gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 DEF_VEC_I(int);
46
47 extern int dwarf2_always_disassemble;
48
49 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
50 const gdb_byte **start, size_t *length);
51
52 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
53
54 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
55 struct frame_info *frame,
56 const gdb_byte *data,
57 size_t size,
58 struct dwarf2_per_cu_data *per_cu,
59 LONGEST byte_offset);
60
61 /* Until these have formal names, we define these here.
62 ref: http://gcc.gnu.org/wiki/DebugFission
63 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
64 and is then followed by data specific to that entry. */
65
66 enum debug_loc_kind
67 {
68 /* Indicates the end of the list of entries. */
69 DEBUG_LOC_END_OF_LIST = 0,
70
71 /* This is followed by an unsigned LEB128 number that is an index into
72 .debug_addr and specifies the base address for all following entries. */
73 DEBUG_LOC_BASE_ADDRESS = 1,
74
75 /* This is followed by two unsigned LEB128 numbers that are indices into
76 .debug_addr and specify the beginning and ending addresses, and then
77 a normal location expression as in .debug_loc. */
78 DEBUG_LOC_START_END = 2,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the beginning address, and a 4 byte unsigned
82 number that specifies the length, and then a normal location expression
83 as in .debug_loc. */
84 DEBUG_LOC_START_LENGTH = 3,
85
86 /* An internal value indicating there is insufficient data. */
87 DEBUG_LOC_BUFFER_OVERFLOW = -1,
88
89 /* An internal value indicating an invalid kind of entry was found. */
90 DEBUG_LOC_INVALID_ENTRY = -2
91 };
92
93 /* Helper function which throws an error if a synthetic pointer is
94 invalid. */
95
96 static void
97 invalid_synthetic_pointer (void)
98 {
99 error (_("access outside bounds of object "
100 "referenced via synthetic pointer"));
101 }
102
103 /* Decode the addresses in a non-dwo .debug_loc entry.
104 A pointer to the next byte to examine is returned in *NEW_PTR.
105 The encoded low,high addresses are return in *LOW,*HIGH.
106 The result indicates the kind of entry found. */
107
108 static enum debug_loc_kind
109 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
110 const gdb_byte **new_ptr,
111 CORE_ADDR *low, CORE_ADDR *high,
112 enum bfd_endian byte_order,
113 unsigned int addr_size,
114 int signed_addr_p)
115 {
116 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
117
118 if (buf_end - loc_ptr < 2 * addr_size)
119 return DEBUG_LOC_BUFFER_OVERFLOW;
120
121 if (signed_addr_p)
122 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
123 else
124 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
125 loc_ptr += addr_size;
126
127 if (signed_addr_p)
128 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
129 else
130 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
131 loc_ptr += addr_size;
132
133 *new_ptr = loc_ptr;
134
135 /* A base-address-selection entry. */
136 if ((*low & base_mask) == base_mask)
137 return DEBUG_LOC_BASE_ADDRESS;
138
139 /* An end-of-list entry. */
140 if (*low == 0 && *high == 0)
141 return DEBUG_LOC_END_OF_LIST;
142
143 return DEBUG_LOC_START_END;
144 }
145
146 /* Decode the addresses in .debug_loc.dwo entry.
147 A pointer to the next byte to examine is returned in *NEW_PTR.
148 The encoded low,high addresses are return in *LOW,*HIGH.
149 The result indicates the kind of entry found. */
150
151 static enum debug_loc_kind
152 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
153 const gdb_byte *loc_ptr,
154 const gdb_byte *buf_end,
155 const gdb_byte **new_ptr,
156 CORE_ADDR *low, CORE_ADDR *high,
157 enum bfd_endian byte_order)
158 {
159 uint64_t low_index, high_index;
160
161 if (loc_ptr == buf_end)
162 return DEBUG_LOC_BUFFER_OVERFLOW;
163
164 switch (*loc_ptr++)
165 {
166 case DEBUG_LOC_END_OF_LIST:
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_END_OF_LIST;
169 case DEBUG_LOC_BASE_ADDRESS:
170 *low = 0;
171 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
172 if (loc_ptr == NULL)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174 *high = dwarf2_read_addr_index (per_cu, high_index);
175 *new_ptr = loc_ptr;
176 return DEBUG_LOC_BASE_ADDRESS;
177 case DEBUG_LOC_START_END:
178 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
179 if (loc_ptr == NULL)
180 return DEBUG_LOC_BUFFER_OVERFLOW;
181 *low = dwarf2_read_addr_index (per_cu, low_index);
182 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
183 if (loc_ptr == NULL)
184 return DEBUG_LOC_BUFFER_OVERFLOW;
185 *high = dwarf2_read_addr_index (per_cu, high_index);
186 *new_ptr = loc_ptr;
187 return DEBUG_LOC_START_END;
188 case DEBUG_LOC_START_LENGTH:
189 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
190 if (loc_ptr == NULL)
191 return DEBUG_LOC_BUFFER_OVERFLOW;
192 *low = dwarf2_read_addr_index (per_cu, low_index);
193 if (loc_ptr + 4 > buf_end)
194 return DEBUG_LOC_BUFFER_OVERFLOW;
195 *high = *low;
196 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
197 *new_ptr = loc_ptr + 4;
198 return DEBUG_LOC_START_LENGTH;
199 default:
200 return DEBUG_LOC_INVALID_ENTRY;
201 }
202 }
203
204 /* A function for dealing with location lists. Given a
205 symbol baton (BATON) and a pc value (PC), find the appropriate
206 location expression, set *LOCEXPR_LENGTH, and return a pointer
207 to the beginning of the expression. Returns NULL on failure.
208
209 For now, only return the first matching location expression; there
210 can be more than one in the list. */
211
212 const gdb_byte *
213 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
214 size_t *locexpr_length, CORE_ADDR pc)
215 {
216 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
220 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
221 /* Adjust base_address for relocatable objects. */
222 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
223 CORE_ADDR base_address = baton->base_address + base_offset;
224 const gdb_byte *loc_ptr, *buf_end;
225
226 loc_ptr = baton->data;
227 buf_end = baton->data + baton->size;
228
229 while (1)
230 {
231 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
232 int length;
233 enum debug_loc_kind kind;
234 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
235
236 if (baton->from_dwo)
237 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
238 loc_ptr, buf_end, &new_ptr,
239 &low, &high, byte_order);
240 else
241 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
242 &low, &high,
243 byte_order, addr_size,
244 signed_addr_p);
245 loc_ptr = new_ptr;
246 switch (kind)
247 {
248 case DEBUG_LOC_END_OF_LIST:
249 *locexpr_length = 0;
250 return NULL;
251 case DEBUG_LOC_BASE_ADDRESS:
252 base_address = high + base_offset;
253 continue;
254 case DEBUG_LOC_START_END:
255 case DEBUG_LOC_START_LENGTH:
256 break;
257 case DEBUG_LOC_BUFFER_OVERFLOW:
258 case DEBUG_LOC_INVALID_ENTRY:
259 error (_("dwarf2_find_location_expression: "
260 "Corrupted DWARF expression."));
261 default:
262 gdb_assert_not_reached ("bad debug_loc_kind");
263 }
264
265 /* Otherwise, a location expression entry.
266 If the entry is from a DWO, don't add base address: the entry is
267 from .debug_addr which has absolute addresses. */
268 if (! baton->from_dwo)
269 {
270 low += base_address;
271 high += base_address;
272 }
273
274 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
275 loc_ptr += 2;
276
277 if (low == high && pc == low)
278 {
279 /* This is entry PC record present only at entry point
280 of a function. Verify it is really the function entry point. */
281
282 struct block *pc_block = block_for_pc (pc);
283 struct symbol *pc_func = NULL;
284
285 if (pc_block)
286 pc_func = block_linkage_function (pc_block);
287
288 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
289 {
290 *locexpr_length = length;
291 return loc_ptr;
292 }
293 }
294
295 if (pc >= low && pc < high)
296 {
297 *locexpr_length = length;
298 return loc_ptr;
299 }
300
301 loc_ptr += length;
302 }
303 }
304
305 /* This is the baton used when performing dwarf2 expression
306 evaluation. */
307 struct dwarf_expr_baton
308 {
309 struct frame_info *frame;
310 struct dwarf2_per_cu_data *per_cu;
311 };
312
313 /* Helper functions for dwarf2_evaluate_loc_desc. */
314
315 /* Using the frame specified in BATON, return the value of register
316 REGNUM, treated as a pointer. */
317 static CORE_ADDR
318 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
319 {
320 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
321 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
322 CORE_ADDR result;
323 int regnum;
324
325 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
326 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
327 regnum, debaton->frame);
328 return result;
329 }
330
331 /* Read memory at ADDR (length LEN) into BUF. */
332
333 static void
334 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
335 {
336 read_memory (addr, buf, len);
337 }
338
339 /* Using the frame specified in BATON, find the location expression
340 describing the frame base. Return a pointer to it in START and
341 its length in LENGTH. */
342 static void
343 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
344 {
345 /* FIXME: cagney/2003-03-26: This code should be using
346 get_frame_base_address(), and then implement a dwarf2 specific
347 this_base method. */
348 struct symbol *framefunc;
349 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
350 struct block *bl = get_frame_block (debaton->frame, NULL);
351
352 if (bl == NULL)
353 error (_("frame address is not available."));
354
355 /* Use block_linkage_function, which returns a real (not inlined)
356 function, instead of get_frame_function, which may return an
357 inlined function. */
358 framefunc = block_linkage_function (bl);
359
360 /* If we found a frame-relative symbol then it was certainly within
361 some function associated with a frame. If we can't find the frame,
362 something has gone wrong. */
363 gdb_assert (framefunc != NULL);
364
365 dwarf_expr_frame_base_1 (framefunc,
366 get_frame_address_in_block (debaton->frame),
367 start, length);
368 }
369
370 /* Implement find_frame_base_location method for LOC_BLOCK functions using
371 DWARF expression for its DW_AT_frame_base. */
372
373 static void
374 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
375 const gdb_byte **start, size_t *length)
376 {
377 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
378
379 *length = symbaton->size;
380 *start = symbaton->data;
381 }
382
383 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
384 function uses DWARF expression for its DW_AT_frame_base. */
385
386 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
387 {
388 locexpr_find_frame_base_location
389 };
390
391 /* Implement find_frame_base_location method for LOC_BLOCK functions using
392 DWARF location list for its DW_AT_frame_base. */
393
394 static void
395 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
396 const gdb_byte **start, size_t *length)
397 {
398 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
399
400 *start = dwarf2_find_location_expression (symbaton, length, pc);
401 }
402
403 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
404 function uses DWARF location list for its DW_AT_frame_base. */
405
406 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
407 {
408 loclist_find_frame_base_location
409 };
410
411 static void
412 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
413 const gdb_byte **start, size_t *length)
414 {
415 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
416 {
417 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
418
419 ops_block->find_frame_base_location (framefunc, pc, start, length);
420 }
421 else
422 *length = 0;
423
424 if (*length == 0)
425 error (_("Could not find the frame base for \"%s\"."),
426 SYMBOL_NATURAL_NAME (framefunc));
427 }
428
429 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
430 the frame in BATON. */
431
432 static CORE_ADDR
433 dwarf_expr_frame_cfa (void *baton)
434 {
435 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
436
437 return dwarf2_frame_cfa (debaton->frame);
438 }
439
440 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
441 the frame in BATON. */
442
443 static CORE_ADDR
444 dwarf_expr_frame_pc (void *baton)
445 {
446 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
447
448 return get_frame_address_in_block (debaton->frame);
449 }
450
451 /* Using the objfile specified in BATON, find the address for the
452 current thread's thread-local storage with offset OFFSET. */
453 static CORE_ADDR
454 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
455 {
456 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
457 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
458
459 return target_translate_tls_address (objfile, offset);
460 }
461
462 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
463 current CU (as is PER_CU). State of the CTX is not affected by the
464 call and return. */
465
466 static void
467 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
468 struct dwarf2_per_cu_data *per_cu,
469 CORE_ADDR (*get_frame_pc) (void *baton),
470 void *baton)
471 {
472 struct dwarf2_locexpr_baton block;
473
474 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
475
476 /* DW_OP_call_ref is currently not supported. */
477 gdb_assert (block.per_cu == per_cu);
478
479 dwarf_expr_eval (ctx, block.data, block.size);
480 }
481
482 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
483
484 static void
485 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
486 {
487 struct dwarf_expr_baton *debaton = ctx->baton;
488
489 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
490 ctx->funcs->get_frame_pc, ctx->baton);
491 }
492
493 /* Callback function for dwarf2_evaluate_loc_desc. */
494
495 static struct type *
496 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
497 cu_offset die_offset)
498 {
499 struct dwarf_expr_baton *debaton = ctx->baton;
500
501 return dwarf2_get_die_type (die_offset, debaton->per_cu);
502 }
503
504 /* See dwarf2loc.h. */
505
506 unsigned int entry_values_debug = 0;
507
508 /* Helper to set entry_values_debug. */
509
510 static void
511 show_entry_values_debug (struct ui_file *file, int from_tty,
512 struct cmd_list_element *c, const char *value)
513 {
514 fprintf_filtered (file,
515 _("Entry values and tail call frames debugging is %s.\n"),
516 value);
517 }
518
519 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
520 CALLER_FRAME (for registers) can be NULL if it is not known. This function
521 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
522
523 static CORE_ADDR
524 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
525 struct call_site *call_site,
526 struct frame_info *caller_frame)
527 {
528 switch (FIELD_LOC_KIND (call_site->target))
529 {
530 case FIELD_LOC_KIND_DWARF_BLOCK:
531 {
532 struct dwarf2_locexpr_baton *dwarf_block;
533 struct value *val;
534 struct type *caller_core_addr_type;
535 struct gdbarch *caller_arch;
536
537 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
538 if (dwarf_block == NULL)
539 {
540 struct bound_minimal_symbol msym;
541
542 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
543 throw_error (NO_ENTRY_VALUE_ERROR,
544 _("DW_AT_GNU_call_site_target is not specified "
545 "at %s in %s"),
546 paddress (call_site_gdbarch, call_site->pc),
547 (msym.minsym == NULL ? "???"
548 : SYMBOL_PRINT_NAME (msym.minsym)));
549
550 }
551 if (caller_frame == NULL)
552 {
553 struct bound_minimal_symbol msym;
554
555 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
556 throw_error (NO_ENTRY_VALUE_ERROR,
557 _("DW_AT_GNU_call_site_target DWARF block resolving "
558 "requires known frame which is currently not "
559 "available at %s in %s"),
560 paddress (call_site_gdbarch, call_site->pc),
561 (msym.minsym == NULL ? "???"
562 : SYMBOL_PRINT_NAME (msym.minsym)));
563
564 }
565 caller_arch = get_frame_arch (caller_frame);
566 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
567 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
568 dwarf_block->data, dwarf_block->size,
569 dwarf_block->per_cu);
570 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
571 location. */
572 if (VALUE_LVAL (val) == lval_memory)
573 return value_address (val);
574 else
575 return value_as_address (val);
576 }
577
578 case FIELD_LOC_KIND_PHYSNAME:
579 {
580 const char *physname;
581 struct minimal_symbol *msym;
582
583 physname = FIELD_STATIC_PHYSNAME (call_site->target);
584
585 /* Handle both the mangled and demangled PHYSNAME. */
586 msym = lookup_minimal_symbol (physname, NULL, NULL);
587 if (msym == NULL)
588 {
589 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1).minsym;
590 throw_error (NO_ENTRY_VALUE_ERROR,
591 _("Cannot find function \"%s\" for a call site target "
592 "at %s in %s"),
593 physname, paddress (call_site_gdbarch, call_site->pc),
594 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
595
596 }
597 return SYMBOL_VALUE_ADDRESS (msym);
598 }
599
600 case FIELD_LOC_KIND_PHYSADDR:
601 return FIELD_STATIC_PHYSADDR (call_site->target);
602
603 default:
604 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
605 }
606 }
607
608 /* Convert function entry point exact address ADDR to the function which is
609 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
610 NO_ENTRY_VALUE_ERROR otherwise. */
611
612 static struct symbol *
613 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
614 {
615 struct symbol *sym = find_pc_function (addr);
616 struct type *type;
617
618 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
619 throw_error (NO_ENTRY_VALUE_ERROR,
620 _("DW_TAG_GNU_call_site resolving failed to find function "
621 "name for address %s"),
622 paddress (gdbarch, addr));
623
624 type = SYMBOL_TYPE (sym);
625 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
626 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
627
628 return sym;
629 }
630
631 /* Verify function with entry point exact address ADDR can never call itself
632 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
633 can call itself via tail calls.
634
635 If a funtion can tail call itself its entry value based parameters are
636 unreliable. There is no verification whether the value of some/all
637 parameters is unchanged through the self tail call, we expect if there is
638 a self tail call all the parameters can be modified. */
639
640 static void
641 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
642 {
643 struct obstack addr_obstack;
644 struct cleanup *old_chain;
645 CORE_ADDR addr;
646
647 /* Track here CORE_ADDRs which were already visited. */
648 htab_t addr_hash;
649
650 /* The verification is completely unordered. Track here function addresses
651 which still need to be iterated. */
652 VEC (CORE_ADDR) *todo = NULL;
653
654 obstack_init (&addr_obstack);
655 old_chain = make_cleanup_obstack_free (&addr_obstack);
656 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
657 &addr_obstack, hashtab_obstack_allocate,
658 NULL);
659 make_cleanup_htab_delete (addr_hash);
660
661 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
662
663 VEC_safe_push (CORE_ADDR, todo, verify_addr);
664 while (!VEC_empty (CORE_ADDR, todo))
665 {
666 struct symbol *func_sym;
667 struct call_site *call_site;
668
669 addr = VEC_pop (CORE_ADDR, todo);
670
671 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
672
673 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
674 call_site; call_site = call_site->tail_call_next)
675 {
676 CORE_ADDR target_addr;
677 void **slot;
678
679 /* CALLER_FRAME with registers is not available for tail-call jumped
680 frames. */
681 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
682
683 if (target_addr == verify_addr)
684 {
685 struct bound_minimal_symbol msym;
686
687 msym = lookup_minimal_symbol_by_pc (verify_addr);
688 throw_error (NO_ENTRY_VALUE_ERROR,
689 _("DW_OP_GNU_entry_value resolving has found "
690 "function \"%s\" at %s can call itself via tail "
691 "calls"),
692 (msym.minsym == NULL ? "???"
693 : SYMBOL_PRINT_NAME (msym.minsym)),
694 paddress (gdbarch, verify_addr));
695 }
696
697 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
698 if (*slot == NULL)
699 {
700 *slot = obstack_copy (&addr_obstack, &target_addr,
701 sizeof (target_addr));
702 VEC_safe_push (CORE_ADDR, todo, target_addr);
703 }
704 }
705 }
706
707 do_cleanups (old_chain);
708 }
709
710 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
711 ENTRY_VALUES_DEBUG. */
712
713 static void
714 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
715 {
716 CORE_ADDR addr = call_site->pc;
717 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
718
719 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
720 (msym.minsym == NULL ? "???"
721 : SYMBOL_PRINT_NAME (msym.minsym)));
722
723 }
724
725 /* vec.h needs single word type name, typedef it. */
726 typedef struct call_site *call_sitep;
727
728 /* Define VEC (call_sitep) functions. */
729 DEF_VEC_P (call_sitep);
730
731 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
732 only top callers and bottom callees which are present in both. GDBARCH is
733 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
734 no remaining possibilities to provide unambiguous non-trivial result.
735 RESULTP should point to NULL on the first (initialization) call. Caller is
736 responsible for xfree of any RESULTP data. */
737
738 static void
739 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
740 VEC (call_sitep) *chain)
741 {
742 struct call_site_chain *result = *resultp;
743 long length = VEC_length (call_sitep, chain);
744 int callers, callees, idx;
745
746 if (result == NULL)
747 {
748 /* Create the initial chain containing all the passed PCs. */
749
750 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
751 * (length - 1));
752 result->length = length;
753 result->callers = result->callees = length;
754 memcpy (result->call_site, VEC_address (call_sitep, chain),
755 sizeof (*result->call_site) * length);
756 *resultp = result;
757
758 if (entry_values_debug)
759 {
760 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
761 for (idx = 0; idx < length; idx++)
762 tailcall_dump (gdbarch, result->call_site[idx]);
763 fputc_unfiltered ('\n', gdb_stdlog);
764 }
765
766 return;
767 }
768
769 if (entry_values_debug)
770 {
771 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
772 for (idx = 0; idx < length; idx++)
773 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
774 fputc_unfiltered ('\n', gdb_stdlog);
775 }
776
777 /* Intersect callers. */
778
779 callers = min (result->callers, length);
780 for (idx = 0; idx < callers; idx++)
781 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
782 {
783 result->callers = idx;
784 break;
785 }
786
787 /* Intersect callees. */
788
789 callees = min (result->callees, length);
790 for (idx = 0; idx < callees; idx++)
791 if (result->call_site[result->length - 1 - idx]
792 != VEC_index (call_sitep, chain, length - 1 - idx))
793 {
794 result->callees = idx;
795 break;
796 }
797
798 if (entry_values_debug)
799 {
800 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
801 for (idx = 0; idx < result->callers; idx++)
802 tailcall_dump (gdbarch, result->call_site[idx]);
803 fputs_unfiltered (" |", gdb_stdlog);
804 for (idx = 0; idx < result->callees; idx++)
805 tailcall_dump (gdbarch, result->call_site[result->length
806 - result->callees + idx]);
807 fputc_unfiltered ('\n', gdb_stdlog);
808 }
809
810 if (result->callers == 0 && result->callees == 0)
811 {
812 /* There are no common callers or callees. It could be also a direct
813 call (which has length 0) with ambiguous possibility of an indirect
814 call - CALLERS == CALLEES == 0 is valid during the first allocation
815 but any subsequence processing of such entry means ambiguity. */
816 xfree (result);
817 *resultp = NULL;
818 return;
819 }
820
821 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
822 PC again. In such case there must be two different code paths to reach
823 it, therefore some of the former determined intermediate PCs must differ
824 and the unambiguous chain gets shortened. */
825 gdb_assert (result->callers + result->callees < result->length);
826 }
827
828 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
829 assumed frames between them use GDBARCH. Use depth first search so we can
830 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
831 would have needless GDB stack overhead. Caller is responsible for xfree of
832 the returned result. Any unreliability results in thrown
833 NO_ENTRY_VALUE_ERROR. */
834
835 static struct call_site_chain *
836 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
837 CORE_ADDR callee_pc)
838 {
839 CORE_ADDR save_callee_pc = callee_pc;
840 struct obstack addr_obstack;
841 struct cleanup *back_to_retval, *back_to_workdata;
842 struct call_site_chain *retval = NULL;
843 struct call_site *call_site;
844
845 /* Mark CALL_SITEs so we do not visit the same ones twice. */
846 htab_t addr_hash;
847
848 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
849 call_site nor any possible call_site at CALLEE_PC's function is there.
850 Any CALL_SITE in CHAIN will be iterated to its siblings - via
851 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
852 VEC (call_sitep) *chain = NULL;
853
854 /* We are not interested in the specific PC inside the callee function. */
855 callee_pc = get_pc_function_start (callee_pc);
856 if (callee_pc == 0)
857 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
858 paddress (gdbarch, save_callee_pc));
859
860 back_to_retval = make_cleanup (free_current_contents, &retval);
861
862 obstack_init (&addr_obstack);
863 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
864 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
865 &addr_obstack, hashtab_obstack_allocate,
866 NULL);
867 make_cleanup_htab_delete (addr_hash);
868
869 make_cleanup (VEC_cleanup (call_sitep), &chain);
870
871 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
872 at the target's function. All the possible tail call sites in the
873 target's function will get iterated as already pushed into CHAIN via their
874 TAIL_CALL_NEXT. */
875 call_site = call_site_for_pc (gdbarch, caller_pc);
876
877 while (call_site)
878 {
879 CORE_ADDR target_func_addr;
880 struct call_site *target_call_site;
881
882 /* CALLER_FRAME with registers is not available for tail-call jumped
883 frames. */
884 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
885
886 if (target_func_addr == callee_pc)
887 {
888 chain_candidate (gdbarch, &retval, chain);
889 if (retval == NULL)
890 break;
891
892 /* There is no way to reach CALLEE_PC again as we would prevent
893 entering it twice as being already marked in ADDR_HASH. */
894 target_call_site = NULL;
895 }
896 else
897 {
898 struct symbol *target_func;
899
900 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
901 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
902 }
903
904 do
905 {
906 /* Attempt to visit TARGET_CALL_SITE. */
907
908 if (target_call_site)
909 {
910 void **slot;
911
912 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
913 if (*slot == NULL)
914 {
915 /* Successfully entered TARGET_CALL_SITE. */
916
917 *slot = &target_call_site->pc;
918 VEC_safe_push (call_sitep, chain, target_call_site);
919 break;
920 }
921 }
922
923 /* Backtrack (without revisiting the originating call_site). Try the
924 callers's sibling; if there isn't any try the callers's callers's
925 sibling etc. */
926
927 target_call_site = NULL;
928 while (!VEC_empty (call_sitep, chain))
929 {
930 call_site = VEC_pop (call_sitep, chain);
931
932 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
933 NO_INSERT) != NULL);
934 htab_remove_elt (addr_hash, &call_site->pc);
935
936 target_call_site = call_site->tail_call_next;
937 if (target_call_site)
938 break;
939 }
940 }
941 while (target_call_site);
942
943 if (VEC_empty (call_sitep, chain))
944 call_site = NULL;
945 else
946 call_site = VEC_last (call_sitep, chain);
947 }
948
949 if (retval == NULL)
950 {
951 struct bound_minimal_symbol msym_caller, msym_callee;
952
953 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
954 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
955 throw_error (NO_ENTRY_VALUE_ERROR,
956 _("There are no unambiguously determinable intermediate "
957 "callers or callees between caller function \"%s\" at %s "
958 "and callee function \"%s\" at %s"),
959 (msym_caller.minsym == NULL
960 ? "???" : SYMBOL_PRINT_NAME (msym_caller.minsym)),
961 paddress (gdbarch, caller_pc),
962 (msym_callee.minsym == NULL
963 ? "???" : SYMBOL_PRINT_NAME (msym_callee.minsym)),
964 paddress (gdbarch, callee_pc));
965 }
966
967 do_cleanups (back_to_workdata);
968 discard_cleanups (back_to_retval);
969 return retval;
970 }
971
972 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
973 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
974 constructed return NULL. Caller is responsible for xfree of the returned
975 result. */
976
977 struct call_site_chain *
978 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
979 CORE_ADDR callee_pc)
980 {
981 volatile struct gdb_exception e;
982 struct call_site_chain *retval = NULL;
983
984 TRY_CATCH (e, RETURN_MASK_ERROR)
985 {
986 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
987 }
988 if (e.reason < 0)
989 {
990 if (e.error == NO_ENTRY_VALUE_ERROR)
991 {
992 if (entry_values_debug)
993 exception_print (gdb_stdout, e);
994
995 return NULL;
996 }
997 else
998 throw_exception (e);
999 }
1000 return retval;
1001 }
1002
1003 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1004
1005 static int
1006 call_site_parameter_matches (struct call_site_parameter *parameter,
1007 enum call_site_parameter_kind kind,
1008 union call_site_parameter_u kind_u)
1009 {
1010 if (kind == parameter->kind)
1011 switch (kind)
1012 {
1013 case CALL_SITE_PARAMETER_DWARF_REG:
1014 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1015 case CALL_SITE_PARAMETER_FB_OFFSET:
1016 return kind_u.fb_offset == parameter->u.fb_offset;
1017 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1018 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1019 }
1020 return 0;
1021 }
1022
1023 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1024 FRAME is for callee.
1025
1026 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1027 otherwise. */
1028
1029 static struct call_site_parameter *
1030 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1031 enum call_site_parameter_kind kind,
1032 union call_site_parameter_u kind_u,
1033 struct dwarf2_per_cu_data **per_cu_return)
1034 {
1035 CORE_ADDR func_addr, caller_pc;
1036 struct gdbarch *gdbarch;
1037 struct frame_info *caller_frame;
1038 struct call_site *call_site;
1039 int iparams;
1040 /* Initialize it just to avoid a GCC false warning. */
1041 struct call_site_parameter *parameter = NULL;
1042 CORE_ADDR target_addr;
1043
1044 while (get_frame_type (frame) == INLINE_FRAME)
1045 {
1046 frame = get_prev_frame (frame);
1047 gdb_assert (frame != NULL);
1048 }
1049
1050 func_addr = get_frame_func (frame);
1051 gdbarch = get_frame_arch (frame);
1052 caller_frame = get_prev_frame (frame);
1053 if (gdbarch != frame_unwind_arch (frame))
1054 {
1055 struct bound_minimal_symbol msym
1056 = lookup_minimal_symbol_by_pc (func_addr);
1057 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1058
1059 throw_error (NO_ENTRY_VALUE_ERROR,
1060 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1061 "(of %s (%s)) does not match caller gdbarch %s"),
1062 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1063 paddress (gdbarch, func_addr),
1064 (msym.minsym == NULL ? "???"
1065 : SYMBOL_PRINT_NAME (msym.minsym)),
1066 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1067 }
1068
1069 if (caller_frame == NULL)
1070 {
1071 struct bound_minimal_symbol msym
1072 = lookup_minimal_symbol_by_pc (func_addr);
1073
1074 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1075 "requires caller of %s (%s)"),
1076 paddress (gdbarch, func_addr),
1077 (msym.minsym == NULL ? "???"
1078 : SYMBOL_PRINT_NAME (msym.minsym)));
1079 }
1080 caller_pc = get_frame_pc (caller_frame);
1081 call_site = call_site_for_pc (gdbarch, caller_pc);
1082
1083 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1084 if (target_addr != func_addr)
1085 {
1086 struct minimal_symbol *target_msym, *func_msym;
1087
1088 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1089 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1090 throw_error (NO_ENTRY_VALUE_ERROR,
1091 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1092 "but the called frame is for %s at %s"),
1093 (target_msym == NULL ? "???"
1094 : SYMBOL_PRINT_NAME (target_msym)),
1095 paddress (gdbarch, target_addr),
1096 func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym),
1097 paddress (gdbarch, func_addr));
1098 }
1099
1100 /* No entry value based parameters would be reliable if this function can
1101 call itself via tail calls. */
1102 func_verify_no_selftailcall (gdbarch, func_addr);
1103
1104 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1105 {
1106 parameter = &call_site->parameter[iparams];
1107 if (call_site_parameter_matches (parameter, kind, kind_u))
1108 break;
1109 }
1110 if (iparams == call_site->parameter_count)
1111 {
1112 struct minimal_symbol *msym
1113 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1114
1115 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1116 determine its value. */
1117 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1118 "at DW_TAG_GNU_call_site %s at %s"),
1119 paddress (gdbarch, caller_pc),
1120 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
1121 }
1122
1123 *per_cu_return = call_site->per_cu;
1124 return parameter;
1125 }
1126
1127 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1128 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1129 DW_AT_GNU_call_site_data_value (dereferenced) block.
1130
1131 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1132 struct value.
1133
1134 Function always returns non-NULL, non-optimized out value. It throws
1135 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1136
1137 static struct value *
1138 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1139 CORE_ADDR deref_size, struct type *type,
1140 struct frame_info *caller_frame,
1141 struct dwarf2_per_cu_data *per_cu)
1142 {
1143 const gdb_byte *data_src;
1144 gdb_byte *data;
1145 size_t size;
1146
1147 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1148 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1149
1150 /* DEREF_SIZE size is not verified here. */
1151 if (data_src == NULL)
1152 throw_error (NO_ENTRY_VALUE_ERROR,
1153 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1154
1155 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1156 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1157 DWARF block. */
1158 data = alloca (size + 1);
1159 memcpy (data, data_src, size);
1160 data[size] = DW_OP_stack_value;
1161
1162 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1163 }
1164
1165 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1166 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1167 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1168
1169 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1170 can be more simple as it does not support cross-CU DWARF executions. */
1171
1172 static void
1173 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1174 enum call_site_parameter_kind kind,
1175 union call_site_parameter_u kind_u,
1176 int deref_size)
1177 {
1178 struct dwarf_expr_baton *debaton;
1179 struct frame_info *frame, *caller_frame;
1180 struct dwarf2_per_cu_data *caller_per_cu;
1181 struct dwarf_expr_baton baton_local;
1182 struct dwarf_expr_context saved_ctx;
1183 struct call_site_parameter *parameter;
1184 const gdb_byte *data_src;
1185 size_t size;
1186
1187 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1188 debaton = ctx->baton;
1189 frame = debaton->frame;
1190 caller_frame = get_prev_frame (frame);
1191
1192 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1193 &caller_per_cu);
1194 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1195 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1196
1197 /* DEREF_SIZE size is not verified here. */
1198 if (data_src == NULL)
1199 throw_error (NO_ENTRY_VALUE_ERROR,
1200 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1201
1202 baton_local.frame = caller_frame;
1203 baton_local.per_cu = caller_per_cu;
1204
1205 saved_ctx.gdbarch = ctx->gdbarch;
1206 saved_ctx.addr_size = ctx->addr_size;
1207 saved_ctx.offset = ctx->offset;
1208 saved_ctx.baton = ctx->baton;
1209 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1210 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1211 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1212 ctx->baton = &baton_local;
1213
1214 dwarf_expr_eval (ctx, data_src, size);
1215
1216 ctx->gdbarch = saved_ctx.gdbarch;
1217 ctx->addr_size = saved_ctx.addr_size;
1218 ctx->offset = saved_ctx.offset;
1219 ctx->baton = saved_ctx.baton;
1220 }
1221
1222 /* Callback function for dwarf2_evaluate_loc_desc.
1223 Fetch the address indexed by DW_OP_GNU_addr_index. */
1224
1225 static CORE_ADDR
1226 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1227 {
1228 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1229
1230 return dwarf2_read_addr_index (debaton->per_cu, index);
1231 }
1232
1233 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1234 the indirect method on it, that is use its stored target value, the sole
1235 purpose of entry_data_value_funcs.. */
1236
1237 static struct value *
1238 entry_data_value_coerce_ref (const struct value *value)
1239 {
1240 struct type *checked_type = check_typedef (value_type (value));
1241 struct value *target_val;
1242
1243 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1244 return NULL;
1245
1246 target_val = value_computed_closure (value);
1247 value_incref (target_val);
1248 return target_val;
1249 }
1250
1251 /* Implement copy_closure. */
1252
1253 static void *
1254 entry_data_value_copy_closure (const struct value *v)
1255 {
1256 struct value *target_val = value_computed_closure (v);
1257
1258 value_incref (target_val);
1259 return target_val;
1260 }
1261
1262 /* Implement free_closure. */
1263
1264 static void
1265 entry_data_value_free_closure (struct value *v)
1266 {
1267 struct value *target_val = value_computed_closure (v);
1268
1269 value_free (target_val);
1270 }
1271
1272 /* Vector for methods for an entry value reference where the referenced value
1273 is stored in the caller. On the first dereference use
1274 DW_AT_GNU_call_site_data_value in the caller. */
1275
1276 static const struct lval_funcs entry_data_value_funcs =
1277 {
1278 NULL, /* read */
1279 NULL, /* write */
1280 NULL, /* check_validity */
1281 NULL, /* check_any_valid */
1282 NULL, /* indirect */
1283 entry_data_value_coerce_ref,
1284 NULL, /* check_synthetic_pointer */
1285 entry_data_value_copy_closure,
1286 entry_data_value_free_closure
1287 };
1288
1289 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1290 are used to match DW_AT_location at the caller's
1291 DW_TAG_GNU_call_site_parameter.
1292
1293 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1294 cannot resolve the parameter for any reason. */
1295
1296 static struct value *
1297 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1298 enum call_site_parameter_kind kind,
1299 union call_site_parameter_u kind_u)
1300 {
1301 struct type *checked_type = check_typedef (type);
1302 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1303 struct frame_info *caller_frame = get_prev_frame (frame);
1304 struct value *outer_val, *target_val, *val;
1305 struct call_site_parameter *parameter;
1306 struct dwarf2_per_cu_data *caller_per_cu;
1307 CORE_ADDR addr;
1308
1309 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1310 &caller_per_cu);
1311
1312 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1313 type, caller_frame,
1314 caller_per_cu);
1315
1316 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1317 used and it is not available do not fall back to OUTER_VAL - dereferencing
1318 TYPE_CODE_REF with non-entry data value would give current value - not the
1319 entry value. */
1320
1321 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1322 || TYPE_TARGET_TYPE (checked_type) == NULL)
1323 return outer_val;
1324
1325 target_val = dwarf_entry_parameter_to_value (parameter,
1326 TYPE_LENGTH (target_type),
1327 target_type, caller_frame,
1328 caller_per_cu);
1329
1330 /* value_as_address dereferences TYPE_CODE_REF. */
1331 addr = extract_typed_address (value_contents (outer_val), checked_type);
1332
1333 /* The target entry value has artificial address of the entry value
1334 reference. */
1335 VALUE_LVAL (target_val) = lval_memory;
1336 set_value_address (target_val, addr);
1337
1338 release_value (target_val);
1339 val = allocate_computed_value (type, &entry_data_value_funcs,
1340 target_val /* closure */);
1341
1342 /* Copy the referencing pointer to the new computed value. */
1343 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1344 TYPE_LENGTH (checked_type));
1345 set_value_lazy (val, 0);
1346
1347 return val;
1348 }
1349
1350 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1351 SIZE are DWARF block used to match DW_AT_location at the caller's
1352 DW_TAG_GNU_call_site_parameter.
1353
1354 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1355 cannot resolve the parameter for any reason. */
1356
1357 static struct value *
1358 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1359 const gdb_byte *block, size_t block_len)
1360 {
1361 union call_site_parameter_u kind_u;
1362
1363 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1364 if (kind_u.dwarf_reg != -1)
1365 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1366 kind_u);
1367
1368 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1369 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1370 kind_u);
1371
1372 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1373 suppressed during normal operation. The expression can be arbitrary if
1374 there is no caller-callee entry value binding expected. */
1375 throw_error (NO_ENTRY_VALUE_ERROR,
1376 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1377 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1378 }
1379
1380 struct piece_closure
1381 {
1382 /* Reference count. */
1383 int refc;
1384
1385 /* The CU from which this closure's expression came. */
1386 struct dwarf2_per_cu_data *per_cu;
1387
1388 /* The number of pieces used to describe this variable. */
1389 int n_pieces;
1390
1391 /* The target address size, used only for DWARF_VALUE_STACK. */
1392 int addr_size;
1393
1394 /* The pieces themselves. */
1395 struct dwarf_expr_piece *pieces;
1396 };
1397
1398 /* Allocate a closure for a value formed from separately-described
1399 PIECES. */
1400
1401 static struct piece_closure *
1402 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1403 int n_pieces, struct dwarf_expr_piece *pieces,
1404 int addr_size)
1405 {
1406 struct piece_closure *c = XZALLOC (struct piece_closure);
1407 int i;
1408
1409 c->refc = 1;
1410 c->per_cu = per_cu;
1411 c->n_pieces = n_pieces;
1412 c->addr_size = addr_size;
1413 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
1414
1415 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1416 for (i = 0; i < n_pieces; ++i)
1417 if (c->pieces[i].location == DWARF_VALUE_STACK)
1418 value_incref (c->pieces[i].v.value);
1419
1420 return c;
1421 }
1422
1423 /* The lowest-level function to extract bits from a byte buffer.
1424 SOURCE is the buffer. It is updated if we read to the end of a
1425 byte.
1426 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1427 updated to reflect the number of bits actually read.
1428 NBITS is the number of bits we want to read. It is updated to
1429 reflect the number of bits actually read. This function may read
1430 fewer bits.
1431 BITS_BIG_ENDIAN is taken directly from gdbarch.
1432 This function returns the extracted bits. */
1433
1434 static unsigned int
1435 extract_bits_primitive (const gdb_byte **source,
1436 unsigned int *source_offset_bits,
1437 int *nbits, int bits_big_endian)
1438 {
1439 unsigned int avail, mask, datum;
1440
1441 gdb_assert (*source_offset_bits < 8);
1442
1443 avail = 8 - *source_offset_bits;
1444 if (avail > *nbits)
1445 avail = *nbits;
1446
1447 mask = (1 << avail) - 1;
1448 datum = **source;
1449 if (bits_big_endian)
1450 datum >>= 8 - (*source_offset_bits + *nbits);
1451 else
1452 datum >>= *source_offset_bits;
1453 datum &= mask;
1454
1455 *nbits -= avail;
1456 *source_offset_bits += avail;
1457 if (*source_offset_bits >= 8)
1458 {
1459 *source_offset_bits -= 8;
1460 ++*source;
1461 }
1462
1463 return datum;
1464 }
1465
1466 /* Extract some bits from a source buffer and move forward in the
1467 buffer.
1468
1469 SOURCE is the source buffer. It is updated as bytes are read.
1470 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1471 bits are read.
1472 NBITS is the number of bits to read.
1473 BITS_BIG_ENDIAN is taken directly from gdbarch.
1474
1475 This function returns the bits that were read. */
1476
1477 static unsigned int
1478 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1479 int nbits, int bits_big_endian)
1480 {
1481 unsigned int datum;
1482
1483 gdb_assert (nbits > 0 && nbits <= 8);
1484
1485 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1486 bits_big_endian);
1487 if (nbits > 0)
1488 {
1489 unsigned int more;
1490
1491 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1492 bits_big_endian);
1493 if (bits_big_endian)
1494 datum <<= nbits;
1495 else
1496 more <<= nbits;
1497 datum |= more;
1498 }
1499
1500 return datum;
1501 }
1502
1503 /* Write some bits into a buffer and move forward in the buffer.
1504
1505 DATUM is the bits to write. The low-order bits of DATUM are used.
1506 DEST is the destination buffer. It is updated as bytes are
1507 written.
1508 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1509 done.
1510 NBITS is the number of valid bits in DATUM.
1511 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1512
1513 static void
1514 insert_bits (unsigned int datum,
1515 gdb_byte *dest, unsigned int dest_offset_bits,
1516 int nbits, int bits_big_endian)
1517 {
1518 unsigned int mask;
1519
1520 gdb_assert (dest_offset_bits + nbits <= 8);
1521
1522 mask = (1 << nbits) - 1;
1523 if (bits_big_endian)
1524 {
1525 datum <<= 8 - (dest_offset_bits + nbits);
1526 mask <<= 8 - (dest_offset_bits + nbits);
1527 }
1528 else
1529 {
1530 datum <<= dest_offset_bits;
1531 mask <<= dest_offset_bits;
1532 }
1533
1534 gdb_assert ((datum & ~mask) == 0);
1535
1536 *dest = (*dest & ~mask) | datum;
1537 }
1538
1539 /* Copy bits from a source to a destination.
1540
1541 DEST is where the bits should be written.
1542 DEST_OFFSET_BITS is the bit offset into DEST.
1543 SOURCE is the source of bits.
1544 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1545 BIT_COUNT is the number of bits to copy.
1546 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1547
1548 static void
1549 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1550 const gdb_byte *source, unsigned int source_offset_bits,
1551 unsigned int bit_count,
1552 int bits_big_endian)
1553 {
1554 unsigned int dest_avail;
1555 int datum;
1556
1557 /* Reduce everything to byte-size pieces. */
1558 dest += dest_offset_bits / 8;
1559 dest_offset_bits %= 8;
1560 source += source_offset_bits / 8;
1561 source_offset_bits %= 8;
1562
1563 dest_avail = 8 - dest_offset_bits % 8;
1564
1565 /* See if we can fill the first destination byte. */
1566 if (dest_avail < bit_count)
1567 {
1568 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1569 bits_big_endian);
1570 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1571 ++dest;
1572 dest_offset_bits = 0;
1573 bit_count -= dest_avail;
1574 }
1575
1576 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1577 than 8 bits remaining. */
1578 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1579 for (; bit_count >= 8; bit_count -= 8)
1580 {
1581 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1582 *dest++ = (gdb_byte) datum;
1583 }
1584
1585 /* Finally, we may have a few leftover bits. */
1586 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1587 if (bit_count > 0)
1588 {
1589 datum = extract_bits (&source, &source_offset_bits, bit_count,
1590 bits_big_endian);
1591 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1592 }
1593 }
1594
1595 static void
1596 read_pieced_value (struct value *v)
1597 {
1598 int i;
1599 long offset = 0;
1600 ULONGEST bits_to_skip;
1601 gdb_byte *contents;
1602 struct piece_closure *c
1603 = (struct piece_closure *) value_computed_closure (v);
1604 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1605 size_t type_len;
1606 size_t buffer_size = 0;
1607 gdb_byte *buffer = NULL;
1608 struct cleanup *cleanup;
1609 int bits_big_endian
1610 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1611
1612 if (value_type (v) != value_enclosing_type (v))
1613 internal_error (__FILE__, __LINE__,
1614 _("Should not be able to create a lazy value with "
1615 "an enclosing type"));
1616
1617 cleanup = make_cleanup (free_current_contents, &buffer);
1618
1619 contents = value_contents_raw (v);
1620 bits_to_skip = 8 * value_offset (v);
1621 if (value_bitsize (v))
1622 {
1623 bits_to_skip += value_bitpos (v);
1624 type_len = value_bitsize (v);
1625 }
1626 else
1627 type_len = 8 * TYPE_LENGTH (value_type (v));
1628
1629 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1630 {
1631 struct dwarf_expr_piece *p = &c->pieces[i];
1632 size_t this_size, this_size_bits;
1633 long dest_offset_bits, source_offset_bits, source_offset;
1634 const gdb_byte *intermediate_buffer;
1635
1636 /* Compute size, source, and destination offsets for copying, in
1637 bits. */
1638 this_size_bits = p->size;
1639 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1640 {
1641 bits_to_skip -= this_size_bits;
1642 continue;
1643 }
1644 if (this_size_bits > type_len - offset)
1645 this_size_bits = type_len - offset;
1646 if (bits_to_skip > 0)
1647 {
1648 dest_offset_bits = 0;
1649 source_offset_bits = bits_to_skip;
1650 this_size_bits -= bits_to_skip;
1651 bits_to_skip = 0;
1652 }
1653 else
1654 {
1655 dest_offset_bits = offset;
1656 source_offset_bits = 0;
1657 }
1658
1659 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1660 source_offset = source_offset_bits / 8;
1661 if (buffer_size < this_size)
1662 {
1663 buffer_size = this_size;
1664 buffer = xrealloc (buffer, buffer_size);
1665 }
1666 intermediate_buffer = buffer;
1667
1668 /* Copy from the source to DEST_BUFFER. */
1669 switch (p->location)
1670 {
1671 case DWARF_VALUE_REGISTER:
1672 {
1673 struct gdbarch *arch = get_frame_arch (frame);
1674 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1675 int reg_offset = source_offset;
1676
1677 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1678 && this_size < register_size (arch, gdb_regnum))
1679 {
1680 /* Big-endian, and we want less than full size. */
1681 reg_offset = register_size (arch, gdb_regnum) - this_size;
1682 /* We want the lower-order THIS_SIZE_BITS of the bytes
1683 we extract from the register. */
1684 source_offset_bits += 8 * this_size - this_size_bits;
1685 }
1686
1687 if (gdb_regnum != -1)
1688 {
1689 int optim, unavail;
1690
1691 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1692 this_size, buffer,
1693 &optim, &unavail))
1694 {
1695 /* Just so garbage doesn't ever shine through. */
1696 memset (buffer, 0, this_size);
1697
1698 if (optim)
1699 set_value_optimized_out (v, 1);
1700 if (unavail)
1701 mark_value_bytes_unavailable (v, offset, this_size);
1702 }
1703 }
1704 else
1705 {
1706 error (_("Unable to access DWARF register number %s"),
1707 paddress (arch, p->v.regno));
1708 }
1709 }
1710 break;
1711
1712 case DWARF_VALUE_MEMORY:
1713 read_value_memory (v, offset,
1714 p->v.mem.in_stack_memory,
1715 p->v.mem.addr + source_offset,
1716 buffer, this_size);
1717 break;
1718
1719 case DWARF_VALUE_STACK:
1720 {
1721 size_t n = this_size;
1722
1723 if (n > c->addr_size - source_offset)
1724 n = (c->addr_size >= source_offset
1725 ? c->addr_size - source_offset
1726 : 0);
1727 if (n == 0)
1728 {
1729 /* Nothing. */
1730 }
1731 else
1732 {
1733 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1734
1735 intermediate_buffer = val_bytes + source_offset;
1736 }
1737 }
1738 break;
1739
1740 case DWARF_VALUE_LITERAL:
1741 {
1742 size_t n = this_size;
1743
1744 if (n > p->v.literal.length - source_offset)
1745 n = (p->v.literal.length >= source_offset
1746 ? p->v.literal.length - source_offset
1747 : 0);
1748 if (n != 0)
1749 intermediate_buffer = p->v.literal.data + source_offset;
1750 }
1751 break;
1752
1753 /* These bits show up as zeros -- but do not cause the value
1754 to be considered optimized-out. */
1755 case DWARF_VALUE_IMPLICIT_POINTER:
1756 break;
1757
1758 case DWARF_VALUE_OPTIMIZED_OUT:
1759 set_value_optimized_out (v, 1);
1760 break;
1761
1762 default:
1763 internal_error (__FILE__, __LINE__, _("invalid location type"));
1764 }
1765
1766 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1767 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1768 copy_bitwise (contents, dest_offset_bits,
1769 intermediate_buffer, source_offset_bits % 8,
1770 this_size_bits, bits_big_endian);
1771
1772 offset += this_size_bits;
1773 }
1774
1775 do_cleanups (cleanup);
1776 }
1777
1778 static void
1779 write_pieced_value (struct value *to, struct value *from)
1780 {
1781 int i;
1782 long offset = 0;
1783 ULONGEST bits_to_skip;
1784 const gdb_byte *contents;
1785 struct piece_closure *c
1786 = (struct piece_closure *) value_computed_closure (to);
1787 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1788 size_t type_len;
1789 size_t buffer_size = 0;
1790 gdb_byte *buffer = NULL;
1791 struct cleanup *cleanup;
1792 int bits_big_endian
1793 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1794
1795 if (frame == NULL)
1796 {
1797 set_value_optimized_out (to, 1);
1798 return;
1799 }
1800
1801 cleanup = make_cleanup (free_current_contents, &buffer);
1802
1803 contents = value_contents (from);
1804 bits_to_skip = 8 * value_offset (to);
1805 if (value_bitsize (to))
1806 {
1807 bits_to_skip += value_bitpos (to);
1808 type_len = value_bitsize (to);
1809 }
1810 else
1811 type_len = 8 * TYPE_LENGTH (value_type (to));
1812
1813 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1814 {
1815 struct dwarf_expr_piece *p = &c->pieces[i];
1816 size_t this_size_bits, this_size;
1817 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1818 int need_bitwise;
1819 const gdb_byte *source_buffer;
1820
1821 this_size_bits = p->size;
1822 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1823 {
1824 bits_to_skip -= this_size_bits;
1825 continue;
1826 }
1827 if (this_size_bits > type_len - offset)
1828 this_size_bits = type_len - offset;
1829 if (bits_to_skip > 0)
1830 {
1831 dest_offset_bits = bits_to_skip;
1832 source_offset_bits = 0;
1833 this_size_bits -= bits_to_skip;
1834 bits_to_skip = 0;
1835 }
1836 else
1837 {
1838 dest_offset_bits = 0;
1839 source_offset_bits = offset;
1840 }
1841
1842 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1843 source_offset = source_offset_bits / 8;
1844 dest_offset = dest_offset_bits / 8;
1845 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1846 {
1847 source_buffer = contents + source_offset;
1848 need_bitwise = 0;
1849 }
1850 else
1851 {
1852 if (buffer_size < this_size)
1853 {
1854 buffer_size = this_size;
1855 buffer = xrealloc (buffer, buffer_size);
1856 }
1857 source_buffer = buffer;
1858 need_bitwise = 1;
1859 }
1860
1861 switch (p->location)
1862 {
1863 case DWARF_VALUE_REGISTER:
1864 {
1865 struct gdbarch *arch = get_frame_arch (frame);
1866 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1867 int reg_offset = dest_offset;
1868
1869 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1870 && this_size <= register_size (arch, gdb_regnum))
1871 /* Big-endian, and we want less than full size. */
1872 reg_offset = register_size (arch, gdb_regnum) - this_size;
1873
1874 if (gdb_regnum != -1)
1875 {
1876 if (need_bitwise)
1877 {
1878 int optim, unavail;
1879
1880 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1881 this_size, buffer,
1882 &optim, &unavail))
1883 {
1884 if (optim)
1885 error (_("Can't do read-modify-write to "
1886 "update bitfield; containing word has been "
1887 "optimized out"));
1888 if (unavail)
1889 throw_error (NOT_AVAILABLE_ERROR,
1890 _("Can't do read-modify-write to update "
1891 "bitfield; containing word "
1892 "is unavailable"));
1893 }
1894 copy_bitwise (buffer, dest_offset_bits,
1895 contents, source_offset_bits,
1896 this_size_bits,
1897 bits_big_endian);
1898 }
1899
1900 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1901 this_size, source_buffer);
1902 }
1903 else
1904 {
1905 error (_("Unable to write to DWARF register number %s"),
1906 paddress (arch, p->v.regno));
1907 }
1908 }
1909 break;
1910 case DWARF_VALUE_MEMORY:
1911 if (need_bitwise)
1912 {
1913 /* Only the first and last bytes can possibly have any
1914 bits reused. */
1915 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1916 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1917 buffer + this_size - 1, 1);
1918 copy_bitwise (buffer, dest_offset_bits,
1919 contents, source_offset_bits,
1920 this_size_bits,
1921 bits_big_endian);
1922 }
1923
1924 write_memory (p->v.mem.addr + dest_offset,
1925 source_buffer, this_size);
1926 break;
1927 default:
1928 set_value_optimized_out (to, 1);
1929 break;
1930 }
1931 offset += this_size_bits;
1932 }
1933
1934 do_cleanups (cleanup);
1935 }
1936
1937 /* A helper function that checks bit validity in a pieced value.
1938 CHECK_FOR indicates the kind of validity checking.
1939 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1940 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1941 optimized out.
1942 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1943 implicit pointer. */
1944
1945 static int
1946 check_pieced_value_bits (const struct value *value, int bit_offset,
1947 int bit_length,
1948 enum dwarf_value_location check_for)
1949 {
1950 struct piece_closure *c
1951 = (struct piece_closure *) value_computed_closure (value);
1952 int i;
1953 int validity = (check_for == DWARF_VALUE_MEMORY
1954 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1955
1956 bit_offset += 8 * value_offset (value);
1957 if (value_bitsize (value))
1958 bit_offset += value_bitpos (value);
1959
1960 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1961 {
1962 struct dwarf_expr_piece *p = &c->pieces[i];
1963 size_t this_size_bits = p->size;
1964
1965 if (bit_offset > 0)
1966 {
1967 if (bit_offset >= this_size_bits)
1968 {
1969 bit_offset -= this_size_bits;
1970 continue;
1971 }
1972
1973 bit_length -= this_size_bits - bit_offset;
1974 bit_offset = 0;
1975 }
1976 else
1977 bit_length -= this_size_bits;
1978
1979 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1980 {
1981 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1982 return 0;
1983 }
1984 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1985 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1986 {
1987 if (validity)
1988 return 0;
1989 }
1990 else
1991 {
1992 if (!validity)
1993 return 1;
1994 }
1995 }
1996
1997 return validity;
1998 }
1999
2000 static int
2001 check_pieced_value_validity (const struct value *value, int bit_offset,
2002 int bit_length)
2003 {
2004 return check_pieced_value_bits (value, bit_offset, bit_length,
2005 DWARF_VALUE_MEMORY);
2006 }
2007
2008 static int
2009 check_pieced_value_invalid (const struct value *value)
2010 {
2011 return check_pieced_value_bits (value, 0,
2012 8 * TYPE_LENGTH (value_type (value)),
2013 DWARF_VALUE_OPTIMIZED_OUT);
2014 }
2015
2016 /* An implementation of an lval_funcs method to see whether a value is
2017 a synthetic pointer. */
2018
2019 static int
2020 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2021 int bit_length)
2022 {
2023 return check_pieced_value_bits (value, bit_offset, bit_length,
2024 DWARF_VALUE_IMPLICIT_POINTER);
2025 }
2026
2027 /* A wrapper function for get_frame_address_in_block. */
2028
2029 static CORE_ADDR
2030 get_frame_address_in_block_wrapper (void *baton)
2031 {
2032 return get_frame_address_in_block (baton);
2033 }
2034
2035 /* An implementation of an lval_funcs method to indirect through a
2036 pointer. This handles the synthetic pointer case when needed. */
2037
2038 static struct value *
2039 indirect_pieced_value (struct value *value)
2040 {
2041 struct piece_closure *c
2042 = (struct piece_closure *) value_computed_closure (value);
2043 struct type *type;
2044 struct frame_info *frame;
2045 struct dwarf2_locexpr_baton baton;
2046 int i, bit_offset, bit_length;
2047 struct dwarf_expr_piece *piece = NULL;
2048 LONGEST byte_offset;
2049
2050 type = check_typedef (value_type (value));
2051 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2052 return NULL;
2053
2054 bit_length = 8 * TYPE_LENGTH (type);
2055 bit_offset = 8 * value_offset (value);
2056 if (value_bitsize (value))
2057 bit_offset += value_bitpos (value);
2058
2059 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2060 {
2061 struct dwarf_expr_piece *p = &c->pieces[i];
2062 size_t this_size_bits = p->size;
2063
2064 if (bit_offset > 0)
2065 {
2066 if (bit_offset >= this_size_bits)
2067 {
2068 bit_offset -= this_size_bits;
2069 continue;
2070 }
2071
2072 bit_length -= this_size_bits - bit_offset;
2073 bit_offset = 0;
2074 }
2075 else
2076 bit_length -= this_size_bits;
2077
2078 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2079 return NULL;
2080
2081 if (bit_length != 0)
2082 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2083
2084 piece = p;
2085 break;
2086 }
2087
2088 frame = get_selected_frame (_("No frame selected."));
2089
2090 /* This is an offset requested by GDB, such as value subcripts. */
2091 byte_offset = value_as_address (value);
2092
2093 gdb_assert (piece);
2094 baton
2095 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2096 get_frame_address_in_block_wrapper,
2097 frame);
2098
2099 if (baton.data != NULL)
2100 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2101 baton.data, baton.size, baton.per_cu,
2102 piece->v.ptr.offset + byte_offset);
2103
2104 {
2105 struct obstack temp_obstack;
2106 struct cleanup *cleanup;
2107 const gdb_byte *bytes;
2108 LONGEST len;
2109 struct value *result;
2110
2111 obstack_init (&temp_obstack);
2112 cleanup = make_cleanup_obstack_free (&temp_obstack);
2113
2114 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2115 &temp_obstack, &len);
2116 if (bytes == NULL)
2117 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2118 else
2119 {
2120 if (byte_offset < 0
2121 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2122 invalid_synthetic_pointer ();
2123 bytes += byte_offset;
2124 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2125 }
2126
2127 do_cleanups (cleanup);
2128 return result;
2129 }
2130 }
2131
2132 static void *
2133 copy_pieced_value_closure (const struct value *v)
2134 {
2135 struct piece_closure *c
2136 = (struct piece_closure *) value_computed_closure (v);
2137
2138 ++c->refc;
2139 return c;
2140 }
2141
2142 static void
2143 free_pieced_value_closure (struct value *v)
2144 {
2145 struct piece_closure *c
2146 = (struct piece_closure *) value_computed_closure (v);
2147
2148 --c->refc;
2149 if (c->refc == 0)
2150 {
2151 int i;
2152
2153 for (i = 0; i < c->n_pieces; ++i)
2154 if (c->pieces[i].location == DWARF_VALUE_STACK)
2155 value_free (c->pieces[i].v.value);
2156
2157 xfree (c->pieces);
2158 xfree (c);
2159 }
2160 }
2161
2162 /* Functions for accessing a variable described by DW_OP_piece. */
2163 static const struct lval_funcs pieced_value_funcs = {
2164 read_pieced_value,
2165 write_pieced_value,
2166 check_pieced_value_validity,
2167 check_pieced_value_invalid,
2168 indirect_pieced_value,
2169 NULL, /* coerce_ref */
2170 check_pieced_synthetic_pointer,
2171 copy_pieced_value_closure,
2172 free_pieced_value_closure
2173 };
2174
2175 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2176
2177 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2178 {
2179 dwarf_expr_read_reg,
2180 dwarf_expr_read_mem,
2181 dwarf_expr_frame_base,
2182 dwarf_expr_frame_cfa,
2183 dwarf_expr_frame_pc,
2184 dwarf_expr_tls_address,
2185 dwarf_expr_dwarf_call,
2186 dwarf_expr_get_base_type,
2187 dwarf_expr_push_dwarf_reg_entry_value,
2188 dwarf_expr_get_addr_index
2189 };
2190
2191 /* Evaluate a location description, starting at DATA and with length
2192 SIZE, to find the current location of variable of TYPE in the
2193 context of FRAME. BYTE_OFFSET is applied after the contents are
2194 computed. */
2195
2196 static struct value *
2197 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2198 const gdb_byte *data, size_t size,
2199 struct dwarf2_per_cu_data *per_cu,
2200 LONGEST byte_offset)
2201 {
2202 struct value *retval;
2203 struct dwarf_expr_baton baton;
2204 struct dwarf_expr_context *ctx;
2205 struct cleanup *old_chain, *value_chain;
2206 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2207 volatile struct gdb_exception ex;
2208
2209 if (byte_offset < 0)
2210 invalid_synthetic_pointer ();
2211
2212 if (size == 0)
2213 return allocate_optimized_out_value (type);
2214
2215 baton.frame = frame;
2216 baton.per_cu = per_cu;
2217
2218 ctx = new_dwarf_expr_context ();
2219 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2220 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2221
2222 ctx->gdbarch = get_objfile_arch (objfile);
2223 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2224 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2225 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2226 ctx->baton = &baton;
2227 ctx->funcs = &dwarf_expr_ctx_funcs;
2228
2229 TRY_CATCH (ex, RETURN_MASK_ERROR)
2230 {
2231 dwarf_expr_eval (ctx, data, size);
2232 }
2233 if (ex.reason < 0)
2234 {
2235 if (ex.error == NOT_AVAILABLE_ERROR)
2236 {
2237 do_cleanups (old_chain);
2238 retval = allocate_value (type);
2239 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2240 return retval;
2241 }
2242 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2243 {
2244 if (entry_values_debug)
2245 exception_print (gdb_stdout, ex);
2246 do_cleanups (old_chain);
2247 return allocate_optimized_out_value (type);
2248 }
2249 else
2250 throw_exception (ex);
2251 }
2252
2253 if (ctx->num_pieces > 0)
2254 {
2255 struct piece_closure *c;
2256 struct frame_id frame_id = get_frame_id (frame);
2257 ULONGEST bit_size = 0;
2258 int i;
2259
2260 for (i = 0; i < ctx->num_pieces; ++i)
2261 bit_size += ctx->pieces[i].size;
2262 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2263 invalid_synthetic_pointer ();
2264
2265 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2266 ctx->addr_size);
2267 /* We must clean up the value chain after creating the piece
2268 closure but before allocating the result. */
2269 do_cleanups (value_chain);
2270 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2271 VALUE_FRAME_ID (retval) = frame_id;
2272 set_value_offset (retval, byte_offset);
2273 }
2274 else
2275 {
2276 switch (ctx->location)
2277 {
2278 case DWARF_VALUE_REGISTER:
2279 {
2280 struct gdbarch *arch = get_frame_arch (frame);
2281 ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0));
2282 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2283
2284 if (byte_offset != 0)
2285 error (_("cannot use offset on synthetic pointer to register"));
2286 do_cleanups (value_chain);
2287 if (gdb_regnum != -1)
2288 retval = value_from_register (type, gdb_regnum, frame);
2289 else
2290 error (_("Unable to access DWARF register number %s"),
2291 paddress (arch, dwarf_regnum));
2292 }
2293 break;
2294
2295 case DWARF_VALUE_MEMORY:
2296 {
2297 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2298 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2299
2300 do_cleanups (value_chain);
2301 retval = allocate_value_lazy (type);
2302 VALUE_LVAL (retval) = lval_memory;
2303 if (in_stack_memory)
2304 set_value_stack (retval, 1);
2305 set_value_address (retval, address + byte_offset);
2306 }
2307 break;
2308
2309 case DWARF_VALUE_STACK:
2310 {
2311 struct value *value = dwarf_expr_fetch (ctx, 0);
2312 gdb_byte *contents;
2313 const gdb_byte *val_bytes;
2314 size_t n = TYPE_LENGTH (value_type (value));
2315
2316 if (byte_offset + TYPE_LENGTH (type) > n)
2317 invalid_synthetic_pointer ();
2318
2319 val_bytes = value_contents_all (value);
2320 val_bytes += byte_offset;
2321 n -= byte_offset;
2322
2323 /* Preserve VALUE because we are going to free values back
2324 to the mark, but we still need the value contents
2325 below. */
2326 value_incref (value);
2327 do_cleanups (value_chain);
2328 make_cleanup_value_free (value);
2329
2330 retval = allocate_value (type);
2331 contents = value_contents_raw (retval);
2332 if (n > TYPE_LENGTH (type))
2333 {
2334 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2335
2336 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2337 val_bytes += n - TYPE_LENGTH (type);
2338 n = TYPE_LENGTH (type);
2339 }
2340 memcpy (contents, val_bytes, n);
2341 }
2342 break;
2343
2344 case DWARF_VALUE_LITERAL:
2345 {
2346 bfd_byte *contents;
2347 const bfd_byte *ldata;
2348 size_t n = ctx->len;
2349
2350 if (byte_offset + TYPE_LENGTH (type) > n)
2351 invalid_synthetic_pointer ();
2352
2353 do_cleanups (value_chain);
2354 retval = allocate_value (type);
2355 contents = value_contents_raw (retval);
2356
2357 ldata = ctx->data + byte_offset;
2358 n -= byte_offset;
2359
2360 if (n > TYPE_LENGTH (type))
2361 {
2362 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2363
2364 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2365 ldata += n - TYPE_LENGTH (type);
2366 n = TYPE_LENGTH (type);
2367 }
2368 memcpy (contents, ldata, n);
2369 }
2370 break;
2371
2372 case DWARF_VALUE_OPTIMIZED_OUT:
2373 do_cleanups (value_chain);
2374 retval = allocate_optimized_out_value (type);
2375 break;
2376
2377 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2378 operation by execute_stack_op. */
2379 case DWARF_VALUE_IMPLICIT_POINTER:
2380 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2381 it can only be encountered when making a piece. */
2382 default:
2383 internal_error (__FILE__, __LINE__, _("invalid location type"));
2384 }
2385 }
2386
2387 set_value_initialized (retval, ctx->initialized);
2388
2389 do_cleanups (old_chain);
2390
2391 return retval;
2392 }
2393
2394 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2395 passes 0 as the byte_offset. */
2396
2397 struct value *
2398 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2399 const gdb_byte *data, size_t size,
2400 struct dwarf2_per_cu_data *per_cu)
2401 {
2402 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2403 }
2404
2405 \f
2406 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2407
2408 struct needs_frame_baton
2409 {
2410 int needs_frame;
2411 struct dwarf2_per_cu_data *per_cu;
2412 };
2413
2414 /* Reads from registers do require a frame. */
2415 static CORE_ADDR
2416 needs_frame_read_reg (void *baton, int regnum)
2417 {
2418 struct needs_frame_baton *nf_baton = baton;
2419
2420 nf_baton->needs_frame = 1;
2421 return 1;
2422 }
2423
2424 /* Reads from memory do not require a frame. */
2425 static void
2426 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2427 {
2428 memset (buf, 0, len);
2429 }
2430
2431 /* Frame-relative accesses do require a frame. */
2432 static void
2433 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2434 {
2435 static gdb_byte lit0 = DW_OP_lit0;
2436 struct needs_frame_baton *nf_baton = baton;
2437
2438 *start = &lit0;
2439 *length = 1;
2440
2441 nf_baton->needs_frame = 1;
2442 }
2443
2444 /* CFA accesses require a frame. */
2445
2446 static CORE_ADDR
2447 needs_frame_frame_cfa (void *baton)
2448 {
2449 struct needs_frame_baton *nf_baton = baton;
2450
2451 nf_baton->needs_frame = 1;
2452 return 1;
2453 }
2454
2455 /* Thread-local accesses do require a frame. */
2456 static CORE_ADDR
2457 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2458 {
2459 struct needs_frame_baton *nf_baton = baton;
2460
2461 nf_baton->needs_frame = 1;
2462 return 1;
2463 }
2464
2465 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2466
2467 static void
2468 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2469 {
2470 struct needs_frame_baton *nf_baton = ctx->baton;
2471
2472 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2473 ctx->funcs->get_frame_pc, ctx->baton);
2474 }
2475
2476 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2477
2478 static void
2479 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2480 enum call_site_parameter_kind kind,
2481 union call_site_parameter_u kind_u, int deref_size)
2482 {
2483 struct needs_frame_baton *nf_baton = ctx->baton;
2484
2485 nf_baton->needs_frame = 1;
2486
2487 /* The expression may require some stub values on DWARF stack. */
2488 dwarf_expr_push_address (ctx, 0, 0);
2489 }
2490
2491 /* DW_OP_GNU_addr_index doesn't require a frame. */
2492
2493 static CORE_ADDR
2494 needs_get_addr_index (void *baton, unsigned int index)
2495 {
2496 /* Nothing to do. */
2497 return 1;
2498 }
2499
2500 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2501
2502 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2503 {
2504 needs_frame_read_reg,
2505 needs_frame_read_mem,
2506 needs_frame_frame_base,
2507 needs_frame_frame_cfa,
2508 needs_frame_frame_cfa, /* get_frame_pc */
2509 needs_frame_tls_address,
2510 needs_frame_dwarf_call,
2511 NULL, /* get_base_type */
2512 needs_dwarf_reg_entry_value,
2513 needs_get_addr_index
2514 };
2515
2516 /* Return non-zero iff the location expression at DATA (length SIZE)
2517 requires a frame to evaluate. */
2518
2519 static int
2520 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2521 struct dwarf2_per_cu_data *per_cu)
2522 {
2523 struct needs_frame_baton baton;
2524 struct dwarf_expr_context *ctx;
2525 int in_reg;
2526 struct cleanup *old_chain;
2527 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2528
2529 baton.needs_frame = 0;
2530 baton.per_cu = per_cu;
2531
2532 ctx = new_dwarf_expr_context ();
2533 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2534 make_cleanup_value_free_to_mark (value_mark ());
2535
2536 ctx->gdbarch = get_objfile_arch (objfile);
2537 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2538 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2539 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2540 ctx->baton = &baton;
2541 ctx->funcs = &needs_frame_ctx_funcs;
2542
2543 dwarf_expr_eval (ctx, data, size);
2544
2545 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2546
2547 if (ctx->num_pieces > 0)
2548 {
2549 int i;
2550
2551 /* If the location has several pieces, and any of them are in
2552 registers, then we will need a frame to fetch them from. */
2553 for (i = 0; i < ctx->num_pieces; i++)
2554 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2555 in_reg = 1;
2556 }
2557
2558 do_cleanups (old_chain);
2559
2560 return baton.needs_frame || in_reg;
2561 }
2562
2563 /* A helper function that throws an unimplemented error mentioning a
2564 given DWARF operator. */
2565
2566 static void
2567 unimplemented (unsigned int op)
2568 {
2569 const char *name = get_DW_OP_name (op);
2570
2571 if (name)
2572 error (_("DWARF operator %s cannot be translated to an agent expression"),
2573 name);
2574 else
2575 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2576 "to an agent expression"),
2577 op);
2578 }
2579
2580 /* A helper function to convert a DWARF register to an arch register.
2581 ARCH is the architecture.
2582 DWARF_REG is the register.
2583 This will throw an exception if the DWARF register cannot be
2584 translated to an architecture register. */
2585
2586 static int
2587 translate_register (struct gdbarch *arch, int dwarf_reg)
2588 {
2589 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2590 if (reg == -1)
2591 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2592 return reg;
2593 }
2594
2595 /* A helper function that emits an access to memory. ARCH is the
2596 target architecture. EXPR is the expression which we are building.
2597 NBITS is the number of bits we want to read. This emits the
2598 opcodes needed to read the memory and then extract the desired
2599 bits. */
2600
2601 static void
2602 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2603 {
2604 ULONGEST nbytes = (nbits + 7) / 8;
2605
2606 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2607
2608 if (expr->tracing)
2609 ax_trace_quick (expr, nbytes);
2610
2611 if (nbits <= 8)
2612 ax_simple (expr, aop_ref8);
2613 else if (nbits <= 16)
2614 ax_simple (expr, aop_ref16);
2615 else if (nbits <= 32)
2616 ax_simple (expr, aop_ref32);
2617 else
2618 ax_simple (expr, aop_ref64);
2619
2620 /* If we read exactly the number of bytes we wanted, we're done. */
2621 if (8 * nbytes == nbits)
2622 return;
2623
2624 if (gdbarch_bits_big_endian (arch))
2625 {
2626 /* On a bits-big-endian machine, we want the high-order
2627 NBITS. */
2628 ax_const_l (expr, 8 * nbytes - nbits);
2629 ax_simple (expr, aop_rsh_unsigned);
2630 }
2631 else
2632 {
2633 /* On a bits-little-endian box, we want the low-order NBITS. */
2634 ax_zero_ext (expr, nbits);
2635 }
2636 }
2637
2638 /* A helper function to return the frame's PC. */
2639
2640 static CORE_ADDR
2641 get_ax_pc (void *baton)
2642 {
2643 struct agent_expr *expr = baton;
2644
2645 return expr->scope;
2646 }
2647
2648 /* Compile a DWARF location expression to an agent expression.
2649
2650 EXPR is the agent expression we are building.
2651 LOC is the agent value we modify.
2652 ARCH is the architecture.
2653 ADDR_SIZE is the size of addresses, in bytes.
2654 OP_PTR is the start of the location expression.
2655 OP_END is one past the last byte of the location expression.
2656
2657 This will throw an exception for various kinds of errors -- for
2658 example, if the expression cannot be compiled, or if the expression
2659 is invalid. */
2660
2661 void
2662 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2663 struct gdbarch *arch, unsigned int addr_size,
2664 const gdb_byte *op_ptr, const gdb_byte *op_end,
2665 struct dwarf2_per_cu_data *per_cu)
2666 {
2667 struct cleanup *cleanups;
2668 int i, *offsets;
2669 VEC(int) *dw_labels = NULL, *patches = NULL;
2670 const gdb_byte * const base = op_ptr;
2671 const gdb_byte *previous_piece = op_ptr;
2672 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2673 ULONGEST bits_collected = 0;
2674 unsigned int addr_size_bits = 8 * addr_size;
2675 int bits_big_endian = gdbarch_bits_big_endian (arch);
2676
2677 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2678 cleanups = make_cleanup (xfree, offsets);
2679
2680 for (i = 0; i < op_end - op_ptr; ++i)
2681 offsets[i] = -1;
2682
2683 make_cleanup (VEC_cleanup (int), &dw_labels);
2684 make_cleanup (VEC_cleanup (int), &patches);
2685
2686 /* By default we are making an address. */
2687 loc->kind = axs_lvalue_memory;
2688
2689 while (op_ptr < op_end)
2690 {
2691 enum dwarf_location_atom op = *op_ptr;
2692 uint64_t uoffset, reg;
2693 int64_t offset;
2694 int i;
2695
2696 offsets[op_ptr - base] = expr->len;
2697 ++op_ptr;
2698
2699 /* Our basic approach to code generation is to map DWARF
2700 operations directly to AX operations. However, there are
2701 some differences.
2702
2703 First, DWARF works on address-sized units, but AX always uses
2704 LONGEST. For most operations we simply ignore this
2705 difference; instead we generate sign extensions as needed
2706 before division and comparison operations. It would be nice
2707 to omit the sign extensions, but there is no way to determine
2708 the size of the target's LONGEST. (This code uses the size
2709 of the host LONGEST in some cases -- that is a bug but it is
2710 difficult to fix.)
2711
2712 Second, some DWARF operations cannot be translated to AX.
2713 For these we simply fail. See
2714 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2715 switch (op)
2716 {
2717 case DW_OP_lit0:
2718 case DW_OP_lit1:
2719 case DW_OP_lit2:
2720 case DW_OP_lit3:
2721 case DW_OP_lit4:
2722 case DW_OP_lit5:
2723 case DW_OP_lit6:
2724 case DW_OP_lit7:
2725 case DW_OP_lit8:
2726 case DW_OP_lit9:
2727 case DW_OP_lit10:
2728 case DW_OP_lit11:
2729 case DW_OP_lit12:
2730 case DW_OP_lit13:
2731 case DW_OP_lit14:
2732 case DW_OP_lit15:
2733 case DW_OP_lit16:
2734 case DW_OP_lit17:
2735 case DW_OP_lit18:
2736 case DW_OP_lit19:
2737 case DW_OP_lit20:
2738 case DW_OP_lit21:
2739 case DW_OP_lit22:
2740 case DW_OP_lit23:
2741 case DW_OP_lit24:
2742 case DW_OP_lit25:
2743 case DW_OP_lit26:
2744 case DW_OP_lit27:
2745 case DW_OP_lit28:
2746 case DW_OP_lit29:
2747 case DW_OP_lit30:
2748 case DW_OP_lit31:
2749 ax_const_l (expr, op - DW_OP_lit0);
2750 break;
2751
2752 case DW_OP_addr:
2753 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2754 op_ptr += addr_size;
2755 /* Some versions of GCC emit DW_OP_addr before
2756 DW_OP_GNU_push_tls_address. In this case the value is an
2757 index, not an address. We don't support things like
2758 branching between the address and the TLS op. */
2759 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2760 uoffset += dwarf2_per_cu_text_offset (per_cu);
2761 ax_const_l (expr, uoffset);
2762 break;
2763
2764 case DW_OP_const1u:
2765 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2766 op_ptr += 1;
2767 break;
2768 case DW_OP_const1s:
2769 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2770 op_ptr += 1;
2771 break;
2772 case DW_OP_const2u:
2773 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2774 op_ptr += 2;
2775 break;
2776 case DW_OP_const2s:
2777 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2778 op_ptr += 2;
2779 break;
2780 case DW_OP_const4u:
2781 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2782 op_ptr += 4;
2783 break;
2784 case DW_OP_const4s:
2785 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2786 op_ptr += 4;
2787 break;
2788 case DW_OP_const8u:
2789 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2790 op_ptr += 8;
2791 break;
2792 case DW_OP_const8s:
2793 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2794 op_ptr += 8;
2795 break;
2796 case DW_OP_constu:
2797 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2798 ax_const_l (expr, uoffset);
2799 break;
2800 case DW_OP_consts:
2801 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2802 ax_const_l (expr, offset);
2803 break;
2804
2805 case DW_OP_reg0:
2806 case DW_OP_reg1:
2807 case DW_OP_reg2:
2808 case DW_OP_reg3:
2809 case DW_OP_reg4:
2810 case DW_OP_reg5:
2811 case DW_OP_reg6:
2812 case DW_OP_reg7:
2813 case DW_OP_reg8:
2814 case DW_OP_reg9:
2815 case DW_OP_reg10:
2816 case DW_OP_reg11:
2817 case DW_OP_reg12:
2818 case DW_OP_reg13:
2819 case DW_OP_reg14:
2820 case DW_OP_reg15:
2821 case DW_OP_reg16:
2822 case DW_OP_reg17:
2823 case DW_OP_reg18:
2824 case DW_OP_reg19:
2825 case DW_OP_reg20:
2826 case DW_OP_reg21:
2827 case DW_OP_reg22:
2828 case DW_OP_reg23:
2829 case DW_OP_reg24:
2830 case DW_OP_reg25:
2831 case DW_OP_reg26:
2832 case DW_OP_reg27:
2833 case DW_OP_reg28:
2834 case DW_OP_reg29:
2835 case DW_OP_reg30:
2836 case DW_OP_reg31:
2837 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2838 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2839 loc->kind = axs_lvalue_register;
2840 break;
2841
2842 case DW_OP_regx:
2843 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2844 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2845 loc->u.reg = translate_register (arch, reg);
2846 loc->kind = axs_lvalue_register;
2847 break;
2848
2849 case DW_OP_implicit_value:
2850 {
2851 uint64_t len;
2852
2853 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2854 if (op_ptr + len > op_end)
2855 error (_("DW_OP_implicit_value: too few bytes available."));
2856 if (len > sizeof (ULONGEST))
2857 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2858 (int) len);
2859
2860 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2861 byte_order));
2862 op_ptr += len;
2863 dwarf_expr_require_composition (op_ptr, op_end,
2864 "DW_OP_implicit_value");
2865
2866 loc->kind = axs_rvalue;
2867 }
2868 break;
2869
2870 case DW_OP_stack_value:
2871 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
2872 loc->kind = axs_rvalue;
2873 break;
2874
2875 case DW_OP_breg0:
2876 case DW_OP_breg1:
2877 case DW_OP_breg2:
2878 case DW_OP_breg3:
2879 case DW_OP_breg4:
2880 case DW_OP_breg5:
2881 case DW_OP_breg6:
2882 case DW_OP_breg7:
2883 case DW_OP_breg8:
2884 case DW_OP_breg9:
2885 case DW_OP_breg10:
2886 case DW_OP_breg11:
2887 case DW_OP_breg12:
2888 case DW_OP_breg13:
2889 case DW_OP_breg14:
2890 case DW_OP_breg15:
2891 case DW_OP_breg16:
2892 case DW_OP_breg17:
2893 case DW_OP_breg18:
2894 case DW_OP_breg19:
2895 case DW_OP_breg20:
2896 case DW_OP_breg21:
2897 case DW_OP_breg22:
2898 case DW_OP_breg23:
2899 case DW_OP_breg24:
2900 case DW_OP_breg25:
2901 case DW_OP_breg26:
2902 case DW_OP_breg27:
2903 case DW_OP_breg28:
2904 case DW_OP_breg29:
2905 case DW_OP_breg30:
2906 case DW_OP_breg31:
2907 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2908 i = translate_register (arch, op - DW_OP_breg0);
2909 ax_reg (expr, i);
2910 if (offset != 0)
2911 {
2912 ax_const_l (expr, offset);
2913 ax_simple (expr, aop_add);
2914 }
2915 break;
2916 case DW_OP_bregx:
2917 {
2918 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2919 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2920 i = translate_register (arch, reg);
2921 ax_reg (expr, i);
2922 if (offset != 0)
2923 {
2924 ax_const_l (expr, offset);
2925 ax_simple (expr, aop_add);
2926 }
2927 }
2928 break;
2929 case DW_OP_fbreg:
2930 {
2931 const gdb_byte *datastart;
2932 size_t datalen;
2933 struct block *b;
2934 struct symbol *framefunc;
2935
2936 b = block_for_pc (expr->scope);
2937
2938 if (!b)
2939 error (_("No block found for address"));
2940
2941 framefunc = block_linkage_function (b);
2942
2943 if (!framefunc)
2944 error (_("No function found for block"));
2945
2946 dwarf_expr_frame_base_1 (framefunc, expr->scope,
2947 &datastart, &datalen);
2948
2949 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2950 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
2951 datastart + datalen, per_cu);
2952 if (loc->kind == axs_lvalue_register)
2953 require_rvalue (expr, loc);
2954
2955 if (offset != 0)
2956 {
2957 ax_const_l (expr, offset);
2958 ax_simple (expr, aop_add);
2959 }
2960
2961 loc->kind = axs_lvalue_memory;
2962 }
2963 break;
2964
2965 case DW_OP_dup:
2966 ax_simple (expr, aop_dup);
2967 break;
2968
2969 case DW_OP_drop:
2970 ax_simple (expr, aop_pop);
2971 break;
2972
2973 case DW_OP_pick:
2974 offset = *op_ptr++;
2975 ax_pick (expr, offset);
2976 break;
2977
2978 case DW_OP_swap:
2979 ax_simple (expr, aop_swap);
2980 break;
2981
2982 case DW_OP_over:
2983 ax_pick (expr, 1);
2984 break;
2985
2986 case DW_OP_rot:
2987 ax_simple (expr, aop_rot);
2988 break;
2989
2990 case DW_OP_deref:
2991 case DW_OP_deref_size:
2992 {
2993 int size;
2994
2995 if (op == DW_OP_deref_size)
2996 size = *op_ptr++;
2997 else
2998 size = addr_size;
2999
3000 if (size != 1 && size != 2 && size != 4 && size != 8)
3001 error (_("Unsupported size %d in %s"),
3002 size, get_DW_OP_name (op));
3003 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3004 }
3005 break;
3006
3007 case DW_OP_abs:
3008 /* Sign extend the operand. */
3009 ax_ext (expr, addr_size_bits);
3010 ax_simple (expr, aop_dup);
3011 ax_const_l (expr, 0);
3012 ax_simple (expr, aop_less_signed);
3013 ax_simple (expr, aop_log_not);
3014 i = ax_goto (expr, aop_if_goto);
3015 /* We have to emit 0 - X. */
3016 ax_const_l (expr, 0);
3017 ax_simple (expr, aop_swap);
3018 ax_simple (expr, aop_sub);
3019 ax_label (expr, i, expr->len);
3020 break;
3021
3022 case DW_OP_neg:
3023 /* No need to sign extend here. */
3024 ax_const_l (expr, 0);
3025 ax_simple (expr, aop_swap);
3026 ax_simple (expr, aop_sub);
3027 break;
3028
3029 case DW_OP_not:
3030 /* Sign extend the operand. */
3031 ax_ext (expr, addr_size_bits);
3032 ax_simple (expr, aop_bit_not);
3033 break;
3034
3035 case DW_OP_plus_uconst:
3036 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3037 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3038 but we micro-optimize anyhow. */
3039 if (reg != 0)
3040 {
3041 ax_const_l (expr, reg);
3042 ax_simple (expr, aop_add);
3043 }
3044 break;
3045
3046 case DW_OP_and:
3047 ax_simple (expr, aop_bit_and);
3048 break;
3049
3050 case DW_OP_div:
3051 /* Sign extend the operands. */
3052 ax_ext (expr, addr_size_bits);
3053 ax_simple (expr, aop_swap);
3054 ax_ext (expr, addr_size_bits);
3055 ax_simple (expr, aop_swap);
3056 ax_simple (expr, aop_div_signed);
3057 break;
3058
3059 case DW_OP_minus:
3060 ax_simple (expr, aop_sub);
3061 break;
3062
3063 case DW_OP_mod:
3064 ax_simple (expr, aop_rem_unsigned);
3065 break;
3066
3067 case DW_OP_mul:
3068 ax_simple (expr, aop_mul);
3069 break;
3070
3071 case DW_OP_or:
3072 ax_simple (expr, aop_bit_or);
3073 break;
3074
3075 case DW_OP_plus:
3076 ax_simple (expr, aop_add);
3077 break;
3078
3079 case DW_OP_shl:
3080 ax_simple (expr, aop_lsh);
3081 break;
3082
3083 case DW_OP_shr:
3084 ax_simple (expr, aop_rsh_unsigned);
3085 break;
3086
3087 case DW_OP_shra:
3088 ax_simple (expr, aop_rsh_signed);
3089 break;
3090
3091 case DW_OP_xor:
3092 ax_simple (expr, aop_bit_xor);
3093 break;
3094
3095 case DW_OP_le:
3096 /* Sign extend the operands. */
3097 ax_ext (expr, addr_size_bits);
3098 ax_simple (expr, aop_swap);
3099 ax_ext (expr, addr_size_bits);
3100 /* Note no swap here: A <= B is !(B < A). */
3101 ax_simple (expr, aop_less_signed);
3102 ax_simple (expr, aop_log_not);
3103 break;
3104
3105 case DW_OP_ge:
3106 /* Sign extend the operands. */
3107 ax_ext (expr, addr_size_bits);
3108 ax_simple (expr, aop_swap);
3109 ax_ext (expr, addr_size_bits);
3110 ax_simple (expr, aop_swap);
3111 /* A >= B is !(A < B). */
3112 ax_simple (expr, aop_less_signed);
3113 ax_simple (expr, aop_log_not);
3114 break;
3115
3116 case DW_OP_eq:
3117 /* Sign extend the operands. */
3118 ax_ext (expr, addr_size_bits);
3119 ax_simple (expr, aop_swap);
3120 ax_ext (expr, addr_size_bits);
3121 /* No need for a second swap here. */
3122 ax_simple (expr, aop_equal);
3123 break;
3124
3125 case DW_OP_lt:
3126 /* Sign extend the operands. */
3127 ax_ext (expr, addr_size_bits);
3128 ax_simple (expr, aop_swap);
3129 ax_ext (expr, addr_size_bits);
3130 ax_simple (expr, aop_swap);
3131 ax_simple (expr, aop_less_signed);
3132 break;
3133
3134 case DW_OP_gt:
3135 /* Sign extend the operands. */
3136 ax_ext (expr, addr_size_bits);
3137 ax_simple (expr, aop_swap);
3138 ax_ext (expr, addr_size_bits);
3139 /* Note no swap here: A > B is B < A. */
3140 ax_simple (expr, aop_less_signed);
3141 break;
3142
3143 case DW_OP_ne:
3144 /* Sign extend the operands. */
3145 ax_ext (expr, addr_size_bits);
3146 ax_simple (expr, aop_swap);
3147 ax_ext (expr, addr_size_bits);
3148 /* No need for a swap here. */
3149 ax_simple (expr, aop_equal);
3150 ax_simple (expr, aop_log_not);
3151 break;
3152
3153 case DW_OP_call_frame_cfa:
3154 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3155 loc->kind = axs_lvalue_memory;
3156 break;
3157
3158 case DW_OP_GNU_push_tls_address:
3159 unimplemented (op);
3160 break;
3161
3162 case DW_OP_skip:
3163 offset = extract_signed_integer (op_ptr, 2, byte_order);
3164 op_ptr += 2;
3165 i = ax_goto (expr, aop_goto);
3166 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3167 VEC_safe_push (int, patches, i);
3168 break;
3169
3170 case DW_OP_bra:
3171 offset = extract_signed_integer (op_ptr, 2, byte_order);
3172 op_ptr += 2;
3173 /* Zero extend the operand. */
3174 ax_zero_ext (expr, addr_size_bits);
3175 i = ax_goto (expr, aop_if_goto);
3176 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3177 VEC_safe_push (int, patches, i);
3178 break;
3179
3180 case DW_OP_nop:
3181 break;
3182
3183 case DW_OP_piece:
3184 case DW_OP_bit_piece:
3185 {
3186 uint64_t size, offset;
3187
3188 if (op_ptr - 1 == previous_piece)
3189 error (_("Cannot translate empty pieces to agent expressions"));
3190 previous_piece = op_ptr - 1;
3191
3192 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3193 if (op == DW_OP_piece)
3194 {
3195 size *= 8;
3196 offset = 0;
3197 }
3198 else
3199 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3200
3201 if (bits_collected + size > 8 * sizeof (LONGEST))
3202 error (_("Expression pieces exceed word size"));
3203
3204 /* Access the bits. */
3205 switch (loc->kind)
3206 {
3207 case axs_lvalue_register:
3208 ax_reg (expr, loc->u.reg);
3209 break;
3210
3211 case axs_lvalue_memory:
3212 /* Offset the pointer, if needed. */
3213 if (offset > 8)
3214 {
3215 ax_const_l (expr, offset / 8);
3216 ax_simple (expr, aop_add);
3217 offset %= 8;
3218 }
3219 access_memory (arch, expr, size);
3220 break;
3221 }
3222
3223 /* For a bits-big-endian target, shift up what we already
3224 have. For a bits-little-endian target, shift up the
3225 new data. Note that there is a potential bug here if
3226 the DWARF expression leaves multiple values on the
3227 stack. */
3228 if (bits_collected > 0)
3229 {
3230 if (bits_big_endian)
3231 {
3232 ax_simple (expr, aop_swap);
3233 ax_const_l (expr, size);
3234 ax_simple (expr, aop_lsh);
3235 /* We don't need a second swap here, because
3236 aop_bit_or is symmetric. */
3237 }
3238 else
3239 {
3240 ax_const_l (expr, size);
3241 ax_simple (expr, aop_lsh);
3242 }
3243 ax_simple (expr, aop_bit_or);
3244 }
3245
3246 bits_collected += size;
3247 loc->kind = axs_rvalue;
3248 }
3249 break;
3250
3251 case DW_OP_GNU_uninit:
3252 unimplemented (op);
3253
3254 case DW_OP_call2:
3255 case DW_OP_call4:
3256 {
3257 struct dwarf2_locexpr_baton block;
3258 int size = (op == DW_OP_call2 ? 2 : 4);
3259 cu_offset offset;
3260
3261 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3262 op_ptr += size;
3263
3264 offset.cu_off = uoffset;
3265 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3266 get_ax_pc, expr);
3267
3268 /* DW_OP_call_ref is currently not supported. */
3269 gdb_assert (block.per_cu == per_cu);
3270
3271 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3272 block.data, block.data + block.size,
3273 per_cu);
3274 }
3275 break;
3276
3277 case DW_OP_call_ref:
3278 unimplemented (op);
3279
3280 default:
3281 unimplemented (op);
3282 }
3283 }
3284
3285 /* Patch all the branches we emitted. */
3286 for (i = 0; i < VEC_length (int, patches); ++i)
3287 {
3288 int targ = offsets[VEC_index (int, dw_labels, i)];
3289 if (targ == -1)
3290 internal_error (__FILE__, __LINE__, _("invalid label"));
3291 ax_label (expr, VEC_index (int, patches, i), targ);
3292 }
3293
3294 do_cleanups (cleanups);
3295 }
3296
3297 \f
3298 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3299 evaluator to calculate the location. */
3300 static struct value *
3301 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3302 {
3303 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3304 struct value *val;
3305
3306 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3307 dlbaton->size, dlbaton->per_cu);
3308
3309 return val;
3310 }
3311
3312 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3313 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3314 will be thrown. */
3315
3316 static struct value *
3317 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3318 {
3319 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3320
3321 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3322 dlbaton->size);
3323 }
3324
3325 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3326 static int
3327 locexpr_read_needs_frame (struct symbol *symbol)
3328 {
3329 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3330
3331 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3332 dlbaton->per_cu);
3333 }
3334
3335 /* Return true if DATA points to the end of a piece. END is one past
3336 the last byte in the expression. */
3337
3338 static int
3339 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3340 {
3341 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3342 }
3343
3344 /* Helper for locexpr_describe_location_piece that finds the name of a
3345 DWARF register. */
3346
3347 static const char *
3348 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3349 {
3350 int regnum;
3351
3352 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3353 return gdbarch_register_name (gdbarch, regnum);
3354 }
3355
3356 /* Nicely describe a single piece of a location, returning an updated
3357 position in the bytecode sequence. This function cannot recognize
3358 all locations; if a location is not recognized, it simply returns
3359 DATA. If there is an error during reading, e.g. we run off the end
3360 of the buffer, an error is thrown. */
3361
3362 static const gdb_byte *
3363 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3364 CORE_ADDR addr, struct objfile *objfile,
3365 struct dwarf2_per_cu_data *per_cu,
3366 const gdb_byte *data, const gdb_byte *end,
3367 unsigned int addr_size)
3368 {
3369 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3370 size_t leb128_size;
3371
3372 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3373 {
3374 fprintf_filtered (stream, _("a variable in $%s"),
3375 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3376 data += 1;
3377 }
3378 else if (data[0] == DW_OP_regx)
3379 {
3380 uint64_t reg;
3381
3382 data = safe_read_uleb128 (data + 1, end, &reg);
3383 fprintf_filtered (stream, _("a variable in $%s"),
3384 locexpr_regname (gdbarch, reg));
3385 }
3386 else if (data[0] == DW_OP_fbreg)
3387 {
3388 struct block *b;
3389 struct symbol *framefunc;
3390 int frame_reg = 0;
3391 int64_t frame_offset;
3392 const gdb_byte *base_data, *new_data, *save_data = data;
3393 size_t base_size;
3394 int64_t base_offset = 0;
3395
3396 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3397 if (!piece_end_p (new_data, end))
3398 return data;
3399 data = new_data;
3400
3401 b = block_for_pc (addr);
3402
3403 if (!b)
3404 error (_("No block found for address for symbol \"%s\"."),
3405 SYMBOL_PRINT_NAME (symbol));
3406
3407 framefunc = block_linkage_function (b);
3408
3409 if (!framefunc)
3410 error (_("No function found for block for symbol \"%s\"."),
3411 SYMBOL_PRINT_NAME (symbol));
3412
3413 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3414
3415 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3416 {
3417 const gdb_byte *buf_end;
3418
3419 frame_reg = base_data[0] - DW_OP_breg0;
3420 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3421 &base_offset);
3422 if (buf_end != base_data + base_size)
3423 error (_("Unexpected opcode after "
3424 "DW_OP_breg%u for symbol \"%s\"."),
3425 frame_reg, SYMBOL_PRINT_NAME (symbol));
3426 }
3427 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3428 {
3429 /* The frame base is just the register, with no offset. */
3430 frame_reg = base_data[0] - DW_OP_reg0;
3431 base_offset = 0;
3432 }
3433 else
3434 {
3435 /* We don't know what to do with the frame base expression,
3436 so we can't trace this variable; give up. */
3437 return save_data;
3438 }
3439
3440 fprintf_filtered (stream,
3441 _("a variable at frame base reg $%s offset %s+%s"),
3442 locexpr_regname (gdbarch, frame_reg),
3443 plongest (base_offset), plongest (frame_offset));
3444 }
3445 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3446 && piece_end_p (data, end))
3447 {
3448 int64_t offset;
3449
3450 data = safe_read_sleb128 (data + 1, end, &offset);
3451
3452 fprintf_filtered (stream,
3453 _("a variable at offset %s from base reg $%s"),
3454 plongest (offset),
3455 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3456 }
3457
3458 /* The location expression for a TLS variable looks like this (on a
3459 64-bit LE machine):
3460
3461 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3462 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3463
3464 0x3 is the encoding for DW_OP_addr, which has an operand as long
3465 as the size of an address on the target machine (here is 8
3466 bytes). Note that more recent version of GCC emit DW_OP_const4u
3467 or DW_OP_const8u, depending on address size, rather than
3468 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3469 The operand represents the offset at which the variable is within
3470 the thread local storage. */
3471
3472 else if (data + 1 + addr_size < end
3473 && (data[0] == DW_OP_addr
3474 || (addr_size == 4 && data[0] == DW_OP_const4u)
3475 || (addr_size == 8 && data[0] == DW_OP_const8u))
3476 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3477 && piece_end_p (data + 2 + addr_size, end))
3478 {
3479 ULONGEST offset;
3480 offset = extract_unsigned_integer (data + 1, addr_size,
3481 gdbarch_byte_order (gdbarch));
3482
3483 fprintf_filtered (stream,
3484 _("a thread-local variable at offset 0x%s "
3485 "in the thread-local storage for `%s'"),
3486 phex_nz (offset, addr_size), objfile->name);
3487
3488 data += 1 + addr_size + 1;
3489 }
3490
3491 /* With -gsplit-dwarf a TLS variable can also look like this:
3492 DW_AT_location : 3 byte block: fc 4 e0
3493 (DW_OP_GNU_const_index: 4;
3494 DW_OP_GNU_push_tls_address) */
3495 else if (data + 3 <= end
3496 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3497 && data[0] == DW_OP_GNU_const_index
3498 && leb128_size > 0
3499 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3500 && piece_end_p (data + 2 + leb128_size, end))
3501 {
3502 uint64_t offset;
3503
3504 data = safe_read_uleb128 (data + 1, end, &offset);
3505 offset = dwarf2_read_addr_index (per_cu, offset);
3506 fprintf_filtered (stream,
3507 _("a thread-local variable at offset 0x%s "
3508 "in the thread-local storage for `%s'"),
3509 phex_nz (offset, addr_size), objfile->name);
3510 ++data;
3511 }
3512
3513 else if (data[0] >= DW_OP_lit0
3514 && data[0] <= DW_OP_lit31
3515 && data + 1 < end
3516 && data[1] == DW_OP_stack_value)
3517 {
3518 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3519 data += 2;
3520 }
3521
3522 return data;
3523 }
3524
3525 /* Disassemble an expression, stopping at the end of a piece or at the
3526 end of the expression. Returns a pointer to the next unread byte
3527 in the input expression. If ALL is nonzero, then this function
3528 will keep going until it reaches the end of the expression.
3529 If there is an error during reading, e.g. we run off the end
3530 of the buffer, an error is thrown. */
3531
3532 static const gdb_byte *
3533 disassemble_dwarf_expression (struct ui_file *stream,
3534 struct gdbarch *arch, unsigned int addr_size,
3535 int offset_size, const gdb_byte *start,
3536 const gdb_byte *data, const gdb_byte *end,
3537 int indent, int all,
3538 struct dwarf2_per_cu_data *per_cu)
3539 {
3540 while (data < end
3541 && (all
3542 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3543 {
3544 enum dwarf_location_atom op = *data++;
3545 uint64_t ul;
3546 int64_t l;
3547 const char *name;
3548
3549 name = get_DW_OP_name (op);
3550
3551 if (!name)
3552 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3553 op, (long) (data - 1 - start));
3554 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3555 (long) (data - 1 - start), name);
3556
3557 switch (op)
3558 {
3559 case DW_OP_addr:
3560 ul = extract_unsigned_integer (data, addr_size,
3561 gdbarch_byte_order (arch));
3562 data += addr_size;
3563 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3564 break;
3565
3566 case DW_OP_const1u:
3567 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3568 data += 1;
3569 fprintf_filtered (stream, " %s", pulongest (ul));
3570 break;
3571 case DW_OP_const1s:
3572 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3573 data += 1;
3574 fprintf_filtered (stream, " %s", plongest (l));
3575 break;
3576 case DW_OP_const2u:
3577 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3578 data += 2;
3579 fprintf_filtered (stream, " %s", pulongest (ul));
3580 break;
3581 case DW_OP_const2s:
3582 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3583 data += 2;
3584 fprintf_filtered (stream, " %s", plongest (l));
3585 break;
3586 case DW_OP_const4u:
3587 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3588 data += 4;
3589 fprintf_filtered (stream, " %s", pulongest (ul));
3590 break;
3591 case DW_OP_const4s:
3592 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3593 data += 4;
3594 fprintf_filtered (stream, " %s", plongest (l));
3595 break;
3596 case DW_OP_const8u:
3597 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3598 data += 8;
3599 fprintf_filtered (stream, " %s", pulongest (ul));
3600 break;
3601 case DW_OP_const8s:
3602 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3603 data += 8;
3604 fprintf_filtered (stream, " %s", plongest (l));
3605 break;
3606 case DW_OP_constu:
3607 data = safe_read_uleb128 (data, end, &ul);
3608 fprintf_filtered (stream, " %s", pulongest (ul));
3609 break;
3610 case DW_OP_consts:
3611 data = safe_read_sleb128 (data, end, &l);
3612 fprintf_filtered (stream, " %s", plongest (l));
3613 break;
3614
3615 case DW_OP_reg0:
3616 case DW_OP_reg1:
3617 case DW_OP_reg2:
3618 case DW_OP_reg3:
3619 case DW_OP_reg4:
3620 case DW_OP_reg5:
3621 case DW_OP_reg6:
3622 case DW_OP_reg7:
3623 case DW_OP_reg8:
3624 case DW_OP_reg9:
3625 case DW_OP_reg10:
3626 case DW_OP_reg11:
3627 case DW_OP_reg12:
3628 case DW_OP_reg13:
3629 case DW_OP_reg14:
3630 case DW_OP_reg15:
3631 case DW_OP_reg16:
3632 case DW_OP_reg17:
3633 case DW_OP_reg18:
3634 case DW_OP_reg19:
3635 case DW_OP_reg20:
3636 case DW_OP_reg21:
3637 case DW_OP_reg22:
3638 case DW_OP_reg23:
3639 case DW_OP_reg24:
3640 case DW_OP_reg25:
3641 case DW_OP_reg26:
3642 case DW_OP_reg27:
3643 case DW_OP_reg28:
3644 case DW_OP_reg29:
3645 case DW_OP_reg30:
3646 case DW_OP_reg31:
3647 fprintf_filtered (stream, " [$%s]",
3648 locexpr_regname (arch, op - DW_OP_reg0));
3649 break;
3650
3651 case DW_OP_regx:
3652 data = safe_read_uleb128 (data, end, &ul);
3653 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3654 locexpr_regname (arch, (int) ul));
3655 break;
3656
3657 case DW_OP_implicit_value:
3658 data = safe_read_uleb128 (data, end, &ul);
3659 data += ul;
3660 fprintf_filtered (stream, " %s", pulongest (ul));
3661 break;
3662
3663 case DW_OP_breg0:
3664 case DW_OP_breg1:
3665 case DW_OP_breg2:
3666 case DW_OP_breg3:
3667 case DW_OP_breg4:
3668 case DW_OP_breg5:
3669 case DW_OP_breg6:
3670 case DW_OP_breg7:
3671 case DW_OP_breg8:
3672 case DW_OP_breg9:
3673 case DW_OP_breg10:
3674 case DW_OP_breg11:
3675 case DW_OP_breg12:
3676 case DW_OP_breg13:
3677 case DW_OP_breg14:
3678 case DW_OP_breg15:
3679 case DW_OP_breg16:
3680 case DW_OP_breg17:
3681 case DW_OP_breg18:
3682 case DW_OP_breg19:
3683 case DW_OP_breg20:
3684 case DW_OP_breg21:
3685 case DW_OP_breg22:
3686 case DW_OP_breg23:
3687 case DW_OP_breg24:
3688 case DW_OP_breg25:
3689 case DW_OP_breg26:
3690 case DW_OP_breg27:
3691 case DW_OP_breg28:
3692 case DW_OP_breg29:
3693 case DW_OP_breg30:
3694 case DW_OP_breg31:
3695 data = safe_read_sleb128 (data, end, &l);
3696 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3697 locexpr_regname (arch, op - DW_OP_breg0));
3698 break;
3699
3700 case DW_OP_bregx:
3701 data = safe_read_uleb128 (data, end, &ul);
3702 data = safe_read_sleb128 (data, end, &l);
3703 fprintf_filtered (stream, " register %s [$%s] offset %s",
3704 pulongest (ul),
3705 locexpr_regname (arch, (int) ul),
3706 plongest (l));
3707 break;
3708
3709 case DW_OP_fbreg:
3710 data = safe_read_sleb128 (data, end, &l);
3711 fprintf_filtered (stream, " %s", plongest (l));
3712 break;
3713
3714 case DW_OP_xderef_size:
3715 case DW_OP_deref_size:
3716 case DW_OP_pick:
3717 fprintf_filtered (stream, " %d", *data);
3718 ++data;
3719 break;
3720
3721 case DW_OP_plus_uconst:
3722 data = safe_read_uleb128 (data, end, &ul);
3723 fprintf_filtered (stream, " %s", pulongest (ul));
3724 break;
3725
3726 case DW_OP_skip:
3727 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3728 data += 2;
3729 fprintf_filtered (stream, " to %ld",
3730 (long) (data + l - start));
3731 break;
3732
3733 case DW_OP_bra:
3734 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3735 data += 2;
3736 fprintf_filtered (stream, " %ld",
3737 (long) (data + l - start));
3738 break;
3739
3740 case DW_OP_call2:
3741 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3742 data += 2;
3743 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3744 break;
3745
3746 case DW_OP_call4:
3747 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3748 data += 4;
3749 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3750 break;
3751
3752 case DW_OP_call_ref:
3753 ul = extract_unsigned_integer (data, offset_size,
3754 gdbarch_byte_order (arch));
3755 data += offset_size;
3756 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3757 break;
3758
3759 case DW_OP_piece:
3760 data = safe_read_uleb128 (data, end, &ul);
3761 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3762 break;
3763
3764 case DW_OP_bit_piece:
3765 {
3766 uint64_t offset;
3767
3768 data = safe_read_uleb128 (data, end, &ul);
3769 data = safe_read_uleb128 (data, end, &offset);
3770 fprintf_filtered (stream, " size %s offset %s (bits)",
3771 pulongest (ul), pulongest (offset));
3772 }
3773 break;
3774
3775 case DW_OP_GNU_implicit_pointer:
3776 {
3777 ul = extract_unsigned_integer (data, offset_size,
3778 gdbarch_byte_order (arch));
3779 data += offset_size;
3780
3781 data = safe_read_sleb128 (data, end, &l);
3782
3783 fprintf_filtered (stream, " DIE %s offset %s",
3784 phex_nz (ul, offset_size),
3785 plongest (l));
3786 }
3787 break;
3788
3789 case DW_OP_GNU_deref_type:
3790 {
3791 int addr_size = *data++;
3792 cu_offset offset;
3793 struct type *type;
3794
3795 data = safe_read_uleb128 (data, end, &ul);
3796 offset.cu_off = ul;
3797 type = dwarf2_get_die_type (offset, per_cu);
3798 fprintf_filtered (stream, "<");
3799 type_print (type, "", stream, -1);
3800 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3801 addr_size);
3802 }
3803 break;
3804
3805 case DW_OP_GNU_const_type:
3806 {
3807 cu_offset type_die;
3808 struct type *type;
3809
3810 data = safe_read_uleb128 (data, end, &ul);
3811 type_die.cu_off = ul;
3812 type = dwarf2_get_die_type (type_die, per_cu);
3813 fprintf_filtered (stream, "<");
3814 type_print (type, "", stream, -1);
3815 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3816 }
3817 break;
3818
3819 case DW_OP_GNU_regval_type:
3820 {
3821 uint64_t reg;
3822 cu_offset type_die;
3823 struct type *type;
3824
3825 data = safe_read_uleb128 (data, end, &reg);
3826 data = safe_read_uleb128 (data, end, &ul);
3827 type_die.cu_off = ul;
3828
3829 type = dwarf2_get_die_type (type_die, per_cu);
3830 fprintf_filtered (stream, "<");
3831 type_print (type, "", stream, -1);
3832 fprintf_filtered (stream, " [0x%s]> [$%s]",
3833 phex_nz (type_die.cu_off, 0),
3834 locexpr_regname (arch, reg));
3835 }
3836 break;
3837
3838 case DW_OP_GNU_convert:
3839 case DW_OP_GNU_reinterpret:
3840 {
3841 cu_offset type_die;
3842
3843 data = safe_read_uleb128 (data, end, &ul);
3844 type_die.cu_off = ul;
3845
3846 if (type_die.cu_off == 0)
3847 fprintf_filtered (stream, "<0>");
3848 else
3849 {
3850 struct type *type;
3851
3852 type = dwarf2_get_die_type (type_die, per_cu);
3853 fprintf_filtered (stream, "<");
3854 type_print (type, "", stream, -1);
3855 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3856 }
3857 }
3858 break;
3859
3860 case DW_OP_GNU_entry_value:
3861 data = safe_read_uleb128 (data, end, &ul);
3862 fputc_filtered ('\n', stream);
3863 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3864 start, data, data + ul, indent + 2,
3865 all, per_cu);
3866 data += ul;
3867 continue;
3868
3869 case DW_OP_GNU_parameter_ref:
3870 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3871 data += 4;
3872 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3873 break;
3874
3875 case DW_OP_GNU_addr_index:
3876 data = safe_read_uleb128 (data, end, &ul);
3877 ul = dwarf2_read_addr_index (per_cu, ul);
3878 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3879 break;
3880 case DW_OP_GNU_const_index:
3881 data = safe_read_uleb128 (data, end, &ul);
3882 ul = dwarf2_read_addr_index (per_cu, ul);
3883 fprintf_filtered (stream, " %s", pulongest (ul));
3884 break;
3885 }
3886
3887 fprintf_filtered (stream, "\n");
3888 }
3889
3890 return data;
3891 }
3892
3893 /* Describe a single location, which may in turn consist of multiple
3894 pieces. */
3895
3896 static void
3897 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
3898 struct ui_file *stream,
3899 const gdb_byte *data, size_t size,
3900 struct objfile *objfile, unsigned int addr_size,
3901 int offset_size, struct dwarf2_per_cu_data *per_cu)
3902 {
3903 const gdb_byte *end = data + size;
3904 int first_piece = 1, bad = 0;
3905
3906 while (data < end)
3907 {
3908 const gdb_byte *here = data;
3909 int disassemble = 1;
3910
3911 if (first_piece)
3912 first_piece = 0;
3913 else
3914 fprintf_filtered (stream, _(", and "));
3915
3916 if (!dwarf2_always_disassemble)
3917 {
3918 data = locexpr_describe_location_piece (symbol, stream,
3919 addr, objfile, per_cu,
3920 data, end, addr_size);
3921 /* If we printed anything, or if we have an empty piece,
3922 then don't disassemble. */
3923 if (data != here
3924 || data[0] == DW_OP_piece
3925 || data[0] == DW_OP_bit_piece)
3926 disassemble = 0;
3927 }
3928 if (disassemble)
3929 {
3930 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
3931 data = disassemble_dwarf_expression (stream,
3932 get_objfile_arch (objfile),
3933 addr_size, offset_size, data,
3934 data, end, 0,
3935 dwarf2_always_disassemble,
3936 per_cu);
3937 }
3938
3939 if (data < end)
3940 {
3941 int empty = data == here;
3942
3943 if (disassemble)
3944 fprintf_filtered (stream, " ");
3945 if (data[0] == DW_OP_piece)
3946 {
3947 uint64_t bytes;
3948
3949 data = safe_read_uleb128 (data + 1, end, &bytes);
3950
3951 if (empty)
3952 fprintf_filtered (stream, _("an empty %s-byte piece"),
3953 pulongest (bytes));
3954 else
3955 fprintf_filtered (stream, _(" [%s-byte piece]"),
3956 pulongest (bytes));
3957 }
3958 else if (data[0] == DW_OP_bit_piece)
3959 {
3960 uint64_t bits, offset;
3961
3962 data = safe_read_uleb128 (data + 1, end, &bits);
3963 data = safe_read_uleb128 (data, end, &offset);
3964
3965 if (empty)
3966 fprintf_filtered (stream,
3967 _("an empty %s-bit piece"),
3968 pulongest (bits));
3969 else
3970 fprintf_filtered (stream,
3971 _(" [%s-bit piece, offset %s bits]"),
3972 pulongest (bits), pulongest (offset));
3973 }
3974 else
3975 {
3976 bad = 1;
3977 break;
3978 }
3979 }
3980 }
3981
3982 if (bad || data > end)
3983 error (_("Corrupted DWARF2 expression for \"%s\"."),
3984 SYMBOL_PRINT_NAME (symbol));
3985 }
3986
3987 /* Print a natural-language description of SYMBOL to STREAM. This
3988 version is for a symbol with a single location. */
3989
3990 static void
3991 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
3992 struct ui_file *stream)
3993 {
3994 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3995 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
3996 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
3997 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
3998
3999 locexpr_describe_location_1 (symbol, addr, stream,
4000 dlbaton->data, dlbaton->size,
4001 objfile, addr_size, offset_size,
4002 dlbaton->per_cu);
4003 }
4004
4005 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4006 any necessary bytecode in AX. */
4007
4008 static void
4009 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4010 struct agent_expr *ax, struct axs_value *value)
4011 {
4012 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4013 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4014
4015 if (dlbaton->size == 0)
4016 value->optimized_out = 1;
4017 else
4018 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4019 dlbaton->data, dlbaton->data + dlbaton->size,
4020 dlbaton->per_cu);
4021 }
4022
4023 /* The set of location functions used with the DWARF-2 expression
4024 evaluator. */
4025 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4026 locexpr_read_variable,
4027 locexpr_read_variable_at_entry,
4028 locexpr_read_needs_frame,
4029 locexpr_describe_location,
4030 0, /* location_has_loclist */
4031 locexpr_tracepoint_var_ref
4032 };
4033
4034
4035 /* Wrapper functions for location lists. These generally find
4036 the appropriate location expression and call something above. */
4037
4038 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4039 evaluator to calculate the location. */
4040 static struct value *
4041 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4042 {
4043 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4044 struct value *val;
4045 const gdb_byte *data;
4046 size_t size;
4047 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4048
4049 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4050 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4051 dlbaton->per_cu);
4052
4053 return val;
4054 }
4055
4056 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4057 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4058 will be thrown.
4059
4060 Function always returns non-NULL value, it may be marked optimized out if
4061 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4062 if it cannot resolve the parameter for any reason. */
4063
4064 static struct value *
4065 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4066 {
4067 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4068 const gdb_byte *data;
4069 size_t size;
4070 CORE_ADDR pc;
4071
4072 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4073 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4074
4075 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4076 if (data == NULL)
4077 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4078
4079 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4080 }
4081
4082 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4083 static int
4084 loclist_read_needs_frame (struct symbol *symbol)
4085 {
4086 /* If there's a location list, then assume we need to have a frame
4087 to choose the appropriate location expression. With tracking of
4088 global variables this is not necessarily true, but such tracking
4089 is disabled in GCC at the moment until we figure out how to
4090 represent it. */
4091
4092 return 1;
4093 }
4094
4095 /* Print a natural-language description of SYMBOL to STREAM. This
4096 version applies when there is a list of different locations, each
4097 with a specified address range. */
4098
4099 static void
4100 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4101 struct ui_file *stream)
4102 {
4103 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4104 const gdb_byte *loc_ptr, *buf_end;
4105 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4106 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4108 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4109 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4110 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4111 /* Adjust base_address for relocatable objects. */
4112 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4113 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4114 int done = 0;
4115
4116 loc_ptr = dlbaton->data;
4117 buf_end = dlbaton->data + dlbaton->size;
4118
4119 fprintf_filtered (stream, _("multi-location:\n"));
4120
4121 /* Iterate through locations until we run out. */
4122 while (!done)
4123 {
4124 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4125 int length;
4126 enum debug_loc_kind kind;
4127 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4128
4129 if (dlbaton->from_dwo)
4130 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4131 loc_ptr, buf_end, &new_ptr,
4132 &low, &high, byte_order);
4133 else
4134 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4135 &low, &high,
4136 byte_order, addr_size,
4137 signed_addr_p);
4138 loc_ptr = new_ptr;
4139 switch (kind)
4140 {
4141 case DEBUG_LOC_END_OF_LIST:
4142 done = 1;
4143 continue;
4144 case DEBUG_LOC_BASE_ADDRESS:
4145 base_address = high + base_offset;
4146 fprintf_filtered (stream, _(" Base address %s"),
4147 paddress (gdbarch, base_address));
4148 continue;
4149 case DEBUG_LOC_START_END:
4150 case DEBUG_LOC_START_LENGTH:
4151 break;
4152 case DEBUG_LOC_BUFFER_OVERFLOW:
4153 case DEBUG_LOC_INVALID_ENTRY:
4154 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4155 SYMBOL_PRINT_NAME (symbol));
4156 default:
4157 gdb_assert_not_reached ("bad debug_loc_kind");
4158 }
4159
4160 /* Otherwise, a location expression entry. */
4161 low += base_address;
4162 high += base_address;
4163
4164 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4165 loc_ptr += 2;
4166
4167 /* (It would improve readability to print only the minimum
4168 necessary digits of the second number of the range.) */
4169 fprintf_filtered (stream, _(" Range %s-%s: "),
4170 paddress (gdbarch, low), paddress (gdbarch, high));
4171
4172 /* Now describe this particular location. */
4173 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4174 objfile, addr_size, offset_size,
4175 dlbaton->per_cu);
4176
4177 fprintf_filtered (stream, "\n");
4178
4179 loc_ptr += length;
4180 }
4181 }
4182
4183 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4184 any necessary bytecode in AX. */
4185 static void
4186 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4187 struct agent_expr *ax, struct axs_value *value)
4188 {
4189 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4190 const gdb_byte *data;
4191 size_t size;
4192 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4193
4194 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4195 if (size == 0)
4196 value->optimized_out = 1;
4197 else
4198 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4199 dlbaton->per_cu);
4200 }
4201
4202 /* The set of location functions used with the DWARF-2 expression
4203 evaluator and location lists. */
4204 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4205 loclist_read_variable,
4206 loclist_read_variable_at_entry,
4207 loclist_read_needs_frame,
4208 loclist_describe_location,
4209 1, /* location_has_loclist */
4210 loclist_tracepoint_var_ref
4211 };
4212
4213 /* Provide a prototype to silence -Wmissing-prototypes. */
4214 extern initialize_file_ftype _initialize_dwarf2loc;
4215
4216 void
4217 _initialize_dwarf2loc (void)
4218 {
4219 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4220 &entry_values_debug,
4221 _("Set entry values and tail call frames "
4222 "debugging."),
4223 _("Show entry values and tail call frames "
4224 "debugging."),
4225 _("When non-zero, the process of determining "
4226 "parameter values from function entry point "
4227 "and tail call frames will be printed."),
4228 NULL,
4229 show_entry_values_debug,
4230 &setdebuglist, &showdebuglist);
4231 }
This page took 0.172313 seconds and 4 git commands to generate.