Allocate data in cached_reg_t
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45
46 extern int dwarf_always_disassemble;
47
48 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
49 struct frame_info *frame,
50 const gdb_byte *data,
51 size_t size,
52 struct dwarf2_per_cu_data *per_cu,
53 LONGEST byte_offset);
54
55 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
56 (struct frame_info *frame,
57 enum call_site_parameter_kind kind,
58 union call_site_parameter_u kind_u,
59 struct dwarf2_per_cu_data **per_cu_return);
60
61 /* Until these have formal names, we define these here.
62 ref: http://gcc.gnu.org/wiki/DebugFission
63 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
64 and is then followed by data specific to that entry. */
65
66 enum debug_loc_kind
67 {
68 /* Indicates the end of the list of entries. */
69 DEBUG_LOC_END_OF_LIST = 0,
70
71 /* This is followed by an unsigned LEB128 number that is an index into
72 .debug_addr and specifies the base address for all following entries. */
73 DEBUG_LOC_BASE_ADDRESS = 1,
74
75 /* This is followed by two unsigned LEB128 numbers that are indices into
76 .debug_addr and specify the beginning and ending addresses, and then
77 a normal location expression as in .debug_loc. */
78 DEBUG_LOC_START_END = 2,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the beginning address, and a 4 byte unsigned
82 number that specifies the length, and then a normal location expression
83 as in .debug_loc. */
84 DEBUG_LOC_START_LENGTH = 3,
85
86 /* An internal value indicating there is insufficient data. */
87 DEBUG_LOC_BUFFER_OVERFLOW = -1,
88
89 /* An internal value indicating an invalid kind of entry was found. */
90 DEBUG_LOC_INVALID_ENTRY = -2
91 };
92
93 /* Helper function which throws an error if a synthetic pointer is
94 invalid. */
95
96 static void
97 invalid_synthetic_pointer (void)
98 {
99 error (_("access outside bounds of object "
100 "referenced via synthetic pointer"));
101 }
102
103 /* Decode the addresses in a non-dwo .debug_loc entry.
104 A pointer to the next byte to examine is returned in *NEW_PTR.
105 The encoded low,high addresses are return in *LOW,*HIGH.
106 The result indicates the kind of entry found. */
107
108 static enum debug_loc_kind
109 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
110 const gdb_byte **new_ptr,
111 CORE_ADDR *low, CORE_ADDR *high,
112 enum bfd_endian byte_order,
113 unsigned int addr_size,
114 int signed_addr_p)
115 {
116 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
117
118 if (buf_end - loc_ptr < 2 * addr_size)
119 return DEBUG_LOC_BUFFER_OVERFLOW;
120
121 if (signed_addr_p)
122 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
123 else
124 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
125 loc_ptr += addr_size;
126
127 if (signed_addr_p)
128 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
129 else
130 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
131 loc_ptr += addr_size;
132
133 *new_ptr = loc_ptr;
134
135 /* A base-address-selection entry. */
136 if ((*low & base_mask) == base_mask)
137 return DEBUG_LOC_BASE_ADDRESS;
138
139 /* An end-of-list entry. */
140 if (*low == 0 && *high == 0)
141 return DEBUG_LOC_END_OF_LIST;
142
143 return DEBUG_LOC_START_END;
144 }
145
146 /* Decode the addresses in .debug_loc.dwo entry.
147 A pointer to the next byte to examine is returned in *NEW_PTR.
148 The encoded low,high addresses are return in *LOW,*HIGH.
149 The result indicates the kind of entry found. */
150
151 static enum debug_loc_kind
152 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
153 const gdb_byte *loc_ptr,
154 const gdb_byte *buf_end,
155 const gdb_byte **new_ptr,
156 CORE_ADDR *low, CORE_ADDR *high,
157 enum bfd_endian byte_order)
158 {
159 uint64_t low_index, high_index;
160
161 if (loc_ptr == buf_end)
162 return DEBUG_LOC_BUFFER_OVERFLOW;
163
164 switch (*loc_ptr++)
165 {
166 case DEBUG_LOC_END_OF_LIST:
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_END_OF_LIST;
169 case DEBUG_LOC_BASE_ADDRESS:
170 *low = 0;
171 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
172 if (loc_ptr == NULL)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174 *high = dwarf2_read_addr_index (per_cu, high_index);
175 *new_ptr = loc_ptr;
176 return DEBUG_LOC_BASE_ADDRESS;
177 case DEBUG_LOC_START_END:
178 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
179 if (loc_ptr == NULL)
180 return DEBUG_LOC_BUFFER_OVERFLOW;
181 *low = dwarf2_read_addr_index (per_cu, low_index);
182 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
183 if (loc_ptr == NULL)
184 return DEBUG_LOC_BUFFER_OVERFLOW;
185 *high = dwarf2_read_addr_index (per_cu, high_index);
186 *new_ptr = loc_ptr;
187 return DEBUG_LOC_START_END;
188 case DEBUG_LOC_START_LENGTH:
189 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
190 if (loc_ptr == NULL)
191 return DEBUG_LOC_BUFFER_OVERFLOW;
192 *low = dwarf2_read_addr_index (per_cu, low_index);
193 if (loc_ptr + 4 > buf_end)
194 return DEBUG_LOC_BUFFER_OVERFLOW;
195 *high = *low;
196 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
197 *new_ptr = loc_ptr + 4;
198 return DEBUG_LOC_START_LENGTH;
199 default:
200 return DEBUG_LOC_INVALID_ENTRY;
201 }
202 }
203
204 /* A function for dealing with location lists. Given a
205 symbol baton (BATON) and a pc value (PC), find the appropriate
206 location expression, set *LOCEXPR_LENGTH, and return a pointer
207 to the beginning of the expression. Returns NULL on failure.
208
209 For now, only return the first matching location expression; there
210 can be more than one in the list. */
211
212 const gdb_byte *
213 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
214 size_t *locexpr_length, CORE_ADDR pc)
215 {
216 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
220 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
221 /* Adjust base_address for relocatable objects. */
222 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
223 CORE_ADDR base_address = baton->base_address + base_offset;
224 const gdb_byte *loc_ptr, *buf_end;
225
226 loc_ptr = baton->data;
227 buf_end = baton->data + baton->size;
228
229 while (1)
230 {
231 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
232 int length;
233 enum debug_loc_kind kind;
234 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
235
236 if (baton->from_dwo)
237 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
238 loc_ptr, buf_end, &new_ptr,
239 &low, &high, byte_order);
240 else
241 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
242 &low, &high,
243 byte_order, addr_size,
244 signed_addr_p);
245 loc_ptr = new_ptr;
246 switch (kind)
247 {
248 case DEBUG_LOC_END_OF_LIST:
249 *locexpr_length = 0;
250 return NULL;
251 case DEBUG_LOC_BASE_ADDRESS:
252 base_address = high + base_offset;
253 continue;
254 case DEBUG_LOC_START_END:
255 case DEBUG_LOC_START_LENGTH:
256 break;
257 case DEBUG_LOC_BUFFER_OVERFLOW:
258 case DEBUG_LOC_INVALID_ENTRY:
259 error (_("dwarf2_find_location_expression: "
260 "Corrupted DWARF expression."));
261 default:
262 gdb_assert_not_reached ("bad debug_loc_kind");
263 }
264
265 /* Otherwise, a location expression entry.
266 If the entry is from a DWO, don't add base address: the entry is from
267 .debug_addr which already has the DWARF "base address". We still add
268 base_offset in case we're debugging a PIE executable. */
269 if (baton->from_dwo)
270 {
271 low += base_offset;
272 high += base_offset;
273 }
274 else
275 {
276 low += base_address;
277 high += base_address;
278 }
279
280 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
281 loc_ptr += 2;
282
283 if (low == high && pc == low)
284 {
285 /* This is entry PC record present only at entry point
286 of a function. Verify it is really the function entry point. */
287
288 const struct block *pc_block = block_for_pc (pc);
289 struct symbol *pc_func = NULL;
290
291 if (pc_block)
292 pc_func = block_linkage_function (pc_block);
293
294 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
295 {
296 *locexpr_length = length;
297 return loc_ptr;
298 }
299 }
300
301 if (pc >= low && pc < high)
302 {
303 *locexpr_length = length;
304 return loc_ptr;
305 }
306
307 loc_ptr += length;
308 }
309 }
310
311 /* This is the baton used when performing dwarf2 expression
312 evaluation. */
313 struct dwarf_expr_baton
314 {
315 struct frame_info *frame;
316 struct dwarf2_per_cu_data *per_cu;
317 CORE_ADDR obj_address;
318 };
319
320 /* Implement find_frame_base_location method for LOC_BLOCK functions using
321 DWARF expression for its DW_AT_frame_base. */
322
323 static void
324 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
325 const gdb_byte **start, size_t *length)
326 {
327 struct dwarf2_locexpr_baton *symbaton
328 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
329
330 *length = symbaton->size;
331 *start = symbaton->data;
332 }
333
334 /* Implement the struct symbol_block_ops::get_frame_base method for
335 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
336
337 static CORE_ADDR
338 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
339 {
340 struct gdbarch *gdbarch;
341 struct type *type;
342 struct dwarf2_locexpr_baton *dlbaton;
343 const gdb_byte *start;
344 size_t length;
345 struct value *result;
346
347 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
348 Thus, it's supposed to provide the find_frame_base_location method as
349 well. */
350 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
351
352 gdbarch = get_frame_arch (frame);
353 type = builtin_type (gdbarch)->builtin_data_ptr;
354 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
355
356 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
357 (framefunc, get_frame_pc (frame), &start, &length);
358 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
359 dlbaton->per_cu);
360
361 /* The DW_AT_frame_base attribute contains a location description which
362 computes the base address itself. However, the call to
363 dwarf2_evaluate_loc_desc returns a value representing a variable at
364 that address. The frame base address is thus this variable's
365 address. */
366 return value_address (result);
367 }
368
369 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
370 function uses DWARF expression for its DW_AT_frame_base. */
371
372 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
373 {
374 locexpr_find_frame_base_location,
375 locexpr_get_frame_base
376 };
377
378 /* Implement find_frame_base_location method for LOC_BLOCK functions using
379 DWARF location list for its DW_AT_frame_base. */
380
381 static void
382 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
383 const gdb_byte **start, size_t *length)
384 {
385 struct dwarf2_loclist_baton *symbaton
386 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
387
388 *start = dwarf2_find_location_expression (symbaton, length, pc);
389 }
390
391 /* Implement the struct symbol_block_ops::get_frame_base method for
392 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
393
394 static CORE_ADDR
395 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
396 {
397 struct gdbarch *gdbarch;
398 struct type *type;
399 struct dwarf2_loclist_baton *dlbaton;
400 const gdb_byte *start;
401 size_t length;
402 struct value *result;
403
404 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
405 Thus, it's supposed to provide the find_frame_base_location method as
406 well. */
407 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
408
409 gdbarch = get_frame_arch (frame);
410 type = builtin_type (gdbarch)->builtin_data_ptr;
411 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
412
413 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
414 (framefunc, get_frame_pc (frame), &start, &length);
415 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
416 dlbaton->per_cu);
417
418 /* The DW_AT_frame_base attribute contains a location description which
419 computes the base address itself. However, the call to
420 dwarf2_evaluate_loc_desc returns a value representing a variable at
421 that address. The frame base address is thus this variable's
422 address. */
423 return value_address (result);
424 }
425
426 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
427 function uses DWARF location list for its DW_AT_frame_base. */
428
429 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
430 {
431 loclist_find_frame_base_location,
432 loclist_get_frame_base
433 };
434
435 /* See dwarf2loc.h. */
436
437 void
438 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
439 const gdb_byte **start, size_t *length)
440 {
441 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
442 {
443 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
444
445 ops_block->find_frame_base_location (framefunc, pc, start, length);
446 }
447 else
448 *length = 0;
449
450 if (*length == 0)
451 error (_("Could not find the frame base for \"%s\"."),
452 SYMBOL_NATURAL_NAME (framefunc));
453 }
454
455 static CORE_ADDR
456 get_frame_pc_for_per_cu_dwarf_call (void *baton)
457 {
458 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
459
460 return ctx->get_frame_pc ();
461 }
462
463 static void
464 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
465 struct dwarf2_per_cu_data *per_cu)
466 {
467 struct dwarf2_locexpr_baton block;
468
469 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
470 get_frame_pc_for_per_cu_dwarf_call,
471 ctx);
472
473 /* DW_OP_call_ref is currently not supported. */
474 gdb_assert (block.per_cu == per_cu);
475
476 ctx->eval (block.data, block.size);
477 }
478
479 class dwarf_evaluate_loc_desc : public dwarf_expr_context
480 {
481 public:
482
483 struct frame_info *frame;
484 struct dwarf2_per_cu_data *per_cu;
485 CORE_ADDR obj_address;
486
487 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
488 the frame in BATON. */
489
490 CORE_ADDR get_frame_cfa () OVERRIDE
491 {
492 return dwarf2_frame_cfa (frame);
493 }
494
495 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
496 the frame in BATON. */
497
498 CORE_ADDR get_frame_pc () OVERRIDE
499 {
500 return get_frame_address_in_block (frame);
501 }
502
503 /* Using the objfile specified in BATON, find the address for the
504 current thread's thread-local storage with offset OFFSET. */
505 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
506 {
507 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
508
509 return target_translate_tls_address (objfile, offset);
510 }
511
512 /* Helper interface of per_cu_dwarf_call for
513 dwarf2_evaluate_loc_desc. */
514
515 void dwarf_call (cu_offset die_offset) OVERRIDE
516 {
517 per_cu_dwarf_call (this, die_offset, per_cu);
518 }
519
520 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
521 {
522 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
523 if (result == NULL)
524 error (_("Could not find type for DW_OP_GNU_const_type"));
525 if (size != 0 && TYPE_LENGTH (result) != size)
526 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
527 return result;
528 }
529
530 /* Callback function for dwarf2_evaluate_loc_desc.
531 Fetch the address indexed by DW_OP_GNU_addr_index. */
532
533 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
534 {
535 return dwarf2_read_addr_index (per_cu, index);
536 }
537
538 /* Callback function for get_object_address. Return the address of the VLA
539 object. */
540
541 CORE_ADDR get_object_address () OVERRIDE
542 {
543 if (obj_address == 0)
544 error (_("Location address is not set."));
545 return obj_address;
546 }
547
548 /* Execute DWARF block of call_site_parameter which matches KIND and
549 KIND_U. Choose DEREF_SIZE value of that parameter. Search
550 caller of this objects's frame.
551
552 The caller can be from a different CU - per_cu_dwarf_call
553 implementation can be more simple as it does not support cross-CU
554 DWARF executions. */
555
556 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
557 union call_site_parameter_u kind_u,
558 int deref_size) OVERRIDE
559 {
560 struct frame_info *caller_frame;
561 struct dwarf2_per_cu_data *caller_per_cu;
562 struct call_site_parameter *parameter;
563 const gdb_byte *data_src;
564 size_t size;
565
566 caller_frame = get_prev_frame (frame);
567
568 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
569 &caller_per_cu);
570 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
571 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
572
573 /* DEREF_SIZE size is not verified here. */
574 if (data_src == NULL)
575 throw_error (NO_ENTRY_VALUE_ERROR,
576 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
577
578 scoped_restore save_frame = make_scoped_restore (&this->frame,
579 caller_frame);
580 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
581 caller_per_cu);
582 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
583 (CORE_ADDR) 0);
584
585 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
586 this->gdbarch
587 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
588 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
589 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
590 scoped_restore save_offset = make_scoped_restore (&this->offset);
591 this->offset = dwarf2_per_cu_text_offset (per_cu);
592
593 this->eval (data_src, size);
594 }
595
596 /* Using the frame specified in BATON, find the location expression
597 describing the frame base. Return a pointer to it in START and
598 its length in LENGTH. */
599 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
600 {
601 /* FIXME: cagney/2003-03-26: This code should be using
602 get_frame_base_address(), and then implement a dwarf2 specific
603 this_base method. */
604 struct symbol *framefunc;
605 const struct block *bl = get_frame_block (frame, NULL);
606
607 if (bl == NULL)
608 error (_("frame address is not available."));
609
610 /* Use block_linkage_function, which returns a real (not inlined)
611 function, instead of get_frame_function, which may return an
612 inlined function. */
613 framefunc = block_linkage_function (bl);
614
615 /* If we found a frame-relative symbol then it was certainly within
616 some function associated with a frame. If we can't find the frame,
617 something has gone wrong. */
618 gdb_assert (framefunc != NULL);
619
620 func_get_frame_base_dwarf_block (framefunc,
621 get_frame_address_in_block (frame),
622 start, length);
623 }
624
625 /* Read memory at ADDR (length LEN) into BUF. */
626
627 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
628 {
629 read_memory (addr, buf, len);
630 }
631
632 /* Using the frame specified in BATON, return the value of register
633 REGNUM, treated as a pointer. */
634 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
635 {
636 struct gdbarch *gdbarch = get_frame_arch (frame);
637 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
638
639 return address_from_register (regnum, frame);
640 }
641
642 /* Implement "get_reg_value" callback. */
643
644 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
645 {
646 struct gdbarch *gdbarch = get_frame_arch (frame);
647 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
648
649 return value_from_register (type, regnum, frame);
650 }
651 };
652
653 /* See dwarf2loc.h. */
654
655 unsigned int entry_values_debug = 0;
656
657 /* Helper to set entry_values_debug. */
658
659 static void
660 show_entry_values_debug (struct ui_file *file, int from_tty,
661 struct cmd_list_element *c, const char *value)
662 {
663 fprintf_filtered (file,
664 _("Entry values and tail call frames debugging is %s.\n"),
665 value);
666 }
667
668 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
669 CALLER_FRAME (for registers) can be NULL if it is not known. This function
670 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
671
672 static CORE_ADDR
673 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
674 struct call_site *call_site,
675 struct frame_info *caller_frame)
676 {
677 switch (FIELD_LOC_KIND (call_site->target))
678 {
679 case FIELD_LOC_KIND_DWARF_BLOCK:
680 {
681 struct dwarf2_locexpr_baton *dwarf_block;
682 struct value *val;
683 struct type *caller_core_addr_type;
684 struct gdbarch *caller_arch;
685
686 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
687 if (dwarf_block == NULL)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_AT_GNU_call_site_target is not specified "
694 "at %s in %s"),
695 paddress (call_site_gdbarch, call_site->pc),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)));
698
699 }
700 if (caller_frame == NULL)
701 {
702 struct bound_minimal_symbol msym;
703
704 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
705 throw_error (NO_ENTRY_VALUE_ERROR,
706 _("DW_AT_GNU_call_site_target DWARF block resolving "
707 "requires known frame which is currently not "
708 "available at %s in %s"),
709 paddress (call_site_gdbarch, call_site->pc),
710 (msym.minsym == NULL ? "???"
711 : MSYMBOL_PRINT_NAME (msym.minsym)));
712
713 }
714 caller_arch = get_frame_arch (caller_frame);
715 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
716 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
717 dwarf_block->data, dwarf_block->size,
718 dwarf_block->per_cu);
719 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
720 location. */
721 if (VALUE_LVAL (val) == lval_memory)
722 return value_address (val);
723 else
724 return value_as_address (val);
725 }
726
727 case FIELD_LOC_KIND_PHYSNAME:
728 {
729 const char *physname;
730 struct bound_minimal_symbol msym;
731
732 physname = FIELD_STATIC_PHYSNAME (call_site->target);
733
734 /* Handle both the mangled and demangled PHYSNAME. */
735 msym = lookup_minimal_symbol (physname, NULL, NULL);
736 if (msym.minsym == NULL)
737 {
738 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
739 throw_error (NO_ENTRY_VALUE_ERROR,
740 _("Cannot find function \"%s\" for a call site target "
741 "at %s in %s"),
742 physname, paddress (call_site_gdbarch, call_site->pc),
743 (msym.minsym == NULL ? "???"
744 : MSYMBOL_PRINT_NAME (msym.minsym)));
745
746 }
747 return BMSYMBOL_VALUE_ADDRESS (msym);
748 }
749
750 case FIELD_LOC_KIND_PHYSADDR:
751 return FIELD_STATIC_PHYSADDR (call_site->target);
752
753 default:
754 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
755 }
756 }
757
758 /* Convert function entry point exact address ADDR to the function which is
759 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
760 NO_ENTRY_VALUE_ERROR otherwise. */
761
762 static struct symbol *
763 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 struct symbol *sym = find_pc_function (addr);
766 struct type *type;
767
768 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
769 throw_error (NO_ENTRY_VALUE_ERROR,
770 _("DW_TAG_GNU_call_site resolving failed to find function "
771 "name for address %s"),
772 paddress (gdbarch, addr));
773
774 type = SYMBOL_TYPE (sym);
775 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
776 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
777
778 return sym;
779 }
780
781 /* Verify function with entry point exact address ADDR can never call itself
782 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
783 can call itself via tail calls.
784
785 If a funtion can tail call itself its entry value based parameters are
786 unreliable. There is no verification whether the value of some/all
787 parameters is unchanged through the self tail call, we expect if there is
788 a self tail call all the parameters can be modified. */
789
790 static void
791 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
792 {
793 CORE_ADDR addr;
794
795 /* The verification is completely unordered. Track here function addresses
796 which still need to be iterated. */
797 std::vector<CORE_ADDR> todo;
798
799 /* Track here CORE_ADDRs which were already visited. */
800 std::unordered_set<CORE_ADDR> addr_hash;
801
802 todo.push_back (verify_addr);
803 while (!todo.empty ())
804 {
805 struct symbol *func_sym;
806 struct call_site *call_site;
807
808 addr = todo.back ();
809 todo.pop_back ();
810
811 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
812
813 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
814 call_site; call_site = call_site->tail_call_next)
815 {
816 CORE_ADDR target_addr;
817
818 /* CALLER_FRAME with registers is not available for tail-call jumped
819 frames. */
820 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
821
822 if (target_addr == verify_addr)
823 {
824 struct bound_minimal_symbol msym;
825
826 msym = lookup_minimal_symbol_by_pc (verify_addr);
827 throw_error (NO_ENTRY_VALUE_ERROR,
828 _("DW_OP_GNU_entry_value resolving has found "
829 "function \"%s\" at %s can call itself via tail "
830 "calls"),
831 (msym.minsym == NULL ? "???"
832 : MSYMBOL_PRINT_NAME (msym.minsym)),
833 paddress (gdbarch, verify_addr));
834 }
835
836 if (addr_hash.insert (target_addr).second)
837 todo.push_back (target_addr);
838 }
839 }
840 }
841
842 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
843 ENTRY_VALUES_DEBUG. */
844
845 static void
846 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
847 {
848 CORE_ADDR addr = call_site->pc;
849 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
850
851 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
852 (msym.minsym == NULL ? "???"
853 : MSYMBOL_PRINT_NAME (msym.minsym)));
854
855 }
856
857 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
858 only top callers and bottom callees which are present in both. GDBARCH is
859 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
860 no remaining possibilities to provide unambiguous non-trivial result.
861 RESULTP should point to NULL on the first (initialization) call. Caller is
862 responsible for xfree of any RESULTP data. */
863
864 static void
865 chain_candidate (struct gdbarch *gdbarch,
866 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
867 std::vector<struct call_site *> *chain)
868 {
869 long length = chain->size ();
870 int callers, callees, idx;
871
872 if (*resultp == NULL)
873 {
874 /* Create the initial chain containing all the passed PCs. */
875
876 struct call_site_chain *result
877 = ((struct call_site_chain *)
878 xmalloc (sizeof (*result)
879 + sizeof (*result->call_site) * (length - 1)));
880 result->length = length;
881 result->callers = result->callees = length;
882 if (!chain->empty ())
883 memcpy (result->call_site, chain->data (),
884 sizeof (*result->call_site) * length);
885 resultp->reset (result);
886
887 if (entry_values_debug)
888 {
889 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
890 for (idx = 0; idx < length; idx++)
891 tailcall_dump (gdbarch, result->call_site[idx]);
892 fputc_unfiltered ('\n', gdb_stdlog);
893 }
894
895 return;
896 }
897
898 if (entry_values_debug)
899 {
900 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
901 for (idx = 0; idx < length; idx++)
902 tailcall_dump (gdbarch, chain->at (idx));
903 fputc_unfiltered ('\n', gdb_stdlog);
904 }
905
906 /* Intersect callers. */
907
908 callers = std::min ((long) (*resultp)->callers, length);
909 for (idx = 0; idx < callers; idx++)
910 if ((*resultp)->call_site[idx] != chain->at (idx))
911 {
912 (*resultp)->callers = idx;
913 break;
914 }
915
916 /* Intersect callees. */
917
918 callees = std::min ((long) (*resultp)->callees, length);
919 for (idx = 0; idx < callees; idx++)
920 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
921 != chain->at (length - 1 - idx))
922 {
923 (*resultp)->callees = idx;
924 break;
925 }
926
927 if (entry_values_debug)
928 {
929 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
930 for (idx = 0; idx < (*resultp)->callers; idx++)
931 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
932 fputs_unfiltered (" |", gdb_stdlog);
933 for (idx = 0; idx < (*resultp)->callees; idx++)
934 tailcall_dump (gdbarch,
935 (*resultp)->call_site[(*resultp)->length
936 - (*resultp)->callees + idx]);
937 fputc_unfiltered ('\n', gdb_stdlog);
938 }
939
940 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
941 {
942 /* There are no common callers or callees. It could be also a direct
943 call (which has length 0) with ambiguous possibility of an indirect
944 call - CALLERS == CALLEES == 0 is valid during the first allocation
945 but any subsequence processing of such entry means ambiguity. */
946 resultp->reset (NULL);
947 return;
948 }
949
950 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
951 PC again. In such case there must be two different code paths to reach
952 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
953 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
954 }
955
956 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
957 assumed frames between them use GDBARCH. Use depth first search so we can
958 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
959 would have needless GDB stack overhead. Caller is responsible for xfree of
960 the returned result. Any unreliability results in thrown
961 NO_ENTRY_VALUE_ERROR. */
962
963 static struct call_site_chain *
964 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
965 CORE_ADDR callee_pc)
966 {
967 CORE_ADDR save_callee_pc = callee_pc;
968 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
969 struct call_site *call_site;
970
971 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
972 call_site nor any possible call_site at CALLEE_PC's function is there.
973 Any CALL_SITE in CHAIN will be iterated to its siblings - via
974 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
975 std::vector<struct call_site *> chain;
976
977 /* We are not interested in the specific PC inside the callee function. */
978 callee_pc = get_pc_function_start (callee_pc);
979 if (callee_pc == 0)
980 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
981 paddress (gdbarch, save_callee_pc));
982
983 /* Mark CALL_SITEs so we do not visit the same ones twice. */
984 std::unordered_set<CORE_ADDR> addr_hash;
985
986 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
987 at the target's function. All the possible tail call sites in the
988 target's function will get iterated as already pushed into CHAIN via their
989 TAIL_CALL_NEXT. */
990 call_site = call_site_for_pc (gdbarch, caller_pc);
991
992 while (call_site)
993 {
994 CORE_ADDR target_func_addr;
995 struct call_site *target_call_site;
996
997 /* CALLER_FRAME with registers is not available for tail-call jumped
998 frames. */
999 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1000
1001 if (target_func_addr == callee_pc)
1002 {
1003 chain_candidate (gdbarch, &retval, &chain);
1004 if (retval == NULL)
1005 break;
1006
1007 /* There is no way to reach CALLEE_PC again as we would prevent
1008 entering it twice as being already marked in ADDR_HASH. */
1009 target_call_site = NULL;
1010 }
1011 else
1012 {
1013 struct symbol *target_func;
1014
1015 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1016 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1017 }
1018
1019 do
1020 {
1021 /* Attempt to visit TARGET_CALL_SITE. */
1022
1023 if (target_call_site)
1024 {
1025 if (addr_hash.insert (target_call_site->pc).second)
1026 {
1027 /* Successfully entered TARGET_CALL_SITE. */
1028
1029 chain.push_back (target_call_site);
1030 break;
1031 }
1032 }
1033
1034 /* Backtrack (without revisiting the originating call_site). Try the
1035 callers's sibling; if there isn't any try the callers's callers's
1036 sibling etc. */
1037
1038 target_call_site = NULL;
1039 while (!chain.empty ())
1040 {
1041 call_site = chain.back ();
1042 chain.pop_back ();
1043
1044 size_t removed = addr_hash.erase (call_site->pc);
1045 gdb_assert (removed == 1);
1046
1047 target_call_site = call_site->tail_call_next;
1048 if (target_call_site)
1049 break;
1050 }
1051 }
1052 while (target_call_site);
1053
1054 if (chain.empty ())
1055 call_site = NULL;
1056 else
1057 call_site = chain.back ();
1058 }
1059
1060 if (retval == NULL)
1061 {
1062 struct bound_minimal_symbol msym_caller, msym_callee;
1063
1064 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1065 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1066 throw_error (NO_ENTRY_VALUE_ERROR,
1067 _("There are no unambiguously determinable intermediate "
1068 "callers or callees between caller function \"%s\" at %s "
1069 "and callee function \"%s\" at %s"),
1070 (msym_caller.minsym == NULL
1071 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1072 paddress (gdbarch, caller_pc),
1073 (msym_callee.minsym == NULL
1074 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1075 paddress (gdbarch, callee_pc));
1076 }
1077
1078 return retval.release ();
1079 }
1080
1081 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1082 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1083 constructed return NULL. Caller is responsible for xfree of the returned
1084 result. */
1085
1086 struct call_site_chain *
1087 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1088 CORE_ADDR callee_pc)
1089 {
1090 struct call_site_chain *retval = NULL;
1091
1092 TRY
1093 {
1094 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1095 }
1096 CATCH (e, RETURN_MASK_ERROR)
1097 {
1098 if (e.error == NO_ENTRY_VALUE_ERROR)
1099 {
1100 if (entry_values_debug)
1101 exception_print (gdb_stdout, e);
1102
1103 return NULL;
1104 }
1105 else
1106 throw_exception (e);
1107 }
1108 END_CATCH
1109
1110 return retval;
1111 }
1112
1113 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1114
1115 static int
1116 call_site_parameter_matches (struct call_site_parameter *parameter,
1117 enum call_site_parameter_kind kind,
1118 union call_site_parameter_u kind_u)
1119 {
1120 if (kind == parameter->kind)
1121 switch (kind)
1122 {
1123 case CALL_SITE_PARAMETER_DWARF_REG:
1124 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1125 case CALL_SITE_PARAMETER_FB_OFFSET:
1126 return kind_u.fb_offset == parameter->u.fb_offset;
1127 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1128 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1129 }
1130 return 0;
1131 }
1132
1133 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1134 FRAME is for callee.
1135
1136 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1137 otherwise. */
1138
1139 static struct call_site_parameter *
1140 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1141 enum call_site_parameter_kind kind,
1142 union call_site_parameter_u kind_u,
1143 struct dwarf2_per_cu_data **per_cu_return)
1144 {
1145 CORE_ADDR func_addr, caller_pc;
1146 struct gdbarch *gdbarch;
1147 struct frame_info *caller_frame;
1148 struct call_site *call_site;
1149 int iparams;
1150 /* Initialize it just to avoid a GCC false warning. */
1151 struct call_site_parameter *parameter = NULL;
1152 CORE_ADDR target_addr;
1153
1154 while (get_frame_type (frame) == INLINE_FRAME)
1155 {
1156 frame = get_prev_frame (frame);
1157 gdb_assert (frame != NULL);
1158 }
1159
1160 func_addr = get_frame_func (frame);
1161 gdbarch = get_frame_arch (frame);
1162 caller_frame = get_prev_frame (frame);
1163 if (gdbarch != frame_unwind_arch (frame))
1164 {
1165 struct bound_minimal_symbol msym
1166 = lookup_minimal_symbol_by_pc (func_addr);
1167 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1168
1169 throw_error (NO_ENTRY_VALUE_ERROR,
1170 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1171 "(of %s (%s)) does not match caller gdbarch %s"),
1172 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1173 paddress (gdbarch, func_addr),
1174 (msym.minsym == NULL ? "???"
1175 : MSYMBOL_PRINT_NAME (msym.minsym)),
1176 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1177 }
1178
1179 if (caller_frame == NULL)
1180 {
1181 struct bound_minimal_symbol msym
1182 = lookup_minimal_symbol_by_pc (func_addr);
1183
1184 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1185 "requires caller of %s (%s)"),
1186 paddress (gdbarch, func_addr),
1187 (msym.minsym == NULL ? "???"
1188 : MSYMBOL_PRINT_NAME (msym.minsym)));
1189 }
1190 caller_pc = get_frame_pc (caller_frame);
1191 call_site = call_site_for_pc (gdbarch, caller_pc);
1192
1193 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1194 if (target_addr != func_addr)
1195 {
1196 struct minimal_symbol *target_msym, *func_msym;
1197
1198 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1199 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1200 throw_error (NO_ENTRY_VALUE_ERROR,
1201 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1202 "but the called frame is for %s at %s"),
1203 (target_msym == NULL ? "???"
1204 : MSYMBOL_PRINT_NAME (target_msym)),
1205 paddress (gdbarch, target_addr),
1206 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1207 paddress (gdbarch, func_addr));
1208 }
1209
1210 /* No entry value based parameters would be reliable if this function can
1211 call itself via tail calls. */
1212 func_verify_no_selftailcall (gdbarch, func_addr);
1213
1214 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1215 {
1216 parameter = &call_site->parameter[iparams];
1217 if (call_site_parameter_matches (parameter, kind, kind_u))
1218 break;
1219 }
1220 if (iparams == call_site->parameter_count)
1221 {
1222 struct minimal_symbol *msym
1223 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1224
1225 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1226 determine its value. */
1227 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1228 "at DW_TAG_GNU_call_site %s at %s"),
1229 paddress (gdbarch, caller_pc),
1230 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1231 }
1232
1233 *per_cu_return = call_site->per_cu;
1234 return parameter;
1235 }
1236
1237 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1238 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1239 DW_AT_GNU_call_site_data_value (dereferenced) block.
1240
1241 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1242 struct value.
1243
1244 Function always returns non-NULL, non-optimized out value. It throws
1245 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1246
1247 static struct value *
1248 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1249 CORE_ADDR deref_size, struct type *type,
1250 struct frame_info *caller_frame,
1251 struct dwarf2_per_cu_data *per_cu)
1252 {
1253 const gdb_byte *data_src;
1254 gdb_byte *data;
1255 size_t size;
1256
1257 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1258 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1259
1260 /* DEREF_SIZE size is not verified here. */
1261 if (data_src == NULL)
1262 throw_error (NO_ENTRY_VALUE_ERROR,
1263 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1264
1265 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1266 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1267 DWARF block. */
1268 data = (gdb_byte *) alloca (size + 1);
1269 memcpy (data, data_src, size);
1270 data[size] = DW_OP_stack_value;
1271
1272 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1273 }
1274
1275 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1276 the indirect method on it, that is use its stored target value, the sole
1277 purpose of entry_data_value_funcs.. */
1278
1279 static struct value *
1280 entry_data_value_coerce_ref (const struct value *value)
1281 {
1282 struct type *checked_type = check_typedef (value_type (value));
1283 struct value *target_val;
1284
1285 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1286 return NULL;
1287
1288 target_val = (struct value *) value_computed_closure (value);
1289 value_incref (target_val);
1290 return target_val;
1291 }
1292
1293 /* Implement copy_closure. */
1294
1295 static void *
1296 entry_data_value_copy_closure (const struct value *v)
1297 {
1298 struct value *target_val = (struct value *) value_computed_closure (v);
1299
1300 value_incref (target_val);
1301 return target_val;
1302 }
1303
1304 /* Implement free_closure. */
1305
1306 static void
1307 entry_data_value_free_closure (struct value *v)
1308 {
1309 struct value *target_val = (struct value *) value_computed_closure (v);
1310
1311 value_free (target_val);
1312 }
1313
1314 /* Vector for methods for an entry value reference where the referenced value
1315 is stored in the caller. On the first dereference use
1316 DW_AT_GNU_call_site_data_value in the caller. */
1317
1318 static const struct lval_funcs entry_data_value_funcs =
1319 {
1320 NULL, /* read */
1321 NULL, /* write */
1322 NULL, /* indirect */
1323 entry_data_value_coerce_ref,
1324 NULL, /* check_synthetic_pointer */
1325 entry_data_value_copy_closure,
1326 entry_data_value_free_closure
1327 };
1328
1329 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1330 are used to match DW_AT_location at the caller's
1331 DW_TAG_GNU_call_site_parameter.
1332
1333 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1334 cannot resolve the parameter for any reason. */
1335
1336 static struct value *
1337 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1338 enum call_site_parameter_kind kind,
1339 union call_site_parameter_u kind_u)
1340 {
1341 struct type *checked_type = check_typedef (type);
1342 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1343 struct frame_info *caller_frame = get_prev_frame (frame);
1344 struct value *outer_val, *target_val, *val;
1345 struct call_site_parameter *parameter;
1346 struct dwarf2_per_cu_data *caller_per_cu;
1347
1348 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1349 &caller_per_cu);
1350
1351 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1352 type, caller_frame,
1353 caller_per_cu);
1354
1355 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1356 used and it is not available do not fall back to OUTER_VAL - dereferencing
1357 TYPE_CODE_REF with non-entry data value would give current value - not the
1358 entry value. */
1359
1360 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1361 || TYPE_TARGET_TYPE (checked_type) == NULL)
1362 return outer_val;
1363
1364 target_val = dwarf_entry_parameter_to_value (parameter,
1365 TYPE_LENGTH (target_type),
1366 target_type, caller_frame,
1367 caller_per_cu);
1368
1369 release_value (target_val);
1370 val = allocate_computed_value (type, &entry_data_value_funcs,
1371 target_val /* closure */);
1372
1373 /* Copy the referencing pointer to the new computed value. */
1374 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1375 TYPE_LENGTH (checked_type));
1376 set_value_lazy (val, 0);
1377
1378 return val;
1379 }
1380
1381 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1382 SIZE are DWARF block used to match DW_AT_location at the caller's
1383 DW_TAG_GNU_call_site_parameter.
1384
1385 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1386 cannot resolve the parameter for any reason. */
1387
1388 static struct value *
1389 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1390 const gdb_byte *block, size_t block_len)
1391 {
1392 union call_site_parameter_u kind_u;
1393
1394 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1395 if (kind_u.dwarf_reg != -1)
1396 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1397 kind_u);
1398
1399 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1400 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1401 kind_u);
1402
1403 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1404 suppressed during normal operation. The expression can be arbitrary if
1405 there is no caller-callee entry value binding expected. */
1406 throw_error (NO_ENTRY_VALUE_ERROR,
1407 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1408 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1409 }
1410
1411 struct piece_closure
1412 {
1413 /* Reference count. */
1414 int refc;
1415
1416 /* The CU from which this closure's expression came. */
1417 struct dwarf2_per_cu_data *per_cu;
1418
1419 /* The number of pieces used to describe this variable. */
1420 int n_pieces;
1421
1422 /* The target address size, used only for DWARF_VALUE_STACK. */
1423 int addr_size;
1424
1425 /* The pieces themselves. */
1426 struct dwarf_expr_piece *pieces;
1427
1428 /* Frame ID of frame to which a register value is relative, used
1429 only by DWARF_VALUE_REGISTER. */
1430 struct frame_id frame_id;
1431 };
1432
1433 /* Allocate a closure for a value formed from separately-described
1434 PIECES. */
1435
1436 static struct piece_closure *
1437 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1438 int n_pieces, struct dwarf_expr_piece *pieces,
1439 int addr_size, struct frame_info *frame)
1440 {
1441 struct piece_closure *c = XCNEW (struct piece_closure);
1442 int i;
1443
1444 c->refc = 1;
1445 c->per_cu = per_cu;
1446 c->n_pieces = n_pieces;
1447 c->addr_size = addr_size;
1448 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1449 if (frame == NULL)
1450 c->frame_id = null_frame_id;
1451 else
1452 c->frame_id = get_frame_id (frame);
1453
1454 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1455 for (i = 0; i < n_pieces; ++i)
1456 if (c->pieces[i].location == DWARF_VALUE_STACK)
1457 value_incref (c->pieces[i].v.value);
1458
1459 return c;
1460 }
1461
1462 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1463 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1464 Source and destination buffers must not overlap. */
1465
1466 static void
1467 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1468 const gdb_byte *source, ULONGEST source_offset,
1469 ULONGEST nbits, int bits_big_endian)
1470 {
1471 unsigned int buf, avail;
1472
1473 if (nbits == 0)
1474 return;
1475
1476 if (bits_big_endian)
1477 {
1478 /* Start from the end, then work backwards. */
1479 dest_offset += nbits - 1;
1480 dest += dest_offset / 8;
1481 dest_offset = 7 - dest_offset % 8;
1482 source_offset += nbits - 1;
1483 source += source_offset / 8;
1484 source_offset = 7 - source_offset % 8;
1485 }
1486 else
1487 {
1488 dest += dest_offset / 8;
1489 dest_offset %= 8;
1490 source += source_offset / 8;
1491 source_offset %= 8;
1492 }
1493
1494 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1495 SOURCE_OFFSET bits from the source. */
1496 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1497 buf <<= dest_offset;
1498 buf |= *dest & ((1 << dest_offset) - 1);
1499
1500 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1501 nbits += dest_offset;
1502 avail = dest_offset + 8 - source_offset;
1503
1504 /* Flush 8 bits from BUF, if appropriate. */
1505 if (nbits >= 8 && avail >= 8)
1506 {
1507 *(bits_big_endian ? dest-- : dest++) = buf;
1508 buf >>= 8;
1509 avail -= 8;
1510 nbits -= 8;
1511 }
1512
1513 /* Copy the middle part. */
1514 if (nbits >= 8)
1515 {
1516 size_t len = nbits / 8;
1517
1518 /* Use a faster method for byte-aligned copies. */
1519 if (avail == 0)
1520 {
1521 if (bits_big_endian)
1522 {
1523 dest -= len;
1524 source -= len;
1525 memcpy (dest + 1, source + 1, len);
1526 }
1527 else
1528 {
1529 memcpy (dest, source, len);
1530 dest += len;
1531 source += len;
1532 }
1533 }
1534 else
1535 {
1536 while (len--)
1537 {
1538 buf |= *(bits_big_endian ? source-- : source++) << avail;
1539 *(bits_big_endian ? dest-- : dest++) = buf;
1540 buf >>= 8;
1541 }
1542 }
1543 nbits %= 8;
1544 }
1545
1546 /* Write the last byte. */
1547 if (nbits)
1548 {
1549 if (avail < nbits)
1550 buf |= *source << avail;
1551
1552 buf &= (1 << nbits) - 1;
1553 *dest = (*dest & (~0 << nbits)) | buf;
1554 }
1555 }
1556
1557 #if GDB_SELF_TEST
1558
1559 namespace selftests {
1560
1561 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1562 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1563 specifies whether to assume big endian bit numbering. Store the
1564 resulting (not null-terminated) string at STR. */
1565
1566 static void
1567 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1568 ULONGEST nbits, int msb0)
1569 {
1570 unsigned int j;
1571 size_t i;
1572
1573 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1574 {
1575 unsigned int ch = bits[i];
1576 for (; j < 8 && nbits; j++, nbits--)
1577 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1578 }
1579 }
1580
1581 /* Check one invocation of copy_bitwise with the given parameters. */
1582
1583 static void
1584 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1585 const gdb_byte *source, unsigned int source_offset,
1586 unsigned int nbits, int msb0)
1587 {
1588 size_t len = align_up (dest_offset + nbits, 8);
1589 char *expected = (char *) alloca (len + 1);
1590 char *actual = (char *) alloca (len + 1);
1591 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1592
1593 /* Compose a '0'/'1'-string that represents the expected result of
1594 copy_bitwise below:
1595 Bits from [0, DEST_OFFSET) are filled from DEST.
1596 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1597 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1598
1599 E.g., with:
1600 dest_offset: 4
1601 nbits: 2
1602 len: 8
1603 dest: 00000000
1604 source: 11111111
1605
1606 We should end up with:
1607 buf: 00001100
1608 DDDDSSDD (D=dest, S=source)
1609 */
1610 bits_to_str (expected, dest, 0, len, msb0);
1611 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1612
1613 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1614 result to a '0'/'1'-string. */
1615 memcpy (buf, dest, len / 8);
1616 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1617 bits_to_str (actual, buf, 0, len, msb0);
1618
1619 /* Compare the resulting strings. */
1620 expected[len] = actual[len] = '\0';
1621 if (strcmp (expected, actual) != 0)
1622 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1623 expected, actual, source_offset, nbits, dest_offset);
1624 }
1625
1626 /* Unit test for copy_bitwise. */
1627
1628 static void
1629 copy_bitwise_tests (void)
1630 {
1631 /* Data to be used as both source and destination buffers. The two
1632 arrays below represent the lsb0- and msb0- encoded versions of the
1633 following bit string, respectively:
1634 00000000 00011111 11111111 01001000 10100101 11110010
1635 This pattern is chosen such that it contains:
1636 - constant 0- and 1- chunks of more than a full byte;
1637 - 0/1- and 1/0 transitions on all bit positions within a byte;
1638 - several sufficiently asymmetric bytes.
1639 */
1640 static const gdb_byte data_lsb0[] = {
1641 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1642 };
1643 static const gdb_byte data_msb0[] = {
1644 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1645 };
1646
1647 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1648 constexpr unsigned max_nbits = 24;
1649
1650 /* Try all combinations of:
1651 lsb0/msb0 bit order (using the respective data array)
1652 X [0, MAX_NBITS] copy bit width
1653 X feasible source offsets for the given copy bit width
1654 X feasible destination offsets
1655 */
1656 for (int msb0 = 0; msb0 < 2; msb0++)
1657 {
1658 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1659
1660 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1661 {
1662 const unsigned int max_offset = data_nbits - nbits;
1663
1664 for (unsigned source_offset = 0;
1665 source_offset <= max_offset;
1666 source_offset++)
1667 {
1668 for (unsigned dest_offset = 0;
1669 dest_offset <= max_offset;
1670 dest_offset++)
1671 {
1672 check_copy_bitwise (data + dest_offset / 8,
1673 dest_offset % 8,
1674 data + source_offset / 8,
1675 source_offset % 8,
1676 nbits, msb0);
1677 }
1678 }
1679 }
1680
1681 /* Special cases: copy all, copy nothing. */
1682 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1683 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1684 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1685 }
1686 }
1687
1688 } /* namespace selftests */
1689
1690 #endif /* GDB_SELF_TEST */
1691
1692 static void
1693 read_pieced_value (struct value *v)
1694 {
1695 int i;
1696 long offset = 0;
1697 ULONGEST bits_to_skip;
1698 gdb_byte *contents;
1699 struct piece_closure *c
1700 = (struct piece_closure *) value_computed_closure (v);
1701 size_t type_len;
1702 size_t buffer_size = 0;
1703 std::vector<gdb_byte> buffer;
1704 int bits_big_endian
1705 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1706
1707 if (value_type (v) != value_enclosing_type (v))
1708 internal_error (__FILE__, __LINE__,
1709 _("Should not be able to create a lazy value with "
1710 "an enclosing type"));
1711
1712 contents = value_contents_raw (v);
1713 bits_to_skip = 8 * value_offset (v);
1714 if (value_bitsize (v))
1715 {
1716 bits_to_skip += value_bitpos (v);
1717 type_len = value_bitsize (v);
1718 }
1719 else
1720 type_len = 8 * TYPE_LENGTH (value_type (v));
1721
1722 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1723 {
1724 struct dwarf_expr_piece *p = &c->pieces[i];
1725 size_t this_size, this_size_bits;
1726 long dest_offset_bits, source_offset_bits, source_offset;
1727 const gdb_byte *intermediate_buffer;
1728
1729 /* Compute size, source, and destination offsets for copying, in
1730 bits. */
1731 this_size_bits = p->size;
1732 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1733 {
1734 bits_to_skip -= this_size_bits;
1735 continue;
1736 }
1737 if (bits_to_skip > 0)
1738 {
1739 dest_offset_bits = 0;
1740 source_offset_bits = bits_to_skip;
1741 this_size_bits -= bits_to_skip;
1742 bits_to_skip = 0;
1743 }
1744 else
1745 {
1746 dest_offset_bits = offset;
1747 source_offset_bits = 0;
1748 }
1749 if (this_size_bits > type_len - offset)
1750 this_size_bits = type_len - offset;
1751
1752 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1753 source_offset = source_offset_bits / 8;
1754 if (buffer_size < this_size)
1755 {
1756 buffer_size = this_size;
1757 buffer.reserve (buffer_size);
1758 }
1759 intermediate_buffer = buffer.data ();
1760
1761 /* Copy from the source to DEST_BUFFER. */
1762 switch (p->location)
1763 {
1764 case DWARF_VALUE_REGISTER:
1765 {
1766 struct frame_info *frame = frame_find_by_id (c->frame_id);
1767 struct gdbarch *arch = get_frame_arch (frame);
1768 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1769 int optim, unavail;
1770 LONGEST reg_offset = source_offset;
1771
1772 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1773 && this_size < register_size (arch, gdb_regnum))
1774 {
1775 /* Big-endian, and we want less than full size. */
1776 reg_offset = register_size (arch, gdb_regnum) - this_size;
1777 /* We want the lower-order THIS_SIZE_BITS of the bytes
1778 we extract from the register. */
1779 source_offset_bits += 8 * this_size - this_size_bits;
1780 }
1781
1782 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1783 this_size, buffer.data (),
1784 &optim, &unavail))
1785 {
1786 /* Just so garbage doesn't ever shine through. */
1787 memset (buffer.data (), 0, this_size);
1788
1789 if (optim)
1790 mark_value_bits_optimized_out (v, offset, this_size_bits);
1791 if (unavail)
1792 mark_value_bits_unavailable (v, offset, this_size_bits);
1793 }
1794 }
1795 break;
1796
1797 case DWARF_VALUE_MEMORY:
1798 read_value_memory (v, offset,
1799 p->v.mem.in_stack_memory,
1800 p->v.mem.addr + source_offset,
1801 buffer.data (), this_size);
1802 break;
1803
1804 case DWARF_VALUE_STACK:
1805 {
1806 size_t n = this_size;
1807
1808 if (n > c->addr_size - source_offset)
1809 n = (c->addr_size >= source_offset
1810 ? c->addr_size - source_offset
1811 : 0);
1812 if (n == 0)
1813 {
1814 /* Nothing. */
1815 }
1816 else
1817 {
1818 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1819
1820 intermediate_buffer = val_bytes + source_offset;
1821 }
1822 }
1823 break;
1824
1825 case DWARF_VALUE_LITERAL:
1826 {
1827 size_t n = this_size;
1828
1829 if (n > p->v.literal.length - source_offset)
1830 n = (p->v.literal.length >= source_offset
1831 ? p->v.literal.length - source_offset
1832 : 0);
1833 if (n != 0)
1834 intermediate_buffer = p->v.literal.data + source_offset;
1835 }
1836 break;
1837
1838 /* These bits show up as zeros -- but do not cause the value
1839 to be considered optimized-out. */
1840 case DWARF_VALUE_IMPLICIT_POINTER:
1841 break;
1842
1843 case DWARF_VALUE_OPTIMIZED_OUT:
1844 mark_value_bits_optimized_out (v, offset, this_size_bits);
1845 break;
1846
1847 default:
1848 internal_error (__FILE__, __LINE__, _("invalid location type"));
1849 }
1850
1851 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1852 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1853 copy_bitwise (contents, dest_offset_bits,
1854 intermediate_buffer, source_offset_bits % 8,
1855 this_size_bits, bits_big_endian);
1856
1857 offset += this_size_bits;
1858 }
1859 }
1860
1861 static void
1862 write_pieced_value (struct value *to, struct value *from)
1863 {
1864 int i;
1865 long offset = 0;
1866 ULONGEST bits_to_skip;
1867 const gdb_byte *contents;
1868 struct piece_closure *c
1869 = (struct piece_closure *) value_computed_closure (to);
1870 size_t type_len;
1871 size_t buffer_size = 0;
1872 std::vector<gdb_byte> buffer;
1873 int bits_big_endian
1874 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1875
1876 contents = value_contents (from);
1877 bits_to_skip = 8 * value_offset (to);
1878 if (value_bitsize (to))
1879 {
1880 bits_to_skip += value_bitpos (to);
1881 type_len = value_bitsize (to);
1882 }
1883 else
1884 type_len = 8 * TYPE_LENGTH (value_type (to));
1885
1886 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1887 {
1888 struct dwarf_expr_piece *p = &c->pieces[i];
1889 size_t this_size_bits, this_size;
1890 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1891 int need_bitwise;
1892 const gdb_byte *source_buffer;
1893
1894 this_size_bits = p->size;
1895 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1896 {
1897 bits_to_skip -= this_size_bits;
1898 continue;
1899 }
1900 if (this_size_bits > type_len - offset)
1901 this_size_bits = type_len - offset;
1902 if (bits_to_skip > 0)
1903 {
1904 dest_offset_bits = bits_to_skip;
1905 source_offset_bits = 0;
1906 this_size_bits -= bits_to_skip;
1907 bits_to_skip = 0;
1908 }
1909 else
1910 {
1911 dest_offset_bits = 0;
1912 source_offset_bits = offset;
1913 }
1914
1915 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1916 source_offset = source_offset_bits / 8;
1917 dest_offset = dest_offset_bits / 8;
1918 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1919 {
1920 source_buffer = contents + source_offset;
1921 need_bitwise = 0;
1922 }
1923 else
1924 {
1925 if (buffer_size < this_size)
1926 {
1927 buffer_size = this_size;
1928 buffer.reserve (buffer_size);
1929 }
1930 source_buffer = buffer.data ();
1931 need_bitwise = 1;
1932 }
1933
1934 switch (p->location)
1935 {
1936 case DWARF_VALUE_REGISTER:
1937 {
1938 struct frame_info *frame = frame_find_by_id (c->frame_id);
1939 struct gdbarch *arch = get_frame_arch (frame);
1940 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1941 int reg_offset = dest_offset;
1942
1943 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1944 && this_size <= register_size (arch, gdb_regnum))
1945 {
1946 /* Big-endian, and we want less than full size. */
1947 reg_offset = register_size (arch, gdb_regnum) - this_size;
1948 }
1949
1950 if (need_bitwise)
1951 {
1952 int optim, unavail;
1953
1954 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1955 this_size, buffer.data (),
1956 &optim, &unavail))
1957 {
1958 if (optim)
1959 throw_error (OPTIMIZED_OUT_ERROR,
1960 _("Can't do read-modify-write to "
1961 "update bitfield; containing word "
1962 "has been optimized out"));
1963 if (unavail)
1964 throw_error (NOT_AVAILABLE_ERROR,
1965 _("Can't do read-modify-write to update "
1966 "bitfield; containing word "
1967 "is unavailable"));
1968 }
1969 copy_bitwise (buffer.data (), dest_offset_bits,
1970 contents, source_offset_bits,
1971 this_size_bits,
1972 bits_big_endian);
1973 }
1974
1975 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1976 this_size, source_buffer);
1977 }
1978 break;
1979 case DWARF_VALUE_MEMORY:
1980 if (need_bitwise)
1981 {
1982 /* Only the first and last bytes can possibly have any
1983 bits reused. */
1984 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
1985 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1986 &buffer[this_size - 1], 1);
1987 copy_bitwise (buffer.data (), dest_offset_bits,
1988 contents, source_offset_bits,
1989 this_size_bits,
1990 bits_big_endian);
1991 }
1992
1993 write_memory (p->v.mem.addr + dest_offset,
1994 source_buffer, this_size);
1995 break;
1996 default:
1997 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1998 break;
1999 }
2000 offset += this_size_bits;
2001 }
2002 }
2003
2004 /* An implementation of an lval_funcs method to see whether a value is
2005 a synthetic pointer. */
2006
2007 static int
2008 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2009 int bit_length)
2010 {
2011 struct piece_closure *c
2012 = (struct piece_closure *) value_computed_closure (value);
2013 int i;
2014
2015 bit_offset += 8 * value_offset (value);
2016 if (value_bitsize (value))
2017 bit_offset += value_bitpos (value);
2018
2019 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2020 {
2021 struct dwarf_expr_piece *p = &c->pieces[i];
2022 size_t this_size_bits = p->size;
2023
2024 if (bit_offset > 0)
2025 {
2026 if (bit_offset >= this_size_bits)
2027 {
2028 bit_offset -= this_size_bits;
2029 continue;
2030 }
2031
2032 bit_length -= this_size_bits - bit_offset;
2033 bit_offset = 0;
2034 }
2035 else
2036 bit_length -= this_size_bits;
2037
2038 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2039 return 0;
2040 }
2041
2042 return 1;
2043 }
2044
2045 /* A wrapper function for get_frame_address_in_block. */
2046
2047 static CORE_ADDR
2048 get_frame_address_in_block_wrapper (void *baton)
2049 {
2050 return get_frame_address_in_block ((struct frame_info *) baton);
2051 }
2052
2053 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2054
2055 static struct value *
2056 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2057 struct dwarf2_per_cu_data *per_cu,
2058 struct type *type)
2059 {
2060 struct value *result = NULL;
2061 struct obstack temp_obstack;
2062 struct cleanup *cleanup;
2063 const gdb_byte *bytes;
2064 LONGEST len;
2065
2066 obstack_init (&temp_obstack);
2067 cleanup = make_cleanup_obstack_free (&temp_obstack);
2068 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2069
2070 if (bytes != NULL)
2071 {
2072 if (byte_offset >= 0
2073 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2074 {
2075 bytes += byte_offset;
2076 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2077 }
2078 else
2079 invalid_synthetic_pointer ();
2080 }
2081 else
2082 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2083
2084 do_cleanups (cleanup);
2085
2086 return result;
2087 }
2088
2089 /* Fetch the value pointed to by a synthetic pointer. */
2090
2091 static struct value *
2092 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2093 struct dwarf2_per_cu_data *per_cu,
2094 struct frame_info *frame, struct type *type)
2095 {
2096 /* Fetch the location expression of the DIE we're pointing to. */
2097 struct dwarf2_locexpr_baton baton
2098 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2099 get_frame_address_in_block_wrapper, frame);
2100
2101 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2102 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2103 or it may've been optimized out. */
2104 if (baton.data != NULL)
2105 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2106 baton.data, baton.size, baton.per_cu,
2107 byte_offset);
2108 else
2109 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2110 type);
2111 }
2112
2113 /* An implementation of an lval_funcs method to indirect through a
2114 pointer. This handles the synthetic pointer case when needed. */
2115
2116 static struct value *
2117 indirect_pieced_value (struct value *value)
2118 {
2119 struct piece_closure *c
2120 = (struct piece_closure *) value_computed_closure (value);
2121 struct type *type;
2122 struct frame_info *frame;
2123 struct dwarf2_locexpr_baton baton;
2124 int i, bit_length;
2125 LONGEST bit_offset;
2126 struct dwarf_expr_piece *piece = NULL;
2127 LONGEST byte_offset;
2128 enum bfd_endian byte_order;
2129
2130 type = check_typedef (value_type (value));
2131 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2132 return NULL;
2133
2134 bit_length = 8 * TYPE_LENGTH (type);
2135 bit_offset = 8 * value_offset (value);
2136 if (value_bitsize (value))
2137 bit_offset += value_bitpos (value);
2138
2139 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2140 {
2141 struct dwarf_expr_piece *p = &c->pieces[i];
2142 size_t this_size_bits = p->size;
2143
2144 if (bit_offset > 0)
2145 {
2146 if (bit_offset >= this_size_bits)
2147 {
2148 bit_offset -= this_size_bits;
2149 continue;
2150 }
2151
2152 bit_length -= this_size_bits - bit_offset;
2153 bit_offset = 0;
2154 }
2155 else
2156 bit_length -= this_size_bits;
2157
2158 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2159 return NULL;
2160
2161 if (bit_length != 0)
2162 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2163
2164 piece = p;
2165 break;
2166 }
2167
2168 gdb_assert (piece != NULL);
2169 frame = get_selected_frame (_("No frame selected."));
2170
2171 /* This is an offset requested by GDB, such as value subscripts.
2172 However, due to how synthetic pointers are implemented, this is
2173 always presented to us as a pointer type. This means we have to
2174 sign-extend it manually as appropriate. Use raw
2175 extract_signed_integer directly rather than value_as_address and
2176 sign extend afterwards on architectures that would need it
2177 (mostly everywhere except MIPS, which has signed addresses) as
2178 the later would go through gdbarch_pointer_to_address and thus
2179 return a CORE_ADDR with high bits set on architectures that
2180 encode address spaces and other things in CORE_ADDR. */
2181 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2182 byte_offset = extract_signed_integer (value_contents (value),
2183 TYPE_LENGTH (type), byte_order);
2184 byte_offset += piece->v.ptr.offset;
2185
2186 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2187 frame, type);
2188 }
2189
2190 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2191 references. */
2192
2193 static struct value *
2194 coerce_pieced_ref (const struct value *value)
2195 {
2196 struct type *type = check_typedef (value_type (value));
2197
2198 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2199 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2200 {
2201 const struct piece_closure *closure
2202 = (struct piece_closure *) value_computed_closure (value);
2203 struct frame_info *frame
2204 = get_selected_frame (_("No frame selected."));
2205
2206 /* gdb represents synthetic pointers as pieced values with a single
2207 piece. */
2208 gdb_assert (closure != NULL);
2209 gdb_assert (closure->n_pieces == 1);
2210
2211 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2212 closure->pieces->v.ptr.offset,
2213 closure->per_cu, frame, type);
2214 }
2215 else
2216 {
2217 /* Else: not a synthetic reference; do nothing. */
2218 return NULL;
2219 }
2220 }
2221
2222 static void *
2223 copy_pieced_value_closure (const struct value *v)
2224 {
2225 struct piece_closure *c
2226 = (struct piece_closure *) value_computed_closure (v);
2227
2228 ++c->refc;
2229 return c;
2230 }
2231
2232 static void
2233 free_pieced_value_closure (struct value *v)
2234 {
2235 struct piece_closure *c
2236 = (struct piece_closure *) value_computed_closure (v);
2237
2238 --c->refc;
2239 if (c->refc == 0)
2240 {
2241 int i;
2242
2243 for (i = 0; i < c->n_pieces; ++i)
2244 if (c->pieces[i].location == DWARF_VALUE_STACK)
2245 value_free (c->pieces[i].v.value);
2246
2247 xfree (c->pieces);
2248 xfree (c);
2249 }
2250 }
2251
2252 /* Functions for accessing a variable described by DW_OP_piece. */
2253 static const struct lval_funcs pieced_value_funcs = {
2254 read_pieced_value,
2255 write_pieced_value,
2256 indirect_pieced_value,
2257 coerce_pieced_ref,
2258 check_pieced_synthetic_pointer,
2259 copy_pieced_value_closure,
2260 free_pieced_value_closure
2261 };
2262
2263 /* Evaluate a location description, starting at DATA and with length
2264 SIZE, to find the current location of variable of TYPE in the
2265 context of FRAME. BYTE_OFFSET is applied after the contents are
2266 computed. */
2267
2268 static struct value *
2269 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2270 const gdb_byte *data, size_t size,
2271 struct dwarf2_per_cu_data *per_cu,
2272 LONGEST byte_offset)
2273 {
2274 struct value *retval;
2275 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2276
2277 if (byte_offset < 0)
2278 invalid_synthetic_pointer ();
2279
2280 if (size == 0)
2281 return allocate_optimized_out_value (type);
2282
2283 dwarf_evaluate_loc_desc ctx;
2284 ctx.frame = frame;
2285 ctx.per_cu = per_cu;
2286 ctx.obj_address = 0;
2287
2288 scoped_value_mark free_values;
2289
2290 ctx.gdbarch = get_objfile_arch (objfile);
2291 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2292 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2293 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2294
2295 TRY
2296 {
2297 ctx.eval (data, size);
2298 }
2299 CATCH (ex, RETURN_MASK_ERROR)
2300 {
2301 if (ex.error == NOT_AVAILABLE_ERROR)
2302 {
2303 free_values.free_to_mark ();
2304 retval = allocate_value (type);
2305 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2306 return retval;
2307 }
2308 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2309 {
2310 if (entry_values_debug)
2311 exception_print (gdb_stdout, ex);
2312 free_values.free_to_mark ();
2313 return allocate_optimized_out_value (type);
2314 }
2315 else
2316 throw_exception (ex);
2317 }
2318 END_CATCH
2319
2320 if (ctx.num_pieces > 0)
2321 {
2322 struct piece_closure *c;
2323 ULONGEST bit_size = 0;
2324 int i;
2325
2326 for (i = 0; i < ctx.num_pieces; ++i)
2327 bit_size += ctx.pieces[i].size;
2328 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2329 invalid_synthetic_pointer ();
2330
2331 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2332 ctx.addr_size, frame);
2333 /* We must clean up the value chain after creating the piece
2334 closure but before allocating the result. */
2335 free_values.free_to_mark ();
2336 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2337 set_value_offset (retval, byte_offset);
2338 }
2339 else
2340 {
2341 switch (ctx.location)
2342 {
2343 case DWARF_VALUE_REGISTER:
2344 {
2345 struct gdbarch *arch = get_frame_arch (frame);
2346 int dwarf_regnum
2347 = longest_to_int (value_as_long (ctx.fetch (0)));
2348 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2349
2350 if (byte_offset != 0)
2351 error (_("cannot use offset on synthetic pointer to register"));
2352 free_values.free_to_mark ();
2353 retval = value_from_register (type, gdb_regnum, frame);
2354 if (value_optimized_out (retval))
2355 {
2356 struct value *tmp;
2357
2358 /* This means the register has undefined value / was
2359 not saved. As we're computing the location of some
2360 variable etc. in the program, not a value for
2361 inspecting a register ($pc, $sp, etc.), return a
2362 generic optimized out value instead, so that we show
2363 <optimized out> instead of <not saved>. */
2364 tmp = allocate_value (type);
2365 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2366 retval = tmp;
2367 }
2368 }
2369 break;
2370
2371 case DWARF_VALUE_MEMORY:
2372 {
2373 struct type *ptr_type;
2374 CORE_ADDR address = ctx.fetch_address (0);
2375 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2376
2377 /* DW_OP_deref_size (and possibly other operations too) may
2378 create a pointer instead of an address. Ideally, the
2379 pointer to address conversion would be performed as part
2380 of those operations, but the type of the object to
2381 which the address refers is not known at the time of
2382 the operation. Therefore, we do the conversion here
2383 since the type is readily available. */
2384
2385 switch (TYPE_CODE (type))
2386 {
2387 case TYPE_CODE_FUNC:
2388 case TYPE_CODE_METHOD:
2389 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2390 break;
2391 default:
2392 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2393 break;
2394 }
2395 address = value_as_address (value_from_pointer (ptr_type, address));
2396
2397 free_values.free_to_mark ();
2398 retval = value_at_lazy (type, address + byte_offset);
2399 if (in_stack_memory)
2400 set_value_stack (retval, 1);
2401 }
2402 break;
2403
2404 case DWARF_VALUE_STACK:
2405 {
2406 struct value *value = ctx.fetch (0);
2407 gdb_byte *contents;
2408 const gdb_byte *val_bytes;
2409 size_t n = TYPE_LENGTH (value_type (value));
2410 struct cleanup *cleanup;
2411
2412 if (byte_offset + TYPE_LENGTH (type) > n)
2413 invalid_synthetic_pointer ();
2414
2415 val_bytes = value_contents_all (value);
2416 val_bytes += byte_offset;
2417 n -= byte_offset;
2418
2419 /* Preserve VALUE because we are going to free values back
2420 to the mark, but we still need the value contents
2421 below. */
2422 value_incref (value);
2423 free_values.free_to_mark ();
2424 cleanup = make_cleanup_value_free (value);
2425
2426 retval = allocate_value (type);
2427 contents = value_contents_raw (retval);
2428 if (n > TYPE_LENGTH (type))
2429 {
2430 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2431
2432 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2433 val_bytes += n - TYPE_LENGTH (type);
2434 n = TYPE_LENGTH (type);
2435 }
2436 memcpy (contents, val_bytes, n);
2437
2438 do_cleanups (cleanup);
2439 }
2440 break;
2441
2442 case DWARF_VALUE_LITERAL:
2443 {
2444 bfd_byte *contents;
2445 const bfd_byte *ldata;
2446 size_t n = ctx.len;
2447
2448 if (byte_offset + TYPE_LENGTH (type) > n)
2449 invalid_synthetic_pointer ();
2450
2451 free_values.free_to_mark ();
2452 retval = allocate_value (type);
2453 contents = value_contents_raw (retval);
2454
2455 ldata = ctx.data + byte_offset;
2456 n -= byte_offset;
2457
2458 if (n > TYPE_LENGTH (type))
2459 {
2460 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2461
2462 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2463 ldata += n - TYPE_LENGTH (type);
2464 n = TYPE_LENGTH (type);
2465 }
2466 memcpy (contents, ldata, n);
2467 }
2468 break;
2469
2470 case DWARF_VALUE_OPTIMIZED_OUT:
2471 free_values.free_to_mark ();
2472 retval = allocate_optimized_out_value (type);
2473 break;
2474
2475 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2476 operation by execute_stack_op. */
2477 case DWARF_VALUE_IMPLICIT_POINTER:
2478 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2479 it can only be encountered when making a piece. */
2480 default:
2481 internal_error (__FILE__, __LINE__, _("invalid location type"));
2482 }
2483 }
2484
2485 set_value_initialized (retval, ctx.initialized);
2486
2487 return retval;
2488 }
2489
2490 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2491 passes 0 as the byte_offset. */
2492
2493 struct value *
2494 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2495 const gdb_byte *data, size_t size,
2496 struct dwarf2_per_cu_data *per_cu)
2497 {
2498 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2499 }
2500
2501 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2502 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2503 frame in which the expression is evaluated. ADDR is a context (location of
2504 a variable) and might be needed to evaluate the location expression.
2505 Returns 1 on success, 0 otherwise. */
2506
2507 static int
2508 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2509 struct frame_info *frame,
2510 CORE_ADDR addr,
2511 CORE_ADDR *valp)
2512 {
2513 struct objfile *objfile;
2514
2515 if (dlbaton == NULL || dlbaton->size == 0)
2516 return 0;
2517
2518 dwarf_evaluate_loc_desc ctx;
2519
2520 ctx.frame = frame;
2521 ctx.per_cu = dlbaton->per_cu;
2522 ctx.obj_address = addr;
2523
2524 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2525
2526 ctx.gdbarch = get_objfile_arch (objfile);
2527 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2528 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2529 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2530
2531 ctx.eval (dlbaton->data, dlbaton->size);
2532
2533 switch (ctx.location)
2534 {
2535 case DWARF_VALUE_REGISTER:
2536 case DWARF_VALUE_MEMORY:
2537 case DWARF_VALUE_STACK:
2538 *valp = ctx.fetch_address (0);
2539 if (ctx.location == DWARF_VALUE_REGISTER)
2540 *valp = ctx.read_addr_from_reg (*valp);
2541 return 1;
2542 case DWARF_VALUE_LITERAL:
2543 *valp = extract_signed_integer (ctx.data, ctx.len,
2544 gdbarch_byte_order (ctx.gdbarch));
2545 return 1;
2546 /* Unsupported dwarf values. */
2547 case DWARF_VALUE_OPTIMIZED_OUT:
2548 case DWARF_VALUE_IMPLICIT_POINTER:
2549 break;
2550 }
2551
2552 return 0;
2553 }
2554
2555 /* See dwarf2loc.h. */
2556
2557 int
2558 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2559 struct frame_info *frame,
2560 struct property_addr_info *addr_stack,
2561 CORE_ADDR *value)
2562 {
2563 if (prop == NULL)
2564 return 0;
2565
2566 if (frame == NULL && has_stack_frames ())
2567 frame = get_selected_frame (NULL);
2568
2569 switch (prop->kind)
2570 {
2571 case PROP_LOCEXPR:
2572 {
2573 const struct dwarf2_property_baton *baton
2574 = (const struct dwarf2_property_baton *) prop->data.baton;
2575
2576 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2577 addr_stack ? addr_stack->addr : 0,
2578 value))
2579 {
2580 if (baton->referenced_type)
2581 {
2582 struct value *val = value_at (baton->referenced_type, *value);
2583
2584 *value = value_as_address (val);
2585 }
2586 return 1;
2587 }
2588 }
2589 break;
2590
2591 case PROP_LOCLIST:
2592 {
2593 struct dwarf2_property_baton *baton
2594 = (struct dwarf2_property_baton *) prop->data.baton;
2595 CORE_ADDR pc = get_frame_address_in_block (frame);
2596 const gdb_byte *data;
2597 struct value *val;
2598 size_t size;
2599
2600 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2601 if (data != NULL)
2602 {
2603 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2604 size, baton->loclist.per_cu);
2605 if (!value_optimized_out (val))
2606 {
2607 *value = value_as_address (val);
2608 return 1;
2609 }
2610 }
2611 }
2612 break;
2613
2614 case PROP_CONST:
2615 *value = prop->data.const_val;
2616 return 1;
2617
2618 case PROP_ADDR_OFFSET:
2619 {
2620 struct dwarf2_property_baton *baton
2621 = (struct dwarf2_property_baton *) prop->data.baton;
2622 struct property_addr_info *pinfo;
2623 struct value *val;
2624
2625 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2626 if (pinfo->type == baton->referenced_type)
2627 break;
2628 if (pinfo == NULL)
2629 error (_("cannot find reference address for offset property"));
2630 if (pinfo->valaddr != NULL)
2631 val = value_from_contents
2632 (baton->offset_info.type,
2633 pinfo->valaddr + baton->offset_info.offset);
2634 else
2635 val = value_at (baton->offset_info.type,
2636 pinfo->addr + baton->offset_info.offset);
2637 *value = value_as_address (val);
2638 return 1;
2639 }
2640 }
2641
2642 return 0;
2643 }
2644
2645 /* See dwarf2loc.h. */
2646
2647 void
2648 dwarf2_compile_property_to_c (struct ui_file *stream,
2649 const char *result_name,
2650 struct gdbarch *gdbarch,
2651 unsigned char *registers_used,
2652 const struct dynamic_prop *prop,
2653 CORE_ADDR pc,
2654 struct symbol *sym)
2655 {
2656 struct dwarf2_property_baton *baton
2657 = (struct dwarf2_property_baton *) prop->data.baton;
2658 const gdb_byte *data;
2659 size_t size;
2660 struct dwarf2_per_cu_data *per_cu;
2661
2662 if (prop->kind == PROP_LOCEXPR)
2663 {
2664 data = baton->locexpr.data;
2665 size = baton->locexpr.size;
2666 per_cu = baton->locexpr.per_cu;
2667 }
2668 else
2669 {
2670 gdb_assert (prop->kind == PROP_LOCLIST);
2671
2672 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2673 per_cu = baton->loclist.per_cu;
2674 }
2675
2676 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2677 gdbarch, registers_used,
2678 dwarf2_per_cu_addr_size (per_cu),
2679 data, data + size, per_cu);
2680 }
2681
2682 \f
2683 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2684
2685 class symbol_needs_eval_context : public dwarf_expr_context
2686 {
2687 public:
2688
2689 enum symbol_needs_kind needs;
2690 struct dwarf2_per_cu_data *per_cu;
2691
2692 /* Reads from registers do require a frame. */
2693 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2694 {
2695 needs = SYMBOL_NEEDS_FRAME;
2696 return 1;
2697 }
2698
2699 /* "get_reg_value" callback: Reads from registers do require a
2700 frame. */
2701
2702 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2703 {
2704 needs = SYMBOL_NEEDS_FRAME;
2705 return value_zero (type, not_lval);
2706 }
2707
2708 /* Reads from memory do not require a frame. */
2709 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2710 {
2711 memset (buf, 0, len);
2712 }
2713
2714 /* Frame-relative accesses do require a frame. */
2715 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2716 {
2717 static gdb_byte lit0 = DW_OP_lit0;
2718
2719 *start = &lit0;
2720 *length = 1;
2721
2722 needs = SYMBOL_NEEDS_FRAME;
2723 }
2724
2725 /* CFA accesses require a frame. */
2726 CORE_ADDR get_frame_cfa () OVERRIDE
2727 {
2728 needs = SYMBOL_NEEDS_FRAME;
2729 return 1;
2730 }
2731
2732 CORE_ADDR get_frame_pc () OVERRIDE
2733 {
2734 needs = SYMBOL_NEEDS_FRAME;
2735 return 1;
2736 }
2737
2738 /* Thread-local accesses require registers, but not a frame. */
2739 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2740 {
2741 if (needs <= SYMBOL_NEEDS_REGISTERS)
2742 needs = SYMBOL_NEEDS_REGISTERS;
2743 return 1;
2744 }
2745
2746 /* Helper interface of per_cu_dwarf_call for
2747 dwarf2_loc_desc_get_symbol_read_needs. */
2748
2749 void dwarf_call (cu_offset die_offset) OVERRIDE
2750 {
2751 per_cu_dwarf_call (this, die_offset, per_cu);
2752 }
2753
2754 /* DW_OP_GNU_entry_value accesses require a caller, therefore a
2755 frame. */
2756
2757 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2758 union call_site_parameter_u kind_u,
2759 int deref_size) OVERRIDE
2760 {
2761 needs = SYMBOL_NEEDS_FRAME;
2762
2763 /* The expression may require some stub values on DWARF stack. */
2764 push_address (0, 0);
2765 }
2766
2767 /* DW_OP_GNU_addr_index doesn't require a frame. */
2768
2769 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2770 {
2771 /* Nothing to do. */
2772 return 1;
2773 }
2774
2775 /* DW_OP_push_object_address has a frame already passed through. */
2776
2777 CORE_ADDR get_object_address () OVERRIDE
2778 {
2779 /* Nothing to do. */
2780 return 1;
2781 }
2782 };
2783
2784 /* Compute the correct symbol_needs_kind value for the location
2785 expression at DATA (length SIZE). */
2786
2787 static enum symbol_needs_kind
2788 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2789 struct dwarf2_per_cu_data *per_cu)
2790 {
2791 int in_reg;
2792 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2793
2794 scoped_value_mark free_values;
2795
2796 symbol_needs_eval_context ctx;
2797
2798 ctx.needs = SYMBOL_NEEDS_NONE;
2799 ctx.per_cu = per_cu;
2800 ctx.gdbarch = get_objfile_arch (objfile);
2801 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2802 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2803 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2804
2805 ctx.eval (data, size);
2806
2807 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2808
2809 if (ctx.num_pieces > 0)
2810 {
2811 int i;
2812
2813 /* If the location has several pieces, and any of them are in
2814 registers, then we will need a frame to fetch them from. */
2815 for (i = 0; i < ctx.num_pieces; i++)
2816 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2817 in_reg = 1;
2818 }
2819
2820 if (in_reg)
2821 ctx.needs = SYMBOL_NEEDS_FRAME;
2822 return ctx.needs;
2823 }
2824
2825 /* A helper function that throws an unimplemented error mentioning a
2826 given DWARF operator. */
2827
2828 static void
2829 unimplemented (unsigned int op)
2830 {
2831 const char *name = get_DW_OP_name (op);
2832
2833 if (name)
2834 error (_("DWARF operator %s cannot be translated to an agent expression"),
2835 name);
2836 else
2837 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2838 "to an agent expression"),
2839 op);
2840 }
2841
2842 /* See dwarf2loc.h.
2843
2844 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2845 can issue a complaint, which is better than having every target's
2846 implementation of dwarf2_reg_to_regnum do it. */
2847
2848 int
2849 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2850 {
2851 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2852
2853 if (reg == -1)
2854 {
2855 complaint (&symfile_complaints,
2856 _("bad DWARF register number %d"), dwarf_reg);
2857 }
2858 return reg;
2859 }
2860
2861 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2862 Throw an error because DWARF_REG is bad. */
2863
2864 static void
2865 throw_bad_regnum_error (ULONGEST dwarf_reg)
2866 {
2867 /* Still want to print -1 as "-1".
2868 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2869 but that's overkill for now. */
2870 if ((int) dwarf_reg == dwarf_reg)
2871 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2872 error (_("Unable to access DWARF register number %s"),
2873 pulongest (dwarf_reg));
2874 }
2875
2876 /* See dwarf2loc.h. */
2877
2878 int
2879 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2880 {
2881 int reg;
2882
2883 if (dwarf_reg > INT_MAX)
2884 throw_bad_regnum_error (dwarf_reg);
2885 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2886 bad, but that's ok. */
2887 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2888 if (reg == -1)
2889 throw_bad_regnum_error (dwarf_reg);
2890 return reg;
2891 }
2892
2893 /* A helper function that emits an access to memory. ARCH is the
2894 target architecture. EXPR is the expression which we are building.
2895 NBITS is the number of bits we want to read. This emits the
2896 opcodes needed to read the memory and then extract the desired
2897 bits. */
2898
2899 static void
2900 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2901 {
2902 ULONGEST nbytes = (nbits + 7) / 8;
2903
2904 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2905
2906 if (expr->tracing)
2907 ax_trace_quick (expr, nbytes);
2908
2909 if (nbits <= 8)
2910 ax_simple (expr, aop_ref8);
2911 else if (nbits <= 16)
2912 ax_simple (expr, aop_ref16);
2913 else if (nbits <= 32)
2914 ax_simple (expr, aop_ref32);
2915 else
2916 ax_simple (expr, aop_ref64);
2917
2918 /* If we read exactly the number of bytes we wanted, we're done. */
2919 if (8 * nbytes == nbits)
2920 return;
2921
2922 if (gdbarch_bits_big_endian (arch))
2923 {
2924 /* On a bits-big-endian machine, we want the high-order
2925 NBITS. */
2926 ax_const_l (expr, 8 * nbytes - nbits);
2927 ax_simple (expr, aop_rsh_unsigned);
2928 }
2929 else
2930 {
2931 /* On a bits-little-endian box, we want the low-order NBITS. */
2932 ax_zero_ext (expr, nbits);
2933 }
2934 }
2935
2936 /* A helper function to return the frame's PC. */
2937
2938 static CORE_ADDR
2939 get_ax_pc (void *baton)
2940 {
2941 struct agent_expr *expr = (struct agent_expr *) baton;
2942
2943 return expr->scope;
2944 }
2945
2946 /* Compile a DWARF location expression to an agent expression.
2947
2948 EXPR is the agent expression we are building.
2949 LOC is the agent value we modify.
2950 ARCH is the architecture.
2951 ADDR_SIZE is the size of addresses, in bytes.
2952 OP_PTR is the start of the location expression.
2953 OP_END is one past the last byte of the location expression.
2954
2955 This will throw an exception for various kinds of errors -- for
2956 example, if the expression cannot be compiled, or if the expression
2957 is invalid. */
2958
2959 void
2960 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2961 struct gdbarch *arch, unsigned int addr_size,
2962 const gdb_byte *op_ptr, const gdb_byte *op_end,
2963 struct dwarf2_per_cu_data *per_cu)
2964 {
2965 int i;
2966 std::vector<int> dw_labels, patches;
2967 const gdb_byte * const base = op_ptr;
2968 const gdb_byte *previous_piece = op_ptr;
2969 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2970 ULONGEST bits_collected = 0;
2971 unsigned int addr_size_bits = 8 * addr_size;
2972 int bits_big_endian = gdbarch_bits_big_endian (arch);
2973
2974 std::vector<int> offsets (op_end - op_ptr, -1);
2975
2976 /* By default we are making an address. */
2977 loc->kind = axs_lvalue_memory;
2978
2979 while (op_ptr < op_end)
2980 {
2981 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2982 uint64_t uoffset, reg;
2983 int64_t offset;
2984 int i;
2985
2986 offsets[op_ptr - base] = expr->len;
2987 ++op_ptr;
2988
2989 /* Our basic approach to code generation is to map DWARF
2990 operations directly to AX operations. However, there are
2991 some differences.
2992
2993 First, DWARF works on address-sized units, but AX always uses
2994 LONGEST. For most operations we simply ignore this
2995 difference; instead we generate sign extensions as needed
2996 before division and comparison operations. It would be nice
2997 to omit the sign extensions, but there is no way to determine
2998 the size of the target's LONGEST. (This code uses the size
2999 of the host LONGEST in some cases -- that is a bug but it is
3000 difficult to fix.)
3001
3002 Second, some DWARF operations cannot be translated to AX.
3003 For these we simply fail. See
3004 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3005 switch (op)
3006 {
3007 case DW_OP_lit0:
3008 case DW_OP_lit1:
3009 case DW_OP_lit2:
3010 case DW_OP_lit3:
3011 case DW_OP_lit4:
3012 case DW_OP_lit5:
3013 case DW_OP_lit6:
3014 case DW_OP_lit7:
3015 case DW_OP_lit8:
3016 case DW_OP_lit9:
3017 case DW_OP_lit10:
3018 case DW_OP_lit11:
3019 case DW_OP_lit12:
3020 case DW_OP_lit13:
3021 case DW_OP_lit14:
3022 case DW_OP_lit15:
3023 case DW_OP_lit16:
3024 case DW_OP_lit17:
3025 case DW_OP_lit18:
3026 case DW_OP_lit19:
3027 case DW_OP_lit20:
3028 case DW_OP_lit21:
3029 case DW_OP_lit22:
3030 case DW_OP_lit23:
3031 case DW_OP_lit24:
3032 case DW_OP_lit25:
3033 case DW_OP_lit26:
3034 case DW_OP_lit27:
3035 case DW_OP_lit28:
3036 case DW_OP_lit29:
3037 case DW_OP_lit30:
3038 case DW_OP_lit31:
3039 ax_const_l (expr, op - DW_OP_lit0);
3040 break;
3041
3042 case DW_OP_addr:
3043 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3044 op_ptr += addr_size;
3045 /* Some versions of GCC emit DW_OP_addr before
3046 DW_OP_GNU_push_tls_address. In this case the value is an
3047 index, not an address. We don't support things like
3048 branching between the address and the TLS op. */
3049 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3050 uoffset += dwarf2_per_cu_text_offset (per_cu);
3051 ax_const_l (expr, uoffset);
3052 break;
3053
3054 case DW_OP_const1u:
3055 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3056 op_ptr += 1;
3057 break;
3058 case DW_OP_const1s:
3059 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3060 op_ptr += 1;
3061 break;
3062 case DW_OP_const2u:
3063 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3064 op_ptr += 2;
3065 break;
3066 case DW_OP_const2s:
3067 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3068 op_ptr += 2;
3069 break;
3070 case DW_OP_const4u:
3071 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3072 op_ptr += 4;
3073 break;
3074 case DW_OP_const4s:
3075 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3076 op_ptr += 4;
3077 break;
3078 case DW_OP_const8u:
3079 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3080 op_ptr += 8;
3081 break;
3082 case DW_OP_const8s:
3083 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3084 op_ptr += 8;
3085 break;
3086 case DW_OP_constu:
3087 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3088 ax_const_l (expr, uoffset);
3089 break;
3090 case DW_OP_consts:
3091 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3092 ax_const_l (expr, offset);
3093 break;
3094
3095 case DW_OP_reg0:
3096 case DW_OP_reg1:
3097 case DW_OP_reg2:
3098 case DW_OP_reg3:
3099 case DW_OP_reg4:
3100 case DW_OP_reg5:
3101 case DW_OP_reg6:
3102 case DW_OP_reg7:
3103 case DW_OP_reg8:
3104 case DW_OP_reg9:
3105 case DW_OP_reg10:
3106 case DW_OP_reg11:
3107 case DW_OP_reg12:
3108 case DW_OP_reg13:
3109 case DW_OP_reg14:
3110 case DW_OP_reg15:
3111 case DW_OP_reg16:
3112 case DW_OP_reg17:
3113 case DW_OP_reg18:
3114 case DW_OP_reg19:
3115 case DW_OP_reg20:
3116 case DW_OP_reg21:
3117 case DW_OP_reg22:
3118 case DW_OP_reg23:
3119 case DW_OP_reg24:
3120 case DW_OP_reg25:
3121 case DW_OP_reg26:
3122 case DW_OP_reg27:
3123 case DW_OP_reg28:
3124 case DW_OP_reg29:
3125 case DW_OP_reg30:
3126 case DW_OP_reg31:
3127 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3128 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3129 loc->kind = axs_lvalue_register;
3130 break;
3131
3132 case DW_OP_regx:
3133 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3134 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3135 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3136 loc->kind = axs_lvalue_register;
3137 break;
3138
3139 case DW_OP_implicit_value:
3140 {
3141 uint64_t len;
3142
3143 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3144 if (op_ptr + len > op_end)
3145 error (_("DW_OP_implicit_value: too few bytes available."));
3146 if (len > sizeof (ULONGEST))
3147 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3148 (int) len);
3149
3150 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3151 byte_order));
3152 op_ptr += len;
3153 dwarf_expr_require_composition (op_ptr, op_end,
3154 "DW_OP_implicit_value");
3155
3156 loc->kind = axs_rvalue;
3157 }
3158 break;
3159
3160 case DW_OP_stack_value:
3161 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3162 loc->kind = axs_rvalue;
3163 break;
3164
3165 case DW_OP_breg0:
3166 case DW_OP_breg1:
3167 case DW_OP_breg2:
3168 case DW_OP_breg3:
3169 case DW_OP_breg4:
3170 case DW_OP_breg5:
3171 case DW_OP_breg6:
3172 case DW_OP_breg7:
3173 case DW_OP_breg8:
3174 case DW_OP_breg9:
3175 case DW_OP_breg10:
3176 case DW_OP_breg11:
3177 case DW_OP_breg12:
3178 case DW_OP_breg13:
3179 case DW_OP_breg14:
3180 case DW_OP_breg15:
3181 case DW_OP_breg16:
3182 case DW_OP_breg17:
3183 case DW_OP_breg18:
3184 case DW_OP_breg19:
3185 case DW_OP_breg20:
3186 case DW_OP_breg21:
3187 case DW_OP_breg22:
3188 case DW_OP_breg23:
3189 case DW_OP_breg24:
3190 case DW_OP_breg25:
3191 case DW_OP_breg26:
3192 case DW_OP_breg27:
3193 case DW_OP_breg28:
3194 case DW_OP_breg29:
3195 case DW_OP_breg30:
3196 case DW_OP_breg31:
3197 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3198 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3199 ax_reg (expr, i);
3200 if (offset != 0)
3201 {
3202 ax_const_l (expr, offset);
3203 ax_simple (expr, aop_add);
3204 }
3205 break;
3206 case DW_OP_bregx:
3207 {
3208 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3209 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3210 i = dwarf_reg_to_regnum_or_error (arch, reg);
3211 ax_reg (expr, i);
3212 if (offset != 0)
3213 {
3214 ax_const_l (expr, offset);
3215 ax_simple (expr, aop_add);
3216 }
3217 }
3218 break;
3219 case DW_OP_fbreg:
3220 {
3221 const gdb_byte *datastart;
3222 size_t datalen;
3223 const struct block *b;
3224 struct symbol *framefunc;
3225
3226 b = block_for_pc (expr->scope);
3227
3228 if (!b)
3229 error (_("No block found for address"));
3230
3231 framefunc = block_linkage_function (b);
3232
3233 if (!framefunc)
3234 error (_("No function found for block"));
3235
3236 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3237 &datastart, &datalen);
3238
3239 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3240 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3241 datastart + datalen, per_cu);
3242 if (loc->kind == axs_lvalue_register)
3243 require_rvalue (expr, loc);
3244
3245 if (offset != 0)
3246 {
3247 ax_const_l (expr, offset);
3248 ax_simple (expr, aop_add);
3249 }
3250
3251 loc->kind = axs_lvalue_memory;
3252 }
3253 break;
3254
3255 case DW_OP_dup:
3256 ax_simple (expr, aop_dup);
3257 break;
3258
3259 case DW_OP_drop:
3260 ax_simple (expr, aop_pop);
3261 break;
3262
3263 case DW_OP_pick:
3264 offset = *op_ptr++;
3265 ax_pick (expr, offset);
3266 break;
3267
3268 case DW_OP_swap:
3269 ax_simple (expr, aop_swap);
3270 break;
3271
3272 case DW_OP_over:
3273 ax_pick (expr, 1);
3274 break;
3275
3276 case DW_OP_rot:
3277 ax_simple (expr, aop_rot);
3278 break;
3279
3280 case DW_OP_deref:
3281 case DW_OP_deref_size:
3282 {
3283 int size;
3284
3285 if (op == DW_OP_deref_size)
3286 size = *op_ptr++;
3287 else
3288 size = addr_size;
3289
3290 if (size != 1 && size != 2 && size != 4 && size != 8)
3291 error (_("Unsupported size %d in %s"),
3292 size, get_DW_OP_name (op));
3293 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3294 }
3295 break;
3296
3297 case DW_OP_abs:
3298 /* Sign extend the operand. */
3299 ax_ext (expr, addr_size_bits);
3300 ax_simple (expr, aop_dup);
3301 ax_const_l (expr, 0);
3302 ax_simple (expr, aop_less_signed);
3303 ax_simple (expr, aop_log_not);
3304 i = ax_goto (expr, aop_if_goto);
3305 /* We have to emit 0 - X. */
3306 ax_const_l (expr, 0);
3307 ax_simple (expr, aop_swap);
3308 ax_simple (expr, aop_sub);
3309 ax_label (expr, i, expr->len);
3310 break;
3311
3312 case DW_OP_neg:
3313 /* No need to sign extend here. */
3314 ax_const_l (expr, 0);
3315 ax_simple (expr, aop_swap);
3316 ax_simple (expr, aop_sub);
3317 break;
3318
3319 case DW_OP_not:
3320 /* Sign extend the operand. */
3321 ax_ext (expr, addr_size_bits);
3322 ax_simple (expr, aop_bit_not);
3323 break;
3324
3325 case DW_OP_plus_uconst:
3326 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3327 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3328 but we micro-optimize anyhow. */
3329 if (reg != 0)
3330 {
3331 ax_const_l (expr, reg);
3332 ax_simple (expr, aop_add);
3333 }
3334 break;
3335
3336 case DW_OP_and:
3337 ax_simple (expr, aop_bit_and);
3338 break;
3339
3340 case DW_OP_div:
3341 /* Sign extend the operands. */
3342 ax_ext (expr, addr_size_bits);
3343 ax_simple (expr, aop_swap);
3344 ax_ext (expr, addr_size_bits);
3345 ax_simple (expr, aop_swap);
3346 ax_simple (expr, aop_div_signed);
3347 break;
3348
3349 case DW_OP_minus:
3350 ax_simple (expr, aop_sub);
3351 break;
3352
3353 case DW_OP_mod:
3354 ax_simple (expr, aop_rem_unsigned);
3355 break;
3356
3357 case DW_OP_mul:
3358 ax_simple (expr, aop_mul);
3359 break;
3360
3361 case DW_OP_or:
3362 ax_simple (expr, aop_bit_or);
3363 break;
3364
3365 case DW_OP_plus:
3366 ax_simple (expr, aop_add);
3367 break;
3368
3369 case DW_OP_shl:
3370 ax_simple (expr, aop_lsh);
3371 break;
3372
3373 case DW_OP_shr:
3374 ax_simple (expr, aop_rsh_unsigned);
3375 break;
3376
3377 case DW_OP_shra:
3378 ax_simple (expr, aop_rsh_signed);
3379 break;
3380
3381 case DW_OP_xor:
3382 ax_simple (expr, aop_bit_xor);
3383 break;
3384
3385 case DW_OP_le:
3386 /* Sign extend the operands. */
3387 ax_ext (expr, addr_size_bits);
3388 ax_simple (expr, aop_swap);
3389 ax_ext (expr, addr_size_bits);
3390 /* Note no swap here: A <= B is !(B < A). */
3391 ax_simple (expr, aop_less_signed);
3392 ax_simple (expr, aop_log_not);
3393 break;
3394
3395 case DW_OP_ge:
3396 /* Sign extend the operands. */
3397 ax_ext (expr, addr_size_bits);
3398 ax_simple (expr, aop_swap);
3399 ax_ext (expr, addr_size_bits);
3400 ax_simple (expr, aop_swap);
3401 /* A >= B is !(A < B). */
3402 ax_simple (expr, aop_less_signed);
3403 ax_simple (expr, aop_log_not);
3404 break;
3405
3406 case DW_OP_eq:
3407 /* Sign extend the operands. */
3408 ax_ext (expr, addr_size_bits);
3409 ax_simple (expr, aop_swap);
3410 ax_ext (expr, addr_size_bits);
3411 /* No need for a second swap here. */
3412 ax_simple (expr, aop_equal);
3413 break;
3414
3415 case DW_OP_lt:
3416 /* Sign extend the operands. */
3417 ax_ext (expr, addr_size_bits);
3418 ax_simple (expr, aop_swap);
3419 ax_ext (expr, addr_size_bits);
3420 ax_simple (expr, aop_swap);
3421 ax_simple (expr, aop_less_signed);
3422 break;
3423
3424 case DW_OP_gt:
3425 /* Sign extend the operands. */
3426 ax_ext (expr, addr_size_bits);
3427 ax_simple (expr, aop_swap);
3428 ax_ext (expr, addr_size_bits);
3429 /* Note no swap here: A > B is B < A. */
3430 ax_simple (expr, aop_less_signed);
3431 break;
3432
3433 case DW_OP_ne:
3434 /* Sign extend the operands. */
3435 ax_ext (expr, addr_size_bits);
3436 ax_simple (expr, aop_swap);
3437 ax_ext (expr, addr_size_bits);
3438 /* No need for a swap here. */
3439 ax_simple (expr, aop_equal);
3440 ax_simple (expr, aop_log_not);
3441 break;
3442
3443 case DW_OP_call_frame_cfa:
3444 {
3445 int regnum;
3446 CORE_ADDR text_offset;
3447 LONGEST off;
3448 const gdb_byte *cfa_start, *cfa_end;
3449
3450 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3451 &regnum, &off,
3452 &text_offset, &cfa_start, &cfa_end))
3453 {
3454 /* Register. */
3455 ax_reg (expr, regnum);
3456 if (off != 0)
3457 {
3458 ax_const_l (expr, off);
3459 ax_simple (expr, aop_add);
3460 }
3461 }
3462 else
3463 {
3464 /* Another expression. */
3465 ax_const_l (expr, text_offset);
3466 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3467 cfa_start, cfa_end, per_cu);
3468 }
3469
3470 loc->kind = axs_lvalue_memory;
3471 }
3472 break;
3473
3474 case DW_OP_GNU_push_tls_address:
3475 case DW_OP_form_tls_address:
3476 unimplemented (op);
3477 break;
3478
3479 case DW_OP_push_object_address:
3480 unimplemented (op);
3481 break;
3482
3483 case DW_OP_skip:
3484 offset = extract_signed_integer (op_ptr, 2, byte_order);
3485 op_ptr += 2;
3486 i = ax_goto (expr, aop_goto);
3487 dw_labels.push_back (op_ptr + offset - base);
3488 patches.push_back (i);
3489 break;
3490
3491 case DW_OP_bra:
3492 offset = extract_signed_integer (op_ptr, 2, byte_order);
3493 op_ptr += 2;
3494 /* Zero extend the operand. */
3495 ax_zero_ext (expr, addr_size_bits);
3496 i = ax_goto (expr, aop_if_goto);
3497 dw_labels.push_back (op_ptr + offset - base);
3498 patches.push_back (i);
3499 break;
3500
3501 case DW_OP_nop:
3502 break;
3503
3504 case DW_OP_piece:
3505 case DW_OP_bit_piece:
3506 {
3507 uint64_t size, offset;
3508
3509 if (op_ptr - 1 == previous_piece)
3510 error (_("Cannot translate empty pieces to agent expressions"));
3511 previous_piece = op_ptr - 1;
3512
3513 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3514 if (op == DW_OP_piece)
3515 {
3516 size *= 8;
3517 offset = 0;
3518 }
3519 else
3520 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3521
3522 if (bits_collected + size > 8 * sizeof (LONGEST))
3523 error (_("Expression pieces exceed word size"));
3524
3525 /* Access the bits. */
3526 switch (loc->kind)
3527 {
3528 case axs_lvalue_register:
3529 ax_reg (expr, loc->u.reg);
3530 break;
3531
3532 case axs_lvalue_memory:
3533 /* Offset the pointer, if needed. */
3534 if (offset > 8)
3535 {
3536 ax_const_l (expr, offset / 8);
3537 ax_simple (expr, aop_add);
3538 offset %= 8;
3539 }
3540 access_memory (arch, expr, size);
3541 break;
3542 }
3543
3544 /* For a bits-big-endian target, shift up what we already
3545 have. For a bits-little-endian target, shift up the
3546 new data. Note that there is a potential bug here if
3547 the DWARF expression leaves multiple values on the
3548 stack. */
3549 if (bits_collected > 0)
3550 {
3551 if (bits_big_endian)
3552 {
3553 ax_simple (expr, aop_swap);
3554 ax_const_l (expr, size);
3555 ax_simple (expr, aop_lsh);
3556 /* We don't need a second swap here, because
3557 aop_bit_or is symmetric. */
3558 }
3559 else
3560 {
3561 ax_const_l (expr, size);
3562 ax_simple (expr, aop_lsh);
3563 }
3564 ax_simple (expr, aop_bit_or);
3565 }
3566
3567 bits_collected += size;
3568 loc->kind = axs_rvalue;
3569 }
3570 break;
3571
3572 case DW_OP_GNU_uninit:
3573 unimplemented (op);
3574
3575 case DW_OP_call2:
3576 case DW_OP_call4:
3577 {
3578 struct dwarf2_locexpr_baton block;
3579 int size = (op == DW_OP_call2 ? 2 : 4);
3580 cu_offset offset;
3581
3582 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3583 op_ptr += size;
3584
3585 offset.cu_off = uoffset;
3586 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3587 get_ax_pc, expr);
3588
3589 /* DW_OP_call_ref is currently not supported. */
3590 gdb_assert (block.per_cu == per_cu);
3591
3592 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3593 block.data, block.data + block.size,
3594 per_cu);
3595 }
3596 break;
3597
3598 case DW_OP_call_ref:
3599 unimplemented (op);
3600
3601 default:
3602 unimplemented (op);
3603 }
3604 }
3605
3606 /* Patch all the branches we emitted. */
3607 for (i = 0; i < patches.size (); ++i)
3608 {
3609 int targ = offsets[dw_labels[i]];
3610 if (targ == -1)
3611 internal_error (__FILE__, __LINE__, _("invalid label"));
3612 ax_label (expr, patches[i], targ);
3613 }
3614 }
3615
3616 \f
3617 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3618 evaluator to calculate the location. */
3619 static struct value *
3620 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3621 {
3622 struct dwarf2_locexpr_baton *dlbaton
3623 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3624 struct value *val;
3625
3626 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3627 dlbaton->size, dlbaton->per_cu);
3628
3629 return val;
3630 }
3631
3632 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3633 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3634 will be thrown. */
3635
3636 static struct value *
3637 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3638 {
3639 struct dwarf2_locexpr_baton *dlbaton
3640 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3641
3642 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3643 dlbaton->size);
3644 }
3645
3646 /* Implementation of get_symbol_read_needs from
3647 symbol_computed_ops. */
3648
3649 static enum symbol_needs_kind
3650 locexpr_get_symbol_read_needs (struct symbol *symbol)
3651 {
3652 struct dwarf2_locexpr_baton *dlbaton
3653 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3654
3655 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3656 dlbaton->per_cu);
3657 }
3658
3659 /* Return true if DATA points to the end of a piece. END is one past
3660 the last byte in the expression. */
3661
3662 static int
3663 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3664 {
3665 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3666 }
3667
3668 /* Helper for locexpr_describe_location_piece that finds the name of a
3669 DWARF register. */
3670
3671 static const char *
3672 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3673 {
3674 int regnum;
3675
3676 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3677 We'd rather print *something* here than throw an error. */
3678 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3679 /* gdbarch_register_name may just return "", return something more
3680 descriptive for bad register numbers. */
3681 if (regnum == -1)
3682 {
3683 /* The text is output as "$bad_register_number".
3684 That is why we use the underscores. */
3685 return _("bad_register_number");
3686 }
3687 return gdbarch_register_name (gdbarch, regnum);
3688 }
3689
3690 /* Nicely describe a single piece of a location, returning an updated
3691 position in the bytecode sequence. This function cannot recognize
3692 all locations; if a location is not recognized, it simply returns
3693 DATA. If there is an error during reading, e.g. we run off the end
3694 of the buffer, an error is thrown. */
3695
3696 static const gdb_byte *
3697 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3698 CORE_ADDR addr, struct objfile *objfile,
3699 struct dwarf2_per_cu_data *per_cu,
3700 const gdb_byte *data, const gdb_byte *end,
3701 unsigned int addr_size)
3702 {
3703 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3704 size_t leb128_size;
3705
3706 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3707 {
3708 fprintf_filtered (stream, _("a variable in $%s"),
3709 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3710 data += 1;
3711 }
3712 else if (data[0] == DW_OP_regx)
3713 {
3714 uint64_t reg;
3715
3716 data = safe_read_uleb128 (data + 1, end, &reg);
3717 fprintf_filtered (stream, _("a variable in $%s"),
3718 locexpr_regname (gdbarch, reg));
3719 }
3720 else if (data[0] == DW_OP_fbreg)
3721 {
3722 const struct block *b;
3723 struct symbol *framefunc;
3724 int frame_reg = 0;
3725 int64_t frame_offset;
3726 const gdb_byte *base_data, *new_data, *save_data = data;
3727 size_t base_size;
3728 int64_t base_offset = 0;
3729
3730 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3731 if (!piece_end_p (new_data, end))
3732 return data;
3733 data = new_data;
3734
3735 b = block_for_pc (addr);
3736
3737 if (!b)
3738 error (_("No block found for address for symbol \"%s\"."),
3739 SYMBOL_PRINT_NAME (symbol));
3740
3741 framefunc = block_linkage_function (b);
3742
3743 if (!framefunc)
3744 error (_("No function found for block for symbol \"%s\"."),
3745 SYMBOL_PRINT_NAME (symbol));
3746
3747 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3748
3749 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3750 {
3751 const gdb_byte *buf_end;
3752
3753 frame_reg = base_data[0] - DW_OP_breg0;
3754 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3755 &base_offset);
3756 if (buf_end != base_data + base_size)
3757 error (_("Unexpected opcode after "
3758 "DW_OP_breg%u for symbol \"%s\"."),
3759 frame_reg, SYMBOL_PRINT_NAME (symbol));
3760 }
3761 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3762 {
3763 /* The frame base is just the register, with no offset. */
3764 frame_reg = base_data[0] - DW_OP_reg0;
3765 base_offset = 0;
3766 }
3767 else
3768 {
3769 /* We don't know what to do with the frame base expression,
3770 so we can't trace this variable; give up. */
3771 return save_data;
3772 }
3773
3774 fprintf_filtered (stream,
3775 _("a variable at frame base reg $%s offset %s+%s"),
3776 locexpr_regname (gdbarch, frame_reg),
3777 plongest (base_offset), plongest (frame_offset));
3778 }
3779 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3780 && piece_end_p (data, end))
3781 {
3782 int64_t offset;
3783
3784 data = safe_read_sleb128 (data + 1, end, &offset);
3785
3786 fprintf_filtered (stream,
3787 _("a variable at offset %s from base reg $%s"),
3788 plongest (offset),
3789 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3790 }
3791
3792 /* The location expression for a TLS variable looks like this (on a
3793 64-bit LE machine):
3794
3795 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3796 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3797
3798 0x3 is the encoding for DW_OP_addr, which has an operand as long
3799 as the size of an address on the target machine (here is 8
3800 bytes). Note that more recent version of GCC emit DW_OP_const4u
3801 or DW_OP_const8u, depending on address size, rather than
3802 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3803 The operand represents the offset at which the variable is within
3804 the thread local storage. */
3805
3806 else if (data + 1 + addr_size < end
3807 && (data[0] == DW_OP_addr
3808 || (addr_size == 4 && data[0] == DW_OP_const4u)
3809 || (addr_size == 8 && data[0] == DW_OP_const8u))
3810 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3811 || data[1 + addr_size] == DW_OP_form_tls_address)
3812 && piece_end_p (data + 2 + addr_size, end))
3813 {
3814 ULONGEST offset;
3815 offset = extract_unsigned_integer (data + 1, addr_size,
3816 gdbarch_byte_order (gdbarch));
3817
3818 fprintf_filtered (stream,
3819 _("a thread-local variable at offset 0x%s "
3820 "in the thread-local storage for `%s'"),
3821 phex_nz (offset, addr_size), objfile_name (objfile));
3822
3823 data += 1 + addr_size + 1;
3824 }
3825
3826 /* With -gsplit-dwarf a TLS variable can also look like this:
3827 DW_AT_location : 3 byte block: fc 4 e0
3828 (DW_OP_GNU_const_index: 4;
3829 DW_OP_GNU_push_tls_address) */
3830 else if (data + 3 <= end
3831 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3832 && data[0] == DW_OP_GNU_const_index
3833 && leb128_size > 0
3834 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3835 || data[1 + leb128_size] == DW_OP_form_tls_address)
3836 && piece_end_p (data + 2 + leb128_size, end))
3837 {
3838 uint64_t offset;
3839
3840 data = safe_read_uleb128 (data + 1, end, &offset);
3841 offset = dwarf2_read_addr_index (per_cu, offset);
3842 fprintf_filtered (stream,
3843 _("a thread-local variable at offset 0x%s "
3844 "in the thread-local storage for `%s'"),
3845 phex_nz (offset, addr_size), objfile_name (objfile));
3846 ++data;
3847 }
3848
3849 else if (data[0] >= DW_OP_lit0
3850 && data[0] <= DW_OP_lit31
3851 && data + 1 < end
3852 && data[1] == DW_OP_stack_value)
3853 {
3854 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3855 data += 2;
3856 }
3857
3858 return data;
3859 }
3860
3861 /* Disassemble an expression, stopping at the end of a piece or at the
3862 end of the expression. Returns a pointer to the next unread byte
3863 in the input expression. If ALL is nonzero, then this function
3864 will keep going until it reaches the end of the expression.
3865 If there is an error during reading, e.g. we run off the end
3866 of the buffer, an error is thrown. */
3867
3868 static const gdb_byte *
3869 disassemble_dwarf_expression (struct ui_file *stream,
3870 struct gdbarch *arch, unsigned int addr_size,
3871 int offset_size, const gdb_byte *start,
3872 const gdb_byte *data, const gdb_byte *end,
3873 int indent, int all,
3874 struct dwarf2_per_cu_data *per_cu)
3875 {
3876 while (data < end
3877 && (all
3878 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3879 {
3880 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3881 uint64_t ul;
3882 int64_t l;
3883 const char *name;
3884
3885 name = get_DW_OP_name (op);
3886
3887 if (!name)
3888 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3889 op, (long) (data - 1 - start));
3890 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3891 (long) (data - 1 - start), name);
3892
3893 switch (op)
3894 {
3895 case DW_OP_addr:
3896 ul = extract_unsigned_integer (data, addr_size,
3897 gdbarch_byte_order (arch));
3898 data += addr_size;
3899 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3900 break;
3901
3902 case DW_OP_const1u:
3903 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3904 data += 1;
3905 fprintf_filtered (stream, " %s", pulongest (ul));
3906 break;
3907 case DW_OP_const1s:
3908 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3909 data += 1;
3910 fprintf_filtered (stream, " %s", plongest (l));
3911 break;
3912 case DW_OP_const2u:
3913 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3914 data += 2;
3915 fprintf_filtered (stream, " %s", pulongest (ul));
3916 break;
3917 case DW_OP_const2s:
3918 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3919 data += 2;
3920 fprintf_filtered (stream, " %s", plongest (l));
3921 break;
3922 case DW_OP_const4u:
3923 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3924 data += 4;
3925 fprintf_filtered (stream, " %s", pulongest (ul));
3926 break;
3927 case DW_OP_const4s:
3928 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3929 data += 4;
3930 fprintf_filtered (stream, " %s", plongest (l));
3931 break;
3932 case DW_OP_const8u:
3933 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3934 data += 8;
3935 fprintf_filtered (stream, " %s", pulongest (ul));
3936 break;
3937 case DW_OP_const8s:
3938 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3939 data += 8;
3940 fprintf_filtered (stream, " %s", plongest (l));
3941 break;
3942 case DW_OP_constu:
3943 data = safe_read_uleb128 (data, end, &ul);
3944 fprintf_filtered (stream, " %s", pulongest (ul));
3945 break;
3946 case DW_OP_consts:
3947 data = safe_read_sleb128 (data, end, &l);
3948 fprintf_filtered (stream, " %s", plongest (l));
3949 break;
3950
3951 case DW_OP_reg0:
3952 case DW_OP_reg1:
3953 case DW_OP_reg2:
3954 case DW_OP_reg3:
3955 case DW_OP_reg4:
3956 case DW_OP_reg5:
3957 case DW_OP_reg6:
3958 case DW_OP_reg7:
3959 case DW_OP_reg8:
3960 case DW_OP_reg9:
3961 case DW_OP_reg10:
3962 case DW_OP_reg11:
3963 case DW_OP_reg12:
3964 case DW_OP_reg13:
3965 case DW_OP_reg14:
3966 case DW_OP_reg15:
3967 case DW_OP_reg16:
3968 case DW_OP_reg17:
3969 case DW_OP_reg18:
3970 case DW_OP_reg19:
3971 case DW_OP_reg20:
3972 case DW_OP_reg21:
3973 case DW_OP_reg22:
3974 case DW_OP_reg23:
3975 case DW_OP_reg24:
3976 case DW_OP_reg25:
3977 case DW_OP_reg26:
3978 case DW_OP_reg27:
3979 case DW_OP_reg28:
3980 case DW_OP_reg29:
3981 case DW_OP_reg30:
3982 case DW_OP_reg31:
3983 fprintf_filtered (stream, " [$%s]",
3984 locexpr_regname (arch, op - DW_OP_reg0));
3985 break;
3986
3987 case DW_OP_regx:
3988 data = safe_read_uleb128 (data, end, &ul);
3989 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3990 locexpr_regname (arch, (int) ul));
3991 break;
3992
3993 case DW_OP_implicit_value:
3994 data = safe_read_uleb128 (data, end, &ul);
3995 data += ul;
3996 fprintf_filtered (stream, " %s", pulongest (ul));
3997 break;
3998
3999 case DW_OP_breg0:
4000 case DW_OP_breg1:
4001 case DW_OP_breg2:
4002 case DW_OP_breg3:
4003 case DW_OP_breg4:
4004 case DW_OP_breg5:
4005 case DW_OP_breg6:
4006 case DW_OP_breg7:
4007 case DW_OP_breg8:
4008 case DW_OP_breg9:
4009 case DW_OP_breg10:
4010 case DW_OP_breg11:
4011 case DW_OP_breg12:
4012 case DW_OP_breg13:
4013 case DW_OP_breg14:
4014 case DW_OP_breg15:
4015 case DW_OP_breg16:
4016 case DW_OP_breg17:
4017 case DW_OP_breg18:
4018 case DW_OP_breg19:
4019 case DW_OP_breg20:
4020 case DW_OP_breg21:
4021 case DW_OP_breg22:
4022 case DW_OP_breg23:
4023 case DW_OP_breg24:
4024 case DW_OP_breg25:
4025 case DW_OP_breg26:
4026 case DW_OP_breg27:
4027 case DW_OP_breg28:
4028 case DW_OP_breg29:
4029 case DW_OP_breg30:
4030 case DW_OP_breg31:
4031 data = safe_read_sleb128 (data, end, &l);
4032 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4033 locexpr_regname (arch, op - DW_OP_breg0));
4034 break;
4035
4036 case DW_OP_bregx:
4037 data = safe_read_uleb128 (data, end, &ul);
4038 data = safe_read_sleb128 (data, end, &l);
4039 fprintf_filtered (stream, " register %s [$%s] offset %s",
4040 pulongest (ul),
4041 locexpr_regname (arch, (int) ul),
4042 plongest (l));
4043 break;
4044
4045 case DW_OP_fbreg:
4046 data = safe_read_sleb128 (data, end, &l);
4047 fprintf_filtered (stream, " %s", plongest (l));
4048 break;
4049
4050 case DW_OP_xderef_size:
4051 case DW_OP_deref_size:
4052 case DW_OP_pick:
4053 fprintf_filtered (stream, " %d", *data);
4054 ++data;
4055 break;
4056
4057 case DW_OP_plus_uconst:
4058 data = safe_read_uleb128 (data, end, &ul);
4059 fprintf_filtered (stream, " %s", pulongest (ul));
4060 break;
4061
4062 case DW_OP_skip:
4063 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4064 data += 2;
4065 fprintf_filtered (stream, " to %ld",
4066 (long) (data + l - start));
4067 break;
4068
4069 case DW_OP_bra:
4070 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4071 data += 2;
4072 fprintf_filtered (stream, " %ld",
4073 (long) (data + l - start));
4074 break;
4075
4076 case DW_OP_call2:
4077 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4078 data += 2;
4079 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4080 break;
4081
4082 case DW_OP_call4:
4083 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4084 data += 4;
4085 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4086 break;
4087
4088 case DW_OP_call_ref:
4089 ul = extract_unsigned_integer (data, offset_size,
4090 gdbarch_byte_order (arch));
4091 data += offset_size;
4092 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4093 break;
4094
4095 case DW_OP_piece:
4096 data = safe_read_uleb128 (data, end, &ul);
4097 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4098 break;
4099
4100 case DW_OP_bit_piece:
4101 {
4102 uint64_t offset;
4103
4104 data = safe_read_uleb128 (data, end, &ul);
4105 data = safe_read_uleb128 (data, end, &offset);
4106 fprintf_filtered (stream, " size %s offset %s (bits)",
4107 pulongest (ul), pulongest (offset));
4108 }
4109 break;
4110
4111 case DW_OP_GNU_implicit_pointer:
4112 {
4113 ul = extract_unsigned_integer (data, offset_size,
4114 gdbarch_byte_order (arch));
4115 data += offset_size;
4116
4117 data = safe_read_sleb128 (data, end, &l);
4118
4119 fprintf_filtered (stream, " DIE %s offset %s",
4120 phex_nz (ul, offset_size),
4121 plongest (l));
4122 }
4123 break;
4124
4125 case DW_OP_GNU_deref_type:
4126 {
4127 int addr_size = *data++;
4128 cu_offset offset;
4129 struct type *type;
4130
4131 data = safe_read_uleb128 (data, end, &ul);
4132 offset.cu_off = ul;
4133 type = dwarf2_get_die_type (offset, per_cu);
4134 fprintf_filtered (stream, "<");
4135 type_print (type, "", stream, -1);
4136 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4137 addr_size);
4138 }
4139 break;
4140
4141 case DW_OP_GNU_const_type:
4142 {
4143 cu_offset type_die;
4144 struct type *type;
4145
4146 data = safe_read_uleb128 (data, end, &ul);
4147 type_die.cu_off = ul;
4148 type = dwarf2_get_die_type (type_die, per_cu);
4149 fprintf_filtered (stream, "<");
4150 type_print (type, "", stream, -1);
4151 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4152 }
4153 break;
4154
4155 case DW_OP_GNU_regval_type:
4156 {
4157 uint64_t reg;
4158 cu_offset type_die;
4159 struct type *type;
4160
4161 data = safe_read_uleb128 (data, end, &reg);
4162 data = safe_read_uleb128 (data, end, &ul);
4163 type_die.cu_off = ul;
4164
4165 type = dwarf2_get_die_type (type_die, per_cu);
4166 fprintf_filtered (stream, "<");
4167 type_print (type, "", stream, -1);
4168 fprintf_filtered (stream, " [0x%s]> [$%s]",
4169 phex_nz (type_die.cu_off, 0),
4170 locexpr_regname (arch, reg));
4171 }
4172 break;
4173
4174 case DW_OP_GNU_convert:
4175 case DW_OP_GNU_reinterpret:
4176 {
4177 cu_offset type_die;
4178
4179 data = safe_read_uleb128 (data, end, &ul);
4180 type_die.cu_off = ul;
4181
4182 if (type_die.cu_off == 0)
4183 fprintf_filtered (stream, "<0>");
4184 else
4185 {
4186 struct type *type;
4187
4188 type = dwarf2_get_die_type (type_die, per_cu);
4189 fprintf_filtered (stream, "<");
4190 type_print (type, "", stream, -1);
4191 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4192 }
4193 }
4194 break;
4195
4196 case DW_OP_GNU_entry_value:
4197 data = safe_read_uleb128 (data, end, &ul);
4198 fputc_filtered ('\n', stream);
4199 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4200 start, data, data + ul, indent + 2,
4201 all, per_cu);
4202 data += ul;
4203 continue;
4204
4205 case DW_OP_GNU_parameter_ref:
4206 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4207 data += 4;
4208 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4209 break;
4210
4211 case DW_OP_GNU_addr_index:
4212 data = safe_read_uleb128 (data, end, &ul);
4213 ul = dwarf2_read_addr_index (per_cu, ul);
4214 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4215 break;
4216 case DW_OP_GNU_const_index:
4217 data = safe_read_uleb128 (data, end, &ul);
4218 ul = dwarf2_read_addr_index (per_cu, ul);
4219 fprintf_filtered (stream, " %s", pulongest (ul));
4220 break;
4221 }
4222
4223 fprintf_filtered (stream, "\n");
4224 }
4225
4226 return data;
4227 }
4228
4229 /* Describe a single location, which may in turn consist of multiple
4230 pieces. */
4231
4232 static void
4233 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4234 struct ui_file *stream,
4235 const gdb_byte *data, size_t size,
4236 struct objfile *objfile, unsigned int addr_size,
4237 int offset_size, struct dwarf2_per_cu_data *per_cu)
4238 {
4239 const gdb_byte *end = data + size;
4240 int first_piece = 1, bad = 0;
4241
4242 while (data < end)
4243 {
4244 const gdb_byte *here = data;
4245 int disassemble = 1;
4246
4247 if (first_piece)
4248 first_piece = 0;
4249 else
4250 fprintf_filtered (stream, _(", and "));
4251
4252 if (!dwarf_always_disassemble)
4253 {
4254 data = locexpr_describe_location_piece (symbol, stream,
4255 addr, objfile, per_cu,
4256 data, end, addr_size);
4257 /* If we printed anything, or if we have an empty piece,
4258 then don't disassemble. */
4259 if (data != here
4260 || data[0] == DW_OP_piece
4261 || data[0] == DW_OP_bit_piece)
4262 disassemble = 0;
4263 }
4264 if (disassemble)
4265 {
4266 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4267 data = disassemble_dwarf_expression (stream,
4268 get_objfile_arch (objfile),
4269 addr_size, offset_size, data,
4270 data, end, 0,
4271 dwarf_always_disassemble,
4272 per_cu);
4273 }
4274
4275 if (data < end)
4276 {
4277 int empty = data == here;
4278
4279 if (disassemble)
4280 fprintf_filtered (stream, " ");
4281 if (data[0] == DW_OP_piece)
4282 {
4283 uint64_t bytes;
4284
4285 data = safe_read_uleb128 (data + 1, end, &bytes);
4286
4287 if (empty)
4288 fprintf_filtered (stream, _("an empty %s-byte piece"),
4289 pulongest (bytes));
4290 else
4291 fprintf_filtered (stream, _(" [%s-byte piece]"),
4292 pulongest (bytes));
4293 }
4294 else if (data[0] == DW_OP_bit_piece)
4295 {
4296 uint64_t bits, offset;
4297
4298 data = safe_read_uleb128 (data + 1, end, &bits);
4299 data = safe_read_uleb128 (data, end, &offset);
4300
4301 if (empty)
4302 fprintf_filtered (stream,
4303 _("an empty %s-bit piece"),
4304 pulongest (bits));
4305 else
4306 fprintf_filtered (stream,
4307 _(" [%s-bit piece, offset %s bits]"),
4308 pulongest (bits), pulongest (offset));
4309 }
4310 else
4311 {
4312 bad = 1;
4313 break;
4314 }
4315 }
4316 }
4317
4318 if (bad || data > end)
4319 error (_("Corrupted DWARF2 expression for \"%s\"."),
4320 SYMBOL_PRINT_NAME (symbol));
4321 }
4322
4323 /* Print a natural-language description of SYMBOL to STREAM. This
4324 version is for a symbol with a single location. */
4325
4326 static void
4327 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4328 struct ui_file *stream)
4329 {
4330 struct dwarf2_locexpr_baton *dlbaton
4331 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4332 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4333 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4334 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4335
4336 locexpr_describe_location_1 (symbol, addr, stream,
4337 dlbaton->data, dlbaton->size,
4338 objfile, addr_size, offset_size,
4339 dlbaton->per_cu);
4340 }
4341
4342 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4343 any necessary bytecode in AX. */
4344
4345 static void
4346 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4347 struct agent_expr *ax, struct axs_value *value)
4348 {
4349 struct dwarf2_locexpr_baton *dlbaton
4350 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4351 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4352
4353 if (dlbaton->size == 0)
4354 value->optimized_out = 1;
4355 else
4356 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4357 dlbaton->data, dlbaton->data + dlbaton->size,
4358 dlbaton->per_cu);
4359 }
4360
4361 /* symbol_computed_ops 'generate_c_location' method. */
4362
4363 static void
4364 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4365 struct gdbarch *gdbarch,
4366 unsigned char *registers_used,
4367 CORE_ADDR pc, const char *result_name)
4368 {
4369 struct dwarf2_locexpr_baton *dlbaton
4370 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4371 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4372
4373 if (dlbaton->size == 0)
4374 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4375
4376 compile_dwarf_expr_to_c (stream, result_name,
4377 sym, pc, gdbarch, registers_used, addr_size,
4378 dlbaton->data, dlbaton->data + dlbaton->size,
4379 dlbaton->per_cu);
4380 }
4381
4382 /* The set of location functions used with the DWARF-2 expression
4383 evaluator. */
4384 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4385 locexpr_read_variable,
4386 locexpr_read_variable_at_entry,
4387 locexpr_get_symbol_read_needs,
4388 locexpr_describe_location,
4389 0, /* location_has_loclist */
4390 locexpr_tracepoint_var_ref,
4391 locexpr_generate_c_location
4392 };
4393
4394
4395 /* Wrapper functions for location lists. These generally find
4396 the appropriate location expression and call something above. */
4397
4398 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4399 evaluator to calculate the location. */
4400 static struct value *
4401 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4402 {
4403 struct dwarf2_loclist_baton *dlbaton
4404 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4405 struct value *val;
4406 const gdb_byte *data;
4407 size_t size;
4408 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4409
4410 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4411 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4412 dlbaton->per_cu);
4413
4414 return val;
4415 }
4416
4417 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4418 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4419 will be thrown.
4420
4421 Function always returns non-NULL value, it may be marked optimized out if
4422 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4423 if it cannot resolve the parameter for any reason. */
4424
4425 static struct value *
4426 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4427 {
4428 struct dwarf2_loclist_baton *dlbaton
4429 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4430 const gdb_byte *data;
4431 size_t size;
4432 CORE_ADDR pc;
4433
4434 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4435 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4436
4437 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4438 if (data == NULL)
4439 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4440
4441 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4442 }
4443
4444 /* Implementation of get_symbol_read_needs from
4445 symbol_computed_ops. */
4446
4447 static enum symbol_needs_kind
4448 loclist_symbol_needs (struct symbol *symbol)
4449 {
4450 /* If there's a location list, then assume we need to have a frame
4451 to choose the appropriate location expression. With tracking of
4452 global variables this is not necessarily true, but such tracking
4453 is disabled in GCC at the moment until we figure out how to
4454 represent it. */
4455
4456 return SYMBOL_NEEDS_FRAME;
4457 }
4458
4459 /* Print a natural-language description of SYMBOL to STREAM. This
4460 version applies when there is a list of different locations, each
4461 with a specified address range. */
4462
4463 static void
4464 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4465 struct ui_file *stream)
4466 {
4467 struct dwarf2_loclist_baton *dlbaton
4468 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4469 const gdb_byte *loc_ptr, *buf_end;
4470 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4473 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4474 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4475 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4476 /* Adjust base_address for relocatable objects. */
4477 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4478 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4479 int done = 0;
4480
4481 loc_ptr = dlbaton->data;
4482 buf_end = dlbaton->data + dlbaton->size;
4483
4484 fprintf_filtered (stream, _("multi-location:\n"));
4485
4486 /* Iterate through locations until we run out. */
4487 while (!done)
4488 {
4489 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4490 int length;
4491 enum debug_loc_kind kind;
4492 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4493
4494 if (dlbaton->from_dwo)
4495 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4496 loc_ptr, buf_end, &new_ptr,
4497 &low, &high, byte_order);
4498 else
4499 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4500 &low, &high,
4501 byte_order, addr_size,
4502 signed_addr_p);
4503 loc_ptr = new_ptr;
4504 switch (kind)
4505 {
4506 case DEBUG_LOC_END_OF_LIST:
4507 done = 1;
4508 continue;
4509 case DEBUG_LOC_BASE_ADDRESS:
4510 base_address = high + base_offset;
4511 fprintf_filtered (stream, _(" Base address %s"),
4512 paddress (gdbarch, base_address));
4513 continue;
4514 case DEBUG_LOC_START_END:
4515 case DEBUG_LOC_START_LENGTH:
4516 break;
4517 case DEBUG_LOC_BUFFER_OVERFLOW:
4518 case DEBUG_LOC_INVALID_ENTRY:
4519 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4520 SYMBOL_PRINT_NAME (symbol));
4521 default:
4522 gdb_assert_not_reached ("bad debug_loc_kind");
4523 }
4524
4525 /* Otherwise, a location expression entry. */
4526 low += base_address;
4527 high += base_address;
4528
4529 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4530 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4531
4532 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4533 loc_ptr += 2;
4534
4535 /* (It would improve readability to print only the minimum
4536 necessary digits of the second number of the range.) */
4537 fprintf_filtered (stream, _(" Range %s-%s: "),
4538 paddress (gdbarch, low), paddress (gdbarch, high));
4539
4540 /* Now describe this particular location. */
4541 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4542 objfile, addr_size, offset_size,
4543 dlbaton->per_cu);
4544
4545 fprintf_filtered (stream, "\n");
4546
4547 loc_ptr += length;
4548 }
4549 }
4550
4551 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4552 any necessary bytecode in AX. */
4553 static void
4554 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4555 struct agent_expr *ax, struct axs_value *value)
4556 {
4557 struct dwarf2_loclist_baton *dlbaton
4558 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4559 const gdb_byte *data;
4560 size_t size;
4561 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4562
4563 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4564 if (size == 0)
4565 value->optimized_out = 1;
4566 else
4567 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4568 dlbaton->per_cu);
4569 }
4570
4571 /* symbol_computed_ops 'generate_c_location' method. */
4572
4573 static void
4574 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4575 struct gdbarch *gdbarch,
4576 unsigned char *registers_used,
4577 CORE_ADDR pc, const char *result_name)
4578 {
4579 struct dwarf2_loclist_baton *dlbaton
4580 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4581 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4582 const gdb_byte *data;
4583 size_t size;
4584
4585 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4586 if (size == 0)
4587 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4588
4589 compile_dwarf_expr_to_c (stream, result_name,
4590 sym, pc, gdbarch, registers_used, addr_size,
4591 data, data + size,
4592 dlbaton->per_cu);
4593 }
4594
4595 /* The set of location functions used with the DWARF-2 expression
4596 evaluator and location lists. */
4597 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4598 loclist_read_variable,
4599 loclist_read_variable_at_entry,
4600 loclist_symbol_needs,
4601 loclist_describe_location,
4602 1, /* location_has_loclist */
4603 loclist_tracepoint_var_ref,
4604 loclist_generate_c_location
4605 };
4606
4607 /* Provide a prototype to silence -Wmissing-prototypes. */
4608 extern initialize_file_ftype _initialize_dwarf2loc;
4609
4610 void
4611 _initialize_dwarf2loc (void)
4612 {
4613 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4614 &entry_values_debug,
4615 _("Set entry values and tail call frames "
4616 "debugging."),
4617 _("Show entry values and tail call frames "
4618 "debugging."),
4619 _("When non-zero, the process of determining "
4620 "parameter values from function entry point "
4621 "and tail call frames will be printed."),
4622 NULL,
4623 show_entry_values_debug,
4624 &setdebuglist, &showdebuglist);
4625
4626 #if GDB_SELF_TEST
4627 register_self_test (selftests::copy_bitwise_tests);
4628 #endif
4629 }
This page took 0.126404 seconds and 4 git commands to generate.