[gdbserver] Don't assume vCont;r ADDR1,ADDR2 comes with a ptid attached.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
564 struct dwarf2_section_info *section;
565
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
568 struct dwarf2_cu *cu;
569
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
580 or NULL for unread partial units. */
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
586
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
605 };
606
607 /* Entry in the signatured_types hash table. */
608
609 struct signatured_type
610 {
611 /* The "per_cu" object of this type.
612 This struct is used iff per_cu.is_debug_types.
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
617 /* The type's signature. */
618 ULONGEST signature;
619
620 /* Offset in the TU of the type's DIE, as read from the TU header.
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
644 };
645
646 typedef struct signatured_type *sig_type_ptr;
647 DEF_VEC_P (sig_type_ptr);
648
649 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652 struct stmt_list_hash
653 {
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659 };
660
661 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664 struct type_unit_group
665 {
666 /* dwarf2read.c's main "handle" on a TU symtab.
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
671 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
672 struct dwarf2_per_cu_data per_cu;
673
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
678
679 /* The primary symtab.
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
682 struct symtab *primary_symtab;
683
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700 };
701
702 /* These sections are what may appear in a DWO file. */
703
704 struct dwo_sections
705 {
706 struct dwarf2_section_info abbrev;
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
715 VEC (dwarf2_section_info_def) *types;
716 };
717
718 /* CUs/TUs in DWP/DWO files. */
719
720 struct dwo_unit
721 {
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
731 struct dwarf2_section_info *section;
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739 };
740
741 /* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
744
745 struct dwo_file
746 {
747 /* The DW_AT_GNU_dwo_name attribute.
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
755
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773 };
774
775 /* These sections are what may appear in a DWP file. */
776
777 struct dwp_sections
778 {
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784 };
785
786 /* These sections are what may appear in a virtual DWO file. */
787
788 struct virtual_dwo_sections
789 {
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
797 That is recorded here, and copied to dwo_unit.section. */
798 struct dwarf2_section_info info_or_types;
799 };
800
801 /* Contents of DWP hash tables. */
802
803 struct dwp_hash_table
804 {
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* The bfd, when the file is open. Otherwise this is NULL. */
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834 };
835
836 /* This represents a '.dwz' file. */
837
838 struct dwz_file
839 {
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
846 struct dwarf2_section_info gdb_index;
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850 };
851
852 /* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
855 struct exists to abstract away the constant parameters of die reading. */
856
857 struct die_reader_specs
858 {
859 /* die_section->asection->owner. */
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
866 struct dwo_file *dwo_file;
867
868 /* The section the die comes from.
869 This is either .debug_info or .debug_types, or the .dwo variants. */
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
873 const gdb_byte *buffer;
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880 };
881
882 /* Type of function passed to init_cutu_and_read_dies, et.al. */
883 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
884 const gdb_byte *info_ptr,
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
889 /* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892 struct line_header
893 {
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
898 unsigned char maximum_ops_per_instruction;
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
915 const char **include_dirs;
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
922 {
923 const char *name;
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
927 int included_p; /* Non-zero if referenced by the Line Number Program. */
928 struct symtab *symtab; /* The associated symbol table, if any. */
929 } *file_names;
930
931 /* The start and end of the statement program following this
932 header. These point into dwarf2_per_objfile->line_buffer. */
933 const gdb_byte *statement_program_start, *statement_program_end;
934 };
935
936 /* When we construct a partial symbol table entry we only
937 need this much information. */
938 struct partial_die_info
939 {
940 /* Offset of this DIE. */
941 sect_offset offset;
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
953 unsigned int may_be_inlined : 1;
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
974 /* The name of this DIE. Normally the value of DW_AT_name, but
975 sometimes a default name for unnamed DIEs. */
976 const char *name;
977
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
984 const char *scope;
985
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
999
1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1001 DW_AT_sibling, if any. */
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
1004 const gdb_byte *sibling;
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
1009 sect_offset spec_offset;
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
1014 };
1015
1016 /* This data structure holds the information of an abbrev. */
1017 struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027 struct attr_abbrev
1028 {
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
1031 };
1032
1033 /* Size of abbrev_table.abbrev_hash_table. */
1034 #define ABBREV_HASH_SIZE 121
1035
1036 /* Top level data structure to contain an abbreviation table. */
1037
1038 struct abbrev_table
1039 {
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052 };
1053
1054 /* Attributes have a name and a value. */
1055 struct attribute
1056 {
1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
1065 union
1066 {
1067 const char *str;
1068 struct dwarf_block *blk;
1069 ULONGEST unsnd;
1070 LONGEST snd;
1071 CORE_ADDR addr;
1072 ULONGEST signature;
1073 }
1074 u;
1075 };
1076
1077 /* This data structure holds a complete die structure. */
1078 struct die_info
1079 {
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
1093 /* Offset in .debug_info or .debug_types section. */
1094 sect_offset offset;
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
1099 together via their SIBLING fields. */
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
1103
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
1108 };
1109
1110 /* Get at parts of an attribute structure. */
1111
1112 #define DW_STRING(attr) ((attr)->u.str)
1113 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1114 #define DW_UNSND(attr) ((attr)->u.unsnd)
1115 #define DW_BLOCK(attr) ((attr)->u.blk)
1116 #define DW_SND(attr) ((attr)->u.snd)
1117 #define DW_ADDR(attr) ((attr)->u.addr)
1118 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1119
1120 /* Blocks are a bunch of untyped bytes. */
1121 struct dwarf_block
1122 {
1123 size_t size;
1124
1125 /* Valid only if SIZE is not zero. */
1126 const gdb_byte *data;
1127 };
1128
1129 #ifndef ATTR_ALLOC_CHUNK
1130 #define ATTR_ALLOC_CHUNK 4
1131 #endif
1132
1133 /* Allocate fields for structs, unions and enums in this size. */
1134 #ifndef DW_FIELD_ALLOC_CHUNK
1135 #define DW_FIELD_ALLOC_CHUNK 4
1136 #endif
1137
1138 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141 static int bits_per_byte = 8;
1142
1143 /* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146 struct field_info
1147 {
1148 /* List of data member and baseclasses fields. */
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
1156 *fields, *baseclasses;
1157
1158 /* Number of fields (including baseclasses). */
1159 int nfields;
1160
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
1163
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
1166
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
1175
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
1181 const char *name;
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
1186
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
1199 };
1200
1201 /* One item on the queue of compilation units to read in full symbols
1202 for. */
1203 struct dwarf2_queue_item
1204 {
1205 struct dwarf2_per_cu_data *per_cu;
1206 enum language pretend_language;
1207 struct dwarf2_queue_item *next;
1208 };
1209
1210 /* The current queue. */
1211 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
1213 /* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218 static int dwarf2_max_cache_age = 5;
1219 static void
1220 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222 {
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
1225 value);
1226 }
1227
1228
1229 /* Various complaints about symbol reading that don't abort the process. */
1230
1231 static void
1232 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1233 {
1234 complaint (&symfile_complaints,
1235 _("statement list doesn't fit in .debug_line section"));
1236 }
1237
1238 static void
1239 dwarf2_debug_line_missing_file_complaint (void)
1240 {
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243 }
1244
1245 static void
1246 dwarf2_debug_line_missing_end_sequence_complaint (void)
1247 {
1248 complaint (&symfile_complaints,
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
1251 }
1252
1253 static void
1254 dwarf2_complex_location_expr_complaint (void)
1255 {
1256 complaint (&symfile_complaints, _("location expression too complex"));
1257 }
1258
1259 static void
1260 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
1262 {
1263 complaint (&symfile_complaints,
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
1266 }
1267
1268 static void
1269 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1270 {
1271 complaint (&symfile_complaints,
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
1276 }
1277
1278 static void
1279 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1280 {
1281 complaint (&symfile_complaints,
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
1284 arg1);
1285 }
1286
1287 static void
1288 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1289 {
1290 complaint (&symfile_complaints,
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
1293 }
1294
1295 /* local function prototypes */
1296
1297 static void dwarf2_locate_sections (bfd *, asection *, void *);
1298
1299 static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
1302 static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
1305 static void dwarf2_build_psymtabs_hard (struct objfile *);
1306
1307 static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
1309 int, struct dwarf2_cu *);
1310
1311 static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
1314 static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1316 int need_pc, struct dwarf2_cu *cu);
1317
1318 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
1322 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
1324
1325 static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1327 int need_pc, struct dwarf2_cu *cu);
1328
1329 static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
1331
1332 static void psymtab_to_symtab_1 (struct partial_symtab *);
1333
1334 static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337 static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340 static void abbrev_table_free (struct abbrev_table *);
1341
1342 static void abbrev_table_free_cleanup (void *);
1343
1344 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
1346
1347 static void dwarf2_free_abbrev_table (void *);
1348
1349 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1350
1351 static struct partial_die_info *load_partial_dies
1352 (const struct die_reader_specs *, const gdb_byte *, int);
1353
1354 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
1359
1360 static struct partial_die_info *find_partial_die (sect_offset, int,
1361 struct dwarf2_cu *);
1362
1363 static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
1366 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
1369
1370 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1371
1372 static int read_1_signed_byte (bfd *, const gdb_byte *);
1373
1374 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1375
1376 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1377
1378 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1379
1380 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1381 unsigned int *);
1382
1383 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1384
1385 static LONGEST read_checked_initial_length_and_offset
1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1387 unsigned int *, unsigned int *);
1388
1389 static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
1391 unsigned int *);
1392
1393 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1394
1395 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
1398 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1399
1400 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1401
1402 static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
1405
1406 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1407
1408 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1409
1410 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
1414 unsigned int *);
1415
1416 static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
1418
1419 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1420
1421 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
1423
1424 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1425 unsigned int);
1426
1427 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
1430 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1431
1432 static struct die_info *die_specification (struct die_info *die,
1433 struct dwarf2_cu **);
1434
1435 static void free_line_header (struct line_header *lh);
1436
1437 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
1439
1440 static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
1443
1444 static void dwarf2_start_subfile (const char *, const char *, const char *);
1445
1446 static void dwarf2_start_symtab (struct dwarf2_cu *,
1447 const char *, const char *, CORE_ADDR);
1448
1449 static struct symbol *new_symbol (struct die_info *, struct type *,
1450 struct dwarf2_cu *);
1451
1452 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
1455 static void dwarf2_const_value (struct attribute *, struct symbol *,
1456 struct dwarf2_cu *);
1457
1458 static void dwarf2_const_value_attr (struct attribute *attr,
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
1462 struct dwarf2_cu *cu, LONGEST *value,
1463 const gdb_byte **bytes,
1464 struct dwarf2_locexpr_baton **baton);
1465
1466 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1467
1468 static int need_gnat_info (struct dwarf2_cu *);
1469
1470 static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
1472
1473 static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
1476 static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
1478
1479 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1480 struct dwarf2_cu *);
1481
1482 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1483
1484 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
1486 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1487
1488 static char *typename_concat (struct obstack *obs, const char *prefix,
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
1491
1492 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1493
1494 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
1496 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1497
1498 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1499
1500 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
1502 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
1505 static int dwarf2_get_pc_bounds (struct die_info *,
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
1508
1509 static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
1513 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
1516 static void dwarf2_add_field (struct field_info *, struct die_info *,
1517 struct dwarf2_cu *);
1518
1519 static void dwarf2_attach_fields_to_type (struct field_info *,
1520 struct type *, struct dwarf2_cu *);
1521
1522 static void dwarf2_add_member_fn (struct field_info *,
1523 struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1527 struct type *,
1528 struct dwarf2_cu *);
1529
1530 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1531
1532 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1533
1534 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1535
1536 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
1538 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
1540 static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
1543 static const char *namespace_name (struct die_info *die,
1544 int *is_anonymous, struct dwarf2_cu *);
1545
1546 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1547
1548 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1549
1550 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct die_info *read_die_and_siblings_1
1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1555 struct die_info *);
1556
1557 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
1560 struct die_info *parent);
1561
1562 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
1565
1566 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
1569
1570 static void process_die (struct die_info *, struct dwarf2_cu *);
1571
1572 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
1574
1575 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1576
1577 static const char *dwarf2_full_name (const char *name,
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
1581 static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
1584 static struct die_info *dwarf2_extension (struct die_info *die,
1585 struct dwarf2_cu **);
1586
1587 static const char *dwarf_tag_name (unsigned int);
1588
1589 static const char *dwarf_attr_name (unsigned int);
1590
1591 static const char *dwarf_form_name (unsigned int);
1592
1593 static char *dwarf_bool_name (unsigned int);
1594
1595 static const char *dwarf_type_encoding_name (unsigned int);
1596
1597 static struct die_info *sibling_die (struct die_info *);
1598
1599 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601 static void dump_die_for_error (struct die_info *);
1602
1603 static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
1605
1606 /*static*/ void dump_die (struct die_info *, int max_level);
1607
1608 static void store_in_ref_table (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static int is_ref_attr (struct attribute *);
1612
1613 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1614
1615 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1616
1617 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1618 struct attribute *,
1619 struct dwarf2_cu **);
1620
1621 static struct die_info *follow_die_ref (struct die_info *,
1622 struct attribute *,
1623 struct dwarf2_cu **);
1624
1625 static struct die_info *follow_die_sig (struct die_info *,
1626 struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1630 struct dwarf2_cu *);
1631
1632 static struct type *get_DW_AT_signature_type (struct die_info *,
1633 struct attribute *,
1634 struct dwarf2_cu *);
1635
1636 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1637
1638 static void read_signatured_type (struct signatured_type *);
1639
1640 static struct type_unit_group *get_type_unit_group
1641 (struct dwarf2_cu *, struct attribute *);
1642
1643 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1644
1645 /* memory allocation interface */
1646
1647 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1648
1649 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1650
1651 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1652 const char *, int);
1653
1654 static int attr_form_is_block (struct attribute *);
1655
1656 static int attr_form_is_section_offset (struct attribute *);
1657
1658 static int attr_form_is_constant (struct attribute *);
1659
1660 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
1662 struct attribute *attr);
1663
1664 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1665 struct symbol *sym,
1666 struct dwarf2_cu *cu,
1667 int is_block);
1668
1669 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
1672
1673 static void free_stack_comp_unit (void *);
1674
1675 static hashval_t partial_die_hash (const void *item);
1676
1677 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
1679 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1681
1682 static void init_one_comp_unit (struct dwarf2_cu *cu,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
1688
1689 static void free_heap_comp_unit (void *);
1690
1691 static void free_cached_comp_units (void *);
1692
1693 static void age_cached_comp_units (void);
1694
1695 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1696
1697 static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1699
1700 static void create_all_comp_units (struct objfile *);
1701
1702 static int create_all_type_units (struct objfile *);
1703
1704 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
1706
1707 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
1709
1710 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
1713 static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
1716 static void dwarf2_mark (struct dwarf2_cu *);
1717
1718 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
1720 static struct type *get_die_type_at_offset (sect_offset,
1721 struct dwarf2_per_cu_data *);
1722
1723 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1724
1725 static void dwarf2_release_queue (void *dummy);
1726
1727 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
1733
1734 static void process_queue (void);
1735
1736 static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
1738 const char **name, const char **comp_dir);
1739
1740 static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
1743 static const gdb_byte *read_and_check_comp_unit_head
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1747 int is_debug_types_section);
1748
1749 static void init_cutu_and_read_dies
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
1754 static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
1757
1758 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1759
1760 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
1762 static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766 static struct dwp_file *get_dwp_file (void);
1767
1768 static struct dwo_unit *lookup_dwo_comp_unit
1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1770
1771 static struct dwo_unit *lookup_dwo_type_unit
1772 (struct signatured_type *, const char *, const char *);
1773
1774 static void free_dwo_file_cleanup (void *);
1775
1776 static void process_cu_includes (void);
1777
1778 static void check_producer (struct dwarf2_cu *cu);
1779
1780 #if WORDS_BIGENDIAN
1781
1782 /* Convert VALUE between big- and little-endian. */
1783 static offset_type
1784 byte_swap (offset_type value)
1785 {
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793 }
1794
1795 #define MAYBE_SWAP(V) byte_swap (V)
1796
1797 #else
1798 #define MAYBE_SWAP(V) (V)
1799 #endif /* WORDS_BIGENDIAN */
1800
1801 /* The suffix for an index file. */
1802 #define INDEX_SUFFIX ".gdb-index"
1803
1804 /* Try to locate the sections we need for DWARF 2 debugging
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
1808
1809 int
1810 dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
1812 {
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1819
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
1823
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
1830 }
1831
1832 /* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
1834
1835 static int
1836 section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
1838 {
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
1846 }
1847
1848 /* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852 static void
1853 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1854 {
1855 const struct dwarf2_debug_sections *names;
1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
1867 {
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1870 }
1871 else if (section_is_p (sectp->name, &names->abbrev))
1872 {
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1875 }
1876 else if (section_is_p (sectp->name, &names->line))
1877 {
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->loc))
1882 {
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->macinfo))
1887 {
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->str))
1897 {
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->frame))
1907 {
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->eh_frame))
1912 {
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->ranges))
1917 {
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->types))
1922 {
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
1931 }
1932 else if (section_is_p (sectp->name, &names->gdb_index))
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
1937
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
1941 }
1942
1943 /* A helper function that decides whether a section is empty,
1944 or not present. */
1945
1946 static int
1947 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948 {
1949 return info->asection == NULL || info->size == 0;
1950 }
1951
1952 /* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
1956 If the section is compressed, uncompress it before returning. */
1957
1958 static void
1959 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1960 {
1961 asection *sectp = info->asection;
1962 bfd *abfd;
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
1965
1966 if (info->readin)
1967 return;
1968 info->buffer = NULL;
1969 info->readin = 1;
1970
1971 if (dwarf2_section_empty_p (info))
1972 return;
1973
1974 abfd = sectp->owner;
1975
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
1979 {
1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1981 return;
1982 }
1983
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002 }
2003
2004 /* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011 static bfd_size_type
2012 dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014 {
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018 }
2019
2020 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2021 SECTION_NAME. */
2022
2023 void
2024 dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
2026 asection **sectp, const gdb_byte **bufp,
2027 bfd_size_type *sizep)
2028 {
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
2053
2054 dwarf2_read_section (objfile, info);
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059 }
2060
2061 /* A helper function to find the sections for a .dwz file. */
2062
2063 static void
2064 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065 {
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
2100 }
2101
2102 /* Open the separate '.dwz' debug file, if needed. Error if the file
2103 cannot be found. */
2104
2105 static struct dwz_file *
2106 dwarf2_get_dwz_file (void)
2107 {
2108 bfd *abfd, *dwz_bfd;
2109 asection *section;
2110 gdb_byte *data;
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
2114
2115 if (dwarf2_per_objfile->dwz_file != NULL)
2116 return dwarf2_per_objfile->dwz_file;
2117
2118 abfd = dwarf2_per_objfile->objfile->obfd;
2119 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2120 if (section == NULL)
2121 error (_("could not find '.gnu_debugaltlink' section"));
2122 if (!bfd_malloc_and_get_section (abfd, section, &data))
2123 error (_("could not read '.gnu_debugaltlink' section: %s"),
2124 bfd_errmsg (bfd_get_error ()));
2125 cleanup = make_cleanup (xfree, data);
2126
2127 filename = (const char *) data;
2128 if (!IS_ABSOLUTE_PATH (filename))
2129 {
2130 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2131 char *rel;
2132
2133 make_cleanup (xfree, abs);
2134 abs = ldirname (abs);
2135 make_cleanup (xfree, abs);
2136
2137 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2138 make_cleanup (xfree, rel);
2139 filename = rel;
2140 }
2141
2142 /* The format is just a NUL-terminated file name, followed by the
2143 build-id. For now, though, we ignore the build-id. */
2144 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2145 if (dwz_bfd == NULL)
2146 error (_("could not read '%s': %s"), filename,
2147 bfd_errmsg (bfd_get_error ()));
2148
2149 if (!bfd_check_format (dwz_bfd, bfd_object))
2150 {
2151 gdb_bfd_unref (dwz_bfd);
2152 error (_("file '%s' was not usable: %s"), filename,
2153 bfd_errmsg (bfd_get_error ()));
2154 }
2155
2156 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2157 struct dwz_file);
2158 result->dwz_bfd = dwz_bfd;
2159
2160 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2161
2162 do_cleanups (cleanup);
2163
2164 dwarf2_per_objfile->dwz_file = result;
2165 return result;
2166 }
2167 \f
2168 /* DWARF quick_symbols_functions support. */
2169
2170 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2171 unique line tables, so we maintain a separate table of all .debug_line
2172 derived entries to support the sharing.
2173 All the quick functions need is the list of file names. We discard the
2174 line_header when we're done and don't need to record it here. */
2175 struct quick_file_names
2176 {
2177 /* The data used to construct the hash key. */
2178 struct stmt_list_hash hash;
2179
2180 /* The number of entries in file_names, real_names. */
2181 unsigned int num_file_names;
2182
2183 /* The file names from the line table, after being run through
2184 file_full_name. */
2185 const char **file_names;
2186
2187 /* The file names from the line table after being run through
2188 gdb_realpath. These are computed lazily. */
2189 const char **real_names;
2190 };
2191
2192 /* When using the index (and thus not using psymtabs), each CU has an
2193 object of this type. This is used to hold information needed by
2194 the various "quick" methods. */
2195 struct dwarf2_per_cu_quick_data
2196 {
2197 /* The file table. This can be NULL if there was no file table
2198 or it's currently not read in.
2199 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2200 struct quick_file_names *file_names;
2201
2202 /* The corresponding symbol table. This is NULL if symbols for this
2203 CU have not yet been read. */
2204 struct symtab *symtab;
2205
2206 /* A temporary mark bit used when iterating over all CUs in
2207 expand_symtabs_matching. */
2208 unsigned int mark : 1;
2209
2210 /* True if we've tried to read the file table and found there isn't one.
2211 There will be no point in trying to read it again next time. */
2212 unsigned int no_file_data : 1;
2213 };
2214
2215 /* Utility hash function for a stmt_list_hash. */
2216
2217 static hashval_t
2218 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2219 {
2220 hashval_t v = 0;
2221
2222 if (stmt_list_hash->dwo_unit != NULL)
2223 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2224 v += stmt_list_hash->line_offset.sect_off;
2225 return v;
2226 }
2227
2228 /* Utility equality function for a stmt_list_hash. */
2229
2230 static int
2231 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2232 const struct stmt_list_hash *rhs)
2233 {
2234 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2235 return 0;
2236 if (lhs->dwo_unit != NULL
2237 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2238 return 0;
2239
2240 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2241 }
2242
2243 /* Hash function for a quick_file_names. */
2244
2245 static hashval_t
2246 hash_file_name_entry (const void *e)
2247 {
2248 const struct quick_file_names *file_data = e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = a;
2259 const struct quick_file_names *eb = b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_t
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree);
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, language_minimal);
2304
2305 gdb_assert (per_cu->cu != NULL);
2306
2307 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2308 }
2309
2310 /* Read in the symbols for PER_CU. */
2311
2312 static void
2313 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2314 {
2315 struct cleanup *back_to;
2316
2317 /* Skip type_unit_groups, reading the type units they contain
2318 is handled elsewhere. */
2319 if (IS_TYPE_UNIT_GROUP (per_cu))
2320 return;
2321
2322 back_to = make_cleanup (dwarf2_release_queue, NULL);
2323
2324 if (dwarf2_per_objfile->using_index
2325 ? per_cu->v.quick->symtab == NULL
2326 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2327 {
2328 queue_comp_unit (per_cu, language_minimal);
2329 load_cu (per_cu);
2330 }
2331
2332 process_queue ();
2333
2334 /* Age the cache, releasing compilation units that have not
2335 been used recently. */
2336 age_cached_comp_units ();
2337
2338 do_cleanups (back_to);
2339 }
2340
2341 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2342 the objfile from which this CU came. Returns the resulting symbol
2343 table. */
2344
2345 static struct symtab *
2346 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2347 {
2348 gdb_assert (dwarf2_per_objfile->using_index);
2349 if (!per_cu->v.quick->symtab)
2350 {
2351 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2352 increment_reading_symtab ();
2353 dw2_do_instantiate_symtab (per_cu);
2354 process_cu_includes ();
2355 do_cleanups (back_to);
2356 }
2357 return per_cu->v.quick->symtab;
2358 }
2359
2360 /* Return the CU given its index.
2361
2362 This is intended for loops like:
2363
2364 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2365 + dwarf2_per_objfile->n_type_units); ++i)
2366 {
2367 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2368
2369 ...;
2370 }
2371 */
2372
2373 static struct dwarf2_per_cu_data *
2374 dw2_get_cu (int index)
2375 {
2376 if (index >= dwarf2_per_objfile->n_comp_units)
2377 {
2378 index -= dwarf2_per_objfile->n_comp_units;
2379 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2380 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2381 }
2382
2383 return dwarf2_per_objfile->all_comp_units[index];
2384 }
2385
2386 /* Return the primary CU given its index.
2387 The difference between this function and dw2_get_cu is in the handling
2388 of type units (TUs). Here we return the type_unit_group object.
2389
2390 This is intended for loops like:
2391
2392 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2393 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2394 {
2395 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2396
2397 ...;
2398 }
2399 */
2400
2401 static struct dwarf2_per_cu_data *
2402 dw2_get_primary_cu (int index)
2403 {
2404 if (index >= dwarf2_per_objfile->n_comp_units)
2405 {
2406 index -= dwarf2_per_objfile->n_comp_units;
2407 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2408 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2409 }
2410
2411 return dwarf2_per_objfile->all_comp_units[index];
2412 }
2413
2414 /* A helper for create_cus_from_index that handles a given list of
2415 CUs. */
2416
2417 static void
2418 create_cus_from_index_list (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type n_elements,
2420 struct dwarf2_section_info *section,
2421 int is_dwz,
2422 int base_offset)
2423 {
2424 offset_type i;
2425
2426 for (i = 0; i < n_elements; i += 2)
2427 {
2428 struct dwarf2_per_cu_data *the_cu;
2429 ULONGEST offset, length;
2430
2431 gdb_static_assert (sizeof (ULONGEST) >= 8);
2432 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2433 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2434 cu_list += 2 * 8;
2435
2436 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2437 struct dwarf2_per_cu_data);
2438 the_cu->offset.sect_off = offset;
2439 the_cu->length = length;
2440 the_cu->objfile = objfile;
2441 the_cu->section = section;
2442 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2443 struct dwarf2_per_cu_quick_data);
2444 the_cu->is_dwz = is_dwz;
2445 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2446 }
2447 }
2448
2449 /* Read the CU list from the mapped index, and use it to create all
2450 the CU objects for this objfile. */
2451
2452 static void
2453 create_cus_from_index (struct objfile *objfile,
2454 const gdb_byte *cu_list, offset_type cu_list_elements,
2455 const gdb_byte *dwz_list, offset_type dwz_elements)
2456 {
2457 struct dwz_file *dwz;
2458
2459 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2460 dwarf2_per_objfile->all_comp_units
2461 = obstack_alloc (&objfile->objfile_obstack,
2462 dwarf2_per_objfile->n_comp_units
2463 * sizeof (struct dwarf2_per_cu_data *));
2464
2465 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2466 &dwarf2_per_objfile->info, 0, 0);
2467
2468 if (dwz_elements == 0)
2469 return;
2470
2471 dwz = dwarf2_get_dwz_file ();
2472 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2473 cu_list_elements / 2);
2474 }
2475
2476 /* Create the signatured type hash table from the index. */
2477
2478 static void
2479 create_signatured_type_table_from_index (struct objfile *objfile,
2480 struct dwarf2_section_info *section,
2481 const gdb_byte *bytes,
2482 offset_type elements)
2483 {
2484 offset_type i;
2485 htab_t sig_types_hash;
2486
2487 dwarf2_per_objfile->n_type_units = elements / 3;
2488 dwarf2_per_objfile->all_type_units
2489 = xmalloc (dwarf2_per_objfile->n_type_units
2490 * sizeof (struct signatured_type *));
2491
2492 sig_types_hash = allocate_signatured_type_table (objfile);
2493
2494 for (i = 0; i < elements; i += 3)
2495 {
2496 struct signatured_type *sig_type;
2497 ULONGEST offset, type_offset_in_tu, signature;
2498 void **slot;
2499
2500 gdb_static_assert (sizeof (ULONGEST) >= 8);
2501 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2502 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2503 BFD_ENDIAN_LITTLE);
2504 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2505 bytes += 3 * 8;
2506
2507 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2508 struct signatured_type);
2509 sig_type->signature = signature;
2510 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2511 sig_type->per_cu.is_debug_types = 1;
2512 sig_type->per_cu.section = section;
2513 sig_type->per_cu.offset.sect_off = offset;
2514 sig_type->per_cu.objfile = objfile;
2515 sig_type->per_cu.v.quick
2516 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2517 struct dwarf2_per_cu_quick_data);
2518
2519 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2520 *slot = sig_type;
2521
2522 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2523 }
2524
2525 dwarf2_per_objfile->signatured_types = sig_types_hash;
2526 }
2527
2528 /* Read the address map data from the mapped index, and use it to
2529 populate the objfile's psymtabs_addrmap. */
2530
2531 static void
2532 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2533 {
2534 const gdb_byte *iter, *end;
2535 struct obstack temp_obstack;
2536 struct addrmap *mutable_map;
2537 struct cleanup *cleanup;
2538 CORE_ADDR baseaddr;
2539
2540 obstack_init (&temp_obstack);
2541 cleanup = make_cleanup_obstack_free (&temp_obstack);
2542 mutable_map = addrmap_create_mutable (&temp_obstack);
2543
2544 iter = index->address_table;
2545 end = iter + index->address_table_size;
2546
2547 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2548
2549 while (iter < end)
2550 {
2551 ULONGEST hi, lo, cu_index;
2552 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2553 iter += 8;
2554 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2555 iter += 8;
2556 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2557 iter += 4;
2558
2559 if (cu_index < dwarf2_per_objfile->n_comp_units)
2560 {
2561 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2562 dw2_get_cu (cu_index));
2563 }
2564 else
2565 {
2566 complaint (&symfile_complaints,
2567 _(".gdb_index address table has invalid CU number %u"),
2568 (unsigned) cu_index);
2569 }
2570 }
2571
2572 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2573 &objfile->objfile_obstack);
2574 do_cleanups (cleanup);
2575 }
2576
2577 /* The hash function for strings in the mapped index. This is the same as
2578 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2579 implementation. This is necessary because the hash function is tied to the
2580 format of the mapped index file. The hash values do not have to match with
2581 SYMBOL_HASH_NEXT.
2582
2583 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2584
2585 static hashval_t
2586 mapped_index_string_hash (int index_version, const void *p)
2587 {
2588 const unsigned char *str = (const unsigned char *) p;
2589 hashval_t r = 0;
2590 unsigned char c;
2591
2592 while ((c = *str++) != 0)
2593 {
2594 if (index_version >= 5)
2595 c = tolower (c);
2596 r = r * 67 + c - 113;
2597 }
2598
2599 return r;
2600 }
2601
2602 /* Find a slot in the mapped index INDEX for the object named NAME.
2603 If NAME is found, set *VEC_OUT to point to the CU vector in the
2604 constant pool and return 1. If NAME cannot be found, return 0. */
2605
2606 static int
2607 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2608 offset_type **vec_out)
2609 {
2610 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2611 offset_type hash;
2612 offset_type slot, step;
2613 int (*cmp) (const char *, const char *);
2614
2615 if (current_language->la_language == language_cplus
2616 || current_language->la_language == language_java
2617 || current_language->la_language == language_fortran)
2618 {
2619 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2620 not contain any. */
2621 const char *paren = strchr (name, '(');
2622
2623 if (paren)
2624 {
2625 char *dup;
2626
2627 dup = xmalloc (paren - name + 1);
2628 memcpy (dup, name, paren - name);
2629 dup[paren - name] = 0;
2630
2631 make_cleanup (xfree, dup);
2632 name = dup;
2633 }
2634 }
2635
2636 /* Index version 4 did not support case insensitive searches. But the
2637 indices for case insensitive languages are built in lowercase, therefore
2638 simulate our NAME being searched is also lowercased. */
2639 hash = mapped_index_string_hash ((index->version == 4
2640 && case_sensitivity == case_sensitive_off
2641 ? 5 : index->version),
2642 name);
2643
2644 slot = hash & (index->symbol_table_slots - 1);
2645 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2646 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2647
2648 for (;;)
2649 {
2650 /* Convert a slot number to an offset into the table. */
2651 offset_type i = 2 * slot;
2652 const char *str;
2653 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2654 {
2655 do_cleanups (back_to);
2656 return 0;
2657 }
2658
2659 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2660 if (!cmp (name, str))
2661 {
2662 *vec_out = (offset_type *) (index->constant_pool
2663 + MAYBE_SWAP (index->symbol_table[i + 1]));
2664 do_cleanups (back_to);
2665 return 1;
2666 }
2667
2668 slot = (slot + step) & (index->symbol_table_slots - 1);
2669 }
2670 }
2671
2672 /* A helper function that reads the .gdb_index from SECTION and fills
2673 in MAP. FILENAME is the name of the file containing the section;
2674 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2675 ok to use deprecated sections.
2676
2677 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2678 out parameters that are filled in with information about the CU and
2679 TU lists in the section.
2680
2681 Returns 1 if all went well, 0 otherwise. */
2682
2683 static int
2684 read_index_from_section (struct objfile *objfile,
2685 const char *filename,
2686 int deprecated_ok,
2687 struct dwarf2_section_info *section,
2688 struct mapped_index *map,
2689 const gdb_byte **cu_list,
2690 offset_type *cu_list_elements,
2691 const gdb_byte **types_list,
2692 offset_type *types_list_elements)
2693 {
2694 const gdb_byte *addr;
2695 offset_type version;
2696 offset_type *metadata;
2697 int i;
2698
2699 if (dwarf2_section_empty_p (section))
2700 return 0;
2701
2702 /* Older elfutils strip versions could keep the section in the main
2703 executable while splitting it for the separate debug info file. */
2704 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2705 return 0;
2706
2707 dwarf2_read_section (objfile, section);
2708
2709 addr = section->buffer;
2710 /* Version check. */
2711 version = MAYBE_SWAP (*(offset_type *) addr);
2712 /* Versions earlier than 3 emitted every copy of a psymbol. This
2713 causes the index to behave very poorly for certain requests. Version 3
2714 contained incomplete addrmap. So, it seems better to just ignore such
2715 indices. */
2716 if (version < 4)
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("Skipping obsolete .gdb_index section in %s."),
2722 filename);
2723 warning_printed = 1;
2724 }
2725 return 0;
2726 }
2727 /* Index version 4 uses a different hash function than index version
2728 5 and later.
2729
2730 Versions earlier than 6 did not emit psymbols for inlined
2731 functions. Using these files will cause GDB not to be able to
2732 set breakpoints on inlined functions by name, so we ignore these
2733 indices unless the user has done
2734 "set use-deprecated-index-sections on". */
2735 if (version < 6 && !deprecated_ok)
2736 {
2737 static int warning_printed = 0;
2738 if (!warning_printed)
2739 {
2740 warning (_("\
2741 Skipping deprecated .gdb_index section in %s.\n\
2742 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2743 to use the section anyway."),
2744 filename);
2745 warning_printed = 1;
2746 }
2747 return 0;
2748 }
2749 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2750 of the TU (for symbols coming from TUs). It's just a performance bug, and
2751 we can't distinguish gdb-generated indices from gold-generated ones, so
2752 nothing to do here. */
2753
2754 /* Indexes with higher version than the one supported by GDB may be no
2755 longer backward compatible. */
2756 if (version > 8)
2757 return 0;
2758
2759 map->version = version;
2760 map->total_size = section->size;
2761
2762 metadata = (offset_type *) (addr + sizeof (offset_type));
2763
2764 i = 0;
2765 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2766 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2767 / 8);
2768 ++i;
2769
2770 *types_list = addr + MAYBE_SWAP (metadata[i]);
2771 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2772 - MAYBE_SWAP (metadata[i]))
2773 / 8);
2774 ++i;
2775
2776 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2777 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2778 - MAYBE_SWAP (metadata[i]));
2779 ++i;
2780
2781 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2782 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2783 - MAYBE_SWAP (metadata[i]))
2784 / (2 * sizeof (offset_type)));
2785 ++i;
2786
2787 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2788
2789 return 1;
2790 }
2791
2792
2793 /* Read the index file. If everything went ok, initialize the "quick"
2794 elements of all the CUs and return 1. Otherwise, return 0. */
2795
2796 static int
2797 dwarf2_read_index (struct objfile *objfile)
2798 {
2799 struct mapped_index local_map, *map;
2800 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2801 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2802
2803 if (!read_index_from_section (objfile, objfile->name,
2804 use_deprecated_index_sections,
2805 &dwarf2_per_objfile->gdb_index, &local_map,
2806 &cu_list, &cu_list_elements,
2807 &types_list, &types_list_elements))
2808 return 0;
2809
2810 /* Don't use the index if it's empty. */
2811 if (local_map.symbol_table_slots == 0)
2812 return 0;
2813
2814 /* If there is a .dwz file, read it so we can get its CU list as
2815 well. */
2816 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2817 {
2818 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2819 struct mapped_index dwz_map;
2820 const gdb_byte *dwz_types_ignore;
2821 offset_type dwz_types_elements_ignore;
2822
2823 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2824 1,
2825 &dwz->gdb_index, &dwz_map,
2826 &dwz_list, &dwz_list_elements,
2827 &dwz_types_ignore,
2828 &dwz_types_elements_ignore))
2829 {
2830 warning (_("could not read '.gdb_index' section from %s; skipping"),
2831 bfd_get_filename (dwz->dwz_bfd));
2832 return 0;
2833 }
2834 }
2835
2836 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2837 dwz_list_elements);
2838
2839 if (types_list_elements)
2840 {
2841 struct dwarf2_section_info *section;
2842
2843 /* We can only handle a single .debug_types when we have an
2844 index. */
2845 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2846 return 0;
2847
2848 section = VEC_index (dwarf2_section_info_def,
2849 dwarf2_per_objfile->types, 0);
2850
2851 create_signatured_type_table_from_index (objfile, section, types_list,
2852 types_list_elements);
2853 }
2854
2855 create_addrmap_from_index (objfile, &local_map);
2856
2857 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2858 *map = local_map;
2859
2860 dwarf2_per_objfile->index_table = map;
2861 dwarf2_per_objfile->using_index = 1;
2862 dwarf2_per_objfile->quick_file_names_table =
2863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2864
2865 return 1;
2866 }
2867
2868 /* A helper for the "quick" functions which sets the global
2869 dwarf2_per_objfile according to OBJFILE. */
2870
2871 static void
2872 dw2_setup (struct objfile *objfile)
2873 {
2874 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2875 gdb_assert (dwarf2_per_objfile);
2876 }
2877
2878 /* die_reader_func for dw2_get_file_names. */
2879
2880 static void
2881 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2882 const gdb_byte *info_ptr,
2883 struct die_info *comp_unit_die,
2884 int has_children,
2885 void *data)
2886 {
2887 struct dwarf2_cu *cu = reader->cu;
2888 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2889 struct objfile *objfile = dwarf2_per_objfile->objfile;
2890 struct dwarf2_per_cu_data *lh_cu;
2891 struct line_header *lh;
2892 struct attribute *attr;
2893 int i;
2894 const char *name, *comp_dir;
2895 void **slot;
2896 struct quick_file_names *qfn;
2897 unsigned int line_offset;
2898
2899 gdb_assert (! this_cu->is_debug_types);
2900
2901 /* Our callers never want to match partial units -- instead they
2902 will match the enclosing full CU. */
2903 if (comp_unit_die->tag == DW_TAG_partial_unit)
2904 {
2905 this_cu->v.quick->no_file_data = 1;
2906 return;
2907 }
2908
2909 lh_cu = this_cu;
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
2929 lh_cu->v.quick->file_names = *slot;
2930 return;
2931 }
2932
2933 lh = dwarf_decode_line_header (line_offset, cu);
2934 }
2935 if (lh == NULL)
2936 {
2937 lh_cu->v.quick->no_file_data = 1;
2938 return;
2939 }
2940
2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
2946
2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2948
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
2952 for (i = 0; i < lh->num_file_names; ++i)
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
2955
2956 free_line_header (lh);
2957
2958 lh_cu->v.quick->file_names = qfn;
2959 }
2960
2961 /* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964 static struct quick_file_names *
2965 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2966 {
2967 /* This should never be called for TUs. */
2968 gdb_assert (! this_cu->is_debug_types);
2969 /* Nor type unit groups. */
2970 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2971
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
2978 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2979
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982 return this_cu->v.quick->file_names;
2983 }
2984
2985 /* A helper for the "quick" functions which computes and caches the
2986 real path for a given file name from the line table. */
2987
2988 static const char *
2989 dw2_get_real_path (struct objfile *objfile,
2990 struct quick_file_names *qfn, int index)
2991 {
2992 if (qfn->real_names == NULL)
2993 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2994 qfn->num_file_names, sizeof (char *));
2995
2996 if (qfn->real_names[index] == NULL)
2997 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2998
2999 return qfn->real_names[index];
3000 }
3001
3002 static struct symtab *
3003 dw2_find_last_source_symtab (struct objfile *objfile)
3004 {
3005 int index;
3006
3007 dw2_setup (objfile);
3008 index = dwarf2_per_objfile->n_comp_units - 1;
3009 return dw2_instantiate_symtab (dw2_get_cu (index));
3010 }
3011
3012 /* Traversal function for dw2_forget_cached_source_info. */
3013
3014 static int
3015 dw2_free_cached_file_names (void **slot, void *info)
3016 {
3017 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3018
3019 if (file_data->real_names)
3020 {
3021 int i;
3022
3023 for (i = 0; i < file_data->num_file_names; ++i)
3024 {
3025 xfree ((void*) file_data->real_names[i]);
3026 file_data->real_names[i] = NULL;
3027 }
3028 }
3029
3030 return 1;
3031 }
3032
3033 static void
3034 dw2_forget_cached_source_info (struct objfile *objfile)
3035 {
3036 dw2_setup (objfile);
3037
3038 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3039 dw2_free_cached_file_names, NULL);
3040 }
3041
3042 /* Helper function for dw2_map_symtabs_matching_filename that expands
3043 the symtabs and calls the iterator. */
3044
3045 static int
3046 dw2_map_expand_apply (struct objfile *objfile,
3047 struct dwarf2_per_cu_data *per_cu,
3048 const char *name, const char *real_path,
3049 int (*callback) (struct symtab *, void *),
3050 void *data)
3051 {
3052 struct symtab *last_made = objfile->symtabs;
3053
3054 /* Don't visit already-expanded CUs. */
3055 if (per_cu->v.quick->symtab)
3056 return 0;
3057
3058 /* This may expand more than one symtab, and we want to iterate over
3059 all of them. */
3060 dw2_instantiate_symtab (per_cu);
3061
3062 return iterate_over_some_symtabs (name, real_path, callback, data,
3063 objfile->symtabs, last_made);
3064 }
3065
3066 /* Implementation of the map_symtabs_matching_filename method. */
3067
3068 static int
3069 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3070 const char *real_path,
3071 int (*callback) (struct symtab *, void *),
3072 void *data)
3073 {
3074 int i;
3075 const char *name_basename = lbasename (name);
3076
3077 dw2_setup (objfile);
3078
3079 /* The rule is CUs specify all the files, including those used by
3080 any TU, so there's no need to scan TUs here. */
3081
3082 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3083 {
3084 int j;
3085 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3086 struct quick_file_names *file_data;
3087
3088 /* We only need to look at symtabs not already expanded. */
3089 if (per_cu->v.quick->symtab)
3090 continue;
3091
3092 file_data = dw2_get_file_names (per_cu);
3093 if (file_data == NULL)
3094 continue;
3095
3096 for (j = 0; j < file_data->num_file_names; ++j)
3097 {
3098 const char *this_name = file_data->file_names[j];
3099 const char *this_real_name;
3100
3101 if (compare_filenames_for_search (this_name, name))
3102 {
3103 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3104 callback, data))
3105 return 1;
3106 continue;
3107 }
3108
3109 /* Before we invoke realpath, which can get expensive when many
3110 files are involved, do a quick comparison of the basenames. */
3111 if (! basenames_may_differ
3112 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3113 continue;
3114
3115 this_real_name = dw2_get_real_path (objfile, file_data, j);
3116 if (compare_filenames_for_search (this_real_name, name))
3117 {
3118 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3119 callback, data))
3120 return 1;
3121 continue;
3122 }
3123
3124 if (real_path != NULL)
3125 {
3126 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3127 gdb_assert (IS_ABSOLUTE_PATH (name));
3128 if (this_real_name != NULL
3129 && FILENAME_CMP (real_path, this_real_name) == 0)
3130 {
3131 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3132 callback, data))
3133 return 1;
3134 continue;
3135 }
3136 }
3137 }
3138 }
3139
3140 return 0;
3141 }
3142
3143 /* Struct used to manage iterating over all CUs looking for a symbol. */
3144
3145 struct dw2_symtab_iterator
3146 {
3147 /* The internalized form of .gdb_index. */
3148 struct mapped_index *index;
3149 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3150 int want_specific_block;
3151 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3152 Unused if !WANT_SPECIFIC_BLOCK. */
3153 int block_index;
3154 /* The kind of symbol we're looking for. */
3155 domain_enum domain;
3156 /* The list of CUs from the index entry of the symbol,
3157 or NULL if not found. */
3158 offset_type *vec;
3159 /* The next element in VEC to look at. */
3160 int next;
3161 /* The number of elements in VEC, or zero if there is no match. */
3162 int length;
3163 };
3164
3165 /* Initialize the index symtab iterator ITER.
3166 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3167 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3168
3169 static void
3170 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3171 struct mapped_index *index,
3172 int want_specific_block,
3173 int block_index,
3174 domain_enum domain,
3175 const char *name)
3176 {
3177 iter->index = index;
3178 iter->want_specific_block = want_specific_block;
3179 iter->block_index = block_index;
3180 iter->domain = domain;
3181 iter->next = 0;
3182
3183 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3184 iter->length = MAYBE_SWAP (*iter->vec);
3185 else
3186 {
3187 iter->vec = NULL;
3188 iter->length = 0;
3189 }
3190 }
3191
3192 /* Return the next matching CU or NULL if there are no more. */
3193
3194 static struct dwarf2_per_cu_data *
3195 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3196 {
3197 for ( ; iter->next < iter->length; ++iter->next)
3198 {
3199 offset_type cu_index_and_attrs =
3200 MAYBE_SWAP (iter->vec[iter->next + 1]);
3201 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3202 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3203 int want_static = iter->block_index != GLOBAL_BLOCK;
3204 /* This value is only valid for index versions >= 7. */
3205 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3206 gdb_index_symbol_kind symbol_kind =
3207 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3208 /* Only check the symbol attributes if they're present.
3209 Indices prior to version 7 don't record them,
3210 and indices >= 7 may elide them for certain symbols
3211 (gold does this). */
3212 int attrs_valid =
3213 (iter->index->version >= 7
3214 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3215
3216 /* Skip if already read in. */
3217 if (per_cu->v.quick->symtab)
3218 continue;
3219
3220 if (attrs_valid
3221 && iter->want_specific_block
3222 && want_static != is_static)
3223 continue;
3224
3225 /* Only check the symbol's kind if it has one. */
3226 if (attrs_valid)
3227 {
3228 switch (iter->domain)
3229 {
3230 case VAR_DOMAIN:
3231 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3232 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3233 /* Some types are also in VAR_DOMAIN. */
3234 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3235 continue;
3236 break;
3237 case STRUCT_DOMAIN:
3238 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3239 continue;
3240 break;
3241 case LABEL_DOMAIN:
3242 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3243 continue;
3244 break;
3245 default:
3246 break;
3247 }
3248 }
3249
3250 ++iter->next;
3251 return per_cu;
3252 }
3253
3254 return NULL;
3255 }
3256
3257 static struct symtab *
3258 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3259 const char *name, domain_enum domain)
3260 {
3261 struct symtab *stab_best = NULL;
3262 struct mapped_index *index;
3263
3264 dw2_setup (objfile);
3265
3266 index = dwarf2_per_objfile->index_table;
3267
3268 /* index is NULL if OBJF_READNOW. */
3269 if (index)
3270 {
3271 struct dw2_symtab_iterator iter;
3272 struct dwarf2_per_cu_data *per_cu;
3273
3274 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3275
3276 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3277 {
3278 struct symbol *sym = NULL;
3279 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3280
3281 /* Some caution must be observed with overloaded functions
3282 and methods, since the index will not contain any overload
3283 information (but NAME might contain it). */
3284 if (stab->primary)
3285 {
3286 struct blockvector *bv = BLOCKVECTOR (stab);
3287 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3288
3289 sym = lookup_block_symbol (block, name, domain);
3290 }
3291
3292 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3293 {
3294 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3295 return stab;
3296
3297 stab_best = stab;
3298 }
3299
3300 /* Keep looking through other CUs. */
3301 }
3302 }
3303
3304 return stab_best;
3305 }
3306
3307 static void
3308 dw2_print_stats (struct objfile *objfile)
3309 {
3310 int i, total, count;
3311
3312 dw2_setup (objfile);
3313 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3314 count = 0;
3315 for (i = 0; i < total; ++i)
3316 {
3317 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3318
3319 if (!per_cu->v.quick->symtab)
3320 ++count;
3321 }
3322 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3323 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3324 }
3325
3326 static void
3327 dw2_dump (struct objfile *objfile)
3328 {
3329 /* Nothing worth printing. */
3330 }
3331
3332 static void
3333 dw2_relocate (struct objfile *objfile,
3334 const struct section_offsets *new_offsets,
3335 const struct section_offsets *delta)
3336 {
3337 /* There's nothing to relocate here. */
3338 }
3339
3340 static void
3341 dw2_expand_symtabs_for_function (struct objfile *objfile,
3342 const char *func_name)
3343 {
3344 struct mapped_index *index;
3345
3346 dw2_setup (objfile);
3347
3348 index = dwarf2_per_objfile->index_table;
3349
3350 /* index is NULL if OBJF_READNOW. */
3351 if (index)
3352 {
3353 struct dw2_symtab_iterator iter;
3354 struct dwarf2_per_cu_data *per_cu;
3355
3356 /* Note: It doesn't matter what we pass for block_index here. */
3357 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3358 func_name);
3359
3360 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3361 dw2_instantiate_symtab (per_cu);
3362 }
3363 }
3364
3365 static void
3366 dw2_expand_all_symtabs (struct objfile *objfile)
3367 {
3368 int i;
3369
3370 dw2_setup (objfile);
3371
3372 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3373 + dwarf2_per_objfile->n_type_units); ++i)
3374 {
3375 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3376
3377 dw2_instantiate_symtab (per_cu);
3378 }
3379 }
3380
3381 static void
3382 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3383 const char *fullname)
3384 {
3385 int i;
3386
3387 dw2_setup (objfile);
3388
3389 /* We don't need to consider type units here.
3390 This is only called for examining code, e.g. expand_line_sal.
3391 There can be an order of magnitude (or more) more type units
3392 than comp units, and we avoid them if we can. */
3393
3394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3395 {
3396 int j;
3397 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3398 struct quick_file_names *file_data;
3399
3400 /* We only need to look at symtabs not already expanded. */
3401 if (per_cu->v.quick->symtab)
3402 continue;
3403
3404 file_data = dw2_get_file_names (per_cu);
3405 if (file_data == NULL)
3406 continue;
3407
3408 for (j = 0; j < file_data->num_file_names; ++j)
3409 {
3410 const char *this_fullname = file_data->file_names[j];
3411
3412 if (filename_cmp (this_fullname, fullname) == 0)
3413 {
3414 dw2_instantiate_symtab (per_cu);
3415 break;
3416 }
3417 }
3418 }
3419 }
3420
3421 /* A helper function for dw2_find_symbol_file that finds the primary
3422 file name for a given CU. This is a die_reader_func. */
3423
3424 static void
3425 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3426 const gdb_byte *info_ptr,
3427 struct die_info *comp_unit_die,
3428 int has_children,
3429 void *data)
3430 {
3431 const char **result_ptr = data;
3432 struct dwarf2_cu *cu = reader->cu;
3433 struct attribute *attr;
3434
3435 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3436 if (attr == NULL)
3437 *result_ptr = NULL;
3438 else
3439 *result_ptr = DW_STRING (attr);
3440 }
3441
3442 static const char *
3443 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3444 {
3445 struct dwarf2_per_cu_data *per_cu;
3446 offset_type *vec;
3447 const char *filename;
3448
3449 dw2_setup (objfile);
3450
3451 /* index_table is NULL if OBJF_READNOW. */
3452 if (!dwarf2_per_objfile->index_table)
3453 {
3454 struct symtab *s;
3455
3456 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3457 {
3458 struct blockvector *bv = BLOCKVECTOR (s);
3459 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3460 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3461
3462 if (sym)
3463 {
3464 /* Only file extension of returned filename is recognized. */
3465 return SYMBOL_SYMTAB (sym)->filename;
3466 }
3467 }
3468 return NULL;
3469 }
3470
3471 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3472 name, &vec))
3473 return NULL;
3474
3475 /* Note that this just looks at the very first one named NAME -- but
3476 actually we are looking for a function. find_main_filename
3477 should be rewritten so that it doesn't require a custom hook. It
3478 could just use the ordinary symbol tables. */
3479 /* vec[0] is the length, which must always be >0. */
3480 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3481
3482 if (per_cu->v.quick->symtab != NULL)
3483 {
3484 /* Only file extension of returned filename is recognized. */
3485 return per_cu->v.quick->symtab->filename;
3486 }
3487
3488 /* Initialize filename in case there's a problem reading the DWARF,
3489 dw2_get_primary_filename_reader may not get called. */
3490 filename = NULL;
3491 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3492 dw2_get_primary_filename_reader, &filename);
3493
3494 /* Only file extension of returned filename is recognized. */
3495 return filename;
3496 }
3497
3498 static void
3499 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3500 struct objfile *objfile, int global,
3501 int (*callback) (struct block *,
3502 struct symbol *, void *),
3503 void *data, symbol_compare_ftype *match,
3504 symbol_compare_ftype *ordered_compare)
3505 {
3506 /* Currently unimplemented; used for Ada. The function can be called if the
3507 current language is Ada for a non-Ada objfile using GNU index. As Ada
3508 does not look for non-Ada symbols this function should just return. */
3509 }
3510
3511 static void
3512 dw2_expand_symtabs_matching
3513 (struct objfile *objfile,
3514 int (*file_matcher) (const char *, void *, int basenames),
3515 int (*name_matcher) (const char *, void *),
3516 enum search_domain kind,
3517 void *data)
3518 {
3519 int i;
3520 offset_type iter;
3521 struct mapped_index *index;
3522
3523 dw2_setup (objfile);
3524
3525 /* index_table is NULL if OBJF_READNOW. */
3526 if (!dwarf2_per_objfile->index_table)
3527 return;
3528 index = dwarf2_per_objfile->index_table;
3529
3530 if (file_matcher != NULL)
3531 {
3532 struct cleanup *cleanup;
3533 htab_t visited_found, visited_not_found;
3534
3535 visited_found = htab_create_alloc (10,
3536 htab_hash_pointer, htab_eq_pointer,
3537 NULL, xcalloc, xfree);
3538 cleanup = make_cleanup_htab_delete (visited_found);
3539 visited_not_found = htab_create_alloc (10,
3540 htab_hash_pointer, htab_eq_pointer,
3541 NULL, xcalloc, xfree);
3542 make_cleanup_htab_delete (visited_not_found);
3543
3544 /* The rule is CUs specify all the files, including those used by
3545 any TU, so there's no need to scan TUs here. */
3546
3547 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3548 {
3549 int j;
3550 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3551 struct quick_file_names *file_data;
3552 void **slot;
3553
3554 per_cu->v.quick->mark = 0;
3555
3556 /* We only need to look at symtabs not already expanded. */
3557 if (per_cu->v.quick->symtab)
3558 continue;
3559
3560 file_data = dw2_get_file_names (per_cu);
3561 if (file_data == NULL)
3562 continue;
3563
3564 if (htab_find (visited_not_found, file_data) != NULL)
3565 continue;
3566 else if (htab_find (visited_found, file_data) != NULL)
3567 {
3568 per_cu->v.quick->mark = 1;
3569 continue;
3570 }
3571
3572 for (j = 0; j < file_data->num_file_names; ++j)
3573 {
3574 const char *this_real_name;
3575
3576 if (file_matcher (file_data->file_names[j], data, 0))
3577 {
3578 per_cu->v.quick->mark = 1;
3579 break;
3580 }
3581
3582 /* Before we invoke realpath, which can get expensive when many
3583 files are involved, do a quick comparison of the basenames. */
3584 if (!basenames_may_differ
3585 && !file_matcher (lbasename (file_data->file_names[j]),
3586 data, 1))
3587 continue;
3588
3589 this_real_name = dw2_get_real_path (objfile, file_data, j);
3590 if (file_matcher (this_real_name, data, 0))
3591 {
3592 per_cu->v.quick->mark = 1;
3593 break;
3594 }
3595 }
3596
3597 slot = htab_find_slot (per_cu->v.quick->mark
3598 ? visited_found
3599 : visited_not_found,
3600 file_data, INSERT);
3601 *slot = file_data;
3602 }
3603
3604 do_cleanups (cleanup);
3605 }
3606
3607 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3608 {
3609 offset_type idx = 2 * iter;
3610 const char *name;
3611 offset_type *vec, vec_len, vec_idx;
3612
3613 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3614 continue;
3615
3616 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3617
3618 if (! (*name_matcher) (name, data))
3619 continue;
3620
3621 /* The name was matched, now expand corresponding CUs that were
3622 marked. */
3623 vec = (offset_type *) (index->constant_pool
3624 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3625 vec_len = MAYBE_SWAP (vec[0]);
3626 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3627 {
3628 struct dwarf2_per_cu_data *per_cu;
3629 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3630 gdb_index_symbol_kind symbol_kind =
3631 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3632 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3633
3634 /* Don't crash on bad data. */
3635 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3636 + dwarf2_per_objfile->n_type_units))
3637 continue;
3638
3639 /* Only check the symbol's kind if it has one.
3640 Indices prior to version 7 don't record it. */
3641 if (index->version >= 7)
3642 {
3643 switch (kind)
3644 {
3645 case VARIABLES_DOMAIN:
3646 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3647 continue;
3648 break;
3649 case FUNCTIONS_DOMAIN:
3650 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3651 continue;
3652 break;
3653 case TYPES_DOMAIN:
3654 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3655 continue;
3656 break;
3657 default:
3658 break;
3659 }
3660 }
3661
3662 per_cu = dw2_get_cu (cu_index);
3663 if (file_matcher == NULL || per_cu->v.quick->mark)
3664 dw2_instantiate_symtab (per_cu);
3665 }
3666 }
3667 }
3668
3669 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3670 symtab. */
3671
3672 static struct symtab *
3673 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3674 {
3675 int i;
3676
3677 if (BLOCKVECTOR (symtab) != NULL
3678 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3679 return symtab;
3680
3681 if (symtab->includes == NULL)
3682 return NULL;
3683
3684 for (i = 0; symtab->includes[i]; ++i)
3685 {
3686 struct symtab *s = symtab->includes[i];
3687
3688 s = recursively_find_pc_sect_symtab (s, pc);
3689 if (s != NULL)
3690 return s;
3691 }
3692
3693 return NULL;
3694 }
3695
3696 static struct symtab *
3697 dw2_find_pc_sect_symtab (struct objfile *objfile,
3698 struct minimal_symbol *msymbol,
3699 CORE_ADDR pc,
3700 struct obj_section *section,
3701 int warn_if_readin)
3702 {
3703 struct dwarf2_per_cu_data *data;
3704 struct symtab *result;
3705
3706 dw2_setup (objfile);
3707
3708 if (!objfile->psymtabs_addrmap)
3709 return NULL;
3710
3711 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3712 if (!data)
3713 return NULL;
3714
3715 if (warn_if_readin && data->v.quick->symtab)
3716 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3717 paddress (get_objfile_arch (objfile), pc));
3718
3719 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3720 gdb_assert (result != NULL);
3721 return result;
3722 }
3723
3724 static void
3725 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3726 void *data, int need_fullname)
3727 {
3728 int i;
3729 struct cleanup *cleanup;
3730 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3731 NULL, xcalloc, xfree);
3732
3733 cleanup = make_cleanup_htab_delete (visited);
3734 dw2_setup (objfile);
3735
3736 /* The rule is CUs specify all the files, including those used by
3737 any TU, so there's no need to scan TUs here.
3738 We can ignore file names coming from already-expanded CUs. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3743
3744 if (per_cu->v.quick->symtab)
3745 {
3746 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3747 INSERT);
3748
3749 *slot = per_cu->v.quick->file_names;
3750 }
3751 }
3752
3753 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3754 {
3755 int j;
3756 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3757 struct quick_file_names *file_data;
3758 void **slot;
3759
3760 /* We only need to look at symtabs not already expanded. */
3761 if (per_cu->v.quick->symtab)
3762 continue;
3763
3764 file_data = dw2_get_file_names (per_cu);
3765 if (file_data == NULL)
3766 continue;
3767
3768 slot = htab_find_slot (visited, file_data, INSERT);
3769 if (*slot)
3770 {
3771 /* Already visited. */
3772 continue;
3773 }
3774 *slot = file_data;
3775
3776 for (j = 0; j < file_data->num_file_names; ++j)
3777 {
3778 const char *this_real_name;
3779
3780 if (need_fullname)
3781 this_real_name = dw2_get_real_path (objfile, file_data, j);
3782 else
3783 this_real_name = NULL;
3784 (*fun) (file_data->file_names[j], this_real_name, data);
3785 }
3786 }
3787
3788 do_cleanups (cleanup);
3789 }
3790
3791 static int
3792 dw2_has_symbols (struct objfile *objfile)
3793 {
3794 return 1;
3795 }
3796
3797 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3798 {
3799 dw2_has_symbols,
3800 dw2_find_last_source_symtab,
3801 dw2_forget_cached_source_info,
3802 dw2_map_symtabs_matching_filename,
3803 dw2_lookup_symbol,
3804 dw2_print_stats,
3805 dw2_dump,
3806 dw2_relocate,
3807 dw2_expand_symtabs_for_function,
3808 dw2_expand_all_symtabs,
3809 dw2_expand_symtabs_with_fullname,
3810 dw2_find_symbol_file,
3811 dw2_map_matching_symbols,
3812 dw2_expand_symtabs_matching,
3813 dw2_find_pc_sect_symtab,
3814 dw2_map_symbol_filenames
3815 };
3816
3817 /* Initialize for reading DWARF for this objfile. Return 0 if this
3818 file will use psymtabs, or 1 if using the GNU index. */
3819
3820 int
3821 dwarf2_initialize_objfile (struct objfile *objfile)
3822 {
3823 /* If we're about to read full symbols, don't bother with the
3824 indices. In this case we also don't care if some other debug
3825 format is making psymtabs, because they are all about to be
3826 expanded anyway. */
3827 if ((objfile->flags & OBJF_READNOW))
3828 {
3829 int i;
3830
3831 dwarf2_per_objfile->using_index = 1;
3832 create_all_comp_units (objfile);
3833 create_all_type_units (objfile);
3834 dwarf2_per_objfile->quick_file_names_table =
3835 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3836
3837 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3838 + dwarf2_per_objfile->n_type_units); ++i)
3839 {
3840 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3841
3842 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3843 struct dwarf2_per_cu_quick_data);
3844 }
3845
3846 /* Return 1 so that gdb sees the "quick" functions. However,
3847 these functions will be no-ops because we will have expanded
3848 all symtabs. */
3849 return 1;
3850 }
3851
3852 if (dwarf2_read_index (objfile))
3853 return 1;
3854
3855 return 0;
3856 }
3857
3858 \f
3859
3860 /* Build a partial symbol table. */
3861
3862 void
3863 dwarf2_build_psymtabs (struct objfile *objfile)
3864 {
3865 volatile struct gdb_exception except;
3866
3867 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3868 {
3869 init_psymbol_list (objfile, 1024);
3870 }
3871
3872 TRY_CATCH (except, RETURN_MASK_ERROR)
3873 {
3874 /* This isn't really ideal: all the data we allocate on the
3875 objfile's obstack is still uselessly kept around. However,
3876 freeing it seems unsafe. */
3877 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3878
3879 dwarf2_build_psymtabs_hard (objfile);
3880 discard_cleanups (cleanups);
3881 }
3882 if (except.reason < 0)
3883 exception_print (gdb_stderr, except);
3884 }
3885
3886 /* Return the total length of the CU described by HEADER. */
3887
3888 static unsigned int
3889 get_cu_length (const struct comp_unit_head *header)
3890 {
3891 return header->initial_length_size + header->length;
3892 }
3893
3894 /* Return TRUE if OFFSET is within CU_HEADER. */
3895
3896 static inline int
3897 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3898 {
3899 sect_offset bottom = { cu_header->offset.sect_off };
3900 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3901
3902 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3903 }
3904
3905 /* Find the base address of the compilation unit for range lists and
3906 location lists. It will normally be specified by DW_AT_low_pc.
3907 In DWARF-3 draft 4, the base address could be overridden by
3908 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3909 compilation units with discontinuous ranges. */
3910
3911 static void
3912 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3913 {
3914 struct attribute *attr;
3915
3916 cu->base_known = 0;
3917 cu->base_address = 0;
3918
3919 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3920 if (attr)
3921 {
3922 cu->base_address = DW_ADDR (attr);
3923 cu->base_known = 1;
3924 }
3925 else
3926 {
3927 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3928 if (attr)
3929 {
3930 cu->base_address = DW_ADDR (attr);
3931 cu->base_known = 1;
3932 }
3933 }
3934 }
3935
3936 /* Read in the comp unit header information from the debug_info at info_ptr.
3937 NOTE: This leaves members offset, first_die_offset to be filled in
3938 by the caller. */
3939
3940 static const gdb_byte *
3941 read_comp_unit_head (struct comp_unit_head *cu_header,
3942 const gdb_byte *info_ptr, bfd *abfd)
3943 {
3944 int signed_addr;
3945 unsigned int bytes_read;
3946
3947 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3948 cu_header->initial_length_size = bytes_read;
3949 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3950 info_ptr += bytes_read;
3951 cu_header->version = read_2_bytes (abfd, info_ptr);
3952 info_ptr += 2;
3953 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3954 &bytes_read);
3955 info_ptr += bytes_read;
3956 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3957 info_ptr += 1;
3958 signed_addr = bfd_get_sign_extend_vma (abfd);
3959 if (signed_addr < 0)
3960 internal_error (__FILE__, __LINE__,
3961 _("read_comp_unit_head: dwarf from non elf file"));
3962 cu_header->signed_addr_p = signed_addr;
3963
3964 return info_ptr;
3965 }
3966
3967 /* Helper function that returns the proper abbrev section for
3968 THIS_CU. */
3969
3970 static struct dwarf2_section_info *
3971 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3972 {
3973 struct dwarf2_section_info *abbrev;
3974
3975 if (this_cu->is_dwz)
3976 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3977 else
3978 abbrev = &dwarf2_per_objfile->abbrev;
3979
3980 return abbrev;
3981 }
3982
3983 /* Subroutine of read_and_check_comp_unit_head and
3984 read_and_check_type_unit_head to simplify them.
3985 Perform various error checking on the header. */
3986
3987 static void
3988 error_check_comp_unit_head (struct comp_unit_head *header,
3989 struct dwarf2_section_info *section,
3990 struct dwarf2_section_info *abbrev_section)
3991 {
3992 bfd *abfd = section->asection->owner;
3993 const char *filename = bfd_get_filename (abfd);
3994
3995 if (header->version != 2 && header->version != 3 && header->version != 4)
3996 error (_("Dwarf Error: wrong version in compilation unit header "
3997 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3998 filename);
3999
4000 if (header->abbrev_offset.sect_off
4001 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4002 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4003 "(offset 0x%lx + 6) [in module %s]"),
4004 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4005 filename);
4006
4007 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4008 avoid potential 32-bit overflow. */
4009 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4010 > section->size)
4011 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4012 "(offset 0x%lx + 0) [in module %s]"),
4013 (long) header->length, (long) header->offset.sect_off,
4014 filename);
4015 }
4016
4017 /* Read in a CU/TU header and perform some basic error checking.
4018 The contents of the header are stored in HEADER.
4019 The result is a pointer to the start of the first DIE. */
4020
4021 static const gdb_byte *
4022 read_and_check_comp_unit_head (struct comp_unit_head *header,
4023 struct dwarf2_section_info *section,
4024 struct dwarf2_section_info *abbrev_section,
4025 const gdb_byte *info_ptr,
4026 int is_debug_types_section)
4027 {
4028 const gdb_byte *beg_of_comp_unit = info_ptr;
4029 bfd *abfd = section->asection->owner;
4030
4031 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4032
4033 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4034
4035 /* If we're reading a type unit, skip over the signature and
4036 type_offset fields. */
4037 if (is_debug_types_section)
4038 info_ptr += 8 /*signature*/ + header->offset_size;
4039
4040 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4041
4042 error_check_comp_unit_head (header, section, abbrev_section);
4043
4044 return info_ptr;
4045 }
4046
4047 /* Read in the types comp unit header information from .debug_types entry at
4048 types_ptr. The result is a pointer to one past the end of the header. */
4049
4050 static const gdb_byte *
4051 read_and_check_type_unit_head (struct comp_unit_head *header,
4052 struct dwarf2_section_info *section,
4053 struct dwarf2_section_info *abbrev_section,
4054 const gdb_byte *info_ptr,
4055 ULONGEST *signature,
4056 cu_offset *type_offset_in_tu)
4057 {
4058 const gdb_byte *beg_of_comp_unit = info_ptr;
4059 bfd *abfd = section->asection->owner;
4060
4061 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4062
4063 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4064
4065 /* If we're reading a type unit, skip over the signature and
4066 type_offset fields. */
4067 if (signature != NULL)
4068 *signature = read_8_bytes (abfd, info_ptr);
4069 info_ptr += 8;
4070 if (type_offset_in_tu != NULL)
4071 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4072 header->offset_size);
4073 info_ptr += header->offset_size;
4074
4075 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4076
4077 error_check_comp_unit_head (header, section, abbrev_section);
4078
4079 return info_ptr;
4080 }
4081
4082 /* Fetch the abbreviation table offset from a comp or type unit header. */
4083
4084 static sect_offset
4085 read_abbrev_offset (struct dwarf2_section_info *section,
4086 sect_offset offset)
4087 {
4088 bfd *abfd = section->asection->owner;
4089 const gdb_byte *info_ptr;
4090 unsigned int length, initial_length_size, offset_size;
4091 sect_offset abbrev_offset;
4092
4093 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4094 info_ptr = section->buffer + offset.sect_off;
4095 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4096 offset_size = initial_length_size == 4 ? 4 : 8;
4097 info_ptr += initial_length_size + 2 /*version*/;
4098 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4099 return abbrev_offset;
4100 }
4101
4102 /* Allocate a new partial symtab for file named NAME and mark this new
4103 partial symtab as being an include of PST. */
4104
4105 static void
4106 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4107 struct objfile *objfile)
4108 {
4109 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4110
4111 if (!IS_ABSOLUTE_PATH (subpst->filename))
4112 {
4113 /* It shares objfile->objfile_obstack. */
4114 subpst->dirname = pst->dirname;
4115 }
4116
4117 subpst->section_offsets = pst->section_offsets;
4118 subpst->textlow = 0;
4119 subpst->texthigh = 0;
4120
4121 subpst->dependencies = (struct partial_symtab **)
4122 obstack_alloc (&objfile->objfile_obstack,
4123 sizeof (struct partial_symtab *));
4124 subpst->dependencies[0] = pst;
4125 subpst->number_of_dependencies = 1;
4126
4127 subpst->globals_offset = 0;
4128 subpst->n_global_syms = 0;
4129 subpst->statics_offset = 0;
4130 subpst->n_static_syms = 0;
4131 subpst->symtab = NULL;
4132 subpst->read_symtab = pst->read_symtab;
4133 subpst->readin = 0;
4134
4135 /* No private part is necessary for include psymtabs. This property
4136 can be used to differentiate between such include psymtabs and
4137 the regular ones. */
4138 subpst->read_symtab_private = NULL;
4139 }
4140
4141 /* Read the Line Number Program data and extract the list of files
4142 included by the source file represented by PST. Build an include
4143 partial symtab for each of these included files. */
4144
4145 static void
4146 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4147 struct die_info *die,
4148 struct partial_symtab *pst)
4149 {
4150 struct line_header *lh = NULL;
4151 struct attribute *attr;
4152
4153 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4154 if (attr)
4155 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4156 if (lh == NULL)
4157 return; /* No linetable, so no includes. */
4158
4159 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4160 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4161
4162 free_line_header (lh);
4163 }
4164
4165 static hashval_t
4166 hash_signatured_type (const void *item)
4167 {
4168 const struct signatured_type *sig_type = item;
4169
4170 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4171 return sig_type->signature;
4172 }
4173
4174 static int
4175 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4176 {
4177 const struct signatured_type *lhs = item_lhs;
4178 const struct signatured_type *rhs = item_rhs;
4179
4180 return lhs->signature == rhs->signature;
4181 }
4182
4183 /* Allocate a hash table for signatured types. */
4184
4185 static htab_t
4186 allocate_signatured_type_table (struct objfile *objfile)
4187 {
4188 return htab_create_alloc_ex (41,
4189 hash_signatured_type,
4190 eq_signatured_type,
4191 NULL,
4192 &objfile->objfile_obstack,
4193 hashtab_obstack_allocate,
4194 dummy_obstack_deallocate);
4195 }
4196
4197 /* A helper function to add a signatured type CU to a table. */
4198
4199 static int
4200 add_signatured_type_cu_to_table (void **slot, void *datum)
4201 {
4202 struct signatured_type *sigt = *slot;
4203 struct signatured_type ***datap = datum;
4204
4205 **datap = sigt;
4206 ++*datap;
4207
4208 return 1;
4209 }
4210
4211 /* Create the hash table of all entries in the .debug_types
4212 (or .debug_types.dwo) section(s).
4213 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4214 otherwise it is NULL.
4215
4216 The result is a pointer to the hash table or NULL if there are no types.
4217
4218 Note: This function processes DWO files only, not DWP files. */
4219
4220 static htab_t
4221 create_debug_types_hash_table (struct dwo_file *dwo_file,
4222 VEC (dwarf2_section_info_def) *types)
4223 {
4224 struct objfile *objfile = dwarf2_per_objfile->objfile;
4225 htab_t types_htab = NULL;
4226 int ix;
4227 struct dwarf2_section_info *section;
4228 struct dwarf2_section_info *abbrev_section;
4229
4230 if (VEC_empty (dwarf2_section_info_def, types))
4231 return NULL;
4232
4233 abbrev_section = (dwo_file != NULL
4234 ? &dwo_file->sections.abbrev
4235 : &dwarf2_per_objfile->abbrev);
4236
4237 if (dwarf2_read_debug)
4238 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4239 dwo_file ? ".dwo" : "",
4240 bfd_get_filename (abbrev_section->asection->owner));
4241
4242 for (ix = 0;
4243 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4244 ++ix)
4245 {
4246 bfd *abfd;
4247 const gdb_byte *info_ptr, *end_ptr;
4248 struct dwarf2_section_info *abbrev_section;
4249
4250 dwarf2_read_section (objfile, section);
4251 info_ptr = section->buffer;
4252
4253 if (info_ptr == NULL)
4254 continue;
4255
4256 /* We can't set abfd until now because the section may be empty or
4257 not present, in which case section->asection will be NULL. */
4258 abfd = section->asection->owner;
4259
4260 if (dwo_file)
4261 abbrev_section = &dwo_file->sections.abbrev;
4262 else
4263 abbrev_section = &dwarf2_per_objfile->abbrev;
4264
4265 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4266 because we don't need to read any dies: the signature is in the
4267 header. */
4268
4269 end_ptr = info_ptr + section->size;
4270 while (info_ptr < end_ptr)
4271 {
4272 sect_offset offset;
4273 cu_offset type_offset_in_tu;
4274 ULONGEST signature;
4275 struct signatured_type *sig_type;
4276 struct dwo_unit *dwo_tu;
4277 void **slot;
4278 const gdb_byte *ptr = info_ptr;
4279 struct comp_unit_head header;
4280 unsigned int length;
4281
4282 offset.sect_off = ptr - section->buffer;
4283
4284 /* We need to read the type's signature in order to build the hash
4285 table, but we don't need anything else just yet. */
4286
4287 ptr = read_and_check_type_unit_head (&header, section,
4288 abbrev_section, ptr,
4289 &signature, &type_offset_in_tu);
4290
4291 length = get_cu_length (&header);
4292
4293 /* Skip dummy type units. */
4294 if (ptr >= info_ptr + length
4295 || peek_abbrev_code (abfd, ptr) == 0)
4296 {
4297 info_ptr += length;
4298 continue;
4299 }
4300
4301 if (types_htab == NULL)
4302 {
4303 if (dwo_file)
4304 types_htab = allocate_dwo_unit_table (objfile);
4305 else
4306 types_htab = allocate_signatured_type_table (objfile);
4307 }
4308
4309 if (dwo_file)
4310 {
4311 sig_type = NULL;
4312 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4313 struct dwo_unit);
4314 dwo_tu->dwo_file = dwo_file;
4315 dwo_tu->signature = signature;
4316 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4317 dwo_tu->section = section;
4318 dwo_tu->offset = offset;
4319 dwo_tu->length = length;
4320 }
4321 else
4322 {
4323 /* N.B.: type_offset is not usable if this type uses a DWO file.
4324 The real type_offset is in the DWO file. */
4325 dwo_tu = NULL;
4326 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4327 struct signatured_type);
4328 sig_type->signature = signature;
4329 sig_type->type_offset_in_tu = type_offset_in_tu;
4330 sig_type->per_cu.objfile = objfile;
4331 sig_type->per_cu.is_debug_types = 1;
4332 sig_type->per_cu.section = section;
4333 sig_type->per_cu.offset = offset;
4334 sig_type->per_cu.length = length;
4335 }
4336
4337 slot = htab_find_slot (types_htab,
4338 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4339 INSERT);
4340 gdb_assert (slot != NULL);
4341 if (*slot != NULL)
4342 {
4343 sect_offset dup_offset;
4344
4345 if (dwo_file)
4346 {
4347 const struct dwo_unit *dup_tu = *slot;
4348
4349 dup_offset = dup_tu->offset;
4350 }
4351 else
4352 {
4353 const struct signatured_type *dup_tu = *slot;
4354
4355 dup_offset = dup_tu->per_cu.offset;
4356 }
4357
4358 complaint (&symfile_complaints,
4359 _("debug type entry at offset 0x%x is duplicate to"
4360 " the entry at offset 0x%x, signature %s"),
4361 offset.sect_off, dup_offset.sect_off,
4362 hex_string (signature));
4363 }
4364 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4365
4366 if (dwarf2_read_debug)
4367 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4368 offset.sect_off,
4369 hex_string (signature));
4370
4371 info_ptr += length;
4372 }
4373 }
4374
4375 return types_htab;
4376 }
4377
4378 /* Create the hash table of all entries in the .debug_types section,
4379 and initialize all_type_units.
4380 The result is zero if there is an error (e.g. missing .debug_types section),
4381 otherwise non-zero. */
4382
4383 static int
4384 create_all_type_units (struct objfile *objfile)
4385 {
4386 htab_t types_htab;
4387 struct signatured_type **iter;
4388
4389 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4390 if (types_htab == NULL)
4391 {
4392 dwarf2_per_objfile->signatured_types = NULL;
4393 return 0;
4394 }
4395
4396 dwarf2_per_objfile->signatured_types = types_htab;
4397
4398 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4399 dwarf2_per_objfile->all_type_units
4400 = xmalloc (dwarf2_per_objfile->n_type_units
4401 * sizeof (struct signatured_type *));
4402 iter = &dwarf2_per_objfile->all_type_units[0];
4403 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4404 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4405 == dwarf2_per_objfile->n_type_units);
4406
4407 return 1;
4408 }
4409
4410 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4411 Fill in SIG_ENTRY with DWO_ENTRY. */
4412
4413 static void
4414 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4415 struct signatured_type *sig_entry,
4416 struct dwo_unit *dwo_entry)
4417 {
4418 sig_entry->per_cu.section = dwo_entry->section;
4419 sig_entry->per_cu.offset = dwo_entry->offset;
4420 sig_entry->per_cu.length = dwo_entry->length;
4421 sig_entry->per_cu.reading_dwo_directly = 1;
4422 sig_entry->per_cu.objfile = objfile;
4423 gdb_assert (! sig_entry->per_cu.queued);
4424 gdb_assert (sig_entry->per_cu.cu == NULL);
4425 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4426 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4427 gdb_assert (sig_entry->signature == dwo_entry->signature);
4428 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4429 gdb_assert (sig_entry->type_unit_group == NULL);
4430 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4431 sig_entry->dwo_unit = dwo_entry;
4432 }
4433
4434 /* Subroutine of lookup_signatured_type.
4435 Create the signatured_type data structure for a TU to be read in
4436 directly from a DWO file, bypassing the stub.
4437 We do this for the case where there is no DWP file and we're using
4438 .gdb_index: When reading a CU we want to stay in the DWO file containing
4439 that CU. Otherwise we could end up reading several other DWO files (due
4440 to comdat folding) to process the transitive closure of all the mentioned
4441 TUs, and that can be slow. The current DWO file will have every type
4442 signature that it needs.
4443 We only do this for .gdb_index because in the psymtab case we already have
4444 to read all the DWOs to build the type unit groups. */
4445
4446 static struct signatured_type *
4447 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4448 {
4449 struct objfile *objfile = dwarf2_per_objfile->objfile;
4450 struct dwo_file *dwo_file;
4451 struct dwo_unit find_dwo_entry, *dwo_entry;
4452 struct signatured_type find_sig_entry, *sig_entry;
4453
4454 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4455
4456 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4457 dwo_unit of the TU itself. */
4458 dwo_file = cu->dwo_unit->dwo_file;
4459
4460 /* We only ever need to read in one copy of a signatured type.
4461 Just use the global signatured_types array. If this is the first time
4462 we're reading this type, replace the recorded data from .gdb_index with
4463 this TU. */
4464
4465 if (dwarf2_per_objfile->signatured_types == NULL)
4466 return NULL;
4467 find_sig_entry.signature = sig;
4468 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4469 if (sig_entry == NULL)
4470 return NULL;
4471 /* Have we already tried to read this TU? */
4472 if (sig_entry->dwo_unit != NULL)
4473 return sig_entry;
4474
4475 /* Ok, this is the first time we're reading this TU. */
4476 if (dwo_file->tus == NULL)
4477 return NULL;
4478 find_dwo_entry.signature = sig;
4479 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4480 if (dwo_entry == NULL)
4481 return NULL;
4482
4483 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4484 return sig_entry;
4485 }
4486
4487 /* Subroutine of lookup_dwp_signatured_type.
4488 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4489
4490 static struct signatured_type *
4491 add_type_unit (ULONGEST sig)
4492 {
4493 struct objfile *objfile = dwarf2_per_objfile->objfile;
4494 int n_type_units = dwarf2_per_objfile->n_type_units;
4495 struct signatured_type *sig_type;
4496 void **slot;
4497
4498 ++n_type_units;
4499 dwarf2_per_objfile->all_type_units =
4500 xrealloc (dwarf2_per_objfile->all_type_units,
4501 n_type_units * sizeof (struct signatured_type *));
4502 dwarf2_per_objfile->n_type_units = n_type_units;
4503 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4504 struct signatured_type);
4505 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4506 sig_type->signature = sig;
4507 sig_type->per_cu.is_debug_types = 1;
4508 sig_type->per_cu.v.quick =
4509 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4510 struct dwarf2_per_cu_quick_data);
4511 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4512 sig_type, INSERT);
4513 gdb_assert (*slot == NULL);
4514 *slot = sig_type;
4515 /* The rest of sig_type must be filled in by the caller. */
4516 return sig_type;
4517 }
4518
4519 /* Subroutine of lookup_signatured_type.
4520 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4521 then try the DWP file.
4522 Normally this "can't happen", but if there's a bug in signature
4523 generation and/or the DWP file is built incorrectly, it can happen.
4524 Using the type directly from the DWP file means we don't have the stub
4525 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4526 not critical. [Eventually the stub may go away for type units anyway.] */
4527
4528 static struct signatured_type *
4529 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4530 {
4531 struct objfile *objfile = dwarf2_per_objfile->objfile;
4532 struct dwp_file *dwp_file = get_dwp_file ();
4533 struct dwo_unit *dwo_entry;
4534 struct signatured_type find_sig_entry, *sig_entry;
4535
4536 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4537 gdb_assert (dwp_file != NULL);
4538
4539 if (dwarf2_per_objfile->signatured_types != NULL)
4540 {
4541 find_sig_entry.signature = sig;
4542 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4543 &find_sig_entry);
4544 if (sig_entry != NULL)
4545 return sig_entry;
4546 }
4547
4548 /* This is the "shouldn't happen" case.
4549 Try the DWP file and hope for the best. */
4550 if (dwp_file->tus == NULL)
4551 return NULL;
4552 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4553 sig, 1 /* is_debug_types */);
4554 if (dwo_entry == NULL)
4555 return NULL;
4556
4557 sig_entry = add_type_unit (sig);
4558 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4559
4560 /* The caller will signal a complaint if we return NULL.
4561 Here we don't return NULL but we still want to complain. */
4562 complaint (&symfile_complaints,
4563 _("Bad type signature %s referenced by %s at 0x%x,"
4564 " coping by using copy in DWP [in module %s]"),
4565 hex_string (sig),
4566 cu->per_cu->is_debug_types ? "TU" : "CU",
4567 cu->per_cu->offset.sect_off,
4568 objfile->name);
4569
4570 return sig_entry;
4571 }
4572
4573 /* Lookup a signature based type for DW_FORM_ref_sig8.
4574 Returns NULL if signature SIG is not present in the table.
4575 It is up to the caller to complain about this. */
4576
4577 static struct signatured_type *
4578 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4579 {
4580 if (cu->dwo_unit
4581 && dwarf2_per_objfile->using_index)
4582 {
4583 /* We're in a DWO/DWP file, and we're using .gdb_index.
4584 These cases require special processing. */
4585 if (get_dwp_file () == NULL)
4586 return lookup_dwo_signatured_type (cu, sig);
4587 else
4588 return lookup_dwp_signatured_type (cu, sig);
4589 }
4590 else
4591 {
4592 struct signatured_type find_entry, *entry;
4593
4594 if (dwarf2_per_objfile->signatured_types == NULL)
4595 return NULL;
4596 find_entry.signature = sig;
4597 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4598 return entry;
4599 }
4600 }
4601 \f
4602 /* Low level DIE reading support. */
4603
4604 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4605
4606 static void
4607 init_cu_die_reader (struct die_reader_specs *reader,
4608 struct dwarf2_cu *cu,
4609 struct dwarf2_section_info *section,
4610 struct dwo_file *dwo_file)
4611 {
4612 gdb_assert (section->readin && section->buffer != NULL);
4613 reader->abfd = section->asection->owner;
4614 reader->cu = cu;
4615 reader->dwo_file = dwo_file;
4616 reader->die_section = section;
4617 reader->buffer = section->buffer;
4618 reader->buffer_end = section->buffer + section->size;
4619 reader->comp_dir = NULL;
4620 }
4621
4622 /* Subroutine of init_cutu_and_read_dies to simplify it.
4623 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4624 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4625 already.
4626
4627 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4628 from it to the DIE in the DWO. If NULL we are skipping the stub.
4629 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4630 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4631 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4632 COMP_DIR must be non-NULL.
4633 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4634 are filled in with the info of the DIE from the DWO file.
4635 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4636 provided an abbrev table to use.
4637 The result is non-zero if a valid (non-dummy) DIE was found. */
4638
4639 static int
4640 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4641 struct dwo_unit *dwo_unit,
4642 int abbrev_table_provided,
4643 struct die_info *stub_comp_unit_die,
4644 const char *stub_comp_dir,
4645 struct die_reader_specs *result_reader,
4646 const gdb_byte **result_info_ptr,
4647 struct die_info **result_comp_unit_die,
4648 int *result_has_children)
4649 {
4650 struct objfile *objfile = dwarf2_per_objfile->objfile;
4651 struct dwarf2_cu *cu = this_cu->cu;
4652 struct dwarf2_section_info *section;
4653 bfd *abfd;
4654 const gdb_byte *begin_info_ptr, *info_ptr;
4655 const char *comp_dir_string;
4656 ULONGEST signature; /* Or dwo_id. */
4657 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4658 int i,num_extra_attrs;
4659 struct dwarf2_section_info *dwo_abbrev_section;
4660 struct attribute *attr;
4661 struct attribute comp_dir_attr;
4662 struct die_info *comp_unit_die;
4663
4664 /* Both can't be provided. */
4665 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4666
4667 /* These attributes aren't processed until later:
4668 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4669 However, the attribute is found in the stub which we won't have later.
4670 In order to not impose this complication on the rest of the code,
4671 we read them here and copy them to the DWO CU/TU die. */
4672
4673 stmt_list = NULL;
4674 low_pc = NULL;
4675 high_pc = NULL;
4676 ranges = NULL;
4677 comp_dir = NULL;
4678
4679 if (stub_comp_unit_die != NULL)
4680 {
4681 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4682 DWO file. */
4683 if (! this_cu->is_debug_types)
4684 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4685 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4686 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4687 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4688 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4689
4690 /* There should be a DW_AT_addr_base attribute here (if needed).
4691 We need the value before we can process DW_FORM_GNU_addr_index. */
4692 cu->addr_base = 0;
4693 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4694 if (attr)
4695 cu->addr_base = DW_UNSND (attr);
4696
4697 /* There should be a DW_AT_ranges_base attribute here (if needed).
4698 We need the value before we can process DW_AT_ranges. */
4699 cu->ranges_base = 0;
4700 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4701 if (attr)
4702 cu->ranges_base = DW_UNSND (attr);
4703 }
4704 else if (stub_comp_dir != NULL)
4705 {
4706 /* Reconstruct the comp_dir attribute to simplify the code below. */
4707 comp_dir = (struct attribute *)
4708 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4709 comp_dir->name = DW_AT_comp_dir;
4710 comp_dir->form = DW_FORM_string;
4711 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4712 DW_STRING (comp_dir) = stub_comp_dir;
4713 }
4714
4715 /* Set up for reading the DWO CU/TU. */
4716 cu->dwo_unit = dwo_unit;
4717 section = dwo_unit->section;
4718 dwarf2_read_section (objfile, section);
4719 abfd = section->asection->owner;
4720 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4721 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4722 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4723
4724 if (this_cu->is_debug_types)
4725 {
4726 ULONGEST header_signature;
4727 cu_offset type_offset_in_tu;
4728 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4729
4730 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4731 dwo_abbrev_section,
4732 info_ptr,
4733 &header_signature,
4734 &type_offset_in_tu);
4735 /* This is not an assert because it can be caused by bad debug info. */
4736 if (sig_type->signature != header_signature)
4737 {
4738 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4739 " TU at offset 0x%x [in module %s]"),
4740 hex_string (sig_type->signature),
4741 hex_string (header_signature),
4742 dwo_unit->offset.sect_off,
4743 bfd_get_filename (abfd));
4744 }
4745 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4746 /* For DWOs coming from DWP files, we don't know the CU length
4747 nor the type's offset in the TU until now. */
4748 dwo_unit->length = get_cu_length (&cu->header);
4749 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4750
4751 /* Establish the type offset that can be used to lookup the type.
4752 For DWO files, we don't know it until now. */
4753 sig_type->type_offset_in_section.sect_off =
4754 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4755 }
4756 else
4757 {
4758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4759 dwo_abbrev_section,
4760 info_ptr, 0);
4761 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4762 /* For DWOs coming from DWP files, we don't know the CU length
4763 until now. */
4764 dwo_unit->length = get_cu_length (&cu->header);
4765 }
4766
4767 /* Replace the CU's original abbrev table with the DWO's.
4768 Reminder: We can't read the abbrev table until we've read the header. */
4769 if (abbrev_table_provided)
4770 {
4771 /* Don't free the provided abbrev table, the caller of
4772 init_cutu_and_read_dies owns it. */
4773 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4774 /* Ensure the DWO abbrev table gets freed. */
4775 make_cleanup (dwarf2_free_abbrev_table, cu);
4776 }
4777 else
4778 {
4779 dwarf2_free_abbrev_table (cu);
4780 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4781 /* Leave any existing abbrev table cleanup as is. */
4782 }
4783
4784 /* Read in the die, but leave space to copy over the attributes
4785 from the stub. This has the benefit of simplifying the rest of
4786 the code - all the work to maintain the illusion of a single
4787 DW_TAG_{compile,type}_unit DIE is done here. */
4788 num_extra_attrs = ((stmt_list != NULL)
4789 + (low_pc != NULL)
4790 + (high_pc != NULL)
4791 + (ranges != NULL)
4792 + (comp_dir != NULL));
4793 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4794 result_has_children, num_extra_attrs);
4795
4796 /* Copy over the attributes from the stub to the DIE we just read in. */
4797 comp_unit_die = *result_comp_unit_die;
4798 i = comp_unit_die->num_attrs;
4799 if (stmt_list != NULL)
4800 comp_unit_die->attrs[i++] = *stmt_list;
4801 if (low_pc != NULL)
4802 comp_unit_die->attrs[i++] = *low_pc;
4803 if (high_pc != NULL)
4804 comp_unit_die->attrs[i++] = *high_pc;
4805 if (ranges != NULL)
4806 comp_unit_die->attrs[i++] = *ranges;
4807 if (comp_dir != NULL)
4808 comp_unit_die->attrs[i++] = *comp_dir;
4809 comp_unit_die->num_attrs += num_extra_attrs;
4810
4811 if (dwarf2_die_debug)
4812 {
4813 fprintf_unfiltered (gdb_stdlog,
4814 "Read die from %s@0x%x of %s:\n",
4815 bfd_section_name (abfd, section->asection),
4816 (unsigned) (begin_info_ptr - section->buffer),
4817 bfd_get_filename (abfd));
4818 dump_die (comp_unit_die, dwarf2_die_debug);
4819 }
4820
4821 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4822 TUs by skipping the stub and going directly to the entry in the DWO file.
4823 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4824 to get it via circuitous means. Blech. */
4825 if (comp_dir != NULL)
4826 result_reader->comp_dir = DW_STRING (comp_dir);
4827
4828 /* Skip dummy compilation units. */
4829 if (info_ptr >= begin_info_ptr + dwo_unit->length
4830 || peek_abbrev_code (abfd, info_ptr) == 0)
4831 return 0;
4832
4833 *result_info_ptr = info_ptr;
4834 return 1;
4835 }
4836
4837 /* Subroutine of init_cutu_and_read_dies to simplify it.
4838 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4839 Returns NULL if the specified DWO unit cannot be found. */
4840
4841 static struct dwo_unit *
4842 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4843 struct die_info *comp_unit_die)
4844 {
4845 struct dwarf2_cu *cu = this_cu->cu;
4846 struct attribute *attr;
4847 ULONGEST signature;
4848 struct dwo_unit *dwo_unit;
4849 const char *comp_dir, *dwo_name;
4850
4851 gdb_assert (cu != NULL);
4852
4853 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4854 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4855 gdb_assert (attr != NULL);
4856 dwo_name = DW_STRING (attr);
4857 comp_dir = NULL;
4858 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4859 if (attr)
4860 comp_dir = DW_STRING (attr);
4861
4862 if (this_cu->is_debug_types)
4863 {
4864 struct signatured_type *sig_type;
4865
4866 /* Since this_cu is the first member of struct signatured_type,
4867 we can go from a pointer to one to a pointer to the other. */
4868 sig_type = (struct signatured_type *) this_cu;
4869 signature = sig_type->signature;
4870 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4871 }
4872 else
4873 {
4874 struct attribute *attr;
4875
4876 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4877 if (! attr)
4878 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4879 " [in module %s]"),
4880 dwo_name, this_cu->objfile->name);
4881 signature = DW_UNSND (attr);
4882 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4883 signature);
4884 }
4885
4886 return dwo_unit;
4887 }
4888
4889 /* Subroutine of init_cutu_and_read_dies to simplify it.
4890 Read a TU directly from a DWO file, bypassing the stub. */
4891
4892 static void
4893 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4894 die_reader_func_ftype *die_reader_func,
4895 void *data)
4896 {
4897 struct dwarf2_cu *cu;
4898 struct signatured_type *sig_type;
4899 struct cleanup *cleanups, *free_cu_cleanup;
4900 struct die_reader_specs reader;
4901 const gdb_byte *info_ptr;
4902 struct die_info *comp_unit_die;
4903 int has_children;
4904
4905 /* Verify we can do the following downcast, and that we have the
4906 data we need. */
4907 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4908 sig_type = (struct signatured_type *) this_cu;
4909 gdb_assert (sig_type->dwo_unit != NULL);
4910
4911 cleanups = make_cleanup (null_cleanup, NULL);
4912
4913 gdb_assert (this_cu->cu == NULL);
4914 cu = xmalloc (sizeof (*cu));
4915 init_one_comp_unit (cu, this_cu);
4916 /* If an error occurs while loading, release our storage. */
4917 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4918
4919 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4920 0 /* abbrev_table_provided */,
4921 NULL /* stub_comp_unit_die */,
4922 sig_type->dwo_unit->dwo_file->comp_dir,
4923 &reader, &info_ptr,
4924 &comp_unit_die, &has_children) == 0)
4925 {
4926 /* Dummy die. */
4927 do_cleanups (cleanups);
4928 return;
4929 }
4930
4931 /* All the "real" work is done here. */
4932 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4933
4934 /* This duplicates some code in init_cutu_and_read_dies,
4935 but the alternative is making the latter more complex.
4936 This function is only for the special case of using DWO files directly:
4937 no point in overly complicating the general case just to handle this. */
4938 if (keep)
4939 {
4940 /* We've successfully allocated this compilation unit. Let our
4941 caller clean it up when finished with it. */
4942 discard_cleanups (free_cu_cleanup);
4943
4944 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4945 So we have to manually free the abbrev table. */
4946 dwarf2_free_abbrev_table (cu);
4947
4948 /* Link this CU into read_in_chain. */
4949 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4950 dwarf2_per_objfile->read_in_chain = this_cu;
4951 }
4952 else
4953 do_cleanups (free_cu_cleanup);
4954
4955 do_cleanups (cleanups);
4956 }
4957
4958 /* Initialize a CU (or TU) and read its DIEs.
4959 If the CU defers to a DWO file, read the DWO file as well.
4960
4961 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4962 Otherwise the table specified in the comp unit header is read in and used.
4963 This is an optimization for when we already have the abbrev table.
4964
4965 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4966 Otherwise, a new CU is allocated with xmalloc.
4967
4968 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4969 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4970
4971 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4972 linker) then DIE_READER_FUNC will not get called. */
4973
4974 static void
4975 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4976 struct abbrev_table *abbrev_table,
4977 int use_existing_cu, int keep,
4978 die_reader_func_ftype *die_reader_func,
4979 void *data)
4980 {
4981 struct objfile *objfile = dwarf2_per_objfile->objfile;
4982 struct dwarf2_section_info *section = this_cu->section;
4983 bfd *abfd = section->asection->owner;
4984 struct dwarf2_cu *cu;
4985 const gdb_byte *begin_info_ptr, *info_ptr;
4986 struct die_reader_specs reader;
4987 struct die_info *comp_unit_die;
4988 int has_children;
4989 struct attribute *attr;
4990 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4991 struct signatured_type *sig_type = NULL;
4992 struct dwarf2_section_info *abbrev_section;
4993 /* Non-zero if CU currently points to a DWO file and we need to
4994 reread it. When this happens we need to reread the skeleton die
4995 before we can reread the DWO file (this only applies to CUs, not TUs). */
4996 int rereading_dwo_cu = 0;
4997
4998 if (dwarf2_die_debug)
4999 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5000 this_cu->is_debug_types ? "type" : "comp",
5001 this_cu->offset.sect_off);
5002
5003 if (use_existing_cu)
5004 gdb_assert (keep);
5005
5006 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5007 file (instead of going through the stub), short-circuit all of this. */
5008 if (this_cu->reading_dwo_directly)
5009 {
5010 /* Narrow down the scope of possibilities to have to understand. */
5011 gdb_assert (this_cu->is_debug_types);
5012 gdb_assert (abbrev_table == NULL);
5013 gdb_assert (!use_existing_cu);
5014 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5015 return;
5016 }
5017
5018 cleanups = make_cleanup (null_cleanup, NULL);
5019
5020 /* This is cheap if the section is already read in. */
5021 dwarf2_read_section (objfile, section);
5022
5023 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5024
5025 abbrev_section = get_abbrev_section_for_cu (this_cu);
5026
5027 if (use_existing_cu && this_cu->cu != NULL)
5028 {
5029 cu = this_cu->cu;
5030
5031 /* If this CU is from a DWO file we need to start over, we need to
5032 refetch the attributes from the skeleton CU.
5033 This could be optimized by retrieving those attributes from when we
5034 were here the first time: the previous comp_unit_die was stored in
5035 comp_unit_obstack. But there's no data yet that we need this
5036 optimization. */
5037 if (cu->dwo_unit != NULL)
5038 rereading_dwo_cu = 1;
5039 }
5040 else
5041 {
5042 /* If !use_existing_cu, this_cu->cu must be NULL. */
5043 gdb_assert (this_cu->cu == NULL);
5044
5045 cu = xmalloc (sizeof (*cu));
5046 init_one_comp_unit (cu, this_cu);
5047
5048 /* If an error occurs while loading, release our storage. */
5049 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5050 }
5051
5052 /* Get the header. */
5053 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5054 {
5055 /* We already have the header, there's no need to read it in again. */
5056 info_ptr += cu->header.first_die_offset.cu_off;
5057 }
5058 else
5059 {
5060 if (this_cu->is_debug_types)
5061 {
5062 ULONGEST signature;
5063 cu_offset type_offset_in_tu;
5064
5065 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5066 abbrev_section, info_ptr,
5067 &signature,
5068 &type_offset_in_tu);
5069
5070 /* Since per_cu is the first member of struct signatured_type,
5071 we can go from a pointer to one to a pointer to the other. */
5072 sig_type = (struct signatured_type *) this_cu;
5073 gdb_assert (sig_type->signature == signature);
5074 gdb_assert (sig_type->type_offset_in_tu.cu_off
5075 == type_offset_in_tu.cu_off);
5076 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5077
5078 /* LENGTH has not been set yet for type units if we're
5079 using .gdb_index. */
5080 this_cu->length = get_cu_length (&cu->header);
5081
5082 /* Establish the type offset that can be used to lookup the type. */
5083 sig_type->type_offset_in_section.sect_off =
5084 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5085 }
5086 else
5087 {
5088 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5089 abbrev_section,
5090 info_ptr, 0);
5091
5092 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5093 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5094 }
5095 }
5096
5097 /* Skip dummy compilation units. */
5098 if (info_ptr >= begin_info_ptr + this_cu->length
5099 || peek_abbrev_code (abfd, info_ptr) == 0)
5100 {
5101 do_cleanups (cleanups);
5102 return;
5103 }
5104
5105 /* If we don't have them yet, read the abbrevs for this compilation unit.
5106 And if we need to read them now, make sure they're freed when we're
5107 done. Note that it's important that if the CU had an abbrev table
5108 on entry we don't free it when we're done: Somewhere up the call stack
5109 it may be in use. */
5110 if (abbrev_table != NULL)
5111 {
5112 gdb_assert (cu->abbrev_table == NULL);
5113 gdb_assert (cu->header.abbrev_offset.sect_off
5114 == abbrev_table->offset.sect_off);
5115 cu->abbrev_table = abbrev_table;
5116 }
5117 else if (cu->abbrev_table == NULL)
5118 {
5119 dwarf2_read_abbrevs (cu, abbrev_section);
5120 make_cleanup (dwarf2_free_abbrev_table, cu);
5121 }
5122 else if (rereading_dwo_cu)
5123 {
5124 dwarf2_free_abbrev_table (cu);
5125 dwarf2_read_abbrevs (cu, abbrev_section);
5126 }
5127
5128 /* Read the top level CU/TU die. */
5129 init_cu_die_reader (&reader, cu, section, NULL);
5130 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5131
5132 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5133 from the DWO file.
5134 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5135 DWO CU, that this test will fail (the attribute will not be present). */
5136 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5137 if (attr)
5138 {
5139 struct dwo_unit *dwo_unit;
5140 struct die_info *dwo_comp_unit_die;
5141
5142 if (has_children)
5143 {
5144 complaint (&symfile_complaints,
5145 _("compilation unit with DW_AT_GNU_dwo_name"
5146 " has children (offset 0x%x) [in module %s]"),
5147 this_cu->offset.sect_off, bfd_get_filename (abfd));
5148 }
5149 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5150 if (dwo_unit != NULL)
5151 {
5152 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5153 abbrev_table != NULL,
5154 comp_unit_die, NULL,
5155 &reader, &info_ptr,
5156 &dwo_comp_unit_die, &has_children) == 0)
5157 {
5158 /* Dummy die. */
5159 do_cleanups (cleanups);
5160 return;
5161 }
5162 comp_unit_die = dwo_comp_unit_die;
5163 }
5164 else
5165 {
5166 /* Yikes, we couldn't find the rest of the DIE, we only have
5167 the stub. A complaint has already been logged. There's
5168 not much more we can do except pass on the stub DIE to
5169 die_reader_func. We don't want to throw an error on bad
5170 debug info. */
5171 }
5172 }
5173
5174 /* All of the above is setup for this call. Yikes. */
5175 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5176
5177 /* Done, clean up. */
5178 if (free_cu_cleanup != NULL)
5179 {
5180 if (keep)
5181 {
5182 /* We've successfully allocated this compilation unit. Let our
5183 caller clean it up when finished with it. */
5184 discard_cleanups (free_cu_cleanup);
5185
5186 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5187 So we have to manually free the abbrev table. */
5188 dwarf2_free_abbrev_table (cu);
5189
5190 /* Link this CU into read_in_chain. */
5191 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5192 dwarf2_per_objfile->read_in_chain = this_cu;
5193 }
5194 else
5195 do_cleanups (free_cu_cleanup);
5196 }
5197
5198 do_cleanups (cleanups);
5199 }
5200
5201 /* Read CU/TU THIS_CU in section SECTION,
5202 but do not follow DW_AT_GNU_dwo_name if present.
5203 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5204 to have already done the lookup to find the DWO/DWP file).
5205
5206 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5207 THIS_CU->is_debug_types, but nothing else.
5208
5209 We fill in THIS_CU->length.
5210
5211 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5212 linker) then DIE_READER_FUNC will not get called.
5213
5214 THIS_CU->cu is always freed when done.
5215 This is done in order to not leave THIS_CU->cu in a state where we have
5216 to care whether it refers to the "main" CU or the DWO CU. */
5217
5218 static void
5219 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5220 struct dwarf2_section_info *abbrev_section,
5221 struct dwo_file *dwo_file,
5222 die_reader_func_ftype *die_reader_func,
5223 void *data)
5224 {
5225 struct objfile *objfile = dwarf2_per_objfile->objfile;
5226 struct dwarf2_section_info *section = this_cu->section;
5227 bfd *abfd = section->asection->owner;
5228 struct dwarf2_cu cu;
5229 const gdb_byte *begin_info_ptr, *info_ptr;
5230 struct die_reader_specs reader;
5231 struct cleanup *cleanups;
5232 struct die_info *comp_unit_die;
5233 int has_children;
5234
5235 if (dwarf2_die_debug)
5236 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5237 this_cu->is_debug_types ? "type" : "comp",
5238 this_cu->offset.sect_off);
5239
5240 gdb_assert (this_cu->cu == NULL);
5241
5242 /* This is cheap if the section is already read in. */
5243 dwarf2_read_section (objfile, section);
5244
5245 init_one_comp_unit (&cu, this_cu);
5246
5247 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5248
5249 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5250 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5251 abbrev_section, info_ptr,
5252 this_cu->is_debug_types);
5253
5254 this_cu->length = get_cu_length (&cu.header);
5255
5256 /* Skip dummy compilation units. */
5257 if (info_ptr >= begin_info_ptr + this_cu->length
5258 || peek_abbrev_code (abfd, info_ptr) == 0)
5259 {
5260 do_cleanups (cleanups);
5261 return;
5262 }
5263
5264 dwarf2_read_abbrevs (&cu, abbrev_section);
5265 make_cleanup (dwarf2_free_abbrev_table, &cu);
5266
5267 init_cu_die_reader (&reader, &cu, section, dwo_file);
5268 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5269
5270 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5271
5272 do_cleanups (cleanups);
5273 }
5274
5275 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5276 does not lookup the specified DWO file.
5277 This cannot be used to read DWO files.
5278
5279 THIS_CU->cu is always freed when done.
5280 This is done in order to not leave THIS_CU->cu in a state where we have
5281 to care whether it refers to the "main" CU or the DWO CU.
5282 We can revisit this if the data shows there's a performance issue. */
5283
5284 static void
5285 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5286 die_reader_func_ftype *die_reader_func,
5287 void *data)
5288 {
5289 init_cutu_and_read_dies_no_follow (this_cu,
5290 get_abbrev_section_for_cu (this_cu),
5291 NULL,
5292 die_reader_func, data);
5293 }
5294 \f
5295 /* Type Unit Groups.
5296
5297 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5298 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5299 so that all types coming from the same compilation (.o file) are grouped
5300 together. A future step could be to put the types in the same symtab as
5301 the CU the types ultimately came from. */
5302
5303 static hashval_t
5304 hash_type_unit_group (const void *item)
5305 {
5306 const struct type_unit_group *tu_group = item;
5307
5308 return hash_stmt_list_entry (&tu_group->hash);
5309 }
5310
5311 static int
5312 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5313 {
5314 const struct type_unit_group *lhs = item_lhs;
5315 const struct type_unit_group *rhs = item_rhs;
5316
5317 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5318 }
5319
5320 /* Allocate a hash table for type unit groups. */
5321
5322 static htab_t
5323 allocate_type_unit_groups_table (void)
5324 {
5325 return htab_create_alloc_ex (3,
5326 hash_type_unit_group,
5327 eq_type_unit_group,
5328 NULL,
5329 &dwarf2_per_objfile->objfile->objfile_obstack,
5330 hashtab_obstack_allocate,
5331 dummy_obstack_deallocate);
5332 }
5333
5334 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5335 partial symtabs. We combine several TUs per psymtab to not let the size
5336 of any one psymtab grow too big. */
5337 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5338 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5339
5340 /* Helper routine for get_type_unit_group.
5341 Create the type_unit_group object used to hold one or more TUs. */
5342
5343 static struct type_unit_group *
5344 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5345 {
5346 struct objfile *objfile = dwarf2_per_objfile->objfile;
5347 struct dwarf2_per_cu_data *per_cu;
5348 struct type_unit_group *tu_group;
5349
5350 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5351 struct type_unit_group);
5352 per_cu = &tu_group->per_cu;
5353 per_cu->objfile = objfile;
5354
5355 if (dwarf2_per_objfile->using_index)
5356 {
5357 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5358 struct dwarf2_per_cu_quick_data);
5359 }
5360 else
5361 {
5362 unsigned int line_offset = line_offset_struct.sect_off;
5363 struct partial_symtab *pst;
5364 char *name;
5365
5366 /* Give the symtab a useful name for debug purposes. */
5367 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5368 name = xstrprintf ("<type_units_%d>",
5369 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5370 else
5371 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5372
5373 pst = create_partial_symtab (per_cu, name);
5374 pst->anonymous = 1;
5375
5376 xfree (name);
5377 }
5378
5379 tu_group->hash.dwo_unit = cu->dwo_unit;
5380 tu_group->hash.line_offset = line_offset_struct;
5381
5382 return tu_group;
5383 }
5384
5385 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5386 STMT_LIST is a DW_AT_stmt_list attribute. */
5387
5388 static struct type_unit_group *
5389 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5390 {
5391 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5392 struct type_unit_group *tu_group;
5393 void **slot;
5394 unsigned int line_offset;
5395 struct type_unit_group type_unit_group_for_lookup;
5396
5397 if (dwarf2_per_objfile->type_unit_groups == NULL)
5398 {
5399 dwarf2_per_objfile->type_unit_groups =
5400 allocate_type_unit_groups_table ();
5401 }
5402
5403 /* Do we need to create a new group, or can we use an existing one? */
5404
5405 if (stmt_list)
5406 {
5407 line_offset = DW_UNSND (stmt_list);
5408 ++tu_stats->nr_symtab_sharers;
5409 }
5410 else
5411 {
5412 /* Ugh, no stmt_list. Rare, but we have to handle it.
5413 We can do various things here like create one group per TU or
5414 spread them over multiple groups to split up the expansion work.
5415 To avoid worst case scenarios (too many groups or too large groups)
5416 we, umm, group them in bunches. */
5417 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5418 | (tu_stats->nr_stmt_less_type_units
5419 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5420 ++tu_stats->nr_stmt_less_type_units;
5421 }
5422
5423 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5424 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5425 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5426 &type_unit_group_for_lookup, INSERT);
5427 if (*slot != NULL)
5428 {
5429 tu_group = *slot;
5430 gdb_assert (tu_group != NULL);
5431 }
5432 else
5433 {
5434 sect_offset line_offset_struct;
5435
5436 line_offset_struct.sect_off = line_offset;
5437 tu_group = create_type_unit_group (cu, line_offset_struct);
5438 *slot = tu_group;
5439 ++tu_stats->nr_symtabs;
5440 }
5441
5442 return tu_group;
5443 }
5444
5445 /* Struct used to sort TUs by their abbreviation table offset. */
5446
5447 struct tu_abbrev_offset
5448 {
5449 struct signatured_type *sig_type;
5450 sect_offset abbrev_offset;
5451 };
5452
5453 /* Helper routine for build_type_unit_groups, passed to qsort. */
5454
5455 static int
5456 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5457 {
5458 const struct tu_abbrev_offset * const *a = ap;
5459 const struct tu_abbrev_offset * const *b = bp;
5460 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5461 unsigned int boff = (*b)->abbrev_offset.sect_off;
5462
5463 return (aoff > boff) - (aoff < boff);
5464 }
5465
5466 /* A helper function to add a type_unit_group to a table. */
5467
5468 static int
5469 add_type_unit_group_to_table (void **slot, void *datum)
5470 {
5471 struct type_unit_group *tu_group = *slot;
5472 struct type_unit_group ***datap = datum;
5473
5474 **datap = tu_group;
5475 ++*datap;
5476
5477 return 1;
5478 }
5479
5480 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5481 each one passing FUNC,DATA.
5482
5483 The efficiency is because we sort TUs by the abbrev table they use and
5484 only read each abbrev table once. In one program there are 200K TUs
5485 sharing 8K abbrev tables.
5486
5487 The main purpose of this function is to support building the
5488 dwarf2_per_objfile->type_unit_groups table.
5489 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5490 can collapse the search space by grouping them by stmt_list.
5491 The savings can be significant, in the same program from above the 200K TUs
5492 share 8K stmt_list tables.
5493
5494 FUNC is expected to call get_type_unit_group, which will create the
5495 struct type_unit_group if necessary and add it to
5496 dwarf2_per_objfile->type_unit_groups. */
5497
5498 static void
5499 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5500 {
5501 struct objfile *objfile = dwarf2_per_objfile->objfile;
5502 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5503 struct cleanup *cleanups;
5504 struct abbrev_table *abbrev_table;
5505 sect_offset abbrev_offset;
5506 struct tu_abbrev_offset *sorted_by_abbrev;
5507 struct type_unit_group **iter;
5508 int i;
5509
5510 /* It's up to the caller to not call us multiple times. */
5511 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5512
5513 if (dwarf2_per_objfile->n_type_units == 0)
5514 return;
5515
5516 /* TUs typically share abbrev tables, and there can be way more TUs than
5517 abbrev tables. Sort by abbrev table to reduce the number of times we
5518 read each abbrev table in.
5519 Alternatives are to punt or to maintain a cache of abbrev tables.
5520 This is simpler and efficient enough for now.
5521
5522 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5523 symtab to use). Typically TUs with the same abbrev offset have the same
5524 stmt_list value too so in practice this should work well.
5525
5526 The basic algorithm here is:
5527
5528 sort TUs by abbrev table
5529 for each TU with same abbrev table:
5530 read abbrev table if first user
5531 read TU top level DIE
5532 [IWBN if DWO skeletons had DW_AT_stmt_list]
5533 call FUNC */
5534
5535 if (dwarf2_read_debug)
5536 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5537
5538 /* Sort in a separate table to maintain the order of all_type_units
5539 for .gdb_index: TU indices directly index all_type_units. */
5540 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5541 dwarf2_per_objfile->n_type_units);
5542 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5543 {
5544 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5545
5546 sorted_by_abbrev[i].sig_type = sig_type;
5547 sorted_by_abbrev[i].abbrev_offset =
5548 read_abbrev_offset (sig_type->per_cu.section,
5549 sig_type->per_cu.offset);
5550 }
5551 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5552 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5553 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5554
5555 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5556 called any number of times, so we don't reset tu_stats here. */
5557
5558 abbrev_offset.sect_off = ~(unsigned) 0;
5559 abbrev_table = NULL;
5560 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5561
5562 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5563 {
5564 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5565
5566 /* Switch to the next abbrev table if necessary. */
5567 if (abbrev_table == NULL
5568 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5569 {
5570 if (abbrev_table != NULL)
5571 {
5572 abbrev_table_free (abbrev_table);
5573 /* Reset to NULL in case abbrev_table_read_table throws
5574 an error: abbrev_table_free_cleanup will get called. */
5575 abbrev_table = NULL;
5576 }
5577 abbrev_offset = tu->abbrev_offset;
5578 abbrev_table =
5579 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5580 abbrev_offset);
5581 ++tu_stats->nr_uniq_abbrev_tables;
5582 }
5583
5584 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5585 func, data);
5586 }
5587
5588 /* type_unit_groups can be NULL if there is an error in the debug info.
5589 Just create an empty table so the rest of gdb doesn't have to watch
5590 for this error case. */
5591 if (dwarf2_per_objfile->type_unit_groups == NULL)
5592 {
5593 dwarf2_per_objfile->type_unit_groups =
5594 allocate_type_unit_groups_table ();
5595 dwarf2_per_objfile->n_type_unit_groups = 0;
5596 }
5597
5598 /* Create a vector of pointers to primary type units to make it easy to
5599 iterate over them and CUs. See dw2_get_primary_cu. */
5600 dwarf2_per_objfile->n_type_unit_groups =
5601 htab_elements (dwarf2_per_objfile->type_unit_groups);
5602 dwarf2_per_objfile->all_type_unit_groups =
5603 obstack_alloc (&objfile->objfile_obstack,
5604 dwarf2_per_objfile->n_type_unit_groups
5605 * sizeof (struct type_unit_group *));
5606 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5607 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5608 add_type_unit_group_to_table, &iter);
5609 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5610 == dwarf2_per_objfile->n_type_unit_groups);
5611
5612 do_cleanups (cleanups);
5613
5614 if (dwarf2_read_debug)
5615 {
5616 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5617 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5618 dwarf2_per_objfile->n_type_units);
5619 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5620 tu_stats->nr_uniq_abbrev_tables);
5621 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5622 tu_stats->nr_symtabs);
5623 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5624 tu_stats->nr_symtab_sharers);
5625 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5626 tu_stats->nr_stmt_less_type_units);
5627 }
5628 }
5629 \f
5630 /* Partial symbol tables. */
5631
5632 /* Create a psymtab named NAME and assign it to PER_CU.
5633
5634 The caller must fill in the following details:
5635 dirname, textlow, texthigh. */
5636
5637 static struct partial_symtab *
5638 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5639 {
5640 struct objfile *objfile = per_cu->objfile;
5641 struct partial_symtab *pst;
5642
5643 pst = start_psymtab_common (objfile, objfile->section_offsets,
5644 name, 0,
5645 objfile->global_psymbols.next,
5646 objfile->static_psymbols.next);
5647
5648 pst->psymtabs_addrmap_supported = 1;
5649
5650 /* This is the glue that links PST into GDB's symbol API. */
5651 pst->read_symtab_private = per_cu;
5652 pst->read_symtab = dwarf2_read_symtab;
5653 per_cu->v.psymtab = pst;
5654
5655 return pst;
5656 }
5657
5658 /* die_reader_func for process_psymtab_comp_unit. */
5659
5660 static void
5661 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5662 const gdb_byte *info_ptr,
5663 struct die_info *comp_unit_die,
5664 int has_children,
5665 void *data)
5666 {
5667 struct dwarf2_cu *cu = reader->cu;
5668 struct objfile *objfile = cu->objfile;
5669 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5670 struct attribute *attr;
5671 CORE_ADDR baseaddr;
5672 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5673 struct partial_symtab *pst;
5674 int has_pc_info;
5675 const char *filename;
5676 int *want_partial_unit_ptr = data;
5677
5678 if (comp_unit_die->tag == DW_TAG_partial_unit
5679 && (want_partial_unit_ptr == NULL
5680 || !*want_partial_unit_ptr))
5681 return;
5682
5683 gdb_assert (! per_cu->is_debug_types);
5684
5685 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5686
5687 cu->list_in_scope = &file_symbols;
5688
5689 /* Allocate a new partial symbol table structure. */
5690 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5691 if (attr == NULL || !DW_STRING (attr))
5692 filename = "";
5693 else
5694 filename = DW_STRING (attr);
5695
5696 pst = create_partial_symtab (per_cu, filename);
5697
5698 /* This must be done before calling dwarf2_build_include_psymtabs. */
5699 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5700 if (attr != NULL)
5701 pst->dirname = DW_STRING (attr);
5702
5703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5704
5705 dwarf2_find_base_address (comp_unit_die, cu);
5706
5707 /* Possibly set the default values of LOWPC and HIGHPC from
5708 `DW_AT_ranges'. */
5709 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5710 &best_highpc, cu, pst);
5711 if (has_pc_info == 1 && best_lowpc < best_highpc)
5712 /* Store the contiguous range if it is not empty; it can be empty for
5713 CUs with no code. */
5714 addrmap_set_empty (objfile->psymtabs_addrmap,
5715 best_lowpc + baseaddr,
5716 best_highpc + baseaddr - 1, pst);
5717
5718 /* Check if comp unit has_children.
5719 If so, read the rest of the partial symbols from this comp unit.
5720 If not, there's no more debug_info for this comp unit. */
5721 if (has_children)
5722 {
5723 struct partial_die_info *first_die;
5724 CORE_ADDR lowpc, highpc;
5725
5726 lowpc = ((CORE_ADDR) -1);
5727 highpc = ((CORE_ADDR) 0);
5728
5729 first_die = load_partial_dies (reader, info_ptr, 1);
5730
5731 scan_partial_symbols (first_die, &lowpc, &highpc,
5732 ! has_pc_info, cu);
5733
5734 /* If we didn't find a lowpc, set it to highpc to avoid
5735 complaints from `maint check'. */
5736 if (lowpc == ((CORE_ADDR) -1))
5737 lowpc = highpc;
5738
5739 /* If the compilation unit didn't have an explicit address range,
5740 then use the information extracted from its child dies. */
5741 if (! has_pc_info)
5742 {
5743 best_lowpc = lowpc;
5744 best_highpc = highpc;
5745 }
5746 }
5747 pst->textlow = best_lowpc + baseaddr;
5748 pst->texthigh = best_highpc + baseaddr;
5749
5750 pst->n_global_syms = objfile->global_psymbols.next -
5751 (objfile->global_psymbols.list + pst->globals_offset);
5752 pst->n_static_syms = objfile->static_psymbols.next -
5753 (objfile->static_psymbols.list + pst->statics_offset);
5754 sort_pst_symbols (objfile, pst);
5755
5756 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5757 {
5758 int i;
5759 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5760 struct dwarf2_per_cu_data *iter;
5761
5762 /* Fill in 'dependencies' here; we fill in 'users' in a
5763 post-pass. */
5764 pst->number_of_dependencies = len;
5765 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5766 len * sizeof (struct symtab *));
5767 for (i = 0;
5768 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5769 i, iter);
5770 ++i)
5771 pst->dependencies[i] = iter->v.psymtab;
5772
5773 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5774 }
5775
5776 /* Get the list of files included in the current compilation unit,
5777 and build a psymtab for each of them. */
5778 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5779
5780 if (dwarf2_read_debug)
5781 {
5782 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5783
5784 fprintf_unfiltered (gdb_stdlog,
5785 "Psymtab for %s unit @0x%x: %s - %s"
5786 ", %d global, %d static syms\n",
5787 per_cu->is_debug_types ? "type" : "comp",
5788 per_cu->offset.sect_off,
5789 paddress (gdbarch, pst->textlow),
5790 paddress (gdbarch, pst->texthigh),
5791 pst->n_global_syms, pst->n_static_syms);
5792 }
5793 }
5794
5795 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5796 Process compilation unit THIS_CU for a psymtab. */
5797
5798 static void
5799 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5800 int want_partial_unit)
5801 {
5802 /* If this compilation unit was already read in, free the
5803 cached copy in order to read it in again. This is
5804 necessary because we skipped some symbols when we first
5805 read in the compilation unit (see load_partial_dies).
5806 This problem could be avoided, but the benefit is unclear. */
5807 if (this_cu->cu != NULL)
5808 free_one_cached_comp_unit (this_cu);
5809
5810 gdb_assert (! this_cu->is_debug_types);
5811 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5812 process_psymtab_comp_unit_reader,
5813 &want_partial_unit);
5814
5815 /* Age out any secondary CUs. */
5816 age_cached_comp_units ();
5817 }
5818
5819 /* Reader function for build_type_psymtabs. */
5820
5821 static void
5822 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5823 const gdb_byte *info_ptr,
5824 struct die_info *type_unit_die,
5825 int has_children,
5826 void *data)
5827 {
5828 struct objfile *objfile = dwarf2_per_objfile->objfile;
5829 struct dwarf2_cu *cu = reader->cu;
5830 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5831 struct signatured_type *sig_type;
5832 struct type_unit_group *tu_group;
5833 struct attribute *attr;
5834 struct partial_die_info *first_die;
5835 CORE_ADDR lowpc, highpc;
5836 struct partial_symtab *pst;
5837
5838 gdb_assert (data == NULL);
5839 gdb_assert (per_cu->is_debug_types);
5840 sig_type = (struct signatured_type *) per_cu;
5841
5842 if (! has_children)
5843 return;
5844
5845 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5846 tu_group = get_type_unit_group (cu, attr);
5847
5848 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5849
5850 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5851 cu->list_in_scope = &file_symbols;
5852 pst = create_partial_symtab (per_cu, "");
5853 pst->anonymous = 1;
5854
5855 first_die = load_partial_dies (reader, info_ptr, 1);
5856
5857 lowpc = (CORE_ADDR) -1;
5858 highpc = (CORE_ADDR) 0;
5859 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5860
5861 pst->n_global_syms = objfile->global_psymbols.next -
5862 (objfile->global_psymbols.list + pst->globals_offset);
5863 pst->n_static_syms = objfile->static_psymbols.next -
5864 (objfile->static_psymbols.list + pst->statics_offset);
5865 sort_pst_symbols (objfile, pst);
5866 }
5867
5868 /* Traversal function for build_type_psymtabs. */
5869
5870 static int
5871 build_type_psymtab_dependencies (void **slot, void *info)
5872 {
5873 struct objfile *objfile = dwarf2_per_objfile->objfile;
5874 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5875 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5876 struct partial_symtab *pst = per_cu->v.psymtab;
5877 int len = VEC_length (sig_type_ptr, tu_group->tus);
5878 struct signatured_type *iter;
5879 int i;
5880
5881 gdb_assert (len > 0);
5882 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5883
5884 pst->number_of_dependencies = len;
5885 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5886 len * sizeof (struct psymtab *));
5887 for (i = 0;
5888 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5889 ++i)
5890 {
5891 gdb_assert (iter->per_cu.is_debug_types);
5892 pst->dependencies[i] = iter->per_cu.v.psymtab;
5893 iter->type_unit_group = tu_group;
5894 }
5895
5896 VEC_free (sig_type_ptr, tu_group->tus);
5897
5898 return 1;
5899 }
5900
5901 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5902 Build partial symbol tables for the .debug_types comp-units. */
5903
5904 static void
5905 build_type_psymtabs (struct objfile *objfile)
5906 {
5907 if (! create_all_type_units (objfile))
5908 return;
5909
5910 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5911
5912 /* Now that all TUs have been processed we can fill in the dependencies. */
5913 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5914 build_type_psymtab_dependencies, NULL);
5915 }
5916
5917 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5918
5919 static void
5920 psymtabs_addrmap_cleanup (void *o)
5921 {
5922 struct objfile *objfile = o;
5923
5924 objfile->psymtabs_addrmap = NULL;
5925 }
5926
5927 /* Compute the 'user' field for each psymtab in OBJFILE. */
5928
5929 static void
5930 set_partial_user (struct objfile *objfile)
5931 {
5932 int i;
5933
5934 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5935 {
5936 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5937 struct partial_symtab *pst = per_cu->v.psymtab;
5938 int j;
5939
5940 if (pst == NULL)
5941 continue;
5942
5943 for (j = 0; j < pst->number_of_dependencies; ++j)
5944 {
5945 /* Set the 'user' field only if it is not already set. */
5946 if (pst->dependencies[j]->user == NULL)
5947 pst->dependencies[j]->user = pst;
5948 }
5949 }
5950 }
5951
5952 /* Build the partial symbol table by doing a quick pass through the
5953 .debug_info and .debug_abbrev sections. */
5954
5955 static void
5956 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5957 {
5958 struct cleanup *back_to, *addrmap_cleanup;
5959 struct obstack temp_obstack;
5960 int i;
5961
5962 if (dwarf2_read_debug)
5963 {
5964 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5965 objfile->name);
5966 }
5967
5968 dwarf2_per_objfile->reading_partial_symbols = 1;
5969
5970 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5971
5972 /* Any cached compilation units will be linked by the per-objfile
5973 read_in_chain. Make sure to free them when we're done. */
5974 back_to = make_cleanup (free_cached_comp_units, NULL);
5975
5976 build_type_psymtabs (objfile);
5977
5978 create_all_comp_units (objfile);
5979
5980 /* Create a temporary address map on a temporary obstack. We later
5981 copy this to the final obstack. */
5982 obstack_init (&temp_obstack);
5983 make_cleanup_obstack_free (&temp_obstack);
5984 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5985 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5986
5987 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5988 {
5989 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5990
5991 process_psymtab_comp_unit (per_cu, 0);
5992 }
5993
5994 set_partial_user (objfile);
5995
5996 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5997 &objfile->objfile_obstack);
5998 discard_cleanups (addrmap_cleanup);
5999
6000 do_cleanups (back_to);
6001
6002 if (dwarf2_read_debug)
6003 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6004 objfile->name);
6005 }
6006
6007 /* die_reader_func for load_partial_comp_unit. */
6008
6009 static void
6010 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6011 const gdb_byte *info_ptr,
6012 struct die_info *comp_unit_die,
6013 int has_children,
6014 void *data)
6015 {
6016 struct dwarf2_cu *cu = reader->cu;
6017
6018 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6019
6020 /* Check if comp unit has_children.
6021 If so, read the rest of the partial symbols from this comp unit.
6022 If not, there's no more debug_info for this comp unit. */
6023 if (has_children)
6024 load_partial_dies (reader, info_ptr, 0);
6025 }
6026
6027 /* Load the partial DIEs for a secondary CU into memory.
6028 This is also used when rereading a primary CU with load_all_dies. */
6029
6030 static void
6031 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6032 {
6033 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6034 load_partial_comp_unit_reader, NULL);
6035 }
6036
6037 static void
6038 read_comp_units_from_section (struct objfile *objfile,
6039 struct dwarf2_section_info *section,
6040 unsigned int is_dwz,
6041 int *n_allocated,
6042 int *n_comp_units,
6043 struct dwarf2_per_cu_data ***all_comp_units)
6044 {
6045 const gdb_byte *info_ptr;
6046 bfd *abfd = section->asection->owner;
6047
6048 if (dwarf2_read_debug)
6049 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6050 section->asection->name, bfd_get_filename (abfd));
6051
6052 dwarf2_read_section (objfile, section);
6053
6054 info_ptr = section->buffer;
6055
6056 while (info_ptr < section->buffer + section->size)
6057 {
6058 unsigned int length, initial_length_size;
6059 struct dwarf2_per_cu_data *this_cu;
6060 sect_offset offset;
6061
6062 offset.sect_off = info_ptr - section->buffer;
6063
6064 /* Read just enough information to find out where the next
6065 compilation unit is. */
6066 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6067
6068 /* Save the compilation unit for later lookup. */
6069 this_cu = obstack_alloc (&objfile->objfile_obstack,
6070 sizeof (struct dwarf2_per_cu_data));
6071 memset (this_cu, 0, sizeof (*this_cu));
6072 this_cu->offset = offset;
6073 this_cu->length = length + initial_length_size;
6074 this_cu->is_dwz = is_dwz;
6075 this_cu->objfile = objfile;
6076 this_cu->section = section;
6077
6078 if (*n_comp_units == *n_allocated)
6079 {
6080 *n_allocated *= 2;
6081 *all_comp_units = xrealloc (*all_comp_units,
6082 *n_allocated
6083 * sizeof (struct dwarf2_per_cu_data *));
6084 }
6085 (*all_comp_units)[*n_comp_units] = this_cu;
6086 ++*n_comp_units;
6087
6088 info_ptr = info_ptr + this_cu->length;
6089 }
6090 }
6091
6092 /* Create a list of all compilation units in OBJFILE.
6093 This is only done for -readnow and building partial symtabs. */
6094
6095 static void
6096 create_all_comp_units (struct objfile *objfile)
6097 {
6098 int n_allocated;
6099 int n_comp_units;
6100 struct dwarf2_per_cu_data **all_comp_units;
6101
6102 n_comp_units = 0;
6103 n_allocated = 10;
6104 all_comp_units = xmalloc (n_allocated
6105 * sizeof (struct dwarf2_per_cu_data *));
6106
6107 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6108 &n_allocated, &n_comp_units, &all_comp_units);
6109
6110 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
6111 {
6112 struct dwz_file *dwz = dwarf2_get_dwz_file ();
6113
6114 read_comp_units_from_section (objfile, &dwz->info, 1,
6115 &n_allocated, &n_comp_units,
6116 &all_comp_units);
6117 }
6118
6119 dwarf2_per_objfile->all_comp_units
6120 = obstack_alloc (&objfile->objfile_obstack,
6121 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6122 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6123 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6124 xfree (all_comp_units);
6125 dwarf2_per_objfile->n_comp_units = n_comp_units;
6126 }
6127
6128 /* Process all loaded DIEs for compilation unit CU, starting at
6129 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6130 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6131 DW_AT_ranges). If NEED_PC is set, then this function will set
6132 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6133 and record the covered ranges in the addrmap. */
6134
6135 static void
6136 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6137 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6138 {
6139 struct partial_die_info *pdi;
6140
6141 /* Now, march along the PDI's, descending into ones which have
6142 interesting children but skipping the children of the other ones,
6143 until we reach the end of the compilation unit. */
6144
6145 pdi = first_die;
6146
6147 while (pdi != NULL)
6148 {
6149 fixup_partial_die (pdi, cu);
6150
6151 /* Anonymous namespaces or modules have no name but have interesting
6152 children, so we need to look at them. Ditto for anonymous
6153 enums. */
6154
6155 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6156 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6157 || pdi->tag == DW_TAG_imported_unit)
6158 {
6159 switch (pdi->tag)
6160 {
6161 case DW_TAG_subprogram:
6162 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6163 break;
6164 case DW_TAG_constant:
6165 case DW_TAG_variable:
6166 case DW_TAG_typedef:
6167 case DW_TAG_union_type:
6168 if (!pdi->is_declaration)
6169 {
6170 add_partial_symbol (pdi, cu);
6171 }
6172 break;
6173 case DW_TAG_class_type:
6174 case DW_TAG_interface_type:
6175 case DW_TAG_structure_type:
6176 if (!pdi->is_declaration)
6177 {
6178 add_partial_symbol (pdi, cu);
6179 }
6180 break;
6181 case DW_TAG_enumeration_type:
6182 if (!pdi->is_declaration)
6183 add_partial_enumeration (pdi, cu);
6184 break;
6185 case DW_TAG_base_type:
6186 case DW_TAG_subrange_type:
6187 /* File scope base type definitions are added to the partial
6188 symbol table. */
6189 add_partial_symbol (pdi, cu);
6190 break;
6191 case DW_TAG_namespace:
6192 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6193 break;
6194 case DW_TAG_module:
6195 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6196 break;
6197 case DW_TAG_imported_unit:
6198 {
6199 struct dwarf2_per_cu_data *per_cu;
6200
6201 /* For now we don't handle imported units in type units. */
6202 if (cu->per_cu->is_debug_types)
6203 {
6204 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6205 " supported in type units [in module %s]"),
6206 cu->objfile->name);
6207 }
6208
6209 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6210 pdi->is_dwz,
6211 cu->objfile);
6212
6213 /* Go read the partial unit, if needed. */
6214 if (per_cu->v.psymtab == NULL)
6215 process_psymtab_comp_unit (per_cu, 1);
6216
6217 VEC_safe_push (dwarf2_per_cu_ptr,
6218 cu->per_cu->imported_symtabs, per_cu);
6219 }
6220 break;
6221 default:
6222 break;
6223 }
6224 }
6225
6226 /* If the die has a sibling, skip to the sibling. */
6227
6228 pdi = pdi->die_sibling;
6229 }
6230 }
6231
6232 /* Functions used to compute the fully scoped name of a partial DIE.
6233
6234 Normally, this is simple. For C++, the parent DIE's fully scoped
6235 name is concatenated with "::" and the partial DIE's name. For
6236 Java, the same thing occurs except that "." is used instead of "::".
6237 Enumerators are an exception; they use the scope of their parent
6238 enumeration type, i.e. the name of the enumeration type is not
6239 prepended to the enumerator.
6240
6241 There are two complexities. One is DW_AT_specification; in this
6242 case "parent" means the parent of the target of the specification,
6243 instead of the direct parent of the DIE. The other is compilers
6244 which do not emit DW_TAG_namespace; in this case we try to guess
6245 the fully qualified name of structure types from their members'
6246 linkage names. This must be done using the DIE's children rather
6247 than the children of any DW_AT_specification target. We only need
6248 to do this for structures at the top level, i.e. if the target of
6249 any DW_AT_specification (if any; otherwise the DIE itself) does not
6250 have a parent. */
6251
6252 /* Compute the scope prefix associated with PDI's parent, in
6253 compilation unit CU. The result will be allocated on CU's
6254 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6255 field. NULL is returned if no prefix is necessary. */
6256 static const char *
6257 partial_die_parent_scope (struct partial_die_info *pdi,
6258 struct dwarf2_cu *cu)
6259 {
6260 const char *grandparent_scope;
6261 struct partial_die_info *parent, *real_pdi;
6262
6263 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6264 then this means the parent of the specification DIE. */
6265
6266 real_pdi = pdi;
6267 while (real_pdi->has_specification)
6268 real_pdi = find_partial_die (real_pdi->spec_offset,
6269 real_pdi->spec_is_dwz, cu);
6270
6271 parent = real_pdi->die_parent;
6272 if (parent == NULL)
6273 return NULL;
6274
6275 if (parent->scope_set)
6276 return parent->scope;
6277
6278 fixup_partial_die (parent, cu);
6279
6280 grandparent_scope = partial_die_parent_scope (parent, cu);
6281
6282 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6283 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6284 Work around this problem here. */
6285 if (cu->language == language_cplus
6286 && parent->tag == DW_TAG_namespace
6287 && strcmp (parent->name, "::") == 0
6288 && grandparent_scope == NULL)
6289 {
6290 parent->scope = NULL;
6291 parent->scope_set = 1;
6292 return NULL;
6293 }
6294
6295 if (pdi->tag == DW_TAG_enumerator)
6296 /* Enumerators should not get the name of the enumeration as a prefix. */
6297 parent->scope = grandparent_scope;
6298 else if (parent->tag == DW_TAG_namespace
6299 || parent->tag == DW_TAG_module
6300 || parent->tag == DW_TAG_structure_type
6301 || parent->tag == DW_TAG_class_type
6302 || parent->tag == DW_TAG_interface_type
6303 || parent->tag == DW_TAG_union_type
6304 || parent->tag == DW_TAG_enumeration_type)
6305 {
6306 if (grandparent_scope == NULL)
6307 parent->scope = parent->name;
6308 else
6309 parent->scope = typename_concat (&cu->comp_unit_obstack,
6310 grandparent_scope,
6311 parent->name, 0, cu);
6312 }
6313 else
6314 {
6315 /* FIXME drow/2004-04-01: What should we be doing with
6316 function-local names? For partial symbols, we should probably be
6317 ignoring them. */
6318 complaint (&symfile_complaints,
6319 _("unhandled containing DIE tag %d for DIE at %d"),
6320 parent->tag, pdi->offset.sect_off);
6321 parent->scope = grandparent_scope;
6322 }
6323
6324 parent->scope_set = 1;
6325 return parent->scope;
6326 }
6327
6328 /* Return the fully scoped name associated with PDI, from compilation unit
6329 CU. The result will be allocated with malloc. */
6330
6331 static char *
6332 partial_die_full_name (struct partial_die_info *pdi,
6333 struct dwarf2_cu *cu)
6334 {
6335 const char *parent_scope;
6336
6337 /* If this is a template instantiation, we can not work out the
6338 template arguments from partial DIEs. So, unfortunately, we have
6339 to go through the full DIEs. At least any work we do building
6340 types here will be reused if full symbols are loaded later. */
6341 if (pdi->has_template_arguments)
6342 {
6343 fixup_partial_die (pdi, cu);
6344
6345 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6346 {
6347 struct die_info *die;
6348 struct attribute attr;
6349 struct dwarf2_cu *ref_cu = cu;
6350
6351 /* DW_FORM_ref_addr is using section offset. */
6352 attr.name = 0;
6353 attr.form = DW_FORM_ref_addr;
6354 attr.u.unsnd = pdi->offset.sect_off;
6355 die = follow_die_ref (NULL, &attr, &ref_cu);
6356
6357 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6358 }
6359 }
6360
6361 parent_scope = partial_die_parent_scope (pdi, cu);
6362 if (parent_scope == NULL)
6363 return NULL;
6364 else
6365 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6366 }
6367
6368 static void
6369 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6370 {
6371 struct objfile *objfile = cu->objfile;
6372 CORE_ADDR addr = 0;
6373 const char *actual_name = NULL;
6374 CORE_ADDR baseaddr;
6375 char *built_actual_name;
6376
6377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6378
6379 built_actual_name = partial_die_full_name (pdi, cu);
6380 if (built_actual_name != NULL)
6381 actual_name = built_actual_name;
6382
6383 if (actual_name == NULL)
6384 actual_name = pdi->name;
6385
6386 switch (pdi->tag)
6387 {
6388 case DW_TAG_subprogram:
6389 if (pdi->is_external || cu->language == language_ada)
6390 {
6391 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6392 of the global scope. But in Ada, we want to be able to access
6393 nested procedures globally. So all Ada subprograms are stored
6394 in the global scope. */
6395 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6396 mst_text, objfile); */
6397 add_psymbol_to_list (actual_name, strlen (actual_name),
6398 built_actual_name != NULL,
6399 VAR_DOMAIN, LOC_BLOCK,
6400 &objfile->global_psymbols,
6401 0, pdi->lowpc + baseaddr,
6402 cu->language, objfile);
6403 }
6404 else
6405 {
6406 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6407 mst_file_text, objfile); */
6408 add_psymbol_to_list (actual_name, strlen (actual_name),
6409 built_actual_name != NULL,
6410 VAR_DOMAIN, LOC_BLOCK,
6411 &objfile->static_psymbols,
6412 0, pdi->lowpc + baseaddr,
6413 cu->language, objfile);
6414 }
6415 break;
6416 case DW_TAG_constant:
6417 {
6418 struct psymbol_allocation_list *list;
6419
6420 if (pdi->is_external)
6421 list = &objfile->global_psymbols;
6422 else
6423 list = &objfile->static_psymbols;
6424 add_psymbol_to_list (actual_name, strlen (actual_name),
6425 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6426 list, 0, 0, cu->language, objfile);
6427 }
6428 break;
6429 case DW_TAG_variable:
6430 if (pdi->d.locdesc)
6431 addr = decode_locdesc (pdi->d.locdesc, cu);
6432
6433 if (pdi->d.locdesc
6434 && addr == 0
6435 && !dwarf2_per_objfile->has_section_at_zero)
6436 {
6437 /* A global or static variable may also have been stripped
6438 out by the linker if unused, in which case its address
6439 will be nullified; do not add such variables into partial
6440 symbol table then. */
6441 }
6442 else if (pdi->is_external)
6443 {
6444 /* Global Variable.
6445 Don't enter into the minimal symbol tables as there is
6446 a minimal symbol table entry from the ELF symbols already.
6447 Enter into partial symbol table if it has a location
6448 descriptor or a type.
6449 If the location descriptor is missing, new_symbol will create
6450 a LOC_UNRESOLVED symbol, the address of the variable will then
6451 be determined from the minimal symbol table whenever the variable
6452 is referenced.
6453 The address for the partial symbol table entry is not
6454 used by GDB, but it comes in handy for debugging partial symbol
6455 table building. */
6456
6457 if (pdi->d.locdesc || pdi->has_type)
6458 add_psymbol_to_list (actual_name, strlen (actual_name),
6459 built_actual_name != NULL,
6460 VAR_DOMAIN, LOC_STATIC,
6461 &objfile->global_psymbols,
6462 0, addr + baseaddr,
6463 cu->language, objfile);
6464 }
6465 else
6466 {
6467 /* Static Variable. Skip symbols without location descriptors. */
6468 if (pdi->d.locdesc == NULL)
6469 {
6470 xfree (built_actual_name);
6471 return;
6472 }
6473 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6474 mst_file_data, objfile); */
6475 add_psymbol_to_list (actual_name, strlen (actual_name),
6476 built_actual_name != NULL,
6477 VAR_DOMAIN, LOC_STATIC,
6478 &objfile->static_psymbols,
6479 0, addr + baseaddr,
6480 cu->language, objfile);
6481 }
6482 break;
6483 case DW_TAG_typedef:
6484 case DW_TAG_base_type:
6485 case DW_TAG_subrange_type:
6486 add_psymbol_to_list (actual_name, strlen (actual_name),
6487 built_actual_name != NULL,
6488 VAR_DOMAIN, LOC_TYPEDEF,
6489 &objfile->static_psymbols,
6490 0, (CORE_ADDR) 0, cu->language, objfile);
6491 break;
6492 case DW_TAG_namespace:
6493 add_psymbol_to_list (actual_name, strlen (actual_name),
6494 built_actual_name != NULL,
6495 VAR_DOMAIN, LOC_TYPEDEF,
6496 &objfile->global_psymbols,
6497 0, (CORE_ADDR) 0, cu->language, objfile);
6498 break;
6499 case DW_TAG_class_type:
6500 case DW_TAG_interface_type:
6501 case DW_TAG_structure_type:
6502 case DW_TAG_union_type:
6503 case DW_TAG_enumeration_type:
6504 /* Skip external references. The DWARF standard says in the section
6505 about "Structure, Union, and Class Type Entries": "An incomplete
6506 structure, union or class type is represented by a structure,
6507 union or class entry that does not have a byte size attribute
6508 and that has a DW_AT_declaration attribute." */
6509 if (!pdi->has_byte_size && pdi->is_declaration)
6510 {
6511 xfree (built_actual_name);
6512 return;
6513 }
6514
6515 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6516 static vs. global. */
6517 add_psymbol_to_list (actual_name, strlen (actual_name),
6518 built_actual_name != NULL,
6519 STRUCT_DOMAIN, LOC_TYPEDEF,
6520 (cu->language == language_cplus
6521 || cu->language == language_java)
6522 ? &objfile->global_psymbols
6523 : &objfile->static_psymbols,
6524 0, (CORE_ADDR) 0, cu->language, objfile);
6525
6526 break;
6527 case DW_TAG_enumerator:
6528 add_psymbol_to_list (actual_name, strlen (actual_name),
6529 built_actual_name != NULL,
6530 VAR_DOMAIN, LOC_CONST,
6531 (cu->language == language_cplus
6532 || cu->language == language_java)
6533 ? &objfile->global_psymbols
6534 : &objfile->static_psymbols,
6535 0, (CORE_ADDR) 0, cu->language, objfile);
6536 break;
6537 default:
6538 break;
6539 }
6540
6541 xfree (built_actual_name);
6542 }
6543
6544 /* Read a partial die corresponding to a namespace; also, add a symbol
6545 corresponding to that namespace to the symbol table. NAMESPACE is
6546 the name of the enclosing namespace. */
6547
6548 static void
6549 add_partial_namespace (struct partial_die_info *pdi,
6550 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6551 int need_pc, struct dwarf2_cu *cu)
6552 {
6553 /* Add a symbol for the namespace. */
6554
6555 add_partial_symbol (pdi, cu);
6556
6557 /* Now scan partial symbols in that namespace. */
6558
6559 if (pdi->has_children)
6560 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6561 }
6562
6563 /* Read a partial die corresponding to a Fortran module. */
6564
6565 static void
6566 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6567 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6568 {
6569 /* Now scan partial symbols in that module. */
6570
6571 if (pdi->has_children)
6572 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6573 }
6574
6575 /* Read a partial die corresponding to a subprogram and create a partial
6576 symbol for that subprogram. When the CU language allows it, this
6577 routine also defines a partial symbol for each nested subprogram
6578 that this subprogram contains.
6579
6580 DIE my also be a lexical block, in which case we simply search
6581 recursively for suprograms defined inside that lexical block.
6582 Again, this is only performed when the CU language allows this
6583 type of definitions. */
6584
6585 static void
6586 add_partial_subprogram (struct partial_die_info *pdi,
6587 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6588 int need_pc, struct dwarf2_cu *cu)
6589 {
6590 if (pdi->tag == DW_TAG_subprogram)
6591 {
6592 if (pdi->has_pc_info)
6593 {
6594 if (pdi->lowpc < *lowpc)
6595 *lowpc = pdi->lowpc;
6596 if (pdi->highpc > *highpc)
6597 *highpc = pdi->highpc;
6598 if (need_pc)
6599 {
6600 CORE_ADDR baseaddr;
6601 struct objfile *objfile = cu->objfile;
6602
6603 baseaddr = ANOFFSET (objfile->section_offsets,
6604 SECT_OFF_TEXT (objfile));
6605 addrmap_set_empty (objfile->psymtabs_addrmap,
6606 pdi->lowpc + baseaddr,
6607 pdi->highpc - 1 + baseaddr,
6608 cu->per_cu->v.psymtab);
6609 }
6610 }
6611
6612 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6613 {
6614 if (!pdi->is_declaration)
6615 /* Ignore subprogram DIEs that do not have a name, they are
6616 illegal. Do not emit a complaint at this point, we will
6617 do so when we convert this psymtab into a symtab. */
6618 if (pdi->name)
6619 add_partial_symbol (pdi, cu);
6620 }
6621 }
6622
6623 if (! pdi->has_children)
6624 return;
6625
6626 if (cu->language == language_ada)
6627 {
6628 pdi = pdi->die_child;
6629 while (pdi != NULL)
6630 {
6631 fixup_partial_die (pdi, cu);
6632 if (pdi->tag == DW_TAG_subprogram
6633 || pdi->tag == DW_TAG_lexical_block)
6634 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6635 pdi = pdi->die_sibling;
6636 }
6637 }
6638 }
6639
6640 /* Read a partial die corresponding to an enumeration type. */
6641
6642 static void
6643 add_partial_enumeration (struct partial_die_info *enum_pdi,
6644 struct dwarf2_cu *cu)
6645 {
6646 struct partial_die_info *pdi;
6647
6648 if (enum_pdi->name != NULL)
6649 add_partial_symbol (enum_pdi, cu);
6650
6651 pdi = enum_pdi->die_child;
6652 while (pdi)
6653 {
6654 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6655 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6656 else
6657 add_partial_symbol (pdi, cu);
6658 pdi = pdi->die_sibling;
6659 }
6660 }
6661
6662 /* Return the initial uleb128 in the die at INFO_PTR. */
6663
6664 static unsigned int
6665 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6666 {
6667 unsigned int bytes_read;
6668
6669 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6670 }
6671
6672 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6673 Return the corresponding abbrev, or NULL if the number is zero (indicating
6674 an empty DIE). In either case *BYTES_READ will be set to the length of
6675 the initial number. */
6676
6677 static struct abbrev_info *
6678 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6679 struct dwarf2_cu *cu)
6680 {
6681 bfd *abfd = cu->objfile->obfd;
6682 unsigned int abbrev_number;
6683 struct abbrev_info *abbrev;
6684
6685 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6686
6687 if (abbrev_number == 0)
6688 return NULL;
6689
6690 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6691 if (!abbrev)
6692 {
6693 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6694 abbrev_number, bfd_get_filename (abfd));
6695 }
6696
6697 return abbrev;
6698 }
6699
6700 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6701 Returns a pointer to the end of a series of DIEs, terminated by an empty
6702 DIE. Any children of the skipped DIEs will also be skipped. */
6703
6704 static const gdb_byte *
6705 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6706 {
6707 struct dwarf2_cu *cu = reader->cu;
6708 struct abbrev_info *abbrev;
6709 unsigned int bytes_read;
6710
6711 while (1)
6712 {
6713 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6714 if (abbrev == NULL)
6715 return info_ptr + bytes_read;
6716 else
6717 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6718 }
6719 }
6720
6721 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6722 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6723 abbrev corresponding to that skipped uleb128 should be passed in
6724 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6725 children. */
6726
6727 static const gdb_byte *
6728 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6729 struct abbrev_info *abbrev)
6730 {
6731 unsigned int bytes_read;
6732 struct attribute attr;
6733 bfd *abfd = reader->abfd;
6734 struct dwarf2_cu *cu = reader->cu;
6735 const gdb_byte *buffer = reader->buffer;
6736 const gdb_byte *buffer_end = reader->buffer_end;
6737 const gdb_byte *start_info_ptr = info_ptr;
6738 unsigned int form, i;
6739
6740 for (i = 0; i < abbrev->num_attrs; i++)
6741 {
6742 /* The only abbrev we care about is DW_AT_sibling. */
6743 if (abbrev->attrs[i].name == DW_AT_sibling)
6744 {
6745 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6746 if (attr.form == DW_FORM_ref_addr)
6747 complaint (&symfile_complaints,
6748 _("ignoring absolute DW_AT_sibling"));
6749 else
6750 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6751 }
6752
6753 /* If it isn't DW_AT_sibling, skip this attribute. */
6754 form = abbrev->attrs[i].form;
6755 skip_attribute:
6756 switch (form)
6757 {
6758 case DW_FORM_ref_addr:
6759 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6760 and later it is offset sized. */
6761 if (cu->header.version == 2)
6762 info_ptr += cu->header.addr_size;
6763 else
6764 info_ptr += cu->header.offset_size;
6765 break;
6766 case DW_FORM_GNU_ref_alt:
6767 info_ptr += cu->header.offset_size;
6768 break;
6769 case DW_FORM_addr:
6770 info_ptr += cu->header.addr_size;
6771 break;
6772 case DW_FORM_data1:
6773 case DW_FORM_ref1:
6774 case DW_FORM_flag:
6775 info_ptr += 1;
6776 break;
6777 case DW_FORM_flag_present:
6778 break;
6779 case DW_FORM_data2:
6780 case DW_FORM_ref2:
6781 info_ptr += 2;
6782 break;
6783 case DW_FORM_data4:
6784 case DW_FORM_ref4:
6785 info_ptr += 4;
6786 break;
6787 case DW_FORM_data8:
6788 case DW_FORM_ref8:
6789 case DW_FORM_ref_sig8:
6790 info_ptr += 8;
6791 break;
6792 case DW_FORM_string:
6793 read_direct_string (abfd, info_ptr, &bytes_read);
6794 info_ptr += bytes_read;
6795 break;
6796 case DW_FORM_sec_offset:
6797 case DW_FORM_strp:
6798 case DW_FORM_GNU_strp_alt:
6799 info_ptr += cu->header.offset_size;
6800 break;
6801 case DW_FORM_exprloc:
6802 case DW_FORM_block:
6803 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6804 info_ptr += bytes_read;
6805 break;
6806 case DW_FORM_block1:
6807 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6808 break;
6809 case DW_FORM_block2:
6810 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6811 break;
6812 case DW_FORM_block4:
6813 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6814 break;
6815 case DW_FORM_sdata:
6816 case DW_FORM_udata:
6817 case DW_FORM_ref_udata:
6818 case DW_FORM_GNU_addr_index:
6819 case DW_FORM_GNU_str_index:
6820 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6821 break;
6822 case DW_FORM_indirect:
6823 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6824 info_ptr += bytes_read;
6825 /* We need to continue parsing from here, so just go back to
6826 the top. */
6827 goto skip_attribute;
6828
6829 default:
6830 error (_("Dwarf Error: Cannot handle %s "
6831 "in DWARF reader [in module %s]"),
6832 dwarf_form_name (form),
6833 bfd_get_filename (abfd));
6834 }
6835 }
6836
6837 if (abbrev->has_children)
6838 return skip_children (reader, info_ptr);
6839 else
6840 return info_ptr;
6841 }
6842
6843 /* Locate ORIG_PDI's sibling.
6844 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6845
6846 static const gdb_byte *
6847 locate_pdi_sibling (const struct die_reader_specs *reader,
6848 struct partial_die_info *orig_pdi,
6849 const gdb_byte *info_ptr)
6850 {
6851 /* Do we know the sibling already? */
6852
6853 if (orig_pdi->sibling)
6854 return orig_pdi->sibling;
6855
6856 /* Are there any children to deal with? */
6857
6858 if (!orig_pdi->has_children)
6859 return info_ptr;
6860
6861 /* Skip the children the long way. */
6862
6863 return skip_children (reader, info_ptr);
6864 }
6865
6866 /* Expand this partial symbol table into a full symbol table. SELF is
6867 not NULL. */
6868
6869 static void
6870 dwarf2_read_symtab (struct partial_symtab *self,
6871 struct objfile *objfile)
6872 {
6873 if (self->readin)
6874 {
6875 warning (_("bug: psymtab for %s is already read in."),
6876 self->filename);
6877 }
6878 else
6879 {
6880 if (info_verbose)
6881 {
6882 printf_filtered (_("Reading in symbols for %s..."),
6883 self->filename);
6884 gdb_flush (gdb_stdout);
6885 }
6886
6887 /* Restore our global data. */
6888 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6889
6890 /* If this psymtab is constructed from a debug-only objfile, the
6891 has_section_at_zero flag will not necessarily be correct. We
6892 can get the correct value for this flag by looking at the data
6893 associated with the (presumably stripped) associated objfile. */
6894 if (objfile->separate_debug_objfile_backlink)
6895 {
6896 struct dwarf2_per_objfile *dpo_backlink
6897 = objfile_data (objfile->separate_debug_objfile_backlink,
6898 dwarf2_objfile_data_key);
6899
6900 dwarf2_per_objfile->has_section_at_zero
6901 = dpo_backlink->has_section_at_zero;
6902 }
6903
6904 dwarf2_per_objfile->reading_partial_symbols = 0;
6905
6906 psymtab_to_symtab_1 (self);
6907
6908 /* Finish up the debug error message. */
6909 if (info_verbose)
6910 printf_filtered (_("done.\n"));
6911 }
6912
6913 process_cu_includes ();
6914 }
6915 \f
6916 /* Reading in full CUs. */
6917
6918 /* Add PER_CU to the queue. */
6919
6920 static void
6921 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6922 enum language pretend_language)
6923 {
6924 struct dwarf2_queue_item *item;
6925
6926 per_cu->queued = 1;
6927 item = xmalloc (sizeof (*item));
6928 item->per_cu = per_cu;
6929 item->pretend_language = pretend_language;
6930 item->next = NULL;
6931
6932 if (dwarf2_queue == NULL)
6933 dwarf2_queue = item;
6934 else
6935 dwarf2_queue_tail->next = item;
6936
6937 dwarf2_queue_tail = item;
6938 }
6939
6940 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6941 unit and add it to our queue.
6942 The result is non-zero if PER_CU was queued, otherwise the result is zero
6943 meaning either PER_CU is already queued or it is already loaded. */
6944
6945 static int
6946 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6947 struct dwarf2_per_cu_data *per_cu,
6948 enum language pretend_language)
6949 {
6950 /* We may arrive here during partial symbol reading, if we need full
6951 DIEs to process an unusual case (e.g. template arguments). Do
6952 not queue PER_CU, just tell our caller to load its DIEs. */
6953 if (dwarf2_per_objfile->reading_partial_symbols)
6954 {
6955 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6956 return 1;
6957 return 0;
6958 }
6959
6960 /* Mark the dependence relation so that we don't flush PER_CU
6961 too early. */
6962 dwarf2_add_dependence (this_cu, per_cu);
6963
6964 /* If it's already on the queue, we have nothing to do. */
6965 if (per_cu->queued)
6966 return 0;
6967
6968 /* If the compilation unit is already loaded, just mark it as
6969 used. */
6970 if (per_cu->cu != NULL)
6971 {
6972 per_cu->cu->last_used = 0;
6973 return 0;
6974 }
6975
6976 /* Add it to the queue. */
6977 queue_comp_unit (per_cu, pretend_language);
6978
6979 return 1;
6980 }
6981
6982 /* Process the queue. */
6983
6984 static void
6985 process_queue (void)
6986 {
6987 struct dwarf2_queue_item *item, *next_item;
6988
6989 if (dwarf2_read_debug)
6990 {
6991 fprintf_unfiltered (gdb_stdlog,
6992 "Expanding one or more symtabs of objfile %s ...\n",
6993 dwarf2_per_objfile->objfile->name);
6994 }
6995
6996 /* The queue starts out with one item, but following a DIE reference
6997 may load a new CU, adding it to the end of the queue. */
6998 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6999 {
7000 if (dwarf2_per_objfile->using_index
7001 ? !item->per_cu->v.quick->symtab
7002 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7003 {
7004 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7005
7006 if (dwarf2_read_debug)
7007 {
7008 fprintf_unfiltered (gdb_stdlog,
7009 "Expanding symtab of %s at offset 0x%x\n",
7010 per_cu->is_debug_types ? "TU" : "CU",
7011 per_cu->offset.sect_off);
7012 }
7013
7014 if (per_cu->is_debug_types)
7015 process_full_type_unit (per_cu, item->pretend_language);
7016 else
7017 process_full_comp_unit (per_cu, item->pretend_language);
7018
7019 if (dwarf2_read_debug)
7020 {
7021 fprintf_unfiltered (gdb_stdlog,
7022 "Done expanding %s at offset 0x%x\n",
7023 per_cu->is_debug_types ? "TU" : "CU",
7024 per_cu->offset.sect_off);
7025 }
7026 }
7027
7028 item->per_cu->queued = 0;
7029 next_item = item->next;
7030 xfree (item);
7031 }
7032
7033 dwarf2_queue_tail = NULL;
7034
7035 if (dwarf2_read_debug)
7036 {
7037 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7038 dwarf2_per_objfile->objfile->name);
7039 }
7040 }
7041
7042 /* Free all allocated queue entries. This function only releases anything if
7043 an error was thrown; if the queue was processed then it would have been
7044 freed as we went along. */
7045
7046 static void
7047 dwarf2_release_queue (void *dummy)
7048 {
7049 struct dwarf2_queue_item *item, *last;
7050
7051 item = dwarf2_queue;
7052 while (item)
7053 {
7054 /* Anything still marked queued is likely to be in an
7055 inconsistent state, so discard it. */
7056 if (item->per_cu->queued)
7057 {
7058 if (item->per_cu->cu != NULL)
7059 free_one_cached_comp_unit (item->per_cu);
7060 item->per_cu->queued = 0;
7061 }
7062
7063 last = item;
7064 item = item->next;
7065 xfree (last);
7066 }
7067
7068 dwarf2_queue = dwarf2_queue_tail = NULL;
7069 }
7070
7071 /* Read in full symbols for PST, and anything it depends on. */
7072
7073 static void
7074 psymtab_to_symtab_1 (struct partial_symtab *pst)
7075 {
7076 struct dwarf2_per_cu_data *per_cu;
7077 int i;
7078
7079 if (pst->readin)
7080 return;
7081
7082 for (i = 0; i < pst->number_of_dependencies; i++)
7083 if (!pst->dependencies[i]->readin
7084 && pst->dependencies[i]->user == NULL)
7085 {
7086 /* Inform about additional files that need to be read in. */
7087 if (info_verbose)
7088 {
7089 /* FIXME: i18n: Need to make this a single string. */
7090 fputs_filtered (" ", gdb_stdout);
7091 wrap_here ("");
7092 fputs_filtered ("and ", gdb_stdout);
7093 wrap_here ("");
7094 printf_filtered ("%s...", pst->dependencies[i]->filename);
7095 wrap_here (""); /* Flush output. */
7096 gdb_flush (gdb_stdout);
7097 }
7098 psymtab_to_symtab_1 (pst->dependencies[i]);
7099 }
7100
7101 per_cu = pst->read_symtab_private;
7102
7103 if (per_cu == NULL)
7104 {
7105 /* It's an include file, no symbols to read for it.
7106 Everything is in the parent symtab. */
7107 pst->readin = 1;
7108 return;
7109 }
7110
7111 dw2_do_instantiate_symtab (per_cu);
7112 }
7113
7114 /* Trivial hash function for die_info: the hash value of a DIE
7115 is its offset in .debug_info for this objfile. */
7116
7117 static hashval_t
7118 die_hash (const void *item)
7119 {
7120 const struct die_info *die = item;
7121
7122 return die->offset.sect_off;
7123 }
7124
7125 /* Trivial comparison function for die_info structures: two DIEs
7126 are equal if they have the same offset. */
7127
7128 static int
7129 die_eq (const void *item_lhs, const void *item_rhs)
7130 {
7131 const struct die_info *die_lhs = item_lhs;
7132 const struct die_info *die_rhs = item_rhs;
7133
7134 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7135 }
7136
7137 /* die_reader_func for load_full_comp_unit.
7138 This is identical to read_signatured_type_reader,
7139 but is kept separate for now. */
7140
7141 static void
7142 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7143 const gdb_byte *info_ptr,
7144 struct die_info *comp_unit_die,
7145 int has_children,
7146 void *data)
7147 {
7148 struct dwarf2_cu *cu = reader->cu;
7149 enum language *language_ptr = data;
7150
7151 gdb_assert (cu->die_hash == NULL);
7152 cu->die_hash =
7153 htab_create_alloc_ex (cu->header.length / 12,
7154 die_hash,
7155 die_eq,
7156 NULL,
7157 &cu->comp_unit_obstack,
7158 hashtab_obstack_allocate,
7159 dummy_obstack_deallocate);
7160
7161 if (has_children)
7162 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7163 &info_ptr, comp_unit_die);
7164 cu->dies = comp_unit_die;
7165 /* comp_unit_die is not stored in die_hash, no need. */
7166
7167 /* We try not to read any attributes in this function, because not
7168 all CUs needed for references have been loaded yet, and symbol
7169 table processing isn't initialized. But we have to set the CU language,
7170 or we won't be able to build types correctly.
7171 Similarly, if we do not read the producer, we can not apply
7172 producer-specific interpretation. */
7173 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7174 }
7175
7176 /* Load the DIEs associated with PER_CU into memory. */
7177
7178 static void
7179 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7180 enum language pretend_language)
7181 {
7182 gdb_assert (! this_cu->is_debug_types);
7183
7184 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7185 load_full_comp_unit_reader, &pretend_language);
7186 }
7187
7188 /* Add a DIE to the delayed physname list. */
7189
7190 static void
7191 add_to_method_list (struct type *type, int fnfield_index, int index,
7192 const char *name, struct die_info *die,
7193 struct dwarf2_cu *cu)
7194 {
7195 struct delayed_method_info mi;
7196 mi.type = type;
7197 mi.fnfield_index = fnfield_index;
7198 mi.index = index;
7199 mi.name = name;
7200 mi.die = die;
7201 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7202 }
7203
7204 /* A cleanup for freeing the delayed method list. */
7205
7206 static void
7207 free_delayed_list (void *ptr)
7208 {
7209 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7210 if (cu->method_list != NULL)
7211 {
7212 VEC_free (delayed_method_info, cu->method_list);
7213 cu->method_list = NULL;
7214 }
7215 }
7216
7217 /* Compute the physnames of any methods on the CU's method list.
7218
7219 The computation of method physnames is delayed in order to avoid the
7220 (bad) condition that one of the method's formal parameters is of an as yet
7221 incomplete type. */
7222
7223 static void
7224 compute_delayed_physnames (struct dwarf2_cu *cu)
7225 {
7226 int i;
7227 struct delayed_method_info *mi;
7228 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7229 {
7230 const char *physname;
7231 struct fn_fieldlist *fn_flp
7232 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7233 physname = dwarf2_physname (mi->name, mi->die, cu);
7234 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7235 }
7236 }
7237
7238 /* Go objects should be embedded in a DW_TAG_module DIE,
7239 and it's not clear if/how imported objects will appear.
7240 To keep Go support simple until that's worked out,
7241 go back through what we've read and create something usable.
7242 We could do this while processing each DIE, and feels kinda cleaner,
7243 but that way is more invasive.
7244 This is to, for example, allow the user to type "p var" or "b main"
7245 without having to specify the package name, and allow lookups
7246 of module.object to work in contexts that use the expression
7247 parser. */
7248
7249 static void
7250 fixup_go_packaging (struct dwarf2_cu *cu)
7251 {
7252 char *package_name = NULL;
7253 struct pending *list;
7254 int i;
7255
7256 for (list = global_symbols; list != NULL; list = list->next)
7257 {
7258 for (i = 0; i < list->nsyms; ++i)
7259 {
7260 struct symbol *sym = list->symbol[i];
7261
7262 if (SYMBOL_LANGUAGE (sym) == language_go
7263 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7264 {
7265 char *this_package_name = go_symbol_package_name (sym);
7266
7267 if (this_package_name == NULL)
7268 continue;
7269 if (package_name == NULL)
7270 package_name = this_package_name;
7271 else
7272 {
7273 if (strcmp (package_name, this_package_name) != 0)
7274 complaint (&symfile_complaints,
7275 _("Symtab %s has objects from two different Go packages: %s and %s"),
7276 (SYMBOL_SYMTAB (sym)
7277 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7278 : cu->objfile->name),
7279 this_package_name, package_name);
7280 xfree (this_package_name);
7281 }
7282 }
7283 }
7284 }
7285
7286 if (package_name != NULL)
7287 {
7288 struct objfile *objfile = cu->objfile;
7289 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7290 package_name,
7291 strlen (package_name));
7292 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7293 saved_package_name, objfile);
7294 struct symbol *sym;
7295
7296 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7297
7298 sym = allocate_symbol (objfile);
7299 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7300 SYMBOL_SET_NAMES (sym, saved_package_name,
7301 strlen (saved_package_name), 0, objfile);
7302 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7303 e.g., "main" finds the "main" module and not C's main(). */
7304 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7305 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7306 SYMBOL_TYPE (sym) = type;
7307
7308 add_symbol_to_list (sym, &global_symbols);
7309
7310 xfree (package_name);
7311 }
7312 }
7313
7314 /* Return the symtab for PER_CU. This works properly regardless of
7315 whether we're using the index or psymtabs. */
7316
7317 static struct symtab *
7318 get_symtab (struct dwarf2_per_cu_data *per_cu)
7319 {
7320 return (dwarf2_per_objfile->using_index
7321 ? per_cu->v.quick->symtab
7322 : per_cu->v.psymtab->symtab);
7323 }
7324
7325 /* A helper function for computing the list of all symbol tables
7326 included by PER_CU. */
7327
7328 static void
7329 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7330 htab_t all_children,
7331 struct dwarf2_per_cu_data *per_cu)
7332 {
7333 void **slot;
7334 int ix;
7335 struct dwarf2_per_cu_data *iter;
7336
7337 slot = htab_find_slot (all_children, per_cu, INSERT);
7338 if (*slot != NULL)
7339 {
7340 /* This inclusion and its children have been processed. */
7341 return;
7342 }
7343
7344 *slot = per_cu;
7345 /* Only add a CU if it has a symbol table. */
7346 if (get_symtab (per_cu) != NULL)
7347 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7348
7349 for (ix = 0;
7350 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7351 ++ix)
7352 recursively_compute_inclusions (result, all_children, iter);
7353 }
7354
7355 /* Compute the symtab 'includes' fields for the symtab related to
7356 PER_CU. */
7357
7358 static void
7359 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7360 {
7361 gdb_assert (! per_cu->is_debug_types);
7362
7363 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7364 {
7365 int ix, len;
7366 struct dwarf2_per_cu_data *iter;
7367 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7368 htab_t all_children;
7369 struct symtab *symtab = get_symtab (per_cu);
7370
7371 /* If we don't have a symtab, we can just skip this case. */
7372 if (symtab == NULL)
7373 return;
7374
7375 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7376 NULL, xcalloc, xfree);
7377
7378 for (ix = 0;
7379 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7380 ix, iter);
7381 ++ix)
7382 recursively_compute_inclusions (&result_children, all_children, iter);
7383
7384 /* Now we have a transitive closure of all the included CUs, and
7385 for .gdb_index version 7 the included TUs, so we can convert it
7386 to a list of symtabs. */
7387 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7388 symtab->includes
7389 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7390 (len + 1) * sizeof (struct symtab *));
7391 for (ix = 0;
7392 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7393 ++ix)
7394 symtab->includes[ix] = get_symtab (iter);
7395 symtab->includes[len] = NULL;
7396
7397 VEC_free (dwarf2_per_cu_ptr, result_children);
7398 htab_delete (all_children);
7399 }
7400 }
7401
7402 /* Compute the 'includes' field for the symtabs of all the CUs we just
7403 read. */
7404
7405 static void
7406 process_cu_includes (void)
7407 {
7408 int ix;
7409 struct dwarf2_per_cu_data *iter;
7410
7411 for (ix = 0;
7412 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7413 ix, iter);
7414 ++ix)
7415 {
7416 if (! iter->is_debug_types)
7417 compute_symtab_includes (iter);
7418 }
7419
7420 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7421 }
7422
7423 /* Generate full symbol information for PER_CU, whose DIEs have
7424 already been loaded into memory. */
7425
7426 static void
7427 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7428 enum language pretend_language)
7429 {
7430 struct dwarf2_cu *cu = per_cu->cu;
7431 struct objfile *objfile = per_cu->objfile;
7432 CORE_ADDR lowpc, highpc;
7433 struct symtab *symtab;
7434 struct cleanup *back_to, *delayed_list_cleanup;
7435 CORE_ADDR baseaddr;
7436 struct block *static_block;
7437
7438 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7439
7440 buildsym_init ();
7441 back_to = make_cleanup (really_free_pendings, NULL);
7442 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7443
7444 cu->list_in_scope = &file_symbols;
7445
7446 cu->language = pretend_language;
7447 cu->language_defn = language_def (cu->language);
7448
7449 /* Do line number decoding in read_file_scope () */
7450 process_die (cu->dies, cu);
7451
7452 /* For now fudge the Go package. */
7453 if (cu->language == language_go)
7454 fixup_go_packaging (cu);
7455
7456 /* Now that we have processed all the DIEs in the CU, all the types
7457 should be complete, and it should now be safe to compute all of the
7458 physnames. */
7459 compute_delayed_physnames (cu);
7460 do_cleanups (delayed_list_cleanup);
7461
7462 /* Some compilers don't define a DW_AT_high_pc attribute for the
7463 compilation unit. If the DW_AT_high_pc is missing, synthesize
7464 it, by scanning the DIE's below the compilation unit. */
7465 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7466
7467 static_block
7468 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7469
7470 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7471 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7472 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7473 addrmap to help ensure it has an accurate map of pc values belonging to
7474 this comp unit. */
7475 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7476
7477 symtab = end_symtab_from_static_block (static_block, objfile,
7478 SECT_OFF_TEXT (objfile), 0);
7479
7480 if (symtab != NULL)
7481 {
7482 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7483
7484 /* Set symtab language to language from DW_AT_language. If the
7485 compilation is from a C file generated by language preprocessors, do
7486 not set the language if it was already deduced by start_subfile. */
7487 if (!(cu->language == language_c && symtab->language != language_c))
7488 symtab->language = cu->language;
7489
7490 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7491 produce DW_AT_location with location lists but it can be possibly
7492 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7493 there were bugs in prologue debug info, fixed later in GCC-4.5
7494 by "unwind info for epilogues" patch (which is not directly related).
7495
7496 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7497 needed, it would be wrong due to missing DW_AT_producer there.
7498
7499 Still one can confuse GDB by using non-standard GCC compilation
7500 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7501 */
7502 if (cu->has_loclist && gcc_4_minor >= 5)
7503 symtab->locations_valid = 1;
7504
7505 if (gcc_4_minor >= 5)
7506 symtab->epilogue_unwind_valid = 1;
7507
7508 symtab->call_site_htab = cu->call_site_htab;
7509 }
7510
7511 if (dwarf2_per_objfile->using_index)
7512 per_cu->v.quick->symtab = symtab;
7513 else
7514 {
7515 struct partial_symtab *pst = per_cu->v.psymtab;
7516 pst->symtab = symtab;
7517 pst->readin = 1;
7518 }
7519
7520 /* Push it for inclusion processing later. */
7521 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7522
7523 do_cleanups (back_to);
7524 }
7525
7526 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7527 already been loaded into memory. */
7528
7529 static void
7530 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7531 enum language pretend_language)
7532 {
7533 struct dwarf2_cu *cu = per_cu->cu;
7534 struct objfile *objfile = per_cu->objfile;
7535 struct symtab *symtab;
7536 struct cleanup *back_to, *delayed_list_cleanup;
7537 struct signatured_type *sig_type;
7538
7539 gdb_assert (per_cu->is_debug_types);
7540 sig_type = (struct signatured_type *) per_cu;
7541
7542 buildsym_init ();
7543 back_to = make_cleanup (really_free_pendings, NULL);
7544 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7545
7546 cu->list_in_scope = &file_symbols;
7547
7548 cu->language = pretend_language;
7549 cu->language_defn = language_def (cu->language);
7550
7551 /* The symbol tables are set up in read_type_unit_scope. */
7552 process_die (cu->dies, cu);
7553
7554 /* For now fudge the Go package. */
7555 if (cu->language == language_go)
7556 fixup_go_packaging (cu);
7557
7558 /* Now that we have processed all the DIEs in the CU, all the types
7559 should be complete, and it should now be safe to compute all of the
7560 physnames. */
7561 compute_delayed_physnames (cu);
7562 do_cleanups (delayed_list_cleanup);
7563
7564 /* TUs share symbol tables.
7565 If this is the first TU to use this symtab, complete the construction
7566 of it with end_expandable_symtab. Otherwise, complete the addition of
7567 this TU's symbols to the existing symtab. */
7568 if (sig_type->type_unit_group->primary_symtab == NULL)
7569 {
7570 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7571 sig_type->type_unit_group->primary_symtab = symtab;
7572
7573 if (symtab != NULL)
7574 {
7575 /* Set symtab language to language from DW_AT_language. If the
7576 compilation is from a C file generated by language preprocessors,
7577 do not set the language if it was already deduced by
7578 start_subfile. */
7579 if (!(cu->language == language_c && symtab->language != language_c))
7580 symtab->language = cu->language;
7581 }
7582 }
7583 else
7584 {
7585 augment_type_symtab (objfile,
7586 sig_type->type_unit_group->primary_symtab);
7587 symtab = sig_type->type_unit_group->primary_symtab;
7588 }
7589
7590 if (dwarf2_per_objfile->using_index)
7591 per_cu->v.quick->symtab = symtab;
7592 else
7593 {
7594 struct partial_symtab *pst = per_cu->v.psymtab;
7595 pst->symtab = symtab;
7596 pst->readin = 1;
7597 }
7598
7599 do_cleanups (back_to);
7600 }
7601
7602 /* Process an imported unit DIE. */
7603
7604 static void
7605 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7606 {
7607 struct attribute *attr;
7608
7609 /* For now we don't handle imported units in type units. */
7610 if (cu->per_cu->is_debug_types)
7611 {
7612 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7613 " supported in type units [in module %s]"),
7614 cu->objfile->name);
7615 }
7616
7617 attr = dwarf2_attr (die, DW_AT_import, cu);
7618 if (attr != NULL)
7619 {
7620 struct dwarf2_per_cu_data *per_cu;
7621 struct symtab *imported_symtab;
7622 sect_offset offset;
7623 int is_dwz;
7624
7625 offset = dwarf2_get_ref_die_offset (attr);
7626 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7627 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7628
7629 /* Queue the unit, if needed. */
7630 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7631 load_full_comp_unit (per_cu, cu->language);
7632
7633 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7634 per_cu);
7635 }
7636 }
7637
7638 /* Process a die and its children. */
7639
7640 static void
7641 process_die (struct die_info *die, struct dwarf2_cu *cu)
7642 {
7643 switch (die->tag)
7644 {
7645 case DW_TAG_padding:
7646 break;
7647 case DW_TAG_compile_unit:
7648 case DW_TAG_partial_unit:
7649 read_file_scope (die, cu);
7650 break;
7651 case DW_TAG_type_unit:
7652 read_type_unit_scope (die, cu);
7653 break;
7654 case DW_TAG_subprogram:
7655 case DW_TAG_inlined_subroutine:
7656 read_func_scope (die, cu);
7657 break;
7658 case DW_TAG_lexical_block:
7659 case DW_TAG_try_block:
7660 case DW_TAG_catch_block:
7661 read_lexical_block_scope (die, cu);
7662 break;
7663 case DW_TAG_GNU_call_site:
7664 read_call_site_scope (die, cu);
7665 break;
7666 case DW_TAG_class_type:
7667 case DW_TAG_interface_type:
7668 case DW_TAG_structure_type:
7669 case DW_TAG_union_type:
7670 process_structure_scope (die, cu);
7671 break;
7672 case DW_TAG_enumeration_type:
7673 process_enumeration_scope (die, cu);
7674 break;
7675
7676 /* These dies have a type, but processing them does not create
7677 a symbol or recurse to process the children. Therefore we can
7678 read them on-demand through read_type_die. */
7679 case DW_TAG_subroutine_type:
7680 case DW_TAG_set_type:
7681 case DW_TAG_array_type:
7682 case DW_TAG_pointer_type:
7683 case DW_TAG_ptr_to_member_type:
7684 case DW_TAG_reference_type:
7685 case DW_TAG_string_type:
7686 break;
7687
7688 case DW_TAG_base_type:
7689 case DW_TAG_subrange_type:
7690 case DW_TAG_typedef:
7691 /* Add a typedef symbol for the type definition, if it has a
7692 DW_AT_name. */
7693 new_symbol (die, read_type_die (die, cu), cu);
7694 break;
7695 case DW_TAG_common_block:
7696 read_common_block (die, cu);
7697 break;
7698 case DW_TAG_common_inclusion:
7699 break;
7700 case DW_TAG_namespace:
7701 cu->processing_has_namespace_info = 1;
7702 read_namespace (die, cu);
7703 break;
7704 case DW_TAG_module:
7705 cu->processing_has_namespace_info = 1;
7706 read_module (die, cu);
7707 break;
7708 case DW_TAG_imported_declaration:
7709 case DW_TAG_imported_module:
7710 cu->processing_has_namespace_info = 1;
7711 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7712 || cu->language != language_fortran))
7713 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7714 dwarf_tag_name (die->tag));
7715 read_import_statement (die, cu);
7716 break;
7717
7718 case DW_TAG_imported_unit:
7719 process_imported_unit_die (die, cu);
7720 break;
7721
7722 default:
7723 new_symbol (die, NULL, cu);
7724 break;
7725 }
7726 }
7727 \f
7728 /* DWARF name computation. */
7729
7730 /* A helper function for dwarf2_compute_name which determines whether DIE
7731 needs to have the name of the scope prepended to the name listed in the
7732 die. */
7733
7734 static int
7735 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7736 {
7737 struct attribute *attr;
7738
7739 switch (die->tag)
7740 {
7741 case DW_TAG_namespace:
7742 case DW_TAG_typedef:
7743 case DW_TAG_class_type:
7744 case DW_TAG_interface_type:
7745 case DW_TAG_structure_type:
7746 case DW_TAG_union_type:
7747 case DW_TAG_enumeration_type:
7748 case DW_TAG_enumerator:
7749 case DW_TAG_subprogram:
7750 case DW_TAG_member:
7751 return 1;
7752
7753 case DW_TAG_variable:
7754 case DW_TAG_constant:
7755 /* We only need to prefix "globally" visible variables. These include
7756 any variable marked with DW_AT_external or any variable that
7757 lives in a namespace. [Variables in anonymous namespaces
7758 require prefixing, but they are not DW_AT_external.] */
7759
7760 if (dwarf2_attr (die, DW_AT_specification, cu))
7761 {
7762 struct dwarf2_cu *spec_cu = cu;
7763
7764 return die_needs_namespace (die_specification (die, &spec_cu),
7765 spec_cu);
7766 }
7767
7768 attr = dwarf2_attr (die, DW_AT_external, cu);
7769 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7770 && die->parent->tag != DW_TAG_module)
7771 return 0;
7772 /* A variable in a lexical block of some kind does not need a
7773 namespace, even though in C++ such variables may be external
7774 and have a mangled name. */
7775 if (die->parent->tag == DW_TAG_lexical_block
7776 || die->parent->tag == DW_TAG_try_block
7777 || die->parent->tag == DW_TAG_catch_block
7778 || die->parent->tag == DW_TAG_subprogram)
7779 return 0;
7780 return 1;
7781
7782 default:
7783 return 0;
7784 }
7785 }
7786
7787 /* Retrieve the last character from a mem_file. */
7788
7789 static void
7790 do_ui_file_peek_last (void *object, const char *buffer, long length)
7791 {
7792 char *last_char_p = (char *) object;
7793
7794 if (length > 0)
7795 *last_char_p = buffer[length - 1];
7796 }
7797
7798 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7799 compute the physname for the object, which include a method's:
7800 - formal parameters (C++/Java),
7801 - receiver type (Go),
7802 - return type (Java).
7803
7804 The term "physname" is a bit confusing.
7805 For C++, for example, it is the demangled name.
7806 For Go, for example, it's the mangled name.
7807
7808 For Ada, return the DIE's linkage name rather than the fully qualified
7809 name. PHYSNAME is ignored..
7810
7811 The result is allocated on the objfile_obstack and canonicalized. */
7812
7813 static const char *
7814 dwarf2_compute_name (const char *name,
7815 struct die_info *die, struct dwarf2_cu *cu,
7816 int physname)
7817 {
7818 struct objfile *objfile = cu->objfile;
7819
7820 if (name == NULL)
7821 name = dwarf2_name (die, cu);
7822
7823 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7824 compute it by typename_concat inside GDB. */
7825 if (cu->language == language_ada
7826 || (cu->language == language_fortran && physname))
7827 {
7828 /* For Ada unit, we prefer the linkage name over the name, as
7829 the former contains the exported name, which the user expects
7830 to be able to reference. Ideally, we want the user to be able
7831 to reference this entity using either natural or linkage name,
7832 but we haven't started looking at this enhancement yet. */
7833 struct attribute *attr;
7834
7835 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7836 if (attr == NULL)
7837 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7838 if (attr && DW_STRING (attr))
7839 return DW_STRING (attr);
7840 }
7841
7842 /* These are the only languages we know how to qualify names in. */
7843 if (name != NULL
7844 && (cu->language == language_cplus || cu->language == language_java
7845 || cu->language == language_fortran))
7846 {
7847 if (die_needs_namespace (die, cu))
7848 {
7849 long length;
7850 const char *prefix;
7851 struct ui_file *buf;
7852
7853 prefix = determine_prefix (die, cu);
7854 buf = mem_fileopen ();
7855 if (*prefix != '\0')
7856 {
7857 char *prefixed_name = typename_concat (NULL, prefix, name,
7858 physname, cu);
7859
7860 fputs_unfiltered (prefixed_name, buf);
7861 xfree (prefixed_name);
7862 }
7863 else
7864 fputs_unfiltered (name, buf);
7865
7866 /* Template parameters may be specified in the DIE's DW_AT_name, or
7867 as children with DW_TAG_template_type_param or
7868 DW_TAG_value_type_param. If the latter, add them to the name
7869 here. If the name already has template parameters, then
7870 skip this step; some versions of GCC emit both, and
7871 it is more efficient to use the pre-computed name.
7872
7873 Something to keep in mind about this process: it is very
7874 unlikely, or in some cases downright impossible, to produce
7875 something that will match the mangled name of a function.
7876 If the definition of the function has the same debug info,
7877 we should be able to match up with it anyway. But fallbacks
7878 using the minimal symbol, for instance to find a method
7879 implemented in a stripped copy of libstdc++, will not work.
7880 If we do not have debug info for the definition, we will have to
7881 match them up some other way.
7882
7883 When we do name matching there is a related problem with function
7884 templates; two instantiated function templates are allowed to
7885 differ only by their return types, which we do not add here. */
7886
7887 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7888 {
7889 struct attribute *attr;
7890 struct die_info *child;
7891 int first = 1;
7892
7893 die->building_fullname = 1;
7894
7895 for (child = die->child; child != NULL; child = child->sibling)
7896 {
7897 struct type *type;
7898 LONGEST value;
7899 const gdb_byte *bytes;
7900 struct dwarf2_locexpr_baton *baton;
7901 struct value *v;
7902
7903 if (child->tag != DW_TAG_template_type_param
7904 && child->tag != DW_TAG_template_value_param)
7905 continue;
7906
7907 if (first)
7908 {
7909 fputs_unfiltered ("<", buf);
7910 first = 0;
7911 }
7912 else
7913 fputs_unfiltered (", ", buf);
7914
7915 attr = dwarf2_attr (child, DW_AT_type, cu);
7916 if (attr == NULL)
7917 {
7918 complaint (&symfile_complaints,
7919 _("template parameter missing DW_AT_type"));
7920 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7921 continue;
7922 }
7923 type = die_type (child, cu);
7924
7925 if (child->tag == DW_TAG_template_type_param)
7926 {
7927 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7928 continue;
7929 }
7930
7931 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7932 if (attr == NULL)
7933 {
7934 complaint (&symfile_complaints,
7935 _("template parameter missing "
7936 "DW_AT_const_value"));
7937 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7938 continue;
7939 }
7940
7941 dwarf2_const_value_attr (attr, type, name,
7942 &cu->comp_unit_obstack, cu,
7943 &value, &bytes, &baton);
7944
7945 if (TYPE_NOSIGN (type))
7946 /* GDB prints characters as NUMBER 'CHAR'. If that's
7947 changed, this can use value_print instead. */
7948 c_printchar (value, type, buf);
7949 else
7950 {
7951 struct value_print_options opts;
7952
7953 if (baton != NULL)
7954 v = dwarf2_evaluate_loc_desc (type, NULL,
7955 baton->data,
7956 baton->size,
7957 baton->per_cu);
7958 else if (bytes != NULL)
7959 {
7960 v = allocate_value (type);
7961 memcpy (value_contents_writeable (v), bytes,
7962 TYPE_LENGTH (type));
7963 }
7964 else
7965 v = value_from_longest (type, value);
7966
7967 /* Specify decimal so that we do not depend on
7968 the radix. */
7969 get_formatted_print_options (&opts, 'd');
7970 opts.raw = 1;
7971 value_print (v, buf, &opts);
7972 release_value (v);
7973 value_free (v);
7974 }
7975 }
7976
7977 die->building_fullname = 0;
7978
7979 if (!first)
7980 {
7981 /* Close the argument list, with a space if necessary
7982 (nested templates). */
7983 char last_char = '\0';
7984 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7985 if (last_char == '>')
7986 fputs_unfiltered (" >", buf);
7987 else
7988 fputs_unfiltered (">", buf);
7989 }
7990 }
7991
7992 /* For Java and C++ methods, append formal parameter type
7993 information, if PHYSNAME. */
7994
7995 if (physname && die->tag == DW_TAG_subprogram
7996 && (cu->language == language_cplus
7997 || cu->language == language_java))
7998 {
7999 struct type *type = read_type_die (die, cu);
8000
8001 c_type_print_args (type, buf, 1, cu->language,
8002 &type_print_raw_options);
8003
8004 if (cu->language == language_java)
8005 {
8006 /* For java, we must append the return type to method
8007 names. */
8008 if (die->tag == DW_TAG_subprogram)
8009 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8010 0, 0, &type_print_raw_options);
8011 }
8012 else if (cu->language == language_cplus)
8013 {
8014 /* Assume that an artificial first parameter is
8015 "this", but do not crash if it is not. RealView
8016 marks unnamed (and thus unused) parameters as
8017 artificial; there is no way to differentiate
8018 the two cases. */
8019 if (TYPE_NFIELDS (type) > 0
8020 && TYPE_FIELD_ARTIFICIAL (type, 0)
8021 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8022 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8023 0))))
8024 fputs_unfiltered (" const", buf);
8025 }
8026 }
8027
8028 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8029 &length);
8030 ui_file_delete (buf);
8031
8032 if (cu->language == language_cplus)
8033 {
8034 const char *cname
8035 = dwarf2_canonicalize_name (name, cu,
8036 &objfile->objfile_obstack);
8037
8038 if (cname != NULL)
8039 name = cname;
8040 }
8041 }
8042 }
8043
8044 return name;
8045 }
8046
8047 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8048 If scope qualifiers are appropriate they will be added. The result
8049 will be allocated on the objfile_obstack, or NULL if the DIE does
8050 not have a name. NAME may either be from a previous call to
8051 dwarf2_name or NULL.
8052
8053 The output string will be canonicalized (if C++/Java). */
8054
8055 static const char *
8056 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8057 {
8058 return dwarf2_compute_name (name, die, cu, 0);
8059 }
8060
8061 /* Construct a physname for the given DIE in CU. NAME may either be
8062 from a previous call to dwarf2_name or NULL. The result will be
8063 allocated on the objfile_objstack or NULL if the DIE does not have a
8064 name.
8065
8066 The output string will be canonicalized (if C++/Java). */
8067
8068 static const char *
8069 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8070 {
8071 struct objfile *objfile = cu->objfile;
8072 struct attribute *attr;
8073 const char *retval, *mangled = NULL, *canon = NULL;
8074 struct cleanup *back_to;
8075 int need_copy = 1;
8076
8077 /* In this case dwarf2_compute_name is just a shortcut not building anything
8078 on its own. */
8079 if (!die_needs_namespace (die, cu))
8080 return dwarf2_compute_name (name, die, cu, 1);
8081
8082 back_to = make_cleanup (null_cleanup, NULL);
8083
8084 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8085 if (!attr)
8086 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8087
8088 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8089 has computed. */
8090 if (attr && DW_STRING (attr))
8091 {
8092 char *demangled;
8093
8094 mangled = DW_STRING (attr);
8095
8096 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8097 type. It is easier for GDB users to search for such functions as
8098 `name(params)' than `long name(params)'. In such case the minimal
8099 symbol names do not match the full symbol names but for template
8100 functions there is never a need to look up their definition from their
8101 declaration so the only disadvantage remains the minimal symbol
8102 variant `long name(params)' does not have the proper inferior type.
8103 */
8104
8105 if (cu->language == language_go)
8106 {
8107 /* This is a lie, but we already lie to the caller new_symbol_full.
8108 new_symbol_full assumes we return the mangled name.
8109 This just undoes that lie until things are cleaned up. */
8110 demangled = NULL;
8111 }
8112 else
8113 {
8114 demangled = gdb_demangle (mangled,
8115 (DMGL_PARAMS | DMGL_ANSI
8116 | (cu->language == language_java
8117 ? DMGL_JAVA | DMGL_RET_POSTFIX
8118 : DMGL_RET_DROP)));
8119 }
8120 if (demangled)
8121 {
8122 make_cleanup (xfree, demangled);
8123 canon = demangled;
8124 }
8125 else
8126 {
8127 canon = mangled;
8128 need_copy = 0;
8129 }
8130 }
8131
8132 if (canon == NULL || check_physname)
8133 {
8134 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8135
8136 if (canon != NULL && strcmp (physname, canon) != 0)
8137 {
8138 /* It may not mean a bug in GDB. The compiler could also
8139 compute DW_AT_linkage_name incorrectly. But in such case
8140 GDB would need to be bug-to-bug compatible. */
8141
8142 complaint (&symfile_complaints,
8143 _("Computed physname <%s> does not match demangled <%s> "
8144 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8145 physname, canon, mangled, die->offset.sect_off, objfile->name);
8146
8147 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8148 is available here - over computed PHYSNAME. It is safer
8149 against both buggy GDB and buggy compilers. */
8150
8151 retval = canon;
8152 }
8153 else
8154 {
8155 retval = physname;
8156 need_copy = 0;
8157 }
8158 }
8159 else
8160 retval = canon;
8161
8162 if (need_copy)
8163 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8164
8165 do_cleanups (back_to);
8166 return retval;
8167 }
8168
8169 /* Read the import statement specified by the given die and record it. */
8170
8171 static void
8172 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8173 {
8174 struct objfile *objfile = cu->objfile;
8175 struct attribute *import_attr;
8176 struct die_info *imported_die, *child_die;
8177 struct dwarf2_cu *imported_cu;
8178 const char *imported_name;
8179 const char *imported_name_prefix;
8180 const char *canonical_name;
8181 const char *import_alias;
8182 const char *imported_declaration = NULL;
8183 const char *import_prefix;
8184 VEC (const_char_ptr) *excludes = NULL;
8185 struct cleanup *cleanups;
8186
8187 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8188 if (import_attr == NULL)
8189 {
8190 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8191 dwarf_tag_name (die->tag));
8192 return;
8193 }
8194
8195 imported_cu = cu;
8196 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8197 imported_name = dwarf2_name (imported_die, imported_cu);
8198 if (imported_name == NULL)
8199 {
8200 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8201
8202 The import in the following code:
8203 namespace A
8204 {
8205 typedef int B;
8206 }
8207
8208 int main ()
8209 {
8210 using A::B;
8211 B b;
8212 return b;
8213 }
8214
8215 ...
8216 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8217 <52> DW_AT_decl_file : 1
8218 <53> DW_AT_decl_line : 6
8219 <54> DW_AT_import : <0x75>
8220 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8221 <59> DW_AT_name : B
8222 <5b> DW_AT_decl_file : 1
8223 <5c> DW_AT_decl_line : 2
8224 <5d> DW_AT_type : <0x6e>
8225 ...
8226 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8227 <76> DW_AT_byte_size : 4
8228 <77> DW_AT_encoding : 5 (signed)
8229
8230 imports the wrong die ( 0x75 instead of 0x58 ).
8231 This case will be ignored until the gcc bug is fixed. */
8232 return;
8233 }
8234
8235 /* Figure out the local name after import. */
8236 import_alias = dwarf2_name (die, cu);
8237
8238 /* Figure out where the statement is being imported to. */
8239 import_prefix = determine_prefix (die, cu);
8240
8241 /* Figure out what the scope of the imported die is and prepend it
8242 to the name of the imported die. */
8243 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8244
8245 if (imported_die->tag != DW_TAG_namespace
8246 && imported_die->tag != DW_TAG_module)
8247 {
8248 imported_declaration = imported_name;
8249 canonical_name = imported_name_prefix;
8250 }
8251 else if (strlen (imported_name_prefix) > 0)
8252 canonical_name = obconcat (&objfile->objfile_obstack,
8253 imported_name_prefix, "::", imported_name,
8254 (char *) NULL);
8255 else
8256 canonical_name = imported_name;
8257
8258 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8259
8260 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8261 for (child_die = die->child; child_die && child_die->tag;
8262 child_die = sibling_die (child_die))
8263 {
8264 /* DWARF-4: A Fortran use statement with a “rename list” may be
8265 represented by an imported module entry with an import attribute
8266 referring to the module and owned entries corresponding to those
8267 entities that are renamed as part of being imported. */
8268
8269 if (child_die->tag != DW_TAG_imported_declaration)
8270 {
8271 complaint (&symfile_complaints,
8272 _("child DW_TAG_imported_declaration expected "
8273 "- DIE at 0x%x [in module %s]"),
8274 child_die->offset.sect_off, objfile->name);
8275 continue;
8276 }
8277
8278 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8279 if (import_attr == NULL)
8280 {
8281 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8282 dwarf_tag_name (child_die->tag));
8283 continue;
8284 }
8285
8286 imported_cu = cu;
8287 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8288 &imported_cu);
8289 imported_name = dwarf2_name (imported_die, imported_cu);
8290 if (imported_name == NULL)
8291 {
8292 complaint (&symfile_complaints,
8293 _("child DW_TAG_imported_declaration has unknown "
8294 "imported name - DIE at 0x%x [in module %s]"),
8295 child_die->offset.sect_off, objfile->name);
8296 continue;
8297 }
8298
8299 VEC_safe_push (const_char_ptr, excludes, imported_name);
8300
8301 process_die (child_die, cu);
8302 }
8303
8304 cp_add_using_directive (import_prefix,
8305 canonical_name,
8306 import_alias,
8307 imported_declaration,
8308 excludes,
8309 0,
8310 &objfile->objfile_obstack);
8311
8312 do_cleanups (cleanups);
8313 }
8314
8315 /* Cleanup function for handle_DW_AT_stmt_list. */
8316
8317 static void
8318 free_cu_line_header (void *arg)
8319 {
8320 struct dwarf2_cu *cu = arg;
8321
8322 free_line_header (cu->line_header);
8323 cu->line_header = NULL;
8324 }
8325
8326 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8327 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8328 this, it was first present in GCC release 4.3.0. */
8329
8330 static int
8331 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8332 {
8333 if (!cu->checked_producer)
8334 check_producer (cu);
8335
8336 return cu->producer_is_gcc_lt_4_3;
8337 }
8338
8339 static void
8340 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8341 const char **name, const char **comp_dir)
8342 {
8343 struct attribute *attr;
8344
8345 *name = NULL;
8346 *comp_dir = NULL;
8347
8348 /* Find the filename. Do not use dwarf2_name here, since the filename
8349 is not a source language identifier. */
8350 attr = dwarf2_attr (die, DW_AT_name, cu);
8351 if (attr)
8352 {
8353 *name = DW_STRING (attr);
8354 }
8355
8356 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8357 if (attr)
8358 *comp_dir = DW_STRING (attr);
8359 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8360 && IS_ABSOLUTE_PATH (*name))
8361 {
8362 char *d = ldirname (*name);
8363
8364 *comp_dir = d;
8365 if (d != NULL)
8366 make_cleanup (xfree, d);
8367 }
8368 if (*comp_dir != NULL)
8369 {
8370 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8371 directory, get rid of it. */
8372 char *cp = strchr (*comp_dir, ':');
8373
8374 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8375 *comp_dir = cp + 1;
8376 }
8377
8378 if (*name == NULL)
8379 *name = "<unknown>";
8380 }
8381
8382 /* Handle DW_AT_stmt_list for a compilation unit.
8383 DIE is the DW_TAG_compile_unit die for CU.
8384 COMP_DIR is the compilation directory.
8385 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8386
8387 static void
8388 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8389 const char *comp_dir) /* ARI: editCase function */
8390 {
8391 struct attribute *attr;
8392
8393 gdb_assert (! cu->per_cu->is_debug_types);
8394
8395 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8396 if (attr)
8397 {
8398 unsigned int line_offset = DW_UNSND (attr);
8399 struct line_header *line_header
8400 = dwarf_decode_line_header (line_offset, cu);
8401
8402 if (line_header)
8403 {
8404 cu->line_header = line_header;
8405 make_cleanup (free_cu_line_header, cu);
8406 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8407 }
8408 }
8409 }
8410
8411 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8412
8413 static void
8414 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8415 {
8416 struct objfile *objfile = dwarf2_per_objfile->objfile;
8417 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8418 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8419 CORE_ADDR highpc = ((CORE_ADDR) 0);
8420 struct attribute *attr;
8421 const char *name = NULL;
8422 const char *comp_dir = NULL;
8423 struct die_info *child_die;
8424 bfd *abfd = objfile->obfd;
8425 CORE_ADDR baseaddr;
8426
8427 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8428
8429 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8430
8431 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8432 from finish_block. */
8433 if (lowpc == ((CORE_ADDR) -1))
8434 lowpc = highpc;
8435 lowpc += baseaddr;
8436 highpc += baseaddr;
8437
8438 find_file_and_directory (die, cu, &name, &comp_dir);
8439
8440 prepare_one_comp_unit (cu, die, cu->language);
8441
8442 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8443 standardised yet. As a workaround for the language detection we fall
8444 back to the DW_AT_producer string. */
8445 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8446 cu->language = language_opencl;
8447
8448 /* Similar hack for Go. */
8449 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8450 set_cu_language (DW_LANG_Go, cu);
8451
8452 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8453
8454 /* Decode line number information if present. We do this before
8455 processing child DIEs, so that the line header table is available
8456 for DW_AT_decl_file. */
8457 handle_DW_AT_stmt_list (die, cu, comp_dir);
8458
8459 /* Process all dies in compilation unit. */
8460 if (die->child != NULL)
8461 {
8462 child_die = die->child;
8463 while (child_die && child_die->tag)
8464 {
8465 process_die (child_die, cu);
8466 child_die = sibling_die (child_die);
8467 }
8468 }
8469
8470 /* Decode macro information, if present. Dwarf 2 macro information
8471 refers to information in the line number info statement program
8472 header, so we can only read it if we've read the header
8473 successfully. */
8474 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8475 if (attr && cu->line_header)
8476 {
8477 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8478 complaint (&symfile_complaints,
8479 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8480
8481 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8482 }
8483 else
8484 {
8485 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8486 if (attr && cu->line_header)
8487 {
8488 unsigned int macro_offset = DW_UNSND (attr);
8489
8490 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8491 }
8492 }
8493
8494 do_cleanups (back_to);
8495 }
8496
8497 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8498 Create the set of symtabs used by this TU, or if this TU is sharing
8499 symtabs with another TU and the symtabs have already been created
8500 then restore those symtabs in the line header.
8501 We don't need the pc/line-number mapping for type units. */
8502
8503 static void
8504 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8505 {
8506 struct objfile *objfile = dwarf2_per_objfile->objfile;
8507 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8508 struct type_unit_group *tu_group;
8509 int first_time;
8510 struct line_header *lh;
8511 struct attribute *attr;
8512 unsigned int i, line_offset;
8513 struct signatured_type *sig_type;
8514
8515 gdb_assert (per_cu->is_debug_types);
8516 sig_type = (struct signatured_type *) per_cu;
8517
8518 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8519
8520 /* If we're using .gdb_index (includes -readnow) then
8521 per_cu->type_unit_group may not have been set up yet. */
8522 if (sig_type->type_unit_group == NULL)
8523 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8524 tu_group = sig_type->type_unit_group;
8525
8526 /* If we've already processed this stmt_list there's no real need to
8527 do it again, we could fake it and just recreate the part we need
8528 (file name,index -> symtab mapping). If data shows this optimization
8529 is useful we can do it then. */
8530 first_time = tu_group->primary_symtab == NULL;
8531
8532 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8533 debug info. */
8534 lh = NULL;
8535 if (attr != NULL)
8536 {
8537 line_offset = DW_UNSND (attr);
8538 lh = dwarf_decode_line_header (line_offset, cu);
8539 }
8540 if (lh == NULL)
8541 {
8542 if (first_time)
8543 dwarf2_start_symtab (cu, "", NULL, 0);
8544 else
8545 {
8546 gdb_assert (tu_group->symtabs == NULL);
8547 restart_symtab (0);
8548 }
8549 /* Note: The primary symtab will get allocated at the end. */
8550 return;
8551 }
8552
8553 cu->line_header = lh;
8554 make_cleanup (free_cu_line_header, cu);
8555
8556 if (first_time)
8557 {
8558 dwarf2_start_symtab (cu, "", NULL, 0);
8559
8560 tu_group->num_symtabs = lh->num_file_names;
8561 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8562
8563 for (i = 0; i < lh->num_file_names; ++i)
8564 {
8565 const char *dir = NULL;
8566 struct file_entry *fe = &lh->file_names[i];
8567
8568 if (fe->dir_index)
8569 dir = lh->include_dirs[fe->dir_index - 1];
8570 dwarf2_start_subfile (fe->name, dir, NULL);
8571
8572 /* Note: We don't have to watch for the main subfile here, type units
8573 don't have DW_AT_name. */
8574
8575 if (current_subfile->symtab == NULL)
8576 {
8577 /* NOTE: start_subfile will recognize when it's been passed
8578 a file it has already seen. So we can't assume there's a
8579 simple mapping from lh->file_names to subfiles,
8580 lh->file_names may contain dups. */
8581 current_subfile->symtab = allocate_symtab (current_subfile->name,
8582 objfile);
8583 }
8584
8585 fe->symtab = current_subfile->symtab;
8586 tu_group->symtabs[i] = fe->symtab;
8587 }
8588 }
8589 else
8590 {
8591 restart_symtab (0);
8592
8593 for (i = 0; i < lh->num_file_names; ++i)
8594 {
8595 struct file_entry *fe = &lh->file_names[i];
8596
8597 fe->symtab = tu_group->symtabs[i];
8598 }
8599 }
8600
8601 /* The main symtab is allocated last. Type units don't have DW_AT_name
8602 so they don't have a "real" (so to speak) symtab anyway.
8603 There is later code that will assign the main symtab to all symbols
8604 that don't have one. We need to handle the case of a symbol with a
8605 missing symtab (DW_AT_decl_file) anyway. */
8606 }
8607
8608 /* Process DW_TAG_type_unit.
8609 For TUs we want to skip the first top level sibling if it's not the
8610 actual type being defined by this TU. In this case the first top
8611 level sibling is there to provide context only. */
8612
8613 static void
8614 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8615 {
8616 struct die_info *child_die;
8617
8618 prepare_one_comp_unit (cu, die, language_minimal);
8619
8620 /* Initialize (or reinitialize) the machinery for building symtabs.
8621 We do this before processing child DIEs, so that the line header table
8622 is available for DW_AT_decl_file. */
8623 setup_type_unit_groups (die, cu);
8624
8625 if (die->child != NULL)
8626 {
8627 child_die = die->child;
8628 while (child_die && child_die->tag)
8629 {
8630 process_die (child_die, cu);
8631 child_die = sibling_die (child_die);
8632 }
8633 }
8634 }
8635 \f
8636 /* DWO/DWP files.
8637
8638 http://gcc.gnu.org/wiki/DebugFission
8639 http://gcc.gnu.org/wiki/DebugFissionDWP
8640
8641 To simplify handling of both DWO files ("object" files with the DWARF info)
8642 and DWP files (a file with the DWOs packaged up into one file), we treat
8643 DWP files as having a collection of virtual DWO files. */
8644
8645 static hashval_t
8646 hash_dwo_file (const void *item)
8647 {
8648 const struct dwo_file *dwo_file = item;
8649 hashval_t hash;
8650
8651 hash = htab_hash_string (dwo_file->dwo_name);
8652 if (dwo_file->comp_dir != NULL)
8653 hash += htab_hash_string (dwo_file->comp_dir);
8654 return hash;
8655 }
8656
8657 static int
8658 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8659 {
8660 const struct dwo_file *lhs = item_lhs;
8661 const struct dwo_file *rhs = item_rhs;
8662
8663 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8664 return 0;
8665 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8666 return lhs->comp_dir == rhs->comp_dir;
8667 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8668 }
8669
8670 /* Allocate a hash table for DWO files. */
8671
8672 static htab_t
8673 allocate_dwo_file_hash_table (void)
8674 {
8675 struct objfile *objfile = dwarf2_per_objfile->objfile;
8676
8677 return htab_create_alloc_ex (41,
8678 hash_dwo_file,
8679 eq_dwo_file,
8680 NULL,
8681 &objfile->objfile_obstack,
8682 hashtab_obstack_allocate,
8683 dummy_obstack_deallocate);
8684 }
8685
8686 /* Lookup DWO file DWO_NAME. */
8687
8688 static void **
8689 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8690 {
8691 struct dwo_file find_entry;
8692 void **slot;
8693
8694 if (dwarf2_per_objfile->dwo_files == NULL)
8695 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8696
8697 memset (&find_entry, 0, sizeof (find_entry));
8698 find_entry.dwo_name = dwo_name;
8699 find_entry.comp_dir = comp_dir;
8700 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8701
8702 return slot;
8703 }
8704
8705 static hashval_t
8706 hash_dwo_unit (const void *item)
8707 {
8708 const struct dwo_unit *dwo_unit = item;
8709
8710 /* This drops the top 32 bits of the id, but is ok for a hash. */
8711 return dwo_unit->signature;
8712 }
8713
8714 static int
8715 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8716 {
8717 const struct dwo_unit *lhs = item_lhs;
8718 const struct dwo_unit *rhs = item_rhs;
8719
8720 /* The signature is assumed to be unique within the DWO file.
8721 So while object file CU dwo_id's always have the value zero,
8722 that's OK, assuming each object file DWO file has only one CU,
8723 and that's the rule for now. */
8724 return lhs->signature == rhs->signature;
8725 }
8726
8727 /* Allocate a hash table for DWO CUs,TUs.
8728 There is one of these tables for each of CUs,TUs for each DWO file. */
8729
8730 static htab_t
8731 allocate_dwo_unit_table (struct objfile *objfile)
8732 {
8733 /* Start out with a pretty small number.
8734 Generally DWO files contain only one CU and maybe some TUs. */
8735 return htab_create_alloc_ex (3,
8736 hash_dwo_unit,
8737 eq_dwo_unit,
8738 NULL,
8739 &objfile->objfile_obstack,
8740 hashtab_obstack_allocate,
8741 dummy_obstack_deallocate);
8742 }
8743
8744 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8745
8746 struct create_dwo_cu_data
8747 {
8748 struct dwo_file *dwo_file;
8749 struct dwo_unit dwo_unit;
8750 };
8751
8752 /* die_reader_func for create_dwo_cu. */
8753
8754 static void
8755 create_dwo_cu_reader (const struct die_reader_specs *reader,
8756 const gdb_byte *info_ptr,
8757 struct die_info *comp_unit_die,
8758 int has_children,
8759 void *datap)
8760 {
8761 struct dwarf2_cu *cu = reader->cu;
8762 struct objfile *objfile = dwarf2_per_objfile->objfile;
8763 sect_offset offset = cu->per_cu->offset;
8764 struct dwarf2_section_info *section = cu->per_cu->section;
8765 struct create_dwo_cu_data *data = datap;
8766 struct dwo_file *dwo_file = data->dwo_file;
8767 struct dwo_unit *dwo_unit = &data->dwo_unit;
8768 struct attribute *attr;
8769
8770 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8771 if (attr == NULL)
8772 {
8773 complaint (&symfile_complaints,
8774 _("Dwarf Error: debug entry at offset 0x%x is missing"
8775 " its dwo_id [in module %s]"),
8776 offset.sect_off, dwo_file->dwo_name);
8777 return;
8778 }
8779
8780 dwo_unit->dwo_file = dwo_file;
8781 dwo_unit->signature = DW_UNSND (attr);
8782 dwo_unit->section = section;
8783 dwo_unit->offset = offset;
8784 dwo_unit->length = cu->per_cu->length;
8785
8786 if (dwarf2_read_debug)
8787 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8788 offset.sect_off, hex_string (dwo_unit->signature));
8789 }
8790
8791 /* Create the dwo_unit for the lone CU in DWO_FILE.
8792 Note: This function processes DWO files only, not DWP files. */
8793
8794 static struct dwo_unit *
8795 create_dwo_cu (struct dwo_file *dwo_file)
8796 {
8797 struct objfile *objfile = dwarf2_per_objfile->objfile;
8798 struct dwarf2_section_info *section = &dwo_file->sections.info;
8799 bfd *abfd;
8800 htab_t cu_htab;
8801 const gdb_byte *info_ptr, *end_ptr;
8802 struct create_dwo_cu_data create_dwo_cu_data;
8803 struct dwo_unit *dwo_unit;
8804
8805 dwarf2_read_section (objfile, section);
8806 info_ptr = section->buffer;
8807
8808 if (info_ptr == NULL)
8809 return NULL;
8810
8811 /* We can't set abfd until now because the section may be empty or
8812 not present, in which case section->asection will be NULL. */
8813 abfd = section->asection->owner;
8814
8815 if (dwarf2_read_debug)
8816 {
8817 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8818 bfd_section_name (abfd, section->asection),
8819 bfd_get_filename (abfd));
8820 }
8821
8822 create_dwo_cu_data.dwo_file = dwo_file;
8823 dwo_unit = NULL;
8824
8825 end_ptr = info_ptr + section->size;
8826 while (info_ptr < end_ptr)
8827 {
8828 struct dwarf2_per_cu_data per_cu;
8829
8830 memset (&create_dwo_cu_data.dwo_unit, 0,
8831 sizeof (create_dwo_cu_data.dwo_unit));
8832 memset (&per_cu, 0, sizeof (per_cu));
8833 per_cu.objfile = objfile;
8834 per_cu.is_debug_types = 0;
8835 per_cu.offset.sect_off = info_ptr - section->buffer;
8836 per_cu.section = section;
8837
8838 init_cutu_and_read_dies_no_follow (&per_cu,
8839 &dwo_file->sections.abbrev,
8840 dwo_file,
8841 create_dwo_cu_reader,
8842 &create_dwo_cu_data);
8843
8844 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8845 {
8846 /* If we've already found one, complain. We only support one
8847 because having more than one requires hacking the dwo_name of
8848 each to match, which is highly unlikely to happen. */
8849 if (dwo_unit != NULL)
8850 {
8851 complaint (&symfile_complaints,
8852 _("Multiple CUs in DWO file %s [in module %s]"),
8853 dwo_file->dwo_name, objfile->name);
8854 break;
8855 }
8856
8857 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8858 *dwo_unit = create_dwo_cu_data.dwo_unit;
8859 }
8860
8861 info_ptr += per_cu.length;
8862 }
8863
8864 return dwo_unit;
8865 }
8866
8867 /* DWP file .debug_{cu,tu}_index section format:
8868 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8869
8870 Both index sections have the same format, and serve to map a 64-bit
8871 signature to a set of section numbers. Each section begins with a header,
8872 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8873 indexes, and a pool of 32-bit section numbers. The index sections will be
8874 aligned at 8-byte boundaries in the file.
8875
8876 The index section header contains two unsigned 32-bit values (using the
8877 byte order of the application binary):
8878
8879 N, the number of compilation units or type units in the index
8880 M, the number of slots in the hash table
8881
8882 (We assume that N and M will not exceed 2^32 - 1.)
8883
8884 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8885
8886 The hash table begins at offset 8 in the section, and consists of an array
8887 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8888 order of the application binary). Unused slots in the hash table are 0.
8889 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8890
8891 The parallel table begins immediately after the hash table
8892 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8893 array of 32-bit indexes (using the byte order of the application binary),
8894 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8895 table contains a 32-bit index into the pool of section numbers. For unused
8896 hash table slots, the corresponding entry in the parallel table will be 0.
8897
8898 Given a 64-bit compilation unit signature or a type signature S, an entry
8899 in the hash table is located as follows:
8900
8901 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8902 the low-order k bits all set to 1.
8903
8904 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8905
8906 3) If the hash table entry at index H matches the signature, use that
8907 entry. If the hash table entry at index H is unused (all zeroes),
8908 terminate the search: the signature is not present in the table.
8909
8910 4) Let H = (H + H') modulo M. Repeat at Step 3.
8911
8912 Because M > N and H' and M are relatively prime, the search is guaranteed
8913 to stop at an unused slot or find the match.
8914
8915 The pool of section numbers begins immediately following the hash table
8916 (at offset 8 + 12 * M from the beginning of the section). The pool of
8917 section numbers consists of an array of 32-bit words (using the byte order
8918 of the application binary). Each item in the array is indexed starting
8919 from 0. The hash table entry provides the index of the first section
8920 number in the set. Additional section numbers in the set follow, and the
8921 set is terminated by a 0 entry (section number 0 is not used in ELF).
8922
8923 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8924 section must be the first entry in the set, and the .debug_abbrev.dwo must
8925 be the second entry. Other members of the set may follow in any order. */
8926
8927 /* Create a hash table to map DWO IDs to their CU/TU entry in
8928 .debug_{info,types}.dwo in DWP_FILE.
8929 Returns NULL if there isn't one.
8930 Note: This function processes DWP files only, not DWO files. */
8931
8932 static struct dwp_hash_table *
8933 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8934 {
8935 struct objfile *objfile = dwarf2_per_objfile->objfile;
8936 bfd *dbfd = dwp_file->dbfd;
8937 const gdb_byte *index_ptr, *index_end;
8938 struct dwarf2_section_info *index;
8939 uint32_t version, nr_units, nr_slots;
8940 struct dwp_hash_table *htab;
8941
8942 if (is_debug_types)
8943 index = &dwp_file->sections.tu_index;
8944 else
8945 index = &dwp_file->sections.cu_index;
8946
8947 if (dwarf2_section_empty_p (index))
8948 return NULL;
8949 dwarf2_read_section (objfile, index);
8950
8951 index_ptr = index->buffer;
8952 index_end = index_ptr + index->size;
8953
8954 version = read_4_bytes (dbfd, index_ptr);
8955 index_ptr += 8; /* Skip the unused word. */
8956 nr_units = read_4_bytes (dbfd, index_ptr);
8957 index_ptr += 4;
8958 nr_slots = read_4_bytes (dbfd, index_ptr);
8959 index_ptr += 4;
8960
8961 if (version != 1)
8962 {
8963 error (_("Dwarf Error: unsupported DWP file version (%s)"
8964 " [in module %s]"),
8965 pulongest (version), dwp_file->name);
8966 }
8967 if (nr_slots != (nr_slots & -nr_slots))
8968 {
8969 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
8970 " is not power of 2 [in module %s]"),
8971 pulongest (nr_slots), dwp_file->name);
8972 }
8973
8974 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8975 htab->nr_units = nr_units;
8976 htab->nr_slots = nr_slots;
8977 htab->hash_table = index_ptr;
8978 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8979 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8980
8981 return htab;
8982 }
8983
8984 /* Update SECTIONS with the data from SECTP.
8985
8986 This function is like the other "locate" section routines that are
8987 passed to bfd_map_over_sections, but in this context the sections to
8988 read comes from the DWP hash table, not the full ELF section table.
8989
8990 The result is non-zero for success, or zero if an error was found. */
8991
8992 static int
8993 locate_virtual_dwo_sections (asection *sectp,
8994 struct virtual_dwo_sections *sections)
8995 {
8996 const struct dwop_section_names *names = &dwop_section_names;
8997
8998 if (section_is_p (sectp->name, &names->abbrev_dwo))
8999 {
9000 /* There can be only one. */
9001 if (sections->abbrev.asection != NULL)
9002 return 0;
9003 sections->abbrev.asection = sectp;
9004 sections->abbrev.size = bfd_get_section_size (sectp);
9005 }
9006 else if (section_is_p (sectp->name, &names->info_dwo)
9007 || section_is_p (sectp->name, &names->types_dwo))
9008 {
9009 /* There can be only one. */
9010 if (sections->info_or_types.asection != NULL)
9011 return 0;
9012 sections->info_or_types.asection = sectp;
9013 sections->info_or_types.size = bfd_get_section_size (sectp);
9014 }
9015 else if (section_is_p (sectp->name, &names->line_dwo))
9016 {
9017 /* There can be only one. */
9018 if (sections->line.asection != NULL)
9019 return 0;
9020 sections->line.asection = sectp;
9021 sections->line.size = bfd_get_section_size (sectp);
9022 }
9023 else if (section_is_p (sectp->name, &names->loc_dwo))
9024 {
9025 /* There can be only one. */
9026 if (sections->loc.asection != NULL)
9027 return 0;
9028 sections->loc.asection = sectp;
9029 sections->loc.size = bfd_get_section_size (sectp);
9030 }
9031 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9032 {
9033 /* There can be only one. */
9034 if (sections->macinfo.asection != NULL)
9035 return 0;
9036 sections->macinfo.asection = sectp;
9037 sections->macinfo.size = bfd_get_section_size (sectp);
9038 }
9039 else if (section_is_p (sectp->name, &names->macro_dwo))
9040 {
9041 /* There can be only one. */
9042 if (sections->macro.asection != NULL)
9043 return 0;
9044 sections->macro.asection = sectp;
9045 sections->macro.size = bfd_get_section_size (sectp);
9046 }
9047 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9048 {
9049 /* There can be only one. */
9050 if (sections->str_offsets.asection != NULL)
9051 return 0;
9052 sections->str_offsets.asection = sectp;
9053 sections->str_offsets.size = bfd_get_section_size (sectp);
9054 }
9055 else
9056 {
9057 /* No other kind of section is valid. */
9058 return 0;
9059 }
9060
9061 return 1;
9062 }
9063
9064 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9065 HTAB is the hash table from the DWP file.
9066 SECTION_INDEX is the index of the DWO in HTAB.
9067 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9068
9069 static struct dwo_unit *
9070 create_dwo_in_dwp (struct dwp_file *dwp_file,
9071 const struct dwp_hash_table *htab,
9072 uint32_t section_index,
9073 const char *comp_dir,
9074 ULONGEST signature, int is_debug_types)
9075 {
9076 struct objfile *objfile = dwarf2_per_objfile->objfile;
9077 bfd *dbfd = dwp_file->dbfd;
9078 const char *kind = is_debug_types ? "TU" : "CU";
9079 struct dwo_file *dwo_file;
9080 struct dwo_unit *dwo_unit;
9081 struct virtual_dwo_sections sections;
9082 void **dwo_file_slot;
9083 char *virtual_dwo_name;
9084 struct dwarf2_section_info *cutu;
9085 struct cleanup *cleanups;
9086 int i;
9087
9088 if (dwarf2_read_debug)
9089 {
9090 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9091 kind,
9092 pulongest (section_index), hex_string (signature),
9093 dwp_file->name);
9094 }
9095
9096 /* Fetch the sections of this DWO.
9097 Put a limit on the number of sections we look for so that bad data
9098 doesn't cause us to loop forever. */
9099
9100 #define MAX_NR_DWO_SECTIONS \
9101 (1 /* .debug_info or .debug_types */ \
9102 + 1 /* .debug_abbrev */ \
9103 + 1 /* .debug_line */ \
9104 + 1 /* .debug_loc */ \
9105 + 1 /* .debug_str_offsets */ \
9106 + 1 /* .debug_macro */ \
9107 + 1 /* .debug_macinfo */ \
9108 + 1 /* trailing zero */)
9109
9110 memset (&sections, 0, sizeof (sections));
9111 cleanups = make_cleanup (null_cleanup, 0);
9112
9113 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9114 {
9115 asection *sectp;
9116 uint32_t section_nr =
9117 read_4_bytes (dbfd,
9118 htab->section_pool
9119 + (section_index + i) * sizeof (uint32_t));
9120
9121 if (section_nr == 0)
9122 break;
9123 if (section_nr >= dwp_file->num_sections)
9124 {
9125 error (_("Dwarf Error: bad DWP hash table, section number too large"
9126 " [in module %s]"),
9127 dwp_file->name);
9128 }
9129
9130 sectp = dwp_file->elf_sections[section_nr];
9131 if (! locate_virtual_dwo_sections (sectp, &sections))
9132 {
9133 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9134 " [in module %s]"),
9135 dwp_file->name);
9136 }
9137 }
9138
9139 if (i < 2
9140 || sections.info_or_types.asection == NULL
9141 || sections.abbrev.asection == NULL)
9142 {
9143 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9144 " [in module %s]"),
9145 dwp_file->name);
9146 }
9147 if (i == MAX_NR_DWO_SECTIONS)
9148 {
9149 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9150 " [in module %s]"),
9151 dwp_file->name);
9152 }
9153
9154 /* It's easier for the rest of the code if we fake a struct dwo_file and
9155 have dwo_unit "live" in that. At least for now.
9156
9157 The DWP file can be made up of a random collection of CUs and TUs.
9158 However, for each CU + set of TUs that came from the same original DWO
9159 file, we want to combine them back into a virtual DWO file to save space
9160 (fewer struct dwo_file objects to allocated). Remember that for really
9161 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9162
9163 virtual_dwo_name =
9164 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9165 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9166 sections.line.asection ? sections.line.asection->id : 0,
9167 sections.loc.asection ? sections.loc.asection->id : 0,
9168 (sections.str_offsets.asection
9169 ? sections.str_offsets.asection->id
9170 : 0));
9171 make_cleanup (xfree, virtual_dwo_name);
9172 /* Can we use an existing virtual DWO file? */
9173 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9174 /* Create one if necessary. */
9175 if (*dwo_file_slot == NULL)
9176 {
9177 if (dwarf2_read_debug)
9178 {
9179 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9180 virtual_dwo_name);
9181 }
9182 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9183 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9184 virtual_dwo_name,
9185 strlen (virtual_dwo_name));
9186 dwo_file->comp_dir = comp_dir;
9187 dwo_file->sections.abbrev = sections.abbrev;
9188 dwo_file->sections.line = sections.line;
9189 dwo_file->sections.loc = sections.loc;
9190 dwo_file->sections.macinfo = sections.macinfo;
9191 dwo_file->sections.macro = sections.macro;
9192 dwo_file->sections.str_offsets = sections.str_offsets;
9193 /* The "str" section is global to the entire DWP file. */
9194 dwo_file->sections.str = dwp_file->sections.str;
9195 /* The info or types section is assigned later to dwo_unit,
9196 there's no need to record it in dwo_file.
9197 Also, we can't simply record type sections in dwo_file because
9198 we record a pointer into the vector in dwo_unit. As we collect more
9199 types we'll grow the vector and eventually have to reallocate space
9200 for it, invalidating all the pointers into the current copy. */
9201 *dwo_file_slot = dwo_file;
9202 }
9203 else
9204 {
9205 if (dwarf2_read_debug)
9206 {
9207 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9208 virtual_dwo_name);
9209 }
9210 dwo_file = *dwo_file_slot;
9211 }
9212 do_cleanups (cleanups);
9213
9214 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9215 dwo_unit->dwo_file = dwo_file;
9216 dwo_unit->signature = signature;
9217 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9218 sizeof (struct dwarf2_section_info));
9219 *dwo_unit->section = sections.info_or_types;
9220 /* offset, length, type_offset_in_tu are set later. */
9221
9222 return dwo_unit;
9223 }
9224
9225 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9226
9227 static struct dwo_unit *
9228 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9229 const struct dwp_hash_table *htab,
9230 const char *comp_dir,
9231 ULONGEST signature, int is_debug_types)
9232 {
9233 bfd *dbfd = dwp_file->dbfd;
9234 uint32_t mask = htab->nr_slots - 1;
9235 uint32_t hash = signature & mask;
9236 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9237 unsigned int i;
9238 void **slot;
9239 struct dwo_unit find_dwo_cu, *dwo_cu;
9240
9241 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9242 find_dwo_cu.signature = signature;
9243 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9244
9245 if (*slot != NULL)
9246 return *slot;
9247
9248 /* Use a for loop so that we don't loop forever on bad debug info. */
9249 for (i = 0; i < htab->nr_slots; ++i)
9250 {
9251 ULONGEST signature_in_table;
9252
9253 signature_in_table =
9254 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9255 if (signature_in_table == signature)
9256 {
9257 uint32_t section_index =
9258 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9259
9260 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9261 comp_dir, signature, is_debug_types);
9262 return *slot;
9263 }
9264 if (signature_in_table == 0)
9265 return NULL;
9266 hash = (hash + hash2) & mask;
9267 }
9268
9269 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9270 " [in module %s]"),
9271 dwp_file->name);
9272 }
9273
9274 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9275 Open the file specified by FILE_NAME and hand it off to BFD for
9276 preliminary analysis. Return a newly initialized bfd *, which
9277 includes a canonicalized copy of FILE_NAME.
9278 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9279 In case of trouble, return NULL.
9280 NOTE: This function is derived from symfile_bfd_open. */
9281
9282 static bfd *
9283 try_open_dwop_file (const char *file_name, int is_dwp)
9284 {
9285 bfd *sym_bfd;
9286 int desc, flags;
9287 char *absolute_name;
9288
9289 flags = OPF_TRY_CWD_FIRST;
9290 if (is_dwp)
9291 flags |= OPF_SEARCH_IN_PATH;
9292 desc = openp (debug_file_directory, flags, file_name,
9293 O_RDONLY | O_BINARY, &absolute_name);
9294 if (desc < 0)
9295 return NULL;
9296
9297 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9298 if (!sym_bfd)
9299 {
9300 xfree (absolute_name);
9301 return NULL;
9302 }
9303 xfree (absolute_name);
9304 bfd_set_cacheable (sym_bfd, 1);
9305
9306 if (!bfd_check_format (sym_bfd, bfd_object))
9307 {
9308 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9309 return NULL;
9310 }
9311
9312 return sym_bfd;
9313 }
9314
9315 /* Try to open DWO file FILE_NAME.
9316 COMP_DIR is the DW_AT_comp_dir attribute.
9317 The result is the bfd handle of the file.
9318 If there is a problem finding or opening the file, return NULL.
9319 Upon success, the canonicalized path of the file is stored in the bfd,
9320 same as symfile_bfd_open. */
9321
9322 static bfd *
9323 open_dwo_file (const char *file_name, const char *comp_dir)
9324 {
9325 bfd *abfd;
9326
9327 if (IS_ABSOLUTE_PATH (file_name))
9328 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9329
9330 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9331
9332 if (comp_dir != NULL)
9333 {
9334 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9335
9336 /* NOTE: If comp_dir is a relative path, this will also try the
9337 search path, which seems useful. */
9338 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
9339 xfree (path_to_try);
9340 if (abfd != NULL)
9341 return abfd;
9342 }
9343
9344 /* That didn't work, try debug-file-directory, which, despite its name,
9345 is a list of paths. */
9346
9347 if (*debug_file_directory == '\0')
9348 return NULL;
9349
9350 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9351 }
9352
9353 /* This function is mapped across the sections and remembers the offset and
9354 size of each of the DWO debugging sections we are interested in. */
9355
9356 static void
9357 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9358 {
9359 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9360 const struct dwop_section_names *names = &dwop_section_names;
9361
9362 if (section_is_p (sectp->name, &names->abbrev_dwo))
9363 {
9364 dwo_sections->abbrev.asection = sectp;
9365 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9366 }
9367 else if (section_is_p (sectp->name, &names->info_dwo))
9368 {
9369 dwo_sections->info.asection = sectp;
9370 dwo_sections->info.size = bfd_get_section_size (sectp);
9371 }
9372 else if (section_is_p (sectp->name, &names->line_dwo))
9373 {
9374 dwo_sections->line.asection = sectp;
9375 dwo_sections->line.size = bfd_get_section_size (sectp);
9376 }
9377 else if (section_is_p (sectp->name, &names->loc_dwo))
9378 {
9379 dwo_sections->loc.asection = sectp;
9380 dwo_sections->loc.size = bfd_get_section_size (sectp);
9381 }
9382 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9383 {
9384 dwo_sections->macinfo.asection = sectp;
9385 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9386 }
9387 else if (section_is_p (sectp->name, &names->macro_dwo))
9388 {
9389 dwo_sections->macro.asection = sectp;
9390 dwo_sections->macro.size = bfd_get_section_size (sectp);
9391 }
9392 else if (section_is_p (sectp->name, &names->str_dwo))
9393 {
9394 dwo_sections->str.asection = sectp;
9395 dwo_sections->str.size = bfd_get_section_size (sectp);
9396 }
9397 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9398 {
9399 dwo_sections->str_offsets.asection = sectp;
9400 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9401 }
9402 else if (section_is_p (sectp->name, &names->types_dwo))
9403 {
9404 struct dwarf2_section_info type_section;
9405
9406 memset (&type_section, 0, sizeof (type_section));
9407 type_section.asection = sectp;
9408 type_section.size = bfd_get_section_size (sectp);
9409 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9410 &type_section);
9411 }
9412 }
9413
9414 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9415 by PER_CU. This is for the non-DWP case.
9416 The result is NULL if DWO_NAME can't be found. */
9417
9418 static struct dwo_file *
9419 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9420 const char *dwo_name, const char *comp_dir)
9421 {
9422 struct objfile *objfile = dwarf2_per_objfile->objfile;
9423 struct dwo_file *dwo_file;
9424 bfd *dbfd;
9425 struct cleanup *cleanups;
9426
9427 dbfd = open_dwo_file (dwo_name, comp_dir);
9428 if (dbfd == NULL)
9429 {
9430 if (dwarf2_read_debug)
9431 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9432 return NULL;
9433 }
9434 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9435 dwo_file->dwo_name = dwo_name;
9436 dwo_file->comp_dir = comp_dir;
9437 dwo_file->dbfd = dbfd;
9438
9439 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9440
9441 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9442
9443 dwo_file->cu = create_dwo_cu (dwo_file);
9444
9445 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9446 dwo_file->sections.types);
9447
9448 discard_cleanups (cleanups);
9449
9450 if (dwarf2_read_debug)
9451 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9452
9453 return dwo_file;
9454 }
9455
9456 /* This function is mapped across the sections and remembers the offset and
9457 size of each of the DWP debugging sections we are interested in. */
9458
9459 static void
9460 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9461 {
9462 struct dwp_file *dwp_file = dwp_file_ptr;
9463 const struct dwop_section_names *names = &dwop_section_names;
9464 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9465
9466 /* Record the ELF section number for later lookup: this is what the
9467 .debug_cu_index,.debug_tu_index tables use. */
9468 gdb_assert (elf_section_nr < dwp_file->num_sections);
9469 dwp_file->elf_sections[elf_section_nr] = sectp;
9470
9471 /* Look for specific sections that we need. */
9472 if (section_is_p (sectp->name, &names->str_dwo))
9473 {
9474 dwp_file->sections.str.asection = sectp;
9475 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9476 }
9477 else if (section_is_p (sectp->name, &names->cu_index))
9478 {
9479 dwp_file->sections.cu_index.asection = sectp;
9480 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9481 }
9482 else if (section_is_p (sectp->name, &names->tu_index))
9483 {
9484 dwp_file->sections.tu_index.asection = sectp;
9485 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9486 }
9487 }
9488
9489 /* Hash function for dwp_file loaded CUs/TUs. */
9490
9491 static hashval_t
9492 hash_dwp_loaded_cutus (const void *item)
9493 {
9494 const struct dwo_unit *dwo_unit = item;
9495
9496 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9497 return dwo_unit->signature;
9498 }
9499
9500 /* Equality function for dwp_file loaded CUs/TUs. */
9501
9502 static int
9503 eq_dwp_loaded_cutus (const void *a, const void *b)
9504 {
9505 const struct dwo_unit *dua = a;
9506 const struct dwo_unit *dub = b;
9507
9508 return dua->signature == dub->signature;
9509 }
9510
9511 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9512
9513 static htab_t
9514 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9515 {
9516 return htab_create_alloc_ex (3,
9517 hash_dwp_loaded_cutus,
9518 eq_dwp_loaded_cutus,
9519 NULL,
9520 &objfile->objfile_obstack,
9521 hashtab_obstack_allocate,
9522 dummy_obstack_deallocate);
9523 }
9524
9525 /* Try to open DWP file FILE_NAME.
9526 The result is the bfd handle of the file.
9527 If there is a problem finding or opening the file, return NULL.
9528 Upon success, the canonicalized path of the file is stored in the bfd,
9529 same as symfile_bfd_open. */
9530
9531 static bfd *
9532 open_dwp_file (const char *file_name)
9533 {
9534 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9535 }
9536
9537 /* Initialize the use of the DWP file for the current objfile.
9538 By convention the name of the DWP file is ${objfile}.dwp.
9539 The result is NULL if it can't be found. */
9540
9541 static struct dwp_file *
9542 open_and_init_dwp_file (void)
9543 {
9544 struct objfile *objfile = dwarf2_per_objfile->objfile;
9545 struct dwp_file *dwp_file;
9546 char *dwp_name;
9547 bfd *dbfd;
9548 struct cleanup *cleanups;
9549
9550 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9551 cleanups = make_cleanup (xfree, dwp_name);
9552
9553 dbfd = open_dwp_file (dwp_name);
9554 if (dbfd == NULL)
9555 {
9556 if (dwarf2_read_debug)
9557 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9558 do_cleanups (cleanups);
9559 return NULL;
9560 }
9561 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9562 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9563 dwp_name, strlen (dwp_name));
9564 dwp_file->dbfd = dbfd;
9565 do_cleanups (cleanups);
9566
9567 /* +1: section 0 is unused */
9568 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9569 dwp_file->elf_sections =
9570 OBSTACK_CALLOC (&objfile->objfile_obstack,
9571 dwp_file->num_sections, asection *);
9572
9573 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9574
9575 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9576
9577 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9578
9579 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9580
9581 if (dwarf2_read_debug)
9582 {
9583 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9584 fprintf_unfiltered (gdb_stdlog,
9585 " %s CUs, %s TUs\n",
9586 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9587 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9588 }
9589
9590 return dwp_file;
9591 }
9592
9593 /* Wrapper around open_and_init_dwp_file, only open it once. */
9594
9595 static struct dwp_file *
9596 get_dwp_file (void)
9597 {
9598 if (! dwarf2_per_objfile->dwp_checked)
9599 {
9600 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9601 dwarf2_per_objfile->dwp_checked = 1;
9602 }
9603 return dwarf2_per_objfile->dwp_file;
9604 }
9605
9606 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9607 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9608 or in the DWP file for the objfile, referenced by THIS_UNIT.
9609 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9610 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9611
9612 This is called, for example, when wanting to read a variable with a
9613 complex location. Therefore we don't want to do file i/o for every call.
9614 Therefore we don't want to look for a DWO file on every call.
9615 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9616 then we check if we've already seen DWO_NAME, and only THEN do we check
9617 for a DWO file.
9618
9619 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9620 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9621
9622 static struct dwo_unit *
9623 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9624 const char *dwo_name, const char *comp_dir,
9625 ULONGEST signature, int is_debug_types)
9626 {
9627 struct objfile *objfile = dwarf2_per_objfile->objfile;
9628 const char *kind = is_debug_types ? "TU" : "CU";
9629 void **dwo_file_slot;
9630 struct dwo_file *dwo_file;
9631 struct dwp_file *dwp_file;
9632
9633 /* First see if there's a DWP file.
9634 If we have a DWP file but didn't find the DWO inside it, don't
9635 look for the original DWO file. It makes gdb behave differently
9636 depending on whether one is debugging in the build tree. */
9637
9638 dwp_file = get_dwp_file ();
9639 if (dwp_file != NULL)
9640 {
9641 const struct dwp_hash_table *dwp_htab =
9642 is_debug_types ? dwp_file->tus : dwp_file->cus;
9643
9644 if (dwp_htab != NULL)
9645 {
9646 struct dwo_unit *dwo_cutu =
9647 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9648 signature, is_debug_types);
9649
9650 if (dwo_cutu != NULL)
9651 {
9652 if (dwarf2_read_debug)
9653 {
9654 fprintf_unfiltered (gdb_stdlog,
9655 "Virtual DWO %s %s found: @%s\n",
9656 kind, hex_string (signature),
9657 host_address_to_string (dwo_cutu));
9658 }
9659 return dwo_cutu;
9660 }
9661 }
9662 }
9663 else
9664 {
9665 /* No DWP file, look for the DWO file. */
9666
9667 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9668 if (*dwo_file_slot == NULL)
9669 {
9670 /* Read in the file and build a table of the CUs/TUs it contains. */
9671 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9672 }
9673 /* NOTE: This will be NULL if unable to open the file. */
9674 dwo_file = *dwo_file_slot;
9675
9676 if (dwo_file != NULL)
9677 {
9678 struct dwo_unit *dwo_cutu = NULL;
9679
9680 if (is_debug_types && dwo_file->tus)
9681 {
9682 struct dwo_unit find_dwo_cutu;
9683
9684 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9685 find_dwo_cutu.signature = signature;
9686 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9687 }
9688 else if (!is_debug_types && dwo_file->cu)
9689 {
9690 if (signature == dwo_file->cu->signature)
9691 dwo_cutu = dwo_file->cu;
9692 }
9693
9694 if (dwo_cutu != NULL)
9695 {
9696 if (dwarf2_read_debug)
9697 {
9698 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9699 kind, dwo_name, hex_string (signature),
9700 host_address_to_string (dwo_cutu));
9701 }
9702 return dwo_cutu;
9703 }
9704 }
9705 }
9706
9707 /* We didn't find it. This could mean a dwo_id mismatch, or
9708 someone deleted the DWO/DWP file, or the search path isn't set up
9709 correctly to find the file. */
9710
9711 if (dwarf2_read_debug)
9712 {
9713 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9714 kind, dwo_name, hex_string (signature));
9715 }
9716
9717 complaint (&symfile_complaints,
9718 _("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9719 " [in module %s]"),
9720 kind, dwo_name, hex_string (signature),
9721 this_unit->is_debug_types ? "TU" : "CU",
9722 this_unit->offset.sect_off, objfile->name);
9723 return NULL;
9724 }
9725
9726 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9727 See lookup_dwo_cutu_unit for details. */
9728
9729 static struct dwo_unit *
9730 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9731 const char *dwo_name, const char *comp_dir,
9732 ULONGEST signature)
9733 {
9734 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9735 }
9736
9737 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9738 See lookup_dwo_cutu_unit for details. */
9739
9740 static struct dwo_unit *
9741 lookup_dwo_type_unit (struct signatured_type *this_tu,
9742 const char *dwo_name, const char *comp_dir)
9743 {
9744 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9745 }
9746
9747 /* Free all resources associated with DWO_FILE.
9748 Close the DWO file and munmap the sections.
9749 All memory should be on the objfile obstack. */
9750
9751 static void
9752 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9753 {
9754 int ix;
9755 struct dwarf2_section_info *section;
9756
9757 /* Note: dbfd is NULL for virtual DWO files. */
9758 gdb_bfd_unref (dwo_file->dbfd);
9759
9760 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9761 }
9762
9763 /* Wrapper for free_dwo_file for use in cleanups. */
9764
9765 static void
9766 free_dwo_file_cleanup (void *arg)
9767 {
9768 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9769 struct objfile *objfile = dwarf2_per_objfile->objfile;
9770
9771 free_dwo_file (dwo_file, objfile);
9772 }
9773
9774 /* Traversal function for free_dwo_files. */
9775
9776 static int
9777 free_dwo_file_from_slot (void **slot, void *info)
9778 {
9779 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9780 struct objfile *objfile = (struct objfile *) info;
9781
9782 free_dwo_file (dwo_file, objfile);
9783
9784 return 1;
9785 }
9786
9787 /* Free all resources associated with DWO_FILES. */
9788
9789 static void
9790 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9791 {
9792 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9793 }
9794 \f
9795 /* Read in various DIEs. */
9796
9797 /* qsort helper for inherit_abstract_dies. */
9798
9799 static int
9800 unsigned_int_compar (const void *ap, const void *bp)
9801 {
9802 unsigned int a = *(unsigned int *) ap;
9803 unsigned int b = *(unsigned int *) bp;
9804
9805 return (a > b) - (b > a);
9806 }
9807
9808 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9809 Inherit only the children of the DW_AT_abstract_origin DIE not being
9810 already referenced by DW_AT_abstract_origin from the children of the
9811 current DIE. */
9812
9813 static void
9814 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9815 {
9816 struct die_info *child_die;
9817 unsigned die_children_count;
9818 /* CU offsets which were referenced by children of the current DIE. */
9819 sect_offset *offsets;
9820 sect_offset *offsets_end, *offsetp;
9821 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9822 struct die_info *origin_die;
9823 /* Iterator of the ORIGIN_DIE children. */
9824 struct die_info *origin_child_die;
9825 struct cleanup *cleanups;
9826 struct attribute *attr;
9827 struct dwarf2_cu *origin_cu;
9828 struct pending **origin_previous_list_in_scope;
9829
9830 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9831 if (!attr)
9832 return;
9833
9834 /* Note that following die references may follow to a die in a
9835 different cu. */
9836
9837 origin_cu = cu;
9838 origin_die = follow_die_ref (die, attr, &origin_cu);
9839
9840 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9841 symbols in. */
9842 origin_previous_list_in_scope = origin_cu->list_in_scope;
9843 origin_cu->list_in_scope = cu->list_in_scope;
9844
9845 if (die->tag != origin_die->tag
9846 && !(die->tag == DW_TAG_inlined_subroutine
9847 && origin_die->tag == DW_TAG_subprogram))
9848 complaint (&symfile_complaints,
9849 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9850 die->offset.sect_off, origin_die->offset.sect_off);
9851
9852 child_die = die->child;
9853 die_children_count = 0;
9854 while (child_die && child_die->tag)
9855 {
9856 child_die = sibling_die (child_die);
9857 die_children_count++;
9858 }
9859 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9860 cleanups = make_cleanup (xfree, offsets);
9861
9862 offsets_end = offsets;
9863 child_die = die->child;
9864 while (child_die && child_die->tag)
9865 {
9866 /* For each CHILD_DIE, find the corresponding child of
9867 ORIGIN_DIE. If there is more than one layer of
9868 DW_AT_abstract_origin, follow them all; there shouldn't be,
9869 but GCC versions at least through 4.4 generate this (GCC PR
9870 40573). */
9871 struct die_info *child_origin_die = child_die;
9872 struct dwarf2_cu *child_origin_cu = cu;
9873
9874 while (1)
9875 {
9876 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9877 child_origin_cu);
9878 if (attr == NULL)
9879 break;
9880 child_origin_die = follow_die_ref (child_origin_die, attr,
9881 &child_origin_cu);
9882 }
9883
9884 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9885 counterpart may exist. */
9886 if (child_origin_die != child_die)
9887 {
9888 if (child_die->tag != child_origin_die->tag
9889 && !(child_die->tag == DW_TAG_inlined_subroutine
9890 && child_origin_die->tag == DW_TAG_subprogram))
9891 complaint (&symfile_complaints,
9892 _("Child DIE 0x%x and its abstract origin 0x%x have "
9893 "different tags"), child_die->offset.sect_off,
9894 child_origin_die->offset.sect_off);
9895 if (child_origin_die->parent != origin_die)
9896 complaint (&symfile_complaints,
9897 _("Child DIE 0x%x and its abstract origin 0x%x have "
9898 "different parents"), child_die->offset.sect_off,
9899 child_origin_die->offset.sect_off);
9900 else
9901 *offsets_end++ = child_origin_die->offset;
9902 }
9903 child_die = sibling_die (child_die);
9904 }
9905 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9906 unsigned_int_compar);
9907 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9908 if (offsetp[-1].sect_off == offsetp->sect_off)
9909 complaint (&symfile_complaints,
9910 _("Multiple children of DIE 0x%x refer "
9911 "to DIE 0x%x as their abstract origin"),
9912 die->offset.sect_off, offsetp->sect_off);
9913
9914 offsetp = offsets;
9915 origin_child_die = origin_die->child;
9916 while (origin_child_die && origin_child_die->tag)
9917 {
9918 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9919 while (offsetp < offsets_end
9920 && offsetp->sect_off < origin_child_die->offset.sect_off)
9921 offsetp++;
9922 if (offsetp >= offsets_end
9923 || offsetp->sect_off > origin_child_die->offset.sect_off)
9924 {
9925 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9926 process_die (origin_child_die, origin_cu);
9927 }
9928 origin_child_die = sibling_die (origin_child_die);
9929 }
9930 origin_cu->list_in_scope = origin_previous_list_in_scope;
9931
9932 do_cleanups (cleanups);
9933 }
9934
9935 static void
9936 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9937 {
9938 struct objfile *objfile = cu->objfile;
9939 struct context_stack *new;
9940 CORE_ADDR lowpc;
9941 CORE_ADDR highpc;
9942 struct die_info *child_die;
9943 struct attribute *attr, *call_line, *call_file;
9944 const char *name;
9945 CORE_ADDR baseaddr;
9946 struct block *block;
9947 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9948 VEC (symbolp) *template_args = NULL;
9949 struct template_symbol *templ_func = NULL;
9950
9951 if (inlined_func)
9952 {
9953 /* If we do not have call site information, we can't show the
9954 caller of this inlined function. That's too confusing, so
9955 only use the scope for local variables. */
9956 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9957 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9958 if (call_line == NULL || call_file == NULL)
9959 {
9960 read_lexical_block_scope (die, cu);
9961 return;
9962 }
9963 }
9964
9965 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9966
9967 name = dwarf2_name (die, cu);
9968
9969 /* Ignore functions with missing or empty names. These are actually
9970 illegal according to the DWARF standard. */
9971 if (name == NULL)
9972 {
9973 complaint (&symfile_complaints,
9974 _("missing name for subprogram DIE at %d"),
9975 die->offset.sect_off);
9976 return;
9977 }
9978
9979 /* Ignore functions with missing or invalid low and high pc attributes. */
9980 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9981 {
9982 attr = dwarf2_attr (die, DW_AT_external, cu);
9983 if (!attr || !DW_UNSND (attr))
9984 complaint (&symfile_complaints,
9985 _("cannot get low and high bounds "
9986 "for subprogram DIE at %d"),
9987 die->offset.sect_off);
9988 return;
9989 }
9990
9991 lowpc += baseaddr;
9992 highpc += baseaddr;
9993
9994 /* If we have any template arguments, then we must allocate a
9995 different sort of symbol. */
9996 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9997 {
9998 if (child_die->tag == DW_TAG_template_type_param
9999 || child_die->tag == DW_TAG_template_value_param)
10000 {
10001 templ_func = allocate_template_symbol (objfile);
10002 templ_func->base.is_cplus_template_function = 1;
10003 break;
10004 }
10005 }
10006
10007 new = push_context (0, lowpc);
10008 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10009 (struct symbol *) templ_func);
10010
10011 /* If there is a location expression for DW_AT_frame_base, record
10012 it. */
10013 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10014 if (attr)
10015 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10016
10017 cu->list_in_scope = &local_symbols;
10018
10019 if (die->child != NULL)
10020 {
10021 child_die = die->child;
10022 while (child_die && child_die->tag)
10023 {
10024 if (child_die->tag == DW_TAG_template_type_param
10025 || child_die->tag == DW_TAG_template_value_param)
10026 {
10027 struct symbol *arg = new_symbol (child_die, NULL, cu);
10028
10029 if (arg != NULL)
10030 VEC_safe_push (symbolp, template_args, arg);
10031 }
10032 else
10033 process_die (child_die, cu);
10034 child_die = sibling_die (child_die);
10035 }
10036 }
10037
10038 inherit_abstract_dies (die, cu);
10039
10040 /* If we have a DW_AT_specification, we might need to import using
10041 directives from the context of the specification DIE. See the
10042 comment in determine_prefix. */
10043 if (cu->language == language_cplus
10044 && dwarf2_attr (die, DW_AT_specification, cu))
10045 {
10046 struct dwarf2_cu *spec_cu = cu;
10047 struct die_info *spec_die = die_specification (die, &spec_cu);
10048
10049 while (spec_die)
10050 {
10051 child_die = spec_die->child;
10052 while (child_die && child_die->tag)
10053 {
10054 if (child_die->tag == DW_TAG_imported_module)
10055 process_die (child_die, spec_cu);
10056 child_die = sibling_die (child_die);
10057 }
10058
10059 /* In some cases, GCC generates specification DIEs that
10060 themselves contain DW_AT_specification attributes. */
10061 spec_die = die_specification (spec_die, &spec_cu);
10062 }
10063 }
10064
10065 new = pop_context ();
10066 /* Make a block for the local symbols within. */
10067 block = finish_block (new->name, &local_symbols, new->old_blocks,
10068 lowpc, highpc, objfile);
10069
10070 /* For C++, set the block's scope. */
10071 if ((cu->language == language_cplus || cu->language == language_fortran)
10072 && cu->processing_has_namespace_info)
10073 block_set_scope (block, determine_prefix (die, cu),
10074 &objfile->objfile_obstack);
10075
10076 /* If we have address ranges, record them. */
10077 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10078
10079 /* Attach template arguments to function. */
10080 if (! VEC_empty (symbolp, template_args))
10081 {
10082 gdb_assert (templ_func != NULL);
10083
10084 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10085 templ_func->template_arguments
10086 = obstack_alloc (&objfile->objfile_obstack,
10087 (templ_func->n_template_arguments
10088 * sizeof (struct symbol *)));
10089 memcpy (templ_func->template_arguments,
10090 VEC_address (symbolp, template_args),
10091 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10092 VEC_free (symbolp, template_args);
10093 }
10094
10095 /* In C++, we can have functions nested inside functions (e.g., when
10096 a function declares a class that has methods). This means that
10097 when we finish processing a function scope, we may need to go
10098 back to building a containing block's symbol lists. */
10099 local_symbols = new->locals;
10100 using_directives = new->using_directives;
10101
10102 /* If we've finished processing a top-level function, subsequent
10103 symbols go in the file symbol list. */
10104 if (outermost_context_p ())
10105 cu->list_in_scope = &file_symbols;
10106 }
10107
10108 /* Process all the DIES contained within a lexical block scope. Start
10109 a new scope, process the dies, and then close the scope. */
10110
10111 static void
10112 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10113 {
10114 struct objfile *objfile = cu->objfile;
10115 struct context_stack *new;
10116 CORE_ADDR lowpc, highpc;
10117 struct die_info *child_die;
10118 CORE_ADDR baseaddr;
10119
10120 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10121
10122 /* Ignore blocks with missing or invalid low and high pc attributes. */
10123 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10124 as multiple lexical blocks? Handling children in a sane way would
10125 be nasty. Might be easier to properly extend generic blocks to
10126 describe ranges. */
10127 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10128 return;
10129 lowpc += baseaddr;
10130 highpc += baseaddr;
10131
10132 push_context (0, lowpc);
10133 if (die->child != NULL)
10134 {
10135 child_die = die->child;
10136 while (child_die && child_die->tag)
10137 {
10138 process_die (child_die, cu);
10139 child_die = sibling_die (child_die);
10140 }
10141 }
10142 new = pop_context ();
10143
10144 if (local_symbols != NULL || using_directives != NULL)
10145 {
10146 struct block *block
10147 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10148 highpc, objfile);
10149
10150 /* Note that recording ranges after traversing children, as we
10151 do here, means that recording a parent's ranges entails
10152 walking across all its children's ranges as they appear in
10153 the address map, which is quadratic behavior.
10154
10155 It would be nicer to record the parent's ranges before
10156 traversing its children, simply overriding whatever you find
10157 there. But since we don't even decide whether to create a
10158 block until after we've traversed its children, that's hard
10159 to do. */
10160 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10161 }
10162 local_symbols = new->locals;
10163 using_directives = new->using_directives;
10164 }
10165
10166 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10167
10168 static void
10169 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10170 {
10171 struct objfile *objfile = cu->objfile;
10172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10173 CORE_ADDR pc, baseaddr;
10174 struct attribute *attr;
10175 struct call_site *call_site, call_site_local;
10176 void **slot;
10177 int nparams;
10178 struct die_info *child_die;
10179
10180 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10181
10182 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10183 if (!attr)
10184 {
10185 complaint (&symfile_complaints,
10186 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10187 "DIE 0x%x [in module %s]"),
10188 die->offset.sect_off, objfile->name);
10189 return;
10190 }
10191 pc = DW_ADDR (attr) + baseaddr;
10192
10193 if (cu->call_site_htab == NULL)
10194 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10195 NULL, &objfile->objfile_obstack,
10196 hashtab_obstack_allocate, NULL);
10197 call_site_local.pc = pc;
10198 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10199 if (*slot != NULL)
10200 {
10201 complaint (&symfile_complaints,
10202 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10203 "DIE 0x%x [in module %s]"),
10204 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10205 return;
10206 }
10207
10208 /* Count parameters at the caller. */
10209
10210 nparams = 0;
10211 for (child_die = die->child; child_die && child_die->tag;
10212 child_die = sibling_die (child_die))
10213 {
10214 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10215 {
10216 complaint (&symfile_complaints,
10217 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10218 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10219 child_die->tag, child_die->offset.sect_off, objfile->name);
10220 continue;
10221 }
10222
10223 nparams++;
10224 }
10225
10226 call_site = obstack_alloc (&objfile->objfile_obstack,
10227 (sizeof (*call_site)
10228 + (sizeof (*call_site->parameter)
10229 * (nparams - 1))));
10230 *slot = call_site;
10231 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10232 call_site->pc = pc;
10233
10234 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10235 {
10236 struct die_info *func_die;
10237
10238 /* Skip also over DW_TAG_inlined_subroutine. */
10239 for (func_die = die->parent;
10240 func_die && func_die->tag != DW_TAG_subprogram
10241 && func_die->tag != DW_TAG_subroutine_type;
10242 func_die = func_die->parent);
10243
10244 /* DW_AT_GNU_all_call_sites is a superset
10245 of DW_AT_GNU_all_tail_call_sites. */
10246 if (func_die
10247 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10248 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10249 {
10250 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10251 not complete. But keep CALL_SITE for look ups via call_site_htab,
10252 both the initial caller containing the real return address PC and
10253 the final callee containing the current PC of a chain of tail
10254 calls do not need to have the tail call list complete. But any
10255 function candidate for a virtual tail call frame searched via
10256 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10257 determined unambiguously. */
10258 }
10259 else
10260 {
10261 struct type *func_type = NULL;
10262
10263 if (func_die)
10264 func_type = get_die_type (func_die, cu);
10265 if (func_type != NULL)
10266 {
10267 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10268
10269 /* Enlist this call site to the function. */
10270 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10271 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10272 }
10273 else
10274 complaint (&symfile_complaints,
10275 _("Cannot find function owning DW_TAG_GNU_call_site "
10276 "DIE 0x%x [in module %s]"),
10277 die->offset.sect_off, objfile->name);
10278 }
10279 }
10280
10281 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10282 if (attr == NULL)
10283 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10284 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10285 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10286 /* Keep NULL DWARF_BLOCK. */;
10287 else if (attr_form_is_block (attr))
10288 {
10289 struct dwarf2_locexpr_baton *dlbaton;
10290
10291 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10292 dlbaton->data = DW_BLOCK (attr)->data;
10293 dlbaton->size = DW_BLOCK (attr)->size;
10294 dlbaton->per_cu = cu->per_cu;
10295
10296 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10297 }
10298 else if (is_ref_attr (attr))
10299 {
10300 struct dwarf2_cu *target_cu = cu;
10301 struct die_info *target_die;
10302
10303 target_die = follow_die_ref (die, attr, &target_cu);
10304 gdb_assert (target_cu->objfile == objfile);
10305 if (die_is_declaration (target_die, target_cu))
10306 {
10307 const char *target_physname = NULL;
10308 struct attribute *target_attr;
10309
10310 /* Prefer the mangled name; otherwise compute the demangled one. */
10311 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10312 if (target_attr == NULL)
10313 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10314 target_cu);
10315 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10316 target_physname = DW_STRING (target_attr);
10317 else
10318 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10319 if (target_physname == NULL)
10320 complaint (&symfile_complaints,
10321 _("DW_AT_GNU_call_site_target target DIE has invalid "
10322 "physname, for referencing DIE 0x%x [in module %s]"),
10323 die->offset.sect_off, objfile->name);
10324 else
10325 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10326 }
10327 else
10328 {
10329 CORE_ADDR lowpc;
10330
10331 /* DW_AT_entry_pc should be preferred. */
10332 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10333 complaint (&symfile_complaints,
10334 _("DW_AT_GNU_call_site_target target DIE has invalid "
10335 "low pc, for referencing DIE 0x%x [in module %s]"),
10336 die->offset.sect_off, objfile->name);
10337 else
10338 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10339 }
10340 }
10341 else
10342 complaint (&symfile_complaints,
10343 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10344 "block nor reference, for DIE 0x%x [in module %s]"),
10345 die->offset.sect_off, objfile->name);
10346
10347 call_site->per_cu = cu->per_cu;
10348
10349 for (child_die = die->child;
10350 child_die && child_die->tag;
10351 child_die = sibling_die (child_die))
10352 {
10353 struct call_site_parameter *parameter;
10354 struct attribute *loc, *origin;
10355
10356 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10357 {
10358 /* Already printed the complaint above. */
10359 continue;
10360 }
10361
10362 gdb_assert (call_site->parameter_count < nparams);
10363 parameter = &call_site->parameter[call_site->parameter_count];
10364
10365 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10366 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10367 register is contained in DW_AT_GNU_call_site_value. */
10368
10369 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10370 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10371 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10372 {
10373 sect_offset offset;
10374
10375 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10376 offset = dwarf2_get_ref_die_offset (origin);
10377 if (!offset_in_cu_p (&cu->header, offset))
10378 {
10379 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10380 binding can be done only inside one CU. Such referenced DIE
10381 therefore cannot be even moved to DW_TAG_partial_unit. */
10382 complaint (&symfile_complaints,
10383 _("DW_AT_abstract_origin offset is not in CU for "
10384 "DW_TAG_GNU_call_site child DIE 0x%x "
10385 "[in module %s]"),
10386 child_die->offset.sect_off, objfile->name);
10387 continue;
10388 }
10389 parameter->u.param_offset.cu_off = (offset.sect_off
10390 - cu->header.offset.sect_off);
10391 }
10392 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10393 {
10394 complaint (&symfile_complaints,
10395 _("No DW_FORM_block* DW_AT_location for "
10396 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10397 child_die->offset.sect_off, objfile->name);
10398 continue;
10399 }
10400 else
10401 {
10402 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10403 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10404 if (parameter->u.dwarf_reg != -1)
10405 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10406 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10407 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10408 &parameter->u.fb_offset))
10409 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10410 else
10411 {
10412 complaint (&symfile_complaints,
10413 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10414 "for DW_FORM_block* DW_AT_location is supported for "
10415 "DW_TAG_GNU_call_site child DIE 0x%x "
10416 "[in module %s]"),
10417 child_die->offset.sect_off, objfile->name);
10418 continue;
10419 }
10420 }
10421
10422 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10423 if (!attr_form_is_block (attr))
10424 {
10425 complaint (&symfile_complaints,
10426 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10427 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10428 child_die->offset.sect_off, objfile->name);
10429 continue;
10430 }
10431 parameter->value = DW_BLOCK (attr)->data;
10432 parameter->value_size = DW_BLOCK (attr)->size;
10433
10434 /* Parameters are not pre-cleared by memset above. */
10435 parameter->data_value = NULL;
10436 parameter->data_value_size = 0;
10437 call_site->parameter_count++;
10438
10439 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10440 if (attr)
10441 {
10442 if (!attr_form_is_block (attr))
10443 complaint (&symfile_complaints,
10444 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10445 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10446 child_die->offset.sect_off, objfile->name);
10447 else
10448 {
10449 parameter->data_value = DW_BLOCK (attr)->data;
10450 parameter->data_value_size = DW_BLOCK (attr)->size;
10451 }
10452 }
10453 }
10454 }
10455
10456 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10457 Return 1 if the attributes are present and valid, otherwise, return 0.
10458 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10459
10460 static int
10461 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10462 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10463 struct partial_symtab *ranges_pst)
10464 {
10465 struct objfile *objfile = cu->objfile;
10466 struct comp_unit_head *cu_header = &cu->header;
10467 bfd *obfd = objfile->obfd;
10468 unsigned int addr_size = cu_header->addr_size;
10469 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10470 /* Base address selection entry. */
10471 CORE_ADDR base;
10472 int found_base;
10473 unsigned int dummy;
10474 const gdb_byte *buffer;
10475 CORE_ADDR marker;
10476 int low_set;
10477 CORE_ADDR low = 0;
10478 CORE_ADDR high = 0;
10479 CORE_ADDR baseaddr;
10480
10481 found_base = cu->base_known;
10482 base = cu->base_address;
10483
10484 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10485 if (offset >= dwarf2_per_objfile->ranges.size)
10486 {
10487 complaint (&symfile_complaints,
10488 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10489 offset);
10490 return 0;
10491 }
10492 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10493
10494 /* Read in the largest possible address. */
10495 marker = read_address (obfd, buffer, cu, &dummy);
10496 if ((marker & mask) == mask)
10497 {
10498 /* If we found the largest possible address, then
10499 read the base address. */
10500 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10501 buffer += 2 * addr_size;
10502 offset += 2 * addr_size;
10503 found_base = 1;
10504 }
10505
10506 low_set = 0;
10507
10508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10509
10510 while (1)
10511 {
10512 CORE_ADDR range_beginning, range_end;
10513
10514 range_beginning = read_address (obfd, buffer, cu, &dummy);
10515 buffer += addr_size;
10516 range_end = read_address (obfd, buffer, cu, &dummy);
10517 buffer += addr_size;
10518 offset += 2 * addr_size;
10519
10520 /* An end of list marker is a pair of zero addresses. */
10521 if (range_beginning == 0 && range_end == 0)
10522 /* Found the end of list entry. */
10523 break;
10524
10525 /* Each base address selection entry is a pair of 2 values.
10526 The first is the largest possible address, the second is
10527 the base address. Check for a base address here. */
10528 if ((range_beginning & mask) == mask)
10529 {
10530 /* If we found the largest possible address, then
10531 read the base address. */
10532 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10533 found_base = 1;
10534 continue;
10535 }
10536
10537 if (!found_base)
10538 {
10539 /* We have no valid base address for the ranges
10540 data. */
10541 complaint (&symfile_complaints,
10542 _("Invalid .debug_ranges data (no base address)"));
10543 return 0;
10544 }
10545
10546 if (range_beginning > range_end)
10547 {
10548 /* Inverted range entries are invalid. */
10549 complaint (&symfile_complaints,
10550 _("Invalid .debug_ranges data (inverted range)"));
10551 return 0;
10552 }
10553
10554 /* Empty range entries have no effect. */
10555 if (range_beginning == range_end)
10556 continue;
10557
10558 range_beginning += base;
10559 range_end += base;
10560
10561 /* A not-uncommon case of bad debug info.
10562 Don't pollute the addrmap with bad data. */
10563 if (range_beginning + baseaddr == 0
10564 && !dwarf2_per_objfile->has_section_at_zero)
10565 {
10566 complaint (&symfile_complaints,
10567 _(".debug_ranges entry has start address of zero"
10568 " [in module %s]"), objfile->name);
10569 continue;
10570 }
10571
10572 if (ranges_pst != NULL)
10573 addrmap_set_empty (objfile->psymtabs_addrmap,
10574 range_beginning + baseaddr,
10575 range_end - 1 + baseaddr,
10576 ranges_pst);
10577
10578 /* FIXME: This is recording everything as a low-high
10579 segment of consecutive addresses. We should have a
10580 data structure for discontiguous block ranges
10581 instead. */
10582 if (! low_set)
10583 {
10584 low = range_beginning;
10585 high = range_end;
10586 low_set = 1;
10587 }
10588 else
10589 {
10590 if (range_beginning < low)
10591 low = range_beginning;
10592 if (range_end > high)
10593 high = range_end;
10594 }
10595 }
10596
10597 if (! low_set)
10598 /* If the first entry is an end-of-list marker, the range
10599 describes an empty scope, i.e. no instructions. */
10600 return 0;
10601
10602 if (low_return)
10603 *low_return = low;
10604 if (high_return)
10605 *high_return = high;
10606 return 1;
10607 }
10608
10609 /* Get low and high pc attributes from a die. Return 1 if the attributes
10610 are present and valid, otherwise, return 0. Return -1 if the range is
10611 discontinuous, i.e. derived from DW_AT_ranges information. */
10612
10613 static int
10614 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10615 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10616 struct partial_symtab *pst)
10617 {
10618 struct attribute *attr;
10619 struct attribute *attr_high;
10620 CORE_ADDR low = 0;
10621 CORE_ADDR high = 0;
10622 int ret = 0;
10623
10624 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10625 if (attr_high)
10626 {
10627 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10628 if (attr)
10629 {
10630 low = DW_ADDR (attr);
10631 if (attr_high->form == DW_FORM_addr
10632 || attr_high->form == DW_FORM_GNU_addr_index)
10633 high = DW_ADDR (attr_high);
10634 else
10635 high = low + DW_UNSND (attr_high);
10636 }
10637 else
10638 /* Found high w/o low attribute. */
10639 return 0;
10640
10641 /* Found consecutive range of addresses. */
10642 ret = 1;
10643 }
10644 else
10645 {
10646 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10647 if (attr != NULL)
10648 {
10649 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10650 We take advantage of the fact that DW_AT_ranges does not appear
10651 in DW_TAG_compile_unit of DWO files. */
10652 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10653 unsigned int ranges_offset = (DW_UNSND (attr)
10654 + (need_ranges_base
10655 ? cu->ranges_base
10656 : 0));
10657
10658 /* Value of the DW_AT_ranges attribute is the offset in the
10659 .debug_ranges section. */
10660 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10661 return 0;
10662 /* Found discontinuous range of addresses. */
10663 ret = -1;
10664 }
10665 }
10666
10667 /* read_partial_die has also the strict LOW < HIGH requirement. */
10668 if (high <= low)
10669 return 0;
10670
10671 /* When using the GNU linker, .gnu.linkonce. sections are used to
10672 eliminate duplicate copies of functions and vtables and such.
10673 The linker will arbitrarily choose one and discard the others.
10674 The AT_*_pc values for such functions refer to local labels in
10675 these sections. If the section from that file was discarded, the
10676 labels are not in the output, so the relocs get a value of 0.
10677 If this is a discarded function, mark the pc bounds as invalid,
10678 so that GDB will ignore it. */
10679 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10680 return 0;
10681
10682 *lowpc = low;
10683 if (highpc)
10684 *highpc = high;
10685 return ret;
10686 }
10687
10688 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10689 its low and high PC addresses. Do nothing if these addresses could not
10690 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10691 and HIGHPC to the high address if greater than HIGHPC. */
10692
10693 static void
10694 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10695 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10696 struct dwarf2_cu *cu)
10697 {
10698 CORE_ADDR low, high;
10699 struct die_info *child = die->child;
10700
10701 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10702 {
10703 *lowpc = min (*lowpc, low);
10704 *highpc = max (*highpc, high);
10705 }
10706
10707 /* If the language does not allow nested subprograms (either inside
10708 subprograms or lexical blocks), we're done. */
10709 if (cu->language != language_ada)
10710 return;
10711
10712 /* Check all the children of the given DIE. If it contains nested
10713 subprograms, then check their pc bounds. Likewise, we need to
10714 check lexical blocks as well, as they may also contain subprogram
10715 definitions. */
10716 while (child && child->tag)
10717 {
10718 if (child->tag == DW_TAG_subprogram
10719 || child->tag == DW_TAG_lexical_block)
10720 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10721 child = sibling_die (child);
10722 }
10723 }
10724
10725 /* Get the low and high pc's represented by the scope DIE, and store
10726 them in *LOWPC and *HIGHPC. If the correct values can't be
10727 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10728
10729 static void
10730 get_scope_pc_bounds (struct die_info *die,
10731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10732 struct dwarf2_cu *cu)
10733 {
10734 CORE_ADDR best_low = (CORE_ADDR) -1;
10735 CORE_ADDR best_high = (CORE_ADDR) 0;
10736 CORE_ADDR current_low, current_high;
10737
10738 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10739 {
10740 best_low = current_low;
10741 best_high = current_high;
10742 }
10743 else
10744 {
10745 struct die_info *child = die->child;
10746
10747 while (child && child->tag)
10748 {
10749 switch (child->tag) {
10750 case DW_TAG_subprogram:
10751 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10752 break;
10753 case DW_TAG_namespace:
10754 case DW_TAG_module:
10755 /* FIXME: carlton/2004-01-16: Should we do this for
10756 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10757 that current GCC's always emit the DIEs corresponding
10758 to definitions of methods of classes as children of a
10759 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10760 the DIEs giving the declarations, which could be
10761 anywhere). But I don't see any reason why the
10762 standards says that they have to be there. */
10763 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10764
10765 if (current_low != ((CORE_ADDR) -1))
10766 {
10767 best_low = min (best_low, current_low);
10768 best_high = max (best_high, current_high);
10769 }
10770 break;
10771 default:
10772 /* Ignore. */
10773 break;
10774 }
10775
10776 child = sibling_die (child);
10777 }
10778 }
10779
10780 *lowpc = best_low;
10781 *highpc = best_high;
10782 }
10783
10784 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10785 in DIE. */
10786
10787 static void
10788 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10789 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10790 {
10791 struct objfile *objfile = cu->objfile;
10792 struct attribute *attr;
10793 struct attribute *attr_high;
10794
10795 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10796 if (attr_high)
10797 {
10798 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10799 if (attr)
10800 {
10801 CORE_ADDR low = DW_ADDR (attr);
10802 CORE_ADDR high;
10803 if (attr_high->form == DW_FORM_addr
10804 || attr_high->form == DW_FORM_GNU_addr_index)
10805 high = DW_ADDR (attr_high);
10806 else
10807 high = low + DW_UNSND (attr_high);
10808
10809 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10810 }
10811 }
10812
10813 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10814 if (attr)
10815 {
10816 bfd *obfd = objfile->obfd;
10817 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10818 We take advantage of the fact that DW_AT_ranges does not appear
10819 in DW_TAG_compile_unit of DWO files. */
10820 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10821
10822 /* The value of the DW_AT_ranges attribute is the offset of the
10823 address range list in the .debug_ranges section. */
10824 unsigned long offset = (DW_UNSND (attr)
10825 + (need_ranges_base ? cu->ranges_base : 0));
10826 const gdb_byte *buffer;
10827
10828 /* For some target architectures, but not others, the
10829 read_address function sign-extends the addresses it returns.
10830 To recognize base address selection entries, we need a
10831 mask. */
10832 unsigned int addr_size = cu->header.addr_size;
10833 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10834
10835 /* The base address, to which the next pair is relative. Note
10836 that this 'base' is a DWARF concept: most entries in a range
10837 list are relative, to reduce the number of relocs against the
10838 debugging information. This is separate from this function's
10839 'baseaddr' argument, which GDB uses to relocate debugging
10840 information from a shared library based on the address at
10841 which the library was loaded. */
10842 CORE_ADDR base = cu->base_address;
10843 int base_known = cu->base_known;
10844
10845 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10846 if (offset >= dwarf2_per_objfile->ranges.size)
10847 {
10848 complaint (&symfile_complaints,
10849 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10850 offset);
10851 return;
10852 }
10853 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10854
10855 for (;;)
10856 {
10857 unsigned int bytes_read;
10858 CORE_ADDR start, end;
10859
10860 start = read_address (obfd, buffer, cu, &bytes_read);
10861 buffer += bytes_read;
10862 end = read_address (obfd, buffer, cu, &bytes_read);
10863 buffer += bytes_read;
10864
10865 /* Did we find the end of the range list? */
10866 if (start == 0 && end == 0)
10867 break;
10868
10869 /* Did we find a base address selection entry? */
10870 else if ((start & base_select_mask) == base_select_mask)
10871 {
10872 base = end;
10873 base_known = 1;
10874 }
10875
10876 /* We found an ordinary address range. */
10877 else
10878 {
10879 if (!base_known)
10880 {
10881 complaint (&symfile_complaints,
10882 _("Invalid .debug_ranges data "
10883 "(no base address)"));
10884 return;
10885 }
10886
10887 if (start > end)
10888 {
10889 /* Inverted range entries are invalid. */
10890 complaint (&symfile_complaints,
10891 _("Invalid .debug_ranges data "
10892 "(inverted range)"));
10893 return;
10894 }
10895
10896 /* Empty range entries have no effect. */
10897 if (start == end)
10898 continue;
10899
10900 start += base + baseaddr;
10901 end += base + baseaddr;
10902
10903 /* A not-uncommon case of bad debug info.
10904 Don't pollute the addrmap with bad data. */
10905 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10906 {
10907 complaint (&symfile_complaints,
10908 _(".debug_ranges entry has start address of zero"
10909 " [in module %s]"), objfile->name);
10910 continue;
10911 }
10912
10913 record_block_range (block, start, end - 1);
10914 }
10915 }
10916 }
10917 }
10918
10919 /* Check whether the producer field indicates either of GCC < 4.6, or the
10920 Intel C/C++ compiler, and cache the result in CU. */
10921
10922 static void
10923 check_producer (struct dwarf2_cu *cu)
10924 {
10925 const char *cs;
10926 int major, minor, release;
10927
10928 if (cu->producer == NULL)
10929 {
10930 /* For unknown compilers expect their behavior is DWARF version
10931 compliant.
10932
10933 GCC started to support .debug_types sections by -gdwarf-4 since
10934 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10935 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10936 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10937 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10938 }
10939 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10940 {
10941 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10942
10943 cs = &cu->producer[strlen ("GNU ")];
10944 while (*cs && !isdigit (*cs))
10945 cs++;
10946 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10947 {
10948 /* Not recognized as GCC. */
10949 }
10950 else
10951 {
10952 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10953 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10954 }
10955 }
10956 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10957 cu->producer_is_icc = 1;
10958 else
10959 {
10960 /* For other non-GCC compilers, expect their behavior is DWARF version
10961 compliant. */
10962 }
10963
10964 cu->checked_producer = 1;
10965 }
10966
10967 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10968 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10969 during 4.6.0 experimental. */
10970
10971 static int
10972 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10973 {
10974 if (!cu->checked_producer)
10975 check_producer (cu);
10976
10977 return cu->producer_is_gxx_lt_4_6;
10978 }
10979
10980 /* Return the default accessibility type if it is not overriden by
10981 DW_AT_accessibility. */
10982
10983 static enum dwarf_access_attribute
10984 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10985 {
10986 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10987 {
10988 /* The default DWARF 2 accessibility for members is public, the default
10989 accessibility for inheritance is private. */
10990
10991 if (die->tag != DW_TAG_inheritance)
10992 return DW_ACCESS_public;
10993 else
10994 return DW_ACCESS_private;
10995 }
10996 else
10997 {
10998 /* DWARF 3+ defines the default accessibility a different way. The same
10999 rules apply now for DW_TAG_inheritance as for the members and it only
11000 depends on the container kind. */
11001
11002 if (die->parent->tag == DW_TAG_class_type)
11003 return DW_ACCESS_private;
11004 else
11005 return DW_ACCESS_public;
11006 }
11007 }
11008
11009 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11010 offset. If the attribute was not found return 0, otherwise return
11011 1. If it was found but could not properly be handled, set *OFFSET
11012 to 0. */
11013
11014 static int
11015 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11016 LONGEST *offset)
11017 {
11018 struct attribute *attr;
11019
11020 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11021 if (attr != NULL)
11022 {
11023 *offset = 0;
11024
11025 /* Note that we do not check for a section offset first here.
11026 This is because DW_AT_data_member_location is new in DWARF 4,
11027 so if we see it, we can assume that a constant form is really
11028 a constant and not a section offset. */
11029 if (attr_form_is_constant (attr))
11030 *offset = dwarf2_get_attr_constant_value (attr, 0);
11031 else if (attr_form_is_section_offset (attr))
11032 dwarf2_complex_location_expr_complaint ();
11033 else if (attr_form_is_block (attr))
11034 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11035 else
11036 dwarf2_complex_location_expr_complaint ();
11037
11038 return 1;
11039 }
11040
11041 return 0;
11042 }
11043
11044 /* Add an aggregate field to the field list. */
11045
11046 static void
11047 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11048 struct dwarf2_cu *cu)
11049 {
11050 struct objfile *objfile = cu->objfile;
11051 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11052 struct nextfield *new_field;
11053 struct attribute *attr;
11054 struct field *fp;
11055 const char *fieldname = "";
11056
11057 /* Allocate a new field list entry and link it in. */
11058 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11059 make_cleanup (xfree, new_field);
11060 memset (new_field, 0, sizeof (struct nextfield));
11061
11062 if (die->tag == DW_TAG_inheritance)
11063 {
11064 new_field->next = fip->baseclasses;
11065 fip->baseclasses = new_field;
11066 }
11067 else
11068 {
11069 new_field->next = fip->fields;
11070 fip->fields = new_field;
11071 }
11072 fip->nfields++;
11073
11074 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11075 if (attr)
11076 new_field->accessibility = DW_UNSND (attr);
11077 else
11078 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11079 if (new_field->accessibility != DW_ACCESS_public)
11080 fip->non_public_fields = 1;
11081
11082 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11083 if (attr)
11084 new_field->virtuality = DW_UNSND (attr);
11085 else
11086 new_field->virtuality = DW_VIRTUALITY_none;
11087
11088 fp = &new_field->field;
11089
11090 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11091 {
11092 LONGEST offset;
11093
11094 /* Data member other than a C++ static data member. */
11095
11096 /* Get type of field. */
11097 fp->type = die_type (die, cu);
11098
11099 SET_FIELD_BITPOS (*fp, 0);
11100
11101 /* Get bit size of field (zero if none). */
11102 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11103 if (attr)
11104 {
11105 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11106 }
11107 else
11108 {
11109 FIELD_BITSIZE (*fp) = 0;
11110 }
11111
11112 /* Get bit offset of field. */
11113 if (handle_data_member_location (die, cu, &offset))
11114 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11115 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11116 if (attr)
11117 {
11118 if (gdbarch_bits_big_endian (gdbarch))
11119 {
11120 /* For big endian bits, the DW_AT_bit_offset gives the
11121 additional bit offset from the MSB of the containing
11122 anonymous object to the MSB of the field. We don't
11123 have to do anything special since we don't need to
11124 know the size of the anonymous object. */
11125 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11126 }
11127 else
11128 {
11129 /* For little endian bits, compute the bit offset to the
11130 MSB of the anonymous object, subtract off the number of
11131 bits from the MSB of the field to the MSB of the
11132 object, and then subtract off the number of bits of
11133 the field itself. The result is the bit offset of
11134 the LSB of the field. */
11135 int anonymous_size;
11136 int bit_offset = DW_UNSND (attr);
11137
11138 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11139 if (attr)
11140 {
11141 /* The size of the anonymous object containing
11142 the bit field is explicit, so use the
11143 indicated size (in bytes). */
11144 anonymous_size = DW_UNSND (attr);
11145 }
11146 else
11147 {
11148 /* The size of the anonymous object containing
11149 the bit field must be inferred from the type
11150 attribute of the data member containing the
11151 bit field. */
11152 anonymous_size = TYPE_LENGTH (fp->type);
11153 }
11154 SET_FIELD_BITPOS (*fp,
11155 (FIELD_BITPOS (*fp)
11156 + anonymous_size * bits_per_byte
11157 - bit_offset - FIELD_BITSIZE (*fp)));
11158 }
11159 }
11160
11161 /* Get name of field. */
11162 fieldname = dwarf2_name (die, cu);
11163 if (fieldname == NULL)
11164 fieldname = "";
11165
11166 /* The name is already allocated along with this objfile, so we don't
11167 need to duplicate it for the type. */
11168 fp->name = fieldname;
11169
11170 /* Change accessibility for artificial fields (e.g. virtual table
11171 pointer or virtual base class pointer) to private. */
11172 if (dwarf2_attr (die, DW_AT_artificial, cu))
11173 {
11174 FIELD_ARTIFICIAL (*fp) = 1;
11175 new_field->accessibility = DW_ACCESS_private;
11176 fip->non_public_fields = 1;
11177 }
11178 }
11179 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11180 {
11181 /* C++ static member. */
11182
11183 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11184 is a declaration, but all versions of G++ as of this writing
11185 (so through at least 3.2.1) incorrectly generate
11186 DW_TAG_variable tags. */
11187
11188 const char *physname;
11189
11190 /* Get name of field. */
11191 fieldname = dwarf2_name (die, cu);
11192 if (fieldname == NULL)
11193 return;
11194
11195 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11196 if (attr
11197 /* Only create a symbol if this is an external value.
11198 new_symbol checks this and puts the value in the global symbol
11199 table, which we want. If it is not external, new_symbol
11200 will try to put the value in cu->list_in_scope which is wrong. */
11201 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11202 {
11203 /* A static const member, not much different than an enum as far as
11204 we're concerned, except that we can support more types. */
11205 new_symbol (die, NULL, cu);
11206 }
11207
11208 /* Get physical name. */
11209 physname = dwarf2_physname (fieldname, die, cu);
11210
11211 /* The name is already allocated along with this objfile, so we don't
11212 need to duplicate it for the type. */
11213 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11214 FIELD_TYPE (*fp) = die_type (die, cu);
11215 FIELD_NAME (*fp) = fieldname;
11216 }
11217 else if (die->tag == DW_TAG_inheritance)
11218 {
11219 LONGEST offset;
11220
11221 /* C++ base class field. */
11222 if (handle_data_member_location (die, cu, &offset))
11223 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11224 FIELD_BITSIZE (*fp) = 0;
11225 FIELD_TYPE (*fp) = die_type (die, cu);
11226 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11227 fip->nbaseclasses++;
11228 }
11229 }
11230
11231 /* Add a typedef defined in the scope of the FIP's class. */
11232
11233 static void
11234 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11235 struct dwarf2_cu *cu)
11236 {
11237 struct objfile *objfile = cu->objfile;
11238 struct typedef_field_list *new_field;
11239 struct attribute *attr;
11240 struct typedef_field *fp;
11241 char *fieldname = "";
11242
11243 /* Allocate a new field list entry and link it in. */
11244 new_field = xzalloc (sizeof (*new_field));
11245 make_cleanup (xfree, new_field);
11246
11247 gdb_assert (die->tag == DW_TAG_typedef);
11248
11249 fp = &new_field->field;
11250
11251 /* Get name of field. */
11252 fp->name = dwarf2_name (die, cu);
11253 if (fp->name == NULL)
11254 return;
11255
11256 fp->type = read_type_die (die, cu);
11257
11258 new_field->next = fip->typedef_field_list;
11259 fip->typedef_field_list = new_field;
11260 fip->typedef_field_list_count++;
11261 }
11262
11263 /* Create the vector of fields, and attach it to the type. */
11264
11265 static void
11266 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11267 struct dwarf2_cu *cu)
11268 {
11269 int nfields = fip->nfields;
11270
11271 /* Record the field count, allocate space for the array of fields,
11272 and create blank accessibility bitfields if necessary. */
11273 TYPE_NFIELDS (type) = nfields;
11274 TYPE_FIELDS (type) = (struct field *)
11275 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11276 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11277
11278 if (fip->non_public_fields && cu->language != language_ada)
11279 {
11280 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11281
11282 TYPE_FIELD_PRIVATE_BITS (type) =
11283 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11284 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11285
11286 TYPE_FIELD_PROTECTED_BITS (type) =
11287 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11288 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11289
11290 TYPE_FIELD_IGNORE_BITS (type) =
11291 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11292 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11293 }
11294
11295 /* If the type has baseclasses, allocate and clear a bit vector for
11296 TYPE_FIELD_VIRTUAL_BITS. */
11297 if (fip->nbaseclasses && cu->language != language_ada)
11298 {
11299 int num_bytes = B_BYTES (fip->nbaseclasses);
11300 unsigned char *pointer;
11301
11302 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11303 pointer = TYPE_ALLOC (type, num_bytes);
11304 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11305 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11306 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11307 }
11308
11309 /* Copy the saved-up fields into the field vector. Start from the head of
11310 the list, adding to the tail of the field array, so that they end up in
11311 the same order in the array in which they were added to the list. */
11312 while (nfields-- > 0)
11313 {
11314 struct nextfield *fieldp;
11315
11316 if (fip->fields)
11317 {
11318 fieldp = fip->fields;
11319 fip->fields = fieldp->next;
11320 }
11321 else
11322 {
11323 fieldp = fip->baseclasses;
11324 fip->baseclasses = fieldp->next;
11325 }
11326
11327 TYPE_FIELD (type, nfields) = fieldp->field;
11328 switch (fieldp->accessibility)
11329 {
11330 case DW_ACCESS_private:
11331 if (cu->language != language_ada)
11332 SET_TYPE_FIELD_PRIVATE (type, nfields);
11333 break;
11334
11335 case DW_ACCESS_protected:
11336 if (cu->language != language_ada)
11337 SET_TYPE_FIELD_PROTECTED (type, nfields);
11338 break;
11339
11340 case DW_ACCESS_public:
11341 break;
11342
11343 default:
11344 /* Unknown accessibility. Complain and treat it as public. */
11345 {
11346 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11347 fieldp->accessibility);
11348 }
11349 break;
11350 }
11351 if (nfields < fip->nbaseclasses)
11352 {
11353 switch (fieldp->virtuality)
11354 {
11355 case DW_VIRTUALITY_virtual:
11356 case DW_VIRTUALITY_pure_virtual:
11357 if (cu->language == language_ada)
11358 error (_("unexpected virtuality in component of Ada type"));
11359 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11360 break;
11361 }
11362 }
11363 }
11364 }
11365
11366 /* Return true if this member function is a constructor, false
11367 otherwise. */
11368
11369 static int
11370 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11371 {
11372 const char *fieldname;
11373 const char *typename;
11374 int len;
11375
11376 if (die->parent == NULL)
11377 return 0;
11378
11379 if (die->parent->tag != DW_TAG_structure_type
11380 && die->parent->tag != DW_TAG_union_type
11381 && die->parent->tag != DW_TAG_class_type)
11382 return 0;
11383
11384 fieldname = dwarf2_name (die, cu);
11385 typename = dwarf2_name (die->parent, cu);
11386 if (fieldname == NULL || typename == NULL)
11387 return 0;
11388
11389 len = strlen (fieldname);
11390 return (strncmp (fieldname, typename, len) == 0
11391 && (typename[len] == '\0' || typename[len] == '<'));
11392 }
11393
11394 /* Add a member function to the proper fieldlist. */
11395
11396 static void
11397 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11398 struct type *type, struct dwarf2_cu *cu)
11399 {
11400 struct objfile *objfile = cu->objfile;
11401 struct attribute *attr;
11402 struct fnfieldlist *flp;
11403 int i;
11404 struct fn_field *fnp;
11405 const char *fieldname;
11406 struct nextfnfield *new_fnfield;
11407 struct type *this_type;
11408 enum dwarf_access_attribute accessibility;
11409
11410 if (cu->language == language_ada)
11411 error (_("unexpected member function in Ada type"));
11412
11413 /* Get name of member function. */
11414 fieldname = dwarf2_name (die, cu);
11415 if (fieldname == NULL)
11416 return;
11417
11418 /* Look up member function name in fieldlist. */
11419 for (i = 0; i < fip->nfnfields; i++)
11420 {
11421 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11422 break;
11423 }
11424
11425 /* Create new list element if necessary. */
11426 if (i < fip->nfnfields)
11427 flp = &fip->fnfieldlists[i];
11428 else
11429 {
11430 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11431 {
11432 fip->fnfieldlists = (struct fnfieldlist *)
11433 xrealloc (fip->fnfieldlists,
11434 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11435 * sizeof (struct fnfieldlist));
11436 if (fip->nfnfields == 0)
11437 make_cleanup (free_current_contents, &fip->fnfieldlists);
11438 }
11439 flp = &fip->fnfieldlists[fip->nfnfields];
11440 flp->name = fieldname;
11441 flp->length = 0;
11442 flp->head = NULL;
11443 i = fip->nfnfields++;
11444 }
11445
11446 /* Create a new member function field and chain it to the field list
11447 entry. */
11448 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11449 make_cleanup (xfree, new_fnfield);
11450 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11451 new_fnfield->next = flp->head;
11452 flp->head = new_fnfield;
11453 flp->length++;
11454
11455 /* Fill in the member function field info. */
11456 fnp = &new_fnfield->fnfield;
11457
11458 /* Delay processing of the physname until later. */
11459 if (cu->language == language_cplus || cu->language == language_java)
11460 {
11461 add_to_method_list (type, i, flp->length - 1, fieldname,
11462 die, cu);
11463 }
11464 else
11465 {
11466 const char *physname = dwarf2_physname (fieldname, die, cu);
11467 fnp->physname = physname ? physname : "";
11468 }
11469
11470 fnp->type = alloc_type (objfile);
11471 this_type = read_type_die (die, cu);
11472 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11473 {
11474 int nparams = TYPE_NFIELDS (this_type);
11475
11476 /* TYPE is the domain of this method, and THIS_TYPE is the type
11477 of the method itself (TYPE_CODE_METHOD). */
11478 smash_to_method_type (fnp->type, type,
11479 TYPE_TARGET_TYPE (this_type),
11480 TYPE_FIELDS (this_type),
11481 TYPE_NFIELDS (this_type),
11482 TYPE_VARARGS (this_type));
11483
11484 /* Handle static member functions.
11485 Dwarf2 has no clean way to discern C++ static and non-static
11486 member functions. G++ helps GDB by marking the first
11487 parameter for non-static member functions (which is the this
11488 pointer) as artificial. We obtain this information from
11489 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11490 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11491 fnp->voffset = VOFFSET_STATIC;
11492 }
11493 else
11494 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11495 dwarf2_full_name (fieldname, die, cu));
11496
11497 /* Get fcontext from DW_AT_containing_type if present. */
11498 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11499 fnp->fcontext = die_containing_type (die, cu);
11500
11501 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11502 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11503
11504 /* Get accessibility. */
11505 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11506 if (attr)
11507 accessibility = DW_UNSND (attr);
11508 else
11509 accessibility = dwarf2_default_access_attribute (die, cu);
11510 switch (accessibility)
11511 {
11512 case DW_ACCESS_private:
11513 fnp->is_private = 1;
11514 break;
11515 case DW_ACCESS_protected:
11516 fnp->is_protected = 1;
11517 break;
11518 }
11519
11520 /* Check for artificial methods. */
11521 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11522 if (attr && DW_UNSND (attr) != 0)
11523 fnp->is_artificial = 1;
11524
11525 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11526
11527 /* Get index in virtual function table if it is a virtual member
11528 function. For older versions of GCC, this is an offset in the
11529 appropriate virtual table, as specified by DW_AT_containing_type.
11530 For everyone else, it is an expression to be evaluated relative
11531 to the object address. */
11532
11533 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11534 if (attr)
11535 {
11536 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11537 {
11538 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11539 {
11540 /* Old-style GCC. */
11541 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11542 }
11543 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11544 || (DW_BLOCK (attr)->size > 1
11545 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11546 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11547 {
11548 struct dwarf_block blk;
11549 int offset;
11550
11551 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11552 ? 1 : 2);
11553 blk.size = DW_BLOCK (attr)->size - offset;
11554 blk.data = DW_BLOCK (attr)->data + offset;
11555 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11556 if ((fnp->voffset % cu->header.addr_size) != 0)
11557 dwarf2_complex_location_expr_complaint ();
11558 else
11559 fnp->voffset /= cu->header.addr_size;
11560 fnp->voffset += 2;
11561 }
11562 else
11563 dwarf2_complex_location_expr_complaint ();
11564
11565 if (!fnp->fcontext)
11566 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11567 }
11568 else if (attr_form_is_section_offset (attr))
11569 {
11570 dwarf2_complex_location_expr_complaint ();
11571 }
11572 else
11573 {
11574 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11575 fieldname);
11576 }
11577 }
11578 else
11579 {
11580 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11581 if (attr && DW_UNSND (attr))
11582 {
11583 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11584 complaint (&symfile_complaints,
11585 _("Member function \"%s\" (offset %d) is virtual "
11586 "but the vtable offset is not specified"),
11587 fieldname, die->offset.sect_off);
11588 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11589 TYPE_CPLUS_DYNAMIC (type) = 1;
11590 }
11591 }
11592 }
11593
11594 /* Create the vector of member function fields, and attach it to the type. */
11595
11596 static void
11597 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11598 struct dwarf2_cu *cu)
11599 {
11600 struct fnfieldlist *flp;
11601 int i;
11602
11603 if (cu->language == language_ada)
11604 error (_("unexpected member functions in Ada type"));
11605
11606 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11607 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11608 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11609
11610 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11611 {
11612 struct nextfnfield *nfp = flp->head;
11613 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11614 int k;
11615
11616 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11617 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11618 fn_flp->fn_fields = (struct fn_field *)
11619 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11620 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11621 fn_flp->fn_fields[k] = nfp->fnfield;
11622 }
11623
11624 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11625 }
11626
11627 /* Returns non-zero if NAME is the name of a vtable member in CU's
11628 language, zero otherwise. */
11629 static int
11630 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11631 {
11632 static const char vptr[] = "_vptr";
11633 static const char vtable[] = "vtable";
11634
11635 /* Look for the C++ and Java forms of the vtable. */
11636 if ((cu->language == language_java
11637 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11638 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11639 && is_cplus_marker (name[sizeof (vptr) - 1])))
11640 return 1;
11641
11642 return 0;
11643 }
11644
11645 /* GCC outputs unnamed structures that are really pointers to member
11646 functions, with the ABI-specified layout. If TYPE describes
11647 such a structure, smash it into a member function type.
11648
11649 GCC shouldn't do this; it should just output pointer to member DIEs.
11650 This is GCC PR debug/28767. */
11651
11652 static void
11653 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11654 {
11655 struct type *pfn_type, *domain_type, *new_type;
11656
11657 /* Check for a structure with no name and two children. */
11658 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11659 return;
11660
11661 /* Check for __pfn and __delta members. */
11662 if (TYPE_FIELD_NAME (type, 0) == NULL
11663 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11664 || TYPE_FIELD_NAME (type, 1) == NULL
11665 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11666 return;
11667
11668 /* Find the type of the method. */
11669 pfn_type = TYPE_FIELD_TYPE (type, 0);
11670 if (pfn_type == NULL
11671 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11672 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11673 return;
11674
11675 /* Look for the "this" argument. */
11676 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11677 if (TYPE_NFIELDS (pfn_type) == 0
11678 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11679 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11680 return;
11681
11682 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11683 new_type = alloc_type (objfile);
11684 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11685 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11686 TYPE_VARARGS (pfn_type));
11687 smash_to_methodptr_type (type, new_type);
11688 }
11689
11690 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11691 (icc). */
11692
11693 static int
11694 producer_is_icc (struct dwarf2_cu *cu)
11695 {
11696 if (!cu->checked_producer)
11697 check_producer (cu);
11698
11699 return cu->producer_is_icc;
11700 }
11701
11702 /* Called when we find the DIE that starts a structure or union scope
11703 (definition) to create a type for the structure or union. Fill in
11704 the type's name and general properties; the members will not be
11705 processed until process_structure_scope.
11706
11707 NOTE: we need to call these functions regardless of whether or not the
11708 DIE has a DW_AT_name attribute, since it might be an anonymous
11709 structure or union. This gets the type entered into our set of
11710 user defined types.
11711
11712 However, if the structure is incomplete (an opaque struct/union)
11713 then suppress creating a symbol table entry for it since gdb only
11714 wants to find the one with the complete definition. Note that if
11715 it is complete, we just call new_symbol, which does it's own
11716 checking about whether the struct/union is anonymous or not (and
11717 suppresses creating a symbol table entry itself). */
11718
11719 static struct type *
11720 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11721 {
11722 struct objfile *objfile = cu->objfile;
11723 struct type *type;
11724 struct attribute *attr;
11725 const char *name;
11726
11727 /* If the definition of this type lives in .debug_types, read that type.
11728 Don't follow DW_AT_specification though, that will take us back up
11729 the chain and we want to go down. */
11730 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11731 if (attr)
11732 {
11733 type = get_DW_AT_signature_type (die, attr, cu);
11734
11735 /* The type's CU may not be the same as CU.
11736 Ensure TYPE is recorded with CU in die_type_hash. */
11737 return set_die_type (die, type, cu);
11738 }
11739
11740 type = alloc_type (objfile);
11741 INIT_CPLUS_SPECIFIC (type);
11742
11743 name = dwarf2_name (die, cu);
11744 if (name != NULL)
11745 {
11746 if (cu->language == language_cplus
11747 || cu->language == language_java)
11748 {
11749 const char *full_name = dwarf2_full_name (name, die, cu);
11750
11751 /* dwarf2_full_name might have already finished building the DIE's
11752 type. If so, there is no need to continue. */
11753 if (get_die_type (die, cu) != NULL)
11754 return get_die_type (die, cu);
11755
11756 TYPE_TAG_NAME (type) = full_name;
11757 if (die->tag == DW_TAG_structure_type
11758 || die->tag == DW_TAG_class_type)
11759 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11760 }
11761 else
11762 {
11763 /* The name is already allocated along with this objfile, so
11764 we don't need to duplicate it for the type. */
11765 TYPE_TAG_NAME (type) = name;
11766 if (die->tag == DW_TAG_class_type)
11767 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11768 }
11769 }
11770
11771 if (die->tag == DW_TAG_structure_type)
11772 {
11773 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11774 }
11775 else if (die->tag == DW_TAG_union_type)
11776 {
11777 TYPE_CODE (type) = TYPE_CODE_UNION;
11778 }
11779 else
11780 {
11781 TYPE_CODE (type) = TYPE_CODE_CLASS;
11782 }
11783
11784 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11785 TYPE_DECLARED_CLASS (type) = 1;
11786
11787 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11788 if (attr)
11789 {
11790 TYPE_LENGTH (type) = DW_UNSND (attr);
11791 }
11792 else
11793 {
11794 TYPE_LENGTH (type) = 0;
11795 }
11796
11797 if (producer_is_icc (cu))
11798 {
11799 /* ICC does not output the required DW_AT_declaration
11800 on incomplete types, but gives them a size of zero. */
11801 }
11802 else
11803 TYPE_STUB_SUPPORTED (type) = 1;
11804
11805 if (die_is_declaration (die, cu))
11806 TYPE_STUB (type) = 1;
11807 else if (attr == NULL && die->child == NULL
11808 && producer_is_realview (cu->producer))
11809 /* RealView does not output the required DW_AT_declaration
11810 on incomplete types. */
11811 TYPE_STUB (type) = 1;
11812
11813 /* We need to add the type field to the die immediately so we don't
11814 infinitely recurse when dealing with pointers to the structure
11815 type within the structure itself. */
11816 set_die_type (die, type, cu);
11817
11818 /* set_die_type should be already done. */
11819 set_descriptive_type (type, die, cu);
11820
11821 return type;
11822 }
11823
11824 /* Finish creating a structure or union type, including filling in
11825 its members and creating a symbol for it. */
11826
11827 static void
11828 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11829 {
11830 struct objfile *objfile = cu->objfile;
11831 struct die_info *child_die = die->child;
11832 struct type *type;
11833
11834 type = get_die_type (die, cu);
11835 if (type == NULL)
11836 type = read_structure_type (die, cu);
11837
11838 if (die->child != NULL && ! die_is_declaration (die, cu))
11839 {
11840 struct field_info fi;
11841 struct die_info *child_die;
11842 VEC (symbolp) *template_args = NULL;
11843 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11844
11845 memset (&fi, 0, sizeof (struct field_info));
11846
11847 child_die = die->child;
11848
11849 while (child_die && child_die->tag)
11850 {
11851 if (child_die->tag == DW_TAG_member
11852 || child_die->tag == DW_TAG_variable)
11853 {
11854 /* NOTE: carlton/2002-11-05: A C++ static data member
11855 should be a DW_TAG_member that is a declaration, but
11856 all versions of G++ as of this writing (so through at
11857 least 3.2.1) incorrectly generate DW_TAG_variable
11858 tags for them instead. */
11859 dwarf2_add_field (&fi, child_die, cu);
11860 }
11861 else if (child_die->tag == DW_TAG_subprogram)
11862 {
11863 /* C++ member function. */
11864 dwarf2_add_member_fn (&fi, child_die, type, cu);
11865 }
11866 else if (child_die->tag == DW_TAG_inheritance)
11867 {
11868 /* C++ base class field. */
11869 dwarf2_add_field (&fi, child_die, cu);
11870 }
11871 else if (child_die->tag == DW_TAG_typedef)
11872 dwarf2_add_typedef (&fi, child_die, cu);
11873 else if (child_die->tag == DW_TAG_template_type_param
11874 || child_die->tag == DW_TAG_template_value_param)
11875 {
11876 struct symbol *arg = new_symbol (child_die, NULL, cu);
11877
11878 if (arg != NULL)
11879 VEC_safe_push (symbolp, template_args, arg);
11880 }
11881
11882 child_die = sibling_die (child_die);
11883 }
11884
11885 /* Attach template arguments to type. */
11886 if (! VEC_empty (symbolp, template_args))
11887 {
11888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11889 TYPE_N_TEMPLATE_ARGUMENTS (type)
11890 = VEC_length (symbolp, template_args);
11891 TYPE_TEMPLATE_ARGUMENTS (type)
11892 = obstack_alloc (&objfile->objfile_obstack,
11893 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11894 * sizeof (struct symbol *)));
11895 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11896 VEC_address (symbolp, template_args),
11897 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11898 * sizeof (struct symbol *)));
11899 VEC_free (symbolp, template_args);
11900 }
11901
11902 /* Attach fields and member functions to the type. */
11903 if (fi.nfields)
11904 dwarf2_attach_fields_to_type (&fi, type, cu);
11905 if (fi.nfnfields)
11906 {
11907 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11908
11909 /* Get the type which refers to the base class (possibly this
11910 class itself) which contains the vtable pointer for the current
11911 class from the DW_AT_containing_type attribute. This use of
11912 DW_AT_containing_type is a GNU extension. */
11913
11914 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11915 {
11916 struct type *t = die_containing_type (die, cu);
11917
11918 TYPE_VPTR_BASETYPE (type) = t;
11919 if (type == t)
11920 {
11921 int i;
11922
11923 /* Our own class provides vtbl ptr. */
11924 for (i = TYPE_NFIELDS (t) - 1;
11925 i >= TYPE_N_BASECLASSES (t);
11926 --i)
11927 {
11928 const char *fieldname = TYPE_FIELD_NAME (t, i);
11929
11930 if (is_vtable_name (fieldname, cu))
11931 {
11932 TYPE_VPTR_FIELDNO (type) = i;
11933 break;
11934 }
11935 }
11936
11937 /* Complain if virtual function table field not found. */
11938 if (i < TYPE_N_BASECLASSES (t))
11939 complaint (&symfile_complaints,
11940 _("virtual function table pointer "
11941 "not found when defining class '%s'"),
11942 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11943 "");
11944 }
11945 else
11946 {
11947 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11948 }
11949 }
11950 else if (cu->producer
11951 && strncmp (cu->producer,
11952 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11953 {
11954 /* The IBM XLC compiler does not provide direct indication
11955 of the containing type, but the vtable pointer is
11956 always named __vfp. */
11957
11958 int i;
11959
11960 for (i = TYPE_NFIELDS (type) - 1;
11961 i >= TYPE_N_BASECLASSES (type);
11962 --i)
11963 {
11964 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11965 {
11966 TYPE_VPTR_FIELDNO (type) = i;
11967 TYPE_VPTR_BASETYPE (type) = type;
11968 break;
11969 }
11970 }
11971 }
11972 }
11973
11974 /* Copy fi.typedef_field_list linked list elements content into the
11975 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11976 if (fi.typedef_field_list)
11977 {
11978 int i = fi.typedef_field_list_count;
11979
11980 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11981 TYPE_TYPEDEF_FIELD_ARRAY (type)
11982 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11983 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11984
11985 /* Reverse the list order to keep the debug info elements order. */
11986 while (--i >= 0)
11987 {
11988 struct typedef_field *dest, *src;
11989
11990 dest = &TYPE_TYPEDEF_FIELD (type, i);
11991 src = &fi.typedef_field_list->field;
11992 fi.typedef_field_list = fi.typedef_field_list->next;
11993 *dest = *src;
11994 }
11995 }
11996
11997 do_cleanups (back_to);
11998
11999 if (HAVE_CPLUS_STRUCT (type))
12000 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12001 }
12002
12003 quirk_gcc_member_function_pointer (type, objfile);
12004
12005 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12006 snapshots) has been known to create a die giving a declaration
12007 for a class that has, as a child, a die giving a definition for a
12008 nested class. So we have to process our children even if the
12009 current die is a declaration. Normally, of course, a declaration
12010 won't have any children at all. */
12011
12012 while (child_die != NULL && child_die->tag)
12013 {
12014 if (child_die->tag == DW_TAG_member
12015 || child_die->tag == DW_TAG_variable
12016 || child_die->tag == DW_TAG_inheritance
12017 || child_die->tag == DW_TAG_template_value_param
12018 || child_die->tag == DW_TAG_template_type_param)
12019 {
12020 /* Do nothing. */
12021 }
12022 else
12023 process_die (child_die, cu);
12024
12025 child_die = sibling_die (child_die);
12026 }
12027
12028 /* Do not consider external references. According to the DWARF standard,
12029 these DIEs are identified by the fact that they have no byte_size
12030 attribute, and a declaration attribute. */
12031 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12032 || !die_is_declaration (die, cu))
12033 new_symbol (die, type, cu);
12034 }
12035
12036 /* Given a DW_AT_enumeration_type die, set its type. We do not
12037 complete the type's fields yet, or create any symbols. */
12038
12039 static struct type *
12040 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12041 {
12042 struct objfile *objfile = cu->objfile;
12043 struct type *type;
12044 struct attribute *attr;
12045 const char *name;
12046
12047 /* If the definition of this type lives in .debug_types, read that type.
12048 Don't follow DW_AT_specification though, that will take us back up
12049 the chain and we want to go down. */
12050 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12051 if (attr)
12052 {
12053 type = get_DW_AT_signature_type (die, attr, cu);
12054
12055 /* The type's CU may not be the same as CU.
12056 Ensure TYPE is recorded with CU in die_type_hash. */
12057 return set_die_type (die, type, cu);
12058 }
12059
12060 type = alloc_type (objfile);
12061
12062 TYPE_CODE (type) = TYPE_CODE_ENUM;
12063 name = dwarf2_full_name (NULL, die, cu);
12064 if (name != NULL)
12065 TYPE_TAG_NAME (type) = name;
12066
12067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12068 if (attr)
12069 {
12070 TYPE_LENGTH (type) = DW_UNSND (attr);
12071 }
12072 else
12073 {
12074 TYPE_LENGTH (type) = 0;
12075 }
12076
12077 /* The enumeration DIE can be incomplete. In Ada, any type can be
12078 declared as private in the package spec, and then defined only
12079 inside the package body. Such types are known as Taft Amendment
12080 Types. When another package uses such a type, an incomplete DIE
12081 may be generated by the compiler. */
12082 if (die_is_declaration (die, cu))
12083 TYPE_STUB (type) = 1;
12084
12085 return set_die_type (die, type, cu);
12086 }
12087
12088 /* Given a pointer to a die which begins an enumeration, process all
12089 the dies that define the members of the enumeration, and create the
12090 symbol for the enumeration type.
12091
12092 NOTE: We reverse the order of the element list. */
12093
12094 static void
12095 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12096 {
12097 struct type *this_type;
12098
12099 this_type = get_die_type (die, cu);
12100 if (this_type == NULL)
12101 this_type = read_enumeration_type (die, cu);
12102
12103 if (die->child != NULL)
12104 {
12105 struct die_info *child_die;
12106 struct symbol *sym;
12107 struct field *fields = NULL;
12108 int num_fields = 0;
12109 int unsigned_enum = 1;
12110 const char *name;
12111 int flag_enum = 1;
12112 ULONGEST mask = 0;
12113
12114 child_die = die->child;
12115 while (child_die && child_die->tag)
12116 {
12117 if (child_die->tag != DW_TAG_enumerator)
12118 {
12119 process_die (child_die, cu);
12120 }
12121 else
12122 {
12123 name = dwarf2_name (child_die, cu);
12124 if (name)
12125 {
12126 sym = new_symbol (child_die, this_type, cu);
12127 if (SYMBOL_VALUE (sym) < 0)
12128 {
12129 unsigned_enum = 0;
12130 flag_enum = 0;
12131 }
12132 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12133 flag_enum = 0;
12134 else
12135 mask |= SYMBOL_VALUE (sym);
12136
12137 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12138 {
12139 fields = (struct field *)
12140 xrealloc (fields,
12141 (num_fields + DW_FIELD_ALLOC_CHUNK)
12142 * sizeof (struct field));
12143 }
12144
12145 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12146 FIELD_TYPE (fields[num_fields]) = NULL;
12147 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12148 FIELD_BITSIZE (fields[num_fields]) = 0;
12149
12150 num_fields++;
12151 }
12152 }
12153
12154 child_die = sibling_die (child_die);
12155 }
12156
12157 if (num_fields)
12158 {
12159 TYPE_NFIELDS (this_type) = num_fields;
12160 TYPE_FIELDS (this_type) = (struct field *)
12161 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12162 memcpy (TYPE_FIELDS (this_type), fields,
12163 sizeof (struct field) * num_fields);
12164 xfree (fields);
12165 }
12166 if (unsigned_enum)
12167 TYPE_UNSIGNED (this_type) = 1;
12168 if (flag_enum)
12169 TYPE_FLAG_ENUM (this_type) = 1;
12170 }
12171
12172 /* If we are reading an enum from a .debug_types unit, and the enum
12173 is a declaration, and the enum is not the signatured type in the
12174 unit, then we do not want to add a symbol for it. Adding a
12175 symbol would in some cases obscure the true definition of the
12176 enum, giving users an incomplete type when the definition is
12177 actually available. Note that we do not want to do this for all
12178 enums which are just declarations, because C++0x allows forward
12179 enum declarations. */
12180 if (cu->per_cu->is_debug_types
12181 && die_is_declaration (die, cu))
12182 {
12183 struct signatured_type *sig_type;
12184
12185 sig_type = (struct signatured_type *) cu->per_cu;
12186 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12187 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12188 return;
12189 }
12190
12191 new_symbol (die, this_type, cu);
12192 }
12193
12194 /* Extract all information from a DW_TAG_array_type DIE and put it in
12195 the DIE's type field. For now, this only handles one dimensional
12196 arrays. */
12197
12198 static struct type *
12199 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12200 {
12201 struct objfile *objfile = cu->objfile;
12202 struct die_info *child_die;
12203 struct type *type;
12204 struct type *element_type, *range_type, *index_type;
12205 struct type **range_types = NULL;
12206 struct attribute *attr;
12207 int ndim = 0;
12208 struct cleanup *back_to;
12209 const char *name;
12210
12211 element_type = die_type (die, cu);
12212
12213 /* The die_type call above may have already set the type for this DIE. */
12214 type = get_die_type (die, cu);
12215 if (type)
12216 return type;
12217
12218 /* Irix 6.2 native cc creates array types without children for
12219 arrays with unspecified length. */
12220 if (die->child == NULL)
12221 {
12222 index_type = objfile_type (objfile)->builtin_int;
12223 range_type = create_range_type (NULL, index_type, 0, -1);
12224 type = create_array_type (NULL, element_type, range_type);
12225 return set_die_type (die, type, cu);
12226 }
12227
12228 back_to = make_cleanup (null_cleanup, NULL);
12229 child_die = die->child;
12230 while (child_die && child_die->tag)
12231 {
12232 if (child_die->tag == DW_TAG_subrange_type)
12233 {
12234 struct type *child_type = read_type_die (child_die, cu);
12235
12236 if (child_type != NULL)
12237 {
12238 /* The range type was succesfully read. Save it for the
12239 array type creation. */
12240 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12241 {
12242 range_types = (struct type **)
12243 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12244 * sizeof (struct type *));
12245 if (ndim == 0)
12246 make_cleanup (free_current_contents, &range_types);
12247 }
12248 range_types[ndim++] = child_type;
12249 }
12250 }
12251 child_die = sibling_die (child_die);
12252 }
12253
12254 /* Dwarf2 dimensions are output from left to right, create the
12255 necessary array types in backwards order. */
12256
12257 type = element_type;
12258
12259 if (read_array_order (die, cu) == DW_ORD_col_major)
12260 {
12261 int i = 0;
12262
12263 while (i < ndim)
12264 type = create_array_type (NULL, type, range_types[i++]);
12265 }
12266 else
12267 {
12268 while (ndim-- > 0)
12269 type = create_array_type (NULL, type, range_types[ndim]);
12270 }
12271
12272 /* Understand Dwarf2 support for vector types (like they occur on
12273 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12274 array type. This is not part of the Dwarf2/3 standard yet, but a
12275 custom vendor extension. The main difference between a regular
12276 array and the vector variant is that vectors are passed by value
12277 to functions. */
12278 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12279 if (attr)
12280 make_vector_type (type);
12281
12282 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12283 implementation may choose to implement triple vectors using this
12284 attribute. */
12285 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12286 if (attr)
12287 {
12288 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12289 TYPE_LENGTH (type) = DW_UNSND (attr);
12290 else
12291 complaint (&symfile_complaints,
12292 _("DW_AT_byte_size for array type smaller "
12293 "than the total size of elements"));
12294 }
12295
12296 name = dwarf2_name (die, cu);
12297 if (name)
12298 TYPE_NAME (type) = name;
12299
12300 /* Install the type in the die. */
12301 set_die_type (die, type, cu);
12302
12303 /* set_die_type should be already done. */
12304 set_descriptive_type (type, die, cu);
12305
12306 do_cleanups (back_to);
12307
12308 return type;
12309 }
12310
12311 static enum dwarf_array_dim_ordering
12312 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12313 {
12314 struct attribute *attr;
12315
12316 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12317
12318 if (attr) return DW_SND (attr);
12319
12320 /* GNU F77 is a special case, as at 08/2004 array type info is the
12321 opposite order to the dwarf2 specification, but data is still
12322 laid out as per normal fortran.
12323
12324 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12325 version checking. */
12326
12327 if (cu->language == language_fortran
12328 && cu->producer && strstr (cu->producer, "GNU F77"))
12329 {
12330 return DW_ORD_row_major;
12331 }
12332
12333 switch (cu->language_defn->la_array_ordering)
12334 {
12335 case array_column_major:
12336 return DW_ORD_col_major;
12337 case array_row_major:
12338 default:
12339 return DW_ORD_row_major;
12340 };
12341 }
12342
12343 /* Extract all information from a DW_TAG_set_type DIE and put it in
12344 the DIE's type field. */
12345
12346 static struct type *
12347 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12348 {
12349 struct type *domain_type, *set_type;
12350 struct attribute *attr;
12351
12352 domain_type = die_type (die, cu);
12353
12354 /* The die_type call above may have already set the type for this DIE. */
12355 set_type = get_die_type (die, cu);
12356 if (set_type)
12357 return set_type;
12358
12359 set_type = create_set_type (NULL, domain_type);
12360
12361 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12362 if (attr)
12363 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12364
12365 return set_die_type (die, set_type, cu);
12366 }
12367
12368 /* A helper for read_common_block that creates a locexpr baton.
12369 SYM is the symbol which we are marking as computed.
12370 COMMON_DIE is the DIE for the common block.
12371 COMMON_LOC is the location expression attribute for the common
12372 block itself.
12373 MEMBER_LOC is the location expression attribute for the particular
12374 member of the common block that we are processing.
12375 CU is the CU from which the above come. */
12376
12377 static void
12378 mark_common_block_symbol_computed (struct symbol *sym,
12379 struct die_info *common_die,
12380 struct attribute *common_loc,
12381 struct attribute *member_loc,
12382 struct dwarf2_cu *cu)
12383 {
12384 struct objfile *objfile = dwarf2_per_objfile->objfile;
12385 struct dwarf2_locexpr_baton *baton;
12386 gdb_byte *ptr;
12387 unsigned int cu_off;
12388 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12389 LONGEST offset = 0;
12390
12391 gdb_assert (common_loc && member_loc);
12392 gdb_assert (attr_form_is_block (common_loc));
12393 gdb_assert (attr_form_is_block (member_loc)
12394 || attr_form_is_constant (member_loc));
12395
12396 baton = obstack_alloc (&objfile->objfile_obstack,
12397 sizeof (struct dwarf2_locexpr_baton));
12398 baton->per_cu = cu->per_cu;
12399 gdb_assert (baton->per_cu);
12400
12401 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12402
12403 if (attr_form_is_constant (member_loc))
12404 {
12405 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12406 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12407 }
12408 else
12409 baton->size += DW_BLOCK (member_loc)->size;
12410
12411 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12412 baton->data = ptr;
12413
12414 *ptr++ = DW_OP_call4;
12415 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12416 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12417 ptr += 4;
12418
12419 if (attr_form_is_constant (member_loc))
12420 {
12421 *ptr++ = DW_OP_addr;
12422 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12423 ptr += cu->header.addr_size;
12424 }
12425 else
12426 {
12427 /* We have to copy the data here, because DW_OP_call4 will only
12428 use a DW_AT_location attribute. */
12429 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12430 ptr += DW_BLOCK (member_loc)->size;
12431 }
12432
12433 *ptr++ = DW_OP_plus;
12434 gdb_assert (ptr - baton->data == baton->size);
12435
12436 SYMBOL_LOCATION_BATON (sym) = baton;
12437 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12438 }
12439
12440 /* Create appropriate locally-scoped variables for all the
12441 DW_TAG_common_block entries. Also create a struct common_block
12442 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12443 is used to sepate the common blocks name namespace from regular
12444 variable names. */
12445
12446 static void
12447 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12448 {
12449 struct attribute *attr;
12450
12451 attr = dwarf2_attr (die, DW_AT_location, cu);
12452 if (attr)
12453 {
12454 /* Support the .debug_loc offsets. */
12455 if (attr_form_is_block (attr))
12456 {
12457 /* Ok. */
12458 }
12459 else if (attr_form_is_section_offset (attr))
12460 {
12461 dwarf2_complex_location_expr_complaint ();
12462 attr = NULL;
12463 }
12464 else
12465 {
12466 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12467 "common block member");
12468 attr = NULL;
12469 }
12470 }
12471
12472 if (die->child != NULL)
12473 {
12474 struct objfile *objfile = cu->objfile;
12475 struct die_info *child_die;
12476 size_t n_entries = 0, size;
12477 struct common_block *common_block;
12478 struct symbol *sym;
12479
12480 for (child_die = die->child;
12481 child_die && child_die->tag;
12482 child_die = sibling_die (child_die))
12483 ++n_entries;
12484
12485 size = (sizeof (struct common_block)
12486 + (n_entries - 1) * sizeof (struct symbol *));
12487 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12488 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12489 common_block->n_entries = 0;
12490
12491 for (child_die = die->child;
12492 child_die && child_die->tag;
12493 child_die = sibling_die (child_die))
12494 {
12495 /* Create the symbol in the DW_TAG_common_block block in the current
12496 symbol scope. */
12497 sym = new_symbol (child_die, NULL, cu);
12498 if (sym != NULL)
12499 {
12500 struct attribute *member_loc;
12501
12502 common_block->contents[common_block->n_entries++] = sym;
12503
12504 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12505 cu);
12506 if (member_loc)
12507 {
12508 /* GDB has handled this for a long time, but it is
12509 not specified by DWARF. It seems to have been
12510 emitted by gfortran at least as recently as:
12511 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12512 complaint (&symfile_complaints,
12513 _("Variable in common block has "
12514 "DW_AT_data_member_location "
12515 "- DIE at 0x%x [in module %s]"),
12516 child_die->offset.sect_off, cu->objfile->name);
12517
12518 if (attr_form_is_section_offset (member_loc))
12519 dwarf2_complex_location_expr_complaint ();
12520 else if (attr_form_is_constant (member_loc)
12521 || attr_form_is_block (member_loc))
12522 {
12523 if (attr)
12524 mark_common_block_symbol_computed (sym, die, attr,
12525 member_loc, cu);
12526 }
12527 else
12528 dwarf2_complex_location_expr_complaint ();
12529 }
12530 }
12531 }
12532
12533 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12534 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12535 }
12536 }
12537
12538 /* Create a type for a C++ namespace. */
12539
12540 static struct type *
12541 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12542 {
12543 struct objfile *objfile = cu->objfile;
12544 const char *previous_prefix, *name;
12545 int is_anonymous;
12546 struct type *type;
12547
12548 /* For extensions, reuse the type of the original namespace. */
12549 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12550 {
12551 struct die_info *ext_die;
12552 struct dwarf2_cu *ext_cu = cu;
12553
12554 ext_die = dwarf2_extension (die, &ext_cu);
12555 type = read_type_die (ext_die, ext_cu);
12556
12557 /* EXT_CU may not be the same as CU.
12558 Ensure TYPE is recorded with CU in die_type_hash. */
12559 return set_die_type (die, type, cu);
12560 }
12561
12562 name = namespace_name (die, &is_anonymous, cu);
12563
12564 /* Now build the name of the current namespace. */
12565
12566 previous_prefix = determine_prefix (die, cu);
12567 if (previous_prefix[0] != '\0')
12568 name = typename_concat (&objfile->objfile_obstack,
12569 previous_prefix, name, 0, cu);
12570
12571 /* Create the type. */
12572 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12573 objfile);
12574 TYPE_NAME (type) = name;
12575 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12576
12577 return set_die_type (die, type, cu);
12578 }
12579
12580 /* Read a C++ namespace. */
12581
12582 static void
12583 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12584 {
12585 struct objfile *objfile = cu->objfile;
12586 int is_anonymous;
12587
12588 /* Add a symbol associated to this if we haven't seen the namespace
12589 before. Also, add a using directive if it's an anonymous
12590 namespace. */
12591
12592 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12593 {
12594 struct type *type;
12595
12596 type = read_type_die (die, cu);
12597 new_symbol (die, type, cu);
12598
12599 namespace_name (die, &is_anonymous, cu);
12600 if (is_anonymous)
12601 {
12602 const char *previous_prefix = determine_prefix (die, cu);
12603
12604 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12605 NULL, NULL, 0, &objfile->objfile_obstack);
12606 }
12607 }
12608
12609 if (die->child != NULL)
12610 {
12611 struct die_info *child_die = die->child;
12612
12613 while (child_die && child_die->tag)
12614 {
12615 process_die (child_die, cu);
12616 child_die = sibling_die (child_die);
12617 }
12618 }
12619 }
12620
12621 /* Read a Fortran module as type. This DIE can be only a declaration used for
12622 imported module. Still we need that type as local Fortran "use ... only"
12623 declaration imports depend on the created type in determine_prefix. */
12624
12625 static struct type *
12626 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12627 {
12628 struct objfile *objfile = cu->objfile;
12629 const char *module_name;
12630 struct type *type;
12631
12632 module_name = dwarf2_name (die, cu);
12633 if (!module_name)
12634 complaint (&symfile_complaints,
12635 _("DW_TAG_module has no name, offset 0x%x"),
12636 die->offset.sect_off);
12637 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12638
12639 /* determine_prefix uses TYPE_TAG_NAME. */
12640 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12641
12642 return set_die_type (die, type, cu);
12643 }
12644
12645 /* Read a Fortran module. */
12646
12647 static void
12648 read_module (struct die_info *die, struct dwarf2_cu *cu)
12649 {
12650 struct die_info *child_die = die->child;
12651
12652 while (child_die && child_die->tag)
12653 {
12654 process_die (child_die, cu);
12655 child_die = sibling_die (child_die);
12656 }
12657 }
12658
12659 /* Return the name of the namespace represented by DIE. Set
12660 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12661 namespace. */
12662
12663 static const char *
12664 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12665 {
12666 struct die_info *current_die;
12667 const char *name = NULL;
12668
12669 /* Loop through the extensions until we find a name. */
12670
12671 for (current_die = die;
12672 current_die != NULL;
12673 current_die = dwarf2_extension (die, &cu))
12674 {
12675 name = dwarf2_name (current_die, cu);
12676 if (name != NULL)
12677 break;
12678 }
12679
12680 /* Is it an anonymous namespace? */
12681
12682 *is_anonymous = (name == NULL);
12683 if (*is_anonymous)
12684 name = CP_ANONYMOUS_NAMESPACE_STR;
12685
12686 return name;
12687 }
12688
12689 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12690 the user defined type vector. */
12691
12692 static struct type *
12693 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12694 {
12695 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12696 struct comp_unit_head *cu_header = &cu->header;
12697 struct type *type;
12698 struct attribute *attr_byte_size;
12699 struct attribute *attr_address_class;
12700 int byte_size, addr_class;
12701 struct type *target_type;
12702
12703 target_type = die_type (die, cu);
12704
12705 /* The die_type call above may have already set the type for this DIE. */
12706 type = get_die_type (die, cu);
12707 if (type)
12708 return type;
12709
12710 type = lookup_pointer_type (target_type);
12711
12712 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12713 if (attr_byte_size)
12714 byte_size = DW_UNSND (attr_byte_size);
12715 else
12716 byte_size = cu_header->addr_size;
12717
12718 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12719 if (attr_address_class)
12720 addr_class = DW_UNSND (attr_address_class);
12721 else
12722 addr_class = DW_ADDR_none;
12723
12724 /* If the pointer size or address class is different than the
12725 default, create a type variant marked as such and set the
12726 length accordingly. */
12727 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12728 {
12729 if (gdbarch_address_class_type_flags_p (gdbarch))
12730 {
12731 int type_flags;
12732
12733 type_flags = gdbarch_address_class_type_flags
12734 (gdbarch, byte_size, addr_class);
12735 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12736 == 0);
12737 type = make_type_with_address_space (type, type_flags);
12738 }
12739 else if (TYPE_LENGTH (type) != byte_size)
12740 {
12741 complaint (&symfile_complaints,
12742 _("invalid pointer size %d"), byte_size);
12743 }
12744 else
12745 {
12746 /* Should we also complain about unhandled address classes? */
12747 }
12748 }
12749
12750 TYPE_LENGTH (type) = byte_size;
12751 return set_die_type (die, type, cu);
12752 }
12753
12754 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12755 the user defined type vector. */
12756
12757 static struct type *
12758 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12759 {
12760 struct type *type;
12761 struct type *to_type;
12762 struct type *domain;
12763
12764 to_type = die_type (die, cu);
12765 domain = die_containing_type (die, cu);
12766
12767 /* The calls above may have already set the type for this DIE. */
12768 type = get_die_type (die, cu);
12769 if (type)
12770 return type;
12771
12772 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12773 type = lookup_methodptr_type (to_type);
12774 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12775 {
12776 struct type *new_type = alloc_type (cu->objfile);
12777
12778 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12779 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12780 TYPE_VARARGS (to_type));
12781 type = lookup_methodptr_type (new_type);
12782 }
12783 else
12784 type = lookup_memberptr_type (to_type, domain);
12785
12786 return set_die_type (die, type, cu);
12787 }
12788
12789 /* Extract all information from a DW_TAG_reference_type DIE and add to
12790 the user defined type vector. */
12791
12792 static struct type *
12793 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12794 {
12795 struct comp_unit_head *cu_header = &cu->header;
12796 struct type *type, *target_type;
12797 struct attribute *attr;
12798
12799 target_type = die_type (die, cu);
12800
12801 /* The die_type call above may have already set the type for this DIE. */
12802 type = get_die_type (die, cu);
12803 if (type)
12804 return type;
12805
12806 type = lookup_reference_type (target_type);
12807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12808 if (attr)
12809 {
12810 TYPE_LENGTH (type) = DW_UNSND (attr);
12811 }
12812 else
12813 {
12814 TYPE_LENGTH (type) = cu_header->addr_size;
12815 }
12816 return set_die_type (die, type, cu);
12817 }
12818
12819 static struct type *
12820 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12821 {
12822 struct type *base_type, *cv_type;
12823
12824 base_type = die_type (die, cu);
12825
12826 /* The die_type call above may have already set the type for this DIE. */
12827 cv_type = get_die_type (die, cu);
12828 if (cv_type)
12829 return cv_type;
12830
12831 /* In case the const qualifier is applied to an array type, the element type
12832 is so qualified, not the array type (section 6.7.3 of C99). */
12833 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12834 {
12835 struct type *el_type, *inner_array;
12836
12837 base_type = copy_type (base_type);
12838 inner_array = base_type;
12839
12840 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12841 {
12842 TYPE_TARGET_TYPE (inner_array) =
12843 copy_type (TYPE_TARGET_TYPE (inner_array));
12844 inner_array = TYPE_TARGET_TYPE (inner_array);
12845 }
12846
12847 el_type = TYPE_TARGET_TYPE (inner_array);
12848 TYPE_TARGET_TYPE (inner_array) =
12849 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12850
12851 return set_die_type (die, base_type, cu);
12852 }
12853
12854 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12855 return set_die_type (die, cv_type, cu);
12856 }
12857
12858 static struct type *
12859 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12860 {
12861 struct type *base_type, *cv_type;
12862
12863 base_type = die_type (die, cu);
12864
12865 /* The die_type call above may have already set the type for this DIE. */
12866 cv_type = get_die_type (die, cu);
12867 if (cv_type)
12868 return cv_type;
12869
12870 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12871 return set_die_type (die, cv_type, cu);
12872 }
12873
12874 /* Handle DW_TAG_restrict_type. */
12875
12876 static struct type *
12877 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12878 {
12879 struct type *base_type, *cv_type;
12880
12881 base_type = die_type (die, cu);
12882
12883 /* The die_type call above may have already set the type for this DIE. */
12884 cv_type = get_die_type (die, cu);
12885 if (cv_type)
12886 return cv_type;
12887
12888 cv_type = make_restrict_type (base_type);
12889 return set_die_type (die, cv_type, cu);
12890 }
12891
12892 /* Extract all information from a DW_TAG_string_type DIE and add to
12893 the user defined type vector. It isn't really a user defined type,
12894 but it behaves like one, with other DIE's using an AT_user_def_type
12895 attribute to reference it. */
12896
12897 static struct type *
12898 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12899 {
12900 struct objfile *objfile = cu->objfile;
12901 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12902 struct type *type, *range_type, *index_type, *char_type;
12903 struct attribute *attr;
12904 unsigned int length;
12905
12906 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12907 if (attr)
12908 {
12909 length = DW_UNSND (attr);
12910 }
12911 else
12912 {
12913 /* Check for the DW_AT_byte_size attribute. */
12914 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12915 if (attr)
12916 {
12917 length = DW_UNSND (attr);
12918 }
12919 else
12920 {
12921 length = 1;
12922 }
12923 }
12924
12925 index_type = objfile_type (objfile)->builtin_int;
12926 range_type = create_range_type (NULL, index_type, 1, length);
12927 char_type = language_string_char_type (cu->language_defn, gdbarch);
12928 type = create_string_type (NULL, char_type, range_type);
12929
12930 return set_die_type (die, type, cu);
12931 }
12932
12933 /* Assuming that DIE corresponds to a function, returns nonzero
12934 if the function is prototyped. */
12935
12936 static int
12937 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
12938 {
12939 struct attribute *attr;
12940
12941 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12942 if (attr && (DW_UNSND (attr) != 0))
12943 return 1;
12944
12945 /* The DWARF standard implies that the DW_AT_prototyped attribute
12946 is only meaninful for C, but the concept also extends to other
12947 languages that allow unprototyped functions (Eg: Objective C).
12948 For all other languages, assume that functions are always
12949 prototyped. */
12950 if (cu->language != language_c
12951 && cu->language != language_objc
12952 && cu->language != language_opencl)
12953 return 1;
12954
12955 /* RealView does not emit DW_AT_prototyped. We can not distinguish
12956 prototyped and unprototyped functions; default to prototyped,
12957 since that is more common in modern code (and RealView warns
12958 about unprototyped functions). */
12959 if (producer_is_realview (cu->producer))
12960 return 1;
12961
12962 return 0;
12963 }
12964
12965 /* Handle DIES due to C code like:
12966
12967 struct foo
12968 {
12969 int (*funcp)(int a, long l);
12970 int b;
12971 };
12972
12973 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12974
12975 static struct type *
12976 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12977 {
12978 struct objfile *objfile = cu->objfile;
12979 struct type *type; /* Type that this function returns. */
12980 struct type *ftype; /* Function that returns above type. */
12981 struct attribute *attr;
12982
12983 type = die_type (die, cu);
12984
12985 /* The die_type call above may have already set the type for this DIE. */
12986 ftype = get_die_type (die, cu);
12987 if (ftype)
12988 return ftype;
12989
12990 ftype = lookup_function_type (type);
12991
12992 if (prototyped_function_p (die, cu))
12993 TYPE_PROTOTYPED (ftype) = 1;
12994
12995 /* Store the calling convention in the type if it's available in
12996 the subroutine die. Otherwise set the calling convention to
12997 the default value DW_CC_normal. */
12998 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12999 if (attr)
13000 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13001 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13002 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13003 else
13004 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13005
13006 /* We need to add the subroutine type to the die immediately so
13007 we don't infinitely recurse when dealing with parameters
13008 declared as the same subroutine type. */
13009 set_die_type (die, ftype, cu);
13010
13011 if (die->child != NULL)
13012 {
13013 struct type *void_type = objfile_type (objfile)->builtin_void;
13014 struct die_info *child_die;
13015 int nparams, iparams;
13016
13017 /* Count the number of parameters.
13018 FIXME: GDB currently ignores vararg functions, but knows about
13019 vararg member functions. */
13020 nparams = 0;
13021 child_die = die->child;
13022 while (child_die && child_die->tag)
13023 {
13024 if (child_die->tag == DW_TAG_formal_parameter)
13025 nparams++;
13026 else if (child_die->tag == DW_TAG_unspecified_parameters)
13027 TYPE_VARARGS (ftype) = 1;
13028 child_die = sibling_die (child_die);
13029 }
13030
13031 /* Allocate storage for parameters and fill them in. */
13032 TYPE_NFIELDS (ftype) = nparams;
13033 TYPE_FIELDS (ftype) = (struct field *)
13034 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13035
13036 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13037 even if we error out during the parameters reading below. */
13038 for (iparams = 0; iparams < nparams; iparams++)
13039 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13040
13041 iparams = 0;
13042 child_die = die->child;
13043 while (child_die && child_die->tag)
13044 {
13045 if (child_die->tag == DW_TAG_formal_parameter)
13046 {
13047 struct type *arg_type;
13048
13049 /* DWARF version 2 has no clean way to discern C++
13050 static and non-static member functions. G++ helps
13051 GDB by marking the first parameter for non-static
13052 member functions (which is the this pointer) as
13053 artificial. We pass this information to
13054 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13055
13056 DWARF version 3 added DW_AT_object_pointer, which GCC
13057 4.5 does not yet generate. */
13058 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13059 if (attr)
13060 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13061 else
13062 {
13063 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13064
13065 /* GCC/43521: In java, the formal parameter
13066 "this" is sometimes not marked with DW_AT_artificial. */
13067 if (cu->language == language_java)
13068 {
13069 const char *name = dwarf2_name (child_die, cu);
13070
13071 if (name && !strcmp (name, "this"))
13072 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13073 }
13074 }
13075 arg_type = die_type (child_die, cu);
13076
13077 /* RealView does not mark THIS as const, which the testsuite
13078 expects. GCC marks THIS as const in method definitions,
13079 but not in the class specifications (GCC PR 43053). */
13080 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13081 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13082 {
13083 int is_this = 0;
13084 struct dwarf2_cu *arg_cu = cu;
13085 const char *name = dwarf2_name (child_die, cu);
13086
13087 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13088 if (attr)
13089 {
13090 /* If the compiler emits this, use it. */
13091 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13092 is_this = 1;
13093 }
13094 else if (name && strcmp (name, "this") == 0)
13095 /* Function definitions will have the argument names. */
13096 is_this = 1;
13097 else if (name == NULL && iparams == 0)
13098 /* Declarations may not have the names, so like
13099 elsewhere in GDB, assume an artificial first
13100 argument is "this". */
13101 is_this = 1;
13102
13103 if (is_this)
13104 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13105 arg_type, 0);
13106 }
13107
13108 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13109 iparams++;
13110 }
13111 child_die = sibling_die (child_die);
13112 }
13113 }
13114
13115 return ftype;
13116 }
13117
13118 static struct type *
13119 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13120 {
13121 struct objfile *objfile = cu->objfile;
13122 const char *name = NULL;
13123 struct type *this_type, *target_type;
13124
13125 name = dwarf2_full_name (NULL, die, cu);
13126 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13127 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13128 TYPE_NAME (this_type) = name;
13129 set_die_type (die, this_type, cu);
13130 target_type = die_type (die, cu);
13131 if (target_type != this_type)
13132 TYPE_TARGET_TYPE (this_type) = target_type;
13133 else
13134 {
13135 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13136 spec and cause infinite loops in GDB. */
13137 complaint (&symfile_complaints,
13138 _("Self-referential DW_TAG_typedef "
13139 "- DIE at 0x%x [in module %s]"),
13140 die->offset.sect_off, objfile->name);
13141 TYPE_TARGET_TYPE (this_type) = NULL;
13142 }
13143 return this_type;
13144 }
13145
13146 /* Find a representation of a given base type and install
13147 it in the TYPE field of the die. */
13148
13149 static struct type *
13150 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13151 {
13152 struct objfile *objfile = cu->objfile;
13153 struct type *type;
13154 struct attribute *attr;
13155 int encoding = 0, size = 0;
13156 const char *name;
13157 enum type_code code = TYPE_CODE_INT;
13158 int type_flags = 0;
13159 struct type *target_type = NULL;
13160
13161 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13162 if (attr)
13163 {
13164 encoding = DW_UNSND (attr);
13165 }
13166 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13167 if (attr)
13168 {
13169 size = DW_UNSND (attr);
13170 }
13171 name = dwarf2_name (die, cu);
13172 if (!name)
13173 {
13174 complaint (&symfile_complaints,
13175 _("DW_AT_name missing from DW_TAG_base_type"));
13176 }
13177
13178 switch (encoding)
13179 {
13180 case DW_ATE_address:
13181 /* Turn DW_ATE_address into a void * pointer. */
13182 code = TYPE_CODE_PTR;
13183 type_flags |= TYPE_FLAG_UNSIGNED;
13184 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13185 break;
13186 case DW_ATE_boolean:
13187 code = TYPE_CODE_BOOL;
13188 type_flags |= TYPE_FLAG_UNSIGNED;
13189 break;
13190 case DW_ATE_complex_float:
13191 code = TYPE_CODE_COMPLEX;
13192 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13193 break;
13194 case DW_ATE_decimal_float:
13195 code = TYPE_CODE_DECFLOAT;
13196 break;
13197 case DW_ATE_float:
13198 code = TYPE_CODE_FLT;
13199 break;
13200 case DW_ATE_signed:
13201 break;
13202 case DW_ATE_unsigned:
13203 type_flags |= TYPE_FLAG_UNSIGNED;
13204 if (cu->language == language_fortran
13205 && name
13206 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13207 code = TYPE_CODE_CHAR;
13208 break;
13209 case DW_ATE_signed_char:
13210 if (cu->language == language_ada || cu->language == language_m2
13211 || cu->language == language_pascal
13212 || cu->language == language_fortran)
13213 code = TYPE_CODE_CHAR;
13214 break;
13215 case DW_ATE_unsigned_char:
13216 if (cu->language == language_ada || cu->language == language_m2
13217 || cu->language == language_pascal
13218 || cu->language == language_fortran)
13219 code = TYPE_CODE_CHAR;
13220 type_flags |= TYPE_FLAG_UNSIGNED;
13221 break;
13222 case DW_ATE_UTF:
13223 /* We just treat this as an integer and then recognize the
13224 type by name elsewhere. */
13225 break;
13226
13227 default:
13228 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13229 dwarf_type_encoding_name (encoding));
13230 break;
13231 }
13232
13233 type = init_type (code, size, type_flags, NULL, objfile);
13234 TYPE_NAME (type) = name;
13235 TYPE_TARGET_TYPE (type) = target_type;
13236
13237 if (name && strcmp (name, "char") == 0)
13238 TYPE_NOSIGN (type) = 1;
13239
13240 return set_die_type (die, type, cu);
13241 }
13242
13243 /* Read the given DW_AT_subrange DIE. */
13244
13245 static struct type *
13246 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13247 {
13248 struct type *base_type, *orig_base_type;
13249 struct type *range_type;
13250 struct attribute *attr;
13251 LONGEST low, high;
13252 int low_default_is_valid;
13253 const char *name;
13254 LONGEST negative_mask;
13255
13256 orig_base_type = die_type (die, cu);
13257 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13258 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13259 creating the range type, but we use the result of check_typedef
13260 when examining properties of the type. */
13261 base_type = check_typedef (orig_base_type);
13262
13263 /* The die_type call above may have already set the type for this DIE. */
13264 range_type = get_die_type (die, cu);
13265 if (range_type)
13266 return range_type;
13267
13268 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13269 omitting DW_AT_lower_bound. */
13270 switch (cu->language)
13271 {
13272 case language_c:
13273 case language_cplus:
13274 low = 0;
13275 low_default_is_valid = 1;
13276 break;
13277 case language_fortran:
13278 low = 1;
13279 low_default_is_valid = 1;
13280 break;
13281 case language_d:
13282 case language_java:
13283 case language_objc:
13284 low = 0;
13285 low_default_is_valid = (cu->header.version >= 4);
13286 break;
13287 case language_ada:
13288 case language_m2:
13289 case language_pascal:
13290 low = 1;
13291 low_default_is_valid = (cu->header.version >= 4);
13292 break;
13293 default:
13294 low = 0;
13295 low_default_is_valid = 0;
13296 break;
13297 }
13298
13299 /* FIXME: For variable sized arrays either of these could be
13300 a variable rather than a constant value. We'll allow it,
13301 but we don't know how to handle it. */
13302 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13303 if (attr)
13304 low = dwarf2_get_attr_constant_value (attr, low);
13305 else if (!low_default_is_valid)
13306 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13307 "- DIE at 0x%x [in module %s]"),
13308 die->offset.sect_off, cu->objfile->name);
13309
13310 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13311 if (attr)
13312 {
13313 if (attr_form_is_block (attr) || is_ref_attr (attr))
13314 {
13315 /* GCC encodes arrays with unspecified or dynamic length
13316 with a DW_FORM_block1 attribute or a reference attribute.
13317 FIXME: GDB does not yet know how to handle dynamic
13318 arrays properly, treat them as arrays with unspecified
13319 length for now.
13320
13321 FIXME: jimb/2003-09-22: GDB does not really know
13322 how to handle arrays of unspecified length
13323 either; we just represent them as zero-length
13324 arrays. Choose an appropriate upper bound given
13325 the lower bound we've computed above. */
13326 high = low - 1;
13327 }
13328 else
13329 high = dwarf2_get_attr_constant_value (attr, 1);
13330 }
13331 else
13332 {
13333 attr = dwarf2_attr (die, DW_AT_count, cu);
13334 if (attr)
13335 {
13336 int count = dwarf2_get_attr_constant_value (attr, 1);
13337 high = low + count - 1;
13338 }
13339 else
13340 {
13341 /* Unspecified array length. */
13342 high = low - 1;
13343 }
13344 }
13345
13346 /* Dwarf-2 specifications explicitly allows to create subrange types
13347 without specifying a base type.
13348 In that case, the base type must be set to the type of
13349 the lower bound, upper bound or count, in that order, if any of these
13350 three attributes references an object that has a type.
13351 If no base type is found, the Dwarf-2 specifications say that
13352 a signed integer type of size equal to the size of an address should
13353 be used.
13354 For the following C code: `extern char gdb_int [];'
13355 GCC produces an empty range DIE.
13356 FIXME: muller/2010-05-28: Possible references to object for low bound,
13357 high bound or count are not yet handled by this code. */
13358 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13359 {
13360 struct objfile *objfile = cu->objfile;
13361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13362 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13363 struct type *int_type = objfile_type (objfile)->builtin_int;
13364
13365 /* Test "int", "long int", and "long long int" objfile types,
13366 and select the first one having a size above or equal to the
13367 architecture address size. */
13368 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13369 base_type = int_type;
13370 else
13371 {
13372 int_type = objfile_type (objfile)->builtin_long;
13373 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13374 base_type = int_type;
13375 else
13376 {
13377 int_type = objfile_type (objfile)->builtin_long_long;
13378 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13379 base_type = int_type;
13380 }
13381 }
13382 }
13383
13384 negative_mask =
13385 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13386 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13387 low |= negative_mask;
13388 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13389 high |= negative_mask;
13390
13391 range_type = create_range_type (NULL, orig_base_type, low, high);
13392
13393 /* Mark arrays with dynamic length at least as an array of unspecified
13394 length. GDB could check the boundary but before it gets implemented at
13395 least allow accessing the array elements. */
13396 if (attr && attr_form_is_block (attr))
13397 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13398
13399 /* Ada expects an empty array on no boundary attributes. */
13400 if (attr == NULL && cu->language != language_ada)
13401 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13402
13403 name = dwarf2_name (die, cu);
13404 if (name)
13405 TYPE_NAME (range_type) = name;
13406
13407 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13408 if (attr)
13409 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13410
13411 set_die_type (die, range_type, cu);
13412
13413 /* set_die_type should be already done. */
13414 set_descriptive_type (range_type, die, cu);
13415
13416 return range_type;
13417 }
13418
13419 static struct type *
13420 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13421 {
13422 struct type *type;
13423
13424 /* For now, we only support the C meaning of an unspecified type: void. */
13425
13426 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13427 TYPE_NAME (type) = dwarf2_name (die, cu);
13428
13429 return set_die_type (die, type, cu);
13430 }
13431
13432 /* Read a single die and all its descendents. Set the die's sibling
13433 field to NULL; set other fields in the die correctly, and set all
13434 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13435 location of the info_ptr after reading all of those dies. PARENT
13436 is the parent of the die in question. */
13437
13438 static struct die_info *
13439 read_die_and_children (const struct die_reader_specs *reader,
13440 const gdb_byte *info_ptr,
13441 const gdb_byte **new_info_ptr,
13442 struct die_info *parent)
13443 {
13444 struct die_info *die;
13445 const gdb_byte *cur_ptr;
13446 int has_children;
13447
13448 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13449 if (die == NULL)
13450 {
13451 *new_info_ptr = cur_ptr;
13452 return NULL;
13453 }
13454 store_in_ref_table (die, reader->cu);
13455
13456 if (has_children)
13457 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13458 else
13459 {
13460 die->child = NULL;
13461 *new_info_ptr = cur_ptr;
13462 }
13463
13464 die->sibling = NULL;
13465 die->parent = parent;
13466 return die;
13467 }
13468
13469 /* Read a die, all of its descendents, and all of its siblings; set
13470 all of the fields of all of the dies correctly. Arguments are as
13471 in read_die_and_children. */
13472
13473 static struct die_info *
13474 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13475 const gdb_byte *info_ptr,
13476 const gdb_byte **new_info_ptr,
13477 struct die_info *parent)
13478 {
13479 struct die_info *first_die, *last_sibling;
13480 const gdb_byte *cur_ptr;
13481
13482 cur_ptr = info_ptr;
13483 first_die = last_sibling = NULL;
13484
13485 while (1)
13486 {
13487 struct die_info *die
13488 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13489
13490 if (die == NULL)
13491 {
13492 *new_info_ptr = cur_ptr;
13493 return first_die;
13494 }
13495
13496 if (!first_die)
13497 first_die = die;
13498 else
13499 last_sibling->sibling = die;
13500
13501 last_sibling = die;
13502 }
13503 }
13504
13505 /* Read a die, all of its descendents, and all of its siblings; set
13506 all of the fields of all of the dies correctly. Arguments are as
13507 in read_die_and_children.
13508 This the main entry point for reading a DIE and all its children. */
13509
13510 static struct die_info *
13511 read_die_and_siblings (const struct die_reader_specs *reader,
13512 const gdb_byte *info_ptr,
13513 const gdb_byte **new_info_ptr,
13514 struct die_info *parent)
13515 {
13516 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13517 new_info_ptr, parent);
13518
13519 if (dwarf2_die_debug)
13520 {
13521 fprintf_unfiltered (gdb_stdlog,
13522 "Read die from %s@0x%x of %s:\n",
13523 bfd_section_name (reader->abfd,
13524 reader->die_section->asection),
13525 (unsigned) (info_ptr - reader->die_section->buffer),
13526 bfd_get_filename (reader->abfd));
13527 dump_die (die, dwarf2_die_debug);
13528 }
13529
13530 return die;
13531 }
13532
13533 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13534 attributes.
13535 The caller is responsible for filling in the extra attributes
13536 and updating (*DIEP)->num_attrs.
13537 Set DIEP to point to a newly allocated die with its information,
13538 except for its child, sibling, and parent fields.
13539 Set HAS_CHILDREN to tell whether the die has children or not. */
13540
13541 static const gdb_byte *
13542 read_full_die_1 (const struct die_reader_specs *reader,
13543 struct die_info **diep, const gdb_byte *info_ptr,
13544 int *has_children, int num_extra_attrs)
13545 {
13546 unsigned int abbrev_number, bytes_read, i;
13547 sect_offset offset;
13548 struct abbrev_info *abbrev;
13549 struct die_info *die;
13550 struct dwarf2_cu *cu = reader->cu;
13551 bfd *abfd = reader->abfd;
13552
13553 offset.sect_off = info_ptr - reader->buffer;
13554 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13555 info_ptr += bytes_read;
13556 if (!abbrev_number)
13557 {
13558 *diep = NULL;
13559 *has_children = 0;
13560 return info_ptr;
13561 }
13562
13563 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13564 if (!abbrev)
13565 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13566 abbrev_number,
13567 bfd_get_filename (abfd));
13568
13569 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13570 die->offset = offset;
13571 die->tag = abbrev->tag;
13572 die->abbrev = abbrev_number;
13573
13574 /* Make the result usable.
13575 The caller needs to update num_attrs after adding the extra
13576 attributes. */
13577 die->num_attrs = abbrev->num_attrs;
13578
13579 for (i = 0; i < abbrev->num_attrs; ++i)
13580 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13581 info_ptr);
13582
13583 *diep = die;
13584 *has_children = abbrev->has_children;
13585 return info_ptr;
13586 }
13587
13588 /* Read a die and all its attributes.
13589 Set DIEP to point to a newly allocated die with its information,
13590 except for its child, sibling, and parent fields.
13591 Set HAS_CHILDREN to tell whether the die has children or not. */
13592
13593 static const gdb_byte *
13594 read_full_die (const struct die_reader_specs *reader,
13595 struct die_info **diep, const gdb_byte *info_ptr,
13596 int *has_children)
13597 {
13598 const gdb_byte *result;
13599
13600 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13601
13602 if (dwarf2_die_debug)
13603 {
13604 fprintf_unfiltered (gdb_stdlog,
13605 "Read die from %s@0x%x of %s:\n",
13606 bfd_section_name (reader->abfd,
13607 reader->die_section->asection),
13608 (unsigned) (info_ptr - reader->die_section->buffer),
13609 bfd_get_filename (reader->abfd));
13610 dump_die (*diep, dwarf2_die_debug);
13611 }
13612
13613 return result;
13614 }
13615 \f
13616 /* Abbreviation tables.
13617
13618 In DWARF version 2, the description of the debugging information is
13619 stored in a separate .debug_abbrev section. Before we read any
13620 dies from a section we read in all abbreviations and install them
13621 in a hash table. */
13622
13623 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13624
13625 static struct abbrev_info *
13626 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13627 {
13628 struct abbrev_info *abbrev;
13629
13630 abbrev = (struct abbrev_info *)
13631 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13632 memset (abbrev, 0, sizeof (struct abbrev_info));
13633 return abbrev;
13634 }
13635
13636 /* Add an abbreviation to the table. */
13637
13638 static void
13639 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13640 unsigned int abbrev_number,
13641 struct abbrev_info *abbrev)
13642 {
13643 unsigned int hash_number;
13644
13645 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13646 abbrev->next = abbrev_table->abbrevs[hash_number];
13647 abbrev_table->abbrevs[hash_number] = abbrev;
13648 }
13649
13650 /* Look up an abbrev in the table.
13651 Returns NULL if the abbrev is not found. */
13652
13653 static struct abbrev_info *
13654 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13655 unsigned int abbrev_number)
13656 {
13657 unsigned int hash_number;
13658 struct abbrev_info *abbrev;
13659
13660 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13661 abbrev = abbrev_table->abbrevs[hash_number];
13662
13663 while (abbrev)
13664 {
13665 if (abbrev->number == abbrev_number)
13666 return abbrev;
13667 abbrev = abbrev->next;
13668 }
13669 return NULL;
13670 }
13671
13672 /* Read in an abbrev table. */
13673
13674 static struct abbrev_table *
13675 abbrev_table_read_table (struct dwarf2_section_info *section,
13676 sect_offset offset)
13677 {
13678 struct objfile *objfile = dwarf2_per_objfile->objfile;
13679 bfd *abfd = section->asection->owner;
13680 struct abbrev_table *abbrev_table;
13681 const gdb_byte *abbrev_ptr;
13682 struct abbrev_info *cur_abbrev;
13683 unsigned int abbrev_number, bytes_read, abbrev_name;
13684 unsigned int abbrev_form;
13685 struct attr_abbrev *cur_attrs;
13686 unsigned int allocated_attrs;
13687
13688 abbrev_table = XMALLOC (struct abbrev_table);
13689 abbrev_table->offset = offset;
13690 obstack_init (&abbrev_table->abbrev_obstack);
13691 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13692 (ABBREV_HASH_SIZE
13693 * sizeof (struct abbrev_info *)));
13694 memset (abbrev_table->abbrevs, 0,
13695 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13696
13697 dwarf2_read_section (objfile, section);
13698 abbrev_ptr = section->buffer + offset.sect_off;
13699 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13700 abbrev_ptr += bytes_read;
13701
13702 allocated_attrs = ATTR_ALLOC_CHUNK;
13703 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13704
13705 /* Loop until we reach an abbrev number of 0. */
13706 while (abbrev_number)
13707 {
13708 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13709
13710 /* read in abbrev header */
13711 cur_abbrev->number = abbrev_number;
13712 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13713 abbrev_ptr += bytes_read;
13714 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13715 abbrev_ptr += 1;
13716
13717 /* now read in declarations */
13718 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13719 abbrev_ptr += bytes_read;
13720 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13721 abbrev_ptr += bytes_read;
13722 while (abbrev_name)
13723 {
13724 if (cur_abbrev->num_attrs == allocated_attrs)
13725 {
13726 allocated_attrs += ATTR_ALLOC_CHUNK;
13727 cur_attrs
13728 = xrealloc (cur_attrs, (allocated_attrs
13729 * sizeof (struct attr_abbrev)));
13730 }
13731
13732 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13733 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13734 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13735 abbrev_ptr += bytes_read;
13736 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13737 abbrev_ptr += bytes_read;
13738 }
13739
13740 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13741 (cur_abbrev->num_attrs
13742 * sizeof (struct attr_abbrev)));
13743 memcpy (cur_abbrev->attrs, cur_attrs,
13744 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13745
13746 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13747
13748 /* Get next abbreviation.
13749 Under Irix6 the abbreviations for a compilation unit are not
13750 always properly terminated with an abbrev number of 0.
13751 Exit loop if we encounter an abbreviation which we have
13752 already read (which means we are about to read the abbreviations
13753 for the next compile unit) or if the end of the abbreviation
13754 table is reached. */
13755 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13756 break;
13757 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13758 abbrev_ptr += bytes_read;
13759 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13760 break;
13761 }
13762
13763 xfree (cur_attrs);
13764 return abbrev_table;
13765 }
13766
13767 /* Free the resources held by ABBREV_TABLE. */
13768
13769 static void
13770 abbrev_table_free (struct abbrev_table *abbrev_table)
13771 {
13772 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13773 xfree (abbrev_table);
13774 }
13775
13776 /* Same as abbrev_table_free but as a cleanup.
13777 We pass in a pointer to the pointer to the table so that we can
13778 set the pointer to NULL when we're done. It also simplifies
13779 build_type_unit_groups. */
13780
13781 static void
13782 abbrev_table_free_cleanup (void *table_ptr)
13783 {
13784 struct abbrev_table **abbrev_table_ptr = table_ptr;
13785
13786 if (*abbrev_table_ptr != NULL)
13787 abbrev_table_free (*abbrev_table_ptr);
13788 *abbrev_table_ptr = NULL;
13789 }
13790
13791 /* Read the abbrev table for CU from ABBREV_SECTION. */
13792
13793 static void
13794 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13795 struct dwarf2_section_info *abbrev_section)
13796 {
13797 cu->abbrev_table =
13798 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13799 }
13800
13801 /* Release the memory used by the abbrev table for a compilation unit. */
13802
13803 static void
13804 dwarf2_free_abbrev_table (void *ptr_to_cu)
13805 {
13806 struct dwarf2_cu *cu = ptr_to_cu;
13807
13808 if (cu->abbrev_table != NULL)
13809 abbrev_table_free (cu->abbrev_table);
13810 /* Set this to NULL so that we SEGV if we try to read it later,
13811 and also because free_comp_unit verifies this is NULL. */
13812 cu->abbrev_table = NULL;
13813 }
13814 \f
13815 /* Returns nonzero if TAG represents a type that we might generate a partial
13816 symbol for. */
13817
13818 static int
13819 is_type_tag_for_partial (int tag)
13820 {
13821 switch (tag)
13822 {
13823 #if 0
13824 /* Some types that would be reasonable to generate partial symbols for,
13825 that we don't at present. */
13826 case DW_TAG_array_type:
13827 case DW_TAG_file_type:
13828 case DW_TAG_ptr_to_member_type:
13829 case DW_TAG_set_type:
13830 case DW_TAG_string_type:
13831 case DW_TAG_subroutine_type:
13832 #endif
13833 case DW_TAG_base_type:
13834 case DW_TAG_class_type:
13835 case DW_TAG_interface_type:
13836 case DW_TAG_enumeration_type:
13837 case DW_TAG_structure_type:
13838 case DW_TAG_subrange_type:
13839 case DW_TAG_typedef:
13840 case DW_TAG_union_type:
13841 return 1;
13842 default:
13843 return 0;
13844 }
13845 }
13846
13847 /* Load all DIEs that are interesting for partial symbols into memory. */
13848
13849 static struct partial_die_info *
13850 load_partial_dies (const struct die_reader_specs *reader,
13851 const gdb_byte *info_ptr, int building_psymtab)
13852 {
13853 struct dwarf2_cu *cu = reader->cu;
13854 struct objfile *objfile = cu->objfile;
13855 struct partial_die_info *part_die;
13856 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13857 struct abbrev_info *abbrev;
13858 unsigned int bytes_read;
13859 unsigned int load_all = 0;
13860 int nesting_level = 1;
13861
13862 parent_die = NULL;
13863 last_die = NULL;
13864
13865 gdb_assert (cu->per_cu != NULL);
13866 if (cu->per_cu->load_all_dies)
13867 load_all = 1;
13868
13869 cu->partial_dies
13870 = htab_create_alloc_ex (cu->header.length / 12,
13871 partial_die_hash,
13872 partial_die_eq,
13873 NULL,
13874 &cu->comp_unit_obstack,
13875 hashtab_obstack_allocate,
13876 dummy_obstack_deallocate);
13877
13878 part_die = obstack_alloc (&cu->comp_unit_obstack,
13879 sizeof (struct partial_die_info));
13880
13881 while (1)
13882 {
13883 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13884
13885 /* A NULL abbrev means the end of a series of children. */
13886 if (abbrev == NULL)
13887 {
13888 if (--nesting_level == 0)
13889 {
13890 /* PART_DIE was probably the last thing allocated on the
13891 comp_unit_obstack, so we could call obstack_free
13892 here. We don't do that because the waste is small,
13893 and will be cleaned up when we're done with this
13894 compilation unit. This way, we're also more robust
13895 against other users of the comp_unit_obstack. */
13896 return first_die;
13897 }
13898 info_ptr += bytes_read;
13899 last_die = parent_die;
13900 parent_die = parent_die->die_parent;
13901 continue;
13902 }
13903
13904 /* Check for template arguments. We never save these; if
13905 they're seen, we just mark the parent, and go on our way. */
13906 if (parent_die != NULL
13907 && cu->language == language_cplus
13908 && (abbrev->tag == DW_TAG_template_type_param
13909 || abbrev->tag == DW_TAG_template_value_param))
13910 {
13911 parent_die->has_template_arguments = 1;
13912
13913 if (!load_all)
13914 {
13915 /* We don't need a partial DIE for the template argument. */
13916 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13917 continue;
13918 }
13919 }
13920
13921 /* We only recurse into c++ subprograms looking for template arguments.
13922 Skip their other children. */
13923 if (!load_all
13924 && cu->language == language_cplus
13925 && parent_die != NULL
13926 && parent_die->tag == DW_TAG_subprogram)
13927 {
13928 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13929 continue;
13930 }
13931
13932 /* Check whether this DIE is interesting enough to save. Normally
13933 we would not be interested in members here, but there may be
13934 later variables referencing them via DW_AT_specification (for
13935 static members). */
13936 if (!load_all
13937 && !is_type_tag_for_partial (abbrev->tag)
13938 && abbrev->tag != DW_TAG_constant
13939 && abbrev->tag != DW_TAG_enumerator
13940 && abbrev->tag != DW_TAG_subprogram
13941 && abbrev->tag != DW_TAG_lexical_block
13942 && abbrev->tag != DW_TAG_variable
13943 && abbrev->tag != DW_TAG_namespace
13944 && abbrev->tag != DW_TAG_module
13945 && abbrev->tag != DW_TAG_member
13946 && abbrev->tag != DW_TAG_imported_unit)
13947 {
13948 /* Otherwise we skip to the next sibling, if any. */
13949 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13950 continue;
13951 }
13952
13953 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13954 info_ptr);
13955
13956 /* This two-pass algorithm for processing partial symbols has a
13957 high cost in cache pressure. Thus, handle some simple cases
13958 here which cover the majority of C partial symbols. DIEs
13959 which neither have specification tags in them, nor could have
13960 specification tags elsewhere pointing at them, can simply be
13961 processed and discarded.
13962
13963 This segment is also optional; scan_partial_symbols and
13964 add_partial_symbol will handle these DIEs if we chain
13965 them in normally. When compilers which do not emit large
13966 quantities of duplicate debug information are more common,
13967 this code can probably be removed. */
13968
13969 /* Any complete simple types at the top level (pretty much all
13970 of them, for a language without namespaces), can be processed
13971 directly. */
13972 if (parent_die == NULL
13973 && part_die->has_specification == 0
13974 && part_die->is_declaration == 0
13975 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13976 || part_die->tag == DW_TAG_base_type
13977 || part_die->tag == DW_TAG_subrange_type))
13978 {
13979 if (building_psymtab && part_die->name != NULL)
13980 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13981 VAR_DOMAIN, LOC_TYPEDEF,
13982 &objfile->static_psymbols,
13983 0, (CORE_ADDR) 0, cu->language, objfile);
13984 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13985 continue;
13986 }
13987
13988 /* The exception for DW_TAG_typedef with has_children above is
13989 a workaround of GCC PR debug/47510. In the case of this complaint
13990 type_name_no_tag_or_error will error on such types later.
13991
13992 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13993 it could not find the child DIEs referenced later, this is checked
13994 above. In correct DWARF DW_TAG_typedef should have no children. */
13995
13996 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13997 complaint (&symfile_complaints,
13998 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13999 "- DIE at 0x%x [in module %s]"),
14000 part_die->offset.sect_off, objfile->name);
14001
14002 /* If we're at the second level, and we're an enumerator, and
14003 our parent has no specification (meaning possibly lives in a
14004 namespace elsewhere), then we can add the partial symbol now
14005 instead of queueing it. */
14006 if (part_die->tag == DW_TAG_enumerator
14007 && parent_die != NULL
14008 && parent_die->die_parent == NULL
14009 && parent_die->tag == DW_TAG_enumeration_type
14010 && parent_die->has_specification == 0)
14011 {
14012 if (part_die->name == NULL)
14013 complaint (&symfile_complaints,
14014 _("malformed enumerator DIE ignored"));
14015 else if (building_psymtab)
14016 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14017 VAR_DOMAIN, LOC_CONST,
14018 (cu->language == language_cplus
14019 || cu->language == language_java)
14020 ? &objfile->global_psymbols
14021 : &objfile->static_psymbols,
14022 0, (CORE_ADDR) 0, cu->language, objfile);
14023
14024 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14025 continue;
14026 }
14027
14028 /* We'll save this DIE so link it in. */
14029 part_die->die_parent = parent_die;
14030 part_die->die_sibling = NULL;
14031 part_die->die_child = NULL;
14032
14033 if (last_die && last_die == parent_die)
14034 last_die->die_child = part_die;
14035 else if (last_die)
14036 last_die->die_sibling = part_die;
14037
14038 last_die = part_die;
14039
14040 if (first_die == NULL)
14041 first_die = part_die;
14042
14043 /* Maybe add the DIE to the hash table. Not all DIEs that we
14044 find interesting need to be in the hash table, because we
14045 also have the parent/sibling/child chains; only those that we
14046 might refer to by offset later during partial symbol reading.
14047
14048 For now this means things that might have be the target of a
14049 DW_AT_specification, DW_AT_abstract_origin, or
14050 DW_AT_extension. DW_AT_extension will refer only to
14051 namespaces; DW_AT_abstract_origin refers to functions (and
14052 many things under the function DIE, but we do not recurse
14053 into function DIEs during partial symbol reading) and
14054 possibly variables as well; DW_AT_specification refers to
14055 declarations. Declarations ought to have the DW_AT_declaration
14056 flag. It happens that GCC forgets to put it in sometimes, but
14057 only for functions, not for types.
14058
14059 Adding more things than necessary to the hash table is harmless
14060 except for the performance cost. Adding too few will result in
14061 wasted time in find_partial_die, when we reread the compilation
14062 unit with load_all_dies set. */
14063
14064 if (load_all
14065 || abbrev->tag == DW_TAG_constant
14066 || abbrev->tag == DW_TAG_subprogram
14067 || abbrev->tag == DW_TAG_variable
14068 || abbrev->tag == DW_TAG_namespace
14069 || part_die->is_declaration)
14070 {
14071 void **slot;
14072
14073 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14074 part_die->offset.sect_off, INSERT);
14075 *slot = part_die;
14076 }
14077
14078 part_die = obstack_alloc (&cu->comp_unit_obstack,
14079 sizeof (struct partial_die_info));
14080
14081 /* For some DIEs we want to follow their children (if any). For C
14082 we have no reason to follow the children of structures; for other
14083 languages we have to, so that we can get at method physnames
14084 to infer fully qualified class names, for DW_AT_specification,
14085 and for C++ template arguments. For C++, we also look one level
14086 inside functions to find template arguments (if the name of the
14087 function does not already contain the template arguments).
14088
14089 For Ada, we need to scan the children of subprograms and lexical
14090 blocks as well because Ada allows the definition of nested
14091 entities that could be interesting for the debugger, such as
14092 nested subprograms for instance. */
14093 if (last_die->has_children
14094 && (load_all
14095 || last_die->tag == DW_TAG_namespace
14096 || last_die->tag == DW_TAG_module
14097 || last_die->tag == DW_TAG_enumeration_type
14098 || (cu->language == language_cplus
14099 && last_die->tag == DW_TAG_subprogram
14100 && (last_die->name == NULL
14101 || strchr (last_die->name, '<') == NULL))
14102 || (cu->language != language_c
14103 && (last_die->tag == DW_TAG_class_type
14104 || last_die->tag == DW_TAG_interface_type
14105 || last_die->tag == DW_TAG_structure_type
14106 || last_die->tag == DW_TAG_union_type))
14107 || (cu->language == language_ada
14108 && (last_die->tag == DW_TAG_subprogram
14109 || last_die->tag == DW_TAG_lexical_block))))
14110 {
14111 nesting_level++;
14112 parent_die = last_die;
14113 continue;
14114 }
14115
14116 /* Otherwise we skip to the next sibling, if any. */
14117 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14118
14119 /* Back to the top, do it again. */
14120 }
14121 }
14122
14123 /* Read a minimal amount of information into the minimal die structure. */
14124
14125 static const gdb_byte *
14126 read_partial_die (const struct die_reader_specs *reader,
14127 struct partial_die_info *part_die,
14128 struct abbrev_info *abbrev, unsigned int abbrev_len,
14129 const gdb_byte *info_ptr)
14130 {
14131 struct dwarf2_cu *cu = reader->cu;
14132 struct objfile *objfile = cu->objfile;
14133 const gdb_byte *buffer = reader->buffer;
14134 unsigned int i;
14135 struct attribute attr;
14136 int has_low_pc_attr = 0;
14137 int has_high_pc_attr = 0;
14138 int high_pc_relative = 0;
14139
14140 memset (part_die, 0, sizeof (struct partial_die_info));
14141
14142 part_die->offset.sect_off = info_ptr - buffer;
14143
14144 info_ptr += abbrev_len;
14145
14146 if (abbrev == NULL)
14147 return info_ptr;
14148
14149 part_die->tag = abbrev->tag;
14150 part_die->has_children = abbrev->has_children;
14151
14152 for (i = 0; i < abbrev->num_attrs; ++i)
14153 {
14154 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14155
14156 /* Store the data if it is of an attribute we want to keep in a
14157 partial symbol table. */
14158 switch (attr.name)
14159 {
14160 case DW_AT_name:
14161 switch (part_die->tag)
14162 {
14163 case DW_TAG_compile_unit:
14164 case DW_TAG_partial_unit:
14165 case DW_TAG_type_unit:
14166 /* Compilation units have a DW_AT_name that is a filename, not
14167 a source language identifier. */
14168 case DW_TAG_enumeration_type:
14169 case DW_TAG_enumerator:
14170 /* These tags always have simple identifiers already; no need
14171 to canonicalize them. */
14172 part_die->name = DW_STRING (&attr);
14173 break;
14174 default:
14175 part_die->name
14176 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14177 &objfile->objfile_obstack);
14178 break;
14179 }
14180 break;
14181 case DW_AT_linkage_name:
14182 case DW_AT_MIPS_linkage_name:
14183 /* Note that both forms of linkage name might appear. We
14184 assume they will be the same, and we only store the last
14185 one we see. */
14186 if (cu->language == language_ada)
14187 part_die->name = DW_STRING (&attr);
14188 part_die->linkage_name = DW_STRING (&attr);
14189 break;
14190 case DW_AT_low_pc:
14191 has_low_pc_attr = 1;
14192 part_die->lowpc = DW_ADDR (&attr);
14193 break;
14194 case DW_AT_high_pc:
14195 has_high_pc_attr = 1;
14196 if (attr.form == DW_FORM_addr
14197 || attr.form == DW_FORM_GNU_addr_index)
14198 part_die->highpc = DW_ADDR (&attr);
14199 else
14200 {
14201 high_pc_relative = 1;
14202 part_die->highpc = DW_UNSND (&attr);
14203 }
14204 break;
14205 case DW_AT_location:
14206 /* Support the .debug_loc offsets. */
14207 if (attr_form_is_block (&attr))
14208 {
14209 part_die->d.locdesc = DW_BLOCK (&attr);
14210 }
14211 else if (attr_form_is_section_offset (&attr))
14212 {
14213 dwarf2_complex_location_expr_complaint ();
14214 }
14215 else
14216 {
14217 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14218 "partial symbol information");
14219 }
14220 break;
14221 case DW_AT_external:
14222 part_die->is_external = DW_UNSND (&attr);
14223 break;
14224 case DW_AT_declaration:
14225 part_die->is_declaration = DW_UNSND (&attr);
14226 break;
14227 case DW_AT_type:
14228 part_die->has_type = 1;
14229 break;
14230 case DW_AT_abstract_origin:
14231 case DW_AT_specification:
14232 case DW_AT_extension:
14233 part_die->has_specification = 1;
14234 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14235 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14236 || cu->per_cu->is_dwz);
14237 break;
14238 case DW_AT_sibling:
14239 /* Ignore absolute siblings, they might point outside of
14240 the current compile unit. */
14241 if (attr.form == DW_FORM_ref_addr)
14242 complaint (&symfile_complaints,
14243 _("ignoring absolute DW_AT_sibling"));
14244 else
14245 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14246 break;
14247 case DW_AT_byte_size:
14248 part_die->has_byte_size = 1;
14249 break;
14250 case DW_AT_calling_convention:
14251 /* DWARF doesn't provide a way to identify a program's source-level
14252 entry point. DW_AT_calling_convention attributes are only meant
14253 to describe functions' calling conventions.
14254
14255 However, because it's a necessary piece of information in
14256 Fortran, and because DW_CC_program is the only piece of debugging
14257 information whose definition refers to a 'main program' at all,
14258 several compilers have begun marking Fortran main programs with
14259 DW_CC_program --- even when those functions use the standard
14260 calling conventions.
14261
14262 So until DWARF specifies a way to provide this information and
14263 compilers pick up the new representation, we'll support this
14264 practice. */
14265 if (DW_UNSND (&attr) == DW_CC_program
14266 && cu->language == language_fortran)
14267 {
14268 set_main_name (part_die->name);
14269
14270 /* As this DIE has a static linkage the name would be difficult
14271 to look up later. */
14272 language_of_main = language_fortran;
14273 }
14274 break;
14275 case DW_AT_inline:
14276 if (DW_UNSND (&attr) == DW_INL_inlined
14277 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14278 part_die->may_be_inlined = 1;
14279 break;
14280
14281 case DW_AT_import:
14282 if (part_die->tag == DW_TAG_imported_unit)
14283 {
14284 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14285 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14286 || cu->per_cu->is_dwz);
14287 }
14288 break;
14289
14290 default:
14291 break;
14292 }
14293 }
14294
14295 if (high_pc_relative)
14296 part_die->highpc += part_die->lowpc;
14297
14298 if (has_low_pc_attr && has_high_pc_attr)
14299 {
14300 /* When using the GNU linker, .gnu.linkonce. sections are used to
14301 eliminate duplicate copies of functions and vtables and such.
14302 The linker will arbitrarily choose one and discard the others.
14303 The AT_*_pc values for such functions refer to local labels in
14304 these sections. If the section from that file was discarded, the
14305 labels are not in the output, so the relocs get a value of 0.
14306 If this is a discarded function, mark the pc bounds as invalid,
14307 so that GDB will ignore it. */
14308 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14309 {
14310 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14311
14312 complaint (&symfile_complaints,
14313 _("DW_AT_low_pc %s is zero "
14314 "for DIE at 0x%x [in module %s]"),
14315 paddress (gdbarch, part_die->lowpc),
14316 part_die->offset.sect_off, objfile->name);
14317 }
14318 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14319 else if (part_die->lowpc >= part_die->highpc)
14320 {
14321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14322
14323 complaint (&symfile_complaints,
14324 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14325 "for DIE at 0x%x [in module %s]"),
14326 paddress (gdbarch, part_die->lowpc),
14327 paddress (gdbarch, part_die->highpc),
14328 part_die->offset.sect_off, objfile->name);
14329 }
14330 else
14331 part_die->has_pc_info = 1;
14332 }
14333
14334 return info_ptr;
14335 }
14336
14337 /* Find a cached partial DIE at OFFSET in CU. */
14338
14339 static struct partial_die_info *
14340 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14341 {
14342 struct partial_die_info *lookup_die = NULL;
14343 struct partial_die_info part_die;
14344
14345 part_die.offset = offset;
14346 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14347 offset.sect_off);
14348
14349 return lookup_die;
14350 }
14351
14352 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14353 except in the case of .debug_types DIEs which do not reference
14354 outside their CU (they do however referencing other types via
14355 DW_FORM_ref_sig8). */
14356
14357 static struct partial_die_info *
14358 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14359 {
14360 struct objfile *objfile = cu->objfile;
14361 struct dwarf2_per_cu_data *per_cu = NULL;
14362 struct partial_die_info *pd = NULL;
14363
14364 if (offset_in_dwz == cu->per_cu->is_dwz
14365 && offset_in_cu_p (&cu->header, offset))
14366 {
14367 pd = find_partial_die_in_comp_unit (offset, cu);
14368 if (pd != NULL)
14369 return pd;
14370 /* We missed recording what we needed.
14371 Load all dies and try again. */
14372 per_cu = cu->per_cu;
14373 }
14374 else
14375 {
14376 /* TUs don't reference other CUs/TUs (except via type signatures). */
14377 if (cu->per_cu->is_debug_types)
14378 {
14379 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14380 " external reference to offset 0x%lx [in module %s].\n"),
14381 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14382 bfd_get_filename (objfile->obfd));
14383 }
14384 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14385 objfile);
14386
14387 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14388 load_partial_comp_unit (per_cu);
14389
14390 per_cu->cu->last_used = 0;
14391 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14392 }
14393
14394 /* If we didn't find it, and not all dies have been loaded,
14395 load them all and try again. */
14396
14397 if (pd == NULL && per_cu->load_all_dies == 0)
14398 {
14399 per_cu->load_all_dies = 1;
14400
14401 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14402 THIS_CU->cu may already be in use. So we can't just free it and
14403 replace its DIEs with the ones we read in. Instead, we leave those
14404 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14405 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14406 set. */
14407 load_partial_comp_unit (per_cu);
14408
14409 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14410 }
14411
14412 if (pd == NULL)
14413 internal_error (__FILE__, __LINE__,
14414 _("could not find partial DIE 0x%x "
14415 "in cache [from module %s]\n"),
14416 offset.sect_off, bfd_get_filename (objfile->obfd));
14417 return pd;
14418 }
14419
14420 /* See if we can figure out if the class lives in a namespace. We do
14421 this by looking for a member function; its demangled name will
14422 contain namespace info, if there is any. */
14423
14424 static void
14425 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14426 struct dwarf2_cu *cu)
14427 {
14428 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14429 what template types look like, because the demangler
14430 frequently doesn't give the same name as the debug info. We
14431 could fix this by only using the demangled name to get the
14432 prefix (but see comment in read_structure_type). */
14433
14434 struct partial_die_info *real_pdi;
14435 struct partial_die_info *child_pdi;
14436
14437 /* If this DIE (this DIE's specification, if any) has a parent, then
14438 we should not do this. We'll prepend the parent's fully qualified
14439 name when we create the partial symbol. */
14440
14441 real_pdi = struct_pdi;
14442 while (real_pdi->has_specification)
14443 real_pdi = find_partial_die (real_pdi->spec_offset,
14444 real_pdi->spec_is_dwz, cu);
14445
14446 if (real_pdi->die_parent != NULL)
14447 return;
14448
14449 for (child_pdi = struct_pdi->die_child;
14450 child_pdi != NULL;
14451 child_pdi = child_pdi->die_sibling)
14452 {
14453 if (child_pdi->tag == DW_TAG_subprogram
14454 && child_pdi->linkage_name != NULL)
14455 {
14456 char *actual_class_name
14457 = language_class_name_from_physname (cu->language_defn,
14458 child_pdi->linkage_name);
14459 if (actual_class_name != NULL)
14460 {
14461 struct_pdi->name
14462 = obstack_copy0 (&cu->objfile->objfile_obstack,
14463 actual_class_name,
14464 strlen (actual_class_name));
14465 xfree (actual_class_name);
14466 }
14467 break;
14468 }
14469 }
14470 }
14471
14472 /* Adjust PART_DIE before generating a symbol for it. This function
14473 may set the is_external flag or change the DIE's name. */
14474
14475 static void
14476 fixup_partial_die (struct partial_die_info *part_die,
14477 struct dwarf2_cu *cu)
14478 {
14479 /* Once we've fixed up a die, there's no point in doing so again.
14480 This also avoids a memory leak if we were to call
14481 guess_partial_die_structure_name multiple times. */
14482 if (part_die->fixup_called)
14483 return;
14484
14485 /* If we found a reference attribute and the DIE has no name, try
14486 to find a name in the referred to DIE. */
14487
14488 if (part_die->name == NULL && part_die->has_specification)
14489 {
14490 struct partial_die_info *spec_die;
14491
14492 spec_die = find_partial_die (part_die->spec_offset,
14493 part_die->spec_is_dwz, cu);
14494
14495 fixup_partial_die (spec_die, cu);
14496
14497 if (spec_die->name)
14498 {
14499 part_die->name = spec_die->name;
14500
14501 /* Copy DW_AT_external attribute if it is set. */
14502 if (spec_die->is_external)
14503 part_die->is_external = spec_die->is_external;
14504 }
14505 }
14506
14507 /* Set default names for some unnamed DIEs. */
14508
14509 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14510 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14511
14512 /* If there is no parent die to provide a namespace, and there are
14513 children, see if we can determine the namespace from their linkage
14514 name. */
14515 if (cu->language == language_cplus
14516 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14517 && part_die->die_parent == NULL
14518 && part_die->has_children
14519 && (part_die->tag == DW_TAG_class_type
14520 || part_die->tag == DW_TAG_structure_type
14521 || part_die->tag == DW_TAG_union_type))
14522 guess_partial_die_structure_name (part_die, cu);
14523
14524 /* GCC might emit a nameless struct or union that has a linkage
14525 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14526 if (part_die->name == NULL
14527 && (part_die->tag == DW_TAG_class_type
14528 || part_die->tag == DW_TAG_interface_type
14529 || part_die->tag == DW_TAG_structure_type
14530 || part_die->tag == DW_TAG_union_type)
14531 && part_die->linkage_name != NULL)
14532 {
14533 char *demangled;
14534
14535 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14536 if (demangled)
14537 {
14538 const char *base;
14539
14540 /* Strip any leading namespaces/classes, keep only the base name.
14541 DW_AT_name for named DIEs does not contain the prefixes. */
14542 base = strrchr (demangled, ':');
14543 if (base && base > demangled && base[-1] == ':')
14544 base++;
14545 else
14546 base = demangled;
14547
14548 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14549 base, strlen (base));
14550 xfree (demangled);
14551 }
14552 }
14553
14554 part_die->fixup_called = 1;
14555 }
14556
14557 /* Read an attribute value described by an attribute form. */
14558
14559 static const gdb_byte *
14560 read_attribute_value (const struct die_reader_specs *reader,
14561 struct attribute *attr, unsigned form,
14562 const gdb_byte *info_ptr)
14563 {
14564 struct dwarf2_cu *cu = reader->cu;
14565 bfd *abfd = reader->abfd;
14566 struct comp_unit_head *cu_header = &cu->header;
14567 unsigned int bytes_read;
14568 struct dwarf_block *blk;
14569
14570 attr->form = form;
14571 switch (form)
14572 {
14573 case DW_FORM_ref_addr:
14574 if (cu->header.version == 2)
14575 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14576 else
14577 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14578 &cu->header, &bytes_read);
14579 info_ptr += bytes_read;
14580 break;
14581 case DW_FORM_GNU_ref_alt:
14582 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14583 info_ptr += bytes_read;
14584 break;
14585 case DW_FORM_addr:
14586 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14587 info_ptr += bytes_read;
14588 break;
14589 case DW_FORM_block2:
14590 blk = dwarf_alloc_block (cu);
14591 blk->size = read_2_bytes (abfd, info_ptr);
14592 info_ptr += 2;
14593 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14594 info_ptr += blk->size;
14595 DW_BLOCK (attr) = blk;
14596 break;
14597 case DW_FORM_block4:
14598 blk = dwarf_alloc_block (cu);
14599 blk->size = read_4_bytes (abfd, info_ptr);
14600 info_ptr += 4;
14601 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14602 info_ptr += blk->size;
14603 DW_BLOCK (attr) = blk;
14604 break;
14605 case DW_FORM_data2:
14606 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14607 info_ptr += 2;
14608 break;
14609 case DW_FORM_data4:
14610 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14611 info_ptr += 4;
14612 break;
14613 case DW_FORM_data8:
14614 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14615 info_ptr += 8;
14616 break;
14617 case DW_FORM_sec_offset:
14618 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14619 info_ptr += bytes_read;
14620 break;
14621 case DW_FORM_string:
14622 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14623 DW_STRING_IS_CANONICAL (attr) = 0;
14624 info_ptr += bytes_read;
14625 break;
14626 case DW_FORM_strp:
14627 if (!cu->per_cu->is_dwz)
14628 {
14629 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14630 &bytes_read);
14631 DW_STRING_IS_CANONICAL (attr) = 0;
14632 info_ptr += bytes_read;
14633 break;
14634 }
14635 /* FALLTHROUGH */
14636 case DW_FORM_GNU_strp_alt:
14637 {
14638 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14639 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14640 &bytes_read);
14641
14642 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14643 DW_STRING_IS_CANONICAL (attr) = 0;
14644 info_ptr += bytes_read;
14645 }
14646 break;
14647 case DW_FORM_exprloc:
14648 case DW_FORM_block:
14649 blk = dwarf_alloc_block (cu);
14650 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14651 info_ptr += bytes_read;
14652 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14653 info_ptr += blk->size;
14654 DW_BLOCK (attr) = blk;
14655 break;
14656 case DW_FORM_block1:
14657 blk = dwarf_alloc_block (cu);
14658 blk->size = read_1_byte (abfd, info_ptr);
14659 info_ptr += 1;
14660 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14661 info_ptr += blk->size;
14662 DW_BLOCK (attr) = blk;
14663 break;
14664 case DW_FORM_data1:
14665 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14666 info_ptr += 1;
14667 break;
14668 case DW_FORM_flag:
14669 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14670 info_ptr += 1;
14671 break;
14672 case DW_FORM_flag_present:
14673 DW_UNSND (attr) = 1;
14674 break;
14675 case DW_FORM_sdata:
14676 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14677 info_ptr += bytes_read;
14678 break;
14679 case DW_FORM_udata:
14680 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14681 info_ptr += bytes_read;
14682 break;
14683 case DW_FORM_ref1:
14684 DW_UNSND (attr) = (cu->header.offset.sect_off
14685 + read_1_byte (abfd, info_ptr));
14686 info_ptr += 1;
14687 break;
14688 case DW_FORM_ref2:
14689 DW_UNSND (attr) = (cu->header.offset.sect_off
14690 + read_2_bytes (abfd, info_ptr));
14691 info_ptr += 2;
14692 break;
14693 case DW_FORM_ref4:
14694 DW_UNSND (attr) = (cu->header.offset.sect_off
14695 + read_4_bytes (abfd, info_ptr));
14696 info_ptr += 4;
14697 break;
14698 case DW_FORM_ref8:
14699 DW_UNSND (attr) = (cu->header.offset.sect_off
14700 + read_8_bytes (abfd, info_ptr));
14701 info_ptr += 8;
14702 break;
14703 case DW_FORM_ref_sig8:
14704 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14705 info_ptr += 8;
14706 break;
14707 case DW_FORM_ref_udata:
14708 DW_UNSND (attr) = (cu->header.offset.sect_off
14709 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14710 info_ptr += bytes_read;
14711 break;
14712 case DW_FORM_indirect:
14713 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14714 info_ptr += bytes_read;
14715 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14716 break;
14717 case DW_FORM_GNU_addr_index:
14718 if (reader->dwo_file == NULL)
14719 {
14720 /* For now flag a hard error.
14721 Later we can turn this into a complaint. */
14722 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14723 dwarf_form_name (form),
14724 bfd_get_filename (abfd));
14725 }
14726 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14727 info_ptr += bytes_read;
14728 break;
14729 case DW_FORM_GNU_str_index:
14730 if (reader->dwo_file == NULL)
14731 {
14732 /* For now flag a hard error.
14733 Later we can turn this into a complaint if warranted. */
14734 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14735 dwarf_form_name (form),
14736 bfd_get_filename (abfd));
14737 }
14738 {
14739 ULONGEST str_index =
14740 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14741
14742 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14743 DW_STRING_IS_CANONICAL (attr) = 0;
14744 info_ptr += bytes_read;
14745 }
14746 break;
14747 default:
14748 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14749 dwarf_form_name (form),
14750 bfd_get_filename (abfd));
14751 }
14752
14753 /* Super hack. */
14754 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14755 attr->form = DW_FORM_GNU_ref_alt;
14756
14757 /* We have seen instances where the compiler tried to emit a byte
14758 size attribute of -1 which ended up being encoded as an unsigned
14759 0xffffffff. Although 0xffffffff is technically a valid size value,
14760 an object of this size seems pretty unlikely so we can relatively
14761 safely treat these cases as if the size attribute was invalid and
14762 treat them as zero by default. */
14763 if (attr->name == DW_AT_byte_size
14764 && form == DW_FORM_data4
14765 && DW_UNSND (attr) >= 0xffffffff)
14766 {
14767 complaint
14768 (&symfile_complaints,
14769 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14770 hex_string (DW_UNSND (attr)));
14771 DW_UNSND (attr) = 0;
14772 }
14773
14774 return info_ptr;
14775 }
14776
14777 /* Read an attribute described by an abbreviated attribute. */
14778
14779 static const gdb_byte *
14780 read_attribute (const struct die_reader_specs *reader,
14781 struct attribute *attr, struct attr_abbrev *abbrev,
14782 const gdb_byte *info_ptr)
14783 {
14784 attr->name = abbrev->name;
14785 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14786 }
14787
14788 /* Read dwarf information from a buffer. */
14789
14790 static unsigned int
14791 read_1_byte (bfd *abfd, const gdb_byte *buf)
14792 {
14793 return bfd_get_8 (abfd, buf);
14794 }
14795
14796 static int
14797 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14798 {
14799 return bfd_get_signed_8 (abfd, buf);
14800 }
14801
14802 static unsigned int
14803 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14804 {
14805 return bfd_get_16 (abfd, buf);
14806 }
14807
14808 static int
14809 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14810 {
14811 return bfd_get_signed_16 (abfd, buf);
14812 }
14813
14814 static unsigned int
14815 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14816 {
14817 return bfd_get_32 (abfd, buf);
14818 }
14819
14820 static int
14821 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14822 {
14823 return bfd_get_signed_32 (abfd, buf);
14824 }
14825
14826 static ULONGEST
14827 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14828 {
14829 return bfd_get_64 (abfd, buf);
14830 }
14831
14832 static CORE_ADDR
14833 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14834 unsigned int *bytes_read)
14835 {
14836 struct comp_unit_head *cu_header = &cu->header;
14837 CORE_ADDR retval = 0;
14838
14839 if (cu_header->signed_addr_p)
14840 {
14841 switch (cu_header->addr_size)
14842 {
14843 case 2:
14844 retval = bfd_get_signed_16 (abfd, buf);
14845 break;
14846 case 4:
14847 retval = bfd_get_signed_32 (abfd, buf);
14848 break;
14849 case 8:
14850 retval = bfd_get_signed_64 (abfd, buf);
14851 break;
14852 default:
14853 internal_error (__FILE__, __LINE__,
14854 _("read_address: bad switch, signed [in module %s]"),
14855 bfd_get_filename (abfd));
14856 }
14857 }
14858 else
14859 {
14860 switch (cu_header->addr_size)
14861 {
14862 case 2:
14863 retval = bfd_get_16 (abfd, buf);
14864 break;
14865 case 4:
14866 retval = bfd_get_32 (abfd, buf);
14867 break;
14868 case 8:
14869 retval = bfd_get_64 (abfd, buf);
14870 break;
14871 default:
14872 internal_error (__FILE__, __LINE__,
14873 _("read_address: bad switch, "
14874 "unsigned [in module %s]"),
14875 bfd_get_filename (abfd));
14876 }
14877 }
14878
14879 *bytes_read = cu_header->addr_size;
14880 return retval;
14881 }
14882
14883 /* Read the initial length from a section. The (draft) DWARF 3
14884 specification allows the initial length to take up either 4 bytes
14885 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14886 bytes describe the length and all offsets will be 8 bytes in length
14887 instead of 4.
14888
14889 An older, non-standard 64-bit format is also handled by this
14890 function. The older format in question stores the initial length
14891 as an 8-byte quantity without an escape value. Lengths greater
14892 than 2^32 aren't very common which means that the initial 4 bytes
14893 is almost always zero. Since a length value of zero doesn't make
14894 sense for the 32-bit format, this initial zero can be considered to
14895 be an escape value which indicates the presence of the older 64-bit
14896 format. As written, the code can't detect (old format) lengths
14897 greater than 4GB. If it becomes necessary to handle lengths
14898 somewhat larger than 4GB, we could allow other small values (such
14899 as the non-sensical values of 1, 2, and 3) to also be used as
14900 escape values indicating the presence of the old format.
14901
14902 The value returned via bytes_read should be used to increment the
14903 relevant pointer after calling read_initial_length().
14904
14905 [ Note: read_initial_length() and read_offset() are based on the
14906 document entitled "DWARF Debugging Information Format", revision
14907 3, draft 8, dated November 19, 2001. This document was obtained
14908 from:
14909
14910 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14911
14912 This document is only a draft and is subject to change. (So beware.)
14913
14914 Details regarding the older, non-standard 64-bit format were
14915 determined empirically by examining 64-bit ELF files produced by
14916 the SGI toolchain on an IRIX 6.5 machine.
14917
14918 - Kevin, July 16, 2002
14919 ] */
14920
14921 static LONGEST
14922 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14923 {
14924 LONGEST length = bfd_get_32 (abfd, buf);
14925
14926 if (length == 0xffffffff)
14927 {
14928 length = bfd_get_64 (abfd, buf + 4);
14929 *bytes_read = 12;
14930 }
14931 else if (length == 0)
14932 {
14933 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14934 length = bfd_get_64 (abfd, buf);
14935 *bytes_read = 8;
14936 }
14937 else
14938 {
14939 *bytes_read = 4;
14940 }
14941
14942 return length;
14943 }
14944
14945 /* Cover function for read_initial_length.
14946 Returns the length of the object at BUF, and stores the size of the
14947 initial length in *BYTES_READ and stores the size that offsets will be in
14948 *OFFSET_SIZE.
14949 If the initial length size is not equivalent to that specified in
14950 CU_HEADER then issue a complaint.
14951 This is useful when reading non-comp-unit headers. */
14952
14953 static LONGEST
14954 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14955 const struct comp_unit_head *cu_header,
14956 unsigned int *bytes_read,
14957 unsigned int *offset_size)
14958 {
14959 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14960
14961 gdb_assert (cu_header->initial_length_size == 4
14962 || cu_header->initial_length_size == 8
14963 || cu_header->initial_length_size == 12);
14964
14965 if (cu_header->initial_length_size != *bytes_read)
14966 complaint (&symfile_complaints,
14967 _("intermixed 32-bit and 64-bit DWARF sections"));
14968
14969 *offset_size = (*bytes_read == 4) ? 4 : 8;
14970 return length;
14971 }
14972
14973 /* Read an offset from the data stream. The size of the offset is
14974 given by cu_header->offset_size. */
14975
14976 static LONGEST
14977 read_offset (bfd *abfd, const gdb_byte *buf,
14978 const struct comp_unit_head *cu_header,
14979 unsigned int *bytes_read)
14980 {
14981 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14982
14983 *bytes_read = cu_header->offset_size;
14984 return offset;
14985 }
14986
14987 /* Read an offset from the data stream. */
14988
14989 static LONGEST
14990 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
14991 {
14992 LONGEST retval = 0;
14993
14994 switch (offset_size)
14995 {
14996 case 4:
14997 retval = bfd_get_32 (abfd, buf);
14998 break;
14999 case 8:
15000 retval = bfd_get_64 (abfd, buf);
15001 break;
15002 default:
15003 internal_error (__FILE__, __LINE__,
15004 _("read_offset_1: bad switch [in module %s]"),
15005 bfd_get_filename (abfd));
15006 }
15007
15008 return retval;
15009 }
15010
15011 static const gdb_byte *
15012 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15013 {
15014 /* If the size of a host char is 8 bits, we can return a pointer
15015 to the buffer, otherwise we have to copy the data to a buffer
15016 allocated on the temporary obstack. */
15017 gdb_assert (HOST_CHAR_BIT == 8);
15018 return buf;
15019 }
15020
15021 static const char *
15022 read_direct_string (bfd *abfd, const gdb_byte *buf,
15023 unsigned int *bytes_read_ptr)
15024 {
15025 /* If the size of a host char is 8 bits, we can return a pointer
15026 to the string, otherwise we have to copy the string to a buffer
15027 allocated on the temporary obstack. */
15028 gdb_assert (HOST_CHAR_BIT == 8);
15029 if (*buf == '\0')
15030 {
15031 *bytes_read_ptr = 1;
15032 return NULL;
15033 }
15034 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15035 return (const char *) buf;
15036 }
15037
15038 static const char *
15039 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15040 {
15041 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15042 if (dwarf2_per_objfile->str.buffer == NULL)
15043 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15044 bfd_get_filename (abfd));
15045 if (str_offset >= dwarf2_per_objfile->str.size)
15046 error (_("DW_FORM_strp pointing outside of "
15047 ".debug_str section [in module %s]"),
15048 bfd_get_filename (abfd));
15049 gdb_assert (HOST_CHAR_BIT == 8);
15050 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15051 return NULL;
15052 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15053 }
15054
15055 /* Read a string at offset STR_OFFSET in the .debug_str section from
15056 the .dwz file DWZ. Throw an error if the offset is too large. If
15057 the string consists of a single NUL byte, return NULL; otherwise
15058 return a pointer to the string. */
15059
15060 static const char *
15061 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15062 {
15063 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15064
15065 if (dwz->str.buffer == NULL)
15066 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15067 "section [in module %s]"),
15068 bfd_get_filename (dwz->dwz_bfd));
15069 if (str_offset >= dwz->str.size)
15070 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15071 ".debug_str section [in module %s]"),
15072 bfd_get_filename (dwz->dwz_bfd));
15073 gdb_assert (HOST_CHAR_BIT == 8);
15074 if (dwz->str.buffer[str_offset] == '\0')
15075 return NULL;
15076 return (const char *) (dwz->str.buffer + str_offset);
15077 }
15078
15079 static const char *
15080 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15081 const struct comp_unit_head *cu_header,
15082 unsigned int *bytes_read_ptr)
15083 {
15084 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15085
15086 return read_indirect_string_at_offset (abfd, str_offset);
15087 }
15088
15089 static ULONGEST
15090 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15091 unsigned int *bytes_read_ptr)
15092 {
15093 ULONGEST result;
15094 unsigned int num_read;
15095 int i, shift;
15096 unsigned char byte;
15097
15098 result = 0;
15099 shift = 0;
15100 num_read = 0;
15101 i = 0;
15102 while (1)
15103 {
15104 byte = bfd_get_8 (abfd, buf);
15105 buf++;
15106 num_read++;
15107 result |= ((ULONGEST) (byte & 127) << shift);
15108 if ((byte & 128) == 0)
15109 {
15110 break;
15111 }
15112 shift += 7;
15113 }
15114 *bytes_read_ptr = num_read;
15115 return result;
15116 }
15117
15118 static LONGEST
15119 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15120 unsigned int *bytes_read_ptr)
15121 {
15122 LONGEST result;
15123 int i, shift, num_read;
15124 unsigned char byte;
15125
15126 result = 0;
15127 shift = 0;
15128 num_read = 0;
15129 i = 0;
15130 while (1)
15131 {
15132 byte = bfd_get_8 (abfd, buf);
15133 buf++;
15134 num_read++;
15135 result |= ((LONGEST) (byte & 127) << shift);
15136 shift += 7;
15137 if ((byte & 128) == 0)
15138 {
15139 break;
15140 }
15141 }
15142 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15143 result |= -(((LONGEST) 1) << shift);
15144 *bytes_read_ptr = num_read;
15145 return result;
15146 }
15147
15148 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15149 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15150 ADDR_SIZE is the size of addresses from the CU header. */
15151
15152 static CORE_ADDR
15153 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15154 {
15155 struct objfile *objfile = dwarf2_per_objfile->objfile;
15156 bfd *abfd = objfile->obfd;
15157 const gdb_byte *info_ptr;
15158
15159 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15160 if (dwarf2_per_objfile->addr.buffer == NULL)
15161 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15162 objfile->name);
15163 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15164 error (_("DW_FORM_addr_index pointing outside of "
15165 ".debug_addr section [in module %s]"),
15166 objfile->name);
15167 info_ptr = (dwarf2_per_objfile->addr.buffer
15168 + addr_base + addr_index * addr_size);
15169 if (addr_size == 4)
15170 return bfd_get_32 (abfd, info_ptr);
15171 else
15172 return bfd_get_64 (abfd, info_ptr);
15173 }
15174
15175 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15176
15177 static CORE_ADDR
15178 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15179 {
15180 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15181 }
15182
15183 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15184
15185 static CORE_ADDR
15186 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15187 unsigned int *bytes_read)
15188 {
15189 bfd *abfd = cu->objfile->obfd;
15190 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15191
15192 return read_addr_index (cu, addr_index);
15193 }
15194
15195 /* Data structure to pass results from dwarf2_read_addr_index_reader
15196 back to dwarf2_read_addr_index. */
15197
15198 struct dwarf2_read_addr_index_data
15199 {
15200 ULONGEST addr_base;
15201 int addr_size;
15202 };
15203
15204 /* die_reader_func for dwarf2_read_addr_index. */
15205
15206 static void
15207 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15208 const gdb_byte *info_ptr,
15209 struct die_info *comp_unit_die,
15210 int has_children,
15211 void *data)
15212 {
15213 struct dwarf2_cu *cu = reader->cu;
15214 struct dwarf2_read_addr_index_data *aidata =
15215 (struct dwarf2_read_addr_index_data *) data;
15216
15217 aidata->addr_base = cu->addr_base;
15218 aidata->addr_size = cu->header.addr_size;
15219 }
15220
15221 /* Given an index in .debug_addr, fetch the value.
15222 NOTE: This can be called during dwarf expression evaluation,
15223 long after the debug information has been read, and thus per_cu->cu
15224 may no longer exist. */
15225
15226 CORE_ADDR
15227 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15228 unsigned int addr_index)
15229 {
15230 struct objfile *objfile = per_cu->objfile;
15231 struct dwarf2_cu *cu = per_cu->cu;
15232 ULONGEST addr_base;
15233 int addr_size;
15234
15235 /* This is intended to be called from outside this file. */
15236 dw2_setup (objfile);
15237
15238 /* We need addr_base and addr_size.
15239 If we don't have PER_CU->cu, we have to get it.
15240 Nasty, but the alternative is storing the needed info in PER_CU,
15241 which at this point doesn't seem justified: it's not clear how frequently
15242 it would get used and it would increase the size of every PER_CU.
15243 Entry points like dwarf2_per_cu_addr_size do a similar thing
15244 so we're not in uncharted territory here.
15245 Alas we need to be a bit more complicated as addr_base is contained
15246 in the DIE.
15247
15248 We don't need to read the entire CU(/TU).
15249 We just need the header and top level die.
15250
15251 IWBN to use the aging mechanism to let us lazily later discard the CU.
15252 For now we skip this optimization. */
15253
15254 if (cu != NULL)
15255 {
15256 addr_base = cu->addr_base;
15257 addr_size = cu->header.addr_size;
15258 }
15259 else
15260 {
15261 struct dwarf2_read_addr_index_data aidata;
15262
15263 /* Note: We can't use init_cutu_and_read_dies_simple here,
15264 we need addr_base. */
15265 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15266 dwarf2_read_addr_index_reader, &aidata);
15267 addr_base = aidata.addr_base;
15268 addr_size = aidata.addr_size;
15269 }
15270
15271 return read_addr_index_1 (addr_index, addr_base, addr_size);
15272 }
15273
15274 /* Given a DW_AT_str_index, fetch the string. */
15275
15276 static const char *
15277 read_str_index (const struct die_reader_specs *reader,
15278 struct dwarf2_cu *cu, ULONGEST str_index)
15279 {
15280 struct objfile *objfile = dwarf2_per_objfile->objfile;
15281 const char *dwo_name = objfile->name;
15282 bfd *abfd = objfile->obfd;
15283 struct dwo_sections *sections = &reader->dwo_file->sections;
15284 const gdb_byte *info_ptr;
15285 ULONGEST str_offset;
15286
15287 dwarf2_read_section (objfile, &sections->str);
15288 dwarf2_read_section (objfile, &sections->str_offsets);
15289 if (sections->str.buffer == NULL)
15290 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15291 " in CU at offset 0x%lx [in module %s]"),
15292 (long) cu->header.offset.sect_off, dwo_name);
15293 if (sections->str_offsets.buffer == NULL)
15294 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15295 " in CU at offset 0x%lx [in module %s]"),
15296 (long) cu->header.offset.sect_off, dwo_name);
15297 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15298 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15299 " section in CU at offset 0x%lx [in module %s]"),
15300 (long) cu->header.offset.sect_off, dwo_name);
15301 info_ptr = (sections->str_offsets.buffer
15302 + str_index * cu->header.offset_size);
15303 if (cu->header.offset_size == 4)
15304 str_offset = bfd_get_32 (abfd, info_ptr);
15305 else
15306 str_offset = bfd_get_64 (abfd, info_ptr);
15307 if (str_offset >= sections->str.size)
15308 error (_("Offset from DW_FORM_str_index pointing outside of"
15309 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15310 (long) cu->header.offset.sect_off, dwo_name);
15311 return (const char *) (sections->str.buffer + str_offset);
15312 }
15313
15314 /* Return the length of an LEB128 number in BUF. */
15315
15316 static int
15317 leb128_size (const gdb_byte *buf)
15318 {
15319 const gdb_byte *begin = buf;
15320 gdb_byte byte;
15321
15322 while (1)
15323 {
15324 byte = *buf++;
15325 if ((byte & 128) == 0)
15326 return buf - begin;
15327 }
15328 }
15329
15330 static void
15331 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15332 {
15333 switch (lang)
15334 {
15335 case DW_LANG_C89:
15336 case DW_LANG_C99:
15337 case DW_LANG_C:
15338 case DW_LANG_UPC:
15339 cu->language = language_c;
15340 break;
15341 case DW_LANG_C_plus_plus:
15342 cu->language = language_cplus;
15343 break;
15344 case DW_LANG_D:
15345 cu->language = language_d;
15346 break;
15347 case DW_LANG_Fortran77:
15348 case DW_LANG_Fortran90:
15349 case DW_LANG_Fortran95:
15350 cu->language = language_fortran;
15351 break;
15352 case DW_LANG_Go:
15353 cu->language = language_go;
15354 break;
15355 case DW_LANG_Mips_Assembler:
15356 cu->language = language_asm;
15357 break;
15358 case DW_LANG_Java:
15359 cu->language = language_java;
15360 break;
15361 case DW_LANG_Ada83:
15362 case DW_LANG_Ada95:
15363 cu->language = language_ada;
15364 break;
15365 case DW_LANG_Modula2:
15366 cu->language = language_m2;
15367 break;
15368 case DW_LANG_Pascal83:
15369 cu->language = language_pascal;
15370 break;
15371 case DW_LANG_ObjC:
15372 cu->language = language_objc;
15373 break;
15374 case DW_LANG_Cobol74:
15375 case DW_LANG_Cobol85:
15376 default:
15377 cu->language = language_minimal;
15378 break;
15379 }
15380 cu->language_defn = language_def (cu->language);
15381 }
15382
15383 /* Return the named attribute or NULL if not there. */
15384
15385 static struct attribute *
15386 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15387 {
15388 for (;;)
15389 {
15390 unsigned int i;
15391 struct attribute *spec = NULL;
15392
15393 for (i = 0; i < die->num_attrs; ++i)
15394 {
15395 if (die->attrs[i].name == name)
15396 return &die->attrs[i];
15397 if (die->attrs[i].name == DW_AT_specification
15398 || die->attrs[i].name == DW_AT_abstract_origin)
15399 spec = &die->attrs[i];
15400 }
15401
15402 if (!spec)
15403 break;
15404
15405 die = follow_die_ref (die, spec, &cu);
15406 }
15407
15408 return NULL;
15409 }
15410
15411 /* Return the named attribute or NULL if not there,
15412 but do not follow DW_AT_specification, etc.
15413 This is for use in contexts where we're reading .debug_types dies.
15414 Following DW_AT_specification, DW_AT_abstract_origin will take us
15415 back up the chain, and we want to go down. */
15416
15417 static struct attribute *
15418 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15419 {
15420 unsigned int i;
15421
15422 for (i = 0; i < die->num_attrs; ++i)
15423 if (die->attrs[i].name == name)
15424 return &die->attrs[i];
15425
15426 return NULL;
15427 }
15428
15429 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15430 and holds a non-zero value. This function should only be used for
15431 DW_FORM_flag or DW_FORM_flag_present attributes. */
15432
15433 static int
15434 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15435 {
15436 struct attribute *attr = dwarf2_attr (die, name, cu);
15437
15438 return (attr && DW_UNSND (attr));
15439 }
15440
15441 static int
15442 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15443 {
15444 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15445 which value is non-zero. However, we have to be careful with
15446 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15447 (via dwarf2_flag_true_p) follows this attribute. So we may
15448 end up accidently finding a declaration attribute that belongs
15449 to a different DIE referenced by the specification attribute,
15450 even though the given DIE does not have a declaration attribute. */
15451 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15452 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15453 }
15454
15455 /* Return the die giving the specification for DIE, if there is
15456 one. *SPEC_CU is the CU containing DIE on input, and the CU
15457 containing the return value on output. If there is no
15458 specification, but there is an abstract origin, that is
15459 returned. */
15460
15461 static struct die_info *
15462 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15463 {
15464 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15465 *spec_cu);
15466
15467 if (spec_attr == NULL)
15468 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15469
15470 if (spec_attr == NULL)
15471 return NULL;
15472 else
15473 return follow_die_ref (die, spec_attr, spec_cu);
15474 }
15475
15476 /* Free the line_header structure *LH, and any arrays and strings it
15477 refers to.
15478 NOTE: This is also used as a "cleanup" function. */
15479
15480 static void
15481 free_line_header (struct line_header *lh)
15482 {
15483 if (lh->standard_opcode_lengths)
15484 xfree (lh->standard_opcode_lengths);
15485
15486 /* Remember that all the lh->file_names[i].name pointers are
15487 pointers into debug_line_buffer, and don't need to be freed. */
15488 if (lh->file_names)
15489 xfree (lh->file_names);
15490
15491 /* Similarly for the include directory names. */
15492 if (lh->include_dirs)
15493 xfree (lh->include_dirs);
15494
15495 xfree (lh);
15496 }
15497
15498 /* Add an entry to LH's include directory table. */
15499
15500 static void
15501 add_include_dir (struct line_header *lh, const char *include_dir)
15502 {
15503 /* Grow the array if necessary. */
15504 if (lh->include_dirs_size == 0)
15505 {
15506 lh->include_dirs_size = 1; /* for testing */
15507 lh->include_dirs = xmalloc (lh->include_dirs_size
15508 * sizeof (*lh->include_dirs));
15509 }
15510 else if (lh->num_include_dirs >= lh->include_dirs_size)
15511 {
15512 lh->include_dirs_size *= 2;
15513 lh->include_dirs = xrealloc (lh->include_dirs,
15514 (lh->include_dirs_size
15515 * sizeof (*lh->include_dirs)));
15516 }
15517
15518 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15519 }
15520
15521 /* Add an entry to LH's file name table. */
15522
15523 static void
15524 add_file_name (struct line_header *lh,
15525 const char *name,
15526 unsigned int dir_index,
15527 unsigned int mod_time,
15528 unsigned int length)
15529 {
15530 struct file_entry *fe;
15531
15532 /* Grow the array if necessary. */
15533 if (lh->file_names_size == 0)
15534 {
15535 lh->file_names_size = 1; /* for testing */
15536 lh->file_names = xmalloc (lh->file_names_size
15537 * sizeof (*lh->file_names));
15538 }
15539 else if (lh->num_file_names >= lh->file_names_size)
15540 {
15541 lh->file_names_size *= 2;
15542 lh->file_names = xrealloc (lh->file_names,
15543 (lh->file_names_size
15544 * sizeof (*lh->file_names)));
15545 }
15546
15547 fe = &lh->file_names[lh->num_file_names++];
15548 fe->name = name;
15549 fe->dir_index = dir_index;
15550 fe->mod_time = mod_time;
15551 fe->length = length;
15552 fe->included_p = 0;
15553 fe->symtab = NULL;
15554 }
15555
15556 /* A convenience function to find the proper .debug_line section for a
15557 CU. */
15558
15559 static struct dwarf2_section_info *
15560 get_debug_line_section (struct dwarf2_cu *cu)
15561 {
15562 struct dwarf2_section_info *section;
15563
15564 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15565 DWO file. */
15566 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15567 section = &cu->dwo_unit->dwo_file->sections.line;
15568 else if (cu->per_cu->is_dwz)
15569 {
15570 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15571
15572 section = &dwz->line;
15573 }
15574 else
15575 section = &dwarf2_per_objfile->line;
15576
15577 return section;
15578 }
15579
15580 /* Read the statement program header starting at OFFSET in
15581 .debug_line, or .debug_line.dwo. Return a pointer
15582 to a struct line_header, allocated using xmalloc.
15583
15584 NOTE: the strings in the include directory and file name tables of
15585 the returned object point into the dwarf line section buffer,
15586 and must not be freed. */
15587
15588 static struct line_header *
15589 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15590 {
15591 struct cleanup *back_to;
15592 struct line_header *lh;
15593 const gdb_byte *line_ptr;
15594 unsigned int bytes_read, offset_size;
15595 int i;
15596 const char *cur_dir, *cur_file;
15597 struct dwarf2_section_info *section;
15598 bfd *abfd;
15599
15600 section = get_debug_line_section (cu);
15601 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15602 if (section->buffer == NULL)
15603 {
15604 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15605 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15606 else
15607 complaint (&symfile_complaints, _("missing .debug_line section"));
15608 return 0;
15609 }
15610
15611 /* We can't do this until we know the section is non-empty.
15612 Only then do we know we have such a section. */
15613 abfd = section->asection->owner;
15614
15615 /* Make sure that at least there's room for the total_length field.
15616 That could be 12 bytes long, but we're just going to fudge that. */
15617 if (offset + 4 >= section->size)
15618 {
15619 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15620 return 0;
15621 }
15622
15623 lh = xmalloc (sizeof (*lh));
15624 memset (lh, 0, sizeof (*lh));
15625 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15626 (void *) lh);
15627
15628 line_ptr = section->buffer + offset;
15629
15630 /* Read in the header. */
15631 lh->total_length =
15632 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15633 &bytes_read, &offset_size);
15634 line_ptr += bytes_read;
15635 if (line_ptr + lh->total_length > (section->buffer + section->size))
15636 {
15637 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15638 return 0;
15639 }
15640 lh->statement_program_end = line_ptr + lh->total_length;
15641 lh->version = read_2_bytes (abfd, line_ptr);
15642 line_ptr += 2;
15643 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15644 line_ptr += offset_size;
15645 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15646 line_ptr += 1;
15647 if (lh->version >= 4)
15648 {
15649 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15650 line_ptr += 1;
15651 }
15652 else
15653 lh->maximum_ops_per_instruction = 1;
15654
15655 if (lh->maximum_ops_per_instruction == 0)
15656 {
15657 lh->maximum_ops_per_instruction = 1;
15658 complaint (&symfile_complaints,
15659 _("invalid maximum_ops_per_instruction "
15660 "in `.debug_line' section"));
15661 }
15662
15663 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15664 line_ptr += 1;
15665 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15666 line_ptr += 1;
15667 lh->line_range = read_1_byte (abfd, line_ptr);
15668 line_ptr += 1;
15669 lh->opcode_base = read_1_byte (abfd, line_ptr);
15670 line_ptr += 1;
15671 lh->standard_opcode_lengths
15672 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15673
15674 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15675 for (i = 1; i < lh->opcode_base; ++i)
15676 {
15677 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15678 line_ptr += 1;
15679 }
15680
15681 /* Read directory table. */
15682 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15683 {
15684 line_ptr += bytes_read;
15685 add_include_dir (lh, cur_dir);
15686 }
15687 line_ptr += bytes_read;
15688
15689 /* Read file name table. */
15690 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15691 {
15692 unsigned int dir_index, mod_time, length;
15693
15694 line_ptr += bytes_read;
15695 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15696 line_ptr += bytes_read;
15697 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15698 line_ptr += bytes_read;
15699 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15700 line_ptr += bytes_read;
15701
15702 add_file_name (lh, cur_file, dir_index, mod_time, length);
15703 }
15704 line_ptr += bytes_read;
15705 lh->statement_program_start = line_ptr;
15706
15707 if (line_ptr > (section->buffer + section->size))
15708 complaint (&symfile_complaints,
15709 _("line number info header doesn't "
15710 "fit in `.debug_line' section"));
15711
15712 discard_cleanups (back_to);
15713 return lh;
15714 }
15715
15716 /* Subroutine of dwarf_decode_lines to simplify it.
15717 Return the file name of the psymtab for included file FILE_INDEX
15718 in line header LH of PST.
15719 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15720 If space for the result is malloc'd, it will be freed by a cleanup.
15721 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15722
15723 The function creates dangling cleanup registration. */
15724
15725 static const char *
15726 psymtab_include_file_name (const struct line_header *lh, int file_index,
15727 const struct partial_symtab *pst,
15728 const char *comp_dir)
15729 {
15730 const struct file_entry fe = lh->file_names [file_index];
15731 const char *include_name = fe.name;
15732 const char *include_name_to_compare = include_name;
15733 const char *dir_name = NULL;
15734 const char *pst_filename;
15735 char *copied_name = NULL;
15736 int file_is_pst;
15737
15738 if (fe.dir_index)
15739 dir_name = lh->include_dirs[fe.dir_index - 1];
15740
15741 if (!IS_ABSOLUTE_PATH (include_name)
15742 && (dir_name != NULL || comp_dir != NULL))
15743 {
15744 /* Avoid creating a duplicate psymtab for PST.
15745 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15746 Before we do the comparison, however, we need to account
15747 for DIR_NAME and COMP_DIR.
15748 First prepend dir_name (if non-NULL). If we still don't
15749 have an absolute path prepend comp_dir (if non-NULL).
15750 However, the directory we record in the include-file's
15751 psymtab does not contain COMP_DIR (to match the
15752 corresponding symtab(s)).
15753
15754 Example:
15755
15756 bash$ cd /tmp
15757 bash$ gcc -g ./hello.c
15758 include_name = "hello.c"
15759 dir_name = "."
15760 DW_AT_comp_dir = comp_dir = "/tmp"
15761 DW_AT_name = "./hello.c" */
15762
15763 if (dir_name != NULL)
15764 {
15765 char *tem = concat (dir_name, SLASH_STRING,
15766 include_name, (char *)NULL);
15767
15768 make_cleanup (xfree, tem);
15769 include_name = tem;
15770 include_name_to_compare = include_name;
15771 }
15772 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15773 {
15774 char *tem = concat (comp_dir, SLASH_STRING,
15775 include_name, (char *)NULL);
15776
15777 make_cleanup (xfree, tem);
15778 include_name_to_compare = tem;
15779 }
15780 }
15781
15782 pst_filename = pst->filename;
15783 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15784 {
15785 copied_name = concat (pst->dirname, SLASH_STRING,
15786 pst_filename, (char *)NULL);
15787 pst_filename = copied_name;
15788 }
15789
15790 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15791
15792 if (copied_name != NULL)
15793 xfree (copied_name);
15794
15795 if (file_is_pst)
15796 return NULL;
15797 return include_name;
15798 }
15799
15800 /* Ignore this record_line request. */
15801
15802 static void
15803 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15804 {
15805 return;
15806 }
15807
15808 /* Subroutine of dwarf_decode_lines to simplify it.
15809 Process the line number information in LH. */
15810
15811 static void
15812 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15813 struct dwarf2_cu *cu, struct partial_symtab *pst)
15814 {
15815 const gdb_byte *line_ptr, *extended_end;
15816 const gdb_byte *line_end;
15817 unsigned int bytes_read, extended_len;
15818 unsigned char op_code, extended_op, adj_opcode;
15819 CORE_ADDR baseaddr;
15820 struct objfile *objfile = cu->objfile;
15821 bfd *abfd = objfile->obfd;
15822 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15823 const int decode_for_pst_p = (pst != NULL);
15824 struct subfile *last_subfile = NULL;
15825 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15826 = record_line;
15827
15828 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15829
15830 line_ptr = lh->statement_program_start;
15831 line_end = lh->statement_program_end;
15832
15833 /* Read the statement sequences until there's nothing left. */
15834 while (line_ptr < line_end)
15835 {
15836 /* state machine registers */
15837 CORE_ADDR address = 0;
15838 unsigned int file = 1;
15839 unsigned int line = 1;
15840 unsigned int column = 0;
15841 int is_stmt = lh->default_is_stmt;
15842 int basic_block = 0;
15843 int end_sequence = 0;
15844 CORE_ADDR addr;
15845 unsigned char op_index = 0;
15846
15847 if (!decode_for_pst_p && lh->num_file_names >= file)
15848 {
15849 /* Start a subfile for the current file of the state machine. */
15850 /* lh->include_dirs and lh->file_names are 0-based, but the
15851 directory and file name numbers in the statement program
15852 are 1-based. */
15853 struct file_entry *fe = &lh->file_names[file - 1];
15854 const char *dir = NULL;
15855
15856 if (fe->dir_index)
15857 dir = lh->include_dirs[fe->dir_index - 1];
15858
15859 dwarf2_start_subfile (fe->name, dir, comp_dir);
15860 }
15861
15862 /* Decode the table. */
15863 while (!end_sequence)
15864 {
15865 op_code = read_1_byte (abfd, line_ptr);
15866 line_ptr += 1;
15867 if (line_ptr > line_end)
15868 {
15869 dwarf2_debug_line_missing_end_sequence_complaint ();
15870 break;
15871 }
15872
15873 if (op_code >= lh->opcode_base)
15874 {
15875 /* Special operand. */
15876 adj_opcode = op_code - lh->opcode_base;
15877 address += (((op_index + (adj_opcode / lh->line_range))
15878 / lh->maximum_ops_per_instruction)
15879 * lh->minimum_instruction_length);
15880 op_index = ((op_index + (adj_opcode / lh->line_range))
15881 % lh->maximum_ops_per_instruction);
15882 line += lh->line_base + (adj_opcode % lh->line_range);
15883 if (lh->num_file_names < file || file == 0)
15884 dwarf2_debug_line_missing_file_complaint ();
15885 /* For now we ignore lines not starting on an
15886 instruction boundary. */
15887 else if (op_index == 0)
15888 {
15889 lh->file_names[file - 1].included_p = 1;
15890 if (!decode_for_pst_p && is_stmt)
15891 {
15892 if (last_subfile != current_subfile)
15893 {
15894 addr = gdbarch_addr_bits_remove (gdbarch, address);
15895 if (last_subfile)
15896 (*p_record_line) (last_subfile, 0, addr);
15897 last_subfile = current_subfile;
15898 }
15899 /* Append row to matrix using current values. */
15900 addr = gdbarch_addr_bits_remove (gdbarch, address);
15901 (*p_record_line) (current_subfile, line, addr);
15902 }
15903 }
15904 basic_block = 0;
15905 }
15906 else switch (op_code)
15907 {
15908 case DW_LNS_extended_op:
15909 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15910 &bytes_read);
15911 line_ptr += bytes_read;
15912 extended_end = line_ptr + extended_len;
15913 extended_op = read_1_byte (abfd, line_ptr);
15914 line_ptr += 1;
15915 switch (extended_op)
15916 {
15917 case DW_LNE_end_sequence:
15918 p_record_line = record_line;
15919 end_sequence = 1;
15920 break;
15921 case DW_LNE_set_address:
15922 address = read_address (abfd, line_ptr, cu, &bytes_read);
15923
15924 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15925 {
15926 /* This line table is for a function which has been
15927 GCd by the linker. Ignore it. PR gdb/12528 */
15928
15929 long line_offset
15930 = line_ptr - get_debug_line_section (cu)->buffer;
15931
15932 complaint (&symfile_complaints,
15933 _(".debug_line address at offset 0x%lx is 0 "
15934 "[in module %s]"),
15935 line_offset, objfile->name);
15936 p_record_line = noop_record_line;
15937 }
15938
15939 op_index = 0;
15940 line_ptr += bytes_read;
15941 address += baseaddr;
15942 break;
15943 case DW_LNE_define_file:
15944 {
15945 const char *cur_file;
15946 unsigned int dir_index, mod_time, length;
15947
15948 cur_file = read_direct_string (abfd, line_ptr,
15949 &bytes_read);
15950 line_ptr += bytes_read;
15951 dir_index =
15952 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15953 line_ptr += bytes_read;
15954 mod_time =
15955 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15956 line_ptr += bytes_read;
15957 length =
15958 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15959 line_ptr += bytes_read;
15960 add_file_name (lh, cur_file, dir_index, mod_time, length);
15961 }
15962 break;
15963 case DW_LNE_set_discriminator:
15964 /* The discriminator is not interesting to the debugger;
15965 just ignore it. */
15966 line_ptr = extended_end;
15967 break;
15968 default:
15969 complaint (&symfile_complaints,
15970 _("mangled .debug_line section"));
15971 return;
15972 }
15973 /* Make sure that we parsed the extended op correctly. If e.g.
15974 we expected a different address size than the producer used,
15975 we may have read the wrong number of bytes. */
15976 if (line_ptr != extended_end)
15977 {
15978 complaint (&symfile_complaints,
15979 _("mangled .debug_line section"));
15980 return;
15981 }
15982 break;
15983 case DW_LNS_copy:
15984 if (lh->num_file_names < file || file == 0)
15985 dwarf2_debug_line_missing_file_complaint ();
15986 else
15987 {
15988 lh->file_names[file - 1].included_p = 1;
15989 if (!decode_for_pst_p && is_stmt)
15990 {
15991 if (last_subfile != current_subfile)
15992 {
15993 addr = gdbarch_addr_bits_remove (gdbarch, address);
15994 if (last_subfile)
15995 (*p_record_line) (last_subfile, 0, addr);
15996 last_subfile = current_subfile;
15997 }
15998 addr = gdbarch_addr_bits_remove (gdbarch, address);
15999 (*p_record_line) (current_subfile, line, addr);
16000 }
16001 }
16002 basic_block = 0;
16003 break;
16004 case DW_LNS_advance_pc:
16005 {
16006 CORE_ADDR adjust
16007 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16008
16009 address += (((op_index + adjust)
16010 / lh->maximum_ops_per_instruction)
16011 * lh->minimum_instruction_length);
16012 op_index = ((op_index + adjust)
16013 % lh->maximum_ops_per_instruction);
16014 line_ptr += bytes_read;
16015 }
16016 break;
16017 case DW_LNS_advance_line:
16018 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16019 line_ptr += bytes_read;
16020 break;
16021 case DW_LNS_set_file:
16022 {
16023 /* The arrays lh->include_dirs and lh->file_names are
16024 0-based, but the directory and file name numbers in
16025 the statement program are 1-based. */
16026 struct file_entry *fe;
16027 const char *dir = NULL;
16028
16029 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16030 line_ptr += bytes_read;
16031 if (lh->num_file_names < file || file == 0)
16032 dwarf2_debug_line_missing_file_complaint ();
16033 else
16034 {
16035 fe = &lh->file_names[file - 1];
16036 if (fe->dir_index)
16037 dir = lh->include_dirs[fe->dir_index - 1];
16038 if (!decode_for_pst_p)
16039 {
16040 last_subfile = current_subfile;
16041 dwarf2_start_subfile (fe->name, dir, comp_dir);
16042 }
16043 }
16044 }
16045 break;
16046 case DW_LNS_set_column:
16047 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16048 line_ptr += bytes_read;
16049 break;
16050 case DW_LNS_negate_stmt:
16051 is_stmt = (!is_stmt);
16052 break;
16053 case DW_LNS_set_basic_block:
16054 basic_block = 1;
16055 break;
16056 /* Add to the address register of the state machine the
16057 address increment value corresponding to special opcode
16058 255. I.e., this value is scaled by the minimum
16059 instruction length since special opcode 255 would have
16060 scaled the increment. */
16061 case DW_LNS_const_add_pc:
16062 {
16063 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16064
16065 address += (((op_index + adjust)
16066 / lh->maximum_ops_per_instruction)
16067 * lh->minimum_instruction_length);
16068 op_index = ((op_index + adjust)
16069 % lh->maximum_ops_per_instruction);
16070 }
16071 break;
16072 case DW_LNS_fixed_advance_pc:
16073 address += read_2_bytes (abfd, line_ptr);
16074 op_index = 0;
16075 line_ptr += 2;
16076 break;
16077 default:
16078 {
16079 /* Unknown standard opcode, ignore it. */
16080 int i;
16081
16082 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16083 {
16084 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16085 line_ptr += bytes_read;
16086 }
16087 }
16088 }
16089 }
16090 if (lh->num_file_names < file || file == 0)
16091 dwarf2_debug_line_missing_file_complaint ();
16092 else
16093 {
16094 lh->file_names[file - 1].included_p = 1;
16095 if (!decode_for_pst_p)
16096 {
16097 addr = gdbarch_addr_bits_remove (gdbarch, address);
16098 (*p_record_line) (current_subfile, 0, addr);
16099 }
16100 }
16101 }
16102 }
16103
16104 /* Decode the Line Number Program (LNP) for the given line_header
16105 structure and CU. The actual information extracted and the type
16106 of structures created from the LNP depends on the value of PST.
16107
16108 1. If PST is NULL, then this procedure uses the data from the program
16109 to create all necessary symbol tables, and their linetables.
16110
16111 2. If PST is not NULL, this procedure reads the program to determine
16112 the list of files included by the unit represented by PST, and
16113 builds all the associated partial symbol tables.
16114
16115 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16116 It is used for relative paths in the line table.
16117 NOTE: When processing partial symtabs (pst != NULL),
16118 comp_dir == pst->dirname.
16119
16120 NOTE: It is important that psymtabs have the same file name (via strcmp)
16121 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16122 symtab we don't use it in the name of the psymtabs we create.
16123 E.g. expand_line_sal requires this when finding psymtabs to expand.
16124 A good testcase for this is mb-inline.exp. */
16125
16126 static void
16127 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16128 struct dwarf2_cu *cu, struct partial_symtab *pst,
16129 int want_line_info)
16130 {
16131 struct objfile *objfile = cu->objfile;
16132 const int decode_for_pst_p = (pst != NULL);
16133 struct subfile *first_subfile = current_subfile;
16134
16135 if (want_line_info)
16136 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16137
16138 if (decode_for_pst_p)
16139 {
16140 int file_index;
16141
16142 /* Now that we're done scanning the Line Header Program, we can
16143 create the psymtab of each included file. */
16144 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16145 if (lh->file_names[file_index].included_p == 1)
16146 {
16147 const char *include_name =
16148 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16149 if (include_name != NULL)
16150 dwarf2_create_include_psymtab (include_name, pst, objfile);
16151 }
16152 }
16153 else
16154 {
16155 /* Make sure a symtab is created for every file, even files
16156 which contain only variables (i.e. no code with associated
16157 line numbers). */
16158 int i;
16159
16160 for (i = 0; i < lh->num_file_names; i++)
16161 {
16162 const char *dir = NULL;
16163 struct file_entry *fe;
16164
16165 fe = &lh->file_names[i];
16166 if (fe->dir_index)
16167 dir = lh->include_dirs[fe->dir_index - 1];
16168 dwarf2_start_subfile (fe->name, dir, comp_dir);
16169
16170 /* Skip the main file; we don't need it, and it must be
16171 allocated last, so that it will show up before the
16172 non-primary symtabs in the objfile's symtab list. */
16173 if (current_subfile == first_subfile)
16174 continue;
16175
16176 if (current_subfile->symtab == NULL)
16177 current_subfile->symtab = allocate_symtab (current_subfile->name,
16178 objfile);
16179 fe->symtab = current_subfile->symtab;
16180 }
16181 }
16182 }
16183
16184 /* Start a subfile for DWARF. FILENAME is the name of the file and
16185 DIRNAME the name of the source directory which contains FILENAME
16186 or NULL if not known. COMP_DIR is the compilation directory for the
16187 linetable's compilation unit or NULL if not known.
16188 This routine tries to keep line numbers from identical absolute and
16189 relative file names in a common subfile.
16190
16191 Using the `list' example from the GDB testsuite, which resides in
16192 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16193 of /srcdir/list0.c yields the following debugging information for list0.c:
16194
16195 DW_AT_name: /srcdir/list0.c
16196 DW_AT_comp_dir: /compdir
16197 files.files[0].name: list0.h
16198 files.files[0].dir: /srcdir
16199 files.files[1].name: list0.c
16200 files.files[1].dir: /srcdir
16201
16202 The line number information for list0.c has to end up in a single
16203 subfile, so that `break /srcdir/list0.c:1' works as expected.
16204 start_subfile will ensure that this happens provided that we pass the
16205 concatenation of files.files[1].dir and files.files[1].name as the
16206 subfile's name. */
16207
16208 static void
16209 dwarf2_start_subfile (const char *filename, const char *dirname,
16210 const char *comp_dir)
16211 {
16212 char *copy = NULL;
16213
16214 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16215 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16216 second argument to start_subfile. To be consistent, we do the
16217 same here. In order not to lose the line information directory,
16218 we concatenate it to the filename when it makes sense.
16219 Note that the Dwarf3 standard says (speaking of filenames in line
16220 information): ``The directory index is ignored for file names
16221 that represent full path names''. Thus ignoring dirname in the
16222 `else' branch below isn't an issue. */
16223
16224 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16225 {
16226 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16227 filename = copy;
16228 }
16229
16230 start_subfile (filename, comp_dir);
16231
16232 if (copy != NULL)
16233 xfree (copy);
16234 }
16235
16236 /* Start a symtab for DWARF.
16237 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16238
16239 static void
16240 dwarf2_start_symtab (struct dwarf2_cu *cu,
16241 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16242 {
16243 start_symtab (name, comp_dir, low_pc);
16244 record_debugformat ("DWARF 2");
16245 record_producer (cu->producer);
16246
16247 /* We assume that we're processing GCC output. */
16248 processing_gcc_compilation = 2;
16249
16250 cu->processing_has_namespace_info = 0;
16251 }
16252
16253 static void
16254 var_decode_location (struct attribute *attr, struct symbol *sym,
16255 struct dwarf2_cu *cu)
16256 {
16257 struct objfile *objfile = cu->objfile;
16258 struct comp_unit_head *cu_header = &cu->header;
16259
16260 /* NOTE drow/2003-01-30: There used to be a comment and some special
16261 code here to turn a symbol with DW_AT_external and a
16262 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16263 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16264 with some versions of binutils) where shared libraries could have
16265 relocations against symbols in their debug information - the
16266 minimal symbol would have the right address, but the debug info
16267 would not. It's no longer necessary, because we will explicitly
16268 apply relocations when we read in the debug information now. */
16269
16270 /* A DW_AT_location attribute with no contents indicates that a
16271 variable has been optimized away. */
16272 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16273 {
16274 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16275 return;
16276 }
16277
16278 /* Handle one degenerate form of location expression specially, to
16279 preserve GDB's previous behavior when section offsets are
16280 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16281 then mark this symbol as LOC_STATIC. */
16282
16283 if (attr_form_is_block (attr)
16284 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16285 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16286 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16287 && (DW_BLOCK (attr)->size
16288 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16289 {
16290 unsigned int dummy;
16291
16292 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16293 SYMBOL_VALUE_ADDRESS (sym) =
16294 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16295 else
16296 SYMBOL_VALUE_ADDRESS (sym) =
16297 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16298 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16299 fixup_symbol_section (sym, objfile);
16300 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16301 SYMBOL_SECTION (sym));
16302 return;
16303 }
16304
16305 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16306 expression evaluator, and use LOC_COMPUTED only when necessary
16307 (i.e. when the value of a register or memory location is
16308 referenced, or a thread-local block, etc.). Then again, it might
16309 not be worthwhile. I'm assuming that it isn't unless performance
16310 or memory numbers show me otherwise. */
16311
16312 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16313
16314 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16315 cu->has_loclist = 1;
16316 }
16317
16318 /* Given a pointer to a DWARF information entry, figure out if we need
16319 to make a symbol table entry for it, and if so, create a new entry
16320 and return a pointer to it.
16321 If TYPE is NULL, determine symbol type from the die, otherwise
16322 used the passed type.
16323 If SPACE is not NULL, use it to hold the new symbol. If it is
16324 NULL, allocate a new symbol on the objfile's obstack. */
16325
16326 static struct symbol *
16327 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16328 struct symbol *space)
16329 {
16330 struct objfile *objfile = cu->objfile;
16331 struct symbol *sym = NULL;
16332 const char *name;
16333 struct attribute *attr = NULL;
16334 struct attribute *attr2 = NULL;
16335 CORE_ADDR baseaddr;
16336 struct pending **list_to_add = NULL;
16337
16338 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16339
16340 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16341
16342 name = dwarf2_name (die, cu);
16343 if (name)
16344 {
16345 const char *linkagename;
16346 int suppress_add = 0;
16347
16348 if (space)
16349 sym = space;
16350 else
16351 sym = allocate_symbol (objfile);
16352 OBJSTAT (objfile, n_syms++);
16353
16354 /* Cache this symbol's name and the name's demangled form (if any). */
16355 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16356 linkagename = dwarf2_physname (name, die, cu);
16357 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16358
16359 /* Fortran does not have mangling standard and the mangling does differ
16360 between gfortran, iFort etc. */
16361 if (cu->language == language_fortran
16362 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16363 symbol_set_demangled_name (&(sym->ginfo),
16364 dwarf2_full_name (name, die, cu),
16365 NULL);
16366
16367 /* Default assumptions.
16368 Use the passed type or decode it from the die. */
16369 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16370 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16371 if (type != NULL)
16372 SYMBOL_TYPE (sym) = type;
16373 else
16374 SYMBOL_TYPE (sym) = die_type (die, cu);
16375 attr = dwarf2_attr (die,
16376 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16377 cu);
16378 if (attr)
16379 {
16380 SYMBOL_LINE (sym) = DW_UNSND (attr);
16381 }
16382
16383 attr = dwarf2_attr (die,
16384 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16385 cu);
16386 if (attr)
16387 {
16388 int file_index = DW_UNSND (attr);
16389
16390 if (cu->line_header == NULL
16391 || file_index > cu->line_header->num_file_names)
16392 complaint (&symfile_complaints,
16393 _("file index out of range"));
16394 else if (file_index > 0)
16395 {
16396 struct file_entry *fe;
16397
16398 fe = &cu->line_header->file_names[file_index - 1];
16399 SYMBOL_SYMTAB (sym) = fe->symtab;
16400 }
16401 }
16402
16403 switch (die->tag)
16404 {
16405 case DW_TAG_label:
16406 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16407 if (attr)
16408 {
16409 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16410 }
16411 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16412 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16413 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16414 add_symbol_to_list (sym, cu->list_in_scope);
16415 break;
16416 case DW_TAG_subprogram:
16417 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16418 finish_block. */
16419 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16420 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16421 if ((attr2 && (DW_UNSND (attr2) != 0))
16422 || cu->language == language_ada)
16423 {
16424 /* Subprograms marked external are stored as a global symbol.
16425 Ada subprograms, whether marked external or not, are always
16426 stored as a global symbol, because we want to be able to
16427 access them globally. For instance, we want to be able
16428 to break on a nested subprogram without having to
16429 specify the context. */
16430 list_to_add = &global_symbols;
16431 }
16432 else
16433 {
16434 list_to_add = cu->list_in_scope;
16435 }
16436 break;
16437 case DW_TAG_inlined_subroutine:
16438 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16439 finish_block. */
16440 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16441 SYMBOL_INLINED (sym) = 1;
16442 list_to_add = cu->list_in_scope;
16443 break;
16444 case DW_TAG_template_value_param:
16445 suppress_add = 1;
16446 /* Fall through. */
16447 case DW_TAG_constant:
16448 case DW_TAG_variable:
16449 case DW_TAG_member:
16450 /* Compilation with minimal debug info may result in
16451 variables with missing type entries. Change the
16452 misleading `void' type to something sensible. */
16453 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16454 SYMBOL_TYPE (sym)
16455 = objfile_type (objfile)->nodebug_data_symbol;
16456
16457 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16458 /* In the case of DW_TAG_member, we should only be called for
16459 static const members. */
16460 if (die->tag == DW_TAG_member)
16461 {
16462 /* dwarf2_add_field uses die_is_declaration,
16463 so we do the same. */
16464 gdb_assert (die_is_declaration (die, cu));
16465 gdb_assert (attr);
16466 }
16467 if (attr)
16468 {
16469 dwarf2_const_value (attr, sym, cu);
16470 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16471 if (!suppress_add)
16472 {
16473 if (attr2 && (DW_UNSND (attr2) != 0))
16474 list_to_add = &global_symbols;
16475 else
16476 list_to_add = cu->list_in_scope;
16477 }
16478 break;
16479 }
16480 attr = dwarf2_attr (die, DW_AT_location, cu);
16481 if (attr)
16482 {
16483 var_decode_location (attr, sym, cu);
16484 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16485
16486 /* Fortran explicitly imports any global symbols to the local
16487 scope by DW_TAG_common_block. */
16488 if (cu->language == language_fortran && die->parent
16489 && die->parent->tag == DW_TAG_common_block)
16490 attr2 = NULL;
16491
16492 if (SYMBOL_CLASS (sym) == LOC_STATIC
16493 && SYMBOL_VALUE_ADDRESS (sym) == 0
16494 && !dwarf2_per_objfile->has_section_at_zero)
16495 {
16496 /* When a static variable is eliminated by the linker,
16497 the corresponding debug information is not stripped
16498 out, but the variable address is set to null;
16499 do not add such variables into symbol table. */
16500 }
16501 else if (attr2 && (DW_UNSND (attr2) != 0))
16502 {
16503 /* Workaround gfortran PR debug/40040 - it uses
16504 DW_AT_location for variables in -fPIC libraries which may
16505 get overriden by other libraries/executable and get
16506 a different address. Resolve it by the minimal symbol
16507 which may come from inferior's executable using copy
16508 relocation. Make this workaround only for gfortran as for
16509 other compilers GDB cannot guess the minimal symbol
16510 Fortran mangling kind. */
16511 if (cu->language == language_fortran && die->parent
16512 && die->parent->tag == DW_TAG_module
16513 && cu->producer
16514 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16515 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16516
16517 /* A variable with DW_AT_external is never static,
16518 but it may be block-scoped. */
16519 list_to_add = (cu->list_in_scope == &file_symbols
16520 ? &global_symbols : cu->list_in_scope);
16521 }
16522 else
16523 list_to_add = cu->list_in_scope;
16524 }
16525 else
16526 {
16527 /* We do not know the address of this symbol.
16528 If it is an external symbol and we have type information
16529 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16530 The address of the variable will then be determined from
16531 the minimal symbol table whenever the variable is
16532 referenced. */
16533 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16534
16535 /* Fortran explicitly imports any global symbols to the local
16536 scope by DW_TAG_common_block. */
16537 if (cu->language == language_fortran && die->parent
16538 && die->parent->tag == DW_TAG_common_block)
16539 {
16540 /* SYMBOL_CLASS doesn't matter here because
16541 read_common_block is going to reset it. */
16542 if (!suppress_add)
16543 list_to_add = cu->list_in_scope;
16544 }
16545 else if (attr2 && (DW_UNSND (attr2) != 0)
16546 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16547 {
16548 /* A variable with DW_AT_external is never static, but it
16549 may be block-scoped. */
16550 list_to_add = (cu->list_in_scope == &file_symbols
16551 ? &global_symbols : cu->list_in_scope);
16552
16553 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16554 }
16555 else if (!die_is_declaration (die, cu))
16556 {
16557 /* Use the default LOC_OPTIMIZED_OUT class. */
16558 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16559 if (!suppress_add)
16560 list_to_add = cu->list_in_scope;
16561 }
16562 }
16563 break;
16564 case DW_TAG_formal_parameter:
16565 /* If we are inside a function, mark this as an argument. If
16566 not, we might be looking at an argument to an inlined function
16567 when we do not have enough information to show inlined frames;
16568 pretend it's a local variable in that case so that the user can
16569 still see it. */
16570 if (context_stack_depth > 0
16571 && context_stack[context_stack_depth - 1].name != NULL)
16572 SYMBOL_IS_ARGUMENT (sym) = 1;
16573 attr = dwarf2_attr (die, DW_AT_location, cu);
16574 if (attr)
16575 {
16576 var_decode_location (attr, sym, cu);
16577 }
16578 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16579 if (attr)
16580 {
16581 dwarf2_const_value (attr, sym, cu);
16582 }
16583
16584 list_to_add = cu->list_in_scope;
16585 break;
16586 case DW_TAG_unspecified_parameters:
16587 /* From varargs functions; gdb doesn't seem to have any
16588 interest in this information, so just ignore it for now.
16589 (FIXME?) */
16590 break;
16591 case DW_TAG_template_type_param:
16592 suppress_add = 1;
16593 /* Fall through. */
16594 case DW_TAG_class_type:
16595 case DW_TAG_interface_type:
16596 case DW_TAG_structure_type:
16597 case DW_TAG_union_type:
16598 case DW_TAG_set_type:
16599 case DW_TAG_enumeration_type:
16600 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16601 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16602
16603 {
16604 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16605 really ever be static objects: otherwise, if you try
16606 to, say, break of a class's method and you're in a file
16607 which doesn't mention that class, it won't work unless
16608 the check for all static symbols in lookup_symbol_aux
16609 saves you. See the OtherFileClass tests in
16610 gdb.c++/namespace.exp. */
16611
16612 if (!suppress_add)
16613 {
16614 list_to_add = (cu->list_in_scope == &file_symbols
16615 && (cu->language == language_cplus
16616 || cu->language == language_java)
16617 ? &global_symbols : cu->list_in_scope);
16618
16619 /* The semantics of C++ state that "struct foo {
16620 ... }" also defines a typedef for "foo". A Java
16621 class declaration also defines a typedef for the
16622 class. */
16623 if (cu->language == language_cplus
16624 || cu->language == language_java
16625 || cu->language == language_ada)
16626 {
16627 /* The symbol's name is already allocated along
16628 with this objfile, so we don't need to
16629 duplicate it for the type. */
16630 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16631 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16632 }
16633 }
16634 }
16635 break;
16636 case DW_TAG_typedef:
16637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16638 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16639 list_to_add = cu->list_in_scope;
16640 break;
16641 case DW_TAG_base_type:
16642 case DW_TAG_subrange_type:
16643 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16644 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16645 list_to_add = cu->list_in_scope;
16646 break;
16647 case DW_TAG_enumerator:
16648 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16649 if (attr)
16650 {
16651 dwarf2_const_value (attr, sym, cu);
16652 }
16653 {
16654 /* NOTE: carlton/2003-11-10: See comment above in the
16655 DW_TAG_class_type, etc. block. */
16656
16657 list_to_add = (cu->list_in_scope == &file_symbols
16658 && (cu->language == language_cplus
16659 || cu->language == language_java)
16660 ? &global_symbols : cu->list_in_scope);
16661 }
16662 break;
16663 case DW_TAG_namespace:
16664 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16665 list_to_add = &global_symbols;
16666 break;
16667 case DW_TAG_common_block:
16668 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16669 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16670 add_symbol_to_list (sym, cu->list_in_scope);
16671 break;
16672 default:
16673 /* Not a tag we recognize. Hopefully we aren't processing
16674 trash data, but since we must specifically ignore things
16675 we don't recognize, there is nothing else we should do at
16676 this point. */
16677 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16678 dwarf_tag_name (die->tag));
16679 break;
16680 }
16681
16682 if (suppress_add)
16683 {
16684 sym->hash_next = objfile->template_symbols;
16685 objfile->template_symbols = sym;
16686 list_to_add = NULL;
16687 }
16688
16689 if (list_to_add != NULL)
16690 add_symbol_to_list (sym, list_to_add);
16691
16692 /* For the benefit of old versions of GCC, check for anonymous
16693 namespaces based on the demangled name. */
16694 if (!cu->processing_has_namespace_info
16695 && cu->language == language_cplus)
16696 cp_scan_for_anonymous_namespaces (sym, objfile);
16697 }
16698 return (sym);
16699 }
16700
16701 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16702
16703 static struct symbol *
16704 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16705 {
16706 return new_symbol_full (die, type, cu, NULL);
16707 }
16708
16709 /* Given an attr with a DW_FORM_dataN value in host byte order,
16710 zero-extend it as appropriate for the symbol's type. The DWARF
16711 standard (v4) is not entirely clear about the meaning of using
16712 DW_FORM_dataN for a constant with a signed type, where the type is
16713 wider than the data. The conclusion of a discussion on the DWARF
16714 list was that this is unspecified. We choose to always zero-extend
16715 because that is the interpretation long in use by GCC. */
16716
16717 static gdb_byte *
16718 dwarf2_const_value_data (struct attribute *attr, struct obstack *obstack,
16719 struct dwarf2_cu *cu, LONGEST *value, int bits)
16720 {
16721 struct objfile *objfile = cu->objfile;
16722 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16723 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16724 LONGEST l = DW_UNSND (attr);
16725
16726 if (bits < sizeof (*value) * 8)
16727 {
16728 l &= ((LONGEST) 1 << bits) - 1;
16729 *value = l;
16730 }
16731 else if (bits == sizeof (*value) * 8)
16732 *value = l;
16733 else
16734 {
16735 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16736 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16737 return bytes;
16738 }
16739
16740 return NULL;
16741 }
16742
16743 /* Read a constant value from an attribute. Either set *VALUE, or if
16744 the value does not fit in *VALUE, set *BYTES - either already
16745 allocated on the objfile obstack, or newly allocated on OBSTACK,
16746 or, set *BATON, if we translated the constant to a location
16747 expression. */
16748
16749 static void
16750 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16751 const char *name, struct obstack *obstack,
16752 struct dwarf2_cu *cu,
16753 LONGEST *value, const gdb_byte **bytes,
16754 struct dwarf2_locexpr_baton **baton)
16755 {
16756 struct objfile *objfile = cu->objfile;
16757 struct comp_unit_head *cu_header = &cu->header;
16758 struct dwarf_block *blk;
16759 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16760 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16761
16762 *value = 0;
16763 *bytes = NULL;
16764 *baton = NULL;
16765
16766 switch (attr->form)
16767 {
16768 case DW_FORM_addr:
16769 case DW_FORM_GNU_addr_index:
16770 {
16771 gdb_byte *data;
16772
16773 if (TYPE_LENGTH (type) != cu_header->addr_size)
16774 dwarf2_const_value_length_mismatch_complaint (name,
16775 cu_header->addr_size,
16776 TYPE_LENGTH (type));
16777 /* Symbols of this form are reasonably rare, so we just
16778 piggyback on the existing location code rather than writing
16779 a new implementation of symbol_computed_ops. */
16780 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16781 (*baton)->per_cu = cu->per_cu;
16782 gdb_assert ((*baton)->per_cu);
16783
16784 (*baton)->size = 2 + cu_header->addr_size;
16785 data = obstack_alloc (obstack, (*baton)->size);
16786 (*baton)->data = data;
16787
16788 data[0] = DW_OP_addr;
16789 store_unsigned_integer (&data[1], cu_header->addr_size,
16790 byte_order, DW_ADDR (attr));
16791 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16792 }
16793 break;
16794 case DW_FORM_string:
16795 case DW_FORM_strp:
16796 case DW_FORM_GNU_str_index:
16797 case DW_FORM_GNU_strp_alt:
16798 /* DW_STRING is already allocated on the objfile obstack, point
16799 directly to it. */
16800 *bytes = (const gdb_byte *) DW_STRING (attr);
16801 break;
16802 case DW_FORM_block1:
16803 case DW_FORM_block2:
16804 case DW_FORM_block4:
16805 case DW_FORM_block:
16806 case DW_FORM_exprloc:
16807 blk = DW_BLOCK (attr);
16808 if (TYPE_LENGTH (type) != blk->size)
16809 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16810 TYPE_LENGTH (type));
16811 *bytes = blk->data;
16812 break;
16813
16814 /* The DW_AT_const_value attributes are supposed to carry the
16815 symbol's value "represented as it would be on the target
16816 architecture." By the time we get here, it's already been
16817 converted to host endianness, so we just need to sign- or
16818 zero-extend it as appropriate. */
16819 case DW_FORM_data1:
16820 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16821 break;
16822 case DW_FORM_data2:
16823 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16824 break;
16825 case DW_FORM_data4:
16826 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16827 break;
16828 case DW_FORM_data8:
16829 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16830 break;
16831
16832 case DW_FORM_sdata:
16833 *value = DW_SND (attr);
16834 break;
16835
16836 case DW_FORM_udata:
16837 *value = DW_UNSND (attr);
16838 break;
16839
16840 default:
16841 complaint (&symfile_complaints,
16842 _("unsupported const value attribute form: '%s'"),
16843 dwarf_form_name (attr->form));
16844 *value = 0;
16845 break;
16846 }
16847 }
16848
16849
16850 /* Copy constant value from an attribute to a symbol. */
16851
16852 static void
16853 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16854 struct dwarf2_cu *cu)
16855 {
16856 struct objfile *objfile = cu->objfile;
16857 struct comp_unit_head *cu_header = &cu->header;
16858 LONGEST value;
16859 const gdb_byte *bytes;
16860 struct dwarf2_locexpr_baton *baton;
16861
16862 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16863 SYMBOL_PRINT_NAME (sym),
16864 &objfile->objfile_obstack, cu,
16865 &value, &bytes, &baton);
16866
16867 if (baton != NULL)
16868 {
16869 SYMBOL_LOCATION_BATON (sym) = baton;
16870 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16871 }
16872 else if (bytes != NULL)
16873 {
16874 SYMBOL_VALUE_BYTES (sym) = bytes;
16875 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16876 }
16877 else
16878 {
16879 SYMBOL_VALUE (sym) = value;
16880 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16881 }
16882 }
16883
16884 /* Return the type of the die in question using its DW_AT_type attribute. */
16885
16886 static struct type *
16887 die_type (struct die_info *die, struct dwarf2_cu *cu)
16888 {
16889 struct attribute *type_attr;
16890
16891 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16892 if (!type_attr)
16893 {
16894 /* A missing DW_AT_type represents a void type. */
16895 return objfile_type (cu->objfile)->builtin_void;
16896 }
16897
16898 return lookup_die_type (die, type_attr, cu);
16899 }
16900
16901 /* True iff CU's producer generates GNAT Ada auxiliary information
16902 that allows to find parallel types through that information instead
16903 of having to do expensive parallel lookups by type name. */
16904
16905 static int
16906 need_gnat_info (struct dwarf2_cu *cu)
16907 {
16908 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16909 of GNAT produces this auxiliary information, without any indication
16910 that it is produced. Part of enhancing the FSF version of GNAT
16911 to produce that information will be to put in place an indicator
16912 that we can use in order to determine whether the descriptive type
16913 info is available or not. One suggestion that has been made is
16914 to use a new attribute, attached to the CU die. For now, assume
16915 that the descriptive type info is not available. */
16916 return 0;
16917 }
16918
16919 /* Return the auxiliary type of the die in question using its
16920 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16921 attribute is not present. */
16922
16923 static struct type *
16924 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16925 {
16926 struct attribute *type_attr;
16927
16928 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16929 if (!type_attr)
16930 return NULL;
16931
16932 return lookup_die_type (die, type_attr, cu);
16933 }
16934
16935 /* If DIE has a descriptive_type attribute, then set the TYPE's
16936 descriptive type accordingly. */
16937
16938 static void
16939 set_descriptive_type (struct type *type, struct die_info *die,
16940 struct dwarf2_cu *cu)
16941 {
16942 struct type *descriptive_type = die_descriptive_type (die, cu);
16943
16944 if (descriptive_type)
16945 {
16946 ALLOCATE_GNAT_AUX_TYPE (type);
16947 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16948 }
16949 }
16950
16951 /* Return the containing type of the die in question using its
16952 DW_AT_containing_type attribute. */
16953
16954 static struct type *
16955 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16956 {
16957 struct attribute *type_attr;
16958
16959 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16960 if (!type_attr)
16961 error (_("Dwarf Error: Problem turning containing type into gdb type "
16962 "[in module %s]"), cu->objfile->name);
16963
16964 return lookup_die_type (die, type_attr, cu);
16965 }
16966
16967 /* Return an error marker type to use for the ill formed type in DIE/CU. */
16968
16969 static struct type *
16970 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
16971 {
16972 struct objfile *objfile = dwarf2_per_objfile->objfile;
16973 char *message, *saved;
16974
16975 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16976 objfile->name,
16977 cu->header.offset.sect_off,
16978 die->offset.sect_off);
16979 saved = obstack_copy0 (&objfile->objfile_obstack,
16980 message, strlen (message));
16981 xfree (message);
16982
16983 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16984 }
16985
16986 /* Look up the type of DIE in CU using its type attribute ATTR.
16987 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
16988 DW_AT_containing_type.
16989 If there is no type substitute an error marker. */
16990
16991 static struct type *
16992 lookup_die_type (struct die_info *die, struct attribute *attr,
16993 struct dwarf2_cu *cu)
16994 {
16995 struct objfile *objfile = cu->objfile;
16996 struct type *this_type;
16997
16998 gdb_assert (attr->name == DW_AT_type
16999 || attr->name == DW_AT_GNAT_descriptive_type
17000 || attr->name == DW_AT_containing_type);
17001
17002 /* First see if we have it cached. */
17003
17004 if (attr->form == DW_FORM_GNU_ref_alt)
17005 {
17006 struct dwarf2_per_cu_data *per_cu;
17007 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17008
17009 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17010 this_type = get_die_type_at_offset (offset, per_cu);
17011 }
17012 else if (is_ref_attr (attr))
17013 {
17014 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17015
17016 this_type = get_die_type_at_offset (offset, cu->per_cu);
17017 }
17018 else if (attr->form == DW_FORM_ref_sig8)
17019 {
17020 ULONGEST signature = DW_SIGNATURE (attr);
17021
17022 return get_signatured_type (die, signature, cu);
17023 }
17024 else
17025 {
17026 complaint (&symfile_complaints,
17027 _("Dwarf Error: Bad type attribute %s in DIE"
17028 " at 0x%x [in module %s]"),
17029 dwarf_attr_name (attr->name), die->offset.sect_off,
17030 objfile->name);
17031 return build_error_marker_type (cu, die);
17032 }
17033
17034 /* If not cached we need to read it in. */
17035
17036 if (this_type == NULL)
17037 {
17038 struct die_info *type_die = NULL;
17039 struct dwarf2_cu *type_cu = cu;
17040
17041 if (is_ref_attr (attr))
17042 type_die = follow_die_ref (die, attr, &type_cu);
17043 if (type_die == NULL)
17044 return build_error_marker_type (cu, die);
17045 /* If we find the type now, it's probably because the type came
17046 from an inter-CU reference and the type's CU got expanded before
17047 ours. */
17048 this_type = read_type_die (type_die, type_cu);
17049 }
17050
17051 /* If we still don't have a type use an error marker. */
17052
17053 if (this_type == NULL)
17054 return build_error_marker_type (cu, die);
17055
17056 return this_type;
17057 }
17058
17059 /* Return the type in DIE, CU.
17060 Returns NULL for invalid types.
17061
17062 This first does a lookup in die_type_hash,
17063 and only reads the die in if necessary.
17064
17065 NOTE: This can be called when reading in partial or full symbols. */
17066
17067 static struct type *
17068 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17069 {
17070 struct type *this_type;
17071
17072 this_type = get_die_type (die, cu);
17073 if (this_type)
17074 return this_type;
17075
17076 return read_type_die_1 (die, cu);
17077 }
17078
17079 /* Read the type in DIE, CU.
17080 Returns NULL for invalid types. */
17081
17082 static struct type *
17083 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17084 {
17085 struct type *this_type = NULL;
17086
17087 switch (die->tag)
17088 {
17089 case DW_TAG_class_type:
17090 case DW_TAG_interface_type:
17091 case DW_TAG_structure_type:
17092 case DW_TAG_union_type:
17093 this_type = read_structure_type (die, cu);
17094 break;
17095 case DW_TAG_enumeration_type:
17096 this_type = read_enumeration_type (die, cu);
17097 break;
17098 case DW_TAG_subprogram:
17099 case DW_TAG_subroutine_type:
17100 case DW_TAG_inlined_subroutine:
17101 this_type = read_subroutine_type (die, cu);
17102 break;
17103 case DW_TAG_array_type:
17104 this_type = read_array_type (die, cu);
17105 break;
17106 case DW_TAG_set_type:
17107 this_type = read_set_type (die, cu);
17108 break;
17109 case DW_TAG_pointer_type:
17110 this_type = read_tag_pointer_type (die, cu);
17111 break;
17112 case DW_TAG_ptr_to_member_type:
17113 this_type = read_tag_ptr_to_member_type (die, cu);
17114 break;
17115 case DW_TAG_reference_type:
17116 this_type = read_tag_reference_type (die, cu);
17117 break;
17118 case DW_TAG_const_type:
17119 this_type = read_tag_const_type (die, cu);
17120 break;
17121 case DW_TAG_volatile_type:
17122 this_type = read_tag_volatile_type (die, cu);
17123 break;
17124 case DW_TAG_restrict_type:
17125 this_type = read_tag_restrict_type (die, cu);
17126 break;
17127 case DW_TAG_string_type:
17128 this_type = read_tag_string_type (die, cu);
17129 break;
17130 case DW_TAG_typedef:
17131 this_type = read_typedef (die, cu);
17132 break;
17133 case DW_TAG_subrange_type:
17134 this_type = read_subrange_type (die, cu);
17135 break;
17136 case DW_TAG_base_type:
17137 this_type = read_base_type (die, cu);
17138 break;
17139 case DW_TAG_unspecified_type:
17140 this_type = read_unspecified_type (die, cu);
17141 break;
17142 case DW_TAG_namespace:
17143 this_type = read_namespace_type (die, cu);
17144 break;
17145 case DW_TAG_module:
17146 this_type = read_module_type (die, cu);
17147 break;
17148 default:
17149 complaint (&symfile_complaints,
17150 _("unexpected tag in read_type_die: '%s'"),
17151 dwarf_tag_name (die->tag));
17152 break;
17153 }
17154
17155 return this_type;
17156 }
17157
17158 /* See if we can figure out if the class lives in a namespace. We do
17159 this by looking for a member function; its demangled name will
17160 contain namespace info, if there is any.
17161 Return the computed name or NULL.
17162 Space for the result is allocated on the objfile's obstack.
17163 This is the full-die version of guess_partial_die_structure_name.
17164 In this case we know DIE has no useful parent. */
17165
17166 static char *
17167 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17168 {
17169 struct die_info *spec_die;
17170 struct dwarf2_cu *spec_cu;
17171 struct die_info *child;
17172
17173 spec_cu = cu;
17174 spec_die = die_specification (die, &spec_cu);
17175 if (spec_die != NULL)
17176 {
17177 die = spec_die;
17178 cu = spec_cu;
17179 }
17180
17181 for (child = die->child;
17182 child != NULL;
17183 child = child->sibling)
17184 {
17185 if (child->tag == DW_TAG_subprogram)
17186 {
17187 struct attribute *attr;
17188
17189 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17190 if (attr == NULL)
17191 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17192 if (attr != NULL)
17193 {
17194 char *actual_name
17195 = language_class_name_from_physname (cu->language_defn,
17196 DW_STRING (attr));
17197 char *name = NULL;
17198
17199 if (actual_name != NULL)
17200 {
17201 const char *die_name = dwarf2_name (die, cu);
17202
17203 if (die_name != NULL
17204 && strcmp (die_name, actual_name) != 0)
17205 {
17206 /* Strip off the class name from the full name.
17207 We want the prefix. */
17208 int die_name_len = strlen (die_name);
17209 int actual_name_len = strlen (actual_name);
17210
17211 /* Test for '::' as a sanity check. */
17212 if (actual_name_len > die_name_len + 2
17213 && actual_name[actual_name_len
17214 - die_name_len - 1] == ':')
17215 name =
17216 obstack_copy0 (&cu->objfile->objfile_obstack,
17217 actual_name,
17218 actual_name_len - die_name_len - 2);
17219 }
17220 }
17221 xfree (actual_name);
17222 return name;
17223 }
17224 }
17225 }
17226
17227 return NULL;
17228 }
17229
17230 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17231 prefix part in such case. See
17232 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17233
17234 static char *
17235 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17236 {
17237 struct attribute *attr;
17238 char *base;
17239
17240 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17241 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17242 return NULL;
17243
17244 attr = dwarf2_attr (die, DW_AT_name, cu);
17245 if (attr != NULL && DW_STRING (attr) != NULL)
17246 return NULL;
17247
17248 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17249 if (attr == NULL)
17250 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17251 if (attr == NULL || DW_STRING (attr) == NULL)
17252 return NULL;
17253
17254 /* dwarf2_name had to be already called. */
17255 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17256
17257 /* Strip the base name, keep any leading namespaces/classes. */
17258 base = strrchr (DW_STRING (attr), ':');
17259 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17260 return "";
17261
17262 return obstack_copy0 (&cu->objfile->objfile_obstack,
17263 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17264 }
17265
17266 /* Return the name of the namespace/class that DIE is defined within,
17267 or "" if we can't tell. The caller should not xfree the result.
17268
17269 For example, if we're within the method foo() in the following
17270 code:
17271
17272 namespace N {
17273 class C {
17274 void foo () {
17275 }
17276 };
17277 }
17278
17279 then determine_prefix on foo's die will return "N::C". */
17280
17281 static const char *
17282 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17283 {
17284 struct die_info *parent, *spec_die;
17285 struct dwarf2_cu *spec_cu;
17286 struct type *parent_type;
17287 char *retval;
17288
17289 if (cu->language != language_cplus && cu->language != language_java
17290 && cu->language != language_fortran)
17291 return "";
17292
17293 retval = anonymous_struct_prefix (die, cu);
17294 if (retval)
17295 return retval;
17296
17297 /* We have to be careful in the presence of DW_AT_specification.
17298 For example, with GCC 3.4, given the code
17299
17300 namespace N {
17301 void foo() {
17302 // Definition of N::foo.
17303 }
17304 }
17305
17306 then we'll have a tree of DIEs like this:
17307
17308 1: DW_TAG_compile_unit
17309 2: DW_TAG_namespace // N
17310 3: DW_TAG_subprogram // declaration of N::foo
17311 4: DW_TAG_subprogram // definition of N::foo
17312 DW_AT_specification // refers to die #3
17313
17314 Thus, when processing die #4, we have to pretend that we're in
17315 the context of its DW_AT_specification, namely the contex of die
17316 #3. */
17317 spec_cu = cu;
17318 spec_die = die_specification (die, &spec_cu);
17319 if (spec_die == NULL)
17320 parent = die->parent;
17321 else
17322 {
17323 parent = spec_die->parent;
17324 cu = spec_cu;
17325 }
17326
17327 if (parent == NULL)
17328 return "";
17329 else if (parent->building_fullname)
17330 {
17331 const char *name;
17332 const char *parent_name;
17333
17334 /* It has been seen on RealView 2.2 built binaries,
17335 DW_TAG_template_type_param types actually _defined_ as
17336 children of the parent class:
17337
17338 enum E {};
17339 template class <class Enum> Class{};
17340 Class<enum E> class_e;
17341
17342 1: DW_TAG_class_type (Class)
17343 2: DW_TAG_enumeration_type (E)
17344 3: DW_TAG_enumerator (enum1:0)
17345 3: DW_TAG_enumerator (enum2:1)
17346 ...
17347 2: DW_TAG_template_type_param
17348 DW_AT_type DW_FORM_ref_udata (E)
17349
17350 Besides being broken debug info, it can put GDB into an
17351 infinite loop. Consider:
17352
17353 When we're building the full name for Class<E>, we'll start
17354 at Class, and go look over its template type parameters,
17355 finding E. We'll then try to build the full name of E, and
17356 reach here. We're now trying to build the full name of E,
17357 and look over the parent DIE for containing scope. In the
17358 broken case, if we followed the parent DIE of E, we'd again
17359 find Class, and once again go look at its template type
17360 arguments, etc., etc. Simply don't consider such parent die
17361 as source-level parent of this die (it can't be, the language
17362 doesn't allow it), and break the loop here. */
17363 name = dwarf2_name (die, cu);
17364 parent_name = dwarf2_name (parent, cu);
17365 complaint (&symfile_complaints,
17366 _("template param type '%s' defined within parent '%s'"),
17367 name ? name : "<unknown>",
17368 parent_name ? parent_name : "<unknown>");
17369 return "";
17370 }
17371 else
17372 switch (parent->tag)
17373 {
17374 case DW_TAG_namespace:
17375 parent_type = read_type_die (parent, cu);
17376 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17377 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17378 Work around this problem here. */
17379 if (cu->language == language_cplus
17380 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17381 return "";
17382 /* We give a name to even anonymous namespaces. */
17383 return TYPE_TAG_NAME (parent_type);
17384 case DW_TAG_class_type:
17385 case DW_TAG_interface_type:
17386 case DW_TAG_structure_type:
17387 case DW_TAG_union_type:
17388 case DW_TAG_module:
17389 parent_type = read_type_die (parent, cu);
17390 if (TYPE_TAG_NAME (parent_type) != NULL)
17391 return TYPE_TAG_NAME (parent_type);
17392 else
17393 /* An anonymous structure is only allowed non-static data
17394 members; no typedefs, no member functions, et cetera.
17395 So it does not need a prefix. */
17396 return "";
17397 case DW_TAG_compile_unit:
17398 case DW_TAG_partial_unit:
17399 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17400 if (cu->language == language_cplus
17401 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17402 && die->child != NULL
17403 && (die->tag == DW_TAG_class_type
17404 || die->tag == DW_TAG_structure_type
17405 || die->tag == DW_TAG_union_type))
17406 {
17407 char *name = guess_full_die_structure_name (die, cu);
17408 if (name != NULL)
17409 return name;
17410 }
17411 return "";
17412 default:
17413 return determine_prefix (parent, cu);
17414 }
17415 }
17416
17417 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17418 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17419 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17420 an obconcat, otherwise allocate storage for the result. The CU argument is
17421 used to determine the language and hence, the appropriate separator. */
17422
17423 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17424
17425 static char *
17426 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17427 int physname, struct dwarf2_cu *cu)
17428 {
17429 const char *lead = "";
17430 const char *sep;
17431
17432 if (suffix == NULL || suffix[0] == '\0'
17433 || prefix == NULL || prefix[0] == '\0')
17434 sep = "";
17435 else if (cu->language == language_java)
17436 sep = ".";
17437 else if (cu->language == language_fortran && physname)
17438 {
17439 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17440 DW_AT_MIPS_linkage_name is preferred and used instead. */
17441
17442 lead = "__";
17443 sep = "_MOD_";
17444 }
17445 else
17446 sep = "::";
17447
17448 if (prefix == NULL)
17449 prefix = "";
17450 if (suffix == NULL)
17451 suffix = "";
17452
17453 if (obs == NULL)
17454 {
17455 char *retval
17456 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17457
17458 strcpy (retval, lead);
17459 strcat (retval, prefix);
17460 strcat (retval, sep);
17461 strcat (retval, suffix);
17462 return retval;
17463 }
17464 else
17465 {
17466 /* We have an obstack. */
17467 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17468 }
17469 }
17470
17471 /* Return sibling of die, NULL if no sibling. */
17472
17473 static struct die_info *
17474 sibling_die (struct die_info *die)
17475 {
17476 return die->sibling;
17477 }
17478
17479 /* Get name of a die, return NULL if not found. */
17480
17481 static const char *
17482 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17483 struct obstack *obstack)
17484 {
17485 if (name && cu->language == language_cplus)
17486 {
17487 char *canon_name = cp_canonicalize_string (name);
17488
17489 if (canon_name != NULL)
17490 {
17491 if (strcmp (canon_name, name) != 0)
17492 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17493 xfree (canon_name);
17494 }
17495 }
17496
17497 return name;
17498 }
17499
17500 /* Get name of a die, return NULL if not found. */
17501
17502 static const char *
17503 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17504 {
17505 struct attribute *attr;
17506
17507 attr = dwarf2_attr (die, DW_AT_name, cu);
17508 if ((!attr || !DW_STRING (attr))
17509 && die->tag != DW_TAG_class_type
17510 && die->tag != DW_TAG_interface_type
17511 && die->tag != DW_TAG_structure_type
17512 && die->tag != DW_TAG_union_type)
17513 return NULL;
17514
17515 switch (die->tag)
17516 {
17517 case DW_TAG_compile_unit:
17518 case DW_TAG_partial_unit:
17519 /* Compilation units have a DW_AT_name that is a filename, not
17520 a source language identifier. */
17521 case DW_TAG_enumeration_type:
17522 case DW_TAG_enumerator:
17523 /* These tags always have simple identifiers already; no need
17524 to canonicalize them. */
17525 return DW_STRING (attr);
17526
17527 case DW_TAG_subprogram:
17528 /* Java constructors will all be named "<init>", so return
17529 the class name when we see this special case. */
17530 if (cu->language == language_java
17531 && DW_STRING (attr) != NULL
17532 && strcmp (DW_STRING (attr), "<init>") == 0)
17533 {
17534 struct dwarf2_cu *spec_cu = cu;
17535 struct die_info *spec_die;
17536
17537 /* GCJ will output '<init>' for Java constructor names.
17538 For this special case, return the name of the parent class. */
17539
17540 /* GCJ may output suprogram DIEs with AT_specification set.
17541 If so, use the name of the specified DIE. */
17542 spec_die = die_specification (die, &spec_cu);
17543 if (spec_die != NULL)
17544 return dwarf2_name (spec_die, spec_cu);
17545
17546 do
17547 {
17548 die = die->parent;
17549 if (die->tag == DW_TAG_class_type)
17550 return dwarf2_name (die, cu);
17551 }
17552 while (die->tag != DW_TAG_compile_unit
17553 && die->tag != DW_TAG_partial_unit);
17554 }
17555 break;
17556
17557 case DW_TAG_class_type:
17558 case DW_TAG_interface_type:
17559 case DW_TAG_structure_type:
17560 case DW_TAG_union_type:
17561 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17562 structures or unions. These were of the form "._%d" in GCC 4.1,
17563 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17564 and GCC 4.4. We work around this problem by ignoring these. */
17565 if (attr && DW_STRING (attr)
17566 && (strncmp (DW_STRING (attr), "._", 2) == 0
17567 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17568 return NULL;
17569
17570 /* GCC might emit a nameless typedef that has a linkage name. See
17571 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17572 if (!attr || DW_STRING (attr) == NULL)
17573 {
17574 char *demangled = NULL;
17575
17576 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17577 if (attr == NULL)
17578 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17579
17580 if (attr == NULL || DW_STRING (attr) == NULL)
17581 return NULL;
17582
17583 /* Avoid demangling DW_STRING (attr) the second time on a second
17584 call for the same DIE. */
17585 if (!DW_STRING_IS_CANONICAL (attr))
17586 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17587
17588 if (demangled)
17589 {
17590 char *base;
17591
17592 /* FIXME: we already did this for the partial symbol... */
17593 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17594 demangled, strlen (demangled));
17595 DW_STRING_IS_CANONICAL (attr) = 1;
17596 xfree (demangled);
17597
17598 /* Strip any leading namespaces/classes, keep only the base name.
17599 DW_AT_name for named DIEs does not contain the prefixes. */
17600 base = strrchr (DW_STRING (attr), ':');
17601 if (base && base > DW_STRING (attr) && base[-1] == ':')
17602 return &base[1];
17603 else
17604 return DW_STRING (attr);
17605 }
17606 }
17607 break;
17608
17609 default:
17610 break;
17611 }
17612
17613 if (!DW_STRING_IS_CANONICAL (attr))
17614 {
17615 DW_STRING (attr)
17616 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17617 &cu->objfile->objfile_obstack);
17618 DW_STRING_IS_CANONICAL (attr) = 1;
17619 }
17620 return DW_STRING (attr);
17621 }
17622
17623 /* Return the die that this die in an extension of, or NULL if there
17624 is none. *EXT_CU is the CU containing DIE on input, and the CU
17625 containing the return value on output. */
17626
17627 static struct die_info *
17628 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17629 {
17630 struct attribute *attr;
17631
17632 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17633 if (attr == NULL)
17634 return NULL;
17635
17636 return follow_die_ref (die, attr, ext_cu);
17637 }
17638
17639 /* Convert a DIE tag into its string name. */
17640
17641 static const char *
17642 dwarf_tag_name (unsigned tag)
17643 {
17644 const char *name = get_DW_TAG_name (tag);
17645
17646 if (name == NULL)
17647 return "DW_TAG_<unknown>";
17648
17649 return name;
17650 }
17651
17652 /* Convert a DWARF attribute code into its string name. */
17653
17654 static const char *
17655 dwarf_attr_name (unsigned attr)
17656 {
17657 const char *name;
17658
17659 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17660 if (attr == DW_AT_MIPS_fde)
17661 return "DW_AT_MIPS_fde";
17662 #else
17663 if (attr == DW_AT_HP_block_index)
17664 return "DW_AT_HP_block_index";
17665 #endif
17666
17667 name = get_DW_AT_name (attr);
17668
17669 if (name == NULL)
17670 return "DW_AT_<unknown>";
17671
17672 return name;
17673 }
17674
17675 /* Convert a DWARF value form code into its string name. */
17676
17677 static const char *
17678 dwarf_form_name (unsigned form)
17679 {
17680 const char *name = get_DW_FORM_name (form);
17681
17682 if (name == NULL)
17683 return "DW_FORM_<unknown>";
17684
17685 return name;
17686 }
17687
17688 static char *
17689 dwarf_bool_name (unsigned mybool)
17690 {
17691 if (mybool)
17692 return "TRUE";
17693 else
17694 return "FALSE";
17695 }
17696
17697 /* Convert a DWARF type code into its string name. */
17698
17699 static const char *
17700 dwarf_type_encoding_name (unsigned enc)
17701 {
17702 const char *name = get_DW_ATE_name (enc);
17703
17704 if (name == NULL)
17705 return "DW_ATE_<unknown>";
17706
17707 return name;
17708 }
17709
17710 static void
17711 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17712 {
17713 unsigned int i;
17714
17715 print_spaces (indent, f);
17716 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17717 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17718
17719 if (die->parent != NULL)
17720 {
17721 print_spaces (indent, f);
17722 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17723 die->parent->offset.sect_off);
17724 }
17725
17726 print_spaces (indent, f);
17727 fprintf_unfiltered (f, " has children: %s\n",
17728 dwarf_bool_name (die->child != NULL));
17729
17730 print_spaces (indent, f);
17731 fprintf_unfiltered (f, " attributes:\n");
17732
17733 for (i = 0; i < die->num_attrs; ++i)
17734 {
17735 print_spaces (indent, f);
17736 fprintf_unfiltered (f, " %s (%s) ",
17737 dwarf_attr_name (die->attrs[i].name),
17738 dwarf_form_name (die->attrs[i].form));
17739
17740 switch (die->attrs[i].form)
17741 {
17742 case DW_FORM_addr:
17743 case DW_FORM_GNU_addr_index:
17744 fprintf_unfiltered (f, "address: ");
17745 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17746 break;
17747 case DW_FORM_block2:
17748 case DW_FORM_block4:
17749 case DW_FORM_block:
17750 case DW_FORM_block1:
17751 fprintf_unfiltered (f, "block: size %s",
17752 pulongest (DW_BLOCK (&die->attrs[i])->size));
17753 break;
17754 case DW_FORM_exprloc:
17755 fprintf_unfiltered (f, "expression: size %s",
17756 pulongest (DW_BLOCK (&die->attrs[i])->size));
17757 break;
17758 case DW_FORM_ref_addr:
17759 fprintf_unfiltered (f, "ref address: ");
17760 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17761 break;
17762 case DW_FORM_GNU_ref_alt:
17763 fprintf_unfiltered (f, "alt ref address: ");
17764 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17765 break;
17766 case DW_FORM_ref1:
17767 case DW_FORM_ref2:
17768 case DW_FORM_ref4:
17769 case DW_FORM_ref8:
17770 case DW_FORM_ref_udata:
17771 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17772 (long) (DW_UNSND (&die->attrs[i])));
17773 break;
17774 case DW_FORM_data1:
17775 case DW_FORM_data2:
17776 case DW_FORM_data4:
17777 case DW_FORM_data8:
17778 case DW_FORM_udata:
17779 case DW_FORM_sdata:
17780 fprintf_unfiltered (f, "constant: %s",
17781 pulongest (DW_UNSND (&die->attrs[i])));
17782 break;
17783 case DW_FORM_sec_offset:
17784 fprintf_unfiltered (f, "section offset: %s",
17785 pulongest (DW_UNSND (&die->attrs[i])));
17786 break;
17787 case DW_FORM_ref_sig8:
17788 fprintf_unfiltered (f, "signature: %s",
17789 hex_string (DW_SIGNATURE (&die->attrs[i])));
17790 break;
17791 case DW_FORM_string:
17792 case DW_FORM_strp:
17793 case DW_FORM_GNU_str_index:
17794 case DW_FORM_GNU_strp_alt:
17795 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17796 DW_STRING (&die->attrs[i])
17797 ? DW_STRING (&die->attrs[i]) : "",
17798 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17799 break;
17800 case DW_FORM_flag:
17801 if (DW_UNSND (&die->attrs[i]))
17802 fprintf_unfiltered (f, "flag: TRUE");
17803 else
17804 fprintf_unfiltered (f, "flag: FALSE");
17805 break;
17806 case DW_FORM_flag_present:
17807 fprintf_unfiltered (f, "flag: TRUE");
17808 break;
17809 case DW_FORM_indirect:
17810 /* The reader will have reduced the indirect form to
17811 the "base form" so this form should not occur. */
17812 fprintf_unfiltered (f,
17813 "unexpected attribute form: DW_FORM_indirect");
17814 break;
17815 default:
17816 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17817 die->attrs[i].form);
17818 break;
17819 }
17820 fprintf_unfiltered (f, "\n");
17821 }
17822 }
17823
17824 static void
17825 dump_die_for_error (struct die_info *die)
17826 {
17827 dump_die_shallow (gdb_stderr, 0, die);
17828 }
17829
17830 static void
17831 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17832 {
17833 int indent = level * 4;
17834
17835 gdb_assert (die != NULL);
17836
17837 if (level >= max_level)
17838 return;
17839
17840 dump_die_shallow (f, indent, die);
17841
17842 if (die->child != NULL)
17843 {
17844 print_spaces (indent, f);
17845 fprintf_unfiltered (f, " Children:");
17846 if (level + 1 < max_level)
17847 {
17848 fprintf_unfiltered (f, "\n");
17849 dump_die_1 (f, level + 1, max_level, die->child);
17850 }
17851 else
17852 {
17853 fprintf_unfiltered (f,
17854 " [not printed, max nesting level reached]\n");
17855 }
17856 }
17857
17858 if (die->sibling != NULL && level > 0)
17859 {
17860 dump_die_1 (f, level, max_level, die->sibling);
17861 }
17862 }
17863
17864 /* This is called from the pdie macro in gdbinit.in.
17865 It's not static so gcc will keep a copy callable from gdb. */
17866
17867 void
17868 dump_die (struct die_info *die, int max_level)
17869 {
17870 dump_die_1 (gdb_stdlog, 0, max_level, die);
17871 }
17872
17873 static void
17874 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17875 {
17876 void **slot;
17877
17878 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17879 INSERT);
17880
17881 *slot = die;
17882 }
17883
17884 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17885 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17886
17887 static int
17888 is_ref_attr (struct attribute *attr)
17889 {
17890 switch (attr->form)
17891 {
17892 case DW_FORM_ref_addr:
17893 case DW_FORM_ref1:
17894 case DW_FORM_ref2:
17895 case DW_FORM_ref4:
17896 case DW_FORM_ref8:
17897 case DW_FORM_ref_udata:
17898 case DW_FORM_GNU_ref_alt:
17899 return 1;
17900 default:
17901 return 0;
17902 }
17903 }
17904
17905 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17906 required kind. */
17907
17908 static sect_offset
17909 dwarf2_get_ref_die_offset (struct attribute *attr)
17910 {
17911 sect_offset retval = { DW_UNSND (attr) };
17912
17913 if (is_ref_attr (attr))
17914 return retval;
17915
17916 retval.sect_off = 0;
17917 complaint (&symfile_complaints,
17918 _("unsupported die ref attribute form: '%s'"),
17919 dwarf_form_name (attr->form));
17920 return retval;
17921 }
17922
17923 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17924 * the value held by the attribute is not constant. */
17925
17926 static LONGEST
17927 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17928 {
17929 if (attr->form == DW_FORM_sdata)
17930 return DW_SND (attr);
17931 else if (attr->form == DW_FORM_udata
17932 || attr->form == DW_FORM_data1
17933 || attr->form == DW_FORM_data2
17934 || attr->form == DW_FORM_data4
17935 || attr->form == DW_FORM_data8)
17936 return DW_UNSND (attr);
17937 else
17938 {
17939 complaint (&symfile_complaints,
17940 _("Attribute value is not a constant (%s)"),
17941 dwarf_form_name (attr->form));
17942 return default_value;
17943 }
17944 }
17945
17946 /* Follow reference or signature attribute ATTR of SRC_DIE.
17947 On entry *REF_CU is the CU of SRC_DIE.
17948 On exit *REF_CU is the CU of the result. */
17949
17950 static struct die_info *
17951 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17952 struct dwarf2_cu **ref_cu)
17953 {
17954 struct die_info *die;
17955
17956 if (is_ref_attr (attr))
17957 die = follow_die_ref (src_die, attr, ref_cu);
17958 else if (attr->form == DW_FORM_ref_sig8)
17959 die = follow_die_sig (src_die, attr, ref_cu);
17960 else
17961 {
17962 dump_die_for_error (src_die);
17963 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17964 (*ref_cu)->objfile->name);
17965 }
17966
17967 return die;
17968 }
17969
17970 /* Follow reference OFFSET.
17971 On entry *REF_CU is the CU of the source die referencing OFFSET.
17972 On exit *REF_CU is the CU of the result.
17973 Returns NULL if OFFSET is invalid. */
17974
17975 static struct die_info *
17976 follow_die_offset (sect_offset offset, int offset_in_dwz,
17977 struct dwarf2_cu **ref_cu)
17978 {
17979 struct die_info temp_die;
17980 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17981
17982 gdb_assert (cu->per_cu != NULL);
17983
17984 target_cu = cu;
17985
17986 if (cu->per_cu->is_debug_types)
17987 {
17988 /* .debug_types CUs cannot reference anything outside their CU.
17989 If they need to, they have to reference a signatured type via
17990 DW_FORM_ref_sig8. */
17991 if (! offset_in_cu_p (&cu->header, offset))
17992 return NULL;
17993 }
17994 else if (offset_in_dwz != cu->per_cu->is_dwz
17995 || ! offset_in_cu_p (&cu->header, offset))
17996 {
17997 struct dwarf2_per_cu_data *per_cu;
17998
17999 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18000 cu->objfile);
18001
18002 /* If necessary, add it to the queue and load its DIEs. */
18003 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18004 load_full_comp_unit (per_cu, cu->language);
18005
18006 target_cu = per_cu->cu;
18007 }
18008 else if (cu->dies == NULL)
18009 {
18010 /* We're loading full DIEs during partial symbol reading. */
18011 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18012 load_full_comp_unit (cu->per_cu, language_minimal);
18013 }
18014
18015 *ref_cu = target_cu;
18016 temp_die.offset = offset;
18017 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18018 }
18019
18020 /* Follow reference attribute ATTR of SRC_DIE.
18021 On entry *REF_CU is the CU of SRC_DIE.
18022 On exit *REF_CU is the CU of the result. */
18023
18024 static struct die_info *
18025 follow_die_ref (struct die_info *src_die, struct attribute *attr,
18026 struct dwarf2_cu **ref_cu)
18027 {
18028 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18029 struct dwarf2_cu *cu = *ref_cu;
18030 struct die_info *die;
18031
18032 die = follow_die_offset (offset,
18033 (attr->form == DW_FORM_GNU_ref_alt
18034 || cu->per_cu->is_dwz),
18035 ref_cu);
18036 if (!die)
18037 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18038 "at 0x%x [in module %s]"),
18039 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18040
18041 return die;
18042 }
18043
18044 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18045 Returned value is intended for DW_OP_call*. Returned
18046 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18047
18048 struct dwarf2_locexpr_baton
18049 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18050 struct dwarf2_per_cu_data *per_cu,
18051 CORE_ADDR (*get_frame_pc) (void *baton),
18052 void *baton)
18053 {
18054 struct dwarf2_cu *cu;
18055 struct die_info *die;
18056 struct attribute *attr;
18057 struct dwarf2_locexpr_baton retval;
18058
18059 dw2_setup (per_cu->objfile);
18060
18061 if (per_cu->cu == NULL)
18062 load_cu (per_cu);
18063 cu = per_cu->cu;
18064
18065 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18066 if (!die)
18067 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18068 offset.sect_off, per_cu->objfile->name);
18069
18070 attr = dwarf2_attr (die, DW_AT_location, cu);
18071 if (!attr)
18072 {
18073 /* DWARF: "If there is no such attribute, then there is no effect.".
18074 DATA is ignored if SIZE is 0. */
18075
18076 retval.data = NULL;
18077 retval.size = 0;
18078 }
18079 else if (attr_form_is_section_offset (attr))
18080 {
18081 struct dwarf2_loclist_baton loclist_baton;
18082 CORE_ADDR pc = (*get_frame_pc) (baton);
18083 size_t size;
18084
18085 fill_in_loclist_baton (cu, &loclist_baton, attr);
18086
18087 retval.data = dwarf2_find_location_expression (&loclist_baton,
18088 &size, pc);
18089 retval.size = size;
18090 }
18091 else
18092 {
18093 if (!attr_form_is_block (attr))
18094 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18095 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18096 offset.sect_off, per_cu->objfile->name);
18097
18098 retval.data = DW_BLOCK (attr)->data;
18099 retval.size = DW_BLOCK (attr)->size;
18100 }
18101 retval.per_cu = cu->per_cu;
18102
18103 age_cached_comp_units ();
18104
18105 return retval;
18106 }
18107
18108 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18109 offset. */
18110
18111 struct dwarf2_locexpr_baton
18112 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18113 struct dwarf2_per_cu_data *per_cu,
18114 CORE_ADDR (*get_frame_pc) (void *baton),
18115 void *baton)
18116 {
18117 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18118
18119 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18120 }
18121
18122 /* Write a constant of a given type as target-ordered bytes into
18123 OBSTACK. */
18124
18125 static const gdb_byte *
18126 write_constant_as_bytes (struct obstack *obstack,
18127 enum bfd_endian byte_order,
18128 struct type *type,
18129 ULONGEST value,
18130 LONGEST *len)
18131 {
18132 gdb_byte *result;
18133
18134 *len = TYPE_LENGTH (type);
18135 result = obstack_alloc (obstack, *len);
18136 store_unsigned_integer (result, *len, byte_order, value);
18137
18138 return result;
18139 }
18140
18141 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18142 pointer to the constant bytes and set LEN to the length of the
18143 data. If memory is needed, allocate it on OBSTACK. If the DIE
18144 does not have a DW_AT_const_value, return NULL. */
18145
18146 const gdb_byte *
18147 dwarf2_fetch_constant_bytes (sect_offset offset,
18148 struct dwarf2_per_cu_data *per_cu,
18149 struct obstack *obstack,
18150 LONGEST *len)
18151 {
18152 struct dwarf2_cu *cu;
18153 struct die_info *die;
18154 struct attribute *attr;
18155 const gdb_byte *result = NULL;
18156 struct type *type;
18157 LONGEST value;
18158 enum bfd_endian byte_order;
18159
18160 dw2_setup (per_cu->objfile);
18161
18162 if (per_cu->cu == NULL)
18163 load_cu (per_cu);
18164 cu = per_cu->cu;
18165
18166 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18167 if (!die)
18168 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18169 offset.sect_off, per_cu->objfile->name);
18170
18171
18172 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18173 if (attr == NULL)
18174 return NULL;
18175
18176 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18177 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18178
18179 switch (attr->form)
18180 {
18181 case DW_FORM_addr:
18182 case DW_FORM_GNU_addr_index:
18183 {
18184 gdb_byte *tem;
18185
18186 *len = cu->header.addr_size;
18187 tem = obstack_alloc (obstack, *len);
18188 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18189 result = tem;
18190 }
18191 break;
18192 case DW_FORM_string:
18193 case DW_FORM_strp:
18194 case DW_FORM_GNU_str_index:
18195 case DW_FORM_GNU_strp_alt:
18196 /* DW_STRING is already allocated on the objfile obstack, point
18197 directly to it. */
18198 result = (const gdb_byte *) DW_STRING (attr);
18199 *len = strlen (DW_STRING (attr));
18200 break;
18201 case DW_FORM_block1:
18202 case DW_FORM_block2:
18203 case DW_FORM_block4:
18204 case DW_FORM_block:
18205 case DW_FORM_exprloc:
18206 result = DW_BLOCK (attr)->data;
18207 *len = DW_BLOCK (attr)->size;
18208 break;
18209
18210 /* The DW_AT_const_value attributes are supposed to carry the
18211 symbol's value "represented as it would be on the target
18212 architecture." By the time we get here, it's already been
18213 converted to host endianness, so we just need to sign- or
18214 zero-extend it as appropriate. */
18215 case DW_FORM_data1:
18216 type = die_type (die, cu);
18217 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18218 if (result == NULL)
18219 result = write_constant_as_bytes (obstack, byte_order,
18220 type, value, len);
18221 break;
18222 case DW_FORM_data2:
18223 type = die_type (die, cu);
18224 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18225 if (result == NULL)
18226 result = write_constant_as_bytes (obstack, byte_order,
18227 type, value, len);
18228 break;
18229 case DW_FORM_data4:
18230 type = die_type (die, cu);
18231 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18232 if (result == NULL)
18233 result = write_constant_as_bytes (obstack, byte_order,
18234 type, value, len);
18235 break;
18236 case DW_FORM_data8:
18237 type = die_type (die, cu);
18238 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18239 if (result == NULL)
18240 result = write_constant_as_bytes (obstack, byte_order,
18241 type, value, len);
18242 break;
18243
18244 case DW_FORM_sdata:
18245 type = die_type (die, cu);
18246 result = write_constant_as_bytes (obstack, byte_order,
18247 type, DW_SND (attr), len);
18248 break;
18249
18250 case DW_FORM_udata:
18251 type = die_type (die, cu);
18252 result = write_constant_as_bytes (obstack, byte_order,
18253 type, DW_UNSND (attr), len);
18254 break;
18255
18256 default:
18257 complaint (&symfile_complaints,
18258 _("unsupported const value attribute form: '%s'"),
18259 dwarf_form_name (attr->form));
18260 break;
18261 }
18262
18263 return result;
18264 }
18265
18266 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18267 PER_CU. */
18268
18269 struct type *
18270 dwarf2_get_die_type (cu_offset die_offset,
18271 struct dwarf2_per_cu_data *per_cu)
18272 {
18273 sect_offset die_offset_sect;
18274
18275 dw2_setup (per_cu->objfile);
18276
18277 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18278 return get_die_type_at_offset (die_offset_sect, per_cu);
18279 }
18280
18281 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18282 On entry *REF_CU is the CU of SRC_DIE.
18283 On exit *REF_CU is the CU of the result.
18284 Returns NULL if the referenced DIE isn't found. */
18285
18286 static struct die_info *
18287 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18288 struct dwarf2_cu **ref_cu)
18289 {
18290 struct objfile *objfile = (*ref_cu)->objfile;
18291 struct die_info temp_die;
18292 struct dwarf2_cu *sig_cu;
18293 struct die_info *die;
18294
18295 /* While it might be nice to assert sig_type->type == NULL here,
18296 we can get here for DW_AT_imported_declaration where we need
18297 the DIE not the type. */
18298
18299 /* If necessary, add it to the queue and load its DIEs. */
18300
18301 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18302 read_signatured_type (sig_type);
18303
18304 gdb_assert (sig_type->per_cu.cu != NULL);
18305
18306 sig_cu = sig_type->per_cu.cu;
18307 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18308 temp_die.offset = sig_type->type_offset_in_section;
18309 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18310 temp_die.offset.sect_off);
18311 if (die)
18312 {
18313 /* For .gdb_index version 7 keep track of included TUs.
18314 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18315 if (dwarf2_per_objfile->index_table != NULL
18316 && dwarf2_per_objfile->index_table->version <= 7)
18317 {
18318 VEC_safe_push (dwarf2_per_cu_ptr,
18319 (*ref_cu)->per_cu->imported_symtabs,
18320 sig_cu->per_cu);
18321 }
18322
18323 *ref_cu = sig_cu;
18324 return die;
18325 }
18326
18327 return NULL;
18328 }
18329
18330 /* Follow signatured type referenced by ATTR in SRC_DIE.
18331 On entry *REF_CU is the CU of SRC_DIE.
18332 On exit *REF_CU is the CU of the result.
18333 The result is the DIE of the type.
18334 If the referenced type cannot be found an error is thrown. */
18335
18336 static struct die_info *
18337 follow_die_sig (struct die_info *src_die, struct attribute *attr,
18338 struct dwarf2_cu **ref_cu)
18339 {
18340 ULONGEST signature = DW_SIGNATURE (attr);
18341 struct signatured_type *sig_type;
18342 struct die_info *die;
18343
18344 gdb_assert (attr->form == DW_FORM_ref_sig8);
18345
18346 sig_type = lookup_signatured_type (*ref_cu, signature);
18347 /* sig_type will be NULL if the signatured type is missing from
18348 the debug info. */
18349 if (sig_type == NULL)
18350 {
18351 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18352 " from DIE at 0x%x [in module %s]"),
18353 hex_string (signature), src_die->offset.sect_off,
18354 (*ref_cu)->objfile->name);
18355 }
18356
18357 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18358 if (die == NULL)
18359 {
18360 dump_die_for_error (src_die);
18361 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18362 " from DIE at 0x%x [in module %s]"),
18363 hex_string (signature), src_die->offset.sect_off,
18364 (*ref_cu)->objfile->name);
18365 }
18366
18367 return die;
18368 }
18369
18370 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18371 reading in and processing the type unit if necessary. */
18372
18373 static struct type *
18374 get_signatured_type (struct die_info *die, ULONGEST signature,
18375 struct dwarf2_cu *cu)
18376 {
18377 struct signatured_type *sig_type;
18378 struct dwarf2_cu *type_cu;
18379 struct die_info *type_die;
18380 struct type *type;
18381
18382 sig_type = lookup_signatured_type (cu, signature);
18383 /* sig_type will be NULL if the signatured type is missing from
18384 the debug info. */
18385 if (sig_type == NULL)
18386 {
18387 complaint (&symfile_complaints,
18388 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18389 " from DIE at 0x%x [in module %s]"),
18390 hex_string (signature), die->offset.sect_off,
18391 dwarf2_per_objfile->objfile->name);
18392 return build_error_marker_type (cu, die);
18393 }
18394
18395 /* If we already know the type we're done. */
18396 if (sig_type->type != NULL)
18397 return sig_type->type;
18398
18399 type_cu = cu;
18400 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18401 if (type_die != NULL)
18402 {
18403 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18404 is created. This is important, for example, because for c++ classes
18405 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18406 type = read_type_die (type_die, type_cu);
18407 if (type == NULL)
18408 {
18409 complaint (&symfile_complaints,
18410 _("Dwarf Error: Cannot build signatured type %s"
18411 " referenced from DIE at 0x%x [in module %s]"),
18412 hex_string (signature), die->offset.sect_off,
18413 dwarf2_per_objfile->objfile->name);
18414 type = build_error_marker_type (cu, die);
18415 }
18416 }
18417 else
18418 {
18419 complaint (&symfile_complaints,
18420 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18421 " from DIE at 0x%x [in module %s]"),
18422 hex_string (signature), die->offset.sect_off,
18423 dwarf2_per_objfile->objfile->name);
18424 type = build_error_marker_type (cu, die);
18425 }
18426 sig_type->type = type;
18427
18428 return type;
18429 }
18430
18431 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18432 reading in and processing the type unit if necessary. */
18433
18434 static struct type *
18435 get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
18436 struct dwarf2_cu *cu) /* ARI: editCase function */
18437 {
18438 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18439 if (is_ref_attr (attr))
18440 {
18441 struct dwarf2_cu *type_cu = cu;
18442 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18443
18444 return read_type_die (type_die, type_cu);
18445 }
18446 else if (attr->form == DW_FORM_ref_sig8)
18447 {
18448 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18449 }
18450 else
18451 {
18452 complaint (&symfile_complaints,
18453 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18454 " at 0x%x [in module %s]"),
18455 dwarf_form_name (attr->form), die->offset.sect_off,
18456 dwarf2_per_objfile->objfile->name);
18457 return build_error_marker_type (cu, die);
18458 }
18459 }
18460
18461 /* Load the DIEs associated with type unit PER_CU into memory. */
18462
18463 static void
18464 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18465 {
18466 struct signatured_type *sig_type;
18467
18468 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18469 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18470
18471 /* We have the per_cu, but we need the signatured_type.
18472 Fortunately this is an easy translation. */
18473 gdb_assert (per_cu->is_debug_types);
18474 sig_type = (struct signatured_type *) per_cu;
18475
18476 gdb_assert (per_cu->cu == NULL);
18477
18478 read_signatured_type (sig_type);
18479
18480 gdb_assert (per_cu->cu != NULL);
18481 }
18482
18483 /* die_reader_func for read_signatured_type.
18484 This is identical to load_full_comp_unit_reader,
18485 but is kept separate for now. */
18486
18487 static void
18488 read_signatured_type_reader (const struct die_reader_specs *reader,
18489 const gdb_byte *info_ptr,
18490 struct die_info *comp_unit_die,
18491 int has_children,
18492 void *data)
18493 {
18494 struct dwarf2_cu *cu = reader->cu;
18495
18496 gdb_assert (cu->die_hash == NULL);
18497 cu->die_hash =
18498 htab_create_alloc_ex (cu->header.length / 12,
18499 die_hash,
18500 die_eq,
18501 NULL,
18502 &cu->comp_unit_obstack,
18503 hashtab_obstack_allocate,
18504 dummy_obstack_deallocate);
18505
18506 if (has_children)
18507 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18508 &info_ptr, comp_unit_die);
18509 cu->dies = comp_unit_die;
18510 /* comp_unit_die is not stored in die_hash, no need. */
18511
18512 /* We try not to read any attributes in this function, because not
18513 all CUs needed for references have been loaded yet, and symbol
18514 table processing isn't initialized. But we have to set the CU language,
18515 or we won't be able to build types correctly.
18516 Similarly, if we do not read the producer, we can not apply
18517 producer-specific interpretation. */
18518 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18519 }
18520
18521 /* Read in a signatured type and build its CU and DIEs.
18522 If the type is a stub for the real type in a DWO file,
18523 read in the real type from the DWO file as well. */
18524
18525 static void
18526 read_signatured_type (struct signatured_type *sig_type)
18527 {
18528 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18529
18530 gdb_assert (per_cu->is_debug_types);
18531 gdb_assert (per_cu->cu == NULL);
18532
18533 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18534 read_signatured_type_reader, NULL);
18535 }
18536
18537 /* Decode simple location descriptions.
18538 Given a pointer to a dwarf block that defines a location, compute
18539 the location and return the value.
18540
18541 NOTE drow/2003-11-18: This function is called in two situations
18542 now: for the address of static or global variables (partial symbols
18543 only) and for offsets into structures which are expected to be
18544 (more or less) constant. The partial symbol case should go away,
18545 and only the constant case should remain. That will let this
18546 function complain more accurately. A few special modes are allowed
18547 without complaint for global variables (for instance, global
18548 register values and thread-local values).
18549
18550 A location description containing no operations indicates that the
18551 object is optimized out. The return value is 0 for that case.
18552 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18553 callers will only want a very basic result and this can become a
18554 complaint.
18555
18556 Note that stack[0] is unused except as a default error return. */
18557
18558 static CORE_ADDR
18559 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18560 {
18561 struct objfile *objfile = cu->objfile;
18562 size_t i;
18563 size_t size = blk->size;
18564 const gdb_byte *data = blk->data;
18565 CORE_ADDR stack[64];
18566 int stacki;
18567 unsigned int bytes_read, unsnd;
18568 gdb_byte op;
18569
18570 i = 0;
18571 stacki = 0;
18572 stack[stacki] = 0;
18573 stack[++stacki] = 0;
18574
18575 while (i < size)
18576 {
18577 op = data[i++];
18578 switch (op)
18579 {
18580 case DW_OP_lit0:
18581 case DW_OP_lit1:
18582 case DW_OP_lit2:
18583 case DW_OP_lit3:
18584 case DW_OP_lit4:
18585 case DW_OP_lit5:
18586 case DW_OP_lit6:
18587 case DW_OP_lit7:
18588 case DW_OP_lit8:
18589 case DW_OP_lit9:
18590 case DW_OP_lit10:
18591 case DW_OP_lit11:
18592 case DW_OP_lit12:
18593 case DW_OP_lit13:
18594 case DW_OP_lit14:
18595 case DW_OP_lit15:
18596 case DW_OP_lit16:
18597 case DW_OP_lit17:
18598 case DW_OP_lit18:
18599 case DW_OP_lit19:
18600 case DW_OP_lit20:
18601 case DW_OP_lit21:
18602 case DW_OP_lit22:
18603 case DW_OP_lit23:
18604 case DW_OP_lit24:
18605 case DW_OP_lit25:
18606 case DW_OP_lit26:
18607 case DW_OP_lit27:
18608 case DW_OP_lit28:
18609 case DW_OP_lit29:
18610 case DW_OP_lit30:
18611 case DW_OP_lit31:
18612 stack[++stacki] = op - DW_OP_lit0;
18613 break;
18614
18615 case DW_OP_reg0:
18616 case DW_OP_reg1:
18617 case DW_OP_reg2:
18618 case DW_OP_reg3:
18619 case DW_OP_reg4:
18620 case DW_OP_reg5:
18621 case DW_OP_reg6:
18622 case DW_OP_reg7:
18623 case DW_OP_reg8:
18624 case DW_OP_reg9:
18625 case DW_OP_reg10:
18626 case DW_OP_reg11:
18627 case DW_OP_reg12:
18628 case DW_OP_reg13:
18629 case DW_OP_reg14:
18630 case DW_OP_reg15:
18631 case DW_OP_reg16:
18632 case DW_OP_reg17:
18633 case DW_OP_reg18:
18634 case DW_OP_reg19:
18635 case DW_OP_reg20:
18636 case DW_OP_reg21:
18637 case DW_OP_reg22:
18638 case DW_OP_reg23:
18639 case DW_OP_reg24:
18640 case DW_OP_reg25:
18641 case DW_OP_reg26:
18642 case DW_OP_reg27:
18643 case DW_OP_reg28:
18644 case DW_OP_reg29:
18645 case DW_OP_reg30:
18646 case DW_OP_reg31:
18647 stack[++stacki] = op - DW_OP_reg0;
18648 if (i < size)
18649 dwarf2_complex_location_expr_complaint ();
18650 break;
18651
18652 case DW_OP_regx:
18653 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18654 i += bytes_read;
18655 stack[++stacki] = unsnd;
18656 if (i < size)
18657 dwarf2_complex_location_expr_complaint ();
18658 break;
18659
18660 case DW_OP_addr:
18661 stack[++stacki] = read_address (objfile->obfd, &data[i],
18662 cu, &bytes_read);
18663 i += bytes_read;
18664 break;
18665
18666 case DW_OP_const1u:
18667 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18668 i += 1;
18669 break;
18670
18671 case DW_OP_const1s:
18672 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18673 i += 1;
18674 break;
18675
18676 case DW_OP_const2u:
18677 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18678 i += 2;
18679 break;
18680
18681 case DW_OP_const2s:
18682 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18683 i += 2;
18684 break;
18685
18686 case DW_OP_const4u:
18687 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18688 i += 4;
18689 break;
18690
18691 case DW_OP_const4s:
18692 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18693 i += 4;
18694 break;
18695
18696 case DW_OP_const8u:
18697 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18698 i += 8;
18699 break;
18700
18701 case DW_OP_constu:
18702 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18703 &bytes_read);
18704 i += bytes_read;
18705 break;
18706
18707 case DW_OP_consts:
18708 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18709 i += bytes_read;
18710 break;
18711
18712 case DW_OP_dup:
18713 stack[stacki + 1] = stack[stacki];
18714 stacki++;
18715 break;
18716
18717 case DW_OP_plus:
18718 stack[stacki - 1] += stack[stacki];
18719 stacki--;
18720 break;
18721
18722 case DW_OP_plus_uconst:
18723 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18724 &bytes_read);
18725 i += bytes_read;
18726 break;
18727
18728 case DW_OP_minus:
18729 stack[stacki - 1] -= stack[stacki];
18730 stacki--;
18731 break;
18732
18733 case DW_OP_deref:
18734 /* If we're not the last op, then we definitely can't encode
18735 this using GDB's address_class enum. This is valid for partial
18736 global symbols, although the variable's address will be bogus
18737 in the psymtab. */
18738 if (i < size)
18739 dwarf2_complex_location_expr_complaint ();
18740 break;
18741
18742 case DW_OP_GNU_push_tls_address:
18743 /* The top of the stack has the offset from the beginning
18744 of the thread control block at which the variable is located. */
18745 /* Nothing should follow this operator, so the top of stack would
18746 be returned. */
18747 /* This is valid for partial global symbols, but the variable's
18748 address will be bogus in the psymtab. Make it always at least
18749 non-zero to not look as a variable garbage collected by linker
18750 which have DW_OP_addr 0. */
18751 if (i < size)
18752 dwarf2_complex_location_expr_complaint ();
18753 stack[stacki]++;
18754 break;
18755
18756 case DW_OP_GNU_uninit:
18757 break;
18758
18759 case DW_OP_GNU_addr_index:
18760 case DW_OP_GNU_const_index:
18761 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18762 &bytes_read);
18763 i += bytes_read;
18764 break;
18765
18766 default:
18767 {
18768 const char *name = get_DW_OP_name (op);
18769
18770 if (name)
18771 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18772 name);
18773 else
18774 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18775 op);
18776 }
18777
18778 return (stack[stacki]);
18779 }
18780
18781 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18782 outside of the allocated space. Also enforce minimum>0. */
18783 if (stacki >= ARRAY_SIZE (stack) - 1)
18784 {
18785 complaint (&symfile_complaints,
18786 _("location description stack overflow"));
18787 return 0;
18788 }
18789
18790 if (stacki <= 0)
18791 {
18792 complaint (&symfile_complaints,
18793 _("location description stack underflow"));
18794 return 0;
18795 }
18796 }
18797 return (stack[stacki]);
18798 }
18799
18800 /* memory allocation interface */
18801
18802 static struct dwarf_block *
18803 dwarf_alloc_block (struct dwarf2_cu *cu)
18804 {
18805 struct dwarf_block *blk;
18806
18807 blk = (struct dwarf_block *)
18808 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18809 return (blk);
18810 }
18811
18812 static struct die_info *
18813 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18814 {
18815 struct die_info *die;
18816 size_t size = sizeof (struct die_info);
18817
18818 if (num_attrs > 1)
18819 size += (num_attrs - 1) * sizeof (struct attribute);
18820
18821 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18822 memset (die, 0, sizeof (struct die_info));
18823 return (die);
18824 }
18825
18826 \f
18827 /* Macro support. */
18828
18829 /* Return file name relative to the compilation directory of file number I in
18830 *LH's file name table. The result is allocated using xmalloc; the caller is
18831 responsible for freeing it. */
18832
18833 static char *
18834 file_file_name (int file, struct line_header *lh)
18835 {
18836 /* Is the file number a valid index into the line header's file name
18837 table? Remember that file numbers start with one, not zero. */
18838 if (1 <= file && file <= lh->num_file_names)
18839 {
18840 struct file_entry *fe = &lh->file_names[file - 1];
18841
18842 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18843 return xstrdup (fe->name);
18844 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18845 fe->name, NULL);
18846 }
18847 else
18848 {
18849 /* The compiler produced a bogus file number. We can at least
18850 record the macro definitions made in the file, even if we
18851 won't be able to find the file by name. */
18852 char fake_name[80];
18853
18854 xsnprintf (fake_name, sizeof (fake_name),
18855 "<bad macro file number %d>", file);
18856
18857 complaint (&symfile_complaints,
18858 _("bad file number in macro information (%d)"),
18859 file);
18860
18861 return xstrdup (fake_name);
18862 }
18863 }
18864
18865 /* Return the full name of file number I in *LH's file name table.
18866 Use COMP_DIR as the name of the current directory of the
18867 compilation. The result is allocated using xmalloc; the caller is
18868 responsible for freeing it. */
18869 static char *
18870 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18871 {
18872 /* Is the file number a valid index into the line header's file name
18873 table? Remember that file numbers start with one, not zero. */
18874 if (1 <= file && file <= lh->num_file_names)
18875 {
18876 char *relative = file_file_name (file, lh);
18877
18878 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18879 return relative;
18880 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18881 }
18882 else
18883 return file_file_name (file, lh);
18884 }
18885
18886
18887 static struct macro_source_file *
18888 macro_start_file (int file, int line,
18889 struct macro_source_file *current_file,
18890 const char *comp_dir,
18891 struct line_header *lh, struct objfile *objfile)
18892 {
18893 /* File name relative to the compilation directory of this source file. */
18894 char *file_name = file_file_name (file, lh);
18895
18896 /* We don't create a macro table for this compilation unit
18897 at all until we actually get a filename. */
18898 if (! pending_macros)
18899 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18900 objfile->per_bfd->macro_cache,
18901 comp_dir);
18902
18903 if (! current_file)
18904 {
18905 /* If we have no current file, then this must be the start_file
18906 directive for the compilation unit's main source file. */
18907 current_file = macro_set_main (pending_macros, file_name);
18908 macro_define_special (pending_macros);
18909 }
18910 else
18911 current_file = macro_include (current_file, line, file_name);
18912
18913 xfree (file_name);
18914
18915 return current_file;
18916 }
18917
18918
18919 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18920 followed by a null byte. */
18921 static char *
18922 copy_string (const char *buf, int len)
18923 {
18924 char *s = xmalloc (len + 1);
18925
18926 memcpy (s, buf, len);
18927 s[len] = '\0';
18928 return s;
18929 }
18930
18931
18932 static const char *
18933 consume_improper_spaces (const char *p, const char *body)
18934 {
18935 if (*p == ' ')
18936 {
18937 complaint (&symfile_complaints,
18938 _("macro definition contains spaces "
18939 "in formal argument list:\n`%s'"),
18940 body);
18941
18942 while (*p == ' ')
18943 p++;
18944 }
18945
18946 return p;
18947 }
18948
18949
18950 static void
18951 parse_macro_definition (struct macro_source_file *file, int line,
18952 const char *body)
18953 {
18954 const char *p;
18955
18956 /* The body string takes one of two forms. For object-like macro
18957 definitions, it should be:
18958
18959 <macro name> " " <definition>
18960
18961 For function-like macro definitions, it should be:
18962
18963 <macro name> "() " <definition>
18964 or
18965 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18966
18967 Spaces may appear only where explicitly indicated, and in the
18968 <definition>.
18969
18970 The Dwarf 2 spec says that an object-like macro's name is always
18971 followed by a space, but versions of GCC around March 2002 omit
18972 the space when the macro's definition is the empty string.
18973
18974 The Dwarf 2 spec says that there should be no spaces between the
18975 formal arguments in a function-like macro's formal argument list,
18976 but versions of GCC around March 2002 include spaces after the
18977 commas. */
18978
18979
18980 /* Find the extent of the macro name. The macro name is terminated
18981 by either a space or null character (for an object-like macro) or
18982 an opening paren (for a function-like macro). */
18983 for (p = body; *p; p++)
18984 if (*p == ' ' || *p == '(')
18985 break;
18986
18987 if (*p == ' ' || *p == '\0')
18988 {
18989 /* It's an object-like macro. */
18990 int name_len = p - body;
18991 char *name = copy_string (body, name_len);
18992 const char *replacement;
18993
18994 if (*p == ' ')
18995 replacement = body + name_len + 1;
18996 else
18997 {
18998 dwarf2_macro_malformed_definition_complaint (body);
18999 replacement = body + name_len;
19000 }
19001
19002 macro_define_object (file, line, name, replacement);
19003
19004 xfree (name);
19005 }
19006 else if (*p == '(')
19007 {
19008 /* It's a function-like macro. */
19009 char *name = copy_string (body, p - body);
19010 int argc = 0;
19011 int argv_size = 1;
19012 char **argv = xmalloc (argv_size * sizeof (*argv));
19013
19014 p++;
19015
19016 p = consume_improper_spaces (p, body);
19017
19018 /* Parse the formal argument list. */
19019 while (*p && *p != ')')
19020 {
19021 /* Find the extent of the current argument name. */
19022 const char *arg_start = p;
19023
19024 while (*p && *p != ',' && *p != ')' && *p != ' ')
19025 p++;
19026
19027 if (! *p || p == arg_start)
19028 dwarf2_macro_malformed_definition_complaint (body);
19029 else
19030 {
19031 /* Make sure argv has room for the new argument. */
19032 if (argc >= argv_size)
19033 {
19034 argv_size *= 2;
19035 argv = xrealloc (argv, argv_size * sizeof (*argv));
19036 }
19037
19038 argv[argc++] = copy_string (arg_start, p - arg_start);
19039 }
19040
19041 p = consume_improper_spaces (p, body);
19042
19043 /* Consume the comma, if present. */
19044 if (*p == ',')
19045 {
19046 p++;
19047
19048 p = consume_improper_spaces (p, body);
19049 }
19050 }
19051
19052 if (*p == ')')
19053 {
19054 p++;
19055
19056 if (*p == ' ')
19057 /* Perfectly formed definition, no complaints. */
19058 macro_define_function (file, line, name,
19059 argc, (const char **) argv,
19060 p + 1);
19061 else if (*p == '\0')
19062 {
19063 /* Complain, but do define it. */
19064 dwarf2_macro_malformed_definition_complaint (body);
19065 macro_define_function (file, line, name,
19066 argc, (const char **) argv,
19067 p);
19068 }
19069 else
19070 /* Just complain. */
19071 dwarf2_macro_malformed_definition_complaint (body);
19072 }
19073 else
19074 /* Just complain. */
19075 dwarf2_macro_malformed_definition_complaint (body);
19076
19077 xfree (name);
19078 {
19079 int i;
19080
19081 for (i = 0; i < argc; i++)
19082 xfree (argv[i]);
19083 }
19084 xfree (argv);
19085 }
19086 else
19087 dwarf2_macro_malformed_definition_complaint (body);
19088 }
19089
19090 /* Skip some bytes from BYTES according to the form given in FORM.
19091 Returns the new pointer. */
19092
19093 static const gdb_byte *
19094 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19095 enum dwarf_form form,
19096 unsigned int offset_size,
19097 struct dwarf2_section_info *section)
19098 {
19099 unsigned int bytes_read;
19100
19101 switch (form)
19102 {
19103 case DW_FORM_data1:
19104 case DW_FORM_flag:
19105 ++bytes;
19106 break;
19107
19108 case DW_FORM_data2:
19109 bytes += 2;
19110 break;
19111
19112 case DW_FORM_data4:
19113 bytes += 4;
19114 break;
19115
19116 case DW_FORM_data8:
19117 bytes += 8;
19118 break;
19119
19120 case DW_FORM_string:
19121 read_direct_string (abfd, bytes, &bytes_read);
19122 bytes += bytes_read;
19123 break;
19124
19125 case DW_FORM_sec_offset:
19126 case DW_FORM_strp:
19127 case DW_FORM_GNU_strp_alt:
19128 bytes += offset_size;
19129 break;
19130
19131 case DW_FORM_block:
19132 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19133 bytes += bytes_read;
19134 break;
19135
19136 case DW_FORM_block1:
19137 bytes += 1 + read_1_byte (abfd, bytes);
19138 break;
19139 case DW_FORM_block2:
19140 bytes += 2 + read_2_bytes (abfd, bytes);
19141 break;
19142 case DW_FORM_block4:
19143 bytes += 4 + read_4_bytes (abfd, bytes);
19144 break;
19145
19146 case DW_FORM_sdata:
19147 case DW_FORM_udata:
19148 case DW_FORM_GNU_addr_index:
19149 case DW_FORM_GNU_str_index:
19150 bytes = gdb_skip_leb128 (bytes, buffer_end);
19151 if (bytes == NULL)
19152 {
19153 dwarf2_section_buffer_overflow_complaint (section);
19154 return NULL;
19155 }
19156 break;
19157
19158 default:
19159 {
19160 complain:
19161 complaint (&symfile_complaints,
19162 _("invalid form 0x%x in `%s'"),
19163 form,
19164 section->asection->name);
19165 return NULL;
19166 }
19167 }
19168
19169 return bytes;
19170 }
19171
19172 /* A helper for dwarf_decode_macros that handles skipping an unknown
19173 opcode. Returns an updated pointer to the macro data buffer; or,
19174 on error, issues a complaint and returns NULL. */
19175
19176 static const gdb_byte *
19177 skip_unknown_opcode (unsigned int opcode,
19178 const gdb_byte **opcode_definitions,
19179 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19180 bfd *abfd,
19181 unsigned int offset_size,
19182 struct dwarf2_section_info *section)
19183 {
19184 unsigned int bytes_read, i;
19185 unsigned long arg;
19186 const gdb_byte *defn;
19187
19188 if (opcode_definitions[opcode] == NULL)
19189 {
19190 complaint (&symfile_complaints,
19191 _("unrecognized DW_MACFINO opcode 0x%x"),
19192 opcode);
19193 return NULL;
19194 }
19195
19196 defn = opcode_definitions[opcode];
19197 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19198 defn += bytes_read;
19199
19200 for (i = 0; i < arg; ++i)
19201 {
19202 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19203 section);
19204 if (mac_ptr == NULL)
19205 {
19206 /* skip_form_bytes already issued the complaint. */
19207 return NULL;
19208 }
19209 }
19210
19211 return mac_ptr;
19212 }
19213
19214 /* A helper function which parses the header of a macro section.
19215 If the macro section is the extended (for now called "GNU") type,
19216 then this updates *OFFSET_SIZE. Returns a pointer to just after
19217 the header, or issues a complaint and returns NULL on error. */
19218
19219 static const gdb_byte *
19220 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19221 bfd *abfd,
19222 const gdb_byte *mac_ptr,
19223 unsigned int *offset_size,
19224 int section_is_gnu)
19225 {
19226 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19227
19228 if (section_is_gnu)
19229 {
19230 unsigned int version, flags;
19231
19232 version = read_2_bytes (abfd, mac_ptr);
19233 if (version != 4)
19234 {
19235 complaint (&symfile_complaints,
19236 _("unrecognized version `%d' in .debug_macro section"),
19237 version);
19238 return NULL;
19239 }
19240 mac_ptr += 2;
19241
19242 flags = read_1_byte (abfd, mac_ptr);
19243 ++mac_ptr;
19244 *offset_size = (flags & 1) ? 8 : 4;
19245
19246 if ((flags & 2) != 0)
19247 /* We don't need the line table offset. */
19248 mac_ptr += *offset_size;
19249
19250 /* Vendor opcode descriptions. */
19251 if ((flags & 4) != 0)
19252 {
19253 unsigned int i, count;
19254
19255 count = read_1_byte (abfd, mac_ptr);
19256 ++mac_ptr;
19257 for (i = 0; i < count; ++i)
19258 {
19259 unsigned int opcode, bytes_read;
19260 unsigned long arg;
19261
19262 opcode = read_1_byte (abfd, mac_ptr);
19263 ++mac_ptr;
19264 opcode_definitions[opcode] = mac_ptr;
19265 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19266 mac_ptr += bytes_read;
19267 mac_ptr += arg;
19268 }
19269 }
19270 }
19271
19272 return mac_ptr;
19273 }
19274
19275 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19276 including DW_MACRO_GNU_transparent_include. */
19277
19278 static void
19279 dwarf_decode_macro_bytes (bfd *abfd,
19280 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19281 struct macro_source_file *current_file,
19282 struct line_header *lh, const char *comp_dir,
19283 struct dwarf2_section_info *section,
19284 int section_is_gnu, int section_is_dwz,
19285 unsigned int offset_size,
19286 struct objfile *objfile,
19287 htab_t include_hash)
19288 {
19289 enum dwarf_macro_record_type macinfo_type;
19290 int at_commandline;
19291 const gdb_byte *opcode_definitions[256];
19292
19293 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19294 &offset_size, section_is_gnu);
19295 if (mac_ptr == NULL)
19296 {
19297 /* We already issued a complaint. */
19298 return;
19299 }
19300
19301 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19302 GDB is still reading the definitions from command line. First
19303 DW_MACINFO_start_file will need to be ignored as it was already executed
19304 to create CURRENT_FILE for the main source holding also the command line
19305 definitions. On first met DW_MACINFO_start_file this flag is reset to
19306 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19307
19308 at_commandline = 1;
19309
19310 do
19311 {
19312 /* Do we at least have room for a macinfo type byte? */
19313 if (mac_ptr >= mac_end)
19314 {
19315 dwarf2_section_buffer_overflow_complaint (section);
19316 break;
19317 }
19318
19319 macinfo_type = read_1_byte (abfd, mac_ptr);
19320 mac_ptr++;
19321
19322 /* Note that we rely on the fact that the corresponding GNU and
19323 DWARF constants are the same. */
19324 switch (macinfo_type)
19325 {
19326 /* A zero macinfo type indicates the end of the macro
19327 information. */
19328 case 0:
19329 break;
19330
19331 case DW_MACRO_GNU_define:
19332 case DW_MACRO_GNU_undef:
19333 case DW_MACRO_GNU_define_indirect:
19334 case DW_MACRO_GNU_undef_indirect:
19335 case DW_MACRO_GNU_define_indirect_alt:
19336 case DW_MACRO_GNU_undef_indirect_alt:
19337 {
19338 unsigned int bytes_read;
19339 int line;
19340 const char *body;
19341 int is_define;
19342
19343 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19344 mac_ptr += bytes_read;
19345
19346 if (macinfo_type == DW_MACRO_GNU_define
19347 || macinfo_type == DW_MACRO_GNU_undef)
19348 {
19349 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19350 mac_ptr += bytes_read;
19351 }
19352 else
19353 {
19354 LONGEST str_offset;
19355
19356 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19357 mac_ptr += offset_size;
19358
19359 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19360 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19361 || section_is_dwz)
19362 {
19363 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19364
19365 body = read_indirect_string_from_dwz (dwz, str_offset);
19366 }
19367 else
19368 body = read_indirect_string_at_offset (abfd, str_offset);
19369 }
19370
19371 is_define = (macinfo_type == DW_MACRO_GNU_define
19372 || macinfo_type == DW_MACRO_GNU_define_indirect
19373 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19374 if (! current_file)
19375 {
19376 /* DWARF violation as no main source is present. */
19377 complaint (&symfile_complaints,
19378 _("debug info with no main source gives macro %s "
19379 "on line %d: %s"),
19380 is_define ? _("definition") : _("undefinition"),
19381 line, body);
19382 break;
19383 }
19384 if ((line == 0 && !at_commandline)
19385 || (line != 0 && at_commandline))
19386 complaint (&symfile_complaints,
19387 _("debug info gives %s macro %s with %s line %d: %s"),
19388 at_commandline ? _("command-line") : _("in-file"),
19389 is_define ? _("definition") : _("undefinition"),
19390 line == 0 ? _("zero") : _("non-zero"), line, body);
19391
19392 if (is_define)
19393 parse_macro_definition (current_file, line, body);
19394 else
19395 {
19396 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19397 || macinfo_type == DW_MACRO_GNU_undef_indirect
19398 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19399 macro_undef (current_file, line, body);
19400 }
19401 }
19402 break;
19403
19404 case DW_MACRO_GNU_start_file:
19405 {
19406 unsigned int bytes_read;
19407 int line, file;
19408
19409 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19410 mac_ptr += bytes_read;
19411 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19412 mac_ptr += bytes_read;
19413
19414 if ((line == 0 && !at_commandline)
19415 || (line != 0 && at_commandline))
19416 complaint (&symfile_complaints,
19417 _("debug info gives source %d included "
19418 "from %s at %s line %d"),
19419 file, at_commandline ? _("command-line") : _("file"),
19420 line == 0 ? _("zero") : _("non-zero"), line);
19421
19422 if (at_commandline)
19423 {
19424 /* This DW_MACRO_GNU_start_file was executed in the
19425 pass one. */
19426 at_commandline = 0;
19427 }
19428 else
19429 current_file = macro_start_file (file, line,
19430 current_file, comp_dir,
19431 lh, objfile);
19432 }
19433 break;
19434
19435 case DW_MACRO_GNU_end_file:
19436 if (! current_file)
19437 complaint (&symfile_complaints,
19438 _("macro debug info has an unmatched "
19439 "`close_file' directive"));
19440 else
19441 {
19442 current_file = current_file->included_by;
19443 if (! current_file)
19444 {
19445 enum dwarf_macro_record_type next_type;
19446
19447 /* GCC circa March 2002 doesn't produce the zero
19448 type byte marking the end of the compilation
19449 unit. Complain if it's not there, but exit no
19450 matter what. */
19451
19452 /* Do we at least have room for a macinfo type byte? */
19453 if (mac_ptr >= mac_end)
19454 {
19455 dwarf2_section_buffer_overflow_complaint (section);
19456 return;
19457 }
19458
19459 /* We don't increment mac_ptr here, so this is just
19460 a look-ahead. */
19461 next_type = read_1_byte (abfd, mac_ptr);
19462 if (next_type != 0)
19463 complaint (&symfile_complaints,
19464 _("no terminating 0-type entry for "
19465 "macros in `.debug_macinfo' section"));
19466
19467 return;
19468 }
19469 }
19470 break;
19471
19472 case DW_MACRO_GNU_transparent_include:
19473 case DW_MACRO_GNU_transparent_include_alt:
19474 {
19475 LONGEST offset;
19476 void **slot;
19477 bfd *include_bfd = abfd;
19478 struct dwarf2_section_info *include_section = section;
19479 struct dwarf2_section_info alt_section;
19480 const gdb_byte *include_mac_end = mac_end;
19481 int is_dwz = section_is_dwz;
19482 const gdb_byte *new_mac_ptr;
19483
19484 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19485 mac_ptr += offset_size;
19486
19487 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19488 {
19489 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19490
19491 dwarf2_read_section (dwarf2_per_objfile->objfile,
19492 &dwz->macro);
19493
19494 include_bfd = dwz->macro.asection->owner;
19495 include_section = &dwz->macro;
19496 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19497 is_dwz = 1;
19498 }
19499
19500 new_mac_ptr = include_section->buffer + offset;
19501 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19502
19503 if (*slot != NULL)
19504 {
19505 /* This has actually happened; see
19506 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19507 complaint (&symfile_complaints,
19508 _("recursive DW_MACRO_GNU_transparent_include in "
19509 ".debug_macro section"));
19510 }
19511 else
19512 {
19513 *slot = (void *) new_mac_ptr;
19514
19515 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19516 include_mac_end, current_file,
19517 lh, comp_dir,
19518 section, section_is_gnu, is_dwz,
19519 offset_size, objfile, include_hash);
19520
19521 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19522 }
19523 }
19524 break;
19525
19526 case DW_MACINFO_vendor_ext:
19527 if (!section_is_gnu)
19528 {
19529 unsigned int bytes_read;
19530 int constant;
19531
19532 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19533 mac_ptr += bytes_read;
19534 read_direct_string (abfd, mac_ptr, &bytes_read);
19535 mac_ptr += bytes_read;
19536
19537 /* We don't recognize any vendor extensions. */
19538 break;
19539 }
19540 /* FALLTHROUGH */
19541
19542 default:
19543 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19544 mac_ptr, mac_end, abfd, offset_size,
19545 section);
19546 if (mac_ptr == NULL)
19547 return;
19548 break;
19549 }
19550 } while (macinfo_type != 0);
19551 }
19552
19553 static void
19554 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19555 const char *comp_dir, int section_is_gnu)
19556 {
19557 struct objfile *objfile = dwarf2_per_objfile->objfile;
19558 struct line_header *lh = cu->line_header;
19559 bfd *abfd;
19560 const gdb_byte *mac_ptr, *mac_end;
19561 struct macro_source_file *current_file = 0;
19562 enum dwarf_macro_record_type macinfo_type;
19563 unsigned int offset_size = cu->header.offset_size;
19564 const gdb_byte *opcode_definitions[256];
19565 struct cleanup *cleanup;
19566 htab_t include_hash;
19567 void **slot;
19568 struct dwarf2_section_info *section;
19569 const char *section_name;
19570
19571 if (cu->dwo_unit != NULL)
19572 {
19573 if (section_is_gnu)
19574 {
19575 section = &cu->dwo_unit->dwo_file->sections.macro;
19576 section_name = ".debug_macro.dwo";
19577 }
19578 else
19579 {
19580 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19581 section_name = ".debug_macinfo.dwo";
19582 }
19583 }
19584 else
19585 {
19586 if (section_is_gnu)
19587 {
19588 section = &dwarf2_per_objfile->macro;
19589 section_name = ".debug_macro";
19590 }
19591 else
19592 {
19593 section = &dwarf2_per_objfile->macinfo;
19594 section_name = ".debug_macinfo";
19595 }
19596 }
19597
19598 dwarf2_read_section (objfile, section);
19599 if (section->buffer == NULL)
19600 {
19601 complaint (&symfile_complaints, _("missing %s section"), section_name);
19602 return;
19603 }
19604 abfd = section->asection->owner;
19605
19606 /* First pass: Find the name of the base filename.
19607 This filename is needed in order to process all macros whose definition
19608 (or undefinition) comes from the command line. These macros are defined
19609 before the first DW_MACINFO_start_file entry, and yet still need to be
19610 associated to the base file.
19611
19612 To determine the base file name, we scan the macro definitions until we
19613 reach the first DW_MACINFO_start_file entry. We then initialize
19614 CURRENT_FILE accordingly so that any macro definition found before the
19615 first DW_MACINFO_start_file can still be associated to the base file. */
19616
19617 mac_ptr = section->buffer + offset;
19618 mac_end = section->buffer + section->size;
19619
19620 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19621 &offset_size, section_is_gnu);
19622 if (mac_ptr == NULL)
19623 {
19624 /* We already issued a complaint. */
19625 return;
19626 }
19627
19628 do
19629 {
19630 /* Do we at least have room for a macinfo type byte? */
19631 if (mac_ptr >= mac_end)
19632 {
19633 /* Complaint is printed during the second pass as GDB will probably
19634 stop the first pass earlier upon finding
19635 DW_MACINFO_start_file. */
19636 break;
19637 }
19638
19639 macinfo_type = read_1_byte (abfd, mac_ptr);
19640 mac_ptr++;
19641
19642 /* Note that we rely on the fact that the corresponding GNU and
19643 DWARF constants are the same. */
19644 switch (macinfo_type)
19645 {
19646 /* A zero macinfo type indicates the end of the macro
19647 information. */
19648 case 0:
19649 break;
19650
19651 case DW_MACRO_GNU_define:
19652 case DW_MACRO_GNU_undef:
19653 /* Only skip the data by MAC_PTR. */
19654 {
19655 unsigned int bytes_read;
19656
19657 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19658 mac_ptr += bytes_read;
19659 read_direct_string (abfd, mac_ptr, &bytes_read);
19660 mac_ptr += bytes_read;
19661 }
19662 break;
19663
19664 case DW_MACRO_GNU_start_file:
19665 {
19666 unsigned int bytes_read;
19667 int line, file;
19668
19669 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19670 mac_ptr += bytes_read;
19671 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19672 mac_ptr += bytes_read;
19673
19674 current_file = macro_start_file (file, line, current_file,
19675 comp_dir, lh, objfile);
19676 }
19677 break;
19678
19679 case DW_MACRO_GNU_end_file:
19680 /* No data to skip by MAC_PTR. */
19681 break;
19682
19683 case DW_MACRO_GNU_define_indirect:
19684 case DW_MACRO_GNU_undef_indirect:
19685 case DW_MACRO_GNU_define_indirect_alt:
19686 case DW_MACRO_GNU_undef_indirect_alt:
19687 {
19688 unsigned int bytes_read;
19689
19690 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19691 mac_ptr += bytes_read;
19692 mac_ptr += offset_size;
19693 }
19694 break;
19695
19696 case DW_MACRO_GNU_transparent_include:
19697 case DW_MACRO_GNU_transparent_include_alt:
19698 /* Note that, according to the spec, a transparent include
19699 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19700 skip this opcode. */
19701 mac_ptr += offset_size;
19702 break;
19703
19704 case DW_MACINFO_vendor_ext:
19705 /* Only skip the data by MAC_PTR. */
19706 if (!section_is_gnu)
19707 {
19708 unsigned int bytes_read;
19709
19710 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19711 mac_ptr += bytes_read;
19712 read_direct_string (abfd, mac_ptr, &bytes_read);
19713 mac_ptr += bytes_read;
19714 }
19715 /* FALLTHROUGH */
19716
19717 default:
19718 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19719 mac_ptr, mac_end, abfd, offset_size,
19720 section);
19721 if (mac_ptr == NULL)
19722 return;
19723 break;
19724 }
19725 } while (macinfo_type != 0 && current_file == NULL);
19726
19727 /* Second pass: Process all entries.
19728
19729 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19730 command-line macro definitions/undefinitions. This flag is unset when we
19731 reach the first DW_MACINFO_start_file entry. */
19732
19733 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19734 NULL, xcalloc, xfree);
19735 cleanup = make_cleanup_htab_delete (include_hash);
19736 mac_ptr = section->buffer + offset;
19737 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19738 *slot = (void *) mac_ptr;
19739 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19740 current_file, lh, comp_dir, section,
19741 section_is_gnu, 0,
19742 offset_size, objfile, include_hash);
19743 do_cleanups (cleanup);
19744 }
19745
19746 /* Check if the attribute's form is a DW_FORM_block*
19747 if so return true else false. */
19748
19749 static int
19750 attr_form_is_block (struct attribute *attr)
19751 {
19752 return (attr == NULL ? 0 :
19753 attr->form == DW_FORM_block1
19754 || attr->form == DW_FORM_block2
19755 || attr->form == DW_FORM_block4
19756 || attr->form == DW_FORM_block
19757 || attr->form == DW_FORM_exprloc);
19758 }
19759
19760 /* Return non-zero if ATTR's value is a section offset --- classes
19761 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19762 You may use DW_UNSND (attr) to retrieve such offsets.
19763
19764 Section 7.5.4, "Attribute Encodings", explains that no attribute
19765 may have a value that belongs to more than one of these classes; it
19766 would be ambiguous if we did, because we use the same forms for all
19767 of them. */
19768
19769 static int
19770 attr_form_is_section_offset (struct attribute *attr)
19771 {
19772 return (attr->form == DW_FORM_data4
19773 || attr->form == DW_FORM_data8
19774 || attr->form == DW_FORM_sec_offset);
19775 }
19776
19777 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19778 zero otherwise. When this function returns true, you can apply
19779 dwarf2_get_attr_constant_value to it.
19780
19781 However, note that for some attributes you must check
19782 attr_form_is_section_offset before using this test. DW_FORM_data4
19783 and DW_FORM_data8 are members of both the constant class, and of
19784 the classes that contain offsets into other debug sections
19785 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19786 that, if an attribute's can be either a constant or one of the
19787 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19788 taken as section offsets, not constants. */
19789
19790 static int
19791 attr_form_is_constant (struct attribute *attr)
19792 {
19793 switch (attr->form)
19794 {
19795 case DW_FORM_sdata:
19796 case DW_FORM_udata:
19797 case DW_FORM_data1:
19798 case DW_FORM_data2:
19799 case DW_FORM_data4:
19800 case DW_FORM_data8:
19801 return 1;
19802 default:
19803 return 0;
19804 }
19805 }
19806
19807 /* Return the .debug_loc section to use for CU.
19808 For DWO files use .debug_loc.dwo. */
19809
19810 static struct dwarf2_section_info *
19811 cu_debug_loc_section (struct dwarf2_cu *cu)
19812 {
19813 if (cu->dwo_unit)
19814 return &cu->dwo_unit->dwo_file->sections.loc;
19815 return &dwarf2_per_objfile->loc;
19816 }
19817
19818 /* A helper function that fills in a dwarf2_loclist_baton. */
19819
19820 static void
19821 fill_in_loclist_baton (struct dwarf2_cu *cu,
19822 struct dwarf2_loclist_baton *baton,
19823 struct attribute *attr)
19824 {
19825 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19826
19827 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19828
19829 baton->per_cu = cu->per_cu;
19830 gdb_assert (baton->per_cu);
19831 /* We don't know how long the location list is, but make sure we
19832 don't run off the edge of the section. */
19833 baton->size = section->size - DW_UNSND (attr);
19834 baton->data = section->buffer + DW_UNSND (attr);
19835 baton->base_address = cu->base_address;
19836 baton->from_dwo = cu->dwo_unit != NULL;
19837 }
19838
19839 static void
19840 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19841 struct dwarf2_cu *cu, int is_block)
19842 {
19843 struct objfile *objfile = dwarf2_per_objfile->objfile;
19844 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19845
19846 if (attr_form_is_section_offset (attr)
19847 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19848 the section. If so, fall through to the complaint in the
19849 other branch. */
19850 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19851 {
19852 struct dwarf2_loclist_baton *baton;
19853
19854 baton = obstack_alloc (&objfile->objfile_obstack,
19855 sizeof (struct dwarf2_loclist_baton));
19856
19857 fill_in_loclist_baton (cu, baton, attr);
19858
19859 if (cu->base_known == 0)
19860 complaint (&symfile_complaints,
19861 _("Location list used without "
19862 "specifying the CU base address."));
19863
19864 SYMBOL_ACLASS_INDEX (sym) = (is_block
19865 ? dwarf2_loclist_block_index
19866 : dwarf2_loclist_index);
19867 SYMBOL_LOCATION_BATON (sym) = baton;
19868 }
19869 else
19870 {
19871 struct dwarf2_locexpr_baton *baton;
19872
19873 baton = obstack_alloc (&objfile->objfile_obstack,
19874 sizeof (struct dwarf2_locexpr_baton));
19875 baton->per_cu = cu->per_cu;
19876 gdb_assert (baton->per_cu);
19877
19878 if (attr_form_is_block (attr))
19879 {
19880 /* Note that we're just copying the block's data pointer
19881 here, not the actual data. We're still pointing into the
19882 info_buffer for SYM's objfile; right now we never release
19883 that buffer, but when we do clean up properly this may
19884 need to change. */
19885 baton->size = DW_BLOCK (attr)->size;
19886 baton->data = DW_BLOCK (attr)->data;
19887 }
19888 else
19889 {
19890 dwarf2_invalid_attrib_class_complaint ("location description",
19891 SYMBOL_NATURAL_NAME (sym));
19892 baton->size = 0;
19893 }
19894
19895 SYMBOL_ACLASS_INDEX (sym) = (is_block
19896 ? dwarf2_locexpr_block_index
19897 : dwarf2_locexpr_index);
19898 SYMBOL_LOCATION_BATON (sym) = baton;
19899 }
19900 }
19901
19902 /* Return the OBJFILE associated with the compilation unit CU. If CU
19903 came from a separate debuginfo file, then the master objfile is
19904 returned. */
19905
19906 struct objfile *
19907 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19908 {
19909 struct objfile *objfile = per_cu->objfile;
19910
19911 /* Return the master objfile, so that we can report and look up the
19912 correct file containing this variable. */
19913 if (objfile->separate_debug_objfile_backlink)
19914 objfile = objfile->separate_debug_objfile_backlink;
19915
19916 return objfile;
19917 }
19918
19919 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19920 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19921 CU_HEADERP first. */
19922
19923 static const struct comp_unit_head *
19924 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19925 struct dwarf2_per_cu_data *per_cu)
19926 {
19927 const gdb_byte *info_ptr;
19928
19929 if (per_cu->cu)
19930 return &per_cu->cu->header;
19931
19932 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19933
19934 memset (cu_headerp, 0, sizeof (*cu_headerp));
19935 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19936
19937 return cu_headerp;
19938 }
19939
19940 /* Return the address size given in the compilation unit header for CU. */
19941
19942 int
19943 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19944 {
19945 struct comp_unit_head cu_header_local;
19946 const struct comp_unit_head *cu_headerp;
19947
19948 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19949
19950 return cu_headerp->addr_size;
19951 }
19952
19953 /* Return the offset size given in the compilation unit header for CU. */
19954
19955 int
19956 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19957 {
19958 struct comp_unit_head cu_header_local;
19959 const struct comp_unit_head *cu_headerp;
19960
19961 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19962
19963 return cu_headerp->offset_size;
19964 }
19965
19966 /* See its dwarf2loc.h declaration. */
19967
19968 int
19969 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19970 {
19971 struct comp_unit_head cu_header_local;
19972 const struct comp_unit_head *cu_headerp;
19973
19974 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19975
19976 if (cu_headerp->version == 2)
19977 return cu_headerp->addr_size;
19978 else
19979 return cu_headerp->offset_size;
19980 }
19981
19982 /* Return the text offset of the CU. The returned offset comes from
19983 this CU's objfile. If this objfile came from a separate debuginfo
19984 file, then the offset may be different from the corresponding
19985 offset in the parent objfile. */
19986
19987 CORE_ADDR
19988 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19989 {
19990 struct objfile *objfile = per_cu->objfile;
19991
19992 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19993 }
19994
19995 /* Locate the .debug_info compilation unit from CU's objfile which contains
19996 the DIE at OFFSET. Raises an error on failure. */
19997
19998 static struct dwarf2_per_cu_data *
19999 dwarf2_find_containing_comp_unit (sect_offset offset,
20000 unsigned int offset_in_dwz,
20001 struct objfile *objfile)
20002 {
20003 struct dwarf2_per_cu_data *this_cu;
20004 int low, high;
20005 const sect_offset *cu_off;
20006
20007 low = 0;
20008 high = dwarf2_per_objfile->n_comp_units - 1;
20009 while (high > low)
20010 {
20011 struct dwarf2_per_cu_data *mid_cu;
20012 int mid = low + (high - low) / 2;
20013
20014 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20015 cu_off = &mid_cu->offset;
20016 if (mid_cu->is_dwz > offset_in_dwz
20017 || (mid_cu->is_dwz == offset_in_dwz
20018 && cu_off->sect_off >= offset.sect_off))
20019 high = mid;
20020 else
20021 low = mid + 1;
20022 }
20023 gdb_assert (low == high);
20024 this_cu = dwarf2_per_objfile->all_comp_units[low];
20025 cu_off = &this_cu->offset;
20026 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20027 {
20028 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20029 error (_("Dwarf Error: could not find partial DIE containing "
20030 "offset 0x%lx [in module %s]"),
20031 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20032
20033 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20034 <= offset.sect_off);
20035 return dwarf2_per_objfile->all_comp_units[low-1];
20036 }
20037 else
20038 {
20039 this_cu = dwarf2_per_objfile->all_comp_units[low];
20040 if (low == dwarf2_per_objfile->n_comp_units - 1
20041 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20042 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20043 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20044 return this_cu;
20045 }
20046 }
20047
20048 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20049
20050 static void
20051 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20052 {
20053 memset (cu, 0, sizeof (*cu));
20054 per_cu->cu = cu;
20055 cu->per_cu = per_cu;
20056 cu->objfile = per_cu->objfile;
20057 obstack_init (&cu->comp_unit_obstack);
20058 }
20059
20060 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20061
20062 static void
20063 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20064 enum language pretend_language)
20065 {
20066 struct attribute *attr;
20067
20068 /* Set the language we're debugging. */
20069 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20070 if (attr)
20071 set_cu_language (DW_UNSND (attr), cu);
20072 else
20073 {
20074 cu->language = pretend_language;
20075 cu->language_defn = language_def (cu->language);
20076 }
20077
20078 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20079 if (attr)
20080 cu->producer = DW_STRING (attr);
20081 }
20082
20083 /* Release one cached compilation unit, CU. We unlink it from the tree
20084 of compilation units, but we don't remove it from the read_in_chain;
20085 the caller is responsible for that.
20086 NOTE: DATA is a void * because this function is also used as a
20087 cleanup routine. */
20088
20089 static void
20090 free_heap_comp_unit (void *data)
20091 {
20092 struct dwarf2_cu *cu = data;
20093
20094 gdb_assert (cu->per_cu != NULL);
20095 cu->per_cu->cu = NULL;
20096 cu->per_cu = NULL;
20097
20098 obstack_free (&cu->comp_unit_obstack, NULL);
20099
20100 xfree (cu);
20101 }
20102
20103 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20104 when we're finished with it. We can't free the pointer itself, but be
20105 sure to unlink it from the cache. Also release any associated storage. */
20106
20107 static void
20108 free_stack_comp_unit (void *data)
20109 {
20110 struct dwarf2_cu *cu = data;
20111
20112 gdb_assert (cu->per_cu != NULL);
20113 cu->per_cu->cu = NULL;
20114 cu->per_cu = NULL;
20115
20116 obstack_free (&cu->comp_unit_obstack, NULL);
20117 cu->partial_dies = NULL;
20118 }
20119
20120 /* Free all cached compilation units. */
20121
20122 static void
20123 free_cached_comp_units (void *data)
20124 {
20125 struct dwarf2_per_cu_data *per_cu, **last_chain;
20126
20127 per_cu = dwarf2_per_objfile->read_in_chain;
20128 last_chain = &dwarf2_per_objfile->read_in_chain;
20129 while (per_cu != NULL)
20130 {
20131 struct dwarf2_per_cu_data *next_cu;
20132
20133 next_cu = per_cu->cu->read_in_chain;
20134
20135 free_heap_comp_unit (per_cu->cu);
20136 *last_chain = next_cu;
20137
20138 per_cu = next_cu;
20139 }
20140 }
20141
20142 /* Increase the age counter on each cached compilation unit, and free
20143 any that are too old. */
20144
20145 static void
20146 age_cached_comp_units (void)
20147 {
20148 struct dwarf2_per_cu_data *per_cu, **last_chain;
20149
20150 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20151 per_cu = dwarf2_per_objfile->read_in_chain;
20152 while (per_cu != NULL)
20153 {
20154 per_cu->cu->last_used ++;
20155 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20156 dwarf2_mark (per_cu->cu);
20157 per_cu = per_cu->cu->read_in_chain;
20158 }
20159
20160 per_cu = dwarf2_per_objfile->read_in_chain;
20161 last_chain = &dwarf2_per_objfile->read_in_chain;
20162 while (per_cu != NULL)
20163 {
20164 struct dwarf2_per_cu_data *next_cu;
20165
20166 next_cu = per_cu->cu->read_in_chain;
20167
20168 if (!per_cu->cu->mark)
20169 {
20170 free_heap_comp_unit (per_cu->cu);
20171 *last_chain = next_cu;
20172 }
20173 else
20174 last_chain = &per_cu->cu->read_in_chain;
20175
20176 per_cu = next_cu;
20177 }
20178 }
20179
20180 /* Remove a single compilation unit from the cache. */
20181
20182 static void
20183 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20184 {
20185 struct dwarf2_per_cu_data *per_cu, **last_chain;
20186
20187 per_cu = dwarf2_per_objfile->read_in_chain;
20188 last_chain = &dwarf2_per_objfile->read_in_chain;
20189 while (per_cu != NULL)
20190 {
20191 struct dwarf2_per_cu_data *next_cu;
20192
20193 next_cu = per_cu->cu->read_in_chain;
20194
20195 if (per_cu == target_per_cu)
20196 {
20197 free_heap_comp_unit (per_cu->cu);
20198 per_cu->cu = NULL;
20199 *last_chain = next_cu;
20200 break;
20201 }
20202 else
20203 last_chain = &per_cu->cu->read_in_chain;
20204
20205 per_cu = next_cu;
20206 }
20207 }
20208
20209 /* Release all extra memory associated with OBJFILE. */
20210
20211 void
20212 dwarf2_free_objfile (struct objfile *objfile)
20213 {
20214 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20215
20216 if (dwarf2_per_objfile == NULL)
20217 return;
20218
20219 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20220 free_cached_comp_units (NULL);
20221
20222 if (dwarf2_per_objfile->quick_file_names_table)
20223 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20224
20225 /* Everything else should be on the objfile obstack. */
20226 }
20227
20228 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20229 We store these in a hash table separate from the DIEs, and preserve them
20230 when the DIEs are flushed out of cache.
20231
20232 The CU "per_cu" pointer is needed because offset alone is not enough to
20233 uniquely identify the type. A file may have multiple .debug_types sections,
20234 or the type may come from a DWO file. Furthermore, while it's more logical
20235 to use per_cu->section+offset, with Fission the section with the data is in
20236 the DWO file but we don't know that section at the point we need it.
20237 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20238 because we can enter the lookup routine, get_die_type_at_offset, from
20239 outside this file, and thus won't necessarily have PER_CU->cu.
20240 Fortunately, PER_CU is stable for the life of the objfile. */
20241
20242 struct dwarf2_per_cu_offset_and_type
20243 {
20244 const struct dwarf2_per_cu_data *per_cu;
20245 sect_offset offset;
20246 struct type *type;
20247 };
20248
20249 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20250
20251 static hashval_t
20252 per_cu_offset_and_type_hash (const void *item)
20253 {
20254 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20255
20256 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20257 }
20258
20259 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20260
20261 static int
20262 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20263 {
20264 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20265 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20266
20267 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20268 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20269 }
20270
20271 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20272 table if necessary. For convenience, return TYPE.
20273
20274 The DIEs reading must have careful ordering to:
20275 * Not cause infite loops trying to read in DIEs as a prerequisite for
20276 reading current DIE.
20277 * Not trying to dereference contents of still incompletely read in types
20278 while reading in other DIEs.
20279 * Enable referencing still incompletely read in types just by a pointer to
20280 the type without accessing its fields.
20281
20282 Therefore caller should follow these rules:
20283 * Try to fetch any prerequisite types we may need to build this DIE type
20284 before building the type and calling set_die_type.
20285 * After building type call set_die_type for current DIE as soon as
20286 possible before fetching more types to complete the current type.
20287 * Make the type as complete as possible before fetching more types. */
20288
20289 static struct type *
20290 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20291 {
20292 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20293 struct objfile *objfile = cu->objfile;
20294
20295 /* For Ada types, make sure that the gnat-specific data is always
20296 initialized (if not already set). There are a few types where
20297 we should not be doing so, because the type-specific area is
20298 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20299 where the type-specific area is used to store the floatformat).
20300 But this is not a problem, because the gnat-specific information
20301 is actually not needed for these types. */
20302 if (need_gnat_info (cu)
20303 && TYPE_CODE (type) != TYPE_CODE_FUNC
20304 && TYPE_CODE (type) != TYPE_CODE_FLT
20305 && !HAVE_GNAT_AUX_INFO (type))
20306 INIT_GNAT_SPECIFIC (type);
20307
20308 if (dwarf2_per_objfile->die_type_hash == NULL)
20309 {
20310 dwarf2_per_objfile->die_type_hash =
20311 htab_create_alloc_ex (127,
20312 per_cu_offset_and_type_hash,
20313 per_cu_offset_and_type_eq,
20314 NULL,
20315 &objfile->objfile_obstack,
20316 hashtab_obstack_allocate,
20317 dummy_obstack_deallocate);
20318 }
20319
20320 ofs.per_cu = cu->per_cu;
20321 ofs.offset = die->offset;
20322 ofs.type = type;
20323 slot = (struct dwarf2_per_cu_offset_and_type **)
20324 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20325 if (*slot)
20326 complaint (&symfile_complaints,
20327 _("A problem internal to GDB: DIE 0x%x has type already set"),
20328 die->offset.sect_off);
20329 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20330 **slot = ofs;
20331 return type;
20332 }
20333
20334 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20335 or return NULL if the die does not have a saved type. */
20336
20337 static struct type *
20338 get_die_type_at_offset (sect_offset offset,
20339 struct dwarf2_per_cu_data *per_cu)
20340 {
20341 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20342
20343 if (dwarf2_per_objfile->die_type_hash == NULL)
20344 return NULL;
20345
20346 ofs.per_cu = per_cu;
20347 ofs.offset = offset;
20348 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20349 if (slot)
20350 return slot->type;
20351 else
20352 return NULL;
20353 }
20354
20355 /* Look up the type for DIE in CU in die_type_hash,
20356 or return NULL if DIE does not have a saved type. */
20357
20358 static struct type *
20359 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20360 {
20361 return get_die_type_at_offset (die->offset, cu->per_cu);
20362 }
20363
20364 /* Add a dependence relationship from CU to REF_PER_CU. */
20365
20366 static void
20367 dwarf2_add_dependence (struct dwarf2_cu *cu,
20368 struct dwarf2_per_cu_data *ref_per_cu)
20369 {
20370 void **slot;
20371
20372 if (cu->dependencies == NULL)
20373 cu->dependencies
20374 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20375 NULL, &cu->comp_unit_obstack,
20376 hashtab_obstack_allocate,
20377 dummy_obstack_deallocate);
20378
20379 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20380 if (*slot == NULL)
20381 *slot = ref_per_cu;
20382 }
20383
20384 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20385 Set the mark field in every compilation unit in the
20386 cache that we must keep because we are keeping CU. */
20387
20388 static int
20389 dwarf2_mark_helper (void **slot, void *data)
20390 {
20391 struct dwarf2_per_cu_data *per_cu;
20392
20393 per_cu = (struct dwarf2_per_cu_data *) *slot;
20394
20395 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20396 reading of the chain. As such dependencies remain valid it is not much
20397 useful to track and undo them during QUIT cleanups. */
20398 if (per_cu->cu == NULL)
20399 return 1;
20400
20401 if (per_cu->cu->mark)
20402 return 1;
20403 per_cu->cu->mark = 1;
20404
20405 if (per_cu->cu->dependencies != NULL)
20406 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20407
20408 return 1;
20409 }
20410
20411 /* Set the mark field in CU and in every other compilation unit in the
20412 cache that we must keep because we are keeping CU. */
20413
20414 static void
20415 dwarf2_mark (struct dwarf2_cu *cu)
20416 {
20417 if (cu->mark)
20418 return;
20419 cu->mark = 1;
20420 if (cu->dependencies != NULL)
20421 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20422 }
20423
20424 static void
20425 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20426 {
20427 while (per_cu)
20428 {
20429 per_cu->cu->mark = 0;
20430 per_cu = per_cu->cu->read_in_chain;
20431 }
20432 }
20433
20434 /* Trivial hash function for partial_die_info: the hash value of a DIE
20435 is its offset in .debug_info for this objfile. */
20436
20437 static hashval_t
20438 partial_die_hash (const void *item)
20439 {
20440 const struct partial_die_info *part_die = item;
20441
20442 return part_die->offset.sect_off;
20443 }
20444
20445 /* Trivial comparison function for partial_die_info structures: two DIEs
20446 are equal if they have the same offset. */
20447
20448 static int
20449 partial_die_eq (const void *item_lhs, const void *item_rhs)
20450 {
20451 const struct partial_die_info *part_die_lhs = item_lhs;
20452 const struct partial_die_info *part_die_rhs = item_rhs;
20453
20454 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20455 }
20456
20457 static struct cmd_list_element *set_dwarf2_cmdlist;
20458 static struct cmd_list_element *show_dwarf2_cmdlist;
20459
20460 static void
20461 set_dwarf2_cmd (char *args, int from_tty)
20462 {
20463 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20464 }
20465
20466 static void
20467 show_dwarf2_cmd (char *args, int from_tty)
20468 {
20469 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20470 }
20471
20472 /* Free data associated with OBJFILE, if necessary. */
20473
20474 static void
20475 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20476 {
20477 struct dwarf2_per_objfile *data = d;
20478 int ix;
20479
20480 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
20481 VEC_free (dwarf2_per_cu_ptr,
20482 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
20483
20484 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
20485 VEC_free (dwarf2_per_cu_ptr,
20486 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
20487 xfree (dwarf2_per_objfile->all_type_units);
20488
20489 VEC_free (dwarf2_section_info_def, data->types);
20490
20491 if (data->dwo_files)
20492 free_dwo_files (data->dwo_files, objfile);
20493 if (data->dwp_file)
20494 gdb_bfd_unref (data->dwp_file->dbfd);
20495
20496 if (data->dwz_file && data->dwz_file->dwz_bfd)
20497 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20498 }
20499
20500 \f
20501 /* The "save gdb-index" command. */
20502
20503 /* The contents of the hash table we create when building the string
20504 table. */
20505 struct strtab_entry
20506 {
20507 offset_type offset;
20508 const char *str;
20509 };
20510
20511 /* Hash function for a strtab_entry.
20512
20513 Function is used only during write_hash_table so no index format backward
20514 compatibility is needed. */
20515
20516 static hashval_t
20517 hash_strtab_entry (const void *e)
20518 {
20519 const struct strtab_entry *entry = e;
20520 return mapped_index_string_hash (INT_MAX, entry->str);
20521 }
20522
20523 /* Equality function for a strtab_entry. */
20524
20525 static int
20526 eq_strtab_entry (const void *a, const void *b)
20527 {
20528 const struct strtab_entry *ea = a;
20529 const struct strtab_entry *eb = b;
20530 return !strcmp (ea->str, eb->str);
20531 }
20532
20533 /* Create a strtab_entry hash table. */
20534
20535 static htab_t
20536 create_strtab (void)
20537 {
20538 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20539 xfree, xcalloc, xfree);
20540 }
20541
20542 /* Add a string to the constant pool. Return the string's offset in
20543 host order. */
20544
20545 static offset_type
20546 add_string (htab_t table, struct obstack *cpool, const char *str)
20547 {
20548 void **slot;
20549 struct strtab_entry entry;
20550 struct strtab_entry *result;
20551
20552 entry.str = str;
20553 slot = htab_find_slot (table, &entry, INSERT);
20554 if (*slot)
20555 result = *slot;
20556 else
20557 {
20558 result = XNEW (struct strtab_entry);
20559 result->offset = obstack_object_size (cpool);
20560 result->str = str;
20561 obstack_grow_str0 (cpool, str);
20562 *slot = result;
20563 }
20564 return result->offset;
20565 }
20566
20567 /* An entry in the symbol table. */
20568 struct symtab_index_entry
20569 {
20570 /* The name of the symbol. */
20571 const char *name;
20572 /* The offset of the name in the constant pool. */
20573 offset_type index_offset;
20574 /* A sorted vector of the indices of all the CUs that hold an object
20575 of this name. */
20576 VEC (offset_type) *cu_indices;
20577 };
20578
20579 /* The symbol table. This is a power-of-2-sized hash table. */
20580 struct mapped_symtab
20581 {
20582 offset_type n_elements;
20583 offset_type size;
20584 struct symtab_index_entry **data;
20585 };
20586
20587 /* Hash function for a symtab_index_entry. */
20588
20589 static hashval_t
20590 hash_symtab_entry (const void *e)
20591 {
20592 const struct symtab_index_entry *entry = e;
20593 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20594 sizeof (offset_type) * VEC_length (offset_type,
20595 entry->cu_indices),
20596 0);
20597 }
20598
20599 /* Equality function for a symtab_index_entry. */
20600
20601 static int
20602 eq_symtab_entry (const void *a, const void *b)
20603 {
20604 const struct symtab_index_entry *ea = a;
20605 const struct symtab_index_entry *eb = b;
20606 int len = VEC_length (offset_type, ea->cu_indices);
20607 if (len != VEC_length (offset_type, eb->cu_indices))
20608 return 0;
20609 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20610 VEC_address (offset_type, eb->cu_indices),
20611 sizeof (offset_type) * len);
20612 }
20613
20614 /* Destroy a symtab_index_entry. */
20615
20616 static void
20617 delete_symtab_entry (void *p)
20618 {
20619 struct symtab_index_entry *entry = p;
20620 VEC_free (offset_type, entry->cu_indices);
20621 xfree (entry);
20622 }
20623
20624 /* Create a hash table holding symtab_index_entry objects. */
20625
20626 static htab_t
20627 create_symbol_hash_table (void)
20628 {
20629 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20630 delete_symtab_entry, xcalloc, xfree);
20631 }
20632
20633 /* Create a new mapped symtab object. */
20634
20635 static struct mapped_symtab *
20636 create_mapped_symtab (void)
20637 {
20638 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20639 symtab->n_elements = 0;
20640 symtab->size = 1024;
20641 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20642 return symtab;
20643 }
20644
20645 /* Destroy a mapped_symtab. */
20646
20647 static void
20648 cleanup_mapped_symtab (void *p)
20649 {
20650 struct mapped_symtab *symtab = p;
20651 /* The contents of the array are freed when the other hash table is
20652 destroyed. */
20653 xfree (symtab->data);
20654 xfree (symtab);
20655 }
20656
20657 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20658 the slot.
20659
20660 Function is used only during write_hash_table so no index format backward
20661 compatibility is needed. */
20662
20663 static struct symtab_index_entry **
20664 find_slot (struct mapped_symtab *symtab, const char *name)
20665 {
20666 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20667
20668 index = hash & (symtab->size - 1);
20669 step = ((hash * 17) & (symtab->size - 1)) | 1;
20670
20671 for (;;)
20672 {
20673 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20674 return &symtab->data[index];
20675 index = (index + step) & (symtab->size - 1);
20676 }
20677 }
20678
20679 /* Expand SYMTAB's hash table. */
20680
20681 static void
20682 hash_expand (struct mapped_symtab *symtab)
20683 {
20684 offset_type old_size = symtab->size;
20685 offset_type i;
20686 struct symtab_index_entry **old_entries = symtab->data;
20687
20688 symtab->size *= 2;
20689 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20690
20691 for (i = 0; i < old_size; ++i)
20692 {
20693 if (old_entries[i])
20694 {
20695 struct symtab_index_entry **slot = find_slot (symtab,
20696 old_entries[i]->name);
20697 *slot = old_entries[i];
20698 }
20699 }
20700
20701 xfree (old_entries);
20702 }
20703
20704 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20705 CU_INDEX is the index of the CU in which the symbol appears.
20706 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20707
20708 static void
20709 add_index_entry (struct mapped_symtab *symtab, const char *name,
20710 int is_static, gdb_index_symbol_kind kind,
20711 offset_type cu_index)
20712 {
20713 struct symtab_index_entry **slot;
20714 offset_type cu_index_and_attrs;
20715
20716 ++symtab->n_elements;
20717 if (4 * symtab->n_elements / 3 >= symtab->size)
20718 hash_expand (symtab);
20719
20720 slot = find_slot (symtab, name);
20721 if (!*slot)
20722 {
20723 *slot = XNEW (struct symtab_index_entry);
20724 (*slot)->name = name;
20725 /* index_offset is set later. */
20726 (*slot)->cu_indices = NULL;
20727 }
20728
20729 cu_index_and_attrs = 0;
20730 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20731 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20732 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20733
20734 /* We don't want to record an index value twice as we want to avoid the
20735 duplication.
20736 We process all global symbols and then all static symbols
20737 (which would allow us to avoid the duplication by only having to check
20738 the last entry pushed), but a symbol could have multiple kinds in one CU.
20739 To keep things simple we don't worry about the duplication here and
20740 sort and uniqufy the list after we've processed all symbols. */
20741 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20742 }
20743
20744 /* qsort helper routine for uniquify_cu_indices. */
20745
20746 static int
20747 offset_type_compare (const void *ap, const void *bp)
20748 {
20749 offset_type a = *(offset_type *) ap;
20750 offset_type b = *(offset_type *) bp;
20751
20752 return (a > b) - (b > a);
20753 }
20754
20755 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20756
20757 static void
20758 uniquify_cu_indices (struct mapped_symtab *symtab)
20759 {
20760 int i;
20761
20762 for (i = 0; i < symtab->size; ++i)
20763 {
20764 struct symtab_index_entry *entry = symtab->data[i];
20765
20766 if (entry
20767 && entry->cu_indices != NULL)
20768 {
20769 unsigned int next_to_insert, next_to_check;
20770 offset_type last_value;
20771
20772 qsort (VEC_address (offset_type, entry->cu_indices),
20773 VEC_length (offset_type, entry->cu_indices),
20774 sizeof (offset_type), offset_type_compare);
20775
20776 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20777 next_to_insert = 1;
20778 for (next_to_check = 1;
20779 next_to_check < VEC_length (offset_type, entry->cu_indices);
20780 ++next_to_check)
20781 {
20782 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20783 != last_value)
20784 {
20785 last_value = VEC_index (offset_type, entry->cu_indices,
20786 next_to_check);
20787 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20788 last_value);
20789 ++next_to_insert;
20790 }
20791 }
20792 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20793 }
20794 }
20795 }
20796
20797 /* Add a vector of indices to the constant pool. */
20798
20799 static offset_type
20800 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20801 struct symtab_index_entry *entry)
20802 {
20803 void **slot;
20804
20805 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20806 if (!*slot)
20807 {
20808 offset_type len = VEC_length (offset_type, entry->cu_indices);
20809 offset_type val = MAYBE_SWAP (len);
20810 offset_type iter;
20811 int i;
20812
20813 *slot = entry;
20814 entry->index_offset = obstack_object_size (cpool);
20815
20816 obstack_grow (cpool, &val, sizeof (val));
20817 for (i = 0;
20818 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20819 ++i)
20820 {
20821 val = MAYBE_SWAP (iter);
20822 obstack_grow (cpool, &val, sizeof (val));
20823 }
20824 }
20825 else
20826 {
20827 struct symtab_index_entry *old_entry = *slot;
20828 entry->index_offset = old_entry->index_offset;
20829 entry = old_entry;
20830 }
20831 return entry->index_offset;
20832 }
20833
20834 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20835 constant pool entries going into the obstack CPOOL. */
20836
20837 static void
20838 write_hash_table (struct mapped_symtab *symtab,
20839 struct obstack *output, struct obstack *cpool)
20840 {
20841 offset_type i;
20842 htab_t symbol_hash_table;
20843 htab_t str_table;
20844
20845 symbol_hash_table = create_symbol_hash_table ();
20846 str_table = create_strtab ();
20847
20848 /* We add all the index vectors to the constant pool first, to
20849 ensure alignment is ok. */
20850 for (i = 0; i < symtab->size; ++i)
20851 {
20852 if (symtab->data[i])
20853 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20854 }
20855
20856 /* Now write out the hash table. */
20857 for (i = 0; i < symtab->size; ++i)
20858 {
20859 offset_type str_off, vec_off;
20860
20861 if (symtab->data[i])
20862 {
20863 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20864 vec_off = symtab->data[i]->index_offset;
20865 }
20866 else
20867 {
20868 /* While 0 is a valid constant pool index, it is not valid
20869 to have 0 for both offsets. */
20870 str_off = 0;
20871 vec_off = 0;
20872 }
20873
20874 str_off = MAYBE_SWAP (str_off);
20875 vec_off = MAYBE_SWAP (vec_off);
20876
20877 obstack_grow (output, &str_off, sizeof (str_off));
20878 obstack_grow (output, &vec_off, sizeof (vec_off));
20879 }
20880
20881 htab_delete (str_table);
20882 htab_delete (symbol_hash_table);
20883 }
20884
20885 /* Struct to map psymtab to CU index in the index file. */
20886 struct psymtab_cu_index_map
20887 {
20888 struct partial_symtab *psymtab;
20889 unsigned int cu_index;
20890 };
20891
20892 static hashval_t
20893 hash_psymtab_cu_index (const void *item)
20894 {
20895 const struct psymtab_cu_index_map *map = item;
20896
20897 return htab_hash_pointer (map->psymtab);
20898 }
20899
20900 static int
20901 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20902 {
20903 const struct psymtab_cu_index_map *lhs = item_lhs;
20904 const struct psymtab_cu_index_map *rhs = item_rhs;
20905
20906 return lhs->psymtab == rhs->psymtab;
20907 }
20908
20909 /* Helper struct for building the address table. */
20910 struct addrmap_index_data
20911 {
20912 struct objfile *objfile;
20913 struct obstack *addr_obstack;
20914 htab_t cu_index_htab;
20915
20916 /* Non-zero if the previous_* fields are valid.
20917 We can't write an entry until we see the next entry (since it is only then
20918 that we know the end of the entry). */
20919 int previous_valid;
20920 /* Index of the CU in the table of all CUs in the index file. */
20921 unsigned int previous_cu_index;
20922 /* Start address of the CU. */
20923 CORE_ADDR previous_cu_start;
20924 };
20925
20926 /* Write an address entry to OBSTACK. */
20927
20928 static void
20929 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20930 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20931 {
20932 offset_type cu_index_to_write;
20933 gdb_byte addr[8];
20934 CORE_ADDR baseaddr;
20935
20936 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20937
20938 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20939 obstack_grow (obstack, addr, 8);
20940 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20941 obstack_grow (obstack, addr, 8);
20942 cu_index_to_write = MAYBE_SWAP (cu_index);
20943 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20944 }
20945
20946 /* Worker function for traversing an addrmap to build the address table. */
20947
20948 static int
20949 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20950 {
20951 struct addrmap_index_data *data = datap;
20952 struct partial_symtab *pst = obj;
20953
20954 if (data->previous_valid)
20955 add_address_entry (data->objfile, data->addr_obstack,
20956 data->previous_cu_start, start_addr,
20957 data->previous_cu_index);
20958
20959 data->previous_cu_start = start_addr;
20960 if (pst != NULL)
20961 {
20962 struct psymtab_cu_index_map find_map, *map;
20963 find_map.psymtab = pst;
20964 map = htab_find (data->cu_index_htab, &find_map);
20965 gdb_assert (map != NULL);
20966 data->previous_cu_index = map->cu_index;
20967 data->previous_valid = 1;
20968 }
20969 else
20970 data->previous_valid = 0;
20971
20972 return 0;
20973 }
20974
20975 /* Write OBJFILE's address map to OBSTACK.
20976 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20977 in the index file. */
20978
20979 static void
20980 write_address_map (struct objfile *objfile, struct obstack *obstack,
20981 htab_t cu_index_htab)
20982 {
20983 struct addrmap_index_data addrmap_index_data;
20984
20985 /* When writing the address table, we have to cope with the fact that
20986 the addrmap iterator only provides the start of a region; we have to
20987 wait until the next invocation to get the start of the next region. */
20988
20989 addrmap_index_data.objfile = objfile;
20990 addrmap_index_data.addr_obstack = obstack;
20991 addrmap_index_data.cu_index_htab = cu_index_htab;
20992 addrmap_index_data.previous_valid = 0;
20993
20994 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20995 &addrmap_index_data);
20996
20997 /* It's highly unlikely the last entry (end address = 0xff...ff)
20998 is valid, but we should still handle it.
20999 The end address is recorded as the start of the next region, but that
21000 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21001 anyway. */
21002 if (addrmap_index_data.previous_valid)
21003 add_address_entry (objfile, obstack,
21004 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21005 addrmap_index_data.previous_cu_index);
21006 }
21007
21008 /* Return the symbol kind of PSYM. */
21009
21010 static gdb_index_symbol_kind
21011 symbol_kind (struct partial_symbol *psym)
21012 {
21013 domain_enum domain = PSYMBOL_DOMAIN (psym);
21014 enum address_class aclass = PSYMBOL_CLASS (psym);
21015
21016 switch (domain)
21017 {
21018 case VAR_DOMAIN:
21019 switch (aclass)
21020 {
21021 case LOC_BLOCK:
21022 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21023 case LOC_TYPEDEF:
21024 return GDB_INDEX_SYMBOL_KIND_TYPE;
21025 case LOC_COMPUTED:
21026 case LOC_CONST_BYTES:
21027 case LOC_OPTIMIZED_OUT:
21028 case LOC_STATIC:
21029 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21030 case LOC_CONST:
21031 /* Note: It's currently impossible to recognize psyms as enum values
21032 short of reading the type info. For now punt. */
21033 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21034 default:
21035 /* There are other LOC_FOO values that one might want to classify
21036 as variables, but dwarf2read.c doesn't currently use them. */
21037 return GDB_INDEX_SYMBOL_KIND_OTHER;
21038 }
21039 case STRUCT_DOMAIN:
21040 return GDB_INDEX_SYMBOL_KIND_TYPE;
21041 default:
21042 return GDB_INDEX_SYMBOL_KIND_OTHER;
21043 }
21044 }
21045
21046 /* Add a list of partial symbols to SYMTAB. */
21047
21048 static void
21049 write_psymbols (struct mapped_symtab *symtab,
21050 htab_t psyms_seen,
21051 struct partial_symbol **psymp,
21052 int count,
21053 offset_type cu_index,
21054 int is_static)
21055 {
21056 for (; count-- > 0; ++psymp)
21057 {
21058 struct partial_symbol *psym = *psymp;
21059 void **slot;
21060
21061 if (SYMBOL_LANGUAGE (psym) == language_ada)
21062 error (_("Ada is not currently supported by the index"));
21063
21064 /* Only add a given psymbol once. */
21065 slot = htab_find_slot (psyms_seen, psym, INSERT);
21066 if (!*slot)
21067 {
21068 gdb_index_symbol_kind kind = symbol_kind (psym);
21069
21070 *slot = psym;
21071 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21072 is_static, kind, cu_index);
21073 }
21074 }
21075 }
21076
21077 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21078 exception if there is an error. */
21079
21080 static void
21081 write_obstack (FILE *file, struct obstack *obstack)
21082 {
21083 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21084 file)
21085 != obstack_object_size (obstack))
21086 error (_("couldn't data write to file"));
21087 }
21088
21089 /* Unlink a file if the argument is not NULL. */
21090
21091 static void
21092 unlink_if_set (void *p)
21093 {
21094 char **filename = p;
21095 if (*filename)
21096 unlink (*filename);
21097 }
21098
21099 /* A helper struct used when iterating over debug_types. */
21100 struct signatured_type_index_data
21101 {
21102 struct objfile *objfile;
21103 struct mapped_symtab *symtab;
21104 struct obstack *types_list;
21105 htab_t psyms_seen;
21106 int cu_index;
21107 };
21108
21109 /* A helper function that writes a single signatured_type to an
21110 obstack. */
21111
21112 static int
21113 write_one_signatured_type (void **slot, void *d)
21114 {
21115 struct signatured_type_index_data *info = d;
21116 struct signatured_type *entry = (struct signatured_type *) *slot;
21117 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21118 gdb_byte val[8];
21119
21120 write_psymbols (info->symtab,
21121 info->psyms_seen,
21122 info->objfile->global_psymbols.list
21123 + psymtab->globals_offset,
21124 psymtab->n_global_syms, info->cu_index,
21125 0);
21126 write_psymbols (info->symtab,
21127 info->psyms_seen,
21128 info->objfile->static_psymbols.list
21129 + psymtab->statics_offset,
21130 psymtab->n_static_syms, info->cu_index,
21131 1);
21132
21133 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21134 entry->per_cu.offset.sect_off);
21135 obstack_grow (info->types_list, val, 8);
21136 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21137 entry->type_offset_in_tu.cu_off);
21138 obstack_grow (info->types_list, val, 8);
21139 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21140 obstack_grow (info->types_list, val, 8);
21141
21142 ++info->cu_index;
21143
21144 return 1;
21145 }
21146
21147 /* Recurse into all "included" dependencies and write their symbols as
21148 if they appeared in this psymtab. */
21149
21150 static void
21151 recursively_write_psymbols (struct objfile *objfile,
21152 struct partial_symtab *psymtab,
21153 struct mapped_symtab *symtab,
21154 htab_t psyms_seen,
21155 offset_type cu_index)
21156 {
21157 int i;
21158
21159 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21160 if (psymtab->dependencies[i]->user != NULL)
21161 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21162 symtab, psyms_seen, cu_index);
21163
21164 write_psymbols (symtab,
21165 psyms_seen,
21166 objfile->global_psymbols.list + psymtab->globals_offset,
21167 psymtab->n_global_syms, cu_index,
21168 0);
21169 write_psymbols (symtab,
21170 psyms_seen,
21171 objfile->static_psymbols.list + psymtab->statics_offset,
21172 psymtab->n_static_syms, cu_index,
21173 1);
21174 }
21175
21176 /* Create an index file for OBJFILE in the directory DIR. */
21177
21178 static void
21179 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21180 {
21181 struct cleanup *cleanup;
21182 char *filename, *cleanup_filename;
21183 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21184 struct obstack cu_list, types_cu_list;
21185 int i;
21186 FILE *out_file;
21187 struct mapped_symtab *symtab;
21188 offset_type val, size_of_contents, total_len;
21189 struct stat st;
21190 htab_t psyms_seen;
21191 htab_t cu_index_htab;
21192 struct psymtab_cu_index_map *psymtab_cu_index_map;
21193
21194 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21195 return;
21196
21197 if (dwarf2_per_objfile->using_index)
21198 error (_("Cannot use an index to create the index"));
21199
21200 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21201 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21202
21203 if (stat (objfile->name, &st) < 0)
21204 perror_with_name (objfile->name);
21205
21206 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21207 INDEX_SUFFIX, (char *) NULL);
21208 cleanup = make_cleanup (xfree, filename);
21209
21210 out_file = gdb_fopen_cloexec (filename, "wb");
21211 if (!out_file)
21212 error (_("Can't open `%s' for writing"), filename);
21213
21214 cleanup_filename = filename;
21215 make_cleanup (unlink_if_set, &cleanup_filename);
21216
21217 symtab = create_mapped_symtab ();
21218 make_cleanup (cleanup_mapped_symtab, symtab);
21219
21220 obstack_init (&addr_obstack);
21221 make_cleanup_obstack_free (&addr_obstack);
21222
21223 obstack_init (&cu_list);
21224 make_cleanup_obstack_free (&cu_list);
21225
21226 obstack_init (&types_cu_list);
21227 make_cleanup_obstack_free (&types_cu_list);
21228
21229 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21230 NULL, xcalloc, xfree);
21231 make_cleanup_htab_delete (psyms_seen);
21232
21233 /* While we're scanning CU's create a table that maps a psymtab pointer
21234 (which is what addrmap records) to its index (which is what is recorded
21235 in the index file). This will later be needed to write the address
21236 table. */
21237 cu_index_htab = htab_create_alloc (100,
21238 hash_psymtab_cu_index,
21239 eq_psymtab_cu_index,
21240 NULL, xcalloc, xfree);
21241 make_cleanup_htab_delete (cu_index_htab);
21242 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21243 xmalloc (sizeof (struct psymtab_cu_index_map)
21244 * dwarf2_per_objfile->n_comp_units);
21245 make_cleanup (xfree, psymtab_cu_index_map);
21246
21247 /* The CU list is already sorted, so we don't need to do additional
21248 work here. Also, the debug_types entries do not appear in
21249 all_comp_units, but only in their own hash table. */
21250 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21251 {
21252 struct dwarf2_per_cu_data *per_cu
21253 = dwarf2_per_objfile->all_comp_units[i];
21254 struct partial_symtab *psymtab = per_cu->v.psymtab;
21255 gdb_byte val[8];
21256 struct psymtab_cu_index_map *map;
21257 void **slot;
21258
21259 if (psymtab->user == NULL)
21260 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21261
21262 map = &psymtab_cu_index_map[i];
21263 map->psymtab = psymtab;
21264 map->cu_index = i;
21265 slot = htab_find_slot (cu_index_htab, map, INSERT);
21266 gdb_assert (slot != NULL);
21267 gdb_assert (*slot == NULL);
21268 *slot = map;
21269
21270 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21271 per_cu->offset.sect_off);
21272 obstack_grow (&cu_list, val, 8);
21273 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21274 obstack_grow (&cu_list, val, 8);
21275 }
21276
21277 /* Dump the address map. */
21278 write_address_map (objfile, &addr_obstack, cu_index_htab);
21279
21280 /* Write out the .debug_type entries, if any. */
21281 if (dwarf2_per_objfile->signatured_types)
21282 {
21283 struct signatured_type_index_data sig_data;
21284
21285 sig_data.objfile = objfile;
21286 sig_data.symtab = symtab;
21287 sig_data.types_list = &types_cu_list;
21288 sig_data.psyms_seen = psyms_seen;
21289 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21290 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21291 write_one_signatured_type, &sig_data);
21292 }
21293
21294 /* Now that we've processed all symbols we can shrink their cu_indices
21295 lists. */
21296 uniquify_cu_indices (symtab);
21297
21298 obstack_init (&constant_pool);
21299 make_cleanup_obstack_free (&constant_pool);
21300 obstack_init (&symtab_obstack);
21301 make_cleanup_obstack_free (&symtab_obstack);
21302 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21303
21304 obstack_init (&contents);
21305 make_cleanup_obstack_free (&contents);
21306 size_of_contents = 6 * sizeof (offset_type);
21307 total_len = size_of_contents;
21308
21309 /* The version number. */
21310 val = MAYBE_SWAP (8);
21311 obstack_grow (&contents, &val, sizeof (val));
21312
21313 /* The offset of the CU list from the start of the file. */
21314 val = MAYBE_SWAP (total_len);
21315 obstack_grow (&contents, &val, sizeof (val));
21316 total_len += obstack_object_size (&cu_list);
21317
21318 /* The offset of the types CU list from the start of the file. */
21319 val = MAYBE_SWAP (total_len);
21320 obstack_grow (&contents, &val, sizeof (val));
21321 total_len += obstack_object_size (&types_cu_list);
21322
21323 /* The offset of the address table from the start of the file. */
21324 val = MAYBE_SWAP (total_len);
21325 obstack_grow (&contents, &val, sizeof (val));
21326 total_len += obstack_object_size (&addr_obstack);
21327
21328 /* The offset of the symbol table from the start of the file. */
21329 val = MAYBE_SWAP (total_len);
21330 obstack_grow (&contents, &val, sizeof (val));
21331 total_len += obstack_object_size (&symtab_obstack);
21332
21333 /* The offset of the constant pool from the start of the file. */
21334 val = MAYBE_SWAP (total_len);
21335 obstack_grow (&contents, &val, sizeof (val));
21336 total_len += obstack_object_size (&constant_pool);
21337
21338 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21339
21340 write_obstack (out_file, &contents);
21341 write_obstack (out_file, &cu_list);
21342 write_obstack (out_file, &types_cu_list);
21343 write_obstack (out_file, &addr_obstack);
21344 write_obstack (out_file, &symtab_obstack);
21345 write_obstack (out_file, &constant_pool);
21346
21347 fclose (out_file);
21348
21349 /* We want to keep the file, so we set cleanup_filename to NULL
21350 here. See unlink_if_set. */
21351 cleanup_filename = NULL;
21352
21353 do_cleanups (cleanup);
21354 }
21355
21356 /* Implementation of the `save gdb-index' command.
21357
21358 Note that the file format used by this command is documented in the
21359 GDB manual. Any changes here must be documented there. */
21360
21361 static void
21362 save_gdb_index_command (char *arg, int from_tty)
21363 {
21364 struct objfile *objfile;
21365
21366 if (!arg || !*arg)
21367 error (_("usage: save gdb-index DIRECTORY"));
21368
21369 ALL_OBJFILES (objfile)
21370 {
21371 struct stat st;
21372
21373 /* If the objfile does not correspond to an actual file, skip it. */
21374 if (stat (objfile->name, &st) < 0)
21375 continue;
21376
21377 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21378 if (dwarf2_per_objfile)
21379 {
21380 volatile struct gdb_exception except;
21381
21382 TRY_CATCH (except, RETURN_MASK_ERROR)
21383 {
21384 write_psymtabs_to_index (objfile, arg);
21385 }
21386 if (except.reason < 0)
21387 exception_fprintf (gdb_stderr, except,
21388 _("Error while writing index for `%s': "),
21389 objfile->name);
21390 }
21391 }
21392 }
21393
21394 \f
21395
21396 int dwarf2_always_disassemble;
21397
21398 static void
21399 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21400 struct cmd_list_element *c, const char *value)
21401 {
21402 fprintf_filtered (file,
21403 _("Whether to always disassemble "
21404 "DWARF expressions is %s.\n"),
21405 value);
21406 }
21407
21408 static void
21409 show_check_physname (struct ui_file *file, int from_tty,
21410 struct cmd_list_element *c, const char *value)
21411 {
21412 fprintf_filtered (file,
21413 _("Whether to check \"physname\" is %s.\n"),
21414 value);
21415 }
21416
21417 void _initialize_dwarf2_read (void);
21418
21419 void
21420 _initialize_dwarf2_read (void)
21421 {
21422 struct cmd_list_element *c;
21423
21424 dwarf2_objfile_data_key
21425 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21426
21427 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21428 Set DWARF 2 specific variables.\n\
21429 Configure DWARF 2 variables such as the cache size"),
21430 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21431 0/*allow-unknown*/, &maintenance_set_cmdlist);
21432
21433 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21434 Show DWARF 2 specific variables\n\
21435 Show DWARF 2 variables such as the cache size"),
21436 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21437 0/*allow-unknown*/, &maintenance_show_cmdlist);
21438
21439 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21440 &dwarf2_max_cache_age, _("\
21441 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21442 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21443 A higher limit means that cached compilation units will be stored\n\
21444 in memory longer, and more total memory will be used. Zero disables\n\
21445 caching, which can slow down startup."),
21446 NULL,
21447 show_dwarf2_max_cache_age,
21448 &set_dwarf2_cmdlist,
21449 &show_dwarf2_cmdlist);
21450
21451 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21452 &dwarf2_always_disassemble, _("\
21453 Set whether `info address' always disassembles DWARF expressions."), _("\
21454 Show whether `info address' always disassembles DWARF expressions."), _("\
21455 When enabled, DWARF expressions are always printed in an assembly-like\n\
21456 syntax. When disabled, expressions will be printed in a more\n\
21457 conversational style, when possible."),
21458 NULL,
21459 show_dwarf2_always_disassemble,
21460 &set_dwarf2_cmdlist,
21461 &show_dwarf2_cmdlist);
21462
21463 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21464 Set debugging of the dwarf2 reader."), _("\
21465 Show debugging of the dwarf2 reader."), _("\
21466 When enabled, debugging messages are printed during dwarf2 reading\n\
21467 and symtab expansion."),
21468 NULL,
21469 NULL,
21470 &setdebuglist, &showdebuglist);
21471
21472 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21473 Set debugging of the dwarf2 DIE reader."), _("\
21474 Show debugging of the dwarf2 DIE reader."), _("\
21475 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21476 The value is the maximum depth to print."),
21477 NULL,
21478 NULL,
21479 &setdebuglist, &showdebuglist);
21480
21481 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21482 Set cross-checking of \"physname\" code against demangler."), _("\
21483 Show cross-checking of \"physname\" code against demangler."), _("\
21484 When enabled, GDB's internal \"physname\" code is checked against\n\
21485 the demangler."),
21486 NULL, show_check_physname,
21487 &setdebuglist, &showdebuglist);
21488
21489 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21490 no_class, &use_deprecated_index_sections, _("\
21491 Set whether to use deprecated gdb_index sections."), _("\
21492 Show whether to use deprecated gdb_index sections."), _("\
21493 When enabled, deprecated .gdb_index sections are used anyway.\n\
21494 Normally they are ignored either because of a missing feature or\n\
21495 performance issue.\n\
21496 Warning: This option must be enabled before gdb reads the file."),
21497 NULL,
21498 NULL,
21499 &setlist, &showlist);
21500
21501 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21502 _("\
21503 Save a gdb-index file.\n\
21504 Usage: save gdb-index DIRECTORY"),
21505 &save_cmdlist);
21506 set_cmd_completer (c, filename_completer);
21507
21508 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21509 &dwarf2_locexpr_funcs);
21510 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21511 &dwarf2_loclist_funcs);
21512
21513 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21514 &dwarf2_block_frame_base_locexpr_funcs);
21515 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21516 &dwarf2_block_frame_base_loclist_funcs);
21517 }
This page took 0.494941 seconds and 4 git commands to generate.