87a4fb9f4e959096b52c0e82323326172402d726
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include <algorithm>
42 #include <vector>
43
44 extern int dwarf_always_disassemble;
45
46 extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
47
48 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
49 struct frame_info *frame,
50 const gdb_byte *data,
51 size_t size,
52 struct dwarf2_per_cu_data *per_cu,
53 LONGEST byte_offset);
54
55 /* Until these have formal names, we define these here.
56 ref: http://gcc.gnu.org/wiki/DebugFission
57 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
58 and is then followed by data specific to that entry. */
59
60 enum debug_loc_kind
61 {
62 /* Indicates the end of the list of entries. */
63 DEBUG_LOC_END_OF_LIST = 0,
64
65 /* This is followed by an unsigned LEB128 number that is an index into
66 .debug_addr and specifies the base address for all following entries. */
67 DEBUG_LOC_BASE_ADDRESS = 1,
68
69 /* This is followed by two unsigned LEB128 numbers that are indices into
70 .debug_addr and specify the beginning and ending addresses, and then
71 a normal location expression as in .debug_loc. */
72 DEBUG_LOC_START_END = 2,
73
74 /* This is followed by an unsigned LEB128 number that is an index into
75 .debug_addr and specifies the beginning address, and a 4 byte unsigned
76 number that specifies the length, and then a normal location expression
77 as in .debug_loc. */
78 DEBUG_LOC_START_LENGTH = 3,
79
80 /* An internal value indicating there is insufficient data. */
81 DEBUG_LOC_BUFFER_OVERFLOW = -1,
82
83 /* An internal value indicating an invalid kind of entry was found. */
84 DEBUG_LOC_INVALID_ENTRY = -2
85 };
86
87 /* Helper function which throws an error if a synthetic pointer is
88 invalid. */
89
90 static void
91 invalid_synthetic_pointer (void)
92 {
93 error (_("access outside bounds of object "
94 "referenced via synthetic pointer"));
95 }
96
97 /* Decode the addresses in a non-dwo .debug_loc entry.
98 A pointer to the next byte to examine is returned in *NEW_PTR.
99 The encoded low,high addresses are return in *LOW,*HIGH.
100 The result indicates the kind of entry found. */
101
102 static enum debug_loc_kind
103 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
104 const gdb_byte **new_ptr,
105 CORE_ADDR *low, CORE_ADDR *high,
106 enum bfd_endian byte_order,
107 unsigned int addr_size,
108 int signed_addr_p)
109 {
110 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
111
112 if (buf_end - loc_ptr < 2 * addr_size)
113 return DEBUG_LOC_BUFFER_OVERFLOW;
114
115 if (signed_addr_p)
116 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
117 else
118 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
119 loc_ptr += addr_size;
120
121 if (signed_addr_p)
122 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
123 else
124 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
125 loc_ptr += addr_size;
126
127 *new_ptr = loc_ptr;
128
129 /* A base-address-selection entry. */
130 if ((*low & base_mask) == base_mask)
131 return DEBUG_LOC_BASE_ADDRESS;
132
133 /* An end-of-list entry. */
134 if (*low == 0 && *high == 0)
135 return DEBUG_LOC_END_OF_LIST;
136
137 return DEBUG_LOC_START_END;
138 }
139
140 /* Decode the addresses in .debug_loc.dwo entry.
141 A pointer to the next byte to examine is returned in *NEW_PTR.
142 The encoded low,high addresses are return in *LOW,*HIGH.
143 The result indicates the kind of entry found. */
144
145 static enum debug_loc_kind
146 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
147 const gdb_byte *loc_ptr,
148 const gdb_byte *buf_end,
149 const gdb_byte **new_ptr,
150 CORE_ADDR *low, CORE_ADDR *high,
151 enum bfd_endian byte_order)
152 {
153 uint64_t low_index, high_index;
154
155 if (loc_ptr == buf_end)
156 return DEBUG_LOC_BUFFER_OVERFLOW;
157
158 switch (*loc_ptr++)
159 {
160 case DEBUG_LOC_END_OF_LIST:
161 *new_ptr = loc_ptr;
162 return DEBUG_LOC_END_OF_LIST;
163 case DEBUG_LOC_BASE_ADDRESS:
164 *low = 0;
165 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
166 if (loc_ptr == NULL)
167 return DEBUG_LOC_BUFFER_OVERFLOW;
168 *high = dwarf2_read_addr_index (per_cu, high_index);
169 *new_ptr = loc_ptr;
170 return DEBUG_LOC_BASE_ADDRESS;
171 case DEBUG_LOC_START_END:
172 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
173 if (loc_ptr == NULL)
174 return DEBUG_LOC_BUFFER_OVERFLOW;
175 *low = dwarf2_read_addr_index (per_cu, low_index);
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *high = dwarf2_read_addr_index (per_cu, high_index);
180 *new_ptr = loc_ptr;
181 return DEBUG_LOC_START_END;
182 case DEBUG_LOC_START_LENGTH:
183 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
184 if (loc_ptr == NULL)
185 return DEBUG_LOC_BUFFER_OVERFLOW;
186 *low = dwarf2_read_addr_index (per_cu, low_index);
187 if (loc_ptr + 4 > buf_end)
188 return DEBUG_LOC_BUFFER_OVERFLOW;
189 *high = *low;
190 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
191 *new_ptr = loc_ptr + 4;
192 return DEBUG_LOC_START_LENGTH;
193 default:
194 return DEBUG_LOC_INVALID_ENTRY;
195 }
196 }
197
198 /* A function for dealing with location lists. Given a
199 symbol baton (BATON) and a pc value (PC), find the appropriate
200 location expression, set *LOCEXPR_LENGTH, and return a pointer
201 to the beginning of the expression. Returns NULL on failure.
202
203 For now, only return the first matching location expression; there
204 can be more than one in the list. */
205
206 const gdb_byte *
207 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
208 size_t *locexpr_length, CORE_ADDR pc)
209 {
210 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
212 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
213 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
214 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
215 /* Adjust base_address for relocatable objects. */
216 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
217 CORE_ADDR base_address = baton->base_address + base_offset;
218 const gdb_byte *loc_ptr, *buf_end;
219
220 loc_ptr = baton->data;
221 buf_end = baton->data + baton->size;
222
223 while (1)
224 {
225 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
226 int length;
227 enum debug_loc_kind kind;
228 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
229
230 if (baton->from_dwo)
231 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
232 loc_ptr, buf_end, &new_ptr,
233 &low, &high, byte_order);
234 else
235 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
236 &low, &high,
237 byte_order, addr_size,
238 signed_addr_p);
239 loc_ptr = new_ptr;
240 switch (kind)
241 {
242 case DEBUG_LOC_END_OF_LIST:
243 *locexpr_length = 0;
244 return NULL;
245 case DEBUG_LOC_BASE_ADDRESS:
246 base_address = high + base_offset;
247 continue;
248 case DEBUG_LOC_START_END:
249 case DEBUG_LOC_START_LENGTH:
250 break;
251 case DEBUG_LOC_BUFFER_OVERFLOW:
252 case DEBUG_LOC_INVALID_ENTRY:
253 error (_("dwarf2_find_location_expression: "
254 "Corrupted DWARF expression."));
255 default:
256 gdb_assert_not_reached ("bad debug_loc_kind");
257 }
258
259 /* Otherwise, a location expression entry.
260 If the entry is from a DWO, don't add base address: the entry is from
261 .debug_addr which already has the DWARF "base address". We still add
262 base_offset in case we're debugging a PIE executable. */
263 if (baton->from_dwo)
264 {
265 low += base_offset;
266 high += base_offset;
267 }
268 else
269 {
270 low += base_address;
271 high += base_address;
272 }
273
274 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
275 loc_ptr += 2;
276
277 if (low == high && pc == low)
278 {
279 /* This is entry PC record present only at entry point
280 of a function. Verify it is really the function entry point. */
281
282 const struct block *pc_block = block_for_pc (pc);
283 struct symbol *pc_func = NULL;
284
285 if (pc_block)
286 pc_func = block_linkage_function (pc_block);
287
288 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
289 {
290 *locexpr_length = length;
291 return loc_ptr;
292 }
293 }
294
295 if (pc >= low && pc < high)
296 {
297 *locexpr_length = length;
298 return loc_ptr;
299 }
300
301 loc_ptr += length;
302 }
303 }
304
305 /* This is the baton used when performing dwarf2 expression
306 evaluation. */
307 struct dwarf_expr_baton
308 {
309 struct frame_info *frame;
310 struct dwarf2_per_cu_data *per_cu;
311 CORE_ADDR obj_address;
312 };
313
314 /* Helper functions for dwarf2_evaluate_loc_desc. */
315
316 /* Using the frame specified in BATON, return the value of register
317 REGNUM, treated as a pointer. */
318 static CORE_ADDR
319 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
320 {
321 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
322 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
323 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
324
325 return address_from_register (regnum, debaton->frame);
326 }
327
328 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
329
330 static struct value *
331 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
332 {
333 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
334 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
335 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
336
337 return value_from_register (type, regnum, debaton->frame);
338 }
339
340 /* Read memory at ADDR (length LEN) into BUF. */
341
342 static void
343 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
344 {
345 read_memory (addr, buf, len);
346 }
347
348 /* Using the frame specified in BATON, find the location expression
349 describing the frame base. Return a pointer to it in START and
350 its length in LENGTH. */
351 static void
352 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
353 {
354 /* FIXME: cagney/2003-03-26: This code should be using
355 get_frame_base_address(), and then implement a dwarf2 specific
356 this_base method. */
357 struct symbol *framefunc;
358 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
359 const struct block *bl = get_frame_block (debaton->frame, NULL);
360
361 if (bl == NULL)
362 error (_("frame address is not available."));
363
364 /* Use block_linkage_function, which returns a real (not inlined)
365 function, instead of get_frame_function, which may return an
366 inlined function. */
367 framefunc = block_linkage_function (bl);
368
369 /* If we found a frame-relative symbol then it was certainly within
370 some function associated with a frame. If we can't find the frame,
371 something has gone wrong. */
372 gdb_assert (framefunc != NULL);
373
374 func_get_frame_base_dwarf_block (framefunc,
375 get_frame_address_in_block (debaton->frame),
376 start, length);
377 }
378
379 /* Implement find_frame_base_location method for LOC_BLOCK functions using
380 DWARF expression for its DW_AT_frame_base. */
381
382 static void
383 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
384 const gdb_byte **start, size_t *length)
385 {
386 struct dwarf2_locexpr_baton *symbaton
387 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
388
389 *length = symbaton->size;
390 *start = symbaton->data;
391 }
392
393 /* Implement the struct symbol_block_ops::get_frame_base method for
394 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
395
396 static CORE_ADDR
397 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
398 {
399 struct gdbarch *gdbarch;
400 struct type *type;
401 struct dwarf2_locexpr_baton *dlbaton;
402 const gdb_byte *start;
403 size_t length;
404 struct value *result;
405
406 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
407 Thus, it's supposed to provide the find_frame_base_location method as
408 well. */
409 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
410
411 gdbarch = get_frame_arch (frame);
412 type = builtin_type (gdbarch)->builtin_data_ptr;
413 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
414
415 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
416 (framefunc, get_frame_pc (frame), &start, &length);
417 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
418 dlbaton->per_cu);
419
420 /* The DW_AT_frame_base attribute contains a location description which
421 computes the base address itself. However, the call to
422 dwarf2_evaluate_loc_desc returns a value representing a variable at
423 that address. The frame base address is thus this variable's
424 address. */
425 return value_address (result);
426 }
427
428 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
429 function uses DWARF expression for its DW_AT_frame_base. */
430
431 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
432 {
433 locexpr_find_frame_base_location,
434 locexpr_get_frame_base
435 };
436
437 /* Implement find_frame_base_location method for LOC_BLOCK functions using
438 DWARF location list for its DW_AT_frame_base. */
439
440 static void
441 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
442 const gdb_byte **start, size_t *length)
443 {
444 struct dwarf2_loclist_baton *symbaton
445 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
446
447 *start = dwarf2_find_location_expression (symbaton, length, pc);
448 }
449
450 /* Implement the struct symbol_block_ops::get_frame_base method for
451 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
452
453 static CORE_ADDR
454 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
455 {
456 struct gdbarch *gdbarch;
457 struct type *type;
458 struct dwarf2_loclist_baton *dlbaton;
459 const gdb_byte *start;
460 size_t length;
461 struct value *result;
462
463 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
464 Thus, it's supposed to provide the find_frame_base_location method as
465 well. */
466 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
467
468 gdbarch = get_frame_arch (frame);
469 type = builtin_type (gdbarch)->builtin_data_ptr;
470 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
471
472 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
473 (framefunc, get_frame_pc (frame), &start, &length);
474 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
475 dlbaton->per_cu);
476
477 /* The DW_AT_frame_base attribute contains a location description which
478 computes the base address itself. However, the call to
479 dwarf2_evaluate_loc_desc returns a value representing a variable at
480 that address. The frame base address is thus this variable's
481 address. */
482 return value_address (result);
483 }
484
485 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
486 function uses DWARF location list for its DW_AT_frame_base. */
487
488 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
489 {
490 loclist_find_frame_base_location,
491 loclist_get_frame_base
492 };
493
494 /* See dwarf2loc.h. */
495
496 void
497 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
498 const gdb_byte **start, size_t *length)
499 {
500 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
501 {
502 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
503
504 ops_block->find_frame_base_location (framefunc, pc, start, length);
505 }
506 else
507 *length = 0;
508
509 if (*length == 0)
510 error (_("Could not find the frame base for \"%s\"."),
511 SYMBOL_NATURAL_NAME (framefunc));
512 }
513
514 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
515 the frame in BATON. */
516
517 static CORE_ADDR
518 dwarf_expr_frame_cfa (void *baton)
519 {
520 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
521
522 return dwarf2_frame_cfa (debaton->frame);
523 }
524
525 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
526 the frame in BATON. */
527
528 static CORE_ADDR
529 dwarf_expr_frame_pc (void *baton)
530 {
531 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
532
533 return get_frame_address_in_block (debaton->frame);
534 }
535
536 /* Using the objfile specified in BATON, find the address for the
537 current thread's thread-local storage with offset OFFSET. */
538 static CORE_ADDR
539 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
540 {
541 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
542 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
543
544 return target_translate_tls_address (objfile, offset);
545 }
546
547 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
548 current CU (as is PER_CU). State of the CTX is not affected by the
549 call and return. */
550
551 static void
552 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
553 struct dwarf2_per_cu_data *per_cu,
554 CORE_ADDR (*get_frame_pc) (void *baton),
555 void *baton)
556 {
557 struct dwarf2_locexpr_baton block;
558
559 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
560
561 /* DW_OP_call_ref is currently not supported. */
562 gdb_assert (block.per_cu == per_cu);
563
564 dwarf_expr_eval (ctx, block.data, block.size);
565 }
566
567 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
568
569 static void
570 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
571 {
572 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
573
574 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
575 ctx->funcs->get_frame_pc, ctx->baton);
576 }
577
578 /* Callback function for dwarf2_evaluate_loc_desc. */
579
580 static struct type *
581 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
582 cu_offset die_offset)
583 {
584 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
585
586 return dwarf2_get_die_type (die_offset, debaton->per_cu);
587 }
588
589 /* See dwarf2loc.h. */
590
591 unsigned int entry_values_debug = 0;
592
593 /* Helper to set entry_values_debug. */
594
595 static void
596 show_entry_values_debug (struct ui_file *file, int from_tty,
597 struct cmd_list_element *c, const char *value)
598 {
599 fprintf_filtered (file,
600 _("Entry values and tail call frames debugging is %s.\n"),
601 value);
602 }
603
604 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
605 CALLER_FRAME (for registers) can be NULL if it is not known. This function
606 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
607
608 static CORE_ADDR
609 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
610 struct call_site *call_site,
611 struct frame_info *caller_frame)
612 {
613 switch (FIELD_LOC_KIND (call_site->target))
614 {
615 case FIELD_LOC_KIND_DWARF_BLOCK:
616 {
617 struct dwarf2_locexpr_baton *dwarf_block;
618 struct value *val;
619 struct type *caller_core_addr_type;
620 struct gdbarch *caller_arch;
621
622 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
623 if (dwarf_block == NULL)
624 {
625 struct bound_minimal_symbol msym;
626
627 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
628 throw_error (NO_ENTRY_VALUE_ERROR,
629 _("DW_AT_GNU_call_site_target is not specified "
630 "at %s in %s"),
631 paddress (call_site_gdbarch, call_site->pc),
632 (msym.minsym == NULL ? "???"
633 : MSYMBOL_PRINT_NAME (msym.minsym)));
634
635 }
636 if (caller_frame == NULL)
637 {
638 struct bound_minimal_symbol msym;
639
640 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
641 throw_error (NO_ENTRY_VALUE_ERROR,
642 _("DW_AT_GNU_call_site_target DWARF block resolving "
643 "requires known frame which is currently not "
644 "available at %s in %s"),
645 paddress (call_site_gdbarch, call_site->pc),
646 (msym.minsym == NULL ? "???"
647 : MSYMBOL_PRINT_NAME (msym.minsym)));
648
649 }
650 caller_arch = get_frame_arch (caller_frame);
651 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
652 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
653 dwarf_block->data, dwarf_block->size,
654 dwarf_block->per_cu);
655 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
656 location. */
657 if (VALUE_LVAL (val) == lval_memory)
658 return value_address (val);
659 else
660 return value_as_address (val);
661 }
662
663 case FIELD_LOC_KIND_PHYSNAME:
664 {
665 const char *physname;
666 struct bound_minimal_symbol msym;
667
668 physname = FIELD_STATIC_PHYSNAME (call_site->target);
669
670 /* Handle both the mangled and demangled PHYSNAME. */
671 msym = lookup_minimal_symbol (physname, NULL, NULL);
672 if (msym.minsym == NULL)
673 {
674 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
675 throw_error (NO_ENTRY_VALUE_ERROR,
676 _("Cannot find function \"%s\" for a call site target "
677 "at %s in %s"),
678 physname, paddress (call_site_gdbarch, call_site->pc),
679 (msym.minsym == NULL ? "???"
680 : MSYMBOL_PRINT_NAME (msym.minsym)));
681
682 }
683 return BMSYMBOL_VALUE_ADDRESS (msym);
684 }
685
686 case FIELD_LOC_KIND_PHYSADDR:
687 return FIELD_STATIC_PHYSADDR (call_site->target);
688
689 default:
690 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
691 }
692 }
693
694 /* Convert function entry point exact address ADDR to the function which is
695 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
696 NO_ENTRY_VALUE_ERROR otherwise. */
697
698 static struct symbol *
699 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
700 {
701 struct symbol *sym = find_pc_function (addr);
702 struct type *type;
703
704 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
705 throw_error (NO_ENTRY_VALUE_ERROR,
706 _("DW_TAG_GNU_call_site resolving failed to find function "
707 "name for address %s"),
708 paddress (gdbarch, addr));
709
710 type = SYMBOL_TYPE (sym);
711 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
712 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
713
714 return sym;
715 }
716
717 /* Verify function with entry point exact address ADDR can never call itself
718 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
719 can call itself via tail calls.
720
721 If a funtion can tail call itself its entry value based parameters are
722 unreliable. There is no verification whether the value of some/all
723 parameters is unchanged through the self tail call, we expect if there is
724 a self tail call all the parameters can be modified. */
725
726 static void
727 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
728 {
729 struct obstack addr_obstack;
730 struct cleanup *old_chain;
731 CORE_ADDR addr;
732
733 /* Track here CORE_ADDRs which were already visited. */
734 htab_t addr_hash;
735
736 /* The verification is completely unordered. Track here function addresses
737 which still need to be iterated. */
738 VEC (CORE_ADDR) *todo = NULL;
739
740 obstack_init (&addr_obstack);
741 old_chain = make_cleanup_obstack_free (&addr_obstack);
742 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
743 &addr_obstack, hashtab_obstack_allocate,
744 NULL);
745 make_cleanup_htab_delete (addr_hash);
746
747 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
748
749 VEC_safe_push (CORE_ADDR, todo, verify_addr);
750 while (!VEC_empty (CORE_ADDR, todo))
751 {
752 struct symbol *func_sym;
753 struct call_site *call_site;
754
755 addr = VEC_pop (CORE_ADDR, todo);
756
757 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
758
759 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
760 call_site; call_site = call_site->tail_call_next)
761 {
762 CORE_ADDR target_addr;
763 void **slot;
764
765 /* CALLER_FRAME with registers is not available for tail-call jumped
766 frames. */
767 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
768
769 if (target_addr == verify_addr)
770 {
771 struct bound_minimal_symbol msym;
772
773 msym = lookup_minimal_symbol_by_pc (verify_addr);
774 throw_error (NO_ENTRY_VALUE_ERROR,
775 _("DW_OP_GNU_entry_value resolving has found "
776 "function \"%s\" at %s can call itself via tail "
777 "calls"),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)),
780 paddress (gdbarch, verify_addr));
781 }
782
783 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
784 if (*slot == NULL)
785 {
786 *slot = obstack_copy (&addr_obstack, &target_addr,
787 sizeof (target_addr));
788 VEC_safe_push (CORE_ADDR, todo, target_addr);
789 }
790 }
791 }
792
793 do_cleanups (old_chain);
794 }
795
796 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
797 ENTRY_VALUES_DEBUG. */
798
799 static void
800 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
801 {
802 CORE_ADDR addr = call_site->pc;
803 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
804
805 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
806 (msym.minsym == NULL ? "???"
807 : MSYMBOL_PRINT_NAME (msym.minsym)));
808
809 }
810
811 /* vec.h needs single word type name, typedef it. */
812 typedef struct call_site *call_sitep;
813
814 /* Define VEC (call_sitep) functions. */
815 DEF_VEC_P (call_sitep);
816
817 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
818 only top callers and bottom callees which are present in both. GDBARCH is
819 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
820 no remaining possibilities to provide unambiguous non-trivial result.
821 RESULTP should point to NULL on the first (initialization) call. Caller is
822 responsible for xfree of any RESULTP data. */
823
824 static void
825 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
826 VEC (call_sitep) *chain)
827 {
828 struct call_site_chain *result = *resultp;
829 long length = VEC_length (call_sitep, chain);
830 int callers, callees, idx;
831
832 if (result == NULL)
833 {
834 /* Create the initial chain containing all the passed PCs. */
835
836 result = ((struct call_site_chain *)
837 xmalloc (sizeof (*result)
838 + sizeof (*result->call_site) * (length - 1)));
839 result->length = length;
840 result->callers = result->callees = length;
841 if (!VEC_empty (call_sitep, chain))
842 memcpy (result->call_site, VEC_address (call_sitep, chain),
843 sizeof (*result->call_site) * length);
844 *resultp = result;
845
846 if (entry_values_debug)
847 {
848 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
849 for (idx = 0; idx < length; idx++)
850 tailcall_dump (gdbarch, result->call_site[idx]);
851 fputc_unfiltered ('\n', gdb_stdlog);
852 }
853
854 return;
855 }
856
857 if (entry_values_debug)
858 {
859 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
860 for (idx = 0; idx < length; idx++)
861 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
862 fputc_unfiltered ('\n', gdb_stdlog);
863 }
864
865 /* Intersect callers. */
866
867 callers = std::min ((long) result->callers, length);
868 for (idx = 0; idx < callers; idx++)
869 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
870 {
871 result->callers = idx;
872 break;
873 }
874
875 /* Intersect callees. */
876
877 callees = std::min ((long) result->callees, length);
878 for (idx = 0; idx < callees; idx++)
879 if (result->call_site[result->length - 1 - idx]
880 != VEC_index (call_sitep, chain, length - 1 - idx))
881 {
882 result->callees = idx;
883 break;
884 }
885
886 if (entry_values_debug)
887 {
888 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
889 for (idx = 0; idx < result->callers; idx++)
890 tailcall_dump (gdbarch, result->call_site[idx]);
891 fputs_unfiltered (" |", gdb_stdlog);
892 for (idx = 0; idx < result->callees; idx++)
893 tailcall_dump (gdbarch, result->call_site[result->length
894 - result->callees + idx]);
895 fputc_unfiltered ('\n', gdb_stdlog);
896 }
897
898 if (result->callers == 0 && result->callees == 0)
899 {
900 /* There are no common callers or callees. It could be also a direct
901 call (which has length 0) with ambiguous possibility of an indirect
902 call - CALLERS == CALLEES == 0 is valid during the first allocation
903 but any subsequence processing of such entry means ambiguity. */
904 xfree (result);
905 *resultp = NULL;
906 return;
907 }
908
909 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
910 PC again. In such case there must be two different code paths to reach
911 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
912 gdb_assert (result->callers + result->callees <= result->length);
913 }
914
915 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
916 assumed frames between them use GDBARCH. Use depth first search so we can
917 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
918 would have needless GDB stack overhead. Caller is responsible for xfree of
919 the returned result. Any unreliability results in thrown
920 NO_ENTRY_VALUE_ERROR. */
921
922 static struct call_site_chain *
923 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
924 CORE_ADDR callee_pc)
925 {
926 CORE_ADDR save_callee_pc = callee_pc;
927 struct obstack addr_obstack;
928 struct cleanup *back_to_retval, *back_to_workdata;
929 struct call_site_chain *retval = NULL;
930 struct call_site *call_site;
931
932 /* Mark CALL_SITEs so we do not visit the same ones twice. */
933 htab_t addr_hash;
934
935 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
936 call_site nor any possible call_site at CALLEE_PC's function is there.
937 Any CALL_SITE in CHAIN will be iterated to its siblings - via
938 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
939 VEC (call_sitep) *chain = NULL;
940
941 /* We are not interested in the specific PC inside the callee function. */
942 callee_pc = get_pc_function_start (callee_pc);
943 if (callee_pc == 0)
944 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
945 paddress (gdbarch, save_callee_pc));
946
947 back_to_retval = make_cleanup (free_current_contents, &retval);
948
949 obstack_init (&addr_obstack);
950 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
951 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
952 &addr_obstack, hashtab_obstack_allocate,
953 NULL);
954 make_cleanup_htab_delete (addr_hash);
955
956 make_cleanup (VEC_cleanup (call_sitep), &chain);
957
958 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
959 at the target's function. All the possible tail call sites in the
960 target's function will get iterated as already pushed into CHAIN via their
961 TAIL_CALL_NEXT. */
962 call_site = call_site_for_pc (gdbarch, caller_pc);
963
964 while (call_site)
965 {
966 CORE_ADDR target_func_addr;
967 struct call_site *target_call_site;
968
969 /* CALLER_FRAME with registers is not available for tail-call jumped
970 frames. */
971 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
972
973 if (target_func_addr == callee_pc)
974 {
975 chain_candidate (gdbarch, &retval, chain);
976 if (retval == NULL)
977 break;
978
979 /* There is no way to reach CALLEE_PC again as we would prevent
980 entering it twice as being already marked in ADDR_HASH. */
981 target_call_site = NULL;
982 }
983 else
984 {
985 struct symbol *target_func;
986
987 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
988 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
989 }
990
991 do
992 {
993 /* Attempt to visit TARGET_CALL_SITE. */
994
995 if (target_call_site)
996 {
997 void **slot;
998
999 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
1000 if (*slot == NULL)
1001 {
1002 /* Successfully entered TARGET_CALL_SITE. */
1003
1004 *slot = &target_call_site->pc;
1005 VEC_safe_push (call_sitep, chain, target_call_site);
1006 break;
1007 }
1008 }
1009
1010 /* Backtrack (without revisiting the originating call_site). Try the
1011 callers's sibling; if there isn't any try the callers's callers's
1012 sibling etc. */
1013
1014 target_call_site = NULL;
1015 while (!VEC_empty (call_sitep, chain))
1016 {
1017 call_site = VEC_pop (call_sitep, chain);
1018
1019 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
1020 NO_INSERT) != NULL);
1021 htab_remove_elt (addr_hash, &call_site->pc);
1022
1023 target_call_site = call_site->tail_call_next;
1024 if (target_call_site)
1025 break;
1026 }
1027 }
1028 while (target_call_site);
1029
1030 if (VEC_empty (call_sitep, chain))
1031 call_site = NULL;
1032 else
1033 call_site = VEC_last (call_sitep, chain);
1034 }
1035
1036 if (retval == NULL)
1037 {
1038 struct bound_minimal_symbol msym_caller, msym_callee;
1039
1040 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1041 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1042 throw_error (NO_ENTRY_VALUE_ERROR,
1043 _("There are no unambiguously determinable intermediate "
1044 "callers or callees between caller function \"%s\" at %s "
1045 "and callee function \"%s\" at %s"),
1046 (msym_caller.minsym == NULL
1047 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1048 paddress (gdbarch, caller_pc),
1049 (msym_callee.minsym == NULL
1050 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1051 paddress (gdbarch, callee_pc));
1052 }
1053
1054 do_cleanups (back_to_workdata);
1055 discard_cleanups (back_to_retval);
1056 return retval;
1057 }
1058
1059 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1060 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1061 constructed return NULL. Caller is responsible for xfree of the returned
1062 result. */
1063
1064 struct call_site_chain *
1065 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1066 CORE_ADDR callee_pc)
1067 {
1068 struct call_site_chain *retval = NULL;
1069
1070 TRY
1071 {
1072 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1073 }
1074 CATCH (e, RETURN_MASK_ERROR)
1075 {
1076 if (e.error == NO_ENTRY_VALUE_ERROR)
1077 {
1078 if (entry_values_debug)
1079 exception_print (gdb_stdout, e);
1080
1081 return NULL;
1082 }
1083 else
1084 throw_exception (e);
1085 }
1086 END_CATCH
1087
1088 return retval;
1089 }
1090
1091 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1092
1093 static int
1094 call_site_parameter_matches (struct call_site_parameter *parameter,
1095 enum call_site_parameter_kind kind,
1096 union call_site_parameter_u kind_u)
1097 {
1098 if (kind == parameter->kind)
1099 switch (kind)
1100 {
1101 case CALL_SITE_PARAMETER_DWARF_REG:
1102 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1103 case CALL_SITE_PARAMETER_FB_OFFSET:
1104 return kind_u.fb_offset == parameter->u.fb_offset;
1105 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1106 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1107 }
1108 return 0;
1109 }
1110
1111 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1112 FRAME is for callee.
1113
1114 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1115 otherwise. */
1116
1117 static struct call_site_parameter *
1118 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1119 enum call_site_parameter_kind kind,
1120 union call_site_parameter_u kind_u,
1121 struct dwarf2_per_cu_data **per_cu_return)
1122 {
1123 CORE_ADDR func_addr, caller_pc;
1124 struct gdbarch *gdbarch;
1125 struct frame_info *caller_frame;
1126 struct call_site *call_site;
1127 int iparams;
1128 /* Initialize it just to avoid a GCC false warning. */
1129 struct call_site_parameter *parameter = NULL;
1130 CORE_ADDR target_addr;
1131
1132 while (get_frame_type (frame) == INLINE_FRAME)
1133 {
1134 frame = get_prev_frame (frame);
1135 gdb_assert (frame != NULL);
1136 }
1137
1138 func_addr = get_frame_func (frame);
1139 gdbarch = get_frame_arch (frame);
1140 caller_frame = get_prev_frame (frame);
1141 if (gdbarch != frame_unwind_arch (frame))
1142 {
1143 struct bound_minimal_symbol msym
1144 = lookup_minimal_symbol_by_pc (func_addr);
1145 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1146
1147 throw_error (NO_ENTRY_VALUE_ERROR,
1148 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1149 "(of %s (%s)) does not match caller gdbarch %s"),
1150 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1151 paddress (gdbarch, func_addr),
1152 (msym.minsym == NULL ? "???"
1153 : MSYMBOL_PRINT_NAME (msym.minsym)),
1154 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1155 }
1156
1157 if (caller_frame == NULL)
1158 {
1159 struct bound_minimal_symbol msym
1160 = lookup_minimal_symbol_by_pc (func_addr);
1161
1162 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1163 "requires caller of %s (%s)"),
1164 paddress (gdbarch, func_addr),
1165 (msym.minsym == NULL ? "???"
1166 : MSYMBOL_PRINT_NAME (msym.minsym)));
1167 }
1168 caller_pc = get_frame_pc (caller_frame);
1169 call_site = call_site_for_pc (gdbarch, caller_pc);
1170
1171 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1172 if (target_addr != func_addr)
1173 {
1174 struct minimal_symbol *target_msym, *func_msym;
1175
1176 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1177 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1178 throw_error (NO_ENTRY_VALUE_ERROR,
1179 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1180 "but the called frame is for %s at %s"),
1181 (target_msym == NULL ? "???"
1182 : MSYMBOL_PRINT_NAME (target_msym)),
1183 paddress (gdbarch, target_addr),
1184 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1185 paddress (gdbarch, func_addr));
1186 }
1187
1188 /* No entry value based parameters would be reliable if this function can
1189 call itself via tail calls. */
1190 func_verify_no_selftailcall (gdbarch, func_addr);
1191
1192 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1193 {
1194 parameter = &call_site->parameter[iparams];
1195 if (call_site_parameter_matches (parameter, kind, kind_u))
1196 break;
1197 }
1198 if (iparams == call_site->parameter_count)
1199 {
1200 struct minimal_symbol *msym
1201 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1202
1203 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1204 determine its value. */
1205 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1206 "at DW_TAG_GNU_call_site %s at %s"),
1207 paddress (gdbarch, caller_pc),
1208 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1209 }
1210
1211 *per_cu_return = call_site->per_cu;
1212 return parameter;
1213 }
1214
1215 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1216 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1217 DW_AT_GNU_call_site_data_value (dereferenced) block.
1218
1219 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1220 struct value.
1221
1222 Function always returns non-NULL, non-optimized out value. It throws
1223 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1224
1225 static struct value *
1226 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1227 CORE_ADDR deref_size, struct type *type,
1228 struct frame_info *caller_frame,
1229 struct dwarf2_per_cu_data *per_cu)
1230 {
1231 const gdb_byte *data_src;
1232 gdb_byte *data;
1233 size_t size;
1234
1235 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1236 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1237
1238 /* DEREF_SIZE size is not verified here. */
1239 if (data_src == NULL)
1240 throw_error (NO_ENTRY_VALUE_ERROR,
1241 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1242
1243 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1244 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1245 DWARF block. */
1246 data = (gdb_byte *) alloca (size + 1);
1247 memcpy (data, data_src, size);
1248 data[size] = DW_OP_stack_value;
1249
1250 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1251 }
1252
1253 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1254 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1255 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1256
1257 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1258 can be more simple as it does not support cross-CU DWARF executions. */
1259
1260 static void
1261 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1262 enum call_site_parameter_kind kind,
1263 union call_site_parameter_u kind_u,
1264 int deref_size)
1265 {
1266 struct dwarf_expr_baton *debaton;
1267 struct frame_info *frame, *caller_frame;
1268 struct dwarf2_per_cu_data *caller_per_cu;
1269 struct dwarf_expr_baton baton_local;
1270 struct dwarf_expr_context saved_ctx;
1271 struct call_site_parameter *parameter;
1272 const gdb_byte *data_src;
1273 size_t size;
1274
1275 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1276 debaton = (struct dwarf_expr_baton *) ctx->baton;
1277 frame = debaton->frame;
1278 caller_frame = get_prev_frame (frame);
1279
1280 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1281 &caller_per_cu);
1282 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1283 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1284
1285 /* DEREF_SIZE size is not verified here. */
1286 if (data_src == NULL)
1287 throw_error (NO_ENTRY_VALUE_ERROR,
1288 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1289
1290 baton_local.frame = caller_frame;
1291 baton_local.per_cu = caller_per_cu;
1292 baton_local.obj_address = 0;
1293
1294 saved_ctx.gdbarch = ctx->gdbarch;
1295 saved_ctx.addr_size = ctx->addr_size;
1296 saved_ctx.offset = ctx->offset;
1297 saved_ctx.baton = ctx->baton;
1298 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1299 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1300 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1301 ctx->baton = &baton_local;
1302
1303 dwarf_expr_eval (ctx, data_src, size);
1304
1305 ctx->gdbarch = saved_ctx.gdbarch;
1306 ctx->addr_size = saved_ctx.addr_size;
1307 ctx->offset = saved_ctx.offset;
1308 ctx->baton = saved_ctx.baton;
1309 }
1310
1311 /* Callback function for dwarf2_evaluate_loc_desc.
1312 Fetch the address indexed by DW_OP_GNU_addr_index. */
1313
1314 static CORE_ADDR
1315 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1316 {
1317 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1318
1319 return dwarf2_read_addr_index (debaton->per_cu, index);
1320 }
1321
1322 /* Callback function for get_object_address. Return the address of the VLA
1323 object. */
1324
1325 static CORE_ADDR
1326 dwarf_expr_get_obj_addr (void *baton)
1327 {
1328 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1329
1330 gdb_assert (debaton != NULL);
1331
1332 if (debaton->obj_address == 0)
1333 error (_("Location address is not set."));
1334
1335 return debaton->obj_address;
1336 }
1337
1338 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1339 the indirect method on it, that is use its stored target value, the sole
1340 purpose of entry_data_value_funcs.. */
1341
1342 static struct value *
1343 entry_data_value_coerce_ref (const struct value *value)
1344 {
1345 struct type *checked_type = check_typedef (value_type (value));
1346 struct value *target_val;
1347
1348 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1349 return NULL;
1350
1351 target_val = (struct value *) value_computed_closure (value);
1352 value_incref (target_val);
1353 return target_val;
1354 }
1355
1356 /* Implement copy_closure. */
1357
1358 static void *
1359 entry_data_value_copy_closure (const struct value *v)
1360 {
1361 struct value *target_val = (struct value *) value_computed_closure (v);
1362
1363 value_incref (target_val);
1364 return target_val;
1365 }
1366
1367 /* Implement free_closure. */
1368
1369 static void
1370 entry_data_value_free_closure (struct value *v)
1371 {
1372 struct value *target_val = (struct value *) value_computed_closure (v);
1373
1374 value_free (target_val);
1375 }
1376
1377 /* Vector for methods for an entry value reference where the referenced value
1378 is stored in the caller. On the first dereference use
1379 DW_AT_GNU_call_site_data_value in the caller. */
1380
1381 static const struct lval_funcs entry_data_value_funcs =
1382 {
1383 NULL, /* read */
1384 NULL, /* write */
1385 NULL, /* indirect */
1386 entry_data_value_coerce_ref,
1387 NULL, /* check_synthetic_pointer */
1388 entry_data_value_copy_closure,
1389 entry_data_value_free_closure
1390 };
1391
1392 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1393 are used to match DW_AT_location at the caller's
1394 DW_TAG_GNU_call_site_parameter.
1395
1396 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1397 cannot resolve the parameter for any reason. */
1398
1399 static struct value *
1400 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1401 enum call_site_parameter_kind kind,
1402 union call_site_parameter_u kind_u)
1403 {
1404 struct type *checked_type = check_typedef (type);
1405 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1406 struct frame_info *caller_frame = get_prev_frame (frame);
1407 struct value *outer_val, *target_val, *val;
1408 struct call_site_parameter *parameter;
1409 struct dwarf2_per_cu_data *caller_per_cu;
1410
1411 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1412 &caller_per_cu);
1413
1414 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1415 type, caller_frame,
1416 caller_per_cu);
1417
1418 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1419 used and it is not available do not fall back to OUTER_VAL - dereferencing
1420 TYPE_CODE_REF with non-entry data value would give current value - not the
1421 entry value. */
1422
1423 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1424 || TYPE_TARGET_TYPE (checked_type) == NULL)
1425 return outer_val;
1426
1427 target_val = dwarf_entry_parameter_to_value (parameter,
1428 TYPE_LENGTH (target_type),
1429 target_type, caller_frame,
1430 caller_per_cu);
1431
1432 release_value (target_val);
1433 val = allocate_computed_value (type, &entry_data_value_funcs,
1434 target_val /* closure */);
1435
1436 /* Copy the referencing pointer to the new computed value. */
1437 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1438 TYPE_LENGTH (checked_type));
1439 set_value_lazy (val, 0);
1440
1441 return val;
1442 }
1443
1444 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1445 SIZE are DWARF block used to match DW_AT_location at the caller's
1446 DW_TAG_GNU_call_site_parameter.
1447
1448 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1449 cannot resolve the parameter for any reason. */
1450
1451 static struct value *
1452 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1453 const gdb_byte *block, size_t block_len)
1454 {
1455 union call_site_parameter_u kind_u;
1456
1457 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1458 if (kind_u.dwarf_reg != -1)
1459 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1460 kind_u);
1461
1462 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1464 kind_u);
1465
1466 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1467 suppressed during normal operation. The expression can be arbitrary if
1468 there is no caller-callee entry value binding expected. */
1469 throw_error (NO_ENTRY_VALUE_ERROR,
1470 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1471 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1472 }
1473
1474 struct piece_closure
1475 {
1476 /* Reference count. */
1477 int refc;
1478
1479 /* The CU from which this closure's expression came. */
1480 struct dwarf2_per_cu_data *per_cu;
1481
1482 /* The number of pieces used to describe this variable. */
1483 int n_pieces;
1484
1485 /* The target address size, used only for DWARF_VALUE_STACK. */
1486 int addr_size;
1487
1488 /* The pieces themselves. */
1489 struct dwarf_expr_piece *pieces;
1490 };
1491
1492 /* Allocate a closure for a value formed from separately-described
1493 PIECES. */
1494
1495 static struct piece_closure *
1496 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1497 int n_pieces, struct dwarf_expr_piece *pieces,
1498 int addr_size)
1499 {
1500 struct piece_closure *c = XCNEW (struct piece_closure);
1501 int i;
1502
1503 c->refc = 1;
1504 c->per_cu = per_cu;
1505 c->n_pieces = n_pieces;
1506 c->addr_size = addr_size;
1507 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1508
1509 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1510 for (i = 0; i < n_pieces; ++i)
1511 if (c->pieces[i].location == DWARF_VALUE_STACK)
1512 value_incref (c->pieces[i].v.value);
1513
1514 return c;
1515 }
1516
1517 /* The lowest-level function to extract bits from a byte buffer.
1518 SOURCE is the buffer. It is updated if we read to the end of a
1519 byte.
1520 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1521 updated to reflect the number of bits actually read.
1522 NBITS is the number of bits we want to read. It is updated to
1523 reflect the number of bits actually read. This function may read
1524 fewer bits.
1525 BITS_BIG_ENDIAN is taken directly from gdbarch.
1526 This function returns the extracted bits. */
1527
1528 static unsigned int
1529 extract_bits_primitive (const gdb_byte **source,
1530 unsigned int *source_offset_bits,
1531 int *nbits, int bits_big_endian)
1532 {
1533 unsigned int avail, mask, datum;
1534
1535 gdb_assert (*source_offset_bits < 8);
1536
1537 avail = 8 - *source_offset_bits;
1538 if (avail > *nbits)
1539 avail = *nbits;
1540
1541 mask = (1 << avail) - 1;
1542 datum = **source;
1543 if (bits_big_endian)
1544 datum >>= 8 - (*source_offset_bits + *nbits);
1545 else
1546 datum >>= *source_offset_bits;
1547 datum &= mask;
1548
1549 *nbits -= avail;
1550 *source_offset_bits += avail;
1551 if (*source_offset_bits >= 8)
1552 {
1553 *source_offset_bits -= 8;
1554 ++*source;
1555 }
1556
1557 return datum;
1558 }
1559
1560 /* Extract some bits from a source buffer and move forward in the
1561 buffer.
1562
1563 SOURCE is the source buffer. It is updated as bytes are read.
1564 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1565 bits are read.
1566 NBITS is the number of bits to read.
1567 BITS_BIG_ENDIAN is taken directly from gdbarch.
1568
1569 This function returns the bits that were read. */
1570
1571 static unsigned int
1572 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1573 int nbits, int bits_big_endian)
1574 {
1575 unsigned int datum;
1576
1577 gdb_assert (nbits > 0 && nbits <= 8);
1578
1579 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1580 bits_big_endian);
1581 if (nbits > 0)
1582 {
1583 unsigned int more;
1584
1585 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1586 bits_big_endian);
1587 if (bits_big_endian)
1588 datum <<= nbits;
1589 else
1590 more <<= nbits;
1591 datum |= more;
1592 }
1593
1594 return datum;
1595 }
1596
1597 /* Write some bits into a buffer and move forward in the buffer.
1598
1599 DATUM is the bits to write. The low-order bits of DATUM are used.
1600 DEST is the destination buffer. It is updated as bytes are
1601 written.
1602 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1603 done.
1604 NBITS is the number of valid bits in DATUM.
1605 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1606
1607 static void
1608 insert_bits (unsigned int datum,
1609 gdb_byte *dest, unsigned int dest_offset_bits,
1610 int nbits, int bits_big_endian)
1611 {
1612 unsigned int mask;
1613
1614 gdb_assert (dest_offset_bits + nbits <= 8);
1615
1616 mask = (1 << nbits) - 1;
1617 if (bits_big_endian)
1618 {
1619 datum <<= 8 - (dest_offset_bits + nbits);
1620 mask <<= 8 - (dest_offset_bits + nbits);
1621 }
1622 else
1623 {
1624 datum <<= dest_offset_bits;
1625 mask <<= dest_offset_bits;
1626 }
1627
1628 gdb_assert ((datum & ~mask) == 0);
1629
1630 *dest = (*dest & ~mask) | datum;
1631 }
1632
1633 /* Copy bits from a source to a destination.
1634
1635 DEST is where the bits should be written.
1636 DEST_OFFSET_BITS is the bit offset into DEST.
1637 SOURCE is the source of bits.
1638 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1639 BIT_COUNT is the number of bits to copy.
1640 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1641
1642 static void
1643 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1644 const gdb_byte *source, unsigned int source_offset_bits,
1645 unsigned int bit_count,
1646 int bits_big_endian)
1647 {
1648 unsigned int dest_avail;
1649 int datum;
1650
1651 /* Reduce everything to byte-size pieces. */
1652 dest += dest_offset_bits / 8;
1653 dest_offset_bits %= 8;
1654 source += source_offset_bits / 8;
1655 source_offset_bits %= 8;
1656
1657 dest_avail = 8 - dest_offset_bits % 8;
1658
1659 /* See if we can fill the first destination byte. */
1660 if (dest_avail < bit_count)
1661 {
1662 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1663 bits_big_endian);
1664 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1665 ++dest;
1666 dest_offset_bits = 0;
1667 bit_count -= dest_avail;
1668 }
1669
1670 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1671 than 8 bits remaining. */
1672 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1673 for (; bit_count >= 8; bit_count -= 8)
1674 {
1675 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1676 *dest++ = (gdb_byte) datum;
1677 }
1678
1679 /* Finally, we may have a few leftover bits. */
1680 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1681 if (bit_count > 0)
1682 {
1683 datum = extract_bits (&source, &source_offset_bits, bit_count,
1684 bits_big_endian);
1685 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1686 }
1687 }
1688
1689 static void
1690 read_pieced_value (struct value *v)
1691 {
1692 int i;
1693 long offset = 0;
1694 ULONGEST bits_to_skip;
1695 gdb_byte *contents;
1696 struct piece_closure *c
1697 = (struct piece_closure *) value_computed_closure (v);
1698 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1699 size_t type_len;
1700 size_t buffer_size = 0;
1701 std::vector<gdb_byte> buffer;
1702 int bits_big_endian
1703 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1704
1705 if (value_type (v) != value_enclosing_type (v))
1706 internal_error (__FILE__, __LINE__,
1707 _("Should not be able to create a lazy value with "
1708 "an enclosing type"));
1709
1710 contents = value_contents_raw (v);
1711 bits_to_skip = 8 * value_offset (v);
1712 if (value_bitsize (v))
1713 {
1714 bits_to_skip += value_bitpos (v);
1715 type_len = value_bitsize (v);
1716 }
1717 else
1718 type_len = 8 * TYPE_LENGTH (value_type (v));
1719
1720 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1721 {
1722 struct dwarf_expr_piece *p = &c->pieces[i];
1723 size_t this_size, this_size_bits;
1724 long dest_offset_bits, source_offset_bits, source_offset;
1725 const gdb_byte *intermediate_buffer;
1726
1727 /* Compute size, source, and destination offsets for copying, in
1728 bits. */
1729 this_size_bits = p->size;
1730 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1731 {
1732 bits_to_skip -= this_size_bits;
1733 continue;
1734 }
1735 if (bits_to_skip > 0)
1736 {
1737 dest_offset_bits = 0;
1738 source_offset_bits = bits_to_skip;
1739 this_size_bits -= bits_to_skip;
1740 bits_to_skip = 0;
1741 }
1742 else
1743 {
1744 dest_offset_bits = offset;
1745 source_offset_bits = 0;
1746 }
1747 if (this_size_bits > type_len - offset)
1748 this_size_bits = type_len - offset;
1749
1750 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1751 source_offset = source_offset_bits / 8;
1752 if (buffer_size < this_size)
1753 {
1754 buffer_size = this_size;
1755 buffer.reserve (buffer_size);
1756 }
1757 intermediate_buffer = buffer.data ();
1758
1759 /* Copy from the source to DEST_BUFFER. */
1760 switch (p->location)
1761 {
1762 case DWARF_VALUE_REGISTER:
1763 {
1764 struct gdbarch *arch = get_frame_arch (frame);
1765 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1766 int optim, unavail;
1767 LONGEST reg_offset = source_offset;
1768
1769 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1770 && this_size < register_size (arch, gdb_regnum))
1771 {
1772 /* Big-endian, and we want less than full size. */
1773 reg_offset = register_size (arch, gdb_regnum) - this_size;
1774 /* We want the lower-order THIS_SIZE_BITS of the bytes
1775 we extract from the register. */
1776 source_offset_bits += 8 * this_size - this_size_bits;
1777 }
1778
1779 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1780 this_size, buffer.data (),
1781 &optim, &unavail))
1782 {
1783 /* Just so garbage doesn't ever shine through. */
1784 memset (buffer.data (), 0, this_size);
1785
1786 if (optim)
1787 mark_value_bits_optimized_out (v, offset, this_size_bits);
1788 if (unavail)
1789 mark_value_bits_unavailable (v, offset, this_size_bits);
1790 }
1791 }
1792 break;
1793
1794 case DWARF_VALUE_MEMORY:
1795 read_value_memory (v, offset,
1796 p->v.mem.in_stack_memory,
1797 p->v.mem.addr + source_offset,
1798 buffer.data (), this_size);
1799 break;
1800
1801 case DWARF_VALUE_STACK:
1802 {
1803 size_t n = this_size;
1804
1805 if (n > c->addr_size - source_offset)
1806 n = (c->addr_size >= source_offset
1807 ? c->addr_size - source_offset
1808 : 0);
1809 if (n == 0)
1810 {
1811 /* Nothing. */
1812 }
1813 else
1814 {
1815 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1816
1817 intermediate_buffer = val_bytes + source_offset;
1818 }
1819 }
1820 break;
1821
1822 case DWARF_VALUE_LITERAL:
1823 {
1824 size_t n = this_size;
1825
1826 if (n > p->v.literal.length - source_offset)
1827 n = (p->v.literal.length >= source_offset
1828 ? p->v.literal.length - source_offset
1829 : 0);
1830 if (n != 0)
1831 intermediate_buffer = p->v.literal.data + source_offset;
1832 }
1833 break;
1834
1835 /* These bits show up as zeros -- but do not cause the value
1836 to be considered optimized-out. */
1837 case DWARF_VALUE_IMPLICIT_POINTER:
1838 break;
1839
1840 case DWARF_VALUE_OPTIMIZED_OUT:
1841 mark_value_bits_optimized_out (v, offset, this_size_bits);
1842 break;
1843
1844 default:
1845 internal_error (__FILE__, __LINE__, _("invalid location type"));
1846 }
1847
1848 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1849 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1850 copy_bitwise (contents, dest_offset_bits,
1851 intermediate_buffer, source_offset_bits % 8,
1852 this_size_bits, bits_big_endian);
1853
1854 offset += this_size_bits;
1855 }
1856 }
1857
1858 static void
1859 write_pieced_value (struct value *to, struct value *from)
1860 {
1861 int i;
1862 long offset = 0;
1863 ULONGEST bits_to_skip;
1864 const gdb_byte *contents;
1865 struct piece_closure *c
1866 = (struct piece_closure *) value_computed_closure (to);
1867 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1868 size_t type_len;
1869 size_t buffer_size = 0;
1870 std::vector<gdb_byte> buffer;
1871 int bits_big_endian
1872 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1873
1874 if (frame == NULL)
1875 {
1876 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1877 return;
1878 }
1879
1880 contents = value_contents (from);
1881 bits_to_skip = 8 * value_offset (to);
1882 if (value_bitsize (to))
1883 {
1884 bits_to_skip += value_bitpos (to);
1885 type_len = value_bitsize (to);
1886 }
1887 else
1888 type_len = 8 * TYPE_LENGTH (value_type (to));
1889
1890 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1891 {
1892 struct dwarf_expr_piece *p = &c->pieces[i];
1893 size_t this_size_bits, this_size;
1894 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1895 int need_bitwise;
1896 const gdb_byte *source_buffer;
1897
1898 this_size_bits = p->size;
1899 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1900 {
1901 bits_to_skip -= this_size_bits;
1902 continue;
1903 }
1904 if (this_size_bits > type_len - offset)
1905 this_size_bits = type_len - offset;
1906 if (bits_to_skip > 0)
1907 {
1908 dest_offset_bits = bits_to_skip;
1909 source_offset_bits = 0;
1910 this_size_bits -= bits_to_skip;
1911 bits_to_skip = 0;
1912 }
1913 else
1914 {
1915 dest_offset_bits = 0;
1916 source_offset_bits = offset;
1917 }
1918
1919 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1920 source_offset = source_offset_bits / 8;
1921 dest_offset = dest_offset_bits / 8;
1922 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1923 {
1924 source_buffer = contents + source_offset;
1925 need_bitwise = 0;
1926 }
1927 else
1928 {
1929 if (buffer_size < this_size)
1930 {
1931 buffer_size = this_size;
1932 buffer.reserve (buffer_size);
1933 }
1934 source_buffer = buffer.data ();
1935 need_bitwise = 1;
1936 }
1937
1938 switch (p->location)
1939 {
1940 case DWARF_VALUE_REGISTER:
1941 {
1942 struct gdbarch *arch = get_frame_arch (frame);
1943 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1944 int reg_offset = dest_offset;
1945
1946 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1947 && this_size <= register_size (arch, gdb_regnum))
1948 {
1949 /* Big-endian, and we want less than full size. */
1950 reg_offset = register_size (arch, gdb_regnum) - this_size;
1951 }
1952
1953 if (need_bitwise)
1954 {
1955 int optim, unavail;
1956
1957 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1958 this_size, buffer.data (),
1959 &optim, &unavail))
1960 {
1961 if (optim)
1962 throw_error (OPTIMIZED_OUT_ERROR,
1963 _("Can't do read-modify-write to "
1964 "update bitfield; containing word "
1965 "has been optimized out"));
1966 if (unavail)
1967 throw_error (NOT_AVAILABLE_ERROR,
1968 _("Can't do read-modify-write to update "
1969 "bitfield; containing word "
1970 "is unavailable"));
1971 }
1972 copy_bitwise (buffer.data (), dest_offset_bits,
1973 contents, source_offset_bits,
1974 this_size_bits,
1975 bits_big_endian);
1976 }
1977
1978 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1979 this_size, source_buffer);
1980 }
1981 break;
1982 case DWARF_VALUE_MEMORY:
1983 if (need_bitwise)
1984 {
1985 /* Only the first and last bytes can possibly have any
1986 bits reused. */
1987 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
1988 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1989 &buffer[this_size - 1], 1);
1990 copy_bitwise (buffer.data (), dest_offset_bits,
1991 contents, source_offset_bits,
1992 this_size_bits,
1993 bits_big_endian);
1994 }
1995
1996 write_memory (p->v.mem.addr + dest_offset,
1997 source_buffer, this_size);
1998 break;
1999 default:
2000 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2001 break;
2002 }
2003 offset += this_size_bits;
2004 }
2005 }
2006
2007 /* An implementation of an lval_funcs method to see whether a value is
2008 a synthetic pointer. */
2009
2010 static int
2011 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2012 int bit_length)
2013 {
2014 struct piece_closure *c
2015 = (struct piece_closure *) value_computed_closure (value);
2016 int i;
2017
2018 bit_offset += 8 * value_offset (value);
2019 if (value_bitsize (value))
2020 bit_offset += value_bitpos (value);
2021
2022 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2023 {
2024 struct dwarf_expr_piece *p = &c->pieces[i];
2025 size_t this_size_bits = p->size;
2026
2027 if (bit_offset > 0)
2028 {
2029 if (bit_offset >= this_size_bits)
2030 {
2031 bit_offset -= this_size_bits;
2032 continue;
2033 }
2034
2035 bit_length -= this_size_bits - bit_offset;
2036 bit_offset = 0;
2037 }
2038 else
2039 bit_length -= this_size_bits;
2040
2041 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2042 return 0;
2043 }
2044
2045 return 1;
2046 }
2047
2048 /* A wrapper function for get_frame_address_in_block. */
2049
2050 static CORE_ADDR
2051 get_frame_address_in_block_wrapper (void *baton)
2052 {
2053 return get_frame_address_in_block ((struct frame_info *) baton);
2054 }
2055
2056 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2057
2058 static struct value *
2059 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2060 struct dwarf2_per_cu_data *per_cu,
2061 struct type *type)
2062 {
2063 struct value *result = NULL;
2064 struct obstack temp_obstack;
2065 struct cleanup *cleanup;
2066 const gdb_byte *bytes;
2067 LONGEST len;
2068
2069 obstack_init (&temp_obstack);
2070 cleanup = make_cleanup_obstack_free (&temp_obstack);
2071 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2072
2073 if (bytes != NULL)
2074 {
2075 if (byte_offset >= 0
2076 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2077 {
2078 bytes += byte_offset;
2079 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2080 }
2081 else
2082 invalid_synthetic_pointer ();
2083 }
2084 else
2085 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2086
2087 do_cleanups (cleanup);
2088
2089 return result;
2090 }
2091
2092 /* Fetch the value pointed to by a synthetic pointer. */
2093
2094 static struct value *
2095 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2096 struct dwarf2_per_cu_data *per_cu,
2097 struct frame_info *frame, struct type *type)
2098 {
2099 /* Fetch the location expression of the DIE we're pointing to. */
2100 struct dwarf2_locexpr_baton baton
2101 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2102 get_frame_address_in_block_wrapper, frame);
2103
2104 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2105 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2106 or it may've been optimized out. */
2107 if (baton.data != NULL)
2108 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2109 baton.data, baton.size, baton.per_cu,
2110 byte_offset);
2111 else
2112 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2113 type);
2114 }
2115
2116 /* An implementation of an lval_funcs method to indirect through a
2117 pointer. This handles the synthetic pointer case when needed. */
2118
2119 static struct value *
2120 indirect_pieced_value (struct value *value)
2121 {
2122 struct piece_closure *c
2123 = (struct piece_closure *) value_computed_closure (value);
2124 struct type *type;
2125 struct frame_info *frame;
2126 struct dwarf2_locexpr_baton baton;
2127 int i, bit_length;
2128 LONGEST bit_offset;
2129 struct dwarf_expr_piece *piece = NULL;
2130 LONGEST byte_offset;
2131 enum bfd_endian byte_order;
2132
2133 type = check_typedef (value_type (value));
2134 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2135 return NULL;
2136
2137 bit_length = 8 * TYPE_LENGTH (type);
2138 bit_offset = 8 * value_offset (value);
2139 if (value_bitsize (value))
2140 bit_offset += value_bitpos (value);
2141
2142 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2143 {
2144 struct dwarf_expr_piece *p = &c->pieces[i];
2145 size_t this_size_bits = p->size;
2146
2147 if (bit_offset > 0)
2148 {
2149 if (bit_offset >= this_size_bits)
2150 {
2151 bit_offset -= this_size_bits;
2152 continue;
2153 }
2154
2155 bit_length -= this_size_bits - bit_offset;
2156 bit_offset = 0;
2157 }
2158 else
2159 bit_length -= this_size_bits;
2160
2161 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2162 return NULL;
2163
2164 if (bit_length != 0)
2165 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2166
2167 piece = p;
2168 break;
2169 }
2170
2171 gdb_assert (piece != NULL);
2172 frame = get_selected_frame (_("No frame selected."));
2173
2174 /* This is an offset requested by GDB, such as value subscripts.
2175 However, due to how synthetic pointers are implemented, this is
2176 always presented to us as a pointer type. This means we have to
2177 sign-extend it manually as appropriate. Use raw
2178 extract_signed_integer directly rather than value_as_address and
2179 sign extend afterwards on architectures that would need it
2180 (mostly everywhere except MIPS, which has signed addresses) as
2181 the later would go through gdbarch_pointer_to_address and thus
2182 return a CORE_ADDR with high bits set on architectures that
2183 encode address spaces and other things in CORE_ADDR. */
2184 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2185 byte_offset = extract_signed_integer (value_contents (value),
2186 TYPE_LENGTH (type), byte_order);
2187 byte_offset += piece->v.ptr.offset;
2188
2189 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2190 frame, type);
2191 }
2192
2193 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2194 references. */
2195
2196 static struct value *
2197 coerce_pieced_ref (const struct value *value)
2198 {
2199 struct type *type = check_typedef (value_type (value));
2200
2201 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2202 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2203 {
2204 const struct piece_closure *closure
2205 = (struct piece_closure *) value_computed_closure (value);
2206 struct frame_info *frame
2207 = get_selected_frame (_("No frame selected."));
2208
2209 /* gdb represents synthetic pointers as pieced values with a single
2210 piece. */
2211 gdb_assert (closure != NULL);
2212 gdb_assert (closure->n_pieces == 1);
2213
2214 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2215 closure->pieces->v.ptr.offset,
2216 closure->per_cu, frame, type);
2217 }
2218 else
2219 {
2220 /* Else: not a synthetic reference; do nothing. */
2221 return NULL;
2222 }
2223 }
2224
2225 static void *
2226 copy_pieced_value_closure (const struct value *v)
2227 {
2228 struct piece_closure *c
2229 = (struct piece_closure *) value_computed_closure (v);
2230
2231 ++c->refc;
2232 return c;
2233 }
2234
2235 static void
2236 free_pieced_value_closure (struct value *v)
2237 {
2238 struct piece_closure *c
2239 = (struct piece_closure *) value_computed_closure (v);
2240
2241 --c->refc;
2242 if (c->refc == 0)
2243 {
2244 int i;
2245
2246 for (i = 0; i < c->n_pieces; ++i)
2247 if (c->pieces[i].location == DWARF_VALUE_STACK)
2248 value_free (c->pieces[i].v.value);
2249
2250 xfree (c->pieces);
2251 xfree (c);
2252 }
2253 }
2254
2255 /* Functions for accessing a variable described by DW_OP_piece. */
2256 static const struct lval_funcs pieced_value_funcs = {
2257 read_pieced_value,
2258 write_pieced_value,
2259 indirect_pieced_value,
2260 coerce_pieced_ref,
2261 check_pieced_synthetic_pointer,
2262 copy_pieced_value_closure,
2263 free_pieced_value_closure
2264 };
2265
2266 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2267
2268 const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2269 {
2270 dwarf_expr_read_addr_from_reg,
2271 dwarf_expr_get_reg_value,
2272 dwarf_expr_read_mem,
2273 dwarf_expr_frame_base,
2274 dwarf_expr_frame_cfa,
2275 dwarf_expr_frame_pc,
2276 dwarf_expr_tls_address,
2277 dwarf_expr_dwarf_call,
2278 dwarf_expr_get_base_type,
2279 dwarf_expr_push_dwarf_reg_entry_value,
2280 dwarf_expr_get_addr_index,
2281 dwarf_expr_get_obj_addr
2282 };
2283
2284 /* Evaluate a location description, starting at DATA and with length
2285 SIZE, to find the current location of variable of TYPE in the
2286 context of FRAME. BYTE_OFFSET is applied after the contents are
2287 computed. */
2288
2289 static struct value *
2290 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2291 const gdb_byte *data, size_t size,
2292 struct dwarf2_per_cu_data *per_cu,
2293 LONGEST byte_offset)
2294 {
2295 struct value *retval;
2296 struct dwarf_expr_baton baton;
2297 struct dwarf_expr_context *ctx;
2298 struct cleanup *old_chain, *value_chain;
2299 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2300
2301 if (byte_offset < 0)
2302 invalid_synthetic_pointer ();
2303
2304 if (size == 0)
2305 return allocate_optimized_out_value (type);
2306
2307 baton.frame = frame;
2308 baton.per_cu = per_cu;
2309 baton.obj_address = 0;
2310
2311 ctx = new_dwarf_expr_context ();
2312 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2313 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2314
2315 ctx->gdbarch = get_objfile_arch (objfile);
2316 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2317 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2318 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2319 ctx->baton = &baton;
2320 ctx->funcs = &dwarf_expr_ctx_funcs;
2321
2322 TRY
2323 {
2324 dwarf_expr_eval (ctx, data, size);
2325 }
2326 CATCH (ex, RETURN_MASK_ERROR)
2327 {
2328 if (ex.error == NOT_AVAILABLE_ERROR)
2329 {
2330 do_cleanups (old_chain);
2331 retval = allocate_value (type);
2332 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2333 return retval;
2334 }
2335 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2336 {
2337 if (entry_values_debug)
2338 exception_print (gdb_stdout, ex);
2339 do_cleanups (old_chain);
2340 return allocate_optimized_out_value (type);
2341 }
2342 else
2343 throw_exception (ex);
2344 }
2345 END_CATCH
2346
2347 if (ctx->num_pieces > 0)
2348 {
2349 struct piece_closure *c;
2350 struct frame_id frame_id = get_frame_id (frame);
2351 ULONGEST bit_size = 0;
2352 int i;
2353
2354 for (i = 0; i < ctx->num_pieces; ++i)
2355 bit_size += ctx->pieces[i].size;
2356 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2357 invalid_synthetic_pointer ();
2358
2359 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2360 ctx->addr_size);
2361 /* We must clean up the value chain after creating the piece
2362 closure but before allocating the result. */
2363 do_cleanups (value_chain);
2364 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2365 VALUE_FRAME_ID (retval) = frame_id;
2366 set_value_offset (retval, byte_offset);
2367 }
2368 else
2369 {
2370 switch (ctx->location)
2371 {
2372 case DWARF_VALUE_REGISTER:
2373 {
2374 struct gdbarch *arch = get_frame_arch (frame);
2375 int dwarf_regnum
2376 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2377 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2378
2379 if (byte_offset != 0)
2380 error (_("cannot use offset on synthetic pointer to register"));
2381 do_cleanups (value_chain);
2382 retval = value_from_register (type, gdb_regnum, frame);
2383 if (value_optimized_out (retval))
2384 {
2385 struct value *tmp;
2386
2387 /* This means the register has undefined value / was
2388 not saved. As we're computing the location of some
2389 variable etc. in the program, not a value for
2390 inspecting a register ($pc, $sp, etc.), return a
2391 generic optimized out value instead, so that we show
2392 <optimized out> instead of <not saved>. */
2393 do_cleanups (value_chain);
2394 tmp = allocate_value (type);
2395 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2396 retval = tmp;
2397 }
2398 }
2399 break;
2400
2401 case DWARF_VALUE_MEMORY:
2402 {
2403 struct type *ptr_type;
2404 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2405 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2406
2407 /* DW_OP_deref_size (and possibly other operations too) may
2408 create a pointer instead of an address. Ideally, the
2409 pointer to address conversion would be performed as part
2410 of those operations, but the type of the object to
2411 which the address refers is not known at the time of
2412 the operation. Therefore, we do the conversion here
2413 since the type is readily available. */
2414
2415 switch (TYPE_CODE (type))
2416 {
2417 case TYPE_CODE_FUNC:
2418 case TYPE_CODE_METHOD:
2419 ptr_type = builtin_type (ctx->gdbarch)->builtin_func_ptr;
2420 break;
2421 default:
2422 ptr_type = builtin_type (ctx->gdbarch)->builtin_data_ptr;
2423 break;
2424 }
2425 address = value_as_address (value_from_pointer (ptr_type, address));
2426
2427 do_cleanups (value_chain);
2428 retval = value_at_lazy (type, address + byte_offset);
2429 if (in_stack_memory)
2430 set_value_stack (retval, 1);
2431 }
2432 break;
2433
2434 case DWARF_VALUE_STACK:
2435 {
2436 struct value *value = dwarf_expr_fetch (ctx, 0);
2437 gdb_byte *contents;
2438 const gdb_byte *val_bytes;
2439 size_t n = TYPE_LENGTH (value_type (value));
2440
2441 if (byte_offset + TYPE_LENGTH (type) > n)
2442 invalid_synthetic_pointer ();
2443
2444 val_bytes = value_contents_all (value);
2445 val_bytes += byte_offset;
2446 n -= byte_offset;
2447
2448 /* Preserve VALUE because we are going to free values back
2449 to the mark, but we still need the value contents
2450 below. */
2451 value_incref (value);
2452 do_cleanups (value_chain);
2453 make_cleanup_value_free (value);
2454
2455 retval = allocate_value (type);
2456 contents = value_contents_raw (retval);
2457 if (n > TYPE_LENGTH (type))
2458 {
2459 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2460
2461 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2462 val_bytes += n - TYPE_LENGTH (type);
2463 n = TYPE_LENGTH (type);
2464 }
2465 memcpy (contents, val_bytes, n);
2466 }
2467 break;
2468
2469 case DWARF_VALUE_LITERAL:
2470 {
2471 bfd_byte *contents;
2472 const bfd_byte *ldata;
2473 size_t n = ctx->len;
2474
2475 if (byte_offset + TYPE_LENGTH (type) > n)
2476 invalid_synthetic_pointer ();
2477
2478 do_cleanups (value_chain);
2479 retval = allocate_value (type);
2480 contents = value_contents_raw (retval);
2481
2482 ldata = ctx->data + byte_offset;
2483 n -= byte_offset;
2484
2485 if (n > TYPE_LENGTH (type))
2486 {
2487 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2488
2489 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2490 ldata += n - TYPE_LENGTH (type);
2491 n = TYPE_LENGTH (type);
2492 }
2493 memcpy (contents, ldata, n);
2494 }
2495 break;
2496
2497 case DWARF_VALUE_OPTIMIZED_OUT:
2498 do_cleanups (value_chain);
2499 retval = allocate_optimized_out_value (type);
2500 break;
2501
2502 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2503 operation by execute_stack_op. */
2504 case DWARF_VALUE_IMPLICIT_POINTER:
2505 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2506 it can only be encountered when making a piece. */
2507 default:
2508 internal_error (__FILE__, __LINE__, _("invalid location type"));
2509 }
2510 }
2511
2512 set_value_initialized (retval, ctx->initialized);
2513
2514 do_cleanups (old_chain);
2515
2516 return retval;
2517 }
2518
2519 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2520 passes 0 as the byte_offset. */
2521
2522 struct value *
2523 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2524 const gdb_byte *data, size_t size,
2525 struct dwarf2_per_cu_data *per_cu)
2526 {
2527 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2528 }
2529
2530 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2531 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2532 frame in which the expression is evaluated. ADDR is a context (location of
2533 a variable) and might be needed to evaluate the location expression.
2534 Returns 1 on success, 0 otherwise. */
2535
2536 static int
2537 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2538 struct frame_info *frame,
2539 CORE_ADDR addr,
2540 CORE_ADDR *valp)
2541 {
2542 struct dwarf_expr_context *ctx;
2543 struct dwarf_expr_baton baton;
2544 struct objfile *objfile;
2545 struct cleanup *cleanup;
2546
2547 if (dlbaton == NULL || dlbaton->size == 0)
2548 return 0;
2549
2550 ctx = new_dwarf_expr_context ();
2551 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2552
2553 baton.frame = frame;
2554 baton.per_cu = dlbaton->per_cu;
2555 baton.obj_address = addr;
2556
2557 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2558
2559 ctx->gdbarch = get_objfile_arch (objfile);
2560 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2561 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2562 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2563 ctx->funcs = &dwarf_expr_ctx_funcs;
2564 ctx->baton = &baton;
2565
2566 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2567
2568 switch (ctx->location)
2569 {
2570 case DWARF_VALUE_REGISTER:
2571 case DWARF_VALUE_MEMORY:
2572 case DWARF_VALUE_STACK:
2573 *valp = dwarf_expr_fetch_address (ctx, 0);
2574 if (ctx->location == DWARF_VALUE_REGISTER)
2575 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2576 do_cleanups (cleanup);
2577 return 1;
2578 case DWARF_VALUE_LITERAL:
2579 *valp = extract_signed_integer (ctx->data, ctx->len,
2580 gdbarch_byte_order (ctx->gdbarch));
2581 do_cleanups (cleanup);
2582 return 1;
2583 /* Unsupported dwarf values. */
2584 case DWARF_VALUE_OPTIMIZED_OUT:
2585 case DWARF_VALUE_IMPLICIT_POINTER:
2586 break;
2587 }
2588
2589 do_cleanups (cleanup);
2590 return 0;
2591 }
2592
2593 /* See dwarf2loc.h. */
2594
2595 int
2596 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2597 struct frame_info *frame,
2598 struct property_addr_info *addr_stack,
2599 CORE_ADDR *value)
2600 {
2601 if (prop == NULL)
2602 return 0;
2603
2604 if (frame == NULL && has_stack_frames ())
2605 frame = get_selected_frame (NULL);
2606
2607 switch (prop->kind)
2608 {
2609 case PROP_LOCEXPR:
2610 {
2611 const struct dwarf2_property_baton *baton
2612 = (const struct dwarf2_property_baton *) prop->data.baton;
2613
2614 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2615 addr_stack ? addr_stack->addr : 0,
2616 value))
2617 {
2618 if (baton->referenced_type)
2619 {
2620 struct value *val = value_at (baton->referenced_type, *value);
2621
2622 *value = value_as_address (val);
2623 }
2624 return 1;
2625 }
2626 }
2627 break;
2628
2629 case PROP_LOCLIST:
2630 {
2631 struct dwarf2_property_baton *baton
2632 = (struct dwarf2_property_baton *) prop->data.baton;
2633 CORE_ADDR pc = get_frame_address_in_block (frame);
2634 const gdb_byte *data;
2635 struct value *val;
2636 size_t size;
2637
2638 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2639 if (data != NULL)
2640 {
2641 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2642 size, baton->loclist.per_cu);
2643 if (!value_optimized_out (val))
2644 {
2645 *value = value_as_address (val);
2646 return 1;
2647 }
2648 }
2649 }
2650 break;
2651
2652 case PROP_CONST:
2653 *value = prop->data.const_val;
2654 return 1;
2655
2656 case PROP_ADDR_OFFSET:
2657 {
2658 struct dwarf2_property_baton *baton
2659 = (struct dwarf2_property_baton *) prop->data.baton;
2660 struct property_addr_info *pinfo;
2661 struct value *val;
2662
2663 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2664 if (pinfo->type == baton->referenced_type)
2665 break;
2666 if (pinfo == NULL)
2667 error (_("cannot find reference address for offset property"));
2668 if (pinfo->valaddr != NULL)
2669 val = value_from_contents
2670 (baton->offset_info.type,
2671 pinfo->valaddr + baton->offset_info.offset);
2672 else
2673 val = value_at (baton->offset_info.type,
2674 pinfo->addr + baton->offset_info.offset);
2675 *value = value_as_address (val);
2676 return 1;
2677 }
2678 }
2679
2680 return 0;
2681 }
2682
2683 /* See dwarf2loc.h. */
2684
2685 void
2686 dwarf2_compile_property_to_c (struct ui_file *stream,
2687 const char *result_name,
2688 struct gdbarch *gdbarch,
2689 unsigned char *registers_used,
2690 const struct dynamic_prop *prop,
2691 CORE_ADDR pc,
2692 struct symbol *sym)
2693 {
2694 struct dwarf2_property_baton *baton
2695 = (struct dwarf2_property_baton *) prop->data.baton;
2696 const gdb_byte *data;
2697 size_t size;
2698 struct dwarf2_per_cu_data *per_cu;
2699
2700 if (prop->kind == PROP_LOCEXPR)
2701 {
2702 data = baton->locexpr.data;
2703 size = baton->locexpr.size;
2704 per_cu = baton->locexpr.per_cu;
2705 }
2706 else
2707 {
2708 gdb_assert (prop->kind == PROP_LOCLIST);
2709
2710 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2711 per_cu = baton->loclist.per_cu;
2712 }
2713
2714 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2715 gdbarch, registers_used,
2716 dwarf2_per_cu_addr_size (per_cu),
2717 data, data + size, per_cu);
2718 }
2719
2720 \f
2721 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2722
2723 struct symbol_needs_baton
2724 {
2725 enum symbol_needs_kind needs;
2726 struct dwarf2_per_cu_data *per_cu;
2727 };
2728
2729 /* Reads from registers do require a frame. */
2730 static CORE_ADDR
2731 symbol_needs_read_addr_from_reg (void *baton, int regnum)
2732 {
2733 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2734
2735 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2736 return 1;
2737 }
2738
2739 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2740 Reads from registers do require a frame. */
2741
2742 static struct value *
2743 symbol_needs_get_reg_value (void *baton, struct type *type, int regnum)
2744 {
2745 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2746
2747 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2748 return value_zero (type, not_lval);
2749 }
2750
2751 /* Reads from memory do not require a frame. */
2752 static void
2753 symbol_needs_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2754 {
2755 memset (buf, 0, len);
2756 }
2757
2758 /* Frame-relative accesses do require a frame. */
2759 static void
2760 symbol_needs_frame_base (void *baton, const gdb_byte **start, size_t * length)
2761 {
2762 static gdb_byte lit0 = DW_OP_lit0;
2763 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2764
2765 *start = &lit0;
2766 *length = 1;
2767
2768 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2769 }
2770
2771 /* CFA accesses require a frame. */
2772
2773 static CORE_ADDR
2774 symbol_needs_frame_cfa (void *baton)
2775 {
2776 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2777
2778 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2779 return 1;
2780 }
2781
2782 /* Thread-local accesses require registers, but not a frame. */
2783 static CORE_ADDR
2784 symbol_needs_tls_address (void *baton, CORE_ADDR offset)
2785 {
2786 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2787
2788 if (nf_baton->needs <= SYMBOL_NEEDS_REGISTERS)
2789 nf_baton->needs = SYMBOL_NEEDS_REGISTERS;
2790 return 1;
2791 }
2792
2793 /* Helper interface of per_cu_dwarf_call for
2794 dwarf2_loc_desc_get_symbol_read_needs. */
2795
2796 static void
2797 symbol_needs_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2798 {
2799 struct symbol_needs_baton *nf_baton =
2800 (struct symbol_needs_baton *) ctx->baton;
2801
2802 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2803 ctx->funcs->get_frame_pc, ctx->baton);
2804 }
2805
2806 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2807
2808 static void
2809 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2810 enum call_site_parameter_kind kind,
2811 union call_site_parameter_u kind_u, int deref_size)
2812 {
2813 struct symbol_needs_baton *nf_baton =
2814 (struct symbol_needs_baton *) ctx->baton;
2815
2816 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2817
2818 /* The expression may require some stub values on DWARF stack. */
2819 dwarf_expr_push_address (ctx, 0, 0);
2820 }
2821
2822 /* DW_OP_GNU_addr_index doesn't require a frame. */
2823
2824 static CORE_ADDR
2825 needs_get_addr_index (void *baton, unsigned int index)
2826 {
2827 /* Nothing to do. */
2828 return 1;
2829 }
2830
2831 /* DW_OP_push_object_address has a frame already passed through. */
2832
2833 static CORE_ADDR
2834 needs_get_obj_addr (void *baton)
2835 {
2836 /* Nothing to do. */
2837 return 1;
2838 }
2839
2840 /* Virtual method table for dwarf2_loc_desc_get_symbol_read_needs
2841 below. */
2842
2843 static const struct dwarf_expr_context_funcs symbol_needs_ctx_funcs =
2844 {
2845 symbol_needs_read_addr_from_reg,
2846 symbol_needs_get_reg_value,
2847 symbol_needs_read_mem,
2848 symbol_needs_frame_base,
2849 symbol_needs_frame_cfa,
2850 symbol_needs_frame_cfa, /* get_frame_pc */
2851 symbol_needs_tls_address,
2852 symbol_needs_dwarf_call,
2853 NULL, /* get_base_type */
2854 needs_dwarf_reg_entry_value,
2855 needs_get_addr_index,
2856 needs_get_obj_addr
2857 };
2858
2859 /* Compute the correct symbol_needs_kind value for the location
2860 expression at DATA (length SIZE). */
2861
2862 static enum symbol_needs_kind
2863 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2864 struct dwarf2_per_cu_data *per_cu)
2865 {
2866 struct symbol_needs_baton baton;
2867 struct dwarf_expr_context *ctx;
2868 int in_reg;
2869 struct cleanup *old_chain;
2870 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2871
2872 baton.needs = SYMBOL_NEEDS_NONE;
2873 baton.per_cu = per_cu;
2874
2875 ctx = new_dwarf_expr_context ();
2876 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2877 make_cleanup_value_free_to_mark (value_mark ());
2878
2879 ctx->gdbarch = get_objfile_arch (objfile);
2880 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2881 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2882 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2883 ctx->baton = &baton;
2884 ctx->funcs = &symbol_needs_ctx_funcs;
2885
2886 dwarf_expr_eval (ctx, data, size);
2887
2888 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2889
2890 if (ctx->num_pieces > 0)
2891 {
2892 int i;
2893
2894 /* If the location has several pieces, and any of them are in
2895 registers, then we will need a frame to fetch them from. */
2896 for (i = 0; i < ctx->num_pieces; i++)
2897 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2898 in_reg = 1;
2899 }
2900
2901 do_cleanups (old_chain);
2902
2903 if (in_reg)
2904 baton.needs = SYMBOL_NEEDS_FRAME;
2905 return baton.needs;
2906 }
2907
2908 /* A helper function that throws an unimplemented error mentioning a
2909 given DWARF operator. */
2910
2911 static void
2912 unimplemented (unsigned int op)
2913 {
2914 const char *name = get_DW_OP_name (op);
2915
2916 if (name)
2917 error (_("DWARF operator %s cannot be translated to an agent expression"),
2918 name);
2919 else
2920 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2921 "to an agent expression"),
2922 op);
2923 }
2924
2925 /* See dwarf2loc.h.
2926
2927 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2928 can issue a complaint, which is better than having every target's
2929 implementation of dwarf2_reg_to_regnum do it. */
2930
2931 int
2932 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2933 {
2934 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2935
2936 if (reg == -1)
2937 {
2938 complaint (&symfile_complaints,
2939 _("bad DWARF register number %d"), dwarf_reg);
2940 }
2941 return reg;
2942 }
2943
2944 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2945 Throw an error because DWARF_REG is bad. */
2946
2947 static void
2948 throw_bad_regnum_error (ULONGEST dwarf_reg)
2949 {
2950 /* Still want to print -1 as "-1".
2951 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2952 but that's overkill for now. */
2953 if ((int) dwarf_reg == dwarf_reg)
2954 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2955 error (_("Unable to access DWARF register number %s"),
2956 pulongest (dwarf_reg));
2957 }
2958
2959 /* See dwarf2loc.h. */
2960
2961 int
2962 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2963 {
2964 int reg;
2965
2966 if (dwarf_reg > INT_MAX)
2967 throw_bad_regnum_error (dwarf_reg);
2968 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2969 bad, but that's ok. */
2970 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2971 if (reg == -1)
2972 throw_bad_regnum_error (dwarf_reg);
2973 return reg;
2974 }
2975
2976 /* A helper function that emits an access to memory. ARCH is the
2977 target architecture. EXPR is the expression which we are building.
2978 NBITS is the number of bits we want to read. This emits the
2979 opcodes needed to read the memory and then extract the desired
2980 bits. */
2981
2982 static void
2983 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2984 {
2985 ULONGEST nbytes = (nbits + 7) / 8;
2986
2987 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2988
2989 if (expr->tracing)
2990 ax_trace_quick (expr, nbytes);
2991
2992 if (nbits <= 8)
2993 ax_simple (expr, aop_ref8);
2994 else if (nbits <= 16)
2995 ax_simple (expr, aop_ref16);
2996 else if (nbits <= 32)
2997 ax_simple (expr, aop_ref32);
2998 else
2999 ax_simple (expr, aop_ref64);
3000
3001 /* If we read exactly the number of bytes we wanted, we're done. */
3002 if (8 * nbytes == nbits)
3003 return;
3004
3005 if (gdbarch_bits_big_endian (arch))
3006 {
3007 /* On a bits-big-endian machine, we want the high-order
3008 NBITS. */
3009 ax_const_l (expr, 8 * nbytes - nbits);
3010 ax_simple (expr, aop_rsh_unsigned);
3011 }
3012 else
3013 {
3014 /* On a bits-little-endian box, we want the low-order NBITS. */
3015 ax_zero_ext (expr, nbits);
3016 }
3017 }
3018
3019 /* A helper function to return the frame's PC. */
3020
3021 static CORE_ADDR
3022 get_ax_pc (void *baton)
3023 {
3024 struct agent_expr *expr = (struct agent_expr *) baton;
3025
3026 return expr->scope;
3027 }
3028
3029 /* Compile a DWARF location expression to an agent expression.
3030
3031 EXPR is the agent expression we are building.
3032 LOC is the agent value we modify.
3033 ARCH is the architecture.
3034 ADDR_SIZE is the size of addresses, in bytes.
3035 OP_PTR is the start of the location expression.
3036 OP_END is one past the last byte of the location expression.
3037
3038 This will throw an exception for various kinds of errors -- for
3039 example, if the expression cannot be compiled, or if the expression
3040 is invalid. */
3041
3042 void
3043 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3044 struct gdbarch *arch, unsigned int addr_size,
3045 const gdb_byte *op_ptr, const gdb_byte *op_end,
3046 struct dwarf2_per_cu_data *per_cu)
3047 {
3048 int i;
3049 std::vector<int> dw_labels, patches;
3050 const gdb_byte * const base = op_ptr;
3051 const gdb_byte *previous_piece = op_ptr;
3052 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3053 ULONGEST bits_collected = 0;
3054 unsigned int addr_size_bits = 8 * addr_size;
3055 int bits_big_endian = gdbarch_bits_big_endian (arch);
3056
3057 std::vector<int> offsets (op_end - op_ptr, -1);
3058
3059 /* By default we are making an address. */
3060 loc->kind = axs_lvalue_memory;
3061
3062 while (op_ptr < op_end)
3063 {
3064 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3065 uint64_t uoffset, reg;
3066 int64_t offset;
3067 int i;
3068
3069 offsets[op_ptr - base] = expr->len;
3070 ++op_ptr;
3071
3072 /* Our basic approach to code generation is to map DWARF
3073 operations directly to AX operations. However, there are
3074 some differences.
3075
3076 First, DWARF works on address-sized units, but AX always uses
3077 LONGEST. For most operations we simply ignore this
3078 difference; instead we generate sign extensions as needed
3079 before division and comparison operations. It would be nice
3080 to omit the sign extensions, but there is no way to determine
3081 the size of the target's LONGEST. (This code uses the size
3082 of the host LONGEST in some cases -- that is a bug but it is
3083 difficult to fix.)
3084
3085 Second, some DWARF operations cannot be translated to AX.
3086 For these we simply fail. See
3087 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3088 switch (op)
3089 {
3090 case DW_OP_lit0:
3091 case DW_OP_lit1:
3092 case DW_OP_lit2:
3093 case DW_OP_lit3:
3094 case DW_OP_lit4:
3095 case DW_OP_lit5:
3096 case DW_OP_lit6:
3097 case DW_OP_lit7:
3098 case DW_OP_lit8:
3099 case DW_OP_lit9:
3100 case DW_OP_lit10:
3101 case DW_OP_lit11:
3102 case DW_OP_lit12:
3103 case DW_OP_lit13:
3104 case DW_OP_lit14:
3105 case DW_OP_lit15:
3106 case DW_OP_lit16:
3107 case DW_OP_lit17:
3108 case DW_OP_lit18:
3109 case DW_OP_lit19:
3110 case DW_OP_lit20:
3111 case DW_OP_lit21:
3112 case DW_OP_lit22:
3113 case DW_OP_lit23:
3114 case DW_OP_lit24:
3115 case DW_OP_lit25:
3116 case DW_OP_lit26:
3117 case DW_OP_lit27:
3118 case DW_OP_lit28:
3119 case DW_OP_lit29:
3120 case DW_OP_lit30:
3121 case DW_OP_lit31:
3122 ax_const_l (expr, op - DW_OP_lit0);
3123 break;
3124
3125 case DW_OP_addr:
3126 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3127 op_ptr += addr_size;
3128 /* Some versions of GCC emit DW_OP_addr before
3129 DW_OP_GNU_push_tls_address. In this case the value is an
3130 index, not an address. We don't support things like
3131 branching between the address and the TLS op. */
3132 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3133 uoffset += dwarf2_per_cu_text_offset (per_cu);
3134 ax_const_l (expr, uoffset);
3135 break;
3136
3137 case DW_OP_const1u:
3138 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3139 op_ptr += 1;
3140 break;
3141 case DW_OP_const1s:
3142 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3143 op_ptr += 1;
3144 break;
3145 case DW_OP_const2u:
3146 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3147 op_ptr += 2;
3148 break;
3149 case DW_OP_const2s:
3150 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3151 op_ptr += 2;
3152 break;
3153 case DW_OP_const4u:
3154 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3155 op_ptr += 4;
3156 break;
3157 case DW_OP_const4s:
3158 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3159 op_ptr += 4;
3160 break;
3161 case DW_OP_const8u:
3162 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3163 op_ptr += 8;
3164 break;
3165 case DW_OP_const8s:
3166 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3167 op_ptr += 8;
3168 break;
3169 case DW_OP_constu:
3170 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3171 ax_const_l (expr, uoffset);
3172 break;
3173 case DW_OP_consts:
3174 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3175 ax_const_l (expr, offset);
3176 break;
3177
3178 case DW_OP_reg0:
3179 case DW_OP_reg1:
3180 case DW_OP_reg2:
3181 case DW_OP_reg3:
3182 case DW_OP_reg4:
3183 case DW_OP_reg5:
3184 case DW_OP_reg6:
3185 case DW_OP_reg7:
3186 case DW_OP_reg8:
3187 case DW_OP_reg9:
3188 case DW_OP_reg10:
3189 case DW_OP_reg11:
3190 case DW_OP_reg12:
3191 case DW_OP_reg13:
3192 case DW_OP_reg14:
3193 case DW_OP_reg15:
3194 case DW_OP_reg16:
3195 case DW_OP_reg17:
3196 case DW_OP_reg18:
3197 case DW_OP_reg19:
3198 case DW_OP_reg20:
3199 case DW_OP_reg21:
3200 case DW_OP_reg22:
3201 case DW_OP_reg23:
3202 case DW_OP_reg24:
3203 case DW_OP_reg25:
3204 case DW_OP_reg26:
3205 case DW_OP_reg27:
3206 case DW_OP_reg28:
3207 case DW_OP_reg29:
3208 case DW_OP_reg30:
3209 case DW_OP_reg31:
3210 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3211 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3212 loc->kind = axs_lvalue_register;
3213 break;
3214
3215 case DW_OP_regx:
3216 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3217 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3218 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3219 loc->kind = axs_lvalue_register;
3220 break;
3221
3222 case DW_OP_implicit_value:
3223 {
3224 uint64_t len;
3225
3226 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3227 if (op_ptr + len > op_end)
3228 error (_("DW_OP_implicit_value: too few bytes available."));
3229 if (len > sizeof (ULONGEST))
3230 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3231 (int) len);
3232
3233 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3234 byte_order));
3235 op_ptr += len;
3236 dwarf_expr_require_composition (op_ptr, op_end,
3237 "DW_OP_implicit_value");
3238
3239 loc->kind = axs_rvalue;
3240 }
3241 break;
3242
3243 case DW_OP_stack_value:
3244 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3245 loc->kind = axs_rvalue;
3246 break;
3247
3248 case DW_OP_breg0:
3249 case DW_OP_breg1:
3250 case DW_OP_breg2:
3251 case DW_OP_breg3:
3252 case DW_OP_breg4:
3253 case DW_OP_breg5:
3254 case DW_OP_breg6:
3255 case DW_OP_breg7:
3256 case DW_OP_breg8:
3257 case DW_OP_breg9:
3258 case DW_OP_breg10:
3259 case DW_OP_breg11:
3260 case DW_OP_breg12:
3261 case DW_OP_breg13:
3262 case DW_OP_breg14:
3263 case DW_OP_breg15:
3264 case DW_OP_breg16:
3265 case DW_OP_breg17:
3266 case DW_OP_breg18:
3267 case DW_OP_breg19:
3268 case DW_OP_breg20:
3269 case DW_OP_breg21:
3270 case DW_OP_breg22:
3271 case DW_OP_breg23:
3272 case DW_OP_breg24:
3273 case DW_OP_breg25:
3274 case DW_OP_breg26:
3275 case DW_OP_breg27:
3276 case DW_OP_breg28:
3277 case DW_OP_breg29:
3278 case DW_OP_breg30:
3279 case DW_OP_breg31:
3280 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3281 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3282 ax_reg (expr, i);
3283 if (offset != 0)
3284 {
3285 ax_const_l (expr, offset);
3286 ax_simple (expr, aop_add);
3287 }
3288 break;
3289 case DW_OP_bregx:
3290 {
3291 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3292 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3293 i = dwarf_reg_to_regnum_or_error (arch, reg);
3294 ax_reg (expr, i);
3295 if (offset != 0)
3296 {
3297 ax_const_l (expr, offset);
3298 ax_simple (expr, aop_add);
3299 }
3300 }
3301 break;
3302 case DW_OP_fbreg:
3303 {
3304 const gdb_byte *datastart;
3305 size_t datalen;
3306 const struct block *b;
3307 struct symbol *framefunc;
3308
3309 b = block_for_pc (expr->scope);
3310
3311 if (!b)
3312 error (_("No block found for address"));
3313
3314 framefunc = block_linkage_function (b);
3315
3316 if (!framefunc)
3317 error (_("No function found for block"));
3318
3319 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3320 &datastart, &datalen);
3321
3322 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3323 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3324 datastart + datalen, per_cu);
3325 if (loc->kind == axs_lvalue_register)
3326 require_rvalue (expr, loc);
3327
3328 if (offset != 0)
3329 {
3330 ax_const_l (expr, offset);
3331 ax_simple (expr, aop_add);
3332 }
3333
3334 loc->kind = axs_lvalue_memory;
3335 }
3336 break;
3337
3338 case DW_OP_dup:
3339 ax_simple (expr, aop_dup);
3340 break;
3341
3342 case DW_OP_drop:
3343 ax_simple (expr, aop_pop);
3344 break;
3345
3346 case DW_OP_pick:
3347 offset = *op_ptr++;
3348 ax_pick (expr, offset);
3349 break;
3350
3351 case DW_OP_swap:
3352 ax_simple (expr, aop_swap);
3353 break;
3354
3355 case DW_OP_over:
3356 ax_pick (expr, 1);
3357 break;
3358
3359 case DW_OP_rot:
3360 ax_simple (expr, aop_rot);
3361 break;
3362
3363 case DW_OP_deref:
3364 case DW_OP_deref_size:
3365 {
3366 int size;
3367
3368 if (op == DW_OP_deref_size)
3369 size = *op_ptr++;
3370 else
3371 size = addr_size;
3372
3373 if (size != 1 && size != 2 && size != 4 && size != 8)
3374 error (_("Unsupported size %d in %s"),
3375 size, get_DW_OP_name (op));
3376 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3377 }
3378 break;
3379
3380 case DW_OP_abs:
3381 /* Sign extend the operand. */
3382 ax_ext (expr, addr_size_bits);
3383 ax_simple (expr, aop_dup);
3384 ax_const_l (expr, 0);
3385 ax_simple (expr, aop_less_signed);
3386 ax_simple (expr, aop_log_not);
3387 i = ax_goto (expr, aop_if_goto);
3388 /* We have to emit 0 - X. */
3389 ax_const_l (expr, 0);
3390 ax_simple (expr, aop_swap);
3391 ax_simple (expr, aop_sub);
3392 ax_label (expr, i, expr->len);
3393 break;
3394
3395 case DW_OP_neg:
3396 /* No need to sign extend here. */
3397 ax_const_l (expr, 0);
3398 ax_simple (expr, aop_swap);
3399 ax_simple (expr, aop_sub);
3400 break;
3401
3402 case DW_OP_not:
3403 /* Sign extend the operand. */
3404 ax_ext (expr, addr_size_bits);
3405 ax_simple (expr, aop_bit_not);
3406 break;
3407
3408 case DW_OP_plus_uconst:
3409 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3410 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3411 but we micro-optimize anyhow. */
3412 if (reg != 0)
3413 {
3414 ax_const_l (expr, reg);
3415 ax_simple (expr, aop_add);
3416 }
3417 break;
3418
3419 case DW_OP_and:
3420 ax_simple (expr, aop_bit_and);
3421 break;
3422
3423 case DW_OP_div:
3424 /* Sign extend the operands. */
3425 ax_ext (expr, addr_size_bits);
3426 ax_simple (expr, aop_swap);
3427 ax_ext (expr, addr_size_bits);
3428 ax_simple (expr, aop_swap);
3429 ax_simple (expr, aop_div_signed);
3430 break;
3431
3432 case DW_OP_minus:
3433 ax_simple (expr, aop_sub);
3434 break;
3435
3436 case DW_OP_mod:
3437 ax_simple (expr, aop_rem_unsigned);
3438 break;
3439
3440 case DW_OP_mul:
3441 ax_simple (expr, aop_mul);
3442 break;
3443
3444 case DW_OP_or:
3445 ax_simple (expr, aop_bit_or);
3446 break;
3447
3448 case DW_OP_plus:
3449 ax_simple (expr, aop_add);
3450 break;
3451
3452 case DW_OP_shl:
3453 ax_simple (expr, aop_lsh);
3454 break;
3455
3456 case DW_OP_shr:
3457 ax_simple (expr, aop_rsh_unsigned);
3458 break;
3459
3460 case DW_OP_shra:
3461 ax_simple (expr, aop_rsh_signed);
3462 break;
3463
3464 case DW_OP_xor:
3465 ax_simple (expr, aop_bit_xor);
3466 break;
3467
3468 case DW_OP_le:
3469 /* Sign extend the operands. */
3470 ax_ext (expr, addr_size_bits);
3471 ax_simple (expr, aop_swap);
3472 ax_ext (expr, addr_size_bits);
3473 /* Note no swap here: A <= B is !(B < A). */
3474 ax_simple (expr, aop_less_signed);
3475 ax_simple (expr, aop_log_not);
3476 break;
3477
3478 case DW_OP_ge:
3479 /* Sign extend the operands. */
3480 ax_ext (expr, addr_size_bits);
3481 ax_simple (expr, aop_swap);
3482 ax_ext (expr, addr_size_bits);
3483 ax_simple (expr, aop_swap);
3484 /* A >= B is !(A < B). */
3485 ax_simple (expr, aop_less_signed);
3486 ax_simple (expr, aop_log_not);
3487 break;
3488
3489 case DW_OP_eq:
3490 /* Sign extend the operands. */
3491 ax_ext (expr, addr_size_bits);
3492 ax_simple (expr, aop_swap);
3493 ax_ext (expr, addr_size_bits);
3494 /* No need for a second swap here. */
3495 ax_simple (expr, aop_equal);
3496 break;
3497
3498 case DW_OP_lt:
3499 /* Sign extend the operands. */
3500 ax_ext (expr, addr_size_bits);
3501 ax_simple (expr, aop_swap);
3502 ax_ext (expr, addr_size_bits);
3503 ax_simple (expr, aop_swap);
3504 ax_simple (expr, aop_less_signed);
3505 break;
3506
3507 case DW_OP_gt:
3508 /* Sign extend the operands. */
3509 ax_ext (expr, addr_size_bits);
3510 ax_simple (expr, aop_swap);
3511 ax_ext (expr, addr_size_bits);
3512 /* Note no swap here: A > B is B < A. */
3513 ax_simple (expr, aop_less_signed);
3514 break;
3515
3516 case DW_OP_ne:
3517 /* Sign extend the operands. */
3518 ax_ext (expr, addr_size_bits);
3519 ax_simple (expr, aop_swap);
3520 ax_ext (expr, addr_size_bits);
3521 /* No need for a swap here. */
3522 ax_simple (expr, aop_equal);
3523 ax_simple (expr, aop_log_not);
3524 break;
3525
3526 case DW_OP_call_frame_cfa:
3527 {
3528 int regnum;
3529 CORE_ADDR text_offset;
3530 LONGEST off;
3531 const gdb_byte *cfa_start, *cfa_end;
3532
3533 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3534 &regnum, &off,
3535 &text_offset, &cfa_start, &cfa_end))
3536 {
3537 /* Register. */
3538 ax_reg (expr, regnum);
3539 if (off != 0)
3540 {
3541 ax_const_l (expr, off);
3542 ax_simple (expr, aop_add);
3543 }
3544 }
3545 else
3546 {
3547 /* Another expression. */
3548 ax_const_l (expr, text_offset);
3549 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3550 cfa_start, cfa_end, per_cu);
3551 }
3552
3553 loc->kind = axs_lvalue_memory;
3554 }
3555 break;
3556
3557 case DW_OP_GNU_push_tls_address:
3558 case DW_OP_form_tls_address:
3559 unimplemented (op);
3560 break;
3561
3562 case DW_OP_push_object_address:
3563 unimplemented (op);
3564 break;
3565
3566 case DW_OP_skip:
3567 offset = extract_signed_integer (op_ptr, 2, byte_order);
3568 op_ptr += 2;
3569 i = ax_goto (expr, aop_goto);
3570 dw_labels.push_back (op_ptr + offset - base);
3571 patches.push_back (i);
3572 break;
3573
3574 case DW_OP_bra:
3575 offset = extract_signed_integer (op_ptr, 2, byte_order);
3576 op_ptr += 2;
3577 /* Zero extend the operand. */
3578 ax_zero_ext (expr, addr_size_bits);
3579 i = ax_goto (expr, aop_if_goto);
3580 dw_labels.push_back (op_ptr + offset - base);
3581 patches.push_back (i);
3582 break;
3583
3584 case DW_OP_nop:
3585 break;
3586
3587 case DW_OP_piece:
3588 case DW_OP_bit_piece:
3589 {
3590 uint64_t size, offset;
3591
3592 if (op_ptr - 1 == previous_piece)
3593 error (_("Cannot translate empty pieces to agent expressions"));
3594 previous_piece = op_ptr - 1;
3595
3596 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3597 if (op == DW_OP_piece)
3598 {
3599 size *= 8;
3600 offset = 0;
3601 }
3602 else
3603 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3604
3605 if (bits_collected + size > 8 * sizeof (LONGEST))
3606 error (_("Expression pieces exceed word size"));
3607
3608 /* Access the bits. */
3609 switch (loc->kind)
3610 {
3611 case axs_lvalue_register:
3612 ax_reg (expr, loc->u.reg);
3613 break;
3614
3615 case axs_lvalue_memory:
3616 /* Offset the pointer, if needed. */
3617 if (offset > 8)
3618 {
3619 ax_const_l (expr, offset / 8);
3620 ax_simple (expr, aop_add);
3621 offset %= 8;
3622 }
3623 access_memory (arch, expr, size);
3624 break;
3625 }
3626
3627 /* For a bits-big-endian target, shift up what we already
3628 have. For a bits-little-endian target, shift up the
3629 new data. Note that there is a potential bug here if
3630 the DWARF expression leaves multiple values on the
3631 stack. */
3632 if (bits_collected > 0)
3633 {
3634 if (bits_big_endian)
3635 {
3636 ax_simple (expr, aop_swap);
3637 ax_const_l (expr, size);
3638 ax_simple (expr, aop_lsh);
3639 /* We don't need a second swap here, because
3640 aop_bit_or is symmetric. */
3641 }
3642 else
3643 {
3644 ax_const_l (expr, size);
3645 ax_simple (expr, aop_lsh);
3646 }
3647 ax_simple (expr, aop_bit_or);
3648 }
3649
3650 bits_collected += size;
3651 loc->kind = axs_rvalue;
3652 }
3653 break;
3654
3655 case DW_OP_GNU_uninit:
3656 unimplemented (op);
3657
3658 case DW_OP_call2:
3659 case DW_OP_call4:
3660 {
3661 struct dwarf2_locexpr_baton block;
3662 int size = (op == DW_OP_call2 ? 2 : 4);
3663 cu_offset offset;
3664
3665 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3666 op_ptr += size;
3667
3668 offset.cu_off = uoffset;
3669 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3670 get_ax_pc, expr);
3671
3672 /* DW_OP_call_ref is currently not supported. */
3673 gdb_assert (block.per_cu == per_cu);
3674
3675 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3676 block.data, block.data + block.size,
3677 per_cu);
3678 }
3679 break;
3680
3681 case DW_OP_call_ref:
3682 unimplemented (op);
3683
3684 default:
3685 unimplemented (op);
3686 }
3687 }
3688
3689 /* Patch all the branches we emitted. */
3690 for (i = 0; i < patches.size (); ++i)
3691 {
3692 int targ = offsets[dw_labels[i]];
3693 if (targ == -1)
3694 internal_error (__FILE__, __LINE__, _("invalid label"));
3695 ax_label (expr, patches[i], targ);
3696 }
3697 }
3698
3699 \f
3700 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3701 evaluator to calculate the location. */
3702 static struct value *
3703 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3704 {
3705 struct dwarf2_locexpr_baton *dlbaton
3706 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3707 struct value *val;
3708
3709 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3710 dlbaton->size, dlbaton->per_cu);
3711
3712 return val;
3713 }
3714
3715 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3716 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3717 will be thrown. */
3718
3719 static struct value *
3720 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3721 {
3722 struct dwarf2_locexpr_baton *dlbaton
3723 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3724
3725 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3726 dlbaton->size);
3727 }
3728
3729 /* Implementation of get_symbol_read_needs from
3730 symbol_computed_ops. */
3731
3732 static enum symbol_needs_kind
3733 locexpr_get_symbol_read_needs (struct symbol *symbol)
3734 {
3735 struct dwarf2_locexpr_baton *dlbaton
3736 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3737
3738 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3739 dlbaton->per_cu);
3740 }
3741
3742 /* Return true if DATA points to the end of a piece. END is one past
3743 the last byte in the expression. */
3744
3745 static int
3746 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3747 {
3748 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3749 }
3750
3751 /* Helper for locexpr_describe_location_piece that finds the name of a
3752 DWARF register. */
3753
3754 static const char *
3755 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3756 {
3757 int regnum;
3758
3759 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3760 We'd rather print *something* here than throw an error. */
3761 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3762 /* gdbarch_register_name may just return "", return something more
3763 descriptive for bad register numbers. */
3764 if (regnum == -1)
3765 {
3766 /* The text is output as "$bad_register_number".
3767 That is why we use the underscores. */
3768 return _("bad_register_number");
3769 }
3770 return gdbarch_register_name (gdbarch, regnum);
3771 }
3772
3773 /* Nicely describe a single piece of a location, returning an updated
3774 position in the bytecode sequence. This function cannot recognize
3775 all locations; if a location is not recognized, it simply returns
3776 DATA. If there is an error during reading, e.g. we run off the end
3777 of the buffer, an error is thrown. */
3778
3779 static const gdb_byte *
3780 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3781 CORE_ADDR addr, struct objfile *objfile,
3782 struct dwarf2_per_cu_data *per_cu,
3783 const gdb_byte *data, const gdb_byte *end,
3784 unsigned int addr_size)
3785 {
3786 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3787 size_t leb128_size;
3788
3789 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3790 {
3791 fprintf_filtered (stream, _("a variable in $%s"),
3792 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3793 data += 1;
3794 }
3795 else if (data[0] == DW_OP_regx)
3796 {
3797 uint64_t reg;
3798
3799 data = safe_read_uleb128 (data + 1, end, &reg);
3800 fprintf_filtered (stream, _("a variable in $%s"),
3801 locexpr_regname (gdbarch, reg));
3802 }
3803 else if (data[0] == DW_OP_fbreg)
3804 {
3805 const struct block *b;
3806 struct symbol *framefunc;
3807 int frame_reg = 0;
3808 int64_t frame_offset;
3809 const gdb_byte *base_data, *new_data, *save_data = data;
3810 size_t base_size;
3811 int64_t base_offset = 0;
3812
3813 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3814 if (!piece_end_p (new_data, end))
3815 return data;
3816 data = new_data;
3817
3818 b = block_for_pc (addr);
3819
3820 if (!b)
3821 error (_("No block found for address for symbol \"%s\"."),
3822 SYMBOL_PRINT_NAME (symbol));
3823
3824 framefunc = block_linkage_function (b);
3825
3826 if (!framefunc)
3827 error (_("No function found for block for symbol \"%s\"."),
3828 SYMBOL_PRINT_NAME (symbol));
3829
3830 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3831
3832 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3833 {
3834 const gdb_byte *buf_end;
3835
3836 frame_reg = base_data[0] - DW_OP_breg0;
3837 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3838 &base_offset);
3839 if (buf_end != base_data + base_size)
3840 error (_("Unexpected opcode after "
3841 "DW_OP_breg%u for symbol \"%s\"."),
3842 frame_reg, SYMBOL_PRINT_NAME (symbol));
3843 }
3844 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3845 {
3846 /* The frame base is just the register, with no offset. */
3847 frame_reg = base_data[0] - DW_OP_reg0;
3848 base_offset = 0;
3849 }
3850 else
3851 {
3852 /* We don't know what to do with the frame base expression,
3853 so we can't trace this variable; give up. */
3854 return save_data;
3855 }
3856
3857 fprintf_filtered (stream,
3858 _("a variable at frame base reg $%s offset %s+%s"),
3859 locexpr_regname (gdbarch, frame_reg),
3860 plongest (base_offset), plongest (frame_offset));
3861 }
3862 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3863 && piece_end_p (data, end))
3864 {
3865 int64_t offset;
3866
3867 data = safe_read_sleb128 (data + 1, end, &offset);
3868
3869 fprintf_filtered (stream,
3870 _("a variable at offset %s from base reg $%s"),
3871 plongest (offset),
3872 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3873 }
3874
3875 /* The location expression for a TLS variable looks like this (on a
3876 64-bit LE machine):
3877
3878 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3879 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3880
3881 0x3 is the encoding for DW_OP_addr, which has an operand as long
3882 as the size of an address on the target machine (here is 8
3883 bytes). Note that more recent version of GCC emit DW_OP_const4u
3884 or DW_OP_const8u, depending on address size, rather than
3885 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3886 The operand represents the offset at which the variable is within
3887 the thread local storage. */
3888
3889 else if (data + 1 + addr_size < end
3890 && (data[0] == DW_OP_addr
3891 || (addr_size == 4 && data[0] == DW_OP_const4u)
3892 || (addr_size == 8 && data[0] == DW_OP_const8u))
3893 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3894 || data[1 + addr_size] == DW_OP_form_tls_address)
3895 && piece_end_p (data + 2 + addr_size, end))
3896 {
3897 ULONGEST offset;
3898 offset = extract_unsigned_integer (data + 1, addr_size,
3899 gdbarch_byte_order (gdbarch));
3900
3901 fprintf_filtered (stream,
3902 _("a thread-local variable at offset 0x%s "
3903 "in the thread-local storage for `%s'"),
3904 phex_nz (offset, addr_size), objfile_name (objfile));
3905
3906 data += 1 + addr_size + 1;
3907 }
3908
3909 /* With -gsplit-dwarf a TLS variable can also look like this:
3910 DW_AT_location : 3 byte block: fc 4 e0
3911 (DW_OP_GNU_const_index: 4;
3912 DW_OP_GNU_push_tls_address) */
3913 else if (data + 3 <= end
3914 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3915 && data[0] == DW_OP_GNU_const_index
3916 && leb128_size > 0
3917 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3918 || data[1 + leb128_size] == DW_OP_form_tls_address)
3919 && piece_end_p (data + 2 + leb128_size, end))
3920 {
3921 uint64_t offset;
3922
3923 data = safe_read_uleb128 (data + 1, end, &offset);
3924 offset = dwarf2_read_addr_index (per_cu, offset);
3925 fprintf_filtered (stream,
3926 _("a thread-local variable at offset 0x%s "
3927 "in the thread-local storage for `%s'"),
3928 phex_nz (offset, addr_size), objfile_name (objfile));
3929 ++data;
3930 }
3931
3932 else if (data[0] >= DW_OP_lit0
3933 && data[0] <= DW_OP_lit31
3934 && data + 1 < end
3935 && data[1] == DW_OP_stack_value)
3936 {
3937 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3938 data += 2;
3939 }
3940
3941 return data;
3942 }
3943
3944 /* Disassemble an expression, stopping at the end of a piece or at the
3945 end of the expression. Returns a pointer to the next unread byte
3946 in the input expression. If ALL is nonzero, then this function
3947 will keep going until it reaches the end of the expression.
3948 If there is an error during reading, e.g. we run off the end
3949 of the buffer, an error is thrown. */
3950
3951 static const gdb_byte *
3952 disassemble_dwarf_expression (struct ui_file *stream,
3953 struct gdbarch *arch, unsigned int addr_size,
3954 int offset_size, const gdb_byte *start,
3955 const gdb_byte *data, const gdb_byte *end,
3956 int indent, int all,
3957 struct dwarf2_per_cu_data *per_cu)
3958 {
3959 while (data < end
3960 && (all
3961 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3962 {
3963 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3964 uint64_t ul;
3965 int64_t l;
3966 const char *name;
3967
3968 name = get_DW_OP_name (op);
3969
3970 if (!name)
3971 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3972 op, (long) (data - 1 - start));
3973 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3974 (long) (data - 1 - start), name);
3975
3976 switch (op)
3977 {
3978 case DW_OP_addr:
3979 ul = extract_unsigned_integer (data, addr_size,
3980 gdbarch_byte_order (arch));
3981 data += addr_size;
3982 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3983 break;
3984
3985 case DW_OP_const1u:
3986 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3987 data += 1;
3988 fprintf_filtered (stream, " %s", pulongest (ul));
3989 break;
3990 case DW_OP_const1s:
3991 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3992 data += 1;
3993 fprintf_filtered (stream, " %s", plongest (l));
3994 break;
3995 case DW_OP_const2u:
3996 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3997 data += 2;
3998 fprintf_filtered (stream, " %s", pulongest (ul));
3999 break;
4000 case DW_OP_const2s:
4001 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4002 data += 2;
4003 fprintf_filtered (stream, " %s", plongest (l));
4004 break;
4005 case DW_OP_const4u:
4006 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4007 data += 4;
4008 fprintf_filtered (stream, " %s", pulongest (ul));
4009 break;
4010 case DW_OP_const4s:
4011 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
4012 data += 4;
4013 fprintf_filtered (stream, " %s", plongest (l));
4014 break;
4015 case DW_OP_const8u:
4016 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4017 data += 8;
4018 fprintf_filtered (stream, " %s", pulongest (ul));
4019 break;
4020 case DW_OP_const8s:
4021 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4022 data += 8;
4023 fprintf_filtered (stream, " %s", plongest (l));
4024 break;
4025 case DW_OP_constu:
4026 data = safe_read_uleb128 (data, end, &ul);
4027 fprintf_filtered (stream, " %s", pulongest (ul));
4028 break;
4029 case DW_OP_consts:
4030 data = safe_read_sleb128 (data, end, &l);
4031 fprintf_filtered (stream, " %s", plongest (l));
4032 break;
4033
4034 case DW_OP_reg0:
4035 case DW_OP_reg1:
4036 case DW_OP_reg2:
4037 case DW_OP_reg3:
4038 case DW_OP_reg4:
4039 case DW_OP_reg5:
4040 case DW_OP_reg6:
4041 case DW_OP_reg7:
4042 case DW_OP_reg8:
4043 case DW_OP_reg9:
4044 case DW_OP_reg10:
4045 case DW_OP_reg11:
4046 case DW_OP_reg12:
4047 case DW_OP_reg13:
4048 case DW_OP_reg14:
4049 case DW_OP_reg15:
4050 case DW_OP_reg16:
4051 case DW_OP_reg17:
4052 case DW_OP_reg18:
4053 case DW_OP_reg19:
4054 case DW_OP_reg20:
4055 case DW_OP_reg21:
4056 case DW_OP_reg22:
4057 case DW_OP_reg23:
4058 case DW_OP_reg24:
4059 case DW_OP_reg25:
4060 case DW_OP_reg26:
4061 case DW_OP_reg27:
4062 case DW_OP_reg28:
4063 case DW_OP_reg29:
4064 case DW_OP_reg30:
4065 case DW_OP_reg31:
4066 fprintf_filtered (stream, " [$%s]",
4067 locexpr_regname (arch, op - DW_OP_reg0));
4068 break;
4069
4070 case DW_OP_regx:
4071 data = safe_read_uleb128 (data, end, &ul);
4072 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4073 locexpr_regname (arch, (int) ul));
4074 break;
4075
4076 case DW_OP_implicit_value:
4077 data = safe_read_uleb128 (data, end, &ul);
4078 data += ul;
4079 fprintf_filtered (stream, " %s", pulongest (ul));
4080 break;
4081
4082 case DW_OP_breg0:
4083 case DW_OP_breg1:
4084 case DW_OP_breg2:
4085 case DW_OP_breg3:
4086 case DW_OP_breg4:
4087 case DW_OP_breg5:
4088 case DW_OP_breg6:
4089 case DW_OP_breg7:
4090 case DW_OP_breg8:
4091 case DW_OP_breg9:
4092 case DW_OP_breg10:
4093 case DW_OP_breg11:
4094 case DW_OP_breg12:
4095 case DW_OP_breg13:
4096 case DW_OP_breg14:
4097 case DW_OP_breg15:
4098 case DW_OP_breg16:
4099 case DW_OP_breg17:
4100 case DW_OP_breg18:
4101 case DW_OP_breg19:
4102 case DW_OP_breg20:
4103 case DW_OP_breg21:
4104 case DW_OP_breg22:
4105 case DW_OP_breg23:
4106 case DW_OP_breg24:
4107 case DW_OP_breg25:
4108 case DW_OP_breg26:
4109 case DW_OP_breg27:
4110 case DW_OP_breg28:
4111 case DW_OP_breg29:
4112 case DW_OP_breg30:
4113 case DW_OP_breg31:
4114 data = safe_read_sleb128 (data, end, &l);
4115 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4116 locexpr_regname (arch, op - DW_OP_breg0));
4117 break;
4118
4119 case DW_OP_bregx:
4120 data = safe_read_uleb128 (data, end, &ul);
4121 data = safe_read_sleb128 (data, end, &l);
4122 fprintf_filtered (stream, " register %s [$%s] offset %s",
4123 pulongest (ul),
4124 locexpr_regname (arch, (int) ul),
4125 plongest (l));
4126 break;
4127
4128 case DW_OP_fbreg:
4129 data = safe_read_sleb128 (data, end, &l);
4130 fprintf_filtered (stream, " %s", plongest (l));
4131 break;
4132
4133 case DW_OP_xderef_size:
4134 case DW_OP_deref_size:
4135 case DW_OP_pick:
4136 fprintf_filtered (stream, " %d", *data);
4137 ++data;
4138 break;
4139
4140 case DW_OP_plus_uconst:
4141 data = safe_read_uleb128 (data, end, &ul);
4142 fprintf_filtered (stream, " %s", pulongest (ul));
4143 break;
4144
4145 case DW_OP_skip:
4146 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4147 data += 2;
4148 fprintf_filtered (stream, " to %ld",
4149 (long) (data + l - start));
4150 break;
4151
4152 case DW_OP_bra:
4153 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4154 data += 2;
4155 fprintf_filtered (stream, " %ld",
4156 (long) (data + l - start));
4157 break;
4158
4159 case DW_OP_call2:
4160 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4161 data += 2;
4162 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4163 break;
4164
4165 case DW_OP_call4:
4166 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4167 data += 4;
4168 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4169 break;
4170
4171 case DW_OP_call_ref:
4172 ul = extract_unsigned_integer (data, offset_size,
4173 gdbarch_byte_order (arch));
4174 data += offset_size;
4175 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4176 break;
4177
4178 case DW_OP_piece:
4179 data = safe_read_uleb128 (data, end, &ul);
4180 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4181 break;
4182
4183 case DW_OP_bit_piece:
4184 {
4185 uint64_t offset;
4186
4187 data = safe_read_uleb128 (data, end, &ul);
4188 data = safe_read_uleb128 (data, end, &offset);
4189 fprintf_filtered (stream, " size %s offset %s (bits)",
4190 pulongest (ul), pulongest (offset));
4191 }
4192 break;
4193
4194 case DW_OP_GNU_implicit_pointer:
4195 {
4196 ul = extract_unsigned_integer (data, offset_size,
4197 gdbarch_byte_order (arch));
4198 data += offset_size;
4199
4200 data = safe_read_sleb128 (data, end, &l);
4201
4202 fprintf_filtered (stream, " DIE %s offset %s",
4203 phex_nz (ul, offset_size),
4204 plongest (l));
4205 }
4206 break;
4207
4208 case DW_OP_GNU_deref_type:
4209 {
4210 int addr_size = *data++;
4211 cu_offset offset;
4212 struct type *type;
4213
4214 data = safe_read_uleb128 (data, end, &ul);
4215 offset.cu_off = ul;
4216 type = dwarf2_get_die_type (offset, per_cu);
4217 fprintf_filtered (stream, "<");
4218 type_print (type, "", stream, -1);
4219 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4220 addr_size);
4221 }
4222 break;
4223
4224 case DW_OP_GNU_const_type:
4225 {
4226 cu_offset type_die;
4227 struct type *type;
4228
4229 data = safe_read_uleb128 (data, end, &ul);
4230 type_die.cu_off = ul;
4231 type = dwarf2_get_die_type (type_die, per_cu);
4232 fprintf_filtered (stream, "<");
4233 type_print (type, "", stream, -1);
4234 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4235 }
4236 break;
4237
4238 case DW_OP_GNU_regval_type:
4239 {
4240 uint64_t reg;
4241 cu_offset type_die;
4242 struct type *type;
4243
4244 data = safe_read_uleb128 (data, end, &reg);
4245 data = safe_read_uleb128 (data, end, &ul);
4246 type_die.cu_off = ul;
4247
4248 type = dwarf2_get_die_type (type_die, per_cu);
4249 fprintf_filtered (stream, "<");
4250 type_print (type, "", stream, -1);
4251 fprintf_filtered (stream, " [0x%s]> [$%s]",
4252 phex_nz (type_die.cu_off, 0),
4253 locexpr_regname (arch, reg));
4254 }
4255 break;
4256
4257 case DW_OP_GNU_convert:
4258 case DW_OP_GNU_reinterpret:
4259 {
4260 cu_offset type_die;
4261
4262 data = safe_read_uleb128 (data, end, &ul);
4263 type_die.cu_off = ul;
4264
4265 if (type_die.cu_off == 0)
4266 fprintf_filtered (stream, "<0>");
4267 else
4268 {
4269 struct type *type;
4270
4271 type = dwarf2_get_die_type (type_die, per_cu);
4272 fprintf_filtered (stream, "<");
4273 type_print (type, "", stream, -1);
4274 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4275 }
4276 }
4277 break;
4278
4279 case DW_OP_GNU_entry_value:
4280 data = safe_read_uleb128 (data, end, &ul);
4281 fputc_filtered ('\n', stream);
4282 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4283 start, data, data + ul, indent + 2,
4284 all, per_cu);
4285 data += ul;
4286 continue;
4287
4288 case DW_OP_GNU_parameter_ref:
4289 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4290 data += 4;
4291 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4292 break;
4293
4294 case DW_OP_GNU_addr_index:
4295 data = safe_read_uleb128 (data, end, &ul);
4296 ul = dwarf2_read_addr_index (per_cu, ul);
4297 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4298 break;
4299 case DW_OP_GNU_const_index:
4300 data = safe_read_uleb128 (data, end, &ul);
4301 ul = dwarf2_read_addr_index (per_cu, ul);
4302 fprintf_filtered (stream, " %s", pulongest (ul));
4303 break;
4304 }
4305
4306 fprintf_filtered (stream, "\n");
4307 }
4308
4309 return data;
4310 }
4311
4312 /* Describe a single location, which may in turn consist of multiple
4313 pieces. */
4314
4315 static void
4316 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4317 struct ui_file *stream,
4318 const gdb_byte *data, size_t size,
4319 struct objfile *objfile, unsigned int addr_size,
4320 int offset_size, struct dwarf2_per_cu_data *per_cu)
4321 {
4322 const gdb_byte *end = data + size;
4323 int first_piece = 1, bad = 0;
4324
4325 while (data < end)
4326 {
4327 const gdb_byte *here = data;
4328 int disassemble = 1;
4329
4330 if (first_piece)
4331 first_piece = 0;
4332 else
4333 fprintf_filtered (stream, _(", and "));
4334
4335 if (!dwarf_always_disassemble)
4336 {
4337 data = locexpr_describe_location_piece (symbol, stream,
4338 addr, objfile, per_cu,
4339 data, end, addr_size);
4340 /* If we printed anything, or if we have an empty piece,
4341 then don't disassemble. */
4342 if (data != here
4343 || data[0] == DW_OP_piece
4344 || data[0] == DW_OP_bit_piece)
4345 disassemble = 0;
4346 }
4347 if (disassemble)
4348 {
4349 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4350 data = disassemble_dwarf_expression (stream,
4351 get_objfile_arch (objfile),
4352 addr_size, offset_size, data,
4353 data, end, 0,
4354 dwarf_always_disassemble,
4355 per_cu);
4356 }
4357
4358 if (data < end)
4359 {
4360 int empty = data == here;
4361
4362 if (disassemble)
4363 fprintf_filtered (stream, " ");
4364 if (data[0] == DW_OP_piece)
4365 {
4366 uint64_t bytes;
4367
4368 data = safe_read_uleb128 (data + 1, end, &bytes);
4369
4370 if (empty)
4371 fprintf_filtered (stream, _("an empty %s-byte piece"),
4372 pulongest (bytes));
4373 else
4374 fprintf_filtered (stream, _(" [%s-byte piece]"),
4375 pulongest (bytes));
4376 }
4377 else if (data[0] == DW_OP_bit_piece)
4378 {
4379 uint64_t bits, offset;
4380
4381 data = safe_read_uleb128 (data + 1, end, &bits);
4382 data = safe_read_uleb128 (data, end, &offset);
4383
4384 if (empty)
4385 fprintf_filtered (stream,
4386 _("an empty %s-bit piece"),
4387 pulongest (bits));
4388 else
4389 fprintf_filtered (stream,
4390 _(" [%s-bit piece, offset %s bits]"),
4391 pulongest (bits), pulongest (offset));
4392 }
4393 else
4394 {
4395 bad = 1;
4396 break;
4397 }
4398 }
4399 }
4400
4401 if (bad || data > end)
4402 error (_("Corrupted DWARF2 expression for \"%s\"."),
4403 SYMBOL_PRINT_NAME (symbol));
4404 }
4405
4406 /* Print a natural-language description of SYMBOL to STREAM. This
4407 version is for a symbol with a single location. */
4408
4409 static void
4410 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4411 struct ui_file *stream)
4412 {
4413 struct dwarf2_locexpr_baton *dlbaton
4414 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4415 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4416 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4417 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4418
4419 locexpr_describe_location_1 (symbol, addr, stream,
4420 dlbaton->data, dlbaton->size,
4421 objfile, addr_size, offset_size,
4422 dlbaton->per_cu);
4423 }
4424
4425 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4426 any necessary bytecode in AX. */
4427
4428 static void
4429 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4430 struct agent_expr *ax, struct axs_value *value)
4431 {
4432 struct dwarf2_locexpr_baton *dlbaton
4433 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4434 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4435
4436 if (dlbaton->size == 0)
4437 value->optimized_out = 1;
4438 else
4439 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4440 dlbaton->data, dlbaton->data + dlbaton->size,
4441 dlbaton->per_cu);
4442 }
4443
4444 /* symbol_computed_ops 'generate_c_location' method. */
4445
4446 static void
4447 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4448 struct gdbarch *gdbarch,
4449 unsigned char *registers_used,
4450 CORE_ADDR pc, const char *result_name)
4451 {
4452 struct dwarf2_locexpr_baton *dlbaton
4453 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4454 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4455
4456 if (dlbaton->size == 0)
4457 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4458
4459 compile_dwarf_expr_to_c (stream, result_name,
4460 sym, pc, gdbarch, registers_used, addr_size,
4461 dlbaton->data, dlbaton->data + dlbaton->size,
4462 dlbaton->per_cu);
4463 }
4464
4465 /* The set of location functions used with the DWARF-2 expression
4466 evaluator. */
4467 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4468 locexpr_read_variable,
4469 locexpr_read_variable_at_entry,
4470 locexpr_get_symbol_read_needs,
4471 locexpr_describe_location,
4472 0, /* location_has_loclist */
4473 locexpr_tracepoint_var_ref,
4474 locexpr_generate_c_location
4475 };
4476
4477
4478 /* Wrapper functions for location lists. These generally find
4479 the appropriate location expression and call something above. */
4480
4481 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4482 evaluator to calculate the location. */
4483 static struct value *
4484 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4485 {
4486 struct dwarf2_loclist_baton *dlbaton
4487 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4488 struct value *val;
4489 const gdb_byte *data;
4490 size_t size;
4491 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4492
4493 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4494 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4495 dlbaton->per_cu);
4496
4497 return val;
4498 }
4499
4500 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4501 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4502 will be thrown.
4503
4504 Function always returns non-NULL value, it may be marked optimized out if
4505 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4506 if it cannot resolve the parameter for any reason. */
4507
4508 static struct value *
4509 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4510 {
4511 struct dwarf2_loclist_baton *dlbaton
4512 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4513 const gdb_byte *data;
4514 size_t size;
4515 CORE_ADDR pc;
4516
4517 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4518 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4519
4520 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4521 if (data == NULL)
4522 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4523
4524 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4525 }
4526
4527 /* Implementation of get_symbol_read_needs from
4528 symbol_computed_ops. */
4529
4530 static enum symbol_needs_kind
4531 loclist_symbol_needs (struct symbol *symbol)
4532 {
4533 /* If there's a location list, then assume we need to have a frame
4534 to choose the appropriate location expression. With tracking of
4535 global variables this is not necessarily true, but such tracking
4536 is disabled in GCC at the moment until we figure out how to
4537 represent it. */
4538
4539 return SYMBOL_NEEDS_FRAME;
4540 }
4541
4542 /* Print a natural-language description of SYMBOL to STREAM. This
4543 version applies when there is a list of different locations, each
4544 with a specified address range. */
4545
4546 static void
4547 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4548 struct ui_file *stream)
4549 {
4550 struct dwarf2_loclist_baton *dlbaton
4551 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4552 const gdb_byte *loc_ptr, *buf_end;
4553 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4555 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4556 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4557 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4558 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4559 /* Adjust base_address for relocatable objects. */
4560 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4561 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4562 int done = 0;
4563
4564 loc_ptr = dlbaton->data;
4565 buf_end = dlbaton->data + dlbaton->size;
4566
4567 fprintf_filtered (stream, _("multi-location:\n"));
4568
4569 /* Iterate through locations until we run out. */
4570 while (!done)
4571 {
4572 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4573 int length;
4574 enum debug_loc_kind kind;
4575 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4576
4577 if (dlbaton->from_dwo)
4578 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4579 loc_ptr, buf_end, &new_ptr,
4580 &low, &high, byte_order);
4581 else
4582 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4583 &low, &high,
4584 byte_order, addr_size,
4585 signed_addr_p);
4586 loc_ptr = new_ptr;
4587 switch (kind)
4588 {
4589 case DEBUG_LOC_END_OF_LIST:
4590 done = 1;
4591 continue;
4592 case DEBUG_LOC_BASE_ADDRESS:
4593 base_address = high + base_offset;
4594 fprintf_filtered (stream, _(" Base address %s"),
4595 paddress (gdbarch, base_address));
4596 continue;
4597 case DEBUG_LOC_START_END:
4598 case DEBUG_LOC_START_LENGTH:
4599 break;
4600 case DEBUG_LOC_BUFFER_OVERFLOW:
4601 case DEBUG_LOC_INVALID_ENTRY:
4602 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4603 SYMBOL_PRINT_NAME (symbol));
4604 default:
4605 gdb_assert_not_reached ("bad debug_loc_kind");
4606 }
4607
4608 /* Otherwise, a location expression entry. */
4609 low += base_address;
4610 high += base_address;
4611
4612 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4613 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4614
4615 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4616 loc_ptr += 2;
4617
4618 /* (It would improve readability to print only the minimum
4619 necessary digits of the second number of the range.) */
4620 fprintf_filtered (stream, _(" Range %s-%s: "),
4621 paddress (gdbarch, low), paddress (gdbarch, high));
4622
4623 /* Now describe this particular location. */
4624 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4625 objfile, addr_size, offset_size,
4626 dlbaton->per_cu);
4627
4628 fprintf_filtered (stream, "\n");
4629
4630 loc_ptr += length;
4631 }
4632 }
4633
4634 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4635 any necessary bytecode in AX. */
4636 static void
4637 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4638 struct agent_expr *ax, struct axs_value *value)
4639 {
4640 struct dwarf2_loclist_baton *dlbaton
4641 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4642 const gdb_byte *data;
4643 size_t size;
4644 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4645
4646 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4647 if (size == 0)
4648 value->optimized_out = 1;
4649 else
4650 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4651 dlbaton->per_cu);
4652 }
4653
4654 /* symbol_computed_ops 'generate_c_location' method. */
4655
4656 static void
4657 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4658 struct gdbarch *gdbarch,
4659 unsigned char *registers_used,
4660 CORE_ADDR pc, const char *result_name)
4661 {
4662 struct dwarf2_loclist_baton *dlbaton
4663 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4664 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4665 const gdb_byte *data;
4666 size_t size;
4667
4668 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4669 if (size == 0)
4670 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4671
4672 compile_dwarf_expr_to_c (stream, result_name,
4673 sym, pc, gdbarch, registers_used, addr_size,
4674 data, data + size,
4675 dlbaton->per_cu);
4676 }
4677
4678 /* The set of location functions used with the DWARF-2 expression
4679 evaluator and location lists. */
4680 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4681 loclist_read_variable,
4682 loclist_read_variable_at_entry,
4683 loclist_symbol_needs,
4684 loclist_describe_location,
4685 1, /* location_has_loclist */
4686 loclist_tracepoint_var_ref,
4687 loclist_generate_c_location
4688 };
4689
4690 /* Provide a prototype to silence -Wmissing-prototypes. */
4691 extern initialize_file_ftype _initialize_dwarf2loc;
4692
4693 void
4694 _initialize_dwarf2loc (void)
4695 {
4696 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4697 &entry_values_debug,
4698 _("Set entry values and tail call frames "
4699 "debugging."),
4700 _("Show entry values and tail call frames "
4701 "debugging."),
4702 _("When non-zero, the process of determining "
4703 "parameter values from function entry point "
4704 "and tail call frames will be printed."),
4705 NULL,
4706 show_entry_values_debug,
4707 &setdebuglist, &showdebuglist);
4708 }
This page took 0.119064 seconds and 3 git commands to generate.