708 else
709 {
710 struct symbol *target_func;
711
712 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
713 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
714 }
715
716 do
717 {
718 /* Attempt to visit TARGET_CALL_SITE. */
719
720 if (target_call_site)
721 {
722 void **slot;
723
724 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
725 if (*slot == NULL)
726 {
727 /* Successfully entered TARGET_CALL_SITE. */
728
729 *slot = &target_call_site->pc;
730 VEC_safe_push (call_sitep, chain, target_call_site);
731 break;
732 }
733 }
734
735 /* Backtrack (without revisiting the originating call_site). Try the
736 callers's sibling; if there isn't any try the callers's callers's
737 sibling etc. */
738
739 target_call_site = NULL;
740 while (!VEC_empty (call_sitep, chain))
741 {
742 call_site = VEC_pop (call_sitep, chain);
743
744 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
745 NO_INSERT) != NULL);
746 htab_remove_elt (addr_hash, &call_site->pc);
747
748 target_call_site = call_site->tail_call_next;
749 if (target_call_site)
750 break;
751 }
752 }
753 while (target_call_site);
754
755 if (VEC_empty (call_sitep, chain))
756 call_site = NULL;
757 else
758 call_site = VEC_last (call_sitep, chain);
759 }
760
761 if (retval == NULL)
762 {
763 struct minimal_symbol *msym_caller, *msym_callee;
764
765 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
766 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
767 throw_error (NO_ENTRY_VALUE_ERROR,
768 _("There are no unambiguously determinable intermediate "
769 "callers or callees between caller function \"%s\" at %s "
770 "and callee function \"%s\" at %s"),
771 (msym_caller == NULL
772 ? "???" : SYMBOL_PRINT_NAME (msym_caller)),
773 paddress (gdbarch, caller_pc),
774 (msym_callee == NULL
775 ? "???" : SYMBOL_PRINT_NAME (msym_callee)),
776 paddress (gdbarch, callee_pc));
777 }
778
779 do_cleanups (back_to_workdata);
780 discard_cleanups (back_to_retval);
781 return retval;
782 }
783
784 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
785 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
786 constructed return NULL. Caller is responsible for xfree of the returned
787 result. */
788
789 struct call_site_chain *
790 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
791 CORE_ADDR callee_pc)
792 {
793 volatile struct gdb_exception e;
794 struct call_site_chain *retval = NULL;
795
796 TRY_CATCH (e, RETURN_MASK_ERROR)
797 {
798 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
799 }
800 if (e.reason < 0)
801 {
802 if (e.error == NO_ENTRY_VALUE_ERROR)
803 {
804 if (entry_values_debug)
805 exception_print (gdb_stdout, e);
806
807 return NULL;
808 }
809 else
810 throw_exception (e);
811 }
812 return retval;
813 }
814
815 /* Fetch call_site_parameter from caller matching the parameters. FRAME is for
816 callee. See DWARF_REG and FB_OFFSET description at struct
817 dwarf_expr_context_funcs->push_dwarf_reg_entry_value.
818
819 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
820 otherwise. */
821
822 static struct call_site_parameter *
823 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame, int dwarf_reg,
824 CORE_ADDR fb_offset,
825 struct dwarf2_per_cu_data **per_cu_return)
826 {
827 CORE_ADDR func_addr = get_frame_func (frame);
828 CORE_ADDR caller_pc;
829 struct gdbarch *gdbarch = get_frame_arch (frame);
830 struct frame_info *caller_frame = get_prev_frame (frame);
831 struct call_site *call_site;
832 int iparams;
833 struct value *val;
834 struct dwarf2_locexpr_baton *dwarf_block;
835 /* Initialize it just to avoid a GCC false warning. */
836 struct call_site_parameter *parameter = NULL;
837 CORE_ADDR target_addr;
838
839 if (gdbarch != frame_unwind_arch (frame))
840 {
841 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr);
842 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
843
844 throw_error (NO_ENTRY_VALUE_ERROR,
845 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
846 "(of %s (%s)) does not match caller gdbarch %s"),
847 gdbarch_bfd_arch_info (gdbarch)->printable_name,
848 paddress (gdbarch, func_addr),
849 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym),
850 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
851 }
852
853 if (caller_frame == NULL)
854 {
855 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr);
856
857 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
858 "requires caller of %s (%s)"),
859 paddress (gdbarch, func_addr),
860 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
861 }
862 caller_pc = get_frame_pc (caller_frame);
863 call_site = call_site_for_pc (gdbarch, caller_pc);
864
865 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
866 if (target_addr != func_addr)
867 {
868 struct minimal_symbol *target_msym, *func_msym;
869
870 target_msym = lookup_minimal_symbol_by_pc (target_addr);
871 func_msym = lookup_minimal_symbol_by_pc (func_addr);
872 throw_error (NO_ENTRY_VALUE_ERROR,
873 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
874 "but the called frame is for %s at %s"),
875 (target_msym == NULL ? "???"
876 : SYMBOL_PRINT_NAME (target_msym)),
877 paddress (gdbarch, target_addr),
878 func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym),
879 paddress (gdbarch, func_addr));
880 }
881
882 /* No entry value based parameters would be reliable if this function can
883 call itself via tail calls. */
884 func_verify_no_selftailcall (gdbarch, func_addr);
885
886 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
887 {
888 parameter = &call_site->parameter[iparams];
889 if (parameter->dwarf_reg == -1 && dwarf_reg == -1)
890 {
891 if (parameter->fb_offset == fb_offset)
892 break;
893 }
894 else if (parameter->dwarf_reg == dwarf_reg)
895 break;
896 }
897 if (iparams == call_site->parameter_count)
898 {
899 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (caller_pc);
900
901 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
902 determine its value. */
903 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
904 "at DW_TAG_GNU_call_site %s at %s"),
905 paddress (gdbarch, caller_pc),
906 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
907 }
908
909 *per_cu_return = call_site->per_cu;
910 return parameter;
911 }
912
913 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
914 the normal DW_AT_GNU_call_site_value block. Otherwise return the
915 DW_AT_GNU_call_site_data_value (dereferenced) block.
916
917 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
918 struct value.
919
920 Function always returns non-NULL, non-optimized out value. It throws
921 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
922
923 static struct value *
924 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
925 CORE_ADDR deref_size, struct type *type,
926 struct frame_info *caller_frame,
927 struct dwarf2_per_cu_data *per_cu)
928 {
929 const gdb_byte *data_src;
930 gdb_byte *data;
931 size_t size;
932
933 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
934 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
935
936 /* DEREF_SIZE size is not verified here. */
937 if (data_src == NULL)
938 throw_error (NO_ENTRY_VALUE_ERROR,
939 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
940
941 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
942 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
943 DWARF block. */
944 data = alloca (size + 1);
945 memcpy (data, data_src, size);
946 data[size] = DW_OP_stack_value;
947
948 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
949 }
950
951 /* Execute call_site_parameter's DWARF block matching DEREF_SIZE for caller of
952 the CTX's frame. CTX must be of dwarf_expr_ctx_funcs kind. See DWARF_REG
953 and FB_OFFSET description at struct
954 dwarf_expr_context_funcs->push_dwarf_reg_entry_value.
955
956 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
957 can be more simple as it does not support cross-CU DWARF executions. */
958
959 static void
960 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
961 int dwarf_reg, CORE_ADDR fb_offset,
962 int deref_size)
963 {
964 struct dwarf_expr_baton *debaton;
965 struct frame_info *frame, *caller_frame;
966 struct dwarf2_per_cu_data *caller_per_cu;
967 struct dwarf_expr_baton baton_local;
968 struct dwarf_expr_context saved_ctx;
969 struct call_site_parameter *parameter;
970 const gdb_byte *data_src;
971 size_t size;
972
973 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
974 debaton = ctx->baton;
975 frame = debaton->frame;
976 caller_frame = get_prev_frame (frame);
977
978 parameter = dwarf_expr_reg_to_entry_parameter (frame, dwarf_reg, fb_offset,
979 &caller_per_cu);
980 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
981 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
982
983 /* DEREF_SIZE size is not verified here. */
984 if (data_src == NULL)
985 throw_error (NO_ENTRY_VALUE_ERROR,
986 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
987
988 baton_local.frame = caller_frame;
989 baton_local.per_cu = caller_per_cu;
990
991 saved_ctx.gdbarch = ctx->gdbarch;
992 saved_ctx.addr_size = ctx->addr_size;
993 saved_ctx.offset = ctx->offset;
994 saved_ctx.baton = ctx->baton;
995 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
996 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
997 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
998 ctx->baton = &baton_local;
999
1000 dwarf_expr_eval (ctx, data_src, size);
1001
1002 ctx->gdbarch = saved_ctx.gdbarch;
1003 ctx->addr_size = saved_ctx.addr_size;
1004 ctx->offset = saved_ctx.offset;
1005 ctx->baton = saved_ctx.baton;
1006 }
1007
1008 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1009 the indirect method on it, that is use its stored target value, the sole
1010 purpose of entry_data_value_funcs.. */
1011
1012 static struct value *
1013 entry_data_value_coerce_ref (const struct value *value)
1014 {
1015 struct type *checked_type = check_typedef (value_type (value));
1016 struct value *target_val;
1017
1018 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1019 return NULL;
1020
1021 target_val = value_computed_closure (value);
1022 value_incref (target_val);
1023 return target_val;
1024 }
1025
1026 /* Implement copy_closure. */
1027
1028 static void *
1029 entry_data_value_copy_closure (const struct value *v)
1030 {
1031 struct value *target_val = value_computed_closure (v);
1032
1033 value_incref (target_val);
1034 return target_val;
1035 }
1036
1037 /* Implement free_closure. */
1038
1039 static void
1040 entry_data_value_free_closure (struct value *v)
1041 {
1042 struct value *target_val = value_computed_closure (v);
1043
1044 value_free (target_val);
1045 }
1046
1047 /* Vector for methods for an entry value reference where the referenced value
1048 is stored in the caller. On the first dereference use
1049 DW_AT_GNU_call_site_data_value in the caller. */
1050
1051 static const struct lval_funcs entry_data_value_funcs =
1052 {
1053 NULL, /* read */
1054 NULL, /* write */
1055 NULL, /* check_validity */
1056 NULL, /* check_any_valid */
1057 NULL, /* indirect */
1058 entry_data_value_coerce_ref,
1059 NULL, /* check_synthetic_pointer */
1060 entry_data_value_copy_closure,
1061 entry_data_value_free_closure
1062 };
1063
1064 /* Read parameter of TYPE at (callee) FRAME's function entry. DWARF_REG and
1065 FB_OFFSET are used to match DW_AT_location at the caller's
1066 DW_TAG_GNU_call_site_parameter. See DWARF_REG and FB_OFFSET description at
1067 struct dwarf_expr_context_funcs->push_dwarf_reg_entry_value.
1068
1069 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1070 cannot resolve the parameter for any reason. */
1071
1072 static struct value *
1073 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1074 int dwarf_reg, CORE_ADDR fb_offset)
1075 {
1076 struct type *checked_type = check_typedef (type);
1077 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1078 struct frame_info *caller_frame = get_prev_frame (frame);
1079 struct value *outer_val, *target_val, *val;
1080 struct call_site_parameter *parameter;
1081 struct dwarf2_per_cu_data *caller_per_cu;
1082 CORE_ADDR addr;
1083
1084 parameter = dwarf_expr_reg_to_entry_parameter (frame, dwarf_reg, fb_offset,
1085 &caller_per_cu);
1086
1087 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1088 type, caller_frame,
1089 caller_per_cu);
1090
1091 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1092 used and it is not available do not fall back to OUTER_VAL - dereferencing
1093 TYPE_CODE_REF with non-entry data value would give current value - not the
1094 entry value. */
1095
1096 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1097 || TYPE_TARGET_TYPE (checked_type) == NULL)
1098 return outer_val;
1099
1100 target_val = dwarf_entry_parameter_to_value (parameter,
1101 TYPE_LENGTH (target_type),
1102 target_type, caller_frame,
1103 caller_per_cu);
1104
1105 /* value_as_address dereferences TYPE_CODE_REF. */
1106 addr = extract_typed_address (value_contents (outer_val), checked_type);
1107
1108 /* The target entry value has artificial address of the entry value
1109 reference. */
1110 VALUE_LVAL (target_val) = lval_memory;
1111 set_value_address (target_val, addr);
1112
1113 release_value (target_val);
1114 val = allocate_computed_value (type, &entry_data_value_funcs,
1115 target_val /* closure */);
1116
1117 /* Copy the referencing pointer to the new computed value. */
1118 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1119 TYPE_LENGTH (checked_type));
1120 set_value_lazy (val, 0);
1121
1122 return val;
1123 }
1124
1125 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1126 SIZE are DWARF block used to match DW_AT_location at the caller's
1127 DW_TAG_GNU_call_site_parameter.
1128
1129 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1130 cannot resolve the parameter for any reason. */
1131
1132 static struct value *
1133 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1134 const gdb_byte *block, size_t block_len)
1135 {
1136 int dwarf_reg;
1137 CORE_ADDR fb_offset;
1138
1139 dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1140 if (dwarf_reg != -1)
1141 return value_of_dwarf_reg_entry (type, frame, dwarf_reg, 0 /* unused */);
1142
1143 if (dwarf_block_to_fb_offset (block, block + block_len, &fb_offset))
1144 return value_of_dwarf_reg_entry (type, frame, -1, fb_offset);
1145
1146 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1147 suppressed during normal operation. The expression can be arbitrary if
1148 there is no caller-callee entry value binding expected. */
1149 throw_error (NO_ENTRY_VALUE_ERROR,
1150 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1151 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1152 }
1153
1154 struct piece_closure
1155 {
1156 /* Reference count. */
1157 int refc;
1158
1159 /* The CU from which this closure's expression came. */
1160 struct dwarf2_per_cu_data *per_cu;
1161
1162 /* The number of pieces used to describe this variable. */
1163 int n_pieces;
1164
1165 /* The target address size, used only for DWARF_VALUE_STACK. */
1166 int addr_size;
1167
1168 /* The pieces themselves. */
1169 struct dwarf_expr_piece *pieces;
1170 };
1171
1172 /* Allocate a closure for a value formed from separately-described
1173 PIECES. */
1174
1175 static struct piece_closure *
1176 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1177 int n_pieces, struct dwarf_expr_piece *pieces,
1178 int addr_size)
1179 {
1180 struct piece_closure *c = XZALLOC (struct piece_closure);
1181 int i;
1182
1183 c->refc = 1;
1184 c->per_cu = per_cu;
1185 c->n_pieces = n_pieces;
1186 c->addr_size = addr_size;
1187 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
1188
1189 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1190 for (i = 0; i < n_pieces; ++i)
1191 if (c->pieces[i].location == DWARF_VALUE_STACK)
1192 value_incref (c->pieces[i].v.value);
1193
1194 return c;
1195 }
1196
1197 /* The lowest-level function to extract bits from a byte buffer.
1198 SOURCE is the buffer. It is updated if we read to the end of a
1199 byte.
1200 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1201 updated to reflect the number of bits actually read.
1202 NBITS is the number of bits we want to read. It is updated to
1203 reflect the number of bits actually read. This function may read
1204 fewer bits.
1205 BITS_BIG_ENDIAN is taken directly from gdbarch.
1206 This function returns the extracted bits. */
1207
1208 static unsigned int
1209 extract_bits_primitive (const gdb_byte **source,
1210 unsigned int *source_offset_bits,
1211 int *nbits, int bits_big_endian)
1212 {
1213 unsigned int avail, mask, datum;
1214
1215 gdb_assert (*source_offset_bits < 8);
1216
1217 avail = 8 - *source_offset_bits;
1218 if (avail > *nbits)
1219 avail = *nbits;
1220
1221 mask = (1 << avail) - 1;
1222 datum = **source;
1223 if (bits_big_endian)
1224 datum >>= 8 - (*source_offset_bits + *nbits);
1225 else
1226 datum >>= *source_offset_bits;
1227 datum &= mask;
1228
1229 *nbits -= avail;
1230 *source_offset_bits += avail;
1231 if (*source_offset_bits >= 8)
1232 {
1233 *source_offset_bits -= 8;
1234 ++*source;
1235 }
1236
1237 return datum;
1238 }
1239
1240 /* Extract some bits from a source buffer and move forward in the
1241 buffer.
1242
1243 SOURCE is the source buffer. It is updated as bytes are read.
1244 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1245 bits are read.
1246 NBITS is the number of bits to read.
1247 BITS_BIG_ENDIAN is taken directly from gdbarch.
1248
1249 This function returns the bits that were read. */
1250
1251 static unsigned int
1252 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1253 int nbits, int bits_big_endian)
1254 {
1255 unsigned int datum;
1256
1257 gdb_assert (nbits > 0 && nbits <= 8);
1258
1259 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1260 bits_big_endian);
1261 if (nbits > 0)
1262 {
1263 unsigned int more;
1264
1265 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1266 bits_big_endian);
1267 if (bits_big_endian)
1268 datum <<= nbits;
1269 else
1270 more <<= nbits;
1271 datum |= more;
1272 }
1273
1274 return datum;
1275 }
1276
1277 /* Write some bits into a buffer and move forward in the buffer.
1278
1279 DATUM is the bits to write. The low-order bits of DATUM are used.
1280 DEST is the destination buffer. It is updated as bytes are
1281 written.
1282 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1283 done.
1284 NBITS is the number of valid bits in DATUM.
1285 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1286
1287 static void
1288 insert_bits (unsigned int datum,
1289 gdb_byte *dest, unsigned int dest_offset_bits,
1290 int nbits, int bits_big_endian)
1291 {
1292 unsigned int mask;
1293
1294 gdb_assert (dest_offset_bits + nbits <= 8);
1295
1296 mask = (1 << nbits) - 1;
1297 if (bits_big_endian)
1298 {
1299 datum <<= 8 - (dest_offset_bits + nbits);
1300 mask <<= 8 - (dest_offset_bits + nbits);
1301 }
1302 else
1303 {
1304 datum <<= dest_offset_bits;
1305 mask <<= dest_offset_bits;
1306 }
1307
1308 gdb_assert ((datum & ~mask) == 0);
1309
1310 *dest = (*dest & ~mask) | datum;
1311 }
1312
1313 /* Copy bits from a source to a destination.
1314
1315 DEST is where the bits should be written.
1316 DEST_OFFSET_BITS is the bit offset into DEST.
1317 SOURCE is the source of bits.
1318 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1319 BIT_COUNT is the number of bits to copy.
1320 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1321
1322 static void
1323 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1324 const gdb_byte *source, unsigned int source_offset_bits,
1325 unsigned int bit_count,
1326 int bits_big_endian)
1327 {
1328 unsigned int dest_avail;
1329 int datum;
1330
1331 /* Reduce everything to byte-size pieces. */
1332 dest += dest_offset_bits / 8;
1333 dest_offset_bits %= 8;
1334 source += source_offset_bits / 8;
1335 source_offset_bits %= 8;
1336
1337 dest_avail = 8 - dest_offset_bits % 8;
1338
1339 /* See if we can fill the first destination byte. */
1340 if (dest_avail < bit_count)
1341 {
1342 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1343 bits_big_endian);
1344 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1345 ++dest;
1346 dest_offset_bits = 0;
1347 bit_count -= dest_avail;
1348 }
1349
1350 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1351 than 8 bits remaining. */
1352 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1353 for (; bit_count >= 8; bit_count -= 8)
1354 {
1355 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1356 *dest++ = (gdb_byte) datum;
1357 }
1358
1359 /* Finally, we may have a few leftover bits. */
1360 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1361 if (bit_count > 0)
1362 {
1363 datum = extract_bits (&source, &source_offset_bits, bit_count,
1364 bits_big_endian);
1365 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1366 }
1367 }
1368
1369 static void
1370 read_pieced_value (struct value *v)
1371 {
1372 int i;
1373 long offset = 0;
1374 ULONGEST bits_to_skip;
1375 gdb_byte *contents;
1376 struct piece_closure *c
1377 = (struct piece_closure *) value_computed_closure (v);
1378 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1379 size_t type_len;
1380 size_t buffer_size = 0;
1381 char *buffer = NULL;
1382 struct cleanup *cleanup;
1383 int bits_big_endian
1384 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1385
1386 if (value_type (v) != value_enclosing_type (v))
1387 internal_error (__FILE__, __LINE__,
1388 _("Should not be able to create a lazy value with "
1389 "an enclosing type"));
1390
1391 cleanup = make_cleanup (free_current_contents, &buffer);
1392
1393 contents = value_contents_raw (v);
1394 bits_to_skip = 8 * value_offset (v);
1395 if (value_bitsize (v))
1396 {
1397 bits_to_skip += value_bitpos (v);
1398 type_len = value_bitsize (v);
1399 }
1400 else
1401 type_len = 8 * TYPE_LENGTH (value_type (v));
1402
1403 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1404 {
1405 struct dwarf_expr_piece *p = &c->pieces[i];
1406 size_t this_size, this_size_bits;
1407 long dest_offset_bits, source_offset_bits, source_offset;
1408 const gdb_byte *intermediate_buffer;
1409
1410 /* Compute size, source, and destination offsets for copying, in
1411 bits. */
1412 this_size_bits = p->size;
1413 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1414 {
1415 bits_to_skip -= this_size_bits;
1416 continue;
1417 }
1418 if (this_size_bits > type_len - offset)
1419 this_size_bits = type_len - offset;
1420 if (bits_to_skip > 0)
1421 {
1422 dest_offset_bits = 0;
1423 source_offset_bits = bits_to_skip;
1424 this_size_bits -= bits_to_skip;
1425 bits_to_skip = 0;
1426 }
1427 else
1428 {
1429 dest_offset_bits = offset;
1430 source_offset_bits = 0;
1431 }
1432
1433 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1434 source_offset = source_offset_bits / 8;
1435 if (buffer_size < this_size)
1436 {
1437 buffer_size = this_size;
1438 buffer = xrealloc (buffer, buffer_size);
1439 }
1440 intermediate_buffer = buffer;
1441
1442 /* Copy from the source to DEST_BUFFER. */
1443 switch (p->location)
1444 {
1445 case DWARF_VALUE_REGISTER:
1446 {
1447 struct gdbarch *arch = get_frame_arch (frame);
1448 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1449 int reg_offset = source_offset;
1450
1451 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1452 && this_size < register_size (arch, gdb_regnum))
1453 {
1454 /* Big-endian, and we want less than full size. */
1455 reg_offset = register_size (arch, gdb_regnum) - this_size;
1456 /* We want the lower-order THIS_SIZE_BITS of the bytes
1457 we extract from the register. */
1458 source_offset_bits += 8 * this_size - this_size_bits;
1459 }
1460
1461 if (gdb_regnum != -1)
1462 {
1463 int optim, unavail;
1464
1465 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1466 this_size, buffer,
1467 &optim, &unavail))
1468 {
1469 /* Just so garbage doesn't ever shine through. */
1470 memset (buffer, 0, this_size);
1471
1472 if (optim)
1473 set_value_optimized_out (v, 1);
1474 if (unavail)
1475 mark_value_bytes_unavailable (v, offset, this_size);
1476 }
1477 }
1478 else
1479 {
1480 error (_("Unable to access DWARF register number %s"),
1481 paddress (arch, p->v.regno));
1482 }
1483 }
1484 break;
1485
1486 case DWARF_VALUE_MEMORY:
1487 read_value_memory (v, offset,
1488 p->v.mem.in_stack_memory,
1489 p->v.mem.addr + source_offset,
1490 buffer, this_size);
1491 break;
1492
1493 case DWARF_VALUE_STACK:
1494 {
1495 size_t n = this_size;
1496
1497 if (n > c->addr_size - source_offset)
1498 n = (c->addr_size >= source_offset
1499 ? c->addr_size - source_offset
1500 : 0);
1501 if (n == 0)
1502 {
1503 /* Nothing. */
1504 }
1505 else
1506 {
1507 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1508
1509 intermediate_buffer = val_bytes + source_offset;
1510 }
1511 }
1512 break;
1513
1514 case DWARF_VALUE_LITERAL:
1515 {
1516 size_t n = this_size;
1517
1518 if (n > p->v.literal.length - source_offset)
1519 n = (p->v.literal.length >= source_offset
1520 ? p->v.literal.length - source_offset
1521 : 0);
1522 if (n != 0)
1523 intermediate_buffer = p->v.literal.data + source_offset;
1524 }
1525 break;
1526
1527 /* These bits show up as zeros -- but do not cause the value
1528 to be considered optimized-out. */
1529 case DWARF_VALUE_IMPLICIT_POINTER:
1530 break;
1531
1532 case DWARF_VALUE_OPTIMIZED_OUT:
1533 set_value_optimized_out (v, 1);
1534 break;
1535
1536 default:
1537 internal_error (__FILE__, __LINE__, _("invalid location type"));
1538 }
1539
1540 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1541 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1542 copy_bitwise (contents, dest_offset_bits,
1543 intermediate_buffer, source_offset_bits % 8,
1544 this_size_bits, bits_big_endian);
1545
1546 offset += this_size_bits;
1547 }
1548
1549 do_cleanups (cleanup);
1550 }
1551
1552 static void
1553 write_pieced_value (struct value *to, struct value *from)
1554 {
1555 int i;
1556 long offset = 0;
1557 ULONGEST bits_to_skip;
1558 const gdb_byte *contents;
1559 struct piece_closure *c
1560 = (struct piece_closure *) value_computed_closure (to);
1561 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1562 size_t type_len;
1563 size_t buffer_size = 0;
1564 char *buffer = NULL;
1565 struct cleanup *cleanup;
1566 int bits_big_endian
1567 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1568
1569 if (frame == NULL)
1570 {
1571 set_value_optimized_out (to, 1);
1572 return;
1573 }
1574
1575 cleanup = make_cleanup (free_current_contents, &buffer);
1576
1577 contents = value_contents (from);
1578 bits_to_skip = 8 * value_offset (to);
1579 if (value_bitsize (to))
1580 {
1581 bits_to_skip += value_bitpos (to);
1582 type_len = value_bitsize (to);
1583 }
1584 else
1585 type_len = 8 * TYPE_LENGTH (value_type (to));
1586
1587 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1588 {
1589 struct dwarf_expr_piece *p = &c->pieces[i];
1590 size_t this_size_bits, this_size;
1591 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1592 int need_bitwise;
1593 const gdb_byte *source_buffer;
1594
1595 this_size_bits = p->size;
1596 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1597 {
1598 bits_to_skip -= this_size_bits;
1599 continue;
1600 }
1601 if (this_size_bits > type_len - offset)
1602 this_size_bits = type_len - offset;
1603 if (bits_to_skip > 0)
1604 {
1605 dest_offset_bits = bits_to_skip;
1606 source_offset_bits = 0;
1607 this_size_bits -= bits_to_skip;
1608 bits_to_skip = 0;
1609 }
1610 else
1611 {
1612 dest_offset_bits = 0;
1613 source_offset_bits = offset;
1614 }
1615
1616 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1617 source_offset = source_offset_bits / 8;
1618 dest_offset = dest_offset_bits / 8;
1619 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1620 {
1621 source_buffer = contents + source_offset;
1622 need_bitwise = 0;
1623 }
1624 else
1625 {
1626 if (buffer_size < this_size)
1627 {
1628 buffer_size = this_size;
1629 buffer = xrealloc (buffer, buffer_size);
1630 }
1631 source_buffer = buffer;
1632 need_bitwise = 1;
1633 }
1634
1635 switch (p->location)
1636 {
1637 case DWARF_VALUE_REGISTER:
1638 {
1639 struct gdbarch *arch = get_frame_arch (frame);
1640 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1641 int reg_offset = dest_offset;
1642
1643 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1644 && this_size <= register_size (arch, gdb_regnum))
1645 /* Big-endian, and we want less than full size. */
1646 reg_offset = register_size (arch, gdb_regnum) - this_size;
1647
1648 if (gdb_regnum != -1)
1649 {
1650 if (need_bitwise)
1651 {
1652 int optim, unavail;
1653
1654 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1655 this_size, buffer,
1656 &optim, &unavail))
1657 {
1658 if (optim)
1659 error (_("Can't do read-modify-write to "
1660 "update bitfield; containing word has been "
1661 "optimized out"));
1662 if (unavail)
1663 throw_error (NOT_AVAILABLE_ERROR,
1664 _("Can't do read-modify-write to update "
1665 "bitfield; containing word "
1666 "is unavailable"));
1667 }
1668 copy_bitwise (buffer, dest_offset_bits,
1669 contents, source_offset_bits,
1670 this_size_bits,
1671 bits_big_endian);
1672 }
1673
1674 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1675 this_size, source_buffer);
1676 }
1677 else
1678 {
1679 error (_("Unable to write to DWARF register number %s"),
1680 paddress (arch, p->v.regno));
1681 }
1682 }
1683 break;
1684 case DWARF_VALUE_MEMORY:
1685 if (need_bitwise)
1686 {
1687 /* Only the first and last bytes can possibly have any
1688 bits reused. */
1689 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1690 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1691 buffer + this_size - 1, 1);
1692 copy_bitwise (buffer, dest_offset_bits,
1693 contents, source_offset_bits,
1694 this_size_bits,
1695 bits_big_endian);
1696 }
1697
1698 write_memory (p->v.mem.addr + dest_offset,
1699 source_buffer, this_size);
1700 break;
1701 default:
1702 set_value_optimized_out (to, 1);
1703 break;
1704 }
1705 offset += this_size_bits;
1706 }
1707
1708 do_cleanups (cleanup);
1709 }
1710
1711 /* A helper function that checks bit validity in a pieced value.
1712 CHECK_FOR indicates the kind of validity checking.
1713 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1714 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1715 optimized out.
1716 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1717 implicit pointer. */
1718
1719 static int
1720 check_pieced_value_bits (const struct value *value, int bit_offset,
1721 int bit_length,
1722 enum dwarf_value_location check_for)
1723 {
1724 struct piece_closure *c
1725 = (struct piece_closure *) value_computed_closure (value);
1726 int i;
1727 int validity = (check_for == DWARF_VALUE_MEMORY
1728 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1729
1730 bit_offset += 8 * value_offset (value);
1731 if (value_bitsize (value))
1732 bit_offset += value_bitpos (value);
1733
1734 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1735 {
1736 struct dwarf_expr_piece *p = &c->pieces[i];
1737 size_t this_size_bits = p->size;
1738
1739 if (bit_offset > 0)
1740 {
1741 if (bit_offset >= this_size_bits)
1742 {
1743 bit_offset -= this_size_bits;
1744 continue;
1745 }
1746
1747 bit_length -= this_size_bits - bit_offset;
1748 bit_offset = 0;
1749 }
1750 else
1751 bit_length -= this_size_bits;
1752
1753 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1754 {
1755 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1756 return 0;
1757 }
1758 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1759 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1760 {
1761 if (validity)
1762 return 0;
1763 }
1764 else
1765 {
1766 if (!validity)
1767 return 1;
1768 }
1769 }
1770
1771 return validity;
1772 }
1773
1774 static int
1775 check_pieced_value_validity (const struct value *value, int bit_offset,
1776 int bit_length)
1777 {
1778 return check_pieced_value_bits (value, bit_offset, bit_length,
1779 DWARF_VALUE_MEMORY);
1780 }
1781
1782 static int
1783 check_pieced_value_invalid (const struct value *value)
1784 {
1785 return check_pieced_value_bits (value, 0,
1786 8 * TYPE_LENGTH (value_type (value)),
1787 DWARF_VALUE_OPTIMIZED_OUT);
1788 }
1789
1790 /* An implementation of an lval_funcs method to see whether a value is
1791 a synthetic pointer. */
1792
1793 static int
1794 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1795 int bit_length)
1796 {
1797 return check_pieced_value_bits (value, bit_offset, bit_length,
1798 DWARF_VALUE_IMPLICIT_POINTER);
1799 }
1800
1801 /* A wrapper function for get_frame_address_in_block. */
1802
1803 static CORE_ADDR
1804 get_frame_address_in_block_wrapper (void *baton)
1805 {
1806 return get_frame_address_in_block (baton);
1807 }
1808
1809 /* An implementation of an lval_funcs method to indirect through a
1810 pointer. This handles the synthetic pointer case when needed. */
1811
1812 static struct value *
1813 indirect_pieced_value (struct value *value)
1814 {
1815 struct piece_closure *c
1816 = (struct piece_closure *) value_computed_closure (value);
1817 struct type *type;
1818 struct frame_info *frame;
1819 struct dwarf2_locexpr_baton baton;
1820 int i, bit_offset, bit_length;
1821 struct dwarf_expr_piece *piece = NULL;
1822 LONGEST byte_offset;
1823
1824 type = check_typedef (value_type (value));
1825 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1826 return NULL;
1827
1828 bit_length = 8 * TYPE_LENGTH (type);
1829 bit_offset = 8 * value_offset (value);
1830 if (value_bitsize (value))
1831 bit_offset += value_bitpos (value);
1832
1833 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1834 {
1835 struct dwarf_expr_piece *p = &c->pieces[i];
1836 size_t this_size_bits = p->size;
1837
1838 if (bit_offset > 0)
1839 {
1840 if (bit_offset >= this_size_bits)
1841 {
1842 bit_offset -= this_size_bits;
1843 continue;
1844 }
1845
1846 bit_length -= this_size_bits - bit_offset;
1847 bit_offset = 0;
1848 }
1849 else
1850 bit_length -= this_size_bits;
1851
1852 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1853 return NULL;
1854
1855 if (bit_length != 0)
1856 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
1857
1858 piece = p;
1859 break;
1860 }
1861
1862 frame = get_selected_frame (_("No frame selected."));
1863
1864 /* This is an offset requested by GDB, such as value subcripts. */
1865 byte_offset = value_as_address (value);
1866
1867 gdb_assert (piece);
1868 baton = dwarf2_fetch_die_location_block (piece->v.ptr.die, c->per_cu,
1869 get_frame_address_in_block_wrapper,
1870 frame);
1871
1872 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
1873 baton.data, baton.size, baton.per_cu,
1874 piece->v.ptr.offset + byte_offset);
1875 }
1876
1877 static void *
1878 copy_pieced_value_closure (const struct value *v)
1879 {
1880 struct piece_closure *c
1881 = (struct piece_closure *) value_computed_closure (v);
1882
1883 ++c->refc;
1884 return c;
1885 }
1886
1887 static void
1888 free_pieced_value_closure (struct value *v)
1889 {
1890 struct piece_closure *c
1891 = (struct piece_closure *) value_computed_closure (v);
1892
1893 --c->refc;
1894 if (c->refc == 0)
1895 {
1896 int i;
1897
1898 for (i = 0; i < c->n_pieces; ++i)
1899 if (c->pieces[i].location == DWARF_VALUE_STACK)
1900 value_free (c->pieces[i].v.value);
1901
1902 xfree (c->pieces);
1903 xfree (c);
1904 }
1905 }
1906
1907 /* Functions for accessing a variable described by DW_OP_piece. */
1908 static const struct lval_funcs pieced_value_funcs = {
1909 read_pieced_value,
1910 write_pieced_value,
1911 check_pieced_value_validity,
1912 check_pieced_value_invalid,
1913 indirect_pieced_value,
1914 NULL, /* coerce_ref */
1915 check_pieced_synthetic_pointer,
1916 copy_pieced_value_closure,
1917 free_pieced_value_closure
1918 };
1919
1920 /* Helper function which throws an error if a synthetic pointer is
1921 invalid. */
1922
1923 static void
1924 invalid_synthetic_pointer (void)
1925 {
1926 error (_("access outside bounds of object "
1927 "referenced via synthetic pointer"));
1928 }
1929
1930 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
1931
1932 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
1933 {
1934 dwarf_expr_read_reg,
1935 dwarf_expr_read_mem,
1936 dwarf_expr_frame_base,
1937 dwarf_expr_frame_cfa,
1938 dwarf_expr_frame_pc,
1939 dwarf_expr_tls_address,
1940 dwarf_expr_dwarf_call,
1941 dwarf_expr_get_base_type,
1942 dwarf_expr_push_dwarf_reg_entry_value
1943 };
1944
1945 /* Evaluate a location description, starting at DATA and with length
1946 SIZE, to find the current location of variable of TYPE in the
1947 context of FRAME. BYTE_OFFSET is applied after the contents are
1948 computed. */
1949
1950 static struct value *
1951 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
1952 const gdb_byte *data, unsigned short size,
1953 struct dwarf2_per_cu_data *per_cu,
1954 LONGEST byte_offset)
1955 {
1956 struct value *retval;
1957 struct dwarf_expr_baton baton;
1958 struct dwarf_expr_context *ctx;
1959 struct cleanup *old_chain, *value_chain;
1960 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
1961 volatile struct gdb_exception ex;
1962
1963 if (byte_offset < 0)
1964 invalid_synthetic_pointer ();
1965
1966 if (size == 0)
1967 return allocate_optimized_out_value (type);
1968
1969 baton.frame = frame;
1970 baton.per_cu = per_cu;
1971
1972 ctx = new_dwarf_expr_context ();
1973 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
1974 value_chain = make_cleanup_value_free_to_mark (value_mark ());
1975
1976 ctx->gdbarch = get_objfile_arch (objfile);
1977 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
1978 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
1979 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
1980 ctx->baton = &baton;
1981 ctx->funcs = &dwarf_expr_ctx_funcs;
1982
1983 TRY_CATCH (ex, RETURN_MASK_ERROR)
1984 {
1985 dwarf_expr_eval (ctx, data, size);
1986 }
1987 if (ex.reason < 0)
1988 {
1989 if (ex.error == NOT_AVAILABLE_ERROR)
1990 {
1991 do_cleanups (old_chain);
1992 retval = allocate_value (type);
1993 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
1994 return retval;
1995 }
1996 else if (ex.error == NO_ENTRY_VALUE_ERROR)
1997 {
1998 if (entry_values_debug)
1999 exception_print (gdb_stdout, ex);
2000 do_cleanups (old_chain);
2001 return allocate_optimized_out_value (type);
2002 }
2003 else
2004 throw_exception (ex);
2005 }
2006
2007 if (ctx->num_pieces > 0)
2008 {
2009 struct piece_closure *c;
2010 struct frame_id frame_id = get_frame_id (frame);
2011 ULONGEST bit_size = 0;
2012 int i;
2013
2014 for (i = 0; i < ctx->num_pieces; ++i)
2015 bit_size += ctx->pieces[i].size;
2016 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2017 invalid_synthetic_pointer ();
2018
2019 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2020 ctx->addr_size);
2021 /* We must clean up the value chain after creating the piece
2022 closure but before allocating the result. */
2023 do_cleanups (value_chain);
2024 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2025 VALUE_FRAME_ID (retval) = frame_id;
2026 set_value_offset (retval, byte_offset);
2027 }
2028 else
2029 {
2030 switch (ctx->location)
2031 {
2032 case DWARF_VALUE_REGISTER:
2033 {
2034 struct gdbarch *arch = get_frame_arch (frame);
2035 ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0));
2036 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2037
2038 if (byte_offset != 0)
2039 error (_("cannot use offset on synthetic pointer to register"));
2040 do_cleanups (value_chain);
2041 if (gdb_regnum != -1)
2042 retval = value_from_register (type, gdb_regnum, frame);
2043 else
2044 error (_("Unable to access DWARF register number %s"),
2045 paddress (arch, dwarf_regnum));
2046 }
2047 break;
2048
2049 case DWARF_VALUE_MEMORY:
2050 {
2051 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2052 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2053
2054 do_cleanups (value_chain);
2055 retval = allocate_value_lazy (type);
2056 VALUE_LVAL (retval) = lval_memory;
2057 if (in_stack_memory)
2058 set_value_stack (retval, 1);
2059 set_value_address (retval, address + byte_offset);
2060 }
2061 break;
2062
2063 case DWARF_VALUE_STACK:
2064 {
2065 struct value *value = dwarf_expr_fetch (ctx, 0);
2066 gdb_byte *contents;
2067 const gdb_byte *val_bytes;
2068 size_t n = TYPE_LENGTH (value_type (value));
2069
2070 if (byte_offset + TYPE_LENGTH (type) > n)
2071 invalid_synthetic_pointer ();
2072
2073 val_bytes = value_contents_all (value);
2074 val_bytes += byte_offset;
2075 n -= byte_offset;
2076
2077 /* Preserve VALUE because we are going to free values back
2078 to the mark, but we still need the value contents
2079 below. */
2080 value_incref (value);
2081 do_cleanups (value_chain);
2082 make_cleanup_value_free (value);
2083
2084 retval = allocate_value (type);
2085 contents = value_contents_raw (retval);
2086 if (n > TYPE_LENGTH (type))
2087 {
2088 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2089
2090 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2091 val_bytes += n - TYPE_LENGTH (type);
2092 n = TYPE_LENGTH (type);
2093 }
2094 memcpy (contents, val_bytes, n);
2095 }
2096 break;
2097
2098 case DWARF_VALUE_LITERAL:
2099 {
2100 bfd_byte *contents;
2101 const bfd_byte *ldata;
2102 size_t n = ctx->len;
2103
2104 if (byte_offset + TYPE_LENGTH (type) > n)
2105 invalid_synthetic_pointer ();
2106
2107 do_cleanups (value_chain);
2108 retval = allocate_value (type);
2109 contents = value_contents_raw (retval);
2110
2111 ldata = ctx->data + byte_offset;
2112 n -= byte_offset;
2113
2114 if (n > TYPE_LENGTH (type))
2115 {
2116 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2117
2118 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2119 ldata += n - TYPE_LENGTH (type);
2120 n = TYPE_LENGTH (type);
2121 }
2122 memcpy (contents, ldata, n);
2123 }
2124 break;
2125
2126 case DWARF_VALUE_OPTIMIZED_OUT:
2127 do_cleanups (value_chain);
2128 retval = allocate_optimized_out_value (type);
2129 break;
2130
2131 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2132 operation by execute_stack_op. */
2133 case DWARF_VALUE_IMPLICIT_POINTER:
2134 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2135 it can only be encountered when making a piece. */
2136 default:
2137 internal_error (__FILE__, __LINE__, _("invalid location type"));
2138 }
2139 }
2140
2141 set_value_initialized (retval, ctx->initialized);
2142
2143 do_cleanups (old_chain);
2144
2145 return retval;
2146 }
2147
2148 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2149 passes 0 as the byte_offset. */
2150
2151 struct value *
2152 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2153 const gdb_byte *data, unsigned short size,
2154 struct dwarf2_per_cu_data *per_cu)
2155 {
2156 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2157 }
2158
2159 \f
2160 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2161
2162 struct needs_frame_baton
2163 {
2164 int needs_frame;
2165 struct dwarf2_per_cu_data *per_cu;
2166 };
2167
2168 /* Reads from registers do require a frame. */
2169 static CORE_ADDR
2170 needs_frame_read_reg (void *baton, int regnum)
2171 {
2172 struct needs_frame_baton *nf_baton = baton;
2173
2174 nf_baton->needs_frame = 1;
2175 return 1;
2176 }
2177
2178 /* Reads from memory do not require a frame. */
2179 static void
2180 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2181 {
2182 memset (buf, 0, len);
2183 }
2184
2185 /* Frame-relative accesses do require a frame. */
2186 static void
2187 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2188 {
2189 static gdb_byte lit0 = DW_OP_lit0;
2190 struct needs_frame_baton *nf_baton = baton;
2191
2192 *start = &lit0;
2193 *length = 1;
2194
2195 nf_baton->needs_frame = 1;
2196 }
2197
2198 /* CFA accesses require a frame. */
2199
2200 static CORE_ADDR
2201 needs_frame_frame_cfa (void *baton)
2202 {
2203 struct needs_frame_baton *nf_baton = baton;
2204
2205 nf_baton->needs_frame = 1;
2206 return 1;
2207 }
2208
2209 /* Thread-local accesses do require a frame. */
2210 static CORE_ADDR
2211 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2212 {
2213 struct needs_frame_baton *nf_baton = baton;
2214
2215 nf_baton->needs_frame = 1;
2216 return 1;
2217 }
2218
2219 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2220
2221 static void
2222 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
2223 {
2224 struct needs_frame_baton *nf_baton = ctx->baton;
2225
2226 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2227 ctx->funcs->get_frame_pc, ctx->baton);
2228 }
2229
2230 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2231
2232 static void
2233 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2234 int dwarf_reg, CORE_ADDR fb_offset, int deref_size)
2235 {
2236 struct needs_frame_baton *nf_baton = ctx->baton;
2237
2238 nf_baton->needs_frame = 1;
2239 }
2240
2241 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2242
2243 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2244 {
2245 needs_frame_read_reg,
2246 needs_frame_read_mem,
2247 needs_frame_frame_base,
2248 needs_frame_frame_cfa,
2249 needs_frame_frame_cfa, /* get_frame_pc */
2250 needs_frame_tls_address,
2251 needs_frame_dwarf_call,
2252 NULL, /* get_base_type */
2253 needs_dwarf_reg_entry_value
2254 };
2255
2256 /* Return non-zero iff the location expression at DATA (length SIZE)
2257 requires a frame to evaluate. */
2258
2259 static int
2260 dwarf2_loc_desc_needs_frame (const gdb_byte *data, unsigned short size,
2261 struct dwarf2_per_cu_data *per_cu)
2262 {
2263 struct needs_frame_baton baton;
2264 struct dwarf_expr_context *ctx;
2265 int in_reg;
2266 struct cleanup *old_chain;
2267 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2268
2269 baton.needs_frame = 0;
2270 baton.per_cu = per_cu;
2271
2272 ctx = new_dwarf_expr_context ();
2273 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2274 make_cleanup_value_free_to_mark (value_mark ());
2275
2276 ctx->gdbarch = get_objfile_arch (objfile);
2277 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2278 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2279 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2280 ctx->baton = &baton;
2281 ctx->funcs = &needs_frame_ctx_funcs;
2282
2283 dwarf_expr_eval (ctx, data, size);
2284
2285 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2286
2287 if (ctx->num_pieces > 0)
2288 {
2289 int i;
2290
2291 /* If the location has several pieces, and any of them are in
2292 registers, then we will need a frame to fetch them from. */
2293 for (i = 0; i < ctx->num_pieces; i++)
2294 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2295 in_reg = 1;
2296 }
2297
2298 do_cleanups (old_chain);
2299
2300 return baton.needs_frame || in_reg;
2301 }
2302
2303 /* A helper function that throws an unimplemented error mentioning a
2304 given DWARF operator. */
2305
2306 static void
2307 unimplemented (unsigned int op)
2308 {
2309 const char *name = dwarf_stack_op_name (op);
2310
2311 if (name)
2312 error (_("DWARF operator %s cannot be translated to an agent expression"),
2313 name);
2314 else
2315 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2316 "to an agent expression"),
2317 op);
2318 }
2319
2320 /* A helper function to convert a DWARF register to an arch register.
2321 ARCH is the architecture.
2322 DWARF_REG is the register.
2323 This will throw an exception if the DWARF register cannot be
2324 translated to an architecture register. */
2325
2326 static int
2327 translate_register (struct gdbarch *arch, int dwarf_reg)
2328 {
2329 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2330 if (reg == -1)
2331 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2332 return reg;
2333 }
2334
2335 /* A helper function that emits an access to memory. ARCH is the
2336 target architecture. EXPR is the expression which we are building.
2337 NBITS is the number of bits we want to read. This emits the
2338 opcodes needed to read the memory and then extract the desired
2339 bits. */
2340
2341 static void
2342 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2343 {
2344 ULONGEST nbytes = (nbits + 7) / 8;
2345
2346 gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST));
2347
2348 if (trace_kludge)
2349 ax_trace_quick (expr, nbytes);
2350
2351 if (nbits <= 8)
2352 ax_simple (expr, aop_ref8);
2353 else if (nbits <= 16)
2354 ax_simple (expr, aop_ref16);
2355 else if (nbits <= 32)
2356 ax_simple (expr, aop_ref32);
2357 else
2358 ax_simple (expr, aop_ref64);
2359
2360 /* If we read exactly the number of bytes we wanted, we're done. */
2361 if (8 * nbytes == nbits)
2362 return;
2363
2364 if (gdbarch_bits_big_endian (arch))
2365 {
2366 /* On a bits-big-endian machine, we want the high-order
2367 NBITS. */
2368 ax_const_l (expr, 8 * nbytes - nbits);
2369 ax_simple (expr, aop_rsh_unsigned);
2370 }
2371 else
2372 {
2373 /* On a bits-little-endian box, we want the low-order NBITS. */
2374 ax_zero_ext (expr, nbits);
2375 }
2376 }
2377
2378 /* A helper function to return the frame's PC. */
2379
2380 static CORE_ADDR
2381 get_ax_pc (void *baton)
2382 {
2383 struct agent_expr *expr = baton;
2384
2385 return expr->scope;
2386 }
2387
2388 /* Compile a DWARF location expression to an agent expression.
2389
2390 EXPR is the agent expression we are building.
2391 LOC is the agent value we modify.
2392 ARCH is the architecture.
2393 ADDR_SIZE is the size of addresses, in bytes.
2394 OP_PTR is the start of the location expression.
2395 OP_END is one past the last byte of the location expression.
2396
2397 This will throw an exception for various kinds of errors -- for
2398 example, if the expression cannot be compiled, or if the expression
2399 is invalid. */
2400
2401 void
2402 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2403 struct gdbarch *arch, unsigned int addr_size,
2404 const gdb_byte *op_ptr, const gdb_byte *op_end,
2405 struct dwarf2_per_cu_data *per_cu)
2406 {
2407 struct cleanup *cleanups;
2408 int i, *offsets;
2409 VEC(int) *dw_labels = NULL, *patches = NULL;
2410 const gdb_byte * const base = op_ptr;
2411 const gdb_byte *previous_piece = op_ptr;
2412 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2413 ULONGEST bits_collected = 0;
2414 unsigned int addr_size_bits = 8 * addr_size;
2415 int bits_big_endian = gdbarch_bits_big_endian (arch);
2416
2417 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2418 cleanups = make_cleanup (xfree, offsets);
2419
2420 for (i = 0; i < op_end - op_ptr; ++i)
2421 offsets[i] = -1;
2422
2423 make_cleanup (VEC_cleanup (int), &dw_labels);
2424 make_cleanup (VEC_cleanup (int), &patches);
2425
2426 /* By default we are making an address. */
2427 loc->kind = axs_lvalue_memory;
2428
2429 while (op_ptr < op_end)
2430 {
2431 enum dwarf_location_atom op = *op_ptr;
2432 ULONGEST uoffset, reg;
2433 LONGEST offset;
2434 int i;
2435
2436 offsets[op_ptr - base] = expr->len;
2437 ++op_ptr;
2438
2439 /* Our basic approach to code generation is to map DWARF
2440 operations directly to AX operations. However, there are
2441 some differences.
2442
2443 First, DWARF works on address-sized units, but AX always uses
2444 LONGEST. For most operations we simply ignore this
2445 difference; instead we generate sign extensions as needed
2446 before division and comparison operations. It would be nice
2447 to omit the sign extensions, but there is no way to determine
2448 the size of the target's LONGEST. (This code uses the size
2449 of the host LONGEST in some cases -- that is a bug but it is
2450 difficult to fix.)
2451
2452 Second, some DWARF operations cannot be translated to AX.
2453 For these we simply fail. See
2454 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2455 switch (op)
2456 {
2457 case DW_OP_lit0:
2458 case DW_OP_lit1:
2459 case DW_OP_lit2:
2460 case DW_OP_lit3:
2461 case DW_OP_lit4:
2462 case DW_OP_lit5:
2463 case DW_OP_lit6:
2464 case DW_OP_lit7:
2465 case DW_OP_lit8:
2466 case DW_OP_lit9:
2467 case DW_OP_lit10:
2468 case DW_OP_lit11:
2469 case DW_OP_lit12:
2470 case DW_OP_lit13:
2471 case DW_OP_lit14:
2472 case DW_OP_lit15:
2473 case DW_OP_lit16:
2474 case DW_OP_lit17:
2475 case DW_OP_lit18:
2476 case DW_OP_lit19:
2477 case DW_OP_lit20:
2478 case DW_OP_lit21:
2479 case DW_OP_lit22:
2480 case DW_OP_lit23:
2481 case DW_OP_lit24:
2482 case DW_OP_lit25:
2483 case DW_OP_lit26:
2484 case DW_OP_lit27:
2485 case DW_OP_lit28:
2486 case DW_OP_lit29:
2487 case DW_OP_lit30:
2488 case DW_OP_lit31:
2489 ax_const_l (expr, op - DW_OP_lit0);
2490 break;
2491
2492 case DW_OP_addr:
2493 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2494 op_ptr += addr_size;
2495 /* Some versions of GCC emit DW_OP_addr before
2496 DW_OP_GNU_push_tls_address. In this case the value is an
2497 index, not an address. We don't support things like
2498 branching between the address and the TLS op. */
2499 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2500 uoffset += dwarf2_per_cu_text_offset (per_cu);
2501 ax_const_l (expr, uoffset);
2502 break;
2503
2504 case DW_OP_const1u:
2505 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2506 op_ptr += 1;
2507 break;
2508 case DW_OP_const1s:
2509 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2510 op_ptr += 1;
2511 break;
2512 case DW_OP_const2u:
2513 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2514 op_ptr += 2;
2515 break;
2516 case DW_OP_const2s:
2517 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2518 op_ptr += 2;
2519 break;
2520 case DW_OP_const4u:
2521 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2522 op_ptr += 4;
2523 break;
2524 case DW_OP_const4s:
2525 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2526 op_ptr += 4;
2527 break;
2528 case DW_OP_const8u:
2529 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2530 op_ptr += 8;
2531 break;
2532 case DW_OP_const8s:
2533 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2534 op_ptr += 8;
2535 break;
2536 case DW_OP_constu:
2537 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
2538 ax_const_l (expr, uoffset);
2539 break;
2540 case DW_OP_consts:
2541 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
2542 ax_const_l (expr, offset);
2543 break;
2544
2545 case DW_OP_reg0:
2546 case DW_OP_reg1:
2547 case DW_OP_reg2:
2548 case DW_OP_reg3:
2549 case DW_OP_reg4:
2550 case DW_OP_reg5:
2551 case DW_OP_reg6:
2552 case DW_OP_reg7:
2553 case DW_OP_reg8:
2554 case DW_OP_reg9:
2555 case DW_OP_reg10:
2556 case DW_OP_reg11:
2557 case DW_OP_reg12:
2558 case DW_OP_reg13:
2559 case DW_OP_reg14:
2560 case DW_OP_reg15:
2561 case DW_OP_reg16:
2562 case DW_OP_reg17:
2563 case DW_OP_reg18:
2564 case DW_OP_reg19:
2565 case DW_OP_reg20:
2566 case DW_OP_reg21:
2567 case DW_OP_reg22:
2568 case DW_OP_reg23:
2569 case DW_OP_reg24:
2570 case DW_OP_reg25:
2571 case DW_OP_reg26:
2572 case DW_OP_reg27:
2573 case DW_OP_reg28:
2574 case DW_OP_reg29:
2575 case DW_OP_reg30:
2576 case DW_OP_reg31:
2577 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2578 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2579 loc->kind = axs_lvalue_register;
2580 break;
2581
2582 case DW_OP_regx:
2583 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
2584 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2585 loc->u.reg = translate_register (arch, reg);
2586 loc->kind = axs_lvalue_register;
2587 break;
2588
2589 case DW_OP_implicit_value:
2590 {
2591 ULONGEST len;
2592
2593 op_ptr = read_uleb128 (op_ptr, op_end, &len);
2594 if (op_ptr + len > op_end)
2595 error (_("DW_OP_implicit_value: too few bytes available."));
2596 if (len > sizeof (ULONGEST))
2597 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2598 (int) len);
2599
2600 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2601 byte_order));
2602 op_ptr += len;
2603 dwarf_expr_require_composition (op_ptr, op_end,
2604 "DW_OP_implicit_value");
2605
2606 loc->kind = axs_rvalue;
2607 }
2608 break;
2609
2610 case DW_OP_stack_value:
2611 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
2612 loc->kind = axs_rvalue;
2613 break;
2614
2615 case DW_OP_breg0:
2616 case DW_OP_breg1:
2617 case DW_OP_breg2:
2618 case DW_OP_breg3:
2619 case DW_OP_breg4:
2620 case DW_OP_breg5:
2621 case DW_OP_breg6:
2622 case DW_OP_breg7:
2623 case DW_OP_breg8:
2624 case DW_OP_breg9:
2625 case DW_OP_breg10:
2626 case DW_OP_breg11:
2627 case DW_OP_breg12:
2628 case DW_OP_breg13:
2629 case DW_OP_breg14:
2630 case DW_OP_breg15:
2631 case DW_OP_breg16:
2632 case DW_OP_breg17:
2633 case DW_OP_breg18:
2634 case DW_OP_breg19:
2635 case DW_OP_breg20:
2636 case DW_OP_breg21:
2637 case DW_OP_breg22:
2638 case DW_OP_breg23:
2639 case DW_OP_breg24:
2640 case DW_OP_breg25:
2641 case DW_OP_breg26:
2642 case DW_OP_breg27:
2643 case DW_OP_breg28:
2644 case DW_OP_breg29:
2645 case DW_OP_breg30:
2646 case DW_OP_breg31:
2647 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
2648 i = translate_register (arch, op - DW_OP_breg0);
2649 ax_reg (expr, i);
2650 if (offset != 0)
2651 {
2652 ax_const_l (expr, offset);
2653 ax_simple (expr, aop_add);
2654 }
2655 break;
2656 case DW_OP_bregx:
2657 {
2658 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
2659 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
2660 i = translate_register (arch, reg);
2661 ax_reg (expr, i);
2662 if (offset != 0)
2663 {
2664 ax_const_l (expr, offset);
2665 ax_simple (expr, aop_add);
2666 }
2667 }
2668 break;
2669 case DW_OP_fbreg:
2670 {
2671 const gdb_byte *datastart;
2672 size_t datalen;
2673 unsigned int before_stack_len;
2674 struct block *b;
2675 struct symbol *framefunc;
2676 LONGEST base_offset = 0;
2677
2678 b = block_for_pc (expr->scope);
2679
2680 if (!b)
2681 error (_("No block found for address"));
2682
2683 framefunc = block_linkage_function (b);
2684
2685 if (!framefunc)
2686 error (_("No function found for block"));
2687
2688 dwarf_expr_frame_base_1 (framefunc, expr->scope,
2689 &datastart, &datalen);
2690
2691 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
2692 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
2693 datastart + datalen, per_cu);
2694
2695 if (offset != 0)
2696 {
2697 ax_const_l (expr, offset);
2698 ax_simple (expr, aop_add);
2699 }
2700
2701 loc->kind = axs_lvalue_memory;
2702 }
2703 break;
2704
2705 case DW_OP_dup:
2706 ax_simple (expr, aop_dup);
2707 break;
2708
2709 case DW_OP_drop:
2710 ax_simple (expr, aop_pop);
2711 break;
2712
2713 case DW_OP_pick:
2714 offset = *op_ptr++;
2715 ax_pick (expr, offset);
2716 break;
2717
2718 case DW_OP_swap:
2719 ax_simple (expr, aop_swap);
2720 break;
2721
2722 case DW_OP_over:
2723 ax_pick (expr, 1);
2724 break;
2725
2726 case DW_OP_rot:
2727 ax_simple (expr, aop_rot);
2728 break;
2729
2730 case DW_OP_deref:
2731 case DW_OP_deref_size:
2732 {
2733 int size;
2734
2735 if (op == DW_OP_deref_size)
2736 size = *op_ptr++;
2737 else
2738 size = addr_size;
2739
2740 switch (size)
2741 {
2742 case 8:
2743 ax_simple (expr, aop_ref8);
2744 break;
2745 case 16:
2746 ax_simple (expr, aop_ref16);
2747 break;
2748 case 32:
2749 ax_simple (expr, aop_ref32);
2750 break;
2751 case 64:
2752 ax_simple (expr, aop_ref64);
2753 break;
2754 default:
2755 /* Note that dwarf_stack_op_name will never return
2756 NULL here. */
2757 error (_("Unsupported size %d in %s"),
2758 size, dwarf_stack_op_name (op));
2759 }
2760 }
2761 break;
2762
2763 case DW_OP_abs:
2764 /* Sign extend the operand. */
2765 ax_ext (expr, addr_size_bits);
2766 ax_simple (expr, aop_dup);
2767 ax_const_l (expr, 0);
2768 ax_simple (expr, aop_less_signed);
2769 ax_simple (expr, aop_log_not);
2770 i = ax_goto (expr, aop_if_goto);
2771 /* We have to emit 0 - X. */
2772 ax_const_l (expr, 0);
2773 ax_simple (expr, aop_swap);
2774 ax_simple (expr, aop_sub);
2775 ax_label (expr, i, expr->len);
2776 break;
2777
2778 case DW_OP_neg:
2779 /* No need to sign extend here. */
2780 ax_const_l (expr, 0);
2781 ax_simple (expr, aop_swap);
2782 ax_simple (expr, aop_sub);
2783 break;
2784
2785 case DW_OP_not:
2786 /* Sign extend the operand. */
2787 ax_ext (expr, addr_size_bits);
2788 ax_simple (expr, aop_bit_not);
2789 break;
2790
2791 case DW_OP_plus_uconst:
2792 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
2793 /* It would be really weird to emit `DW_OP_plus_uconst 0',
2794 but we micro-optimize anyhow. */
2795 if (reg != 0)
2796 {
2797 ax_const_l (expr, reg);
2798 ax_simple (expr, aop_add);
2799 }
2800 break;
2801
2802 case DW_OP_and:
2803 ax_simple (expr, aop_bit_and);
2804 break;
2805
2806 case DW_OP_div:
2807 /* Sign extend the operands. */
2808 ax_ext (expr, addr_size_bits);
2809 ax_simple (expr, aop_swap);
2810 ax_ext (expr, addr_size_bits);
2811 ax_simple (expr, aop_swap);
2812 ax_simple (expr, aop_div_signed);
2813 break;
2814
2815 case DW_OP_minus:
2816 ax_simple (expr, aop_sub);
2817 break;
2818
2819 case DW_OP_mod:
2820 ax_simple (expr, aop_rem_unsigned);
2821 break;
2822
2823 case DW_OP_mul:
2824 ax_simple (expr, aop_mul);
2825 break;
2826
2827 case DW_OP_or:
2828 ax_simple (expr, aop_bit_or);
2829 break;
2830
2831 case DW_OP_plus:
2832 ax_simple (expr, aop_add);
2833 break;
2834
2835 case DW_OP_shl:
2836 ax_simple (expr, aop_lsh);
2837 break;
2838
2839 case DW_OP_shr:
2840 ax_simple (expr, aop_rsh_unsigned);
2841 break;
2842
2843 case DW_OP_shra:
2844 ax_simple (expr, aop_rsh_signed);
2845 break;
2846
2847 case DW_OP_xor:
2848 ax_simple (expr, aop_bit_xor);
2849 break;
2850
2851 case DW_OP_le:
2852 /* Sign extend the operands. */
2853 ax_ext (expr, addr_size_bits);
2854 ax_simple (expr, aop_swap);
2855 ax_ext (expr, addr_size_bits);
2856 /* Note no swap here: A <= B is !(B < A). */
2857 ax_simple (expr, aop_less_signed);
2858 ax_simple (expr, aop_log_not);
2859 break;
2860
2861 case DW_OP_ge:
2862 /* Sign extend the operands. */
2863 ax_ext (expr, addr_size_bits);
2864 ax_simple (expr, aop_swap);
2865 ax_ext (expr, addr_size_bits);
2866 ax_simple (expr, aop_swap);
2867 /* A >= B is !(A < B). */
2868 ax_simple (expr, aop_less_signed);
2869 ax_simple (expr, aop_log_not);
2870 break;
2871
2872 case DW_OP_eq:
2873 /* Sign extend the operands. */
2874 ax_ext (expr, addr_size_bits);
2875 ax_simple (expr, aop_swap);
2876 ax_ext (expr, addr_size_bits);
2877 /* No need for a second swap here. */
2878 ax_simple (expr, aop_equal);
2879 break;
2880
2881 case DW_OP_lt:
2882 /* Sign extend the operands. */
2883 ax_ext (expr, addr_size_bits);
2884 ax_simple (expr, aop_swap);
2885 ax_ext (expr, addr_size_bits);
2886 ax_simple (expr, aop_swap);
2887 ax_simple (expr, aop_less_signed);
2888 break;
2889
2890 case DW_OP_gt:
2891 /* Sign extend the operands. */
2892 ax_ext (expr, addr_size_bits);
2893 ax_simple (expr, aop_swap);
2894 ax_ext (expr, addr_size_bits);
2895 /* Note no swap here: A > B is B < A. */
2896 ax_simple (expr, aop_less_signed);
2897 break;
2898
2899 case DW_OP_ne:
2900 /* Sign extend the operands. */
2901 ax_ext (expr, addr_size_bits);
2902 ax_simple (expr, aop_swap);
2903 ax_ext (expr, addr_size_bits);
2904 /* No need for a swap here. */
2905 ax_simple (expr, aop_equal);
2906 ax_simple (expr, aop_log_not);
2907 break;
2908
2909 case DW_OP_call_frame_cfa:
2910 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
2911 loc->kind = axs_lvalue_memory;
2912 break;
2913
2914 case DW_OP_GNU_push_tls_address:
2915 unimplemented (op);
2916 break;
2917
2918 case DW_OP_skip:
2919 offset = extract_signed_integer (op_ptr, 2, byte_order);
2920 op_ptr += 2;
2921 i = ax_goto (expr, aop_goto);
2922 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
2923 VEC_safe_push (int, patches, i);
2924 break;
2925
2926 case DW_OP_bra:
2927 offset = extract_signed_integer (op_ptr, 2, byte_order);
2928 op_ptr += 2;
2929 /* Zero extend the operand. */
2930 ax_zero_ext (expr, addr_size_bits);
2931 i = ax_goto (expr, aop_if_goto);
2932 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
2933 VEC_safe_push (int, patches, i);
2934 break;
2935
2936 case DW_OP_nop:
2937 break;
2938
2939 case DW_OP_piece:
2940 case DW_OP_bit_piece:
2941 {
2942 ULONGEST size, offset;
2943
2944 if (op_ptr - 1 == previous_piece)
2945 error (_("Cannot translate empty pieces to agent expressions"));
2946 previous_piece = op_ptr - 1;
2947
2948 op_ptr = read_uleb128 (op_ptr, op_end, &size);
2949 if (op == DW_OP_piece)
2950 {
2951 size *= 8;
2952 offset = 0;
2953 }
2954 else
2955 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
2956
2957 if (bits_collected + size > 8 * sizeof (LONGEST))
2958 error (_("Expression pieces exceed word size"));
2959
2960 /* Access the bits. */
2961 switch (loc->kind)
2962 {
2963 case axs_lvalue_register:
2964 ax_reg (expr, loc->u.reg);
2965 break;
2966
2967 case axs_lvalue_memory:
2968 /* Offset the pointer, if needed. */
2969 if (offset > 8)
2970 {
2971 ax_const_l (expr, offset / 8);
2972 ax_simple (expr, aop_add);
2973 offset %= 8;
2974 }
2975 access_memory (arch, expr, size);
2976 break;
2977 }
2978
2979 /* For a bits-big-endian target, shift up what we already
2980 have. For a bits-little-endian target, shift up the
2981 new data. Note that there is a potential bug here if
2982 the DWARF expression leaves multiple values on the
2983 stack. */
2984 if (bits_collected > 0)
2985 {
2986 if (bits_big_endian)
2987 {
2988 ax_simple (expr, aop_swap);
2989 ax_const_l (expr, size);
2990 ax_simple (expr, aop_lsh);
2991 /* We don't need a second swap here, because
2992 aop_bit_or is symmetric. */
2993 }
2994 else
2995 {
2996 ax_const_l (expr, size);
2997 ax_simple (expr, aop_lsh);
2998 }
2999 ax_simple (expr, aop_bit_or);
3000 }
3001
3002 bits_collected += size;
3003 loc->kind = axs_rvalue;
3004 }
3005 break;
3006
3007 case DW_OP_GNU_uninit:
3008 unimplemented (op);
3009
3010 case DW_OP_call2:
3011 case DW_OP_call4:
3012 {
3013 struct dwarf2_locexpr_baton block;
3014 int size = (op == DW_OP_call2 ? 2 : 4);
3015
3016 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3017 op_ptr += size;
3018
3019 block = dwarf2_fetch_die_location_block (uoffset, per_cu,
3020 get_ax_pc, expr);
3021
3022 /* DW_OP_call_ref is currently not supported. */
3023 gdb_assert (block.per_cu == per_cu);
3024
3025 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3026 block.data, block.data + block.size,
3027 per_cu);
3028 }
3029 break;
3030
3031 case DW_OP_call_ref:
3032 unimplemented (op);
3033
3034 default:
3035 unimplemented (op);
3036 }
3037 }
3038
3039 /* Patch all the branches we emitted. */
3040 for (i = 0; i < VEC_length (int, patches); ++i)
3041 {
3042 int targ = offsets[VEC_index (int, dw_labels, i)];
3043 if (targ == -1)
3044 internal_error (__FILE__, __LINE__, _("invalid label"));
3045 ax_label (expr, VEC_index (int, patches, i), targ);
3046 }
3047
3048 do_cleanups (cleanups);
3049 }
3050
3051 \f
3052 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3053 evaluator to calculate the location. */
3054 static struct value *
3055 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3056 {
3057 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3058 struct value *val;
3059
3060 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3061 dlbaton->size, dlbaton->per_cu);
3062
3063 return val;
3064 }
3065
3066 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3067 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3068 will be thrown. */
3069
3070 static struct value *
3071 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3072 {
3073 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3074
3075 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3076 dlbaton->size);
3077 }
3078
3079 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3080 static int
3081 locexpr_read_needs_frame (struct symbol *symbol)
3082 {
3083 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3084
3085 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3086 dlbaton->per_cu);
3087 }
3088
3089 /* Return true if DATA points to the end of a piece. END is one past
3090 the last byte in the expression. */
3091
3092 static int
3093 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3094 {
3095 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3096 }
3097
3098 /* Helper for locexpr_describe_location_piece that finds the name of a
3099 DWARF register. */
3100
3101 static const char *
3102 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3103 {
3104 int regnum;
3105
3106 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3107 return gdbarch_register_name (gdbarch, regnum);
3108 }
3109
3110 /* Nicely describe a single piece of a location, returning an updated
3111 position in the bytecode sequence. This function cannot recognize
3112 all locations; if a location is not recognized, it simply returns
3113 DATA. */
3114
3115 static const gdb_byte *
3116 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3117 CORE_ADDR addr, struct objfile *objfile,
3118 const gdb_byte *data, const gdb_byte *end,
3119 unsigned int addr_size)
3120 {
3121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3122
3123 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3124 {
3125 fprintf_filtered (stream, _("a variable in $%s"),
3126 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3127 data += 1;
3128 }
3129 else if (data[0] == DW_OP_regx)
3130 {
3131 ULONGEST reg;
3132
3133 data = read_uleb128 (data + 1, end, &reg);
3134 fprintf_filtered (stream, _("a variable in $%s"),
3135 locexpr_regname (gdbarch, reg));
3136 }
3137 else if (data[0] == DW_OP_fbreg)
3138 {
3139 struct block *b;
3140 struct symbol *framefunc;
3141 int frame_reg = 0;
3142 LONGEST frame_offset;
3143 const gdb_byte *base_data, *new_data, *save_data = data;
3144 size_t base_size;
3145 LONGEST base_offset = 0;
3146
3147 new_data = read_sleb128 (data + 1, end, &frame_offset);
3148 if (!piece_end_p (new_data, end))
3149 return data;
3150 data = new_data;
3151
3152 b = block_for_pc (addr);
3153
3154 if (!b)
3155 error (_("No block found for address for symbol \"%s\"."),
3156 SYMBOL_PRINT_NAME (symbol));
3157
3158 framefunc = block_linkage_function (b);
3159
3160 if (!framefunc)
3161 error (_("No function found for block for symbol \"%s\"."),
3162 SYMBOL_PRINT_NAME (symbol));
3163
3164 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3165
3166 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3167 {
3168 const gdb_byte *buf_end;
3169
3170 frame_reg = base_data[0] - DW_OP_breg0;
3171 buf_end = read_sleb128 (base_data + 1,
3172 base_data + base_size, &base_offset);
3173 if (buf_end != base_data + base_size)
3174 error (_("Unexpected opcode after "
3175 "DW_OP_breg%u for symbol \"%s\"."),
3176 frame_reg, SYMBOL_PRINT_NAME (symbol));
3177 }
3178 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3179 {
3180 /* The frame base is just the register, with no offset. */
3181 frame_reg = base_data[0] - DW_OP_reg0;
3182 base_offset = 0;
3183 }
3184 else
3185 {
3186 /* We don't know what to do with the frame base expression,
3187 so we can't trace this variable; give up. */
3188 return save_data;
3189 }
3190
3191 fprintf_filtered (stream,
3192 _("a variable at frame base reg $%s offset %s+%s"),
3193 locexpr_regname (gdbarch, frame_reg),
3194 plongest (base_offset), plongest (frame_offset));
3195 }
3196 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3197 && piece_end_p (data, end))
3198 {
3199 LONGEST offset;
3200
3201 data = read_sleb128 (data + 1, end, &offset);
3202
3203 fprintf_filtered (stream,
3204 _("a variable at offset %s from base reg $%s"),
3205 plongest (offset),
3206 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3207 }
3208
3209 /* The location expression for a TLS variable looks like this (on a
3210 64-bit LE machine):
3211
3212 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3213 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3214
3215 0x3 is the encoding for DW_OP_addr, which has an operand as long
3216 as the size of an address on the target machine (here is 8
3217 bytes). Note that more recent version of GCC emit DW_OP_const4u
3218 or DW_OP_const8u, depending on address size, rather than
3219 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3220 The operand represents the offset at which the variable is within
3221 the thread local storage. */
3222
3223 else if (data + 1 + addr_size < end
3224 && (data[0] == DW_OP_addr
3225 || (addr_size == 4 && data[0] == DW_OP_const4u)
3226 || (addr_size == 8 && data[0] == DW_OP_const8u))
3227 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3228 && piece_end_p (data + 2 + addr_size, end))
3229 {
3230 ULONGEST offset;
3231 offset = extract_unsigned_integer (data + 1, addr_size,
3232 gdbarch_byte_order (gdbarch));
3233
3234 fprintf_filtered (stream,
3235 _("a thread-local variable at offset 0x%s "
3236 "in the thread-local storage for `%s'"),
3237 phex_nz (offset, addr_size), objfile->name);
3238
3239 data += 1 + addr_size + 1;
3240 }
3241 else if (data[0] >= DW_OP_lit0
3242 && data[0] <= DW_OP_lit31
3243 && data + 1 < end
3244 && data[1] == DW_OP_stack_value)
3245 {
3246 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3247 data += 2;
3248 }
3249
3250 return data;
3251 }
3252
3253 /* Disassemble an expression, stopping at the end of a piece or at the
3254 end of the expression. Returns a pointer to the next unread byte
3255 in the input expression. If ALL is nonzero, then this function
3256 will keep going until it reaches the end of the expression. */
3257
3258 static const gdb_byte *
3259 disassemble_dwarf_expression (struct ui_file *stream,
3260 struct gdbarch *arch, unsigned int addr_size,
3261 int offset_size, const gdb_byte *start,
3262 const gdb_byte *data, const gdb_byte *end,
3263 int indent, int all,
3264 struct dwarf2_per_cu_data *per_cu)
3265 {
3266 while (data < end
3267 && (all
3268 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3269 {
3270 enum dwarf_location_atom op = *data++;
3271 ULONGEST ul;
3272 LONGEST l;
3273 const char *name;
3274
3275 name = dwarf_stack_op_name (op);
3276
3277 if (!name)
3278 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3279 op, (long) (data - 1 - start));
3280 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3281 (long) (data - 1 - start), name);
3282
3283 switch (op)
3284 {
3285 case DW_OP_addr:
3286 ul = extract_unsigned_integer (data, addr_size,
3287 gdbarch_byte_order (arch));
3288 data += addr_size;
3289 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3290 break;
3291
3292 case DW_OP_const1u:
3293 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3294 data += 1;
3295 fprintf_filtered (stream, " %s", pulongest (ul));
3296 break;
3297 case DW_OP_const1s:
3298 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3299 data += 1;
3300 fprintf_filtered (stream, " %s", plongest (l));
3301 break;
3302 case DW_OP_const2u:
3303 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3304 data += 2;
3305 fprintf_filtered (stream, " %s", pulongest (ul));
3306 break;
3307 case DW_OP_const2s:
3308 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3309 data += 2;
3310 fprintf_filtered (stream, " %s", plongest (l));
3311 break;
3312 case DW_OP_const4u:
3313 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3314 data += 4;
3315 fprintf_filtered (stream, " %s", pulongest (ul));
3316 break;
3317 case DW_OP_const4s:
3318 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3319 data += 4;
3320 fprintf_filtered (stream, " %s", plongest (l));
3321 break;
3322 case DW_OP_const8u:
3323 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3324 data += 8;
3325 fprintf_filtered (stream, " %s", pulongest (ul));
3326 break;
3327 case DW_OP_const8s:
3328 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3329 data += 8;
3330 fprintf_filtered (stream, " %s", plongest (l));
3331 break;
3332 case DW_OP_constu:
3333 data = read_uleb128 (data, end, &ul);
3334 fprintf_filtered (stream, " %s", pulongest (ul));
3335 break;
3336 case DW_OP_consts:
3337 data = read_sleb128 (data, end, &l);
3338 fprintf_filtered (stream, " %s", plongest (l));
3339 break;
3340
3341 case DW_OP_reg0:
3342 case DW_OP_reg1:
3343 case DW_OP_reg2:
3344 case DW_OP_reg3:
3345 case DW_OP_reg4:
3346 case DW_OP_reg5:
3347 case DW_OP_reg6:
3348 case DW_OP_reg7:
3349 case DW_OP_reg8:
3350 case DW_OP_reg9:
3351 case DW_OP_reg10:
3352 case DW_OP_reg11:
3353 case DW_OP_reg12:
3354 case DW_OP_reg13:
3355 case DW_OP_reg14:
3356 case DW_OP_reg15:
3357 case DW_OP_reg16:
3358 case DW_OP_reg17:
3359 case DW_OP_reg18:
3360 case DW_OP_reg19:
3361 case DW_OP_reg20:
3362 case DW_OP_reg21:
3363 case DW_OP_reg22:
3364 case DW_OP_reg23:
3365 case DW_OP_reg24:
3366 case DW_OP_reg25:
3367 case DW_OP_reg26:
3368 case DW_OP_reg27:
3369 case DW_OP_reg28:
3370 case DW_OP_reg29:
3371 case DW_OP_reg30:
3372 case DW_OP_reg31:
3373 fprintf_filtered (stream, " [$%s]",
3374 locexpr_regname (arch, op - DW_OP_reg0));
3375 break;
3376
3377 case DW_OP_regx:
3378 data = read_uleb128 (data, end, &ul);
3379 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3380 locexpr_regname (arch, (int) ul));
3381 break;
3382
3383 case DW_OP_implicit_value:
3384 data = read_uleb128 (data, end, &ul);
3385 data += ul;
3386 fprintf_filtered (stream, " %s", pulongest (ul));
3387 break;
3388
3389 case DW_OP_breg0:
3390 case DW_OP_breg1:
3391 case DW_OP_breg2:
3392 case DW_OP_breg3:
3393 case DW_OP_breg4:
3394 case DW_OP_breg5:
3395 case DW_OP_breg6:
3396 case DW_OP_breg7:
3397 case DW_OP_breg8:
3398 case DW_OP_breg9:
3399 case DW_OP_breg10:
3400 case DW_OP_breg11:
3401 case DW_OP_breg12:
3402 case DW_OP_breg13:
3403 case DW_OP_breg14:
3404 case DW_OP_breg15:
3405 case DW_OP_breg16:
3406 case DW_OP_breg17:
3407 case DW_OP_breg18:
3408 case DW_OP_breg19:
3409 case DW_OP_breg20:
3410 case DW_OP_breg21:
3411 case DW_OP_breg22:
3412 case DW_OP_breg23:
3413 case DW_OP_breg24:
3414 case DW_OP_breg25:
3415 case DW_OP_breg26:
3416 case DW_OP_breg27:
3417 case DW_OP_breg28:
3418 case DW_OP_breg29:
3419 case DW_OP_breg30:
3420 case DW_OP_breg31:
3421 data = read_sleb128 (data, end, &l);
3422 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3423 locexpr_regname (arch, op - DW_OP_breg0));
3424 break;
3425
3426 case DW_OP_bregx:
3427 data = read_uleb128 (data, end, &ul);
3428 data = read_sleb128 (data, end, &l);
3429 fprintf_filtered (stream, " register %s [$%s] offset %s",
3430 pulongest (ul),
3431 locexpr_regname (arch, (int) ul),
3432 plongest (l));
3433 break;
3434
3435 case DW_OP_fbreg:
3436 data = read_sleb128 (data, end, &l);
3437 fprintf_filtered (stream, " %s", plongest (l));
3438 break;
3439
3440 case DW_OP_xderef_size:
3441 case DW_OP_deref_size:
3442 case DW_OP_pick:
3443 fprintf_filtered (stream, " %d", *data);
3444 ++data;
3445 break;
3446
3447 case DW_OP_plus_uconst:
3448 data = read_uleb128 (data, end, &ul);
3449 fprintf_filtered (stream, " %s", pulongest (ul));
3450 break;
3451
3452 case DW_OP_skip:
3453 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3454 data += 2;
3455 fprintf_filtered (stream, " to %ld",
3456 (long) (data + l - start));
3457 break;
3458
3459 case DW_OP_bra:
3460 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3461 data += 2;
3462 fprintf_filtered (stream, " %ld",
3463 (long) (data + l - start));
3464 break;
3465
3466 case DW_OP_call2:
3467 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3468 data += 2;
3469 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3470 break;
3471
3472 case DW_OP_call4:
3473 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3474 data += 4;
3475 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3476 break;
3477
3478 case DW_OP_call_ref:
3479 ul = extract_unsigned_integer (data, offset_size,
3480 gdbarch_byte_order (arch));
3481 data += offset_size;
3482 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3483 break;
3484
3485 case DW_OP_piece:
3486 data = read_uleb128 (data, end, &ul);
3487 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3488 break;
3489
3490 case DW_OP_bit_piece:
3491 {
3492 ULONGEST offset;
3493
3494 data = read_uleb128 (data, end, &ul);
3495 data = read_uleb128 (data, end, &offset);
3496 fprintf_filtered (stream, " size %s offset %s (bits)",
3497 pulongest (ul), pulongest (offset));
3498 }
3499 break;
3500
3501 case DW_OP_GNU_implicit_pointer:
3502 {
3503 ul = extract_unsigned_integer (data, offset_size,
3504 gdbarch_byte_order (arch));
3505 data += offset_size;
3506
3507 data = read_sleb128 (data, end, &l);
3508
3509 fprintf_filtered (stream, " DIE %s offset %s",
3510 phex_nz (ul, offset_size),
3511 plongest (l));
3512 }
3513 break;
3514
3515 case DW_OP_GNU_deref_type:
3516 {
3517 int addr_size = *data++;
3518 ULONGEST offset;
3519 struct type *type;
3520
3521 data = read_uleb128 (data, end, &offset);
3522 type = dwarf2_get_die_type (offset, per_cu);
3523 fprintf_filtered (stream, "<");
3524 type_print (type, "", stream, -1);
3525 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset, 0),
3526 addr_size);
3527 }
3528 break;
3529
3530 case DW_OP_GNU_const_type:
3531 {
3532 ULONGEST type_die;
3533 struct type *type;
3534
3535 data = read_uleb128 (data, end, &type_die);
3536 type = dwarf2_get_die_type (type_die, per_cu);
3537 fprintf_filtered (stream, "<");
3538 type_print (type, "", stream, -1);
3539 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die, 0));
3540 }
3541 break;
3542
3543 case DW_OP_GNU_regval_type:
3544 {
3545 ULONGEST type_die, reg;
3546 struct type *type;
3547
3548 data = read_uleb128 (data, end, &reg);
3549 data = read_uleb128 (data, end, &type_die);
3550
3551 type = dwarf2_get_die_type (type_die, per_cu);
3552 fprintf_filtered (stream, "<");
3553 type_print (type, "", stream, -1);
3554 fprintf_filtered (stream, " [0x%s]> [$%s]", phex_nz (type_die, 0),
3555 locexpr_regname (arch, reg));
3556 }
3557 break;
3558
3559 case DW_OP_GNU_convert:
3560 case DW_OP_GNU_reinterpret:
3561 {
3562 ULONGEST type_die;
3563
3564 data = read_uleb128 (data, end, &type_die);
3565
3566 if (type_die == 0)
3567 fprintf_filtered (stream, "<0>");
3568 else
3569 {
3570 struct type *type;
3571
3572 type = dwarf2_get_die_type (type_die, per_cu);
3573 fprintf_filtered (stream, "<");
3574 type_print (type, "", stream, -1);
3575 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die, 0));
3576 }
3577 }
3578 break;
3579
3580 case DW_OP_GNU_entry_value:
3581 data = read_uleb128 (data, end, &ul);
3582 fputc_filtered ('\n', stream);
3583 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3584 start, data, data + ul, indent + 2,
3585 all, per_cu);
3586 data += ul;
3587 continue;
3588 }
3589
3590 fprintf_filtered (stream, "\n");
3591 }
3592
3593 return data;
3594 }
3595
3596 /* Describe a single location, which may in turn consist of multiple
3597 pieces. */
3598
3599 static void
3600 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
3601 struct ui_file *stream,
3602 const gdb_byte *data, int size,
3603 struct objfile *objfile, unsigned int addr_size,
3604 int offset_size, struct dwarf2_per_cu_data *per_cu)
3605 {
3606 const gdb_byte *end = data + size;
3607 int first_piece = 1, bad = 0;
3608
3609 while (data < end)
3610 {
3611 const gdb_byte *here = data;
3612 int disassemble = 1;
3613
3614 if (first_piece)
3615 first_piece = 0;
3616 else
3617 fprintf_filtered (stream, _(", and "));
3618
3619 if (!dwarf2_always_disassemble)
3620 {
3621 data = locexpr_describe_location_piece (symbol, stream,
3622 addr, objfile,
3623 data, end, addr_size);
3624 /* If we printed anything, or if we have an empty piece,
3625 then don't disassemble. */
3626 if (data != here
3627 || data[0] == DW_OP_piece
3628 || data[0] == DW_OP_bit_piece)
3629 disassemble = 0;
3630 }
3631 if (disassemble)
3632 {
3633 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
3634 data = disassemble_dwarf_expression (stream,
3635 get_objfile_arch (objfile),
3636 addr_size, offset_size, data,
3637 data, end, 0,
3638 dwarf2_always_disassemble,
3639 per_cu);
3640 }
3641
3642 if (data < end)
3643 {
3644 int empty = data == here;
3645
3646 if (disassemble)
3647 fprintf_filtered (stream, " ");
3648 if (data[0] == DW_OP_piece)
3649 {
3650 ULONGEST bytes;
3651
3652 data = read_uleb128 (data + 1, end, &bytes);
3653
3654 if (empty)
3655 fprintf_filtered (stream, _("an empty %s-byte piece"),
3656 pulongest (bytes));
3657 else
3658 fprintf_filtered (stream, _(" [%s-byte piece]"),
3659 pulongest (bytes));
3660 }
3661 else if (data[0] == DW_OP_bit_piece)
3662 {
3663 ULONGEST bits, offset;
3664
3665 data = read_uleb128 (data + 1, end, &bits);
3666 data = read_uleb128 (data, end, &offset);
3667
3668 if (empty)
3669 fprintf_filtered (stream,
3670 _("an empty %s-bit piece"),
3671 pulongest (bits));
3672 else
3673 fprintf_filtered (stream,
3674 _(" [%s-bit piece, offset %s bits]"),
3675 pulongest (bits), pulongest (offset));
3676 }
3677 else
3678 {
3679 bad = 1;
3680 break;
3681 }
3682 }
3683 }
3684
3685 if (bad || data > end)
3686 error (_("Corrupted DWARF2 expression for \"%s\"."),
3687 SYMBOL_PRINT_NAME (symbol));
3688 }
3689
3690 /* Print a natural-language description of SYMBOL to STREAM. This
3691 version is for a symbol with a single location. */
3692
3693 static void
3694 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
3695 struct ui_file *stream)
3696 {
3697 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3698 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
3699 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
3700 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
3701
3702 locexpr_describe_location_1 (symbol, addr, stream,
3703 dlbaton->data, dlbaton->size,
3704 objfile, addr_size, offset_size,
3705 dlbaton->per_cu);
3706 }
3707
3708 /* Describe the location of SYMBOL as an agent value in VALUE, generating
3709 any necessary bytecode in AX. */
3710
3711 static void
3712 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
3713 struct agent_expr *ax, struct axs_value *value)
3714 {
3715 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3716 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
3717
3718 if (dlbaton->size == 0)
3719 value->optimized_out = 1;
3720 else
3721 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
3722 dlbaton->data, dlbaton->data + dlbaton->size,
3723 dlbaton->per_cu);
3724 }
3725
3726 /* The set of location functions used with the DWARF-2 expression
3727 evaluator. */
3728 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
3729 locexpr_read_variable,
3730 locexpr_read_variable_at_entry,
3731 locexpr_read_needs_frame,
3732 locexpr_describe_location,
3733 locexpr_tracepoint_var_ref
3734 };
3735
3736
3737 /* Wrapper functions for location lists. These generally find
3738 the appropriate location expression and call something above. */
3739
3740 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3741 evaluator to calculate the location. */
3742 static struct value *
3743 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
3744 {
3745 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3746 struct value *val;
3747 const gdb_byte *data;
3748 size_t size;
3749 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
3750
3751 data = dwarf2_find_location_expression (dlbaton, &size, pc);
3752 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
3753 dlbaton->per_cu);
3754
3755 return val;
3756 }
3757
3758 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
3759 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3760 will be thrown.
3761
3762 Function always returns non-NULL value, it may be marked optimized out if
3763 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
3764 if it cannot resolve the parameter for any reason. */
3765
3766 static struct value *
3767 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3768 {
3769 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3770 const gdb_byte *data;
3771 size_t size;
3772 CORE_ADDR pc;
3773
3774 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
3775 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
3776
3777 data = dwarf2_find_location_expression (dlbaton, &size, pc);
3778 if (data == NULL)
3779 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
3780
3781 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
3782 }
3783
3784 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3785 static int
3786 loclist_read_needs_frame (struct symbol *symbol)
3787 {
3788 /* If there's a location list, then assume we need to have a frame
3789 to choose the appropriate location expression. With tracking of
3790 global variables this is not necessarily true, but such tracking
3791 is disabled in GCC at the moment until we figure out how to
3792 represent it. */
3793
3794 return 1;
3795 }
3796
3797 /* Print a natural-language description of SYMBOL to STREAM. This
3798 version applies when there is a list of different locations, each
3799 with a specified address range. */
3800
3801 static void
3802 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
3803 struct ui_file *stream)
3804 {
3805 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3806 CORE_ADDR low, high;
3807 const gdb_byte *loc_ptr, *buf_end;
3808 int length, first = 1;
3809 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
3810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3811 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3812 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
3813 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
3814 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
3815 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3816 /* Adjust base_address for relocatable objects. */
3817 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
3818 CORE_ADDR base_address = dlbaton->base_address + base_offset;
3819
3820 loc_ptr = dlbaton->data;
3821 buf_end = dlbaton->data + dlbaton->size;
3822
3823 fprintf_filtered (stream, _("multi-location:\n"));
3824
3825 /* Iterate through locations until we run out. */
3826 while (1)
3827 {
3828 if (buf_end - loc_ptr < 2 * addr_size)
3829 error (_("Corrupted DWARF expression for symbol \"%s\"."),
3830 SYMBOL_PRINT_NAME (symbol));
3831
3832 if (signed_addr_p)
3833 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
3834 else
3835 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
3836 loc_ptr += addr_size;
3837
3838 if (signed_addr_p)
3839 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
3840 else
3841 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
3842 loc_ptr += addr_size;
3843
3844 /* A base-address-selection entry. */
3845 if ((low & base_mask) == base_mask)
3846 {
3847 base_address = high + base_offset;
3848 fprintf_filtered (stream, _(" Base address %s"),
3849 paddress (gdbarch, base_address));
3850 continue;
3851 }
3852
3853 /* An end-of-list entry. */
3854 if (low == 0 && high == 0)
3855 break;
3856
3857 /* Otherwise, a location expression entry. */
3858 low += base_address;
3859 high += base_address;
3860
3861 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
3862 loc_ptr += 2;
3863
3864 /* (It would improve readability to print only the minimum
3865 necessary digits of the second number of the range.) */
3866 fprintf_filtered (stream, _(" Range %s-%s: "),
3867 paddress (gdbarch, low), paddress (gdbarch, high));
3868
3869 /* Now describe this particular location. */
3870 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
3871 objfile, addr_size, offset_size,
3872 dlbaton->per_cu);
3873
3874 fprintf_filtered (stream, "\n");
3875
3876 loc_ptr += length;
3877 }
3878 }
3879
3880 /* Describe the location of SYMBOL as an agent value in VALUE, generating
3881 any necessary bytecode in AX. */
3882 static void
3883 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
3884 struct agent_expr *ax, struct axs_value *value)
3885 {
3886 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3887 const gdb_byte *data;
3888 size_t size;
3889 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
3890
3891 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
3892 if (size == 0)
3893 value->optimized_out = 1;
3894 else
3895 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
3896 dlbaton->per_cu);
3897 }
3898
3899 /* The set of location functions used with the DWARF-2 expression
3900 evaluator and location lists. */
3901 const struct symbol_computed_ops dwarf2_loclist_funcs = {
3902 loclist_read_variable,
3903 loclist_read_variable_at_entry,
3904 loclist_read_needs_frame,
3905 loclist_describe_location,
3906 loclist_tracepoint_var_ref
3907 };
3908
3909 void
3910 _initialize_dwarf2loc (void)
3911 {
3912 add_setshow_zinteger_cmd ("entry-values", class_maintenance,
3913 &entry_values_debug,
3914 _("Set entry values and tail call frames "
3915 "debugging."),
3916 _("Show entry values and tail call frames "
3917 "debugging."),
3918 _("When non-zero, the process of determining "
3919 "parameter values from function entry point "
3920 "and tail call frames will be printed."),
3921 NULL,
3922 show_entry_values_debug,
3923 &setdebuglist, &showdebuglist);
3924 }
This page took 0.213918 seconds and 4 git commands to generate.