gdb.texinfo (Specify Location): Fix syntax of filename:function.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 struct tu_stats
203 {
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209 };
210
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
214 struct dwarf2_per_objfile
215 {
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
228
229 VEC (dwarf2_section_info_def) *types;
230
231 /* Back link. */
232 struct objfile *objfile;
233
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
241 /* The number of .debug_types-related CUs. */
242 int n_type_units;
243
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
251
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
255
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
262 struct tu_stats tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 struct file_entry
1028 {
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 int included_p; /* Non-zero if referenced by the Line Number Program. */
1034 struct symtab *symtab; /* The associated symbol table, if any. */
1035 };
1036
1037 /* The line number information for a compilation unit (found in the
1038 .debug_line section) begins with a "statement program header",
1039 which contains the following information. */
1040 struct line_header
1041 {
1042 /* Offset of line number information in .debug_line section. */
1043 sect_offset offset;
1044
1045 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1046 unsigned offset_in_dwz : 1;
1047
1048 unsigned int total_length;
1049 unsigned short version;
1050 unsigned int header_length;
1051 unsigned char minimum_instruction_length;
1052 unsigned char maximum_ops_per_instruction;
1053 unsigned char default_is_stmt;
1054 int line_base;
1055 unsigned char line_range;
1056 unsigned char opcode_base;
1057
1058 /* standard_opcode_lengths[i] is the number of operands for the
1059 standard opcode whose value is i. This means that
1060 standard_opcode_lengths[0] is unused, and the last meaningful
1061 element is standard_opcode_lengths[opcode_base - 1]. */
1062 unsigned char *standard_opcode_lengths;
1063
1064 /* The include_directories table. NOTE! These strings are not
1065 allocated with xmalloc; instead, they are pointers into
1066 debug_line_buffer. If you try to free them, `free' will get
1067 indigestion. */
1068 unsigned int num_include_dirs, include_dirs_size;
1069 const char **include_dirs;
1070
1071 /* The file_names table. NOTE! These strings are not allocated
1072 with xmalloc; instead, they are pointers into debug_line_buffer.
1073 Don't try to free them directly. */
1074 unsigned int num_file_names, file_names_size;
1075 struct file_entry *file_names;
1076
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start, *statement_program_end;
1080 };
1081
1082 /* When we construct a partial symbol table entry we only
1083 need this much information. */
1084 struct partial_die_info
1085 {
1086 /* Offset of this DIE. */
1087 sect_offset offset;
1088
1089 /* DWARF-2 tag for this DIE. */
1090 ENUM_BITFIELD(dwarf_tag) tag : 16;
1091
1092 /* Assorted flags describing the data found in this DIE. */
1093 unsigned int has_children : 1;
1094 unsigned int is_external : 1;
1095 unsigned int is_declaration : 1;
1096 unsigned int has_type : 1;
1097 unsigned int has_specification : 1;
1098 unsigned int has_pc_info : 1;
1099 unsigned int may_be_inlined : 1;
1100
1101 /* Flag set if the SCOPE field of this structure has been
1102 computed. */
1103 unsigned int scope_set : 1;
1104
1105 /* Flag set if the DIE has a byte_size attribute. */
1106 unsigned int has_byte_size : 1;
1107
1108 /* Flag set if any of the DIE's children are template arguments. */
1109 unsigned int has_template_arguments : 1;
1110
1111 /* Flag set if fixup_partial_die has been called on this die. */
1112 unsigned int fixup_called : 1;
1113
1114 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1115 unsigned int is_dwz : 1;
1116
1117 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1118 unsigned int spec_is_dwz : 1;
1119
1120 /* The name of this DIE. Normally the value of DW_AT_name, but
1121 sometimes a default name for unnamed DIEs. */
1122 const char *name;
1123
1124 /* The linkage name, if present. */
1125 const char *linkage_name;
1126
1127 /* The scope to prepend to our children. This is generally
1128 allocated on the comp_unit_obstack, so will disappear
1129 when this compilation unit leaves the cache. */
1130 const char *scope;
1131
1132 /* Some data associated with the partial DIE. The tag determines
1133 which field is live. */
1134 union
1135 {
1136 /* The location description associated with this DIE, if any. */
1137 struct dwarf_block *locdesc;
1138 /* The offset of an import, for DW_TAG_imported_unit. */
1139 sect_offset offset;
1140 } d;
1141
1142 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1143 CORE_ADDR lowpc;
1144 CORE_ADDR highpc;
1145
1146 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1147 DW_AT_sibling, if any. */
1148 /* NOTE: This member isn't strictly necessary, read_partial_die could
1149 return DW_AT_sibling values to its caller load_partial_dies. */
1150 const gdb_byte *sibling;
1151
1152 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1153 DW_AT_specification (or DW_AT_abstract_origin or
1154 DW_AT_extension). */
1155 sect_offset spec_offset;
1156
1157 /* Pointers to this DIE's parent, first child, and next sibling,
1158 if any. */
1159 struct partial_die_info *die_parent, *die_child, *die_sibling;
1160 };
1161
1162 /* This data structure holds the information of an abbrev. */
1163 struct abbrev_info
1164 {
1165 unsigned int number; /* number identifying abbrev */
1166 enum dwarf_tag tag; /* dwarf tag */
1167 unsigned short has_children; /* boolean */
1168 unsigned short num_attrs; /* number of attributes */
1169 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1170 struct abbrev_info *next; /* next in chain */
1171 };
1172
1173 struct attr_abbrev
1174 {
1175 ENUM_BITFIELD(dwarf_attribute) name : 16;
1176 ENUM_BITFIELD(dwarf_form) form : 16;
1177 };
1178
1179 /* Size of abbrev_table.abbrev_hash_table. */
1180 #define ABBREV_HASH_SIZE 121
1181
1182 /* Top level data structure to contain an abbreviation table. */
1183
1184 struct abbrev_table
1185 {
1186 /* Where the abbrev table came from.
1187 This is used as a sanity check when the table is used. */
1188 sect_offset offset;
1189
1190 /* Storage for the abbrev table. */
1191 struct obstack abbrev_obstack;
1192
1193 /* Hash table of abbrevs.
1194 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1195 It could be statically allocated, but the previous code didn't so we
1196 don't either. */
1197 struct abbrev_info **abbrevs;
1198 };
1199
1200 /* Attributes have a name and a value. */
1201 struct attribute
1202 {
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 15;
1205
1206 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1207 field should be in u.str (existing only for DW_STRING) but it is kept
1208 here for better struct attribute alignment. */
1209 unsigned int string_is_canonical : 1;
1210
1211 union
1212 {
1213 const char *str;
1214 struct dwarf_block *blk;
1215 ULONGEST unsnd;
1216 LONGEST snd;
1217 CORE_ADDR addr;
1218 ULONGEST signature;
1219 }
1220 u;
1221 };
1222
1223 /* This data structure holds a complete die structure. */
1224 struct die_info
1225 {
1226 /* DWARF-2 tag for this DIE. */
1227 ENUM_BITFIELD(dwarf_tag) tag : 16;
1228
1229 /* Number of attributes */
1230 unsigned char num_attrs;
1231
1232 /* True if we're presently building the full type name for the
1233 type derived from this DIE. */
1234 unsigned char building_fullname : 1;
1235
1236 /* True if this die is in process. PR 16581. */
1237 unsigned char in_process : 1;
1238
1239 /* Abbrev number */
1240 unsigned int abbrev;
1241
1242 /* Offset in .debug_info or .debug_types section. */
1243 sect_offset offset;
1244
1245 /* The dies in a compilation unit form an n-ary tree. PARENT
1246 points to this die's parent; CHILD points to the first child of
1247 this node; and all the children of a given node are chained
1248 together via their SIBLING fields. */
1249 struct die_info *child; /* Its first child, if any. */
1250 struct die_info *sibling; /* Its next sibling, if any. */
1251 struct die_info *parent; /* Its parent, if any. */
1252
1253 /* An array of attributes, with NUM_ATTRS elements. There may be
1254 zero, but it's not common and zero-sized arrays are not
1255 sufficiently portable C. */
1256 struct attribute attrs[1];
1257 };
1258
1259 /* Get at parts of an attribute structure. */
1260
1261 #define DW_STRING(attr) ((attr)->u.str)
1262 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1263 #define DW_UNSND(attr) ((attr)->u.unsnd)
1264 #define DW_BLOCK(attr) ((attr)->u.blk)
1265 #define DW_SND(attr) ((attr)->u.snd)
1266 #define DW_ADDR(attr) ((attr)->u.addr)
1267 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1268
1269 /* Blocks are a bunch of untyped bytes. */
1270 struct dwarf_block
1271 {
1272 size_t size;
1273
1274 /* Valid only if SIZE is not zero. */
1275 const gdb_byte *data;
1276 };
1277
1278 #ifndef ATTR_ALLOC_CHUNK
1279 #define ATTR_ALLOC_CHUNK 4
1280 #endif
1281
1282 /* Allocate fields for structs, unions and enums in this size. */
1283 #ifndef DW_FIELD_ALLOC_CHUNK
1284 #define DW_FIELD_ALLOC_CHUNK 4
1285 #endif
1286
1287 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1288 but this would require a corresponding change in unpack_field_as_long
1289 and friends. */
1290 static int bits_per_byte = 8;
1291
1292 struct nextfield
1293 {
1294 struct nextfield *next;
1295 int accessibility;
1296 int virtuality;
1297 struct field field;
1298 };
1299
1300 struct nextfnfield
1301 {
1302 struct nextfnfield *next;
1303 struct fn_field fnfield;
1304 };
1305
1306 struct fnfieldlist
1307 {
1308 const char *name;
1309 int length;
1310 struct nextfnfield *head;
1311 };
1312
1313 struct typedef_field_list
1314 {
1315 struct typedef_field field;
1316 struct typedef_field_list *next;
1317 };
1318
1319 /* The routines that read and process dies for a C struct or C++ class
1320 pass lists of data member fields and lists of member function fields
1321 in an instance of a field_info structure, as defined below. */
1322 struct field_info
1323 {
1324 /* List of data member and baseclasses fields. */
1325 struct nextfield *fields, *baseclasses;
1326
1327 /* Number of fields (including baseclasses). */
1328 int nfields;
1329
1330 /* Number of baseclasses. */
1331 int nbaseclasses;
1332
1333 /* Set if the accesibility of one of the fields is not public. */
1334 int non_public_fields;
1335
1336 /* Member function fields array, entries are allocated in the order they
1337 are encountered in the object file. */
1338 struct nextfnfield *fnfields;
1339
1340 /* Member function fieldlist array, contains name of possibly overloaded
1341 member function, number of overloaded member functions and a pointer
1342 to the head of the member function field chain. */
1343 struct fnfieldlist *fnfieldlists;
1344
1345 /* Number of entries in the fnfieldlists array. */
1346 int nfnfields;
1347
1348 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1349 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1350 struct typedef_field_list *typedef_field_list;
1351 unsigned typedef_field_list_count;
1352 };
1353
1354 /* One item on the queue of compilation units to read in full symbols
1355 for. */
1356 struct dwarf2_queue_item
1357 {
1358 struct dwarf2_per_cu_data *per_cu;
1359 enum language pretend_language;
1360 struct dwarf2_queue_item *next;
1361 };
1362
1363 /* The current queue. */
1364 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1365
1366 /* Loaded secondary compilation units are kept in memory until they
1367 have not been referenced for the processing of this many
1368 compilation units. Set this to zero to disable caching. Cache
1369 sizes of up to at least twenty will improve startup time for
1370 typical inter-CU-reference binaries, at an obvious memory cost. */
1371 static int dwarf2_max_cache_age = 5;
1372 static void
1373 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1374 struct cmd_list_element *c, const char *value)
1375 {
1376 fprintf_filtered (file, _("The upper bound on the age of cached "
1377 "dwarf2 compilation units is %s.\n"),
1378 value);
1379 }
1380 \f
1381 /* local function prototypes */
1382
1383 static const char *get_section_name (const struct dwarf2_section_info *);
1384
1385 static const char *get_section_file_name (const struct dwarf2_section_info *);
1386
1387 static void dwarf2_locate_sections (bfd *, asection *, void *);
1388
1389 static void dwarf2_find_base_address (struct die_info *die,
1390 struct dwarf2_cu *cu);
1391
1392 static struct partial_symtab *create_partial_symtab
1393 (struct dwarf2_per_cu_data *per_cu, const char *name);
1394
1395 static void dwarf2_build_psymtabs_hard (struct objfile *);
1396
1397 static void scan_partial_symbols (struct partial_die_info *,
1398 CORE_ADDR *, CORE_ADDR *,
1399 int, struct dwarf2_cu *);
1400
1401 static void add_partial_symbol (struct partial_die_info *,
1402 struct dwarf2_cu *);
1403
1404 static void add_partial_namespace (struct partial_die_info *pdi,
1405 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1406 int set_addrmap, struct dwarf2_cu *cu);
1407
1408 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1409 CORE_ADDR *highpc, int set_addrmap,
1410 struct dwarf2_cu *cu);
1411
1412 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1413 struct dwarf2_cu *cu);
1414
1415 static void add_partial_subprogram (struct partial_die_info *pdi,
1416 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1417 int need_pc, struct dwarf2_cu *cu);
1418
1419 static void dwarf2_read_symtab (struct partial_symtab *,
1420 struct objfile *);
1421
1422 static void psymtab_to_symtab_1 (struct partial_symtab *);
1423
1424 static struct abbrev_info *abbrev_table_lookup_abbrev
1425 (const struct abbrev_table *, unsigned int);
1426
1427 static struct abbrev_table *abbrev_table_read_table
1428 (struct dwarf2_section_info *, sect_offset);
1429
1430 static void abbrev_table_free (struct abbrev_table *);
1431
1432 static void abbrev_table_free_cleanup (void *);
1433
1434 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1435 struct dwarf2_section_info *);
1436
1437 static void dwarf2_free_abbrev_table (void *);
1438
1439 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1440
1441 static struct partial_die_info *load_partial_dies
1442 (const struct die_reader_specs *, const gdb_byte *, int);
1443
1444 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1445 struct partial_die_info *,
1446 struct abbrev_info *,
1447 unsigned int,
1448 const gdb_byte *);
1449
1450 static struct partial_die_info *find_partial_die (sect_offset, int,
1451 struct dwarf2_cu *);
1452
1453 static void fixup_partial_die (struct partial_die_info *,
1454 struct dwarf2_cu *);
1455
1456 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1457 struct attribute *, struct attr_abbrev *,
1458 const gdb_byte *);
1459
1460 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1461
1462 static int read_1_signed_byte (bfd *, const gdb_byte *);
1463
1464 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1465
1466 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1467
1468 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1469
1470 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1471 unsigned int *);
1472
1473 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static LONGEST read_checked_initial_length_and_offset
1476 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1477 unsigned int *, unsigned int *);
1478
1479 static LONGEST read_offset (bfd *, const gdb_byte *,
1480 const struct comp_unit_head *,
1481 unsigned int *);
1482
1483 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1484
1485 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1486 sect_offset);
1487
1488 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1489
1490 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1491
1492 static const char *read_indirect_string (bfd *, const gdb_byte *,
1493 const struct comp_unit_head *,
1494 unsigned int *);
1495
1496 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1497
1498 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1499
1500 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1503 const gdb_byte *,
1504 unsigned int *);
1505
1506 static const char *read_str_index (const struct die_reader_specs *reader,
1507 ULONGEST str_index);
1508
1509 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1510
1511 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1512 struct dwarf2_cu *);
1513
1514 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1515 unsigned int);
1516
1517 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1518 struct dwarf2_cu *cu);
1519
1520 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1521
1522 static struct die_info *die_specification (struct die_info *die,
1523 struct dwarf2_cu **);
1524
1525 static void free_line_header (struct line_header *lh);
1526
1527 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1528 struct dwarf2_cu *cu);
1529
1530 static void dwarf_decode_lines (struct line_header *, const char *,
1531 struct dwarf2_cu *, struct partial_symtab *,
1532 CORE_ADDR, int decode_mapping);
1533
1534 static void dwarf2_start_subfile (const char *, const char *);
1535
1536 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1537 const char *, const char *,
1538 CORE_ADDR);
1539
1540 static struct symbol *new_symbol (struct die_info *, struct type *,
1541 struct dwarf2_cu *);
1542
1543 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1544 struct dwarf2_cu *, struct symbol *);
1545
1546 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1547 struct dwarf2_cu *);
1548
1549 static void dwarf2_const_value_attr (const struct attribute *attr,
1550 struct type *type,
1551 const char *name,
1552 struct obstack *obstack,
1553 struct dwarf2_cu *cu, LONGEST *value,
1554 const gdb_byte **bytes,
1555 struct dwarf2_locexpr_baton **baton);
1556
1557 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1558
1559 static int need_gnat_info (struct dwarf2_cu *);
1560
1561 static struct type *die_descriptive_type (struct die_info *,
1562 struct dwarf2_cu *);
1563
1564 static void set_descriptive_type (struct type *, struct die_info *,
1565 struct dwarf2_cu *);
1566
1567 static struct type *die_containing_type (struct die_info *,
1568 struct dwarf2_cu *);
1569
1570 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1571 struct dwarf2_cu *);
1572
1573 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1574
1575 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1576
1577 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1578
1579 static char *typename_concat (struct obstack *obs, const char *prefix,
1580 const char *suffix, int physname,
1581 struct dwarf2_cu *cu);
1582
1583 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1584
1585 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1586
1587 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1588
1589 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1590
1591 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1592
1593 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1594 struct dwarf2_cu *, struct partial_symtab *);
1595
1596 static int dwarf2_get_pc_bounds (struct die_info *,
1597 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1598 struct partial_symtab *);
1599
1600 static void get_scope_pc_bounds (struct die_info *,
1601 CORE_ADDR *, CORE_ADDR *,
1602 struct dwarf2_cu *);
1603
1604 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1605 CORE_ADDR, struct dwarf2_cu *);
1606
1607 static void dwarf2_add_field (struct field_info *, struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static void dwarf2_attach_fields_to_type (struct field_info *,
1611 struct type *, struct dwarf2_cu *);
1612
1613 static void dwarf2_add_member_fn (struct field_info *,
1614 struct die_info *, struct type *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1618 struct type *,
1619 struct dwarf2_cu *);
1620
1621 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1626
1627 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1630
1631 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1632
1633 static struct type *read_module_type (struct die_info *die,
1634 struct dwarf2_cu *cu);
1635
1636 static const char *namespace_name (struct die_info *die,
1637 int *is_anonymous, struct dwarf2_cu *);
1638
1639 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1640
1641 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1642
1643 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1644 struct dwarf2_cu *);
1645
1646 static struct die_info *read_die_and_siblings_1
1647 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1648 struct die_info *);
1649
1650 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1651 const gdb_byte *info_ptr,
1652 const gdb_byte **new_info_ptr,
1653 struct die_info *parent);
1654
1655 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1656 struct die_info **, const gdb_byte *,
1657 int *, int);
1658
1659 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1660 struct die_info **, const gdb_byte *,
1661 int *);
1662
1663 static void process_die (struct die_info *, struct dwarf2_cu *);
1664
1665 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1666 struct obstack *);
1667
1668 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1669
1670 static const char *dwarf2_full_name (const char *name,
1671 struct die_info *die,
1672 struct dwarf2_cu *cu);
1673
1674 static const char *dwarf2_physname (const char *name, struct die_info *die,
1675 struct dwarf2_cu *cu);
1676
1677 static struct die_info *dwarf2_extension (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static const char *dwarf_tag_name (unsigned int);
1681
1682 static const char *dwarf_attr_name (unsigned int);
1683
1684 static const char *dwarf_form_name (unsigned int);
1685
1686 static char *dwarf_bool_name (unsigned int);
1687
1688 static const char *dwarf_type_encoding_name (unsigned int);
1689
1690 static struct die_info *sibling_die (struct die_info *);
1691
1692 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1693
1694 static void dump_die_for_error (struct die_info *);
1695
1696 static void dump_die_1 (struct ui_file *, int level, int max_level,
1697 struct die_info *);
1698
1699 /*static*/ void dump_die (struct die_info *, int max_level);
1700
1701 static void store_in_ref_table (struct die_info *,
1702 struct dwarf2_cu *);
1703
1704 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1705
1706 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1707
1708 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu **);
1711
1712 static struct die_info *follow_die_ref (struct die_info *,
1713 const struct attribute *,
1714 struct dwarf2_cu **);
1715
1716 static struct die_info *follow_die_sig (struct die_info *,
1717 const struct attribute *,
1718 struct dwarf2_cu **);
1719
1720 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1721 struct dwarf2_cu *);
1722
1723 static struct type *get_DW_AT_signature_type (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu *);
1726
1727 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1728
1729 static void read_signatured_type (struct signatured_type *);
1730
1731 /* memory allocation interface */
1732
1733 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1734
1735 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1736
1737 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1738
1739 static int attr_form_is_block (const struct attribute *);
1740
1741 static int attr_form_is_section_offset (const struct attribute *);
1742
1743 static int attr_form_is_constant (const struct attribute *);
1744
1745 static int attr_form_is_ref (const struct attribute *);
1746
1747 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1748 struct dwarf2_loclist_baton *baton,
1749 const struct attribute *attr);
1750
1751 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1752 struct symbol *sym,
1753 struct dwarf2_cu *cu,
1754 int is_block);
1755
1756 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1757 const gdb_byte *info_ptr,
1758 struct abbrev_info *abbrev);
1759
1760 static void free_stack_comp_unit (void *);
1761
1762 static hashval_t partial_die_hash (const void *item);
1763
1764 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1765
1766 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1767 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1768
1769 static void init_one_comp_unit (struct dwarf2_cu *cu,
1770 struct dwarf2_per_cu_data *per_cu);
1771
1772 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1773 struct die_info *comp_unit_die,
1774 enum language pretend_language);
1775
1776 static void free_heap_comp_unit (void *);
1777
1778 static void free_cached_comp_units (void *);
1779
1780 static void age_cached_comp_units (void);
1781
1782 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1783
1784 static struct type *set_die_type (struct die_info *, struct type *,
1785 struct dwarf2_cu *);
1786
1787 static void create_all_comp_units (struct objfile *);
1788
1789 static int create_all_type_units (struct objfile *);
1790
1791 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1792 enum language);
1793
1794 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1795 enum language);
1796
1797 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1798 enum language);
1799
1800 static void dwarf2_add_dependence (struct dwarf2_cu *,
1801 struct dwarf2_per_cu_data *);
1802
1803 static void dwarf2_mark (struct dwarf2_cu *);
1804
1805 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1806
1807 static struct type *get_die_type_at_offset (sect_offset,
1808 struct dwarf2_per_cu_data *);
1809
1810 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1811
1812 static void dwarf2_release_queue (void *dummy);
1813
1814 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1815 enum language pretend_language);
1816
1817 static void process_queue (void);
1818
1819 static void find_file_and_directory (struct die_info *die,
1820 struct dwarf2_cu *cu,
1821 const char **name, const char **comp_dir);
1822
1823 static char *file_full_name (int file, struct line_header *lh,
1824 const char *comp_dir);
1825
1826 static const gdb_byte *read_and_check_comp_unit_head
1827 (struct comp_unit_head *header,
1828 struct dwarf2_section_info *section,
1829 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1830 int is_debug_types_section);
1831
1832 static void init_cutu_and_read_dies
1833 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1834 int use_existing_cu, int keep,
1835 die_reader_func_ftype *die_reader_func, void *data);
1836
1837 static void init_cutu_and_read_dies_simple
1838 (struct dwarf2_per_cu_data *this_cu,
1839 die_reader_func_ftype *die_reader_func, void *data);
1840
1841 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1842
1843 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1844
1845 static struct dwo_unit *lookup_dwo_unit_in_dwp
1846 (struct dwp_file *dwp_file, const char *comp_dir,
1847 ULONGEST signature, int is_debug_types);
1848
1849 static struct dwp_file *get_dwp_file (void);
1850
1851 static struct dwo_unit *lookup_dwo_comp_unit
1852 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1853
1854 static struct dwo_unit *lookup_dwo_type_unit
1855 (struct signatured_type *, const char *, const char *);
1856
1857 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1858
1859 static void free_dwo_file_cleanup (void *);
1860
1861 static void process_cu_includes (void);
1862
1863 static void check_producer (struct dwarf2_cu *cu);
1864
1865 static void free_line_header_voidp (void *arg);
1866 \f
1867 /* Various complaints about symbol reading that don't abort the process. */
1868
1869 static void
1870 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1871 {
1872 complaint (&symfile_complaints,
1873 _("statement list doesn't fit in .debug_line section"));
1874 }
1875
1876 static void
1877 dwarf2_debug_line_missing_file_complaint (void)
1878 {
1879 complaint (&symfile_complaints,
1880 _(".debug_line section has line data without a file"));
1881 }
1882
1883 static void
1884 dwarf2_debug_line_missing_end_sequence_complaint (void)
1885 {
1886 complaint (&symfile_complaints,
1887 _(".debug_line section has line "
1888 "program sequence without an end"));
1889 }
1890
1891 static void
1892 dwarf2_complex_location_expr_complaint (void)
1893 {
1894 complaint (&symfile_complaints, _("location expression too complex"));
1895 }
1896
1897 static void
1898 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1899 int arg3)
1900 {
1901 complaint (&symfile_complaints,
1902 _("const value length mismatch for '%s', got %d, expected %d"),
1903 arg1, arg2, arg3);
1904 }
1905
1906 static void
1907 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1908 {
1909 complaint (&symfile_complaints,
1910 _("debug info runs off end of %s section"
1911 " [in module %s]"),
1912 get_section_name (section),
1913 get_section_file_name (section));
1914 }
1915
1916 static void
1917 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1918 {
1919 complaint (&symfile_complaints,
1920 _("macro debug info contains a "
1921 "malformed macro definition:\n`%s'"),
1922 arg1);
1923 }
1924
1925 static void
1926 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1927 {
1928 complaint (&symfile_complaints,
1929 _("invalid attribute class or form for '%s' in '%s'"),
1930 arg1, arg2);
1931 }
1932
1933 /* Hash function for line_header_hash. */
1934
1935 static hashval_t
1936 line_header_hash (const struct line_header *ofs)
1937 {
1938 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1939 }
1940
1941 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1942
1943 static hashval_t
1944 line_header_hash_voidp (const void *item)
1945 {
1946 const struct line_header *ofs = item;
1947
1948 return line_header_hash (ofs);
1949 }
1950
1951 /* Equality function for line_header_hash. */
1952
1953 static int
1954 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1955 {
1956 const struct line_header *ofs_lhs = item_lhs;
1957 const struct line_header *ofs_rhs = item_rhs;
1958
1959 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1960 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1961 }
1962
1963 \f
1964 #if WORDS_BIGENDIAN
1965
1966 /* Convert VALUE between big- and little-endian. */
1967 static offset_type
1968 byte_swap (offset_type value)
1969 {
1970 offset_type result;
1971
1972 result = (value & 0xff) << 24;
1973 result |= (value & 0xff00) << 8;
1974 result |= (value & 0xff0000) >> 8;
1975 result |= (value & 0xff000000) >> 24;
1976 return result;
1977 }
1978
1979 #define MAYBE_SWAP(V) byte_swap (V)
1980
1981 #else
1982 #define MAYBE_SWAP(V) (V)
1983 #endif /* WORDS_BIGENDIAN */
1984
1985 /* Read the given attribute value as an address, taking the attribute's
1986 form into account. */
1987
1988 static CORE_ADDR
1989 attr_value_as_address (struct attribute *attr)
1990 {
1991 CORE_ADDR addr;
1992
1993 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1994 {
1995 /* Aside from a few clearly defined exceptions, attributes that
1996 contain an address must always be in DW_FORM_addr form.
1997 Unfortunately, some compilers happen to be violating this
1998 requirement by encoding addresses using other forms, such
1999 as DW_FORM_data4 for example. For those broken compilers,
2000 we try to do our best, without any guarantee of success,
2001 to interpret the address correctly. It would also be nice
2002 to generate a complaint, but that would require us to maintain
2003 a list of legitimate cases where a non-address form is allowed,
2004 as well as update callers to pass in at least the CU's DWARF
2005 version. This is more overhead than what we're willing to
2006 expand for a pretty rare case. */
2007 addr = DW_UNSND (attr);
2008 }
2009 else
2010 addr = DW_ADDR (attr);
2011
2012 return addr;
2013 }
2014
2015 /* The suffix for an index file. */
2016 #define INDEX_SUFFIX ".gdb-index"
2017
2018 /* Try to locate the sections we need for DWARF 2 debugging
2019 information and return true if we have enough to do something.
2020 NAMES points to the dwarf2 section names, or is NULL if the standard
2021 ELF names are used. */
2022
2023 int
2024 dwarf2_has_info (struct objfile *objfile,
2025 const struct dwarf2_debug_sections *names)
2026 {
2027 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2028 if (!dwarf2_per_objfile)
2029 {
2030 /* Initialize per-objfile state. */
2031 struct dwarf2_per_objfile *data
2032 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2033
2034 memset (data, 0, sizeof (*data));
2035 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2036 dwarf2_per_objfile = data;
2037
2038 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2039 (void *) names);
2040 dwarf2_per_objfile->objfile = objfile;
2041 }
2042 return (!dwarf2_per_objfile->info.is_virtual
2043 && dwarf2_per_objfile->info.s.asection != NULL
2044 && !dwarf2_per_objfile->abbrev.is_virtual
2045 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2046 }
2047
2048 /* Return the containing section of virtual section SECTION. */
2049
2050 static struct dwarf2_section_info *
2051 get_containing_section (const struct dwarf2_section_info *section)
2052 {
2053 gdb_assert (section->is_virtual);
2054 return section->s.containing_section;
2055 }
2056
2057 /* Return the bfd owner of SECTION. */
2058
2059 static struct bfd *
2060 get_section_bfd_owner (const struct dwarf2_section_info *section)
2061 {
2062 if (section->is_virtual)
2063 {
2064 section = get_containing_section (section);
2065 gdb_assert (!section->is_virtual);
2066 }
2067 return section->s.asection->owner;
2068 }
2069
2070 /* Return the bfd section of SECTION.
2071 Returns NULL if the section is not present. */
2072
2073 static asection *
2074 get_section_bfd_section (const struct dwarf2_section_info *section)
2075 {
2076 if (section->is_virtual)
2077 {
2078 section = get_containing_section (section);
2079 gdb_assert (!section->is_virtual);
2080 }
2081 return section->s.asection;
2082 }
2083
2084 /* Return the name of SECTION. */
2085
2086 static const char *
2087 get_section_name (const struct dwarf2_section_info *section)
2088 {
2089 asection *sectp = get_section_bfd_section (section);
2090
2091 gdb_assert (sectp != NULL);
2092 return bfd_section_name (get_section_bfd_owner (section), sectp);
2093 }
2094
2095 /* Return the name of the file SECTION is in. */
2096
2097 static const char *
2098 get_section_file_name (const struct dwarf2_section_info *section)
2099 {
2100 bfd *abfd = get_section_bfd_owner (section);
2101
2102 return bfd_get_filename (abfd);
2103 }
2104
2105 /* Return the id of SECTION.
2106 Returns 0 if SECTION doesn't exist. */
2107
2108 static int
2109 get_section_id (const struct dwarf2_section_info *section)
2110 {
2111 asection *sectp = get_section_bfd_section (section);
2112
2113 if (sectp == NULL)
2114 return 0;
2115 return sectp->id;
2116 }
2117
2118 /* Return the flags of SECTION.
2119 SECTION (or containing section if this is a virtual section) must exist. */
2120
2121 static int
2122 get_section_flags (const struct dwarf2_section_info *section)
2123 {
2124 asection *sectp = get_section_bfd_section (section);
2125
2126 gdb_assert (sectp != NULL);
2127 return bfd_get_section_flags (sectp->owner, sectp);
2128 }
2129
2130 /* When loading sections, we look either for uncompressed section or for
2131 compressed section names. */
2132
2133 static int
2134 section_is_p (const char *section_name,
2135 const struct dwarf2_section_names *names)
2136 {
2137 if (names->normal != NULL
2138 && strcmp (section_name, names->normal) == 0)
2139 return 1;
2140 if (names->compressed != NULL
2141 && strcmp (section_name, names->compressed) == 0)
2142 return 1;
2143 return 0;
2144 }
2145
2146 /* This function is mapped across the sections and remembers the
2147 offset and size of each of the debugging sections we are interested
2148 in. */
2149
2150 static void
2151 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2152 {
2153 const struct dwarf2_debug_sections *names;
2154 flagword aflag = bfd_get_section_flags (abfd, sectp);
2155
2156 if (vnames == NULL)
2157 names = &dwarf2_elf_names;
2158 else
2159 names = (const struct dwarf2_debug_sections *) vnames;
2160
2161 if ((aflag & SEC_HAS_CONTENTS) == 0)
2162 {
2163 }
2164 else if (section_is_p (sectp->name, &names->info))
2165 {
2166 dwarf2_per_objfile->info.s.asection = sectp;
2167 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->abbrev))
2170 {
2171 dwarf2_per_objfile->abbrev.s.asection = sectp;
2172 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->line))
2175 {
2176 dwarf2_per_objfile->line.s.asection = sectp;
2177 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->loc))
2180 {
2181 dwarf2_per_objfile->loc.s.asection = sectp;
2182 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2183 }
2184 else if (section_is_p (sectp->name, &names->macinfo))
2185 {
2186 dwarf2_per_objfile->macinfo.s.asection = sectp;
2187 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->macro))
2190 {
2191 dwarf2_per_objfile->macro.s.asection = sectp;
2192 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->str))
2195 {
2196 dwarf2_per_objfile->str.s.asection = sectp;
2197 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->addr))
2200 {
2201 dwarf2_per_objfile->addr.s.asection = sectp;
2202 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->frame))
2205 {
2206 dwarf2_per_objfile->frame.s.asection = sectp;
2207 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->eh_frame))
2210 {
2211 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2212 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->ranges))
2215 {
2216 dwarf2_per_objfile->ranges.s.asection = sectp;
2217 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->types))
2220 {
2221 struct dwarf2_section_info type_section;
2222
2223 memset (&type_section, 0, sizeof (type_section));
2224 type_section.s.asection = sectp;
2225 type_section.size = bfd_get_section_size (sectp);
2226
2227 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2228 &type_section);
2229 }
2230 else if (section_is_p (sectp->name, &names->gdb_index))
2231 {
2232 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2233 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2234 }
2235
2236 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2237 && bfd_section_vma (abfd, sectp) == 0)
2238 dwarf2_per_objfile->has_section_at_zero = 1;
2239 }
2240
2241 /* A helper function that decides whether a section is empty,
2242 or not present. */
2243
2244 static int
2245 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2246 {
2247 if (section->is_virtual)
2248 return section->size == 0;
2249 return section->s.asection == NULL || section->size == 0;
2250 }
2251
2252 /* Read the contents of the section INFO.
2253 OBJFILE is the main object file, but not necessarily the file where
2254 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2255 of the DWO file.
2256 If the section is compressed, uncompress it before returning. */
2257
2258 static void
2259 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2260 {
2261 asection *sectp;
2262 bfd *abfd;
2263 gdb_byte *buf, *retbuf;
2264
2265 if (info->readin)
2266 return;
2267 info->buffer = NULL;
2268 info->readin = 1;
2269
2270 if (dwarf2_section_empty_p (info))
2271 return;
2272
2273 sectp = get_section_bfd_section (info);
2274
2275 /* If this is a virtual section we need to read in the real one first. */
2276 if (info->is_virtual)
2277 {
2278 struct dwarf2_section_info *containing_section =
2279 get_containing_section (info);
2280
2281 gdb_assert (sectp != NULL);
2282 if ((sectp->flags & SEC_RELOC) != 0)
2283 {
2284 error (_("Dwarf Error: DWP format V2 with relocations is not"
2285 " supported in section %s [in module %s]"),
2286 get_section_name (info), get_section_file_name (info));
2287 }
2288 dwarf2_read_section (objfile, containing_section);
2289 /* Other code should have already caught virtual sections that don't
2290 fit. */
2291 gdb_assert (info->virtual_offset + info->size
2292 <= containing_section->size);
2293 /* If the real section is empty or there was a problem reading the
2294 section we shouldn't get here. */
2295 gdb_assert (containing_section->buffer != NULL);
2296 info->buffer = containing_section->buffer + info->virtual_offset;
2297 return;
2298 }
2299
2300 /* If the section has relocations, we must read it ourselves.
2301 Otherwise we attach it to the BFD. */
2302 if ((sectp->flags & SEC_RELOC) == 0)
2303 {
2304 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2305 return;
2306 }
2307
2308 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2309 info->buffer = buf;
2310
2311 /* When debugging .o files, we may need to apply relocations; see
2312 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2313 We never compress sections in .o files, so we only need to
2314 try this when the section is not compressed. */
2315 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2316 if (retbuf != NULL)
2317 {
2318 info->buffer = retbuf;
2319 return;
2320 }
2321
2322 abfd = get_section_bfd_owner (info);
2323 gdb_assert (abfd != NULL);
2324
2325 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2326 || bfd_bread (buf, info->size, abfd) != info->size)
2327 {
2328 error (_("Dwarf Error: Can't read DWARF data"
2329 " in section %s [in module %s]"),
2330 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2331 }
2332 }
2333
2334 /* A helper function that returns the size of a section in a safe way.
2335 If you are positive that the section has been read before using the
2336 size, then it is safe to refer to the dwarf2_section_info object's
2337 "size" field directly. In other cases, you must call this
2338 function, because for compressed sections the size field is not set
2339 correctly until the section has been read. */
2340
2341 static bfd_size_type
2342 dwarf2_section_size (struct objfile *objfile,
2343 struct dwarf2_section_info *info)
2344 {
2345 if (!info->readin)
2346 dwarf2_read_section (objfile, info);
2347 return info->size;
2348 }
2349
2350 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2351 SECTION_NAME. */
2352
2353 void
2354 dwarf2_get_section_info (struct objfile *objfile,
2355 enum dwarf2_section_enum sect,
2356 asection **sectp, const gdb_byte **bufp,
2357 bfd_size_type *sizep)
2358 {
2359 struct dwarf2_per_objfile *data
2360 = objfile_data (objfile, dwarf2_objfile_data_key);
2361 struct dwarf2_section_info *info;
2362
2363 /* We may see an objfile without any DWARF, in which case we just
2364 return nothing. */
2365 if (data == NULL)
2366 {
2367 *sectp = NULL;
2368 *bufp = NULL;
2369 *sizep = 0;
2370 return;
2371 }
2372 switch (sect)
2373 {
2374 case DWARF2_DEBUG_FRAME:
2375 info = &data->frame;
2376 break;
2377 case DWARF2_EH_FRAME:
2378 info = &data->eh_frame;
2379 break;
2380 default:
2381 gdb_assert_not_reached ("unexpected section");
2382 }
2383
2384 dwarf2_read_section (objfile, info);
2385
2386 *sectp = get_section_bfd_section (info);
2387 *bufp = info->buffer;
2388 *sizep = info->size;
2389 }
2390
2391 /* A helper function to find the sections for a .dwz file. */
2392
2393 static void
2394 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2395 {
2396 struct dwz_file *dwz_file = arg;
2397
2398 /* Note that we only support the standard ELF names, because .dwz
2399 is ELF-only (at the time of writing). */
2400 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2401 {
2402 dwz_file->abbrev.s.asection = sectp;
2403 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2406 {
2407 dwz_file->info.s.asection = sectp;
2408 dwz_file->info.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2411 {
2412 dwz_file->str.s.asection = sectp;
2413 dwz_file->str.size = bfd_get_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2416 {
2417 dwz_file->line.s.asection = sectp;
2418 dwz_file->line.size = bfd_get_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2421 {
2422 dwz_file->macro.s.asection = sectp;
2423 dwz_file->macro.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2426 {
2427 dwz_file->gdb_index.s.asection = sectp;
2428 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2429 }
2430 }
2431
2432 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2433 there is no .gnu_debugaltlink section in the file. Error if there
2434 is such a section but the file cannot be found. */
2435
2436 static struct dwz_file *
2437 dwarf2_get_dwz_file (void)
2438 {
2439 bfd *dwz_bfd;
2440 char *data;
2441 struct cleanup *cleanup;
2442 const char *filename;
2443 struct dwz_file *result;
2444 bfd_size_type buildid_len_arg;
2445 size_t buildid_len;
2446 bfd_byte *buildid;
2447
2448 if (dwarf2_per_objfile->dwz_file != NULL)
2449 return dwarf2_per_objfile->dwz_file;
2450
2451 bfd_set_error (bfd_error_no_error);
2452 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2453 &buildid_len_arg, &buildid);
2454 if (data == NULL)
2455 {
2456 if (bfd_get_error () == bfd_error_no_error)
2457 return NULL;
2458 error (_("could not read '.gnu_debugaltlink' section: %s"),
2459 bfd_errmsg (bfd_get_error ()));
2460 }
2461 cleanup = make_cleanup (xfree, data);
2462 make_cleanup (xfree, buildid);
2463
2464 buildid_len = (size_t) buildid_len_arg;
2465
2466 filename = (const char *) data;
2467 if (!IS_ABSOLUTE_PATH (filename))
2468 {
2469 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2470 char *rel;
2471
2472 make_cleanup (xfree, abs);
2473 abs = ldirname (abs);
2474 make_cleanup (xfree, abs);
2475
2476 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2477 make_cleanup (xfree, rel);
2478 filename = rel;
2479 }
2480
2481 /* First try the file name given in the section. If that doesn't
2482 work, try to use the build-id instead. */
2483 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2484 if (dwz_bfd != NULL)
2485 {
2486 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2487 {
2488 gdb_bfd_unref (dwz_bfd);
2489 dwz_bfd = NULL;
2490 }
2491 }
2492
2493 if (dwz_bfd == NULL)
2494 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2495
2496 if (dwz_bfd == NULL)
2497 error (_("could not find '.gnu_debugaltlink' file for %s"),
2498 objfile_name (dwarf2_per_objfile->objfile));
2499
2500 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2501 struct dwz_file);
2502 result->dwz_bfd = dwz_bfd;
2503
2504 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2505
2506 do_cleanups (cleanup);
2507
2508 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2509 dwarf2_per_objfile->dwz_file = result;
2510 return result;
2511 }
2512 \f
2513 /* DWARF quick_symbols_functions support. */
2514
2515 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2516 unique line tables, so we maintain a separate table of all .debug_line
2517 derived entries to support the sharing.
2518 All the quick functions need is the list of file names. We discard the
2519 line_header when we're done and don't need to record it here. */
2520 struct quick_file_names
2521 {
2522 /* The data used to construct the hash key. */
2523 struct stmt_list_hash hash;
2524
2525 /* The number of entries in file_names, real_names. */
2526 unsigned int num_file_names;
2527
2528 /* The file names from the line table, after being run through
2529 file_full_name. */
2530 const char **file_names;
2531
2532 /* The file names from the line table after being run through
2533 gdb_realpath. These are computed lazily. */
2534 const char **real_names;
2535 };
2536
2537 /* When using the index (and thus not using psymtabs), each CU has an
2538 object of this type. This is used to hold information needed by
2539 the various "quick" methods. */
2540 struct dwarf2_per_cu_quick_data
2541 {
2542 /* The file table. This can be NULL if there was no file table
2543 or it's currently not read in.
2544 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2545 struct quick_file_names *file_names;
2546
2547 /* The corresponding symbol table. This is NULL if symbols for this
2548 CU have not yet been read. */
2549 struct compunit_symtab *compunit_symtab;
2550
2551 /* A temporary mark bit used when iterating over all CUs in
2552 expand_symtabs_matching. */
2553 unsigned int mark : 1;
2554
2555 /* True if we've tried to read the file table and found there isn't one.
2556 There will be no point in trying to read it again next time. */
2557 unsigned int no_file_data : 1;
2558 };
2559
2560 /* Utility hash function for a stmt_list_hash. */
2561
2562 static hashval_t
2563 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2564 {
2565 hashval_t v = 0;
2566
2567 if (stmt_list_hash->dwo_unit != NULL)
2568 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2569 v += stmt_list_hash->line_offset.sect_off;
2570 return v;
2571 }
2572
2573 /* Utility equality function for a stmt_list_hash. */
2574
2575 static int
2576 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2577 const struct stmt_list_hash *rhs)
2578 {
2579 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2580 return 0;
2581 if (lhs->dwo_unit != NULL
2582 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2583 return 0;
2584
2585 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2586 }
2587
2588 /* Hash function for a quick_file_names. */
2589
2590 static hashval_t
2591 hash_file_name_entry (const void *e)
2592 {
2593 const struct quick_file_names *file_data = e;
2594
2595 return hash_stmt_list_entry (&file_data->hash);
2596 }
2597
2598 /* Equality function for a quick_file_names. */
2599
2600 static int
2601 eq_file_name_entry (const void *a, const void *b)
2602 {
2603 const struct quick_file_names *ea = a;
2604 const struct quick_file_names *eb = b;
2605
2606 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2607 }
2608
2609 /* Delete function for a quick_file_names. */
2610
2611 static void
2612 delete_file_name_entry (void *e)
2613 {
2614 struct quick_file_names *file_data = e;
2615 int i;
2616
2617 for (i = 0; i < file_data->num_file_names; ++i)
2618 {
2619 xfree ((void*) file_data->file_names[i]);
2620 if (file_data->real_names)
2621 xfree ((void*) file_data->real_names[i]);
2622 }
2623
2624 /* The space for the struct itself lives on objfile_obstack,
2625 so we don't free it here. */
2626 }
2627
2628 /* Create a quick_file_names hash table. */
2629
2630 static htab_t
2631 create_quick_file_names_table (unsigned int nr_initial_entries)
2632 {
2633 return htab_create_alloc (nr_initial_entries,
2634 hash_file_name_entry, eq_file_name_entry,
2635 delete_file_name_entry, xcalloc, xfree);
2636 }
2637
2638 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2639 have to be created afterwards. You should call age_cached_comp_units after
2640 processing PER_CU->CU. dw2_setup must have been already called. */
2641
2642 static void
2643 load_cu (struct dwarf2_per_cu_data *per_cu)
2644 {
2645 if (per_cu->is_debug_types)
2646 load_full_type_unit (per_cu);
2647 else
2648 load_full_comp_unit (per_cu, language_minimal);
2649
2650 gdb_assert (per_cu->cu != NULL);
2651
2652 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2653 }
2654
2655 /* Read in the symbols for PER_CU. */
2656
2657 static void
2658 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2659 {
2660 struct cleanup *back_to;
2661
2662 /* Skip type_unit_groups, reading the type units they contain
2663 is handled elsewhere. */
2664 if (IS_TYPE_UNIT_GROUP (per_cu))
2665 return;
2666
2667 back_to = make_cleanup (dwarf2_release_queue, NULL);
2668
2669 if (dwarf2_per_objfile->using_index
2670 ? per_cu->v.quick->compunit_symtab == NULL
2671 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2672 {
2673 queue_comp_unit (per_cu, language_minimal);
2674 load_cu (per_cu);
2675
2676 /* If we just loaded a CU from a DWO, and we're working with an index
2677 that may badly handle TUs, load all the TUs in that DWO as well.
2678 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2679 if (!per_cu->is_debug_types
2680 && per_cu->cu->dwo_unit != NULL
2681 && dwarf2_per_objfile->index_table != NULL
2682 && dwarf2_per_objfile->index_table->version <= 7
2683 /* DWP files aren't supported yet. */
2684 && get_dwp_file () == NULL)
2685 queue_and_load_all_dwo_tus (per_cu);
2686 }
2687
2688 process_queue ();
2689
2690 /* Age the cache, releasing compilation units that have not
2691 been used recently. */
2692 age_cached_comp_units ();
2693
2694 do_cleanups (back_to);
2695 }
2696
2697 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2698 the objfile from which this CU came. Returns the resulting symbol
2699 table. */
2700
2701 static struct compunit_symtab *
2702 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2703 {
2704 gdb_assert (dwarf2_per_objfile->using_index);
2705 if (!per_cu->v.quick->compunit_symtab)
2706 {
2707 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2708 increment_reading_symtab ();
2709 dw2_do_instantiate_symtab (per_cu);
2710 process_cu_includes ();
2711 do_cleanups (back_to);
2712 }
2713
2714 return per_cu->v.quick->compunit_symtab;
2715 }
2716
2717 /* Return the CU/TU given its index.
2718
2719 This is intended for loops like:
2720
2721 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2722 + dwarf2_per_objfile->n_type_units); ++i)
2723 {
2724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2725
2726 ...;
2727 }
2728 */
2729
2730 static struct dwarf2_per_cu_data *
2731 dw2_get_cutu (int index)
2732 {
2733 if (index >= dwarf2_per_objfile->n_comp_units)
2734 {
2735 index -= dwarf2_per_objfile->n_comp_units;
2736 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2737 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2738 }
2739
2740 return dwarf2_per_objfile->all_comp_units[index];
2741 }
2742
2743 /* Return the CU given its index.
2744 This differs from dw2_get_cutu in that it's for when you know INDEX
2745 refers to a CU. */
2746
2747 static struct dwarf2_per_cu_data *
2748 dw2_get_cu (int index)
2749 {
2750 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2751
2752 return dwarf2_per_objfile->all_comp_units[index];
2753 }
2754
2755 /* A helper for create_cus_from_index that handles a given list of
2756 CUs. */
2757
2758 static void
2759 create_cus_from_index_list (struct objfile *objfile,
2760 const gdb_byte *cu_list, offset_type n_elements,
2761 struct dwarf2_section_info *section,
2762 int is_dwz,
2763 int base_offset)
2764 {
2765 offset_type i;
2766
2767 for (i = 0; i < n_elements; i += 2)
2768 {
2769 struct dwarf2_per_cu_data *the_cu;
2770 ULONGEST offset, length;
2771
2772 gdb_static_assert (sizeof (ULONGEST) >= 8);
2773 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2774 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2775 cu_list += 2 * 8;
2776
2777 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2778 struct dwarf2_per_cu_data);
2779 the_cu->offset.sect_off = offset;
2780 the_cu->length = length;
2781 the_cu->objfile = objfile;
2782 the_cu->section = section;
2783 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2784 struct dwarf2_per_cu_quick_data);
2785 the_cu->is_dwz = is_dwz;
2786 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2787 }
2788 }
2789
2790 /* Read the CU list from the mapped index, and use it to create all
2791 the CU objects for this objfile. */
2792
2793 static void
2794 create_cus_from_index (struct objfile *objfile,
2795 const gdb_byte *cu_list, offset_type cu_list_elements,
2796 const gdb_byte *dwz_list, offset_type dwz_elements)
2797 {
2798 struct dwz_file *dwz;
2799
2800 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2801 dwarf2_per_objfile->all_comp_units
2802 = obstack_alloc (&objfile->objfile_obstack,
2803 dwarf2_per_objfile->n_comp_units
2804 * sizeof (struct dwarf2_per_cu_data *));
2805
2806 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2807 &dwarf2_per_objfile->info, 0, 0);
2808
2809 if (dwz_elements == 0)
2810 return;
2811
2812 dwz = dwarf2_get_dwz_file ();
2813 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2814 cu_list_elements / 2);
2815 }
2816
2817 /* Create the signatured type hash table from the index. */
2818
2819 static void
2820 create_signatured_type_table_from_index (struct objfile *objfile,
2821 struct dwarf2_section_info *section,
2822 const gdb_byte *bytes,
2823 offset_type elements)
2824 {
2825 offset_type i;
2826 htab_t sig_types_hash;
2827
2828 dwarf2_per_objfile->n_type_units
2829 = dwarf2_per_objfile->n_allocated_type_units
2830 = elements / 3;
2831 dwarf2_per_objfile->all_type_units
2832 = xmalloc (dwarf2_per_objfile->n_type_units
2833 * sizeof (struct signatured_type *));
2834
2835 sig_types_hash = allocate_signatured_type_table (objfile);
2836
2837 for (i = 0; i < elements; i += 3)
2838 {
2839 struct signatured_type *sig_type;
2840 ULONGEST offset, type_offset_in_tu, signature;
2841 void **slot;
2842
2843 gdb_static_assert (sizeof (ULONGEST) >= 8);
2844 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2845 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2846 BFD_ENDIAN_LITTLE);
2847 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2848 bytes += 3 * 8;
2849
2850 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2851 struct signatured_type);
2852 sig_type->signature = signature;
2853 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2854 sig_type->per_cu.is_debug_types = 1;
2855 sig_type->per_cu.section = section;
2856 sig_type->per_cu.offset.sect_off = offset;
2857 sig_type->per_cu.objfile = objfile;
2858 sig_type->per_cu.v.quick
2859 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2860 struct dwarf2_per_cu_quick_data);
2861
2862 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2863 *slot = sig_type;
2864
2865 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2866 }
2867
2868 dwarf2_per_objfile->signatured_types = sig_types_hash;
2869 }
2870
2871 /* Read the address map data from the mapped index, and use it to
2872 populate the objfile's psymtabs_addrmap. */
2873
2874 static void
2875 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2876 {
2877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2878 const gdb_byte *iter, *end;
2879 struct obstack temp_obstack;
2880 struct addrmap *mutable_map;
2881 struct cleanup *cleanup;
2882 CORE_ADDR baseaddr;
2883
2884 obstack_init (&temp_obstack);
2885 cleanup = make_cleanup_obstack_free (&temp_obstack);
2886 mutable_map = addrmap_create_mutable (&temp_obstack);
2887
2888 iter = index->address_table;
2889 end = iter + index->address_table_size;
2890
2891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2892
2893 while (iter < end)
2894 {
2895 ULONGEST hi, lo, cu_index;
2896 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2897 iter += 8;
2898 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2899 iter += 8;
2900 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2901 iter += 4;
2902
2903 if (lo > hi)
2904 {
2905 complaint (&symfile_complaints,
2906 _(".gdb_index address table has invalid range (%s - %s)"),
2907 hex_string (lo), hex_string (hi));
2908 continue;
2909 }
2910
2911 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2912 {
2913 complaint (&symfile_complaints,
2914 _(".gdb_index address table has invalid CU number %u"),
2915 (unsigned) cu_index);
2916 continue;
2917 }
2918
2919 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2920 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2921 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2922 }
2923
2924 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2925 &objfile->objfile_obstack);
2926 do_cleanups (cleanup);
2927 }
2928
2929 /* The hash function for strings in the mapped index. This is the same as
2930 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2931 implementation. This is necessary because the hash function is tied to the
2932 format of the mapped index file. The hash values do not have to match with
2933 SYMBOL_HASH_NEXT.
2934
2935 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2936
2937 static hashval_t
2938 mapped_index_string_hash (int index_version, const void *p)
2939 {
2940 const unsigned char *str = (const unsigned char *) p;
2941 hashval_t r = 0;
2942 unsigned char c;
2943
2944 while ((c = *str++) != 0)
2945 {
2946 if (index_version >= 5)
2947 c = tolower (c);
2948 r = r * 67 + c - 113;
2949 }
2950
2951 return r;
2952 }
2953
2954 /* Find a slot in the mapped index INDEX for the object named NAME.
2955 If NAME is found, set *VEC_OUT to point to the CU vector in the
2956 constant pool and return 1. If NAME cannot be found, return 0. */
2957
2958 static int
2959 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2960 offset_type **vec_out)
2961 {
2962 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2963 offset_type hash;
2964 offset_type slot, step;
2965 int (*cmp) (const char *, const char *);
2966
2967 if (current_language->la_language == language_cplus
2968 || current_language->la_language == language_java
2969 || current_language->la_language == language_fortran)
2970 {
2971 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2972 not contain any. */
2973
2974 if (strchr (name, '(') != NULL)
2975 {
2976 char *without_params = cp_remove_params (name);
2977
2978 if (without_params != NULL)
2979 {
2980 make_cleanup (xfree, without_params);
2981 name = without_params;
2982 }
2983 }
2984 }
2985
2986 /* Index version 4 did not support case insensitive searches. But the
2987 indices for case insensitive languages are built in lowercase, therefore
2988 simulate our NAME being searched is also lowercased. */
2989 hash = mapped_index_string_hash ((index->version == 4
2990 && case_sensitivity == case_sensitive_off
2991 ? 5 : index->version),
2992 name);
2993
2994 slot = hash & (index->symbol_table_slots - 1);
2995 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2996 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2997
2998 for (;;)
2999 {
3000 /* Convert a slot number to an offset into the table. */
3001 offset_type i = 2 * slot;
3002 const char *str;
3003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3004 {
3005 do_cleanups (back_to);
3006 return 0;
3007 }
3008
3009 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3010 if (!cmp (name, str))
3011 {
3012 *vec_out = (offset_type *) (index->constant_pool
3013 + MAYBE_SWAP (index->symbol_table[i + 1]));
3014 do_cleanups (back_to);
3015 return 1;
3016 }
3017
3018 slot = (slot + step) & (index->symbol_table_slots - 1);
3019 }
3020 }
3021
3022 /* A helper function that reads the .gdb_index from SECTION and fills
3023 in MAP. FILENAME is the name of the file containing the section;
3024 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3025 ok to use deprecated sections.
3026
3027 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3028 out parameters that are filled in with information about the CU and
3029 TU lists in the section.
3030
3031 Returns 1 if all went well, 0 otherwise. */
3032
3033 static int
3034 read_index_from_section (struct objfile *objfile,
3035 const char *filename,
3036 int deprecated_ok,
3037 struct dwarf2_section_info *section,
3038 struct mapped_index *map,
3039 const gdb_byte **cu_list,
3040 offset_type *cu_list_elements,
3041 const gdb_byte **types_list,
3042 offset_type *types_list_elements)
3043 {
3044 const gdb_byte *addr;
3045 offset_type version;
3046 offset_type *metadata;
3047 int i;
3048
3049 if (dwarf2_section_empty_p (section))
3050 return 0;
3051
3052 /* Older elfutils strip versions could keep the section in the main
3053 executable while splitting it for the separate debug info file. */
3054 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3055 return 0;
3056
3057 dwarf2_read_section (objfile, section);
3058
3059 addr = section->buffer;
3060 /* Version check. */
3061 version = MAYBE_SWAP (*(offset_type *) addr);
3062 /* Versions earlier than 3 emitted every copy of a psymbol. This
3063 causes the index to behave very poorly for certain requests. Version 3
3064 contained incomplete addrmap. So, it seems better to just ignore such
3065 indices. */
3066 if (version < 4)
3067 {
3068 static int warning_printed = 0;
3069 if (!warning_printed)
3070 {
3071 warning (_("Skipping obsolete .gdb_index section in %s."),
3072 filename);
3073 warning_printed = 1;
3074 }
3075 return 0;
3076 }
3077 /* Index version 4 uses a different hash function than index version
3078 5 and later.
3079
3080 Versions earlier than 6 did not emit psymbols for inlined
3081 functions. Using these files will cause GDB not to be able to
3082 set breakpoints on inlined functions by name, so we ignore these
3083 indices unless the user has done
3084 "set use-deprecated-index-sections on". */
3085 if (version < 6 && !deprecated_ok)
3086 {
3087 static int warning_printed = 0;
3088 if (!warning_printed)
3089 {
3090 warning (_("\
3091 Skipping deprecated .gdb_index section in %s.\n\
3092 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3093 to use the section anyway."),
3094 filename);
3095 warning_printed = 1;
3096 }
3097 return 0;
3098 }
3099 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3100 of the TU (for symbols coming from TUs),
3101 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3102 Plus gold-generated indices can have duplicate entries for global symbols,
3103 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3104 These are just performance bugs, and we can't distinguish gdb-generated
3105 indices from gold-generated ones, so issue no warning here. */
3106
3107 /* Indexes with higher version than the one supported by GDB may be no
3108 longer backward compatible. */
3109 if (version > 8)
3110 return 0;
3111
3112 map->version = version;
3113 map->total_size = section->size;
3114
3115 metadata = (offset_type *) (addr + sizeof (offset_type));
3116
3117 i = 0;
3118 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3119 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3120 / 8);
3121 ++i;
3122
3123 *types_list = addr + MAYBE_SWAP (metadata[i]);
3124 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3125 - MAYBE_SWAP (metadata[i]))
3126 / 8);
3127 ++i;
3128
3129 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3130 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3131 - MAYBE_SWAP (metadata[i]));
3132 ++i;
3133
3134 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3135 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3136 - MAYBE_SWAP (metadata[i]))
3137 / (2 * sizeof (offset_type)));
3138 ++i;
3139
3140 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3141
3142 return 1;
3143 }
3144
3145
3146 /* Read the index file. If everything went ok, initialize the "quick"
3147 elements of all the CUs and return 1. Otherwise, return 0. */
3148
3149 static int
3150 dwarf2_read_index (struct objfile *objfile)
3151 {
3152 struct mapped_index local_map, *map;
3153 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3154 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3155 struct dwz_file *dwz;
3156
3157 if (!read_index_from_section (objfile, objfile_name (objfile),
3158 use_deprecated_index_sections,
3159 &dwarf2_per_objfile->gdb_index, &local_map,
3160 &cu_list, &cu_list_elements,
3161 &types_list, &types_list_elements))
3162 return 0;
3163
3164 /* Don't use the index if it's empty. */
3165 if (local_map.symbol_table_slots == 0)
3166 return 0;
3167
3168 /* If there is a .dwz file, read it so we can get its CU list as
3169 well. */
3170 dwz = dwarf2_get_dwz_file ();
3171 if (dwz != NULL)
3172 {
3173 struct mapped_index dwz_map;
3174 const gdb_byte *dwz_types_ignore;
3175 offset_type dwz_types_elements_ignore;
3176
3177 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3178 1,
3179 &dwz->gdb_index, &dwz_map,
3180 &dwz_list, &dwz_list_elements,
3181 &dwz_types_ignore,
3182 &dwz_types_elements_ignore))
3183 {
3184 warning (_("could not read '.gdb_index' section from %s; skipping"),
3185 bfd_get_filename (dwz->dwz_bfd));
3186 return 0;
3187 }
3188 }
3189
3190 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3191 dwz_list_elements);
3192
3193 if (types_list_elements)
3194 {
3195 struct dwarf2_section_info *section;
3196
3197 /* We can only handle a single .debug_types when we have an
3198 index. */
3199 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3200 return 0;
3201
3202 section = VEC_index (dwarf2_section_info_def,
3203 dwarf2_per_objfile->types, 0);
3204
3205 create_signatured_type_table_from_index (objfile, section, types_list,
3206 types_list_elements);
3207 }
3208
3209 create_addrmap_from_index (objfile, &local_map);
3210
3211 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3212 *map = local_map;
3213
3214 dwarf2_per_objfile->index_table = map;
3215 dwarf2_per_objfile->using_index = 1;
3216 dwarf2_per_objfile->quick_file_names_table =
3217 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3218
3219 return 1;
3220 }
3221
3222 /* A helper for the "quick" functions which sets the global
3223 dwarf2_per_objfile according to OBJFILE. */
3224
3225 static void
3226 dw2_setup (struct objfile *objfile)
3227 {
3228 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3229 gdb_assert (dwarf2_per_objfile);
3230 }
3231
3232 /* die_reader_func for dw2_get_file_names. */
3233
3234 static void
3235 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3236 const gdb_byte *info_ptr,
3237 struct die_info *comp_unit_die,
3238 int has_children,
3239 void *data)
3240 {
3241 struct dwarf2_cu *cu = reader->cu;
3242 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3243 struct objfile *objfile = dwarf2_per_objfile->objfile;
3244 struct dwarf2_per_cu_data *lh_cu;
3245 struct line_header *lh;
3246 struct attribute *attr;
3247 int i;
3248 const char *name, *comp_dir;
3249 void **slot;
3250 struct quick_file_names *qfn;
3251 unsigned int line_offset;
3252
3253 gdb_assert (! this_cu->is_debug_types);
3254
3255 /* Our callers never want to match partial units -- instead they
3256 will match the enclosing full CU. */
3257 if (comp_unit_die->tag == DW_TAG_partial_unit)
3258 {
3259 this_cu->v.quick->no_file_data = 1;
3260 return;
3261 }
3262
3263 lh_cu = this_cu;
3264 lh = NULL;
3265 slot = NULL;
3266 line_offset = 0;
3267
3268 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3269 if (attr)
3270 {
3271 struct quick_file_names find_entry;
3272
3273 line_offset = DW_UNSND (attr);
3274
3275 /* We may have already read in this line header (TU line header sharing).
3276 If we have we're done. */
3277 find_entry.hash.dwo_unit = cu->dwo_unit;
3278 find_entry.hash.line_offset.sect_off = line_offset;
3279 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3280 &find_entry, INSERT);
3281 if (*slot != NULL)
3282 {
3283 lh_cu->v.quick->file_names = *slot;
3284 return;
3285 }
3286
3287 lh = dwarf_decode_line_header (line_offset, cu);
3288 }
3289 if (lh == NULL)
3290 {
3291 lh_cu->v.quick->no_file_data = 1;
3292 return;
3293 }
3294
3295 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3296 qfn->hash.dwo_unit = cu->dwo_unit;
3297 qfn->hash.line_offset.sect_off = line_offset;
3298 gdb_assert (slot != NULL);
3299 *slot = qfn;
3300
3301 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3302
3303 qfn->num_file_names = lh->num_file_names;
3304 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3305 lh->num_file_names * sizeof (char *));
3306 for (i = 0; i < lh->num_file_names; ++i)
3307 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3308 qfn->real_names = NULL;
3309
3310 free_line_header (lh);
3311
3312 lh_cu->v.quick->file_names = qfn;
3313 }
3314
3315 /* A helper for the "quick" functions which attempts to read the line
3316 table for THIS_CU. */
3317
3318 static struct quick_file_names *
3319 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3320 {
3321 /* This should never be called for TUs. */
3322 gdb_assert (! this_cu->is_debug_types);
3323 /* Nor type unit groups. */
3324 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3325
3326 if (this_cu->v.quick->file_names != NULL)
3327 return this_cu->v.quick->file_names;
3328 /* If we know there is no line data, no point in looking again. */
3329 if (this_cu->v.quick->no_file_data)
3330 return NULL;
3331
3332 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3333
3334 if (this_cu->v.quick->no_file_data)
3335 return NULL;
3336 return this_cu->v.quick->file_names;
3337 }
3338
3339 /* A helper for the "quick" functions which computes and caches the
3340 real path for a given file name from the line table. */
3341
3342 static const char *
3343 dw2_get_real_path (struct objfile *objfile,
3344 struct quick_file_names *qfn, int index)
3345 {
3346 if (qfn->real_names == NULL)
3347 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3348 qfn->num_file_names, const char *);
3349
3350 if (qfn->real_names[index] == NULL)
3351 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3352
3353 return qfn->real_names[index];
3354 }
3355
3356 static struct symtab *
3357 dw2_find_last_source_symtab (struct objfile *objfile)
3358 {
3359 struct compunit_symtab *cust;
3360 int index;
3361
3362 dw2_setup (objfile);
3363 index = dwarf2_per_objfile->n_comp_units - 1;
3364 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3365 if (cust == NULL)
3366 return NULL;
3367 return compunit_primary_filetab (cust);
3368 }
3369
3370 /* Traversal function for dw2_forget_cached_source_info. */
3371
3372 static int
3373 dw2_free_cached_file_names (void **slot, void *info)
3374 {
3375 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3376
3377 if (file_data->real_names)
3378 {
3379 int i;
3380
3381 for (i = 0; i < file_data->num_file_names; ++i)
3382 {
3383 xfree ((void*) file_data->real_names[i]);
3384 file_data->real_names[i] = NULL;
3385 }
3386 }
3387
3388 return 1;
3389 }
3390
3391 static void
3392 dw2_forget_cached_source_info (struct objfile *objfile)
3393 {
3394 dw2_setup (objfile);
3395
3396 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3397 dw2_free_cached_file_names, NULL);
3398 }
3399
3400 /* Helper function for dw2_map_symtabs_matching_filename that expands
3401 the symtabs and calls the iterator. */
3402
3403 static int
3404 dw2_map_expand_apply (struct objfile *objfile,
3405 struct dwarf2_per_cu_data *per_cu,
3406 const char *name, const char *real_path,
3407 int (*callback) (struct symtab *, void *),
3408 void *data)
3409 {
3410 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3411
3412 /* Don't visit already-expanded CUs. */
3413 if (per_cu->v.quick->compunit_symtab)
3414 return 0;
3415
3416 /* This may expand more than one symtab, and we want to iterate over
3417 all of them. */
3418 dw2_instantiate_symtab (per_cu);
3419
3420 return iterate_over_some_symtabs (name, real_path, callback, data,
3421 objfile->compunit_symtabs, last_made);
3422 }
3423
3424 /* Implementation of the map_symtabs_matching_filename method. */
3425
3426 static int
3427 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3428 const char *real_path,
3429 int (*callback) (struct symtab *, void *),
3430 void *data)
3431 {
3432 int i;
3433 const char *name_basename = lbasename (name);
3434
3435 dw2_setup (objfile);
3436
3437 /* The rule is CUs specify all the files, including those used by
3438 any TU, so there's no need to scan TUs here. */
3439
3440 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3441 {
3442 int j;
3443 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3444 struct quick_file_names *file_data;
3445
3446 /* We only need to look at symtabs not already expanded. */
3447 if (per_cu->v.quick->compunit_symtab)
3448 continue;
3449
3450 file_data = dw2_get_file_names (per_cu);
3451 if (file_data == NULL)
3452 continue;
3453
3454 for (j = 0; j < file_data->num_file_names; ++j)
3455 {
3456 const char *this_name = file_data->file_names[j];
3457 const char *this_real_name;
3458
3459 if (compare_filenames_for_search (this_name, name))
3460 {
3461 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3462 callback, data))
3463 return 1;
3464 continue;
3465 }
3466
3467 /* Before we invoke realpath, which can get expensive when many
3468 files are involved, do a quick comparison of the basenames. */
3469 if (! basenames_may_differ
3470 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3471 continue;
3472
3473 this_real_name = dw2_get_real_path (objfile, file_data, j);
3474 if (compare_filenames_for_search (this_real_name, name))
3475 {
3476 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3477 callback, data))
3478 return 1;
3479 continue;
3480 }
3481
3482 if (real_path != NULL)
3483 {
3484 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3485 gdb_assert (IS_ABSOLUTE_PATH (name));
3486 if (this_real_name != NULL
3487 && FILENAME_CMP (real_path, this_real_name) == 0)
3488 {
3489 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3490 callback, data))
3491 return 1;
3492 continue;
3493 }
3494 }
3495 }
3496 }
3497
3498 return 0;
3499 }
3500
3501 /* Struct used to manage iterating over all CUs looking for a symbol. */
3502
3503 struct dw2_symtab_iterator
3504 {
3505 /* The internalized form of .gdb_index. */
3506 struct mapped_index *index;
3507 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3508 int want_specific_block;
3509 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3510 Unused if !WANT_SPECIFIC_BLOCK. */
3511 int block_index;
3512 /* The kind of symbol we're looking for. */
3513 domain_enum domain;
3514 /* The list of CUs from the index entry of the symbol,
3515 or NULL if not found. */
3516 offset_type *vec;
3517 /* The next element in VEC to look at. */
3518 int next;
3519 /* The number of elements in VEC, or zero if there is no match. */
3520 int length;
3521 /* Have we seen a global version of the symbol?
3522 If so we can ignore all further global instances.
3523 This is to work around gold/15646, inefficient gold-generated
3524 indices. */
3525 int global_seen;
3526 };
3527
3528 /* Initialize the index symtab iterator ITER.
3529 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3530 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3531
3532 static void
3533 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3534 struct mapped_index *index,
3535 int want_specific_block,
3536 int block_index,
3537 domain_enum domain,
3538 const char *name)
3539 {
3540 iter->index = index;
3541 iter->want_specific_block = want_specific_block;
3542 iter->block_index = block_index;
3543 iter->domain = domain;
3544 iter->next = 0;
3545 iter->global_seen = 0;
3546
3547 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3548 iter->length = MAYBE_SWAP (*iter->vec);
3549 else
3550 {
3551 iter->vec = NULL;
3552 iter->length = 0;
3553 }
3554 }
3555
3556 /* Return the next matching CU or NULL if there are no more. */
3557
3558 static struct dwarf2_per_cu_data *
3559 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3560 {
3561 for ( ; iter->next < iter->length; ++iter->next)
3562 {
3563 offset_type cu_index_and_attrs =
3564 MAYBE_SWAP (iter->vec[iter->next + 1]);
3565 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3566 struct dwarf2_per_cu_data *per_cu;
3567 int want_static = iter->block_index != GLOBAL_BLOCK;
3568 /* This value is only valid for index versions >= 7. */
3569 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3570 gdb_index_symbol_kind symbol_kind =
3571 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3572 /* Only check the symbol attributes if they're present.
3573 Indices prior to version 7 don't record them,
3574 and indices >= 7 may elide them for certain symbols
3575 (gold does this). */
3576 int attrs_valid =
3577 (iter->index->version >= 7
3578 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3579
3580 /* Don't crash on bad data. */
3581 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3582 + dwarf2_per_objfile->n_type_units))
3583 {
3584 complaint (&symfile_complaints,
3585 _(".gdb_index entry has bad CU index"
3586 " [in module %s]"),
3587 objfile_name (dwarf2_per_objfile->objfile));
3588 continue;
3589 }
3590
3591 per_cu = dw2_get_cutu (cu_index);
3592
3593 /* Skip if already read in. */
3594 if (per_cu->v.quick->compunit_symtab)
3595 continue;
3596
3597 /* Check static vs global. */
3598 if (attrs_valid)
3599 {
3600 if (iter->want_specific_block
3601 && want_static != is_static)
3602 continue;
3603 /* Work around gold/15646. */
3604 if (!is_static && iter->global_seen)
3605 continue;
3606 if (!is_static)
3607 iter->global_seen = 1;
3608 }
3609
3610 /* Only check the symbol's kind if it has one. */
3611 if (attrs_valid)
3612 {
3613 switch (iter->domain)
3614 {
3615 case VAR_DOMAIN:
3616 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3617 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3618 /* Some types are also in VAR_DOMAIN. */
3619 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3620 continue;
3621 break;
3622 case STRUCT_DOMAIN:
3623 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3624 continue;
3625 break;
3626 case LABEL_DOMAIN:
3627 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3628 continue;
3629 break;
3630 default:
3631 break;
3632 }
3633 }
3634
3635 ++iter->next;
3636 return per_cu;
3637 }
3638
3639 return NULL;
3640 }
3641
3642 static struct compunit_symtab *
3643 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3644 const char *name, domain_enum domain)
3645 {
3646 struct compunit_symtab *stab_best = NULL;
3647 struct mapped_index *index;
3648
3649 dw2_setup (objfile);
3650
3651 index = dwarf2_per_objfile->index_table;
3652
3653 /* index is NULL if OBJF_READNOW. */
3654 if (index)
3655 {
3656 struct dw2_symtab_iterator iter;
3657 struct dwarf2_per_cu_data *per_cu;
3658
3659 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3660
3661 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3662 {
3663 struct symbol *sym = NULL;
3664 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3665 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3666 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3667
3668 /* Some caution must be observed with overloaded functions
3669 and methods, since the index will not contain any overload
3670 information (but NAME might contain it). */
3671 sym = block_lookup_symbol (block, name, domain);
3672
3673 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3674 {
3675 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3676 return stab;
3677
3678 stab_best = stab;
3679 }
3680
3681 /* Keep looking through other CUs. */
3682 }
3683 }
3684
3685 return stab_best;
3686 }
3687
3688 static void
3689 dw2_print_stats (struct objfile *objfile)
3690 {
3691 int i, total, count;
3692
3693 dw2_setup (objfile);
3694 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3695 count = 0;
3696 for (i = 0; i < total; ++i)
3697 {
3698 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3699
3700 if (!per_cu->v.quick->compunit_symtab)
3701 ++count;
3702 }
3703 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3704 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3705 }
3706
3707 /* This dumps minimal information about the index.
3708 It is called via "mt print objfiles".
3709 One use is to verify .gdb_index has been loaded by the
3710 gdb.dwarf2/gdb-index.exp testcase. */
3711
3712 static void
3713 dw2_dump (struct objfile *objfile)
3714 {
3715 dw2_setup (objfile);
3716 gdb_assert (dwarf2_per_objfile->using_index);
3717 printf_filtered (".gdb_index:");
3718 if (dwarf2_per_objfile->index_table != NULL)
3719 {
3720 printf_filtered (" version %d\n",
3721 dwarf2_per_objfile->index_table->version);
3722 }
3723 else
3724 printf_filtered (" faked for \"readnow\"\n");
3725 printf_filtered ("\n");
3726 }
3727
3728 static void
3729 dw2_relocate (struct objfile *objfile,
3730 const struct section_offsets *new_offsets,
3731 const struct section_offsets *delta)
3732 {
3733 /* There's nothing to relocate here. */
3734 }
3735
3736 static void
3737 dw2_expand_symtabs_for_function (struct objfile *objfile,
3738 const char *func_name)
3739 {
3740 struct mapped_index *index;
3741
3742 dw2_setup (objfile);
3743
3744 index = dwarf2_per_objfile->index_table;
3745
3746 /* index is NULL if OBJF_READNOW. */
3747 if (index)
3748 {
3749 struct dw2_symtab_iterator iter;
3750 struct dwarf2_per_cu_data *per_cu;
3751
3752 /* Note: It doesn't matter what we pass for block_index here. */
3753 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3754 func_name);
3755
3756 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3757 dw2_instantiate_symtab (per_cu);
3758 }
3759 }
3760
3761 static void
3762 dw2_expand_all_symtabs (struct objfile *objfile)
3763 {
3764 int i;
3765
3766 dw2_setup (objfile);
3767
3768 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3769 + dwarf2_per_objfile->n_type_units); ++i)
3770 {
3771 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3772
3773 dw2_instantiate_symtab (per_cu);
3774 }
3775 }
3776
3777 static void
3778 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3779 const char *fullname)
3780 {
3781 int i;
3782
3783 dw2_setup (objfile);
3784
3785 /* We don't need to consider type units here.
3786 This is only called for examining code, e.g. expand_line_sal.
3787 There can be an order of magnitude (or more) more type units
3788 than comp units, and we avoid them if we can. */
3789
3790 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3791 {
3792 int j;
3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3794 struct quick_file_names *file_data;
3795
3796 /* We only need to look at symtabs not already expanded. */
3797 if (per_cu->v.quick->compunit_symtab)
3798 continue;
3799
3800 file_data = dw2_get_file_names (per_cu);
3801 if (file_data == NULL)
3802 continue;
3803
3804 for (j = 0; j < file_data->num_file_names; ++j)
3805 {
3806 const char *this_fullname = file_data->file_names[j];
3807
3808 if (filename_cmp (this_fullname, fullname) == 0)
3809 {
3810 dw2_instantiate_symtab (per_cu);
3811 break;
3812 }
3813 }
3814 }
3815 }
3816
3817 static void
3818 dw2_map_matching_symbols (struct objfile *objfile,
3819 const char * name, domain_enum domain,
3820 int global,
3821 int (*callback) (struct block *,
3822 struct symbol *, void *),
3823 void *data, symbol_compare_ftype *match,
3824 symbol_compare_ftype *ordered_compare)
3825 {
3826 /* Currently unimplemented; used for Ada. The function can be called if the
3827 current language is Ada for a non-Ada objfile using GNU index. As Ada
3828 does not look for non-Ada symbols this function should just return. */
3829 }
3830
3831 static void
3832 dw2_expand_symtabs_matching
3833 (struct objfile *objfile,
3834 expand_symtabs_file_matcher_ftype *file_matcher,
3835 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3836 expand_symtabs_exp_notify_ftype *expansion_notify,
3837 enum search_domain kind,
3838 void *data)
3839 {
3840 int i;
3841 offset_type iter;
3842 struct mapped_index *index;
3843
3844 dw2_setup (objfile);
3845
3846 /* index_table is NULL if OBJF_READNOW. */
3847 if (!dwarf2_per_objfile->index_table)
3848 return;
3849 index = dwarf2_per_objfile->index_table;
3850
3851 if (file_matcher != NULL)
3852 {
3853 struct cleanup *cleanup;
3854 htab_t visited_found, visited_not_found;
3855
3856 visited_found = htab_create_alloc (10,
3857 htab_hash_pointer, htab_eq_pointer,
3858 NULL, xcalloc, xfree);
3859 cleanup = make_cleanup_htab_delete (visited_found);
3860 visited_not_found = htab_create_alloc (10,
3861 htab_hash_pointer, htab_eq_pointer,
3862 NULL, xcalloc, xfree);
3863 make_cleanup_htab_delete (visited_not_found);
3864
3865 /* The rule is CUs specify all the files, including those used by
3866 any TU, so there's no need to scan TUs here. */
3867
3868 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3869 {
3870 int j;
3871 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3872 struct quick_file_names *file_data;
3873 void **slot;
3874
3875 per_cu->v.quick->mark = 0;
3876
3877 /* We only need to look at symtabs not already expanded. */
3878 if (per_cu->v.quick->compunit_symtab)
3879 continue;
3880
3881 file_data = dw2_get_file_names (per_cu);
3882 if (file_data == NULL)
3883 continue;
3884
3885 if (htab_find (visited_not_found, file_data) != NULL)
3886 continue;
3887 else if (htab_find (visited_found, file_data) != NULL)
3888 {
3889 per_cu->v.quick->mark = 1;
3890 continue;
3891 }
3892
3893 for (j = 0; j < file_data->num_file_names; ++j)
3894 {
3895 const char *this_real_name;
3896
3897 if (file_matcher (file_data->file_names[j], data, 0))
3898 {
3899 per_cu->v.quick->mark = 1;
3900 break;
3901 }
3902
3903 /* Before we invoke realpath, which can get expensive when many
3904 files are involved, do a quick comparison of the basenames. */
3905 if (!basenames_may_differ
3906 && !file_matcher (lbasename (file_data->file_names[j]),
3907 data, 1))
3908 continue;
3909
3910 this_real_name = dw2_get_real_path (objfile, file_data, j);
3911 if (file_matcher (this_real_name, data, 0))
3912 {
3913 per_cu->v.quick->mark = 1;
3914 break;
3915 }
3916 }
3917
3918 slot = htab_find_slot (per_cu->v.quick->mark
3919 ? visited_found
3920 : visited_not_found,
3921 file_data, INSERT);
3922 *slot = file_data;
3923 }
3924
3925 do_cleanups (cleanup);
3926 }
3927
3928 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3929 {
3930 offset_type idx = 2 * iter;
3931 const char *name;
3932 offset_type *vec, vec_len, vec_idx;
3933 int global_seen = 0;
3934
3935 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3936 continue;
3937
3938 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3939
3940 if (! (*symbol_matcher) (name, data))
3941 continue;
3942
3943 /* The name was matched, now expand corresponding CUs that were
3944 marked. */
3945 vec = (offset_type *) (index->constant_pool
3946 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3947 vec_len = MAYBE_SWAP (vec[0]);
3948 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3949 {
3950 struct dwarf2_per_cu_data *per_cu;
3951 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3952 /* This value is only valid for index versions >= 7. */
3953 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3954 gdb_index_symbol_kind symbol_kind =
3955 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3956 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3957 /* Only check the symbol attributes if they're present.
3958 Indices prior to version 7 don't record them,
3959 and indices >= 7 may elide them for certain symbols
3960 (gold does this). */
3961 int attrs_valid =
3962 (index->version >= 7
3963 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3964
3965 /* Work around gold/15646. */
3966 if (attrs_valid)
3967 {
3968 if (!is_static && global_seen)
3969 continue;
3970 if (!is_static)
3971 global_seen = 1;
3972 }
3973
3974 /* Only check the symbol's kind if it has one. */
3975 if (attrs_valid)
3976 {
3977 switch (kind)
3978 {
3979 case VARIABLES_DOMAIN:
3980 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3981 continue;
3982 break;
3983 case FUNCTIONS_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3985 continue;
3986 break;
3987 case TYPES_DOMAIN:
3988 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3989 continue;
3990 break;
3991 default:
3992 break;
3993 }
3994 }
3995
3996 /* Don't crash on bad data. */
3997 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3998 + dwarf2_per_objfile->n_type_units))
3999 {
4000 complaint (&symfile_complaints,
4001 _(".gdb_index entry has bad CU index"
4002 " [in module %s]"), objfile_name (objfile));
4003 continue;
4004 }
4005
4006 per_cu = dw2_get_cutu (cu_index);
4007 if (file_matcher == NULL || per_cu->v.quick->mark)
4008 {
4009 int symtab_was_null =
4010 (per_cu->v.quick->compunit_symtab == NULL);
4011
4012 dw2_instantiate_symtab (per_cu);
4013
4014 if (expansion_notify != NULL
4015 && symtab_was_null
4016 && per_cu->v.quick->compunit_symtab != NULL)
4017 {
4018 expansion_notify (per_cu->v.quick->compunit_symtab,
4019 data);
4020 }
4021 }
4022 }
4023 }
4024 }
4025
4026 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4027 symtab. */
4028
4029 static struct compunit_symtab *
4030 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4031 CORE_ADDR pc)
4032 {
4033 int i;
4034
4035 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4036 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4037 return cust;
4038
4039 if (cust->includes == NULL)
4040 return NULL;
4041
4042 for (i = 0; cust->includes[i]; ++i)
4043 {
4044 struct compunit_symtab *s = cust->includes[i];
4045
4046 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4047 if (s != NULL)
4048 return s;
4049 }
4050
4051 return NULL;
4052 }
4053
4054 static struct compunit_symtab *
4055 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4056 struct bound_minimal_symbol msymbol,
4057 CORE_ADDR pc,
4058 struct obj_section *section,
4059 int warn_if_readin)
4060 {
4061 struct dwarf2_per_cu_data *data;
4062 struct compunit_symtab *result;
4063
4064 dw2_setup (objfile);
4065
4066 if (!objfile->psymtabs_addrmap)
4067 return NULL;
4068
4069 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4070 if (!data)
4071 return NULL;
4072
4073 if (warn_if_readin && data->v.quick->compunit_symtab)
4074 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4075 paddress (get_objfile_arch (objfile), pc));
4076
4077 result
4078 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4079 pc);
4080 gdb_assert (result != NULL);
4081 return result;
4082 }
4083
4084 static void
4085 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4086 void *data, int need_fullname)
4087 {
4088 int i;
4089 struct cleanup *cleanup;
4090 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4091 NULL, xcalloc, xfree);
4092
4093 cleanup = make_cleanup_htab_delete (visited);
4094 dw2_setup (objfile);
4095
4096 /* The rule is CUs specify all the files, including those used by
4097 any TU, so there's no need to scan TUs here.
4098 We can ignore file names coming from already-expanded CUs. */
4099
4100 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4101 {
4102 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4103
4104 if (per_cu->v.quick->compunit_symtab)
4105 {
4106 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4107 INSERT);
4108
4109 *slot = per_cu->v.quick->file_names;
4110 }
4111 }
4112
4113 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4114 {
4115 int j;
4116 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4117 struct quick_file_names *file_data;
4118 void **slot;
4119
4120 /* We only need to look at symtabs not already expanded. */
4121 if (per_cu->v.quick->compunit_symtab)
4122 continue;
4123
4124 file_data = dw2_get_file_names (per_cu);
4125 if (file_data == NULL)
4126 continue;
4127
4128 slot = htab_find_slot (visited, file_data, INSERT);
4129 if (*slot)
4130 {
4131 /* Already visited. */
4132 continue;
4133 }
4134 *slot = file_data;
4135
4136 for (j = 0; j < file_data->num_file_names; ++j)
4137 {
4138 const char *this_real_name;
4139
4140 if (need_fullname)
4141 this_real_name = dw2_get_real_path (objfile, file_data, j);
4142 else
4143 this_real_name = NULL;
4144 (*fun) (file_data->file_names[j], this_real_name, data);
4145 }
4146 }
4147
4148 do_cleanups (cleanup);
4149 }
4150
4151 static int
4152 dw2_has_symbols (struct objfile *objfile)
4153 {
4154 return 1;
4155 }
4156
4157 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4158 {
4159 dw2_has_symbols,
4160 dw2_find_last_source_symtab,
4161 dw2_forget_cached_source_info,
4162 dw2_map_symtabs_matching_filename,
4163 dw2_lookup_symbol,
4164 dw2_print_stats,
4165 dw2_dump,
4166 dw2_relocate,
4167 dw2_expand_symtabs_for_function,
4168 dw2_expand_all_symtabs,
4169 dw2_expand_symtabs_with_fullname,
4170 dw2_map_matching_symbols,
4171 dw2_expand_symtabs_matching,
4172 dw2_find_pc_sect_compunit_symtab,
4173 dw2_map_symbol_filenames
4174 };
4175
4176 /* Initialize for reading DWARF for this objfile. Return 0 if this
4177 file will use psymtabs, or 1 if using the GNU index. */
4178
4179 int
4180 dwarf2_initialize_objfile (struct objfile *objfile)
4181 {
4182 /* If we're about to read full symbols, don't bother with the
4183 indices. In this case we also don't care if some other debug
4184 format is making psymtabs, because they are all about to be
4185 expanded anyway. */
4186 if ((objfile->flags & OBJF_READNOW))
4187 {
4188 int i;
4189
4190 dwarf2_per_objfile->using_index = 1;
4191 create_all_comp_units (objfile);
4192 create_all_type_units (objfile);
4193 dwarf2_per_objfile->quick_file_names_table =
4194 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4195
4196 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4197 + dwarf2_per_objfile->n_type_units); ++i)
4198 {
4199 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4200
4201 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4202 struct dwarf2_per_cu_quick_data);
4203 }
4204
4205 /* Return 1 so that gdb sees the "quick" functions. However,
4206 these functions will be no-ops because we will have expanded
4207 all symtabs. */
4208 return 1;
4209 }
4210
4211 if (dwarf2_read_index (objfile))
4212 return 1;
4213
4214 return 0;
4215 }
4216
4217 \f
4218
4219 /* Build a partial symbol table. */
4220
4221 void
4222 dwarf2_build_psymtabs (struct objfile *objfile)
4223 {
4224 volatile struct gdb_exception except;
4225
4226 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4227 {
4228 init_psymbol_list (objfile, 1024);
4229 }
4230
4231 TRY_CATCH (except, RETURN_MASK_ERROR)
4232 {
4233 /* This isn't really ideal: all the data we allocate on the
4234 objfile's obstack is still uselessly kept around. However,
4235 freeing it seems unsafe. */
4236 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4237
4238 dwarf2_build_psymtabs_hard (objfile);
4239 discard_cleanups (cleanups);
4240 }
4241 if (except.reason < 0)
4242 exception_print (gdb_stderr, except);
4243 }
4244
4245 /* Return the total length of the CU described by HEADER. */
4246
4247 static unsigned int
4248 get_cu_length (const struct comp_unit_head *header)
4249 {
4250 return header->initial_length_size + header->length;
4251 }
4252
4253 /* Return TRUE if OFFSET is within CU_HEADER. */
4254
4255 static inline int
4256 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4257 {
4258 sect_offset bottom = { cu_header->offset.sect_off };
4259 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4260
4261 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4262 }
4263
4264 /* Find the base address of the compilation unit for range lists and
4265 location lists. It will normally be specified by DW_AT_low_pc.
4266 In DWARF-3 draft 4, the base address could be overridden by
4267 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4268 compilation units with discontinuous ranges. */
4269
4270 static void
4271 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4272 {
4273 struct attribute *attr;
4274
4275 cu->base_known = 0;
4276 cu->base_address = 0;
4277
4278 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4279 if (attr)
4280 {
4281 cu->base_address = attr_value_as_address (attr);
4282 cu->base_known = 1;
4283 }
4284 else
4285 {
4286 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4287 if (attr)
4288 {
4289 cu->base_address = attr_value_as_address (attr);
4290 cu->base_known = 1;
4291 }
4292 }
4293 }
4294
4295 /* Read in the comp unit header information from the debug_info at info_ptr.
4296 NOTE: This leaves members offset, first_die_offset to be filled in
4297 by the caller. */
4298
4299 static const gdb_byte *
4300 read_comp_unit_head (struct comp_unit_head *cu_header,
4301 const gdb_byte *info_ptr, bfd *abfd)
4302 {
4303 int signed_addr;
4304 unsigned int bytes_read;
4305
4306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4307 cu_header->initial_length_size = bytes_read;
4308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4309 info_ptr += bytes_read;
4310 cu_header->version = read_2_bytes (abfd, info_ptr);
4311 info_ptr += 2;
4312 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4313 &bytes_read);
4314 info_ptr += bytes_read;
4315 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4316 info_ptr += 1;
4317 signed_addr = bfd_get_sign_extend_vma (abfd);
4318 if (signed_addr < 0)
4319 internal_error (__FILE__, __LINE__,
4320 _("read_comp_unit_head: dwarf from non elf file"));
4321 cu_header->signed_addr_p = signed_addr;
4322
4323 return info_ptr;
4324 }
4325
4326 /* Helper function that returns the proper abbrev section for
4327 THIS_CU. */
4328
4329 static struct dwarf2_section_info *
4330 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4331 {
4332 struct dwarf2_section_info *abbrev;
4333
4334 if (this_cu->is_dwz)
4335 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4336 else
4337 abbrev = &dwarf2_per_objfile->abbrev;
4338
4339 return abbrev;
4340 }
4341
4342 /* Subroutine of read_and_check_comp_unit_head and
4343 read_and_check_type_unit_head to simplify them.
4344 Perform various error checking on the header. */
4345
4346 static void
4347 error_check_comp_unit_head (struct comp_unit_head *header,
4348 struct dwarf2_section_info *section,
4349 struct dwarf2_section_info *abbrev_section)
4350 {
4351 bfd *abfd = get_section_bfd_owner (section);
4352 const char *filename = get_section_file_name (section);
4353
4354 if (header->version != 2 && header->version != 3 && header->version != 4)
4355 error (_("Dwarf Error: wrong version in compilation unit header "
4356 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4357 filename);
4358
4359 if (header->abbrev_offset.sect_off
4360 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4361 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4362 "(offset 0x%lx + 6) [in module %s]"),
4363 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4364 filename);
4365
4366 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4367 avoid potential 32-bit overflow. */
4368 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4369 > section->size)
4370 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4371 "(offset 0x%lx + 0) [in module %s]"),
4372 (long) header->length, (long) header->offset.sect_off,
4373 filename);
4374 }
4375
4376 /* Read in a CU/TU header and perform some basic error checking.
4377 The contents of the header are stored in HEADER.
4378 The result is a pointer to the start of the first DIE. */
4379
4380 static const gdb_byte *
4381 read_and_check_comp_unit_head (struct comp_unit_head *header,
4382 struct dwarf2_section_info *section,
4383 struct dwarf2_section_info *abbrev_section,
4384 const gdb_byte *info_ptr,
4385 int is_debug_types_section)
4386 {
4387 const gdb_byte *beg_of_comp_unit = info_ptr;
4388 bfd *abfd = get_section_bfd_owner (section);
4389
4390 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4391
4392 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4393
4394 /* If we're reading a type unit, skip over the signature and
4395 type_offset fields. */
4396 if (is_debug_types_section)
4397 info_ptr += 8 /*signature*/ + header->offset_size;
4398
4399 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4400
4401 error_check_comp_unit_head (header, section, abbrev_section);
4402
4403 return info_ptr;
4404 }
4405
4406 /* Read in the types comp unit header information from .debug_types entry at
4407 types_ptr. The result is a pointer to one past the end of the header. */
4408
4409 static const gdb_byte *
4410 read_and_check_type_unit_head (struct comp_unit_head *header,
4411 struct dwarf2_section_info *section,
4412 struct dwarf2_section_info *abbrev_section,
4413 const gdb_byte *info_ptr,
4414 ULONGEST *signature,
4415 cu_offset *type_offset_in_tu)
4416 {
4417 const gdb_byte *beg_of_comp_unit = info_ptr;
4418 bfd *abfd = get_section_bfd_owner (section);
4419
4420 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4421
4422 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4423
4424 /* If we're reading a type unit, skip over the signature and
4425 type_offset fields. */
4426 if (signature != NULL)
4427 *signature = read_8_bytes (abfd, info_ptr);
4428 info_ptr += 8;
4429 if (type_offset_in_tu != NULL)
4430 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4431 header->offset_size);
4432 info_ptr += header->offset_size;
4433
4434 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4435
4436 error_check_comp_unit_head (header, section, abbrev_section);
4437
4438 return info_ptr;
4439 }
4440
4441 /* Fetch the abbreviation table offset from a comp or type unit header. */
4442
4443 static sect_offset
4444 read_abbrev_offset (struct dwarf2_section_info *section,
4445 sect_offset offset)
4446 {
4447 bfd *abfd = get_section_bfd_owner (section);
4448 const gdb_byte *info_ptr;
4449 unsigned int length, initial_length_size, offset_size;
4450 sect_offset abbrev_offset;
4451
4452 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4453 info_ptr = section->buffer + offset.sect_off;
4454 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4455 offset_size = initial_length_size == 4 ? 4 : 8;
4456 info_ptr += initial_length_size + 2 /*version*/;
4457 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4458 return abbrev_offset;
4459 }
4460
4461 /* Allocate a new partial symtab for file named NAME and mark this new
4462 partial symtab as being an include of PST. */
4463
4464 static void
4465 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4466 struct objfile *objfile)
4467 {
4468 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4469
4470 if (!IS_ABSOLUTE_PATH (subpst->filename))
4471 {
4472 /* It shares objfile->objfile_obstack. */
4473 subpst->dirname = pst->dirname;
4474 }
4475
4476 subpst->section_offsets = pst->section_offsets;
4477 subpst->textlow = 0;
4478 subpst->texthigh = 0;
4479
4480 subpst->dependencies = (struct partial_symtab **)
4481 obstack_alloc (&objfile->objfile_obstack,
4482 sizeof (struct partial_symtab *));
4483 subpst->dependencies[0] = pst;
4484 subpst->number_of_dependencies = 1;
4485
4486 subpst->globals_offset = 0;
4487 subpst->n_global_syms = 0;
4488 subpst->statics_offset = 0;
4489 subpst->n_static_syms = 0;
4490 subpst->compunit_symtab = NULL;
4491 subpst->read_symtab = pst->read_symtab;
4492 subpst->readin = 0;
4493
4494 /* No private part is necessary for include psymtabs. This property
4495 can be used to differentiate between such include psymtabs and
4496 the regular ones. */
4497 subpst->read_symtab_private = NULL;
4498 }
4499
4500 /* Read the Line Number Program data and extract the list of files
4501 included by the source file represented by PST. Build an include
4502 partial symtab for each of these included files. */
4503
4504 static void
4505 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4506 struct die_info *die,
4507 struct partial_symtab *pst)
4508 {
4509 struct line_header *lh = NULL;
4510 struct attribute *attr;
4511
4512 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4513 if (attr)
4514 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4515 if (lh == NULL)
4516 return; /* No linetable, so no includes. */
4517
4518 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4519 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4520
4521 free_line_header (lh);
4522 }
4523
4524 static hashval_t
4525 hash_signatured_type (const void *item)
4526 {
4527 const struct signatured_type *sig_type = item;
4528
4529 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4530 return sig_type->signature;
4531 }
4532
4533 static int
4534 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4535 {
4536 const struct signatured_type *lhs = item_lhs;
4537 const struct signatured_type *rhs = item_rhs;
4538
4539 return lhs->signature == rhs->signature;
4540 }
4541
4542 /* Allocate a hash table for signatured types. */
4543
4544 static htab_t
4545 allocate_signatured_type_table (struct objfile *objfile)
4546 {
4547 return htab_create_alloc_ex (41,
4548 hash_signatured_type,
4549 eq_signatured_type,
4550 NULL,
4551 &objfile->objfile_obstack,
4552 hashtab_obstack_allocate,
4553 dummy_obstack_deallocate);
4554 }
4555
4556 /* A helper function to add a signatured type CU to a table. */
4557
4558 static int
4559 add_signatured_type_cu_to_table (void **slot, void *datum)
4560 {
4561 struct signatured_type *sigt = *slot;
4562 struct signatured_type ***datap = datum;
4563
4564 **datap = sigt;
4565 ++*datap;
4566
4567 return 1;
4568 }
4569
4570 /* Create the hash table of all entries in the .debug_types
4571 (or .debug_types.dwo) section(s).
4572 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4573 otherwise it is NULL.
4574
4575 The result is a pointer to the hash table or NULL if there are no types.
4576
4577 Note: This function processes DWO files only, not DWP files. */
4578
4579 static htab_t
4580 create_debug_types_hash_table (struct dwo_file *dwo_file,
4581 VEC (dwarf2_section_info_def) *types)
4582 {
4583 struct objfile *objfile = dwarf2_per_objfile->objfile;
4584 htab_t types_htab = NULL;
4585 int ix;
4586 struct dwarf2_section_info *section;
4587 struct dwarf2_section_info *abbrev_section;
4588
4589 if (VEC_empty (dwarf2_section_info_def, types))
4590 return NULL;
4591
4592 abbrev_section = (dwo_file != NULL
4593 ? &dwo_file->sections.abbrev
4594 : &dwarf2_per_objfile->abbrev);
4595
4596 if (dwarf2_read_debug)
4597 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4598 dwo_file ? ".dwo" : "",
4599 get_section_file_name (abbrev_section));
4600
4601 for (ix = 0;
4602 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4603 ++ix)
4604 {
4605 bfd *abfd;
4606 const gdb_byte *info_ptr, *end_ptr;
4607
4608 dwarf2_read_section (objfile, section);
4609 info_ptr = section->buffer;
4610
4611 if (info_ptr == NULL)
4612 continue;
4613
4614 /* We can't set abfd until now because the section may be empty or
4615 not present, in which case the bfd is unknown. */
4616 abfd = get_section_bfd_owner (section);
4617
4618 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4619 because we don't need to read any dies: the signature is in the
4620 header. */
4621
4622 end_ptr = info_ptr + section->size;
4623 while (info_ptr < end_ptr)
4624 {
4625 sect_offset offset;
4626 cu_offset type_offset_in_tu;
4627 ULONGEST signature;
4628 struct signatured_type *sig_type;
4629 struct dwo_unit *dwo_tu;
4630 void **slot;
4631 const gdb_byte *ptr = info_ptr;
4632 struct comp_unit_head header;
4633 unsigned int length;
4634
4635 offset.sect_off = ptr - section->buffer;
4636
4637 /* We need to read the type's signature in order to build the hash
4638 table, but we don't need anything else just yet. */
4639
4640 ptr = read_and_check_type_unit_head (&header, section,
4641 abbrev_section, ptr,
4642 &signature, &type_offset_in_tu);
4643
4644 length = get_cu_length (&header);
4645
4646 /* Skip dummy type units. */
4647 if (ptr >= info_ptr + length
4648 || peek_abbrev_code (abfd, ptr) == 0)
4649 {
4650 info_ptr += length;
4651 continue;
4652 }
4653
4654 if (types_htab == NULL)
4655 {
4656 if (dwo_file)
4657 types_htab = allocate_dwo_unit_table (objfile);
4658 else
4659 types_htab = allocate_signatured_type_table (objfile);
4660 }
4661
4662 if (dwo_file)
4663 {
4664 sig_type = NULL;
4665 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4666 struct dwo_unit);
4667 dwo_tu->dwo_file = dwo_file;
4668 dwo_tu->signature = signature;
4669 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4670 dwo_tu->section = section;
4671 dwo_tu->offset = offset;
4672 dwo_tu->length = length;
4673 }
4674 else
4675 {
4676 /* N.B.: type_offset is not usable if this type uses a DWO file.
4677 The real type_offset is in the DWO file. */
4678 dwo_tu = NULL;
4679 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4680 struct signatured_type);
4681 sig_type->signature = signature;
4682 sig_type->type_offset_in_tu = type_offset_in_tu;
4683 sig_type->per_cu.objfile = objfile;
4684 sig_type->per_cu.is_debug_types = 1;
4685 sig_type->per_cu.section = section;
4686 sig_type->per_cu.offset = offset;
4687 sig_type->per_cu.length = length;
4688 }
4689
4690 slot = htab_find_slot (types_htab,
4691 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4692 INSERT);
4693 gdb_assert (slot != NULL);
4694 if (*slot != NULL)
4695 {
4696 sect_offset dup_offset;
4697
4698 if (dwo_file)
4699 {
4700 const struct dwo_unit *dup_tu = *slot;
4701
4702 dup_offset = dup_tu->offset;
4703 }
4704 else
4705 {
4706 const struct signatured_type *dup_tu = *slot;
4707
4708 dup_offset = dup_tu->per_cu.offset;
4709 }
4710
4711 complaint (&symfile_complaints,
4712 _("debug type entry at offset 0x%x is duplicate to"
4713 " the entry at offset 0x%x, signature %s"),
4714 offset.sect_off, dup_offset.sect_off,
4715 hex_string (signature));
4716 }
4717 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4718
4719 if (dwarf2_read_debug > 1)
4720 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4721 offset.sect_off,
4722 hex_string (signature));
4723
4724 info_ptr += length;
4725 }
4726 }
4727
4728 return types_htab;
4729 }
4730
4731 /* Create the hash table of all entries in the .debug_types section,
4732 and initialize all_type_units.
4733 The result is zero if there is an error (e.g. missing .debug_types section),
4734 otherwise non-zero. */
4735
4736 static int
4737 create_all_type_units (struct objfile *objfile)
4738 {
4739 htab_t types_htab;
4740 struct signatured_type **iter;
4741
4742 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4743 if (types_htab == NULL)
4744 {
4745 dwarf2_per_objfile->signatured_types = NULL;
4746 return 0;
4747 }
4748
4749 dwarf2_per_objfile->signatured_types = types_htab;
4750
4751 dwarf2_per_objfile->n_type_units
4752 = dwarf2_per_objfile->n_allocated_type_units
4753 = htab_elements (types_htab);
4754 dwarf2_per_objfile->all_type_units
4755 = xmalloc (dwarf2_per_objfile->n_type_units
4756 * sizeof (struct signatured_type *));
4757 iter = &dwarf2_per_objfile->all_type_units[0];
4758 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4759 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4760 == dwarf2_per_objfile->n_type_units);
4761
4762 return 1;
4763 }
4764
4765 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4766 If SLOT is non-NULL, it is the entry to use in the hash table.
4767 Otherwise we find one. */
4768
4769 static struct signatured_type *
4770 add_type_unit (ULONGEST sig, void **slot)
4771 {
4772 struct objfile *objfile = dwarf2_per_objfile->objfile;
4773 int n_type_units = dwarf2_per_objfile->n_type_units;
4774 struct signatured_type *sig_type;
4775
4776 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4777 ++n_type_units;
4778 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4779 {
4780 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4781 dwarf2_per_objfile->n_allocated_type_units = 1;
4782 dwarf2_per_objfile->n_allocated_type_units *= 2;
4783 dwarf2_per_objfile->all_type_units
4784 = xrealloc (dwarf2_per_objfile->all_type_units,
4785 dwarf2_per_objfile->n_allocated_type_units
4786 * sizeof (struct signatured_type *));
4787 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4788 }
4789 dwarf2_per_objfile->n_type_units = n_type_units;
4790
4791 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4792 struct signatured_type);
4793 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4794 sig_type->signature = sig;
4795 sig_type->per_cu.is_debug_types = 1;
4796 if (dwarf2_per_objfile->using_index)
4797 {
4798 sig_type->per_cu.v.quick =
4799 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4800 struct dwarf2_per_cu_quick_data);
4801 }
4802
4803 if (slot == NULL)
4804 {
4805 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4806 sig_type, INSERT);
4807 }
4808 gdb_assert (*slot == NULL);
4809 *slot = sig_type;
4810 /* The rest of sig_type must be filled in by the caller. */
4811 return sig_type;
4812 }
4813
4814 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4815 Fill in SIG_ENTRY with DWO_ENTRY. */
4816
4817 static void
4818 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4819 struct signatured_type *sig_entry,
4820 struct dwo_unit *dwo_entry)
4821 {
4822 /* Make sure we're not clobbering something we don't expect to. */
4823 gdb_assert (! sig_entry->per_cu.queued);
4824 gdb_assert (sig_entry->per_cu.cu == NULL);
4825 if (dwarf2_per_objfile->using_index)
4826 {
4827 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4828 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4829 }
4830 else
4831 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4832 gdb_assert (sig_entry->signature == dwo_entry->signature);
4833 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4834 gdb_assert (sig_entry->type_unit_group == NULL);
4835 gdb_assert (sig_entry->dwo_unit == NULL);
4836
4837 sig_entry->per_cu.section = dwo_entry->section;
4838 sig_entry->per_cu.offset = dwo_entry->offset;
4839 sig_entry->per_cu.length = dwo_entry->length;
4840 sig_entry->per_cu.reading_dwo_directly = 1;
4841 sig_entry->per_cu.objfile = objfile;
4842 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4843 sig_entry->dwo_unit = dwo_entry;
4844 }
4845
4846 /* Subroutine of lookup_signatured_type.
4847 If we haven't read the TU yet, create the signatured_type data structure
4848 for a TU to be read in directly from a DWO file, bypassing the stub.
4849 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4850 using .gdb_index, then when reading a CU we want to stay in the DWO file
4851 containing that CU. Otherwise we could end up reading several other DWO
4852 files (due to comdat folding) to process the transitive closure of all the
4853 mentioned TUs, and that can be slow. The current DWO file will have every
4854 type signature that it needs.
4855 We only do this for .gdb_index because in the psymtab case we already have
4856 to read all the DWOs to build the type unit groups. */
4857
4858 static struct signatured_type *
4859 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4860 {
4861 struct objfile *objfile = dwarf2_per_objfile->objfile;
4862 struct dwo_file *dwo_file;
4863 struct dwo_unit find_dwo_entry, *dwo_entry;
4864 struct signatured_type find_sig_entry, *sig_entry;
4865 void **slot;
4866
4867 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4868
4869 /* If TU skeletons have been removed then we may not have read in any
4870 TUs yet. */
4871 if (dwarf2_per_objfile->signatured_types == NULL)
4872 {
4873 dwarf2_per_objfile->signatured_types
4874 = allocate_signatured_type_table (objfile);
4875 }
4876
4877 /* We only ever need to read in one copy of a signatured type.
4878 Use the global signatured_types array to do our own comdat-folding
4879 of types. If this is the first time we're reading this TU, and
4880 the TU has an entry in .gdb_index, replace the recorded data from
4881 .gdb_index with this TU. */
4882
4883 find_sig_entry.signature = sig;
4884 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4885 &find_sig_entry, INSERT);
4886 sig_entry = *slot;
4887
4888 /* We can get here with the TU already read, *or* in the process of being
4889 read. Don't reassign the global entry to point to this DWO if that's
4890 the case. Also note that if the TU is already being read, it may not
4891 have come from a DWO, the program may be a mix of Fission-compiled
4892 code and non-Fission-compiled code. */
4893
4894 /* Have we already tried to read this TU?
4895 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4896 needn't exist in the global table yet). */
4897 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4898 return sig_entry;
4899
4900 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4901 dwo_unit of the TU itself. */
4902 dwo_file = cu->dwo_unit->dwo_file;
4903
4904 /* Ok, this is the first time we're reading this TU. */
4905 if (dwo_file->tus == NULL)
4906 return NULL;
4907 find_dwo_entry.signature = sig;
4908 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4909 if (dwo_entry == NULL)
4910 return NULL;
4911
4912 /* If the global table doesn't have an entry for this TU, add one. */
4913 if (sig_entry == NULL)
4914 sig_entry = add_type_unit (sig, slot);
4915
4916 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4917 sig_entry->per_cu.tu_read = 1;
4918 return sig_entry;
4919 }
4920
4921 /* Subroutine of lookup_signatured_type.
4922 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4923 then try the DWP file. If the TU stub (skeleton) has been removed then
4924 it won't be in .gdb_index. */
4925
4926 static struct signatured_type *
4927 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4928 {
4929 struct objfile *objfile = dwarf2_per_objfile->objfile;
4930 struct dwp_file *dwp_file = get_dwp_file ();
4931 struct dwo_unit *dwo_entry;
4932 struct signatured_type find_sig_entry, *sig_entry;
4933 void **slot;
4934
4935 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4936 gdb_assert (dwp_file != NULL);
4937
4938 /* If TU skeletons have been removed then we may not have read in any
4939 TUs yet. */
4940 if (dwarf2_per_objfile->signatured_types == NULL)
4941 {
4942 dwarf2_per_objfile->signatured_types
4943 = allocate_signatured_type_table (objfile);
4944 }
4945
4946 find_sig_entry.signature = sig;
4947 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4948 &find_sig_entry, INSERT);
4949 sig_entry = *slot;
4950
4951 /* Have we already tried to read this TU?
4952 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4953 needn't exist in the global table yet). */
4954 if (sig_entry != NULL)
4955 return sig_entry;
4956
4957 if (dwp_file->tus == NULL)
4958 return NULL;
4959 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4960 sig, 1 /* is_debug_types */);
4961 if (dwo_entry == NULL)
4962 return NULL;
4963
4964 sig_entry = add_type_unit (sig, slot);
4965 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4966
4967 return sig_entry;
4968 }
4969
4970 /* Lookup a signature based type for DW_FORM_ref_sig8.
4971 Returns NULL if signature SIG is not present in the table.
4972 It is up to the caller to complain about this. */
4973
4974 static struct signatured_type *
4975 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4976 {
4977 if (cu->dwo_unit
4978 && dwarf2_per_objfile->using_index)
4979 {
4980 /* We're in a DWO/DWP file, and we're using .gdb_index.
4981 These cases require special processing. */
4982 if (get_dwp_file () == NULL)
4983 return lookup_dwo_signatured_type (cu, sig);
4984 else
4985 return lookup_dwp_signatured_type (cu, sig);
4986 }
4987 else
4988 {
4989 struct signatured_type find_entry, *entry;
4990
4991 if (dwarf2_per_objfile->signatured_types == NULL)
4992 return NULL;
4993 find_entry.signature = sig;
4994 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4995 return entry;
4996 }
4997 }
4998 \f
4999 /* Low level DIE reading support. */
5000
5001 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5002
5003 static void
5004 init_cu_die_reader (struct die_reader_specs *reader,
5005 struct dwarf2_cu *cu,
5006 struct dwarf2_section_info *section,
5007 struct dwo_file *dwo_file)
5008 {
5009 gdb_assert (section->readin && section->buffer != NULL);
5010 reader->abfd = get_section_bfd_owner (section);
5011 reader->cu = cu;
5012 reader->dwo_file = dwo_file;
5013 reader->die_section = section;
5014 reader->buffer = section->buffer;
5015 reader->buffer_end = section->buffer + section->size;
5016 reader->comp_dir = NULL;
5017 }
5018
5019 /* Subroutine of init_cutu_and_read_dies to simplify it.
5020 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5021 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5022 already.
5023
5024 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5025 from it to the DIE in the DWO. If NULL we are skipping the stub.
5026 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5027 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5028 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5029 STUB_COMP_DIR may be non-NULL.
5030 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5031 are filled in with the info of the DIE from the DWO file.
5032 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5033 provided an abbrev table to use.
5034 The result is non-zero if a valid (non-dummy) DIE was found. */
5035
5036 static int
5037 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5038 struct dwo_unit *dwo_unit,
5039 int abbrev_table_provided,
5040 struct die_info *stub_comp_unit_die,
5041 const char *stub_comp_dir,
5042 struct die_reader_specs *result_reader,
5043 const gdb_byte **result_info_ptr,
5044 struct die_info **result_comp_unit_die,
5045 int *result_has_children)
5046 {
5047 struct objfile *objfile = dwarf2_per_objfile->objfile;
5048 struct dwarf2_cu *cu = this_cu->cu;
5049 struct dwarf2_section_info *section;
5050 bfd *abfd;
5051 const gdb_byte *begin_info_ptr, *info_ptr;
5052 ULONGEST signature; /* Or dwo_id. */
5053 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5054 int i,num_extra_attrs;
5055 struct dwarf2_section_info *dwo_abbrev_section;
5056 struct attribute *attr;
5057 struct die_info *comp_unit_die;
5058
5059 /* At most one of these may be provided. */
5060 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5061
5062 /* These attributes aren't processed until later:
5063 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5064 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5065 referenced later. However, these attributes are found in the stub
5066 which we won't have later. In order to not impose this complication
5067 on the rest of the code, we read them here and copy them to the
5068 DWO CU/TU die. */
5069
5070 stmt_list = NULL;
5071 low_pc = NULL;
5072 high_pc = NULL;
5073 ranges = NULL;
5074 comp_dir = NULL;
5075
5076 if (stub_comp_unit_die != NULL)
5077 {
5078 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5079 DWO file. */
5080 if (! this_cu->is_debug_types)
5081 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5082 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5083 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5084 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5085 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5086
5087 /* There should be a DW_AT_addr_base attribute here (if needed).
5088 We need the value before we can process DW_FORM_GNU_addr_index. */
5089 cu->addr_base = 0;
5090 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5091 if (attr)
5092 cu->addr_base = DW_UNSND (attr);
5093
5094 /* There should be a DW_AT_ranges_base attribute here (if needed).
5095 We need the value before we can process DW_AT_ranges. */
5096 cu->ranges_base = 0;
5097 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5098 if (attr)
5099 cu->ranges_base = DW_UNSND (attr);
5100 }
5101 else if (stub_comp_dir != NULL)
5102 {
5103 /* Reconstruct the comp_dir attribute to simplify the code below. */
5104 comp_dir = (struct attribute *)
5105 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5106 comp_dir->name = DW_AT_comp_dir;
5107 comp_dir->form = DW_FORM_string;
5108 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5109 DW_STRING (comp_dir) = stub_comp_dir;
5110 }
5111
5112 /* Set up for reading the DWO CU/TU. */
5113 cu->dwo_unit = dwo_unit;
5114 section = dwo_unit->section;
5115 dwarf2_read_section (objfile, section);
5116 abfd = get_section_bfd_owner (section);
5117 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5118 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5119 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5120
5121 if (this_cu->is_debug_types)
5122 {
5123 ULONGEST header_signature;
5124 cu_offset type_offset_in_tu;
5125 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5126
5127 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5128 dwo_abbrev_section,
5129 info_ptr,
5130 &header_signature,
5131 &type_offset_in_tu);
5132 /* This is not an assert because it can be caused by bad debug info. */
5133 if (sig_type->signature != header_signature)
5134 {
5135 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5136 " TU at offset 0x%x [in module %s]"),
5137 hex_string (sig_type->signature),
5138 hex_string (header_signature),
5139 dwo_unit->offset.sect_off,
5140 bfd_get_filename (abfd));
5141 }
5142 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5143 /* For DWOs coming from DWP files, we don't know the CU length
5144 nor the type's offset in the TU until now. */
5145 dwo_unit->length = get_cu_length (&cu->header);
5146 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5147
5148 /* Establish the type offset that can be used to lookup the type.
5149 For DWO files, we don't know it until now. */
5150 sig_type->type_offset_in_section.sect_off =
5151 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5152 }
5153 else
5154 {
5155 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5156 dwo_abbrev_section,
5157 info_ptr, 0);
5158 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5159 /* For DWOs coming from DWP files, we don't know the CU length
5160 until now. */
5161 dwo_unit->length = get_cu_length (&cu->header);
5162 }
5163
5164 /* Replace the CU's original abbrev table with the DWO's.
5165 Reminder: We can't read the abbrev table until we've read the header. */
5166 if (abbrev_table_provided)
5167 {
5168 /* Don't free the provided abbrev table, the caller of
5169 init_cutu_and_read_dies owns it. */
5170 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5171 /* Ensure the DWO abbrev table gets freed. */
5172 make_cleanup (dwarf2_free_abbrev_table, cu);
5173 }
5174 else
5175 {
5176 dwarf2_free_abbrev_table (cu);
5177 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5178 /* Leave any existing abbrev table cleanup as is. */
5179 }
5180
5181 /* Read in the die, but leave space to copy over the attributes
5182 from the stub. This has the benefit of simplifying the rest of
5183 the code - all the work to maintain the illusion of a single
5184 DW_TAG_{compile,type}_unit DIE is done here. */
5185 num_extra_attrs = ((stmt_list != NULL)
5186 + (low_pc != NULL)
5187 + (high_pc != NULL)
5188 + (ranges != NULL)
5189 + (comp_dir != NULL));
5190 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5191 result_has_children, num_extra_attrs);
5192
5193 /* Copy over the attributes from the stub to the DIE we just read in. */
5194 comp_unit_die = *result_comp_unit_die;
5195 i = comp_unit_die->num_attrs;
5196 if (stmt_list != NULL)
5197 comp_unit_die->attrs[i++] = *stmt_list;
5198 if (low_pc != NULL)
5199 comp_unit_die->attrs[i++] = *low_pc;
5200 if (high_pc != NULL)
5201 comp_unit_die->attrs[i++] = *high_pc;
5202 if (ranges != NULL)
5203 comp_unit_die->attrs[i++] = *ranges;
5204 if (comp_dir != NULL)
5205 comp_unit_die->attrs[i++] = *comp_dir;
5206 comp_unit_die->num_attrs += num_extra_attrs;
5207
5208 if (dwarf2_die_debug)
5209 {
5210 fprintf_unfiltered (gdb_stdlog,
5211 "Read die from %s@0x%x of %s:\n",
5212 get_section_name (section),
5213 (unsigned) (begin_info_ptr - section->buffer),
5214 bfd_get_filename (abfd));
5215 dump_die (comp_unit_die, dwarf2_die_debug);
5216 }
5217
5218 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5219 TUs by skipping the stub and going directly to the entry in the DWO file.
5220 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5221 to get it via circuitous means. Blech. */
5222 if (comp_dir != NULL)
5223 result_reader->comp_dir = DW_STRING (comp_dir);
5224
5225 /* Skip dummy compilation units. */
5226 if (info_ptr >= begin_info_ptr + dwo_unit->length
5227 || peek_abbrev_code (abfd, info_ptr) == 0)
5228 return 0;
5229
5230 *result_info_ptr = info_ptr;
5231 return 1;
5232 }
5233
5234 /* Subroutine of init_cutu_and_read_dies to simplify it.
5235 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5236 Returns NULL if the specified DWO unit cannot be found. */
5237
5238 static struct dwo_unit *
5239 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5240 struct die_info *comp_unit_die)
5241 {
5242 struct dwarf2_cu *cu = this_cu->cu;
5243 struct attribute *attr;
5244 ULONGEST signature;
5245 struct dwo_unit *dwo_unit;
5246 const char *comp_dir, *dwo_name;
5247
5248 gdb_assert (cu != NULL);
5249
5250 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5251 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5252 gdb_assert (attr != NULL);
5253 dwo_name = DW_STRING (attr);
5254 comp_dir = NULL;
5255 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5256 if (attr)
5257 comp_dir = DW_STRING (attr);
5258
5259 if (this_cu->is_debug_types)
5260 {
5261 struct signatured_type *sig_type;
5262
5263 /* Since this_cu is the first member of struct signatured_type,
5264 we can go from a pointer to one to a pointer to the other. */
5265 sig_type = (struct signatured_type *) this_cu;
5266 signature = sig_type->signature;
5267 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5268 }
5269 else
5270 {
5271 struct attribute *attr;
5272
5273 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5274 if (! attr)
5275 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5276 " [in module %s]"),
5277 dwo_name, objfile_name (this_cu->objfile));
5278 signature = DW_UNSND (attr);
5279 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5280 signature);
5281 }
5282
5283 return dwo_unit;
5284 }
5285
5286 /* Subroutine of init_cutu_and_read_dies to simplify it.
5287 See it for a description of the parameters.
5288 Read a TU directly from a DWO file, bypassing the stub.
5289
5290 Note: This function could be a little bit simpler if we shared cleanups
5291 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5292 to do, so we keep this function self-contained. Or we could move this
5293 into our caller, but it's complex enough already. */
5294
5295 static void
5296 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5297 int use_existing_cu, int keep,
5298 die_reader_func_ftype *die_reader_func,
5299 void *data)
5300 {
5301 struct dwarf2_cu *cu;
5302 struct signatured_type *sig_type;
5303 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5304 struct die_reader_specs reader;
5305 const gdb_byte *info_ptr;
5306 struct die_info *comp_unit_die;
5307 int has_children;
5308
5309 /* Verify we can do the following downcast, and that we have the
5310 data we need. */
5311 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5312 sig_type = (struct signatured_type *) this_cu;
5313 gdb_assert (sig_type->dwo_unit != NULL);
5314
5315 cleanups = make_cleanup (null_cleanup, NULL);
5316
5317 if (use_existing_cu && this_cu->cu != NULL)
5318 {
5319 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5320 cu = this_cu->cu;
5321 /* There's no need to do the rereading_dwo_cu handling that
5322 init_cutu_and_read_dies does since we don't read the stub. */
5323 }
5324 else
5325 {
5326 /* If !use_existing_cu, this_cu->cu must be NULL. */
5327 gdb_assert (this_cu->cu == NULL);
5328 cu = xmalloc (sizeof (*cu));
5329 init_one_comp_unit (cu, this_cu);
5330 /* If an error occurs while loading, release our storage. */
5331 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5332 }
5333
5334 /* A future optimization, if needed, would be to use an existing
5335 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5336 could share abbrev tables. */
5337
5338 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5339 0 /* abbrev_table_provided */,
5340 NULL /* stub_comp_unit_die */,
5341 sig_type->dwo_unit->dwo_file->comp_dir,
5342 &reader, &info_ptr,
5343 &comp_unit_die, &has_children) == 0)
5344 {
5345 /* Dummy die. */
5346 do_cleanups (cleanups);
5347 return;
5348 }
5349
5350 /* All the "real" work is done here. */
5351 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5352
5353 /* This duplicates the code in init_cutu_and_read_dies,
5354 but the alternative is making the latter more complex.
5355 This function is only for the special case of using DWO files directly:
5356 no point in overly complicating the general case just to handle this. */
5357 if (free_cu_cleanup != NULL)
5358 {
5359 if (keep)
5360 {
5361 /* We've successfully allocated this compilation unit. Let our
5362 caller clean it up when finished with it. */
5363 discard_cleanups (free_cu_cleanup);
5364
5365 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5366 So we have to manually free the abbrev table. */
5367 dwarf2_free_abbrev_table (cu);
5368
5369 /* Link this CU into read_in_chain. */
5370 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5371 dwarf2_per_objfile->read_in_chain = this_cu;
5372 }
5373 else
5374 do_cleanups (free_cu_cleanup);
5375 }
5376
5377 do_cleanups (cleanups);
5378 }
5379
5380 /* Initialize a CU (or TU) and read its DIEs.
5381 If the CU defers to a DWO file, read the DWO file as well.
5382
5383 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5384 Otherwise the table specified in the comp unit header is read in and used.
5385 This is an optimization for when we already have the abbrev table.
5386
5387 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5388 Otherwise, a new CU is allocated with xmalloc.
5389
5390 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5391 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5392
5393 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5394 linker) then DIE_READER_FUNC will not get called. */
5395
5396 static void
5397 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5398 struct abbrev_table *abbrev_table,
5399 int use_existing_cu, int keep,
5400 die_reader_func_ftype *die_reader_func,
5401 void *data)
5402 {
5403 struct objfile *objfile = dwarf2_per_objfile->objfile;
5404 struct dwarf2_section_info *section = this_cu->section;
5405 bfd *abfd = get_section_bfd_owner (section);
5406 struct dwarf2_cu *cu;
5407 const gdb_byte *begin_info_ptr, *info_ptr;
5408 struct die_reader_specs reader;
5409 struct die_info *comp_unit_die;
5410 int has_children;
5411 struct attribute *attr;
5412 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5413 struct signatured_type *sig_type = NULL;
5414 struct dwarf2_section_info *abbrev_section;
5415 /* Non-zero if CU currently points to a DWO file and we need to
5416 reread it. When this happens we need to reread the skeleton die
5417 before we can reread the DWO file (this only applies to CUs, not TUs). */
5418 int rereading_dwo_cu = 0;
5419
5420 if (dwarf2_die_debug)
5421 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5422 this_cu->is_debug_types ? "type" : "comp",
5423 this_cu->offset.sect_off);
5424
5425 if (use_existing_cu)
5426 gdb_assert (keep);
5427
5428 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5429 file (instead of going through the stub), short-circuit all of this. */
5430 if (this_cu->reading_dwo_directly)
5431 {
5432 /* Narrow down the scope of possibilities to have to understand. */
5433 gdb_assert (this_cu->is_debug_types);
5434 gdb_assert (abbrev_table == NULL);
5435 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5436 die_reader_func, data);
5437 return;
5438 }
5439
5440 cleanups = make_cleanup (null_cleanup, NULL);
5441
5442 /* This is cheap if the section is already read in. */
5443 dwarf2_read_section (objfile, section);
5444
5445 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5446
5447 abbrev_section = get_abbrev_section_for_cu (this_cu);
5448
5449 if (use_existing_cu && this_cu->cu != NULL)
5450 {
5451 cu = this_cu->cu;
5452 /* If this CU is from a DWO file we need to start over, we need to
5453 refetch the attributes from the skeleton CU.
5454 This could be optimized by retrieving those attributes from when we
5455 were here the first time: the previous comp_unit_die was stored in
5456 comp_unit_obstack. But there's no data yet that we need this
5457 optimization. */
5458 if (cu->dwo_unit != NULL)
5459 rereading_dwo_cu = 1;
5460 }
5461 else
5462 {
5463 /* If !use_existing_cu, this_cu->cu must be NULL. */
5464 gdb_assert (this_cu->cu == NULL);
5465 cu = xmalloc (sizeof (*cu));
5466 init_one_comp_unit (cu, this_cu);
5467 /* If an error occurs while loading, release our storage. */
5468 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5469 }
5470
5471 /* Get the header. */
5472 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5473 {
5474 /* We already have the header, there's no need to read it in again. */
5475 info_ptr += cu->header.first_die_offset.cu_off;
5476 }
5477 else
5478 {
5479 if (this_cu->is_debug_types)
5480 {
5481 ULONGEST signature;
5482 cu_offset type_offset_in_tu;
5483
5484 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5485 abbrev_section, info_ptr,
5486 &signature,
5487 &type_offset_in_tu);
5488
5489 /* Since per_cu is the first member of struct signatured_type,
5490 we can go from a pointer to one to a pointer to the other. */
5491 sig_type = (struct signatured_type *) this_cu;
5492 gdb_assert (sig_type->signature == signature);
5493 gdb_assert (sig_type->type_offset_in_tu.cu_off
5494 == type_offset_in_tu.cu_off);
5495 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5496
5497 /* LENGTH has not been set yet for type units if we're
5498 using .gdb_index. */
5499 this_cu->length = get_cu_length (&cu->header);
5500
5501 /* Establish the type offset that can be used to lookup the type. */
5502 sig_type->type_offset_in_section.sect_off =
5503 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5504 }
5505 else
5506 {
5507 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5508 abbrev_section,
5509 info_ptr, 0);
5510
5511 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5512 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5513 }
5514 }
5515
5516 /* Skip dummy compilation units. */
5517 if (info_ptr >= begin_info_ptr + this_cu->length
5518 || peek_abbrev_code (abfd, info_ptr) == 0)
5519 {
5520 do_cleanups (cleanups);
5521 return;
5522 }
5523
5524 /* If we don't have them yet, read the abbrevs for this compilation unit.
5525 And if we need to read them now, make sure they're freed when we're
5526 done. Note that it's important that if the CU had an abbrev table
5527 on entry we don't free it when we're done: Somewhere up the call stack
5528 it may be in use. */
5529 if (abbrev_table != NULL)
5530 {
5531 gdb_assert (cu->abbrev_table == NULL);
5532 gdb_assert (cu->header.abbrev_offset.sect_off
5533 == abbrev_table->offset.sect_off);
5534 cu->abbrev_table = abbrev_table;
5535 }
5536 else if (cu->abbrev_table == NULL)
5537 {
5538 dwarf2_read_abbrevs (cu, abbrev_section);
5539 make_cleanup (dwarf2_free_abbrev_table, cu);
5540 }
5541 else if (rereading_dwo_cu)
5542 {
5543 dwarf2_free_abbrev_table (cu);
5544 dwarf2_read_abbrevs (cu, abbrev_section);
5545 }
5546
5547 /* Read the top level CU/TU die. */
5548 init_cu_die_reader (&reader, cu, section, NULL);
5549 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5550
5551 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5552 from the DWO file.
5553 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5554 DWO CU, that this test will fail (the attribute will not be present). */
5555 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5556 if (attr)
5557 {
5558 struct dwo_unit *dwo_unit;
5559 struct die_info *dwo_comp_unit_die;
5560
5561 if (has_children)
5562 {
5563 complaint (&symfile_complaints,
5564 _("compilation unit with DW_AT_GNU_dwo_name"
5565 " has children (offset 0x%x) [in module %s]"),
5566 this_cu->offset.sect_off, bfd_get_filename (abfd));
5567 }
5568 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5569 if (dwo_unit != NULL)
5570 {
5571 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5572 abbrev_table != NULL,
5573 comp_unit_die, NULL,
5574 &reader, &info_ptr,
5575 &dwo_comp_unit_die, &has_children) == 0)
5576 {
5577 /* Dummy die. */
5578 do_cleanups (cleanups);
5579 return;
5580 }
5581 comp_unit_die = dwo_comp_unit_die;
5582 }
5583 else
5584 {
5585 /* Yikes, we couldn't find the rest of the DIE, we only have
5586 the stub. A complaint has already been logged. There's
5587 not much more we can do except pass on the stub DIE to
5588 die_reader_func. We don't want to throw an error on bad
5589 debug info. */
5590 }
5591 }
5592
5593 /* All of the above is setup for this call. Yikes. */
5594 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5595
5596 /* Done, clean up. */
5597 if (free_cu_cleanup != NULL)
5598 {
5599 if (keep)
5600 {
5601 /* We've successfully allocated this compilation unit. Let our
5602 caller clean it up when finished with it. */
5603 discard_cleanups (free_cu_cleanup);
5604
5605 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5606 So we have to manually free the abbrev table. */
5607 dwarf2_free_abbrev_table (cu);
5608
5609 /* Link this CU into read_in_chain. */
5610 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5611 dwarf2_per_objfile->read_in_chain = this_cu;
5612 }
5613 else
5614 do_cleanups (free_cu_cleanup);
5615 }
5616
5617 do_cleanups (cleanups);
5618 }
5619
5620 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5621 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5622 to have already done the lookup to find the DWO file).
5623
5624 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5625 THIS_CU->is_debug_types, but nothing else.
5626
5627 We fill in THIS_CU->length.
5628
5629 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5630 linker) then DIE_READER_FUNC will not get called.
5631
5632 THIS_CU->cu is always freed when done.
5633 This is done in order to not leave THIS_CU->cu in a state where we have
5634 to care whether it refers to the "main" CU or the DWO CU. */
5635
5636 static void
5637 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5638 struct dwo_file *dwo_file,
5639 die_reader_func_ftype *die_reader_func,
5640 void *data)
5641 {
5642 struct objfile *objfile = dwarf2_per_objfile->objfile;
5643 struct dwarf2_section_info *section = this_cu->section;
5644 bfd *abfd = get_section_bfd_owner (section);
5645 struct dwarf2_section_info *abbrev_section;
5646 struct dwarf2_cu cu;
5647 const gdb_byte *begin_info_ptr, *info_ptr;
5648 struct die_reader_specs reader;
5649 struct cleanup *cleanups;
5650 struct die_info *comp_unit_die;
5651 int has_children;
5652
5653 if (dwarf2_die_debug)
5654 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5655 this_cu->is_debug_types ? "type" : "comp",
5656 this_cu->offset.sect_off);
5657
5658 gdb_assert (this_cu->cu == NULL);
5659
5660 abbrev_section = (dwo_file != NULL
5661 ? &dwo_file->sections.abbrev
5662 : get_abbrev_section_for_cu (this_cu));
5663
5664 /* This is cheap if the section is already read in. */
5665 dwarf2_read_section (objfile, section);
5666
5667 init_one_comp_unit (&cu, this_cu);
5668
5669 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5670
5671 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5672 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5673 abbrev_section, info_ptr,
5674 this_cu->is_debug_types);
5675
5676 this_cu->length = get_cu_length (&cu.header);
5677
5678 /* Skip dummy compilation units. */
5679 if (info_ptr >= begin_info_ptr + this_cu->length
5680 || peek_abbrev_code (abfd, info_ptr) == 0)
5681 {
5682 do_cleanups (cleanups);
5683 return;
5684 }
5685
5686 dwarf2_read_abbrevs (&cu, abbrev_section);
5687 make_cleanup (dwarf2_free_abbrev_table, &cu);
5688
5689 init_cu_die_reader (&reader, &cu, section, dwo_file);
5690 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5691
5692 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5693
5694 do_cleanups (cleanups);
5695 }
5696
5697 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5698 does not lookup the specified DWO file.
5699 This cannot be used to read DWO files.
5700
5701 THIS_CU->cu is always freed when done.
5702 This is done in order to not leave THIS_CU->cu in a state where we have
5703 to care whether it refers to the "main" CU or the DWO CU.
5704 We can revisit this if the data shows there's a performance issue. */
5705
5706 static void
5707 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5708 die_reader_func_ftype *die_reader_func,
5709 void *data)
5710 {
5711 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5712 }
5713 \f
5714 /* Type Unit Groups.
5715
5716 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5717 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5718 so that all types coming from the same compilation (.o file) are grouped
5719 together. A future step could be to put the types in the same symtab as
5720 the CU the types ultimately came from. */
5721
5722 static hashval_t
5723 hash_type_unit_group (const void *item)
5724 {
5725 const struct type_unit_group *tu_group = item;
5726
5727 return hash_stmt_list_entry (&tu_group->hash);
5728 }
5729
5730 static int
5731 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5732 {
5733 const struct type_unit_group *lhs = item_lhs;
5734 const struct type_unit_group *rhs = item_rhs;
5735
5736 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5737 }
5738
5739 /* Allocate a hash table for type unit groups. */
5740
5741 static htab_t
5742 allocate_type_unit_groups_table (void)
5743 {
5744 return htab_create_alloc_ex (3,
5745 hash_type_unit_group,
5746 eq_type_unit_group,
5747 NULL,
5748 &dwarf2_per_objfile->objfile->objfile_obstack,
5749 hashtab_obstack_allocate,
5750 dummy_obstack_deallocate);
5751 }
5752
5753 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5754 partial symtabs. We combine several TUs per psymtab to not let the size
5755 of any one psymtab grow too big. */
5756 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5757 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5758
5759 /* Helper routine for get_type_unit_group.
5760 Create the type_unit_group object used to hold one or more TUs. */
5761
5762 static struct type_unit_group *
5763 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5764 {
5765 struct objfile *objfile = dwarf2_per_objfile->objfile;
5766 struct dwarf2_per_cu_data *per_cu;
5767 struct type_unit_group *tu_group;
5768
5769 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5770 struct type_unit_group);
5771 per_cu = &tu_group->per_cu;
5772 per_cu->objfile = objfile;
5773
5774 if (dwarf2_per_objfile->using_index)
5775 {
5776 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5777 struct dwarf2_per_cu_quick_data);
5778 }
5779 else
5780 {
5781 unsigned int line_offset = line_offset_struct.sect_off;
5782 struct partial_symtab *pst;
5783 char *name;
5784
5785 /* Give the symtab a useful name for debug purposes. */
5786 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5787 name = xstrprintf ("<type_units_%d>",
5788 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5789 else
5790 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5791
5792 pst = create_partial_symtab (per_cu, name);
5793 pst->anonymous = 1;
5794
5795 xfree (name);
5796 }
5797
5798 tu_group->hash.dwo_unit = cu->dwo_unit;
5799 tu_group->hash.line_offset = line_offset_struct;
5800
5801 return tu_group;
5802 }
5803
5804 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5805 STMT_LIST is a DW_AT_stmt_list attribute. */
5806
5807 static struct type_unit_group *
5808 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5809 {
5810 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5811 struct type_unit_group *tu_group;
5812 void **slot;
5813 unsigned int line_offset;
5814 struct type_unit_group type_unit_group_for_lookup;
5815
5816 if (dwarf2_per_objfile->type_unit_groups == NULL)
5817 {
5818 dwarf2_per_objfile->type_unit_groups =
5819 allocate_type_unit_groups_table ();
5820 }
5821
5822 /* Do we need to create a new group, or can we use an existing one? */
5823
5824 if (stmt_list)
5825 {
5826 line_offset = DW_UNSND (stmt_list);
5827 ++tu_stats->nr_symtab_sharers;
5828 }
5829 else
5830 {
5831 /* Ugh, no stmt_list. Rare, but we have to handle it.
5832 We can do various things here like create one group per TU or
5833 spread them over multiple groups to split up the expansion work.
5834 To avoid worst case scenarios (too many groups or too large groups)
5835 we, umm, group them in bunches. */
5836 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5837 | (tu_stats->nr_stmt_less_type_units
5838 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5839 ++tu_stats->nr_stmt_less_type_units;
5840 }
5841
5842 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5843 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5844 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5845 &type_unit_group_for_lookup, INSERT);
5846 if (*slot != NULL)
5847 {
5848 tu_group = *slot;
5849 gdb_assert (tu_group != NULL);
5850 }
5851 else
5852 {
5853 sect_offset line_offset_struct;
5854
5855 line_offset_struct.sect_off = line_offset;
5856 tu_group = create_type_unit_group (cu, line_offset_struct);
5857 *slot = tu_group;
5858 ++tu_stats->nr_symtabs;
5859 }
5860
5861 return tu_group;
5862 }
5863 \f
5864 /* Partial symbol tables. */
5865
5866 /* Create a psymtab named NAME and assign it to PER_CU.
5867
5868 The caller must fill in the following details:
5869 dirname, textlow, texthigh. */
5870
5871 static struct partial_symtab *
5872 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5873 {
5874 struct objfile *objfile = per_cu->objfile;
5875 struct partial_symtab *pst;
5876
5877 pst = start_psymtab_common (objfile, objfile->section_offsets,
5878 name, 0,
5879 objfile->global_psymbols.next,
5880 objfile->static_psymbols.next);
5881
5882 pst->psymtabs_addrmap_supported = 1;
5883
5884 /* This is the glue that links PST into GDB's symbol API. */
5885 pst->read_symtab_private = per_cu;
5886 pst->read_symtab = dwarf2_read_symtab;
5887 per_cu->v.psymtab = pst;
5888
5889 return pst;
5890 }
5891
5892 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5893 type. */
5894
5895 struct process_psymtab_comp_unit_data
5896 {
5897 /* True if we are reading a DW_TAG_partial_unit. */
5898
5899 int want_partial_unit;
5900
5901 /* The "pretend" language that is used if the CU doesn't declare a
5902 language. */
5903
5904 enum language pretend_language;
5905 };
5906
5907 /* die_reader_func for process_psymtab_comp_unit. */
5908
5909 static void
5910 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5911 const gdb_byte *info_ptr,
5912 struct die_info *comp_unit_die,
5913 int has_children,
5914 void *data)
5915 {
5916 struct dwarf2_cu *cu = reader->cu;
5917 struct objfile *objfile = cu->objfile;
5918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5919 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5920 struct attribute *attr;
5921 CORE_ADDR baseaddr;
5922 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5923 struct partial_symtab *pst;
5924 int has_pc_info;
5925 const char *filename;
5926 struct process_psymtab_comp_unit_data *info = data;
5927
5928 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5929 return;
5930
5931 gdb_assert (! per_cu->is_debug_types);
5932
5933 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5934
5935 cu->list_in_scope = &file_symbols;
5936
5937 /* Allocate a new partial symbol table structure. */
5938 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5939 if (attr == NULL || !DW_STRING (attr))
5940 filename = "";
5941 else
5942 filename = DW_STRING (attr);
5943
5944 pst = create_partial_symtab (per_cu, filename);
5945
5946 /* This must be done before calling dwarf2_build_include_psymtabs. */
5947 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5948 if (attr != NULL)
5949 pst->dirname = DW_STRING (attr);
5950
5951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5952
5953 dwarf2_find_base_address (comp_unit_die, cu);
5954
5955 /* Possibly set the default values of LOWPC and HIGHPC from
5956 `DW_AT_ranges'. */
5957 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5958 &best_highpc, cu, pst);
5959 if (has_pc_info == 1 && best_lowpc < best_highpc)
5960 /* Store the contiguous range if it is not empty; it can be empty for
5961 CUs with no code. */
5962 addrmap_set_empty (objfile->psymtabs_addrmap,
5963 gdbarch_adjust_dwarf2_addr (gdbarch,
5964 best_lowpc + baseaddr),
5965 gdbarch_adjust_dwarf2_addr (gdbarch,
5966 best_highpc + baseaddr) - 1,
5967 pst);
5968
5969 /* Check if comp unit has_children.
5970 If so, read the rest of the partial symbols from this comp unit.
5971 If not, there's no more debug_info for this comp unit. */
5972 if (has_children)
5973 {
5974 struct partial_die_info *first_die;
5975 CORE_ADDR lowpc, highpc;
5976
5977 lowpc = ((CORE_ADDR) -1);
5978 highpc = ((CORE_ADDR) 0);
5979
5980 first_die = load_partial_dies (reader, info_ptr, 1);
5981
5982 scan_partial_symbols (first_die, &lowpc, &highpc,
5983 ! has_pc_info, cu);
5984
5985 /* If we didn't find a lowpc, set it to highpc to avoid
5986 complaints from `maint check'. */
5987 if (lowpc == ((CORE_ADDR) -1))
5988 lowpc = highpc;
5989
5990 /* If the compilation unit didn't have an explicit address range,
5991 then use the information extracted from its child dies. */
5992 if (! has_pc_info)
5993 {
5994 best_lowpc = lowpc;
5995 best_highpc = highpc;
5996 }
5997 }
5998 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5999 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6000
6001 pst->n_global_syms = objfile->global_psymbols.next -
6002 (objfile->global_psymbols.list + pst->globals_offset);
6003 pst->n_static_syms = objfile->static_psymbols.next -
6004 (objfile->static_psymbols.list + pst->statics_offset);
6005 sort_pst_symbols (objfile, pst);
6006
6007 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6008 {
6009 int i;
6010 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6011 struct dwarf2_per_cu_data *iter;
6012
6013 /* Fill in 'dependencies' here; we fill in 'users' in a
6014 post-pass. */
6015 pst->number_of_dependencies = len;
6016 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6017 len * sizeof (struct symtab *));
6018 for (i = 0;
6019 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6020 i, iter);
6021 ++i)
6022 pst->dependencies[i] = iter->v.psymtab;
6023
6024 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6025 }
6026
6027 /* Get the list of files included in the current compilation unit,
6028 and build a psymtab for each of them. */
6029 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6030
6031 if (dwarf2_read_debug)
6032 {
6033 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6034
6035 fprintf_unfiltered (gdb_stdlog,
6036 "Psymtab for %s unit @0x%x: %s - %s"
6037 ", %d global, %d static syms\n",
6038 per_cu->is_debug_types ? "type" : "comp",
6039 per_cu->offset.sect_off,
6040 paddress (gdbarch, pst->textlow),
6041 paddress (gdbarch, pst->texthigh),
6042 pst->n_global_syms, pst->n_static_syms);
6043 }
6044 }
6045
6046 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6047 Process compilation unit THIS_CU for a psymtab. */
6048
6049 static void
6050 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6051 int want_partial_unit,
6052 enum language pretend_language)
6053 {
6054 struct process_psymtab_comp_unit_data info;
6055
6056 /* If this compilation unit was already read in, free the
6057 cached copy in order to read it in again. This is
6058 necessary because we skipped some symbols when we first
6059 read in the compilation unit (see load_partial_dies).
6060 This problem could be avoided, but the benefit is unclear. */
6061 if (this_cu->cu != NULL)
6062 free_one_cached_comp_unit (this_cu);
6063
6064 gdb_assert (! this_cu->is_debug_types);
6065 info.want_partial_unit = want_partial_unit;
6066 info.pretend_language = pretend_language;
6067 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6068 process_psymtab_comp_unit_reader,
6069 &info);
6070
6071 /* Age out any secondary CUs. */
6072 age_cached_comp_units ();
6073 }
6074
6075 /* Reader function for build_type_psymtabs. */
6076
6077 static void
6078 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6079 const gdb_byte *info_ptr,
6080 struct die_info *type_unit_die,
6081 int has_children,
6082 void *data)
6083 {
6084 struct objfile *objfile = dwarf2_per_objfile->objfile;
6085 struct dwarf2_cu *cu = reader->cu;
6086 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6087 struct signatured_type *sig_type;
6088 struct type_unit_group *tu_group;
6089 struct attribute *attr;
6090 struct partial_die_info *first_die;
6091 CORE_ADDR lowpc, highpc;
6092 struct partial_symtab *pst;
6093
6094 gdb_assert (data == NULL);
6095 gdb_assert (per_cu->is_debug_types);
6096 sig_type = (struct signatured_type *) per_cu;
6097
6098 if (! has_children)
6099 return;
6100
6101 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6102 tu_group = get_type_unit_group (cu, attr);
6103
6104 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6105
6106 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6107 cu->list_in_scope = &file_symbols;
6108 pst = create_partial_symtab (per_cu, "");
6109 pst->anonymous = 1;
6110
6111 first_die = load_partial_dies (reader, info_ptr, 1);
6112
6113 lowpc = (CORE_ADDR) -1;
6114 highpc = (CORE_ADDR) 0;
6115 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6116
6117 pst->n_global_syms = objfile->global_psymbols.next -
6118 (objfile->global_psymbols.list + pst->globals_offset);
6119 pst->n_static_syms = objfile->static_psymbols.next -
6120 (objfile->static_psymbols.list + pst->statics_offset);
6121 sort_pst_symbols (objfile, pst);
6122 }
6123
6124 /* Struct used to sort TUs by their abbreviation table offset. */
6125
6126 struct tu_abbrev_offset
6127 {
6128 struct signatured_type *sig_type;
6129 sect_offset abbrev_offset;
6130 };
6131
6132 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6133
6134 static int
6135 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6136 {
6137 const struct tu_abbrev_offset * const *a = ap;
6138 const struct tu_abbrev_offset * const *b = bp;
6139 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6140 unsigned int boff = (*b)->abbrev_offset.sect_off;
6141
6142 return (aoff > boff) - (aoff < boff);
6143 }
6144
6145 /* Efficiently read all the type units.
6146 This does the bulk of the work for build_type_psymtabs.
6147
6148 The efficiency is because we sort TUs by the abbrev table they use and
6149 only read each abbrev table once. In one program there are 200K TUs
6150 sharing 8K abbrev tables.
6151
6152 The main purpose of this function is to support building the
6153 dwarf2_per_objfile->type_unit_groups table.
6154 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6155 can collapse the search space by grouping them by stmt_list.
6156 The savings can be significant, in the same program from above the 200K TUs
6157 share 8K stmt_list tables.
6158
6159 FUNC is expected to call get_type_unit_group, which will create the
6160 struct type_unit_group if necessary and add it to
6161 dwarf2_per_objfile->type_unit_groups. */
6162
6163 static void
6164 build_type_psymtabs_1 (void)
6165 {
6166 struct objfile *objfile = dwarf2_per_objfile->objfile;
6167 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6168 struct cleanup *cleanups;
6169 struct abbrev_table *abbrev_table;
6170 sect_offset abbrev_offset;
6171 struct tu_abbrev_offset *sorted_by_abbrev;
6172 struct type_unit_group **iter;
6173 int i;
6174
6175 /* It's up to the caller to not call us multiple times. */
6176 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6177
6178 if (dwarf2_per_objfile->n_type_units == 0)
6179 return;
6180
6181 /* TUs typically share abbrev tables, and there can be way more TUs than
6182 abbrev tables. Sort by abbrev table to reduce the number of times we
6183 read each abbrev table in.
6184 Alternatives are to punt or to maintain a cache of abbrev tables.
6185 This is simpler and efficient enough for now.
6186
6187 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6188 symtab to use). Typically TUs with the same abbrev offset have the same
6189 stmt_list value too so in practice this should work well.
6190
6191 The basic algorithm here is:
6192
6193 sort TUs by abbrev table
6194 for each TU with same abbrev table:
6195 read abbrev table if first user
6196 read TU top level DIE
6197 [IWBN if DWO skeletons had DW_AT_stmt_list]
6198 call FUNC */
6199
6200 if (dwarf2_read_debug)
6201 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6202
6203 /* Sort in a separate table to maintain the order of all_type_units
6204 for .gdb_index: TU indices directly index all_type_units. */
6205 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6206 dwarf2_per_objfile->n_type_units);
6207 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6208 {
6209 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6210
6211 sorted_by_abbrev[i].sig_type = sig_type;
6212 sorted_by_abbrev[i].abbrev_offset =
6213 read_abbrev_offset (sig_type->per_cu.section,
6214 sig_type->per_cu.offset);
6215 }
6216 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6217 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6218 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6219
6220 abbrev_offset.sect_off = ~(unsigned) 0;
6221 abbrev_table = NULL;
6222 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6223
6224 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6225 {
6226 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6227
6228 /* Switch to the next abbrev table if necessary. */
6229 if (abbrev_table == NULL
6230 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6231 {
6232 if (abbrev_table != NULL)
6233 {
6234 abbrev_table_free (abbrev_table);
6235 /* Reset to NULL in case abbrev_table_read_table throws
6236 an error: abbrev_table_free_cleanup will get called. */
6237 abbrev_table = NULL;
6238 }
6239 abbrev_offset = tu->abbrev_offset;
6240 abbrev_table =
6241 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6242 abbrev_offset);
6243 ++tu_stats->nr_uniq_abbrev_tables;
6244 }
6245
6246 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6247 build_type_psymtabs_reader, NULL);
6248 }
6249
6250 do_cleanups (cleanups);
6251 }
6252
6253 /* Print collected type unit statistics. */
6254
6255 static void
6256 print_tu_stats (void)
6257 {
6258 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6259
6260 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6261 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6262 dwarf2_per_objfile->n_type_units);
6263 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6264 tu_stats->nr_uniq_abbrev_tables);
6265 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6266 tu_stats->nr_symtabs);
6267 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6268 tu_stats->nr_symtab_sharers);
6269 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6270 tu_stats->nr_stmt_less_type_units);
6271 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6272 tu_stats->nr_all_type_units_reallocs);
6273 }
6274
6275 /* Traversal function for build_type_psymtabs. */
6276
6277 static int
6278 build_type_psymtab_dependencies (void **slot, void *info)
6279 {
6280 struct objfile *objfile = dwarf2_per_objfile->objfile;
6281 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6282 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6283 struct partial_symtab *pst = per_cu->v.psymtab;
6284 int len = VEC_length (sig_type_ptr, tu_group->tus);
6285 struct signatured_type *iter;
6286 int i;
6287
6288 gdb_assert (len > 0);
6289 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6290
6291 pst->number_of_dependencies = len;
6292 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6293 len * sizeof (struct psymtab *));
6294 for (i = 0;
6295 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6296 ++i)
6297 {
6298 gdb_assert (iter->per_cu.is_debug_types);
6299 pst->dependencies[i] = iter->per_cu.v.psymtab;
6300 iter->type_unit_group = tu_group;
6301 }
6302
6303 VEC_free (sig_type_ptr, tu_group->tus);
6304
6305 return 1;
6306 }
6307
6308 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6309 Build partial symbol tables for the .debug_types comp-units. */
6310
6311 static void
6312 build_type_psymtabs (struct objfile *objfile)
6313 {
6314 if (! create_all_type_units (objfile))
6315 return;
6316
6317 build_type_psymtabs_1 ();
6318 }
6319
6320 /* Traversal function for process_skeletonless_type_unit.
6321 Read a TU in a DWO file and build partial symbols for it. */
6322
6323 static int
6324 process_skeletonless_type_unit (void **slot, void *info)
6325 {
6326 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6327 struct objfile *objfile = info;
6328 struct signatured_type find_entry, *entry;
6329
6330 /* If this TU doesn't exist in the global table, add it and read it in. */
6331
6332 if (dwarf2_per_objfile->signatured_types == NULL)
6333 {
6334 dwarf2_per_objfile->signatured_types
6335 = allocate_signatured_type_table (objfile);
6336 }
6337
6338 find_entry.signature = dwo_unit->signature;
6339 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6340 INSERT);
6341 /* If we've already seen this type there's nothing to do. What's happening
6342 is we're doing our own version of comdat-folding here. */
6343 if (*slot != NULL)
6344 return 1;
6345
6346 /* This does the job that create_all_type_units would have done for
6347 this TU. */
6348 entry = add_type_unit (dwo_unit->signature, slot);
6349 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6350 *slot = entry;
6351
6352 /* This does the job that build_type_psymtabs_1 would have done. */
6353 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6354 build_type_psymtabs_reader, NULL);
6355
6356 return 1;
6357 }
6358
6359 /* Traversal function for process_skeletonless_type_units. */
6360
6361 static int
6362 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6363 {
6364 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6365
6366 if (dwo_file->tus != NULL)
6367 {
6368 htab_traverse_noresize (dwo_file->tus,
6369 process_skeletonless_type_unit, info);
6370 }
6371
6372 return 1;
6373 }
6374
6375 /* Scan all TUs of DWO files, verifying we've processed them.
6376 This is needed in case a TU was emitted without its skeleton.
6377 Note: This can't be done until we know what all the DWO files are. */
6378
6379 static void
6380 process_skeletonless_type_units (struct objfile *objfile)
6381 {
6382 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6383 if (get_dwp_file () == NULL
6384 && dwarf2_per_objfile->dwo_files != NULL)
6385 {
6386 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6387 process_dwo_file_for_skeletonless_type_units,
6388 objfile);
6389 }
6390 }
6391
6392 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6393
6394 static void
6395 psymtabs_addrmap_cleanup (void *o)
6396 {
6397 struct objfile *objfile = o;
6398
6399 objfile->psymtabs_addrmap = NULL;
6400 }
6401
6402 /* Compute the 'user' field for each psymtab in OBJFILE. */
6403
6404 static void
6405 set_partial_user (struct objfile *objfile)
6406 {
6407 int i;
6408
6409 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6410 {
6411 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6412 struct partial_symtab *pst = per_cu->v.psymtab;
6413 int j;
6414
6415 if (pst == NULL)
6416 continue;
6417
6418 for (j = 0; j < pst->number_of_dependencies; ++j)
6419 {
6420 /* Set the 'user' field only if it is not already set. */
6421 if (pst->dependencies[j]->user == NULL)
6422 pst->dependencies[j]->user = pst;
6423 }
6424 }
6425 }
6426
6427 /* Build the partial symbol table by doing a quick pass through the
6428 .debug_info and .debug_abbrev sections. */
6429
6430 static void
6431 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6432 {
6433 struct cleanup *back_to, *addrmap_cleanup;
6434 struct obstack temp_obstack;
6435 int i;
6436
6437 if (dwarf2_read_debug)
6438 {
6439 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6440 objfile_name (objfile));
6441 }
6442
6443 dwarf2_per_objfile->reading_partial_symbols = 1;
6444
6445 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6446
6447 /* Any cached compilation units will be linked by the per-objfile
6448 read_in_chain. Make sure to free them when we're done. */
6449 back_to = make_cleanup (free_cached_comp_units, NULL);
6450
6451 build_type_psymtabs (objfile);
6452
6453 create_all_comp_units (objfile);
6454
6455 /* Create a temporary address map on a temporary obstack. We later
6456 copy this to the final obstack. */
6457 obstack_init (&temp_obstack);
6458 make_cleanup_obstack_free (&temp_obstack);
6459 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6460 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6461
6462 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6463 {
6464 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6465
6466 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6467 }
6468
6469 /* This has to wait until we read the CUs, we need the list of DWOs. */
6470 process_skeletonless_type_units (objfile);
6471
6472 /* Now that all TUs have been processed we can fill in the dependencies. */
6473 if (dwarf2_per_objfile->type_unit_groups != NULL)
6474 {
6475 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6476 build_type_psymtab_dependencies, NULL);
6477 }
6478
6479 if (dwarf2_read_debug)
6480 print_tu_stats ();
6481
6482 set_partial_user (objfile);
6483
6484 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6485 &objfile->objfile_obstack);
6486 discard_cleanups (addrmap_cleanup);
6487
6488 do_cleanups (back_to);
6489
6490 if (dwarf2_read_debug)
6491 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6492 objfile_name (objfile));
6493 }
6494
6495 /* die_reader_func for load_partial_comp_unit. */
6496
6497 static void
6498 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6499 const gdb_byte *info_ptr,
6500 struct die_info *comp_unit_die,
6501 int has_children,
6502 void *data)
6503 {
6504 struct dwarf2_cu *cu = reader->cu;
6505
6506 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6507
6508 /* Check if comp unit has_children.
6509 If so, read the rest of the partial symbols from this comp unit.
6510 If not, there's no more debug_info for this comp unit. */
6511 if (has_children)
6512 load_partial_dies (reader, info_ptr, 0);
6513 }
6514
6515 /* Load the partial DIEs for a secondary CU into memory.
6516 This is also used when rereading a primary CU with load_all_dies. */
6517
6518 static void
6519 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6520 {
6521 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6522 load_partial_comp_unit_reader, NULL);
6523 }
6524
6525 static void
6526 read_comp_units_from_section (struct objfile *objfile,
6527 struct dwarf2_section_info *section,
6528 unsigned int is_dwz,
6529 int *n_allocated,
6530 int *n_comp_units,
6531 struct dwarf2_per_cu_data ***all_comp_units)
6532 {
6533 const gdb_byte *info_ptr;
6534 bfd *abfd = get_section_bfd_owner (section);
6535
6536 if (dwarf2_read_debug)
6537 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6538 get_section_name (section),
6539 get_section_file_name (section));
6540
6541 dwarf2_read_section (objfile, section);
6542
6543 info_ptr = section->buffer;
6544
6545 while (info_ptr < section->buffer + section->size)
6546 {
6547 unsigned int length, initial_length_size;
6548 struct dwarf2_per_cu_data *this_cu;
6549 sect_offset offset;
6550
6551 offset.sect_off = info_ptr - section->buffer;
6552
6553 /* Read just enough information to find out where the next
6554 compilation unit is. */
6555 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6556
6557 /* Save the compilation unit for later lookup. */
6558 this_cu = obstack_alloc (&objfile->objfile_obstack,
6559 sizeof (struct dwarf2_per_cu_data));
6560 memset (this_cu, 0, sizeof (*this_cu));
6561 this_cu->offset = offset;
6562 this_cu->length = length + initial_length_size;
6563 this_cu->is_dwz = is_dwz;
6564 this_cu->objfile = objfile;
6565 this_cu->section = section;
6566
6567 if (*n_comp_units == *n_allocated)
6568 {
6569 *n_allocated *= 2;
6570 *all_comp_units = xrealloc (*all_comp_units,
6571 *n_allocated
6572 * sizeof (struct dwarf2_per_cu_data *));
6573 }
6574 (*all_comp_units)[*n_comp_units] = this_cu;
6575 ++*n_comp_units;
6576
6577 info_ptr = info_ptr + this_cu->length;
6578 }
6579 }
6580
6581 /* Create a list of all compilation units in OBJFILE.
6582 This is only done for -readnow and building partial symtabs. */
6583
6584 static void
6585 create_all_comp_units (struct objfile *objfile)
6586 {
6587 int n_allocated;
6588 int n_comp_units;
6589 struct dwarf2_per_cu_data **all_comp_units;
6590 struct dwz_file *dwz;
6591
6592 n_comp_units = 0;
6593 n_allocated = 10;
6594 all_comp_units = xmalloc (n_allocated
6595 * sizeof (struct dwarf2_per_cu_data *));
6596
6597 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6598 &n_allocated, &n_comp_units, &all_comp_units);
6599
6600 dwz = dwarf2_get_dwz_file ();
6601 if (dwz != NULL)
6602 read_comp_units_from_section (objfile, &dwz->info, 1,
6603 &n_allocated, &n_comp_units,
6604 &all_comp_units);
6605
6606 dwarf2_per_objfile->all_comp_units
6607 = obstack_alloc (&objfile->objfile_obstack,
6608 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6609 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6610 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6611 xfree (all_comp_units);
6612 dwarf2_per_objfile->n_comp_units = n_comp_units;
6613 }
6614
6615 /* Process all loaded DIEs for compilation unit CU, starting at
6616 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6617 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6618 DW_AT_ranges). See the comments of add_partial_subprogram on how
6619 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6620
6621 static void
6622 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6623 CORE_ADDR *highpc, int set_addrmap,
6624 struct dwarf2_cu *cu)
6625 {
6626 struct partial_die_info *pdi;
6627
6628 /* Now, march along the PDI's, descending into ones which have
6629 interesting children but skipping the children of the other ones,
6630 until we reach the end of the compilation unit. */
6631
6632 pdi = first_die;
6633
6634 while (pdi != NULL)
6635 {
6636 fixup_partial_die (pdi, cu);
6637
6638 /* Anonymous namespaces or modules have no name but have interesting
6639 children, so we need to look at them. Ditto for anonymous
6640 enums. */
6641
6642 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6643 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6644 || pdi->tag == DW_TAG_imported_unit)
6645 {
6646 switch (pdi->tag)
6647 {
6648 case DW_TAG_subprogram:
6649 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6650 break;
6651 case DW_TAG_constant:
6652 case DW_TAG_variable:
6653 case DW_TAG_typedef:
6654 case DW_TAG_union_type:
6655 if (!pdi->is_declaration)
6656 {
6657 add_partial_symbol (pdi, cu);
6658 }
6659 break;
6660 case DW_TAG_class_type:
6661 case DW_TAG_interface_type:
6662 case DW_TAG_structure_type:
6663 if (!pdi->is_declaration)
6664 {
6665 add_partial_symbol (pdi, cu);
6666 }
6667 break;
6668 case DW_TAG_enumeration_type:
6669 if (!pdi->is_declaration)
6670 add_partial_enumeration (pdi, cu);
6671 break;
6672 case DW_TAG_base_type:
6673 case DW_TAG_subrange_type:
6674 /* File scope base type definitions are added to the partial
6675 symbol table. */
6676 add_partial_symbol (pdi, cu);
6677 break;
6678 case DW_TAG_namespace:
6679 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6680 break;
6681 case DW_TAG_module:
6682 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6683 break;
6684 case DW_TAG_imported_unit:
6685 {
6686 struct dwarf2_per_cu_data *per_cu;
6687
6688 /* For now we don't handle imported units in type units. */
6689 if (cu->per_cu->is_debug_types)
6690 {
6691 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6692 " supported in type units [in module %s]"),
6693 objfile_name (cu->objfile));
6694 }
6695
6696 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6697 pdi->is_dwz,
6698 cu->objfile);
6699
6700 /* Go read the partial unit, if needed. */
6701 if (per_cu->v.psymtab == NULL)
6702 process_psymtab_comp_unit (per_cu, 1, cu->language);
6703
6704 VEC_safe_push (dwarf2_per_cu_ptr,
6705 cu->per_cu->imported_symtabs, per_cu);
6706 }
6707 break;
6708 case DW_TAG_imported_declaration:
6709 add_partial_symbol (pdi, cu);
6710 break;
6711 default:
6712 break;
6713 }
6714 }
6715
6716 /* If the die has a sibling, skip to the sibling. */
6717
6718 pdi = pdi->die_sibling;
6719 }
6720 }
6721
6722 /* Functions used to compute the fully scoped name of a partial DIE.
6723
6724 Normally, this is simple. For C++, the parent DIE's fully scoped
6725 name is concatenated with "::" and the partial DIE's name. For
6726 Java, the same thing occurs except that "." is used instead of "::".
6727 Enumerators are an exception; they use the scope of their parent
6728 enumeration type, i.e. the name of the enumeration type is not
6729 prepended to the enumerator.
6730
6731 There are two complexities. One is DW_AT_specification; in this
6732 case "parent" means the parent of the target of the specification,
6733 instead of the direct parent of the DIE. The other is compilers
6734 which do not emit DW_TAG_namespace; in this case we try to guess
6735 the fully qualified name of structure types from their members'
6736 linkage names. This must be done using the DIE's children rather
6737 than the children of any DW_AT_specification target. We only need
6738 to do this for structures at the top level, i.e. if the target of
6739 any DW_AT_specification (if any; otherwise the DIE itself) does not
6740 have a parent. */
6741
6742 /* Compute the scope prefix associated with PDI's parent, in
6743 compilation unit CU. The result will be allocated on CU's
6744 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6745 field. NULL is returned if no prefix is necessary. */
6746 static const char *
6747 partial_die_parent_scope (struct partial_die_info *pdi,
6748 struct dwarf2_cu *cu)
6749 {
6750 const char *grandparent_scope;
6751 struct partial_die_info *parent, *real_pdi;
6752
6753 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6754 then this means the parent of the specification DIE. */
6755
6756 real_pdi = pdi;
6757 while (real_pdi->has_specification)
6758 real_pdi = find_partial_die (real_pdi->spec_offset,
6759 real_pdi->spec_is_dwz, cu);
6760
6761 parent = real_pdi->die_parent;
6762 if (parent == NULL)
6763 return NULL;
6764
6765 if (parent->scope_set)
6766 return parent->scope;
6767
6768 fixup_partial_die (parent, cu);
6769
6770 grandparent_scope = partial_die_parent_scope (parent, cu);
6771
6772 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6773 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6774 Work around this problem here. */
6775 if (cu->language == language_cplus
6776 && parent->tag == DW_TAG_namespace
6777 && strcmp (parent->name, "::") == 0
6778 && grandparent_scope == NULL)
6779 {
6780 parent->scope = NULL;
6781 parent->scope_set = 1;
6782 return NULL;
6783 }
6784
6785 if (pdi->tag == DW_TAG_enumerator)
6786 /* Enumerators should not get the name of the enumeration as a prefix. */
6787 parent->scope = grandparent_scope;
6788 else if (parent->tag == DW_TAG_namespace
6789 || parent->tag == DW_TAG_module
6790 || parent->tag == DW_TAG_structure_type
6791 || parent->tag == DW_TAG_class_type
6792 || parent->tag == DW_TAG_interface_type
6793 || parent->tag == DW_TAG_union_type
6794 || parent->tag == DW_TAG_enumeration_type)
6795 {
6796 if (grandparent_scope == NULL)
6797 parent->scope = parent->name;
6798 else
6799 parent->scope = typename_concat (&cu->comp_unit_obstack,
6800 grandparent_scope,
6801 parent->name, 0, cu);
6802 }
6803 else
6804 {
6805 /* FIXME drow/2004-04-01: What should we be doing with
6806 function-local names? For partial symbols, we should probably be
6807 ignoring them. */
6808 complaint (&symfile_complaints,
6809 _("unhandled containing DIE tag %d for DIE at %d"),
6810 parent->tag, pdi->offset.sect_off);
6811 parent->scope = grandparent_scope;
6812 }
6813
6814 parent->scope_set = 1;
6815 return parent->scope;
6816 }
6817
6818 /* Return the fully scoped name associated with PDI, from compilation unit
6819 CU. The result will be allocated with malloc. */
6820
6821 static char *
6822 partial_die_full_name (struct partial_die_info *pdi,
6823 struct dwarf2_cu *cu)
6824 {
6825 const char *parent_scope;
6826
6827 /* If this is a template instantiation, we can not work out the
6828 template arguments from partial DIEs. So, unfortunately, we have
6829 to go through the full DIEs. At least any work we do building
6830 types here will be reused if full symbols are loaded later. */
6831 if (pdi->has_template_arguments)
6832 {
6833 fixup_partial_die (pdi, cu);
6834
6835 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6836 {
6837 struct die_info *die;
6838 struct attribute attr;
6839 struct dwarf2_cu *ref_cu = cu;
6840
6841 /* DW_FORM_ref_addr is using section offset. */
6842 attr.name = 0;
6843 attr.form = DW_FORM_ref_addr;
6844 attr.u.unsnd = pdi->offset.sect_off;
6845 die = follow_die_ref (NULL, &attr, &ref_cu);
6846
6847 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6848 }
6849 }
6850
6851 parent_scope = partial_die_parent_scope (pdi, cu);
6852 if (parent_scope == NULL)
6853 return NULL;
6854 else
6855 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6856 }
6857
6858 static void
6859 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6860 {
6861 struct objfile *objfile = cu->objfile;
6862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6863 CORE_ADDR addr = 0;
6864 const char *actual_name = NULL;
6865 CORE_ADDR baseaddr;
6866 char *built_actual_name;
6867
6868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6869
6870 built_actual_name = partial_die_full_name (pdi, cu);
6871 if (built_actual_name != NULL)
6872 actual_name = built_actual_name;
6873
6874 if (actual_name == NULL)
6875 actual_name = pdi->name;
6876
6877 switch (pdi->tag)
6878 {
6879 case DW_TAG_subprogram:
6880 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6881 if (pdi->is_external || cu->language == language_ada)
6882 {
6883 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6884 of the global scope. But in Ada, we want to be able to access
6885 nested procedures globally. So all Ada subprograms are stored
6886 in the global scope. */
6887 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6888 objfile); */
6889 add_psymbol_to_list (actual_name, strlen (actual_name),
6890 built_actual_name != NULL,
6891 VAR_DOMAIN, LOC_BLOCK,
6892 &objfile->global_psymbols,
6893 0, addr, cu->language, objfile);
6894 }
6895 else
6896 {
6897 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6898 objfile); */
6899 add_psymbol_to_list (actual_name, strlen (actual_name),
6900 built_actual_name != NULL,
6901 VAR_DOMAIN, LOC_BLOCK,
6902 &objfile->static_psymbols,
6903 0, addr, cu->language, objfile);
6904 }
6905 break;
6906 case DW_TAG_constant:
6907 {
6908 struct psymbol_allocation_list *list;
6909
6910 if (pdi->is_external)
6911 list = &objfile->global_psymbols;
6912 else
6913 list = &objfile->static_psymbols;
6914 add_psymbol_to_list (actual_name, strlen (actual_name),
6915 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6916 list, 0, 0, cu->language, objfile);
6917 }
6918 break;
6919 case DW_TAG_variable:
6920 if (pdi->d.locdesc)
6921 addr = decode_locdesc (pdi->d.locdesc, cu);
6922
6923 if (pdi->d.locdesc
6924 && addr == 0
6925 && !dwarf2_per_objfile->has_section_at_zero)
6926 {
6927 /* A global or static variable may also have been stripped
6928 out by the linker if unused, in which case its address
6929 will be nullified; do not add such variables into partial
6930 symbol table then. */
6931 }
6932 else if (pdi->is_external)
6933 {
6934 /* Global Variable.
6935 Don't enter into the minimal symbol tables as there is
6936 a minimal symbol table entry from the ELF symbols already.
6937 Enter into partial symbol table if it has a location
6938 descriptor or a type.
6939 If the location descriptor is missing, new_symbol will create
6940 a LOC_UNRESOLVED symbol, the address of the variable will then
6941 be determined from the minimal symbol table whenever the variable
6942 is referenced.
6943 The address for the partial symbol table entry is not
6944 used by GDB, but it comes in handy for debugging partial symbol
6945 table building. */
6946
6947 if (pdi->d.locdesc || pdi->has_type)
6948 add_psymbol_to_list (actual_name, strlen (actual_name),
6949 built_actual_name != NULL,
6950 VAR_DOMAIN, LOC_STATIC,
6951 &objfile->global_psymbols,
6952 0, addr + baseaddr,
6953 cu->language, objfile);
6954 }
6955 else
6956 {
6957 /* Static Variable. Skip symbols without location descriptors. */
6958 if (pdi->d.locdesc == NULL)
6959 {
6960 xfree (built_actual_name);
6961 return;
6962 }
6963 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6964 mst_file_data, objfile); */
6965 add_psymbol_to_list (actual_name, strlen (actual_name),
6966 built_actual_name != NULL,
6967 VAR_DOMAIN, LOC_STATIC,
6968 &objfile->static_psymbols,
6969 0, addr + baseaddr,
6970 cu->language, objfile);
6971 }
6972 break;
6973 case DW_TAG_typedef:
6974 case DW_TAG_base_type:
6975 case DW_TAG_subrange_type:
6976 add_psymbol_to_list (actual_name, strlen (actual_name),
6977 built_actual_name != NULL,
6978 VAR_DOMAIN, LOC_TYPEDEF,
6979 &objfile->static_psymbols,
6980 0, (CORE_ADDR) 0, cu->language, objfile);
6981 break;
6982 case DW_TAG_imported_declaration:
6983 case DW_TAG_namespace:
6984 add_psymbol_to_list (actual_name, strlen (actual_name),
6985 built_actual_name != NULL,
6986 VAR_DOMAIN, LOC_TYPEDEF,
6987 &objfile->global_psymbols,
6988 0, (CORE_ADDR) 0, cu->language, objfile);
6989 break;
6990 case DW_TAG_module:
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 MODULE_DOMAIN, LOC_TYPEDEF,
6994 &objfile->global_psymbols,
6995 0, (CORE_ADDR) 0, cu->language, objfile);
6996 break;
6997 case DW_TAG_class_type:
6998 case DW_TAG_interface_type:
6999 case DW_TAG_structure_type:
7000 case DW_TAG_union_type:
7001 case DW_TAG_enumeration_type:
7002 /* Skip external references. The DWARF standard says in the section
7003 about "Structure, Union, and Class Type Entries": "An incomplete
7004 structure, union or class type is represented by a structure,
7005 union or class entry that does not have a byte size attribute
7006 and that has a DW_AT_declaration attribute." */
7007 if (!pdi->has_byte_size && pdi->is_declaration)
7008 {
7009 xfree (built_actual_name);
7010 return;
7011 }
7012
7013 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7014 static vs. global. */
7015 add_psymbol_to_list (actual_name, strlen (actual_name),
7016 built_actual_name != NULL,
7017 STRUCT_DOMAIN, LOC_TYPEDEF,
7018 (cu->language == language_cplus
7019 || cu->language == language_java)
7020 ? &objfile->global_psymbols
7021 : &objfile->static_psymbols,
7022 0, (CORE_ADDR) 0, cu->language, objfile);
7023
7024 break;
7025 case DW_TAG_enumerator:
7026 add_psymbol_to_list (actual_name, strlen (actual_name),
7027 built_actual_name != NULL,
7028 VAR_DOMAIN, LOC_CONST,
7029 (cu->language == language_cplus
7030 || cu->language == language_java)
7031 ? &objfile->global_psymbols
7032 : &objfile->static_psymbols,
7033 0, (CORE_ADDR) 0, cu->language, objfile);
7034 break;
7035 default:
7036 break;
7037 }
7038
7039 xfree (built_actual_name);
7040 }
7041
7042 /* Read a partial die corresponding to a namespace; also, add a symbol
7043 corresponding to that namespace to the symbol table. NAMESPACE is
7044 the name of the enclosing namespace. */
7045
7046 static void
7047 add_partial_namespace (struct partial_die_info *pdi,
7048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7049 int set_addrmap, struct dwarf2_cu *cu)
7050 {
7051 /* Add a symbol for the namespace. */
7052
7053 add_partial_symbol (pdi, cu);
7054
7055 /* Now scan partial symbols in that namespace. */
7056
7057 if (pdi->has_children)
7058 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7059 }
7060
7061 /* Read a partial die corresponding to a Fortran module. */
7062
7063 static void
7064 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7065 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7066 {
7067 /* Add a symbol for the namespace. */
7068
7069 add_partial_symbol (pdi, cu);
7070
7071 /* Now scan partial symbols in that module. */
7072
7073 if (pdi->has_children)
7074 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7075 }
7076
7077 /* Read a partial die corresponding to a subprogram and create a partial
7078 symbol for that subprogram. When the CU language allows it, this
7079 routine also defines a partial symbol for each nested subprogram
7080 that this subprogram contains. If SET_ADDRMAP is true, record the
7081 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7082 and highest PC values found in PDI.
7083
7084 PDI may also be a lexical block, in which case we simply search
7085 recursively for subprograms defined inside that lexical block.
7086 Again, this is only performed when the CU language allows this
7087 type of definitions. */
7088
7089 static void
7090 add_partial_subprogram (struct partial_die_info *pdi,
7091 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7092 int set_addrmap, struct dwarf2_cu *cu)
7093 {
7094 if (pdi->tag == DW_TAG_subprogram)
7095 {
7096 if (pdi->has_pc_info)
7097 {
7098 if (pdi->lowpc < *lowpc)
7099 *lowpc = pdi->lowpc;
7100 if (pdi->highpc > *highpc)
7101 *highpc = pdi->highpc;
7102 if (set_addrmap)
7103 {
7104 struct objfile *objfile = cu->objfile;
7105 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7106 CORE_ADDR baseaddr;
7107 CORE_ADDR highpc;
7108 CORE_ADDR lowpc;
7109
7110 baseaddr = ANOFFSET (objfile->section_offsets,
7111 SECT_OFF_TEXT (objfile));
7112 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7113 pdi->lowpc + baseaddr);
7114 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7115 pdi->highpc + baseaddr);
7116 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7117 cu->per_cu->v.psymtab);
7118 }
7119 }
7120
7121 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7122 {
7123 if (!pdi->is_declaration)
7124 /* Ignore subprogram DIEs that do not have a name, they are
7125 illegal. Do not emit a complaint at this point, we will
7126 do so when we convert this psymtab into a symtab. */
7127 if (pdi->name)
7128 add_partial_symbol (pdi, cu);
7129 }
7130 }
7131
7132 if (! pdi->has_children)
7133 return;
7134
7135 if (cu->language == language_ada)
7136 {
7137 pdi = pdi->die_child;
7138 while (pdi != NULL)
7139 {
7140 fixup_partial_die (pdi, cu);
7141 if (pdi->tag == DW_TAG_subprogram
7142 || pdi->tag == DW_TAG_lexical_block)
7143 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7144 pdi = pdi->die_sibling;
7145 }
7146 }
7147 }
7148
7149 /* Read a partial die corresponding to an enumeration type. */
7150
7151 static void
7152 add_partial_enumeration (struct partial_die_info *enum_pdi,
7153 struct dwarf2_cu *cu)
7154 {
7155 struct partial_die_info *pdi;
7156
7157 if (enum_pdi->name != NULL)
7158 add_partial_symbol (enum_pdi, cu);
7159
7160 pdi = enum_pdi->die_child;
7161 while (pdi)
7162 {
7163 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7164 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7165 else
7166 add_partial_symbol (pdi, cu);
7167 pdi = pdi->die_sibling;
7168 }
7169 }
7170
7171 /* Return the initial uleb128 in the die at INFO_PTR. */
7172
7173 static unsigned int
7174 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7175 {
7176 unsigned int bytes_read;
7177
7178 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7179 }
7180
7181 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7182 Return the corresponding abbrev, or NULL if the number is zero (indicating
7183 an empty DIE). In either case *BYTES_READ will be set to the length of
7184 the initial number. */
7185
7186 static struct abbrev_info *
7187 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7188 struct dwarf2_cu *cu)
7189 {
7190 bfd *abfd = cu->objfile->obfd;
7191 unsigned int abbrev_number;
7192 struct abbrev_info *abbrev;
7193
7194 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7195
7196 if (abbrev_number == 0)
7197 return NULL;
7198
7199 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7200 if (!abbrev)
7201 {
7202 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7203 " at offset 0x%x [in module %s]"),
7204 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7205 cu->header.offset.sect_off, bfd_get_filename (abfd));
7206 }
7207
7208 return abbrev;
7209 }
7210
7211 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7212 Returns a pointer to the end of a series of DIEs, terminated by an empty
7213 DIE. Any children of the skipped DIEs will also be skipped. */
7214
7215 static const gdb_byte *
7216 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7217 {
7218 struct dwarf2_cu *cu = reader->cu;
7219 struct abbrev_info *abbrev;
7220 unsigned int bytes_read;
7221
7222 while (1)
7223 {
7224 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7225 if (abbrev == NULL)
7226 return info_ptr + bytes_read;
7227 else
7228 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7229 }
7230 }
7231
7232 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7233 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7234 abbrev corresponding to that skipped uleb128 should be passed in
7235 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7236 children. */
7237
7238 static const gdb_byte *
7239 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7240 struct abbrev_info *abbrev)
7241 {
7242 unsigned int bytes_read;
7243 struct attribute attr;
7244 bfd *abfd = reader->abfd;
7245 struct dwarf2_cu *cu = reader->cu;
7246 const gdb_byte *buffer = reader->buffer;
7247 const gdb_byte *buffer_end = reader->buffer_end;
7248 const gdb_byte *start_info_ptr = info_ptr;
7249 unsigned int form, i;
7250
7251 for (i = 0; i < abbrev->num_attrs; i++)
7252 {
7253 /* The only abbrev we care about is DW_AT_sibling. */
7254 if (abbrev->attrs[i].name == DW_AT_sibling)
7255 {
7256 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7257 if (attr.form == DW_FORM_ref_addr)
7258 complaint (&symfile_complaints,
7259 _("ignoring absolute DW_AT_sibling"));
7260 else
7261 {
7262 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7263 const gdb_byte *sibling_ptr = buffer + off;
7264
7265 if (sibling_ptr < info_ptr)
7266 complaint (&symfile_complaints,
7267 _("DW_AT_sibling points backwards"));
7268 else if (sibling_ptr > reader->buffer_end)
7269 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7270 else
7271 return sibling_ptr;
7272 }
7273 }
7274
7275 /* If it isn't DW_AT_sibling, skip this attribute. */
7276 form = abbrev->attrs[i].form;
7277 skip_attribute:
7278 switch (form)
7279 {
7280 case DW_FORM_ref_addr:
7281 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7282 and later it is offset sized. */
7283 if (cu->header.version == 2)
7284 info_ptr += cu->header.addr_size;
7285 else
7286 info_ptr += cu->header.offset_size;
7287 break;
7288 case DW_FORM_GNU_ref_alt:
7289 info_ptr += cu->header.offset_size;
7290 break;
7291 case DW_FORM_addr:
7292 info_ptr += cu->header.addr_size;
7293 break;
7294 case DW_FORM_data1:
7295 case DW_FORM_ref1:
7296 case DW_FORM_flag:
7297 info_ptr += 1;
7298 break;
7299 case DW_FORM_flag_present:
7300 break;
7301 case DW_FORM_data2:
7302 case DW_FORM_ref2:
7303 info_ptr += 2;
7304 break;
7305 case DW_FORM_data4:
7306 case DW_FORM_ref4:
7307 info_ptr += 4;
7308 break;
7309 case DW_FORM_data8:
7310 case DW_FORM_ref8:
7311 case DW_FORM_ref_sig8:
7312 info_ptr += 8;
7313 break;
7314 case DW_FORM_string:
7315 read_direct_string (abfd, info_ptr, &bytes_read);
7316 info_ptr += bytes_read;
7317 break;
7318 case DW_FORM_sec_offset:
7319 case DW_FORM_strp:
7320 case DW_FORM_GNU_strp_alt:
7321 info_ptr += cu->header.offset_size;
7322 break;
7323 case DW_FORM_exprloc:
7324 case DW_FORM_block:
7325 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7326 info_ptr += bytes_read;
7327 break;
7328 case DW_FORM_block1:
7329 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7330 break;
7331 case DW_FORM_block2:
7332 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7333 break;
7334 case DW_FORM_block4:
7335 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7336 break;
7337 case DW_FORM_sdata:
7338 case DW_FORM_udata:
7339 case DW_FORM_ref_udata:
7340 case DW_FORM_GNU_addr_index:
7341 case DW_FORM_GNU_str_index:
7342 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7343 break;
7344 case DW_FORM_indirect:
7345 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7346 info_ptr += bytes_read;
7347 /* We need to continue parsing from here, so just go back to
7348 the top. */
7349 goto skip_attribute;
7350
7351 default:
7352 error (_("Dwarf Error: Cannot handle %s "
7353 "in DWARF reader [in module %s]"),
7354 dwarf_form_name (form),
7355 bfd_get_filename (abfd));
7356 }
7357 }
7358
7359 if (abbrev->has_children)
7360 return skip_children (reader, info_ptr);
7361 else
7362 return info_ptr;
7363 }
7364
7365 /* Locate ORIG_PDI's sibling.
7366 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7367
7368 static const gdb_byte *
7369 locate_pdi_sibling (const struct die_reader_specs *reader,
7370 struct partial_die_info *orig_pdi,
7371 const gdb_byte *info_ptr)
7372 {
7373 /* Do we know the sibling already? */
7374
7375 if (orig_pdi->sibling)
7376 return orig_pdi->sibling;
7377
7378 /* Are there any children to deal with? */
7379
7380 if (!orig_pdi->has_children)
7381 return info_ptr;
7382
7383 /* Skip the children the long way. */
7384
7385 return skip_children (reader, info_ptr);
7386 }
7387
7388 /* Expand this partial symbol table into a full symbol table. SELF is
7389 not NULL. */
7390
7391 static void
7392 dwarf2_read_symtab (struct partial_symtab *self,
7393 struct objfile *objfile)
7394 {
7395 if (self->readin)
7396 {
7397 warning (_("bug: psymtab for %s is already read in."),
7398 self->filename);
7399 }
7400 else
7401 {
7402 if (info_verbose)
7403 {
7404 printf_filtered (_("Reading in symbols for %s..."),
7405 self->filename);
7406 gdb_flush (gdb_stdout);
7407 }
7408
7409 /* Restore our global data. */
7410 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7411
7412 /* If this psymtab is constructed from a debug-only objfile, the
7413 has_section_at_zero flag will not necessarily be correct. We
7414 can get the correct value for this flag by looking at the data
7415 associated with the (presumably stripped) associated objfile. */
7416 if (objfile->separate_debug_objfile_backlink)
7417 {
7418 struct dwarf2_per_objfile *dpo_backlink
7419 = objfile_data (objfile->separate_debug_objfile_backlink,
7420 dwarf2_objfile_data_key);
7421
7422 dwarf2_per_objfile->has_section_at_zero
7423 = dpo_backlink->has_section_at_zero;
7424 }
7425
7426 dwarf2_per_objfile->reading_partial_symbols = 0;
7427
7428 psymtab_to_symtab_1 (self);
7429
7430 /* Finish up the debug error message. */
7431 if (info_verbose)
7432 printf_filtered (_("done.\n"));
7433 }
7434
7435 process_cu_includes ();
7436 }
7437 \f
7438 /* Reading in full CUs. */
7439
7440 /* Add PER_CU to the queue. */
7441
7442 static void
7443 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7444 enum language pretend_language)
7445 {
7446 struct dwarf2_queue_item *item;
7447
7448 per_cu->queued = 1;
7449 item = xmalloc (sizeof (*item));
7450 item->per_cu = per_cu;
7451 item->pretend_language = pretend_language;
7452 item->next = NULL;
7453
7454 if (dwarf2_queue == NULL)
7455 dwarf2_queue = item;
7456 else
7457 dwarf2_queue_tail->next = item;
7458
7459 dwarf2_queue_tail = item;
7460 }
7461
7462 /* If PER_CU is not yet queued, add it to the queue.
7463 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7464 dependency.
7465 The result is non-zero if PER_CU was queued, otherwise the result is zero
7466 meaning either PER_CU is already queued or it is already loaded.
7467
7468 N.B. There is an invariant here that if a CU is queued then it is loaded.
7469 The caller is required to load PER_CU if we return non-zero. */
7470
7471 static int
7472 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7473 struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
7475 {
7476 /* We may arrive here during partial symbol reading, if we need full
7477 DIEs to process an unusual case (e.g. template arguments). Do
7478 not queue PER_CU, just tell our caller to load its DIEs. */
7479 if (dwarf2_per_objfile->reading_partial_symbols)
7480 {
7481 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7482 return 1;
7483 return 0;
7484 }
7485
7486 /* Mark the dependence relation so that we don't flush PER_CU
7487 too early. */
7488 if (dependent_cu != NULL)
7489 dwarf2_add_dependence (dependent_cu, per_cu);
7490
7491 /* If it's already on the queue, we have nothing to do. */
7492 if (per_cu->queued)
7493 return 0;
7494
7495 /* If the compilation unit is already loaded, just mark it as
7496 used. */
7497 if (per_cu->cu != NULL)
7498 {
7499 per_cu->cu->last_used = 0;
7500 return 0;
7501 }
7502
7503 /* Add it to the queue. */
7504 queue_comp_unit (per_cu, pretend_language);
7505
7506 return 1;
7507 }
7508
7509 /* Process the queue. */
7510
7511 static void
7512 process_queue (void)
7513 {
7514 struct dwarf2_queue_item *item, *next_item;
7515
7516 if (dwarf2_read_debug)
7517 {
7518 fprintf_unfiltered (gdb_stdlog,
7519 "Expanding one or more symtabs of objfile %s ...\n",
7520 objfile_name (dwarf2_per_objfile->objfile));
7521 }
7522
7523 /* The queue starts out with one item, but following a DIE reference
7524 may load a new CU, adding it to the end of the queue. */
7525 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7526 {
7527 if (dwarf2_per_objfile->using_index
7528 ? !item->per_cu->v.quick->compunit_symtab
7529 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7530 {
7531 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7532 unsigned int debug_print_threshold;
7533 char buf[100];
7534
7535 if (per_cu->is_debug_types)
7536 {
7537 struct signatured_type *sig_type =
7538 (struct signatured_type *) per_cu;
7539
7540 sprintf (buf, "TU %s at offset 0x%x",
7541 hex_string (sig_type->signature),
7542 per_cu->offset.sect_off);
7543 /* There can be 100s of TUs.
7544 Only print them in verbose mode. */
7545 debug_print_threshold = 2;
7546 }
7547 else
7548 {
7549 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7550 debug_print_threshold = 1;
7551 }
7552
7553 if (dwarf2_read_debug >= debug_print_threshold)
7554 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7555
7556 if (per_cu->is_debug_types)
7557 process_full_type_unit (per_cu, item->pretend_language);
7558 else
7559 process_full_comp_unit (per_cu, item->pretend_language);
7560
7561 if (dwarf2_read_debug >= debug_print_threshold)
7562 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7563 }
7564
7565 item->per_cu->queued = 0;
7566 next_item = item->next;
7567 xfree (item);
7568 }
7569
7570 dwarf2_queue_tail = NULL;
7571
7572 if (dwarf2_read_debug)
7573 {
7574 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7575 objfile_name (dwarf2_per_objfile->objfile));
7576 }
7577 }
7578
7579 /* Free all allocated queue entries. This function only releases anything if
7580 an error was thrown; if the queue was processed then it would have been
7581 freed as we went along. */
7582
7583 static void
7584 dwarf2_release_queue (void *dummy)
7585 {
7586 struct dwarf2_queue_item *item, *last;
7587
7588 item = dwarf2_queue;
7589 while (item)
7590 {
7591 /* Anything still marked queued is likely to be in an
7592 inconsistent state, so discard it. */
7593 if (item->per_cu->queued)
7594 {
7595 if (item->per_cu->cu != NULL)
7596 free_one_cached_comp_unit (item->per_cu);
7597 item->per_cu->queued = 0;
7598 }
7599
7600 last = item;
7601 item = item->next;
7602 xfree (last);
7603 }
7604
7605 dwarf2_queue = dwarf2_queue_tail = NULL;
7606 }
7607
7608 /* Read in full symbols for PST, and anything it depends on. */
7609
7610 static void
7611 psymtab_to_symtab_1 (struct partial_symtab *pst)
7612 {
7613 struct dwarf2_per_cu_data *per_cu;
7614 int i;
7615
7616 if (pst->readin)
7617 return;
7618
7619 for (i = 0; i < pst->number_of_dependencies; i++)
7620 if (!pst->dependencies[i]->readin
7621 && pst->dependencies[i]->user == NULL)
7622 {
7623 /* Inform about additional files that need to be read in. */
7624 if (info_verbose)
7625 {
7626 /* FIXME: i18n: Need to make this a single string. */
7627 fputs_filtered (" ", gdb_stdout);
7628 wrap_here ("");
7629 fputs_filtered ("and ", gdb_stdout);
7630 wrap_here ("");
7631 printf_filtered ("%s...", pst->dependencies[i]->filename);
7632 wrap_here (""); /* Flush output. */
7633 gdb_flush (gdb_stdout);
7634 }
7635 psymtab_to_symtab_1 (pst->dependencies[i]);
7636 }
7637
7638 per_cu = pst->read_symtab_private;
7639
7640 if (per_cu == NULL)
7641 {
7642 /* It's an include file, no symbols to read for it.
7643 Everything is in the parent symtab. */
7644 pst->readin = 1;
7645 return;
7646 }
7647
7648 dw2_do_instantiate_symtab (per_cu);
7649 }
7650
7651 /* Trivial hash function for die_info: the hash value of a DIE
7652 is its offset in .debug_info for this objfile. */
7653
7654 static hashval_t
7655 die_hash (const void *item)
7656 {
7657 const struct die_info *die = item;
7658
7659 return die->offset.sect_off;
7660 }
7661
7662 /* Trivial comparison function for die_info structures: two DIEs
7663 are equal if they have the same offset. */
7664
7665 static int
7666 die_eq (const void *item_lhs, const void *item_rhs)
7667 {
7668 const struct die_info *die_lhs = item_lhs;
7669 const struct die_info *die_rhs = item_rhs;
7670
7671 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7672 }
7673
7674 /* die_reader_func for load_full_comp_unit.
7675 This is identical to read_signatured_type_reader,
7676 but is kept separate for now. */
7677
7678 static void
7679 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7680 const gdb_byte *info_ptr,
7681 struct die_info *comp_unit_die,
7682 int has_children,
7683 void *data)
7684 {
7685 struct dwarf2_cu *cu = reader->cu;
7686 enum language *language_ptr = data;
7687
7688 gdb_assert (cu->die_hash == NULL);
7689 cu->die_hash =
7690 htab_create_alloc_ex (cu->header.length / 12,
7691 die_hash,
7692 die_eq,
7693 NULL,
7694 &cu->comp_unit_obstack,
7695 hashtab_obstack_allocate,
7696 dummy_obstack_deallocate);
7697
7698 if (has_children)
7699 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7700 &info_ptr, comp_unit_die);
7701 cu->dies = comp_unit_die;
7702 /* comp_unit_die is not stored in die_hash, no need. */
7703
7704 /* We try not to read any attributes in this function, because not
7705 all CUs needed for references have been loaded yet, and symbol
7706 table processing isn't initialized. But we have to set the CU language,
7707 or we won't be able to build types correctly.
7708 Similarly, if we do not read the producer, we can not apply
7709 producer-specific interpretation. */
7710 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7711 }
7712
7713 /* Load the DIEs associated with PER_CU into memory. */
7714
7715 static void
7716 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7717 enum language pretend_language)
7718 {
7719 gdb_assert (! this_cu->is_debug_types);
7720
7721 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7722 load_full_comp_unit_reader, &pretend_language);
7723 }
7724
7725 /* Add a DIE to the delayed physname list. */
7726
7727 static void
7728 add_to_method_list (struct type *type, int fnfield_index, int index,
7729 const char *name, struct die_info *die,
7730 struct dwarf2_cu *cu)
7731 {
7732 struct delayed_method_info mi;
7733 mi.type = type;
7734 mi.fnfield_index = fnfield_index;
7735 mi.index = index;
7736 mi.name = name;
7737 mi.die = die;
7738 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7739 }
7740
7741 /* A cleanup for freeing the delayed method list. */
7742
7743 static void
7744 free_delayed_list (void *ptr)
7745 {
7746 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7747 if (cu->method_list != NULL)
7748 {
7749 VEC_free (delayed_method_info, cu->method_list);
7750 cu->method_list = NULL;
7751 }
7752 }
7753
7754 /* Compute the physnames of any methods on the CU's method list.
7755
7756 The computation of method physnames is delayed in order to avoid the
7757 (bad) condition that one of the method's formal parameters is of an as yet
7758 incomplete type. */
7759
7760 static void
7761 compute_delayed_physnames (struct dwarf2_cu *cu)
7762 {
7763 int i;
7764 struct delayed_method_info *mi;
7765 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7766 {
7767 const char *physname;
7768 struct fn_fieldlist *fn_flp
7769 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7770 physname = dwarf2_physname (mi->name, mi->die, cu);
7771 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7772 = physname ? physname : "";
7773 }
7774 }
7775
7776 /* Go objects should be embedded in a DW_TAG_module DIE,
7777 and it's not clear if/how imported objects will appear.
7778 To keep Go support simple until that's worked out,
7779 go back through what we've read and create something usable.
7780 We could do this while processing each DIE, and feels kinda cleaner,
7781 but that way is more invasive.
7782 This is to, for example, allow the user to type "p var" or "b main"
7783 without having to specify the package name, and allow lookups
7784 of module.object to work in contexts that use the expression
7785 parser. */
7786
7787 static void
7788 fixup_go_packaging (struct dwarf2_cu *cu)
7789 {
7790 char *package_name = NULL;
7791 struct pending *list;
7792 int i;
7793
7794 for (list = global_symbols; list != NULL; list = list->next)
7795 {
7796 for (i = 0; i < list->nsyms; ++i)
7797 {
7798 struct symbol *sym = list->symbol[i];
7799
7800 if (SYMBOL_LANGUAGE (sym) == language_go
7801 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7802 {
7803 char *this_package_name = go_symbol_package_name (sym);
7804
7805 if (this_package_name == NULL)
7806 continue;
7807 if (package_name == NULL)
7808 package_name = this_package_name;
7809 else
7810 {
7811 if (strcmp (package_name, this_package_name) != 0)
7812 complaint (&symfile_complaints,
7813 _("Symtab %s has objects from two different Go packages: %s and %s"),
7814 (symbol_symtab (sym) != NULL
7815 ? symtab_to_filename_for_display
7816 (symbol_symtab (sym))
7817 : objfile_name (cu->objfile)),
7818 this_package_name, package_name);
7819 xfree (this_package_name);
7820 }
7821 }
7822 }
7823 }
7824
7825 if (package_name != NULL)
7826 {
7827 struct objfile *objfile = cu->objfile;
7828 const char *saved_package_name
7829 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7830 package_name,
7831 strlen (package_name));
7832 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7833 saved_package_name, objfile);
7834 struct symbol *sym;
7835
7836 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7837
7838 sym = allocate_symbol (objfile);
7839 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7840 SYMBOL_SET_NAMES (sym, saved_package_name,
7841 strlen (saved_package_name), 0, objfile);
7842 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7843 e.g., "main" finds the "main" module and not C's main(). */
7844 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7845 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7846 SYMBOL_TYPE (sym) = type;
7847
7848 add_symbol_to_list (sym, &global_symbols);
7849
7850 xfree (package_name);
7851 }
7852 }
7853
7854 /* Return the symtab for PER_CU. This works properly regardless of
7855 whether we're using the index or psymtabs. */
7856
7857 static struct compunit_symtab *
7858 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7859 {
7860 return (dwarf2_per_objfile->using_index
7861 ? per_cu->v.quick->compunit_symtab
7862 : per_cu->v.psymtab->compunit_symtab);
7863 }
7864
7865 /* A helper function for computing the list of all symbol tables
7866 included by PER_CU. */
7867
7868 static void
7869 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7870 htab_t all_children, htab_t all_type_symtabs,
7871 struct dwarf2_per_cu_data *per_cu,
7872 struct compunit_symtab *immediate_parent)
7873 {
7874 void **slot;
7875 int ix;
7876 struct compunit_symtab *cust;
7877 struct dwarf2_per_cu_data *iter;
7878
7879 slot = htab_find_slot (all_children, per_cu, INSERT);
7880 if (*slot != NULL)
7881 {
7882 /* This inclusion and its children have been processed. */
7883 return;
7884 }
7885
7886 *slot = per_cu;
7887 /* Only add a CU if it has a symbol table. */
7888 cust = get_compunit_symtab (per_cu);
7889 if (cust != NULL)
7890 {
7891 /* If this is a type unit only add its symbol table if we haven't
7892 seen it yet (type unit per_cu's can share symtabs). */
7893 if (per_cu->is_debug_types)
7894 {
7895 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7896 if (*slot == NULL)
7897 {
7898 *slot = cust;
7899 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7900 if (cust->user == NULL)
7901 cust->user = immediate_parent;
7902 }
7903 }
7904 else
7905 {
7906 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7907 if (cust->user == NULL)
7908 cust->user = immediate_parent;
7909 }
7910 }
7911
7912 for (ix = 0;
7913 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7914 ++ix)
7915 {
7916 recursively_compute_inclusions (result, all_children,
7917 all_type_symtabs, iter, cust);
7918 }
7919 }
7920
7921 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7922 PER_CU. */
7923
7924 static void
7925 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7926 {
7927 gdb_assert (! per_cu->is_debug_types);
7928
7929 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7930 {
7931 int ix, len;
7932 struct dwarf2_per_cu_data *per_cu_iter;
7933 struct compunit_symtab *compunit_symtab_iter;
7934 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7935 htab_t all_children, all_type_symtabs;
7936 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7937
7938 /* If we don't have a symtab, we can just skip this case. */
7939 if (cust == NULL)
7940 return;
7941
7942 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7943 NULL, xcalloc, xfree);
7944 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7945 NULL, xcalloc, xfree);
7946
7947 for (ix = 0;
7948 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7949 ix, per_cu_iter);
7950 ++ix)
7951 {
7952 recursively_compute_inclusions (&result_symtabs, all_children,
7953 all_type_symtabs, per_cu_iter,
7954 cust);
7955 }
7956
7957 /* Now we have a transitive closure of all the included symtabs. */
7958 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7959 cust->includes
7960 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7961 (len + 1) * sizeof (struct symtab *));
7962 for (ix = 0;
7963 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7964 compunit_symtab_iter);
7965 ++ix)
7966 cust->includes[ix] = compunit_symtab_iter;
7967 cust->includes[len] = NULL;
7968
7969 VEC_free (compunit_symtab_ptr, result_symtabs);
7970 htab_delete (all_children);
7971 htab_delete (all_type_symtabs);
7972 }
7973 }
7974
7975 /* Compute the 'includes' field for the symtabs of all the CUs we just
7976 read. */
7977
7978 static void
7979 process_cu_includes (void)
7980 {
7981 int ix;
7982 struct dwarf2_per_cu_data *iter;
7983
7984 for (ix = 0;
7985 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7986 ix, iter);
7987 ++ix)
7988 {
7989 if (! iter->is_debug_types)
7990 compute_compunit_symtab_includes (iter);
7991 }
7992
7993 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7994 }
7995
7996 /* Generate full symbol information for PER_CU, whose DIEs have
7997 already been loaded into memory. */
7998
7999 static void
8000 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8001 enum language pretend_language)
8002 {
8003 struct dwarf2_cu *cu = per_cu->cu;
8004 struct objfile *objfile = per_cu->objfile;
8005 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8006 CORE_ADDR lowpc, highpc;
8007 struct compunit_symtab *cust;
8008 struct cleanup *back_to, *delayed_list_cleanup;
8009 CORE_ADDR baseaddr;
8010 struct block *static_block;
8011 CORE_ADDR addr;
8012
8013 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8014
8015 buildsym_init ();
8016 back_to = make_cleanup (really_free_pendings, NULL);
8017 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8018
8019 cu->list_in_scope = &file_symbols;
8020
8021 cu->language = pretend_language;
8022 cu->language_defn = language_def (cu->language);
8023
8024 /* Do line number decoding in read_file_scope () */
8025 process_die (cu->dies, cu);
8026
8027 /* For now fudge the Go package. */
8028 if (cu->language == language_go)
8029 fixup_go_packaging (cu);
8030
8031 /* Now that we have processed all the DIEs in the CU, all the types
8032 should be complete, and it should now be safe to compute all of the
8033 physnames. */
8034 compute_delayed_physnames (cu);
8035 do_cleanups (delayed_list_cleanup);
8036
8037 /* Some compilers don't define a DW_AT_high_pc attribute for the
8038 compilation unit. If the DW_AT_high_pc is missing, synthesize
8039 it, by scanning the DIE's below the compilation unit. */
8040 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8041
8042 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8043 static_block = end_symtab_get_static_block (addr, 0, 1);
8044
8045 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8046 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8047 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8048 addrmap to help ensure it has an accurate map of pc values belonging to
8049 this comp unit. */
8050 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8051
8052 cust = end_symtab_from_static_block (static_block,
8053 SECT_OFF_TEXT (objfile), 0);
8054
8055 if (cust != NULL)
8056 {
8057 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8058
8059 /* Set symtab language to language from DW_AT_language. If the
8060 compilation is from a C file generated by language preprocessors, do
8061 not set the language if it was already deduced by start_subfile. */
8062 if (!(cu->language == language_c
8063 && COMPUNIT_FILETABS (cust)->language != language_c))
8064 COMPUNIT_FILETABS (cust)->language = cu->language;
8065
8066 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8067 produce DW_AT_location with location lists but it can be possibly
8068 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8069 there were bugs in prologue debug info, fixed later in GCC-4.5
8070 by "unwind info for epilogues" patch (which is not directly related).
8071
8072 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8073 needed, it would be wrong due to missing DW_AT_producer there.
8074
8075 Still one can confuse GDB by using non-standard GCC compilation
8076 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8077 */
8078 if (cu->has_loclist && gcc_4_minor >= 5)
8079 cust->locations_valid = 1;
8080
8081 if (gcc_4_minor >= 5)
8082 cust->epilogue_unwind_valid = 1;
8083
8084 cust->call_site_htab = cu->call_site_htab;
8085 }
8086
8087 if (dwarf2_per_objfile->using_index)
8088 per_cu->v.quick->compunit_symtab = cust;
8089 else
8090 {
8091 struct partial_symtab *pst = per_cu->v.psymtab;
8092 pst->compunit_symtab = cust;
8093 pst->readin = 1;
8094 }
8095
8096 /* Push it for inclusion processing later. */
8097 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8098
8099 do_cleanups (back_to);
8100 }
8101
8102 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8103 already been loaded into memory. */
8104
8105 static void
8106 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8107 enum language pretend_language)
8108 {
8109 struct dwarf2_cu *cu = per_cu->cu;
8110 struct objfile *objfile = per_cu->objfile;
8111 struct compunit_symtab *cust;
8112 struct cleanup *back_to, *delayed_list_cleanup;
8113 struct signatured_type *sig_type;
8114
8115 gdb_assert (per_cu->is_debug_types);
8116 sig_type = (struct signatured_type *) per_cu;
8117
8118 buildsym_init ();
8119 back_to = make_cleanup (really_free_pendings, NULL);
8120 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8121
8122 cu->list_in_scope = &file_symbols;
8123
8124 cu->language = pretend_language;
8125 cu->language_defn = language_def (cu->language);
8126
8127 /* The symbol tables are set up in read_type_unit_scope. */
8128 process_die (cu->dies, cu);
8129
8130 /* For now fudge the Go package. */
8131 if (cu->language == language_go)
8132 fixup_go_packaging (cu);
8133
8134 /* Now that we have processed all the DIEs in the CU, all the types
8135 should be complete, and it should now be safe to compute all of the
8136 physnames. */
8137 compute_delayed_physnames (cu);
8138 do_cleanups (delayed_list_cleanup);
8139
8140 /* TUs share symbol tables.
8141 If this is the first TU to use this symtab, complete the construction
8142 of it with end_expandable_symtab. Otherwise, complete the addition of
8143 this TU's symbols to the existing symtab. */
8144 if (sig_type->type_unit_group->compunit_symtab == NULL)
8145 {
8146 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8147 sig_type->type_unit_group->compunit_symtab = cust;
8148
8149 if (cust != NULL)
8150 {
8151 /* Set symtab language to language from DW_AT_language. If the
8152 compilation is from a C file generated by language preprocessors,
8153 do not set the language if it was already deduced by
8154 start_subfile. */
8155 if (!(cu->language == language_c
8156 && COMPUNIT_FILETABS (cust)->language != language_c))
8157 COMPUNIT_FILETABS (cust)->language = cu->language;
8158 }
8159 }
8160 else
8161 {
8162 augment_type_symtab ();
8163 cust = sig_type->type_unit_group->compunit_symtab;
8164 }
8165
8166 if (dwarf2_per_objfile->using_index)
8167 per_cu->v.quick->compunit_symtab = cust;
8168 else
8169 {
8170 struct partial_symtab *pst = per_cu->v.psymtab;
8171 pst->compunit_symtab = cust;
8172 pst->readin = 1;
8173 }
8174
8175 do_cleanups (back_to);
8176 }
8177
8178 /* Process an imported unit DIE. */
8179
8180 static void
8181 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8182 {
8183 struct attribute *attr;
8184
8185 /* For now we don't handle imported units in type units. */
8186 if (cu->per_cu->is_debug_types)
8187 {
8188 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8189 " supported in type units [in module %s]"),
8190 objfile_name (cu->objfile));
8191 }
8192
8193 attr = dwarf2_attr (die, DW_AT_import, cu);
8194 if (attr != NULL)
8195 {
8196 struct dwarf2_per_cu_data *per_cu;
8197 struct symtab *imported_symtab;
8198 sect_offset offset;
8199 int is_dwz;
8200
8201 offset = dwarf2_get_ref_die_offset (attr);
8202 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8203 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8204
8205 /* If necessary, add it to the queue and load its DIEs. */
8206 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8207 load_full_comp_unit (per_cu, cu->language);
8208
8209 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8210 per_cu);
8211 }
8212 }
8213
8214 /* Reset the in_process bit of a die. */
8215
8216 static void
8217 reset_die_in_process (void *arg)
8218 {
8219 struct die_info *die = arg;
8220
8221 die->in_process = 0;
8222 }
8223
8224 /* Process a die and its children. */
8225
8226 static void
8227 process_die (struct die_info *die, struct dwarf2_cu *cu)
8228 {
8229 struct cleanup *in_process;
8230
8231 /* We should only be processing those not already in process. */
8232 gdb_assert (!die->in_process);
8233
8234 die->in_process = 1;
8235 in_process = make_cleanup (reset_die_in_process,die);
8236
8237 switch (die->tag)
8238 {
8239 case DW_TAG_padding:
8240 break;
8241 case DW_TAG_compile_unit:
8242 case DW_TAG_partial_unit:
8243 read_file_scope (die, cu);
8244 break;
8245 case DW_TAG_type_unit:
8246 read_type_unit_scope (die, cu);
8247 break;
8248 case DW_TAG_subprogram:
8249 case DW_TAG_inlined_subroutine:
8250 read_func_scope (die, cu);
8251 break;
8252 case DW_TAG_lexical_block:
8253 case DW_TAG_try_block:
8254 case DW_TAG_catch_block:
8255 read_lexical_block_scope (die, cu);
8256 break;
8257 case DW_TAG_GNU_call_site:
8258 read_call_site_scope (die, cu);
8259 break;
8260 case DW_TAG_class_type:
8261 case DW_TAG_interface_type:
8262 case DW_TAG_structure_type:
8263 case DW_TAG_union_type:
8264 process_structure_scope (die, cu);
8265 break;
8266 case DW_TAG_enumeration_type:
8267 process_enumeration_scope (die, cu);
8268 break;
8269
8270 /* These dies have a type, but processing them does not create
8271 a symbol or recurse to process the children. Therefore we can
8272 read them on-demand through read_type_die. */
8273 case DW_TAG_subroutine_type:
8274 case DW_TAG_set_type:
8275 case DW_TAG_array_type:
8276 case DW_TAG_pointer_type:
8277 case DW_TAG_ptr_to_member_type:
8278 case DW_TAG_reference_type:
8279 case DW_TAG_string_type:
8280 break;
8281
8282 case DW_TAG_base_type:
8283 case DW_TAG_subrange_type:
8284 case DW_TAG_typedef:
8285 /* Add a typedef symbol for the type definition, if it has a
8286 DW_AT_name. */
8287 new_symbol (die, read_type_die (die, cu), cu);
8288 break;
8289 case DW_TAG_common_block:
8290 read_common_block (die, cu);
8291 break;
8292 case DW_TAG_common_inclusion:
8293 break;
8294 case DW_TAG_namespace:
8295 cu->processing_has_namespace_info = 1;
8296 read_namespace (die, cu);
8297 break;
8298 case DW_TAG_module:
8299 cu->processing_has_namespace_info = 1;
8300 read_module (die, cu);
8301 break;
8302 case DW_TAG_imported_declaration:
8303 cu->processing_has_namespace_info = 1;
8304 if (read_namespace_alias (die, cu))
8305 break;
8306 /* The declaration is not a global namespace alias: fall through. */
8307 case DW_TAG_imported_module:
8308 cu->processing_has_namespace_info = 1;
8309 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8310 || cu->language != language_fortran))
8311 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8312 dwarf_tag_name (die->tag));
8313 read_import_statement (die, cu);
8314 break;
8315
8316 case DW_TAG_imported_unit:
8317 process_imported_unit_die (die, cu);
8318 break;
8319
8320 default:
8321 new_symbol (die, NULL, cu);
8322 break;
8323 }
8324
8325 do_cleanups (in_process);
8326 }
8327 \f
8328 /* DWARF name computation. */
8329
8330 /* A helper function for dwarf2_compute_name which determines whether DIE
8331 needs to have the name of the scope prepended to the name listed in the
8332 die. */
8333
8334 static int
8335 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8336 {
8337 struct attribute *attr;
8338
8339 switch (die->tag)
8340 {
8341 case DW_TAG_namespace:
8342 case DW_TAG_typedef:
8343 case DW_TAG_class_type:
8344 case DW_TAG_interface_type:
8345 case DW_TAG_structure_type:
8346 case DW_TAG_union_type:
8347 case DW_TAG_enumeration_type:
8348 case DW_TAG_enumerator:
8349 case DW_TAG_subprogram:
8350 case DW_TAG_member:
8351 case DW_TAG_imported_declaration:
8352 return 1;
8353
8354 case DW_TAG_variable:
8355 case DW_TAG_constant:
8356 /* We only need to prefix "globally" visible variables. These include
8357 any variable marked with DW_AT_external or any variable that
8358 lives in a namespace. [Variables in anonymous namespaces
8359 require prefixing, but they are not DW_AT_external.] */
8360
8361 if (dwarf2_attr (die, DW_AT_specification, cu))
8362 {
8363 struct dwarf2_cu *spec_cu = cu;
8364
8365 return die_needs_namespace (die_specification (die, &spec_cu),
8366 spec_cu);
8367 }
8368
8369 attr = dwarf2_attr (die, DW_AT_external, cu);
8370 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8371 && die->parent->tag != DW_TAG_module)
8372 return 0;
8373 /* A variable in a lexical block of some kind does not need a
8374 namespace, even though in C++ such variables may be external
8375 and have a mangled name. */
8376 if (die->parent->tag == DW_TAG_lexical_block
8377 || die->parent->tag == DW_TAG_try_block
8378 || die->parent->tag == DW_TAG_catch_block
8379 || die->parent->tag == DW_TAG_subprogram)
8380 return 0;
8381 return 1;
8382
8383 default:
8384 return 0;
8385 }
8386 }
8387
8388 /* Retrieve the last character from a mem_file. */
8389
8390 static void
8391 do_ui_file_peek_last (void *object, const char *buffer, long length)
8392 {
8393 char *last_char_p = (char *) object;
8394
8395 if (length > 0)
8396 *last_char_p = buffer[length - 1];
8397 }
8398
8399 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8400 compute the physname for the object, which include a method's:
8401 - formal parameters (C++/Java),
8402 - receiver type (Go),
8403 - return type (Java).
8404
8405 The term "physname" is a bit confusing.
8406 For C++, for example, it is the demangled name.
8407 For Go, for example, it's the mangled name.
8408
8409 For Ada, return the DIE's linkage name rather than the fully qualified
8410 name. PHYSNAME is ignored..
8411
8412 The result is allocated on the objfile_obstack and canonicalized. */
8413
8414 static const char *
8415 dwarf2_compute_name (const char *name,
8416 struct die_info *die, struct dwarf2_cu *cu,
8417 int physname)
8418 {
8419 struct objfile *objfile = cu->objfile;
8420
8421 if (name == NULL)
8422 name = dwarf2_name (die, cu);
8423
8424 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8425 compute it by typename_concat inside GDB. */
8426 if (cu->language == language_ada
8427 || (cu->language == language_fortran && physname))
8428 {
8429 /* For Ada unit, we prefer the linkage name over the name, as
8430 the former contains the exported name, which the user expects
8431 to be able to reference. Ideally, we want the user to be able
8432 to reference this entity using either natural or linkage name,
8433 but we haven't started looking at this enhancement yet. */
8434 struct attribute *attr;
8435
8436 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8437 if (attr == NULL)
8438 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8439 if (attr && DW_STRING (attr))
8440 return DW_STRING (attr);
8441 }
8442
8443 /* These are the only languages we know how to qualify names in. */
8444 if (name != NULL
8445 && (cu->language == language_cplus || cu->language == language_java
8446 || cu->language == language_fortran))
8447 {
8448 if (die_needs_namespace (die, cu))
8449 {
8450 long length;
8451 const char *prefix;
8452 struct ui_file *buf;
8453 char *intermediate_name;
8454 const char *canonical_name = NULL;
8455
8456 prefix = determine_prefix (die, cu);
8457 buf = mem_fileopen ();
8458 if (*prefix != '\0')
8459 {
8460 char *prefixed_name = typename_concat (NULL, prefix, name,
8461 physname, cu);
8462
8463 fputs_unfiltered (prefixed_name, buf);
8464 xfree (prefixed_name);
8465 }
8466 else
8467 fputs_unfiltered (name, buf);
8468
8469 /* Template parameters may be specified in the DIE's DW_AT_name, or
8470 as children with DW_TAG_template_type_param or
8471 DW_TAG_value_type_param. If the latter, add them to the name
8472 here. If the name already has template parameters, then
8473 skip this step; some versions of GCC emit both, and
8474 it is more efficient to use the pre-computed name.
8475
8476 Something to keep in mind about this process: it is very
8477 unlikely, or in some cases downright impossible, to produce
8478 something that will match the mangled name of a function.
8479 If the definition of the function has the same debug info,
8480 we should be able to match up with it anyway. But fallbacks
8481 using the minimal symbol, for instance to find a method
8482 implemented in a stripped copy of libstdc++, will not work.
8483 If we do not have debug info for the definition, we will have to
8484 match them up some other way.
8485
8486 When we do name matching there is a related problem with function
8487 templates; two instantiated function templates are allowed to
8488 differ only by their return types, which we do not add here. */
8489
8490 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8491 {
8492 struct attribute *attr;
8493 struct die_info *child;
8494 int first = 1;
8495
8496 die->building_fullname = 1;
8497
8498 for (child = die->child; child != NULL; child = child->sibling)
8499 {
8500 struct type *type;
8501 LONGEST value;
8502 const gdb_byte *bytes;
8503 struct dwarf2_locexpr_baton *baton;
8504 struct value *v;
8505
8506 if (child->tag != DW_TAG_template_type_param
8507 && child->tag != DW_TAG_template_value_param)
8508 continue;
8509
8510 if (first)
8511 {
8512 fputs_unfiltered ("<", buf);
8513 first = 0;
8514 }
8515 else
8516 fputs_unfiltered (", ", buf);
8517
8518 attr = dwarf2_attr (child, DW_AT_type, cu);
8519 if (attr == NULL)
8520 {
8521 complaint (&symfile_complaints,
8522 _("template parameter missing DW_AT_type"));
8523 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8524 continue;
8525 }
8526 type = die_type (child, cu);
8527
8528 if (child->tag == DW_TAG_template_type_param)
8529 {
8530 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8531 continue;
8532 }
8533
8534 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8535 if (attr == NULL)
8536 {
8537 complaint (&symfile_complaints,
8538 _("template parameter missing "
8539 "DW_AT_const_value"));
8540 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8541 continue;
8542 }
8543
8544 dwarf2_const_value_attr (attr, type, name,
8545 &cu->comp_unit_obstack, cu,
8546 &value, &bytes, &baton);
8547
8548 if (TYPE_NOSIGN (type))
8549 /* GDB prints characters as NUMBER 'CHAR'. If that's
8550 changed, this can use value_print instead. */
8551 c_printchar (value, type, buf);
8552 else
8553 {
8554 struct value_print_options opts;
8555
8556 if (baton != NULL)
8557 v = dwarf2_evaluate_loc_desc (type, NULL,
8558 baton->data,
8559 baton->size,
8560 baton->per_cu);
8561 else if (bytes != NULL)
8562 {
8563 v = allocate_value (type);
8564 memcpy (value_contents_writeable (v), bytes,
8565 TYPE_LENGTH (type));
8566 }
8567 else
8568 v = value_from_longest (type, value);
8569
8570 /* Specify decimal so that we do not depend on
8571 the radix. */
8572 get_formatted_print_options (&opts, 'd');
8573 opts.raw = 1;
8574 value_print (v, buf, &opts);
8575 release_value (v);
8576 value_free (v);
8577 }
8578 }
8579
8580 die->building_fullname = 0;
8581
8582 if (!first)
8583 {
8584 /* Close the argument list, with a space if necessary
8585 (nested templates). */
8586 char last_char = '\0';
8587 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8588 if (last_char == '>')
8589 fputs_unfiltered (" >", buf);
8590 else
8591 fputs_unfiltered (">", buf);
8592 }
8593 }
8594
8595 /* For Java and C++ methods, append formal parameter type
8596 information, if PHYSNAME. */
8597
8598 if (physname && die->tag == DW_TAG_subprogram
8599 && (cu->language == language_cplus
8600 || cu->language == language_java))
8601 {
8602 struct type *type = read_type_die (die, cu);
8603
8604 c_type_print_args (type, buf, 1, cu->language,
8605 &type_print_raw_options);
8606
8607 if (cu->language == language_java)
8608 {
8609 /* For java, we must append the return type to method
8610 names. */
8611 if (die->tag == DW_TAG_subprogram)
8612 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8613 0, 0, &type_print_raw_options);
8614 }
8615 else if (cu->language == language_cplus)
8616 {
8617 /* Assume that an artificial first parameter is
8618 "this", but do not crash if it is not. RealView
8619 marks unnamed (and thus unused) parameters as
8620 artificial; there is no way to differentiate
8621 the two cases. */
8622 if (TYPE_NFIELDS (type) > 0
8623 && TYPE_FIELD_ARTIFICIAL (type, 0)
8624 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8625 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8626 0))))
8627 fputs_unfiltered (" const", buf);
8628 }
8629 }
8630
8631 intermediate_name = ui_file_xstrdup (buf, &length);
8632 ui_file_delete (buf);
8633
8634 if (cu->language == language_cplus)
8635 canonical_name
8636 = dwarf2_canonicalize_name (intermediate_name, cu,
8637 &objfile->per_bfd->storage_obstack);
8638
8639 /* If we only computed INTERMEDIATE_NAME, or if
8640 INTERMEDIATE_NAME is already canonical, then we need to
8641 copy it to the appropriate obstack. */
8642 if (canonical_name == NULL || canonical_name == intermediate_name)
8643 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8644 intermediate_name,
8645 strlen (intermediate_name));
8646 else
8647 name = canonical_name;
8648
8649 xfree (intermediate_name);
8650 }
8651 }
8652
8653 return name;
8654 }
8655
8656 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8657 If scope qualifiers are appropriate they will be added. The result
8658 will be allocated on the storage_obstack, or NULL if the DIE does
8659 not have a name. NAME may either be from a previous call to
8660 dwarf2_name or NULL.
8661
8662 The output string will be canonicalized (if C++/Java). */
8663
8664 static const char *
8665 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8666 {
8667 return dwarf2_compute_name (name, die, cu, 0);
8668 }
8669
8670 /* Construct a physname for the given DIE in CU. NAME may either be
8671 from a previous call to dwarf2_name or NULL. The result will be
8672 allocated on the objfile_objstack or NULL if the DIE does not have a
8673 name.
8674
8675 The output string will be canonicalized (if C++/Java). */
8676
8677 static const char *
8678 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8679 {
8680 struct objfile *objfile = cu->objfile;
8681 struct attribute *attr;
8682 const char *retval, *mangled = NULL, *canon = NULL;
8683 struct cleanup *back_to;
8684 int need_copy = 1;
8685
8686 /* In this case dwarf2_compute_name is just a shortcut not building anything
8687 on its own. */
8688 if (!die_needs_namespace (die, cu))
8689 return dwarf2_compute_name (name, die, cu, 1);
8690
8691 back_to = make_cleanup (null_cleanup, NULL);
8692
8693 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8694 if (!attr)
8695 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8696
8697 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8698 has computed. */
8699 if (attr && DW_STRING (attr))
8700 {
8701 char *demangled;
8702
8703 mangled = DW_STRING (attr);
8704
8705 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8706 type. It is easier for GDB users to search for such functions as
8707 `name(params)' than `long name(params)'. In such case the minimal
8708 symbol names do not match the full symbol names but for template
8709 functions there is never a need to look up their definition from their
8710 declaration so the only disadvantage remains the minimal symbol
8711 variant `long name(params)' does not have the proper inferior type.
8712 */
8713
8714 if (cu->language == language_go)
8715 {
8716 /* This is a lie, but we already lie to the caller new_symbol_full.
8717 new_symbol_full assumes we return the mangled name.
8718 This just undoes that lie until things are cleaned up. */
8719 demangled = NULL;
8720 }
8721 else
8722 {
8723 demangled = gdb_demangle (mangled,
8724 (DMGL_PARAMS | DMGL_ANSI
8725 | (cu->language == language_java
8726 ? DMGL_JAVA | DMGL_RET_POSTFIX
8727 : DMGL_RET_DROP)));
8728 }
8729 if (demangled)
8730 {
8731 make_cleanup (xfree, demangled);
8732 canon = demangled;
8733 }
8734 else
8735 {
8736 canon = mangled;
8737 need_copy = 0;
8738 }
8739 }
8740
8741 if (canon == NULL || check_physname)
8742 {
8743 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8744
8745 if (canon != NULL && strcmp (physname, canon) != 0)
8746 {
8747 /* It may not mean a bug in GDB. The compiler could also
8748 compute DW_AT_linkage_name incorrectly. But in such case
8749 GDB would need to be bug-to-bug compatible. */
8750
8751 complaint (&symfile_complaints,
8752 _("Computed physname <%s> does not match demangled <%s> "
8753 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8754 physname, canon, mangled, die->offset.sect_off,
8755 objfile_name (objfile));
8756
8757 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8758 is available here - over computed PHYSNAME. It is safer
8759 against both buggy GDB and buggy compilers. */
8760
8761 retval = canon;
8762 }
8763 else
8764 {
8765 retval = physname;
8766 need_copy = 0;
8767 }
8768 }
8769 else
8770 retval = canon;
8771
8772 if (need_copy)
8773 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8774 retval, strlen (retval));
8775
8776 do_cleanups (back_to);
8777 return retval;
8778 }
8779
8780 /* Inspect DIE in CU for a namespace alias. If one exists, record
8781 a new symbol for it.
8782
8783 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8784
8785 static int
8786 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8787 {
8788 struct attribute *attr;
8789
8790 /* If the die does not have a name, this is not a namespace
8791 alias. */
8792 attr = dwarf2_attr (die, DW_AT_name, cu);
8793 if (attr != NULL)
8794 {
8795 int num;
8796 struct die_info *d = die;
8797 struct dwarf2_cu *imported_cu = cu;
8798
8799 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8800 keep inspecting DIEs until we hit the underlying import. */
8801 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8802 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8803 {
8804 attr = dwarf2_attr (d, DW_AT_import, cu);
8805 if (attr == NULL)
8806 break;
8807
8808 d = follow_die_ref (d, attr, &imported_cu);
8809 if (d->tag != DW_TAG_imported_declaration)
8810 break;
8811 }
8812
8813 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8814 {
8815 complaint (&symfile_complaints,
8816 _("DIE at 0x%x has too many recursively imported "
8817 "declarations"), d->offset.sect_off);
8818 return 0;
8819 }
8820
8821 if (attr != NULL)
8822 {
8823 struct type *type;
8824 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8825
8826 type = get_die_type_at_offset (offset, cu->per_cu);
8827 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8828 {
8829 /* This declaration is a global namespace alias. Add
8830 a symbol for it whose type is the aliased namespace. */
8831 new_symbol (die, type, cu);
8832 return 1;
8833 }
8834 }
8835 }
8836
8837 return 0;
8838 }
8839
8840 /* Read the import statement specified by the given die and record it. */
8841
8842 static void
8843 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8844 {
8845 struct objfile *objfile = cu->objfile;
8846 struct attribute *import_attr;
8847 struct die_info *imported_die, *child_die;
8848 struct dwarf2_cu *imported_cu;
8849 const char *imported_name;
8850 const char *imported_name_prefix;
8851 const char *canonical_name;
8852 const char *import_alias;
8853 const char *imported_declaration = NULL;
8854 const char *import_prefix;
8855 VEC (const_char_ptr) *excludes = NULL;
8856 struct cleanup *cleanups;
8857
8858 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8859 if (import_attr == NULL)
8860 {
8861 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8862 dwarf_tag_name (die->tag));
8863 return;
8864 }
8865
8866 imported_cu = cu;
8867 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8868 imported_name = dwarf2_name (imported_die, imported_cu);
8869 if (imported_name == NULL)
8870 {
8871 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8872
8873 The import in the following code:
8874 namespace A
8875 {
8876 typedef int B;
8877 }
8878
8879 int main ()
8880 {
8881 using A::B;
8882 B b;
8883 return b;
8884 }
8885
8886 ...
8887 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8888 <52> DW_AT_decl_file : 1
8889 <53> DW_AT_decl_line : 6
8890 <54> DW_AT_import : <0x75>
8891 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8892 <59> DW_AT_name : B
8893 <5b> DW_AT_decl_file : 1
8894 <5c> DW_AT_decl_line : 2
8895 <5d> DW_AT_type : <0x6e>
8896 ...
8897 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8898 <76> DW_AT_byte_size : 4
8899 <77> DW_AT_encoding : 5 (signed)
8900
8901 imports the wrong die ( 0x75 instead of 0x58 ).
8902 This case will be ignored until the gcc bug is fixed. */
8903 return;
8904 }
8905
8906 /* Figure out the local name after import. */
8907 import_alias = dwarf2_name (die, cu);
8908
8909 /* Figure out where the statement is being imported to. */
8910 import_prefix = determine_prefix (die, cu);
8911
8912 /* Figure out what the scope of the imported die is and prepend it
8913 to the name of the imported die. */
8914 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8915
8916 if (imported_die->tag != DW_TAG_namespace
8917 && imported_die->tag != DW_TAG_module)
8918 {
8919 imported_declaration = imported_name;
8920 canonical_name = imported_name_prefix;
8921 }
8922 else if (strlen (imported_name_prefix) > 0)
8923 canonical_name = obconcat (&objfile->objfile_obstack,
8924 imported_name_prefix, "::", imported_name,
8925 (char *) NULL);
8926 else
8927 canonical_name = imported_name;
8928
8929 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8930
8931 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8932 for (child_die = die->child; child_die && child_die->tag;
8933 child_die = sibling_die (child_die))
8934 {
8935 /* DWARF-4: A Fortran use statement with a “rename list” may be
8936 represented by an imported module entry with an import attribute
8937 referring to the module and owned entries corresponding to those
8938 entities that are renamed as part of being imported. */
8939
8940 if (child_die->tag != DW_TAG_imported_declaration)
8941 {
8942 complaint (&symfile_complaints,
8943 _("child DW_TAG_imported_declaration expected "
8944 "- DIE at 0x%x [in module %s]"),
8945 child_die->offset.sect_off, objfile_name (objfile));
8946 continue;
8947 }
8948
8949 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8950 if (import_attr == NULL)
8951 {
8952 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8953 dwarf_tag_name (child_die->tag));
8954 continue;
8955 }
8956
8957 imported_cu = cu;
8958 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8959 &imported_cu);
8960 imported_name = dwarf2_name (imported_die, imported_cu);
8961 if (imported_name == NULL)
8962 {
8963 complaint (&symfile_complaints,
8964 _("child DW_TAG_imported_declaration has unknown "
8965 "imported name - DIE at 0x%x [in module %s]"),
8966 child_die->offset.sect_off, objfile_name (objfile));
8967 continue;
8968 }
8969
8970 VEC_safe_push (const_char_ptr, excludes, imported_name);
8971
8972 process_die (child_die, cu);
8973 }
8974
8975 cp_add_using_directive (import_prefix,
8976 canonical_name,
8977 import_alias,
8978 imported_declaration,
8979 excludes,
8980 0,
8981 &objfile->objfile_obstack);
8982
8983 do_cleanups (cleanups);
8984 }
8985
8986 /* Cleanup function for handle_DW_AT_stmt_list. */
8987
8988 static void
8989 free_cu_line_header (void *arg)
8990 {
8991 struct dwarf2_cu *cu = arg;
8992
8993 free_line_header (cu->line_header);
8994 cu->line_header = NULL;
8995 }
8996
8997 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8998 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8999 this, it was first present in GCC release 4.3.0. */
9000
9001 static int
9002 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9003 {
9004 if (!cu->checked_producer)
9005 check_producer (cu);
9006
9007 return cu->producer_is_gcc_lt_4_3;
9008 }
9009
9010 static void
9011 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9012 const char **name, const char **comp_dir)
9013 {
9014 struct attribute *attr;
9015
9016 *name = NULL;
9017 *comp_dir = NULL;
9018
9019 /* Find the filename. Do not use dwarf2_name here, since the filename
9020 is not a source language identifier. */
9021 attr = dwarf2_attr (die, DW_AT_name, cu);
9022 if (attr)
9023 {
9024 *name = DW_STRING (attr);
9025 }
9026
9027 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9028 if (attr)
9029 *comp_dir = DW_STRING (attr);
9030 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9031 && IS_ABSOLUTE_PATH (*name))
9032 {
9033 char *d = ldirname (*name);
9034
9035 *comp_dir = d;
9036 if (d != NULL)
9037 make_cleanup (xfree, d);
9038 }
9039 if (*comp_dir != NULL)
9040 {
9041 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9042 directory, get rid of it. */
9043 char *cp = strchr (*comp_dir, ':');
9044
9045 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9046 *comp_dir = cp + 1;
9047 }
9048
9049 if (*name == NULL)
9050 *name = "<unknown>";
9051 }
9052
9053 /* Handle DW_AT_stmt_list for a compilation unit.
9054 DIE is the DW_TAG_compile_unit die for CU.
9055 COMP_DIR is the compilation directory. LOWPC is passed to
9056 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9057
9058 static void
9059 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9060 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9061 {
9062 struct objfile *objfile = dwarf2_per_objfile->objfile;
9063 struct attribute *attr;
9064 unsigned int line_offset;
9065 struct line_header line_header_local;
9066 hashval_t line_header_local_hash;
9067 unsigned u;
9068 void **slot;
9069 int decode_mapping;
9070
9071 gdb_assert (! cu->per_cu->is_debug_types);
9072
9073 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9074 if (attr == NULL)
9075 return;
9076
9077 line_offset = DW_UNSND (attr);
9078
9079 /* The line header hash table is only created if needed (it exists to
9080 prevent redundant reading of the line table for partial_units).
9081 If we're given a partial_unit, we'll need it. If we're given a
9082 compile_unit, then use the line header hash table if it's already
9083 created, but don't create one just yet. */
9084
9085 if (dwarf2_per_objfile->line_header_hash == NULL
9086 && die->tag == DW_TAG_partial_unit)
9087 {
9088 dwarf2_per_objfile->line_header_hash
9089 = htab_create_alloc_ex (127, line_header_hash_voidp,
9090 line_header_eq_voidp,
9091 free_line_header_voidp,
9092 &objfile->objfile_obstack,
9093 hashtab_obstack_allocate,
9094 dummy_obstack_deallocate);
9095 }
9096
9097 line_header_local.offset.sect_off = line_offset;
9098 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9099 line_header_local_hash = line_header_hash (&line_header_local);
9100 if (dwarf2_per_objfile->line_header_hash != NULL)
9101 {
9102 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9103 &line_header_local,
9104 line_header_local_hash, NO_INSERT);
9105
9106 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9107 is not present in *SLOT (since if there is something in *SLOT then
9108 it will be for a partial_unit). */
9109 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9110 {
9111 gdb_assert (*slot != NULL);
9112 cu->line_header = *slot;
9113 return;
9114 }
9115 }
9116
9117 /* dwarf_decode_line_header does not yet provide sufficient information.
9118 We always have to call also dwarf_decode_lines for it. */
9119 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9120 if (cu->line_header == NULL)
9121 return;
9122
9123 if (dwarf2_per_objfile->line_header_hash == NULL)
9124 slot = NULL;
9125 else
9126 {
9127 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9128 &line_header_local,
9129 line_header_local_hash, INSERT);
9130 gdb_assert (slot != NULL);
9131 }
9132 if (slot != NULL && *slot == NULL)
9133 {
9134 /* This newly decoded line number information unit will be owned
9135 by line_header_hash hash table. */
9136 *slot = cu->line_header;
9137 }
9138 else
9139 {
9140 /* We cannot free any current entry in (*slot) as that struct line_header
9141 may be already used by multiple CUs. Create only temporary decoded
9142 line_header for this CU - it may happen at most once for each line
9143 number information unit. And if we're not using line_header_hash
9144 then this is what we want as well. */
9145 gdb_assert (die->tag != DW_TAG_partial_unit);
9146 make_cleanup (free_cu_line_header, cu);
9147 }
9148 decode_mapping = (die->tag != DW_TAG_partial_unit);
9149 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9150 decode_mapping);
9151 }
9152
9153 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9154
9155 static void
9156 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9157 {
9158 struct objfile *objfile = dwarf2_per_objfile->objfile;
9159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9160 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9161 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9162 CORE_ADDR highpc = ((CORE_ADDR) 0);
9163 struct attribute *attr;
9164 const char *name = NULL;
9165 const char *comp_dir = NULL;
9166 struct die_info *child_die;
9167 bfd *abfd = objfile->obfd;
9168 CORE_ADDR baseaddr;
9169
9170 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9171
9172 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9173
9174 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9175 from finish_block. */
9176 if (lowpc == ((CORE_ADDR) -1))
9177 lowpc = highpc;
9178 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9179
9180 find_file_and_directory (die, cu, &name, &comp_dir);
9181
9182 prepare_one_comp_unit (cu, die, cu->language);
9183
9184 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9185 standardised yet. As a workaround for the language detection we fall
9186 back to the DW_AT_producer string. */
9187 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9188 cu->language = language_opencl;
9189
9190 /* Similar hack for Go. */
9191 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9192 set_cu_language (DW_LANG_Go, cu);
9193
9194 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9195
9196 /* Decode line number information if present. We do this before
9197 processing child DIEs, so that the line header table is available
9198 for DW_AT_decl_file. */
9199 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9200
9201 /* Process all dies in compilation unit. */
9202 if (die->child != NULL)
9203 {
9204 child_die = die->child;
9205 while (child_die && child_die->tag)
9206 {
9207 process_die (child_die, cu);
9208 child_die = sibling_die (child_die);
9209 }
9210 }
9211
9212 /* Decode macro information, if present. Dwarf 2 macro information
9213 refers to information in the line number info statement program
9214 header, so we can only read it if we've read the header
9215 successfully. */
9216 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9217 if (attr && cu->line_header)
9218 {
9219 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9220 complaint (&symfile_complaints,
9221 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9222
9223 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9224 }
9225 else
9226 {
9227 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9228 if (attr && cu->line_header)
9229 {
9230 unsigned int macro_offset = DW_UNSND (attr);
9231
9232 dwarf_decode_macros (cu, macro_offset, 0);
9233 }
9234 }
9235
9236 do_cleanups (back_to);
9237 }
9238
9239 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9240 Create the set of symtabs used by this TU, or if this TU is sharing
9241 symtabs with another TU and the symtabs have already been created
9242 then restore those symtabs in the line header.
9243 We don't need the pc/line-number mapping for type units. */
9244
9245 static void
9246 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9247 {
9248 struct objfile *objfile = dwarf2_per_objfile->objfile;
9249 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9250 struct type_unit_group *tu_group;
9251 int first_time;
9252 struct line_header *lh;
9253 struct attribute *attr;
9254 unsigned int i, line_offset;
9255 struct signatured_type *sig_type;
9256
9257 gdb_assert (per_cu->is_debug_types);
9258 sig_type = (struct signatured_type *) per_cu;
9259
9260 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9261
9262 /* If we're using .gdb_index (includes -readnow) then
9263 per_cu->type_unit_group may not have been set up yet. */
9264 if (sig_type->type_unit_group == NULL)
9265 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9266 tu_group = sig_type->type_unit_group;
9267
9268 /* If we've already processed this stmt_list there's no real need to
9269 do it again, we could fake it and just recreate the part we need
9270 (file name,index -> symtab mapping). If data shows this optimization
9271 is useful we can do it then. */
9272 first_time = tu_group->compunit_symtab == NULL;
9273
9274 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9275 debug info. */
9276 lh = NULL;
9277 if (attr != NULL)
9278 {
9279 line_offset = DW_UNSND (attr);
9280 lh = dwarf_decode_line_header (line_offset, cu);
9281 }
9282 if (lh == NULL)
9283 {
9284 if (first_time)
9285 dwarf2_start_symtab (cu, "", NULL, 0);
9286 else
9287 {
9288 gdb_assert (tu_group->symtabs == NULL);
9289 restart_symtab (tu_group->compunit_symtab, "", 0);
9290 }
9291 return;
9292 }
9293
9294 cu->line_header = lh;
9295 make_cleanup (free_cu_line_header, cu);
9296
9297 if (first_time)
9298 {
9299 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9300
9301 tu_group->num_symtabs = lh->num_file_names;
9302 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9303
9304 for (i = 0; i < lh->num_file_names; ++i)
9305 {
9306 const char *dir = NULL;
9307 struct file_entry *fe = &lh->file_names[i];
9308
9309 if (fe->dir_index)
9310 dir = lh->include_dirs[fe->dir_index - 1];
9311 dwarf2_start_subfile (fe->name, dir);
9312
9313 if (current_subfile->symtab == NULL)
9314 {
9315 /* NOTE: start_subfile will recognize when it's been passed
9316 a file it has already seen. So we can't assume there's a
9317 simple mapping from lh->file_names to subfiles, plus
9318 lh->file_names may contain dups. */
9319 current_subfile->symtab
9320 = allocate_symtab (cust, current_subfile->name);
9321 }
9322
9323 fe->symtab = current_subfile->symtab;
9324 tu_group->symtabs[i] = fe->symtab;
9325 }
9326 }
9327 else
9328 {
9329 restart_symtab (tu_group->compunit_symtab, "", 0);
9330
9331 for (i = 0; i < lh->num_file_names; ++i)
9332 {
9333 struct file_entry *fe = &lh->file_names[i];
9334
9335 fe->symtab = tu_group->symtabs[i];
9336 }
9337 }
9338
9339 /* The main symtab is allocated last. Type units don't have DW_AT_name
9340 so they don't have a "real" (so to speak) symtab anyway.
9341 There is later code that will assign the main symtab to all symbols
9342 that don't have one. We need to handle the case of a symbol with a
9343 missing symtab (DW_AT_decl_file) anyway. */
9344 }
9345
9346 /* Process DW_TAG_type_unit.
9347 For TUs we want to skip the first top level sibling if it's not the
9348 actual type being defined by this TU. In this case the first top
9349 level sibling is there to provide context only. */
9350
9351 static void
9352 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9353 {
9354 struct die_info *child_die;
9355
9356 prepare_one_comp_unit (cu, die, language_minimal);
9357
9358 /* Initialize (or reinitialize) the machinery for building symtabs.
9359 We do this before processing child DIEs, so that the line header table
9360 is available for DW_AT_decl_file. */
9361 setup_type_unit_groups (die, cu);
9362
9363 if (die->child != NULL)
9364 {
9365 child_die = die->child;
9366 while (child_die && child_die->tag)
9367 {
9368 process_die (child_die, cu);
9369 child_die = sibling_die (child_die);
9370 }
9371 }
9372 }
9373 \f
9374 /* DWO/DWP files.
9375
9376 http://gcc.gnu.org/wiki/DebugFission
9377 http://gcc.gnu.org/wiki/DebugFissionDWP
9378
9379 To simplify handling of both DWO files ("object" files with the DWARF info)
9380 and DWP files (a file with the DWOs packaged up into one file), we treat
9381 DWP files as having a collection of virtual DWO files. */
9382
9383 static hashval_t
9384 hash_dwo_file (const void *item)
9385 {
9386 const struct dwo_file *dwo_file = item;
9387 hashval_t hash;
9388
9389 hash = htab_hash_string (dwo_file->dwo_name);
9390 if (dwo_file->comp_dir != NULL)
9391 hash += htab_hash_string (dwo_file->comp_dir);
9392 return hash;
9393 }
9394
9395 static int
9396 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9397 {
9398 const struct dwo_file *lhs = item_lhs;
9399 const struct dwo_file *rhs = item_rhs;
9400
9401 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9402 return 0;
9403 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9404 return lhs->comp_dir == rhs->comp_dir;
9405 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9406 }
9407
9408 /* Allocate a hash table for DWO files. */
9409
9410 static htab_t
9411 allocate_dwo_file_hash_table (void)
9412 {
9413 struct objfile *objfile = dwarf2_per_objfile->objfile;
9414
9415 return htab_create_alloc_ex (41,
9416 hash_dwo_file,
9417 eq_dwo_file,
9418 NULL,
9419 &objfile->objfile_obstack,
9420 hashtab_obstack_allocate,
9421 dummy_obstack_deallocate);
9422 }
9423
9424 /* Lookup DWO file DWO_NAME. */
9425
9426 static void **
9427 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9428 {
9429 struct dwo_file find_entry;
9430 void **slot;
9431
9432 if (dwarf2_per_objfile->dwo_files == NULL)
9433 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9434
9435 memset (&find_entry, 0, sizeof (find_entry));
9436 find_entry.dwo_name = dwo_name;
9437 find_entry.comp_dir = comp_dir;
9438 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9439
9440 return slot;
9441 }
9442
9443 static hashval_t
9444 hash_dwo_unit (const void *item)
9445 {
9446 const struct dwo_unit *dwo_unit = item;
9447
9448 /* This drops the top 32 bits of the id, but is ok for a hash. */
9449 return dwo_unit->signature;
9450 }
9451
9452 static int
9453 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9454 {
9455 const struct dwo_unit *lhs = item_lhs;
9456 const struct dwo_unit *rhs = item_rhs;
9457
9458 /* The signature is assumed to be unique within the DWO file.
9459 So while object file CU dwo_id's always have the value zero,
9460 that's OK, assuming each object file DWO file has only one CU,
9461 and that's the rule for now. */
9462 return lhs->signature == rhs->signature;
9463 }
9464
9465 /* Allocate a hash table for DWO CUs,TUs.
9466 There is one of these tables for each of CUs,TUs for each DWO file. */
9467
9468 static htab_t
9469 allocate_dwo_unit_table (struct objfile *objfile)
9470 {
9471 /* Start out with a pretty small number.
9472 Generally DWO files contain only one CU and maybe some TUs. */
9473 return htab_create_alloc_ex (3,
9474 hash_dwo_unit,
9475 eq_dwo_unit,
9476 NULL,
9477 &objfile->objfile_obstack,
9478 hashtab_obstack_allocate,
9479 dummy_obstack_deallocate);
9480 }
9481
9482 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9483
9484 struct create_dwo_cu_data
9485 {
9486 struct dwo_file *dwo_file;
9487 struct dwo_unit dwo_unit;
9488 };
9489
9490 /* die_reader_func for create_dwo_cu. */
9491
9492 static void
9493 create_dwo_cu_reader (const struct die_reader_specs *reader,
9494 const gdb_byte *info_ptr,
9495 struct die_info *comp_unit_die,
9496 int has_children,
9497 void *datap)
9498 {
9499 struct dwarf2_cu *cu = reader->cu;
9500 struct objfile *objfile = dwarf2_per_objfile->objfile;
9501 sect_offset offset = cu->per_cu->offset;
9502 struct dwarf2_section_info *section = cu->per_cu->section;
9503 struct create_dwo_cu_data *data = datap;
9504 struct dwo_file *dwo_file = data->dwo_file;
9505 struct dwo_unit *dwo_unit = &data->dwo_unit;
9506 struct attribute *attr;
9507
9508 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9509 if (attr == NULL)
9510 {
9511 complaint (&symfile_complaints,
9512 _("Dwarf Error: debug entry at offset 0x%x is missing"
9513 " its dwo_id [in module %s]"),
9514 offset.sect_off, dwo_file->dwo_name);
9515 return;
9516 }
9517
9518 dwo_unit->dwo_file = dwo_file;
9519 dwo_unit->signature = DW_UNSND (attr);
9520 dwo_unit->section = section;
9521 dwo_unit->offset = offset;
9522 dwo_unit->length = cu->per_cu->length;
9523
9524 if (dwarf2_read_debug)
9525 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9526 offset.sect_off, hex_string (dwo_unit->signature));
9527 }
9528
9529 /* Create the dwo_unit for the lone CU in DWO_FILE.
9530 Note: This function processes DWO files only, not DWP files. */
9531
9532 static struct dwo_unit *
9533 create_dwo_cu (struct dwo_file *dwo_file)
9534 {
9535 struct objfile *objfile = dwarf2_per_objfile->objfile;
9536 struct dwarf2_section_info *section = &dwo_file->sections.info;
9537 bfd *abfd;
9538 htab_t cu_htab;
9539 const gdb_byte *info_ptr, *end_ptr;
9540 struct create_dwo_cu_data create_dwo_cu_data;
9541 struct dwo_unit *dwo_unit;
9542
9543 dwarf2_read_section (objfile, section);
9544 info_ptr = section->buffer;
9545
9546 if (info_ptr == NULL)
9547 return NULL;
9548
9549 /* We can't set abfd until now because the section may be empty or
9550 not present, in which case section->asection will be NULL. */
9551 abfd = get_section_bfd_owner (section);
9552
9553 if (dwarf2_read_debug)
9554 {
9555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9556 get_section_name (section),
9557 get_section_file_name (section));
9558 }
9559
9560 create_dwo_cu_data.dwo_file = dwo_file;
9561 dwo_unit = NULL;
9562
9563 end_ptr = info_ptr + section->size;
9564 while (info_ptr < end_ptr)
9565 {
9566 struct dwarf2_per_cu_data per_cu;
9567
9568 memset (&create_dwo_cu_data.dwo_unit, 0,
9569 sizeof (create_dwo_cu_data.dwo_unit));
9570 memset (&per_cu, 0, sizeof (per_cu));
9571 per_cu.objfile = objfile;
9572 per_cu.is_debug_types = 0;
9573 per_cu.offset.sect_off = info_ptr - section->buffer;
9574 per_cu.section = section;
9575
9576 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9577 create_dwo_cu_reader,
9578 &create_dwo_cu_data);
9579
9580 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9581 {
9582 /* If we've already found one, complain. We only support one
9583 because having more than one requires hacking the dwo_name of
9584 each to match, which is highly unlikely to happen. */
9585 if (dwo_unit != NULL)
9586 {
9587 complaint (&symfile_complaints,
9588 _("Multiple CUs in DWO file %s [in module %s]"),
9589 dwo_file->dwo_name, objfile_name (objfile));
9590 break;
9591 }
9592
9593 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9594 *dwo_unit = create_dwo_cu_data.dwo_unit;
9595 }
9596
9597 info_ptr += per_cu.length;
9598 }
9599
9600 return dwo_unit;
9601 }
9602
9603 /* DWP file .debug_{cu,tu}_index section format:
9604 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9605
9606 DWP Version 1:
9607
9608 Both index sections have the same format, and serve to map a 64-bit
9609 signature to a set of section numbers. Each section begins with a header,
9610 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9611 indexes, and a pool of 32-bit section numbers. The index sections will be
9612 aligned at 8-byte boundaries in the file.
9613
9614 The index section header consists of:
9615
9616 V, 32 bit version number
9617 -, 32 bits unused
9618 N, 32 bit number of compilation units or type units in the index
9619 M, 32 bit number of slots in the hash table
9620
9621 Numbers are recorded using the byte order of the application binary.
9622
9623 The hash table begins at offset 16 in the section, and consists of an array
9624 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9625 order of the application binary). Unused slots in the hash table are 0.
9626 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9627
9628 The parallel table begins immediately after the hash table
9629 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9630 array of 32-bit indexes (using the byte order of the application binary),
9631 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9632 table contains a 32-bit index into the pool of section numbers. For unused
9633 hash table slots, the corresponding entry in the parallel table will be 0.
9634
9635 The pool of section numbers begins immediately following the hash table
9636 (at offset 16 + 12 * M from the beginning of the section). The pool of
9637 section numbers consists of an array of 32-bit words (using the byte order
9638 of the application binary). Each item in the array is indexed starting
9639 from 0. The hash table entry provides the index of the first section
9640 number in the set. Additional section numbers in the set follow, and the
9641 set is terminated by a 0 entry (section number 0 is not used in ELF).
9642
9643 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9644 section must be the first entry in the set, and the .debug_abbrev.dwo must
9645 be the second entry. Other members of the set may follow in any order.
9646
9647 ---
9648
9649 DWP Version 2:
9650
9651 DWP Version 2 combines all the .debug_info, etc. sections into one,
9652 and the entries in the index tables are now offsets into these sections.
9653 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9654 section.
9655
9656 Index Section Contents:
9657 Header
9658 Hash Table of Signatures dwp_hash_table.hash_table
9659 Parallel Table of Indices dwp_hash_table.unit_table
9660 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9661 Table of Section Sizes dwp_hash_table.v2.sizes
9662
9663 The index section header consists of:
9664
9665 V, 32 bit version number
9666 L, 32 bit number of columns in the table of section offsets
9667 N, 32 bit number of compilation units or type units in the index
9668 M, 32 bit number of slots in the hash table
9669
9670 Numbers are recorded using the byte order of the application binary.
9671
9672 The hash table has the same format as version 1.
9673 The parallel table of indices has the same format as version 1,
9674 except that the entries are origin-1 indices into the table of sections
9675 offsets and the table of section sizes.
9676
9677 The table of offsets begins immediately following the parallel table
9678 (at offset 16 + 12 * M from the beginning of the section). The table is
9679 a two-dimensional array of 32-bit words (using the byte order of the
9680 application binary), with L columns and N+1 rows, in row-major order.
9681 Each row in the array is indexed starting from 0. The first row provides
9682 a key to the remaining rows: each column in this row provides an identifier
9683 for a debug section, and the offsets in the same column of subsequent rows
9684 refer to that section. The section identifiers are:
9685
9686 DW_SECT_INFO 1 .debug_info.dwo
9687 DW_SECT_TYPES 2 .debug_types.dwo
9688 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9689 DW_SECT_LINE 4 .debug_line.dwo
9690 DW_SECT_LOC 5 .debug_loc.dwo
9691 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9692 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9693 DW_SECT_MACRO 8 .debug_macro.dwo
9694
9695 The offsets provided by the CU and TU index sections are the base offsets
9696 for the contributions made by each CU or TU to the corresponding section
9697 in the package file. Each CU and TU header contains an abbrev_offset
9698 field, used to find the abbreviations table for that CU or TU within the
9699 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9700 be interpreted as relative to the base offset given in the index section.
9701 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9702 should be interpreted as relative to the base offset for .debug_line.dwo,
9703 and offsets into other debug sections obtained from DWARF attributes should
9704 also be interpreted as relative to the corresponding base offset.
9705
9706 The table of sizes begins immediately following the table of offsets.
9707 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9708 with L columns and N rows, in row-major order. Each row in the array is
9709 indexed starting from 1 (row 0 is shared by the two tables).
9710
9711 ---
9712
9713 Hash table lookup is handled the same in version 1 and 2:
9714
9715 We assume that N and M will not exceed 2^32 - 1.
9716 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9717
9718 Given a 64-bit compilation unit signature or a type signature S, an entry
9719 in the hash table is located as follows:
9720
9721 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9722 the low-order k bits all set to 1.
9723
9724 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9725
9726 3) If the hash table entry at index H matches the signature, use that
9727 entry. If the hash table entry at index H is unused (all zeroes),
9728 terminate the search: the signature is not present in the table.
9729
9730 4) Let H = (H + H') modulo M. Repeat at Step 3.
9731
9732 Because M > N and H' and M are relatively prime, the search is guaranteed
9733 to stop at an unused slot or find the match. */
9734
9735 /* Create a hash table to map DWO IDs to their CU/TU entry in
9736 .debug_{info,types}.dwo in DWP_FILE.
9737 Returns NULL if there isn't one.
9738 Note: This function processes DWP files only, not DWO files. */
9739
9740 static struct dwp_hash_table *
9741 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9742 {
9743 struct objfile *objfile = dwarf2_per_objfile->objfile;
9744 bfd *dbfd = dwp_file->dbfd;
9745 const gdb_byte *index_ptr, *index_end;
9746 struct dwarf2_section_info *index;
9747 uint32_t version, nr_columns, nr_units, nr_slots;
9748 struct dwp_hash_table *htab;
9749
9750 if (is_debug_types)
9751 index = &dwp_file->sections.tu_index;
9752 else
9753 index = &dwp_file->sections.cu_index;
9754
9755 if (dwarf2_section_empty_p (index))
9756 return NULL;
9757 dwarf2_read_section (objfile, index);
9758
9759 index_ptr = index->buffer;
9760 index_end = index_ptr + index->size;
9761
9762 version = read_4_bytes (dbfd, index_ptr);
9763 index_ptr += 4;
9764 if (version == 2)
9765 nr_columns = read_4_bytes (dbfd, index_ptr);
9766 else
9767 nr_columns = 0;
9768 index_ptr += 4;
9769 nr_units = read_4_bytes (dbfd, index_ptr);
9770 index_ptr += 4;
9771 nr_slots = read_4_bytes (dbfd, index_ptr);
9772 index_ptr += 4;
9773
9774 if (version != 1 && version != 2)
9775 {
9776 error (_("Dwarf Error: unsupported DWP file version (%s)"
9777 " [in module %s]"),
9778 pulongest (version), dwp_file->name);
9779 }
9780 if (nr_slots != (nr_slots & -nr_slots))
9781 {
9782 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9783 " is not power of 2 [in module %s]"),
9784 pulongest (nr_slots), dwp_file->name);
9785 }
9786
9787 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9788 htab->version = version;
9789 htab->nr_columns = nr_columns;
9790 htab->nr_units = nr_units;
9791 htab->nr_slots = nr_slots;
9792 htab->hash_table = index_ptr;
9793 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9794
9795 /* Exit early if the table is empty. */
9796 if (nr_slots == 0 || nr_units == 0
9797 || (version == 2 && nr_columns == 0))
9798 {
9799 /* All must be zero. */
9800 if (nr_slots != 0 || nr_units != 0
9801 || (version == 2 && nr_columns != 0))
9802 {
9803 complaint (&symfile_complaints,
9804 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9805 " all zero [in modules %s]"),
9806 dwp_file->name);
9807 }
9808 return htab;
9809 }
9810
9811 if (version == 1)
9812 {
9813 htab->section_pool.v1.indices =
9814 htab->unit_table + sizeof (uint32_t) * nr_slots;
9815 /* It's harder to decide whether the section is too small in v1.
9816 V1 is deprecated anyway so we punt. */
9817 }
9818 else
9819 {
9820 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9821 int *ids = htab->section_pool.v2.section_ids;
9822 /* Reverse map for error checking. */
9823 int ids_seen[DW_SECT_MAX + 1];
9824 int i;
9825
9826 if (nr_columns < 2)
9827 {
9828 error (_("Dwarf Error: bad DWP hash table, too few columns"
9829 " in section table [in module %s]"),
9830 dwp_file->name);
9831 }
9832 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9833 {
9834 error (_("Dwarf Error: bad DWP hash table, too many columns"
9835 " in section table [in module %s]"),
9836 dwp_file->name);
9837 }
9838 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9839 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9840 for (i = 0; i < nr_columns; ++i)
9841 {
9842 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9843
9844 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9845 {
9846 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9847 " in section table [in module %s]"),
9848 id, dwp_file->name);
9849 }
9850 if (ids_seen[id] != -1)
9851 {
9852 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9853 " id %d in section table [in module %s]"),
9854 id, dwp_file->name);
9855 }
9856 ids_seen[id] = i;
9857 ids[i] = id;
9858 }
9859 /* Must have exactly one info or types section. */
9860 if (((ids_seen[DW_SECT_INFO] != -1)
9861 + (ids_seen[DW_SECT_TYPES] != -1))
9862 != 1)
9863 {
9864 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9865 " DWO info/types section [in module %s]"),
9866 dwp_file->name);
9867 }
9868 /* Must have an abbrev section. */
9869 if (ids_seen[DW_SECT_ABBREV] == -1)
9870 {
9871 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9872 " section [in module %s]"),
9873 dwp_file->name);
9874 }
9875 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9876 htab->section_pool.v2.sizes =
9877 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9878 * nr_units * nr_columns);
9879 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9880 * nr_units * nr_columns))
9881 > index_end)
9882 {
9883 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9884 " [in module %s]"),
9885 dwp_file->name);
9886 }
9887 }
9888
9889 return htab;
9890 }
9891
9892 /* Update SECTIONS with the data from SECTP.
9893
9894 This function is like the other "locate" section routines that are
9895 passed to bfd_map_over_sections, but in this context the sections to
9896 read comes from the DWP V1 hash table, not the full ELF section table.
9897
9898 The result is non-zero for success, or zero if an error was found. */
9899
9900 static int
9901 locate_v1_virtual_dwo_sections (asection *sectp,
9902 struct virtual_v1_dwo_sections *sections)
9903 {
9904 const struct dwop_section_names *names = &dwop_section_names;
9905
9906 if (section_is_p (sectp->name, &names->abbrev_dwo))
9907 {
9908 /* There can be only one. */
9909 if (sections->abbrev.s.asection != NULL)
9910 return 0;
9911 sections->abbrev.s.asection = sectp;
9912 sections->abbrev.size = bfd_get_section_size (sectp);
9913 }
9914 else if (section_is_p (sectp->name, &names->info_dwo)
9915 || section_is_p (sectp->name, &names->types_dwo))
9916 {
9917 /* There can be only one. */
9918 if (sections->info_or_types.s.asection != NULL)
9919 return 0;
9920 sections->info_or_types.s.asection = sectp;
9921 sections->info_or_types.size = bfd_get_section_size (sectp);
9922 }
9923 else if (section_is_p (sectp->name, &names->line_dwo))
9924 {
9925 /* There can be only one. */
9926 if (sections->line.s.asection != NULL)
9927 return 0;
9928 sections->line.s.asection = sectp;
9929 sections->line.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->loc_dwo))
9932 {
9933 /* There can be only one. */
9934 if (sections->loc.s.asection != NULL)
9935 return 0;
9936 sections->loc.s.asection = sectp;
9937 sections->loc.size = bfd_get_section_size (sectp);
9938 }
9939 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9940 {
9941 /* There can be only one. */
9942 if (sections->macinfo.s.asection != NULL)
9943 return 0;
9944 sections->macinfo.s.asection = sectp;
9945 sections->macinfo.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->macro_dwo))
9948 {
9949 /* There can be only one. */
9950 if (sections->macro.s.asection != NULL)
9951 return 0;
9952 sections->macro.s.asection = sectp;
9953 sections->macro.size = bfd_get_section_size (sectp);
9954 }
9955 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9956 {
9957 /* There can be only one. */
9958 if (sections->str_offsets.s.asection != NULL)
9959 return 0;
9960 sections->str_offsets.s.asection = sectp;
9961 sections->str_offsets.size = bfd_get_section_size (sectp);
9962 }
9963 else
9964 {
9965 /* No other kind of section is valid. */
9966 return 0;
9967 }
9968
9969 return 1;
9970 }
9971
9972 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9973 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9974 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9975 This is for DWP version 1 files. */
9976
9977 static struct dwo_unit *
9978 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9979 uint32_t unit_index,
9980 const char *comp_dir,
9981 ULONGEST signature, int is_debug_types)
9982 {
9983 struct objfile *objfile = dwarf2_per_objfile->objfile;
9984 const struct dwp_hash_table *dwp_htab =
9985 is_debug_types ? dwp_file->tus : dwp_file->cus;
9986 bfd *dbfd = dwp_file->dbfd;
9987 const char *kind = is_debug_types ? "TU" : "CU";
9988 struct dwo_file *dwo_file;
9989 struct dwo_unit *dwo_unit;
9990 struct virtual_v1_dwo_sections sections;
9991 void **dwo_file_slot;
9992 char *virtual_dwo_name;
9993 struct dwarf2_section_info *cutu;
9994 struct cleanup *cleanups;
9995 int i;
9996
9997 gdb_assert (dwp_file->version == 1);
9998
9999 if (dwarf2_read_debug)
10000 {
10001 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10002 kind,
10003 pulongest (unit_index), hex_string (signature),
10004 dwp_file->name);
10005 }
10006
10007 /* Fetch the sections of this DWO unit.
10008 Put a limit on the number of sections we look for so that bad data
10009 doesn't cause us to loop forever. */
10010
10011 #define MAX_NR_V1_DWO_SECTIONS \
10012 (1 /* .debug_info or .debug_types */ \
10013 + 1 /* .debug_abbrev */ \
10014 + 1 /* .debug_line */ \
10015 + 1 /* .debug_loc */ \
10016 + 1 /* .debug_str_offsets */ \
10017 + 1 /* .debug_macro or .debug_macinfo */ \
10018 + 1 /* trailing zero */)
10019
10020 memset (&sections, 0, sizeof (sections));
10021 cleanups = make_cleanup (null_cleanup, 0);
10022
10023 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10024 {
10025 asection *sectp;
10026 uint32_t section_nr =
10027 read_4_bytes (dbfd,
10028 dwp_htab->section_pool.v1.indices
10029 + (unit_index + i) * sizeof (uint32_t));
10030
10031 if (section_nr == 0)
10032 break;
10033 if (section_nr >= dwp_file->num_sections)
10034 {
10035 error (_("Dwarf Error: bad DWP hash table, section number too large"
10036 " [in module %s]"),
10037 dwp_file->name);
10038 }
10039
10040 sectp = dwp_file->elf_sections[section_nr];
10041 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10042 {
10043 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10044 " [in module %s]"),
10045 dwp_file->name);
10046 }
10047 }
10048
10049 if (i < 2
10050 || dwarf2_section_empty_p (&sections.info_or_types)
10051 || dwarf2_section_empty_p (&sections.abbrev))
10052 {
10053 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10054 " [in module %s]"),
10055 dwp_file->name);
10056 }
10057 if (i == MAX_NR_V1_DWO_SECTIONS)
10058 {
10059 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10060 " [in module %s]"),
10061 dwp_file->name);
10062 }
10063
10064 /* It's easier for the rest of the code if we fake a struct dwo_file and
10065 have dwo_unit "live" in that. At least for now.
10066
10067 The DWP file can be made up of a random collection of CUs and TUs.
10068 However, for each CU + set of TUs that came from the same original DWO
10069 file, we can combine them back into a virtual DWO file to save space
10070 (fewer struct dwo_file objects to allocate). Remember that for really
10071 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10072
10073 virtual_dwo_name =
10074 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10075 get_section_id (&sections.abbrev),
10076 get_section_id (&sections.line),
10077 get_section_id (&sections.loc),
10078 get_section_id (&sections.str_offsets));
10079 make_cleanup (xfree, virtual_dwo_name);
10080 /* Can we use an existing virtual DWO file? */
10081 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10082 /* Create one if necessary. */
10083 if (*dwo_file_slot == NULL)
10084 {
10085 if (dwarf2_read_debug)
10086 {
10087 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10088 virtual_dwo_name);
10089 }
10090 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10091 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10092 virtual_dwo_name,
10093 strlen (virtual_dwo_name));
10094 dwo_file->comp_dir = comp_dir;
10095 dwo_file->sections.abbrev = sections.abbrev;
10096 dwo_file->sections.line = sections.line;
10097 dwo_file->sections.loc = sections.loc;
10098 dwo_file->sections.macinfo = sections.macinfo;
10099 dwo_file->sections.macro = sections.macro;
10100 dwo_file->sections.str_offsets = sections.str_offsets;
10101 /* The "str" section is global to the entire DWP file. */
10102 dwo_file->sections.str = dwp_file->sections.str;
10103 /* The info or types section is assigned below to dwo_unit,
10104 there's no need to record it in dwo_file.
10105 Also, we can't simply record type sections in dwo_file because
10106 we record a pointer into the vector in dwo_unit. As we collect more
10107 types we'll grow the vector and eventually have to reallocate space
10108 for it, invalidating all copies of pointers into the previous
10109 contents. */
10110 *dwo_file_slot = dwo_file;
10111 }
10112 else
10113 {
10114 if (dwarf2_read_debug)
10115 {
10116 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10117 virtual_dwo_name);
10118 }
10119 dwo_file = *dwo_file_slot;
10120 }
10121 do_cleanups (cleanups);
10122
10123 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10124 dwo_unit->dwo_file = dwo_file;
10125 dwo_unit->signature = signature;
10126 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10127 sizeof (struct dwarf2_section_info));
10128 *dwo_unit->section = sections.info_or_types;
10129 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10130
10131 return dwo_unit;
10132 }
10133
10134 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10135 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10136 piece within that section used by a TU/CU, return a virtual section
10137 of just that piece. */
10138
10139 static struct dwarf2_section_info
10140 create_dwp_v2_section (struct dwarf2_section_info *section,
10141 bfd_size_type offset, bfd_size_type size)
10142 {
10143 struct dwarf2_section_info result;
10144 asection *sectp;
10145
10146 gdb_assert (section != NULL);
10147 gdb_assert (!section->is_virtual);
10148
10149 memset (&result, 0, sizeof (result));
10150 result.s.containing_section = section;
10151 result.is_virtual = 1;
10152
10153 if (size == 0)
10154 return result;
10155
10156 sectp = get_section_bfd_section (section);
10157
10158 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10159 bounds of the real section. This is a pretty-rare event, so just
10160 flag an error (easier) instead of a warning and trying to cope. */
10161 if (sectp == NULL
10162 || offset + size > bfd_get_section_size (sectp))
10163 {
10164 bfd *abfd = sectp->owner;
10165
10166 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10167 " in section %s [in module %s]"),
10168 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10169 objfile_name (dwarf2_per_objfile->objfile));
10170 }
10171
10172 result.virtual_offset = offset;
10173 result.size = size;
10174 return result;
10175 }
10176
10177 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10178 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10179 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10180 This is for DWP version 2 files. */
10181
10182 static struct dwo_unit *
10183 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10184 uint32_t unit_index,
10185 const char *comp_dir,
10186 ULONGEST signature, int is_debug_types)
10187 {
10188 struct objfile *objfile = dwarf2_per_objfile->objfile;
10189 const struct dwp_hash_table *dwp_htab =
10190 is_debug_types ? dwp_file->tus : dwp_file->cus;
10191 bfd *dbfd = dwp_file->dbfd;
10192 const char *kind = is_debug_types ? "TU" : "CU";
10193 struct dwo_file *dwo_file;
10194 struct dwo_unit *dwo_unit;
10195 struct virtual_v2_dwo_sections sections;
10196 void **dwo_file_slot;
10197 char *virtual_dwo_name;
10198 struct dwarf2_section_info *cutu;
10199 struct cleanup *cleanups;
10200 int i;
10201
10202 gdb_assert (dwp_file->version == 2);
10203
10204 if (dwarf2_read_debug)
10205 {
10206 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10207 kind,
10208 pulongest (unit_index), hex_string (signature),
10209 dwp_file->name);
10210 }
10211
10212 /* Fetch the section offsets of this DWO unit. */
10213
10214 memset (&sections, 0, sizeof (sections));
10215 cleanups = make_cleanup (null_cleanup, 0);
10216
10217 for (i = 0; i < dwp_htab->nr_columns; ++i)
10218 {
10219 uint32_t offset = read_4_bytes (dbfd,
10220 dwp_htab->section_pool.v2.offsets
10221 + (((unit_index - 1) * dwp_htab->nr_columns
10222 + i)
10223 * sizeof (uint32_t)));
10224 uint32_t size = read_4_bytes (dbfd,
10225 dwp_htab->section_pool.v2.sizes
10226 + (((unit_index - 1) * dwp_htab->nr_columns
10227 + i)
10228 * sizeof (uint32_t)));
10229
10230 switch (dwp_htab->section_pool.v2.section_ids[i])
10231 {
10232 case DW_SECT_INFO:
10233 case DW_SECT_TYPES:
10234 sections.info_or_types_offset = offset;
10235 sections.info_or_types_size = size;
10236 break;
10237 case DW_SECT_ABBREV:
10238 sections.abbrev_offset = offset;
10239 sections.abbrev_size = size;
10240 break;
10241 case DW_SECT_LINE:
10242 sections.line_offset = offset;
10243 sections.line_size = size;
10244 break;
10245 case DW_SECT_LOC:
10246 sections.loc_offset = offset;
10247 sections.loc_size = size;
10248 break;
10249 case DW_SECT_STR_OFFSETS:
10250 sections.str_offsets_offset = offset;
10251 sections.str_offsets_size = size;
10252 break;
10253 case DW_SECT_MACINFO:
10254 sections.macinfo_offset = offset;
10255 sections.macinfo_size = size;
10256 break;
10257 case DW_SECT_MACRO:
10258 sections.macro_offset = offset;
10259 sections.macro_size = size;
10260 break;
10261 }
10262 }
10263
10264 /* It's easier for the rest of the code if we fake a struct dwo_file and
10265 have dwo_unit "live" in that. At least for now.
10266
10267 The DWP file can be made up of a random collection of CUs and TUs.
10268 However, for each CU + set of TUs that came from the same original DWO
10269 file, we can combine them back into a virtual DWO file to save space
10270 (fewer struct dwo_file objects to allocate). Remember that for really
10271 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10272
10273 virtual_dwo_name =
10274 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10275 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10276 (long) (sections.line_size ? sections.line_offset : 0),
10277 (long) (sections.loc_size ? sections.loc_offset : 0),
10278 (long) (sections.str_offsets_size
10279 ? sections.str_offsets_offset : 0));
10280 make_cleanup (xfree, virtual_dwo_name);
10281 /* Can we use an existing virtual DWO file? */
10282 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10283 /* Create one if necessary. */
10284 if (*dwo_file_slot == NULL)
10285 {
10286 if (dwarf2_read_debug)
10287 {
10288 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10289 virtual_dwo_name);
10290 }
10291 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10292 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10293 virtual_dwo_name,
10294 strlen (virtual_dwo_name));
10295 dwo_file->comp_dir = comp_dir;
10296 dwo_file->sections.abbrev =
10297 create_dwp_v2_section (&dwp_file->sections.abbrev,
10298 sections.abbrev_offset, sections.abbrev_size);
10299 dwo_file->sections.line =
10300 create_dwp_v2_section (&dwp_file->sections.line,
10301 sections.line_offset, sections.line_size);
10302 dwo_file->sections.loc =
10303 create_dwp_v2_section (&dwp_file->sections.loc,
10304 sections.loc_offset, sections.loc_size);
10305 dwo_file->sections.macinfo =
10306 create_dwp_v2_section (&dwp_file->sections.macinfo,
10307 sections.macinfo_offset, sections.macinfo_size);
10308 dwo_file->sections.macro =
10309 create_dwp_v2_section (&dwp_file->sections.macro,
10310 sections.macro_offset, sections.macro_size);
10311 dwo_file->sections.str_offsets =
10312 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10313 sections.str_offsets_offset,
10314 sections.str_offsets_size);
10315 /* The "str" section is global to the entire DWP file. */
10316 dwo_file->sections.str = dwp_file->sections.str;
10317 /* The info or types section is assigned below to dwo_unit,
10318 there's no need to record it in dwo_file.
10319 Also, we can't simply record type sections in dwo_file because
10320 we record a pointer into the vector in dwo_unit. As we collect more
10321 types we'll grow the vector and eventually have to reallocate space
10322 for it, invalidating all copies of pointers into the previous
10323 contents. */
10324 *dwo_file_slot = dwo_file;
10325 }
10326 else
10327 {
10328 if (dwarf2_read_debug)
10329 {
10330 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10331 virtual_dwo_name);
10332 }
10333 dwo_file = *dwo_file_slot;
10334 }
10335 do_cleanups (cleanups);
10336
10337 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10338 dwo_unit->dwo_file = dwo_file;
10339 dwo_unit->signature = signature;
10340 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10341 sizeof (struct dwarf2_section_info));
10342 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10343 ? &dwp_file->sections.types
10344 : &dwp_file->sections.info,
10345 sections.info_or_types_offset,
10346 sections.info_or_types_size);
10347 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10348
10349 return dwo_unit;
10350 }
10351
10352 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10353 Returns NULL if the signature isn't found. */
10354
10355 static struct dwo_unit *
10356 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10357 ULONGEST signature, int is_debug_types)
10358 {
10359 const struct dwp_hash_table *dwp_htab =
10360 is_debug_types ? dwp_file->tus : dwp_file->cus;
10361 bfd *dbfd = dwp_file->dbfd;
10362 uint32_t mask = dwp_htab->nr_slots - 1;
10363 uint32_t hash = signature & mask;
10364 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10365 unsigned int i;
10366 void **slot;
10367 struct dwo_unit find_dwo_cu, *dwo_cu;
10368
10369 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10370 find_dwo_cu.signature = signature;
10371 slot = htab_find_slot (is_debug_types
10372 ? dwp_file->loaded_tus
10373 : dwp_file->loaded_cus,
10374 &find_dwo_cu, INSERT);
10375
10376 if (*slot != NULL)
10377 return *slot;
10378
10379 /* Use a for loop so that we don't loop forever on bad debug info. */
10380 for (i = 0; i < dwp_htab->nr_slots; ++i)
10381 {
10382 ULONGEST signature_in_table;
10383
10384 signature_in_table =
10385 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10386 if (signature_in_table == signature)
10387 {
10388 uint32_t unit_index =
10389 read_4_bytes (dbfd,
10390 dwp_htab->unit_table + hash * sizeof (uint32_t));
10391
10392 if (dwp_file->version == 1)
10393 {
10394 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10395 comp_dir, signature,
10396 is_debug_types);
10397 }
10398 else
10399 {
10400 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10401 comp_dir, signature,
10402 is_debug_types);
10403 }
10404 return *slot;
10405 }
10406 if (signature_in_table == 0)
10407 return NULL;
10408 hash = (hash + hash2) & mask;
10409 }
10410
10411 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10412 " [in module %s]"),
10413 dwp_file->name);
10414 }
10415
10416 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10417 Open the file specified by FILE_NAME and hand it off to BFD for
10418 preliminary analysis. Return a newly initialized bfd *, which
10419 includes a canonicalized copy of FILE_NAME.
10420 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10421 SEARCH_CWD is true if the current directory is to be searched.
10422 It will be searched before debug-file-directory.
10423 If successful, the file is added to the bfd include table of the
10424 objfile's bfd (see gdb_bfd_record_inclusion).
10425 If unable to find/open the file, return NULL.
10426 NOTE: This function is derived from symfile_bfd_open. */
10427
10428 static bfd *
10429 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10430 {
10431 bfd *sym_bfd;
10432 int desc, flags;
10433 char *absolute_name;
10434 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10435 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10436 to debug_file_directory. */
10437 char *search_path;
10438 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10439
10440 if (search_cwd)
10441 {
10442 if (*debug_file_directory != '\0')
10443 search_path = concat (".", dirname_separator_string,
10444 debug_file_directory, NULL);
10445 else
10446 search_path = xstrdup (".");
10447 }
10448 else
10449 search_path = xstrdup (debug_file_directory);
10450
10451 flags = OPF_RETURN_REALPATH;
10452 if (is_dwp)
10453 flags |= OPF_SEARCH_IN_PATH;
10454 desc = openp (search_path, flags, file_name,
10455 O_RDONLY | O_BINARY, &absolute_name);
10456 xfree (search_path);
10457 if (desc < 0)
10458 return NULL;
10459
10460 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10461 xfree (absolute_name);
10462 if (sym_bfd == NULL)
10463 return NULL;
10464 bfd_set_cacheable (sym_bfd, 1);
10465
10466 if (!bfd_check_format (sym_bfd, bfd_object))
10467 {
10468 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10469 return NULL;
10470 }
10471
10472 /* Success. Record the bfd as having been included by the objfile's bfd.
10473 This is important because things like demangled_names_hash lives in the
10474 objfile's per_bfd space and may have references to things like symbol
10475 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10476 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10477
10478 return sym_bfd;
10479 }
10480
10481 /* Try to open DWO file FILE_NAME.
10482 COMP_DIR is the DW_AT_comp_dir attribute.
10483 The result is the bfd handle of the file.
10484 If there is a problem finding or opening the file, return NULL.
10485 Upon success, the canonicalized path of the file is stored in the bfd,
10486 same as symfile_bfd_open. */
10487
10488 static bfd *
10489 open_dwo_file (const char *file_name, const char *comp_dir)
10490 {
10491 bfd *abfd;
10492
10493 if (IS_ABSOLUTE_PATH (file_name))
10494 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10495
10496 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10497
10498 if (comp_dir != NULL)
10499 {
10500 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10501
10502 /* NOTE: If comp_dir is a relative path, this will also try the
10503 search path, which seems useful. */
10504 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10505 xfree (path_to_try);
10506 if (abfd != NULL)
10507 return abfd;
10508 }
10509
10510 /* That didn't work, try debug-file-directory, which, despite its name,
10511 is a list of paths. */
10512
10513 if (*debug_file_directory == '\0')
10514 return NULL;
10515
10516 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10517 }
10518
10519 /* This function is mapped across the sections and remembers the offset and
10520 size of each of the DWO debugging sections we are interested in. */
10521
10522 static void
10523 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10524 {
10525 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10526 const struct dwop_section_names *names = &dwop_section_names;
10527
10528 if (section_is_p (sectp->name, &names->abbrev_dwo))
10529 {
10530 dwo_sections->abbrev.s.asection = sectp;
10531 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10532 }
10533 else if (section_is_p (sectp->name, &names->info_dwo))
10534 {
10535 dwo_sections->info.s.asection = sectp;
10536 dwo_sections->info.size = bfd_get_section_size (sectp);
10537 }
10538 else if (section_is_p (sectp->name, &names->line_dwo))
10539 {
10540 dwo_sections->line.s.asection = sectp;
10541 dwo_sections->line.size = bfd_get_section_size (sectp);
10542 }
10543 else if (section_is_p (sectp->name, &names->loc_dwo))
10544 {
10545 dwo_sections->loc.s.asection = sectp;
10546 dwo_sections->loc.size = bfd_get_section_size (sectp);
10547 }
10548 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10549 {
10550 dwo_sections->macinfo.s.asection = sectp;
10551 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10552 }
10553 else if (section_is_p (sectp->name, &names->macro_dwo))
10554 {
10555 dwo_sections->macro.s.asection = sectp;
10556 dwo_sections->macro.size = bfd_get_section_size (sectp);
10557 }
10558 else if (section_is_p (sectp->name, &names->str_dwo))
10559 {
10560 dwo_sections->str.s.asection = sectp;
10561 dwo_sections->str.size = bfd_get_section_size (sectp);
10562 }
10563 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10564 {
10565 dwo_sections->str_offsets.s.asection = sectp;
10566 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10567 }
10568 else if (section_is_p (sectp->name, &names->types_dwo))
10569 {
10570 struct dwarf2_section_info type_section;
10571
10572 memset (&type_section, 0, sizeof (type_section));
10573 type_section.s.asection = sectp;
10574 type_section.size = bfd_get_section_size (sectp);
10575 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10576 &type_section);
10577 }
10578 }
10579
10580 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10581 by PER_CU. This is for the non-DWP case.
10582 The result is NULL if DWO_NAME can't be found. */
10583
10584 static struct dwo_file *
10585 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10586 const char *dwo_name, const char *comp_dir)
10587 {
10588 struct objfile *objfile = dwarf2_per_objfile->objfile;
10589 struct dwo_file *dwo_file;
10590 bfd *dbfd;
10591 struct cleanup *cleanups;
10592
10593 dbfd = open_dwo_file (dwo_name, comp_dir);
10594 if (dbfd == NULL)
10595 {
10596 if (dwarf2_read_debug)
10597 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10598 return NULL;
10599 }
10600 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10601 dwo_file->dwo_name = dwo_name;
10602 dwo_file->comp_dir = comp_dir;
10603 dwo_file->dbfd = dbfd;
10604
10605 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10606
10607 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10608
10609 dwo_file->cu = create_dwo_cu (dwo_file);
10610
10611 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10612 dwo_file->sections.types);
10613
10614 discard_cleanups (cleanups);
10615
10616 if (dwarf2_read_debug)
10617 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10618
10619 return dwo_file;
10620 }
10621
10622 /* This function is mapped across the sections and remembers the offset and
10623 size of each of the DWP debugging sections common to version 1 and 2 that
10624 we are interested in. */
10625
10626 static void
10627 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10628 void *dwp_file_ptr)
10629 {
10630 struct dwp_file *dwp_file = dwp_file_ptr;
10631 const struct dwop_section_names *names = &dwop_section_names;
10632 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10633
10634 /* Record the ELF section number for later lookup: this is what the
10635 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10636 gdb_assert (elf_section_nr < dwp_file->num_sections);
10637 dwp_file->elf_sections[elf_section_nr] = sectp;
10638
10639 /* Look for specific sections that we need. */
10640 if (section_is_p (sectp->name, &names->str_dwo))
10641 {
10642 dwp_file->sections.str.s.asection = sectp;
10643 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10644 }
10645 else if (section_is_p (sectp->name, &names->cu_index))
10646 {
10647 dwp_file->sections.cu_index.s.asection = sectp;
10648 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10649 }
10650 else if (section_is_p (sectp->name, &names->tu_index))
10651 {
10652 dwp_file->sections.tu_index.s.asection = sectp;
10653 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10654 }
10655 }
10656
10657 /* This function is mapped across the sections and remembers the offset and
10658 size of each of the DWP version 2 debugging sections that we are interested
10659 in. This is split into a separate function because we don't know if we
10660 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10661
10662 static void
10663 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10664 {
10665 struct dwp_file *dwp_file = dwp_file_ptr;
10666 const struct dwop_section_names *names = &dwop_section_names;
10667 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10668
10669 /* Record the ELF section number for later lookup: this is what the
10670 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10671 gdb_assert (elf_section_nr < dwp_file->num_sections);
10672 dwp_file->elf_sections[elf_section_nr] = sectp;
10673
10674 /* Look for specific sections that we need. */
10675 if (section_is_p (sectp->name, &names->abbrev_dwo))
10676 {
10677 dwp_file->sections.abbrev.s.asection = sectp;
10678 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10679 }
10680 else if (section_is_p (sectp->name, &names->info_dwo))
10681 {
10682 dwp_file->sections.info.s.asection = sectp;
10683 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10684 }
10685 else if (section_is_p (sectp->name, &names->line_dwo))
10686 {
10687 dwp_file->sections.line.s.asection = sectp;
10688 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10689 }
10690 else if (section_is_p (sectp->name, &names->loc_dwo))
10691 {
10692 dwp_file->sections.loc.s.asection = sectp;
10693 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10694 }
10695 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10696 {
10697 dwp_file->sections.macinfo.s.asection = sectp;
10698 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10699 }
10700 else if (section_is_p (sectp->name, &names->macro_dwo))
10701 {
10702 dwp_file->sections.macro.s.asection = sectp;
10703 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10704 }
10705 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10706 {
10707 dwp_file->sections.str_offsets.s.asection = sectp;
10708 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10709 }
10710 else if (section_is_p (sectp->name, &names->types_dwo))
10711 {
10712 dwp_file->sections.types.s.asection = sectp;
10713 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10714 }
10715 }
10716
10717 /* Hash function for dwp_file loaded CUs/TUs. */
10718
10719 static hashval_t
10720 hash_dwp_loaded_cutus (const void *item)
10721 {
10722 const struct dwo_unit *dwo_unit = item;
10723
10724 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10725 return dwo_unit->signature;
10726 }
10727
10728 /* Equality function for dwp_file loaded CUs/TUs. */
10729
10730 static int
10731 eq_dwp_loaded_cutus (const void *a, const void *b)
10732 {
10733 const struct dwo_unit *dua = a;
10734 const struct dwo_unit *dub = b;
10735
10736 return dua->signature == dub->signature;
10737 }
10738
10739 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10740
10741 static htab_t
10742 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10743 {
10744 return htab_create_alloc_ex (3,
10745 hash_dwp_loaded_cutus,
10746 eq_dwp_loaded_cutus,
10747 NULL,
10748 &objfile->objfile_obstack,
10749 hashtab_obstack_allocate,
10750 dummy_obstack_deallocate);
10751 }
10752
10753 /* Try to open DWP file FILE_NAME.
10754 The result is the bfd handle of the file.
10755 If there is a problem finding or opening the file, return NULL.
10756 Upon success, the canonicalized path of the file is stored in the bfd,
10757 same as symfile_bfd_open. */
10758
10759 static bfd *
10760 open_dwp_file (const char *file_name)
10761 {
10762 bfd *abfd;
10763
10764 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10765 if (abfd != NULL)
10766 return abfd;
10767
10768 /* Work around upstream bug 15652.
10769 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10770 [Whether that's a "bug" is debatable, but it is getting in our way.]
10771 We have no real idea where the dwp file is, because gdb's realpath-ing
10772 of the executable's path may have discarded the needed info.
10773 [IWBN if the dwp file name was recorded in the executable, akin to
10774 .gnu_debuglink, but that doesn't exist yet.]
10775 Strip the directory from FILE_NAME and search again. */
10776 if (*debug_file_directory != '\0')
10777 {
10778 /* Don't implicitly search the current directory here.
10779 If the user wants to search "." to handle this case,
10780 it must be added to debug-file-directory. */
10781 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10782 0 /*search_cwd*/);
10783 }
10784
10785 return NULL;
10786 }
10787
10788 /* Initialize the use of the DWP file for the current objfile.
10789 By convention the name of the DWP file is ${objfile}.dwp.
10790 The result is NULL if it can't be found. */
10791
10792 static struct dwp_file *
10793 open_and_init_dwp_file (void)
10794 {
10795 struct objfile *objfile = dwarf2_per_objfile->objfile;
10796 struct dwp_file *dwp_file;
10797 char *dwp_name;
10798 bfd *dbfd;
10799 struct cleanup *cleanups;
10800
10801 /* Try to find first .dwp for the binary file before any symbolic links
10802 resolving. */
10803 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10804 cleanups = make_cleanup (xfree, dwp_name);
10805
10806 dbfd = open_dwp_file (dwp_name);
10807 if (dbfd == NULL
10808 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10809 {
10810 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10811 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10812 make_cleanup (xfree, dwp_name);
10813 dbfd = open_dwp_file (dwp_name);
10814 }
10815
10816 if (dbfd == NULL)
10817 {
10818 if (dwarf2_read_debug)
10819 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10820 do_cleanups (cleanups);
10821 return NULL;
10822 }
10823 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10824 dwp_file->name = bfd_get_filename (dbfd);
10825 dwp_file->dbfd = dbfd;
10826 do_cleanups (cleanups);
10827
10828 /* +1: section 0 is unused */
10829 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10830 dwp_file->elf_sections =
10831 OBSTACK_CALLOC (&objfile->objfile_obstack,
10832 dwp_file->num_sections, asection *);
10833
10834 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10835
10836 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10837
10838 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10839
10840 /* The DWP file version is stored in the hash table. Oh well. */
10841 if (dwp_file->cus->version != dwp_file->tus->version)
10842 {
10843 /* Technically speaking, we should try to limp along, but this is
10844 pretty bizarre. We use pulongest here because that's the established
10845 portability solution (e.g, we cannot use %u for uint32_t). */
10846 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10847 " TU version %s [in DWP file %s]"),
10848 pulongest (dwp_file->cus->version),
10849 pulongest (dwp_file->tus->version), dwp_name);
10850 }
10851 dwp_file->version = dwp_file->cus->version;
10852
10853 if (dwp_file->version == 2)
10854 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10855
10856 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10857 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10858
10859 if (dwarf2_read_debug)
10860 {
10861 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10862 fprintf_unfiltered (gdb_stdlog,
10863 " %s CUs, %s TUs\n",
10864 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10865 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10866 }
10867
10868 return dwp_file;
10869 }
10870
10871 /* Wrapper around open_and_init_dwp_file, only open it once. */
10872
10873 static struct dwp_file *
10874 get_dwp_file (void)
10875 {
10876 if (! dwarf2_per_objfile->dwp_checked)
10877 {
10878 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10879 dwarf2_per_objfile->dwp_checked = 1;
10880 }
10881 return dwarf2_per_objfile->dwp_file;
10882 }
10883
10884 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10885 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10886 or in the DWP file for the objfile, referenced by THIS_UNIT.
10887 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10888 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10889
10890 This is called, for example, when wanting to read a variable with a
10891 complex location. Therefore we don't want to do file i/o for every call.
10892 Therefore we don't want to look for a DWO file on every call.
10893 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10894 then we check if we've already seen DWO_NAME, and only THEN do we check
10895 for a DWO file.
10896
10897 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10898 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10899
10900 static struct dwo_unit *
10901 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10902 const char *dwo_name, const char *comp_dir,
10903 ULONGEST signature, int is_debug_types)
10904 {
10905 struct objfile *objfile = dwarf2_per_objfile->objfile;
10906 const char *kind = is_debug_types ? "TU" : "CU";
10907 void **dwo_file_slot;
10908 struct dwo_file *dwo_file;
10909 struct dwp_file *dwp_file;
10910
10911 /* First see if there's a DWP file.
10912 If we have a DWP file but didn't find the DWO inside it, don't
10913 look for the original DWO file. It makes gdb behave differently
10914 depending on whether one is debugging in the build tree. */
10915
10916 dwp_file = get_dwp_file ();
10917 if (dwp_file != NULL)
10918 {
10919 const struct dwp_hash_table *dwp_htab =
10920 is_debug_types ? dwp_file->tus : dwp_file->cus;
10921
10922 if (dwp_htab != NULL)
10923 {
10924 struct dwo_unit *dwo_cutu =
10925 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10926 signature, is_debug_types);
10927
10928 if (dwo_cutu != NULL)
10929 {
10930 if (dwarf2_read_debug)
10931 {
10932 fprintf_unfiltered (gdb_stdlog,
10933 "Virtual DWO %s %s found: @%s\n",
10934 kind, hex_string (signature),
10935 host_address_to_string (dwo_cutu));
10936 }
10937 return dwo_cutu;
10938 }
10939 }
10940 }
10941 else
10942 {
10943 /* No DWP file, look for the DWO file. */
10944
10945 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10946 if (*dwo_file_slot == NULL)
10947 {
10948 /* Read in the file and build a table of the CUs/TUs it contains. */
10949 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10950 }
10951 /* NOTE: This will be NULL if unable to open the file. */
10952 dwo_file = *dwo_file_slot;
10953
10954 if (dwo_file != NULL)
10955 {
10956 struct dwo_unit *dwo_cutu = NULL;
10957
10958 if (is_debug_types && dwo_file->tus)
10959 {
10960 struct dwo_unit find_dwo_cutu;
10961
10962 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10963 find_dwo_cutu.signature = signature;
10964 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10965 }
10966 else if (!is_debug_types && dwo_file->cu)
10967 {
10968 if (signature == dwo_file->cu->signature)
10969 dwo_cutu = dwo_file->cu;
10970 }
10971
10972 if (dwo_cutu != NULL)
10973 {
10974 if (dwarf2_read_debug)
10975 {
10976 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10977 kind, dwo_name, hex_string (signature),
10978 host_address_to_string (dwo_cutu));
10979 }
10980 return dwo_cutu;
10981 }
10982 }
10983 }
10984
10985 /* We didn't find it. This could mean a dwo_id mismatch, or
10986 someone deleted the DWO/DWP file, or the search path isn't set up
10987 correctly to find the file. */
10988
10989 if (dwarf2_read_debug)
10990 {
10991 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10992 kind, dwo_name, hex_string (signature));
10993 }
10994
10995 /* This is a warning and not a complaint because it can be caused by
10996 pilot error (e.g., user accidentally deleting the DWO). */
10997 {
10998 /* Print the name of the DWP file if we looked there, helps the user
10999 better diagnose the problem. */
11000 char *dwp_text = NULL;
11001 struct cleanup *cleanups;
11002
11003 if (dwp_file != NULL)
11004 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11005 cleanups = make_cleanup (xfree, dwp_text);
11006
11007 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11008 " [in module %s]"),
11009 kind, dwo_name, hex_string (signature),
11010 dwp_text != NULL ? dwp_text : "",
11011 this_unit->is_debug_types ? "TU" : "CU",
11012 this_unit->offset.sect_off, objfile_name (objfile));
11013
11014 do_cleanups (cleanups);
11015 }
11016 return NULL;
11017 }
11018
11019 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11020 See lookup_dwo_cutu_unit for details. */
11021
11022 static struct dwo_unit *
11023 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11024 const char *dwo_name, const char *comp_dir,
11025 ULONGEST signature)
11026 {
11027 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11028 }
11029
11030 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11031 See lookup_dwo_cutu_unit for details. */
11032
11033 static struct dwo_unit *
11034 lookup_dwo_type_unit (struct signatured_type *this_tu,
11035 const char *dwo_name, const char *comp_dir)
11036 {
11037 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11038 }
11039
11040 /* Traversal function for queue_and_load_all_dwo_tus. */
11041
11042 static int
11043 queue_and_load_dwo_tu (void **slot, void *info)
11044 {
11045 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11046 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11047 ULONGEST signature = dwo_unit->signature;
11048 struct signatured_type *sig_type =
11049 lookup_dwo_signatured_type (per_cu->cu, signature);
11050
11051 if (sig_type != NULL)
11052 {
11053 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11054
11055 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11056 a real dependency of PER_CU on SIG_TYPE. That is detected later
11057 while processing PER_CU. */
11058 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11059 load_full_type_unit (sig_cu);
11060 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11061 }
11062
11063 return 1;
11064 }
11065
11066 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11067 The DWO may have the only definition of the type, though it may not be
11068 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11069 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11070
11071 static void
11072 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11073 {
11074 struct dwo_unit *dwo_unit;
11075 struct dwo_file *dwo_file;
11076
11077 gdb_assert (!per_cu->is_debug_types);
11078 gdb_assert (get_dwp_file () == NULL);
11079 gdb_assert (per_cu->cu != NULL);
11080
11081 dwo_unit = per_cu->cu->dwo_unit;
11082 gdb_assert (dwo_unit != NULL);
11083
11084 dwo_file = dwo_unit->dwo_file;
11085 if (dwo_file->tus != NULL)
11086 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11087 }
11088
11089 /* Free all resources associated with DWO_FILE.
11090 Close the DWO file and munmap the sections.
11091 All memory should be on the objfile obstack. */
11092
11093 static void
11094 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11095 {
11096 int ix;
11097 struct dwarf2_section_info *section;
11098
11099 /* Note: dbfd is NULL for virtual DWO files. */
11100 gdb_bfd_unref (dwo_file->dbfd);
11101
11102 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11103 }
11104
11105 /* Wrapper for free_dwo_file for use in cleanups. */
11106
11107 static void
11108 free_dwo_file_cleanup (void *arg)
11109 {
11110 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11111 struct objfile *objfile = dwarf2_per_objfile->objfile;
11112
11113 free_dwo_file (dwo_file, objfile);
11114 }
11115
11116 /* Traversal function for free_dwo_files. */
11117
11118 static int
11119 free_dwo_file_from_slot (void **slot, void *info)
11120 {
11121 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11122 struct objfile *objfile = (struct objfile *) info;
11123
11124 free_dwo_file (dwo_file, objfile);
11125
11126 return 1;
11127 }
11128
11129 /* Free all resources associated with DWO_FILES. */
11130
11131 static void
11132 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11133 {
11134 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11135 }
11136 \f
11137 /* Read in various DIEs. */
11138
11139 /* qsort helper for inherit_abstract_dies. */
11140
11141 static int
11142 unsigned_int_compar (const void *ap, const void *bp)
11143 {
11144 unsigned int a = *(unsigned int *) ap;
11145 unsigned int b = *(unsigned int *) bp;
11146
11147 return (a > b) - (b > a);
11148 }
11149
11150 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11151 Inherit only the children of the DW_AT_abstract_origin DIE not being
11152 already referenced by DW_AT_abstract_origin from the children of the
11153 current DIE. */
11154
11155 static void
11156 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11157 {
11158 struct die_info *child_die;
11159 unsigned die_children_count;
11160 /* CU offsets which were referenced by children of the current DIE. */
11161 sect_offset *offsets;
11162 sect_offset *offsets_end, *offsetp;
11163 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11164 struct die_info *origin_die;
11165 /* Iterator of the ORIGIN_DIE children. */
11166 struct die_info *origin_child_die;
11167 struct cleanup *cleanups;
11168 struct attribute *attr;
11169 struct dwarf2_cu *origin_cu;
11170 struct pending **origin_previous_list_in_scope;
11171
11172 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11173 if (!attr)
11174 return;
11175
11176 /* Note that following die references may follow to a die in a
11177 different cu. */
11178
11179 origin_cu = cu;
11180 origin_die = follow_die_ref (die, attr, &origin_cu);
11181
11182 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11183 symbols in. */
11184 origin_previous_list_in_scope = origin_cu->list_in_scope;
11185 origin_cu->list_in_scope = cu->list_in_scope;
11186
11187 if (die->tag != origin_die->tag
11188 && !(die->tag == DW_TAG_inlined_subroutine
11189 && origin_die->tag == DW_TAG_subprogram))
11190 complaint (&symfile_complaints,
11191 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11192 die->offset.sect_off, origin_die->offset.sect_off);
11193
11194 child_die = die->child;
11195 die_children_count = 0;
11196 while (child_die && child_die->tag)
11197 {
11198 child_die = sibling_die (child_die);
11199 die_children_count++;
11200 }
11201 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11202 cleanups = make_cleanup (xfree, offsets);
11203
11204 offsets_end = offsets;
11205 child_die = die->child;
11206 while (child_die && child_die->tag)
11207 {
11208 /* For each CHILD_DIE, find the corresponding child of
11209 ORIGIN_DIE. If there is more than one layer of
11210 DW_AT_abstract_origin, follow them all; there shouldn't be,
11211 but GCC versions at least through 4.4 generate this (GCC PR
11212 40573). */
11213 struct die_info *child_origin_die = child_die;
11214 struct dwarf2_cu *child_origin_cu = cu;
11215
11216 while (1)
11217 {
11218 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11219 child_origin_cu);
11220 if (attr == NULL)
11221 break;
11222 child_origin_die = follow_die_ref (child_origin_die, attr,
11223 &child_origin_cu);
11224 }
11225
11226 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11227 counterpart may exist. */
11228 if (child_origin_die != child_die)
11229 {
11230 if (child_die->tag != child_origin_die->tag
11231 && !(child_die->tag == DW_TAG_inlined_subroutine
11232 && child_origin_die->tag == DW_TAG_subprogram))
11233 complaint (&symfile_complaints,
11234 _("Child DIE 0x%x and its abstract origin 0x%x have "
11235 "different tags"), child_die->offset.sect_off,
11236 child_origin_die->offset.sect_off);
11237 if (child_origin_die->parent != origin_die)
11238 complaint (&symfile_complaints,
11239 _("Child DIE 0x%x and its abstract origin 0x%x have "
11240 "different parents"), child_die->offset.sect_off,
11241 child_origin_die->offset.sect_off);
11242 else
11243 *offsets_end++ = child_origin_die->offset;
11244 }
11245 child_die = sibling_die (child_die);
11246 }
11247 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11248 unsigned_int_compar);
11249 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11250 if (offsetp[-1].sect_off == offsetp->sect_off)
11251 complaint (&symfile_complaints,
11252 _("Multiple children of DIE 0x%x refer "
11253 "to DIE 0x%x as their abstract origin"),
11254 die->offset.sect_off, offsetp->sect_off);
11255
11256 offsetp = offsets;
11257 origin_child_die = origin_die->child;
11258 while (origin_child_die && origin_child_die->tag)
11259 {
11260 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11261 while (offsetp < offsets_end
11262 && offsetp->sect_off < origin_child_die->offset.sect_off)
11263 offsetp++;
11264 if (offsetp >= offsets_end
11265 || offsetp->sect_off > origin_child_die->offset.sect_off)
11266 {
11267 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11268 Check whether we're already processing ORIGIN_CHILD_DIE.
11269 This can happen with mutually referenced abstract_origins.
11270 PR 16581. */
11271 if (!origin_child_die->in_process)
11272 process_die (origin_child_die, origin_cu);
11273 }
11274 origin_child_die = sibling_die (origin_child_die);
11275 }
11276 origin_cu->list_in_scope = origin_previous_list_in_scope;
11277
11278 do_cleanups (cleanups);
11279 }
11280
11281 static void
11282 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11283 {
11284 struct objfile *objfile = cu->objfile;
11285 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11286 struct context_stack *newobj;
11287 CORE_ADDR lowpc;
11288 CORE_ADDR highpc;
11289 struct die_info *child_die;
11290 struct attribute *attr, *call_line, *call_file;
11291 const char *name;
11292 CORE_ADDR baseaddr;
11293 struct block *block;
11294 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11295 VEC (symbolp) *template_args = NULL;
11296 struct template_symbol *templ_func = NULL;
11297
11298 if (inlined_func)
11299 {
11300 /* If we do not have call site information, we can't show the
11301 caller of this inlined function. That's too confusing, so
11302 only use the scope for local variables. */
11303 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11304 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11305 if (call_line == NULL || call_file == NULL)
11306 {
11307 read_lexical_block_scope (die, cu);
11308 return;
11309 }
11310 }
11311
11312 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11313
11314 name = dwarf2_name (die, cu);
11315
11316 /* Ignore functions with missing or empty names. These are actually
11317 illegal according to the DWARF standard. */
11318 if (name == NULL)
11319 {
11320 complaint (&symfile_complaints,
11321 _("missing name for subprogram DIE at %d"),
11322 die->offset.sect_off);
11323 return;
11324 }
11325
11326 /* Ignore functions with missing or invalid low and high pc attributes. */
11327 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11328 {
11329 attr = dwarf2_attr (die, DW_AT_external, cu);
11330 if (!attr || !DW_UNSND (attr))
11331 complaint (&symfile_complaints,
11332 _("cannot get low and high bounds "
11333 "for subprogram DIE at %d"),
11334 die->offset.sect_off);
11335 return;
11336 }
11337
11338 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11339 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11340
11341 /* If we have any template arguments, then we must allocate a
11342 different sort of symbol. */
11343 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11344 {
11345 if (child_die->tag == DW_TAG_template_type_param
11346 || child_die->tag == DW_TAG_template_value_param)
11347 {
11348 templ_func = allocate_template_symbol (objfile);
11349 templ_func->base.is_cplus_template_function = 1;
11350 break;
11351 }
11352 }
11353
11354 newobj = push_context (0, lowpc);
11355 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11356 (struct symbol *) templ_func);
11357
11358 /* If there is a location expression for DW_AT_frame_base, record
11359 it. */
11360 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11361 if (attr)
11362 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11363
11364 cu->list_in_scope = &local_symbols;
11365
11366 if (die->child != NULL)
11367 {
11368 child_die = die->child;
11369 while (child_die && child_die->tag)
11370 {
11371 if (child_die->tag == DW_TAG_template_type_param
11372 || child_die->tag == DW_TAG_template_value_param)
11373 {
11374 struct symbol *arg = new_symbol (child_die, NULL, cu);
11375
11376 if (arg != NULL)
11377 VEC_safe_push (symbolp, template_args, arg);
11378 }
11379 else
11380 process_die (child_die, cu);
11381 child_die = sibling_die (child_die);
11382 }
11383 }
11384
11385 inherit_abstract_dies (die, cu);
11386
11387 /* If we have a DW_AT_specification, we might need to import using
11388 directives from the context of the specification DIE. See the
11389 comment in determine_prefix. */
11390 if (cu->language == language_cplus
11391 && dwarf2_attr (die, DW_AT_specification, cu))
11392 {
11393 struct dwarf2_cu *spec_cu = cu;
11394 struct die_info *spec_die = die_specification (die, &spec_cu);
11395
11396 while (spec_die)
11397 {
11398 child_die = spec_die->child;
11399 while (child_die && child_die->tag)
11400 {
11401 if (child_die->tag == DW_TAG_imported_module)
11402 process_die (child_die, spec_cu);
11403 child_die = sibling_die (child_die);
11404 }
11405
11406 /* In some cases, GCC generates specification DIEs that
11407 themselves contain DW_AT_specification attributes. */
11408 spec_die = die_specification (spec_die, &spec_cu);
11409 }
11410 }
11411
11412 newobj = pop_context ();
11413 /* Make a block for the local symbols within. */
11414 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11415 lowpc, highpc);
11416
11417 /* For C++, set the block's scope. */
11418 if ((cu->language == language_cplus || cu->language == language_fortran)
11419 && cu->processing_has_namespace_info)
11420 block_set_scope (block, determine_prefix (die, cu),
11421 &objfile->objfile_obstack);
11422
11423 /* If we have address ranges, record them. */
11424 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11425
11426 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11427
11428 /* Attach template arguments to function. */
11429 if (! VEC_empty (symbolp, template_args))
11430 {
11431 gdb_assert (templ_func != NULL);
11432
11433 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11434 templ_func->template_arguments
11435 = obstack_alloc (&objfile->objfile_obstack,
11436 (templ_func->n_template_arguments
11437 * sizeof (struct symbol *)));
11438 memcpy (templ_func->template_arguments,
11439 VEC_address (symbolp, template_args),
11440 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11441 VEC_free (symbolp, template_args);
11442 }
11443
11444 /* In C++, we can have functions nested inside functions (e.g., when
11445 a function declares a class that has methods). This means that
11446 when we finish processing a function scope, we may need to go
11447 back to building a containing block's symbol lists. */
11448 local_symbols = newobj->locals;
11449 using_directives = newobj->using_directives;
11450
11451 /* If we've finished processing a top-level function, subsequent
11452 symbols go in the file symbol list. */
11453 if (outermost_context_p ())
11454 cu->list_in_scope = &file_symbols;
11455 }
11456
11457 /* Process all the DIES contained within a lexical block scope. Start
11458 a new scope, process the dies, and then close the scope. */
11459
11460 static void
11461 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11462 {
11463 struct objfile *objfile = cu->objfile;
11464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11465 struct context_stack *newobj;
11466 CORE_ADDR lowpc, highpc;
11467 struct die_info *child_die;
11468 CORE_ADDR baseaddr;
11469
11470 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11471
11472 /* Ignore blocks with missing or invalid low and high pc attributes. */
11473 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11474 as multiple lexical blocks? Handling children in a sane way would
11475 be nasty. Might be easier to properly extend generic blocks to
11476 describe ranges. */
11477 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11478 return;
11479 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11480 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11481
11482 push_context (0, lowpc);
11483 if (die->child != NULL)
11484 {
11485 child_die = die->child;
11486 while (child_die && child_die->tag)
11487 {
11488 process_die (child_die, cu);
11489 child_die = sibling_die (child_die);
11490 }
11491 }
11492 newobj = pop_context ();
11493
11494 if (local_symbols != NULL || using_directives != NULL)
11495 {
11496 struct block *block
11497 = finish_block (0, &local_symbols, newobj->old_blocks,
11498 newobj->start_addr, highpc);
11499
11500 /* Note that recording ranges after traversing children, as we
11501 do here, means that recording a parent's ranges entails
11502 walking across all its children's ranges as they appear in
11503 the address map, which is quadratic behavior.
11504
11505 It would be nicer to record the parent's ranges before
11506 traversing its children, simply overriding whatever you find
11507 there. But since we don't even decide whether to create a
11508 block until after we've traversed its children, that's hard
11509 to do. */
11510 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11511 }
11512 local_symbols = newobj->locals;
11513 using_directives = newobj->using_directives;
11514 }
11515
11516 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11517
11518 static void
11519 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11520 {
11521 struct objfile *objfile = cu->objfile;
11522 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11523 CORE_ADDR pc, baseaddr;
11524 struct attribute *attr;
11525 struct call_site *call_site, call_site_local;
11526 void **slot;
11527 int nparams;
11528 struct die_info *child_die;
11529
11530 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11531
11532 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11533 if (!attr)
11534 {
11535 complaint (&symfile_complaints,
11536 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11537 "DIE 0x%x [in module %s]"),
11538 die->offset.sect_off, objfile_name (objfile));
11539 return;
11540 }
11541 pc = attr_value_as_address (attr) + baseaddr;
11542 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11543
11544 if (cu->call_site_htab == NULL)
11545 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11546 NULL, &objfile->objfile_obstack,
11547 hashtab_obstack_allocate, NULL);
11548 call_site_local.pc = pc;
11549 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11550 if (*slot != NULL)
11551 {
11552 complaint (&symfile_complaints,
11553 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11554 "DIE 0x%x [in module %s]"),
11555 paddress (gdbarch, pc), die->offset.sect_off,
11556 objfile_name (objfile));
11557 return;
11558 }
11559
11560 /* Count parameters at the caller. */
11561
11562 nparams = 0;
11563 for (child_die = die->child; child_die && child_die->tag;
11564 child_die = sibling_die (child_die))
11565 {
11566 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11567 {
11568 complaint (&symfile_complaints,
11569 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11570 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11571 child_die->tag, child_die->offset.sect_off,
11572 objfile_name (objfile));
11573 continue;
11574 }
11575
11576 nparams++;
11577 }
11578
11579 call_site = obstack_alloc (&objfile->objfile_obstack,
11580 (sizeof (*call_site)
11581 + (sizeof (*call_site->parameter)
11582 * (nparams - 1))));
11583 *slot = call_site;
11584 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11585 call_site->pc = pc;
11586
11587 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11588 {
11589 struct die_info *func_die;
11590
11591 /* Skip also over DW_TAG_inlined_subroutine. */
11592 for (func_die = die->parent;
11593 func_die && func_die->tag != DW_TAG_subprogram
11594 && func_die->tag != DW_TAG_subroutine_type;
11595 func_die = func_die->parent);
11596
11597 /* DW_AT_GNU_all_call_sites is a superset
11598 of DW_AT_GNU_all_tail_call_sites. */
11599 if (func_die
11600 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11601 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11602 {
11603 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11604 not complete. But keep CALL_SITE for look ups via call_site_htab,
11605 both the initial caller containing the real return address PC and
11606 the final callee containing the current PC of a chain of tail
11607 calls do not need to have the tail call list complete. But any
11608 function candidate for a virtual tail call frame searched via
11609 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11610 determined unambiguously. */
11611 }
11612 else
11613 {
11614 struct type *func_type = NULL;
11615
11616 if (func_die)
11617 func_type = get_die_type (func_die, cu);
11618 if (func_type != NULL)
11619 {
11620 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11621
11622 /* Enlist this call site to the function. */
11623 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11624 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11625 }
11626 else
11627 complaint (&symfile_complaints,
11628 _("Cannot find function owning DW_TAG_GNU_call_site "
11629 "DIE 0x%x [in module %s]"),
11630 die->offset.sect_off, objfile_name (objfile));
11631 }
11632 }
11633
11634 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11635 if (attr == NULL)
11636 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11637 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11638 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11639 /* Keep NULL DWARF_BLOCK. */;
11640 else if (attr_form_is_block (attr))
11641 {
11642 struct dwarf2_locexpr_baton *dlbaton;
11643
11644 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11645 dlbaton->data = DW_BLOCK (attr)->data;
11646 dlbaton->size = DW_BLOCK (attr)->size;
11647 dlbaton->per_cu = cu->per_cu;
11648
11649 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11650 }
11651 else if (attr_form_is_ref (attr))
11652 {
11653 struct dwarf2_cu *target_cu = cu;
11654 struct die_info *target_die;
11655
11656 target_die = follow_die_ref (die, attr, &target_cu);
11657 gdb_assert (target_cu->objfile == objfile);
11658 if (die_is_declaration (target_die, target_cu))
11659 {
11660 const char *target_physname = NULL;
11661 struct attribute *target_attr;
11662
11663 /* Prefer the mangled name; otherwise compute the demangled one. */
11664 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11665 if (target_attr == NULL)
11666 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11667 target_cu);
11668 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11669 target_physname = DW_STRING (target_attr);
11670 else
11671 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11672 if (target_physname == NULL)
11673 complaint (&symfile_complaints,
11674 _("DW_AT_GNU_call_site_target target DIE has invalid "
11675 "physname, for referencing DIE 0x%x [in module %s]"),
11676 die->offset.sect_off, objfile_name (objfile));
11677 else
11678 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11679 }
11680 else
11681 {
11682 CORE_ADDR lowpc;
11683
11684 /* DW_AT_entry_pc should be preferred. */
11685 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11686 complaint (&symfile_complaints,
11687 _("DW_AT_GNU_call_site_target target DIE has invalid "
11688 "low pc, for referencing DIE 0x%x [in module %s]"),
11689 die->offset.sect_off, objfile_name (objfile));
11690 else
11691 {
11692 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11693 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11694 }
11695 }
11696 }
11697 else
11698 complaint (&symfile_complaints,
11699 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11700 "block nor reference, for DIE 0x%x [in module %s]"),
11701 die->offset.sect_off, objfile_name (objfile));
11702
11703 call_site->per_cu = cu->per_cu;
11704
11705 for (child_die = die->child;
11706 child_die && child_die->tag;
11707 child_die = sibling_die (child_die))
11708 {
11709 struct call_site_parameter *parameter;
11710 struct attribute *loc, *origin;
11711
11712 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11713 {
11714 /* Already printed the complaint above. */
11715 continue;
11716 }
11717
11718 gdb_assert (call_site->parameter_count < nparams);
11719 parameter = &call_site->parameter[call_site->parameter_count];
11720
11721 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11722 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11723 register is contained in DW_AT_GNU_call_site_value. */
11724
11725 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11726 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11727 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11728 {
11729 sect_offset offset;
11730
11731 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11732 offset = dwarf2_get_ref_die_offset (origin);
11733 if (!offset_in_cu_p (&cu->header, offset))
11734 {
11735 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11736 binding can be done only inside one CU. Such referenced DIE
11737 therefore cannot be even moved to DW_TAG_partial_unit. */
11738 complaint (&symfile_complaints,
11739 _("DW_AT_abstract_origin offset is not in CU for "
11740 "DW_TAG_GNU_call_site child DIE 0x%x "
11741 "[in module %s]"),
11742 child_die->offset.sect_off, objfile_name (objfile));
11743 continue;
11744 }
11745 parameter->u.param_offset.cu_off = (offset.sect_off
11746 - cu->header.offset.sect_off);
11747 }
11748 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11749 {
11750 complaint (&symfile_complaints,
11751 _("No DW_FORM_block* DW_AT_location for "
11752 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11753 child_die->offset.sect_off, objfile_name (objfile));
11754 continue;
11755 }
11756 else
11757 {
11758 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11759 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11760 if (parameter->u.dwarf_reg != -1)
11761 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11762 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11763 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11764 &parameter->u.fb_offset))
11765 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11766 else
11767 {
11768 complaint (&symfile_complaints,
11769 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11770 "for DW_FORM_block* DW_AT_location is supported for "
11771 "DW_TAG_GNU_call_site child DIE 0x%x "
11772 "[in module %s]"),
11773 child_die->offset.sect_off, objfile_name (objfile));
11774 continue;
11775 }
11776 }
11777
11778 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11779 if (!attr_form_is_block (attr))
11780 {
11781 complaint (&symfile_complaints,
11782 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11783 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11784 child_die->offset.sect_off, objfile_name (objfile));
11785 continue;
11786 }
11787 parameter->value = DW_BLOCK (attr)->data;
11788 parameter->value_size = DW_BLOCK (attr)->size;
11789
11790 /* Parameters are not pre-cleared by memset above. */
11791 parameter->data_value = NULL;
11792 parameter->data_value_size = 0;
11793 call_site->parameter_count++;
11794
11795 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11796 if (attr)
11797 {
11798 if (!attr_form_is_block (attr))
11799 complaint (&symfile_complaints,
11800 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11801 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11802 child_die->offset.sect_off, objfile_name (objfile));
11803 else
11804 {
11805 parameter->data_value = DW_BLOCK (attr)->data;
11806 parameter->data_value_size = DW_BLOCK (attr)->size;
11807 }
11808 }
11809 }
11810 }
11811
11812 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11813 Return 1 if the attributes are present and valid, otherwise, return 0.
11814 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11815
11816 static int
11817 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11818 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11819 struct partial_symtab *ranges_pst)
11820 {
11821 struct objfile *objfile = cu->objfile;
11822 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11823 struct comp_unit_head *cu_header = &cu->header;
11824 bfd *obfd = objfile->obfd;
11825 unsigned int addr_size = cu_header->addr_size;
11826 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11827 /* Base address selection entry. */
11828 CORE_ADDR base;
11829 int found_base;
11830 unsigned int dummy;
11831 const gdb_byte *buffer;
11832 CORE_ADDR marker;
11833 int low_set;
11834 CORE_ADDR low = 0;
11835 CORE_ADDR high = 0;
11836 CORE_ADDR baseaddr;
11837
11838 found_base = cu->base_known;
11839 base = cu->base_address;
11840
11841 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11842 if (offset >= dwarf2_per_objfile->ranges.size)
11843 {
11844 complaint (&symfile_complaints,
11845 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11846 offset);
11847 return 0;
11848 }
11849 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11850
11851 /* Read in the largest possible address. */
11852 marker = read_address (obfd, buffer, cu, &dummy);
11853 if ((marker & mask) == mask)
11854 {
11855 /* If we found the largest possible address, then
11856 read the base address. */
11857 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11858 buffer += 2 * addr_size;
11859 offset += 2 * addr_size;
11860 found_base = 1;
11861 }
11862
11863 low_set = 0;
11864
11865 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11866
11867 while (1)
11868 {
11869 CORE_ADDR range_beginning, range_end;
11870
11871 range_beginning = read_address (obfd, buffer, cu, &dummy);
11872 buffer += addr_size;
11873 range_end = read_address (obfd, buffer, cu, &dummy);
11874 buffer += addr_size;
11875 offset += 2 * addr_size;
11876
11877 /* An end of list marker is a pair of zero addresses. */
11878 if (range_beginning == 0 && range_end == 0)
11879 /* Found the end of list entry. */
11880 break;
11881
11882 /* Each base address selection entry is a pair of 2 values.
11883 The first is the largest possible address, the second is
11884 the base address. Check for a base address here. */
11885 if ((range_beginning & mask) == mask)
11886 {
11887 /* If we found the largest possible address, then
11888 read the base address. */
11889 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11890 found_base = 1;
11891 continue;
11892 }
11893
11894 if (!found_base)
11895 {
11896 /* We have no valid base address for the ranges
11897 data. */
11898 complaint (&symfile_complaints,
11899 _("Invalid .debug_ranges data (no base address)"));
11900 return 0;
11901 }
11902
11903 if (range_beginning > range_end)
11904 {
11905 /* Inverted range entries are invalid. */
11906 complaint (&symfile_complaints,
11907 _("Invalid .debug_ranges data (inverted range)"));
11908 return 0;
11909 }
11910
11911 /* Empty range entries have no effect. */
11912 if (range_beginning == range_end)
11913 continue;
11914
11915 range_beginning += base;
11916 range_end += base;
11917
11918 /* A not-uncommon case of bad debug info.
11919 Don't pollute the addrmap with bad data. */
11920 if (range_beginning + baseaddr == 0
11921 && !dwarf2_per_objfile->has_section_at_zero)
11922 {
11923 complaint (&symfile_complaints,
11924 _(".debug_ranges entry has start address of zero"
11925 " [in module %s]"), objfile_name (objfile));
11926 continue;
11927 }
11928
11929 if (ranges_pst != NULL)
11930 {
11931 CORE_ADDR lowpc;
11932 CORE_ADDR highpc;
11933
11934 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11935 range_beginning + baseaddr);
11936 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11937 range_end + baseaddr);
11938 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11939 ranges_pst);
11940 }
11941
11942 /* FIXME: This is recording everything as a low-high
11943 segment of consecutive addresses. We should have a
11944 data structure for discontiguous block ranges
11945 instead. */
11946 if (! low_set)
11947 {
11948 low = range_beginning;
11949 high = range_end;
11950 low_set = 1;
11951 }
11952 else
11953 {
11954 if (range_beginning < low)
11955 low = range_beginning;
11956 if (range_end > high)
11957 high = range_end;
11958 }
11959 }
11960
11961 if (! low_set)
11962 /* If the first entry is an end-of-list marker, the range
11963 describes an empty scope, i.e. no instructions. */
11964 return 0;
11965
11966 if (low_return)
11967 *low_return = low;
11968 if (high_return)
11969 *high_return = high;
11970 return 1;
11971 }
11972
11973 /* Get low and high pc attributes from a die. Return 1 if the attributes
11974 are present and valid, otherwise, return 0. Return -1 if the range is
11975 discontinuous, i.e. derived from DW_AT_ranges information. */
11976
11977 static int
11978 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11979 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11980 struct partial_symtab *pst)
11981 {
11982 struct attribute *attr;
11983 struct attribute *attr_high;
11984 CORE_ADDR low = 0;
11985 CORE_ADDR high = 0;
11986 int ret = 0;
11987
11988 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11989 if (attr_high)
11990 {
11991 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11992 if (attr)
11993 {
11994 low = attr_value_as_address (attr);
11995 high = attr_value_as_address (attr_high);
11996 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11997 high += low;
11998 }
11999 else
12000 /* Found high w/o low attribute. */
12001 return 0;
12002
12003 /* Found consecutive range of addresses. */
12004 ret = 1;
12005 }
12006 else
12007 {
12008 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12009 if (attr != NULL)
12010 {
12011 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12012 We take advantage of the fact that DW_AT_ranges does not appear
12013 in DW_TAG_compile_unit of DWO files. */
12014 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12015 unsigned int ranges_offset = (DW_UNSND (attr)
12016 + (need_ranges_base
12017 ? cu->ranges_base
12018 : 0));
12019
12020 /* Value of the DW_AT_ranges attribute is the offset in the
12021 .debug_ranges section. */
12022 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12023 return 0;
12024 /* Found discontinuous range of addresses. */
12025 ret = -1;
12026 }
12027 }
12028
12029 /* read_partial_die has also the strict LOW < HIGH requirement. */
12030 if (high <= low)
12031 return 0;
12032
12033 /* When using the GNU linker, .gnu.linkonce. sections are used to
12034 eliminate duplicate copies of functions and vtables and such.
12035 The linker will arbitrarily choose one and discard the others.
12036 The AT_*_pc values for such functions refer to local labels in
12037 these sections. If the section from that file was discarded, the
12038 labels are not in the output, so the relocs get a value of 0.
12039 If this is a discarded function, mark the pc bounds as invalid,
12040 so that GDB will ignore it. */
12041 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12042 return 0;
12043
12044 *lowpc = low;
12045 if (highpc)
12046 *highpc = high;
12047 return ret;
12048 }
12049
12050 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12051 its low and high PC addresses. Do nothing if these addresses could not
12052 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12053 and HIGHPC to the high address if greater than HIGHPC. */
12054
12055 static void
12056 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12057 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12058 struct dwarf2_cu *cu)
12059 {
12060 CORE_ADDR low, high;
12061 struct die_info *child = die->child;
12062
12063 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12064 {
12065 *lowpc = min (*lowpc, low);
12066 *highpc = max (*highpc, high);
12067 }
12068
12069 /* If the language does not allow nested subprograms (either inside
12070 subprograms or lexical blocks), we're done. */
12071 if (cu->language != language_ada)
12072 return;
12073
12074 /* Check all the children of the given DIE. If it contains nested
12075 subprograms, then check their pc bounds. Likewise, we need to
12076 check lexical blocks as well, as they may also contain subprogram
12077 definitions. */
12078 while (child && child->tag)
12079 {
12080 if (child->tag == DW_TAG_subprogram
12081 || child->tag == DW_TAG_lexical_block)
12082 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12083 child = sibling_die (child);
12084 }
12085 }
12086
12087 /* Get the low and high pc's represented by the scope DIE, and store
12088 them in *LOWPC and *HIGHPC. If the correct values can't be
12089 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12090
12091 static void
12092 get_scope_pc_bounds (struct die_info *die,
12093 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12094 struct dwarf2_cu *cu)
12095 {
12096 CORE_ADDR best_low = (CORE_ADDR) -1;
12097 CORE_ADDR best_high = (CORE_ADDR) 0;
12098 CORE_ADDR current_low, current_high;
12099
12100 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12101 {
12102 best_low = current_low;
12103 best_high = current_high;
12104 }
12105 else
12106 {
12107 struct die_info *child = die->child;
12108
12109 while (child && child->tag)
12110 {
12111 switch (child->tag) {
12112 case DW_TAG_subprogram:
12113 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12114 break;
12115 case DW_TAG_namespace:
12116 case DW_TAG_module:
12117 /* FIXME: carlton/2004-01-16: Should we do this for
12118 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12119 that current GCC's always emit the DIEs corresponding
12120 to definitions of methods of classes as children of a
12121 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12122 the DIEs giving the declarations, which could be
12123 anywhere). But I don't see any reason why the
12124 standards says that they have to be there. */
12125 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12126
12127 if (current_low != ((CORE_ADDR) -1))
12128 {
12129 best_low = min (best_low, current_low);
12130 best_high = max (best_high, current_high);
12131 }
12132 break;
12133 default:
12134 /* Ignore. */
12135 break;
12136 }
12137
12138 child = sibling_die (child);
12139 }
12140 }
12141
12142 *lowpc = best_low;
12143 *highpc = best_high;
12144 }
12145
12146 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12147 in DIE. */
12148
12149 static void
12150 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12151 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12152 {
12153 struct objfile *objfile = cu->objfile;
12154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12155 struct attribute *attr;
12156 struct attribute *attr_high;
12157
12158 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12159 if (attr_high)
12160 {
12161 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12162 if (attr)
12163 {
12164 CORE_ADDR low = attr_value_as_address (attr);
12165 CORE_ADDR high = attr_value_as_address (attr_high);
12166
12167 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12168 high += low;
12169
12170 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12171 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12172 record_block_range (block, low, high - 1);
12173 }
12174 }
12175
12176 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12177 if (attr)
12178 {
12179 bfd *obfd = objfile->obfd;
12180 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12181 We take advantage of the fact that DW_AT_ranges does not appear
12182 in DW_TAG_compile_unit of DWO files. */
12183 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12184
12185 /* The value of the DW_AT_ranges attribute is the offset of the
12186 address range list in the .debug_ranges section. */
12187 unsigned long offset = (DW_UNSND (attr)
12188 + (need_ranges_base ? cu->ranges_base : 0));
12189 const gdb_byte *buffer;
12190
12191 /* For some target architectures, but not others, the
12192 read_address function sign-extends the addresses it returns.
12193 To recognize base address selection entries, we need a
12194 mask. */
12195 unsigned int addr_size = cu->header.addr_size;
12196 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12197
12198 /* The base address, to which the next pair is relative. Note
12199 that this 'base' is a DWARF concept: most entries in a range
12200 list are relative, to reduce the number of relocs against the
12201 debugging information. This is separate from this function's
12202 'baseaddr' argument, which GDB uses to relocate debugging
12203 information from a shared library based on the address at
12204 which the library was loaded. */
12205 CORE_ADDR base = cu->base_address;
12206 int base_known = cu->base_known;
12207
12208 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12209 if (offset >= dwarf2_per_objfile->ranges.size)
12210 {
12211 complaint (&symfile_complaints,
12212 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12213 offset);
12214 return;
12215 }
12216 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12217
12218 for (;;)
12219 {
12220 unsigned int bytes_read;
12221 CORE_ADDR start, end;
12222
12223 start = read_address (obfd, buffer, cu, &bytes_read);
12224 buffer += bytes_read;
12225 end = read_address (obfd, buffer, cu, &bytes_read);
12226 buffer += bytes_read;
12227
12228 /* Did we find the end of the range list? */
12229 if (start == 0 && end == 0)
12230 break;
12231
12232 /* Did we find a base address selection entry? */
12233 else if ((start & base_select_mask) == base_select_mask)
12234 {
12235 base = end;
12236 base_known = 1;
12237 }
12238
12239 /* We found an ordinary address range. */
12240 else
12241 {
12242 if (!base_known)
12243 {
12244 complaint (&symfile_complaints,
12245 _("Invalid .debug_ranges data "
12246 "(no base address)"));
12247 return;
12248 }
12249
12250 if (start > end)
12251 {
12252 /* Inverted range entries are invalid. */
12253 complaint (&symfile_complaints,
12254 _("Invalid .debug_ranges data "
12255 "(inverted range)"));
12256 return;
12257 }
12258
12259 /* Empty range entries have no effect. */
12260 if (start == end)
12261 continue;
12262
12263 start += base + baseaddr;
12264 end += base + baseaddr;
12265
12266 /* A not-uncommon case of bad debug info.
12267 Don't pollute the addrmap with bad data. */
12268 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12269 {
12270 complaint (&symfile_complaints,
12271 _(".debug_ranges entry has start address of zero"
12272 " [in module %s]"), objfile_name (objfile));
12273 continue;
12274 }
12275
12276 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12277 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12278 record_block_range (block, start, end - 1);
12279 }
12280 }
12281 }
12282 }
12283
12284 /* Check whether the producer field indicates either of GCC < 4.6, or the
12285 Intel C/C++ compiler, and cache the result in CU. */
12286
12287 static void
12288 check_producer (struct dwarf2_cu *cu)
12289 {
12290 const char *cs;
12291 int major, minor;
12292
12293 if (cu->producer == NULL)
12294 {
12295 /* For unknown compilers expect their behavior is DWARF version
12296 compliant.
12297
12298 GCC started to support .debug_types sections by -gdwarf-4 since
12299 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12300 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12301 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12302 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12303 }
12304 else if (producer_is_gcc (cu->producer, &major, &minor))
12305 {
12306 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12307 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12308 }
12309 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12310 cu->producer_is_icc = 1;
12311 else
12312 {
12313 /* For other non-GCC compilers, expect their behavior is DWARF version
12314 compliant. */
12315 }
12316
12317 cu->checked_producer = 1;
12318 }
12319
12320 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12321 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12322 during 4.6.0 experimental. */
12323
12324 static int
12325 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12326 {
12327 if (!cu->checked_producer)
12328 check_producer (cu);
12329
12330 return cu->producer_is_gxx_lt_4_6;
12331 }
12332
12333 /* Return the default accessibility type if it is not overriden by
12334 DW_AT_accessibility. */
12335
12336 static enum dwarf_access_attribute
12337 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12338 {
12339 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12340 {
12341 /* The default DWARF 2 accessibility for members is public, the default
12342 accessibility for inheritance is private. */
12343
12344 if (die->tag != DW_TAG_inheritance)
12345 return DW_ACCESS_public;
12346 else
12347 return DW_ACCESS_private;
12348 }
12349 else
12350 {
12351 /* DWARF 3+ defines the default accessibility a different way. The same
12352 rules apply now for DW_TAG_inheritance as for the members and it only
12353 depends on the container kind. */
12354
12355 if (die->parent->tag == DW_TAG_class_type)
12356 return DW_ACCESS_private;
12357 else
12358 return DW_ACCESS_public;
12359 }
12360 }
12361
12362 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12363 offset. If the attribute was not found return 0, otherwise return
12364 1. If it was found but could not properly be handled, set *OFFSET
12365 to 0. */
12366
12367 static int
12368 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12369 LONGEST *offset)
12370 {
12371 struct attribute *attr;
12372
12373 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12374 if (attr != NULL)
12375 {
12376 *offset = 0;
12377
12378 /* Note that we do not check for a section offset first here.
12379 This is because DW_AT_data_member_location is new in DWARF 4,
12380 so if we see it, we can assume that a constant form is really
12381 a constant and not a section offset. */
12382 if (attr_form_is_constant (attr))
12383 *offset = dwarf2_get_attr_constant_value (attr, 0);
12384 else if (attr_form_is_section_offset (attr))
12385 dwarf2_complex_location_expr_complaint ();
12386 else if (attr_form_is_block (attr))
12387 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12388 else
12389 dwarf2_complex_location_expr_complaint ();
12390
12391 return 1;
12392 }
12393
12394 return 0;
12395 }
12396
12397 /* Add an aggregate field to the field list. */
12398
12399 static void
12400 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12401 struct dwarf2_cu *cu)
12402 {
12403 struct objfile *objfile = cu->objfile;
12404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12405 struct nextfield *new_field;
12406 struct attribute *attr;
12407 struct field *fp;
12408 const char *fieldname = "";
12409
12410 /* Allocate a new field list entry and link it in. */
12411 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12412 make_cleanup (xfree, new_field);
12413 memset (new_field, 0, sizeof (struct nextfield));
12414
12415 if (die->tag == DW_TAG_inheritance)
12416 {
12417 new_field->next = fip->baseclasses;
12418 fip->baseclasses = new_field;
12419 }
12420 else
12421 {
12422 new_field->next = fip->fields;
12423 fip->fields = new_field;
12424 }
12425 fip->nfields++;
12426
12427 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12428 if (attr)
12429 new_field->accessibility = DW_UNSND (attr);
12430 else
12431 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12432 if (new_field->accessibility != DW_ACCESS_public)
12433 fip->non_public_fields = 1;
12434
12435 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12436 if (attr)
12437 new_field->virtuality = DW_UNSND (attr);
12438 else
12439 new_field->virtuality = DW_VIRTUALITY_none;
12440
12441 fp = &new_field->field;
12442
12443 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12444 {
12445 LONGEST offset;
12446
12447 /* Data member other than a C++ static data member. */
12448
12449 /* Get type of field. */
12450 fp->type = die_type (die, cu);
12451
12452 SET_FIELD_BITPOS (*fp, 0);
12453
12454 /* Get bit size of field (zero if none). */
12455 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12456 if (attr)
12457 {
12458 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12459 }
12460 else
12461 {
12462 FIELD_BITSIZE (*fp) = 0;
12463 }
12464
12465 /* Get bit offset of field. */
12466 if (handle_data_member_location (die, cu, &offset))
12467 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12468 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12469 if (attr)
12470 {
12471 if (gdbarch_bits_big_endian (gdbarch))
12472 {
12473 /* For big endian bits, the DW_AT_bit_offset gives the
12474 additional bit offset from the MSB of the containing
12475 anonymous object to the MSB of the field. We don't
12476 have to do anything special since we don't need to
12477 know the size of the anonymous object. */
12478 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12479 }
12480 else
12481 {
12482 /* For little endian bits, compute the bit offset to the
12483 MSB of the anonymous object, subtract off the number of
12484 bits from the MSB of the field to the MSB of the
12485 object, and then subtract off the number of bits of
12486 the field itself. The result is the bit offset of
12487 the LSB of the field. */
12488 int anonymous_size;
12489 int bit_offset = DW_UNSND (attr);
12490
12491 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12492 if (attr)
12493 {
12494 /* The size of the anonymous object containing
12495 the bit field is explicit, so use the
12496 indicated size (in bytes). */
12497 anonymous_size = DW_UNSND (attr);
12498 }
12499 else
12500 {
12501 /* The size of the anonymous object containing
12502 the bit field must be inferred from the type
12503 attribute of the data member containing the
12504 bit field. */
12505 anonymous_size = TYPE_LENGTH (fp->type);
12506 }
12507 SET_FIELD_BITPOS (*fp,
12508 (FIELD_BITPOS (*fp)
12509 + anonymous_size * bits_per_byte
12510 - bit_offset - FIELD_BITSIZE (*fp)));
12511 }
12512 }
12513
12514 /* Get name of field. */
12515 fieldname = dwarf2_name (die, cu);
12516 if (fieldname == NULL)
12517 fieldname = "";
12518
12519 /* The name is already allocated along with this objfile, so we don't
12520 need to duplicate it for the type. */
12521 fp->name = fieldname;
12522
12523 /* Change accessibility for artificial fields (e.g. virtual table
12524 pointer or virtual base class pointer) to private. */
12525 if (dwarf2_attr (die, DW_AT_artificial, cu))
12526 {
12527 FIELD_ARTIFICIAL (*fp) = 1;
12528 new_field->accessibility = DW_ACCESS_private;
12529 fip->non_public_fields = 1;
12530 }
12531 }
12532 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12533 {
12534 /* C++ static member. */
12535
12536 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12537 is a declaration, but all versions of G++ as of this writing
12538 (so through at least 3.2.1) incorrectly generate
12539 DW_TAG_variable tags. */
12540
12541 const char *physname;
12542
12543 /* Get name of field. */
12544 fieldname = dwarf2_name (die, cu);
12545 if (fieldname == NULL)
12546 return;
12547
12548 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12549 if (attr
12550 /* Only create a symbol if this is an external value.
12551 new_symbol checks this and puts the value in the global symbol
12552 table, which we want. If it is not external, new_symbol
12553 will try to put the value in cu->list_in_scope which is wrong. */
12554 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12555 {
12556 /* A static const member, not much different than an enum as far as
12557 we're concerned, except that we can support more types. */
12558 new_symbol (die, NULL, cu);
12559 }
12560
12561 /* Get physical name. */
12562 physname = dwarf2_physname (fieldname, die, cu);
12563
12564 /* The name is already allocated along with this objfile, so we don't
12565 need to duplicate it for the type. */
12566 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12567 FIELD_TYPE (*fp) = die_type (die, cu);
12568 FIELD_NAME (*fp) = fieldname;
12569 }
12570 else if (die->tag == DW_TAG_inheritance)
12571 {
12572 LONGEST offset;
12573
12574 /* C++ base class field. */
12575 if (handle_data_member_location (die, cu, &offset))
12576 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12577 FIELD_BITSIZE (*fp) = 0;
12578 FIELD_TYPE (*fp) = die_type (die, cu);
12579 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12580 fip->nbaseclasses++;
12581 }
12582 }
12583
12584 /* Add a typedef defined in the scope of the FIP's class. */
12585
12586 static void
12587 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12588 struct dwarf2_cu *cu)
12589 {
12590 struct objfile *objfile = cu->objfile;
12591 struct typedef_field_list *new_field;
12592 struct attribute *attr;
12593 struct typedef_field *fp;
12594 char *fieldname = "";
12595
12596 /* Allocate a new field list entry and link it in. */
12597 new_field = xzalloc (sizeof (*new_field));
12598 make_cleanup (xfree, new_field);
12599
12600 gdb_assert (die->tag == DW_TAG_typedef);
12601
12602 fp = &new_field->field;
12603
12604 /* Get name of field. */
12605 fp->name = dwarf2_name (die, cu);
12606 if (fp->name == NULL)
12607 return;
12608
12609 fp->type = read_type_die (die, cu);
12610
12611 new_field->next = fip->typedef_field_list;
12612 fip->typedef_field_list = new_field;
12613 fip->typedef_field_list_count++;
12614 }
12615
12616 /* Create the vector of fields, and attach it to the type. */
12617
12618 static void
12619 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12620 struct dwarf2_cu *cu)
12621 {
12622 int nfields = fip->nfields;
12623
12624 /* Record the field count, allocate space for the array of fields,
12625 and create blank accessibility bitfields if necessary. */
12626 TYPE_NFIELDS (type) = nfields;
12627 TYPE_FIELDS (type) = (struct field *)
12628 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12629 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12630
12631 if (fip->non_public_fields && cu->language != language_ada)
12632 {
12633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12634
12635 TYPE_FIELD_PRIVATE_BITS (type) =
12636 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12637 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12638
12639 TYPE_FIELD_PROTECTED_BITS (type) =
12640 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12641 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12642
12643 TYPE_FIELD_IGNORE_BITS (type) =
12644 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12645 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12646 }
12647
12648 /* If the type has baseclasses, allocate and clear a bit vector for
12649 TYPE_FIELD_VIRTUAL_BITS. */
12650 if (fip->nbaseclasses && cu->language != language_ada)
12651 {
12652 int num_bytes = B_BYTES (fip->nbaseclasses);
12653 unsigned char *pointer;
12654
12655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12656 pointer = TYPE_ALLOC (type, num_bytes);
12657 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12658 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12659 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12660 }
12661
12662 /* Copy the saved-up fields into the field vector. Start from the head of
12663 the list, adding to the tail of the field array, so that they end up in
12664 the same order in the array in which they were added to the list. */
12665 while (nfields-- > 0)
12666 {
12667 struct nextfield *fieldp;
12668
12669 if (fip->fields)
12670 {
12671 fieldp = fip->fields;
12672 fip->fields = fieldp->next;
12673 }
12674 else
12675 {
12676 fieldp = fip->baseclasses;
12677 fip->baseclasses = fieldp->next;
12678 }
12679
12680 TYPE_FIELD (type, nfields) = fieldp->field;
12681 switch (fieldp->accessibility)
12682 {
12683 case DW_ACCESS_private:
12684 if (cu->language != language_ada)
12685 SET_TYPE_FIELD_PRIVATE (type, nfields);
12686 break;
12687
12688 case DW_ACCESS_protected:
12689 if (cu->language != language_ada)
12690 SET_TYPE_FIELD_PROTECTED (type, nfields);
12691 break;
12692
12693 case DW_ACCESS_public:
12694 break;
12695
12696 default:
12697 /* Unknown accessibility. Complain and treat it as public. */
12698 {
12699 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12700 fieldp->accessibility);
12701 }
12702 break;
12703 }
12704 if (nfields < fip->nbaseclasses)
12705 {
12706 switch (fieldp->virtuality)
12707 {
12708 case DW_VIRTUALITY_virtual:
12709 case DW_VIRTUALITY_pure_virtual:
12710 if (cu->language == language_ada)
12711 error (_("unexpected virtuality in component of Ada type"));
12712 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12713 break;
12714 }
12715 }
12716 }
12717 }
12718
12719 /* Return true if this member function is a constructor, false
12720 otherwise. */
12721
12722 static int
12723 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12724 {
12725 const char *fieldname;
12726 const char *type_name;
12727 int len;
12728
12729 if (die->parent == NULL)
12730 return 0;
12731
12732 if (die->parent->tag != DW_TAG_structure_type
12733 && die->parent->tag != DW_TAG_union_type
12734 && die->parent->tag != DW_TAG_class_type)
12735 return 0;
12736
12737 fieldname = dwarf2_name (die, cu);
12738 type_name = dwarf2_name (die->parent, cu);
12739 if (fieldname == NULL || type_name == NULL)
12740 return 0;
12741
12742 len = strlen (fieldname);
12743 return (strncmp (fieldname, type_name, len) == 0
12744 && (type_name[len] == '\0' || type_name[len] == '<'));
12745 }
12746
12747 /* Add a member function to the proper fieldlist. */
12748
12749 static void
12750 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12751 struct type *type, struct dwarf2_cu *cu)
12752 {
12753 struct objfile *objfile = cu->objfile;
12754 struct attribute *attr;
12755 struct fnfieldlist *flp;
12756 int i;
12757 struct fn_field *fnp;
12758 const char *fieldname;
12759 struct nextfnfield *new_fnfield;
12760 struct type *this_type;
12761 enum dwarf_access_attribute accessibility;
12762
12763 if (cu->language == language_ada)
12764 error (_("unexpected member function in Ada type"));
12765
12766 /* Get name of member function. */
12767 fieldname = dwarf2_name (die, cu);
12768 if (fieldname == NULL)
12769 return;
12770
12771 /* Look up member function name in fieldlist. */
12772 for (i = 0; i < fip->nfnfields; i++)
12773 {
12774 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12775 break;
12776 }
12777
12778 /* Create new list element if necessary. */
12779 if (i < fip->nfnfields)
12780 flp = &fip->fnfieldlists[i];
12781 else
12782 {
12783 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12784 {
12785 fip->fnfieldlists = (struct fnfieldlist *)
12786 xrealloc (fip->fnfieldlists,
12787 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12788 * sizeof (struct fnfieldlist));
12789 if (fip->nfnfields == 0)
12790 make_cleanup (free_current_contents, &fip->fnfieldlists);
12791 }
12792 flp = &fip->fnfieldlists[fip->nfnfields];
12793 flp->name = fieldname;
12794 flp->length = 0;
12795 flp->head = NULL;
12796 i = fip->nfnfields++;
12797 }
12798
12799 /* Create a new member function field and chain it to the field list
12800 entry. */
12801 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12802 make_cleanup (xfree, new_fnfield);
12803 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12804 new_fnfield->next = flp->head;
12805 flp->head = new_fnfield;
12806 flp->length++;
12807
12808 /* Fill in the member function field info. */
12809 fnp = &new_fnfield->fnfield;
12810
12811 /* Delay processing of the physname until later. */
12812 if (cu->language == language_cplus || cu->language == language_java)
12813 {
12814 add_to_method_list (type, i, flp->length - 1, fieldname,
12815 die, cu);
12816 }
12817 else
12818 {
12819 const char *physname = dwarf2_physname (fieldname, die, cu);
12820 fnp->physname = physname ? physname : "";
12821 }
12822
12823 fnp->type = alloc_type (objfile);
12824 this_type = read_type_die (die, cu);
12825 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12826 {
12827 int nparams = TYPE_NFIELDS (this_type);
12828
12829 /* TYPE is the domain of this method, and THIS_TYPE is the type
12830 of the method itself (TYPE_CODE_METHOD). */
12831 smash_to_method_type (fnp->type, type,
12832 TYPE_TARGET_TYPE (this_type),
12833 TYPE_FIELDS (this_type),
12834 TYPE_NFIELDS (this_type),
12835 TYPE_VARARGS (this_type));
12836
12837 /* Handle static member functions.
12838 Dwarf2 has no clean way to discern C++ static and non-static
12839 member functions. G++ helps GDB by marking the first
12840 parameter for non-static member functions (which is the this
12841 pointer) as artificial. We obtain this information from
12842 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12843 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12844 fnp->voffset = VOFFSET_STATIC;
12845 }
12846 else
12847 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12848 dwarf2_full_name (fieldname, die, cu));
12849
12850 /* Get fcontext from DW_AT_containing_type if present. */
12851 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12852 fnp->fcontext = die_containing_type (die, cu);
12853
12854 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12855 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12856
12857 /* Get accessibility. */
12858 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12859 if (attr)
12860 accessibility = DW_UNSND (attr);
12861 else
12862 accessibility = dwarf2_default_access_attribute (die, cu);
12863 switch (accessibility)
12864 {
12865 case DW_ACCESS_private:
12866 fnp->is_private = 1;
12867 break;
12868 case DW_ACCESS_protected:
12869 fnp->is_protected = 1;
12870 break;
12871 }
12872
12873 /* Check for artificial methods. */
12874 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12875 if (attr && DW_UNSND (attr) != 0)
12876 fnp->is_artificial = 1;
12877
12878 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12879
12880 /* Get index in virtual function table if it is a virtual member
12881 function. For older versions of GCC, this is an offset in the
12882 appropriate virtual table, as specified by DW_AT_containing_type.
12883 For everyone else, it is an expression to be evaluated relative
12884 to the object address. */
12885
12886 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12887 if (attr)
12888 {
12889 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12890 {
12891 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12892 {
12893 /* Old-style GCC. */
12894 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12895 }
12896 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12897 || (DW_BLOCK (attr)->size > 1
12898 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12899 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12900 {
12901 struct dwarf_block blk;
12902 int offset;
12903
12904 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12905 ? 1 : 2);
12906 blk.size = DW_BLOCK (attr)->size - offset;
12907 blk.data = DW_BLOCK (attr)->data + offset;
12908 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12909 if ((fnp->voffset % cu->header.addr_size) != 0)
12910 dwarf2_complex_location_expr_complaint ();
12911 else
12912 fnp->voffset /= cu->header.addr_size;
12913 fnp->voffset += 2;
12914 }
12915 else
12916 dwarf2_complex_location_expr_complaint ();
12917
12918 if (!fnp->fcontext)
12919 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12920 }
12921 else if (attr_form_is_section_offset (attr))
12922 {
12923 dwarf2_complex_location_expr_complaint ();
12924 }
12925 else
12926 {
12927 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12928 fieldname);
12929 }
12930 }
12931 else
12932 {
12933 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12934 if (attr && DW_UNSND (attr))
12935 {
12936 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12937 complaint (&symfile_complaints,
12938 _("Member function \"%s\" (offset %d) is virtual "
12939 "but the vtable offset is not specified"),
12940 fieldname, die->offset.sect_off);
12941 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12942 TYPE_CPLUS_DYNAMIC (type) = 1;
12943 }
12944 }
12945 }
12946
12947 /* Create the vector of member function fields, and attach it to the type. */
12948
12949 static void
12950 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12951 struct dwarf2_cu *cu)
12952 {
12953 struct fnfieldlist *flp;
12954 int i;
12955
12956 if (cu->language == language_ada)
12957 error (_("unexpected member functions in Ada type"));
12958
12959 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12960 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12961 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12962
12963 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12964 {
12965 struct nextfnfield *nfp = flp->head;
12966 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12967 int k;
12968
12969 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12970 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12971 fn_flp->fn_fields = (struct fn_field *)
12972 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12973 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12974 fn_flp->fn_fields[k] = nfp->fnfield;
12975 }
12976
12977 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12978 }
12979
12980 /* Returns non-zero if NAME is the name of a vtable member in CU's
12981 language, zero otherwise. */
12982 static int
12983 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12984 {
12985 static const char vptr[] = "_vptr";
12986 static const char vtable[] = "vtable";
12987
12988 /* Look for the C++ and Java forms of the vtable. */
12989 if ((cu->language == language_java
12990 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12991 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12992 && is_cplus_marker (name[sizeof (vptr) - 1])))
12993 return 1;
12994
12995 return 0;
12996 }
12997
12998 /* GCC outputs unnamed structures that are really pointers to member
12999 functions, with the ABI-specified layout. If TYPE describes
13000 such a structure, smash it into a member function type.
13001
13002 GCC shouldn't do this; it should just output pointer to member DIEs.
13003 This is GCC PR debug/28767. */
13004
13005 static void
13006 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13007 {
13008 struct type *pfn_type, *self_type, *new_type;
13009
13010 /* Check for a structure with no name and two children. */
13011 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13012 return;
13013
13014 /* Check for __pfn and __delta members. */
13015 if (TYPE_FIELD_NAME (type, 0) == NULL
13016 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13017 || TYPE_FIELD_NAME (type, 1) == NULL
13018 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13019 return;
13020
13021 /* Find the type of the method. */
13022 pfn_type = TYPE_FIELD_TYPE (type, 0);
13023 if (pfn_type == NULL
13024 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13025 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13026 return;
13027
13028 /* Look for the "this" argument. */
13029 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13030 if (TYPE_NFIELDS (pfn_type) == 0
13031 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13032 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13033 return;
13034
13035 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13036 new_type = alloc_type (objfile);
13037 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13038 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13039 TYPE_VARARGS (pfn_type));
13040 smash_to_methodptr_type (type, new_type);
13041 }
13042
13043 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13044 (icc). */
13045
13046 static int
13047 producer_is_icc (struct dwarf2_cu *cu)
13048 {
13049 if (!cu->checked_producer)
13050 check_producer (cu);
13051
13052 return cu->producer_is_icc;
13053 }
13054
13055 /* Called when we find the DIE that starts a structure or union scope
13056 (definition) to create a type for the structure or union. Fill in
13057 the type's name and general properties; the members will not be
13058 processed until process_structure_scope. A symbol table entry for
13059 the type will also not be done until process_structure_scope (assuming
13060 the type has a name).
13061
13062 NOTE: we need to call these functions regardless of whether or not the
13063 DIE has a DW_AT_name attribute, since it might be an anonymous
13064 structure or union. This gets the type entered into our set of
13065 user defined types. */
13066
13067 static struct type *
13068 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13069 {
13070 struct objfile *objfile = cu->objfile;
13071 struct type *type;
13072 struct attribute *attr;
13073 const char *name;
13074
13075 /* If the definition of this type lives in .debug_types, read that type.
13076 Don't follow DW_AT_specification though, that will take us back up
13077 the chain and we want to go down. */
13078 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13079 if (attr)
13080 {
13081 type = get_DW_AT_signature_type (die, attr, cu);
13082
13083 /* The type's CU may not be the same as CU.
13084 Ensure TYPE is recorded with CU in die_type_hash. */
13085 return set_die_type (die, type, cu);
13086 }
13087
13088 type = alloc_type (objfile);
13089 INIT_CPLUS_SPECIFIC (type);
13090
13091 name = dwarf2_name (die, cu);
13092 if (name != NULL)
13093 {
13094 if (cu->language == language_cplus
13095 || cu->language == language_java)
13096 {
13097 const char *full_name = dwarf2_full_name (name, die, cu);
13098
13099 /* dwarf2_full_name might have already finished building the DIE's
13100 type. If so, there is no need to continue. */
13101 if (get_die_type (die, cu) != NULL)
13102 return get_die_type (die, cu);
13103
13104 TYPE_TAG_NAME (type) = full_name;
13105 if (die->tag == DW_TAG_structure_type
13106 || die->tag == DW_TAG_class_type)
13107 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13108 }
13109 else
13110 {
13111 /* The name is already allocated along with this objfile, so
13112 we don't need to duplicate it for the type. */
13113 TYPE_TAG_NAME (type) = name;
13114 if (die->tag == DW_TAG_class_type)
13115 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13116 }
13117 }
13118
13119 if (die->tag == DW_TAG_structure_type)
13120 {
13121 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13122 }
13123 else if (die->tag == DW_TAG_union_type)
13124 {
13125 TYPE_CODE (type) = TYPE_CODE_UNION;
13126 }
13127 else
13128 {
13129 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13130 }
13131
13132 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13133 TYPE_DECLARED_CLASS (type) = 1;
13134
13135 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13136 if (attr)
13137 {
13138 TYPE_LENGTH (type) = DW_UNSND (attr);
13139 }
13140 else
13141 {
13142 TYPE_LENGTH (type) = 0;
13143 }
13144
13145 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13146 {
13147 /* ICC does not output the required DW_AT_declaration
13148 on incomplete types, but gives them a size of zero. */
13149 TYPE_STUB (type) = 1;
13150 }
13151 else
13152 TYPE_STUB_SUPPORTED (type) = 1;
13153
13154 if (die_is_declaration (die, cu))
13155 TYPE_STUB (type) = 1;
13156 else if (attr == NULL && die->child == NULL
13157 && producer_is_realview (cu->producer))
13158 /* RealView does not output the required DW_AT_declaration
13159 on incomplete types. */
13160 TYPE_STUB (type) = 1;
13161
13162 /* We need to add the type field to the die immediately so we don't
13163 infinitely recurse when dealing with pointers to the structure
13164 type within the structure itself. */
13165 set_die_type (die, type, cu);
13166
13167 /* set_die_type should be already done. */
13168 set_descriptive_type (type, die, cu);
13169
13170 return type;
13171 }
13172
13173 /* Finish creating a structure or union type, including filling in
13174 its members and creating a symbol for it. */
13175
13176 static void
13177 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13178 {
13179 struct objfile *objfile = cu->objfile;
13180 struct die_info *child_die;
13181 struct type *type;
13182
13183 type = get_die_type (die, cu);
13184 if (type == NULL)
13185 type = read_structure_type (die, cu);
13186
13187 if (die->child != NULL && ! die_is_declaration (die, cu))
13188 {
13189 struct field_info fi;
13190 VEC (symbolp) *template_args = NULL;
13191 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13192
13193 memset (&fi, 0, sizeof (struct field_info));
13194
13195 child_die = die->child;
13196
13197 while (child_die && child_die->tag)
13198 {
13199 if (child_die->tag == DW_TAG_member
13200 || child_die->tag == DW_TAG_variable)
13201 {
13202 /* NOTE: carlton/2002-11-05: A C++ static data member
13203 should be a DW_TAG_member that is a declaration, but
13204 all versions of G++ as of this writing (so through at
13205 least 3.2.1) incorrectly generate DW_TAG_variable
13206 tags for them instead. */
13207 dwarf2_add_field (&fi, child_die, cu);
13208 }
13209 else if (child_die->tag == DW_TAG_subprogram)
13210 {
13211 /* C++ member function. */
13212 dwarf2_add_member_fn (&fi, child_die, type, cu);
13213 }
13214 else if (child_die->tag == DW_TAG_inheritance)
13215 {
13216 /* C++ base class field. */
13217 dwarf2_add_field (&fi, child_die, cu);
13218 }
13219 else if (child_die->tag == DW_TAG_typedef)
13220 dwarf2_add_typedef (&fi, child_die, cu);
13221 else if (child_die->tag == DW_TAG_template_type_param
13222 || child_die->tag == DW_TAG_template_value_param)
13223 {
13224 struct symbol *arg = new_symbol (child_die, NULL, cu);
13225
13226 if (arg != NULL)
13227 VEC_safe_push (symbolp, template_args, arg);
13228 }
13229
13230 child_die = sibling_die (child_die);
13231 }
13232
13233 /* Attach template arguments to type. */
13234 if (! VEC_empty (symbolp, template_args))
13235 {
13236 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13237 TYPE_N_TEMPLATE_ARGUMENTS (type)
13238 = VEC_length (symbolp, template_args);
13239 TYPE_TEMPLATE_ARGUMENTS (type)
13240 = obstack_alloc (&objfile->objfile_obstack,
13241 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13242 * sizeof (struct symbol *)));
13243 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13244 VEC_address (symbolp, template_args),
13245 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13246 * sizeof (struct symbol *)));
13247 VEC_free (symbolp, template_args);
13248 }
13249
13250 /* Attach fields and member functions to the type. */
13251 if (fi.nfields)
13252 dwarf2_attach_fields_to_type (&fi, type, cu);
13253 if (fi.nfnfields)
13254 {
13255 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13256
13257 /* Get the type which refers to the base class (possibly this
13258 class itself) which contains the vtable pointer for the current
13259 class from the DW_AT_containing_type attribute. This use of
13260 DW_AT_containing_type is a GNU extension. */
13261
13262 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13263 {
13264 struct type *t = die_containing_type (die, cu);
13265
13266 set_type_vptr_basetype (type, t);
13267 if (type == t)
13268 {
13269 int i;
13270
13271 /* Our own class provides vtbl ptr. */
13272 for (i = TYPE_NFIELDS (t) - 1;
13273 i >= TYPE_N_BASECLASSES (t);
13274 --i)
13275 {
13276 const char *fieldname = TYPE_FIELD_NAME (t, i);
13277
13278 if (is_vtable_name (fieldname, cu))
13279 {
13280 set_type_vptr_fieldno (type, i);
13281 break;
13282 }
13283 }
13284
13285 /* Complain if virtual function table field not found. */
13286 if (i < TYPE_N_BASECLASSES (t))
13287 complaint (&symfile_complaints,
13288 _("virtual function table pointer "
13289 "not found when defining class '%s'"),
13290 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13291 "");
13292 }
13293 else
13294 {
13295 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13296 }
13297 }
13298 else if (cu->producer
13299 && strncmp (cu->producer,
13300 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13301 {
13302 /* The IBM XLC compiler does not provide direct indication
13303 of the containing type, but the vtable pointer is
13304 always named __vfp. */
13305
13306 int i;
13307
13308 for (i = TYPE_NFIELDS (type) - 1;
13309 i >= TYPE_N_BASECLASSES (type);
13310 --i)
13311 {
13312 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13313 {
13314 set_type_vptr_fieldno (type, i);
13315 set_type_vptr_basetype (type, type);
13316 break;
13317 }
13318 }
13319 }
13320 }
13321
13322 /* Copy fi.typedef_field_list linked list elements content into the
13323 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13324 if (fi.typedef_field_list)
13325 {
13326 int i = fi.typedef_field_list_count;
13327
13328 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13329 TYPE_TYPEDEF_FIELD_ARRAY (type)
13330 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13331 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13332
13333 /* Reverse the list order to keep the debug info elements order. */
13334 while (--i >= 0)
13335 {
13336 struct typedef_field *dest, *src;
13337
13338 dest = &TYPE_TYPEDEF_FIELD (type, i);
13339 src = &fi.typedef_field_list->field;
13340 fi.typedef_field_list = fi.typedef_field_list->next;
13341 *dest = *src;
13342 }
13343 }
13344
13345 do_cleanups (back_to);
13346
13347 if (HAVE_CPLUS_STRUCT (type))
13348 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13349 }
13350
13351 quirk_gcc_member_function_pointer (type, objfile);
13352
13353 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13354 snapshots) has been known to create a die giving a declaration
13355 for a class that has, as a child, a die giving a definition for a
13356 nested class. So we have to process our children even if the
13357 current die is a declaration. Normally, of course, a declaration
13358 won't have any children at all. */
13359
13360 child_die = die->child;
13361
13362 while (child_die != NULL && child_die->tag)
13363 {
13364 if (child_die->tag == DW_TAG_member
13365 || child_die->tag == DW_TAG_variable
13366 || child_die->tag == DW_TAG_inheritance
13367 || child_die->tag == DW_TAG_template_value_param
13368 || child_die->tag == DW_TAG_template_type_param)
13369 {
13370 /* Do nothing. */
13371 }
13372 else
13373 process_die (child_die, cu);
13374
13375 child_die = sibling_die (child_die);
13376 }
13377
13378 /* Do not consider external references. According to the DWARF standard,
13379 these DIEs are identified by the fact that they have no byte_size
13380 attribute, and a declaration attribute. */
13381 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13382 || !die_is_declaration (die, cu))
13383 new_symbol (die, type, cu);
13384 }
13385
13386 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13387 update TYPE using some information only available in DIE's children. */
13388
13389 static void
13390 update_enumeration_type_from_children (struct die_info *die,
13391 struct type *type,
13392 struct dwarf2_cu *cu)
13393 {
13394 struct obstack obstack;
13395 struct die_info *child_die;
13396 int unsigned_enum = 1;
13397 int flag_enum = 1;
13398 ULONGEST mask = 0;
13399 struct cleanup *old_chain;
13400
13401 obstack_init (&obstack);
13402 old_chain = make_cleanup_obstack_free (&obstack);
13403
13404 for (child_die = die->child;
13405 child_die != NULL && child_die->tag;
13406 child_die = sibling_die (child_die))
13407 {
13408 struct attribute *attr;
13409 LONGEST value;
13410 const gdb_byte *bytes;
13411 struct dwarf2_locexpr_baton *baton;
13412 const char *name;
13413
13414 if (child_die->tag != DW_TAG_enumerator)
13415 continue;
13416
13417 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13418 if (attr == NULL)
13419 continue;
13420
13421 name = dwarf2_name (child_die, cu);
13422 if (name == NULL)
13423 name = "<anonymous enumerator>";
13424
13425 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13426 &value, &bytes, &baton);
13427 if (value < 0)
13428 {
13429 unsigned_enum = 0;
13430 flag_enum = 0;
13431 }
13432 else if ((mask & value) != 0)
13433 flag_enum = 0;
13434 else
13435 mask |= value;
13436
13437 /* If we already know that the enum type is neither unsigned, nor
13438 a flag type, no need to look at the rest of the enumerates. */
13439 if (!unsigned_enum && !flag_enum)
13440 break;
13441 }
13442
13443 if (unsigned_enum)
13444 TYPE_UNSIGNED (type) = 1;
13445 if (flag_enum)
13446 TYPE_FLAG_ENUM (type) = 1;
13447
13448 do_cleanups (old_chain);
13449 }
13450
13451 /* Given a DW_AT_enumeration_type die, set its type. We do not
13452 complete the type's fields yet, or create any symbols. */
13453
13454 static struct type *
13455 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13456 {
13457 struct objfile *objfile = cu->objfile;
13458 struct type *type;
13459 struct attribute *attr;
13460 const char *name;
13461
13462 /* If the definition of this type lives in .debug_types, read that type.
13463 Don't follow DW_AT_specification though, that will take us back up
13464 the chain and we want to go down. */
13465 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13466 if (attr)
13467 {
13468 type = get_DW_AT_signature_type (die, attr, cu);
13469
13470 /* The type's CU may not be the same as CU.
13471 Ensure TYPE is recorded with CU in die_type_hash. */
13472 return set_die_type (die, type, cu);
13473 }
13474
13475 type = alloc_type (objfile);
13476
13477 TYPE_CODE (type) = TYPE_CODE_ENUM;
13478 name = dwarf2_full_name (NULL, die, cu);
13479 if (name != NULL)
13480 TYPE_TAG_NAME (type) = name;
13481
13482 attr = dwarf2_attr (die, DW_AT_type, cu);
13483 if (attr != NULL)
13484 {
13485 struct type *underlying_type = die_type (die, cu);
13486
13487 TYPE_TARGET_TYPE (type) = underlying_type;
13488 }
13489
13490 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13491 if (attr)
13492 {
13493 TYPE_LENGTH (type) = DW_UNSND (attr);
13494 }
13495 else
13496 {
13497 TYPE_LENGTH (type) = 0;
13498 }
13499
13500 /* The enumeration DIE can be incomplete. In Ada, any type can be
13501 declared as private in the package spec, and then defined only
13502 inside the package body. Such types are known as Taft Amendment
13503 Types. When another package uses such a type, an incomplete DIE
13504 may be generated by the compiler. */
13505 if (die_is_declaration (die, cu))
13506 TYPE_STUB (type) = 1;
13507
13508 /* Finish the creation of this type by using the enum's children.
13509 We must call this even when the underlying type has been provided
13510 so that we can determine if we're looking at a "flag" enum. */
13511 update_enumeration_type_from_children (die, type, cu);
13512
13513 /* If this type has an underlying type that is not a stub, then we
13514 may use its attributes. We always use the "unsigned" attribute
13515 in this situation, because ordinarily we guess whether the type
13516 is unsigned -- but the guess can be wrong and the underlying type
13517 can tell us the reality. However, we defer to a local size
13518 attribute if one exists, because this lets the compiler override
13519 the underlying type if needed. */
13520 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13521 {
13522 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13523 if (TYPE_LENGTH (type) == 0)
13524 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13525 }
13526
13527 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13528
13529 return set_die_type (die, type, cu);
13530 }
13531
13532 /* Given a pointer to a die which begins an enumeration, process all
13533 the dies that define the members of the enumeration, and create the
13534 symbol for the enumeration type.
13535
13536 NOTE: We reverse the order of the element list. */
13537
13538 static void
13539 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13540 {
13541 struct type *this_type;
13542
13543 this_type = get_die_type (die, cu);
13544 if (this_type == NULL)
13545 this_type = read_enumeration_type (die, cu);
13546
13547 if (die->child != NULL)
13548 {
13549 struct die_info *child_die;
13550 struct symbol *sym;
13551 struct field *fields = NULL;
13552 int num_fields = 0;
13553 const char *name;
13554
13555 child_die = die->child;
13556 while (child_die && child_die->tag)
13557 {
13558 if (child_die->tag != DW_TAG_enumerator)
13559 {
13560 process_die (child_die, cu);
13561 }
13562 else
13563 {
13564 name = dwarf2_name (child_die, cu);
13565 if (name)
13566 {
13567 sym = new_symbol (child_die, this_type, cu);
13568
13569 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13570 {
13571 fields = (struct field *)
13572 xrealloc (fields,
13573 (num_fields + DW_FIELD_ALLOC_CHUNK)
13574 * sizeof (struct field));
13575 }
13576
13577 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13578 FIELD_TYPE (fields[num_fields]) = NULL;
13579 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13580 FIELD_BITSIZE (fields[num_fields]) = 0;
13581
13582 num_fields++;
13583 }
13584 }
13585
13586 child_die = sibling_die (child_die);
13587 }
13588
13589 if (num_fields)
13590 {
13591 TYPE_NFIELDS (this_type) = num_fields;
13592 TYPE_FIELDS (this_type) = (struct field *)
13593 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13594 memcpy (TYPE_FIELDS (this_type), fields,
13595 sizeof (struct field) * num_fields);
13596 xfree (fields);
13597 }
13598 }
13599
13600 /* If we are reading an enum from a .debug_types unit, and the enum
13601 is a declaration, and the enum is not the signatured type in the
13602 unit, then we do not want to add a symbol for it. Adding a
13603 symbol would in some cases obscure the true definition of the
13604 enum, giving users an incomplete type when the definition is
13605 actually available. Note that we do not want to do this for all
13606 enums which are just declarations, because C++0x allows forward
13607 enum declarations. */
13608 if (cu->per_cu->is_debug_types
13609 && die_is_declaration (die, cu))
13610 {
13611 struct signatured_type *sig_type;
13612
13613 sig_type = (struct signatured_type *) cu->per_cu;
13614 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13615 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13616 return;
13617 }
13618
13619 new_symbol (die, this_type, cu);
13620 }
13621
13622 /* Extract all information from a DW_TAG_array_type DIE and put it in
13623 the DIE's type field. For now, this only handles one dimensional
13624 arrays. */
13625
13626 static struct type *
13627 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13628 {
13629 struct objfile *objfile = cu->objfile;
13630 struct die_info *child_die;
13631 struct type *type;
13632 struct type *element_type, *range_type, *index_type;
13633 struct type **range_types = NULL;
13634 struct attribute *attr;
13635 int ndim = 0;
13636 struct cleanup *back_to;
13637 const char *name;
13638 unsigned int bit_stride = 0;
13639
13640 element_type = die_type (die, cu);
13641
13642 /* The die_type call above may have already set the type for this DIE. */
13643 type = get_die_type (die, cu);
13644 if (type)
13645 return type;
13646
13647 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13648 if (attr != NULL)
13649 bit_stride = DW_UNSND (attr) * 8;
13650
13651 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13652 if (attr != NULL)
13653 bit_stride = DW_UNSND (attr);
13654
13655 /* Irix 6.2 native cc creates array types without children for
13656 arrays with unspecified length. */
13657 if (die->child == NULL)
13658 {
13659 index_type = objfile_type (objfile)->builtin_int;
13660 range_type = create_static_range_type (NULL, index_type, 0, -1);
13661 type = create_array_type_with_stride (NULL, element_type, range_type,
13662 bit_stride);
13663 return set_die_type (die, type, cu);
13664 }
13665
13666 back_to = make_cleanup (null_cleanup, NULL);
13667 child_die = die->child;
13668 while (child_die && child_die->tag)
13669 {
13670 if (child_die->tag == DW_TAG_subrange_type)
13671 {
13672 struct type *child_type = read_type_die (child_die, cu);
13673
13674 if (child_type != NULL)
13675 {
13676 /* The range type was succesfully read. Save it for the
13677 array type creation. */
13678 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13679 {
13680 range_types = (struct type **)
13681 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13682 * sizeof (struct type *));
13683 if (ndim == 0)
13684 make_cleanup (free_current_contents, &range_types);
13685 }
13686 range_types[ndim++] = child_type;
13687 }
13688 }
13689 child_die = sibling_die (child_die);
13690 }
13691
13692 /* Dwarf2 dimensions are output from left to right, create the
13693 necessary array types in backwards order. */
13694
13695 type = element_type;
13696
13697 if (read_array_order (die, cu) == DW_ORD_col_major)
13698 {
13699 int i = 0;
13700
13701 while (i < ndim)
13702 type = create_array_type_with_stride (NULL, type, range_types[i++],
13703 bit_stride);
13704 }
13705 else
13706 {
13707 while (ndim-- > 0)
13708 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13709 bit_stride);
13710 }
13711
13712 /* Understand Dwarf2 support for vector types (like they occur on
13713 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13714 array type. This is not part of the Dwarf2/3 standard yet, but a
13715 custom vendor extension. The main difference between a regular
13716 array and the vector variant is that vectors are passed by value
13717 to functions. */
13718 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13719 if (attr)
13720 make_vector_type (type);
13721
13722 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13723 implementation may choose to implement triple vectors using this
13724 attribute. */
13725 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13726 if (attr)
13727 {
13728 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13729 TYPE_LENGTH (type) = DW_UNSND (attr);
13730 else
13731 complaint (&symfile_complaints,
13732 _("DW_AT_byte_size for array type smaller "
13733 "than the total size of elements"));
13734 }
13735
13736 name = dwarf2_name (die, cu);
13737 if (name)
13738 TYPE_NAME (type) = name;
13739
13740 /* Install the type in the die. */
13741 set_die_type (die, type, cu);
13742
13743 /* set_die_type should be already done. */
13744 set_descriptive_type (type, die, cu);
13745
13746 do_cleanups (back_to);
13747
13748 return type;
13749 }
13750
13751 static enum dwarf_array_dim_ordering
13752 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13753 {
13754 struct attribute *attr;
13755
13756 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13757
13758 if (attr) return DW_SND (attr);
13759
13760 /* GNU F77 is a special case, as at 08/2004 array type info is the
13761 opposite order to the dwarf2 specification, but data is still
13762 laid out as per normal fortran.
13763
13764 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13765 version checking. */
13766
13767 if (cu->language == language_fortran
13768 && cu->producer && strstr (cu->producer, "GNU F77"))
13769 {
13770 return DW_ORD_row_major;
13771 }
13772
13773 switch (cu->language_defn->la_array_ordering)
13774 {
13775 case array_column_major:
13776 return DW_ORD_col_major;
13777 case array_row_major:
13778 default:
13779 return DW_ORD_row_major;
13780 };
13781 }
13782
13783 /* Extract all information from a DW_TAG_set_type DIE and put it in
13784 the DIE's type field. */
13785
13786 static struct type *
13787 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13788 {
13789 struct type *domain_type, *set_type;
13790 struct attribute *attr;
13791
13792 domain_type = die_type (die, cu);
13793
13794 /* The die_type call above may have already set the type for this DIE. */
13795 set_type = get_die_type (die, cu);
13796 if (set_type)
13797 return set_type;
13798
13799 set_type = create_set_type (NULL, domain_type);
13800
13801 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13802 if (attr)
13803 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13804
13805 return set_die_type (die, set_type, cu);
13806 }
13807
13808 /* A helper for read_common_block that creates a locexpr baton.
13809 SYM is the symbol which we are marking as computed.
13810 COMMON_DIE is the DIE for the common block.
13811 COMMON_LOC is the location expression attribute for the common
13812 block itself.
13813 MEMBER_LOC is the location expression attribute for the particular
13814 member of the common block that we are processing.
13815 CU is the CU from which the above come. */
13816
13817 static void
13818 mark_common_block_symbol_computed (struct symbol *sym,
13819 struct die_info *common_die,
13820 struct attribute *common_loc,
13821 struct attribute *member_loc,
13822 struct dwarf2_cu *cu)
13823 {
13824 struct objfile *objfile = dwarf2_per_objfile->objfile;
13825 struct dwarf2_locexpr_baton *baton;
13826 gdb_byte *ptr;
13827 unsigned int cu_off;
13828 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13829 LONGEST offset = 0;
13830
13831 gdb_assert (common_loc && member_loc);
13832 gdb_assert (attr_form_is_block (common_loc));
13833 gdb_assert (attr_form_is_block (member_loc)
13834 || attr_form_is_constant (member_loc));
13835
13836 baton = obstack_alloc (&objfile->objfile_obstack,
13837 sizeof (struct dwarf2_locexpr_baton));
13838 baton->per_cu = cu->per_cu;
13839 gdb_assert (baton->per_cu);
13840
13841 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13842
13843 if (attr_form_is_constant (member_loc))
13844 {
13845 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13846 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13847 }
13848 else
13849 baton->size += DW_BLOCK (member_loc)->size;
13850
13851 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13852 baton->data = ptr;
13853
13854 *ptr++ = DW_OP_call4;
13855 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13856 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13857 ptr += 4;
13858
13859 if (attr_form_is_constant (member_loc))
13860 {
13861 *ptr++ = DW_OP_addr;
13862 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13863 ptr += cu->header.addr_size;
13864 }
13865 else
13866 {
13867 /* We have to copy the data here, because DW_OP_call4 will only
13868 use a DW_AT_location attribute. */
13869 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13870 ptr += DW_BLOCK (member_loc)->size;
13871 }
13872
13873 *ptr++ = DW_OP_plus;
13874 gdb_assert (ptr - baton->data == baton->size);
13875
13876 SYMBOL_LOCATION_BATON (sym) = baton;
13877 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13878 }
13879
13880 /* Create appropriate locally-scoped variables for all the
13881 DW_TAG_common_block entries. Also create a struct common_block
13882 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13883 is used to sepate the common blocks name namespace from regular
13884 variable names. */
13885
13886 static void
13887 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13888 {
13889 struct attribute *attr;
13890
13891 attr = dwarf2_attr (die, DW_AT_location, cu);
13892 if (attr)
13893 {
13894 /* Support the .debug_loc offsets. */
13895 if (attr_form_is_block (attr))
13896 {
13897 /* Ok. */
13898 }
13899 else if (attr_form_is_section_offset (attr))
13900 {
13901 dwarf2_complex_location_expr_complaint ();
13902 attr = NULL;
13903 }
13904 else
13905 {
13906 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13907 "common block member");
13908 attr = NULL;
13909 }
13910 }
13911
13912 if (die->child != NULL)
13913 {
13914 struct objfile *objfile = cu->objfile;
13915 struct die_info *child_die;
13916 size_t n_entries = 0, size;
13917 struct common_block *common_block;
13918 struct symbol *sym;
13919
13920 for (child_die = die->child;
13921 child_die && child_die->tag;
13922 child_die = sibling_die (child_die))
13923 ++n_entries;
13924
13925 size = (sizeof (struct common_block)
13926 + (n_entries - 1) * sizeof (struct symbol *));
13927 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13928 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13929 common_block->n_entries = 0;
13930
13931 for (child_die = die->child;
13932 child_die && child_die->tag;
13933 child_die = sibling_die (child_die))
13934 {
13935 /* Create the symbol in the DW_TAG_common_block block in the current
13936 symbol scope. */
13937 sym = new_symbol (child_die, NULL, cu);
13938 if (sym != NULL)
13939 {
13940 struct attribute *member_loc;
13941
13942 common_block->contents[common_block->n_entries++] = sym;
13943
13944 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13945 cu);
13946 if (member_loc)
13947 {
13948 /* GDB has handled this for a long time, but it is
13949 not specified by DWARF. It seems to have been
13950 emitted by gfortran at least as recently as:
13951 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13952 complaint (&symfile_complaints,
13953 _("Variable in common block has "
13954 "DW_AT_data_member_location "
13955 "- DIE at 0x%x [in module %s]"),
13956 child_die->offset.sect_off,
13957 objfile_name (cu->objfile));
13958
13959 if (attr_form_is_section_offset (member_loc))
13960 dwarf2_complex_location_expr_complaint ();
13961 else if (attr_form_is_constant (member_loc)
13962 || attr_form_is_block (member_loc))
13963 {
13964 if (attr)
13965 mark_common_block_symbol_computed (sym, die, attr,
13966 member_loc, cu);
13967 }
13968 else
13969 dwarf2_complex_location_expr_complaint ();
13970 }
13971 }
13972 }
13973
13974 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13975 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13976 }
13977 }
13978
13979 /* Create a type for a C++ namespace. */
13980
13981 static struct type *
13982 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13983 {
13984 struct objfile *objfile = cu->objfile;
13985 const char *previous_prefix, *name;
13986 int is_anonymous;
13987 struct type *type;
13988
13989 /* For extensions, reuse the type of the original namespace. */
13990 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13991 {
13992 struct die_info *ext_die;
13993 struct dwarf2_cu *ext_cu = cu;
13994
13995 ext_die = dwarf2_extension (die, &ext_cu);
13996 type = read_type_die (ext_die, ext_cu);
13997
13998 /* EXT_CU may not be the same as CU.
13999 Ensure TYPE is recorded with CU in die_type_hash. */
14000 return set_die_type (die, type, cu);
14001 }
14002
14003 name = namespace_name (die, &is_anonymous, cu);
14004
14005 /* Now build the name of the current namespace. */
14006
14007 previous_prefix = determine_prefix (die, cu);
14008 if (previous_prefix[0] != '\0')
14009 name = typename_concat (&objfile->objfile_obstack,
14010 previous_prefix, name, 0, cu);
14011
14012 /* Create the type. */
14013 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14014 objfile);
14015 TYPE_NAME (type) = name;
14016 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14017
14018 return set_die_type (die, type, cu);
14019 }
14020
14021 /* Read a C++ namespace. */
14022
14023 static void
14024 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14025 {
14026 struct objfile *objfile = cu->objfile;
14027 int is_anonymous;
14028
14029 /* Add a symbol associated to this if we haven't seen the namespace
14030 before. Also, add a using directive if it's an anonymous
14031 namespace. */
14032
14033 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14034 {
14035 struct type *type;
14036
14037 type = read_type_die (die, cu);
14038 new_symbol (die, type, cu);
14039
14040 namespace_name (die, &is_anonymous, cu);
14041 if (is_anonymous)
14042 {
14043 const char *previous_prefix = determine_prefix (die, cu);
14044
14045 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14046 NULL, NULL, 0, &objfile->objfile_obstack);
14047 }
14048 }
14049
14050 if (die->child != NULL)
14051 {
14052 struct die_info *child_die = die->child;
14053
14054 while (child_die && child_die->tag)
14055 {
14056 process_die (child_die, cu);
14057 child_die = sibling_die (child_die);
14058 }
14059 }
14060 }
14061
14062 /* Read a Fortran module as type. This DIE can be only a declaration used for
14063 imported module. Still we need that type as local Fortran "use ... only"
14064 declaration imports depend on the created type in determine_prefix. */
14065
14066 static struct type *
14067 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14068 {
14069 struct objfile *objfile = cu->objfile;
14070 const char *module_name;
14071 struct type *type;
14072
14073 module_name = dwarf2_name (die, cu);
14074 if (!module_name)
14075 complaint (&symfile_complaints,
14076 _("DW_TAG_module has no name, offset 0x%x"),
14077 die->offset.sect_off);
14078 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14079
14080 /* determine_prefix uses TYPE_TAG_NAME. */
14081 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14082
14083 return set_die_type (die, type, cu);
14084 }
14085
14086 /* Read a Fortran module. */
14087
14088 static void
14089 read_module (struct die_info *die, struct dwarf2_cu *cu)
14090 {
14091 struct die_info *child_die = die->child;
14092 struct type *type;
14093
14094 type = read_type_die (die, cu);
14095 new_symbol (die, type, cu);
14096
14097 while (child_die && child_die->tag)
14098 {
14099 process_die (child_die, cu);
14100 child_die = sibling_die (child_die);
14101 }
14102 }
14103
14104 /* Return the name of the namespace represented by DIE. Set
14105 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14106 namespace. */
14107
14108 static const char *
14109 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14110 {
14111 struct die_info *current_die;
14112 const char *name = NULL;
14113
14114 /* Loop through the extensions until we find a name. */
14115
14116 for (current_die = die;
14117 current_die != NULL;
14118 current_die = dwarf2_extension (die, &cu))
14119 {
14120 /* We don't use dwarf2_name here so that we can detect the absence
14121 of a name -> anonymous namespace. */
14122 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14123
14124 if (attr != NULL)
14125 name = DW_STRING (attr);
14126 if (name != NULL)
14127 break;
14128 }
14129
14130 /* Is it an anonymous namespace? */
14131
14132 *is_anonymous = (name == NULL);
14133 if (*is_anonymous)
14134 name = CP_ANONYMOUS_NAMESPACE_STR;
14135
14136 return name;
14137 }
14138
14139 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14140 the user defined type vector. */
14141
14142 static struct type *
14143 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14144 {
14145 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14146 struct comp_unit_head *cu_header = &cu->header;
14147 struct type *type;
14148 struct attribute *attr_byte_size;
14149 struct attribute *attr_address_class;
14150 int byte_size, addr_class;
14151 struct type *target_type;
14152
14153 target_type = die_type (die, cu);
14154
14155 /* The die_type call above may have already set the type for this DIE. */
14156 type = get_die_type (die, cu);
14157 if (type)
14158 return type;
14159
14160 type = lookup_pointer_type (target_type);
14161
14162 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14163 if (attr_byte_size)
14164 byte_size = DW_UNSND (attr_byte_size);
14165 else
14166 byte_size = cu_header->addr_size;
14167
14168 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14169 if (attr_address_class)
14170 addr_class = DW_UNSND (attr_address_class);
14171 else
14172 addr_class = DW_ADDR_none;
14173
14174 /* If the pointer size or address class is different than the
14175 default, create a type variant marked as such and set the
14176 length accordingly. */
14177 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14178 {
14179 if (gdbarch_address_class_type_flags_p (gdbarch))
14180 {
14181 int type_flags;
14182
14183 type_flags = gdbarch_address_class_type_flags
14184 (gdbarch, byte_size, addr_class);
14185 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14186 == 0);
14187 type = make_type_with_address_space (type, type_flags);
14188 }
14189 else if (TYPE_LENGTH (type) != byte_size)
14190 {
14191 complaint (&symfile_complaints,
14192 _("invalid pointer size %d"), byte_size);
14193 }
14194 else
14195 {
14196 /* Should we also complain about unhandled address classes? */
14197 }
14198 }
14199
14200 TYPE_LENGTH (type) = byte_size;
14201 return set_die_type (die, type, cu);
14202 }
14203
14204 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14205 the user defined type vector. */
14206
14207 static struct type *
14208 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14209 {
14210 struct type *type;
14211 struct type *to_type;
14212 struct type *domain;
14213
14214 to_type = die_type (die, cu);
14215 domain = die_containing_type (die, cu);
14216
14217 /* The calls above may have already set the type for this DIE. */
14218 type = get_die_type (die, cu);
14219 if (type)
14220 return type;
14221
14222 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14223 type = lookup_methodptr_type (to_type);
14224 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14225 {
14226 struct type *new_type = alloc_type (cu->objfile);
14227
14228 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14229 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14230 TYPE_VARARGS (to_type));
14231 type = lookup_methodptr_type (new_type);
14232 }
14233 else
14234 type = lookup_memberptr_type (to_type, domain);
14235
14236 return set_die_type (die, type, cu);
14237 }
14238
14239 /* Extract all information from a DW_TAG_reference_type DIE and add to
14240 the user defined type vector. */
14241
14242 static struct type *
14243 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct comp_unit_head *cu_header = &cu->header;
14246 struct type *type, *target_type;
14247 struct attribute *attr;
14248
14249 target_type = die_type (die, cu);
14250
14251 /* The die_type call above may have already set the type for this DIE. */
14252 type = get_die_type (die, cu);
14253 if (type)
14254 return type;
14255
14256 type = lookup_reference_type (target_type);
14257 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14258 if (attr)
14259 {
14260 TYPE_LENGTH (type) = DW_UNSND (attr);
14261 }
14262 else
14263 {
14264 TYPE_LENGTH (type) = cu_header->addr_size;
14265 }
14266 return set_die_type (die, type, cu);
14267 }
14268
14269 /* Add the given cv-qualifiers to the element type of the array. GCC
14270 outputs DWARF type qualifiers that apply to an array, not the
14271 element type. But GDB relies on the array element type to carry
14272 the cv-qualifiers. This mimics section 6.7.3 of the C99
14273 specification. */
14274
14275 static struct type *
14276 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14277 struct type *base_type, int cnst, int voltl)
14278 {
14279 struct type *el_type, *inner_array;
14280
14281 base_type = copy_type (base_type);
14282 inner_array = base_type;
14283
14284 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14285 {
14286 TYPE_TARGET_TYPE (inner_array) =
14287 copy_type (TYPE_TARGET_TYPE (inner_array));
14288 inner_array = TYPE_TARGET_TYPE (inner_array);
14289 }
14290
14291 el_type = TYPE_TARGET_TYPE (inner_array);
14292 cnst |= TYPE_CONST (el_type);
14293 voltl |= TYPE_VOLATILE (el_type);
14294 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14295
14296 return set_die_type (die, base_type, cu);
14297 }
14298
14299 static struct type *
14300 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14301 {
14302 struct type *base_type, *cv_type;
14303
14304 base_type = die_type (die, cu);
14305
14306 /* The die_type call above may have already set the type for this DIE. */
14307 cv_type = get_die_type (die, cu);
14308 if (cv_type)
14309 return cv_type;
14310
14311 /* In case the const qualifier is applied to an array type, the element type
14312 is so qualified, not the array type (section 6.7.3 of C99). */
14313 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14314 return add_array_cv_type (die, cu, base_type, 1, 0);
14315
14316 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14317 return set_die_type (die, cv_type, cu);
14318 }
14319
14320 static struct type *
14321 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14322 {
14323 struct type *base_type, *cv_type;
14324
14325 base_type = die_type (die, cu);
14326
14327 /* The die_type call above may have already set the type for this DIE. */
14328 cv_type = get_die_type (die, cu);
14329 if (cv_type)
14330 return cv_type;
14331
14332 /* In case the volatile qualifier is applied to an array type, the
14333 element type is so qualified, not the array type (section 6.7.3
14334 of C99). */
14335 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14336 return add_array_cv_type (die, cu, base_type, 0, 1);
14337
14338 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14339 return set_die_type (die, cv_type, cu);
14340 }
14341
14342 /* Handle DW_TAG_restrict_type. */
14343
14344 static struct type *
14345 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14346 {
14347 struct type *base_type, *cv_type;
14348
14349 base_type = die_type (die, cu);
14350
14351 /* The die_type call above may have already set the type for this DIE. */
14352 cv_type = get_die_type (die, cu);
14353 if (cv_type)
14354 return cv_type;
14355
14356 cv_type = make_restrict_type (base_type);
14357 return set_die_type (die, cv_type, cu);
14358 }
14359
14360 /* Handle DW_TAG_atomic_type. */
14361
14362 static struct type *
14363 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14364 {
14365 struct type *base_type, *cv_type;
14366
14367 base_type = die_type (die, cu);
14368
14369 /* The die_type call above may have already set the type for this DIE. */
14370 cv_type = get_die_type (die, cu);
14371 if (cv_type)
14372 return cv_type;
14373
14374 cv_type = make_atomic_type (base_type);
14375 return set_die_type (die, cv_type, cu);
14376 }
14377
14378 /* Extract all information from a DW_TAG_string_type DIE and add to
14379 the user defined type vector. It isn't really a user defined type,
14380 but it behaves like one, with other DIE's using an AT_user_def_type
14381 attribute to reference it. */
14382
14383 static struct type *
14384 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14385 {
14386 struct objfile *objfile = cu->objfile;
14387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14388 struct type *type, *range_type, *index_type, *char_type;
14389 struct attribute *attr;
14390 unsigned int length;
14391
14392 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14393 if (attr)
14394 {
14395 length = DW_UNSND (attr);
14396 }
14397 else
14398 {
14399 /* Check for the DW_AT_byte_size attribute. */
14400 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14401 if (attr)
14402 {
14403 length = DW_UNSND (attr);
14404 }
14405 else
14406 {
14407 length = 1;
14408 }
14409 }
14410
14411 index_type = objfile_type (objfile)->builtin_int;
14412 range_type = create_static_range_type (NULL, index_type, 1, length);
14413 char_type = language_string_char_type (cu->language_defn, gdbarch);
14414 type = create_string_type (NULL, char_type, range_type);
14415
14416 return set_die_type (die, type, cu);
14417 }
14418
14419 /* Assuming that DIE corresponds to a function, returns nonzero
14420 if the function is prototyped. */
14421
14422 static int
14423 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14424 {
14425 struct attribute *attr;
14426
14427 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14428 if (attr && (DW_UNSND (attr) != 0))
14429 return 1;
14430
14431 /* The DWARF standard implies that the DW_AT_prototyped attribute
14432 is only meaninful for C, but the concept also extends to other
14433 languages that allow unprototyped functions (Eg: Objective C).
14434 For all other languages, assume that functions are always
14435 prototyped. */
14436 if (cu->language != language_c
14437 && cu->language != language_objc
14438 && cu->language != language_opencl)
14439 return 1;
14440
14441 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14442 prototyped and unprototyped functions; default to prototyped,
14443 since that is more common in modern code (and RealView warns
14444 about unprototyped functions). */
14445 if (producer_is_realview (cu->producer))
14446 return 1;
14447
14448 return 0;
14449 }
14450
14451 /* Handle DIES due to C code like:
14452
14453 struct foo
14454 {
14455 int (*funcp)(int a, long l);
14456 int b;
14457 };
14458
14459 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14460
14461 static struct type *
14462 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14463 {
14464 struct objfile *objfile = cu->objfile;
14465 struct type *type; /* Type that this function returns. */
14466 struct type *ftype; /* Function that returns above type. */
14467 struct attribute *attr;
14468
14469 type = die_type (die, cu);
14470
14471 /* The die_type call above may have already set the type for this DIE. */
14472 ftype = get_die_type (die, cu);
14473 if (ftype)
14474 return ftype;
14475
14476 ftype = lookup_function_type (type);
14477
14478 if (prototyped_function_p (die, cu))
14479 TYPE_PROTOTYPED (ftype) = 1;
14480
14481 /* Store the calling convention in the type if it's available in
14482 the subroutine die. Otherwise set the calling convention to
14483 the default value DW_CC_normal. */
14484 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14485 if (attr)
14486 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14487 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14488 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14489 else
14490 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14491
14492 /* Record whether the function returns normally to its caller or not
14493 if the DWARF producer set that information. */
14494 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14495 if (attr && (DW_UNSND (attr) != 0))
14496 TYPE_NO_RETURN (ftype) = 1;
14497
14498 /* We need to add the subroutine type to the die immediately so
14499 we don't infinitely recurse when dealing with parameters
14500 declared as the same subroutine type. */
14501 set_die_type (die, ftype, cu);
14502
14503 if (die->child != NULL)
14504 {
14505 struct type *void_type = objfile_type (objfile)->builtin_void;
14506 struct die_info *child_die;
14507 int nparams, iparams;
14508
14509 /* Count the number of parameters.
14510 FIXME: GDB currently ignores vararg functions, but knows about
14511 vararg member functions. */
14512 nparams = 0;
14513 child_die = die->child;
14514 while (child_die && child_die->tag)
14515 {
14516 if (child_die->tag == DW_TAG_formal_parameter)
14517 nparams++;
14518 else if (child_die->tag == DW_TAG_unspecified_parameters)
14519 TYPE_VARARGS (ftype) = 1;
14520 child_die = sibling_die (child_die);
14521 }
14522
14523 /* Allocate storage for parameters and fill them in. */
14524 TYPE_NFIELDS (ftype) = nparams;
14525 TYPE_FIELDS (ftype) = (struct field *)
14526 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14527
14528 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14529 even if we error out during the parameters reading below. */
14530 for (iparams = 0; iparams < nparams; iparams++)
14531 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14532
14533 iparams = 0;
14534 child_die = die->child;
14535 while (child_die && child_die->tag)
14536 {
14537 if (child_die->tag == DW_TAG_formal_parameter)
14538 {
14539 struct type *arg_type;
14540
14541 /* DWARF version 2 has no clean way to discern C++
14542 static and non-static member functions. G++ helps
14543 GDB by marking the first parameter for non-static
14544 member functions (which is the this pointer) as
14545 artificial. We pass this information to
14546 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14547
14548 DWARF version 3 added DW_AT_object_pointer, which GCC
14549 4.5 does not yet generate. */
14550 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14551 if (attr)
14552 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14553 else
14554 {
14555 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14556
14557 /* GCC/43521: In java, the formal parameter
14558 "this" is sometimes not marked with DW_AT_artificial. */
14559 if (cu->language == language_java)
14560 {
14561 const char *name = dwarf2_name (child_die, cu);
14562
14563 if (name && !strcmp (name, "this"))
14564 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14565 }
14566 }
14567 arg_type = die_type (child_die, cu);
14568
14569 /* RealView does not mark THIS as const, which the testsuite
14570 expects. GCC marks THIS as const in method definitions,
14571 but not in the class specifications (GCC PR 43053). */
14572 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14573 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14574 {
14575 int is_this = 0;
14576 struct dwarf2_cu *arg_cu = cu;
14577 const char *name = dwarf2_name (child_die, cu);
14578
14579 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14580 if (attr)
14581 {
14582 /* If the compiler emits this, use it. */
14583 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14584 is_this = 1;
14585 }
14586 else if (name && strcmp (name, "this") == 0)
14587 /* Function definitions will have the argument names. */
14588 is_this = 1;
14589 else if (name == NULL && iparams == 0)
14590 /* Declarations may not have the names, so like
14591 elsewhere in GDB, assume an artificial first
14592 argument is "this". */
14593 is_this = 1;
14594
14595 if (is_this)
14596 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14597 arg_type, 0);
14598 }
14599
14600 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14601 iparams++;
14602 }
14603 child_die = sibling_die (child_die);
14604 }
14605 }
14606
14607 return ftype;
14608 }
14609
14610 static struct type *
14611 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14612 {
14613 struct objfile *objfile = cu->objfile;
14614 const char *name = NULL;
14615 struct type *this_type, *target_type;
14616
14617 name = dwarf2_full_name (NULL, die, cu);
14618 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14619 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14620 TYPE_NAME (this_type) = name;
14621 set_die_type (die, this_type, cu);
14622 target_type = die_type (die, cu);
14623 if (target_type != this_type)
14624 TYPE_TARGET_TYPE (this_type) = target_type;
14625 else
14626 {
14627 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14628 spec and cause infinite loops in GDB. */
14629 complaint (&symfile_complaints,
14630 _("Self-referential DW_TAG_typedef "
14631 "- DIE at 0x%x [in module %s]"),
14632 die->offset.sect_off, objfile_name (objfile));
14633 TYPE_TARGET_TYPE (this_type) = NULL;
14634 }
14635 return this_type;
14636 }
14637
14638 /* Find a representation of a given base type and install
14639 it in the TYPE field of the die. */
14640
14641 static struct type *
14642 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14643 {
14644 struct objfile *objfile = cu->objfile;
14645 struct type *type;
14646 struct attribute *attr;
14647 int encoding = 0, size = 0;
14648 const char *name;
14649 enum type_code code = TYPE_CODE_INT;
14650 int type_flags = 0;
14651 struct type *target_type = NULL;
14652
14653 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14654 if (attr)
14655 {
14656 encoding = DW_UNSND (attr);
14657 }
14658 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14659 if (attr)
14660 {
14661 size = DW_UNSND (attr);
14662 }
14663 name = dwarf2_name (die, cu);
14664 if (!name)
14665 {
14666 complaint (&symfile_complaints,
14667 _("DW_AT_name missing from DW_TAG_base_type"));
14668 }
14669
14670 switch (encoding)
14671 {
14672 case DW_ATE_address:
14673 /* Turn DW_ATE_address into a void * pointer. */
14674 code = TYPE_CODE_PTR;
14675 type_flags |= TYPE_FLAG_UNSIGNED;
14676 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14677 break;
14678 case DW_ATE_boolean:
14679 code = TYPE_CODE_BOOL;
14680 type_flags |= TYPE_FLAG_UNSIGNED;
14681 break;
14682 case DW_ATE_complex_float:
14683 code = TYPE_CODE_COMPLEX;
14684 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14685 break;
14686 case DW_ATE_decimal_float:
14687 code = TYPE_CODE_DECFLOAT;
14688 break;
14689 case DW_ATE_float:
14690 code = TYPE_CODE_FLT;
14691 break;
14692 case DW_ATE_signed:
14693 break;
14694 case DW_ATE_unsigned:
14695 type_flags |= TYPE_FLAG_UNSIGNED;
14696 if (cu->language == language_fortran
14697 && name
14698 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14699 code = TYPE_CODE_CHAR;
14700 break;
14701 case DW_ATE_signed_char:
14702 if (cu->language == language_ada || cu->language == language_m2
14703 || cu->language == language_pascal
14704 || cu->language == language_fortran)
14705 code = TYPE_CODE_CHAR;
14706 break;
14707 case DW_ATE_unsigned_char:
14708 if (cu->language == language_ada || cu->language == language_m2
14709 || cu->language == language_pascal
14710 || cu->language == language_fortran)
14711 code = TYPE_CODE_CHAR;
14712 type_flags |= TYPE_FLAG_UNSIGNED;
14713 break;
14714 case DW_ATE_UTF:
14715 /* We just treat this as an integer and then recognize the
14716 type by name elsewhere. */
14717 break;
14718
14719 default:
14720 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14721 dwarf_type_encoding_name (encoding));
14722 break;
14723 }
14724
14725 type = init_type (code, size, type_flags, NULL, objfile);
14726 TYPE_NAME (type) = name;
14727 TYPE_TARGET_TYPE (type) = target_type;
14728
14729 if (name && strcmp (name, "char") == 0)
14730 TYPE_NOSIGN (type) = 1;
14731
14732 return set_die_type (die, type, cu);
14733 }
14734
14735 /* Parse dwarf attribute if it's a block, reference or constant and put the
14736 resulting value of the attribute into struct bound_prop.
14737 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14738
14739 static int
14740 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14741 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14742 {
14743 struct dwarf2_property_baton *baton;
14744 struct obstack *obstack = &cu->objfile->objfile_obstack;
14745
14746 if (attr == NULL || prop == NULL)
14747 return 0;
14748
14749 if (attr_form_is_block (attr))
14750 {
14751 baton = obstack_alloc (obstack, sizeof (*baton));
14752 baton->referenced_type = NULL;
14753 baton->locexpr.per_cu = cu->per_cu;
14754 baton->locexpr.size = DW_BLOCK (attr)->size;
14755 baton->locexpr.data = DW_BLOCK (attr)->data;
14756 prop->data.baton = baton;
14757 prop->kind = PROP_LOCEXPR;
14758 gdb_assert (prop->data.baton != NULL);
14759 }
14760 else if (attr_form_is_ref (attr))
14761 {
14762 struct dwarf2_cu *target_cu = cu;
14763 struct die_info *target_die;
14764 struct attribute *target_attr;
14765
14766 target_die = follow_die_ref (die, attr, &target_cu);
14767 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14768 if (target_attr == NULL)
14769 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14770 target_cu);
14771 if (target_attr == NULL)
14772 return 0;
14773
14774 switch (target_attr->name)
14775 {
14776 case DW_AT_location:
14777 if (attr_form_is_section_offset (target_attr))
14778 {
14779 baton = obstack_alloc (obstack, sizeof (*baton));
14780 baton->referenced_type = die_type (target_die, target_cu);
14781 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14782 prop->data.baton = baton;
14783 prop->kind = PROP_LOCLIST;
14784 gdb_assert (prop->data.baton != NULL);
14785 }
14786 else if (attr_form_is_block (target_attr))
14787 {
14788 baton = obstack_alloc (obstack, sizeof (*baton));
14789 baton->referenced_type = die_type (target_die, target_cu);
14790 baton->locexpr.per_cu = cu->per_cu;
14791 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14792 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14793 prop->data.baton = baton;
14794 prop->kind = PROP_LOCEXPR;
14795 gdb_assert (prop->data.baton != NULL);
14796 }
14797 else
14798 {
14799 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14800 "dynamic property");
14801 return 0;
14802 }
14803 break;
14804 case DW_AT_data_member_location:
14805 {
14806 LONGEST offset;
14807
14808 if (!handle_data_member_location (target_die, target_cu,
14809 &offset))
14810 return 0;
14811
14812 baton = obstack_alloc (obstack, sizeof (*baton));
14813 baton->referenced_type = get_die_type (target_die->parent,
14814 target_cu);
14815 baton->offset_info.offset = offset;
14816 baton->offset_info.type = die_type (target_die, target_cu);
14817 prop->data.baton = baton;
14818 prop->kind = PROP_ADDR_OFFSET;
14819 break;
14820 }
14821 }
14822 }
14823 else if (attr_form_is_constant (attr))
14824 {
14825 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14826 prop->kind = PROP_CONST;
14827 }
14828 else
14829 {
14830 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14831 dwarf2_name (die, cu));
14832 return 0;
14833 }
14834
14835 return 1;
14836 }
14837
14838 /* Read the given DW_AT_subrange DIE. */
14839
14840 static struct type *
14841 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14842 {
14843 struct type *base_type, *orig_base_type;
14844 struct type *range_type;
14845 struct attribute *attr;
14846 struct dynamic_prop low, high;
14847 int low_default_is_valid;
14848 int high_bound_is_count = 0;
14849 const char *name;
14850 LONGEST negative_mask;
14851
14852 orig_base_type = die_type (die, cu);
14853 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14854 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14855 creating the range type, but we use the result of check_typedef
14856 when examining properties of the type. */
14857 base_type = check_typedef (orig_base_type);
14858
14859 /* The die_type call above may have already set the type for this DIE. */
14860 range_type = get_die_type (die, cu);
14861 if (range_type)
14862 return range_type;
14863
14864 low.kind = PROP_CONST;
14865 high.kind = PROP_CONST;
14866 high.data.const_val = 0;
14867
14868 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14869 omitting DW_AT_lower_bound. */
14870 switch (cu->language)
14871 {
14872 case language_c:
14873 case language_cplus:
14874 low.data.const_val = 0;
14875 low_default_is_valid = 1;
14876 break;
14877 case language_fortran:
14878 low.data.const_val = 1;
14879 low_default_is_valid = 1;
14880 break;
14881 case language_d:
14882 case language_java:
14883 case language_objc:
14884 low.data.const_val = 0;
14885 low_default_is_valid = (cu->header.version >= 4);
14886 break;
14887 case language_ada:
14888 case language_m2:
14889 case language_pascal:
14890 low.data.const_val = 1;
14891 low_default_is_valid = (cu->header.version >= 4);
14892 break;
14893 default:
14894 low.data.const_val = 0;
14895 low_default_is_valid = 0;
14896 break;
14897 }
14898
14899 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14900 if (attr)
14901 attr_to_dynamic_prop (attr, die, cu, &low);
14902 else if (!low_default_is_valid)
14903 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14904 "- DIE at 0x%x [in module %s]"),
14905 die->offset.sect_off, objfile_name (cu->objfile));
14906
14907 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14908 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14909 {
14910 attr = dwarf2_attr (die, DW_AT_count, cu);
14911 if (attr_to_dynamic_prop (attr, die, cu, &high))
14912 {
14913 /* If bounds are constant do the final calculation here. */
14914 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14915 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14916 else
14917 high_bound_is_count = 1;
14918 }
14919 }
14920
14921 /* Dwarf-2 specifications explicitly allows to create subrange types
14922 without specifying a base type.
14923 In that case, the base type must be set to the type of
14924 the lower bound, upper bound or count, in that order, if any of these
14925 three attributes references an object that has a type.
14926 If no base type is found, the Dwarf-2 specifications say that
14927 a signed integer type of size equal to the size of an address should
14928 be used.
14929 For the following C code: `extern char gdb_int [];'
14930 GCC produces an empty range DIE.
14931 FIXME: muller/2010-05-28: Possible references to object for low bound,
14932 high bound or count are not yet handled by this code. */
14933 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14934 {
14935 struct objfile *objfile = cu->objfile;
14936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14937 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14938 struct type *int_type = objfile_type (objfile)->builtin_int;
14939
14940 /* Test "int", "long int", and "long long int" objfile types,
14941 and select the first one having a size above or equal to the
14942 architecture address size. */
14943 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14944 base_type = int_type;
14945 else
14946 {
14947 int_type = objfile_type (objfile)->builtin_long;
14948 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14949 base_type = int_type;
14950 else
14951 {
14952 int_type = objfile_type (objfile)->builtin_long_long;
14953 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14954 base_type = int_type;
14955 }
14956 }
14957 }
14958
14959 /* Normally, the DWARF producers are expected to use a signed
14960 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14961 But this is unfortunately not always the case, as witnessed
14962 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14963 is used instead. To work around that ambiguity, we treat
14964 the bounds as signed, and thus sign-extend their values, when
14965 the base type is signed. */
14966 negative_mask =
14967 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14968 if (low.kind == PROP_CONST
14969 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14970 low.data.const_val |= negative_mask;
14971 if (high.kind == PROP_CONST
14972 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14973 high.data.const_val |= negative_mask;
14974
14975 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14976
14977 if (high_bound_is_count)
14978 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14979
14980 /* Ada expects an empty array on no boundary attributes. */
14981 if (attr == NULL && cu->language != language_ada)
14982 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14983
14984 name = dwarf2_name (die, cu);
14985 if (name)
14986 TYPE_NAME (range_type) = name;
14987
14988 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14989 if (attr)
14990 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14991
14992 set_die_type (die, range_type, cu);
14993
14994 /* set_die_type should be already done. */
14995 set_descriptive_type (range_type, die, cu);
14996
14997 return range_type;
14998 }
14999
15000 static struct type *
15001 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15002 {
15003 struct type *type;
15004
15005 /* For now, we only support the C meaning of an unspecified type: void. */
15006
15007 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15008 TYPE_NAME (type) = dwarf2_name (die, cu);
15009
15010 return set_die_type (die, type, cu);
15011 }
15012
15013 /* Read a single die and all its descendents. Set the die's sibling
15014 field to NULL; set other fields in the die correctly, and set all
15015 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15016 location of the info_ptr after reading all of those dies. PARENT
15017 is the parent of the die in question. */
15018
15019 static struct die_info *
15020 read_die_and_children (const struct die_reader_specs *reader,
15021 const gdb_byte *info_ptr,
15022 const gdb_byte **new_info_ptr,
15023 struct die_info *parent)
15024 {
15025 struct die_info *die;
15026 const gdb_byte *cur_ptr;
15027 int has_children;
15028
15029 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15030 if (die == NULL)
15031 {
15032 *new_info_ptr = cur_ptr;
15033 return NULL;
15034 }
15035 store_in_ref_table (die, reader->cu);
15036
15037 if (has_children)
15038 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15039 else
15040 {
15041 die->child = NULL;
15042 *new_info_ptr = cur_ptr;
15043 }
15044
15045 die->sibling = NULL;
15046 die->parent = parent;
15047 return die;
15048 }
15049
15050 /* Read a die, all of its descendents, and all of its siblings; set
15051 all of the fields of all of the dies correctly. Arguments are as
15052 in read_die_and_children. */
15053
15054 static struct die_info *
15055 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15056 const gdb_byte *info_ptr,
15057 const gdb_byte **new_info_ptr,
15058 struct die_info *parent)
15059 {
15060 struct die_info *first_die, *last_sibling;
15061 const gdb_byte *cur_ptr;
15062
15063 cur_ptr = info_ptr;
15064 first_die = last_sibling = NULL;
15065
15066 while (1)
15067 {
15068 struct die_info *die
15069 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15070
15071 if (die == NULL)
15072 {
15073 *new_info_ptr = cur_ptr;
15074 return first_die;
15075 }
15076
15077 if (!first_die)
15078 first_die = die;
15079 else
15080 last_sibling->sibling = die;
15081
15082 last_sibling = die;
15083 }
15084 }
15085
15086 /* Read a die, all of its descendents, and all of its siblings; set
15087 all of the fields of all of the dies correctly. Arguments are as
15088 in read_die_and_children.
15089 This the main entry point for reading a DIE and all its children. */
15090
15091 static struct die_info *
15092 read_die_and_siblings (const struct die_reader_specs *reader,
15093 const gdb_byte *info_ptr,
15094 const gdb_byte **new_info_ptr,
15095 struct die_info *parent)
15096 {
15097 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15098 new_info_ptr, parent);
15099
15100 if (dwarf2_die_debug)
15101 {
15102 fprintf_unfiltered (gdb_stdlog,
15103 "Read die from %s@0x%x of %s:\n",
15104 get_section_name (reader->die_section),
15105 (unsigned) (info_ptr - reader->die_section->buffer),
15106 bfd_get_filename (reader->abfd));
15107 dump_die (die, dwarf2_die_debug);
15108 }
15109
15110 return die;
15111 }
15112
15113 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15114 attributes.
15115 The caller is responsible for filling in the extra attributes
15116 and updating (*DIEP)->num_attrs.
15117 Set DIEP to point to a newly allocated die with its information,
15118 except for its child, sibling, and parent fields.
15119 Set HAS_CHILDREN to tell whether the die has children or not. */
15120
15121 static const gdb_byte *
15122 read_full_die_1 (const struct die_reader_specs *reader,
15123 struct die_info **diep, const gdb_byte *info_ptr,
15124 int *has_children, int num_extra_attrs)
15125 {
15126 unsigned int abbrev_number, bytes_read, i;
15127 sect_offset offset;
15128 struct abbrev_info *abbrev;
15129 struct die_info *die;
15130 struct dwarf2_cu *cu = reader->cu;
15131 bfd *abfd = reader->abfd;
15132
15133 offset.sect_off = info_ptr - reader->buffer;
15134 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15135 info_ptr += bytes_read;
15136 if (!abbrev_number)
15137 {
15138 *diep = NULL;
15139 *has_children = 0;
15140 return info_ptr;
15141 }
15142
15143 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15144 if (!abbrev)
15145 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15146 abbrev_number,
15147 bfd_get_filename (abfd));
15148
15149 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15150 die->offset = offset;
15151 die->tag = abbrev->tag;
15152 die->abbrev = abbrev_number;
15153
15154 /* Make the result usable.
15155 The caller needs to update num_attrs after adding the extra
15156 attributes. */
15157 die->num_attrs = abbrev->num_attrs;
15158
15159 for (i = 0; i < abbrev->num_attrs; ++i)
15160 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15161 info_ptr);
15162
15163 *diep = die;
15164 *has_children = abbrev->has_children;
15165 return info_ptr;
15166 }
15167
15168 /* Read a die and all its attributes.
15169 Set DIEP to point to a newly allocated die with its information,
15170 except for its child, sibling, and parent fields.
15171 Set HAS_CHILDREN to tell whether the die has children or not. */
15172
15173 static const gdb_byte *
15174 read_full_die (const struct die_reader_specs *reader,
15175 struct die_info **diep, const gdb_byte *info_ptr,
15176 int *has_children)
15177 {
15178 const gdb_byte *result;
15179
15180 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15181
15182 if (dwarf2_die_debug)
15183 {
15184 fprintf_unfiltered (gdb_stdlog,
15185 "Read die from %s@0x%x of %s:\n",
15186 get_section_name (reader->die_section),
15187 (unsigned) (info_ptr - reader->die_section->buffer),
15188 bfd_get_filename (reader->abfd));
15189 dump_die (*diep, dwarf2_die_debug);
15190 }
15191
15192 return result;
15193 }
15194 \f
15195 /* Abbreviation tables.
15196
15197 In DWARF version 2, the description of the debugging information is
15198 stored in a separate .debug_abbrev section. Before we read any
15199 dies from a section we read in all abbreviations and install them
15200 in a hash table. */
15201
15202 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15203
15204 static struct abbrev_info *
15205 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15206 {
15207 struct abbrev_info *abbrev;
15208
15209 abbrev = (struct abbrev_info *)
15210 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15211 memset (abbrev, 0, sizeof (struct abbrev_info));
15212 return abbrev;
15213 }
15214
15215 /* Add an abbreviation to the table. */
15216
15217 static void
15218 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15219 unsigned int abbrev_number,
15220 struct abbrev_info *abbrev)
15221 {
15222 unsigned int hash_number;
15223
15224 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15225 abbrev->next = abbrev_table->abbrevs[hash_number];
15226 abbrev_table->abbrevs[hash_number] = abbrev;
15227 }
15228
15229 /* Look up an abbrev in the table.
15230 Returns NULL if the abbrev is not found. */
15231
15232 static struct abbrev_info *
15233 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15234 unsigned int abbrev_number)
15235 {
15236 unsigned int hash_number;
15237 struct abbrev_info *abbrev;
15238
15239 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15240 abbrev = abbrev_table->abbrevs[hash_number];
15241
15242 while (abbrev)
15243 {
15244 if (abbrev->number == abbrev_number)
15245 return abbrev;
15246 abbrev = abbrev->next;
15247 }
15248 return NULL;
15249 }
15250
15251 /* Read in an abbrev table. */
15252
15253 static struct abbrev_table *
15254 abbrev_table_read_table (struct dwarf2_section_info *section,
15255 sect_offset offset)
15256 {
15257 struct objfile *objfile = dwarf2_per_objfile->objfile;
15258 bfd *abfd = get_section_bfd_owner (section);
15259 struct abbrev_table *abbrev_table;
15260 const gdb_byte *abbrev_ptr;
15261 struct abbrev_info *cur_abbrev;
15262 unsigned int abbrev_number, bytes_read, abbrev_name;
15263 unsigned int abbrev_form;
15264 struct attr_abbrev *cur_attrs;
15265 unsigned int allocated_attrs;
15266
15267 abbrev_table = XNEW (struct abbrev_table);
15268 abbrev_table->offset = offset;
15269 obstack_init (&abbrev_table->abbrev_obstack);
15270 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15271 (ABBREV_HASH_SIZE
15272 * sizeof (struct abbrev_info *)));
15273 memset (abbrev_table->abbrevs, 0,
15274 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15275
15276 dwarf2_read_section (objfile, section);
15277 abbrev_ptr = section->buffer + offset.sect_off;
15278 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15279 abbrev_ptr += bytes_read;
15280
15281 allocated_attrs = ATTR_ALLOC_CHUNK;
15282 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15283
15284 /* Loop until we reach an abbrev number of 0. */
15285 while (abbrev_number)
15286 {
15287 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15288
15289 /* read in abbrev header */
15290 cur_abbrev->number = abbrev_number;
15291 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15292 abbrev_ptr += bytes_read;
15293 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15294 abbrev_ptr += 1;
15295
15296 /* now read in declarations */
15297 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15298 abbrev_ptr += bytes_read;
15299 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15300 abbrev_ptr += bytes_read;
15301 while (abbrev_name)
15302 {
15303 if (cur_abbrev->num_attrs == allocated_attrs)
15304 {
15305 allocated_attrs += ATTR_ALLOC_CHUNK;
15306 cur_attrs
15307 = xrealloc (cur_attrs, (allocated_attrs
15308 * sizeof (struct attr_abbrev)));
15309 }
15310
15311 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15312 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15313 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15314 abbrev_ptr += bytes_read;
15315 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15316 abbrev_ptr += bytes_read;
15317 }
15318
15319 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15320 (cur_abbrev->num_attrs
15321 * sizeof (struct attr_abbrev)));
15322 memcpy (cur_abbrev->attrs, cur_attrs,
15323 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15324
15325 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15326
15327 /* Get next abbreviation.
15328 Under Irix6 the abbreviations for a compilation unit are not
15329 always properly terminated with an abbrev number of 0.
15330 Exit loop if we encounter an abbreviation which we have
15331 already read (which means we are about to read the abbreviations
15332 for the next compile unit) or if the end of the abbreviation
15333 table is reached. */
15334 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15335 break;
15336 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15337 abbrev_ptr += bytes_read;
15338 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15339 break;
15340 }
15341
15342 xfree (cur_attrs);
15343 return abbrev_table;
15344 }
15345
15346 /* Free the resources held by ABBREV_TABLE. */
15347
15348 static void
15349 abbrev_table_free (struct abbrev_table *abbrev_table)
15350 {
15351 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15352 xfree (abbrev_table);
15353 }
15354
15355 /* Same as abbrev_table_free but as a cleanup.
15356 We pass in a pointer to the pointer to the table so that we can
15357 set the pointer to NULL when we're done. It also simplifies
15358 build_type_psymtabs_1. */
15359
15360 static void
15361 abbrev_table_free_cleanup (void *table_ptr)
15362 {
15363 struct abbrev_table **abbrev_table_ptr = table_ptr;
15364
15365 if (*abbrev_table_ptr != NULL)
15366 abbrev_table_free (*abbrev_table_ptr);
15367 *abbrev_table_ptr = NULL;
15368 }
15369
15370 /* Read the abbrev table for CU from ABBREV_SECTION. */
15371
15372 static void
15373 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15374 struct dwarf2_section_info *abbrev_section)
15375 {
15376 cu->abbrev_table =
15377 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15378 }
15379
15380 /* Release the memory used by the abbrev table for a compilation unit. */
15381
15382 static void
15383 dwarf2_free_abbrev_table (void *ptr_to_cu)
15384 {
15385 struct dwarf2_cu *cu = ptr_to_cu;
15386
15387 if (cu->abbrev_table != NULL)
15388 abbrev_table_free (cu->abbrev_table);
15389 /* Set this to NULL so that we SEGV if we try to read it later,
15390 and also because free_comp_unit verifies this is NULL. */
15391 cu->abbrev_table = NULL;
15392 }
15393 \f
15394 /* Returns nonzero if TAG represents a type that we might generate a partial
15395 symbol for. */
15396
15397 static int
15398 is_type_tag_for_partial (int tag)
15399 {
15400 switch (tag)
15401 {
15402 #if 0
15403 /* Some types that would be reasonable to generate partial symbols for,
15404 that we don't at present. */
15405 case DW_TAG_array_type:
15406 case DW_TAG_file_type:
15407 case DW_TAG_ptr_to_member_type:
15408 case DW_TAG_set_type:
15409 case DW_TAG_string_type:
15410 case DW_TAG_subroutine_type:
15411 #endif
15412 case DW_TAG_base_type:
15413 case DW_TAG_class_type:
15414 case DW_TAG_interface_type:
15415 case DW_TAG_enumeration_type:
15416 case DW_TAG_structure_type:
15417 case DW_TAG_subrange_type:
15418 case DW_TAG_typedef:
15419 case DW_TAG_union_type:
15420 return 1;
15421 default:
15422 return 0;
15423 }
15424 }
15425
15426 /* Load all DIEs that are interesting for partial symbols into memory. */
15427
15428 static struct partial_die_info *
15429 load_partial_dies (const struct die_reader_specs *reader,
15430 const gdb_byte *info_ptr, int building_psymtab)
15431 {
15432 struct dwarf2_cu *cu = reader->cu;
15433 struct objfile *objfile = cu->objfile;
15434 struct partial_die_info *part_die;
15435 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15436 struct abbrev_info *abbrev;
15437 unsigned int bytes_read;
15438 unsigned int load_all = 0;
15439 int nesting_level = 1;
15440
15441 parent_die = NULL;
15442 last_die = NULL;
15443
15444 gdb_assert (cu->per_cu != NULL);
15445 if (cu->per_cu->load_all_dies)
15446 load_all = 1;
15447
15448 cu->partial_dies
15449 = htab_create_alloc_ex (cu->header.length / 12,
15450 partial_die_hash,
15451 partial_die_eq,
15452 NULL,
15453 &cu->comp_unit_obstack,
15454 hashtab_obstack_allocate,
15455 dummy_obstack_deallocate);
15456
15457 part_die = obstack_alloc (&cu->comp_unit_obstack,
15458 sizeof (struct partial_die_info));
15459
15460 while (1)
15461 {
15462 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15463
15464 /* A NULL abbrev means the end of a series of children. */
15465 if (abbrev == NULL)
15466 {
15467 if (--nesting_level == 0)
15468 {
15469 /* PART_DIE was probably the last thing allocated on the
15470 comp_unit_obstack, so we could call obstack_free
15471 here. We don't do that because the waste is small,
15472 and will be cleaned up when we're done with this
15473 compilation unit. This way, we're also more robust
15474 against other users of the comp_unit_obstack. */
15475 return first_die;
15476 }
15477 info_ptr += bytes_read;
15478 last_die = parent_die;
15479 parent_die = parent_die->die_parent;
15480 continue;
15481 }
15482
15483 /* Check for template arguments. We never save these; if
15484 they're seen, we just mark the parent, and go on our way. */
15485 if (parent_die != NULL
15486 && cu->language == language_cplus
15487 && (abbrev->tag == DW_TAG_template_type_param
15488 || abbrev->tag == DW_TAG_template_value_param))
15489 {
15490 parent_die->has_template_arguments = 1;
15491
15492 if (!load_all)
15493 {
15494 /* We don't need a partial DIE for the template argument. */
15495 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15496 continue;
15497 }
15498 }
15499
15500 /* We only recurse into c++ subprograms looking for template arguments.
15501 Skip their other children. */
15502 if (!load_all
15503 && cu->language == language_cplus
15504 && parent_die != NULL
15505 && parent_die->tag == DW_TAG_subprogram)
15506 {
15507 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15508 continue;
15509 }
15510
15511 /* Check whether this DIE is interesting enough to save. Normally
15512 we would not be interested in members here, but there may be
15513 later variables referencing them via DW_AT_specification (for
15514 static members). */
15515 if (!load_all
15516 && !is_type_tag_for_partial (abbrev->tag)
15517 && abbrev->tag != DW_TAG_constant
15518 && abbrev->tag != DW_TAG_enumerator
15519 && abbrev->tag != DW_TAG_subprogram
15520 && abbrev->tag != DW_TAG_lexical_block
15521 && abbrev->tag != DW_TAG_variable
15522 && abbrev->tag != DW_TAG_namespace
15523 && abbrev->tag != DW_TAG_module
15524 && abbrev->tag != DW_TAG_member
15525 && abbrev->tag != DW_TAG_imported_unit
15526 && abbrev->tag != DW_TAG_imported_declaration)
15527 {
15528 /* Otherwise we skip to the next sibling, if any. */
15529 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15530 continue;
15531 }
15532
15533 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15534 info_ptr);
15535
15536 /* This two-pass algorithm for processing partial symbols has a
15537 high cost in cache pressure. Thus, handle some simple cases
15538 here which cover the majority of C partial symbols. DIEs
15539 which neither have specification tags in them, nor could have
15540 specification tags elsewhere pointing at them, can simply be
15541 processed and discarded.
15542
15543 This segment is also optional; scan_partial_symbols and
15544 add_partial_symbol will handle these DIEs if we chain
15545 them in normally. When compilers which do not emit large
15546 quantities of duplicate debug information are more common,
15547 this code can probably be removed. */
15548
15549 /* Any complete simple types at the top level (pretty much all
15550 of them, for a language without namespaces), can be processed
15551 directly. */
15552 if (parent_die == NULL
15553 && part_die->has_specification == 0
15554 && part_die->is_declaration == 0
15555 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15556 || part_die->tag == DW_TAG_base_type
15557 || part_die->tag == DW_TAG_subrange_type))
15558 {
15559 if (building_psymtab && part_die->name != NULL)
15560 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15561 VAR_DOMAIN, LOC_TYPEDEF,
15562 &objfile->static_psymbols,
15563 0, (CORE_ADDR) 0, cu->language, objfile);
15564 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15565 continue;
15566 }
15567
15568 /* The exception for DW_TAG_typedef with has_children above is
15569 a workaround of GCC PR debug/47510. In the case of this complaint
15570 type_name_no_tag_or_error will error on such types later.
15571
15572 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15573 it could not find the child DIEs referenced later, this is checked
15574 above. In correct DWARF DW_TAG_typedef should have no children. */
15575
15576 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15577 complaint (&symfile_complaints,
15578 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15579 "- DIE at 0x%x [in module %s]"),
15580 part_die->offset.sect_off, objfile_name (objfile));
15581
15582 /* If we're at the second level, and we're an enumerator, and
15583 our parent has no specification (meaning possibly lives in a
15584 namespace elsewhere), then we can add the partial symbol now
15585 instead of queueing it. */
15586 if (part_die->tag == DW_TAG_enumerator
15587 && parent_die != NULL
15588 && parent_die->die_parent == NULL
15589 && parent_die->tag == DW_TAG_enumeration_type
15590 && parent_die->has_specification == 0)
15591 {
15592 if (part_die->name == NULL)
15593 complaint (&symfile_complaints,
15594 _("malformed enumerator DIE ignored"));
15595 else if (building_psymtab)
15596 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15597 VAR_DOMAIN, LOC_CONST,
15598 (cu->language == language_cplus
15599 || cu->language == language_java)
15600 ? &objfile->global_psymbols
15601 : &objfile->static_psymbols,
15602 0, (CORE_ADDR) 0, cu->language, objfile);
15603
15604 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15605 continue;
15606 }
15607
15608 /* We'll save this DIE so link it in. */
15609 part_die->die_parent = parent_die;
15610 part_die->die_sibling = NULL;
15611 part_die->die_child = NULL;
15612
15613 if (last_die && last_die == parent_die)
15614 last_die->die_child = part_die;
15615 else if (last_die)
15616 last_die->die_sibling = part_die;
15617
15618 last_die = part_die;
15619
15620 if (first_die == NULL)
15621 first_die = part_die;
15622
15623 /* Maybe add the DIE to the hash table. Not all DIEs that we
15624 find interesting need to be in the hash table, because we
15625 also have the parent/sibling/child chains; only those that we
15626 might refer to by offset later during partial symbol reading.
15627
15628 For now this means things that might have be the target of a
15629 DW_AT_specification, DW_AT_abstract_origin, or
15630 DW_AT_extension. DW_AT_extension will refer only to
15631 namespaces; DW_AT_abstract_origin refers to functions (and
15632 many things under the function DIE, but we do not recurse
15633 into function DIEs during partial symbol reading) and
15634 possibly variables as well; DW_AT_specification refers to
15635 declarations. Declarations ought to have the DW_AT_declaration
15636 flag. It happens that GCC forgets to put it in sometimes, but
15637 only for functions, not for types.
15638
15639 Adding more things than necessary to the hash table is harmless
15640 except for the performance cost. Adding too few will result in
15641 wasted time in find_partial_die, when we reread the compilation
15642 unit with load_all_dies set. */
15643
15644 if (load_all
15645 || abbrev->tag == DW_TAG_constant
15646 || abbrev->tag == DW_TAG_subprogram
15647 || abbrev->tag == DW_TAG_variable
15648 || abbrev->tag == DW_TAG_namespace
15649 || part_die->is_declaration)
15650 {
15651 void **slot;
15652
15653 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15654 part_die->offset.sect_off, INSERT);
15655 *slot = part_die;
15656 }
15657
15658 part_die = obstack_alloc (&cu->comp_unit_obstack,
15659 sizeof (struct partial_die_info));
15660
15661 /* For some DIEs we want to follow their children (if any). For C
15662 we have no reason to follow the children of structures; for other
15663 languages we have to, so that we can get at method physnames
15664 to infer fully qualified class names, for DW_AT_specification,
15665 and for C++ template arguments. For C++, we also look one level
15666 inside functions to find template arguments (if the name of the
15667 function does not already contain the template arguments).
15668
15669 For Ada, we need to scan the children of subprograms and lexical
15670 blocks as well because Ada allows the definition of nested
15671 entities that could be interesting for the debugger, such as
15672 nested subprograms for instance. */
15673 if (last_die->has_children
15674 && (load_all
15675 || last_die->tag == DW_TAG_namespace
15676 || last_die->tag == DW_TAG_module
15677 || last_die->tag == DW_TAG_enumeration_type
15678 || (cu->language == language_cplus
15679 && last_die->tag == DW_TAG_subprogram
15680 && (last_die->name == NULL
15681 || strchr (last_die->name, '<') == NULL))
15682 || (cu->language != language_c
15683 && (last_die->tag == DW_TAG_class_type
15684 || last_die->tag == DW_TAG_interface_type
15685 || last_die->tag == DW_TAG_structure_type
15686 || last_die->tag == DW_TAG_union_type))
15687 || (cu->language == language_ada
15688 && (last_die->tag == DW_TAG_subprogram
15689 || last_die->tag == DW_TAG_lexical_block))))
15690 {
15691 nesting_level++;
15692 parent_die = last_die;
15693 continue;
15694 }
15695
15696 /* Otherwise we skip to the next sibling, if any. */
15697 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15698
15699 /* Back to the top, do it again. */
15700 }
15701 }
15702
15703 /* Read a minimal amount of information into the minimal die structure. */
15704
15705 static const gdb_byte *
15706 read_partial_die (const struct die_reader_specs *reader,
15707 struct partial_die_info *part_die,
15708 struct abbrev_info *abbrev, unsigned int abbrev_len,
15709 const gdb_byte *info_ptr)
15710 {
15711 struct dwarf2_cu *cu = reader->cu;
15712 struct objfile *objfile = cu->objfile;
15713 const gdb_byte *buffer = reader->buffer;
15714 unsigned int i;
15715 struct attribute attr;
15716 int has_low_pc_attr = 0;
15717 int has_high_pc_attr = 0;
15718 int high_pc_relative = 0;
15719
15720 memset (part_die, 0, sizeof (struct partial_die_info));
15721
15722 part_die->offset.sect_off = info_ptr - buffer;
15723
15724 info_ptr += abbrev_len;
15725
15726 if (abbrev == NULL)
15727 return info_ptr;
15728
15729 part_die->tag = abbrev->tag;
15730 part_die->has_children = abbrev->has_children;
15731
15732 for (i = 0; i < abbrev->num_attrs; ++i)
15733 {
15734 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15735
15736 /* Store the data if it is of an attribute we want to keep in a
15737 partial symbol table. */
15738 switch (attr.name)
15739 {
15740 case DW_AT_name:
15741 switch (part_die->tag)
15742 {
15743 case DW_TAG_compile_unit:
15744 case DW_TAG_partial_unit:
15745 case DW_TAG_type_unit:
15746 /* Compilation units have a DW_AT_name that is a filename, not
15747 a source language identifier. */
15748 case DW_TAG_enumeration_type:
15749 case DW_TAG_enumerator:
15750 /* These tags always have simple identifiers already; no need
15751 to canonicalize them. */
15752 part_die->name = DW_STRING (&attr);
15753 break;
15754 default:
15755 part_die->name
15756 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15757 &objfile->per_bfd->storage_obstack);
15758 break;
15759 }
15760 break;
15761 case DW_AT_linkage_name:
15762 case DW_AT_MIPS_linkage_name:
15763 /* Note that both forms of linkage name might appear. We
15764 assume they will be the same, and we only store the last
15765 one we see. */
15766 if (cu->language == language_ada)
15767 part_die->name = DW_STRING (&attr);
15768 part_die->linkage_name = DW_STRING (&attr);
15769 break;
15770 case DW_AT_low_pc:
15771 has_low_pc_attr = 1;
15772 part_die->lowpc = attr_value_as_address (&attr);
15773 break;
15774 case DW_AT_high_pc:
15775 has_high_pc_attr = 1;
15776 part_die->highpc = attr_value_as_address (&attr);
15777 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15778 high_pc_relative = 1;
15779 break;
15780 case DW_AT_location:
15781 /* Support the .debug_loc offsets. */
15782 if (attr_form_is_block (&attr))
15783 {
15784 part_die->d.locdesc = DW_BLOCK (&attr);
15785 }
15786 else if (attr_form_is_section_offset (&attr))
15787 {
15788 dwarf2_complex_location_expr_complaint ();
15789 }
15790 else
15791 {
15792 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15793 "partial symbol information");
15794 }
15795 break;
15796 case DW_AT_external:
15797 part_die->is_external = DW_UNSND (&attr);
15798 break;
15799 case DW_AT_declaration:
15800 part_die->is_declaration = DW_UNSND (&attr);
15801 break;
15802 case DW_AT_type:
15803 part_die->has_type = 1;
15804 break;
15805 case DW_AT_abstract_origin:
15806 case DW_AT_specification:
15807 case DW_AT_extension:
15808 part_die->has_specification = 1;
15809 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15810 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15811 || cu->per_cu->is_dwz);
15812 break;
15813 case DW_AT_sibling:
15814 /* Ignore absolute siblings, they might point outside of
15815 the current compile unit. */
15816 if (attr.form == DW_FORM_ref_addr)
15817 complaint (&symfile_complaints,
15818 _("ignoring absolute DW_AT_sibling"));
15819 else
15820 {
15821 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15822 const gdb_byte *sibling_ptr = buffer + off;
15823
15824 if (sibling_ptr < info_ptr)
15825 complaint (&symfile_complaints,
15826 _("DW_AT_sibling points backwards"));
15827 else if (sibling_ptr > reader->buffer_end)
15828 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15829 else
15830 part_die->sibling = sibling_ptr;
15831 }
15832 break;
15833 case DW_AT_byte_size:
15834 part_die->has_byte_size = 1;
15835 break;
15836 case DW_AT_calling_convention:
15837 /* DWARF doesn't provide a way to identify a program's source-level
15838 entry point. DW_AT_calling_convention attributes are only meant
15839 to describe functions' calling conventions.
15840
15841 However, because it's a necessary piece of information in
15842 Fortran, and because DW_CC_program is the only piece of debugging
15843 information whose definition refers to a 'main program' at all,
15844 several compilers have begun marking Fortran main programs with
15845 DW_CC_program --- even when those functions use the standard
15846 calling conventions.
15847
15848 So until DWARF specifies a way to provide this information and
15849 compilers pick up the new representation, we'll support this
15850 practice. */
15851 if (DW_UNSND (&attr) == DW_CC_program
15852 && cu->language == language_fortran)
15853 set_objfile_main_name (objfile, part_die->name, language_fortran);
15854 break;
15855 case DW_AT_inline:
15856 if (DW_UNSND (&attr) == DW_INL_inlined
15857 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15858 part_die->may_be_inlined = 1;
15859 break;
15860
15861 case DW_AT_import:
15862 if (part_die->tag == DW_TAG_imported_unit)
15863 {
15864 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15865 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15866 || cu->per_cu->is_dwz);
15867 }
15868 break;
15869
15870 default:
15871 break;
15872 }
15873 }
15874
15875 if (high_pc_relative)
15876 part_die->highpc += part_die->lowpc;
15877
15878 if (has_low_pc_attr && has_high_pc_attr)
15879 {
15880 /* When using the GNU linker, .gnu.linkonce. sections are used to
15881 eliminate duplicate copies of functions and vtables and such.
15882 The linker will arbitrarily choose one and discard the others.
15883 The AT_*_pc values for such functions refer to local labels in
15884 these sections. If the section from that file was discarded, the
15885 labels are not in the output, so the relocs get a value of 0.
15886 If this is a discarded function, mark the pc bounds as invalid,
15887 so that GDB will ignore it. */
15888 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15889 {
15890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15891
15892 complaint (&symfile_complaints,
15893 _("DW_AT_low_pc %s is zero "
15894 "for DIE at 0x%x [in module %s]"),
15895 paddress (gdbarch, part_die->lowpc),
15896 part_die->offset.sect_off, objfile_name (objfile));
15897 }
15898 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15899 else if (part_die->lowpc >= part_die->highpc)
15900 {
15901 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15902
15903 complaint (&symfile_complaints,
15904 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15905 "for DIE at 0x%x [in module %s]"),
15906 paddress (gdbarch, part_die->lowpc),
15907 paddress (gdbarch, part_die->highpc),
15908 part_die->offset.sect_off, objfile_name (objfile));
15909 }
15910 else
15911 part_die->has_pc_info = 1;
15912 }
15913
15914 return info_ptr;
15915 }
15916
15917 /* Find a cached partial DIE at OFFSET in CU. */
15918
15919 static struct partial_die_info *
15920 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15921 {
15922 struct partial_die_info *lookup_die = NULL;
15923 struct partial_die_info part_die;
15924
15925 part_die.offset = offset;
15926 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15927 offset.sect_off);
15928
15929 return lookup_die;
15930 }
15931
15932 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15933 except in the case of .debug_types DIEs which do not reference
15934 outside their CU (they do however referencing other types via
15935 DW_FORM_ref_sig8). */
15936
15937 static struct partial_die_info *
15938 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15939 {
15940 struct objfile *objfile = cu->objfile;
15941 struct dwarf2_per_cu_data *per_cu = NULL;
15942 struct partial_die_info *pd = NULL;
15943
15944 if (offset_in_dwz == cu->per_cu->is_dwz
15945 && offset_in_cu_p (&cu->header, offset))
15946 {
15947 pd = find_partial_die_in_comp_unit (offset, cu);
15948 if (pd != NULL)
15949 return pd;
15950 /* We missed recording what we needed.
15951 Load all dies and try again. */
15952 per_cu = cu->per_cu;
15953 }
15954 else
15955 {
15956 /* TUs don't reference other CUs/TUs (except via type signatures). */
15957 if (cu->per_cu->is_debug_types)
15958 {
15959 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15960 " external reference to offset 0x%lx [in module %s].\n"),
15961 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15962 bfd_get_filename (objfile->obfd));
15963 }
15964 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15965 objfile);
15966
15967 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15968 load_partial_comp_unit (per_cu);
15969
15970 per_cu->cu->last_used = 0;
15971 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15972 }
15973
15974 /* If we didn't find it, and not all dies have been loaded,
15975 load them all and try again. */
15976
15977 if (pd == NULL && per_cu->load_all_dies == 0)
15978 {
15979 per_cu->load_all_dies = 1;
15980
15981 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15982 THIS_CU->cu may already be in use. So we can't just free it and
15983 replace its DIEs with the ones we read in. Instead, we leave those
15984 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15985 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15986 set. */
15987 load_partial_comp_unit (per_cu);
15988
15989 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15990 }
15991
15992 if (pd == NULL)
15993 internal_error (__FILE__, __LINE__,
15994 _("could not find partial DIE 0x%x "
15995 "in cache [from module %s]\n"),
15996 offset.sect_off, bfd_get_filename (objfile->obfd));
15997 return pd;
15998 }
15999
16000 /* See if we can figure out if the class lives in a namespace. We do
16001 this by looking for a member function; its demangled name will
16002 contain namespace info, if there is any. */
16003
16004 static void
16005 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16006 struct dwarf2_cu *cu)
16007 {
16008 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16009 what template types look like, because the demangler
16010 frequently doesn't give the same name as the debug info. We
16011 could fix this by only using the demangled name to get the
16012 prefix (but see comment in read_structure_type). */
16013
16014 struct partial_die_info *real_pdi;
16015 struct partial_die_info *child_pdi;
16016
16017 /* If this DIE (this DIE's specification, if any) has a parent, then
16018 we should not do this. We'll prepend the parent's fully qualified
16019 name when we create the partial symbol. */
16020
16021 real_pdi = struct_pdi;
16022 while (real_pdi->has_specification)
16023 real_pdi = find_partial_die (real_pdi->spec_offset,
16024 real_pdi->spec_is_dwz, cu);
16025
16026 if (real_pdi->die_parent != NULL)
16027 return;
16028
16029 for (child_pdi = struct_pdi->die_child;
16030 child_pdi != NULL;
16031 child_pdi = child_pdi->die_sibling)
16032 {
16033 if (child_pdi->tag == DW_TAG_subprogram
16034 && child_pdi->linkage_name != NULL)
16035 {
16036 char *actual_class_name
16037 = language_class_name_from_physname (cu->language_defn,
16038 child_pdi->linkage_name);
16039 if (actual_class_name != NULL)
16040 {
16041 struct_pdi->name
16042 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16043 actual_class_name,
16044 strlen (actual_class_name));
16045 xfree (actual_class_name);
16046 }
16047 break;
16048 }
16049 }
16050 }
16051
16052 /* Adjust PART_DIE before generating a symbol for it. This function
16053 may set the is_external flag or change the DIE's name. */
16054
16055 static void
16056 fixup_partial_die (struct partial_die_info *part_die,
16057 struct dwarf2_cu *cu)
16058 {
16059 /* Once we've fixed up a die, there's no point in doing so again.
16060 This also avoids a memory leak if we were to call
16061 guess_partial_die_structure_name multiple times. */
16062 if (part_die->fixup_called)
16063 return;
16064
16065 /* If we found a reference attribute and the DIE has no name, try
16066 to find a name in the referred to DIE. */
16067
16068 if (part_die->name == NULL && part_die->has_specification)
16069 {
16070 struct partial_die_info *spec_die;
16071
16072 spec_die = find_partial_die (part_die->spec_offset,
16073 part_die->spec_is_dwz, cu);
16074
16075 fixup_partial_die (spec_die, cu);
16076
16077 if (spec_die->name)
16078 {
16079 part_die->name = spec_die->name;
16080
16081 /* Copy DW_AT_external attribute if it is set. */
16082 if (spec_die->is_external)
16083 part_die->is_external = spec_die->is_external;
16084 }
16085 }
16086
16087 /* Set default names for some unnamed DIEs. */
16088
16089 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16090 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16091
16092 /* If there is no parent die to provide a namespace, and there are
16093 children, see if we can determine the namespace from their linkage
16094 name. */
16095 if (cu->language == language_cplus
16096 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16097 && part_die->die_parent == NULL
16098 && part_die->has_children
16099 && (part_die->tag == DW_TAG_class_type
16100 || part_die->tag == DW_TAG_structure_type
16101 || part_die->tag == DW_TAG_union_type))
16102 guess_partial_die_structure_name (part_die, cu);
16103
16104 /* GCC might emit a nameless struct or union that has a linkage
16105 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16106 if (part_die->name == NULL
16107 && (part_die->tag == DW_TAG_class_type
16108 || part_die->tag == DW_TAG_interface_type
16109 || part_die->tag == DW_TAG_structure_type
16110 || part_die->tag == DW_TAG_union_type)
16111 && part_die->linkage_name != NULL)
16112 {
16113 char *demangled;
16114
16115 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16116 if (demangled)
16117 {
16118 const char *base;
16119
16120 /* Strip any leading namespaces/classes, keep only the base name.
16121 DW_AT_name for named DIEs does not contain the prefixes. */
16122 base = strrchr (demangled, ':');
16123 if (base && base > demangled && base[-1] == ':')
16124 base++;
16125 else
16126 base = demangled;
16127
16128 part_die->name
16129 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16130 base, strlen (base));
16131 xfree (demangled);
16132 }
16133 }
16134
16135 part_die->fixup_called = 1;
16136 }
16137
16138 /* Read an attribute value described by an attribute form. */
16139
16140 static const gdb_byte *
16141 read_attribute_value (const struct die_reader_specs *reader,
16142 struct attribute *attr, unsigned form,
16143 const gdb_byte *info_ptr)
16144 {
16145 struct dwarf2_cu *cu = reader->cu;
16146 struct objfile *objfile = cu->objfile;
16147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16148 bfd *abfd = reader->abfd;
16149 struct comp_unit_head *cu_header = &cu->header;
16150 unsigned int bytes_read;
16151 struct dwarf_block *blk;
16152
16153 attr->form = form;
16154 switch (form)
16155 {
16156 case DW_FORM_ref_addr:
16157 if (cu->header.version == 2)
16158 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16159 else
16160 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16161 &cu->header, &bytes_read);
16162 info_ptr += bytes_read;
16163 break;
16164 case DW_FORM_GNU_ref_alt:
16165 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16166 info_ptr += bytes_read;
16167 break;
16168 case DW_FORM_addr:
16169 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16170 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16171 info_ptr += bytes_read;
16172 break;
16173 case DW_FORM_block2:
16174 blk = dwarf_alloc_block (cu);
16175 blk->size = read_2_bytes (abfd, info_ptr);
16176 info_ptr += 2;
16177 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16178 info_ptr += blk->size;
16179 DW_BLOCK (attr) = blk;
16180 break;
16181 case DW_FORM_block4:
16182 blk = dwarf_alloc_block (cu);
16183 blk->size = read_4_bytes (abfd, info_ptr);
16184 info_ptr += 4;
16185 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16186 info_ptr += blk->size;
16187 DW_BLOCK (attr) = blk;
16188 break;
16189 case DW_FORM_data2:
16190 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16191 info_ptr += 2;
16192 break;
16193 case DW_FORM_data4:
16194 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16195 info_ptr += 4;
16196 break;
16197 case DW_FORM_data8:
16198 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16199 info_ptr += 8;
16200 break;
16201 case DW_FORM_sec_offset:
16202 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16203 info_ptr += bytes_read;
16204 break;
16205 case DW_FORM_string:
16206 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16207 DW_STRING_IS_CANONICAL (attr) = 0;
16208 info_ptr += bytes_read;
16209 break;
16210 case DW_FORM_strp:
16211 if (!cu->per_cu->is_dwz)
16212 {
16213 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16214 &bytes_read);
16215 DW_STRING_IS_CANONICAL (attr) = 0;
16216 info_ptr += bytes_read;
16217 break;
16218 }
16219 /* FALLTHROUGH */
16220 case DW_FORM_GNU_strp_alt:
16221 {
16222 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16223 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16224 &bytes_read);
16225
16226 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16227 DW_STRING_IS_CANONICAL (attr) = 0;
16228 info_ptr += bytes_read;
16229 }
16230 break;
16231 case DW_FORM_exprloc:
16232 case DW_FORM_block:
16233 blk = dwarf_alloc_block (cu);
16234 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16235 info_ptr += bytes_read;
16236 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16237 info_ptr += blk->size;
16238 DW_BLOCK (attr) = blk;
16239 break;
16240 case DW_FORM_block1:
16241 blk = dwarf_alloc_block (cu);
16242 blk->size = read_1_byte (abfd, info_ptr);
16243 info_ptr += 1;
16244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16245 info_ptr += blk->size;
16246 DW_BLOCK (attr) = blk;
16247 break;
16248 case DW_FORM_data1:
16249 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16250 info_ptr += 1;
16251 break;
16252 case DW_FORM_flag:
16253 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16254 info_ptr += 1;
16255 break;
16256 case DW_FORM_flag_present:
16257 DW_UNSND (attr) = 1;
16258 break;
16259 case DW_FORM_sdata:
16260 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16261 info_ptr += bytes_read;
16262 break;
16263 case DW_FORM_udata:
16264 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16265 info_ptr += bytes_read;
16266 break;
16267 case DW_FORM_ref1:
16268 DW_UNSND (attr) = (cu->header.offset.sect_off
16269 + read_1_byte (abfd, info_ptr));
16270 info_ptr += 1;
16271 break;
16272 case DW_FORM_ref2:
16273 DW_UNSND (attr) = (cu->header.offset.sect_off
16274 + read_2_bytes (abfd, info_ptr));
16275 info_ptr += 2;
16276 break;
16277 case DW_FORM_ref4:
16278 DW_UNSND (attr) = (cu->header.offset.sect_off
16279 + read_4_bytes (abfd, info_ptr));
16280 info_ptr += 4;
16281 break;
16282 case DW_FORM_ref8:
16283 DW_UNSND (attr) = (cu->header.offset.sect_off
16284 + read_8_bytes (abfd, info_ptr));
16285 info_ptr += 8;
16286 break;
16287 case DW_FORM_ref_sig8:
16288 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16289 info_ptr += 8;
16290 break;
16291 case DW_FORM_ref_udata:
16292 DW_UNSND (attr) = (cu->header.offset.sect_off
16293 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16294 info_ptr += bytes_read;
16295 break;
16296 case DW_FORM_indirect:
16297 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16298 info_ptr += bytes_read;
16299 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16300 break;
16301 case DW_FORM_GNU_addr_index:
16302 if (reader->dwo_file == NULL)
16303 {
16304 /* For now flag a hard error.
16305 Later we can turn this into a complaint. */
16306 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16307 dwarf_form_name (form),
16308 bfd_get_filename (abfd));
16309 }
16310 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16311 info_ptr += bytes_read;
16312 break;
16313 case DW_FORM_GNU_str_index:
16314 if (reader->dwo_file == NULL)
16315 {
16316 /* For now flag a hard error.
16317 Later we can turn this into a complaint if warranted. */
16318 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16319 dwarf_form_name (form),
16320 bfd_get_filename (abfd));
16321 }
16322 {
16323 ULONGEST str_index =
16324 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16325
16326 DW_STRING (attr) = read_str_index (reader, str_index);
16327 DW_STRING_IS_CANONICAL (attr) = 0;
16328 info_ptr += bytes_read;
16329 }
16330 break;
16331 default:
16332 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16333 dwarf_form_name (form),
16334 bfd_get_filename (abfd));
16335 }
16336
16337 /* Super hack. */
16338 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16339 attr->form = DW_FORM_GNU_ref_alt;
16340
16341 /* We have seen instances where the compiler tried to emit a byte
16342 size attribute of -1 which ended up being encoded as an unsigned
16343 0xffffffff. Although 0xffffffff is technically a valid size value,
16344 an object of this size seems pretty unlikely so we can relatively
16345 safely treat these cases as if the size attribute was invalid and
16346 treat them as zero by default. */
16347 if (attr->name == DW_AT_byte_size
16348 && form == DW_FORM_data4
16349 && DW_UNSND (attr) >= 0xffffffff)
16350 {
16351 complaint
16352 (&symfile_complaints,
16353 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16354 hex_string (DW_UNSND (attr)));
16355 DW_UNSND (attr) = 0;
16356 }
16357
16358 return info_ptr;
16359 }
16360
16361 /* Read an attribute described by an abbreviated attribute. */
16362
16363 static const gdb_byte *
16364 read_attribute (const struct die_reader_specs *reader,
16365 struct attribute *attr, struct attr_abbrev *abbrev,
16366 const gdb_byte *info_ptr)
16367 {
16368 attr->name = abbrev->name;
16369 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16370 }
16371
16372 /* Read dwarf information from a buffer. */
16373
16374 static unsigned int
16375 read_1_byte (bfd *abfd, const gdb_byte *buf)
16376 {
16377 return bfd_get_8 (abfd, buf);
16378 }
16379
16380 static int
16381 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16382 {
16383 return bfd_get_signed_8 (abfd, buf);
16384 }
16385
16386 static unsigned int
16387 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16388 {
16389 return bfd_get_16 (abfd, buf);
16390 }
16391
16392 static int
16393 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16394 {
16395 return bfd_get_signed_16 (abfd, buf);
16396 }
16397
16398 static unsigned int
16399 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16400 {
16401 return bfd_get_32 (abfd, buf);
16402 }
16403
16404 static int
16405 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16406 {
16407 return bfd_get_signed_32 (abfd, buf);
16408 }
16409
16410 static ULONGEST
16411 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16412 {
16413 return bfd_get_64 (abfd, buf);
16414 }
16415
16416 static CORE_ADDR
16417 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16418 unsigned int *bytes_read)
16419 {
16420 struct comp_unit_head *cu_header = &cu->header;
16421 CORE_ADDR retval = 0;
16422
16423 if (cu_header->signed_addr_p)
16424 {
16425 switch (cu_header->addr_size)
16426 {
16427 case 2:
16428 retval = bfd_get_signed_16 (abfd, buf);
16429 break;
16430 case 4:
16431 retval = bfd_get_signed_32 (abfd, buf);
16432 break;
16433 case 8:
16434 retval = bfd_get_signed_64 (abfd, buf);
16435 break;
16436 default:
16437 internal_error (__FILE__, __LINE__,
16438 _("read_address: bad switch, signed [in module %s]"),
16439 bfd_get_filename (abfd));
16440 }
16441 }
16442 else
16443 {
16444 switch (cu_header->addr_size)
16445 {
16446 case 2:
16447 retval = bfd_get_16 (abfd, buf);
16448 break;
16449 case 4:
16450 retval = bfd_get_32 (abfd, buf);
16451 break;
16452 case 8:
16453 retval = bfd_get_64 (abfd, buf);
16454 break;
16455 default:
16456 internal_error (__FILE__, __LINE__,
16457 _("read_address: bad switch, "
16458 "unsigned [in module %s]"),
16459 bfd_get_filename (abfd));
16460 }
16461 }
16462
16463 *bytes_read = cu_header->addr_size;
16464 return retval;
16465 }
16466
16467 /* Read the initial length from a section. The (draft) DWARF 3
16468 specification allows the initial length to take up either 4 bytes
16469 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16470 bytes describe the length and all offsets will be 8 bytes in length
16471 instead of 4.
16472
16473 An older, non-standard 64-bit format is also handled by this
16474 function. The older format in question stores the initial length
16475 as an 8-byte quantity without an escape value. Lengths greater
16476 than 2^32 aren't very common which means that the initial 4 bytes
16477 is almost always zero. Since a length value of zero doesn't make
16478 sense for the 32-bit format, this initial zero can be considered to
16479 be an escape value which indicates the presence of the older 64-bit
16480 format. As written, the code can't detect (old format) lengths
16481 greater than 4GB. If it becomes necessary to handle lengths
16482 somewhat larger than 4GB, we could allow other small values (such
16483 as the non-sensical values of 1, 2, and 3) to also be used as
16484 escape values indicating the presence of the old format.
16485
16486 The value returned via bytes_read should be used to increment the
16487 relevant pointer after calling read_initial_length().
16488
16489 [ Note: read_initial_length() and read_offset() are based on the
16490 document entitled "DWARF Debugging Information Format", revision
16491 3, draft 8, dated November 19, 2001. This document was obtained
16492 from:
16493
16494 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16495
16496 This document is only a draft and is subject to change. (So beware.)
16497
16498 Details regarding the older, non-standard 64-bit format were
16499 determined empirically by examining 64-bit ELF files produced by
16500 the SGI toolchain on an IRIX 6.5 machine.
16501
16502 - Kevin, July 16, 2002
16503 ] */
16504
16505 static LONGEST
16506 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16507 {
16508 LONGEST length = bfd_get_32 (abfd, buf);
16509
16510 if (length == 0xffffffff)
16511 {
16512 length = bfd_get_64 (abfd, buf + 4);
16513 *bytes_read = 12;
16514 }
16515 else if (length == 0)
16516 {
16517 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16518 length = bfd_get_64 (abfd, buf);
16519 *bytes_read = 8;
16520 }
16521 else
16522 {
16523 *bytes_read = 4;
16524 }
16525
16526 return length;
16527 }
16528
16529 /* Cover function for read_initial_length.
16530 Returns the length of the object at BUF, and stores the size of the
16531 initial length in *BYTES_READ and stores the size that offsets will be in
16532 *OFFSET_SIZE.
16533 If the initial length size is not equivalent to that specified in
16534 CU_HEADER then issue a complaint.
16535 This is useful when reading non-comp-unit headers. */
16536
16537 static LONGEST
16538 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16539 const struct comp_unit_head *cu_header,
16540 unsigned int *bytes_read,
16541 unsigned int *offset_size)
16542 {
16543 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16544
16545 gdb_assert (cu_header->initial_length_size == 4
16546 || cu_header->initial_length_size == 8
16547 || cu_header->initial_length_size == 12);
16548
16549 if (cu_header->initial_length_size != *bytes_read)
16550 complaint (&symfile_complaints,
16551 _("intermixed 32-bit and 64-bit DWARF sections"));
16552
16553 *offset_size = (*bytes_read == 4) ? 4 : 8;
16554 return length;
16555 }
16556
16557 /* Read an offset from the data stream. The size of the offset is
16558 given by cu_header->offset_size. */
16559
16560 static LONGEST
16561 read_offset (bfd *abfd, const gdb_byte *buf,
16562 const struct comp_unit_head *cu_header,
16563 unsigned int *bytes_read)
16564 {
16565 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16566
16567 *bytes_read = cu_header->offset_size;
16568 return offset;
16569 }
16570
16571 /* Read an offset from the data stream. */
16572
16573 static LONGEST
16574 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16575 {
16576 LONGEST retval = 0;
16577
16578 switch (offset_size)
16579 {
16580 case 4:
16581 retval = bfd_get_32 (abfd, buf);
16582 break;
16583 case 8:
16584 retval = bfd_get_64 (abfd, buf);
16585 break;
16586 default:
16587 internal_error (__FILE__, __LINE__,
16588 _("read_offset_1: bad switch [in module %s]"),
16589 bfd_get_filename (abfd));
16590 }
16591
16592 return retval;
16593 }
16594
16595 static const gdb_byte *
16596 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16597 {
16598 /* If the size of a host char is 8 bits, we can return a pointer
16599 to the buffer, otherwise we have to copy the data to a buffer
16600 allocated on the temporary obstack. */
16601 gdb_assert (HOST_CHAR_BIT == 8);
16602 return buf;
16603 }
16604
16605 static const char *
16606 read_direct_string (bfd *abfd, const gdb_byte *buf,
16607 unsigned int *bytes_read_ptr)
16608 {
16609 /* If the size of a host char is 8 bits, we can return a pointer
16610 to the string, otherwise we have to copy the string to a buffer
16611 allocated on the temporary obstack. */
16612 gdb_assert (HOST_CHAR_BIT == 8);
16613 if (*buf == '\0')
16614 {
16615 *bytes_read_ptr = 1;
16616 return NULL;
16617 }
16618 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16619 return (const char *) buf;
16620 }
16621
16622 static const char *
16623 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16624 {
16625 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16626 if (dwarf2_per_objfile->str.buffer == NULL)
16627 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16628 bfd_get_filename (abfd));
16629 if (str_offset >= dwarf2_per_objfile->str.size)
16630 error (_("DW_FORM_strp pointing outside of "
16631 ".debug_str section [in module %s]"),
16632 bfd_get_filename (abfd));
16633 gdb_assert (HOST_CHAR_BIT == 8);
16634 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16635 return NULL;
16636 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16637 }
16638
16639 /* Read a string at offset STR_OFFSET in the .debug_str section from
16640 the .dwz file DWZ. Throw an error if the offset is too large. If
16641 the string consists of a single NUL byte, return NULL; otherwise
16642 return a pointer to the string. */
16643
16644 static const char *
16645 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16646 {
16647 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16648
16649 if (dwz->str.buffer == NULL)
16650 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16651 "section [in module %s]"),
16652 bfd_get_filename (dwz->dwz_bfd));
16653 if (str_offset >= dwz->str.size)
16654 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16655 ".debug_str section [in module %s]"),
16656 bfd_get_filename (dwz->dwz_bfd));
16657 gdb_assert (HOST_CHAR_BIT == 8);
16658 if (dwz->str.buffer[str_offset] == '\0')
16659 return NULL;
16660 return (const char *) (dwz->str.buffer + str_offset);
16661 }
16662
16663 static const char *
16664 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16665 const struct comp_unit_head *cu_header,
16666 unsigned int *bytes_read_ptr)
16667 {
16668 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16669
16670 return read_indirect_string_at_offset (abfd, str_offset);
16671 }
16672
16673 static ULONGEST
16674 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16675 unsigned int *bytes_read_ptr)
16676 {
16677 ULONGEST result;
16678 unsigned int num_read;
16679 int i, shift;
16680 unsigned char byte;
16681
16682 result = 0;
16683 shift = 0;
16684 num_read = 0;
16685 i = 0;
16686 while (1)
16687 {
16688 byte = bfd_get_8 (abfd, buf);
16689 buf++;
16690 num_read++;
16691 result |= ((ULONGEST) (byte & 127) << shift);
16692 if ((byte & 128) == 0)
16693 {
16694 break;
16695 }
16696 shift += 7;
16697 }
16698 *bytes_read_ptr = num_read;
16699 return result;
16700 }
16701
16702 static LONGEST
16703 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16704 unsigned int *bytes_read_ptr)
16705 {
16706 LONGEST result;
16707 int i, shift, num_read;
16708 unsigned char byte;
16709
16710 result = 0;
16711 shift = 0;
16712 num_read = 0;
16713 i = 0;
16714 while (1)
16715 {
16716 byte = bfd_get_8 (abfd, buf);
16717 buf++;
16718 num_read++;
16719 result |= ((LONGEST) (byte & 127) << shift);
16720 shift += 7;
16721 if ((byte & 128) == 0)
16722 {
16723 break;
16724 }
16725 }
16726 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16727 result |= -(((LONGEST) 1) << shift);
16728 *bytes_read_ptr = num_read;
16729 return result;
16730 }
16731
16732 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16733 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16734 ADDR_SIZE is the size of addresses from the CU header. */
16735
16736 static CORE_ADDR
16737 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16738 {
16739 struct objfile *objfile = dwarf2_per_objfile->objfile;
16740 bfd *abfd = objfile->obfd;
16741 const gdb_byte *info_ptr;
16742
16743 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16744 if (dwarf2_per_objfile->addr.buffer == NULL)
16745 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16746 objfile_name (objfile));
16747 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16748 error (_("DW_FORM_addr_index pointing outside of "
16749 ".debug_addr section [in module %s]"),
16750 objfile_name (objfile));
16751 info_ptr = (dwarf2_per_objfile->addr.buffer
16752 + addr_base + addr_index * addr_size);
16753 if (addr_size == 4)
16754 return bfd_get_32 (abfd, info_ptr);
16755 else
16756 return bfd_get_64 (abfd, info_ptr);
16757 }
16758
16759 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16760
16761 static CORE_ADDR
16762 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16763 {
16764 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16765 }
16766
16767 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16768
16769 static CORE_ADDR
16770 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16771 unsigned int *bytes_read)
16772 {
16773 bfd *abfd = cu->objfile->obfd;
16774 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16775
16776 return read_addr_index (cu, addr_index);
16777 }
16778
16779 /* Data structure to pass results from dwarf2_read_addr_index_reader
16780 back to dwarf2_read_addr_index. */
16781
16782 struct dwarf2_read_addr_index_data
16783 {
16784 ULONGEST addr_base;
16785 int addr_size;
16786 };
16787
16788 /* die_reader_func for dwarf2_read_addr_index. */
16789
16790 static void
16791 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16792 const gdb_byte *info_ptr,
16793 struct die_info *comp_unit_die,
16794 int has_children,
16795 void *data)
16796 {
16797 struct dwarf2_cu *cu = reader->cu;
16798 struct dwarf2_read_addr_index_data *aidata =
16799 (struct dwarf2_read_addr_index_data *) data;
16800
16801 aidata->addr_base = cu->addr_base;
16802 aidata->addr_size = cu->header.addr_size;
16803 }
16804
16805 /* Given an index in .debug_addr, fetch the value.
16806 NOTE: This can be called during dwarf expression evaluation,
16807 long after the debug information has been read, and thus per_cu->cu
16808 may no longer exist. */
16809
16810 CORE_ADDR
16811 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16812 unsigned int addr_index)
16813 {
16814 struct objfile *objfile = per_cu->objfile;
16815 struct dwarf2_cu *cu = per_cu->cu;
16816 ULONGEST addr_base;
16817 int addr_size;
16818
16819 /* This is intended to be called from outside this file. */
16820 dw2_setup (objfile);
16821
16822 /* We need addr_base and addr_size.
16823 If we don't have PER_CU->cu, we have to get it.
16824 Nasty, but the alternative is storing the needed info in PER_CU,
16825 which at this point doesn't seem justified: it's not clear how frequently
16826 it would get used and it would increase the size of every PER_CU.
16827 Entry points like dwarf2_per_cu_addr_size do a similar thing
16828 so we're not in uncharted territory here.
16829 Alas we need to be a bit more complicated as addr_base is contained
16830 in the DIE.
16831
16832 We don't need to read the entire CU(/TU).
16833 We just need the header and top level die.
16834
16835 IWBN to use the aging mechanism to let us lazily later discard the CU.
16836 For now we skip this optimization. */
16837
16838 if (cu != NULL)
16839 {
16840 addr_base = cu->addr_base;
16841 addr_size = cu->header.addr_size;
16842 }
16843 else
16844 {
16845 struct dwarf2_read_addr_index_data aidata;
16846
16847 /* Note: We can't use init_cutu_and_read_dies_simple here,
16848 we need addr_base. */
16849 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16850 dwarf2_read_addr_index_reader, &aidata);
16851 addr_base = aidata.addr_base;
16852 addr_size = aidata.addr_size;
16853 }
16854
16855 return read_addr_index_1 (addr_index, addr_base, addr_size);
16856 }
16857
16858 /* Given a DW_FORM_GNU_str_index, fetch the string.
16859 This is only used by the Fission support. */
16860
16861 static const char *
16862 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16863 {
16864 struct objfile *objfile = dwarf2_per_objfile->objfile;
16865 const char *objf_name = objfile_name (objfile);
16866 bfd *abfd = objfile->obfd;
16867 struct dwarf2_cu *cu = reader->cu;
16868 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16869 struct dwarf2_section_info *str_offsets_section =
16870 &reader->dwo_file->sections.str_offsets;
16871 const gdb_byte *info_ptr;
16872 ULONGEST str_offset;
16873 static const char form_name[] = "DW_FORM_GNU_str_index";
16874
16875 dwarf2_read_section (objfile, str_section);
16876 dwarf2_read_section (objfile, str_offsets_section);
16877 if (str_section->buffer == NULL)
16878 error (_("%s used without .debug_str.dwo section"
16879 " in CU at offset 0x%lx [in module %s]"),
16880 form_name, (long) cu->header.offset.sect_off, objf_name);
16881 if (str_offsets_section->buffer == NULL)
16882 error (_("%s used without .debug_str_offsets.dwo section"
16883 " in CU at offset 0x%lx [in module %s]"),
16884 form_name, (long) cu->header.offset.sect_off, objf_name);
16885 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16886 error (_("%s pointing outside of .debug_str_offsets.dwo"
16887 " section in CU at offset 0x%lx [in module %s]"),
16888 form_name, (long) cu->header.offset.sect_off, objf_name);
16889 info_ptr = (str_offsets_section->buffer
16890 + str_index * cu->header.offset_size);
16891 if (cu->header.offset_size == 4)
16892 str_offset = bfd_get_32 (abfd, info_ptr);
16893 else
16894 str_offset = bfd_get_64 (abfd, info_ptr);
16895 if (str_offset >= str_section->size)
16896 error (_("Offset from %s pointing outside of"
16897 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16898 form_name, (long) cu->header.offset.sect_off, objf_name);
16899 return (const char *) (str_section->buffer + str_offset);
16900 }
16901
16902 /* Return the length of an LEB128 number in BUF. */
16903
16904 static int
16905 leb128_size (const gdb_byte *buf)
16906 {
16907 const gdb_byte *begin = buf;
16908 gdb_byte byte;
16909
16910 while (1)
16911 {
16912 byte = *buf++;
16913 if ((byte & 128) == 0)
16914 return buf - begin;
16915 }
16916 }
16917
16918 static void
16919 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16920 {
16921 switch (lang)
16922 {
16923 case DW_LANG_C89:
16924 case DW_LANG_C99:
16925 case DW_LANG_C11:
16926 case DW_LANG_C:
16927 case DW_LANG_UPC:
16928 cu->language = language_c;
16929 break;
16930 case DW_LANG_C_plus_plus:
16931 case DW_LANG_C_plus_plus_11:
16932 case DW_LANG_C_plus_plus_14:
16933 cu->language = language_cplus;
16934 break;
16935 case DW_LANG_D:
16936 cu->language = language_d;
16937 break;
16938 case DW_LANG_Fortran77:
16939 case DW_LANG_Fortran90:
16940 case DW_LANG_Fortran95:
16941 case DW_LANG_Fortran03:
16942 case DW_LANG_Fortran08:
16943 cu->language = language_fortran;
16944 break;
16945 case DW_LANG_Go:
16946 cu->language = language_go;
16947 break;
16948 case DW_LANG_Mips_Assembler:
16949 cu->language = language_asm;
16950 break;
16951 case DW_LANG_Java:
16952 cu->language = language_java;
16953 break;
16954 case DW_LANG_Ada83:
16955 case DW_LANG_Ada95:
16956 cu->language = language_ada;
16957 break;
16958 case DW_LANG_Modula2:
16959 cu->language = language_m2;
16960 break;
16961 case DW_LANG_Pascal83:
16962 cu->language = language_pascal;
16963 break;
16964 case DW_LANG_ObjC:
16965 cu->language = language_objc;
16966 break;
16967 case DW_LANG_Cobol74:
16968 case DW_LANG_Cobol85:
16969 default:
16970 cu->language = language_minimal;
16971 break;
16972 }
16973 cu->language_defn = language_def (cu->language);
16974 }
16975
16976 /* Return the named attribute or NULL if not there. */
16977
16978 static struct attribute *
16979 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16980 {
16981 for (;;)
16982 {
16983 unsigned int i;
16984 struct attribute *spec = NULL;
16985
16986 for (i = 0; i < die->num_attrs; ++i)
16987 {
16988 if (die->attrs[i].name == name)
16989 return &die->attrs[i];
16990 if (die->attrs[i].name == DW_AT_specification
16991 || die->attrs[i].name == DW_AT_abstract_origin)
16992 spec = &die->attrs[i];
16993 }
16994
16995 if (!spec)
16996 break;
16997
16998 die = follow_die_ref (die, spec, &cu);
16999 }
17000
17001 return NULL;
17002 }
17003
17004 /* Return the named attribute or NULL if not there,
17005 but do not follow DW_AT_specification, etc.
17006 This is for use in contexts where we're reading .debug_types dies.
17007 Following DW_AT_specification, DW_AT_abstract_origin will take us
17008 back up the chain, and we want to go down. */
17009
17010 static struct attribute *
17011 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17012 {
17013 unsigned int i;
17014
17015 for (i = 0; i < die->num_attrs; ++i)
17016 if (die->attrs[i].name == name)
17017 return &die->attrs[i];
17018
17019 return NULL;
17020 }
17021
17022 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17023 and holds a non-zero value. This function should only be used for
17024 DW_FORM_flag or DW_FORM_flag_present attributes. */
17025
17026 static int
17027 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17028 {
17029 struct attribute *attr = dwarf2_attr (die, name, cu);
17030
17031 return (attr && DW_UNSND (attr));
17032 }
17033
17034 static int
17035 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17036 {
17037 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17038 which value is non-zero. However, we have to be careful with
17039 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17040 (via dwarf2_flag_true_p) follows this attribute. So we may
17041 end up accidently finding a declaration attribute that belongs
17042 to a different DIE referenced by the specification attribute,
17043 even though the given DIE does not have a declaration attribute. */
17044 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17045 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17046 }
17047
17048 /* Return the die giving the specification for DIE, if there is
17049 one. *SPEC_CU is the CU containing DIE on input, and the CU
17050 containing the return value on output. If there is no
17051 specification, but there is an abstract origin, that is
17052 returned. */
17053
17054 static struct die_info *
17055 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17056 {
17057 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17058 *spec_cu);
17059
17060 if (spec_attr == NULL)
17061 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17062
17063 if (spec_attr == NULL)
17064 return NULL;
17065 else
17066 return follow_die_ref (die, spec_attr, spec_cu);
17067 }
17068
17069 /* Free the line_header structure *LH, and any arrays and strings it
17070 refers to.
17071 NOTE: This is also used as a "cleanup" function. */
17072
17073 static void
17074 free_line_header (struct line_header *lh)
17075 {
17076 if (lh->standard_opcode_lengths)
17077 xfree (lh->standard_opcode_lengths);
17078
17079 /* Remember that all the lh->file_names[i].name pointers are
17080 pointers into debug_line_buffer, and don't need to be freed. */
17081 if (lh->file_names)
17082 xfree (lh->file_names);
17083
17084 /* Similarly for the include directory names. */
17085 if (lh->include_dirs)
17086 xfree (lh->include_dirs);
17087
17088 xfree (lh);
17089 }
17090
17091 /* Stub for free_line_header to match void * callback types. */
17092
17093 static void
17094 free_line_header_voidp (void *arg)
17095 {
17096 struct line_header *lh = arg;
17097
17098 free_line_header (lh);
17099 }
17100
17101 /* Add an entry to LH's include directory table. */
17102
17103 static void
17104 add_include_dir (struct line_header *lh, const char *include_dir)
17105 {
17106 /* Grow the array if necessary. */
17107 if (lh->include_dirs_size == 0)
17108 {
17109 lh->include_dirs_size = 1; /* for testing */
17110 lh->include_dirs = xmalloc (lh->include_dirs_size
17111 * sizeof (*lh->include_dirs));
17112 }
17113 else if (lh->num_include_dirs >= lh->include_dirs_size)
17114 {
17115 lh->include_dirs_size *= 2;
17116 lh->include_dirs = xrealloc (lh->include_dirs,
17117 (lh->include_dirs_size
17118 * sizeof (*lh->include_dirs)));
17119 }
17120
17121 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17122 }
17123
17124 /* Add an entry to LH's file name table. */
17125
17126 static void
17127 add_file_name (struct line_header *lh,
17128 const char *name,
17129 unsigned int dir_index,
17130 unsigned int mod_time,
17131 unsigned int length)
17132 {
17133 struct file_entry *fe;
17134
17135 /* Grow the array if necessary. */
17136 if (lh->file_names_size == 0)
17137 {
17138 lh->file_names_size = 1; /* for testing */
17139 lh->file_names = xmalloc (lh->file_names_size
17140 * sizeof (*lh->file_names));
17141 }
17142 else if (lh->num_file_names >= lh->file_names_size)
17143 {
17144 lh->file_names_size *= 2;
17145 lh->file_names = xrealloc (lh->file_names,
17146 (lh->file_names_size
17147 * sizeof (*lh->file_names)));
17148 }
17149
17150 fe = &lh->file_names[lh->num_file_names++];
17151 fe->name = name;
17152 fe->dir_index = dir_index;
17153 fe->mod_time = mod_time;
17154 fe->length = length;
17155 fe->included_p = 0;
17156 fe->symtab = NULL;
17157 }
17158
17159 /* A convenience function to find the proper .debug_line section for a
17160 CU. */
17161
17162 static struct dwarf2_section_info *
17163 get_debug_line_section (struct dwarf2_cu *cu)
17164 {
17165 struct dwarf2_section_info *section;
17166
17167 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17168 DWO file. */
17169 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17170 section = &cu->dwo_unit->dwo_file->sections.line;
17171 else if (cu->per_cu->is_dwz)
17172 {
17173 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17174
17175 section = &dwz->line;
17176 }
17177 else
17178 section = &dwarf2_per_objfile->line;
17179
17180 return section;
17181 }
17182
17183 /* Read the statement program header starting at OFFSET in
17184 .debug_line, or .debug_line.dwo. Return a pointer
17185 to a struct line_header, allocated using xmalloc.
17186 Returns NULL if there is a problem reading the header, e.g., if it
17187 has a version we don't understand.
17188
17189 NOTE: the strings in the include directory and file name tables of
17190 the returned object point into the dwarf line section buffer,
17191 and must not be freed. */
17192
17193 static struct line_header *
17194 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17195 {
17196 struct cleanup *back_to;
17197 struct line_header *lh;
17198 const gdb_byte *line_ptr;
17199 unsigned int bytes_read, offset_size;
17200 int i;
17201 const char *cur_dir, *cur_file;
17202 struct dwarf2_section_info *section;
17203 bfd *abfd;
17204
17205 section = get_debug_line_section (cu);
17206 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17207 if (section->buffer == NULL)
17208 {
17209 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17210 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17211 else
17212 complaint (&symfile_complaints, _("missing .debug_line section"));
17213 return 0;
17214 }
17215
17216 /* We can't do this until we know the section is non-empty.
17217 Only then do we know we have such a section. */
17218 abfd = get_section_bfd_owner (section);
17219
17220 /* Make sure that at least there's room for the total_length field.
17221 That could be 12 bytes long, but we're just going to fudge that. */
17222 if (offset + 4 >= section->size)
17223 {
17224 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17225 return 0;
17226 }
17227
17228 lh = xmalloc (sizeof (*lh));
17229 memset (lh, 0, sizeof (*lh));
17230 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17231 (void *) lh);
17232
17233 lh->offset.sect_off = offset;
17234 lh->offset_in_dwz = cu->per_cu->is_dwz;
17235
17236 line_ptr = section->buffer + offset;
17237
17238 /* Read in the header. */
17239 lh->total_length =
17240 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17241 &bytes_read, &offset_size);
17242 line_ptr += bytes_read;
17243 if (line_ptr + lh->total_length > (section->buffer + section->size))
17244 {
17245 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17246 do_cleanups (back_to);
17247 return 0;
17248 }
17249 lh->statement_program_end = line_ptr + lh->total_length;
17250 lh->version = read_2_bytes (abfd, line_ptr);
17251 line_ptr += 2;
17252 if (lh->version > 4)
17253 {
17254 /* This is a version we don't understand. The format could have
17255 changed in ways we don't handle properly so just punt. */
17256 complaint (&symfile_complaints,
17257 _("unsupported version in .debug_line section"));
17258 return NULL;
17259 }
17260 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17261 line_ptr += offset_size;
17262 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17263 line_ptr += 1;
17264 if (lh->version >= 4)
17265 {
17266 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17267 line_ptr += 1;
17268 }
17269 else
17270 lh->maximum_ops_per_instruction = 1;
17271
17272 if (lh->maximum_ops_per_instruction == 0)
17273 {
17274 lh->maximum_ops_per_instruction = 1;
17275 complaint (&symfile_complaints,
17276 _("invalid maximum_ops_per_instruction "
17277 "in `.debug_line' section"));
17278 }
17279
17280 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17281 line_ptr += 1;
17282 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17283 line_ptr += 1;
17284 lh->line_range = read_1_byte (abfd, line_ptr);
17285 line_ptr += 1;
17286 lh->opcode_base = read_1_byte (abfd, line_ptr);
17287 line_ptr += 1;
17288 lh->standard_opcode_lengths
17289 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17290
17291 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17292 for (i = 1; i < lh->opcode_base; ++i)
17293 {
17294 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17295 line_ptr += 1;
17296 }
17297
17298 /* Read directory table. */
17299 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17300 {
17301 line_ptr += bytes_read;
17302 add_include_dir (lh, cur_dir);
17303 }
17304 line_ptr += bytes_read;
17305
17306 /* Read file name table. */
17307 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17308 {
17309 unsigned int dir_index, mod_time, length;
17310
17311 line_ptr += bytes_read;
17312 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17313 line_ptr += bytes_read;
17314 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17315 line_ptr += bytes_read;
17316 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17317 line_ptr += bytes_read;
17318
17319 add_file_name (lh, cur_file, dir_index, mod_time, length);
17320 }
17321 line_ptr += bytes_read;
17322 lh->statement_program_start = line_ptr;
17323
17324 if (line_ptr > (section->buffer + section->size))
17325 complaint (&symfile_complaints,
17326 _("line number info header doesn't "
17327 "fit in `.debug_line' section"));
17328
17329 discard_cleanups (back_to);
17330 return lh;
17331 }
17332
17333 /* Subroutine of dwarf_decode_lines to simplify it.
17334 Return the file name of the psymtab for included file FILE_INDEX
17335 in line header LH of PST.
17336 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17337 If space for the result is malloc'd, it will be freed by a cleanup.
17338 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17339
17340 The function creates dangling cleanup registration. */
17341
17342 static const char *
17343 psymtab_include_file_name (const struct line_header *lh, int file_index,
17344 const struct partial_symtab *pst,
17345 const char *comp_dir)
17346 {
17347 const struct file_entry fe = lh->file_names [file_index];
17348 const char *include_name = fe.name;
17349 const char *include_name_to_compare = include_name;
17350 const char *dir_name = NULL;
17351 const char *pst_filename;
17352 char *copied_name = NULL;
17353 int file_is_pst;
17354
17355 if (fe.dir_index)
17356 dir_name = lh->include_dirs[fe.dir_index - 1];
17357
17358 if (!IS_ABSOLUTE_PATH (include_name)
17359 && (dir_name != NULL || comp_dir != NULL))
17360 {
17361 /* Avoid creating a duplicate psymtab for PST.
17362 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17363 Before we do the comparison, however, we need to account
17364 for DIR_NAME and COMP_DIR.
17365 First prepend dir_name (if non-NULL). If we still don't
17366 have an absolute path prepend comp_dir (if non-NULL).
17367 However, the directory we record in the include-file's
17368 psymtab does not contain COMP_DIR (to match the
17369 corresponding symtab(s)).
17370
17371 Example:
17372
17373 bash$ cd /tmp
17374 bash$ gcc -g ./hello.c
17375 include_name = "hello.c"
17376 dir_name = "."
17377 DW_AT_comp_dir = comp_dir = "/tmp"
17378 DW_AT_name = "./hello.c"
17379
17380 */
17381
17382 if (dir_name != NULL)
17383 {
17384 char *tem = concat (dir_name, SLASH_STRING,
17385 include_name, (char *)NULL);
17386
17387 make_cleanup (xfree, tem);
17388 include_name = tem;
17389 include_name_to_compare = include_name;
17390 }
17391 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17392 {
17393 char *tem = concat (comp_dir, SLASH_STRING,
17394 include_name, (char *)NULL);
17395
17396 make_cleanup (xfree, tem);
17397 include_name_to_compare = tem;
17398 }
17399 }
17400
17401 pst_filename = pst->filename;
17402 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17403 {
17404 copied_name = concat (pst->dirname, SLASH_STRING,
17405 pst_filename, (char *)NULL);
17406 pst_filename = copied_name;
17407 }
17408
17409 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17410
17411 if (copied_name != NULL)
17412 xfree (copied_name);
17413
17414 if (file_is_pst)
17415 return NULL;
17416 return include_name;
17417 }
17418
17419 /* Ignore this record_line request. */
17420
17421 static void
17422 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17423 {
17424 return;
17425 }
17426
17427 /* Return non-zero if we should add LINE to the line number table.
17428 LINE is the line to add, LAST_LINE is the last line that was added,
17429 LAST_SUBFILE is the subfile for LAST_LINE.
17430 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17431 had a non-zero discriminator.
17432
17433 We have to be careful in the presence of discriminators.
17434 E.g., for this line:
17435
17436 for (i = 0; i < 100000; i++);
17437
17438 clang can emit four line number entries for that one line,
17439 each with a different discriminator.
17440 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17441
17442 However, we want gdb to coalesce all four entries into one.
17443 Otherwise the user could stepi into the middle of the line and
17444 gdb would get confused about whether the pc really was in the
17445 middle of the line.
17446
17447 Things are further complicated by the fact that two consecutive
17448 line number entries for the same line is a heuristic used by gcc
17449 to denote the end of the prologue. So we can't just discard duplicate
17450 entries, we have to be selective about it. The heuristic we use is
17451 that we only collapse consecutive entries for the same line if at least
17452 one of those entries has a non-zero discriminator. PR 17276.
17453
17454 Note: Addresses in the line number state machine can never go backwards
17455 within one sequence, thus this coalescing is ok. */
17456
17457 static int
17458 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17459 int line_has_non_zero_discriminator,
17460 struct subfile *last_subfile)
17461 {
17462 if (current_subfile != last_subfile)
17463 return 1;
17464 if (line != last_line)
17465 return 1;
17466 /* Same line for the same file that we've seen already.
17467 As a last check, for pr 17276, only record the line if the line
17468 has never had a non-zero discriminator. */
17469 if (!line_has_non_zero_discriminator)
17470 return 1;
17471 return 0;
17472 }
17473
17474 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17475 in the line table of subfile SUBFILE. */
17476
17477 static void
17478 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17479 unsigned int line, CORE_ADDR address,
17480 record_line_ftype p_record_line)
17481 {
17482 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17483
17484 (*p_record_line) (subfile, line, addr);
17485 }
17486
17487 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17488 Mark the end of a set of line number records.
17489 The arguments are the same as for dwarf_record_line.
17490 If SUBFILE is NULL the request is ignored. */
17491
17492 static void
17493 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17494 CORE_ADDR address, record_line_ftype p_record_line)
17495 {
17496 if (subfile != NULL)
17497 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17498 }
17499
17500 /* Subroutine of dwarf_decode_lines to simplify it.
17501 Process the line number information in LH. */
17502
17503 static void
17504 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17505 const int decode_for_pst_p, CORE_ADDR lowpc)
17506 {
17507 const gdb_byte *line_ptr, *extended_end;
17508 const gdb_byte *line_end;
17509 unsigned int bytes_read, extended_len;
17510 unsigned char op_code, extended_op;
17511 CORE_ADDR baseaddr;
17512 struct objfile *objfile = cu->objfile;
17513 bfd *abfd = objfile->obfd;
17514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17515 struct subfile *last_subfile = NULL;
17516 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17517 = record_line;
17518
17519 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17520
17521 line_ptr = lh->statement_program_start;
17522 line_end = lh->statement_program_end;
17523
17524 /* Read the statement sequences until there's nothing left. */
17525 while (line_ptr < line_end)
17526 {
17527 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17528 on the initial 0 address as if there was a line entry for it
17529 so that the backend has a chance to adjust it and also record
17530 it in case it needs it. This is currently used by MIPS code,
17531 cf. `mips_adjust_dwarf2_line'. */
17532 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17533 unsigned int file = 1;
17534 unsigned int line = 1;
17535 int is_stmt = lh->default_is_stmt;
17536 int end_sequence = 0;
17537 unsigned char op_index = 0;
17538 unsigned int discriminator = 0;
17539 /* The last line number that was recorded, used to coalesce
17540 consecutive entries for the same line. This can happen, for
17541 example, when discriminators are present. PR 17276. */
17542 unsigned int last_line = 0;
17543 int line_has_non_zero_discriminator = 0;
17544
17545 if (!decode_for_pst_p && lh->num_file_names >= file)
17546 {
17547 /* Start a subfile for the current file of the state machine. */
17548 /* lh->include_dirs and lh->file_names are 0-based, but the
17549 directory and file name numbers in the statement program
17550 are 1-based. */
17551 struct file_entry *fe = &lh->file_names[file - 1];
17552 const char *dir = NULL;
17553
17554 if (fe->dir_index)
17555 dir = lh->include_dirs[fe->dir_index - 1];
17556
17557 dwarf2_start_subfile (fe->name, dir);
17558 }
17559
17560 /* Decode the table. */
17561 while (!end_sequence)
17562 {
17563 op_code = read_1_byte (abfd, line_ptr);
17564 line_ptr += 1;
17565 if (line_ptr > line_end)
17566 {
17567 dwarf2_debug_line_missing_end_sequence_complaint ();
17568 break;
17569 }
17570
17571 if (op_code >= lh->opcode_base)
17572 {
17573 /* Special opcode. */
17574 unsigned char adj_opcode;
17575 CORE_ADDR addr_adj;
17576 int line_delta;
17577
17578 adj_opcode = op_code - lh->opcode_base;
17579 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17580 / lh->maximum_ops_per_instruction)
17581 * lh->minimum_instruction_length);
17582 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17583 op_index = ((op_index + (adj_opcode / lh->line_range))
17584 % lh->maximum_ops_per_instruction);
17585 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17586 line += line_delta;
17587 if (line_delta != 0)
17588 line_has_non_zero_discriminator = discriminator != 0;
17589 if (lh->num_file_names < file || file == 0)
17590 dwarf2_debug_line_missing_file_complaint ();
17591 /* For now we ignore lines not starting on an
17592 instruction boundary. */
17593 else if (op_index == 0)
17594 {
17595 lh->file_names[file - 1].included_p = 1;
17596 if (!decode_for_pst_p && is_stmt)
17597 {
17598 if (last_subfile != current_subfile)
17599 {
17600 dwarf_finish_line (gdbarch, last_subfile,
17601 address, p_record_line);
17602 }
17603 if (dwarf_record_line_p (line, last_line,
17604 line_has_non_zero_discriminator,
17605 last_subfile))
17606 {
17607 dwarf_record_line (gdbarch, current_subfile,
17608 line, address, p_record_line);
17609 }
17610 last_subfile = current_subfile;
17611 last_line = line;
17612 }
17613 }
17614 discriminator = 0;
17615 }
17616 else switch (op_code)
17617 {
17618 case DW_LNS_extended_op:
17619 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17620 &bytes_read);
17621 line_ptr += bytes_read;
17622 extended_end = line_ptr + extended_len;
17623 extended_op = read_1_byte (abfd, line_ptr);
17624 line_ptr += 1;
17625 switch (extended_op)
17626 {
17627 case DW_LNE_end_sequence:
17628 p_record_line = record_line;
17629 end_sequence = 1;
17630 break;
17631 case DW_LNE_set_address:
17632 address = read_address (abfd, line_ptr, cu, &bytes_read);
17633
17634 /* If address < lowpc then it's not a usable value, it's
17635 outside the pc range of the CU. However, we restrict
17636 the test to only address values of zero to preserve
17637 GDB's previous behaviour which is to handle the specific
17638 case of a function being GC'd by the linker. */
17639 if (address == 0 && address < lowpc)
17640 {
17641 /* This line table is for a function which has been
17642 GCd by the linker. Ignore it. PR gdb/12528 */
17643
17644 long line_offset
17645 = line_ptr - get_debug_line_section (cu)->buffer;
17646
17647 complaint (&symfile_complaints,
17648 _(".debug_line address at offset 0x%lx is 0 "
17649 "[in module %s]"),
17650 line_offset, objfile_name (objfile));
17651 p_record_line = noop_record_line;
17652 /* Note: p_record_line is left as noop_record_line
17653 until we see DW_LNE_end_sequence. */
17654 }
17655
17656 op_index = 0;
17657 line_ptr += bytes_read;
17658 address += baseaddr;
17659 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17660 break;
17661 case DW_LNE_define_file:
17662 {
17663 const char *cur_file;
17664 unsigned int dir_index, mod_time, length;
17665
17666 cur_file = read_direct_string (abfd, line_ptr,
17667 &bytes_read);
17668 line_ptr += bytes_read;
17669 dir_index =
17670 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17671 line_ptr += bytes_read;
17672 mod_time =
17673 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17674 line_ptr += bytes_read;
17675 length =
17676 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17677 line_ptr += bytes_read;
17678 add_file_name (lh, cur_file, dir_index, mod_time, length);
17679 }
17680 break;
17681 case DW_LNE_set_discriminator:
17682 /* The discriminator is not interesting to the debugger;
17683 just ignore it. We still need to check its value though:
17684 if there are consecutive entries for the same
17685 (non-prologue) line we want to coalesce them.
17686 PR 17276. */
17687 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17688 &bytes_read);
17689 line_has_non_zero_discriminator |= discriminator != 0;
17690 line_ptr += bytes_read;
17691 break;
17692 default:
17693 complaint (&symfile_complaints,
17694 _("mangled .debug_line section"));
17695 return;
17696 }
17697 /* Make sure that we parsed the extended op correctly. If e.g.
17698 we expected a different address size than the producer used,
17699 we may have read the wrong number of bytes. */
17700 if (line_ptr != extended_end)
17701 {
17702 complaint (&symfile_complaints,
17703 _("mangled .debug_line section"));
17704 return;
17705 }
17706 break;
17707 case DW_LNS_copy:
17708 if (lh->num_file_names < file || file == 0)
17709 dwarf2_debug_line_missing_file_complaint ();
17710 else
17711 {
17712 lh->file_names[file - 1].included_p = 1;
17713 if (!decode_for_pst_p && is_stmt)
17714 {
17715 if (last_subfile != current_subfile)
17716 {
17717 dwarf_finish_line (gdbarch, last_subfile,
17718 address, p_record_line);
17719 }
17720 if (dwarf_record_line_p (line, last_line,
17721 line_has_non_zero_discriminator,
17722 last_subfile))
17723 {
17724 dwarf_record_line (gdbarch, current_subfile,
17725 line, address, p_record_line);
17726 }
17727 last_subfile = current_subfile;
17728 last_line = line;
17729 }
17730 }
17731 discriminator = 0;
17732 break;
17733 case DW_LNS_advance_pc:
17734 {
17735 CORE_ADDR adjust
17736 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17737 CORE_ADDR addr_adj;
17738
17739 addr_adj = (((op_index + adjust)
17740 / lh->maximum_ops_per_instruction)
17741 * lh->minimum_instruction_length);
17742 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17743 op_index = ((op_index + adjust)
17744 % lh->maximum_ops_per_instruction);
17745 line_ptr += bytes_read;
17746 }
17747 break;
17748 case DW_LNS_advance_line:
17749 {
17750 int line_delta
17751 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17752
17753 line += line_delta;
17754 if (line_delta != 0)
17755 line_has_non_zero_discriminator = discriminator != 0;
17756 line_ptr += bytes_read;
17757 }
17758 break;
17759 case DW_LNS_set_file:
17760 {
17761 /* The arrays lh->include_dirs and lh->file_names are
17762 0-based, but the directory and file name numbers in
17763 the statement program are 1-based. */
17764 struct file_entry *fe;
17765 const char *dir = NULL;
17766
17767 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17768 line_ptr += bytes_read;
17769 if (lh->num_file_names < file || file == 0)
17770 dwarf2_debug_line_missing_file_complaint ();
17771 else
17772 {
17773 fe = &lh->file_names[file - 1];
17774 if (fe->dir_index)
17775 dir = lh->include_dirs[fe->dir_index - 1];
17776 if (!decode_for_pst_p)
17777 {
17778 last_subfile = current_subfile;
17779 line_has_non_zero_discriminator = discriminator != 0;
17780 dwarf2_start_subfile (fe->name, dir);
17781 }
17782 }
17783 }
17784 break;
17785 case DW_LNS_set_column:
17786 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17787 line_ptr += bytes_read;
17788 break;
17789 case DW_LNS_negate_stmt:
17790 is_stmt = (!is_stmt);
17791 break;
17792 case DW_LNS_set_basic_block:
17793 break;
17794 /* Add to the address register of the state machine the
17795 address increment value corresponding to special opcode
17796 255. I.e., this value is scaled by the minimum
17797 instruction length since special opcode 255 would have
17798 scaled the increment. */
17799 case DW_LNS_const_add_pc:
17800 {
17801 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17802 CORE_ADDR addr_adj;
17803
17804 addr_adj = (((op_index + adjust)
17805 / lh->maximum_ops_per_instruction)
17806 * lh->minimum_instruction_length);
17807 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17808 op_index = ((op_index + adjust)
17809 % lh->maximum_ops_per_instruction);
17810 }
17811 break;
17812 case DW_LNS_fixed_advance_pc:
17813 {
17814 CORE_ADDR addr_adj;
17815
17816 addr_adj = read_2_bytes (abfd, line_ptr);
17817 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17818 op_index = 0;
17819 line_ptr += 2;
17820 }
17821 break;
17822 default:
17823 {
17824 /* Unknown standard opcode, ignore it. */
17825 int i;
17826
17827 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17828 {
17829 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17830 line_ptr += bytes_read;
17831 }
17832 }
17833 }
17834 }
17835 if (lh->num_file_names < file || file == 0)
17836 dwarf2_debug_line_missing_file_complaint ();
17837 else
17838 {
17839 lh->file_names[file - 1].included_p = 1;
17840 if (!decode_for_pst_p)
17841 {
17842 dwarf_finish_line (gdbarch, current_subfile, address,
17843 p_record_line);
17844 }
17845 }
17846 }
17847 }
17848
17849 /* Decode the Line Number Program (LNP) for the given line_header
17850 structure and CU. The actual information extracted and the type
17851 of structures created from the LNP depends on the value of PST.
17852
17853 1. If PST is NULL, then this procedure uses the data from the program
17854 to create all necessary symbol tables, and their linetables.
17855
17856 2. If PST is not NULL, this procedure reads the program to determine
17857 the list of files included by the unit represented by PST, and
17858 builds all the associated partial symbol tables.
17859
17860 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17861 It is used for relative paths in the line table.
17862 NOTE: When processing partial symtabs (pst != NULL),
17863 comp_dir == pst->dirname.
17864
17865 NOTE: It is important that psymtabs have the same file name (via strcmp)
17866 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17867 symtab we don't use it in the name of the psymtabs we create.
17868 E.g. expand_line_sal requires this when finding psymtabs to expand.
17869 A good testcase for this is mb-inline.exp.
17870
17871 LOWPC is the lowest address in CU (or 0 if not known).
17872
17873 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17874 for its PC<->lines mapping information. Otherwise only the filename
17875 table is read in. */
17876
17877 static void
17878 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17879 struct dwarf2_cu *cu, struct partial_symtab *pst,
17880 CORE_ADDR lowpc, int decode_mapping)
17881 {
17882 struct objfile *objfile = cu->objfile;
17883 const int decode_for_pst_p = (pst != NULL);
17884
17885 if (decode_mapping)
17886 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17887
17888 if (decode_for_pst_p)
17889 {
17890 int file_index;
17891
17892 /* Now that we're done scanning the Line Header Program, we can
17893 create the psymtab of each included file. */
17894 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17895 if (lh->file_names[file_index].included_p == 1)
17896 {
17897 const char *include_name =
17898 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17899 if (include_name != NULL)
17900 dwarf2_create_include_psymtab (include_name, pst, objfile);
17901 }
17902 }
17903 else
17904 {
17905 /* Make sure a symtab is created for every file, even files
17906 which contain only variables (i.e. no code with associated
17907 line numbers). */
17908 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17909 int i;
17910
17911 for (i = 0; i < lh->num_file_names; i++)
17912 {
17913 const char *dir = NULL;
17914 struct file_entry *fe;
17915
17916 fe = &lh->file_names[i];
17917 if (fe->dir_index)
17918 dir = lh->include_dirs[fe->dir_index - 1];
17919 dwarf2_start_subfile (fe->name, dir);
17920
17921 if (current_subfile->symtab == NULL)
17922 {
17923 current_subfile->symtab
17924 = allocate_symtab (cust, current_subfile->name);
17925 }
17926 fe->symtab = current_subfile->symtab;
17927 }
17928 }
17929 }
17930
17931 /* Start a subfile for DWARF. FILENAME is the name of the file and
17932 DIRNAME the name of the source directory which contains FILENAME
17933 or NULL if not known.
17934 This routine tries to keep line numbers from identical absolute and
17935 relative file names in a common subfile.
17936
17937 Using the `list' example from the GDB testsuite, which resides in
17938 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17939 of /srcdir/list0.c yields the following debugging information for list0.c:
17940
17941 DW_AT_name: /srcdir/list0.c
17942 DW_AT_comp_dir: /compdir
17943 files.files[0].name: list0.h
17944 files.files[0].dir: /srcdir
17945 files.files[1].name: list0.c
17946 files.files[1].dir: /srcdir
17947
17948 The line number information for list0.c has to end up in a single
17949 subfile, so that `break /srcdir/list0.c:1' works as expected.
17950 start_subfile will ensure that this happens provided that we pass the
17951 concatenation of files.files[1].dir and files.files[1].name as the
17952 subfile's name. */
17953
17954 static void
17955 dwarf2_start_subfile (const char *filename, const char *dirname)
17956 {
17957 char *copy = NULL;
17958
17959 /* In order not to lose the line information directory,
17960 we concatenate it to the filename when it makes sense.
17961 Note that the Dwarf3 standard says (speaking of filenames in line
17962 information): ``The directory index is ignored for file names
17963 that represent full path names''. Thus ignoring dirname in the
17964 `else' branch below isn't an issue. */
17965
17966 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17967 {
17968 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17969 filename = copy;
17970 }
17971
17972 start_subfile (filename);
17973
17974 if (copy != NULL)
17975 xfree (copy);
17976 }
17977
17978 /* Start a symtab for DWARF.
17979 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17980
17981 static struct compunit_symtab *
17982 dwarf2_start_symtab (struct dwarf2_cu *cu,
17983 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17984 {
17985 struct compunit_symtab *cust
17986 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17987
17988 record_debugformat ("DWARF 2");
17989 record_producer (cu->producer);
17990
17991 /* We assume that we're processing GCC output. */
17992 processing_gcc_compilation = 2;
17993
17994 cu->processing_has_namespace_info = 0;
17995
17996 return cust;
17997 }
17998
17999 static void
18000 var_decode_location (struct attribute *attr, struct symbol *sym,
18001 struct dwarf2_cu *cu)
18002 {
18003 struct objfile *objfile = cu->objfile;
18004 struct comp_unit_head *cu_header = &cu->header;
18005
18006 /* NOTE drow/2003-01-30: There used to be a comment and some special
18007 code here to turn a symbol with DW_AT_external and a
18008 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18009 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18010 with some versions of binutils) where shared libraries could have
18011 relocations against symbols in their debug information - the
18012 minimal symbol would have the right address, but the debug info
18013 would not. It's no longer necessary, because we will explicitly
18014 apply relocations when we read in the debug information now. */
18015
18016 /* A DW_AT_location attribute with no contents indicates that a
18017 variable has been optimized away. */
18018 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18019 {
18020 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18021 return;
18022 }
18023
18024 /* Handle one degenerate form of location expression specially, to
18025 preserve GDB's previous behavior when section offsets are
18026 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18027 then mark this symbol as LOC_STATIC. */
18028
18029 if (attr_form_is_block (attr)
18030 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18031 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18032 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18033 && (DW_BLOCK (attr)->size
18034 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18035 {
18036 unsigned int dummy;
18037
18038 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18039 SYMBOL_VALUE_ADDRESS (sym) =
18040 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18041 else
18042 SYMBOL_VALUE_ADDRESS (sym) =
18043 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18044 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18045 fixup_symbol_section (sym, objfile);
18046 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18047 SYMBOL_SECTION (sym));
18048 return;
18049 }
18050
18051 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18052 expression evaluator, and use LOC_COMPUTED only when necessary
18053 (i.e. when the value of a register or memory location is
18054 referenced, or a thread-local block, etc.). Then again, it might
18055 not be worthwhile. I'm assuming that it isn't unless performance
18056 or memory numbers show me otherwise. */
18057
18058 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18059
18060 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18061 cu->has_loclist = 1;
18062 }
18063
18064 /* Given a pointer to a DWARF information entry, figure out if we need
18065 to make a symbol table entry for it, and if so, create a new entry
18066 and return a pointer to it.
18067 If TYPE is NULL, determine symbol type from the die, otherwise
18068 used the passed type.
18069 If SPACE is not NULL, use it to hold the new symbol. If it is
18070 NULL, allocate a new symbol on the objfile's obstack. */
18071
18072 static struct symbol *
18073 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18074 struct symbol *space)
18075 {
18076 struct objfile *objfile = cu->objfile;
18077 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18078 struct symbol *sym = NULL;
18079 const char *name;
18080 struct attribute *attr = NULL;
18081 struct attribute *attr2 = NULL;
18082 CORE_ADDR baseaddr;
18083 struct pending **list_to_add = NULL;
18084
18085 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18086
18087 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18088
18089 name = dwarf2_name (die, cu);
18090 if (name)
18091 {
18092 const char *linkagename;
18093 int suppress_add = 0;
18094
18095 if (space)
18096 sym = space;
18097 else
18098 sym = allocate_symbol (objfile);
18099 OBJSTAT (objfile, n_syms++);
18100
18101 /* Cache this symbol's name and the name's demangled form (if any). */
18102 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18103 linkagename = dwarf2_physname (name, die, cu);
18104 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18105
18106 /* Fortran does not have mangling standard and the mangling does differ
18107 between gfortran, iFort etc. */
18108 if (cu->language == language_fortran
18109 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18110 symbol_set_demangled_name (&(sym->ginfo),
18111 dwarf2_full_name (name, die, cu),
18112 NULL);
18113
18114 /* Default assumptions.
18115 Use the passed type or decode it from the die. */
18116 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18117 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18118 if (type != NULL)
18119 SYMBOL_TYPE (sym) = type;
18120 else
18121 SYMBOL_TYPE (sym) = die_type (die, cu);
18122 attr = dwarf2_attr (die,
18123 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18124 cu);
18125 if (attr)
18126 {
18127 SYMBOL_LINE (sym) = DW_UNSND (attr);
18128 }
18129
18130 attr = dwarf2_attr (die,
18131 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18132 cu);
18133 if (attr)
18134 {
18135 int file_index = DW_UNSND (attr);
18136
18137 if (cu->line_header == NULL
18138 || file_index > cu->line_header->num_file_names)
18139 complaint (&symfile_complaints,
18140 _("file index out of range"));
18141 else if (file_index > 0)
18142 {
18143 struct file_entry *fe;
18144
18145 fe = &cu->line_header->file_names[file_index - 1];
18146 symbol_set_symtab (sym, fe->symtab);
18147 }
18148 }
18149
18150 switch (die->tag)
18151 {
18152 case DW_TAG_label:
18153 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18154 if (attr)
18155 {
18156 CORE_ADDR addr;
18157
18158 addr = attr_value_as_address (attr);
18159 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18160 SYMBOL_VALUE_ADDRESS (sym) = addr;
18161 }
18162 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18163 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18164 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18165 add_symbol_to_list (sym, cu->list_in_scope);
18166 break;
18167 case DW_TAG_subprogram:
18168 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18169 finish_block. */
18170 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18171 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18172 if ((attr2 && (DW_UNSND (attr2) != 0))
18173 || cu->language == language_ada)
18174 {
18175 /* Subprograms marked external are stored as a global symbol.
18176 Ada subprograms, whether marked external or not, are always
18177 stored as a global symbol, because we want to be able to
18178 access them globally. For instance, we want to be able
18179 to break on a nested subprogram without having to
18180 specify the context. */
18181 list_to_add = &global_symbols;
18182 }
18183 else
18184 {
18185 list_to_add = cu->list_in_scope;
18186 }
18187 break;
18188 case DW_TAG_inlined_subroutine:
18189 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18190 finish_block. */
18191 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18192 SYMBOL_INLINED (sym) = 1;
18193 list_to_add = cu->list_in_scope;
18194 break;
18195 case DW_TAG_template_value_param:
18196 suppress_add = 1;
18197 /* Fall through. */
18198 case DW_TAG_constant:
18199 case DW_TAG_variable:
18200 case DW_TAG_member:
18201 /* Compilation with minimal debug info may result in
18202 variables with missing type entries. Change the
18203 misleading `void' type to something sensible. */
18204 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18205 SYMBOL_TYPE (sym)
18206 = objfile_type (objfile)->nodebug_data_symbol;
18207
18208 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18209 /* In the case of DW_TAG_member, we should only be called for
18210 static const members. */
18211 if (die->tag == DW_TAG_member)
18212 {
18213 /* dwarf2_add_field uses die_is_declaration,
18214 so we do the same. */
18215 gdb_assert (die_is_declaration (die, cu));
18216 gdb_assert (attr);
18217 }
18218 if (attr)
18219 {
18220 dwarf2_const_value (attr, sym, cu);
18221 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18222 if (!suppress_add)
18223 {
18224 if (attr2 && (DW_UNSND (attr2) != 0))
18225 list_to_add = &global_symbols;
18226 else
18227 list_to_add = cu->list_in_scope;
18228 }
18229 break;
18230 }
18231 attr = dwarf2_attr (die, DW_AT_location, cu);
18232 if (attr)
18233 {
18234 var_decode_location (attr, sym, cu);
18235 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18236
18237 /* Fortran explicitly imports any global symbols to the local
18238 scope by DW_TAG_common_block. */
18239 if (cu->language == language_fortran && die->parent
18240 && die->parent->tag == DW_TAG_common_block)
18241 attr2 = NULL;
18242
18243 if (SYMBOL_CLASS (sym) == LOC_STATIC
18244 && SYMBOL_VALUE_ADDRESS (sym) == 0
18245 && !dwarf2_per_objfile->has_section_at_zero)
18246 {
18247 /* When a static variable is eliminated by the linker,
18248 the corresponding debug information is not stripped
18249 out, but the variable address is set to null;
18250 do not add such variables into symbol table. */
18251 }
18252 else if (attr2 && (DW_UNSND (attr2) != 0))
18253 {
18254 /* Workaround gfortran PR debug/40040 - it uses
18255 DW_AT_location for variables in -fPIC libraries which may
18256 get overriden by other libraries/executable and get
18257 a different address. Resolve it by the minimal symbol
18258 which may come from inferior's executable using copy
18259 relocation. Make this workaround only for gfortran as for
18260 other compilers GDB cannot guess the minimal symbol
18261 Fortran mangling kind. */
18262 if (cu->language == language_fortran && die->parent
18263 && die->parent->tag == DW_TAG_module
18264 && cu->producer
18265 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18266 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18267
18268 /* A variable with DW_AT_external is never static,
18269 but it may be block-scoped. */
18270 list_to_add = (cu->list_in_scope == &file_symbols
18271 ? &global_symbols : cu->list_in_scope);
18272 }
18273 else
18274 list_to_add = cu->list_in_scope;
18275 }
18276 else
18277 {
18278 /* We do not know the address of this symbol.
18279 If it is an external symbol and we have type information
18280 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18281 The address of the variable will then be determined from
18282 the minimal symbol table whenever the variable is
18283 referenced. */
18284 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18285
18286 /* Fortran explicitly imports any global symbols to the local
18287 scope by DW_TAG_common_block. */
18288 if (cu->language == language_fortran && die->parent
18289 && die->parent->tag == DW_TAG_common_block)
18290 {
18291 /* SYMBOL_CLASS doesn't matter here because
18292 read_common_block is going to reset it. */
18293 if (!suppress_add)
18294 list_to_add = cu->list_in_scope;
18295 }
18296 else if (attr2 && (DW_UNSND (attr2) != 0)
18297 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18298 {
18299 /* A variable with DW_AT_external is never static, but it
18300 may be block-scoped. */
18301 list_to_add = (cu->list_in_scope == &file_symbols
18302 ? &global_symbols : cu->list_in_scope);
18303
18304 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18305 }
18306 else if (!die_is_declaration (die, cu))
18307 {
18308 /* Use the default LOC_OPTIMIZED_OUT class. */
18309 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18310 if (!suppress_add)
18311 list_to_add = cu->list_in_scope;
18312 }
18313 }
18314 break;
18315 case DW_TAG_formal_parameter:
18316 /* If we are inside a function, mark this as an argument. If
18317 not, we might be looking at an argument to an inlined function
18318 when we do not have enough information to show inlined frames;
18319 pretend it's a local variable in that case so that the user can
18320 still see it. */
18321 if (context_stack_depth > 0
18322 && context_stack[context_stack_depth - 1].name != NULL)
18323 SYMBOL_IS_ARGUMENT (sym) = 1;
18324 attr = dwarf2_attr (die, DW_AT_location, cu);
18325 if (attr)
18326 {
18327 var_decode_location (attr, sym, cu);
18328 }
18329 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18330 if (attr)
18331 {
18332 dwarf2_const_value (attr, sym, cu);
18333 }
18334
18335 list_to_add = cu->list_in_scope;
18336 break;
18337 case DW_TAG_unspecified_parameters:
18338 /* From varargs functions; gdb doesn't seem to have any
18339 interest in this information, so just ignore it for now.
18340 (FIXME?) */
18341 break;
18342 case DW_TAG_template_type_param:
18343 suppress_add = 1;
18344 /* Fall through. */
18345 case DW_TAG_class_type:
18346 case DW_TAG_interface_type:
18347 case DW_TAG_structure_type:
18348 case DW_TAG_union_type:
18349 case DW_TAG_set_type:
18350 case DW_TAG_enumeration_type:
18351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18352 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18353
18354 {
18355 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18356 really ever be static objects: otherwise, if you try
18357 to, say, break of a class's method and you're in a file
18358 which doesn't mention that class, it won't work unless
18359 the check for all static symbols in lookup_symbol_aux
18360 saves you. See the OtherFileClass tests in
18361 gdb.c++/namespace.exp. */
18362
18363 if (!suppress_add)
18364 {
18365 list_to_add = (cu->list_in_scope == &file_symbols
18366 && (cu->language == language_cplus
18367 || cu->language == language_java)
18368 ? &global_symbols : cu->list_in_scope);
18369
18370 /* The semantics of C++ state that "struct foo {
18371 ... }" also defines a typedef for "foo". A Java
18372 class declaration also defines a typedef for the
18373 class. */
18374 if (cu->language == language_cplus
18375 || cu->language == language_java
18376 || cu->language == language_ada)
18377 {
18378 /* The symbol's name is already allocated along
18379 with this objfile, so we don't need to
18380 duplicate it for the type. */
18381 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18382 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18383 }
18384 }
18385 }
18386 break;
18387 case DW_TAG_typedef:
18388 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18389 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18390 list_to_add = cu->list_in_scope;
18391 break;
18392 case DW_TAG_base_type:
18393 case DW_TAG_subrange_type:
18394 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18396 list_to_add = cu->list_in_scope;
18397 break;
18398 case DW_TAG_enumerator:
18399 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18400 if (attr)
18401 {
18402 dwarf2_const_value (attr, sym, cu);
18403 }
18404 {
18405 /* NOTE: carlton/2003-11-10: See comment above in the
18406 DW_TAG_class_type, etc. block. */
18407
18408 list_to_add = (cu->list_in_scope == &file_symbols
18409 && (cu->language == language_cplus
18410 || cu->language == language_java)
18411 ? &global_symbols : cu->list_in_scope);
18412 }
18413 break;
18414 case DW_TAG_imported_declaration:
18415 case DW_TAG_namespace:
18416 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18417 list_to_add = &global_symbols;
18418 break;
18419 case DW_TAG_module:
18420 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18421 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18422 list_to_add = &global_symbols;
18423 break;
18424 case DW_TAG_common_block:
18425 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18426 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18427 add_symbol_to_list (sym, cu->list_in_scope);
18428 break;
18429 default:
18430 /* Not a tag we recognize. Hopefully we aren't processing
18431 trash data, but since we must specifically ignore things
18432 we don't recognize, there is nothing else we should do at
18433 this point. */
18434 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18435 dwarf_tag_name (die->tag));
18436 break;
18437 }
18438
18439 if (suppress_add)
18440 {
18441 sym->hash_next = objfile->template_symbols;
18442 objfile->template_symbols = sym;
18443 list_to_add = NULL;
18444 }
18445
18446 if (list_to_add != NULL)
18447 add_symbol_to_list (sym, list_to_add);
18448
18449 /* For the benefit of old versions of GCC, check for anonymous
18450 namespaces based on the demangled name. */
18451 if (!cu->processing_has_namespace_info
18452 && cu->language == language_cplus)
18453 cp_scan_for_anonymous_namespaces (sym, objfile);
18454 }
18455 return (sym);
18456 }
18457
18458 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18459
18460 static struct symbol *
18461 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18462 {
18463 return new_symbol_full (die, type, cu, NULL);
18464 }
18465
18466 /* Given an attr with a DW_FORM_dataN value in host byte order,
18467 zero-extend it as appropriate for the symbol's type. The DWARF
18468 standard (v4) is not entirely clear about the meaning of using
18469 DW_FORM_dataN for a constant with a signed type, where the type is
18470 wider than the data. The conclusion of a discussion on the DWARF
18471 list was that this is unspecified. We choose to always zero-extend
18472 because that is the interpretation long in use by GCC. */
18473
18474 static gdb_byte *
18475 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18476 struct dwarf2_cu *cu, LONGEST *value, int bits)
18477 {
18478 struct objfile *objfile = cu->objfile;
18479 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18480 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18481 LONGEST l = DW_UNSND (attr);
18482
18483 if (bits < sizeof (*value) * 8)
18484 {
18485 l &= ((LONGEST) 1 << bits) - 1;
18486 *value = l;
18487 }
18488 else if (bits == sizeof (*value) * 8)
18489 *value = l;
18490 else
18491 {
18492 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18493 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18494 return bytes;
18495 }
18496
18497 return NULL;
18498 }
18499
18500 /* Read a constant value from an attribute. Either set *VALUE, or if
18501 the value does not fit in *VALUE, set *BYTES - either already
18502 allocated on the objfile obstack, or newly allocated on OBSTACK,
18503 or, set *BATON, if we translated the constant to a location
18504 expression. */
18505
18506 static void
18507 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18508 const char *name, struct obstack *obstack,
18509 struct dwarf2_cu *cu,
18510 LONGEST *value, const gdb_byte **bytes,
18511 struct dwarf2_locexpr_baton **baton)
18512 {
18513 struct objfile *objfile = cu->objfile;
18514 struct comp_unit_head *cu_header = &cu->header;
18515 struct dwarf_block *blk;
18516 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18517 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18518
18519 *value = 0;
18520 *bytes = NULL;
18521 *baton = NULL;
18522
18523 switch (attr->form)
18524 {
18525 case DW_FORM_addr:
18526 case DW_FORM_GNU_addr_index:
18527 {
18528 gdb_byte *data;
18529
18530 if (TYPE_LENGTH (type) != cu_header->addr_size)
18531 dwarf2_const_value_length_mismatch_complaint (name,
18532 cu_header->addr_size,
18533 TYPE_LENGTH (type));
18534 /* Symbols of this form are reasonably rare, so we just
18535 piggyback on the existing location code rather than writing
18536 a new implementation of symbol_computed_ops. */
18537 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18538 (*baton)->per_cu = cu->per_cu;
18539 gdb_assert ((*baton)->per_cu);
18540
18541 (*baton)->size = 2 + cu_header->addr_size;
18542 data = obstack_alloc (obstack, (*baton)->size);
18543 (*baton)->data = data;
18544
18545 data[0] = DW_OP_addr;
18546 store_unsigned_integer (&data[1], cu_header->addr_size,
18547 byte_order, DW_ADDR (attr));
18548 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18549 }
18550 break;
18551 case DW_FORM_string:
18552 case DW_FORM_strp:
18553 case DW_FORM_GNU_str_index:
18554 case DW_FORM_GNU_strp_alt:
18555 /* DW_STRING is already allocated on the objfile obstack, point
18556 directly to it. */
18557 *bytes = (const gdb_byte *) DW_STRING (attr);
18558 break;
18559 case DW_FORM_block1:
18560 case DW_FORM_block2:
18561 case DW_FORM_block4:
18562 case DW_FORM_block:
18563 case DW_FORM_exprloc:
18564 blk = DW_BLOCK (attr);
18565 if (TYPE_LENGTH (type) != blk->size)
18566 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18567 TYPE_LENGTH (type));
18568 *bytes = blk->data;
18569 break;
18570
18571 /* The DW_AT_const_value attributes are supposed to carry the
18572 symbol's value "represented as it would be on the target
18573 architecture." By the time we get here, it's already been
18574 converted to host endianness, so we just need to sign- or
18575 zero-extend it as appropriate. */
18576 case DW_FORM_data1:
18577 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18578 break;
18579 case DW_FORM_data2:
18580 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18581 break;
18582 case DW_FORM_data4:
18583 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18584 break;
18585 case DW_FORM_data8:
18586 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18587 break;
18588
18589 case DW_FORM_sdata:
18590 *value = DW_SND (attr);
18591 break;
18592
18593 case DW_FORM_udata:
18594 *value = DW_UNSND (attr);
18595 break;
18596
18597 default:
18598 complaint (&symfile_complaints,
18599 _("unsupported const value attribute form: '%s'"),
18600 dwarf_form_name (attr->form));
18601 *value = 0;
18602 break;
18603 }
18604 }
18605
18606
18607 /* Copy constant value from an attribute to a symbol. */
18608
18609 static void
18610 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18611 struct dwarf2_cu *cu)
18612 {
18613 struct objfile *objfile = cu->objfile;
18614 struct comp_unit_head *cu_header = &cu->header;
18615 LONGEST value;
18616 const gdb_byte *bytes;
18617 struct dwarf2_locexpr_baton *baton;
18618
18619 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18620 SYMBOL_PRINT_NAME (sym),
18621 &objfile->objfile_obstack, cu,
18622 &value, &bytes, &baton);
18623
18624 if (baton != NULL)
18625 {
18626 SYMBOL_LOCATION_BATON (sym) = baton;
18627 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18628 }
18629 else if (bytes != NULL)
18630 {
18631 SYMBOL_VALUE_BYTES (sym) = bytes;
18632 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18633 }
18634 else
18635 {
18636 SYMBOL_VALUE (sym) = value;
18637 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18638 }
18639 }
18640
18641 /* Return the type of the die in question using its DW_AT_type attribute. */
18642
18643 static struct type *
18644 die_type (struct die_info *die, struct dwarf2_cu *cu)
18645 {
18646 struct attribute *type_attr;
18647
18648 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18649 if (!type_attr)
18650 {
18651 /* A missing DW_AT_type represents a void type. */
18652 return objfile_type (cu->objfile)->builtin_void;
18653 }
18654
18655 return lookup_die_type (die, type_attr, cu);
18656 }
18657
18658 /* True iff CU's producer generates GNAT Ada auxiliary information
18659 that allows to find parallel types through that information instead
18660 of having to do expensive parallel lookups by type name. */
18661
18662 static int
18663 need_gnat_info (struct dwarf2_cu *cu)
18664 {
18665 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18666 of GNAT produces this auxiliary information, without any indication
18667 that it is produced. Part of enhancing the FSF version of GNAT
18668 to produce that information will be to put in place an indicator
18669 that we can use in order to determine whether the descriptive type
18670 info is available or not. One suggestion that has been made is
18671 to use a new attribute, attached to the CU die. For now, assume
18672 that the descriptive type info is not available. */
18673 return 0;
18674 }
18675
18676 /* Return the auxiliary type of the die in question using its
18677 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18678 attribute is not present. */
18679
18680 static struct type *
18681 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18682 {
18683 struct attribute *type_attr;
18684
18685 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18686 if (!type_attr)
18687 return NULL;
18688
18689 return lookup_die_type (die, type_attr, cu);
18690 }
18691
18692 /* If DIE has a descriptive_type attribute, then set the TYPE's
18693 descriptive type accordingly. */
18694
18695 static void
18696 set_descriptive_type (struct type *type, struct die_info *die,
18697 struct dwarf2_cu *cu)
18698 {
18699 struct type *descriptive_type = die_descriptive_type (die, cu);
18700
18701 if (descriptive_type)
18702 {
18703 ALLOCATE_GNAT_AUX_TYPE (type);
18704 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18705 }
18706 }
18707
18708 /* Return the containing type of the die in question using its
18709 DW_AT_containing_type attribute. */
18710
18711 static struct type *
18712 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18713 {
18714 struct attribute *type_attr;
18715
18716 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18717 if (!type_attr)
18718 error (_("Dwarf Error: Problem turning containing type into gdb type "
18719 "[in module %s]"), objfile_name (cu->objfile));
18720
18721 return lookup_die_type (die, type_attr, cu);
18722 }
18723
18724 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18725
18726 static struct type *
18727 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18728 {
18729 struct objfile *objfile = dwarf2_per_objfile->objfile;
18730 char *message, *saved;
18731
18732 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18733 objfile_name (objfile),
18734 cu->header.offset.sect_off,
18735 die->offset.sect_off);
18736 saved = obstack_copy0 (&objfile->objfile_obstack,
18737 message, strlen (message));
18738 xfree (message);
18739
18740 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18741 }
18742
18743 /* Look up the type of DIE in CU using its type attribute ATTR.
18744 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18745 DW_AT_containing_type.
18746 If there is no type substitute an error marker. */
18747
18748 static struct type *
18749 lookup_die_type (struct die_info *die, const struct attribute *attr,
18750 struct dwarf2_cu *cu)
18751 {
18752 struct objfile *objfile = cu->objfile;
18753 struct type *this_type;
18754
18755 gdb_assert (attr->name == DW_AT_type
18756 || attr->name == DW_AT_GNAT_descriptive_type
18757 || attr->name == DW_AT_containing_type);
18758
18759 /* First see if we have it cached. */
18760
18761 if (attr->form == DW_FORM_GNU_ref_alt)
18762 {
18763 struct dwarf2_per_cu_data *per_cu;
18764 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18765
18766 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18767 this_type = get_die_type_at_offset (offset, per_cu);
18768 }
18769 else if (attr_form_is_ref (attr))
18770 {
18771 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18772
18773 this_type = get_die_type_at_offset (offset, cu->per_cu);
18774 }
18775 else if (attr->form == DW_FORM_ref_sig8)
18776 {
18777 ULONGEST signature = DW_SIGNATURE (attr);
18778
18779 return get_signatured_type (die, signature, cu);
18780 }
18781 else
18782 {
18783 complaint (&symfile_complaints,
18784 _("Dwarf Error: Bad type attribute %s in DIE"
18785 " at 0x%x [in module %s]"),
18786 dwarf_attr_name (attr->name), die->offset.sect_off,
18787 objfile_name (objfile));
18788 return build_error_marker_type (cu, die);
18789 }
18790
18791 /* If not cached we need to read it in. */
18792
18793 if (this_type == NULL)
18794 {
18795 struct die_info *type_die = NULL;
18796 struct dwarf2_cu *type_cu = cu;
18797
18798 if (attr_form_is_ref (attr))
18799 type_die = follow_die_ref (die, attr, &type_cu);
18800 if (type_die == NULL)
18801 return build_error_marker_type (cu, die);
18802 /* If we find the type now, it's probably because the type came
18803 from an inter-CU reference and the type's CU got expanded before
18804 ours. */
18805 this_type = read_type_die (type_die, type_cu);
18806 }
18807
18808 /* If we still don't have a type use an error marker. */
18809
18810 if (this_type == NULL)
18811 return build_error_marker_type (cu, die);
18812
18813 return this_type;
18814 }
18815
18816 /* Return the type in DIE, CU.
18817 Returns NULL for invalid types.
18818
18819 This first does a lookup in die_type_hash,
18820 and only reads the die in if necessary.
18821
18822 NOTE: This can be called when reading in partial or full symbols. */
18823
18824 static struct type *
18825 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18826 {
18827 struct type *this_type;
18828
18829 this_type = get_die_type (die, cu);
18830 if (this_type)
18831 return this_type;
18832
18833 return read_type_die_1 (die, cu);
18834 }
18835
18836 /* Read the type in DIE, CU.
18837 Returns NULL for invalid types. */
18838
18839 static struct type *
18840 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18841 {
18842 struct type *this_type = NULL;
18843
18844 switch (die->tag)
18845 {
18846 case DW_TAG_class_type:
18847 case DW_TAG_interface_type:
18848 case DW_TAG_structure_type:
18849 case DW_TAG_union_type:
18850 this_type = read_structure_type (die, cu);
18851 break;
18852 case DW_TAG_enumeration_type:
18853 this_type = read_enumeration_type (die, cu);
18854 break;
18855 case DW_TAG_subprogram:
18856 case DW_TAG_subroutine_type:
18857 case DW_TAG_inlined_subroutine:
18858 this_type = read_subroutine_type (die, cu);
18859 break;
18860 case DW_TAG_array_type:
18861 this_type = read_array_type (die, cu);
18862 break;
18863 case DW_TAG_set_type:
18864 this_type = read_set_type (die, cu);
18865 break;
18866 case DW_TAG_pointer_type:
18867 this_type = read_tag_pointer_type (die, cu);
18868 break;
18869 case DW_TAG_ptr_to_member_type:
18870 this_type = read_tag_ptr_to_member_type (die, cu);
18871 break;
18872 case DW_TAG_reference_type:
18873 this_type = read_tag_reference_type (die, cu);
18874 break;
18875 case DW_TAG_const_type:
18876 this_type = read_tag_const_type (die, cu);
18877 break;
18878 case DW_TAG_volatile_type:
18879 this_type = read_tag_volatile_type (die, cu);
18880 break;
18881 case DW_TAG_restrict_type:
18882 this_type = read_tag_restrict_type (die, cu);
18883 break;
18884 case DW_TAG_string_type:
18885 this_type = read_tag_string_type (die, cu);
18886 break;
18887 case DW_TAG_typedef:
18888 this_type = read_typedef (die, cu);
18889 break;
18890 case DW_TAG_subrange_type:
18891 this_type = read_subrange_type (die, cu);
18892 break;
18893 case DW_TAG_base_type:
18894 this_type = read_base_type (die, cu);
18895 break;
18896 case DW_TAG_unspecified_type:
18897 this_type = read_unspecified_type (die, cu);
18898 break;
18899 case DW_TAG_namespace:
18900 this_type = read_namespace_type (die, cu);
18901 break;
18902 case DW_TAG_module:
18903 this_type = read_module_type (die, cu);
18904 break;
18905 case DW_TAG_atomic_type:
18906 this_type = read_tag_atomic_type (die, cu);
18907 break;
18908 default:
18909 complaint (&symfile_complaints,
18910 _("unexpected tag in read_type_die: '%s'"),
18911 dwarf_tag_name (die->tag));
18912 break;
18913 }
18914
18915 return this_type;
18916 }
18917
18918 /* See if we can figure out if the class lives in a namespace. We do
18919 this by looking for a member function; its demangled name will
18920 contain namespace info, if there is any.
18921 Return the computed name or NULL.
18922 Space for the result is allocated on the objfile's obstack.
18923 This is the full-die version of guess_partial_die_structure_name.
18924 In this case we know DIE has no useful parent. */
18925
18926 static char *
18927 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18928 {
18929 struct die_info *spec_die;
18930 struct dwarf2_cu *spec_cu;
18931 struct die_info *child;
18932
18933 spec_cu = cu;
18934 spec_die = die_specification (die, &spec_cu);
18935 if (spec_die != NULL)
18936 {
18937 die = spec_die;
18938 cu = spec_cu;
18939 }
18940
18941 for (child = die->child;
18942 child != NULL;
18943 child = child->sibling)
18944 {
18945 if (child->tag == DW_TAG_subprogram)
18946 {
18947 struct attribute *attr;
18948
18949 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18950 if (attr == NULL)
18951 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18952 if (attr != NULL)
18953 {
18954 char *actual_name
18955 = language_class_name_from_physname (cu->language_defn,
18956 DW_STRING (attr));
18957 char *name = NULL;
18958
18959 if (actual_name != NULL)
18960 {
18961 const char *die_name = dwarf2_name (die, cu);
18962
18963 if (die_name != NULL
18964 && strcmp (die_name, actual_name) != 0)
18965 {
18966 /* Strip off the class name from the full name.
18967 We want the prefix. */
18968 int die_name_len = strlen (die_name);
18969 int actual_name_len = strlen (actual_name);
18970
18971 /* Test for '::' as a sanity check. */
18972 if (actual_name_len > die_name_len + 2
18973 && actual_name[actual_name_len
18974 - die_name_len - 1] == ':')
18975 name =
18976 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18977 actual_name,
18978 actual_name_len - die_name_len - 2);
18979 }
18980 }
18981 xfree (actual_name);
18982 return name;
18983 }
18984 }
18985 }
18986
18987 return NULL;
18988 }
18989
18990 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18991 prefix part in such case. See
18992 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18993
18994 static char *
18995 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18996 {
18997 struct attribute *attr;
18998 char *base;
18999
19000 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19001 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19002 return NULL;
19003
19004 attr = dwarf2_attr (die, DW_AT_name, cu);
19005 if (attr != NULL && DW_STRING (attr) != NULL)
19006 return NULL;
19007
19008 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19009 if (attr == NULL)
19010 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19011 if (attr == NULL || DW_STRING (attr) == NULL)
19012 return NULL;
19013
19014 /* dwarf2_name had to be already called. */
19015 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19016
19017 /* Strip the base name, keep any leading namespaces/classes. */
19018 base = strrchr (DW_STRING (attr), ':');
19019 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19020 return "";
19021
19022 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19023 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19024 }
19025
19026 /* Return the name of the namespace/class that DIE is defined within,
19027 or "" if we can't tell. The caller should not xfree the result.
19028
19029 For example, if we're within the method foo() in the following
19030 code:
19031
19032 namespace N {
19033 class C {
19034 void foo () {
19035 }
19036 };
19037 }
19038
19039 then determine_prefix on foo's die will return "N::C". */
19040
19041 static const char *
19042 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19043 {
19044 struct die_info *parent, *spec_die;
19045 struct dwarf2_cu *spec_cu;
19046 struct type *parent_type;
19047 char *retval;
19048
19049 if (cu->language != language_cplus && cu->language != language_java
19050 && cu->language != language_fortran)
19051 return "";
19052
19053 retval = anonymous_struct_prefix (die, cu);
19054 if (retval)
19055 return retval;
19056
19057 /* We have to be careful in the presence of DW_AT_specification.
19058 For example, with GCC 3.4, given the code
19059
19060 namespace N {
19061 void foo() {
19062 // Definition of N::foo.
19063 }
19064 }
19065
19066 then we'll have a tree of DIEs like this:
19067
19068 1: DW_TAG_compile_unit
19069 2: DW_TAG_namespace // N
19070 3: DW_TAG_subprogram // declaration of N::foo
19071 4: DW_TAG_subprogram // definition of N::foo
19072 DW_AT_specification // refers to die #3
19073
19074 Thus, when processing die #4, we have to pretend that we're in
19075 the context of its DW_AT_specification, namely the contex of die
19076 #3. */
19077 spec_cu = cu;
19078 spec_die = die_specification (die, &spec_cu);
19079 if (spec_die == NULL)
19080 parent = die->parent;
19081 else
19082 {
19083 parent = spec_die->parent;
19084 cu = spec_cu;
19085 }
19086
19087 if (parent == NULL)
19088 return "";
19089 else if (parent->building_fullname)
19090 {
19091 const char *name;
19092 const char *parent_name;
19093
19094 /* It has been seen on RealView 2.2 built binaries,
19095 DW_TAG_template_type_param types actually _defined_ as
19096 children of the parent class:
19097
19098 enum E {};
19099 template class <class Enum> Class{};
19100 Class<enum E> class_e;
19101
19102 1: DW_TAG_class_type (Class)
19103 2: DW_TAG_enumeration_type (E)
19104 3: DW_TAG_enumerator (enum1:0)
19105 3: DW_TAG_enumerator (enum2:1)
19106 ...
19107 2: DW_TAG_template_type_param
19108 DW_AT_type DW_FORM_ref_udata (E)
19109
19110 Besides being broken debug info, it can put GDB into an
19111 infinite loop. Consider:
19112
19113 When we're building the full name for Class<E>, we'll start
19114 at Class, and go look over its template type parameters,
19115 finding E. We'll then try to build the full name of E, and
19116 reach here. We're now trying to build the full name of E,
19117 and look over the parent DIE for containing scope. In the
19118 broken case, if we followed the parent DIE of E, we'd again
19119 find Class, and once again go look at its template type
19120 arguments, etc., etc. Simply don't consider such parent die
19121 as source-level parent of this die (it can't be, the language
19122 doesn't allow it), and break the loop here. */
19123 name = dwarf2_name (die, cu);
19124 parent_name = dwarf2_name (parent, cu);
19125 complaint (&symfile_complaints,
19126 _("template param type '%s' defined within parent '%s'"),
19127 name ? name : "<unknown>",
19128 parent_name ? parent_name : "<unknown>");
19129 return "";
19130 }
19131 else
19132 switch (parent->tag)
19133 {
19134 case DW_TAG_namespace:
19135 parent_type = read_type_die (parent, cu);
19136 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19137 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19138 Work around this problem here. */
19139 if (cu->language == language_cplus
19140 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19141 return "";
19142 /* We give a name to even anonymous namespaces. */
19143 return TYPE_TAG_NAME (parent_type);
19144 case DW_TAG_class_type:
19145 case DW_TAG_interface_type:
19146 case DW_TAG_structure_type:
19147 case DW_TAG_union_type:
19148 case DW_TAG_module:
19149 parent_type = read_type_die (parent, cu);
19150 if (TYPE_TAG_NAME (parent_type) != NULL)
19151 return TYPE_TAG_NAME (parent_type);
19152 else
19153 /* An anonymous structure is only allowed non-static data
19154 members; no typedefs, no member functions, et cetera.
19155 So it does not need a prefix. */
19156 return "";
19157 case DW_TAG_compile_unit:
19158 case DW_TAG_partial_unit:
19159 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19160 if (cu->language == language_cplus
19161 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19162 && die->child != NULL
19163 && (die->tag == DW_TAG_class_type
19164 || die->tag == DW_TAG_structure_type
19165 || die->tag == DW_TAG_union_type))
19166 {
19167 char *name = guess_full_die_structure_name (die, cu);
19168 if (name != NULL)
19169 return name;
19170 }
19171 return "";
19172 case DW_TAG_enumeration_type:
19173 parent_type = read_type_die (parent, cu);
19174 if (TYPE_DECLARED_CLASS (parent_type))
19175 {
19176 if (TYPE_TAG_NAME (parent_type) != NULL)
19177 return TYPE_TAG_NAME (parent_type);
19178 return "";
19179 }
19180 /* Fall through. */
19181 default:
19182 return determine_prefix (parent, cu);
19183 }
19184 }
19185
19186 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19187 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19188 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19189 an obconcat, otherwise allocate storage for the result. The CU argument is
19190 used to determine the language and hence, the appropriate separator. */
19191
19192 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19193
19194 static char *
19195 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19196 int physname, struct dwarf2_cu *cu)
19197 {
19198 const char *lead = "";
19199 const char *sep;
19200
19201 if (suffix == NULL || suffix[0] == '\0'
19202 || prefix == NULL || prefix[0] == '\0')
19203 sep = "";
19204 else if (cu->language == language_java)
19205 sep = ".";
19206 else if (cu->language == language_fortran && physname)
19207 {
19208 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19209 DW_AT_MIPS_linkage_name is preferred and used instead. */
19210
19211 lead = "__";
19212 sep = "_MOD_";
19213 }
19214 else
19215 sep = "::";
19216
19217 if (prefix == NULL)
19218 prefix = "";
19219 if (suffix == NULL)
19220 suffix = "";
19221
19222 if (obs == NULL)
19223 {
19224 char *retval
19225 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19226
19227 strcpy (retval, lead);
19228 strcat (retval, prefix);
19229 strcat (retval, sep);
19230 strcat (retval, suffix);
19231 return retval;
19232 }
19233 else
19234 {
19235 /* We have an obstack. */
19236 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19237 }
19238 }
19239
19240 /* Return sibling of die, NULL if no sibling. */
19241
19242 static struct die_info *
19243 sibling_die (struct die_info *die)
19244 {
19245 return die->sibling;
19246 }
19247
19248 /* Get name of a die, return NULL if not found. */
19249
19250 static const char *
19251 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19252 struct obstack *obstack)
19253 {
19254 if (name && cu->language == language_cplus)
19255 {
19256 char *canon_name = cp_canonicalize_string (name);
19257
19258 if (canon_name != NULL)
19259 {
19260 if (strcmp (canon_name, name) != 0)
19261 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19262 xfree (canon_name);
19263 }
19264 }
19265
19266 return name;
19267 }
19268
19269 /* Get name of a die, return NULL if not found.
19270 Anonymous namespaces are converted to their magic string. */
19271
19272 static const char *
19273 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19274 {
19275 struct attribute *attr;
19276
19277 attr = dwarf2_attr (die, DW_AT_name, cu);
19278 if ((!attr || !DW_STRING (attr))
19279 && die->tag != DW_TAG_namespace
19280 && die->tag != DW_TAG_class_type
19281 && die->tag != DW_TAG_interface_type
19282 && die->tag != DW_TAG_structure_type
19283 && die->tag != DW_TAG_union_type)
19284 return NULL;
19285
19286 switch (die->tag)
19287 {
19288 case DW_TAG_compile_unit:
19289 case DW_TAG_partial_unit:
19290 /* Compilation units have a DW_AT_name that is a filename, not
19291 a source language identifier. */
19292 case DW_TAG_enumeration_type:
19293 case DW_TAG_enumerator:
19294 /* These tags always have simple identifiers already; no need
19295 to canonicalize them. */
19296 return DW_STRING (attr);
19297
19298 case DW_TAG_namespace:
19299 if (attr != NULL && DW_STRING (attr) != NULL)
19300 return DW_STRING (attr);
19301 return CP_ANONYMOUS_NAMESPACE_STR;
19302
19303 case DW_TAG_subprogram:
19304 /* Java constructors will all be named "<init>", so return
19305 the class name when we see this special case. */
19306 if (cu->language == language_java
19307 && DW_STRING (attr) != NULL
19308 && strcmp (DW_STRING (attr), "<init>") == 0)
19309 {
19310 struct dwarf2_cu *spec_cu = cu;
19311 struct die_info *spec_die;
19312
19313 /* GCJ will output '<init>' for Java constructor names.
19314 For this special case, return the name of the parent class. */
19315
19316 /* GCJ may output subprogram DIEs with AT_specification set.
19317 If so, use the name of the specified DIE. */
19318 spec_die = die_specification (die, &spec_cu);
19319 if (spec_die != NULL)
19320 return dwarf2_name (spec_die, spec_cu);
19321
19322 do
19323 {
19324 die = die->parent;
19325 if (die->tag == DW_TAG_class_type)
19326 return dwarf2_name (die, cu);
19327 }
19328 while (die->tag != DW_TAG_compile_unit
19329 && die->tag != DW_TAG_partial_unit);
19330 }
19331 break;
19332
19333 case DW_TAG_class_type:
19334 case DW_TAG_interface_type:
19335 case DW_TAG_structure_type:
19336 case DW_TAG_union_type:
19337 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19338 structures or unions. These were of the form "._%d" in GCC 4.1,
19339 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19340 and GCC 4.4. We work around this problem by ignoring these. */
19341 if (attr && DW_STRING (attr)
19342 && (strncmp (DW_STRING (attr), "._", 2) == 0
19343 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19344 return NULL;
19345
19346 /* GCC might emit a nameless typedef that has a linkage name. See
19347 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19348 if (!attr || DW_STRING (attr) == NULL)
19349 {
19350 char *demangled = NULL;
19351
19352 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19353 if (attr == NULL)
19354 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19355
19356 if (attr == NULL || DW_STRING (attr) == NULL)
19357 return NULL;
19358
19359 /* Avoid demangling DW_STRING (attr) the second time on a second
19360 call for the same DIE. */
19361 if (!DW_STRING_IS_CANONICAL (attr))
19362 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19363
19364 if (demangled)
19365 {
19366 char *base;
19367
19368 /* FIXME: we already did this for the partial symbol... */
19369 DW_STRING (attr)
19370 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19371 demangled, strlen (demangled));
19372 DW_STRING_IS_CANONICAL (attr) = 1;
19373 xfree (demangled);
19374
19375 /* Strip any leading namespaces/classes, keep only the base name.
19376 DW_AT_name for named DIEs does not contain the prefixes. */
19377 base = strrchr (DW_STRING (attr), ':');
19378 if (base && base > DW_STRING (attr) && base[-1] == ':')
19379 return &base[1];
19380 else
19381 return DW_STRING (attr);
19382 }
19383 }
19384 break;
19385
19386 default:
19387 break;
19388 }
19389
19390 if (!DW_STRING_IS_CANONICAL (attr))
19391 {
19392 DW_STRING (attr)
19393 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19394 &cu->objfile->per_bfd->storage_obstack);
19395 DW_STRING_IS_CANONICAL (attr) = 1;
19396 }
19397 return DW_STRING (attr);
19398 }
19399
19400 /* Return the die that this die in an extension of, or NULL if there
19401 is none. *EXT_CU is the CU containing DIE on input, and the CU
19402 containing the return value on output. */
19403
19404 static struct die_info *
19405 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19406 {
19407 struct attribute *attr;
19408
19409 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19410 if (attr == NULL)
19411 return NULL;
19412
19413 return follow_die_ref (die, attr, ext_cu);
19414 }
19415
19416 /* Convert a DIE tag into its string name. */
19417
19418 static const char *
19419 dwarf_tag_name (unsigned tag)
19420 {
19421 const char *name = get_DW_TAG_name (tag);
19422
19423 if (name == NULL)
19424 return "DW_TAG_<unknown>";
19425
19426 return name;
19427 }
19428
19429 /* Convert a DWARF attribute code into its string name. */
19430
19431 static const char *
19432 dwarf_attr_name (unsigned attr)
19433 {
19434 const char *name;
19435
19436 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19437 if (attr == DW_AT_MIPS_fde)
19438 return "DW_AT_MIPS_fde";
19439 #else
19440 if (attr == DW_AT_HP_block_index)
19441 return "DW_AT_HP_block_index";
19442 #endif
19443
19444 name = get_DW_AT_name (attr);
19445
19446 if (name == NULL)
19447 return "DW_AT_<unknown>";
19448
19449 return name;
19450 }
19451
19452 /* Convert a DWARF value form code into its string name. */
19453
19454 static const char *
19455 dwarf_form_name (unsigned form)
19456 {
19457 const char *name = get_DW_FORM_name (form);
19458
19459 if (name == NULL)
19460 return "DW_FORM_<unknown>";
19461
19462 return name;
19463 }
19464
19465 static char *
19466 dwarf_bool_name (unsigned mybool)
19467 {
19468 if (mybool)
19469 return "TRUE";
19470 else
19471 return "FALSE";
19472 }
19473
19474 /* Convert a DWARF type code into its string name. */
19475
19476 static const char *
19477 dwarf_type_encoding_name (unsigned enc)
19478 {
19479 const char *name = get_DW_ATE_name (enc);
19480
19481 if (name == NULL)
19482 return "DW_ATE_<unknown>";
19483
19484 return name;
19485 }
19486
19487 static void
19488 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19489 {
19490 unsigned int i;
19491
19492 print_spaces (indent, f);
19493 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19494 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19495
19496 if (die->parent != NULL)
19497 {
19498 print_spaces (indent, f);
19499 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19500 die->parent->offset.sect_off);
19501 }
19502
19503 print_spaces (indent, f);
19504 fprintf_unfiltered (f, " has children: %s\n",
19505 dwarf_bool_name (die->child != NULL));
19506
19507 print_spaces (indent, f);
19508 fprintf_unfiltered (f, " attributes:\n");
19509
19510 for (i = 0; i < die->num_attrs; ++i)
19511 {
19512 print_spaces (indent, f);
19513 fprintf_unfiltered (f, " %s (%s) ",
19514 dwarf_attr_name (die->attrs[i].name),
19515 dwarf_form_name (die->attrs[i].form));
19516
19517 switch (die->attrs[i].form)
19518 {
19519 case DW_FORM_addr:
19520 case DW_FORM_GNU_addr_index:
19521 fprintf_unfiltered (f, "address: ");
19522 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19523 break;
19524 case DW_FORM_block2:
19525 case DW_FORM_block4:
19526 case DW_FORM_block:
19527 case DW_FORM_block1:
19528 fprintf_unfiltered (f, "block: size %s",
19529 pulongest (DW_BLOCK (&die->attrs[i])->size));
19530 break;
19531 case DW_FORM_exprloc:
19532 fprintf_unfiltered (f, "expression: size %s",
19533 pulongest (DW_BLOCK (&die->attrs[i])->size));
19534 break;
19535 case DW_FORM_ref_addr:
19536 fprintf_unfiltered (f, "ref address: ");
19537 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19538 break;
19539 case DW_FORM_GNU_ref_alt:
19540 fprintf_unfiltered (f, "alt ref address: ");
19541 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19542 break;
19543 case DW_FORM_ref1:
19544 case DW_FORM_ref2:
19545 case DW_FORM_ref4:
19546 case DW_FORM_ref8:
19547 case DW_FORM_ref_udata:
19548 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19549 (long) (DW_UNSND (&die->attrs[i])));
19550 break;
19551 case DW_FORM_data1:
19552 case DW_FORM_data2:
19553 case DW_FORM_data4:
19554 case DW_FORM_data8:
19555 case DW_FORM_udata:
19556 case DW_FORM_sdata:
19557 fprintf_unfiltered (f, "constant: %s",
19558 pulongest (DW_UNSND (&die->attrs[i])));
19559 break;
19560 case DW_FORM_sec_offset:
19561 fprintf_unfiltered (f, "section offset: %s",
19562 pulongest (DW_UNSND (&die->attrs[i])));
19563 break;
19564 case DW_FORM_ref_sig8:
19565 fprintf_unfiltered (f, "signature: %s",
19566 hex_string (DW_SIGNATURE (&die->attrs[i])));
19567 break;
19568 case DW_FORM_string:
19569 case DW_FORM_strp:
19570 case DW_FORM_GNU_str_index:
19571 case DW_FORM_GNU_strp_alt:
19572 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19573 DW_STRING (&die->attrs[i])
19574 ? DW_STRING (&die->attrs[i]) : "",
19575 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19576 break;
19577 case DW_FORM_flag:
19578 if (DW_UNSND (&die->attrs[i]))
19579 fprintf_unfiltered (f, "flag: TRUE");
19580 else
19581 fprintf_unfiltered (f, "flag: FALSE");
19582 break;
19583 case DW_FORM_flag_present:
19584 fprintf_unfiltered (f, "flag: TRUE");
19585 break;
19586 case DW_FORM_indirect:
19587 /* The reader will have reduced the indirect form to
19588 the "base form" so this form should not occur. */
19589 fprintf_unfiltered (f,
19590 "unexpected attribute form: DW_FORM_indirect");
19591 break;
19592 default:
19593 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19594 die->attrs[i].form);
19595 break;
19596 }
19597 fprintf_unfiltered (f, "\n");
19598 }
19599 }
19600
19601 static void
19602 dump_die_for_error (struct die_info *die)
19603 {
19604 dump_die_shallow (gdb_stderr, 0, die);
19605 }
19606
19607 static void
19608 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19609 {
19610 int indent = level * 4;
19611
19612 gdb_assert (die != NULL);
19613
19614 if (level >= max_level)
19615 return;
19616
19617 dump_die_shallow (f, indent, die);
19618
19619 if (die->child != NULL)
19620 {
19621 print_spaces (indent, f);
19622 fprintf_unfiltered (f, " Children:");
19623 if (level + 1 < max_level)
19624 {
19625 fprintf_unfiltered (f, "\n");
19626 dump_die_1 (f, level + 1, max_level, die->child);
19627 }
19628 else
19629 {
19630 fprintf_unfiltered (f,
19631 " [not printed, max nesting level reached]\n");
19632 }
19633 }
19634
19635 if (die->sibling != NULL && level > 0)
19636 {
19637 dump_die_1 (f, level, max_level, die->sibling);
19638 }
19639 }
19640
19641 /* This is called from the pdie macro in gdbinit.in.
19642 It's not static so gcc will keep a copy callable from gdb. */
19643
19644 void
19645 dump_die (struct die_info *die, int max_level)
19646 {
19647 dump_die_1 (gdb_stdlog, 0, max_level, die);
19648 }
19649
19650 static void
19651 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19652 {
19653 void **slot;
19654
19655 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19656 INSERT);
19657
19658 *slot = die;
19659 }
19660
19661 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19662 required kind. */
19663
19664 static sect_offset
19665 dwarf2_get_ref_die_offset (const struct attribute *attr)
19666 {
19667 sect_offset retval = { DW_UNSND (attr) };
19668
19669 if (attr_form_is_ref (attr))
19670 return retval;
19671
19672 retval.sect_off = 0;
19673 complaint (&symfile_complaints,
19674 _("unsupported die ref attribute form: '%s'"),
19675 dwarf_form_name (attr->form));
19676 return retval;
19677 }
19678
19679 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19680 * the value held by the attribute is not constant. */
19681
19682 static LONGEST
19683 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19684 {
19685 if (attr->form == DW_FORM_sdata)
19686 return DW_SND (attr);
19687 else if (attr->form == DW_FORM_udata
19688 || attr->form == DW_FORM_data1
19689 || attr->form == DW_FORM_data2
19690 || attr->form == DW_FORM_data4
19691 || attr->form == DW_FORM_data8)
19692 return DW_UNSND (attr);
19693 else
19694 {
19695 complaint (&symfile_complaints,
19696 _("Attribute value is not a constant (%s)"),
19697 dwarf_form_name (attr->form));
19698 return default_value;
19699 }
19700 }
19701
19702 /* Follow reference or signature attribute ATTR of SRC_DIE.
19703 On entry *REF_CU is the CU of SRC_DIE.
19704 On exit *REF_CU is the CU of the result. */
19705
19706 static struct die_info *
19707 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19708 struct dwarf2_cu **ref_cu)
19709 {
19710 struct die_info *die;
19711
19712 if (attr_form_is_ref (attr))
19713 die = follow_die_ref (src_die, attr, ref_cu);
19714 else if (attr->form == DW_FORM_ref_sig8)
19715 die = follow_die_sig (src_die, attr, ref_cu);
19716 else
19717 {
19718 dump_die_for_error (src_die);
19719 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19720 objfile_name ((*ref_cu)->objfile));
19721 }
19722
19723 return die;
19724 }
19725
19726 /* Follow reference OFFSET.
19727 On entry *REF_CU is the CU of the source die referencing OFFSET.
19728 On exit *REF_CU is the CU of the result.
19729 Returns NULL if OFFSET is invalid. */
19730
19731 static struct die_info *
19732 follow_die_offset (sect_offset offset, int offset_in_dwz,
19733 struct dwarf2_cu **ref_cu)
19734 {
19735 struct die_info temp_die;
19736 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19737
19738 gdb_assert (cu->per_cu != NULL);
19739
19740 target_cu = cu;
19741
19742 if (cu->per_cu->is_debug_types)
19743 {
19744 /* .debug_types CUs cannot reference anything outside their CU.
19745 If they need to, they have to reference a signatured type via
19746 DW_FORM_ref_sig8. */
19747 if (! offset_in_cu_p (&cu->header, offset))
19748 return NULL;
19749 }
19750 else if (offset_in_dwz != cu->per_cu->is_dwz
19751 || ! offset_in_cu_p (&cu->header, offset))
19752 {
19753 struct dwarf2_per_cu_data *per_cu;
19754
19755 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19756 cu->objfile);
19757
19758 /* If necessary, add it to the queue and load its DIEs. */
19759 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19760 load_full_comp_unit (per_cu, cu->language);
19761
19762 target_cu = per_cu->cu;
19763 }
19764 else if (cu->dies == NULL)
19765 {
19766 /* We're loading full DIEs during partial symbol reading. */
19767 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19768 load_full_comp_unit (cu->per_cu, language_minimal);
19769 }
19770
19771 *ref_cu = target_cu;
19772 temp_die.offset = offset;
19773 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19774 }
19775
19776 /* Follow reference attribute ATTR of SRC_DIE.
19777 On entry *REF_CU is the CU of SRC_DIE.
19778 On exit *REF_CU is the CU of the result. */
19779
19780 static struct die_info *
19781 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19782 struct dwarf2_cu **ref_cu)
19783 {
19784 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19785 struct dwarf2_cu *cu = *ref_cu;
19786 struct die_info *die;
19787
19788 die = follow_die_offset (offset,
19789 (attr->form == DW_FORM_GNU_ref_alt
19790 || cu->per_cu->is_dwz),
19791 ref_cu);
19792 if (!die)
19793 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19794 "at 0x%x [in module %s]"),
19795 offset.sect_off, src_die->offset.sect_off,
19796 objfile_name (cu->objfile));
19797
19798 return die;
19799 }
19800
19801 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19802 Returned value is intended for DW_OP_call*. Returned
19803 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19804
19805 struct dwarf2_locexpr_baton
19806 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19807 struct dwarf2_per_cu_data *per_cu,
19808 CORE_ADDR (*get_frame_pc) (void *baton),
19809 void *baton)
19810 {
19811 struct dwarf2_cu *cu;
19812 struct die_info *die;
19813 struct attribute *attr;
19814 struct dwarf2_locexpr_baton retval;
19815
19816 dw2_setup (per_cu->objfile);
19817
19818 if (per_cu->cu == NULL)
19819 load_cu (per_cu);
19820 cu = per_cu->cu;
19821
19822 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19823 if (!die)
19824 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19825 offset.sect_off, objfile_name (per_cu->objfile));
19826
19827 attr = dwarf2_attr (die, DW_AT_location, cu);
19828 if (!attr)
19829 {
19830 /* DWARF: "If there is no such attribute, then there is no effect.".
19831 DATA is ignored if SIZE is 0. */
19832
19833 retval.data = NULL;
19834 retval.size = 0;
19835 }
19836 else if (attr_form_is_section_offset (attr))
19837 {
19838 struct dwarf2_loclist_baton loclist_baton;
19839 CORE_ADDR pc = (*get_frame_pc) (baton);
19840 size_t size;
19841
19842 fill_in_loclist_baton (cu, &loclist_baton, attr);
19843
19844 retval.data = dwarf2_find_location_expression (&loclist_baton,
19845 &size, pc);
19846 retval.size = size;
19847 }
19848 else
19849 {
19850 if (!attr_form_is_block (attr))
19851 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19852 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19853 offset.sect_off, objfile_name (per_cu->objfile));
19854
19855 retval.data = DW_BLOCK (attr)->data;
19856 retval.size = DW_BLOCK (attr)->size;
19857 }
19858 retval.per_cu = cu->per_cu;
19859
19860 age_cached_comp_units ();
19861
19862 return retval;
19863 }
19864
19865 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19866 offset. */
19867
19868 struct dwarf2_locexpr_baton
19869 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19870 struct dwarf2_per_cu_data *per_cu,
19871 CORE_ADDR (*get_frame_pc) (void *baton),
19872 void *baton)
19873 {
19874 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19875
19876 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19877 }
19878
19879 /* Write a constant of a given type as target-ordered bytes into
19880 OBSTACK. */
19881
19882 static const gdb_byte *
19883 write_constant_as_bytes (struct obstack *obstack,
19884 enum bfd_endian byte_order,
19885 struct type *type,
19886 ULONGEST value,
19887 LONGEST *len)
19888 {
19889 gdb_byte *result;
19890
19891 *len = TYPE_LENGTH (type);
19892 result = obstack_alloc (obstack, *len);
19893 store_unsigned_integer (result, *len, byte_order, value);
19894
19895 return result;
19896 }
19897
19898 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19899 pointer to the constant bytes and set LEN to the length of the
19900 data. If memory is needed, allocate it on OBSTACK. If the DIE
19901 does not have a DW_AT_const_value, return NULL. */
19902
19903 const gdb_byte *
19904 dwarf2_fetch_constant_bytes (sect_offset offset,
19905 struct dwarf2_per_cu_data *per_cu,
19906 struct obstack *obstack,
19907 LONGEST *len)
19908 {
19909 struct dwarf2_cu *cu;
19910 struct die_info *die;
19911 struct attribute *attr;
19912 const gdb_byte *result = NULL;
19913 struct type *type;
19914 LONGEST value;
19915 enum bfd_endian byte_order;
19916
19917 dw2_setup (per_cu->objfile);
19918
19919 if (per_cu->cu == NULL)
19920 load_cu (per_cu);
19921 cu = per_cu->cu;
19922
19923 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19924 if (!die)
19925 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19926 offset.sect_off, objfile_name (per_cu->objfile));
19927
19928
19929 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19930 if (attr == NULL)
19931 return NULL;
19932
19933 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19934 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19935
19936 switch (attr->form)
19937 {
19938 case DW_FORM_addr:
19939 case DW_FORM_GNU_addr_index:
19940 {
19941 gdb_byte *tem;
19942
19943 *len = cu->header.addr_size;
19944 tem = obstack_alloc (obstack, *len);
19945 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19946 result = tem;
19947 }
19948 break;
19949 case DW_FORM_string:
19950 case DW_FORM_strp:
19951 case DW_FORM_GNU_str_index:
19952 case DW_FORM_GNU_strp_alt:
19953 /* DW_STRING is already allocated on the objfile obstack, point
19954 directly to it. */
19955 result = (const gdb_byte *) DW_STRING (attr);
19956 *len = strlen (DW_STRING (attr));
19957 break;
19958 case DW_FORM_block1:
19959 case DW_FORM_block2:
19960 case DW_FORM_block4:
19961 case DW_FORM_block:
19962 case DW_FORM_exprloc:
19963 result = DW_BLOCK (attr)->data;
19964 *len = DW_BLOCK (attr)->size;
19965 break;
19966
19967 /* The DW_AT_const_value attributes are supposed to carry the
19968 symbol's value "represented as it would be on the target
19969 architecture." By the time we get here, it's already been
19970 converted to host endianness, so we just need to sign- or
19971 zero-extend it as appropriate. */
19972 case DW_FORM_data1:
19973 type = die_type (die, cu);
19974 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19975 if (result == NULL)
19976 result = write_constant_as_bytes (obstack, byte_order,
19977 type, value, len);
19978 break;
19979 case DW_FORM_data2:
19980 type = die_type (die, cu);
19981 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19982 if (result == NULL)
19983 result = write_constant_as_bytes (obstack, byte_order,
19984 type, value, len);
19985 break;
19986 case DW_FORM_data4:
19987 type = die_type (die, cu);
19988 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19989 if (result == NULL)
19990 result = write_constant_as_bytes (obstack, byte_order,
19991 type, value, len);
19992 break;
19993 case DW_FORM_data8:
19994 type = die_type (die, cu);
19995 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19996 if (result == NULL)
19997 result = write_constant_as_bytes (obstack, byte_order,
19998 type, value, len);
19999 break;
20000
20001 case DW_FORM_sdata:
20002 type = die_type (die, cu);
20003 result = write_constant_as_bytes (obstack, byte_order,
20004 type, DW_SND (attr), len);
20005 break;
20006
20007 case DW_FORM_udata:
20008 type = die_type (die, cu);
20009 result = write_constant_as_bytes (obstack, byte_order,
20010 type, DW_UNSND (attr), len);
20011 break;
20012
20013 default:
20014 complaint (&symfile_complaints,
20015 _("unsupported const value attribute form: '%s'"),
20016 dwarf_form_name (attr->form));
20017 break;
20018 }
20019
20020 return result;
20021 }
20022
20023 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20024 PER_CU. */
20025
20026 struct type *
20027 dwarf2_get_die_type (cu_offset die_offset,
20028 struct dwarf2_per_cu_data *per_cu)
20029 {
20030 sect_offset die_offset_sect;
20031
20032 dw2_setup (per_cu->objfile);
20033
20034 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20035 return get_die_type_at_offset (die_offset_sect, per_cu);
20036 }
20037
20038 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20039 On entry *REF_CU is the CU of SRC_DIE.
20040 On exit *REF_CU is the CU of the result.
20041 Returns NULL if the referenced DIE isn't found. */
20042
20043 static struct die_info *
20044 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20045 struct dwarf2_cu **ref_cu)
20046 {
20047 struct objfile *objfile = (*ref_cu)->objfile;
20048 struct die_info temp_die;
20049 struct dwarf2_cu *sig_cu;
20050 struct die_info *die;
20051
20052 /* While it might be nice to assert sig_type->type == NULL here,
20053 we can get here for DW_AT_imported_declaration where we need
20054 the DIE not the type. */
20055
20056 /* If necessary, add it to the queue and load its DIEs. */
20057
20058 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20059 read_signatured_type (sig_type);
20060
20061 sig_cu = sig_type->per_cu.cu;
20062 gdb_assert (sig_cu != NULL);
20063 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20064 temp_die.offset = sig_type->type_offset_in_section;
20065 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20066 temp_die.offset.sect_off);
20067 if (die)
20068 {
20069 /* For .gdb_index version 7 keep track of included TUs.
20070 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20071 if (dwarf2_per_objfile->index_table != NULL
20072 && dwarf2_per_objfile->index_table->version <= 7)
20073 {
20074 VEC_safe_push (dwarf2_per_cu_ptr,
20075 (*ref_cu)->per_cu->imported_symtabs,
20076 sig_cu->per_cu);
20077 }
20078
20079 *ref_cu = sig_cu;
20080 return die;
20081 }
20082
20083 return NULL;
20084 }
20085
20086 /* Follow signatured type referenced by ATTR in SRC_DIE.
20087 On entry *REF_CU is the CU of SRC_DIE.
20088 On exit *REF_CU is the CU of the result.
20089 The result is the DIE of the type.
20090 If the referenced type cannot be found an error is thrown. */
20091
20092 static struct die_info *
20093 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20094 struct dwarf2_cu **ref_cu)
20095 {
20096 ULONGEST signature = DW_SIGNATURE (attr);
20097 struct signatured_type *sig_type;
20098 struct die_info *die;
20099
20100 gdb_assert (attr->form == DW_FORM_ref_sig8);
20101
20102 sig_type = lookup_signatured_type (*ref_cu, signature);
20103 /* sig_type will be NULL if the signatured type is missing from
20104 the debug info. */
20105 if (sig_type == NULL)
20106 {
20107 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20108 " from DIE at 0x%x [in module %s]"),
20109 hex_string (signature), src_die->offset.sect_off,
20110 objfile_name ((*ref_cu)->objfile));
20111 }
20112
20113 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20114 if (die == NULL)
20115 {
20116 dump_die_for_error (src_die);
20117 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20118 " from DIE at 0x%x [in module %s]"),
20119 hex_string (signature), src_die->offset.sect_off,
20120 objfile_name ((*ref_cu)->objfile));
20121 }
20122
20123 return die;
20124 }
20125
20126 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20127 reading in and processing the type unit if necessary. */
20128
20129 static struct type *
20130 get_signatured_type (struct die_info *die, ULONGEST signature,
20131 struct dwarf2_cu *cu)
20132 {
20133 struct signatured_type *sig_type;
20134 struct dwarf2_cu *type_cu;
20135 struct die_info *type_die;
20136 struct type *type;
20137
20138 sig_type = lookup_signatured_type (cu, signature);
20139 /* sig_type will be NULL if the signatured type is missing from
20140 the debug info. */
20141 if (sig_type == NULL)
20142 {
20143 complaint (&symfile_complaints,
20144 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20145 " from DIE at 0x%x [in module %s]"),
20146 hex_string (signature), die->offset.sect_off,
20147 objfile_name (dwarf2_per_objfile->objfile));
20148 return build_error_marker_type (cu, die);
20149 }
20150
20151 /* If we already know the type we're done. */
20152 if (sig_type->type != NULL)
20153 return sig_type->type;
20154
20155 type_cu = cu;
20156 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20157 if (type_die != NULL)
20158 {
20159 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20160 is created. This is important, for example, because for c++ classes
20161 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20162 type = read_type_die (type_die, type_cu);
20163 if (type == NULL)
20164 {
20165 complaint (&symfile_complaints,
20166 _("Dwarf Error: Cannot build signatured type %s"
20167 " referenced from DIE at 0x%x [in module %s]"),
20168 hex_string (signature), die->offset.sect_off,
20169 objfile_name (dwarf2_per_objfile->objfile));
20170 type = build_error_marker_type (cu, die);
20171 }
20172 }
20173 else
20174 {
20175 complaint (&symfile_complaints,
20176 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20177 " from DIE at 0x%x [in module %s]"),
20178 hex_string (signature), die->offset.sect_off,
20179 objfile_name (dwarf2_per_objfile->objfile));
20180 type = build_error_marker_type (cu, die);
20181 }
20182 sig_type->type = type;
20183
20184 return type;
20185 }
20186
20187 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20188 reading in and processing the type unit if necessary. */
20189
20190 static struct type *
20191 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20192 struct dwarf2_cu *cu) /* ARI: editCase function */
20193 {
20194 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20195 if (attr_form_is_ref (attr))
20196 {
20197 struct dwarf2_cu *type_cu = cu;
20198 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20199
20200 return read_type_die (type_die, type_cu);
20201 }
20202 else if (attr->form == DW_FORM_ref_sig8)
20203 {
20204 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20205 }
20206 else
20207 {
20208 complaint (&symfile_complaints,
20209 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20210 " at 0x%x [in module %s]"),
20211 dwarf_form_name (attr->form), die->offset.sect_off,
20212 objfile_name (dwarf2_per_objfile->objfile));
20213 return build_error_marker_type (cu, die);
20214 }
20215 }
20216
20217 /* Load the DIEs associated with type unit PER_CU into memory. */
20218
20219 static void
20220 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20221 {
20222 struct signatured_type *sig_type;
20223
20224 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20225 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20226
20227 /* We have the per_cu, but we need the signatured_type.
20228 Fortunately this is an easy translation. */
20229 gdb_assert (per_cu->is_debug_types);
20230 sig_type = (struct signatured_type *) per_cu;
20231
20232 gdb_assert (per_cu->cu == NULL);
20233
20234 read_signatured_type (sig_type);
20235
20236 gdb_assert (per_cu->cu != NULL);
20237 }
20238
20239 /* die_reader_func for read_signatured_type.
20240 This is identical to load_full_comp_unit_reader,
20241 but is kept separate for now. */
20242
20243 static void
20244 read_signatured_type_reader (const struct die_reader_specs *reader,
20245 const gdb_byte *info_ptr,
20246 struct die_info *comp_unit_die,
20247 int has_children,
20248 void *data)
20249 {
20250 struct dwarf2_cu *cu = reader->cu;
20251
20252 gdb_assert (cu->die_hash == NULL);
20253 cu->die_hash =
20254 htab_create_alloc_ex (cu->header.length / 12,
20255 die_hash,
20256 die_eq,
20257 NULL,
20258 &cu->comp_unit_obstack,
20259 hashtab_obstack_allocate,
20260 dummy_obstack_deallocate);
20261
20262 if (has_children)
20263 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20264 &info_ptr, comp_unit_die);
20265 cu->dies = comp_unit_die;
20266 /* comp_unit_die is not stored in die_hash, no need. */
20267
20268 /* We try not to read any attributes in this function, because not
20269 all CUs needed for references have been loaded yet, and symbol
20270 table processing isn't initialized. But we have to set the CU language,
20271 or we won't be able to build types correctly.
20272 Similarly, if we do not read the producer, we can not apply
20273 producer-specific interpretation. */
20274 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20275 }
20276
20277 /* Read in a signatured type and build its CU and DIEs.
20278 If the type is a stub for the real type in a DWO file,
20279 read in the real type from the DWO file as well. */
20280
20281 static void
20282 read_signatured_type (struct signatured_type *sig_type)
20283 {
20284 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20285
20286 gdb_assert (per_cu->is_debug_types);
20287 gdb_assert (per_cu->cu == NULL);
20288
20289 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20290 read_signatured_type_reader, NULL);
20291 sig_type->per_cu.tu_read = 1;
20292 }
20293
20294 /* Decode simple location descriptions.
20295 Given a pointer to a dwarf block that defines a location, compute
20296 the location and return the value.
20297
20298 NOTE drow/2003-11-18: This function is called in two situations
20299 now: for the address of static or global variables (partial symbols
20300 only) and for offsets into structures which are expected to be
20301 (more or less) constant. The partial symbol case should go away,
20302 and only the constant case should remain. That will let this
20303 function complain more accurately. A few special modes are allowed
20304 without complaint for global variables (for instance, global
20305 register values and thread-local values).
20306
20307 A location description containing no operations indicates that the
20308 object is optimized out. The return value is 0 for that case.
20309 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20310 callers will only want a very basic result and this can become a
20311 complaint.
20312
20313 Note that stack[0] is unused except as a default error return. */
20314
20315 static CORE_ADDR
20316 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20317 {
20318 struct objfile *objfile = cu->objfile;
20319 size_t i;
20320 size_t size = blk->size;
20321 const gdb_byte *data = blk->data;
20322 CORE_ADDR stack[64];
20323 int stacki;
20324 unsigned int bytes_read, unsnd;
20325 gdb_byte op;
20326
20327 i = 0;
20328 stacki = 0;
20329 stack[stacki] = 0;
20330 stack[++stacki] = 0;
20331
20332 while (i < size)
20333 {
20334 op = data[i++];
20335 switch (op)
20336 {
20337 case DW_OP_lit0:
20338 case DW_OP_lit1:
20339 case DW_OP_lit2:
20340 case DW_OP_lit3:
20341 case DW_OP_lit4:
20342 case DW_OP_lit5:
20343 case DW_OP_lit6:
20344 case DW_OP_lit7:
20345 case DW_OP_lit8:
20346 case DW_OP_lit9:
20347 case DW_OP_lit10:
20348 case DW_OP_lit11:
20349 case DW_OP_lit12:
20350 case DW_OP_lit13:
20351 case DW_OP_lit14:
20352 case DW_OP_lit15:
20353 case DW_OP_lit16:
20354 case DW_OP_lit17:
20355 case DW_OP_lit18:
20356 case DW_OP_lit19:
20357 case DW_OP_lit20:
20358 case DW_OP_lit21:
20359 case DW_OP_lit22:
20360 case DW_OP_lit23:
20361 case DW_OP_lit24:
20362 case DW_OP_lit25:
20363 case DW_OP_lit26:
20364 case DW_OP_lit27:
20365 case DW_OP_lit28:
20366 case DW_OP_lit29:
20367 case DW_OP_lit30:
20368 case DW_OP_lit31:
20369 stack[++stacki] = op - DW_OP_lit0;
20370 break;
20371
20372 case DW_OP_reg0:
20373 case DW_OP_reg1:
20374 case DW_OP_reg2:
20375 case DW_OP_reg3:
20376 case DW_OP_reg4:
20377 case DW_OP_reg5:
20378 case DW_OP_reg6:
20379 case DW_OP_reg7:
20380 case DW_OP_reg8:
20381 case DW_OP_reg9:
20382 case DW_OP_reg10:
20383 case DW_OP_reg11:
20384 case DW_OP_reg12:
20385 case DW_OP_reg13:
20386 case DW_OP_reg14:
20387 case DW_OP_reg15:
20388 case DW_OP_reg16:
20389 case DW_OP_reg17:
20390 case DW_OP_reg18:
20391 case DW_OP_reg19:
20392 case DW_OP_reg20:
20393 case DW_OP_reg21:
20394 case DW_OP_reg22:
20395 case DW_OP_reg23:
20396 case DW_OP_reg24:
20397 case DW_OP_reg25:
20398 case DW_OP_reg26:
20399 case DW_OP_reg27:
20400 case DW_OP_reg28:
20401 case DW_OP_reg29:
20402 case DW_OP_reg30:
20403 case DW_OP_reg31:
20404 stack[++stacki] = op - DW_OP_reg0;
20405 if (i < size)
20406 dwarf2_complex_location_expr_complaint ();
20407 break;
20408
20409 case DW_OP_regx:
20410 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20411 i += bytes_read;
20412 stack[++stacki] = unsnd;
20413 if (i < size)
20414 dwarf2_complex_location_expr_complaint ();
20415 break;
20416
20417 case DW_OP_addr:
20418 stack[++stacki] = read_address (objfile->obfd, &data[i],
20419 cu, &bytes_read);
20420 i += bytes_read;
20421 break;
20422
20423 case DW_OP_const1u:
20424 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20425 i += 1;
20426 break;
20427
20428 case DW_OP_const1s:
20429 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20430 i += 1;
20431 break;
20432
20433 case DW_OP_const2u:
20434 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20435 i += 2;
20436 break;
20437
20438 case DW_OP_const2s:
20439 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20440 i += 2;
20441 break;
20442
20443 case DW_OP_const4u:
20444 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20445 i += 4;
20446 break;
20447
20448 case DW_OP_const4s:
20449 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20450 i += 4;
20451 break;
20452
20453 case DW_OP_const8u:
20454 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20455 i += 8;
20456 break;
20457
20458 case DW_OP_constu:
20459 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20460 &bytes_read);
20461 i += bytes_read;
20462 break;
20463
20464 case DW_OP_consts:
20465 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20466 i += bytes_read;
20467 break;
20468
20469 case DW_OP_dup:
20470 stack[stacki + 1] = stack[stacki];
20471 stacki++;
20472 break;
20473
20474 case DW_OP_plus:
20475 stack[stacki - 1] += stack[stacki];
20476 stacki--;
20477 break;
20478
20479 case DW_OP_plus_uconst:
20480 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20481 &bytes_read);
20482 i += bytes_read;
20483 break;
20484
20485 case DW_OP_minus:
20486 stack[stacki - 1] -= stack[stacki];
20487 stacki--;
20488 break;
20489
20490 case DW_OP_deref:
20491 /* If we're not the last op, then we definitely can't encode
20492 this using GDB's address_class enum. This is valid for partial
20493 global symbols, although the variable's address will be bogus
20494 in the psymtab. */
20495 if (i < size)
20496 dwarf2_complex_location_expr_complaint ();
20497 break;
20498
20499 case DW_OP_GNU_push_tls_address:
20500 /* The top of the stack has the offset from the beginning
20501 of the thread control block at which the variable is located. */
20502 /* Nothing should follow this operator, so the top of stack would
20503 be returned. */
20504 /* This is valid for partial global symbols, but the variable's
20505 address will be bogus in the psymtab. Make it always at least
20506 non-zero to not look as a variable garbage collected by linker
20507 which have DW_OP_addr 0. */
20508 if (i < size)
20509 dwarf2_complex_location_expr_complaint ();
20510 stack[stacki]++;
20511 break;
20512
20513 case DW_OP_GNU_uninit:
20514 break;
20515
20516 case DW_OP_GNU_addr_index:
20517 case DW_OP_GNU_const_index:
20518 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20519 &bytes_read);
20520 i += bytes_read;
20521 break;
20522
20523 default:
20524 {
20525 const char *name = get_DW_OP_name (op);
20526
20527 if (name)
20528 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20529 name);
20530 else
20531 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20532 op);
20533 }
20534
20535 return (stack[stacki]);
20536 }
20537
20538 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20539 outside of the allocated space. Also enforce minimum>0. */
20540 if (stacki >= ARRAY_SIZE (stack) - 1)
20541 {
20542 complaint (&symfile_complaints,
20543 _("location description stack overflow"));
20544 return 0;
20545 }
20546
20547 if (stacki <= 0)
20548 {
20549 complaint (&symfile_complaints,
20550 _("location description stack underflow"));
20551 return 0;
20552 }
20553 }
20554 return (stack[stacki]);
20555 }
20556
20557 /* memory allocation interface */
20558
20559 static struct dwarf_block *
20560 dwarf_alloc_block (struct dwarf2_cu *cu)
20561 {
20562 struct dwarf_block *blk;
20563
20564 blk = (struct dwarf_block *)
20565 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20566 return (blk);
20567 }
20568
20569 static struct die_info *
20570 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20571 {
20572 struct die_info *die;
20573 size_t size = sizeof (struct die_info);
20574
20575 if (num_attrs > 1)
20576 size += (num_attrs - 1) * sizeof (struct attribute);
20577
20578 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20579 memset (die, 0, sizeof (struct die_info));
20580 return (die);
20581 }
20582
20583 \f
20584 /* Macro support. */
20585
20586 /* Return file name relative to the compilation directory of file number I in
20587 *LH's file name table. The result is allocated using xmalloc; the caller is
20588 responsible for freeing it. */
20589
20590 static char *
20591 file_file_name (int file, struct line_header *lh)
20592 {
20593 /* Is the file number a valid index into the line header's file name
20594 table? Remember that file numbers start with one, not zero. */
20595 if (1 <= file && file <= lh->num_file_names)
20596 {
20597 struct file_entry *fe = &lh->file_names[file - 1];
20598
20599 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20600 return xstrdup (fe->name);
20601 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20602 fe->name, NULL);
20603 }
20604 else
20605 {
20606 /* The compiler produced a bogus file number. We can at least
20607 record the macro definitions made in the file, even if we
20608 won't be able to find the file by name. */
20609 char fake_name[80];
20610
20611 xsnprintf (fake_name, sizeof (fake_name),
20612 "<bad macro file number %d>", file);
20613
20614 complaint (&symfile_complaints,
20615 _("bad file number in macro information (%d)"),
20616 file);
20617
20618 return xstrdup (fake_name);
20619 }
20620 }
20621
20622 /* Return the full name of file number I in *LH's file name table.
20623 Use COMP_DIR as the name of the current directory of the
20624 compilation. The result is allocated using xmalloc; the caller is
20625 responsible for freeing it. */
20626 static char *
20627 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20628 {
20629 /* Is the file number a valid index into the line header's file name
20630 table? Remember that file numbers start with one, not zero. */
20631 if (1 <= file && file <= lh->num_file_names)
20632 {
20633 char *relative = file_file_name (file, lh);
20634
20635 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20636 return relative;
20637 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20638 }
20639 else
20640 return file_file_name (file, lh);
20641 }
20642
20643
20644 static struct macro_source_file *
20645 macro_start_file (int file, int line,
20646 struct macro_source_file *current_file,
20647 struct line_header *lh)
20648 {
20649 /* File name relative to the compilation directory of this source file. */
20650 char *file_name = file_file_name (file, lh);
20651
20652 if (! current_file)
20653 {
20654 /* Note: We don't create a macro table for this compilation unit
20655 at all until we actually get a filename. */
20656 struct macro_table *macro_table = get_macro_table ();
20657
20658 /* If we have no current file, then this must be the start_file
20659 directive for the compilation unit's main source file. */
20660 current_file = macro_set_main (macro_table, file_name);
20661 macro_define_special (macro_table);
20662 }
20663 else
20664 current_file = macro_include (current_file, line, file_name);
20665
20666 xfree (file_name);
20667
20668 return current_file;
20669 }
20670
20671
20672 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20673 followed by a null byte. */
20674 static char *
20675 copy_string (const char *buf, int len)
20676 {
20677 char *s = xmalloc (len + 1);
20678
20679 memcpy (s, buf, len);
20680 s[len] = '\0';
20681 return s;
20682 }
20683
20684
20685 static const char *
20686 consume_improper_spaces (const char *p, const char *body)
20687 {
20688 if (*p == ' ')
20689 {
20690 complaint (&symfile_complaints,
20691 _("macro definition contains spaces "
20692 "in formal argument list:\n`%s'"),
20693 body);
20694
20695 while (*p == ' ')
20696 p++;
20697 }
20698
20699 return p;
20700 }
20701
20702
20703 static void
20704 parse_macro_definition (struct macro_source_file *file, int line,
20705 const char *body)
20706 {
20707 const char *p;
20708
20709 /* The body string takes one of two forms. For object-like macro
20710 definitions, it should be:
20711
20712 <macro name> " " <definition>
20713
20714 For function-like macro definitions, it should be:
20715
20716 <macro name> "() " <definition>
20717 or
20718 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20719
20720 Spaces may appear only where explicitly indicated, and in the
20721 <definition>.
20722
20723 The Dwarf 2 spec says that an object-like macro's name is always
20724 followed by a space, but versions of GCC around March 2002 omit
20725 the space when the macro's definition is the empty string.
20726
20727 The Dwarf 2 spec says that there should be no spaces between the
20728 formal arguments in a function-like macro's formal argument list,
20729 but versions of GCC around March 2002 include spaces after the
20730 commas. */
20731
20732
20733 /* Find the extent of the macro name. The macro name is terminated
20734 by either a space or null character (for an object-like macro) or
20735 an opening paren (for a function-like macro). */
20736 for (p = body; *p; p++)
20737 if (*p == ' ' || *p == '(')
20738 break;
20739
20740 if (*p == ' ' || *p == '\0')
20741 {
20742 /* It's an object-like macro. */
20743 int name_len = p - body;
20744 char *name = copy_string (body, name_len);
20745 const char *replacement;
20746
20747 if (*p == ' ')
20748 replacement = body + name_len + 1;
20749 else
20750 {
20751 dwarf2_macro_malformed_definition_complaint (body);
20752 replacement = body + name_len;
20753 }
20754
20755 macro_define_object (file, line, name, replacement);
20756
20757 xfree (name);
20758 }
20759 else if (*p == '(')
20760 {
20761 /* It's a function-like macro. */
20762 char *name = copy_string (body, p - body);
20763 int argc = 0;
20764 int argv_size = 1;
20765 char **argv = xmalloc (argv_size * sizeof (*argv));
20766
20767 p++;
20768
20769 p = consume_improper_spaces (p, body);
20770
20771 /* Parse the formal argument list. */
20772 while (*p && *p != ')')
20773 {
20774 /* Find the extent of the current argument name. */
20775 const char *arg_start = p;
20776
20777 while (*p && *p != ',' && *p != ')' && *p != ' ')
20778 p++;
20779
20780 if (! *p || p == arg_start)
20781 dwarf2_macro_malformed_definition_complaint (body);
20782 else
20783 {
20784 /* Make sure argv has room for the new argument. */
20785 if (argc >= argv_size)
20786 {
20787 argv_size *= 2;
20788 argv = xrealloc (argv, argv_size * sizeof (*argv));
20789 }
20790
20791 argv[argc++] = copy_string (arg_start, p - arg_start);
20792 }
20793
20794 p = consume_improper_spaces (p, body);
20795
20796 /* Consume the comma, if present. */
20797 if (*p == ',')
20798 {
20799 p++;
20800
20801 p = consume_improper_spaces (p, body);
20802 }
20803 }
20804
20805 if (*p == ')')
20806 {
20807 p++;
20808
20809 if (*p == ' ')
20810 /* Perfectly formed definition, no complaints. */
20811 macro_define_function (file, line, name,
20812 argc, (const char **) argv,
20813 p + 1);
20814 else if (*p == '\0')
20815 {
20816 /* Complain, but do define it. */
20817 dwarf2_macro_malformed_definition_complaint (body);
20818 macro_define_function (file, line, name,
20819 argc, (const char **) argv,
20820 p);
20821 }
20822 else
20823 /* Just complain. */
20824 dwarf2_macro_malformed_definition_complaint (body);
20825 }
20826 else
20827 /* Just complain. */
20828 dwarf2_macro_malformed_definition_complaint (body);
20829
20830 xfree (name);
20831 {
20832 int i;
20833
20834 for (i = 0; i < argc; i++)
20835 xfree (argv[i]);
20836 }
20837 xfree (argv);
20838 }
20839 else
20840 dwarf2_macro_malformed_definition_complaint (body);
20841 }
20842
20843 /* Skip some bytes from BYTES according to the form given in FORM.
20844 Returns the new pointer. */
20845
20846 static const gdb_byte *
20847 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20848 enum dwarf_form form,
20849 unsigned int offset_size,
20850 struct dwarf2_section_info *section)
20851 {
20852 unsigned int bytes_read;
20853
20854 switch (form)
20855 {
20856 case DW_FORM_data1:
20857 case DW_FORM_flag:
20858 ++bytes;
20859 break;
20860
20861 case DW_FORM_data2:
20862 bytes += 2;
20863 break;
20864
20865 case DW_FORM_data4:
20866 bytes += 4;
20867 break;
20868
20869 case DW_FORM_data8:
20870 bytes += 8;
20871 break;
20872
20873 case DW_FORM_string:
20874 read_direct_string (abfd, bytes, &bytes_read);
20875 bytes += bytes_read;
20876 break;
20877
20878 case DW_FORM_sec_offset:
20879 case DW_FORM_strp:
20880 case DW_FORM_GNU_strp_alt:
20881 bytes += offset_size;
20882 break;
20883
20884 case DW_FORM_block:
20885 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20886 bytes += bytes_read;
20887 break;
20888
20889 case DW_FORM_block1:
20890 bytes += 1 + read_1_byte (abfd, bytes);
20891 break;
20892 case DW_FORM_block2:
20893 bytes += 2 + read_2_bytes (abfd, bytes);
20894 break;
20895 case DW_FORM_block4:
20896 bytes += 4 + read_4_bytes (abfd, bytes);
20897 break;
20898
20899 case DW_FORM_sdata:
20900 case DW_FORM_udata:
20901 case DW_FORM_GNU_addr_index:
20902 case DW_FORM_GNU_str_index:
20903 bytes = gdb_skip_leb128 (bytes, buffer_end);
20904 if (bytes == NULL)
20905 {
20906 dwarf2_section_buffer_overflow_complaint (section);
20907 return NULL;
20908 }
20909 break;
20910
20911 default:
20912 {
20913 complain:
20914 complaint (&symfile_complaints,
20915 _("invalid form 0x%x in `%s'"),
20916 form, get_section_name (section));
20917 return NULL;
20918 }
20919 }
20920
20921 return bytes;
20922 }
20923
20924 /* A helper for dwarf_decode_macros that handles skipping an unknown
20925 opcode. Returns an updated pointer to the macro data buffer; or,
20926 on error, issues a complaint and returns NULL. */
20927
20928 static const gdb_byte *
20929 skip_unknown_opcode (unsigned int opcode,
20930 const gdb_byte **opcode_definitions,
20931 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20932 bfd *abfd,
20933 unsigned int offset_size,
20934 struct dwarf2_section_info *section)
20935 {
20936 unsigned int bytes_read, i;
20937 unsigned long arg;
20938 const gdb_byte *defn;
20939
20940 if (opcode_definitions[opcode] == NULL)
20941 {
20942 complaint (&symfile_complaints,
20943 _("unrecognized DW_MACFINO opcode 0x%x"),
20944 opcode);
20945 return NULL;
20946 }
20947
20948 defn = opcode_definitions[opcode];
20949 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20950 defn += bytes_read;
20951
20952 for (i = 0; i < arg; ++i)
20953 {
20954 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20955 section);
20956 if (mac_ptr == NULL)
20957 {
20958 /* skip_form_bytes already issued the complaint. */
20959 return NULL;
20960 }
20961 }
20962
20963 return mac_ptr;
20964 }
20965
20966 /* A helper function which parses the header of a macro section.
20967 If the macro section is the extended (for now called "GNU") type,
20968 then this updates *OFFSET_SIZE. Returns a pointer to just after
20969 the header, or issues a complaint and returns NULL on error. */
20970
20971 static const gdb_byte *
20972 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20973 bfd *abfd,
20974 const gdb_byte *mac_ptr,
20975 unsigned int *offset_size,
20976 int section_is_gnu)
20977 {
20978 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20979
20980 if (section_is_gnu)
20981 {
20982 unsigned int version, flags;
20983
20984 version = read_2_bytes (abfd, mac_ptr);
20985 if (version != 4)
20986 {
20987 complaint (&symfile_complaints,
20988 _("unrecognized version `%d' in .debug_macro section"),
20989 version);
20990 return NULL;
20991 }
20992 mac_ptr += 2;
20993
20994 flags = read_1_byte (abfd, mac_ptr);
20995 ++mac_ptr;
20996 *offset_size = (flags & 1) ? 8 : 4;
20997
20998 if ((flags & 2) != 0)
20999 /* We don't need the line table offset. */
21000 mac_ptr += *offset_size;
21001
21002 /* Vendor opcode descriptions. */
21003 if ((flags & 4) != 0)
21004 {
21005 unsigned int i, count;
21006
21007 count = read_1_byte (abfd, mac_ptr);
21008 ++mac_ptr;
21009 for (i = 0; i < count; ++i)
21010 {
21011 unsigned int opcode, bytes_read;
21012 unsigned long arg;
21013
21014 opcode = read_1_byte (abfd, mac_ptr);
21015 ++mac_ptr;
21016 opcode_definitions[opcode] = mac_ptr;
21017 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21018 mac_ptr += bytes_read;
21019 mac_ptr += arg;
21020 }
21021 }
21022 }
21023
21024 return mac_ptr;
21025 }
21026
21027 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21028 including DW_MACRO_GNU_transparent_include. */
21029
21030 static void
21031 dwarf_decode_macro_bytes (bfd *abfd,
21032 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21033 struct macro_source_file *current_file,
21034 struct line_header *lh,
21035 struct dwarf2_section_info *section,
21036 int section_is_gnu, int section_is_dwz,
21037 unsigned int offset_size,
21038 htab_t include_hash)
21039 {
21040 struct objfile *objfile = dwarf2_per_objfile->objfile;
21041 enum dwarf_macro_record_type macinfo_type;
21042 int at_commandline;
21043 const gdb_byte *opcode_definitions[256];
21044
21045 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21046 &offset_size, section_is_gnu);
21047 if (mac_ptr == NULL)
21048 {
21049 /* We already issued a complaint. */
21050 return;
21051 }
21052
21053 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21054 GDB is still reading the definitions from command line. First
21055 DW_MACINFO_start_file will need to be ignored as it was already executed
21056 to create CURRENT_FILE for the main source holding also the command line
21057 definitions. On first met DW_MACINFO_start_file this flag is reset to
21058 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21059
21060 at_commandline = 1;
21061
21062 do
21063 {
21064 /* Do we at least have room for a macinfo type byte? */
21065 if (mac_ptr >= mac_end)
21066 {
21067 dwarf2_section_buffer_overflow_complaint (section);
21068 break;
21069 }
21070
21071 macinfo_type = read_1_byte (abfd, mac_ptr);
21072 mac_ptr++;
21073
21074 /* Note that we rely on the fact that the corresponding GNU and
21075 DWARF constants are the same. */
21076 switch (macinfo_type)
21077 {
21078 /* A zero macinfo type indicates the end of the macro
21079 information. */
21080 case 0:
21081 break;
21082
21083 case DW_MACRO_GNU_define:
21084 case DW_MACRO_GNU_undef:
21085 case DW_MACRO_GNU_define_indirect:
21086 case DW_MACRO_GNU_undef_indirect:
21087 case DW_MACRO_GNU_define_indirect_alt:
21088 case DW_MACRO_GNU_undef_indirect_alt:
21089 {
21090 unsigned int bytes_read;
21091 int line;
21092 const char *body;
21093 int is_define;
21094
21095 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21096 mac_ptr += bytes_read;
21097
21098 if (macinfo_type == DW_MACRO_GNU_define
21099 || macinfo_type == DW_MACRO_GNU_undef)
21100 {
21101 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21102 mac_ptr += bytes_read;
21103 }
21104 else
21105 {
21106 LONGEST str_offset;
21107
21108 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21109 mac_ptr += offset_size;
21110
21111 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21112 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21113 || section_is_dwz)
21114 {
21115 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21116
21117 body = read_indirect_string_from_dwz (dwz, str_offset);
21118 }
21119 else
21120 body = read_indirect_string_at_offset (abfd, str_offset);
21121 }
21122
21123 is_define = (macinfo_type == DW_MACRO_GNU_define
21124 || macinfo_type == DW_MACRO_GNU_define_indirect
21125 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21126 if (! current_file)
21127 {
21128 /* DWARF violation as no main source is present. */
21129 complaint (&symfile_complaints,
21130 _("debug info with no main source gives macro %s "
21131 "on line %d: %s"),
21132 is_define ? _("definition") : _("undefinition"),
21133 line, body);
21134 break;
21135 }
21136 if ((line == 0 && !at_commandline)
21137 || (line != 0 && at_commandline))
21138 complaint (&symfile_complaints,
21139 _("debug info gives %s macro %s with %s line %d: %s"),
21140 at_commandline ? _("command-line") : _("in-file"),
21141 is_define ? _("definition") : _("undefinition"),
21142 line == 0 ? _("zero") : _("non-zero"), line, body);
21143
21144 if (is_define)
21145 parse_macro_definition (current_file, line, body);
21146 else
21147 {
21148 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21149 || macinfo_type == DW_MACRO_GNU_undef_indirect
21150 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21151 macro_undef (current_file, line, body);
21152 }
21153 }
21154 break;
21155
21156 case DW_MACRO_GNU_start_file:
21157 {
21158 unsigned int bytes_read;
21159 int line, file;
21160
21161 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21162 mac_ptr += bytes_read;
21163 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21164 mac_ptr += bytes_read;
21165
21166 if ((line == 0 && !at_commandline)
21167 || (line != 0 && at_commandline))
21168 complaint (&symfile_complaints,
21169 _("debug info gives source %d included "
21170 "from %s at %s line %d"),
21171 file, at_commandline ? _("command-line") : _("file"),
21172 line == 0 ? _("zero") : _("non-zero"), line);
21173
21174 if (at_commandline)
21175 {
21176 /* This DW_MACRO_GNU_start_file was executed in the
21177 pass one. */
21178 at_commandline = 0;
21179 }
21180 else
21181 current_file = macro_start_file (file, line, current_file, lh);
21182 }
21183 break;
21184
21185 case DW_MACRO_GNU_end_file:
21186 if (! current_file)
21187 complaint (&symfile_complaints,
21188 _("macro debug info has an unmatched "
21189 "`close_file' directive"));
21190 else
21191 {
21192 current_file = current_file->included_by;
21193 if (! current_file)
21194 {
21195 enum dwarf_macro_record_type next_type;
21196
21197 /* GCC circa March 2002 doesn't produce the zero
21198 type byte marking the end of the compilation
21199 unit. Complain if it's not there, but exit no
21200 matter what. */
21201
21202 /* Do we at least have room for a macinfo type byte? */
21203 if (mac_ptr >= mac_end)
21204 {
21205 dwarf2_section_buffer_overflow_complaint (section);
21206 return;
21207 }
21208
21209 /* We don't increment mac_ptr here, so this is just
21210 a look-ahead. */
21211 next_type = read_1_byte (abfd, mac_ptr);
21212 if (next_type != 0)
21213 complaint (&symfile_complaints,
21214 _("no terminating 0-type entry for "
21215 "macros in `.debug_macinfo' section"));
21216
21217 return;
21218 }
21219 }
21220 break;
21221
21222 case DW_MACRO_GNU_transparent_include:
21223 case DW_MACRO_GNU_transparent_include_alt:
21224 {
21225 LONGEST offset;
21226 void **slot;
21227 bfd *include_bfd = abfd;
21228 struct dwarf2_section_info *include_section = section;
21229 struct dwarf2_section_info alt_section;
21230 const gdb_byte *include_mac_end = mac_end;
21231 int is_dwz = section_is_dwz;
21232 const gdb_byte *new_mac_ptr;
21233
21234 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21235 mac_ptr += offset_size;
21236
21237 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21238 {
21239 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21240
21241 dwarf2_read_section (objfile, &dwz->macro);
21242
21243 include_section = &dwz->macro;
21244 include_bfd = get_section_bfd_owner (include_section);
21245 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21246 is_dwz = 1;
21247 }
21248
21249 new_mac_ptr = include_section->buffer + offset;
21250 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21251
21252 if (*slot != NULL)
21253 {
21254 /* This has actually happened; see
21255 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21256 complaint (&symfile_complaints,
21257 _("recursive DW_MACRO_GNU_transparent_include in "
21258 ".debug_macro section"));
21259 }
21260 else
21261 {
21262 *slot = (void *) new_mac_ptr;
21263
21264 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21265 include_mac_end, current_file, lh,
21266 section, section_is_gnu, is_dwz,
21267 offset_size, include_hash);
21268
21269 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21270 }
21271 }
21272 break;
21273
21274 case DW_MACINFO_vendor_ext:
21275 if (!section_is_gnu)
21276 {
21277 unsigned int bytes_read;
21278 int constant;
21279
21280 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21281 mac_ptr += bytes_read;
21282 read_direct_string (abfd, mac_ptr, &bytes_read);
21283 mac_ptr += bytes_read;
21284
21285 /* We don't recognize any vendor extensions. */
21286 break;
21287 }
21288 /* FALLTHROUGH */
21289
21290 default:
21291 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21292 mac_ptr, mac_end, abfd, offset_size,
21293 section);
21294 if (mac_ptr == NULL)
21295 return;
21296 break;
21297 }
21298 } while (macinfo_type != 0);
21299 }
21300
21301 static void
21302 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21303 int section_is_gnu)
21304 {
21305 struct objfile *objfile = dwarf2_per_objfile->objfile;
21306 struct line_header *lh = cu->line_header;
21307 bfd *abfd;
21308 const gdb_byte *mac_ptr, *mac_end;
21309 struct macro_source_file *current_file = 0;
21310 enum dwarf_macro_record_type macinfo_type;
21311 unsigned int offset_size = cu->header.offset_size;
21312 const gdb_byte *opcode_definitions[256];
21313 struct cleanup *cleanup;
21314 htab_t include_hash;
21315 void **slot;
21316 struct dwarf2_section_info *section;
21317 const char *section_name;
21318
21319 if (cu->dwo_unit != NULL)
21320 {
21321 if (section_is_gnu)
21322 {
21323 section = &cu->dwo_unit->dwo_file->sections.macro;
21324 section_name = ".debug_macro.dwo";
21325 }
21326 else
21327 {
21328 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21329 section_name = ".debug_macinfo.dwo";
21330 }
21331 }
21332 else
21333 {
21334 if (section_is_gnu)
21335 {
21336 section = &dwarf2_per_objfile->macro;
21337 section_name = ".debug_macro";
21338 }
21339 else
21340 {
21341 section = &dwarf2_per_objfile->macinfo;
21342 section_name = ".debug_macinfo";
21343 }
21344 }
21345
21346 dwarf2_read_section (objfile, section);
21347 if (section->buffer == NULL)
21348 {
21349 complaint (&symfile_complaints, _("missing %s section"), section_name);
21350 return;
21351 }
21352 abfd = get_section_bfd_owner (section);
21353
21354 /* First pass: Find the name of the base filename.
21355 This filename is needed in order to process all macros whose definition
21356 (or undefinition) comes from the command line. These macros are defined
21357 before the first DW_MACINFO_start_file entry, and yet still need to be
21358 associated to the base file.
21359
21360 To determine the base file name, we scan the macro definitions until we
21361 reach the first DW_MACINFO_start_file entry. We then initialize
21362 CURRENT_FILE accordingly so that any macro definition found before the
21363 first DW_MACINFO_start_file can still be associated to the base file. */
21364
21365 mac_ptr = section->buffer + offset;
21366 mac_end = section->buffer + section->size;
21367
21368 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21369 &offset_size, section_is_gnu);
21370 if (mac_ptr == NULL)
21371 {
21372 /* We already issued a complaint. */
21373 return;
21374 }
21375
21376 do
21377 {
21378 /* Do we at least have room for a macinfo type byte? */
21379 if (mac_ptr >= mac_end)
21380 {
21381 /* Complaint is printed during the second pass as GDB will probably
21382 stop the first pass earlier upon finding
21383 DW_MACINFO_start_file. */
21384 break;
21385 }
21386
21387 macinfo_type = read_1_byte (abfd, mac_ptr);
21388 mac_ptr++;
21389
21390 /* Note that we rely on the fact that the corresponding GNU and
21391 DWARF constants are the same. */
21392 switch (macinfo_type)
21393 {
21394 /* A zero macinfo type indicates the end of the macro
21395 information. */
21396 case 0:
21397 break;
21398
21399 case DW_MACRO_GNU_define:
21400 case DW_MACRO_GNU_undef:
21401 /* Only skip the data by MAC_PTR. */
21402 {
21403 unsigned int bytes_read;
21404
21405 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21406 mac_ptr += bytes_read;
21407 read_direct_string (abfd, mac_ptr, &bytes_read);
21408 mac_ptr += bytes_read;
21409 }
21410 break;
21411
21412 case DW_MACRO_GNU_start_file:
21413 {
21414 unsigned int bytes_read;
21415 int line, file;
21416
21417 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21418 mac_ptr += bytes_read;
21419 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21420 mac_ptr += bytes_read;
21421
21422 current_file = macro_start_file (file, line, current_file, lh);
21423 }
21424 break;
21425
21426 case DW_MACRO_GNU_end_file:
21427 /* No data to skip by MAC_PTR. */
21428 break;
21429
21430 case DW_MACRO_GNU_define_indirect:
21431 case DW_MACRO_GNU_undef_indirect:
21432 case DW_MACRO_GNU_define_indirect_alt:
21433 case DW_MACRO_GNU_undef_indirect_alt:
21434 {
21435 unsigned int bytes_read;
21436
21437 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21438 mac_ptr += bytes_read;
21439 mac_ptr += offset_size;
21440 }
21441 break;
21442
21443 case DW_MACRO_GNU_transparent_include:
21444 case DW_MACRO_GNU_transparent_include_alt:
21445 /* Note that, according to the spec, a transparent include
21446 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21447 skip this opcode. */
21448 mac_ptr += offset_size;
21449 break;
21450
21451 case DW_MACINFO_vendor_ext:
21452 /* Only skip the data by MAC_PTR. */
21453 if (!section_is_gnu)
21454 {
21455 unsigned int bytes_read;
21456
21457 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21458 mac_ptr += bytes_read;
21459 read_direct_string (abfd, mac_ptr, &bytes_read);
21460 mac_ptr += bytes_read;
21461 }
21462 /* FALLTHROUGH */
21463
21464 default:
21465 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21466 mac_ptr, mac_end, abfd, offset_size,
21467 section);
21468 if (mac_ptr == NULL)
21469 return;
21470 break;
21471 }
21472 } while (macinfo_type != 0 && current_file == NULL);
21473
21474 /* Second pass: Process all entries.
21475
21476 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21477 command-line macro definitions/undefinitions. This flag is unset when we
21478 reach the first DW_MACINFO_start_file entry. */
21479
21480 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21481 NULL, xcalloc, xfree);
21482 cleanup = make_cleanup_htab_delete (include_hash);
21483 mac_ptr = section->buffer + offset;
21484 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21485 *slot = (void *) mac_ptr;
21486 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21487 current_file, lh, section,
21488 section_is_gnu, 0, offset_size, include_hash);
21489 do_cleanups (cleanup);
21490 }
21491
21492 /* Check if the attribute's form is a DW_FORM_block*
21493 if so return true else false. */
21494
21495 static int
21496 attr_form_is_block (const struct attribute *attr)
21497 {
21498 return (attr == NULL ? 0 :
21499 attr->form == DW_FORM_block1
21500 || attr->form == DW_FORM_block2
21501 || attr->form == DW_FORM_block4
21502 || attr->form == DW_FORM_block
21503 || attr->form == DW_FORM_exprloc);
21504 }
21505
21506 /* Return non-zero if ATTR's value is a section offset --- classes
21507 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21508 You may use DW_UNSND (attr) to retrieve such offsets.
21509
21510 Section 7.5.4, "Attribute Encodings", explains that no attribute
21511 may have a value that belongs to more than one of these classes; it
21512 would be ambiguous if we did, because we use the same forms for all
21513 of them. */
21514
21515 static int
21516 attr_form_is_section_offset (const struct attribute *attr)
21517 {
21518 return (attr->form == DW_FORM_data4
21519 || attr->form == DW_FORM_data8
21520 || attr->form == DW_FORM_sec_offset);
21521 }
21522
21523 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21524 zero otherwise. When this function returns true, you can apply
21525 dwarf2_get_attr_constant_value to it.
21526
21527 However, note that for some attributes you must check
21528 attr_form_is_section_offset before using this test. DW_FORM_data4
21529 and DW_FORM_data8 are members of both the constant class, and of
21530 the classes that contain offsets into other debug sections
21531 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21532 that, if an attribute's can be either a constant or one of the
21533 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21534 taken as section offsets, not constants. */
21535
21536 static int
21537 attr_form_is_constant (const struct attribute *attr)
21538 {
21539 switch (attr->form)
21540 {
21541 case DW_FORM_sdata:
21542 case DW_FORM_udata:
21543 case DW_FORM_data1:
21544 case DW_FORM_data2:
21545 case DW_FORM_data4:
21546 case DW_FORM_data8:
21547 return 1;
21548 default:
21549 return 0;
21550 }
21551 }
21552
21553
21554 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21555 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21556
21557 static int
21558 attr_form_is_ref (const struct attribute *attr)
21559 {
21560 switch (attr->form)
21561 {
21562 case DW_FORM_ref_addr:
21563 case DW_FORM_ref1:
21564 case DW_FORM_ref2:
21565 case DW_FORM_ref4:
21566 case DW_FORM_ref8:
21567 case DW_FORM_ref_udata:
21568 case DW_FORM_GNU_ref_alt:
21569 return 1;
21570 default:
21571 return 0;
21572 }
21573 }
21574
21575 /* Return the .debug_loc section to use for CU.
21576 For DWO files use .debug_loc.dwo. */
21577
21578 static struct dwarf2_section_info *
21579 cu_debug_loc_section (struct dwarf2_cu *cu)
21580 {
21581 if (cu->dwo_unit)
21582 return &cu->dwo_unit->dwo_file->sections.loc;
21583 return &dwarf2_per_objfile->loc;
21584 }
21585
21586 /* A helper function that fills in a dwarf2_loclist_baton. */
21587
21588 static void
21589 fill_in_loclist_baton (struct dwarf2_cu *cu,
21590 struct dwarf2_loclist_baton *baton,
21591 const struct attribute *attr)
21592 {
21593 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21594
21595 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21596
21597 baton->per_cu = cu->per_cu;
21598 gdb_assert (baton->per_cu);
21599 /* We don't know how long the location list is, but make sure we
21600 don't run off the edge of the section. */
21601 baton->size = section->size - DW_UNSND (attr);
21602 baton->data = section->buffer + DW_UNSND (attr);
21603 baton->base_address = cu->base_address;
21604 baton->from_dwo = cu->dwo_unit != NULL;
21605 }
21606
21607 static void
21608 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21609 struct dwarf2_cu *cu, int is_block)
21610 {
21611 struct objfile *objfile = dwarf2_per_objfile->objfile;
21612 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21613
21614 if (attr_form_is_section_offset (attr)
21615 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21616 the section. If so, fall through to the complaint in the
21617 other branch. */
21618 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21619 {
21620 struct dwarf2_loclist_baton *baton;
21621
21622 baton = obstack_alloc (&objfile->objfile_obstack,
21623 sizeof (struct dwarf2_loclist_baton));
21624
21625 fill_in_loclist_baton (cu, baton, attr);
21626
21627 if (cu->base_known == 0)
21628 complaint (&symfile_complaints,
21629 _("Location list used without "
21630 "specifying the CU base address."));
21631
21632 SYMBOL_ACLASS_INDEX (sym) = (is_block
21633 ? dwarf2_loclist_block_index
21634 : dwarf2_loclist_index);
21635 SYMBOL_LOCATION_BATON (sym) = baton;
21636 }
21637 else
21638 {
21639 struct dwarf2_locexpr_baton *baton;
21640
21641 baton = obstack_alloc (&objfile->objfile_obstack,
21642 sizeof (struct dwarf2_locexpr_baton));
21643 baton->per_cu = cu->per_cu;
21644 gdb_assert (baton->per_cu);
21645
21646 if (attr_form_is_block (attr))
21647 {
21648 /* Note that we're just copying the block's data pointer
21649 here, not the actual data. We're still pointing into the
21650 info_buffer for SYM's objfile; right now we never release
21651 that buffer, but when we do clean up properly this may
21652 need to change. */
21653 baton->size = DW_BLOCK (attr)->size;
21654 baton->data = DW_BLOCK (attr)->data;
21655 }
21656 else
21657 {
21658 dwarf2_invalid_attrib_class_complaint ("location description",
21659 SYMBOL_NATURAL_NAME (sym));
21660 baton->size = 0;
21661 }
21662
21663 SYMBOL_ACLASS_INDEX (sym) = (is_block
21664 ? dwarf2_locexpr_block_index
21665 : dwarf2_locexpr_index);
21666 SYMBOL_LOCATION_BATON (sym) = baton;
21667 }
21668 }
21669
21670 /* Return the OBJFILE associated with the compilation unit CU. If CU
21671 came from a separate debuginfo file, then the master objfile is
21672 returned. */
21673
21674 struct objfile *
21675 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21676 {
21677 struct objfile *objfile = per_cu->objfile;
21678
21679 /* Return the master objfile, so that we can report and look up the
21680 correct file containing this variable. */
21681 if (objfile->separate_debug_objfile_backlink)
21682 objfile = objfile->separate_debug_objfile_backlink;
21683
21684 return objfile;
21685 }
21686
21687 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21688 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21689 CU_HEADERP first. */
21690
21691 static const struct comp_unit_head *
21692 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21693 struct dwarf2_per_cu_data *per_cu)
21694 {
21695 const gdb_byte *info_ptr;
21696
21697 if (per_cu->cu)
21698 return &per_cu->cu->header;
21699
21700 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21701
21702 memset (cu_headerp, 0, sizeof (*cu_headerp));
21703 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21704
21705 return cu_headerp;
21706 }
21707
21708 /* Return the address size given in the compilation unit header for CU. */
21709
21710 int
21711 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21712 {
21713 struct comp_unit_head cu_header_local;
21714 const struct comp_unit_head *cu_headerp;
21715
21716 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21717
21718 return cu_headerp->addr_size;
21719 }
21720
21721 /* Return the offset size given in the compilation unit header for CU. */
21722
21723 int
21724 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21725 {
21726 struct comp_unit_head cu_header_local;
21727 const struct comp_unit_head *cu_headerp;
21728
21729 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21730
21731 return cu_headerp->offset_size;
21732 }
21733
21734 /* See its dwarf2loc.h declaration. */
21735
21736 int
21737 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21738 {
21739 struct comp_unit_head cu_header_local;
21740 const struct comp_unit_head *cu_headerp;
21741
21742 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21743
21744 if (cu_headerp->version == 2)
21745 return cu_headerp->addr_size;
21746 else
21747 return cu_headerp->offset_size;
21748 }
21749
21750 /* Return the text offset of the CU. The returned offset comes from
21751 this CU's objfile. If this objfile came from a separate debuginfo
21752 file, then the offset may be different from the corresponding
21753 offset in the parent objfile. */
21754
21755 CORE_ADDR
21756 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21757 {
21758 struct objfile *objfile = per_cu->objfile;
21759
21760 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21761 }
21762
21763 /* Locate the .debug_info compilation unit from CU's objfile which contains
21764 the DIE at OFFSET. Raises an error on failure. */
21765
21766 static struct dwarf2_per_cu_data *
21767 dwarf2_find_containing_comp_unit (sect_offset offset,
21768 unsigned int offset_in_dwz,
21769 struct objfile *objfile)
21770 {
21771 struct dwarf2_per_cu_data *this_cu;
21772 int low, high;
21773 const sect_offset *cu_off;
21774
21775 low = 0;
21776 high = dwarf2_per_objfile->n_comp_units - 1;
21777 while (high > low)
21778 {
21779 struct dwarf2_per_cu_data *mid_cu;
21780 int mid = low + (high - low) / 2;
21781
21782 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21783 cu_off = &mid_cu->offset;
21784 if (mid_cu->is_dwz > offset_in_dwz
21785 || (mid_cu->is_dwz == offset_in_dwz
21786 && cu_off->sect_off >= offset.sect_off))
21787 high = mid;
21788 else
21789 low = mid + 1;
21790 }
21791 gdb_assert (low == high);
21792 this_cu = dwarf2_per_objfile->all_comp_units[low];
21793 cu_off = &this_cu->offset;
21794 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21795 {
21796 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21797 error (_("Dwarf Error: could not find partial DIE containing "
21798 "offset 0x%lx [in module %s]"),
21799 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21800
21801 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21802 <= offset.sect_off);
21803 return dwarf2_per_objfile->all_comp_units[low-1];
21804 }
21805 else
21806 {
21807 this_cu = dwarf2_per_objfile->all_comp_units[low];
21808 if (low == dwarf2_per_objfile->n_comp_units - 1
21809 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21810 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21811 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21812 return this_cu;
21813 }
21814 }
21815
21816 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21817
21818 static void
21819 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21820 {
21821 memset (cu, 0, sizeof (*cu));
21822 per_cu->cu = cu;
21823 cu->per_cu = per_cu;
21824 cu->objfile = per_cu->objfile;
21825 obstack_init (&cu->comp_unit_obstack);
21826 }
21827
21828 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21829
21830 static void
21831 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21832 enum language pretend_language)
21833 {
21834 struct attribute *attr;
21835
21836 /* Set the language we're debugging. */
21837 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21838 if (attr)
21839 set_cu_language (DW_UNSND (attr), cu);
21840 else
21841 {
21842 cu->language = pretend_language;
21843 cu->language_defn = language_def (cu->language);
21844 }
21845
21846 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21847 if (attr)
21848 cu->producer = DW_STRING (attr);
21849 }
21850
21851 /* Release one cached compilation unit, CU. We unlink it from the tree
21852 of compilation units, but we don't remove it from the read_in_chain;
21853 the caller is responsible for that.
21854 NOTE: DATA is a void * because this function is also used as a
21855 cleanup routine. */
21856
21857 static void
21858 free_heap_comp_unit (void *data)
21859 {
21860 struct dwarf2_cu *cu = data;
21861
21862 gdb_assert (cu->per_cu != NULL);
21863 cu->per_cu->cu = NULL;
21864 cu->per_cu = NULL;
21865
21866 obstack_free (&cu->comp_unit_obstack, NULL);
21867
21868 xfree (cu);
21869 }
21870
21871 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21872 when we're finished with it. We can't free the pointer itself, but be
21873 sure to unlink it from the cache. Also release any associated storage. */
21874
21875 static void
21876 free_stack_comp_unit (void *data)
21877 {
21878 struct dwarf2_cu *cu = data;
21879
21880 gdb_assert (cu->per_cu != NULL);
21881 cu->per_cu->cu = NULL;
21882 cu->per_cu = NULL;
21883
21884 obstack_free (&cu->comp_unit_obstack, NULL);
21885 cu->partial_dies = NULL;
21886 }
21887
21888 /* Free all cached compilation units. */
21889
21890 static void
21891 free_cached_comp_units (void *data)
21892 {
21893 struct dwarf2_per_cu_data *per_cu, **last_chain;
21894
21895 per_cu = dwarf2_per_objfile->read_in_chain;
21896 last_chain = &dwarf2_per_objfile->read_in_chain;
21897 while (per_cu != NULL)
21898 {
21899 struct dwarf2_per_cu_data *next_cu;
21900
21901 next_cu = per_cu->cu->read_in_chain;
21902
21903 free_heap_comp_unit (per_cu->cu);
21904 *last_chain = next_cu;
21905
21906 per_cu = next_cu;
21907 }
21908 }
21909
21910 /* Increase the age counter on each cached compilation unit, and free
21911 any that are too old. */
21912
21913 static void
21914 age_cached_comp_units (void)
21915 {
21916 struct dwarf2_per_cu_data *per_cu, **last_chain;
21917
21918 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21919 per_cu = dwarf2_per_objfile->read_in_chain;
21920 while (per_cu != NULL)
21921 {
21922 per_cu->cu->last_used ++;
21923 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21924 dwarf2_mark (per_cu->cu);
21925 per_cu = per_cu->cu->read_in_chain;
21926 }
21927
21928 per_cu = dwarf2_per_objfile->read_in_chain;
21929 last_chain = &dwarf2_per_objfile->read_in_chain;
21930 while (per_cu != NULL)
21931 {
21932 struct dwarf2_per_cu_data *next_cu;
21933
21934 next_cu = per_cu->cu->read_in_chain;
21935
21936 if (!per_cu->cu->mark)
21937 {
21938 free_heap_comp_unit (per_cu->cu);
21939 *last_chain = next_cu;
21940 }
21941 else
21942 last_chain = &per_cu->cu->read_in_chain;
21943
21944 per_cu = next_cu;
21945 }
21946 }
21947
21948 /* Remove a single compilation unit from the cache. */
21949
21950 static void
21951 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21952 {
21953 struct dwarf2_per_cu_data *per_cu, **last_chain;
21954
21955 per_cu = dwarf2_per_objfile->read_in_chain;
21956 last_chain = &dwarf2_per_objfile->read_in_chain;
21957 while (per_cu != NULL)
21958 {
21959 struct dwarf2_per_cu_data *next_cu;
21960
21961 next_cu = per_cu->cu->read_in_chain;
21962
21963 if (per_cu == target_per_cu)
21964 {
21965 free_heap_comp_unit (per_cu->cu);
21966 per_cu->cu = NULL;
21967 *last_chain = next_cu;
21968 break;
21969 }
21970 else
21971 last_chain = &per_cu->cu->read_in_chain;
21972
21973 per_cu = next_cu;
21974 }
21975 }
21976
21977 /* Release all extra memory associated with OBJFILE. */
21978
21979 void
21980 dwarf2_free_objfile (struct objfile *objfile)
21981 {
21982 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21983
21984 if (dwarf2_per_objfile == NULL)
21985 return;
21986
21987 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21988 free_cached_comp_units (NULL);
21989
21990 if (dwarf2_per_objfile->quick_file_names_table)
21991 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21992
21993 if (dwarf2_per_objfile->line_header_hash)
21994 htab_delete (dwarf2_per_objfile->line_header_hash);
21995
21996 /* Everything else should be on the objfile obstack. */
21997 }
21998
21999 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22000 We store these in a hash table separate from the DIEs, and preserve them
22001 when the DIEs are flushed out of cache.
22002
22003 The CU "per_cu" pointer is needed because offset alone is not enough to
22004 uniquely identify the type. A file may have multiple .debug_types sections,
22005 or the type may come from a DWO file. Furthermore, while it's more logical
22006 to use per_cu->section+offset, with Fission the section with the data is in
22007 the DWO file but we don't know that section at the point we need it.
22008 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22009 because we can enter the lookup routine, get_die_type_at_offset, from
22010 outside this file, and thus won't necessarily have PER_CU->cu.
22011 Fortunately, PER_CU is stable for the life of the objfile. */
22012
22013 struct dwarf2_per_cu_offset_and_type
22014 {
22015 const struct dwarf2_per_cu_data *per_cu;
22016 sect_offset offset;
22017 struct type *type;
22018 };
22019
22020 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22021
22022 static hashval_t
22023 per_cu_offset_and_type_hash (const void *item)
22024 {
22025 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22026
22027 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22028 }
22029
22030 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22031
22032 static int
22033 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22034 {
22035 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22036 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22037
22038 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22039 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22040 }
22041
22042 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22043 table if necessary. For convenience, return TYPE.
22044
22045 The DIEs reading must have careful ordering to:
22046 * Not cause infite loops trying to read in DIEs as a prerequisite for
22047 reading current DIE.
22048 * Not trying to dereference contents of still incompletely read in types
22049 while reading in other DIEs.
22050 * Enable referencing still incompletely read in types just by a pointer to
22051 the type without accessing its fields.
22052
22053 Therefore caller should follow these rules:
22054 * Try to fetch any prerequisite types we may need to build this DIE type
22055 before building the type and calling set_die_type.
22056 * After building type call set_die_type for current DIE as soon as
22057 possible before fetching more types to complete the current type.
22058 * Make the type as complete as possible before fetching more types. */
22059
22060 static struct type *
22061 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22062 {
22063 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22064 struct objfile *objfile = cu->objfile;
22065 struct attribute *attr;
22066 struct dynamic_prop prop;
22067
22068 /* For Ada types, make sure that the gnat-specific data is always
22069 initialized (if not already set). There are a few types where
22070 we should not be doing so, because the type-specific area is
22071 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22072 where the type-specific area is used to store the floatformat).
22073 But this is not a problem, because the gnat-specific information
22074 is actually not needed for these types. */
22075 if (need_gnat_info (cu)
22076 && TYPE_CODE (type) != TYPE_CODE_FUNC
22077 && TYPE_CODE (type) != TYPE_CODE_FLT
22078 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22079 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22080 && TYPE_CODE (type) != TYPE_CODE_METHOD
22081 && !HAVE_GNAT_AUX_INFO (type))
22082 INIT_GNAT_SPECIFIC (type);
22083
22084 /* Read DW_AT_data_location and set in type. */
22085 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22086 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22087 {
22088 TYPE_DATA_LOCATION (type)
22089 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
22090 *TYPE_DATA_LOCATION (type) = prop;
22091 }
22092
22093 if (dwarf2_per_objfile->die_type_hash == NULL)
22094 {
22095 dwarf2_per_objfile->die_type_hash =
22096 htab_create_alloc_ex (127,
22097 per_cu_offset_and_type_hash,
22098 per_cu_offset_and_type_eq,
22099 NULL,
22100 &objfile->objfile_obstack,
22101 hashtab_obstack_allocate,
22102 dummy_obstack_deallocate);
22103 }
22104
22105 ofs.per_cu = cu->per_cu;
22106 ofs.offset = die->offset;
22107 ofs.type = type;
22108 slot = (struct dwarf2_per_cu_offset_and_type **)
22109 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22110 if (*slot)
22111 complaint (&symfile_complaints,
22112 _("A problem internal to GDB: DIE 0x%x has type already set"),
22113 die->offset.sect_off);
22114 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22115 **slot = ofs;
22116 return type;
22117 }
22118
22119 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22120 or return NULL if the die does not have a saved type. */
22121
22122 static struct type *
22123 get_die_type_at_offset (sect_offset offset,
22124 struct dwarf2_per_cu_data *per_cu)
22125 {
22126 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22127
22128 if (dwarf2_per_objfile->die_type_hash == NULL)
22129 return NULL;
22130
22131 ofs.per_cu = per_cu;
22132 ofs.offset = offset;
22133 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22134 if (slot)
22135 return slot->type;
22136 else
22137 return NULL;
22138 }
22139
22140 /* Look up the type for DIE in CU in die_type_hash,
22141 or return NULL if DIE does not have a saved type. */
22142
22143 static struct type *
22144 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22145 {
22146 return get_die_type_at_offset (die->offset, cu->per_cu);
22147 }
22148
22149 /* Add a dependence relationship from CU to REF_PER_CU. */
22150
22151 static void
22152 dwarf2_add_dependence (struct dwarf2_cu *cu,
22153 struct dwarf2_per_cu_data *ref_per_cu)
22154 {
22155 void **slot;
22156
22157 if (cu->dependencies == NULL)
22158 cu->dependencies
22159 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22160 NULL, &cu->comp_unit_obstack,
22161 hashtab_obstack_allocate,
22162 dummy_obstack_deallocate);
22163
22164 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22165 if (*slot == NULL)
22166 *slot = ref_per_cu;
22167 }
22168
22169 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22170 Set the mark field in every compilation unit in the
22171 cache that we must keep because we are keeping CU. */
22172
22173 static int
22174 dwarf2_mark_helper (void **slot, void *data)
22175 {
22176 struct dwarf2_per_cu_data *per_cu;
22177
22178 per_cu = (struct dwarf2_per_cu_data *) *slot;
22179
22180 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22181 reading of the chain. As such dependencies remain valid it is not much
22182 useful to track and undo them during QUIT cleanups. */
22183 if (per_cu->cu == NULL)
22184 return 1;
22185
22186 if (per_cu->cu->mark)
22187 return 1;
22188 per_cu->cu->mark = 1;
22189
22190 if (per_cu->cu->dependencies != NULL)
22191 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22192
22193 return 1;
22194 }
22195
22196 /* Set the mark field in CU and in every other compilation unit in the
22197 cache that we must keep because we are keeping CU. */
22198
22199 static void
22200 dwarf2_mark (struct dwarf2_cu *cu)
22201 {
22202 if (cu->mark)
22203 return;
22204 cu->mark = 1;
22205 if (cu->dependencies != NULL)
22206 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22207 }
22208
22209 static void
22210 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22211 {
22212 while (per_cu)
22213 {
22214 per_cu->cu->mark = 0;
22215 per_cu = per_cu->cu->read_in_chain;
22216 }
22217 }
22218
22219 /* Trivial hash function for partial_die_info: the hash value of a DIE
22220 is its offset in .debug_info for this objfile. */
22221
22222 static hashval_t
22223 partial_die_hash (const void *item)
22224 {
22225 const struct partial_die_info *part_die = item;
22226
22227 return part_die->offset.sect_off;
22228 }
22229
22230 /* Trivial comparison function for partial_die_info structures: two DIEs
22231 are equal if they have the same offset. */
22232
22233 static int
22234 partial_die_eq (const void *item_lhs, const void *item_rhs)
22235 {
22236 const struct partial_die_info *part_die_lhs = item_lhs;
22237 const struct partial_die_info *part_die_rhs = item_rhs;
22238
22239 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22240 }
22241
22242 static struct cmd_list_element *set_dwarf2_cmdlist;
22243 static struct cmd_list_element *show_dwarf2_cmdlist;
22244
22245 static void
22246 set_dwarf2_cmd (char *args, int from_tty)
22247 {
22248 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22249 gdb_stdout);
22250 }
22251
22252 static void
22253 show_dwarf2_cmd (char *args, int from_tty)
22254 {
22255 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22256 }
22257
22258 /* Free data associated with OBJFILE, if necessary. */
22259
22260 static void
22261 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22262 {
22263 struct dwarf2_per_objfile *data = d;
22264 int ix;
22265
22266 /* Make sure we don't accidentally use dwarf2_per_objfile while
22267 cleaning up. */
22268 dwarf2_per_objfile = NULL;
22269
22270 for (ix = 0; ix < data->n_comp_units; ++ix)
22271 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22272
22273 for (ix = 0; ix < data->n_type_units; ++ix)
22274 VEC_free (dwarf2_per_cu_ptr,
22275 data->all_type_units[ix]->per_cu.imported_symtabs);
22276 xfree (data->all_type_units);
22277
22278 VEC_free (dwarf2_section_info_def, data->types);
22279
22280 if (data->dwo_files)
22281 free_dwo_files (data->dwo_files, objfile);
22282 if (data->dwp_file)
22283 gdb_bfd_unref (data->dwp_file->dbfd);
22284
22285 if (data->dwz_file && data->dwz_file->dwz_bfd)
22286 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22287 }
22288
22289 \f
22290 /* The "save gdb-index" command. */
22291
22292 /* The contents of the hash table we create when building the string
22293 table. */
22294 struct strtab_entry
22295 {
22296 offset_type offset;
22297 const char *str;
22298 };
22299
22300 /* Hash function for a strtab_entry.
22301
22302 Function is used only during write_hash_table so no index format backward
22303 compatibility is needed. */
22304
22305 static hashval_t
22306 hash_strtab_entry (const void *e)
22307 {
22308 const struct strtab_entry *entry = e;
22309 return mapped_index_string_hash (INT_MAX, entry->str);
22310 }
22311
22312 /* Equality function for a strtab_entry. */
22313
22314 static int
22315 eq_strtab_entry (const void *a, const void *b)
22316 {
22317 const struct strtab_entry *ea = a;
22318 const struct strtab_entry *eb = b;
22319 return !strcmp (ea->str, eb->str);
22320 }
22321
22322 /* Create a strtab_entry hash table. */
22323
22324 static htab_t
22325 create_strtab (void)
22326 {
22327 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22328 xfree, xcalloc, xfree);
22329 }
22330
22331 /* Add a string to the constant pool. Return the string's offset in
22332 host order. */
22333
22334 static offset_type
22335 add_string (htab_t table, struct obstack *cpool, const char *str)
22336 {
22337 void **slot;
22338 struct strtab_entry entry;
22339 struct strtab_entry *result;
22340
22341 entry.str = str;
22342 slot = htab_find_slot (table, &entry, INSERT);
22343 if (*slot)
22344 result = *slot;
22345 else
22346 {
22347 result = XNEW (struct strtab_entry);
22348 result->offset = obstack_object_size (cpool);
22349 result->str = str;
22350 obstack_grow_str0 (cpool, str);
22351 *slot = result;
22352 }
22353 return result->offset;
22354 }
22355
22356 /* An entry in the symbol table. */
22357 struct symtab_index_entry
22358 {
22359 /* The name of the symbol. */
22360 const char *name;
22361 /* The offset of the name in the constant pool. */
22362 offset_type index_offset;
22363 /* A sorted vector of the indices of all the CUs that hold an object
22364 of this name. */
22365 VEC (offset_type) *cu_indices;
22366 };
22367
22368 /* The symbol table. This is a power-of-2-sized hash table. */
22369 struct mapped_symtab
22370 {
22371 offset_type n_elements;
22372 offset_type size;
22373 struct symtab_index_entry **data;
22374 };
22375
22376 /* Hash function for a symtab_index_entry. */
22377
22378 static hashval_t
22379 hash_symtab_entry (const void *e)
22380 {
22381 const struct symtab_index_entry *entry = e;
22382 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22383 sizeof (offset_type) * VEC_length (offset_type,
22384 entry->cu_indices),
22385 0);
22386 }
22387
22388 /* Equality function for a symtab_index_entry. */
22389
22390 static int
22391 eq_symtab_entry (const void *a, const void *b)
22392 {
22393 const struct symtab_index_entry *ea = a;
22394 const struct symtab_index_entry *eb = b;
22395 int len = VEC_length (offset_type, ea->cu_indices);
22396 if (len != VEC_length (offset_type, eb->cu_indices))
22397 return 0;
22398 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22399 VEC_address (offset_type, eb->cu_indices),
22400 sizeof (offset_type) * len);
22401 }
22402
22403 /* Destroy a symtab_index_entry. */
22404
22405 static void
22406 delete_symtab_entry (void *p)
22407 {
22408 struct symtab_index_entry *entry = p;
22409 VEC_free (offset_type, entry->cu_indices);
22410 xfree (entry);
22411 }
22412
22413 /* Create a hash table holding symtab_index_entry objects. */
22414
22415 static htab_t
22416 create_symbol_hash_table (void)
22417 {
22418 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22419 delete_symtab_entry, xcalloc, xfree);
22420 }
22421
22422 /* Create a new mapped symtab object. */
22423
22424 static struct mapped_symtab *
22425 create_mapped_symtab (void)
22426 {
22427 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22428 symtab->n_elements = 0;
22429 symtab->size = 1024;
22430 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22431 return symtab;
22432 }
22433
22434 /* Destroy a mapped_symtab. */
22435
22436 static void
22437 cleanup_mapped_symtab (void *p)
22438 {
22439 struct mapped_symtab *symtab = p;
22440 /* The contents of the array are freed when the other hash table is
22441 destroyed. */
22442 xfree (symtab->data);
22443 xfree (symtab);
22444 }
22445
22446 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22447 the slot.
22448
22449 Function is used only during write_hash_table so no index format backward
22450 compatibility is needed. */
22451
22452 static struct symtab_index_entry **
22453 find_slot (struct mapped_symtab *symtab, const char *name)
22454 {
22455 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22456
22457 index = hash & (symtab->size - 1);
22458 step = ((hash * 17) & (symtab->size - 1)) | 1;
22459
22460 for (;;)
22461 {
22462 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22463 return &symtab->data[index];
22464 index = (index + step) & (symtab->size - 1);
22465 }
22466 }
22467
22468 /* Expand SYMTAB's hash table. */
22469
22470 static void
22471 hash_expand (struct mapped_symtab *symtab)
22472 {
22473 offset_type old_size = symtab->size;
22474 offset_type i;
22475 struct symtab_index_entry **old_entries = symtab->data;
22476
22477 symtab->size *= 2;
22478 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22479
22480 for (i = 0; i < old_size; ++i)
22481 {
22482 if (old_entries[i])
22483 {
22484 struct symtab_index_entry **slot = find_slot (symtab,
22485 old_entries[i]->name);
22486 *slot = old_entries[i];
22487 }
22488 }
22489
22490 xfree (old_entries);
22491 }
22492
22493 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22494 CU_INDEX is the index of the CU in which the symbol appears.
22495 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22496
22497 static void
22498 add_index_entry (struct mapped_symtab *symtab, const char *name,
22499 int is_static, gdb_index_symbol_kind kind,
22500 offset_type cu_index)
22501 {
22502 struct symtab_index_entry **slot;
22503 offset_type cu_index_and_attrs;
22504
22505 ++symtab->n_elements;
22506 if (4 * symtab->n_elements / 3 >= symtab->size)
22507 hash_expand (symtab);
22508
22509 slot = find_slot (symtab, name);
22510 if (!*slot)
22511 {
22512 *slot = XNEW (struct symtab_index_entry);
22513 (*slot)->name = name;
22514 /* index_offset is set later. */
22515 (*slot)->cu_indices = NULL;
22516 }
22517
22518 cu_index_and_attrs = 0;
22519 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22520 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22521 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22522
22523 /* We don't want to record an index value twice as we want to avoid the
22524 duplication.
22525 We process all global symbols and then all static symbols
22526 (which would allow us to avoid the duplication by only having to check
22527 the last entry pushed), but a symbol could have multiple kinds in one CU.
22528 To keep things simple we don't worry about the duplication here and
22529 sort and uniqufy the list after we've processed all symbols. */
22530 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22531 }
22532
22533 /* qsort helper routine for uniquify_cu_indices. */
22534
22535 static int
22536 offset_type_compare (const void *ap, const void *bp)
22537 {
22538 offset_type a = *(offset_type *) ap;
22539 offset_type b = *(offset_type *) bp;
22540
22541 return (a > b) - (b > a);
22542 }
22543
22544 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22545
22546 static void
22547 uniquify_cu_indices (struct mapped_symtab *symtab)
22548 {
22549 int i;
22550
22551 for (i = 0; i < symtab->size; ++i)
22552 {
22553 struct symtab_index_entry *entry = symtab->data[i];
22554
22555 if (entry
22556 && entry->cu_indices != NULL)
22557 {
22558 unsigned int next_to_insert, next_to_check;
22559 offset_type last_value;
22560
22561 qsort (VEC_address (offset_type, entry->cu_indices),
22562 VEC_length (offset_type, entry->cu_indices),
22563 sizeof (offset_type), offset_type_compare);
22564
22565 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22566 next_to_insert = 1;
22567 for (next_to_check = 1;
22568 next_to_check < VEC_length (offset_type, entry->cu_indices);
22569 ++next_to_check)
22570 {
22571 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22572 != last_value)
22573 {
22574 last_value = VEC_index (offset_type, entry->cu_indices,
22575 next_to_check);
22576 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22577 last_value);
22578 ++next_to_insert;
22579 }
22580 }
22581 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22582 }
22583 }
22584 }
22585
22586 /* Add a vector of indices to the constant pool. */
22587
22588 static offset_type
22589 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22590 struct symtab_index_entry *entry)
22591 {
22592 void **slot;
22593
22594 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22595 if (!*slot)
22596 {
22597 offset_type len = VEC_length (offset_type, entry->cu_indices);
22598 offset_type val = MAYBE_SWAP (len);
22599 offset_type iter;
22600 int i;
22601
22602 *slot = entry;
22603 entry->index_offset = obstack_object_size (cpool);
22604
22605 obstack_grow (cpool, &val, sizeof (val));
22606 for (i = 0;
22607 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22608 ++i)
22609 {
22610 val = MAYBE_SWAP (iter);
22611 obstack_grow (cpool, &val, sizeof (val));
22612 }
22613 }
22614 else
22615 {
22616 struct symtab_index_entry *old_entry = *slot;
22617 entry->index_offset = old_entry->index_offset;
22618 entry = old_entry;
22619 }
22620 return entry->index_offset;
22621 }
22622
22623 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22624 constant pool entries going into the obstack CPOOL. */
22625
22626 static void
22627 write_hash_table (struct mapped_symtab *symtab,
22628 struct obstack *output, struct obstack *cpool)
22629 {
22630 offset_type i;
22631 htab_t symbol_hash_table;
22632 htab_t str_table;
22633
22634 symbol_hash_table = create_symbol_hash_table ();
22635 str_table = create_strtab ();
22636
22637 /* We add all the index vectors to the constant pool first, to
22638 ensure alignment is ok. */
22639 for (i = 0; i < symtab->size; ++i)
22640 {
22641 if (symtab->data[i])
22642 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22643 }
22644
22645 /* Now write out the hash table. */
22646 for (i = 0; i < symtab->size; ++i)
22647 {
22648 offset_type str_off, vec_off;
22649
22650 if (symtab->data[i])
22651 {
22652 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22653 vec_off = symtab->data[i]->index_offset;
22654 }
22655 else
22656 {
22657 /* While 0 is a valid constant pool index, it is not valid
22658 to have 0 for both offsets. */
22659 str_off = 0;
22660 vec_off = 0;
22661 }
22662
22663 str_off = MAYBE_SWAP (str_off);
22664 vec_off = MAYBE_SWAP (vec_off);
22665
22666 obstack_grow (output, &str_off, sizeof (str_off));
22667 obstack_grow (output, &vec_off, sizeof (vec_off));
22668 }
22669
22670 htab_delete (str_table);
22671 htab_delete (symbol_hash_table);
22672 }
22673
22674 /* Struct to map psymtab to CU index in the index file. */
22675 struct psymtab_cu_index_map
22676 {
22677 struct partial_symtab *psymtab;
22678 unsigned int cu_index;
22679 };
22680
22681 static hashval_t
22682 hash_psymtab_cu_index (const void *item)
22683 {
22684 const struct psymtab_cu_index_map *map = item;
22685
22686 return htab_hash_pointer (map->psymtab);
22687 }
22688
22689 static int
22690 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22691 {
22692 const struct psymtab_cu_index_map *lhs = item_lhs;
22693 const struct psymtab_cu_index_map *rhs = item_rhs;
22694
22695 return lhs->psymtab == rhs->psymtab;
22696 }
22697
22698 /* Helper struct for building the address table. */
22699 struct addrmap_index_data
22700 {
22701 struct objfile *objfile;
22702 struct obstack *addr_obstack;
22703 htab_t cu_index_htab;
22704
22705 /* Non-zero if the previous_* fields are valid.
22706 We can't write an entry until we see the next entry (since it is only then
22707 that we know the end of the entry). */
22708 int previous_valid;
22709 /* Index of the CU in the table of all CUs in the index file. */
22710 unsigned int previous_cu_index;
22711 /* Start address of the CU. */
22712 CORE_ADDR previous_cu_start;
22713 };
22714
22715 /* Write an address entry to OBSTACK. */
22716
22717 static void
22718 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22719 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22720 {
22721 offset_type cu_index_to_write;
22722 gdb_byte addr[8];
22723 CORE_ADDR baseaddr;
22724
22725 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22726
22727 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22728 obstack_grow (obstack, addr, 8);
22729 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22730 obstack_grow (obstack, addr, 8);
22731 cu_index_to_write = MAYBE_SWAP (cu_index);
22732 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22733 }
22734
22735 /* Worker function for traversing an addrmap to build the address table. */
22736
22737 static int
22738 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22739 {
22740 struct addrmap_index_data *data = datap;
22741 struct partial_symtab *pst = obj;
22742
22743 if (data->previous_valid)
22744 add_address_entry (data->objfile, data->addr_obstack,
22745 data->previous_cu_start, start_addr,
22746 data->previous_cu_index);
22747
22748 data->previous_cu_start = start_addr;
22749 if (pst != NULL)
22750 {
22751 struct psymtab_cu_index_map find_map, *map;
22752 find_map.psymtab = pst;
22753 map = htab_find (data->cu_index_htab, &find_map);
22754 gdb_assert (map != NULL);
22755 data->previous_cu_index = map->cu_index;
22756 data->previous_valid = 1;
22757 }
22758 else
22759 data->previous_valid = 0;
22760
22761 return 0;
22762 }
22763
22764 /* Write OBJFILE's address map to OBSTACK.
22765 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22766 in the index file. */
22767
22768 static void
22769 write_address_map (struct objfile *objfile, struct obstack *obstack,
22770 htab_t cu_index_htab)
22771 {
22772 struct addrmap_index_data addrmap_index_data;
22773
22774 /* When writing the address table, we have to cope with the fact that
22775 the addrmap iterator only provides the start of a region; we have to
22776 wait until the next invocation to get the start of the next region. */
22777
22778 addrmap_index_data.objfile = objfile;
22779 addrmap_index_data.addr_obstack = obstack;
22780 addrmap_index_data.cu_index_htab = cu_index_htab;
22781 addrmap_index_data.previous_valid = 0;
22782
22783 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22784 &addrmap_index_data);
22785
22786 /* It's highly unlikely the last entry (end address = 0xff...ff)
22787 is valid, but we should still handle it.
22788 The end address is recorded as the start of the next region, but that
22789 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22790 anyway. */
22791 if (addrmap_index_data.previous_valid)
22792 add_address_entry (objfile, obstack,
22793 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22794 addrmap_index_data.previous_cu_index);
22795 }
22796
22797 /* Return the symbol kind of PSYM. */
22798
22799 static gdb_index_symbol_kind
22800 symbol_kind (struct partial_symbol *psym)
22801 {
22802 domain_enum domain = PSYMBOL_DOMAIN (psym);
22803 enum address_class aclass = PSYMBOL_CLASS (psym);
22804
22805 switch (domain)
22806 {
22807 case VAR_DOMAIN:
22808 switch (aclass)
22809 {
22810 case LOC_BLOCK:
22811 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22812 case LOC_TYPEDEF:
22813 return GDB_INDEX_SYMBOL_KIND_TYPE;
22814 case LOC_COMPUTED:
22815 case LOC_CONST_BYTES:
22816 case LOC_OPTIMIZED_OUT:
22817 case LOC_STATIC:
22818 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22819 case LOC_CONST:
22820 /* Note: It's currently impossible to recognize psyms as enum values
22821 short of reading the type info. For now punt. */
22822 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22823 default:
22824 /* There are other LOC_FOO values that one might want to classify
22825 as variables, but dwarf2read.c doesn't currently use them. */
22826 return GDB_INDEX_SYMBOL_KIND_OTHER;
22827 }
22828 case STRUCT_DOMAIN:
22829 return GDB_INDEX_SYMBOL_KIND_TYPE;
22830 default:
22831 return GDB_INDEX_SYMBOL_KIND_OTHER;
22832 }
22833 }
22834
22835 /* Add a list of partial symbols to SYMTAB. */
22836
22837 static void
22838 write_psymbols (struct mapped_symtab *symtab,
22839 htab_t psyms_seen,
22840 struct partial_symbol **psymp,
22841 int count,
22842 offset_type cu_index,
22843 int is_static)
22844 {
22845 for (; count-- > 0; ++psymp)
22846 {
22847 struct partial_symbol *psym = *psymp;
22848 void **slot;
22849
22850 if (SYMBOL_LANGUAGE (psym) == language_ada)
22851 error (_("Ada is not currently supported by the index"));
22852
22853 /* Only add a given psymbol once. */
22854 slot = htab_find_slot (psyms_seen, psym, INSERT);
22855 if (!*slot)
22856 {
22857 gdb_index_symbol_kind kind = symbol_kind (psym);
22858
22859 *slot = psym;
22860 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22861 is_static, kind, cu_index);
22862 }
22863 }
22864 }
22865
22866 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22867 exception if there is an error. */
22868
22869 static void
22870 write_obstack (FILE *file, struct obstack *obstack)
22871 {
22872 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22873 file)
22874 != obstack_object_size (obstack))
22875 error (_("couldn't data write to file"));
22876 }
22877
22878 /* Unlink a file if the argument is not NULL. */
22879
22880 static void
22881 unlink_if_set (void *p)
22882 {
22883 char **filename = p;
22884 if (*filename)
22885 unlink (*filename);
22886 }
22887
22888 /* A helper struct used when iterating over debug_types. */
22889 struct signatured_type_index_data
22890 {
22891 struct objfile *objfile;
22892 struct mapped_symtab *symtab;
22893 struct obstack *types_list;
22894 htab_t psyms_seen;
22895 int cu_index;
22896 };
22897
22898 /* A helper function that writes a single signatured_type to an
22899 obstack. */
22900
22901 static int
22902 write_one_signatured_type (void **slot, void *d)
22903 {
22904 struct signatured_type_index_data *info = d;
22905 struct signatured_type *entry = (struct signatured_type *) *slot;
22906 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22907 gdb_byte val[8];
22908
22909 write_psymbols (info->symtab,
22910 info->psyms_seen,
22911 info->objfile->global_psymbols.list
22912 + psymtab->globals_offset,
22913 psymtab->n_global_syms, info->cu_index,
22914 0);
22915 write_psymbols (info->symtab,
22916 info->psyms_seen,
22917 info->objfile->static_psymbols.list
22918 + psymtab->statics_offset,
22919 psymtab->n_static_syms, info->cu_index,
22920 1);
22921
22922 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22923 entry->per_cu.offset.sect_off);
22924 obstack_grow (info->types_list, val, 8);
22925 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22926 entry->type_offset_in_tu.cu_off);
22927 obstack_grow (info->types_list, val, 8);
22928 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22929 obstack_grow (info->types_list, val, 8);
22930
22931 ++info->cu_index;
22932
22933 return 1;
22934 }
22935
22936 /* Recurse into all "included" dependencies and write their symbols as
22937 if they appeared in this psymtab. */
22938
22939 static void
22940 recursively_write_psymbols (struct objfile *objfile,
22941 struct partial_symtab *psymtab,
22942 struct mapped_symtab *symtab,
22943 htab_t psyms_seen,
22944 offset_type cu_index)
22945 {
22946 int i;
22947
22948 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22949 if (psymtab->dependencies[i]->user != NULL)
22950 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22951 symtab, psyms_seen, cu_index);
22952
22953 write_psymbols (symtab,
22954 psyms_seen,
22955 objfile->global_psymbols.list + psymtab->globals_offset,
22956 psymtab->n_global_syms, cu_index,
22957 0);
22958 write_psymbols (symtab,
22959 psyms_seen,
22960 objfile->static_psymbols.list + psymtab->statics_offset,
22961 psymtab->n_static_syms, cu_index,
22962 1);
22963 }
22964
22965 /* Create an index file for OBJFILE in the directory DIR. */
22966
22967 static void
22968 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22969 {
22970 struct cleanup *cleanup;
22971 char *filename, *cleanup_filename;
22972 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22973 struct obstack cu_list, types_cu_list;
22974 int i;
22975 FILE *out_file;
22976 struct mapped_symtab *symtab;
22977 offset_type val, size_of_contents, total_len;
22978 struct stat st;
22979 htab_t psyms_seen;
22980 htab_t cu_index_htab;
22981 struct psymtab_cu_index_map *psymtab_cu_index_map;
22982
22983 if (dwarf2_per_objfile->using_index)
22984 error (_("Cannot use an index to create the index"));
22985
22986 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22987 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22988
22989 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22990 return;
22991
22992 if (stat (objfile_name (objfile), &st) < 0)
22993 perror_with_name (objfile_name (objfile));
22994
22995 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22996 INDEX_SUFFIX, (char *) NULL);
22997 cleanup = make_cleanup (xfree, filename);
22998
22999 out_file = gdb_fopen_cloexec (filename, "wb");
23000 if (!out_file)
23001 error (_("Can't open `%s' for writing"), filename);
23002
23003 cleanup_filename = filename;
23004 make_cleanup (unlink_if_set, &cleanup_filename);
23005
23006 symtab = create_mapped_symtab ();
23007 make_cleanup (cleanup_mapped_symtab, symtab);
23008
23009 obstack_init (&addr_obstack);
23010 make_cleanup_obstack_free (&addr_obstack);
23011
23012 obstack_init (&cu_list);
23013 make_cleanup_obstack_free (&cu_list);
23014
23015 obstack_init (&types_cu_list);
23016 make_cleanup_obstack_free (&types_cu_list);
23017
23018 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23019 NULL, xcalloc, xfree);
23020 make_cleanup_htab_delete (psyms_seen);
23021
23022 /* While we're scanning CU's create a table that maps a psymtab pointer
23023 (which is what addrmap records) to its index (which is what is recorded
23024 in the index file). This will later be needed to write the address
23025 table. */
23026 cu_index_htab = htab_create_alloc (100,
23027 hash_psymtab_cu_index,
23028 eq_psymtab_cu_index,
23029 NULL, xcalloc, xfree);
23030 make_cleanup_htab_delete (cu_index_htab);
23031 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23032 xmalloc (sizeof (struct psymtab_cu_index_map)
23033 * dwarf2_per_objfile->n_comp_units);
23034 make_cleanup (xfree, psymtab_cu_index_map);
23035
23036 /* The CU list is already sorted, so we don't need to do additional
23037 work here. Also, the debug_types entries do not appear in
23038 all_comp_units, but only in their own hash table. */
23039 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23040 {
23041 struct dwarf2_per_cu_data *per_cu
23042 = dwarf2_per_objfile->all_comp_units[i];
23043 struct partial_symtab *psymtab = per_cu->v.psymtab;
23044 gdb_byte val[8];
23045 struct psymtab_cu_index_map *map;
23046 void **slot;
23047
23048 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23049 It may be referenced from a local scope but in such case it does not
23050 need to be present in .gdb_index. */
23051 if (psymtab == NULL)
23052 continue;
23053
23054 if (psymtab->user == NULL)
23055 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23056
23057 map = &psymtab_cu_index_map[i];
23058 map->psymtab = psymtab;
23059 map->cu_index = i;
23060 slot = htab_find_slot (cu_index_htab, map, INSERT);
23061 gdb_assert (slot != NULL);
23062 gdb_assert (*slot == NULL);
23063 *slot = map;
23064
23065 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23066 per_cu->offset.sect_off);
23067 obstack_grow (&cu_list, val, 8);
23068 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23069 obstack_grow (&cu_list, val, 8);
23070 }
23071
23072 /* Dump the address map. */
23073 write_address_map (objfile, &addr_obstack, cu_index_htab);
23074
23075 /* Write out the .debug_type entries, if any. */
23076 if (dwarf2_per_objfile->signatured_types)
23077 {
23078 struct signatured_type_index_data sig_data;
23079
23080 sig_data.objfile = objfile;
23081 sig_data.symtab = symtab;
23082 sig_data.types_list = &types_cu_list;
23083 sig_data.psyms_seen = psyms_seen;
23084 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23085 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23086 write_one_signatured_type, &sig_data);
23087 }
23088
23089 /* Now that we've processed all symbols we can shrink their cu_indices
23090 lists. */
23091 uniquify_cu_indices (symtab);
23092
23093 obstack_init (&constant_pool);
23094 make_cleanup_obstack_free (&constant_pool);
23095 obstack_init (&symtab_obstack);
23096 make_cleanup_obstack_free (&symtab_obstack);
23097 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23098
23099 obstack_init (&contents);
23100 make_cleanup_obstack_free (&contents);
23101 size_of_contents = 6 * sizeof (offset_type);
23102 total_len = size_of_contents;
23103
23104 /* The version number. */
23105 val = MAYBE_SWAP (8);
23106 obstack_grow (&contents, &val, sizeof (val));
23107
23108 /* The offset of the CU list from the start of the file. */
23109 val = MAYBE_SWAP (total_len);
23110 obstack_grow (&contents, &val, sizeof (val));
23111 total_len += obstack_object_size (&cu_list);
23112
23113 /* The offset of the types CU list from the start of the file. */
23114 val = MAYBE_SWAP (total_len);
23115 obstack_grow (&contents, &val, sizeof (val));
23116 total_len += obstack_object_size (&types_cu_list);
23117
23118 /* The offset of the address table from the start of the file. */
23119 val = MAYBE_SWAP (total_len);
23120 obstack_grow (&contents, &val, sizeof (val));
23121 total_len += obstack_object_size (&addr_obstack);
23122
23123 /* The offset of the symbol table from the start of the file. */
23124 val = MAYBE_SWAP (total_len);
23125 obstack_grow (&contents, &val, sizeof (val));
23126 total_len += obstack_object_size (&symtab_obstack);
23127
23128 /* The offset of the constant pool from the start of the file. */
23129 val = MAYBE_SWAP (total_len);
23130 obstack_grow (&contents, &val, sizeof (val));
23131 total_len += obstack_object_size (&constant_pool);
23132
23133 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23134
23135 write_obstack (out_file, &contents);
23136 write_obstack (out_file, &cu_list);
23137 write_obstack (out_file, &types_cu_list);
23138 write_obstack (out_file, &addr_obstack);
23139 write_obstack (out_file, &symtab_obstack);
23140 write_obstack (out_file, &constant_pool);
23141
23142 fclose (out_file);
23143
23144 /* We want to keep the file, so we set cleanup_filename to NULL
23145 here. See unlink_if_set. */
23146 cleanup_filename = NULL;
23147
23148 do_cleanups (cleanup);
23149 }
23150
23151 /* Implementation of the `save gdb-index' command.
23152
23153 Note that the file format used by this command is documented in the
23154 GDB manual. Any changes here must be documented there. */
23155
23156 static void
23157 save_gdb_index_command (char *arg, int from_tty)
23158 {
23159 struct objfile *objfile;
23160
23161 if (!arg || !*arg)
23162 error (_("usage: save gdb-index DIRECTORY"));
23163
23164 ALL_OBJFILES (objfile)
23165 {
23166 struct stat st;
23167
23168 /* If the objfile does not correspond to an actual file, skip it. */
23169 if (stat (objfile_name (objfile), &st) < 0)
23170 continue;
23171
23172 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23173 if (dwarf2_per_objfile)
23174 {
23175 volatile struct gdb_exception except;
23176
23177 TRY_CATCH (except, RETURN_MASK_ERROR)
23178 {
23179 write_psymtabs_to_index (objfile, arg);
23180 }
23181 if (except.reason < 0)
23182 exception_fprintf (gdb_stderr, except,
23183 _("Error while writing index for `%s': "),
23184 objfile_name (objfile));
23185 }
23186 }
23187 }
23188
23189 \f
23190
23191 int dwarf2_always_disassemble;
23192
23193 static void
23194 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23195 struct cmd_list_element *c, const char *value)
23196 {
23197 fprintf_filtered (file,
23198 _("Whether to always disassemble "
23199 "DWARF expressions is %s.\n"),
23200 value);
23201 }
23202
23203 static void
23204 show_check_physname (struct ui_file *file, int from_tty,
23205 struct cmd_list_element *c, const char *value)
23206 {
23207 fprintf_filtered (file,
23208 _("Whether to check \"physname\" is %s.\n"),
23209 value);
23210 }
23211
23212 void _initialize_dwarf2_read (void);
23213
23214 void
23215 _initialize_dwarf2_read (void)
23216 {
23217 struct cmd_list_element *c;
23218
23219 dwarf2_objfile_data_key
23220 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23221
23222 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23223 Set DWARF 2 specific variables.\n\
23224 Configure DWARF 2 variables such as the cache size"),
23225 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23226 0/*allow-unknown*/, &maintenance_set_cmdlist);
23227
23228 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23229 Show DWARF 2 specific variables\n\
23230 Show DWARF 2 variables such as the cache size"),
23231 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23232 0/*allow-unknown*/, &maintenance_show_cmdlist);
23233
23234 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23235 &dwarf2_max_cache_age, _("\
23236 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23237 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23238 A higher limit means that cached compilation units will be stored\n\
23239 in memory longer, and more total memory will be used. Zero disables\n\
23240 caching, which can slow down startup."),
23241 NULL,
23242 show_dwarf2_max_cache_age,
23243 &set_dwarf2_cmdlist,
23244 &show_dwarf2_cmdlist);
23245
23246 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23247 &dwarf2_always_disassemble, _("\
23248 Set whether `info address' always disassembles DWARF expressions."), _("\
23249 Show whether `info address' always disassembles DWARF expressions."), _("\
23250 When enabled, DWARF expressions are always printed in an assembly-like\n\
23251 syntax. When disabled, expressions will be printed in a more\n\
23252 conversational style, when possible."),
23253 NULL,
23254 show_dwarf2_always_disassemble,
23255 &set_dwarf2_cmdlist,
23256 &show_dwarf2_cmdlist);
23257
23258 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23259 Set debugging of the dwarf2 reader."), _("\
23260 Show debugging of the dwarf2 reader."), _("\
23261 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23262 reading and symtab expansion. A value of 1 (one) provides basic\n\
23263 information. A value greater than 1 provides more verbose information."),
23264 NULL,
23265 NULL,
23266 &setdebuglist, &showdebuglist);
23267
23268 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23269 Set debugging of the dwarf2 DIE reader."), _("\
23270 Show debugging of the dwarf2 DIE reader."), _("\
23271 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23272 The value is the maximum depth to print."),
23273 NULL,
23274 NULL,
23275 &setdebuglist, &showdebuglist);
23276
23277 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23278 Set cross-checking of \"physname\" code against demangler."), _("\
23279 Show cross-checking of \"physname\" code against demangler."), _("\
23280 When enabled, GDB's internal \"physname\" code is checked against\n\
23281 the demangler."),
23282 NULL, show_check_physname,
23283 &setdebuglist, &showdebuglist);
23284
23285 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23286 no_class, &use_deprecated_index_sections, _("\
23287 Set whether to use deprecated gdb_index sections."), _("\
23288 Show whether to use deprecated gdb_index sections."), _("\
23289 When enabled, deprecated .gdb_index sections are used anyway.\n\
23290 Normally they are ignored either because of a missing feature or\n\
23291 performance issue.\n\
23292 Warning: This option must be enabled before gdb reads the file."),
23293 NULL,
23294 NULL,
23295 &setlist, &showlist);
23296
23297 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23298 _("\
23299 Save a gdb-index file.\n\
23300 Usage: save gdb-index DIRECTORY"),
23301 &save_cmdlist);
23302 set_cmd_completer (c, filename_completer);
23303
23304 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23305 &dwarf2_locexpr_funcs);
23306 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23307 &dwarf2_loclist_funcs);
23308
23309 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23310 &dwarf2_block_frame_base_locexpr_funcs);
23311 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23312 &dwarf2_block_frame_base_loclist_funcs);
23313 }
This page took 0.550865 seconds and 4 git commands to generate.