TUI: don't let exceptions escape while handling readline key bindings
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40
41 extern int dwarf2_always_disassemble;
42
43 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
44 const gdb_byte **start, size_t *length);
45
46 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
47
48 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
49 struct frame_info *frame,
50 const gdb_byte *data,
51 size_t size,
52 struct dwarf2_per_cu_data *per_cu,
53 LONGEST byte_offset);
54
55 /* Until these have formal names, we define these here.
56 ref: http://gcc.gnu.org/wiki/DebugFission
57 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
58 and is then followed by data specific to that entry. */
59
60 enum debug_loc_kind
61 {
62 /* Indicates the end of the list of entries. */
63 DEBUG_LOC_END_OF_LIST = 0,
64
65 /* This is followed by an unsigned LEB128 number that is an index into
66 .debug_addr and specifies the base address for all following entries. */
67 DEBUG_LOC_BASE_ADDRESS = 1,
68
69 /* This is followed by two unsigned LEB128 numbers that are indices into
70 .debug_addr and specify the beginning and ending addresses, and then
71 a normal location expression as in .debug_loc. */
72 DEBUG_LOC_START_END = 2,
73
74 /* This is followed by an unsigned LEB128 number that is an index into
75 .debug_addr and specifies the beginning address, and a 4 byte unsigned
76 number that specifies the length, and then a normal location expression
77 as in .debug_loc. */
78 DEBUG_LOC_START_LENGTH = 3,
79
80 /* An internal value indicating there is insufficient data. */
81 DEBUG_LOC_BUFFER_OVERFLOW = -1,
82
83 /* An internal value indicating an invalid kind of entry was found. */
84 DEBUG_LOC_INVALID_ENTRY = -2
85 };
86
87 /* Helper function which throws an error if a synthetic pointer is
88 invalid. */
89
90 static void
91 invalid_synthetic_pointer (void)
92 {
93 error (_("access outside bounds of object "
94 "referenced via synthetic pointer"));
95 }
96
97 /* Decode the addresses in a non-dwo .debug_loc entry.
98 A pointer to the next byte to examine is returned in *NEW_PTR.
99 The encoded low,high addresses are return in *LOW,*HIGH.
100 The result indicates the kind of entry found. */
101
102 static enum debug_loc_kind
103 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
104 const gdb_byte **new_ptr,
105 CORE_ADDR *low, CORE_ADDR *high,
106 enum bfd_endian byte_order,
107 unsigned int addr_size,
108 int signed_addr_p)
109 {
110 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
111
112 if (buf_end - loc_ptr < 2 * addr_size)
113 return DEBUG_LOC_BUFFER_OVERFLOW;
114
115 if (signed_addr_p)
116 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
117 else
118 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
119 loc_ptr += addr_size;
120
121 if (signed_addr_p)
122 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
123 else
124 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
125 loc_ptr += addr_size;
126
127 *new_ptr = loc_ptr;
128
129 /* A base-address-selection entry. */
130 if ((*low & base_mask) == base_mask)
131 return DEBUG_LOC_BASE_ADDRESS;
132
133 /* An end-of-list entry. */
134 if (*low == 0 && *high == 0)
135 return DEBUG_LOC_END_OF_LIST;
136
137 return DEBUG_LOC_START_END;
138 }
139
140 /* Decode the addresses in .debug_loc.dwo entry.
141 A pointer to the next byte to examine is returned in *NEW_PTR.
142 The encoded low,high addresses are return in *LOW,*HIGH.
143 The result indicates the kind of entry found. */
144
145 static enum debug_loc_kind
146 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
147 const gdb_byte *loc_ptr,
148 const gdb_byte *buf_end,
149 const gdb_byte **new_ptr,
150 CORE_ADDR *low, CORE_ADDR *high,
151 enum bfd_endian byte_order)
152 {
153 uint64_t low_index, high_index;
154
155 if (loc_ptr == buf_end)
156 return DEBUG_LOC_BUFFER_OVERFLOW;
157
158 switch (*loc_ptr++)
159 {
160 case DEBUG_LOC_END_OF_LIST:
161 *new_ptr = loc_ptr;
162 return DEBUG_LOC_END_OF_LIST;
163 case DEBUG_LOC_BASE_ADDRESS:
164 *low = 0;
165 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
166 if (loc_ptr == NULL)
167 return DEBUG_LOC_BUFFER_OVERFLOW;
168 *high = dwarf2_read_addr_index (per_cu, high_index);
169 *new_ptr = loc_ptr;
170 return DEBUG_LOC_BASE_ADDRESS;
171 case DEBUG_LOC_START_END:
172 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
173 if (loc_ptr == NULL)
174 return DEBUG_LOC_BUFFER_OVERFLOW;
175 *low = dwarf2_read_addr_index (per_cu, low_index);
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *high = dwarf2_read_addr_index (per_cu, high_index);
180 *new_ptr = loc_ptr;
181 return DEBUG_LOC_START_END;
182 case DEBUG_LOC_START_LENGTH:
183 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
184 if (loc_ptr == NULL)
185 return DEBUG_LOC_BUFFER_OVERFLOW;
186 *low = dwarf2_read_addr_index (per_cu, low_index);
187 if (loc_ptr + 4 > buf_end)
188 return DEBUG_LOC_BUFFER_OVERFLOW;
189 *high = *low;
190 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
191 *new_ptr = loc_ptr + 4;
192 return DEBUG_LOC_START_LENGTH;
193 default:
194 return DEBUG_LOC_INVALID_ENTRY;
195 }
196 }
197
198 /* A function for dealing with location lists. Given a
199 symbol baton (BATON) and a pc value (PC), find the appropriate
200 location expression, set *LOCEXPR_LENGTH, and return a pointer
201 to the beginning of the expression. Returns NULL on failure.
202
203 For now, only return the first matching location expression; there
204 can be more than one in the list. */
205
206 const gdb_byte *
207 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
208 size_t *locexpr_length, CORE_ADDR pc)
209 {
210 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
212 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
213 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
214 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
215 /* Adjust base_address for relocatable objects. */
216 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
217 CORE_ADDR base_address = baton->base_address + base_offset;
218 const gdb_byte *loc_ptr, *buf_end;
219
220 loc_ptr = baton->data;
221 buf_end = baton->data + baton->size;
222
223 while (1)
224 {
225 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
226 int length;
227 enum debug_loc_kind kind;
228 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
229
230 if (baton->from_dwo)
231 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
232 loc_ptr, buf_end, &new_ptr,
233 &low, &high, byte_order);
234 else
235 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
236 &low, &high,
237 byte_order, addr_size,
238 signed_addr_p);
239 loc_ptr = new_ptr;
240 switch (kind)
241 {
242 case DEBUG_LOC_END_OF_LIST:
243 *locexpr_length = 0;
244 return NULL;
245 case DEBUG_LOC_BASE_ADDRESS:
246 base_address = high + base_offset;
247 continue;
248 case DEBUG_LOC_START_END:
249 case DEBUG_LOC_START_LENGTH:
250 break;
251 case DEBUG_LOC_BUFFER_OVERFLOW:
252 case DEBUG_LOC_INVALID_ENTRY:
253 error (_("dwarf2_find_location_expression: "
254 "Corrupted DWARF expression."));
255 default:
256 gdb_assert_not_reached ("bad debug_loc_kind");
257 }
258
259 /* Otherwise, a location expression entry.
260 If the entry is from a DWO, don't add base address: the entry is
261 from .debug_addr which has absolute addresses. */
262 if (! baton->from_dwo)
263 {
264 low += base_address;
265 high += base_address;
266 }
267
268 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
269 loc_ptr += 2;
270
271 if (low == high && pc == low)
272 {
273 /* This is entry PC record present only at entry point
274 of a function. Verify it is really the function entry point. */
275
276 const struct block *pc_block = block_for_pc (pc);
277 struct symbol *pc_func = NULL;
278
279 if (pc_block)
280 pc_func = block_linkage_function (pc_block);
281
282 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
283 {
284 *locexpr_length = length;
285 return loc_ptr;
286 }
287 }
288
289 if (pc >= low && pc < high)
290 {
291 *locexpr_length = length;
292 return loc_ptr;
293 }
294
295 loc_ptr += length;
296 }
297 }
298
299 /* This is the baton used when performing dwarf2 expression
300 evaluation. */
301 struct dwarf_expr_baton
302 {
303 struct frame_info *frame;
304 struct dwarf2_per_cu_data *per_cu;
305 CORE_ADDR obj_address;
306 };
307
308 /* Helper functions for dwarf2_evaluate_loc_desc. */
309
310 /* Using the frame specified in BATON, return the value of register
311 REGNUM, treated as a pointer. */
312 static CORE_ADDR
313 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
314 {
315 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
316 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
317 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
318
319 return address_from_register (regnum, debaton->frame);
320 }
321
322 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
323
324 static struct value *
325 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
326 {
327 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
328 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
329 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
330
331 return value_from_register (type, regnum, debaton->frame);
332 }
333
334 /* Read memory at ADDR (length LEN) into BUF. */
335
336 static void
337 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
338 {
339 read_memory (addr, buf, len);
340 }
341
342 /* Using the frame specified in BATON, find the location expression
343 describing the frame base. Return a pointer to it in START and
344 its length in LENGTH. */
345 static void
346 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
347 {
348 /* FIXME: cagney/2003-03-26: This code should be using
349 get_frame_base_address(), and then implement a dwarf2 specific
350 this_base method. */
351 struct symbol *framefunc;
352 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
353 const struct block *bl = get_frame_block (debaton->frame, NULL);
354
355 if (bl == NULL)
356 error (_("frame address is not available."));
357
358 /* Use block_linkage_function, which returns a real (not inlined)
359 function, instead of get_frame_function, which may return an
360 inlined function. */
361 framefunc = block_linkage_function (bl);
362
363 /* If we found a frame-relative symbol then it was certainly within
364 some function associated with a frame. If we can't find the frame,
365 something has gone wrong. */
366 gdb_assert (framefunc != NULL);
367
368 dwarf_expr_frame_base_1 (framefunc,
369 get_frame_address_in_block (debaton->frame),
370 start, length);
371 }
372
373 /* Implement find_frame_base_location method for LOC_BLOCK functions using
374 DWARF expression for its DW_AT_frame_base. */
375
376 static void
377 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
378 const gdb_byte **start, size_t *length)
379 {
380 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
381
382 *length = symbaton->size;
383 *start = symbaton->data;
384 }
385
386 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
387 function uses DWARF expression for its DW_AT_frame_base. */
388
389 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
390 {
391 locexpr_find_frame_base_location
392 };
393
394 /* Implement find_frame_base_location method for LOC_BLOCK functions using
395 DWARF location list for its DW_AT_frame_base. */
396
397 static void
398 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
399 const gdb_byte **start, size_t *length)
400 {
401 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
402
403 *start = dwarf2_find_location_expression (symbaton, length, pc);
404 }
405
406 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
407 function uses DWARF location list for its DW_AT_frame_base. */
408
409 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
410 {
411 loclist_find_frame_base_location
412 };
413
414 static void
415 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
417 {
418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
419 {
420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
421
422 ops_block->find_frame_base_location (framefunc, pc, start, length);
423 }
424 else
425 *length = 0;
426
427 if (*length == 0)
428 error (_("Could not find the frame base for \"%s\"."),
429 SYMBOL_NATURAL_NAME (framefunc));
430 }
431
432 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435 static CORE_ADDR
436 dwarf_expr_frame_cfa (void *baton)
437 {
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
439
440 return dwarf2_frame_cfa (debaton->frame);
441 }
442
443 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446 static CORE_ADDR
447 dwarf_expr_frame_pc (void *baton)
448 {
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452 }
453
454 /* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456 static CORE_ADDR
457 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458 {
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
461
462 return target_translate_tls_address (objfile, offset);
463 }
464
465 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
468
469 static void
470 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
474 {
475 struct dwarf2_locexpr_baton block;
476
477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483 }
484
485 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487 static void
488 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
489 {
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
493 ctx->funcs->get_frame_pc, ctx->baton);
494 }
495
496 /* Callback function for dwarf2_evaluate_loc_desc. */
497
498 static struct type *
499 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
501 {
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505 }
506
507 /* See dwarf2loc.h. */
508
509 unsigned int entry_values_debug = 0;
510
511 /* Helper to set entry_values_debug. */
512
513 static void
514 show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516 {
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520 }
521
522 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526 static CORE_ADDR
527 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530 {
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
543 struct bound_minimal_symbol msym;
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
550 (msym.minsym == NULL ? "???"
551 : MSYMBOL_PRINT_NAME (msym.minsym)));
552
553 }
554 if (caller_frame == NULL)
555 {
556 struct bound_minimal_symbol msym;
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
564 (msym.minsym == NULL ? "???"
565 : MSYMBOL_PRINT_NAME (msym.minsym)));
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
584 struct bound_minimal_symbol msym;
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
590 if (msym.minsym == NULL)
591 {
592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
599
600 }
601 return BMSYMBOL_VALUE_ADDRESS (msym);
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610 }
611
612 /* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616 static struct symbol *
617 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618 {
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633 }
634
635 /* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644 static void
645 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646 {
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)),
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712 }
713
714 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717 static void
718 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719 {
720 CORE_ADDR addr = call_site->pc;
721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
724 (msym.minsym == NULL ? "???"
725 : MSYMBOL_PRINT_NAME (msym.minsym)));
726
727 }
728
729 /* vec.h needs single word type name, typedef it. */
730 typedef struct call_site *call_sitep;
731
732 /* Define VEC (call_sitep) functions. */
733 DEF_VEC_P (call_sitep);
734
735 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742 static void
743 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745 {
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it, therefore some of the former determined intermediate PCs must differ
829 and the unambiguous chain gets shortened. */
830 gdb_assert (result->callers + result->callees < result->length);
831 }
832
833 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
834 assumed frames between them use GDBARCH. Use depth first search so we can
835 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
836 would have needless GDB stack overhead. Caller is responsible for xfree of
837 the returned result. Any unreliability results in thrown
838 NO_ENTRY_VALUE_ERROR. */
839
840 static struct call_site_chain *
841 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
842 CORE_ADDR callee_pc)
843 {
844 CORE_ADDR save_callee_pc = callee_pc;
845 struct obstack addr_obstack;
846 struct cleanup *back_to_retval, *back_to_workdata;
847 struct call_site_chain *retval = NULL;
848 struct call_site *call_site;
849
850 /* Mark CALL_SITEs so we do not visit the same ones twice. */
851 htab_t addr_hash;
852
853 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
854 call_site nor any possible call_site at CALLEE_PC's function is there.
855 Any CALL_SITE in CHAIN will be iterated to its siblings - via
856 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
857 VEC (call_sitep) *chain = NULL;
858
859 /* We are not interested in the specific PC inside the callee function. */
860 callee_pc = get_pc_function_start (callee_pc);
861 if (callee_pc == 0)
862 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
863 paddress (gdbarch, save_callee_pc));
864
865 back_to_retval = make_cleanup (free_current_contents, &retval);
866
867 obstack_init (&addr_obstack);
868 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
869 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
870 &addr_obstack, hashtab_obstack_allocate,
871 NULL);
872 make_cleanup_htab_delete (addr_hash);
873
874 make_cleanup (VEC_cleanup (call_sitep), &chain);
875
876 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
877 at the target's function. All the possible tail call sites in the
878 target's function will get iterated as already pushed into CHAIN via their
879 TAIL_CALL_NEXT. */
880 call_site = call_site_for_pc (gdbarch, caller_pc);
881
882 while (call_site)
883 {
884 CORE_ADDR target_func_addr;
885 struct call_site *target_call_site;
886
887 /* CALLER_FRAME with registers is not available for tail-call jumped
888 frames. */
889 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
890
891 if (target_func_addr == callee_pc)
892 {
893 chain_candidate (gdbarch, &retval, chain);
894 if (retval == NULL)
895 break;
896
897 /* There is no way to reach CALLEE_PC again as we would prevent
898 entering it twice as being already marked in ADDR_HASH. */
899 target_call_site = NULL;
900 }
901 else
902 {
903 struct symbol *target_func;
904
905 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
906 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
907 }
908
909 do
910 {
911 /* Attempt to visit TARGET_CALL_SITE. */
912
913 if (target_call_site)
914 {
915 void **slot;
916
917 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
918 if (*slot == NULL)
919 {
920 /* Successfully entered TARGET_CALL_SITE. */
921
922 *slot = &target_call_site->pc;
923 VEC_safe_push (call_sitep, chain, target_call_site);
924 break;
925 }
926 }
927
928 /* Backtrack (without revisiting the originating call_site). Try the
929 callers's sibling; if there isn't any try the callers's callers's
930 sibling etc. */
931
932 target_call_site = NULL;
933 while (!VEC_empty (call_sitep, chain))
934 {
935 call_site = VEC_pop (call_sitep, chain);
936
937 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
938 NO_INSERT) != NULL);
939 htab_remove_elt (addr_hash, &call_site->pc);
940
941 target_call_site = call_site->tail_call_next;
942 if (target_call_site)
943 break;
944 }
945 }
946 while (target_call_site);
947
948 if (VEC_empty (call_sitep, chain))
949 call_site = NULL;
950 else
951 call_site = VEC_last (call_sitep, chain);
952 }
953
954 if (retval == NULL)
955 {
956 struct bound_minimal_symbol msym_caller, msym_callee;
957
958 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
959 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
960 throw_error (NO_ENTRY_VALUE_ERROR,
961 _("There are no unambiguously determinable intermediate "
962 "callers or callees between caller function \"%s\" at %s "
963 "and callee function \"%s\" at %s"),
964 (msym_caller.minsym == NULL
965 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
966 paddress (gdbarch, caller_pc),
967 (msym_callee.minsym == NULL
968 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
969 paddress (gdbarch, callee_pc));
970 }
971
972 do_cleanups (back_to_workdata);
973 discard_cleanups (back_to_retval);
974 return retval;
975 }
976
977 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
979 constructed return NULL. Caller is responsible for xfree of the returned
980 result. */
981
982 struct call_site_chain *
983 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
984 CORE_ADDR callee_pc)
985 {
986 volatile struct gdb_exception e;
987 struct call_site_chain *retval = NULL;
988
989 TRY_CATCH (e, RETURN_MASK_ERROR)
990 {
991 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
992 }
993 if (e.reason < 0)
994 {
995 if (e.error == NO_ENTRY_VALUE_ERROR)
996 {
997 if (entry_values_debug)
998 exception_print (gdb_stdout, e);
999
1000 return NULL;
1001 }
1002 else
1003 throw_exception (e);
1004 }
1005 return retval;
1006 }
1007
1008 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010 static int
1011 call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014 {
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1024 }
1025 return 0;
1026 }
1027
1028 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034 static struct call_site_parameter *
1035 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
1038 struct dwarf2_per_cu_data **per_cu_return)
1039 {
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
1043 struct call_site *call_site;
1044 int iparams;
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
1047 CORE_ADDR target_addr;
1048
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
1069 (msym.minsym == NULL ? "???"
1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
1082 (msym.minsym == NULL ? "???"
1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
1099 : MSYMBOL_PRINT_NAME (target_msym)),
1100 paddress (gdbarch, target_addr),
1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1102 paddress (gdbarch, func_addr));
1103 }
1104
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
1112 if (call_site_parameter_matches (parameter, kind, kind_u))
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130 }
1131
1132 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142 static struct value *
1143 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1144 CORE_ADDR deref_size, struct type *type,
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147 {
1148 const gdb_byte *data_src;
1149 gdb_byte *data;
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
1166
1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1168 }
1169
1170 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177 static void
1178 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
1181 int deref_size)
1182 {
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1198 &caller_per_cu);
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
1209 baton_local.obj_address = 0;
1210
1211 saved_ctx.gdbarch = ctx->gdbarch;
1212 saved_ctx.addr_size = ctx->addr_size;
1213 saved_ctx.offset = ctx->offset;
1214 saved_ctx.baton = ctx->baton;
1215 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1216 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1217 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1218 ctx->baton = &baton_local;
1219
1220 dwarf_expr_eval (ctx, data_src, size);
1221
1222 ctx->gdbarch = saved_ctx.gdbarch;
1223 ctx->addr_size = saved_ctx.addr_size;
1224 ctx->offset = saved_ctx.offset;
1225 ctx->baton = saved_ctx.baton;
1226 }
1227
1228 /* Callback function for dwarf2_evaluate_loc_desc.
1229 Fetch the address indexed by DW_OP_GNU_addr_index. */
1230
1231 static CORE_ADDR
1232 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1233 {
1234 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1235
1236 return dwarf2_read_addr_index (debaton->per_cu, index);
1237 }
1238
1239 /* Callback function for get_object_address. Return the address of the VLA
1240 object. */
1241
1242 static CORE_ADDR
1243 dwarf_expr_get_obj_addr (void *baton)
1244 {
1245 struct dwarf_expr_baton *debaton = baton;
1246
1247 gdb_assert (debaton != NULL);
1248
1249 if (debaton->obj_address == 0)
1250 error (_("Location address is not set."));
1251
1252 return debaton->obj_address;
1253 }
1254
1255 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1256 the indirect method on it, that is use its stored target value, the sole
1257 purpose of entry_data_value_funcs.. */
1258
1259 static struct value *
1260 entry_data_value_coerce_ref (const struct value *value)
1261 {
1262 struct type *checked_type = check_typedef (value_type (value));
1263 struct value *target_val;
1264
1265 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1266 return NULL;
1267
1268 target_val = value_computed_closure (value);
1269 value_incref (target_val);
1270 return target_val;
1271 }
1272
1273 /* Implement copy_closure. */
1274
1275 static void *
1276 entry_data_value_copy_closure (const struct value *v)
1277 {
1278 struct value *target_val = value_computed_closure (v);
1279
1280 value_incref (target_val);
1281 return target_val;
1282 }
1283
1284 /* Implement free_closure. */
1285
1286 static void
1287 entry_data_value_free_closure (struct value *v)
1288 {
1289 struct value *target_val = value_computed_closure (v);
1290
1291 value_free (target_val);
1292 }
1293
1294 /* Vector for methods for an entry value reference where the referenced value
1295 is stored in the caller. On the first dereference use
1296 DW_AT_GNU_call_site_data_value in the caller. */
1297
1298 static const struct lval_funcs entry_data_value_funcs =
1299 {
1300 NULL, /* read */
1301 NULL, /* write */
1302 NULL, /* indirect */
1303 entry_data_value_coerce_ref,
1304 NULL, /* check_synthetic_pointer */
1305 entry_data_value_copy_closure,
1306 entry_data_value_free_closure
1307 };
1308
1309 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1310 are used to match DW_AT_location at the caller's
1311 DW_TAG_GNU_call_site_parameter.
1312
1313 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1314 cannot resolve the parameter for any reason. */
1315
1316 static struct value *
1317 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1318 enum call_site_parameter_kind kind,
1319 union call_site_parameter_u kind_u)
1320 {
1321 struct type *checked_type = check_typedef (type);
1322 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1323 struct frame_info *caller_frame = get_prev_frame (frame);
1324 struct value *outer_val, *target_val, *val;
1325 struct call_site_parameter *parameter;
1326 struct dwarf2_per_cu_data *caller_per_cu;
1327
1328 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1329 &caller_per_cu);
1330
1331 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1332 type, caller_frame,
1333 caller_per_cu);
1334
1335 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1336 used and it is not available do not fall back to OUTER_VAL - dereferencing
1337 TYPE_CODE_REF with non-entry data value would give current value - not the
1338 entry value. */
1339
1340 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1341 || TYPE_TARGET_TYPE (checked_type) == NULL)
1342 return outer_val;
1343
1344 target_val = dwarf_entry_parameter_to_value (parameter,
1345 TYPE_LENGTH (target_type),
1346 target_type, caller_frame,
1347 caller_per_cu);
1348
1349 release_value (target_val);
1350 val = allocate_computed_value (type, &entry_data_value_funcs,
1351 target_val /* closure */);
1352
1353 /* Copy the referencing pointer to the new computed value. */
1354 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1355 TYPE_LENGTH (checked_type));
1356 set_value_lazy (val, 0);
1357
1358 return val;
1359 }
1360
1361 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1362 SIZE are DWARF block used to match DW_AT_location at the caller's
1363 DW_TAG_GNU_call_site_parameter.
1364
1365 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1366 cannot resolve the parameter for any reason. */
1367
1368 static struct value *
1369 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1370 const gdb_byte *block, size_t block_len)
1371 {
1372 union call_site_parameter_u kind_u;
1373
1374 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1375 if (kind_u.dwarf_reg != -1)
1376 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1377 kind_u);
1378
1379 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1380 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1381 kind_u);
1382
1383 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1384 suppressed during normal operation. The expression can be arbitrary if
1385 there is no caller-callee entry value binding expected. */
1386 throw_error (NO_ENTRY_VALUE_ERROR,
1387 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1388 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1389 }
1390
1391 struct piece_closure
1392 {
1393 /* Reference count. */
1394 int refc;
1395
1396 /* The CU from which this closure's expression came. */
1397 struct dwarf2_per_cu_data *per_cu;
1398
1399 /* The number of pieces used to describe this variable. */
1400 int n_pieces;
1401
1402 /* The target address size, used only for DWARF_VALUE_STACK. */
1403 int addr_size;
1404
1405 /* The pieces themselves. */
1406 struct dwarf_expr_piece *pieces;
1407 };
1408
1409 /* Allocate a closure for a value formed from separately-described
1410 PIECES. */
1411
1412 static struct piece_closure *
1413 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1414 int n_pieces, struct dwarf_expr_piece *pieces,
1415 int addr_size)
1416 {
1417 struct piece_closure *c = XCNEW (struct piece_closure);
1418 int i;
1419
1420 c->refc = 1;
1421 c->per_cu = per_cu;
1422 c->n_pieces = n_pieces;
1423 c->addr_size = addr_size;
1424 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1425
1426 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1427 for (i = 0; i < n_pieces; ++i)
1428 if (c->pieces[i].location == DWARF_VALUE_STACK)
1429 value_incref (c->pieces[i].v.value);
1430
1431 return c;
1432 }
1433
1434 /* The lowest-level function to extract bits from a byte buffer.
1435 SOURCE is the buffer. It is updated if we read to the end of a
1436 byte.
1437 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1438 updated to reflect the number of bits actually read.
1439 NBITS is the number of bits we want to read. It is updated to
1440 reflect the number of bits actually read. This function may read
1441 fewer bits.
1442 BITS_BIG_ENDIAN is taken directly from gdbarch.
1443 This function returns the extracted bits. */
1444
1445 static unsigned int
1446 extract_bits_primitive (const gdb_byte **source,
1447 unsigned int *source_offset_bits,
1448 int *nbits, int bits_big_endian)
1449 {
1450 unsigned int avail, mask, datum;
1451
1452 gdb_assert (*source_offset_bits < 8);
1453
1454 avail = 8 - *source_offset_bits;
1455 if (avail > *nbits)
1456 avail = *nbits;
1457
1458 mask = (1 << avail) - 1;
1459 datum = **source;
1460 if (bits_big_endian)
1461 datum >>= 8 - (*source_offset_bits + *nbits);
1462 else
1463 datum >>= *source_offset_bits;
1464 datum &= mask;
1465
1466 *nbits -= avail;
1467 *source_offset_bits += avail;
1468 if (*source_offset_bits >= 8)
1469 {
1470 *source_offset_bits -= 8;
1471 ++*source;
1472 }
1473
1474 return datum;
1475 }
1476
1477 /* Extract some bits from a source buffer and move forward in the
1478 buffer.
1479
1480 SOURCE is the source buffer. It is updated as bytes are read.
1481 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1482 bits are read.
1483 NBITS is the number of bits to read.
1484 BITS_BIG_ENDIAN is taken directly from gdbarch.
1485
1486 This function returns the bits that were read. */
1487
1488 static unsigned int
1489 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1490 int nbits, int bits_big_endian)
1491 {
1492 unsigned int datum;
1493
1494 gdb_assert (nbits > 0 && nbits <= 8);
1495
1496 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1497 bits_big_endian);
1498 if (nbits > 0)
1499 {
1500 unsigned int more;
1501
1502 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1503 bits_big_endian);
1504 if (bits_big_endian)
1505 datum <<= nbits;
1506 else
1507 more <<= nbits;
1508 datum |= more;
1509 }
1510
1511 return datum;
1512 }
1513
1514 /* Write some bits into a buffer and move forward in the buffer.
1515
1516 DATUM is the bits to write. The low-order bits of DATUM are used.
1517 DEST is the destination buffer. It is updated as bytes are
1518 written.
1519 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1520 done.
1521 NBITS is the number of valid bits in DATUM.
1522 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1523
1524 static void
1525 insert_bits (unsigned int datum,
1526 gdb_byte *dest, unsigned int dest_offset_bits,
1527 int nbits, int bits_big_endian)
1528 {
1529 unsigned int mask;
1530
1531 gdb_assert (dest_offset_bits + nbits <= 8);
1532
1533 mask = (1 << nbits) - 1;
1534 if (bits_big_endian)
1535 {
1536 datum <<= 8 - (dest_offset_bits + nbits);
1537 mask <<= 8 - (dest_offset_bits + nbits);
1538 }
1539 else
1540 {
1541 datum <<= dest_offset_bits;
1542 mask <<= dest_offset_bits;
1543 }
1544
1545 gdb_assert ((datum & ~mask) == 0);
1546
1547 *dest = (*dest & ~mask) | datum;
1548 }
1549
1550 /* Copy bits from a source to a destination.
1551
1552 DEST is where the bits should be written.
1553 DEST_OFFSET_BITS is the bit offset into DEST.
1554 SOURCE is the source of bits.
1555 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1556 BIT_COUNT is the number of bits to copy.
1557 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1558
1559 static void
1560 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1561 const gdb_byte *source, unsigned int source_offset_bits,
1562 unsigned int bit_count,
1563 int bits_big_endian)
1564 {
1565 unsigned int dest_avail;
1566 int datum;
1567
1568 /* Reduce everything to byte-size pieces. */
1569 dest += dest_offset_bits / 8;
1570 dest_offset_bits %= 8;
1571 source += source_offset_bits / 8;
1572 source_offset_bits %= 8;
1573
1574 dest_avail = 8 - dest_offset_bits % 8;
1575
1576 /* See if we can fill the first destination byte. */
1577 if (dest_avail < bit_count)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1580 bits_big_endian);
1581 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1582 ++dest;
1583 dest_offset_bits = 0;
1584 bit_count -= dest_avail;
1585 }
1586
1587 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1588 than 8 bits remaining. */
1589 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1590 for (; bit_count >= 8; bit_count -= 8)
1591 {
1592 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1593 *dest++ = (gdb_byte) datum;
1594 }
1595
1596 /* Finally, we may have a few leftover bits. */
1597 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1598 if (bit_count > 0)
1599 {
1600 datum = extract_bits (&source, &source_offset_bits, bit_count,
1601 bits_big_endian);
1602 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1603 }
1604 }
1605
1606 static void
1607 read_pieced_value (struct value *v)
1608 {
1609 int i;
1610 long offset = 0;
1611 ULONGEST bits_to_skip;
1612 gdb_byte *contents;
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
1615 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1616 size_t type_len;
1617 size_t buffer_size = 0;
1618 gdb_byte *buffer = NULL;
1619 struct cleanup *cleanup;
1620 int bits_big_endian
1621 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1622
1623 if (value_type (v) != value_enclosing_type (v))
1624 internal_error (__FILE__, __LINE__,
1625 _("Should not be able to create a lazy value with "
1626 "an enclosing type"));
1627
1628 cleanup = make_cleanup (free_current_contents, &buffer);
1629
1630 contents = value_contents_raw (v);
1631 bits_to_skip = 8 * value_offset (v);
1632 if (value_bitsize (v))
1633 {
1634 bits_to_skip += value_bitpos (v);
1635 type_len = value_bitsize (v);
1636 }
1637 else
1638 type_len = 8 * TYPE_LENGTH (value_type (v));
1639
1640 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1641 {
1642 struct dwarf_expr_piece *p = &c->pieces[i];
1643 size_t this_size, this_size_bits;
1644 long dest_offset_bits, source_offset_bits, source_offset;
1645 const gdb_byte *intermediate_buffer;
1646
1647 /* Compute size, source, and destination offsets for copying, in
1648 bits. */
1649 this_size_bits = p->size;
1650 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1651 {
1652 bits_to_skip -= this_size_bits;
1653 continue;
1654 }
1655 if (bits_to_skip > 0)
1656 {
1657 dest_offset_bits = 0;
1658 source_offset_bits = bits_to_skip;
1659 this_size_bits -= bits_to_skip;
1660 bits_to_skip = 0;
1661 }
1662 else
1663 {
1664 dest_offset_bits = offset;
1665 source_offset_bits = 0;
1666 }
1667 if (this_size_bits > type_len - offset)
1668 this_size_bits = type_len - offset;
1669
1670 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1671 source_offset = source_offset_bits / 8;
1672 if (buffer_size < this_size)
1673 {
1674 buffer_size = this_size;
1675 buffer = xrealloc (buffer, buffer_size);
1676 }
1677 intermediate_buffer = buffer;
1678
1679 /* Copy from the source to DEST_BUFFER. */
1680 switch (p->location)
1681 {
1682 case DWARF_VALUE_REGISTER:
1683 {
1684 struct gdbarch *arch = get_frame_arch (frame);
1685 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1686 int reg_offset = source_offset;
1687
1688 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1689 && this_size < register_size (arch, gdb_regnum))
1690 {
1691 /* Big-endian, and we want less than full size. */
1692 reg_offset = register_size (arch, gdb_regnum) - this_size;
1693 /* We want the lower-order THIS_SIZE_BITS of the bytes
1694 we extract from the register. */
1695 source_offset_bits += 8 * this_size - this_size_bits;
1696 }
1697
1698 if (gdb_regnum != -1)
1699 {
1700 int optim, unavail;
1701
1702 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 this_size, buffer,
1704 &optim, &unavail))
1705 {
1706 /* Just so garbage doesn't ever shine through. */
1707 memset (buffer, 0, this_size);
1708
1709 if (optim)
1710 mark_value_bits_optimized_out (v, offset, this_size_bits);
1711 if (unavail)
1712 mark_value_bits_unavailable (v, offset, this_size_bits);
1713 }
1714 }
1715 else
1716 {
1717 error (_("Unable to access DWARF register number %s"),
1718 paddress (arch, p->v.regno));
1719 }
1720 }
1721 break;
1722
1723 case DWARF_VALUE_MEMORY:
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + source_offset,
1727 buffer, this_size);
1728 break;
1729
1730 case DWARF_VALUE_STACK:
1731 {
1732 size_t n = this_size;
1733
1734 if (n > c->addr_size - source_offset)
1735 n = (c->addr_size >= source_offset
1736 ? c->addr_size - source_offset
1737 : 0);
1738 if (n == 0)
1739 {
1740 /* Nothing. */
1741 }
1742 else
1743 {
1744 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1745
1746 intermediate_buffer = val_bytes + source_offset;
1747 }
1748 }
1749 break;
1750
1751 case DWARF_VALUE_LITERAL:
1752 {
1753 size_t n = this_size;
1754
1755 if (n > p->v.literal.length - source_offset)
1756 n = (p->v.literal.length >= source_offset
1757 ? p->v.literal.length - source_offset
1758 : 0);
1759 if (n != 0)
1760 intermediate_buffer = p->v.literal.data + source_offset;
1761 }
1762 break;
1763
1764 /* These bits show up as zeros -- but do not cause the value
1765 to be considered optimized-out. */
1766 case DWARF_VALUE_IMPLICIT_POINTER:
1767 break;
1768
1769 case DWARF_VALUE_OPTIMIZED_OUT:
1770 mark_value_bits_optimized_out (v, offset, this_size_bits);
1771 break;
1772
1773 default:
1774 internal_error (__FILE__, __LINE__, _("invalid location type"));
1775 }
1776
1777 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1778 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1779 copy_bitwise (contents, dest_offset_bits,
1780 intermediate_buffer, source_offset_bits % 8,
1781 this_size_bits, bits_big_endian);
1782
1783 offset += this_size_bits;
1784 }
1785
1786 do_cleanups (cleanup);
1787 }
1788
1789 static void
1790 write_pieced_value (struct value *to, struct value *from)
1791 {
1792 int i;
1793 long offset = 0;
1794 ULONGEST bits_to_skip;
1795 const gdb_byte *contents;
1796 struct piece_closure *c
1797 = (struct piece_closure *) value_computed_closure (to);
1798 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1799 size_t type_len;
1800 size_t buffer_size = 0;
1801 gdb_byte *buffer = NULL;
1802 struct cleanup *cleanup;
1803 int bits_big_endian
1804 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1805
1806 if (frame == NULL)
1807 {
1808 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1809 return;
1810 }
1811
1812 cleanup = make_cleanup (free_current_contents, &buffer);
1813
1814 contents = value_contents (from);
1815 bits_to_skip = 8 * value_offset (to);
1816 if (value_bitsize (to))
1817 {
1818 bits_to_skip += value_bitpos (to);
1819 type_len = value_bitsize (to);
1820 }
1821 else
1822 type_len = 8 * TYPE_LENGTH (value_type (to));
1823
1824 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1825 {
1826 struct dwarf_expr_piece *p = &c->pieces[i];
1827 size_t this_size_bits, this_size;
1828 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1829 int need_bitwise;
1830 const gdb_byte *source_buffer;
1831
1832 this_size_bits = p->size;
1833 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1834 {
1835 bits_to_skip -= this_size_bits;
1836 continue;
1837 }
1838 if (this_size_bits > type_len - offset)
1839 this_size_bits = type_len - offset;
1840 if (bits_to_skip > 0)
1841 {
1842 dest_offset_bits = bits_to_skip;
1843 source_offset_bits = 0;
1844 this_size_bits -= bits_to_skip;
1845 bits_to_skip = 0;
1846 }
1847 else
1848 {
1849 dest_offset_bits = 0;
1850 source_offset_bits = offset;
1851 }
1852
1853 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1854 source_offset = source_offset_bits / 8;
1855 dest_offset = dest_offset_bits / 8;
1856 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1857 {
1858 source_buffer = contents + source_offset;
1859 need_bitwise = 0;
1860 }
1861 else
1862 {
1863 if (buffer_size < this_size)
1864 {
1865 buffer_size = this_size;
1866 buffer = xrealloc (buffer, buffer_size);
1867 }
1868 source_buffer = buffer;
1869 need_bitwise = 1;
1870 }
1871
1872 switch (p->location)
1873 {
1874 case DWARF_VALUE_REGISTER:
1875 {
1876 struct gdbarch *arch = get_frame_arch (frame);
1877 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1878 int reg_offset = dest_offset;
1879
1880 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1881 && this_size <= register_size (arch, gdb_regnum))
1882 /* Big-endian, and we want less than full size. */
1883 reg_offset = register_size (arch, gdb_regnum) - this_size;
1884
1885 if (gdb_regnum != -1)
1886 {
1887 if (need_bitwise)
1888 {
1889 int optim, unavail;
1890
1891 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1892 this_size, buffer,
1893 &optim, &unavail))
1894 {
1895 if (optim)
1896 throw_error (OPTIMIZED_OUT_ERROR,
1897 _("Can't do read-modify-write to "
1898 "update bitfield; containing word "
1899 "has been optimized out"));
1900 if (unavail)
1901 throw_error (NOT_AVAILABLE_ERROR,
1902 _("Can't do read-modify-write to update "
1903 "bitfield; containing word "
1904 "is unavailable"));
1905 }
1906 copy_bitwise (buffer, dest_offset_bits,
1907 contents, source_offset_bits,
1908 this_size_bits,
1909 bits_big_endian);
1910 }
1911
1912 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1913 this_size, source_buffer);
1914 }
1915 else
1916 {
1917 error (_("Unable to write to DWARF register number %s"),
1918 paddress (arch, p->v.regno));
1919 }
1920 }
1921 break;
1922 case DWARF_VALUE_MEMORY:
1923 if (need_bitwise)
1924 {
1925 /* Only the first and last bytes can possibly have any
1926 bits reused. */
1927 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1928 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1929 buffer + this_size - 1, 1);
1930 copy_bitwise (buffer, dest_offset_bits,
1931 contents, source_offset_bits,
1932 this_size_bits,
1933 bits_big_endian);
1934 }
1935
1936 write_memory (p->v.mem.addr + dest_offset,
1937 source_buffer, this_size);
1938 break;
1939 default:
1940 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1941 break;
1942 }
1943 offset += this_size_bits;
1944 }
1945
1946 do_cleanups (cleanup);
1947 }
1948
1949 /* An implementation of an lval_funcs method to see whether a value is
1950 a synthetic pointer. */
1951
1952 static int
1953 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1954 int bit_length)
1955 {
1956 struct piece_closure *c
1957 = (struct piece_closure *) value_computed_closure (value);
1958 int i;
1959
1960 bit_offset += 8 * value_offset (value);
1961 if (value_bitsize (value))
1962 bit_offset += value_bitpos (value);
1963
1964 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1965 {
1966 struct dwarf_expr_piece *p = &c->pieces[i];
1967 size_t this_size_bits = p->size;
1968
1969 if (bit_offset > 0)
1970 {
1971 if (bit_offset >= this_size_bits)
1972 {
1973 bit_offset -= this_size_bits;
1974 continue;
1975 }
1976
1977 bit_length -= this_size_bits - bit_offset;
1978 bit_offset = 0;
1979 }
1980 else
1981 bit_length -= this_size_bits;
1982
1983 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1984 return 0;
1985 }
1986
1987 return 1;
1988 }
1989
1990 /* A wrapper function for get_frame_address_in_block. */
1991
1992 static CORE_ADDR
1993 get_frame_address_in_block_wrapper (void *baton)
1994 {
1995 return get_frame_address_in_block (baton);
1996 }
1997
1998 /* An implementation of an lval_funcs method to indirect through a
1999 pointer. This handles the synthetic pointer case when needed. */
2000
2001 static struct value *
2002 indirect_pieced_value (struct value *value)
2003 {
2004 struct piece_closure *c
2005 = (struct piece_closure *) value_computed_closure (value);
2006 struct type *type;
2007 struct frame_info *frame;
2008 struct dwarf2_locexpr_baton baton;
2009 int i, bit_offset, bit_length;
2010 struct dwarf_expr_piece *piece = NULL;
2011 LONGEST byte_offset;
2012
2013 type = check_typedef (value_type (value));
2014 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2015 return NULL;
2016
2017 bit_length = 8 * TYPE_LENGTH (type);
2018 bit_offset = 8 * value_offset (value);
2019 if (value_bitsize (value))
2020 bit_offset += value_bitpos (value);
2021
2022 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2023 {
2024 struct dwarf_expr_piece *p = &c->pieces[i];
2025 size_t this_size_bits = p->size;
2026
2027 if (bit_offset > 0)
2028 {
2029 if (bit_offset >= this_size_bits)
2030 {
2031 bit_offset -= this_size_bits;
2032 continue;
2033 }
2034
2035 bit_length -= this_size_bits - bit_offset;
2036 bit_offset = 0;
2037 }
2038 else
2039 bit_length -= this_size_bits;
2040
2041 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2042 return NULL;
2043
2044 if (bit_length != 0)
2045 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2046
2047 piece = p;
2048 break;
2049 }
2050
2051 frame = get_selected_frame (_("No frame selected."));
2052
2053 /* This is an offset requested by GDB, such as value subscripts.
2054 However, due to how synthetic pointers are implemented, this is
2055 always presented to us as a pointer type. This means we have to
2056 sign-extend it manually as appropriate. */
2057 byte_offset = value_as_address (value);
2058 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2059 byte_offset = gdb_sign_extend (byte_offset,
2060 8 * TYPE_LENGTH (value_type (value)));
2061 byte_offset += piece->v.ptr.offset;
2062
2063 gdb_assert (piece);
2064 baton
2065 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2066 get_frame_address_in_block_wrapper,
2067 frame);
2068
2069 if (baton.data != NULL)
2070 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2071 baton.data, baton.size, baton.per_cu,
2072 byte_offset);
2073
2074 {
2075 struct obstack temp_obstack;
2076 struct cleanup *cleanup;
2077 const gdb_byte *bytes;
2078 LONGEST len;
2079 struct value *result;
2080
2081 obstack_init (&temp_obstack);
2082 cleanup = make_cleanup_obstack_free (&temp_obstack);
2083
2084 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2085 &temp_obstack, &len);
2086 if (bytes == NULL)
2087 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2088 else
2089 {
2090 if (byte_offset < 0
2091 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2092 invalid_synthetic_pointer ();
2093 bytes += byte_offset;
2094 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2095 }
2096
2097 do_cleanups (cleanup);
2098 return result;
2099 }
2100 }
2101
2102 static void *
2103 copy_pieced_value_closure (const struct value *v)
2104 {
2105 struct piece_closure *c
2106 = (struct piece_closure *) value_computed_closure (v);
2107
2108 ++c->refc;
2109 return c;
2110 }
2111
2112 static void
2113 free_pieced_value_closure (struct value *v)
2114 {
2115 struct piece_closure *c
2116 = (struct piece_closure *) value_computed_closure (v);
2117
2118 --c->refc;
2119 if (c->refc == 0)
2120 {
2121 int i;
2122
2123 for (i = 0; i < c->n_pieces; ++i)
2124 if (c->pieces[i].location == DWARF_VALUE_STACK)
2125 value_free (c->pieces[i].v.value);
2126
2127 xfree (c->pieces);
2128 xfree (c);
2129 }
2130 }
2131
2132 /* Functions for accessing a variable described by DW_OP_piece. */
2133 static const struct lval_funcs pieced_value_funcs = {
2134 read_pieced_value,
2135 write_pieced_value,
2136 indirect_pieced_value,
2137 NULL, /* coerce_ref */
2138 check_pieced_synthetic_pointer,
2139 copy_pieced_value_closure,
2140 free_pieced_value_closure
2141 };
2142
2143 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2144
2145 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2146 {
2147 dwarf_expr_read_addr_from_reg,
2148 dwarf_expr_get_reg_value,
2149 dwarf_expr_read_mem,
2150 dwarf_expr_frame_base,
2151 dwarf_expr_frame_cfa,
2152 dwarf_expr_frame_pc,
2153 dwarf_expr_tls_address,
2154 dwarf_expr_dwarf_call,
2155 dwarf_expr_get_base_type,
2156 dwarf_expr_push_dwarf_reg_entry_value,
2157 dwarf_expr_get_addr_index,
2158 dwarf_expr_get_obj_addr
2159 };
2160
2161 /* Evaluate a location description, starting at DATA and with length
2162 SIZE, to find the current location of variable of TYPE in the
2163 context of FRAME. BYTE_OFFSET is applied after the contents are
2164 computed. */
2165
2166 static struct value *
2167 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2168 const gdb_byte *data, size_t size,
2169 struct dwarf2_per_cu_data *per_cu,
2170 LONGEST byte_offset)
2171 {
2172 struct value *retval;
2173 struct dwarf_expr_baton baton;
2174 struct dwarf_expr_context *ctx;
2175 struct cleanup *old_chain, *value_chain;
2176 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2177 volatile struct gdb_exception ex;
2178
2179 if (byte_offset < 0)
2180 invalid_synthetic_pointer ();
2181
2182 if (size == 0)
2183 return allocate_optimized_out_value (type);
2184
2185 baton.frame = frame;
2186 baton.per_cu = per_cu;
2187 baton.obj_address = 0;
2188
2189 ctx = new_dwarf_expr_context ();
2190 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2191 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2192
2193 ctx->gdbarch = get_objfile_arch (objfile);
2194 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2195 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2196 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2197 ctx->baton = &baton;
2198 ctx->funcs = &dwarf_expr_ctx_funcs;
2199
2200 TRY_CATCH (ex, RETURN_MASK_ERROR)
2201 {
2202 dwarf_expr_eval (ctx, data, size);
2203 }
2204 if (ex.reason < 0)
2205 {
2206 if (ex.error == NOT_AVAILABLE_ERROR)
2207 {
2208 do_cleanups (old_chain);
2209 retval = allocate_value (type);
2210 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2211 return retval;
2212 }
2213 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2214 {
2215 if (entry_values_debug)
2216 exception_print (gdb_stdout, ex);
2217 do_cleanups (old_chain);
2218 return allocate_optimized_out_value (type);
2219 }
2220 else
2221 throw_exception (ex);
2222 }
2223
2224 if (ctx->num_pieces > 0)
2225 {
2226 struct piece_closure *c;
2227 struct frame_id frame_id = get_frame_id (frame);
2228 ULONGEST bit_size = 0;
2229 int i;
2230
2231 for (i = 0; i < ctx->num_pieces; ++i)
2232 bit_size += ctx->pieces[i].size;
2233 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2234 invalid_synthetic_pointer ();
2235
2236 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2237 ctx->addr_size);
2238 /* We must clean up the value chain after creating the piece
2239 closure but before allocating the result. */
2240 do_cleanups (value_chain);
2241 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2242 VALUE_FRAME_ID (retval) = frame_id;
2243 set_value_offset (retval, byte_offset);
2244 }
2245 else
2246 {
2247 switch (ctx->location)
2248 {
2249 case DWARF_VALUE_REGISTER:
2250 {
2251 struct gdbarch *arch = get_frame_arch (frame);
2252 int dwarf_regnum
2253 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2254 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2255
2256 if (byte_offset != 0)
2257 error (_("cannot use offset on synthetic pointer to register"));
2258 do_cleanups (value_chain);
2259 if (gdb_regnum == -1)
2260 error (_("Unable to access DWARF register number %d"),
2261 dwarf_regnum);
2262 retval = value_from_register (type, gdb_regnum, frame);
2263 if (value_optimized_out (retval))
2264 {
2265 struct value *tmp;
2266
2267 /* This means the register has undefined value / was
2268 not saved. As we're computing the location of some
2269 variable etc. in the program, not a value for
2270 inspecting a register ($pc, $sp, etc.), return a
2271 generic optimized out value instead, so that we show
2272 <optimized out> instead of <not saved>. */
2273 do_cleanups (value_chain);
2274 tmp = allocate_value (type);
2275 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2276 retval = tmp;
2277 }
2278 }
2279 break;
2280
2281 case DWARF_VALUE_MEMORY:
2282 {
2283 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2284 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2285
2286 do_cleanups (value_chain);
2287 retval = value_at_lazy (type, address + byte_offset);
2288 if (in_stack_memory)
2289 set_value_stack (retval, 1);
2290 }
2291 break;
2292
2293 case DWARF_VALUE_STACK:
2294 {
2295 struct value *value = dwarf_expr_fetch (ctx, 0);
2296 gdb_byte *contents;
2297 const gdb_byte *val_bytes;
2298 size_t n = TYPE_LENGTH (value_type (value));
2299
2300 if (byte_offset + TYPE_LENGTH (type) > n)
2301 invalid_synthetic_pointer ();
2302
2303 val_bytes = value_contents_all (value);
2304 val_bytes += byte_offset;
2305 n -= byte_offset;
2306
2307 /* Preserve VALUE because we are going to free values back
2308 to the mark, but we still need the value contents
2309 below. */
2310 value_incref (value);
2311 do_cleanups (value_chain);
2312 make_cleanup_value_free (value);
2313
2314 retval = allocate_value (type);
2315 contents = value_contents_raw (retval);
2316 if (n > TYPE_LENGTH (type))
2317 {
2318 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2319
2320 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2321 val_bytes += n - TYPE_LENGTH (type);
2322 n = TYPE_LENGTH (type);
2323 }
2324 memcpy (contents, val_bytes, n);
2325 }
2326 break;
2327
2328 case DWARF_VALUE_LITERAL:
2329 {
2330 bfd_byte *contents;
2331 const bfd_byte *ldata;
2332 size_t n = ctx->len;
2333
2334 if (byte_offset + TYPE_LENGTH (type) > n)
2335 invalid_synthetic_pointer ();
2336
2337 do_cleanups (value_chain);
2338 retval = allocate_value (type);
2339 contents = value_contents_raw (retval);
2340
2341 ldata = ctx->data + byte_offset;
2342 n -= byte_offset;
2343
2344 if (n > TYPE_LENGTH (type))
2345 {
2346 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2347
2348 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2349 ldata += n - TYPE_LENGTH (type);
2350 n = TYPE_LENGTH (type);
2351 }
2352 memcpy (contents, ldata, n);
2353 }
2354 break;
2355
2356 case DWARF_VALUE_OPTIMIZED_OUT:
2357 do_cleanups (value_chain);
2358 retval = allocate_optimized_out_value (type);
2359 break;
2360
2361 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2362 operation by execute_stack_op. */
2363 case DWARF_VALUE_IMPLICIT_POINTER:
2364 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2365 it can only be encountered when making a piece. */
2366 default:
2367 internal_error (__FILE__, __LINE__, _("invalid location type"));
2368 }
2369 }
2370
2371 set_value_initialized (retval, ctx->initialized);
2372
2373 do_cleanups (old_chain);
2374
2375 return retval;
2376 }
2377
2378 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2379 passes 0 as the byte_offset. */
2380
2381 struct value *
2382 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2383 const gdb_byte *data, size_t size,
2384 struct dwarf2_per_cu_data *per_cu)
2385 {
2386 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2387 }
2388
2389 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2390 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2391 context (location of a variable) and might be needed to evaluate the
2392 location expression.
2393 Returns 1 on success, 0 otherwise. */
2394
2395 static int
2396 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2397 CORE_ADDR addr,
2398 CORE_ADDR *valp)
2399 {
2400 struct dwarf_expr_context *ctx;
2401 struct dwarf_expr_baton baton;
2402 struct objfile *objfile;
2403 struct cleanup *cleanup;
2404
2405 if (dlbaton == NULL || dlbaton->size == 0)
2406 return 0;
2407
2408 ctx = new_dwarf_expr_context ();
2409 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2410
2411 baton.frame = get_selected_frame (NULL);
2412 baton.per_cu = dlbaton->per_cu;
2413 baton.obj_address = addr;
2414
2415 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2416
2417 ctx->gdbarch = get_objfile_arch (objfile);
2418 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2419 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2420 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2421 ctx->funcs = &dwarf_expr_ctx_funcs;
2422 ctx->baton = &baton;
2423
2424 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2425
2426 switch (ctx->location)
2427 {
2428 case DWARF_VALUE_REGISTER:
2429 case DWARF_VALUE_MEMORY:
2430 case DWARF_VALUE_STACK:
2431 *valp = dwarf_expr_fetch_address (ctx, 0);
2432 if (ctx->location == DWARF_VALUE_REGISTER)
2433 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2434 do_cleanups (cleanup);
2435 return 1;
2436 case DWARF_VALUE_LITERAL:
2437 *valp = extract_signed_integer (ctx->data, ctx->len,
2438 gdbarch_byte_order (ctx->gdbarch));
2439 do_cleanups (cleanup);
2440 return 1;
2441 /* Unsupported dwarf values. */
2442 case DWARF_VALUE_OPTIMIZED_OUT:
2443 case DWARF_VALUE_IMPLICIT_POINTER:
2444 break;
2445 }
2446
2447 do_cleanups (cleanup);
2448 return 0;
2449 }
2450
2451 /* See dwarf2loc.h. */
2452
2453 int
2454 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2455 CORE_ADDR address, CORE_ADDR *value)
2456 {
2457 if (prop == NULL)
2458 return 0;
2459
2460 switch (prop->kind)
2461 {
2462 case PROP_LOCEXPR:
2463 {
2464 const struct dwarf2_property_baton *baton = prop->data.baton;
2465
2466 if (dwarf2_locexpr_baton_eval (&baton->locexpr, address, value))
2467 {
2468 if (baton->referenced_type)
2469 {
2470 struct value *val = value_at (baton->referenced_type, *value);
2471
2472 *value = value_as_address (val);
2473 }
2474 return 1;
2475 }
2476 }
2477 break;
2478
2479 case PROP_LOCLIST:
2480 {
2481 struct dwarf2_property_baton *baton = prop->data.baton;
2482 struct frame_info *frame = get_selected_frame (NULL);
2483 CORE_ADDR pc = get_frame_address_in_block (frame);
2484 const gdb_byte *data;
2485 struct value *val;
2486 size_t size;
2487
2488 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2489 if (data != NULL)
2490 {
2491 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2492 size, baton->loclist.per_cu);
2493 if (!value_optimized_out (val))
2494 {
2495 *value = value_as_address (val);
2496 return 1;
2497 }
2498 }
2499 }
2500 break;
2501
2502 case PROP_CONST:
2503 *value = prop->data.const_val;
2504 return 1;
2505 }
2506
2507 return 0;
2508 }
2509
2510 \f
2511 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2512
2513 struct needs_frame_baton
2514 {
2515 int needs_frame;
2516 struct dwarf2_per_cu_data *per_cu;
2517 };
2518
2519 /* Reads from registers do require a frame. */
2520 static CORE_ADDR
2521 needs_frame_read_addr_from_reg (void *baton, int regnum)
2522 {
2523 struct needs_frame_baton *nf_baton = baton;
2524
2525 nf_baton->needs_frame = 1;
2526 return 1;
2527 }
2528
2529 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2530 Reads from registers do require a frame. */
2531
2532 static struct value *
2533 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2534 {
2535 struct needs_frame_baton *nf_baton = baton;
2536
2537 nf_baton->needs_frame = 1;
2538 return value_zero (type, not_lval);
2539 }
2540
2541 /* Reads from memory do not require a frame. */
2542 static void
2543 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2544 {
2545 memset (buf, 0, len);
2546 }
2547
2548 /* Frame-relative accesses do require a frame. */
2549 static void
2550 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2551 {
2552 static gdb_byte lit0 = DW_OP_lit0;
2553 struct needs_frame_baton *nf_baton = baton;
2554
2555 *start = &lit0;
2556 *length = 1;
2557
2558 nf_baton->needs_frame = 1;
2559 }
2560
2561 /* CFA accesses require a frame. */
2562
2563 static CORE_ADDR
2564 needs_frame_frame_cfa (void *baton)
2565 {
2566 struct needs_frame_baton *nf_baton = baton;
2567
2568 nf_baton->needs_frame = 1;
2569 return 1;
2570 }
2571
2572 /* Thread-local accesses do require a frame. */
2573 static CORE_ADDR
2574 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2575 {
2576 struct needs_frame_baton *nf_baton = baton;
2577
2578 nf_baton->needs_frame = 1;
2579 return 1;
2580 }
2581
2582 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2583
2584 static void
2585 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2586 {
2587 struct needs_frame_baton *nf_baton = ctx->baton;
2588
2589 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2590 ctx->funcs->get_frame_pc, ctx->baton);
2591 }
2592
2593 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2594
2595 static void
2596 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2597 enum call_site_parameter_kind kind,
2598 union call_site_parameter_u kind_u, int deref_size)
2599 {
2600 struct needs_frame_baton *nf_baton = ctx->baton;
2601
2602 nf_baton->needs_frame = 1;
2603
2604 /* The expression may require some stub values on DWARF stack. */
2605 dwarf_expr_push_address (ctx, 0, 0);
2606 }
2607
2608 /* DW_OP_GNU_addr_index doesn't require a frame. */
2609
2610 static CORE_ADDR
2611 needs_get_addr_index (void *baton, unsigned int index)
2612 {
2613 /* Nothing to do. */
2614 return 1;
2615 }
2616
2617 /* DW_OP_push_object_address has a frame already passed through. */
2618
2619 static CORE_ADDR
2620 needs_get_obj_addr (void *baton)
2621 {
2622 /* Nothing to do. */
2623 return 1;
2624 }
2625
2626 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2627
2628 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2629 {
2630 needs_frame_read_addr_from_reg,
2631 needs_frame_get_reg_value,
2632 needs_frame_read_mem,
2633 needs_frame_frame_base,
2634 needs_frame_frame_cfa,
2635 needs_frame_frame_cfa, /* get_frame_pc */
2636 needs_frame_tls_address,
2637 needs_frame_dwarf_call,
2638 NULL, /* get_base_type */
2639 needs_dwarf_reg_entry_value,
2640 needs_get_addr_index,
2641 needs_get_obj_addr
2642 };
2643
2644 /* Return non-zero iff the location expression at DATA (length SIZE)
2645 requires a frame to evaluate. */
2646
2647 static int
2648 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2649 struct dwarf2_per_cu_data *per_cu)
2650 {
2651 struct needs_frame_baton baton;
2652 struct dwarf_expr_context *ctx;
2653 int in_reg;
2654 struct cleanup *old_chain;
2655 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2656
2657 baton.needs_frame = 0;
2658 baton.per_cu = per_cu;
2659
2660 ctx = new_dwarf_expr_context ();
2661 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2662 make_cleanup_value_free_to_mark (value_mark ());
2663
2664 ctx->gdbarch = get_objfile_arch (objfile);
2665 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2666 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2667 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2668 ctx->baton = &baton;
2669 ctx->funcs = &needs_frame_ctx_funcs;
2670
2671 dwarf_expr_eval (ctx, data, size);
2672
2673 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2674
2675 if (ctx->num_pieces > 0)
2676 {
2677 int i;
2678
2679 /* If the location has several pieces, and any of them are in
2680 registers, then we will need a frame to fetch them from. */
2681 for (i = 0; i < ctx->num_pieces; i++)
2682 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2683 in_reg = 1;
2684 }
2685
2686 do_cleanups (old_chain);
2687
2688 return baton.needs_frame || in_reg;
2689 }
2690
2691 /* A helper function that throws an unimplemented error mentioning a
2692 given DWARF operator. */
2693
2694 static void
2695 unimplemented (unsigned int op)
2696 {
2697 const char *name = get_DW_OP_name (op);
2698
2699 if (name)
2700 error (_("DWARF operator %s cannot be translated to an agent expression"),
2701 name);
2702 else
2703 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2704 "to an agent expression"),
2705 op);
2706 }
2707
2708 /* A helper function to convert a DWARF register to an arch register.
2709 ARCH is the architecture.
2710 DWARF_REG is the register.
2711 This will throw an exception if the DWARF register cannot be
2712 translated to an architecture register. */
2713
2714 static int
2715 translate_register (struct gdbarch *arch, int dwarf_reg)
2716 {
2717 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2718 if (reg == -1)
2719 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2720 return reg;
2721 }
2722
2723 /* A helper function that emits an access to memory. ARCH is the
2724 target architecture. EXPR is the expression which we are building.
2725 NBITS is the number of bits we want to read. This emits the
2726 opcodes needed to read the memory and then extract the desired
2727 bits. */
2728
2729 static void
2730 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2731 {
2732 ULONGEST nbytes = (nbits + 7) / 8;
2733
2734 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2735
2736 if (expr->tracing)
2737 ax_trace_quick (expr, nbytes);
2738
2739 if (nbits <= 8)
2740 ax_simple (expr, aop_ref8);
2741 else if (nbits <= 16)
2742 ax_simple (expr, aop_ref16);
2743 else if (nbits <= 32)
2744 ax_simple (expr, aop_ref32);
2745 else
2746 ax_simple (expr, aop_ref64);
2747
2748 /* If we read exactly the number of bytes we wanted, we're done. */
2749 if (8 * nbytes == nbits)
2750 return;
2751
2752 if (gdbarch_bits_big_endian (arch))
2753 {
2754 /* On a bits-big-endian machine, we want the high-order
2755 NBITS. */
2756 ax_const_l (expr, 8 * nbytes - nbits);
2757 ax_simple (expr, aop_rsh_unsigned);
2758 }
2759 else
2760 {
2761 /* On a bits-little-endian box, we want the low-order NBITS. */
2762 ax_zero_ext (expr, nbits);
2763 }
2764 }
2765
2766 /* A helper function to return the frame's PC. */
2767
2768 static CORE_ADDR
2769 get_ax_pc (void *baton)
2770 {
2771 struct agent_expr *expr = baton;
2772
2773 return expr->scope;
2774 }
2775
2776 /* Compile a DWARF location expression to an agent expression.
2777
2778 EXPR is the agent expression we are building.
2779 LOC is the agent value we modify.
2780 ARCH is the architecture.
2781 ADDR_SIZE is the size of addresses, in bytes.
2782 OP_PTR is the start of the location expression.
2783 OP_END is one past the last byte of the location expression.
2784
2785 This will throw an exception for various kinds of errors -- for
2786 example, if the expression cannot be compiled, or if the expression
2787 is invalid. */
2788
2789 void
2790 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2791 struct gdbarch *arch, unsigned int addr_size,
2792 const gdb_byte *op_ptr, const gdb_byte *op_end,
2793 struct dwarf2_per_cu_data *per_cu)
2794 {
2795 struct cleanup *cleanups;
2796 int i, *offsets;
2797 VEC(int) *dw_labels = NULL, *patches = NULL;
2798 const gdb_byte * const base = op_ptr;
2799 const gdb_byte *previous_piece = op_ptr;
2800 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2801 ULONGEST bits_collected = 0;
2802 unsigned int addr_size_bits = 8 * addr_size;
2803 int bits_big_endian = gdbarch_bits_big_endian (arch);
2804
2805 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2806 cleanups = make_cleanup (xfree, offsets);
2807
2808 for (i = 0; i < op_end - op_ptr; ++i)
2809 offsets[i] = -1;
2810
2811 make_cleanup (VEC_cleanup (int), &dw_labels);
2812 make_cleanup (VEC_cleanup (int), &patches);
2813
2814 /* By default we are making an address. */
2815 loc->kind = axs_lvalue_memory;
2816
2817 while (op_ptr < op_end)
2818 {
2819 enum dwarf_location_atom op = *op_ptr;
2820 uint64_t uoffset, reg;
2821 int64_t offset;
2822 int i;
2823
2824 offsets[op_ptr - base] = expr->len;
2825 ++op_ptr;
2826
2827 /* Our basic approach to code generation is to map DWARF
2828 operations directly to AX operations. However, there are
2829 some differences.
2830
2831 First, DWARF works on address-sized units, but AX always uses
2832 LONGEST. For most operations we simply ignore this
2833 difference; instead we generate sign extensions as needed
2834 before division and comparison operations. It would be nice
2835 to omit the sign extensions, but there is no way to determine
2836 the size of the target's LONGEST. (This code uses the size
2837 of the host LONGEST in some cases -- that is a bug but it is
2838 difficult to fix.)
2839
2840 Second, some DWARF operations cannot be translated to AX.
2841 For these we simply fail. See
2842 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2843 switch (op)
2844 {
2845 case DW_OP_lit0:
2846 case DW_OP_lit1:
2847 case DW_OP_lit2:
2848 case DW_OP_lit3:
2849 case DW_OP_lit4:
2850 case DW_OP_lit5:
2851 case DW_OP_lit6:
2852 case DW_OP_lit7:
2853 case DW_OP_lit8:
2854 case DW_OP_lit9:
2855 case DW_OP_lit10:
2856 case DW_OP_lit11:
2857 case DW_OP_lit12:
2858 case DW_OP_lit13:
2859 case DW_OP_lit14:
2860 case DW_OP_lit15:
2861 case DW_OP_lit16:
2862 case DW_OP_lit17:
2863 case DW_OP_lit18:
2864 case DW_OP_lit19:
2865 case DW_OP_lit20:
2866 case DW_OP_lit21:
2867 case DW_OP_lit22:
2868 case DW_OP_lit23:
2869 case DW_OP_lit24:
2870 case DW_OP_lit25:
2871 case DW_OP_lit26:
2872 case DW_OP_lit27:
2873 case DW_OP_lit28:
2874 case DW_OP_lit29:
2875 case DW_OP_lit30:
2876 case DW_OP_lit31:
2877 ax_const_l (expr, op - DW_OP_lit0);
2878 break;
2879
2880 case DW_OP_addr:
2881 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2882 op_ptr += addr_size;
2883 /* Some versions of GCC emit DW_OP_addr before
2884 DW_OP_GNU_push_tls_address. In this case the value is an
2885 index, not an address. We don't support things like
2886 branching between the address and the TLS op. */
2887 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2888 uoffset += dwarf2_per_cu_text_offset (per_cu);
2889 ax_const_l (expr, uoffset);
2890 break;
2891
2892 case DW_OP_const1u:
2893 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2894 op_ptr += 1;
2895 break;
2896 case DW_OP_const1s:
2897 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2898 op_ptr += 1;
2899 break;
2900 case DW_OP_const2u:
2901 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2902 op_ptr += 2;
2903 break;
2904 case DW_OP_const2s:
2905 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2906 op_ptr += 2;
2907 break;
2908 case DW_OP_const4u:
2909 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2910 op_ptr += 4;
2911 break;
2912 case DW_OP_const4s:
2913 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2914 op_ptr += 4;
2915 break;
2916 case DW_OP_const8u:
2917 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2918 op_ptr += 8;
2919 break;
2920 case DW_OP_const8s:
2921 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2922 op_ptr += 8;
2923 break;
2924 case DW_OP_constu:
2925 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2926 ax_const_l (expr, uoffset);
2927 break;
2928 case DW_OP_consts:
2929 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2930 ax_const_l (expr, offset);
2931 break;
2932
2933 case DW_OP_reg0:
2934 case DW_OP_reg1:
2935 case DW_OP_reg2:
2936 case DW_OP_reg3:
2937 case DW_OP_reg4:
2938 case DW_OP_reg5:
2939 case DW_OP_reg6:
2940 case DW_OP_reg7:
2941 case DW_OP_reg8:
2942 case DW_OP_reg9:
2943 case DW_OP_reg10:
2944 case DW_OP_reg11:
2945 case DW_OP_reg12:
2946 case DW_OP_reg13:
2947 case DW_OP_reg14:
2948 case DW_OP_reg15:
2949 case DW_OP_reg16:
2950 case DW_OP_reg17:
2951 case DW_OP_reg18:
2952 case DW_OP_reg19:
2953 case DW_OP_reg20:
2954 case DW_OP_reg21:
2955 case DW_OP_reg22:
2956 case DW_OP_reg23:
2957 case DW_OP_reg24:
2958 case DW_OP_reg25:
2959 case DW_OP_reg26:
2960 case DW_OP_reg27:
2961 case DW_OP_reg28:
2962 case DW_OP_reg29:
2963 case DW_OP_reg30:
2964 case DW_OP_reg31:
2965 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2966 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2967 loc->kind = axs_lvalue_register;
2968 break;
2969
2970 case DW_OP_regx:
2971 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2972 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2973 loc->u.reg = translate_register (arch, reg);
2974 loc->kind = axs_lvalue_register;
2975 break;
2976
2977 case DW_OP_implicit_value:
2978 {
2979 uint64_t len;
2980
2981 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2982 if (op_ptr + len > op_end)
2983 error (_("DW_OP_implicit_value: too few bytes available."));
2984 if (len > sizeof (ULONGEST))
2985 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2986 (int) len);
2987
2988 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2989 byte_order));
2990 op_ptr += len;
2991 dwarf_expr_require_composition (op_ptr, op_end,
2992 "DW_OP_implicit_value");
2993
2994 loc->kind = axs_rvalue;
2995 }
2996 break;
2997
2998 case DW_OP_stack_value:
2999 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3000 loc->kind = axs_rvalue;
3001 break;
3002
3003 case DW_OP_breg0:
3004 case DW_OP_breg1:
3005 case DW_OP_breg2:
3006 case DW_OP_breg3:
3007 case DW_OP_breg4:
3008 case DW_OP_breg5:
3009 case DW_OP_breg6:
3010 case DW_OP_breg7:
3011 case DW_OP_breg8:
3012 case DW_OP_breg9:
3013 case DW_OP_breg10:
3014 case DW_OP_breg11:
3015 case DW_OP_breg12:
3016 case DW_OP_breg13:
3017 case DW_OP_breg14:
3018 case DW_OP_breg15:
3019 case DW_OP_breg16:
3020 case DW_OP_breg17:
3021 case DW_OP_breg18:
3022 case DW_OP_breg19:
3023 case DW_OP_breg20:
3024 case DW_OP_breg21:
3025 case DW_OP_breg22:
3026 case DW_OP_breg23:
3027 case DW_OP_breg24:
3028 case DW_OP_breg25:
3029 case DW_OP_breg26:
3030 case DW_OP_breg27:
3031 case DW_OP_breg28:
3032 case DW_OP_breg29:
3033 case DW_OP_breg30:
3034 case DW_OP_breg31:
3035 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3036 i = translate_register (arch, op - DW_OP_breg0);
3037 ax_reg (expr, i);
3038 if (offset != 0)
3039 {
3040 ax_const_l (expr, offset);
3041 ax_simple (expr, aop_add);
3042 }
3043 break;
3044 case DW_OP_bregx:
3045 {
3046 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3047 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3048 i = translate_register (arch, reg);
3049 ax_reg (expr, i);
3050 if (offset != 0)
3051 {
3052 ax_const_l (expr, offset);
3053 ax_simple (expr, aop_add);
3054 }
3055 }
3056 break;
3057 case DW_OP_fbreg:
3058 {
3059 const gdb_byte *datastart;
3060 size_t datalen;
3061 const struct block *b;
3062 struct symbol *framefunc;
3063
3064 b = block_for_pc (expr->scope);
3065
3066 if (!b)
3067 error (_("No block found for address"));
3068
3069 framefunc = block_linkage_function (b);
3070
3071 if (!framefunc)
3072 error (_("No function found for block"));
3073
3074 dwarf_expr_frame_base_1 (framefunc, expr->scope,
3075 &datastart, &datalen);
3076
3077 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3078 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3079 datastart + datalen, per_cu);
3080 if (loc->kind == axs_lvalue_register)
3081 require_rvalue (expr, loc);
3082
3083 if (offset != 0)
3084 {
3085 ax_const_l (expr, offset);
3086 ax_simple (expr, aop_add);
3087 }
3088
3089 loc->kind = axs_lvalue_memory;
3090 }
3091 break;
3092
3093 case DW_OP_dup:
3094 ax_simple (expr, aop_dup);
3095 break;
3096
3097 case DW_OP_drop:
3098 ax_simple (expr, aop_pop);
3099 break;
3100
3101 case DW_OP_pick:
3102 offset = *op_ptr++;
3103 ax_pick (expr, offset);
3104 break;
3105
3106 case DW_OP_swap:
3107 ax_simple (expr, aop_swap);
3108 break;
3109
3110 case DW_OP_over:
3111 ax_pick (expr, 1);
3112 break;
3113
3114 case DW_OP_rot:
3115 ax_simple (expr, aop_rot);
3116 break;
3117
3118 case DW_OP_deref:
3119 case DW_OP_deref_size:
3120 {
3121 int size;
3122
3123 if (op == DW_OP_deref_size)
3124 size = *op_ptr++;
3125 else
3126 size = addr_size;
3127
3128 if (size != 1 && size != 2 && size != 4 && size != 8)
3129 error (_("Unsupported size %d in %s"),
3130 size, get_DW_OP_name (op));
3131 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3132 }
3133 break;
3134
3135 case DW_OP_abs:
3136 /* Sign extend the operand. */
3137 ax_ext (expr, addr_size_bits);
3138 ax_simple (expr, aop_dup);
3139 ax_const_l (expr, 0);
3140 ax_simple (expr, aop_less_signed);
3141 ax_simple (expr, aop_log_not);
3142 i = ax_goto (expr, aop_if_goto);
3143 /* We have to emit 0 - X. */
3144 ax_const_l (expr, 0);
3145 ax_simple (expr, aop_swap);
3146 ax_simple (expr, aop_sub);
3147 ax_label (expr, i, expr->len);
3148 break;
3149
3150 case DW_OP_neg:
3151 /* No need to sign extend here. */
3152 ax_const_l (expr, 0);
3153 ax_simple (expr, aop_swap);
3154 ax_simple (expr, aop_sub);
3155 break;
3156
3157 case DW_OP_not:
3158 /* Sign extend the operand. */
3159 ax_ext (expr, addr_size_bits);
3160 ax_simple (expr, aop_bit_not);
3161 break;
3162
3163 case DW_OP_plus_uconst:
3164 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3165 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3166 but we micro-optimize anyhow. */
3167 if (reg != 0)
3168 {
3169 ax_const_l (expr, reg);
3170 ax_simple (expr, aop_add);
3171 }
3172 break;
3173
3174 case DW_OP_and:
3175 ax_simple (expr, aop_bit_and);
3176 break;
3177
3178 case DW_OP_div:
3179 /* Sign extend the operands. */
3180 ax_ext (expr, addr_size_bits);
3181 ax_simple (expr, aop_swap);
3182 ax_ext (expr, addr_size_bits);
3183 ax_simple (expr, aop_swap);
3184 ax_simple (expr, aop_div_signed);
3185 break;
3186
3187 case DW_OP_minus:
3188 ax_simple (expr, aop_sub);
3189 break;
3190
3191 case DW_OP_mod:
3192 ax_simple (expr, aop_rem_unsigned);
3193 break;
3194
3195 case DW_OP_mul:
3196 ax_simple (expr, aop_mul);
3197 break;
3198
3199 case DW_OP_or:
3200 ax_simple (expr, aop_bit_or);
3201 break;
3202
3203 case DW_OP_plus:
3204 ax_simple (expr, aop_add);
3205 break;
3206
3207 case DW_OP_shl:
3208 ax_simple (expr, aop_lsh);
3209 break;
3210
3211 case DW_OP_shr:
3212 ax_simple (expr, aop_rsh_unsigned);
3213 break;
3214
3215 case DW_OP_shra:
3216 ax_simple (expr, aop_rsh_signed);
3217 break;
3218
3219 case DW_OP_xor:
3220 ax_simple (expr, aop_bit_xor);
3221 break;
3222
3223 case DW_OP_le:
3224 /* Sign extend the operands. */
3225 ax_ext (expr, addr_size_bits);
3226 ax_simple (expr, aop_swap);
3227 ax_ext (expr, addr_size_bits);
3228 /* Note no swap here: A <= B is !(B < A). */
3229 ax_simple (expr, aop_less_signed);
3230 ax_simple (expr, aop_log_not);
3231 break;
3232
3233 case DW_OP_ge:
3234 /* Sign extend the operands. */
3235 ax_ext (expr, addr_size_bits);
3236 ax_simple (expr, aop_swap);
3237 ax_ext (expr, addr_size_bits);
3238 ax_simple (expr, aop_swap);
3239 /* A >= B is !(A < B). */
3240 ax_simple (expr, aop_less_signed);
3241 ax_simple (expr, aop_log_not);
3242 break;
3243
3244 case DW_OP_eq:
3245 /* Sign extend the operands. */
3246 ax_ext (expr, addr_size_bits);
3247 ax_simple (expr, aop_swap);
3248 ax_ext (expr, addr_size_bits);
3249 /* No need for a second swap here. */
3250 ax_simple (expr, aop_equal);
3251 break;
3252
3253 case DW_OP_lt:
3254 /* Sign extend the operands. */
3255 ax_ext (expr, addr_size_bits);
3256 ax_simple (expr, aop_swap);
3257 ax_ext (expr, addr_size_bits);
3258 ax_simple (expr, aop_swap);
3259 ax_simple (expr, aop_less_signed);
3260 break;
3261
3262 case DW_OP_gt:
3263 /* Sign extend the operands. */
3264 ax_ext (expr, addr_size_bits);
3265 ax_simple (expr, aop_swap);
3266 ax_ext (expr, addr_size_bits);
3267 /* Note no swap here: A > B is B < A. */
3268 ax_simple (expr, aop_less_signed);
3269 break;
3270
3271 case DW_OP_ne:
3272 /* Sign extend the operands. */
3273 ax_ext (expr, addr_size_bits);
3274 ax_simple (expr, aop_swap);
3275 ax_ext (expr, addr_size_bits);
3276 /* No need for a swap here. */
3277 ax_simple (expr, aop_equal);
3278 ax_simple (expr, aop_log_not);
3279 break;
3280
3281 case DW_OP_call_frame_cfa:
3282 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3283 loc->kind = axs_lvalue_memory;
3284 break;
3285
3286 case DW_OP_GNU_push_tls_address:
3287 unimplemented (op);
3288 break;
3289
3290 case DW_OP_push_object_address:
3291 unimplemented (op);
3292 break;
3293
3294 case DW_OP_skip:
3295 offset = extract_signed_integer (op_ptr, 2, byte_order);
3296 op_ptr += 2;
3297 i = ax_goto (expr, aop_goto);
3298 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3299 VEC_safe_push (int, patches, i);
3300 break;
3301
3302 case DW_OP_bra:
3303 offset = extract_signed_integer (op_ptr, 2, byte_order);
3304 op_ptr += 2;
3305 /* Zero extend the operand. */
3306 ax_zero_ext (expr, addr_size_bits);
3307 i = ax_goto (expr, aop_if_goto);
3308 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3309 VEC_safe_push (int, patches, i);
3310 break;
3311
3312 case DW_OP_nop:
3313 break;
3314
3315 case DW_OP_piece:
3316 case DW_OP_bit_piece:
3317 {
3318 uint64_t size, offset;
3319
3320 if (op_ptr - 1 == previous_piece)
3321 error (_("Cannot translate empty pieces to agent expressions"));
3322 previous_piece = op_ptr - 1;
3323
3324 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3325 if (op == DW_OP_piece)
3326 {
3327 size *= 8;
3328 offset = 0;
3329 }
3330 else
3331 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3332
3333 if (bits_collected + size > 8 * sizeof (LONGEST))
3334 error (_("Expression pieces exceed word size"));
3335
3336 /* Access the bits. */
3337 switch (loc->kind)
3338 {
3339 case axs_lvalue_register:
3340 ax_reg (expr, loc->u.reg);
3341 break;
3342
3343 case axs_lvalue_memory:
3344 /* Offset the pointer, if needed. */
3345 if (offset > 8)
3346 {
3347 ax_const_l (expr, offset / 8);
3348 ax_simple (expr, aop_add);
3349 offset %= 8;
3350 }
3351 access_memory (arch, expr, size);
3352 break;
3353 }
3354
3355 /* For a bits-big-endian target, shift up what we already
3356 have. For a bits-little-endian target, shift up the
3357 new data. Note that there is a potential bug here if
3358 the DWARF expression leaves multiple values on the
3359 stack. */
3360 if (bits_collected > 0)
3361 {
3362 if (bits_big_endian)
3363 {
3364 ax_simple (expr, aop_swap);
3365 ax_const_l (expr, size);
3366 ax_simple (expr, aop_lsh);
3367 /* We don't need a second swap here, because
3368 aop_bit_or is symmetric. */
3369 }
3370 else
3371 {
3372 ax_const_l (expr, size);
3373 ax_simple (expr, aop_lsh);
3374 }
3375 ax_simple (expr, aop_bit_or);
3376 }
3377
3378 bits_collected += size;
3379 loc->kind = axs_rvalue;
3380 }
3381 break;
3382
3383 case DW_OP_GNU_uninit:
3384 unimplemented (op);
3385
3386 case DW_OP_call2:
3387 case DW_OP_call4:
3388 {
3389 struct dwarf2_locexpr_baton block;
3390 int size = (op == DW_OP_call2 ? 2 : 4);
3391 cu_offset offset;
3392
3393 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3394 op_ptr += size;
3395
3396 offset.cu_off = uoffset;
3397 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3398 get_ax_pc, expr);
3399
3400 /* DW_OP_call_ref is currently not supported. */
3401 gdb_assert (block.per_cu == per_cu);
3402
3403 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3404 block.data, block.data + block.size,
3405 per_cu);
3406 }
3407 break;
3408
3409 case DW_OP_call_ref:
3410 unimplemented (op);
3411
3412 default:
3413 unimplemented (op);
3414 }
3415 }
3416
3417 /* Patch all the branches we emitted. */
3418 for (i = 0; i < VEC_length (int, patches); ++i)
3419 {
3420 int targ = offsets[VEC_index (int, dw_labels, i)];
3421 if (targ == -1)
3422 internal_error (__FILE__, __LINE__, _("invalid label"));
3423 ax_label (expr, VEC_index (int, patches, i), targ);
3424 }
3425
3426 do_cleanups (cleanups);
3427 }
3428
3429 \f
3430 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3431 evaluator to calculate the location. */
3432 static struct value *
3433 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3434 {
3435 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3436 struct value *val;
3437
3438 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3439 dlbaton->size, dlbaton->per_cu);
3440
3441 return val;
3442 }
3443
3444 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3445 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3446 will be thrown. */
3447
3448 static struct value *
3449 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3450 {
3451 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3452
3453 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3454 dlbaton->size);
3455 }
3456
3457 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3458 static int
3459 locexpr_read_needs_frame (struct symbol *symbol)
3460 {
3461 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3462
3463 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3464 dlbaton->per_cu);
3465 }
3466
3467 /* Return true if DATA points to the end of a piece. END is one past
3468 the last byte in the expression. */
3469
3470 static int
3471 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3472 {
3473 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3474 }
3475
3476 /* Helper for locexpr_describe_location_piece that finds the name of a
3477 DWARF register. */
3478
3479 static const char *
3480 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3481 {
3482 int regnum;
3483
3484 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3485 return gdbarch_register_name (gdbarch, regnum);
3486 }
3487
3488 /* Nicely describe a single piece of a location, returning an updated
3489 position in the bytecode sequence. This function cannot recognize
3490 all locations; if a location is not recognized, it simply returns
3491 DATA. If there is an error during reading, e.g. we run off the end
3492 of the buffer, an error is thrown. */
3493
3494 static const gdb_byte *
3495 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3496 CORE_ADDR addr, struct objfile *objfile,
3497 struct dwarf2_per_cu_data *per_cu,
3498 const gdb_byte *data, const gdb_byte *end,
3499 unsigned int addr_size)
3500 {
3501 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3502 size_t leb128_size;
3503
3504 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3505 {
3506 fprintf_filtered (stream, _("a variable in $%s"),
3507 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3508 data += 1;
3509 }
3510 else if (data[0] == DW_OP_regx)
3511 {
3512 uint64_t reg;
3513
3514 data = safe_read_uleb128 (data + 1, end, &reg);
3515 fprintf_filtered (stream, _("a variable in $%s"),
3516 locexpr_regname (gdbarch, reg));
3517 }
3518 else if (data[0] == DW_OP_fbreg)
3519 {
3520 const struct block *b;
3521 struct symbol *framefunc;
3522 int frame_reg = 0;
3523 int64_t frame_offset;
3524 const gdb_byte *base_data, *new_data, *save_data = data;
3525 size_t base_size;
3526 int64_t base_offset = 0;
3527
3528 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3529 if (!piece_end_p (new_data, end))
3530 return data;
3531 data = new_data;
3532
3533 b = block_for_pc (addr);
3534
3535 if (!b)
3536 error (_("No block found for address for symbol \"%s\"."),
3537 SYMBOL_PRINT_NAME (symbol));
3538
3539 framefunc = block_linkage_function (b);
3540
3541 if (!framefunc)
3542 error (_("No function found for block for symbol \"%s\"."),
3543 SYMBOL_PRINT_NAME (symbol));
3544
3545 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3546
3547 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3548 {
3549 const gdb_byte *buf_end;
3550
3551 frame_reg = base_data[0] - DW_OP_breg0;
3552 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3553 &base_offset);
3554 if (buf_end != base_data + base_size)
3555 error (_("Unexpected opcode after "
3556 "DW_OP_breg%u for symbol \"%s\"."),
3557 frame_reg, SYMBOL_PRINT_NAME (symbol));
3558 }
3559 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3560 {
3561 /* The frame base is just the register, with no offset. */
3562 frame_reg = base_data[0] - DW_OP_reg0;
3563 base_offset = 0;
3564 }
3565 else
3566 {
3567 /* We don't know what to do with the frame base expression,
3568 so we can't trace this variable; give up. */
3569 return save_data;
3570 }
3571
3572 fprintf_filtered (stream,
3573 _("a variable at frame base reg $%s offset %s+%s"),
3574 locexpr_regname (gdbarch, frame_reg),
3575 plongest (base_offset), plongest (frame_offset));
3576 }
3577 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3578 && piece_end_p (data, end))
3579 {
3580 int64_t offset;
3581
3582 data = safe_read_sleb128 (data + 1, end, &offset);
3583
3584 fprintf_filtered (stream,
3585 _("a variable at offset %s from base reg $%s"),
3586 plongest (offset),
3587 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3588 }
3589
3590 /* The location expression for a TLS variable looks like this (on a
3591 64-bit LE machine):
3592
3593 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3594 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3595
3596 0x3 is the encoding for DW_OP_addr, which has an operand as long
3597 as the size of an address on the target machine (here is 8
3598 bytes). Note that more recent version of GCC emit DW_OP_const4u
3599 or DW_OP_const8u, depending on address size, rather than
3600 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3601 The operand represents the offset at which the variable is within
3602 the thread local storage. */
3603
3604 else if (data + 1 + addr_size < end
3605 && (data[0] == DW_OP_addr
3606 || (addr_size == 4 && data[0] == DW_OP_const4u)
3607 || (addr_size == 8 && data[0] == DW_OP_const8u))
3608 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3609 && piece_end_p (data + 2 + addr_size, end))
3610 {
3611 ULONGEST offset;
3612 offset = extract_unsigned_integer (data + 1, addr_size,
3613 gdbarch_byte_order (gdbarch));
3614
3615 fprintf_filtered (stream,
3616 _("a thread-local variable at offset 0x%s "
3617 "in the thread-local storage for `%s'"),
3618 phex_nz (offset, addr_size), objfile_name (objfile));
3619
3620 data += 1 + addr_size + 1;
3621 }
3622
3623 /* With -gsplit-dwarf a TLS variable can also look like this:
3624 DW_AT_location : 3 byte block: fc 4 e0
3625 (DW_OP_GNU_const_index: 4;
3626 DW_OP_GNU_push_tls_address) */
3627 else if (data + 3 <= end
3628 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3629 && data[0] == DW_OP_GNU_const_index
3630 && leb128_size > 0
3631 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3632 && piece_end_p (data + 2 + leb128_size, end))
3633 {
3634 uint64_t offset;
3635
3636 data = safe_read_uleb128 (data + 1, end, &offset);
3637 offset = dwarf2_read_addr_index (per_cu, offset);
3638 fprintf_filtered (stream,
3639 _("a thread-local variable at offset 0x%s "
3640 "in the thread-local storage for `%s'"),
3641 phex_nz (offset, addr_size), objfile_name (objfile));
3642 ++data;
3643 }
3644
3645 else if (data[0] >= DW_OP_lit0
3646 && data[0] <= DW_OP_lit31
3647 && data + 1 < end
3648 && data[1] == DW_OP_stack_value)
3649 {
3650 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3651 data += 2;
3652 }
3653
3654 return data;
3655 }
3656
3657 /* Disassemble an expression, stopping at the end of a piece or at the
3658 end of the expression. Returns a pointer to the next unread byte
3659 in the input expression. If ALL is nonzero, then this function
3660 will keep going until it reaches the end of the expression.
3661 If there is an error during reading, e.g. we run off the end
3662 of the buffer, an error is thrown. */
3663
3664 static const gdb_byte *
3665 disassemble_dwarf_expression (struct ui_file *stream,
3666 struct gdbarch *arch, unsigned int addr_size,
3667 int offset_size, const gdb_byte *start,
3668 const gdb_byte *data, const gdb_byte *end,
3669 int indent, int all,
3670 struct dwarf2_per_cu_data *per_cu)
3671 {
3672 while (data < end
3673 && (all
3674 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3675 {
3676 enum dwarf_location_atom op = *data++;
3677 uint64_t ul;
3678 int64_t l;
3679 const char *name;
3680
3681 name = get_DW_OP_name (op);
3682
3683 if (!name)
3684 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3685 op, (long) (data - 1 - start));
3686 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3687 (long) (data - 1 - start), name);
3688
3689 switch (op)
3690 {
3691 case DW_OP_addr:
3692 ul = extract_unsigned_integer (data, addr_size,
3693 gdbarch_byte_order (arch));
3694 data += addr_size;
3695 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3696 break;
3697
3698 case DW_OP_const1u:
3699 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3700 data += 1;
3701 fprintf_filtered (stream, " %s", pulongest (ul));
3702 break;
3703 case DW_OP_const1s:
3704 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3705 data += 1;
3706 fprintf_filtered (stream, " %s", plongest (l));
3707 break;
3708 case DW_OP_const2u:
3709 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3710 data += 2;
3711 fprintf_filtered (stream, " %s", pulongest (ul));
3712 break;
3713 case DW_OP_const2s:
3714 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3715 data += 2;
3716 fprintf_filtered (stream, " %s", plongest (l));
3717 break;
3718 case DW_OP_const4u:
3719 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3720 data += 4;
3721 fprintf_filtered (stream, " %s", pulongest (ul));
3722 break;
3723 case DW_OP_const4s:
3724 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3725 data += 4;
3726 fprintf_filtered (stream, " %s", plongest (l));
3727 break;
3728 case DW_OP_const8u:
3729 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3730 data += 8;
3731 fprintf_filtered (stream, " %s", pulongest (ul));
3732 break;
3733 case DW_OP_const8s:
3734 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3735 data += 8;
3736 fprintf_filtered (stream, " %s", plongest (l));
3737 break;
3738 case DW_OP_constu:
3739 data = safe_read_uleb128 (data, end, &ul);
3740 fprintf_filtered (stream, " %s", pulongest (ul));
3741 break;
3742 case DW_OP_consts:
3743 data = safe_read_sleb128 (data, end, &l);
3744 fprintf_filtered (stream, " %s", plongest (l));
3745 break;
3746
3747 case DW_OP_reg0:
3748 case DW_OP_reg1:
3749 case DW_OP_reg2:
3750 case DW_OP_reg3:
3751 case DW_OP_reg4:
3752 case DW_OP_reg5:
3753 case DW_OP_reg6:
3754 case DW_OP_reg7:
3755 case DW_OP_reg8:
3756 case DW_OP_reg9:
3757 case DW_OP_reg10:
3758 case DW_OP_reg11:
3759 case DW_OP_reg12:
3760 case DW_OP_reg13:
3761 case DW_OP_reg14:
3762 case DW_OP_reg15:
3763 case DW_OP_reg16:
3764 case DW_OP_reg17:
3765 case DW_OP_reg18:
3766 case DW_OP_reg19:
3767 case DW_OP_reg20:
3768 case DW_OP_reg21:
3769 case DW_OP_reg22:
3770 case DW_OP_reg23:
3771 case DW_OP_reg24:
3772 case DW_OP_reg25:
3773 case DW_OP_reg26:
3774 case DW_OP_reg27:
3775 case DW_OP_reg28:
3776 case DW_OP_reg29:
3777 case DW_OP_reg30:
3778 case DW_OP_reg31:
3779 fprintf_filtered (stream, " [$%s]",
3780 locexpr_regname (arch, op - DW_OP_reg0));
3781 break;
3782
3783 case DW_OP_regx:
3784 data = safe_read_uleb128 (data, end, &ul);
3785 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3786 locexpr_regname (arch, (int) ul));
3787 break;
3788
3789 case DW_OP_implicit_value:
3790 data = safe_read_uleb128 (data, end, &ul);
3791 data += ul;
3792 fprintf_filtered (stream, " %s", pulongest (ul));
3793 break;
3794
3795 case DW_OP_breg0:
3796 case DW_OP_breg1:
3797 case DW_OP_breg2:
3798 case DW_OP_breg3:
3799 case DW_OP_breg4:
3800 case DW_OP_breg5:
3801 case DW_OP_breg6:
3802 case DW_OP_breg7:
3803 case DW_OP_breg8:
3804 case DW_OP_breg9:
3805 case DW_OP_breg10:
3806 case DW_OP_breg11:
3807 case DW_OP_breg12:
3808 case DW_OP_breg13:
3809 case DW_OP_breg14:
3810 case DW_OP_breg15:
3811 case DW_OP_breg16:
3812 case DW_OP_breg17:
3813 case DW_OP_breg18:
3814 case DW_OP_breg19:
3815 case DW_OP_breg20:
3816 case DW_OP_breg21:
3817 case DW_OP_breg22:
3818 case DW_OP_breg23:
3819 case DW_OP_breg24:
3820 case DW_OP_breg25:
3821 case DW_OP_breg26:
3822 case DW_OP_breg27:
3823 case DW_OP_breg28:
3824 case DW_OP_breg29:
3825 case DW_OP_breg30:
3826 case DW_OP_breg31:
3827 data = safe_read_sleb128 (data, end, &l);
3828 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3829 locexpr_regname (arch, op - DW_OP_breg0));
3830 break;
3831
3832 case DW_OP_bregx:
3833 data = safe_read_uleb128 (data, end, &ul);
3834 data = safe_read_sleb128 (data, end, &l);
3835 fprintf_filtered (stream, " register %s [$%s] offset %s",
3836 pulongest (ul),
3837 locexpr_regname (arch, (int) ul),
3838 plongest (l));
3839 break;
3840
3841 case DW_OP_fbreg:
3842 data = safe_read_sleb128 (data, end, &l);
3843 fprintf_filtered (stream, " %s", plongest (l));
3844 break;
3845
3846 case DW_OP_xderef_size:
3847 case DW_OP_deref_size:
3848 case DW_OP_pick:
3849 fprintf_filtered (stream, " %d", *data);
3850 ++data;
3851 break;
3852
3853 case DW_OP_plus_uconst:
3854 data = safe_read_uleb128 (data, end, &ul);
3855 fprintf_filtered (stream, " %s", pulongest (ul));
3856 break;
3857
3858 case DW_OP_skip:
3859 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3860 data += 2;
3861 fprintf_filtered (stream, " to %ld",
3862 (long) (data + l - start));
3863 break;
3864
3865 case DW_OP_bra:
3866 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3867 data += 2;
3868 fprintf_filtered (stream, " %ld",
3869 (long) (data + l - start));
3870 break;
3871
3872 case DW_OP_call2:
3873 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3874 data += 2;
3875 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3876 break;
3877
3878 case DW_OP_call4:
3879 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3880 data += 4;
3881 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3882 break;
3883
3884 case DW_OP_call_ref:
3885 ul = extract_unsigned_integer (data, offset_size,
3886 gdbarch_byte_order (arch));
3887 data += offset_size;
3888 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3889 break;
3890
3891 case DW_OP_piece:
3892 data = safe_read_uleb128 (data, end, &ul);
3893 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3894 break;
3895
3896 case DW_OP_bit_piece:
3897 {
3898 uint64_t offset;
3899
3900 data = safe_read_uleb128 (data, end, &ul);
3901 data = safe_read_uleb128 (data, end, &offset);
3902 fprintf_filtered (stream, " size %s offset %s (bits)",
3903 pulongest (ul), pulongest (offset));
3904 }
3905 break;
3906
3907 case DW_OP_GNU_implicit_pointer:
3908 {
3909 ul = extract_unsigned_integer (data, offset_size,
3910 gdbarch_byte_order (arch));
3911 data += offset_size;
3912
3913 data = safe_read_sleb128 (data, end, &l);
3914
3915 fprintf_filtered (stream, " DIE %s offset %s",
3916 phex_nz (ul, offset_size),
3917 plongest (l));
3918 }
3919 break;
3920
3921 case DW_OP_GNU_deref_type:
3922 {
3923 int addr_size = *data++;
3924 cu_offset offset;
3925 struct type *type;
3926
3927 data = safe_read_uleb128 (data, end, &ul);
3928 offset.cu_off = ul;
3929 type = dwarf2_get_die_type (offset, per_cu);
3930 fprintf_filtered (stream, "<");
3931 type_print (type, "", stream, -1);
3932 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3933 addr_size);
3934 }
3935 break;
3936
3937 case DW_OP_GNU_const_type:
3938 {
3939 cu_offset type_die;
3940 struct type *type;
3941
3942 data = safe_read_uleb128 (data, end, &ul);
3943 type_die.cu_off = ul;
3944 type = dwarf2_get_die_type (type_die, per_cu);
3945 fprintf_filtered (stream, "<");
3946 type_print (type, "", stream, -1);
3947 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3948 }
3949 break;
3950
3951 case DW_OP_GNU_regval_type:
3952 {
3953 uint64_t reg;
3954 cu_offset type_die;
3955 struct type *type;
3956
3957 data = safe_read_uleb128 (data, end, &reg);
3958 data = safe_read_uleb128 (data, end, &ul);
3959 type_die.cu_off = ul;
3960
3961 type = dwarf2_get_die_type (type_die, per_cu);
3962 fprintf_filtered (stream, "<");
3963 type_print (type, "", stream, -1);
3964 fprintf_filtered (stream, " [0x%s]> [$%s]",
3965 phex_nz (type_die.cu_off, 0),
3966 locexpr_regname (arch, reg));
3967 }
3968 break;
3969
3970 case DW_OP_GNU_convert:
3971 case DW_OP_GNU_reinterpret:
3972 {
3973 cu_offset type_die;
3974
3975 data = safe_read_uleb128 (data, end, &ul);
3976 type_die.cu_off = ul;
3977
3978 if (type_die.cu_off == 0)
3979 fprintf_filtered (stream, "<0>");
3980 else
3981 {
3982 struct type *type;
3983
3984 type = dwarf2_get_die_type (type_die, per_cu);
3985 fprintf_filtered (stream, "<");
3986 type_print (type, "", stream, -1);
3987 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3988 }
3989 }
3990 break;
3991
3992 case DW_OP_GNU_entry_value:
3993 data = safe_read_uleb128 (data, end, &ul);
3994 fputc_filtered ('\n', stream);
3995 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3996 start, data, data + ul, indent + 2,
3997 all, per_cu);
3998 data += ul;
3999 continue;
4000
4001 case DW_OP_GNU_parameter_ref:
4002 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4003 data += 4;
4004 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4005 break;
4006
4007 case DW_OP_GNU_addr_index:
4008 data = safe_read_uleb128 (data, end, &ul);
4009 ul = dwarf2_read_addr_index (per_cu, ul);
4010 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4011 break;
4012 case DW_OP_GNU_const_index:
4013 data = safe_read_uleb128 (data, end, &ul);
4014 ul = dwarf2_read_addr_index (per_cu, ul);
4015 fprintf_filtered (stream, " %s", pulongest (ul));
4016 break;
4017 }
4018
4019 fprintf_filtered (stream, "\n");
4020 }
4021
4022 return data;
4023 }
4024
4025 /* Describe a single location, which may in turn consist of multiple
4026 pieces. */
4027
4028 static void
4029 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4030 struct ui_file *stream,
4031 const gdb_byte *data, size_t size,
4032 struct objfile *objfile, unsigned int addr_size,
4033 int offset_size, struct dwarf2_per_cu_data *per_cu)
4034 {
4035 const gdb_byte *end = data + size;
4036 int first_piece = 1, bad = 0;
4037
4038 while (data < end)
4039 {
4040 const gdb_byte *here = data;
4041 int disassemble = 1;
4042
4043 if (first_piece)
4044 first_piece = 0;
4045 else
4046 fprintf_filtered (stream, _(", and "));
4047
4048 if (!dwarf2_always_disassemble)
4049 {
4050 data = locexpr_describe_location_piece (symbol, stream,
4051 addr, objfile, per_cu,
4052 data, end, addr_size);
4053 /* If we printed anything, or if we have an empty piece,
4054 then don't disassemble. */
4055 if (data != here
4056 || data[0] == DW_OP_piece
4057 || data[0] == DW_OP_bit_piece)
4058 disassemble = 0;
4059 }
4060 if (disassemble)
4061 {
4062 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4063 data = disassemble_dwarf_expression (stream,
4064 get_objfile_arch (objfile),
4065 addr_size, offset_size, data,
4066 data, end, 0,
4067 dwarf2_always_disassemble,
4068 per_cu);
4069 }
4070
4071 if (data < end)
4072 {
4073 int empty = data == here;
4074
4075 if (disassemble)
4076 fprintf_filtered (stream, " ");
4077 if (data[0] == DW_OP_piece)
4078 {
4079 uint64_t bytes;
4080
4081 data = safe_read_uleb128 (data + 1, end, &bytes);
4082
4083 if (empty)
4084 fprintf_filtered (stream, _("an empty %s-byte piece"),
4085 pulongest (bytes));
4086 else
4087 fprintf_filtered (stream, _(" [%s-byte piece]"),
4088 pulongest (bytes));
4089 }
4090 else if (data[0] == DW_OP_bit_piece)
4091 {
4092 uint64_t bits, offset;
4093
4094 data = safe_read_uleb128 (data + 1, end, &bits);
4095 data = safe_read_uleb128 (data, end, &offset);
4096
4097 if (empty)
4098 fprintf_filtered (stream,
4099 _("an empty %s-bit piece"),
4100 pulongest (bits));
4101 else
4102 fprintf_filtered (stream,
4103 _(" [%s-bit piece, offset %s bits]"),
4104 pulongest (bits), pulongest (offset));
4105 }
4106 else
4107 {
4108 bad = 1;
4109 break;
4110 }
4111 }
4112 }
4113
4114 if (bad || data > end)
4115 error (_("Corrupted DWARF2 expression for \"%s\"."),
4116 SYMBOL_PRINT_NAME (symbol));
4117 }
4118
4119 /* Print a natural-language description of SYMBOL to STREAM. This
4120 version is for a symbol with a single location. */
4121
4122 static void
4123 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4124 struct ui_file *stream)
4125 {
4126 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4127 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4128 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4129 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4130
4131 locexpr_describe_location_1 (symbol, addr, stream,
4132 dlbaton->data, dlbaton->size,
4133 objfile, addr_size, offset_size,
4134 dlbaton->per_cu);
4135 }
4136
4137 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4138 any necessary bytecode in AX. */
4139
4140 static void
4141 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4142 struct agent_expr *ax, struct axs_value *value)
4143 {
4144 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4145 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4146
4147 if (dlbaton->size == 0)
4148 value->optimized_out = 1;
4149 else
4150 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4151 dlbaton->data, dlbaton->data + dlbaton->size,
4152 dlbaton->per_cu);
4153 }
4154
4155 /* The set of location functions used with the DWARF-2 expression
4156 evaluator. */
4157 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4158 locexpr_read_variable,
4159 locexpr_read_variable_at_entry,
4160 locexpr_read_needs_frame,
4161 locexpr_describe_location,
4162 0, /* location_has_loclist */
4163 locexpr_tracepoint_var_ref
4164 };
4165
4166
4167 /* Wrapper functions for location lists. These generally find
4168 the appropriate location expression and call something above. */
4169
4170 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4171 evaluator to calculate the location. */
4172 static struct value *
4173 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4174 {
4175 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4176 struct value *val;
4177 const gdb_byte *data;
4178 size_t size;
4179 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4180
4181 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4182 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4183 dlbaton->per_cu);
4184
4185 return val;
4186 }
4187
4188 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4189 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4190 will be thrown.
4191
4192 Function always returns non-NULL value, it may be marked optimized out if
4193 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4194 if it cannot resolve the parameter for any reason. */
4195
4196 static struct value *
4197 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4198 {
4199 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4200 const gdb_byte *data;
4201 size_t size;
4202 CORE_ADDR pc;
4203
4204 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4205 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4206
4207 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4208 if (data == NULL)
4209 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4210
4211 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4212 }
4213
4214 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4215 static int
4216 loclist_read_needs_frame (struct symbol *symbol)
4217 {
4218 /* If there's a location list, then assume we need to have a frame
4219 to choose the appropriate location expression. With tracking of
4220 global variables this is not necessarily true, but such tracking
4221 is disabled in GCC at the moment until we figure out how to
4222 represent it. */
4223
4224 return 1;
4225 }
4226
4227 /* Print a natural-language description of SYMBOL to STREAM. This
4228 version applies when there is a list of different locations, each
4229 with a specified address range. */
4230
4231 static void
4232 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4233 struct ui_file *stream)
4234 {
4235 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4236 const gdb_byte *loc_ptr, *buf_end;
4237 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4239 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4240 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4241 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4242 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4243 /* Adjust base_address for relocatable objects. */
4244 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4245 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4246 int done = 0;
4247
4248 loc_ptr = dlbaton->data;
4249 buf_end = dlbaton->data + dlbaton->size;
4250
4251 fprintf_filtered (stream, _("multi-location:\n"));
4252
4253 /* Iterate through locations until we run out. */
4254 while (!done)
4255 {
4256 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4257 int length;
4258 enum debug_loc_kind kind;
4259 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4260
4261 if (dlbaton->from_dwo)
4262 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4263 loc_ptr, buf_end, &new_ptr,
4264 &low, &high, byte_order);
4265 else
4266 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4267 &low, &high,
4268 byte_order, addr_size,
4269 signed_addr_p);
4270 loc_ptr = new_ptr;
4271 switch (kind)
4272 {
4273 case DEBUG_LOC_END_OF_LIST:
4274 done = 1;
4275 continue;
4276 case DEBUG_LOC_BASE_ADDRESS:
4277 base_address = high + base_offset;
4278 fprintf_filtered (stream, _(" Base address %s"),
4279 paddress (gdbarch, base_address));
4280 continue;
4281 case DEBUG_LOC_START_END:
4282 case DEBUG_LOC_START_LENGTH:
4283 break;
4284 case DEBUG_LOC_BUFFER_OVERFLOW:
4285 case DEBUG_LOC_INVALID_ENTRY:
4286 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4287 SYMBOL_PRINT_NAME (symbol));
4288 default:
4289 gdb_assert_not_reached ("bad debug_loc_kind");
4290 }
4291
4292 /* Otherwise, a location expression entry. */
4293 low += base_address;
4294 high += base_address;
4295
4296 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4297 loc_ptr += 2;
4298
4299 /* (It would improve readability to print only the minimum
4300 necessary digits of the second number of the range.) */
4301 fprintf_filtered (stream, _(" Range %s-%s: "),
4302 paddress (gdbarch, low), paddress (gdbarch, high));
4303
4304 /* Now describe this particular location. */
4305 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4306 objfile, addr_size, offset_size,
4307 dlbaton->per_cu);
4308
4309 fprintf_filtered (stream, "\n");
4310
4311 loc_ptr += length;
4312 }
4313 }
4314
4315 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4316 any necessary bytecode in AX. */
4317 static void
4318 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4319 struct agent_expr *ax, struct axs_value *value)
4320 {
4321 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4322 const gdb_byte *data;
4323 size_t size;
4324 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4325
4326 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4327 if (size == 0)
4328 value->optimized_out = 1;
4329 else
4330 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4331 dlbaton->per_cu);
4332 }
4333
4334 /* The set of location functions used with the DWARF-2 expression
4335 evaluator and location lists. */
4336 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4337 loclist_read_variable,
4338 loclist_read_variable_at_entry,
4339 loclist_read_needs_frame,
4340 loclist_describe_location,
4341 1, /* location_has_loclist */
4342 loclist_tracepoint_var_ref
4343 };
4344
4345 /* Provide a prototype to silence -Wmissing-prototypes. */
4346 extern initialize_file_ftype _initialize_dwarf2loc;
4347
4348 void
4349 _initialize_dwarf2loc (void)
4350 {
4351 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4352 &entry_values_debug,
4353 _("Set entry values and tail call frames "
4354 "debugging."),
4355 _("Show entry values and tail call frames "
4356 "debugging."),
4357 _("When non-zero, the process of determining "
4358 "parameter values from function entry point "
4359 "and tail call frames will be printed."),
4360 NULL,
4361 show_entry_values_debug,
4362 &setdebuglist, &showdebuglist);
4363 }
This page took 0.117895 seconds and 4 git commands to generate.