GDB/MI: Document support for -exec-run --start in -list-features
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
1231 /* Offset in .debug_info or .debug_types section. */
1232 sect_offset offset;
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
1237 together via their SIBLING fields. */
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
1241
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
1246 };
1247
1248 /* Get at parts of an attribute structure. */
1249
1250 #define DW_STRING(attr) ((attr)->u.str)
1251 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1252 #define DW_UNSND(attr) ((attr)->u.unsnd)
1253 #define DW_BLOCK(attr) ((attr)->u.blk)
1254 #define DW_SND(attr) ((attr)->u.snd)
1255 #define DW_ADDR(attr) ((attr)->u.addr)
1256 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257
1258 /* Blocks are a bunch of untyped bytes. */
1259 struct dwarf_block
1260 {
1261 size_t size;
1262
1263 /* Valid only if SIZE is not zero. */
1264 const gdb_byte *data;
1265 };
1266
1267 #ifndef ATTR_ALLOC_CHUNK
1268 #define ATTR_ALLOC_CHUNK 4
1269 #endif
1270
1271 /* Allocate fields for structs, unions and enums in this size. */
1272 #ifndef DW_FIELD_ALLOC_CHUNK
1273 #define DW_FIELD_ALLOC_CHUNK 4
1274 #endif
1275
1276 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279 static int bits_per_byte = 8;
1280
1281 /* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284 struct field_info
1285 {
1286 /* List of data member and baseclasses fields. */
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
1294 *fields, *baseclasses;
1295
1296 /* Number of fields (including baseclasses). */
1297 int nfields;
1298
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
1301
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
1304
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
1313
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
1319 const char *name;
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
1324
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
1337 };
1338
1339 /* One item on the queue of compilation units to read in full symbols
1340 for. */
1341 struct dwarf2_queue_item
1342 {
1343 struct dwarf2_per_cu_data *per_cu;
1344 enum language pretend_language;
1345 struct dwarf2_queue_item *next;
1346 };
1347
1348 /* The current queue. */
1349 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
1351 /* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356 static int dwarf2_max_cache_age = 5;
1357 static void
1358 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
1363 value);
1364 }
1365 \f
1366 /* local function prototypes */
1367
1368 static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
1372 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373
1374 static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
1377 static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
1380 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381
1382 static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
1384 int, struct dwarf2_cu *);
1385
1386 static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
1388
1389 static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1391 int need_pc, struct dwarf2_cu *cu);
1392
1393 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
1397 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1402 int need_pc, struct dwarf2_cu *cu);
1403
1404 static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
1406
1407 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408
1409 static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412 static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415 static void abbrev_table_free (struct abbrev_table *);
1416
1417 static void abbrev_table_free_cleanup (void *);
1418
1419 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
1421
1422 static void dwarf2_free_abbrev_table (void *);
1423
1424 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425
1426 static struct partial_die_info *load_partial_dies
1427 (const struct die_reader_specs *, const gdb_byte *, int);
1428
1429 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
1434
1435 static struct partial_die_info *find_partial_die (sect_offset, int,
1436 struct dwarf2_cu *);
1437
1438 static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
1441 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
1444
1445 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446
1447 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450
1451 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452
1453 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454
1455 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1456 unsigned int *);
1457
1458 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459
1460 static LONGEST read_checked_initial_length_and_offset
1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1462 unsigned int *, unsigned int *);
1463
1464 static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
1466 unsigned int *);
1467
1468 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469
1470 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
1473 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474
1475 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476
1477 static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
1480
1481 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482
1483 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486
1487 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
1489 unsigned int *);
1490
1491 static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
1493
1494 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495
1496 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1500 unsigned int);
1501
1502 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
1505 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506
1507 static struct die_info *die_specification (struct die_info *die,
1508 struct dwarf2_cu **);
1509
1510 static void free_line_header (struct line_header *lh);
1511
1512 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
1514
1515 static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
1518
1519 static void dwarf2_start_subfile (const char *, const char *, const char *);
1520
1521 static void dwarf2_start_symtab (struct dwarf2_cu *,
1522 const char *, const char *, CORE_ADDR);
1523
1524 static struct symbol *new_symbol (struct die_info *, struct type *,
1525 struct dwarf2_cu *);
1526
1527 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
1530 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1531 struct dwarf2_cu *);
1532
1533 static void dwarf2_const_value_attr (const struct attribute *attr,
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
1537 struct dwarf2_cu *cu, LONGEST *value,
1538 const gdb_byte **bytes,
1539 struct dwarf2_locexpr_baton **baton);
1540
1541 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1542
1543 static int need_gnat_info (struct dwarf2_cu *);
1544
1545 static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1558
1559 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
1561 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1562
1563 static char *typename_concat (struct obstack *obs, const char *prefix,
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
1566
1567 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1574
1575 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
1577 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
1580 static int dwarf2_get_pc_bounds (struct die_info *,
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
1583
1584 static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
1588 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
1591 static void dwarf2_add_field (struct field_info *, struct die_info *,
1592 struct dwarf2_cu *);
1593
1594 static void dwarf2_attach_fields_to_type (struct field_info *,
1595 struct type *, struct dwarf2_cu *);
1596
1597 static void dwarf2_add_member_fn (struct field_info *,
1598 struct die_info *, struct type *,
1599 struct dwarf2_cu *);
1600
1601 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1602 struct type *,
1603 struct dwarf2_cu *);
1604
1605 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1608
1609 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1610
1611 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
1613 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
1615 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616
1617 static struct type *read_module_type (struct die_info *die,
1618 struct dwarf2_cu *cu);
1619
1620 static const char *namespace_name (struct die_info *die,
1621 int *is_anonymous, struct dwarf2_cu *);
1622
1623 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1626
1627 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1628 struct dwarf2_cu *);
1629
1630 static struct die_info *read_die_and_siblings_1
1631 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1632 struct die_info *);
1633
1634 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1635 const gdb_byte *info_ptr,
1636 const gdb_byte **new_info_ptr,
1637 struct die_info *parent);
1638
1639 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *, int);
1642
1643 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1644 struct die_info **, const gdb_byte *,
1645 int *);
1646
1647 static void process_die (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 struct obstack *);
1651
1652 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1653
1654 static const char *dwarf2_full_name (const char *name,
1655 struct die_info *die,
1656 struct dwarf2_cu *cu);
1657
1658 static const char *dwarf2_physname (const char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static struct die_info *dwarf2_extension (struct die_info *die,
1662 struct dwarf2_cu **);
1663
1664 static const char *dwarf_tag_name (unsigned int);
1665
1666 static const char *dwarf_attr_name (unsigned int);
1667
1668 static const char *dwarf_form_name (unsigned int);
1669
1670 static char *dwarf_bool_name (unsigned int);
1671
1672 static const char *dwarf_type_encoding_name (unsigned int);
1673
1674 static struct die_info *sibling_die (struct die_info *);
1675
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678 static void dump_die_for_error (struct die_info *);
1679
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
1682
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1684
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1710
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712
1713 static void read_signatured_type (struct signatured_type *);
1714
1715 static struct type_unit_group *get_type_unit_group
1716 (struct dwarf2_cu *, const struct attribute *);
1717
1718 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1719
1720 /* memory allocation interface */
1721
1722 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1723
1724 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1725
1726 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1727 const char *, int);
1728
1729 static int attr_form_is_block (const struct attribute *);
1730
1731 static int attr_form_is_section_offset (const struct attribute *);
1732
1733 static int attr_form_is_constant (const struct attribute *);
1734
1735 static int attr_form_is_ref (const struct attribute *);
1736
1737 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1738 struct dwarf2_loclist_baton *baton,
1739 const struct attribute *attr);
1740
1741 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1742 struct symbol *sym,
1743 struct dwarf2_cu *cu,
1744 int is_block);
1745
1746 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1747 const gdb_byte *info_ptr,
1748 struct abbrev_info *abbrev);
1749
1750 static void free_stack_comp_unit (void *);
1751
1752 static hashval_t partial_die_hash (const void *item);
1753
1754 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1755
1756 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1757 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1758
1759 static void init_one_comp_unit (struct dwarf2_cu *cu,
1760 struct dwarf2_per_cu_data *per_cu);
1761
1762 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1763 struct die_info *comp_unit_die,
1764 enum language pretend_language);
1765
1766 static void free_heap_comp_unit (void *);
1767
1768 static void free_cached_comp_units (void *);
1769
1770 static void age_cached_comp_units (void);
1771
1772 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1773
1774 static struct type *set_die_type (struct die_info *, struct type *,
1775 struct dwarf2_cu *);
1776
1777 static void create_all_comp_units (struct objfile *);
1778
1779 static int create_all_type_units (struct objfile *);
1780
1781 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1782 enum language);
1783
1784 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void dwarf2_add_dependence (struct dwarf2_cu *,
1791 struct dwarf2_per_cu_data *);
1792
1793 static void dwarf2_mark (struct dwarf2_cu *);
1794
1795 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1796
1797 static struct type *get_die_type_at_offset (sect_offset,
1798 struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static void dwarf2_release_queue (void *dummy);
1803
1804 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1805 enum language pretend_language);
1806
1807 static void process_queue (void);
1808
1809 static void find_file_and_directory (struct die_info *die,
1810 struct dwarf2_cu *cu,
1811 const char **name, const char **comp_dir);
1812
1813 static char *file_full_name (int file, struct line_header *lh,
1814 const char *comp_dir);
1815
1816 static const gdb_byte *read_and_check_comp_unit_head
1817 (struct comp_unit_head *header,
1818 struct dwarf2_section_info *section,
1819 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1820 int is_debug_types_section);
1821
1822 static void init_cutu_and_read_dies
1823 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1824 int use_existing_cu, int keep,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static void init_cutu_and_read_dies_simple
1828 (struct dwarf2_per_cu_data *this_cu,
1829 die_reader_func_ftype *die_reader_func, void *data);
1830
1831 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1832
1833 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1834
1835 static struct dwo_unit *lookup_dwo_unit_in_dwp
1836 (struct dwp_file *dwp_file, const char *comp_dir,
1837 ULONGEST signature, int is_debug_types);
1838
1839 static struct dwp_file *get_dwp_file (void);
1840
1841 static struct dwo_unit *lookup_dwo_comp_unit
1842 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1843
1844 static struct dwo_unit *lookup_dwo_type_unit
1845 (struct signatured_type *, const char *, const char *);
1846
1847 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1848
1849 static void free_dwo_file_cleanup (void *);
1850
1851 static void process_cu_includes (void);
1852
1853 static void check_producer (struct dwarf2_cu *cu);
1854 \f
1855 /* Various complaints about symbol reading that don't abort the process. */
1856
1857 static void
1858 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _("statement list doesn't fit in .debug_line section"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_file_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line data without a file"));
1869 }
1870
1871 static void
1872 dwarf2_debug_line_missing_end_sequence_complaint (void)
1873 {
1874 complaint (&symfile_complaints,
1875 _(".debug_line section has line "
1876 "program sequence without an end"));
1877 }
1878
1879 static void
1880 dwarf2_complex_location_expr_complaint (void)
1881 {
1882 complaint (&symfile_complaints, _("location expression too complex"));
1883 }
1884
1885 static void
1886 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1887 int arg3)
1888 {
1889 complaint (&symfile_complaints,
1890 _("const value length mismatch for '%s', got %d, expected %d"),
1891 arg1, arg2, arg3);
1892 }
1893
1894 static void
1895 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1896 {
1897 complaint (&symfile_complaints,
1898 _("debug info runs off end of %s section"
1899 " [in module %s]"),
1900 get_section_name (section),
1901 get_section_file_name (section));
1902 }
1903
1904 static void
1905 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1906 {
1907 complaint (&symfile_complaints,
1908 _("macro debug info contains a "
1909 "malformed macro definition:\n`%s'"),
1910 arg1);
1911 }
1912
1913 static void
1914 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1915 {
1916 complaint (&symfile_complaints,
1917 _("invalid attribute class or form for '%s' in '%s'"),
1918 arg1, arg2);
1919 }
1920 \f
1921 #if WORDS_BIGENDIAN
1922
1923 /* Convert VALUE between big- and little-endian. */
1924 static offset_type
1925 byte_swap (offset_type value)
1926 {
1927 offset_type result;
1928
1929 result = (value & 0xff) << 24;
1930 result |= (value & 0xff00) << 8;
1931 result |= (value & 0xff0000) >> 8;
1932 result |= (value & 0xff000000) >> 24;
1933 return result;
1934 }
1935
1936 #define MAYBE_SWAP(V) byte_swap (V)
1937
1938 #else
1939 #define MAYBE_SWAP(V) (V)
1940 #endif /* WORDS_BIGENDIAN */
1941
1942 /* The suffix for an index file. */
1943 #define INDEX_SUFFIX ".gdb-index"
1944
1945 /* Try to locate the sections we need for DWARF 2 debugging
1946 information and return true if we have enough to do something.
1947 NAMES points to the dwarf2 section names, or is NULL if the standard
1948 ELF names are used. */
1949
1950 int
1951 dwarf2_has_info (struct objfile *objfile,
1952 const struct dwarf2_debug_sections *names)
1953 {
1954 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1955 if (!dwarf2_per_objfile)
1956 {
1957 /* Initialize per-objfile state. */
1958 struct dwarf2_per_objfile *data
1959 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1960
1961 memset (data, 0, sizeof (*data));
1962 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1963 dwarf2_per_objfile = data;
1964
1965 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1966 (void *) names);
1967 dwarf2_per_objfile->objfile = objfile;
1968 }
1969 return (!dwarf2_per_objfile->info.is_virtual
1970 && dwarf2_per_objfile->info.s.asection != NULL
1971 && !dwarf2_per_objfile->abbrev.is_virtual
1972 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1973 }
1974
1975 /* Return the containing section of virtual section SECTION. */
1976
1977 static struct dwarf2_section_info *
1978 get_containing_section (const struct dwarf2_section_info *section)
1979 {
1980 gdb_assert (section->is_virtual);
1981 return section->s.containing_section;
1982 }
1983
1984 /* Return the bfd owner of SECTION. */
1985
1986 static struct bfd *
1987 get_section_bfd_owner (const struct dwarf2_section_info *section)
1988 {
1989 if (section->is_virtual)
1990 {
1991 section = get_containing_section (section);
1992 gdb_assert (!section->is_virtual);
1993 }
1994 return section->s.asection->owner;
1995 }
1996
1997 /* Return the bfd section of SECTION.
1998 Returns NULL if the section is not present. */
1999
2000 static asection *
2001 get_section_bfd_section (const struct dwarf2_section_info *section)
2002 {
2003 if (section->is_virtual)
2004 {
2005 section = get_containing_section (section);
2006 gdb_assert (!section->is_virtual);
2007 }
2008 return section->s.asection;
2009 }
2010
2011 /* Return the name of SECTION. */
2012
2013 static const char *
2014 get_section_name (const struct dwarf2_section_info *section)
2015 {
2016 asection *sectp = get_section_bfd_section (section);
2017
2018 gdb_assert (sectp != NULL);
2019 return bfd_section_name (get_section_bfd_owner (section), sectp);
2020 }
2021
2022 /* Return the name of the file SECTION is in. */
2023
2024 static const char *
2025 get_section_file_name (const struct dwarf2_section_info *section)
2026 {
2027 bfd *abfd = get_section_bfd_owner (section);
2028
2029 return bfd_get_filename (abfd);
2030 }
2031
2032 /* Return the id of SECTION.
2033 Returns 0 if SECTION doesn't exist. */
2034
2035 static int
2036 get_section_id (const struct dwarf2_section_info *section)
2037 {
2038 asection *sectp = get_section_bfd_section (section);
2039
2040 if (sectp == NULL)
2041 return 0;
2042 return sectp->id;
2043 }
2044
2045 /* Return the flags of SECTION.
2046 SECTION (or containing section if this is a virtual section) must exist. */
2047
2048 static int
2049 get_section_flags (const struct dwarf2_section_info *section)
2050 {
2051 asection *sectp = get_section_bfd_section (section);
2052
2053 gdb_assert (sectp != NULL);
2054 return bfd_get_section_flags (sectp->owner, sectp);
2055 }
2056
2057 /* When loading sections, we look either for uncompressed section or for
2058 compressed section names. */
2059
2060 static int
2061 section_is_p (const char *section_name,
2062 const struct dwarf2_section_names *names)
2063 {
2064 if (names->normal != NULL
2065 && strcmp (section_name, names->normal) == 0)
2066 return 1;
2067 if (names->compressed != NULL
2068 && strcmp (section_name, names->compressed) == 0)
2069 return 1;
2070 return 0;
2071 }
2072
2073 /* This function is mapped across the sections and remembers the
2074 offset and size of each of the debugging sections we are interested
2075 in. */
2076
2077 static void
2078 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2079 {
2080 const struct dwarf2_debug_sections *names;
2081 flagword aflag = bfd_get_section_flags (abfd, sectp);
2082
2083 if (vnames == NULL)
2084 names = &dwarf2_elf_names;
2085 else
2086 names = (const struct dwarf2_debug_sections *) vnames;
2087
2088 if ((aflag & SEC_HAS_CONTENTS) == 0)
2089 {
2090 }
2091 else if (section_is_p (sectp->name, &names->info))
2092 {
2093 dwarf2_per_objfile->info.s.asection = sectp;
2094 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2095 }
2096 else if (section_is_p (sectp->name, &names->abbrev))
2097 {
2098 dwarf2_per_objfile->abbrev.s.asection = sectp;
2099 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2100 }
2101 else if (section_is_p (sectp->name, &names->line))
2102 {
2103 dwarf2_per_objfile->line.s.asection = sectp;
2104 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2105 }
2106 else if (section_is_p (sectp->name, &names->loc))
2107 {
2108 dwarf2_per_objfile->loc.s.asection = sectp;
2109 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2110 }
2111 else if (section_is_p (sectp->name, &names->macinfo))
2112 {
2113 dwarf2_per_objfile->macinfo.s.asection = sectp;
2114 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2115 }
2116 else if (section_is_p (sectp->name, &names->macro))
2117 {
2118 dwarf2_per_objfile->macro.s.asection = sectp;
2119 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2120 }
2121 else if (section_is_p (sectp->name, &names->str))
2122 {
2123 dwarf2_per_objfile->str.s.asection = sectp;
2124 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2125 }
2126 else if (section_is_p (sectp->name, &names->addr))
2127 {
2128 dwarf2_per_objfile->addr.s.asection = sectp;
2129 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2130 }
2131 else if (section_is_p (sectp->name, &names->frame))
2132 {
2133 dwarf2_per_objfile->frame.s.asection = sectp;
2134 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2135 }
2136 else if (section_is_p (sectp->name, &names->eh_frame))
2137 {
2138 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2139 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2140 }
2141 else if (section_is_p (sectp->name, &names->ranges))
2142 {
2143 dwarf2_per_objfile->ranges.s.asection = sectp;
2144 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2145 }
2146 else if (section_is_p (sectp->name, &names->types))
2147 {
2148 struct dwarf2_section_info type_section;
2149
2150 memset (&type_section, 0, sizeof (type_section));
2151 type_section.s.asection = sectp;
2152 type_section.size = bfd_get_section_size (sectp);
2153
2154 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2155 &type_section);
2156 }
2157 else if (section_is_p (sectp->name, &names->gdb_index))
2158 {
2159 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2160 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2161 }
2162
2163 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2164 && bfd_section_vma (abfd, sectp) == 0)
2165 dwarf2_per_objfile->has_section_at_zero = 1;
2166 }
2167
2168 /* A helper function that decides whether a section is empty,
2169 or not present. */
2170
2171 static int
2172 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2173 {
2174 if (section->is_virtual)
2175 return section->size == 0;
2176 return section->s.asection == NULL || section->size == 0;
2177 }
2178
2179 /* Read the contents of the section INFO.
2180 OBJFILE is the main object file, but not necessarily the file where
2181 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2182 of the DWO file.
2183 If the section is compressed, uncompress it before returning. */
2184
2185 static void
2186 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2187 {
2188 asection *sectp;
2189 bfd *abfd;
2190 gdb_byte *buf, *retbuf;
2191
2192 if (info->readin)
2193 return;
2194 info->buffer = NULL;
2195 info->readin = 1;
2196
2197 if (dwarf2_section_empty_p (info))
2198 return;
2199
2200 sectp = get_section_bfd_section (info);
2201
2202 /* If this is a virtual section we need to read in the real one first. */
2203 if (info->is_virtual)
2204 {
2205 struct dwarf2_section_info *containing_section =
2206 get_containing_section (info);
2207
2208 gdb_assert (sectp != NULL);
2209 if ((sectp->flags & SEC_RELOC) != 0)
2210 {
2211 error (_("Dwarf Error: DWP format V2 with relocations is not"
2212 " supported in section %s [in module %s]"),
2213 get_section_name (info), get_section_file_name (info));
2214 }
2215 dwarf2_read_section (objfile, containing_section);
2216 /* Other code should have already caught virtual sections that don't
2217 fit. */
2218 gdb_assert (info->virtual_offset + info->size
2219 <= containing_section->size);
2220 /* If the real section is empty or there was a problem reading the
2221 section we shouldn't get here. */
2222 gdb_assert (containing_section->buffer != NULL);
2223 info->buffer = containing_section->buffer + info->virtual_offset;
2224 return;
2225 }
2226
2227 /* If the section has relocations, we must read it ourselves.
2228 Otherwise we attach it to the BFD. */
2229 if ((sectp->flags & SEC_RELOC) == 0)
2230 {
2231 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2232 return;
2233 }
2234
2235 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2236 info->buffer = buf;
2237
2238 /* When debugging .o files, we may need to apply relocations; see
2239 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2240 We never compress sections in .o files, so we only need to
2241 try this when the section is not compressed. */
2242 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2243 if (retbuf != NULL)
2244 {
2245 info->buffer = retbuf;
2246 return;
2247 }
2248
2249 abfd = get_section_bfd_owner (info);
2250 gdb_assert (abfd != NULL);
2251
2252 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2253 || bfd_bread (buf, info->size, abfd) != info->size)
2254 {
2255 error (_("Dwarf Error: Can't read DWARF data"
2256 " in section %s [in module %s]"),
2257 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2258 }
2259 }
2260
2261 /* A helper function that returns the size of a section in a safe way.
2262 If you are positive that the section has been read before using the
2263 size, then it is safe to refer to the dwarf2_section_info object's
2264 "size" field directly. In other cases, you must call this
2265 function, because for compressed sections the size field is not set
2266 correctly until the section has been read. */
2267
2268 static bfd_size_type
2269 dwarf2_section_size (struct objfile *objfile,
2270 struct dwarf2_section_info *info)
2271 {
2272 if (!info->readin)
2273 dwarf2_read_section (objfile, info);
2274 return info->size;
2275 }
2276
2277 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2278 SECTION_NAME. */
2279
2280 void
2281 dwarf2_get_section_info (struct objfile *objfile,
2282 enum dwarf2_section_enum sect,
2283 asection **sectp, const gdb_byte **bufp,
2284 bfd_size_type *sizep)
2285 {
2286 struct dwarf2_per_objfile *data
2287 = objfile_data (objfile, dwarf2_objfile_data_key);
2288 struct dwarf2_section_info *info;
2289
2290 /* We may see an objfile without any DWARF, in which case we just
2291 return nothing. */
2292 if (data == NULL)
2293 {
2294 *sectp = NULL;
2295 *bufp = NULL;
2296 *sizep = 0;
2297 return;
2298 }
2299 switch (sect)
2300 {
2301 case DWARF2_DEBUG_FRAME:
2302 info = &data->frame;
2303 break;
2304 case DWARF2_EH_FRAME:
2305 info = &data->eh_frame;
2306 break;
2307 default:
2308 gdb_assert_not_reached ("unexpected section");
2309 }
2310
2311 dwarf2_read_section (objfile, info);
2312
2313 *sectp = get_section_bfd_section (info);
2314 *bufp = info->buffer;
2315 *sizep = info->size;
2316 }
2317
2318 /* A helper function to find the sections for a .dwz file. */
2319
2320 static void
2321 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2322 {
2323 struct dwz_file *dwz_file = arg;
2324
2325 /* Note that we only support the standard ELF names, because .dwz
2326 is ELF-only (at the time of writing). */
2327 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2328 {
2329 dwz_file->abbrev.s.asection = sectp;
2330 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2331 }
2332 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2333 {
2334 dwz_file->info.s.asection = sectp;
2335 dwz_file->info.size = bfd_get_section_size (sectp);
2336 }
2337 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2338 {
2339 dwz_file->str.s.asection = sectp;
2340 dwz_file->str.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2343 {
2344 dwz_file->line.s.asection = sectp;
2345 dwz_file->line.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2348 {
2349 dwz_file->macro.s.asection = sectp;
2350 dwz_file->macro.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2353 {
2354 dwz_file->gdb_index.s.asection = sectp;
2355 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2356 }
2357 }
2358
2359 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2360 there is no .gnu_debugaltlink section in the file. Error if there
2361 is such a section but the file cannot be found. */
2362
2363 static struct dwz_file *
2364 dwarf2_get_dwz_file (void)
2365 {
2366 bfd *dwz_bfd;
2367 char *data;
2368 struct cleanup *cleanup;
2369 const char *filename;
2370 struct dwz_file *result;
2371 bfd_size_type buildid_len_arg;
2372 size_t buildid_len;
2373 bfd_byte *buildid;
2374
2375 if (dwarf2_per_objfile->dwz_file != NULL)
2376 return dwarf2_per_objfile->dwz_file;
2377
2378 bfd_set_error (bfd_error_no_error);
2379 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2380 &buildid_len_arg, &buildid);
2381 if (data == NULL)
2382 {
2383 if (bfd_get_error () == bfd_error_no_error)
2384 return NULL;
2385 error (_("could not read '.gnu_debugaltlink' section: %s"),
2386 bfd_errmsg (bfd_get_error ()));
2387 }
2388 cleanup = make_cleanup (xfree, data);
2389 make_cleanup (xfree, buildid);
2390
2391 buildid_len = (size_t) buildid_len_arg;
2392
2393 filename = (const char *) data;
2394 if (!IS_ABSOLUTE_PATH (filename))
2395 {
2396 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2397 char *rel;
2398
2399 make_cleanup (xfree, abs);
2400 abs = ldirname (abs);
2401 make_cleanup (xfree, abs);
2402
2403 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2404 make_cleanup (xfree, rel);
2405 filename = rel;
2406 }
2407
2408 /* First try the file name given in the section. If that doesn't
2409 work, try to use the build-id instead. */
2410 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2411 if (dwz_bfd != NULL)
2412 {
2413 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2414 {
2415 gdb_bfd_unref (dwz_bfd);
2416 dwz_bfd = NULL;
2417 }
2418 }
2419
2420 if (dwz_bfd == NULL)
2421 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2422
2423 if (dwz_bfd == NULL)
2424 error (_("could not find '.gnu_debugaltlink' file for %s"),
2425 objfile_name (dwarf2_per_objfile->objfile));
2426
2427 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2428 struct dwz_file);
2429 result->dwz_bfd = dwz_bfd;
2430
2431 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2432
2433 do_cleanups (cleanup);
2434
2435 dwarf2_per_objfile->dwz_file = result;
2436 return result;
2437 }
2438 \f
2439 /* DWARF quick_symbols_functions support. */
2440
2441 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2442 unique line tables, so we maintain a separate table of all .debug_line
2443 derived entries to support the sharing.
2444 All the quick functions need is the list of file names. We discard the
2445 line_header when we're done and don't need to record it here. */
2446 struct quick_file_names
2447 {
2448 /* The data used to construct the hash key. */
2449 struct stmt_list_hash hash;
2450
2451 /* The number of entries in file_names, real_names. */
2452 unsigned int num_file_names;
2453
2454 /* The file names from the line table, after being run through
2455 file_full_name. */
2456 const char **file_names;
2457
2458 /* The file names from the line table after being run through
2459 gdb_realpath. These are computed lazily. */
2460 const char **real_names;
2461 };
2462
2463 /* When using the index (and thus not using psymtabs), each CU has an
2464 object of this type. This is used to hold information needed by
2465 the various "quick" methods. */
2466 struct dwarf2_per_cu_quick_data
2467 {
2468 /* The file table. This can be NULL if there was no file table
2469 or it's currently not read in.
2470 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2471 struct quick_file_names *file_names;
2472
2473 /* The corresponding symbol table. This is NULL if symbols for this
2474 CU have not yet been read. */
2475 struct symtab *symtab;
2476
2477 /* A temporary mark bit used when iterating over all CUs in
2478 expand_symtabs_matching. */
2479 unsigned int mark : 1;
2480
2481 /* True if we've tried to read the file table and found there isn't one.
2482 There will be no point in trying to read it again next time. */
2483 unsigned int no_file_data : 1;
2484 };
2485
2486 /* Utility hash function for a stmt_list_hash. */
2487
2488 static hashval_t
2489 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2490 {
2491 hashval_t v = 0;
2492
2493 if (stmt_list_hash->dwo_unit != NULL)
2494 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2495 v += stmt_list_hash->line_offset.sect_off;
2496 return v;
2497 }
2498
2499 /* Utility equality function for a stmt_list_hash. */
2500
2501 static int
2502 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2503 const struct stmt_list_hash *rhs)
2504 {
2505 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2506 return 0;
2507 if (lhs->dwo_unit != NULL
2508 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2509 return 0;
2510
2511 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2512 }
2513
2514 /* Hash function for a quick_file_names. */
2515
2516 static hashval_t
2517 hash_file_name_entry (const void *e)
2518 {
2519 const struct quick_file_names *file_data = e;
2520
2521 return hash_stmt_list_entry (&file_data->hash);
2522 }
2523
2524 /* Equality function for a quick_file_names. */
2525
2526 static int
2527 eq_file_name_entry (const void *a, const void *b)
2528 {
2529 const struct quick_file_names *ea = a;
2530 const struct quick_file_names *eb = b;
2531
2532 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2533 }
2534
2535 /* Delete function for a quick_file_names. */
2536
2537 static void
2538 delete_file_name_entry (void *e)
2539 {
2540 struct quick_file_names *file_data = e;
2541 int i;
2542
2543 for (i = 0; i < file_data->num_file_names; ++i)
2544 {
2545 xfree ((void*) file_data->file_names[i]);
2546 if (file_data->real_names)
2547 xfree ((void*) file_data->real_names[i]);
2548 }
2549
2550 /* The space for the struct itself lives on objfile_obstack,
2551 so we don't free it here. */
2552 }
2553
2554 /* Create a quick_file_names hash table. */
2555
2556 static htab_t
2557 create_quick_file_names_table (unsigned int nr_initial_entries)
2558 {
2559 return htab_create_alloc (nr_initial_entries,
2560 hash_file_name_entry, eq_file_name_entry,
2561 delete_file_name_entry, xcalloc, xfree);
2562 }
2563
2564 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2565 have to be created afterwards. You should call age_cached_comp_units after
2566 processing PER_CU->CU. dw2_setup must have been already called. */
2567
2568 static void
2569 load_cu (struct dwarf2_per_cu_data *per_cu)
2570 {
2571 if (per_cu->is_debug_types)
2572 load_full_type_unit (per_cu);
2573 else
2574 load_full_comp_unit (per_cu, language_minimal);
2575
2576 gdb_assert (per_cu->cu != NULL);
2577
2578 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2579 }
2580
2581 /* Read in the symbols for PER_CU. */
2582
2583 static void
2584 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2585 {
2586 struct cleanup *back_to;
2587
2588 /* Skip type_unit_groups, reading the type units they contain
2589 is handled elsewhere. */
2590 if (IS_TYPE_UNIT_GROUP (per_cu))
2591 return;
2592
2593 back_to = make_cleanup (dwarf2_release_queue, NULL);
2594
2595 if (dwarf2_per_objfile->using_index
2596 ? per_cu->v.quick->symtab == NULL
2597 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2598 {
2599 queue_comp_unit (per_cu, language_minimal);
2600 load_cu (per_cu);
2601
2602 /* If we just loaded a CU from a DWO, and we're working with an index
2603 that may badly handle TUs, load all the TUs in that DWO as well.
2604 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2605 if (!per_cu->is_debug_types
2606 && per_cu->cu->dwo_unit != NULL
2607 && dwarf2_per_objfile->index_table != NULL
2608 && dwarf2_per_objfile->index_table->version <= 7
2609 /* DWP files aren't supported yet. */
2610 && get_dwp_file () == NULL)
2611 queue_and_load_all_dwo_tus (per_cu);
2612 }
2613
2614 process_queue ();
2615
2616 /* Age the cache, releasing compilation units that have not
2617 been used recently. */
2618 age_cached_comp_units ();
2619
2620 do_cleanups (back_to);
2621 }
2622
2623 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2624 the objfile from which this CU came. Returns the resulting symbol
2625 table. */
2626
2627 static struct symtab *
2628 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2629 {
2630 gdb_assert (dwarf2_per_objfile->using_index);
2631 if (!per_cu->v.quick->symtab)
2632 {
2633 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2634 increment_reading_symtab ();
2635 dw2_do_instantiate_symtab (per_cu);
2636 process_cu_includes ();
2637 do_cleanups (back_to);
2638 }
2639 return per_cu->v.quick->symtab;
2640 }
2641
2642 /* Return the CU given its index.
2643
2644 This is intended for loops like:
2645
2646 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2647 + dwarf2_per_objfile->n_type_units); ++i)
2648 {
2649 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2650
2651 ...;
2652 }
2653 */
2654
2655 static struct dwarf2_per_cu_data *
2656 dw2_get_cu (int index)
2657 {
2658 if (index >= dwarf2_per_objfile->n_comp_units)
2659 {
2660 index -= dwarf2_per_objfile->n_comp_units;
2661 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2662 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2663 }
2664
2665 return dwarf2_per_objfile->all_comp_units[index];
2666 }
2667
2668 /* Return the primary CU given its index.
2669 The difference between this function and dw2_get_cu is in the handling
2670 of type units (TUs). Here we return the type_unit_group object.
2671
2672 This is intended for loops like:
2673
2674 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2675 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2676 {
2677 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2678
2679 ...;
2680 }
2681 */
2682
2683 static struct dwarf2_per_cu_data *
2684 dw2_get_primary_cu (int index)
2685 {
2686 if (index >= dwarf2_per_objfile->n_comp_units)
2687 {
2688 index -= dwarf2_per_objfile->n_comp_units;
2689 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2690 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2691 }
2692
2693 return dwarf2_per_objfile->all_comp_units[index];
2694 }
2695
2696 /* A helper for create_cus_from_index that handles a given list of
2697 CUs. */
2698
2699 static void
2700 create_cus_from_index_list (struct objfile *objfile,
2701 const gdb_byte *cu_list, offset_type n_elements,
2702 struct dwarf2_section_info *section,
2703 int is_dwz,
2704 int base_offset)
2705 {
2706 offset_type i;
2707
2708 for (i = 0; i < n_elements; i += 2)
2709 {
2710 struct dwarf2_per_cu_data *the_cu;
2711 ULONGEST offset, length;
2712
2713 gdb_static_assert (sizeof (ULONGEST) >= 8);
2714 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2715 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2716 cu_list += 2 * 8;
2717
2718 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2719 struct dwarf2_per_cu_data);
2720 the_cu->offset.sect_off = offset;
2721 the_cu->length = length;
2722 the_cu->objfile = objfile;
2723 the_cu->section = section;
2724 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2725 struct dwarf2_per_cu_quick_data);
2726 the_cu->is_dwz = is_dwz;
2727 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2728 }
2729 }
2730
2731 /* Read the CU list from the mapped index, and use it to create all
2732 the CU objects for this objfile. */
2733
2734 static void
2735 create_cus_from_index (struct objfile *objfile,
2736 const gdb_byte *cu_list, offset_type cu_list_elements,
2737 const gdb_byte *dwz_list, offset_type dwz_elements)
2738 {
2739 struct dwz_file *dwz;
2740
2741 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2742 dwarf2_per_objfile->all_comp_units
2743 = obstack_alloc (&objfile->objfile_obstack,
2744 dwarf2_per_objfile->n_comp_units
2745 * sizeof (struct dwarf2_per_cu_data *));
2746
2747 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2748 &dwarf2_per_objfile->info, 0, 0);
2749
2750 if (dwz_elements == 0)
2751 return;
2752
2753 dwz = dwarf2_get_dwz_file ();
2754 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2755 cu_list_elements / 2);
2756 }
2757
2758 /* Create the signatured type hash table from the index. */
2759
2760 static void
2761 create_signatured_type_table_from_index (struct objfile *objfile,
2762 struct dwarf2_section_info *section,
2763 const gdb_byte *bytes,
2764 offset_type elements)
2765 {
2766 offset_type i;
2767 htab_t sig_types_hash;
2768
2769 dwarf2_per_objfile->n_type_units = elements / 3;
2770 dwarf2_per_objfile->all_type_units
2771 = xmalloc (dwarf2_per_objfile->n_type_units
2772 * sizeof (struct signatured_type *));
2773
2774 sig_types_hash = allocate_signatured_type_table (objfile);
2775
2776 for (i = 0; i < elements; i += 3)
2777 {
2778 struct signatured_type *sig_type;
2779 ULONGEST offset, type_offset_in_tu, signature;
2780 void **slot;
2781
2782 gdb_static_assert (sizeof (ULONGEST) >= 8);
2783 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2784 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2785 BFD_ENDIAN_LITTLE);
2786 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2787 bytes += 3 * 8;
2788
2789 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2790 struct signatured_type);
2791 sig_type->signature = signature;
2792 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2793 sig_type->per_cu.is_debug_types = 1;
2794 sig_type->per_cu.section = section;
2795 sig_type->per_cu.offset.sect_off = offset;
2796 sig_type->per_cu.objfile = objfile;
2797 sig_type->per_cu.v.quick
2798 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_quick_data);
2800
2801 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2802 *slot = sig_type;
2803
2804 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2805 }
2806
2807 dwarf2_per_objfile->signatured_types = sig_types_hash;
2808 }
2809
2810 /* Read the address map data from the mapped index, and use it to
2811 populate the objfile's psymtabs_addrmap. */
2812
2813 static void
2814 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2815 {
2816 const gdb_byte *iter, *end;
2817 struct obstack temp_obstack;
2818 struct addrmap *mutable_map;
2819 struct cleanup *cleanup;
2820 CORE_ADDR baseaddr;
2821
2822 obstack_init (&temp_obstack);
2823 cleanup = make_cleanup_obstack_free (&temp_obstack);
2824 mutable_map = addrmap_create_mutable (&temp_obstack);
2825
2826 iter = index->address_table;
2827 end = iter + index->address_table_size;
2828
2829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2830
2831 while (iter < end)
2832 {
2833 ULONGEST hi, lo, cu_index;
2834 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2835 iter += 8;
2836 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2837 iter += 8;
2838 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2839 iter += 4;
2840
2841 if (lo > hi)
2842 {
2843 complaint (&symfile_complaints,
2844 _(".gdb_index address table has invalid range (%s - %s)"),
2845 hex_string (lo), hex_string (hi));
2846 continue;
2847 }
2848
2849 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2850 {
2851 complaint (&symfile_complaints,
2852 _(".gdb_index address table has invalid CU number %u"),
2853 (unsigned) cu_index);
2854 continue;
2855 }
2856
2857 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2858 dw2_get_cu (cu_index));
2859 }
2860
2861 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2862 &objfile->objfile_obstack);
2863 do_cleanups (cleanup);
2864 }
2865
2866 /* The hash function for strings in the mapped index. This is the same as
2867 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2868 implementation. This is necessary because the hash function is tied to the
2869 format of the mapped index file. The hash values do not have to match with
2870 SYMBOL_HASH_NEXT.
2871
2872 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2873
2874 static hashval_t
2875 mapped_index_string_hash (int index_version, const void *p)
2876 {
2877 const unsigned char *str = (const unsigned char *) p;
2878 hashval_t r = 0;
2879 unsigned char c;
2880
2881 while ((c = *str++) != 0)
2882 {
2883 if (index_version >= 5)
2884 c = tolower (c);
2885 r = r * 67 + c - 113;
2886 }
2887
2888 return r;
2889 }
2890
2891 /* Find a slot in the mapped index INDEX for the object named NAME.
2892 If NAME is found, set *VEC_OUT to point to the CU vector in the
2893 constant pool and return 1. If NAME cannot be found, return 0. */
2894
2895 static int
2896 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2897 offset_type **vec_out)
2898 {
2899 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2900 offset_type hash;
2901 offset_type slot, step;
2902 int (*cmp) (const char *, const char *);
2903
2904 if (current_language->la_language == language_cplus
2905 || current_language->la_language == language_java
2906 || current_language->la_language == language_fortran)
2907 {
2908 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2909 not contain any. */
2910 const char *paren = strchr (name, '(');
2911
2912 if (paren)
2913 {
2914 char *dup;
2915
2916 dup = xmalloc (paren - name + 1);
2917 memcpy (dup, name, paren - name);
2918 dup[paren - name] = 0;
2919
2920 make_cleanup (xfree, dup);
2921 name = dup;
2922 }
2923 }
2924
2925 /* Index version 4 did not support case insensitive searches. But the
2926 indices for case insensitive languages are built in lowercase, therefore
2927 simulate our NAME being searched is also lowercased. */
2928 hash = mapped_index_string_hash ((index->version == 4
2929 && case_sensitivity == case_sensitive_off
2930 ? 5 : index->version),
2931 name);
2932
2933 slot = hash & (index->symbol_table_slots - 1);
2934 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2935 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2936
2937 for (;;)
2938 {
2939 /* Convert a slot number to an offset into the table. */
2940 offset_type i = 2 * slot;
2941 const char *str;
2942 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2943 {
2944 do_cleanups (back_to);
2945 return 0;
2946 }
2947
2948 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2949 if (!cmp (name, str))
2950 {
2951 *vec_out = (offset_type *) (index->constant_pool
2952 + MAYBE_SWAP (index->symbol_table[i + 1]));
2953 do_cleanups (back_to);
2954 return 1;
2955 }
2956
2957 slot = (slot + step) & (index->symbol_table_slots - 1);
2958 }
2959 }
2960
2961 /* A helper function that reads the .gdb_index from SECTION and fills
2962 in MAP. FILENAME is the name of the file containing the section;
2963 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2964 ok to use deprecated sections.
2965
2966 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2967 out parameters that are filled in with information about the CU and
2968 TU lists in the section.
2969
2970 Returns 1 if all went well, 0 otherwise. */
2971
2972 static int
2973 read_index_from_section (struct objfile *objfile,
2974 const char *filename,
2975 int deprecated_ok,
2976 struct dwarf2_section_info *section,
2977 struct mapped_index *map,
2978 const gdb_byte **cu_list,
2979 offset_type *cu_list_elements,
2980 const gdb_byte **types_list,
2981 offset_type *types_list_elements)
2982 {
2983 const gdb_byte *addr;
2984 offset_type version;
2985 offset_type *metadata;
2986 int i;
2987
2988 if (dwarf2_section_empty_p (section))
2989 return 0;
2990
2991 /* Older elfutils strip versions could keep the section in the main
2992 executable while splitting it for the separate debug info file. */
2993 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2994 return 0;
2995
2996 dwarf2_read_section (objfile, section);
2997
2998 addr = section->buffer;
2999 /* Version check. */
3000 version = MAYBE_SWAP (*(offset_type *) addr);
3001 /* Versions earlier than 3 emitted every copy of a psymbol. This
3002 causes the index to behave very poorly for certain requests. Version 3
3003 contained incomplete addrmap. So, it seems better to just ignore such
3004 indices. */
3005 if (version < 4)
3006 {
3007 static int warning_printed = 0;
3008 if (!warning_printed)
3009 {
3010 warning (_("Skipping obsolete .gdb_index section in %s."),
3011 filename);
3012 warning_printed = 1;
3013 }
3014 return 0;
3015 }
3016 /* Index version 4 uses a different hash function than index version
3017 5 and later.
3018
3019 Versions earlier than 6 did not emit psymbols for inlined
3020 functions. Using these files will cause GDB not to be able to
3021 set breakpoints on inlined functions by name, so we ignore these
3022 indices unless the user has done
3023 "set use-deprecated-index-sections on". */
3024 if (version < 6 && !deprecated_ok)
3025 {
3026 static int warning_printed = 0;
3027 if (!warning_printed)
3028 {
3029 warning (_("\
3030 Skipping deprecated .gdb_index section in %s.\n\
3031 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3032 to use the section anyway."),
3033 filename);
3034 warning_printed = 1;
3035 }
3036 return 0;
3037 }
3038 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3039 of the TU (for symbols coming from TUs),
3040 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3041 Plus gold-generated indices can have duplicate entries for global symbols,
3042 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3043 These are just performance bugs, and we can't distinguish gdb-generated
3044 indices from gold-generated ones, so issue no warning here. */
3045
3046 /* Indexes with higher version than the one supported by GDB may be no
3047 longer backward compatible. */
3048 if (version > 8)
3049 return 0;
3050
3051 map->version = version;
3052 map->total_size = section->size;
3053
3054 metadata = (offset_type *) (addr + sizeof (offset_type));
3055
3056 i = 0;
3057 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3058 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3059 / 8);
3060 ++i;
3061
3062 *types_list = addr + MAYBE_SWAP (metadata[i]);
3063 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3064 - MAYBE_SWAP (metadata[i]))
3065 / 8);
3066 ++i;
3067
3068 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3069 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3070 - MAYBE_SWAP (metadata[i]));
3071 ++i;
3072
3073 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3074 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / (2 * sizeof (offset_type)));
3077 ++i;
3078
3079 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3080
3081 return 1;
3082 }
3083
3084
3085 /* Read the index file. If everything went ok, initialize the "quick"
3086 elements of all the CUs and return 1. Otherwise, return 0. */
3087
3088 static int
3089 dwarf2_read_index (struct objfile *objfile)
3090 {
3091 struct mapped_index local_map, *map;
3092 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3093 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3094 struct dwz_file *dwz;
3095
3096 if (!read_index_from_section (objfile, objfile_name (objfile),
3097 use_deprecated_index_sections,
3098 &dwarf2_per_objfile->gdb_index, &local_map,
3099 &cu_list, &cu_list_elements,
3100 &types_list, &types_list_elements))
3101 return 0;
3102
3103 /* Don't use the index if it's empty. */
3104 if (local_map.symbol_table_slots == 0)
3105 return 0;
3106
3107 /* If there is a .dwz file, read it so we can get its CU list as
3108 well. */
3109 dwz = dwarf2_get_dwz_file ();
3110 if (dwz != NULL)
3111 {
3112 struct mapped_index dwz_map;
3113 const gdb_byte *dwz_types_ignore;
3114 offset_type dwz_types_elements_ignore;
3115
3116 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3117 1,
3118 &dwz->gdb_index, &dwz_map,
3119 &dwz_list, &dwz_list_elements,
3120 &dwz_types_ignore,
3121 &dwz_types_elements_ignore))
3122 {
3123 warning (_("could not read '.gdb_index' section from %s; skipping"),
3124 bfd_get_filename (dwz->dwz_bfd));
3125 return 0;
3126 }
3127 }
3128
3129 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3130 dwz_list_elements);
3131
3132 if (types_list_elements)
3133 {
3134 struct dwarf2_section_info *section;
3135
3136 /* We can only handle a single .debug_types when we have an
3137 index. */
3138 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3139 return 0;
3140
3141 section = VEC_index (dwarf2_section_info_def,
3142 dwarf2_per_objfile->types, 0);
3143
3144 create_signatured_type_table_from_index (objfile, section, types_list,
3145 types_list_elements);
3146 }
3147
3148 create_addrmap_from_index (objfile, &local_map);
3149
3150 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3151 *map = local_map;
3152
3153 dwarf2_per_objfile->index_table = map;
3154 dwarf2_per_objfile->using_index = 1;
3155 dwarf2_per_objfile->quick_file_names_table =
3156 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3157
3158 return 1;
3159 }
3160
3161 /* A helper for the "quick" functions which sets the global
3162 dwarf2_per_objfile according to OBJFILE. */
3163
3164 static void
3165 dw2_setup (struct objfile *objfile)
3166 {
3167 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3168 gdb_assert (dwarf2_per_objfile);
3169 }
3170
3171 /* die_reader_func for dw2_get_file_names. */
3172
3173 static void
3174 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3175 const gdb_byte *info_ptr,
3176 struct die_info *comp_unit_die,
3177 int has_children,
3178 void *data)
3179 {
3180 struct dwarf2_cu *cu = reader->cu;
3181 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3182 struct objfile *objfile = dwarf2_per_objfile->objfile;
3183 struct dwarf2_per_cu_data *lh_cu;
3184 struct line_header *lh;
3185 struct attribute *attr;
3186 int i;
3187 const char *name, *comp_dir;
3188 void **slot;
3189 struct quick_file_names *qfn;
3190 unsigned int line_offset;
3191
3192 gdb_assert (! this_cu->is_debug_types);
3193
3194 /* Our callers never want to match partial units -- instead they
3195 will match the enclosing full CU. */
3196 if (comp_unit_die->tag == DW_TAG_partial_unit)
3197 {
3198 this_cu->v.quick->no_file_data = 1;
3199 return;
3200 }
3201
3202 lh_cu = this_cu;
3203 lh = NULL;
3204 slot = NULL;
3205 line_offset = 0;
3206
3207 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3208 if (attr)
3209 {
3210 struct quick_file_names find_entry;
3211
3212 line_offset = DW_UNSND (attr);
3213
3214 /* We may have already read in this line header (TU line header sharing).
3215 If we have we're done. */
3216 find_entry.hash.dwo_unit = cu->dwo_unit;
3217 find_entry.hash.line_offset.sect_off = line_offset;
3218 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3219 &find_entry, INSERT);
3220 if (*slot != NULL)
3221 {
3222 lh_cu->v.quick->file_names = *slot;
3223 return;
3224 }
3225
3226 lh = dwarf_decode_line_header (line_offset, cu);
3227 }
3228 if (lh == NULL)
3229 {
3230 lh_cu->v.quick->no_file_data = 1;
3231 return;
3232 }
3233
3234 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3235 qfn->hash.dwo_unit = cu->dwo_unit;
3236 qfn->hash.line_offset.sect_off = line_offset;
3237 gdb_assert (slot != NULL);
3238 *slot = qfn;
3239
3240 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3241
3242 qfn->num_file_names = lh->num_file_names;
3243 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3244 lh->num_file_names * sizeof (char *));
3245 for (i = 0; i < lh->num_file_names; ++i)
3246 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3247 qfn->real_names = NULL;
3248
3249 free_line_header (lh);
3250
3251 lh_cu->v.quick->file_names = qfn;
3252 }
3253
3254 /* A helper for the "quick" functions which attempts to read the line
3255 table for THIS_CU. */
3256
3257 static struct quick_file_names *
3258 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3259 {
3260 /* This should never be called for TUs. */
3261 gdb_assert (! this_cu->is_debug_types);
3262 /* Nor type unit groups. */
3263 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3264
3265 if (this_cu->v.quick->file_names != NULL)
3266 return this_cu->v.quick->file_names;
3267 /* If we know there is no line data, no point in looking again. */
3268 if (this_cu->v.quick->no_file_data)
3269 return NULL;
3270
3271 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3272
3273 if (this_cu->v.quick->no_file_data)
3274 return NULL;
3275 return this_cu->v.quick->file_names;
3276 }
3277
3278 /* A helper for the "quick" functions which computes and caches the
3279 real path for a given file name from the line table. */
3280
3281 static const char *
3282 dw2_get_real_path (struct objfile *objfile,
3283 struct quick_file_names *qfn, int index)
3284 {
3285 if (qfn->real_names == NULL)
3286 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3287 qfn->num_file_names, char *);
3288
3289 if (qfn->real_names[index] == NULL)
3290 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3291
3292 return qfn->real_names[index];
3293 }
3294
3295 static struct symtab *
3296 dw2_find_last_source_symtab (struct objfile *objfile)
3297 {
3298 int index;
3299
3300 dw2_setup (objfile);
3301 index = dwarf2_per_objfile->n_comp_units - 1;
3302 return dw2_instantiate_symtab (dw2_get_cu (index));
3303 }
3304
3305 /* Traversal function for dw2_forget_cached_source_info. */
3306
3307 static int
3308 dw2_free_cached_file_names (void **slot, void *info)
3309 {
3310 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3311
3312 if (file_data->real_names)
3313 {
3314 int i;
3315
3316 for (i = 0; i < file_data->num_file_names; ++i)
3317 {
3318 xfree ((void*) file_data->real_names[i]);
3319 file_data->real_names[i] = NULL;
3320 }
3321 }
3322
3323 return 1;
3324 }
3325
3326 static void
3327 dw2_forget_cached_source_info (struct objfile *objfile)
3328 {
3329 dw2_setup (objfile);
3330
3331 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3332 dw2_free_cached_file_names, NULL);
3333 }
3334
3335 /* Helper function for dw2_map_symtabs_matching_filename that expands
3336 the symtabs and calls the iterator. */
3337
3338 static int
3339 dw2_map_expand_apply (struct objfile *objfile,
3340 struct dwarf2_per_cu_data *per_cu,
3341 const char *name, const char *real_path,
3342 int (*callback) (struct symtab *, void *),
3343 void *data)
3344 {
3345 struct symtab *last_made = objfile->symtabs;
3346
3347 /* Don't visit already-expanded CUs. */
3348 if (per_cu->v.quick->symtab)
3349 return 0;
3350
3351 /* This may expand more than one symtab, and we want to iterate over
3352 all of them. */
3353 dw2_instantiate_symtab (per_cu);
3354
3355 return iterate_over_some_symtabs (name, real_path, callback, data,
3356 objfile->symtabs, last_made);
3357 }
3358
3359 /* Implementation of the map_symtabs_matching_filename method. */
3360
3361 static int
3362 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3363 const char *real_path,
3364 int (*callback) (struct symtab *, void *),
3365 void *data)
3366 {
3367 int i;
3368 const char *name_basename = lbasename (name);
3369
3370 dw2_setup (objfile);
3371
3372 /* The rule is CUs specify all the files, including those used by
3373 any TU, so there's no need to scan TUs here. */
3374
3375 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3376 {
3377 int j;
3378 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3379 struct quick_file_names *file_data;
3380
3381 /* We only need to look at symtabs not already expanded. */
3382 if (per_cu->v.quick->symtab)
3383 continue;
3384
3385 file_data = dw2_get_file_names (per_cu);
3386 if (file_data == NULL)
3387 continue;
3388
3389 for (j = 0; j < file_data->num_file_names; ++j)
3390 {
3391 const char *this_name = file_data->file_names[j];
3392 const char *this_real_name;
3393
3394 if (compare_filenames_for_search (this_name, name))
3395 {
3396 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3397 callback, data))
3398 return 1;
3399 continue;
3400 }
3401
3402 /* Before we invoke realpath, which can get expensive when many
3403 files are involved, do a quick comparison of the basenames. */
3404 if (! basenames_may_differ
3405 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3406 continue;
3407
3408 this_real_name = dw2_get_real_path (objfile, file_data, j);
3409 if (compare_filenames_for_search (this_real_name, name))
3410 {
3411 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3412 callback, data))
3413 return 1;
3414 continue;
3415 }
3416
3417 if (real_path != NULL)
3418 {
3419 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3420 gdb_assert (IS_ABSOLUTE_PATH (name));
3421 if (this_real_name != NULL
3422 && FILENAME_CMP (real_path, this_real_name) == 0)
3423 {
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3425 callback, data))
3426 return 1;
3427 continue;
3428 }
3429 }
3430 }
3431 }
3432
3433 return 0;
3434 }
3435
3436 /* Struct used to manage iterating over all CUs looking for a symbol. */
3437
3438 struct dw2_symtab_iterator
3439 {
3440 /* The internalized form of .gdb_index. */
3441 struct mapped_index *index;
3442 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3443 int want_specific_block;
3444 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3445 Unused if !WANT_SPECIFIC_BLOCK. */
3446 int block_index;
3447 /* The kind of symbol we're looking for. */
3448 domain_enum domain;
3449 /* The list of CUs from the index entry of the symbol,
3450 or NULL if not found. */
3451 offset_type *vec;
3452 /* The next element in VEC to look at. */
3453 int next;
3454 /* The number of elements in VEC, or zero if there is no match. */
3455 int length;
3456 /* Have we seen a global version of the symbol?
3457 If so we can ignore all further global instances.
3458 This is to work around gold/15646, inefficient gold-generated
3459 indices. */
3460 int global_seen;
3461 };
3462
3463 /* Initialize the index symtab iterator ITER.
3464 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3465 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3466
3467 static void
3468 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3469 struct mapped_index *index,
3470 int want_specific_block,
3471 int block_index,
3472 domain_enum domain,
3473 const char *name)
3474 {
3475 iter->index = index;
3476 iter->want_specific_block = want_specific_block;
3477 iter->block_index = block_index;
3478 iter->domain = domain;
3479 iter->next = 0;
3480 iter->global_seen = 0;
3481
3482 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3483 iter->length = MAYBE_SWAP (*iter->vec);
3484 else
3485 {
3486 iter->vec = NULL;
3487 iter->length = 0;
3488 }
3489 }
3490
3491 /* Return the next matching CU or NULL if there are no more. */
3492
3493 static struct dwarf2_per_cu_data *
3494 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3495 {
3496 for ( ; iter->next < iter->length; ++iter->next)
3497 {
3498 offset_type cu_index_and_attrs =
3499 MAYBE_SWAP (iter->vec[iter->next + 1]);
3500 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3501 struct dwarf2_per_cu_data *per_cu;
3502 int want_static = iter->block_index != GLOBAL_BLOCK;
3503 /* This value is only valid for index versions >= 7. */
3504 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3505 gdb_index_symbol_kind symbol_kind =
3506 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3507 /* Only check the symbol attributes if they're present.
3508 Indices prior to version 7 don't record them,
3509 and indices >= 7 may elide them for certain symbols
3510 (gold does this). */
3511 int attrs_valid =
3512 (iter->index->version >= 7
3513 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3514
3515 /* Don't crash on bad data. */
3516 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3517 + dwarf2_per_objfile->n_type_units))
3518 {
3519 complaint (&symfile_complaints,
3520 _(".gdb_index entry has bad CU index"
3521 " [in module %s]"),
3522 objfile_name (dwarf2_per_objfile->objfile));
3523 continue;
3524 }
3525
3526 per_cu = dw2_get_cu (cu_index);
3527
3528 /* Skip if already read in. */
3529 if (per_cu->v.quick->symtab)
3530 continue;
3531
3532 /* Check static vs global. */
3533 if (attrs_valid)
3534 {
3535 if (iter->want_specific_block
3536 && want_static != is_static)
3537 continue;
3538 /* Work around gold/15646. */
3539 if (!is_static && iter->global_seen)
3540 continue;
3541 if (!is_static)
3542 iter->global_seen = 1;
3543 }
3544
3545 /* Only check the symbol's kind if it has one. */
3546 if (attrs_valid)
3547 {
3548 switch (iter->domain)
3549 {
3550 case VAR_DOMAIN:
3551 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3552 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3553 /* Some types are also in VAR_DOMAIN. */
3554 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3555 continue;
3556 break;
3557 case STRUCT_DOMAIN:
3558 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3559 continue;
3560 break;
3561 case LABEL_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3563 continue;
3564 break;
3565 default:
3566 break;
3567 }
3568 }
3569
3570 ++iter->next;
3571 return per_cu;
3572 }
3573
3574 return NULL;
3575 }
3576
3577 static struct symtab *
3578 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3579 const char *name, domain_enum domain)
3580 {
3581 struct symtab *stab_best = NULL;
3582 struct mapped_index *index;
3583
3584 dw2_setup (objfile);
3585
3586 index = dwarf2_per_objfile->index_table;
3587
3588 /* index is NULL if OBJF_READNOW. */
3589 if (index)
3590 {
3591 struct dw2_symtab_iterator iter;
3592 struct dwarf2_per_cu_data *per_cu;
3593
3594 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3595
3596 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3597 {
3598 struct symbol *sym = NULL;
3599 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3600
3601 /* Some caution must be observed with overloaded functions
3602 and methods, since the index will not contain any overload
3603 information (but NAME might contain it). */
3604 if (stab->primary)
3605 {
3606 struct blockvector *bv = BLOCKVECTOR (stab);
3607 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3608
3609 sym = lookup_block_symbol (block, name, domain);
3610 }
3611
3612 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3613 {
3614 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3615 return stab;
3616
3617 stab_best = stab;
3618 }
3619
3620 /* Keep looking through other CUs. */
3621 }
3622 }
3623
3624 return stab_best;
3625 }
3626
3627 static void
3628 dw2_print_stats (struct objfile *objfile)
3629 {
3630 int i, total, count;
3631
3632 dw2_setup (objfile);
3633 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3634 count = 0;
3635 for (i = 0; i < total; ++i)
3636 {
3637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3638
3639 if (!per_cu->v.quick->symtab)
3640 ++count;
3641 }
3642 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3643 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3644 }
3645
3646 /* This dumps minimal information about the index.
3647 It is called via "mt print objfiles".
3648 One use is to verify .gdb_index has been loaded by the
3649 gdb.dwarf2/gdb-index.exp testcase. */
3650
3651 static void
3652 dw2_dump (struct objfile *objfile)
3653 {
3654 dw2_setup (objfile);
3655 gdb_assert (dwarf2_per_objfile->using_index);
3656 printf_filtered (".gdb_index:");
3657 if (dwarf2_per_objfile->index_table != NULL)
3658 {
3659 printf_filtered (" version %d\n",
3660 dwarf2_per_objfile->index_table->version);
3661 }
3662 else
3663 printf_filtered (" faked for \"readnow\"\n");
3664 printf_filtered ("\n");
3665 }
3666
3667 static void
3668 dw2_relocate (struct objfile *objfile,
3669 const struct section_offsets *new_offsets,
3670 const struct section_offsets *delta)
3671 {
3672 /* There's nothing to relocate here. */
3673 }
3674
3675 static void
3676 dw2_expand_symtabs_for_function (struct objfile *objfile,
3677 const char *func_name)
3678 {
3679 struct mapped_index *index;
3680
3681 dw2_setup (objfile);
3682
3683 index = dwarf2_per_objfile->index_table;
3684
3685 /* index is NULL if OBJF_READNOW. */
3686 if (index)
3687 {
3688 struct dw2_symtab_iterator iter;
3689 struct dwarf2_per_cu_data *per_cu;
3690
3691 /* Note: It doesn't matter what we pass for block_index here. */
3692 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3693 func_name);
3694
3695 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3696 dw2_instantiate_symtab (per_cu);
3697 }
3698 }
3699
3700 static void
3701 dw2_expand_all_symtabs (struct objfile *objfile)
3702 {
3703 int i;
3704
3705 dw2_setup (objfile);
3706
3707 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3708 + dwarf2_per_objfile->n_type_units); ++i)
3709 {
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711
3712 dw2_instantiate_symtab (per_cu);
3713 }
3714 }
3715
3716 static void
3717 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3718 const char *fullname)
3719 {
3720 int i;
3721
3722 dw2_setup (objfile);
3723
3724 /* We don't need to consider type units here.
3725 This is only called for examining code, e.g. expand_line_sal.
3726 There can be an order of magnitude (or more) more type units
3727 than comp units, and we avoid them if we can. */
3728
3729 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3730 {
3731 int j;
3732 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3733 struct quick_file_names *file_data;
3734
3735 /* We only need to look at symtabs not already expanded. */
3736 if (per_cu->v.quick->symtab)
3737 continue;
3738
3739 file_data = dw2_get_file_names (per_cu);
3740 if (file_data == NULL)
3741 continue;
3742
3743 for (j = 0; j < file_data->num_file_names; ++j)
3744 {
3745 const char *this_fullname = file_data->file_names[j];
3746
3747 if (filename_cmp (this_fullname, fullname) == 0)
3748 {
3749 dw2_instantiate_symtab (per_cu);
3750 break;
3751 }
3752 }
3753 }
3754 }
3755
3756 static void
3757 dw2_map_matching_symbols (struct objfile *objfile,
3758 const char * name, domain_enum namespace,
3759 int global,
3760 int (*callback) (struct block *,
3761 struct symbol *, void *),
3762 void *data, symbol_compare_ftype *match,
3763 symbol_compare_ftype *ordered_compare)
3764 {
3765 /* Currently unimplemented; used for Ada. The function can be called if the
3766 current language is Ada for a non-Ada objfile using GNU index. As Ada
3767 does not look for non-Ada symbols this function should just return. */
3768 }
3769
3770 static void
3771 dw2_expand_symtabs_matching
3772 (struct objfile *objfile,
3773 int (*file_matcher) (const char *, void *, int basenames),
3774 int (*name_matcher) (const char *, void *),
3775 enum search_domain kind,
3776 void *data)
3777 {
3778 int i;
3779 offset_type iter;
3780 struct mapped_index *index;
3781
3782 dw2_setup (objfile);
3783
3784 /* index_table is NULL if OBJF_READNOW. */
3785 if (!dwarf2_per_objfile->index_table)
3786 return;
3787 index = dwarf2_per_objfile->index_table;
3788
3789 if (file_matcher != NULL)
3790 {
3791 struct cleanup *cleanup;
3792 htab_t visited_found, visited_not_found;
3793
3794 visited_found = htab_create_alloc (10,
3795 htab_hash_pointer, htab_eq_pointer,
3796 NULL, xcalloc, xfree);
3797 cleanup = make_cleanup_htab_delete (visited_found);
3798 visited_not_found = htab_create_alloc (10,
3799 htab_hash_pointer, htab_eq_pointer,
3800 NULL, xcalloc, xfree);
3801 make_cleanup_htab_delete (visited_not_found);
3802
3803 /* The rule is CUs specify all the files, including those used by
3804 any TU, so there's no need to scan TUs here. */
3805
3806 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3807 {
3808 int j;
3809 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3810 struct quick_file_names *file_data;
3811 void **slot;
3812
3813 per_cu->v.quick->mark = 0;
3814
3815 /* We only need to look at symtabs not already expanded. */
3816 if (per_cu->v.quick->symtab)
3817 continue;
3818
3819 file_data = dw2_get_file_names (per_cu);
3820 if (file_data == NULL)
3821 continue;
3822
3823 if (htab_find (visited_not_found, file_data) != NULL)
3824 continue;
3825 else if (htab_find (visited_found, file_data) != NULL)
3826 {
3827 per_cu->v.quick->mark = 1;
3828 continue;
3829 }
3830
3831 for (j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_real_name;
3834
3835 if (file_matcher (file_data->file_names[j], data, 0))
3836 {
3837 per_cu->v.quick->mark = 1;
3838 break;
3839 }
3840
3841 /* Before we invoke realpath, which can get expensive when many
3842 files are involved, do a quick comparison of the basenames. */
3843 if (!basenames_may_differ
3844 && !file_matcher (lbasename (file_data->file_names[j]),
3845 data, 1))
3846 continue;
3847
3848 this_real_name = dw2_get_real_path (objfile, file_data, j);
3849 if (file_matcher (this_real_name, data, 0))
3850 {
3851 per_cu->v.quick->mark = 1;
3852 break;
3853 }
3854 }
3855
3856 slot = htab_find_slot (per_cu->v.quick->mark
3857 ? visited_found
3858 : visited_not_found,
3859 file_data, INSERT);
3860 *slot = file_data;
3861 }
3862
3863 do_cleanups (cleanup);
3864 }
3865
3866 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3867 {
3868 offset_type idx = 2 * iter;
3869 const char *name;
3870 offset_type *vec, vec_len, vec_idx;
3871 int global_seen = 0;
3872
3873 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3874 continue;
3875
3876 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3877
3878 if (! (*name_matcher) (name, data))
3879 continue;
3880
3881 /* The name was matched, now expand corresponding CUs that were
3882 marked. */
3883 vec = (offset_type *) (index->constant_pool
3884 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3885 vec_len = MAYBE_SWAP (vec[0]);
3886 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3887 {
3888 struct dwarf2_per_cu_data *per_cu;
3889 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3890 /* This value is only valid for index versions >= 7. */
3891 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3892 gdb_index_symbol_kind symbol_kind =
3893 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3894 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3895 /* Only check the symbol attributes if they're present.
3896 Indices prior to version 7 don't record them,
3897 and indices >= 7 may elide them for certain symbols
3898 (gold does this). */
3899 int attrs_valid =
3900 (index->version >= 7
3901 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3902
3903 /* Work around gold/15646. */
3904 if (attrs_valid)
3905 {
3906 if (!is_static && global_seen)
3907 continue;
3908 if (!is_static)
3909 global_seen = 1;
3910 }
3911
3912 /* Only check the symbol's kind if it has one. */
3913 if (attrs_valid)
3914 {
3915 switch (kind)
3916 {
3917 case VARIABLES_DOMAIN:
3918 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3919 continue;
3920 break;
3921 case FUNCTIONS_DOMAIN:
3922 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3923 continue;
3924 break;
3925 case TYPES_DOMAIN:
3926 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3927 continue;
3928 break;
3929 default:
3930 break;
3931 }
3932 }
3933
3934 /* Don't crash on bad data. */
3935 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3936 + dwarf2_per_objfile->n_type_units))
3937 {
3938 complaint (&symfile_complaints,
3939 _(".gdb_index entry has bad CU index"
3940 " [in module %s]"), objfile_name (objfile));
3941 continue;
3942 }
3943
3944 per_cu = dw2_get_cu (cu_index);
3945 if (file_matcher == NULL || per_cu->v.quick->mark)
3946 dw2_instantiate_symtab (per_cu);
3947 }
3948 }
3949 }
3950
3951 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3952 symtab. */
3953
3954 static struct symtab *
3955 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3956 {
3957 int i;
3958
3959 if (BLOCKVECTOR (symtab) != NULL
3960 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3961 return symtab;
3962
3963 if (symtab->includes == NULL)
3964 return NULL;
3965
3966 for (i = 0; symtab->includes[i]; ++i)
3967 {
3968 struct symtab *s = symtab->includes[i];
3969
3970 s = recursively_find_pc_sect_symtab (s, pc);
3971 if (s != NULL)
3972 return s;
3973 }
3974
3975 return NULL;
3976 }
3977
3978 static struct symtab *
3979 dw2_find_pc_sect_symtab (struct objfile *objfile,
3980 struct minimal_symbol *msymbol,
3981 CORE_ADDR pc,
3982 struct obj_section *section,
3983 int warn_if_readin)
3984 {
3985 struct dwarf2_per_cu_data *data;
3986 struct symtab *result;
3987
3988 dw2_setup (objfile);
3989
3990 if (!objfile->psymtabs_addrmap)
3991 return NULL;
3992
3993 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3994 if (!data)
3995 return NULL;
3996
3997 if (warn_if_readin && data->v.quick->symtab)
3998 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3999 paddress (get_objfile_arch (objfile), pc));
4000
4001 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4002 gdb_assert (result != NULL);
4003 return result;
4004 }
4005
4006 static void
4007 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4008 void *data, int need_fullname)
4009 {
4010 int i;
4011 struct cleanup *cleanup;
4012 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4013 NULL, xcalloc, xfree);
4014
4015 cleanup = make_cleanup_htab_delete (visited);
4016 dw2_setup (objfile);
4017
4018 /* The rule is CUs specify all the files, including those used by
4019 any TU, so there's no need to scan TUs here.
4020 We can ignore file names coming from already-expanded CUs. */
4021
4022 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4023 {
4024 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4025
4026 if (per_cu->v.quick->symtab)
4027 {
4028 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4029 INSERT);
4030
4031 *slot = per_cu->v.quick->file_names;
4032 }
4033 }
4034
4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4036 {
4037 int j;
4038 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4039 struct quick_file_names *file_data;
4040 void **slot;
4041
4042 /* We only need to look at symtabs not already expanded. */
4043 if (per_cu->v.quick->symtab)
4044 continue;
4045
4046 file_data = dw2_get_file_names (per_cu);
4047 if (file_data == NULL)
4048 continue;
4049
4050 slot = htab_find_slot (visited, file_data, INSERT);
4051 if (*slot)
4052 {
4053 /* Already visited. */
4054 continue;
4055 }
4056 *slot = file_data;
4057
4058 for (j = 0; j < file_data->num_file_names; ++j)
4059 {
4060 const char *this_real_name;
4061
4062 if (need_fullname)
4063 this_real_name = dw2_get_real_path (objfile, file_data, j);
4064 else
4065 this_real_name = NULL;
4066 (*fun) (file_data->file_names[j], this_real_name, data);
4067 }
4068 }
4069
4070 do_cleanups (cleanup);
4071 }
4072
4073 static int
4074 dw2_has_symbols (struct objfile *objfile)
4075 {
4076 return 1;
4077 }
4078
4079 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4080 {
4081 dw2_has_symbols,
4082 dw2_find_last_source_symtab,
4083 dw2_forget_cached_source_info,
4084 dw2_map_symtabs_matching_filename,
4085 dw2_lookup_symbol,
4086 dw2_print_stats,
4087 dw2_dump,
4088 dw2_relocate,
4089 dw2_expand_symtabs_for_function,
4090 dw2_expand_all_symtabs,
4091 dw2_expand_symtabs_with_fullname,
4092 dw2_map_matching_symbols,
4093 dw2_expand_symtabs_matching,
4094 dw2_find_pc_sect_symtab,
4095 dw2_map_symbol_filenames
4096 };
4097
4098 /* Initialize for reading DWARF for this objfile. Return 0 if this
4099 file will use psymtabs, or 1 if using the GNU index. */
4100
4101 int
4102 dwarf2_initialize_objfile (struct objfile *objfile)
4103 {
4104 /* If we're about to read full symbols, don't bother with the
4105 indices. In this case we also don't care if some other debug
4106 format is making psymtabs, because they are all about to be
4107 expanded anyway. */
4108 if ((objfile->flags & OBJF_READNOW))
4109 {
4110 int i;
4111
4112 dwarf2_per_objfile->using_index = 1;
4113 create_all_comp_units (objfile);
4114 create_all_type_units (objfile);
4115 dwarf2_per_objfile->quick_file_names_table =
4116 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4117
4118 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4119 + dwarf2_per_objfile->n_type_units); ++i)
4120 {
4121 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4122
4123 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4124 struct dwarf2_per_cu_quick_data);
4125 }
4126
4127 /* Return 1 so that gdb sees the "quick" functions. However,
4128 these functions will be no-ops because we will have expanded
4129 all symtabs. */
4130 return 1;
4131 }
4132
4133 if (dwarf2_read_index (objfile))
4134 return 1;
4135
4136 return 0;
4137 }
4138
4139 \f
4140
4141 /* Build a partial symbol table. */
4142
4143 void
4144 dwarf2_build_psymtabs (struct objfile *objfile)
4145 {
4146 volatile struct gdb_exception except;
4147
4148 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4149 {
4150 init_psymbol_list (objfile, 1024);
4151 }
4152
4153 TRY_CATCH (except, RETURN_MASK_ERROR)
4154 {
4155 /* This isn't really ideal: all the data we allocate on the
4156 objfile's obstack is still uselessly kept around. However,
4157 freeing it seems unsafe. */
4158 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4159
4160 dwarf2_build_psymtabs_hard (objfile);
4161 discard_cleanups (cleanups);
4162 }
4163 if (except.reason < 0)
4164 exception_print (gdb_stderr, except);
4165 }
4166
4167 /* Return the total length of the CU described by HEADER. */
4168
4169 static unsigned int
4170 get_cu_length (const struct comp_unit_head *header)
4171 {
4172 return header->initial_length_size + header->length;
4173 }
4174
4175 /* Return TRUE if OFFSET is within CU_HEADER. */
4176
4177 static inline int
4178 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4179 {
4180 sect_offset bottom = { cu_header->offset.sect_off };
4181 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4182
4183 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4184 }
4185
4186 /* Find the base address of the compilation unit for range lists and
4187 location lists. It will normally be specified by DW_AT_low_pc.
4188 In DWARF-3 draft 4, the base address could be overridden by
4189 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4190 compilation units with discontinuous ranges. */
4191
4192 static void
4193 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4194 {
4195 struct attribute *attr;
4196
4197 cu->base_known = 0;
4198 cu->base_address = 0;
4199
4200 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4201 if (attr)
4202 {
4203 cu->base_address = DW_ADDR (attr);
4204 cu->base_known = 1;
4205 }
4206 else
4207 {
4208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4209 if (attr)
4210 {
4211 cu->base_address = DW_ADDR (attr);
4212 cu->base_known = 1;
4213 }
4214 }
4215 }
4216
4217 /* Read in the comp unit header information from the debug_info at info_ptr.
4218 NOTE: This leaves members offset, first_die_offset to be filled in
4219 by the caller. */
4220
4221 static const gdb_byte *
4222 read_comp_unit_head (struct comp_unit_head *cu_header,
4223 const gdb_byte *info_ptr, bfd *abfd)
4224 {
4225 int signed_addr;
4226 unsigned int bytes_read;
4227
4228 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4229 cu_header->initial_length_size = bytes_read;
4230 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4231 info_ptr += bytes_read;
4232 cu_header->version = read_2_bytes (abfd, info_ptr);
4233 info_ptr += 2;
4234 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4235 &bytes_read);
4236 info_ptr += bytes_read;
4237 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4238 info_ptr += 1;
4239 signed_addr = bfd_get_sign_extend_vma (abfd);
4240 if (signed_addr < 0)
4241 internal_error (__FILE__, __LINE__,
4242 _("read_comp_unit_head: dwarf from non elf file"));
4243 cu_header->signed_addr_p = signed_addr;
4244
4245 return info_ptr;
4246 }
4247
4248 /* Helper function that returns the proper abbrev section for
4249 THIS_CU. */
4250
4251 static struct dwarf2_section_info *
4252 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4253 {
4254 struct dwarf2_section_info *abbrev;
4255
4256 if (this_cu->is_dwz)
4257 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4258 else
4259 abbrev = &dwarf2_per_objfile->abbrev;
4260
4261 return abbrev;
4262 }
4263
4264 /* Subroutine of read_and_check_comp_unit_head and
4265 read_and_check_type_unit_head to simplify them.
4266 Perform various error checking on the header. */
4267
4268 static void
4269 error_check_comp_unit_head (struct comp_unit_head *header,
4270 struct dwarf2_section_info *section,
4271 struct dwarf2_section_info *abbrev_section)
4272 {
4273 bfd *abfd = get_section_bfd_owner (section);
4274 const char *filename = get_section_file_name (section);
4275
4276 if (header->version != 2 && header->version != 3 && header->version != 4)
4277 error (_("Dwarf Error: wrong version in compilation unit header "
4278 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4279 filename);
4280
4281 if (header->abbrev_offset.sect_off
4282 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4283 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4284 "(offset 0x%lx + 6) [in module %s]"),
4285 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4286 filename);
4287
4288 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4289 avoid potential 32-bit overflow. */
4290 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4291 > section->size)
4292 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4293 "(offset 0x%lx + 0) [in module %s]"),
4294 (long) header->length, (long) header->offset.sect_off,
4295 filename);
4296 }
4297
4298 /* Read in a CU/TU header and perform some basic error checking.
4299 The contents of the header are stored in HEADER.
4300 The result is a pointer to the start of the first DIE. */
4301
4302 static const gdb_byte *
4303 read_and_check_comp_unit_head (struct comp_unit_head *header,
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section,
4306 const gdb_byte *info_ptr,
4307 int is_debug_types_section)
4308 {
4309 const gdb_byte *beg_of_comp_unit = info_ptr;
4310 bfd *abfd = get_section_bfd_owner (section);
4311
4312 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4313
4314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4315
4316 /* If we're reading a type unit, skip over the signature and
4317 type_offset fields. */
4318 if (is_debug_types_section)
4319 info_ptr += 8 /*signature*/ + header->offset_size;
4320
4321 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4322
4323 error_check_comp_unit_head (header, section, abbrev_section);
4324
4325 return info_ptr;
4326 }
4327
4328 /* Read in the types comp unit header information from .debug_types entry at
4329 types_ptr. The result is a pointer to one past the end of the header. */
4330
4331 static const gdb_byte *
4332 read_and_check_type_unit_head (struct comp_unit_head *header,
4333 struct dwarf2_section_info *section,
4334 struct dwarf2_section_info *abbrev_section,
4335 const gdb_byte *info_ptr,
4336 ULONGEST *signature,
4337 cu_offset *type_offset_in_tu)
4338 {
4339 const gdb_byte *beg_of_comp_unit = info_ptr;
4340 bfd *abfd = get_section_bfd_owner (section);
4341
4342 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4343
4344 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4345
4346 /* If we're reading a type unit, skip over the signature and
4347 type_offset fields. */
4348 if (signature != NULL)
4349 *signature = read_8_bytes (abfd, info_ptr);
4350 info_ptr += 8;
4351 if (type_offset_in_tu != NULL)
4352 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4353 header->offset_size);
4354 info_ptr += header->offset_size;
4355
4356 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4357
4358 error_check_comp_unit_head (header, section, abbrev_section);
4359
4360 return info_ptr;
4361 }
4362
4363 /* Fetch the abbreviation table offset from a comp or type unit header. */
4364
4365 static sect_offset
4366 read_abbrev_offset (struct dwarf2_section_info *section,
4367 sect_offset offset)
4368 {
4369 bfd *abfd = get_section_bfd_owner (section);
4370 const gdb_byte *info_ptr;
4371 unsigned int length, initial_length_size, offset_size;
4372 sect_offset abbrev_offset;
4373
4374 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4375 info_ptr = section->buffer + offset.sect_off;
4376 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4377 offset_size = initial_length_size == 4 ? 4 : 8;
4378 info_ptr += initial_length_size + 2 /*version*/;
4379 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4380 return abbrev_offset;
4381 }
4382
4383 /* Allocate a new partial symtab for file named NAME and mark this new
4384 partial symtab as being an include of PST. */
4385
4386 static void
4387 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4388 struct objfile *objfile)
4389 {
4390 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4391
4392 if (!IS_ABSOLUTE_PATH (subpst->filename))
4393 {
4394 /* It shares objfile->objfile_obstack. */
4395 subpst->dirname = pst->dirname;
4396 }
4397
4398 subpst->section_offsets = pst->section_offsets;
4399 subpst->textlow = 0;
4400 subpst->texthigh = 0;
4401
4402 subpst->dependencies = (struct partial_symtab **)
4403 obstack_alloc (&objfile->objfile_obstack,
4404 sizeof (struct partial_symtab *));
4405 subpst->dependencies[0] = pst;
4406 subpst->number_of_dependencies = 1;
4407
4408 subpst->globals_offset = 0;
4409 subpst->n_global_syms = 0;
4410 subpst->statics_offset = 0;
4411 subpst->n_static_syms = 0;
4412 subpst->symtab = NULL;
4413 subpst->read_symtab = pst->read_symtab;
4414 subpst->readin = 0;
4415
4416 /* No private part is necessary for include psymtabs. This property
4417 can be used to differentiate between such include psymtabs and
4418 the regular ones. */
4419 subpst->read_symtab_private = NULL;
4420 }
4421
4422 /* Read the Line Number Program data and extract the list of files
4423 included by the source file represented by PST. Build an include
4424 partial symtab for each of these included files. */
4425
4426 static void
4427 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4428 struct die_info *die,
4429 struct partial_symtab *pst)
4430 {
4431 struct line_header *lh = NULL;
4432 struct attribute *attr;
4433
4434 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4435 if (attr)
4436 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4437 if (lh == NULL)
4438 return; /* No linetable, so no includes. */
4439
4440 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4441 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4442
4443 free_line_header (lh);
4444 }
4445
4446 static hashval_t
4447 hash_signatured_type (const void *item)
4448 {
4449 const struct signatured_type *sig_type = item;
4450
4451 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4452 return sig_type->signature;
4453 }
4454
4455 static int
4456 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4457 {
4458 const struct signatured_type *lhs = item_lhs;
4459 const struct signatured_type *rhs = item_rhs;
4460
4461 return lhs->signature == rhs->signature;
4462 }
4463
4464 /* Allocate a hash table for signatured types. */
4465
4466 static htab_t
4467 allocate_signatured_type_table (struct objfile *objfile)
4468 {
4469 return htab_create_alloc_ex (41,
4470 hash_signatured_type,
4471 eq_signatured_type,
4472 NULL,
4473 &objfile->objfile_obstack,
4474 hashtab_obstack_allocate,
4475 dummy_obstack_deallocate);
4476 }
4477
4478 /* A helper function to add a signatured type CU to a table. */
4479
4480 static int
4481 add_signatured_type_cu_to_table (void **slot, void *datum)
4482 {
4483 struct signatured_type *sigt = *slot;
4484 struct signatured_type ***datap = datum;
4485
4486 **datap = sigt;
4487 ++*datap;
4488
4489 return 1;
4490 }
4491
4492 /* Create the hash table of all entries in the .debug_types
4493 (or .debug_types.dwo) section(s).
4494 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4495 otherwise it is NULL.
4496
4497 The result is a pointer to the hash table or NULL if there are no types.
4498
4499 Note: This function processes DWO files only, not DWP files. */
4500
4501 static htab_t
4502 create_debug_types_hash_table (struct dwo_file *dwo_file,
4503 VEC (dwarf2_section_info_def) *types)
4504 {
4505 struct objfile *objfile = dwarf2_per_objfile->objfile;
4506 htab_t types_htab = NULL;
4507 int ix;
4508 struct dwarf2_section_info *section;
4509 struct dwarf2_section_info *abbrev_section;
4510
4511 if (VEC_empty (dwarf2_section_info_def, types))
4512 return NULL;
4513
4514 abbrev_section = (dwo_file != NULL
4515 ? &dwo_file->sections.abbrev
4516 : &dwarf2_per_objfile->abbrev);
4517
4518 if (dwarf2_read_debug)
4519 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4520 dwo_file ? ".dwo" : "",
4521 get_section_file_name (abbrev_section));
4522
4523 for (ix = 0;
4524 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4525 ++ix)
4526 {
4527 bfd *abfd;
4528 const gdb_byte *info_ptr, *end_ptr;
4529
4530 dwarf2_read_section (objfile, section);
4531 info_ptr = section->buffer;
4532
4533 if (info_ptr == NULL)
4534 continue;
4535
4536 /* We can't set abfd until now because the section may be empty or
4537 not present, in which case the bfd is unknown. */
4538 abfd = get_section_bfd_owner (section);
4539
4540 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4541 because we don't need to read any dies: the signature is in the
4542 header. */
4543
4544 end_ptr = info_ptr + section->size;
4545 while (info_ptr < end_ptr)
4546 {
4547 sect_offset offset;
4548 cu_offset type_offset_in_tu;
4549 ULONGEST signature;
4550 struct signatured_type *sig_type;
4551 struct dwo_unit *dwo_tu;
4552 void **slot;
4553 const gdb_byte *ptr = info_ptr;
4554 struct comp_unit_head header;
4555 unsigned int length;
4556
4557 offset.sect_off = ptr - section->buffer;
4558
4559 /* We need to read the type's signature in order to build the hash
4560 table, but we don't need anything else just yet. */
4561
4562 ptr = read_and_check_type_unit_head (&header, section,
4563 abbrev_section, ptr,
4564 &signature, &type_offset_in_tu);
4565
4566 length = get_cu_length (&header);
4567
4568 /* Skip dummy type units. */
4569 if (ptr >= info_ptr + length
4570 || peek_abbrev_code (abfd, ptr) == 0)
4571 {
4572 info_ptr += length;
4573 continue;
4574 }
4575
4576 if (types_htab == NULL)
4577 {
4578 if (dwo_file)
4579 types_htab = allocate_dwo_unit_table (objfile);
4580 else
4581 types_htab = allocate_signatured_type_table (objfile);
4582 }
4583
4584 if (dwo_file)
4585 {
4586 sig_type = NULL;
4587 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4588 struct dwo_unit);
4589 dwo_tu->dwo_file = dwo_file;
4590 dwo_tu->signature = signature;
4591 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4592 dwo_tu->section = section;
4593 dwo_tu->offset = offset;
4594 dwo_tu->length = length;
4595 }
4596 else
4597 {
4598 /* N.B.: type_offset is not usable if this type uses a DWO file.
4599 The real type_offset is in the DWO file. */
4600 dwo_tu = NULL;
4601 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct signatured_type);
4603 sig_type->signature = signature;
4604 sig_type->type_offset_in_tu = type_offset_in_tu;
4605 sig_type->per_cu.objfile = objfile;
4606 sig_type->per_cu.is_debug_types = 1;
4607 sig_type->per_cu.section = section;
4608 sig_type->per_cu.offset = offset;
4609 sig_type->per_cu.length = length;
4610 }
4611
4612 slot = htab_find_slot (types_htab,
4613 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4614 INSERT);
4615 gdb_assert (slot != NULL);
4616 if (*slot != NULL)
4617 {
4618 sect_offset dup_offset;
4619
4620 if (dwo_file)
4621 {
4622 const struct dwo_unit *dup_tu = *slot;
4623
4624 dup_offset = dup_tu->offset;
4625 }
4626 else
4627 {
4628 const struct signatured_type *dup_tu = *slot;
4629
4630 dup_offset = dup_tu->per_cu.offset;
4631 }
4632
4633 complaint (&symfile_complaints,
4634 _("debug type entry at offset 0x%x is duplicate to"
4635 " the entry at offset 0x%x, signature %s"),
4636 offset.sect_off, dup_offset.sect_off,
4637 hex_string (signature));
4638 }
4639 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4640
4641 if (dwarf2_read_debug > 1)
4642 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4643 offset.sect_off,
4644 hex_string (signature));
4645
4646 info_ptr += length;
4647 }
4648 }
4649
4650 return types_htab;
4651 }
4652
4653 /* Create the hash table of all entries in the .debug_types section,
4654 and initialize all_type_units.
4655 The result is zero if there is an error (e.g. missing .debug_types section),
4656 otherwise non-zero. */
4657
4658 static int
4659 create_all_type_units (struct objfile *objfile)
4660 {
4661 htab_t types_htab;
4662 struct signatured_type **iter;
4663
4664 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4665 if (types_htab == NULL)
4666 {
4667 dwarf2_per_objfile->signatured_types = NULL;
4668 return 0;
4669 }
4670
4671 dwarf2_per_objfile->signatured_types = types_htab;
4672
4673 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4674 dwarf2_per_objfile->all_type_units
4675 = xmalloc (dwarf2_per_objfile->n_type_units
4676 * sizeof (struct signatured_type *));
4677 iter = &dwarf2_per_objfile->all_type_units[0];
4678 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4679 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4680 == dwarf2_per_objfile->n_type_units);
4681
4682 return 1;
4683 }
4684
4685 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4686 Fill in SIG_ENTRY with DWO_ENTRY. */
4687
4688 static void
4689 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4690 struct signatured_type *sig_entry,
4691 struct dwo_unit *dwo_entry)
4692 {
4693 /* Make sure we're not clobbering something we don't expect to. */
4694 gdb_assert (! sig_entry->per_cu.queued);
4695 gdb_assert (sig_entry->per_cu.cu == NULL);
4696 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4697 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4698 gdb_assert (sig_entry->signature == dwo_entry->signature);
4699 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4700 gdb_assert (sig_entry->type_unit_group == NULL);
4701 gdb_assert (sig_entry->dwo_unit == NULL);
4702
4703 sig_entry->per_cu.section = dwo_entry->section;
4704 sig_entry->per_cu.offset = dwo_entry->offset;
4705 sig_entry->per_cu.length = dwo_entry->length;
4706 sig_entry->per_cu.reading_dwo_directly = 1;
4707 sig_entry->per_cu.objfile = objfile;
4708 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4709 sig_entry->dwo_unit = dwo_entry;
4710 }
4711
4712 /* Subroutine of lookup_signatured_type.
4713 If we haven't read the TU yet, create the signatured_type data structure
4714 for a TU to be read in directly from a DWO file, bypassing the stub.
4715 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4716 using .gdb_index, then when reading a CU we want to stay in the DWO file
4717 containing that CU. Otherwise we could end up reading several other DWO
4718 files (due to comdat folding) to process the transitive closure of all the
4719 mentioned TUs, and that can be slow. The current DWO file will have every
4720 type signature that it needs.
4721 We only do this for .gdb_index because in the psymtab case we already have
4722 to read all the DWOs to build the type unit groups. */
4723
4724 static struct signatured_type *
4725 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4726 {
4727 struct objfile *objfile = dwarf2_per_objfile->objfile;
4728 struct dwo_file *dwo_file;
4729 struct dwo_unit find_dwo_entry, *dwo_entry;
4730 struct signatured_type find_sig_entry, *sig_entry;
4731
4732 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4733
4734 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4735 dwo_unit of the TU itself. */
4736 dwo_file = cu->dwo_unit->dwo_file;
4737
4738 /* We only ever need to read in one copy of a signatured type.
4739 Just use the global signatured_types array. If this is the first time
4740 we're reading this type, replace the recorded data from .gdb_index with
4741 this TU. */
4742
4743 if (dwarf2_per_objfile->signatured_types == NULL)
4744 return NULL;
4745 find_sig_entry.signature = sig;
4746 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4747 if (sig_entry == NULL)
4748 return NULL;
4749
4750 /* We can get here with the TU already read, *or* in the process of being
4751 read. Don't reassign it if that's the case. Also note that if the TU is
4752 already being read, it may not have come from a DWO, the program may be
4753 a mix of Fission-compiled code and non-Fission-compiled code. */
4754 /* Have we already tried to read this TU? */
4755 if (sig_entry->per_cu.tu_read)
4756 return sig_entry;
4757
4758 /* Ok, this is the first time we're reading this TU. */
4759 if (dwo_file->tus == NULL)
4760 return NULL;
4761 find_dwo_entry.signature = sig;
4762 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4763 if (dwo_entry == NULL)
4764 return NULL;
4765
4766 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4767 sig_entry->per_cu.tu_read = 1;
4768 return sig_entry;
4769 }
4770
4771 /* Subroutine of lookup_dwp_signatured_type.
4772 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4773
4774 static struct signatured_type *
4775 add_type_unit (ULONGEST sig)
4776 {
4777 struct objfile *objfile = dwarf2_per_objfile->objfile;
4778 int n_type_units = dwarf2_per_objfile->n_type_units;
4779 struct signatured_type *sig_type;
4780 void **slot;
4781
4782 ++n_type_units;
4783 dwarf2_per_objfile->all_type_units =
4784 xrealloc (dwarf2_per_objfile->all_type_units,
4785 n_type_units * sizeof (struct signatured_type *));
4786 dwarf2_per_objfile->n_type_units = n_type_units;
4787 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4788 struct signatured_type);
4789 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4790 sig_type->signature = sig;
4791 sig_type->per_cu.is_debug_types = 1;
4792 sig_type->per_cu.v.quick =
4793 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4794 struct dwarf2_per_cu_quick_data);
4795 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4796 sig_type, INSERT);
4797 gdb_assert (*slot == NULL);
4798 *slot = sig_type;
4799 /* The rest of sig_type must be filled in by the caller. */
4800 return sig_type;
4801 }
4802
4803 /* Subroutine of lookup_signatured_type.
4804 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4805 then try the DWP file.
4806 Normally this "can't happen", but if there's a bug in signature
4807 generation and/or the DWP file is built incorrectly, it can happen.
4808 Using the type directly from the DWP file means we don't have the stub
4809 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4810 not critical. [Eventually the stub may go away for type units anyway.] */
4811
4812 static struct signatured_type *
4813 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4814 {
4815 struct objfile *objfile = dwarf2_per_objfile->objfile;
4816 struct dwp_file *dwp_file = get_dwp_file ();
4817 struct dwo_unit *dwo_entry;
4818 struct signatured_type find_sig_entry, *sig_entry;
4819
4820 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4821 gdb_assert (dwp_file != NULL);
4822
4823 if (dwarf2_per_objfile->signatured_types != NULL)
4824 {
4825 find_sig_entry.signature = sig;
4826 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4827 &find_sig_entry);
4828 if (sig_entry != NULL)
4829 return sig_entry;
4830 }
4831
4832 /* This is the "shouldn't happen" case.
4833 Try the DWP file and hope for the best. */
4834 if (dwp_file->tus == NULL)
4835 return NULL;
4836 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4837 sig, 1 /* is_debug_types */);
4838 if (dwo_entry == NULL)
4839 return NULL;
4840
4841 sig_entry = add_type_unit (sig);
4842 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4843
4844 /* The caller will signal a complaint if we return NULL.
4845 Here we don't return NULL but we still want to complain. */
4846 complaint (&symfile_complaints,
4847 _("Bad type signature %s referenced by %s at 0x%x,"
4848 " coping by using copy in DWP [in module %s]"),
4849 hex_string (sig),
4850 cu->per_cu->is_debug_types ? "TU" : "CU",
4851 cu->per_cu->offset.sect_off,
4852 objfile_name (objfile));
4853
4854 return sig_entry;
4855 }
4856
4857 /* Lookup a signature based type for DW_FORM_ref_sig8.
4858 Returns NULL if signature SIG is not present in the table.
4859 It is up to the caller to complain about this. */
4860
4861 static struct signatured_type *
4862 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4863 {
4864 if (cu->dwo_unit
4865 && dwarf2_per_objfile->using_index)
4866 {
4867 /* We're in a DWO/DWP file, and we're using .gdb_index.
4868 These cases require special processing. */
4869 if (get_dwp_file () == NULL)
4870 return lookup_dwo_signatured_type (cu, sig);
4871 else
4872 return lookup_dwp_signatured_type (cu, sig);
4873 }
4874 else
4875 {
4876 struct signatured_type find_entry, *entry;
4877
4878 if (dwarf2_per_objfile->signatured_types == NULL)
4879 return NULL;
4880 find_entry.signature = sig;
4881 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4882 return entry;
4883 }
4884 }
4885 \f
4886 /* Low level DIE reading support. */
4887
4888 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4889
4890 static void
4891 init_cu_die_reader (struct die_reader_specs *reader,
4892 struct dwarf2_cu *cu,
4893 struct dwarf2_section_info *section,
4894 struct dwo_file *dwo_file)
4895 {
4896 gdb_assert (section->readin && section->buffer != NULL);
4897 reader->abfd = get_section_bfd_owner (section);
4898 reader->cu = cu;
4899 reader->dwo_file = dwo_file;
4900 reader->die_section = section;
4901 reader->buffer = section->buffer;
4902 reader->buffer_end = section->buffer + section->size;
4903 reader->comp_dir = NULL;
4904 }
4905
4906 /* Subroutine of init_cutu_and_read_dies to simplify it.
4907 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4908 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4909 already.
4910
4911 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4912 from it to the DIE in the DWO. If NULL we are skipping the stub.
4913 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4914 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4915 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4916 COMP_DIR must be non-NULL.
4917 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4918 are filled in with the info of the DIE from the DWO file.
4919 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4920 provided an abbrev table to use.
4921 The result is non-zero if a valid (non-dummy) DIE was found. */
4922
4923 static int
4924 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4925 struct dwo_unit *dwo_unit,
4926 int abbrev_table_provided,
4927 struct die_info *stub_comp_unit_die,
4928 const char *stub_comp_dir,
4929 struct die_reader_specs *result_reader,
4930 const gdb_byte **result_info_ptr,
4931 struct die_info **result_comp_unit_die,
4932 int *result_has_children)
4933 {
4934 struct objfile *objfile = dwarf2_per_objfile->objfile;
4935 struct dwarf2_cu *cu = this_cu->cu;
4936 struct dwarf2_section_info *section;
4937 bfd *abfd;
4938 const gdb_byte *begin_info_ptr, *info_ptr;
4939 const char *comp_dir_string;
4940 ULONGEST signature; /* Or dwo_id. */
4941 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4942 int i,num_extra_attrs;
4943 struct dwarf2_section_info *dwo_abbrev_section;
4944 struct attribute *attr;
4945 struct attribute comp_dir_attr;
4946 struct die_info *comp_unit_die;
4947
4948 /* Both can't be provided. */
4949 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4950
4951 /* These attributes aren't processed until later:
4952 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4953 However, the attribute is found in the stub which we won't have later.
4954 In order to not impose this complication on the rest of the code,
4955 we read them here and copy them to the DWO CU/TU die. */
4956
4957 stmt_list = NULL;
4958 low_pc = NULL;
4959 high_pc = NULL;
4960 ranges = NULL;
4961 comp_dir = NULL;
4962
4963 if (stub_comp_unit_die != NULL)
4964 {
4965 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4966 DWO file. */
4967 if (! this_cu->is_debug_types)
4968 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4969 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4970 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4971 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4972 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4973
4974 /* There should be a DW_AT_addr_base attribute here (if needed).
4975 We need the value before we can process DW_FORM_GNU_addr_index. */
4976 cu->addr_base = 0;
4977 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4978 if (attr)
4979 cu->addr_base = DW_UNSND (attr);
4980
4981 /* There should be a DW_AT_ranges_base attribute here (if needed).
4982 We need the value before we can process DW_AT_ranges. */
4983 cu->ranges_base = 0;
4984 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4985 if (attr)
4986 cu->ranges_base = DW_UNSND (attr);
4987 }
4988 else if (stub_comp_dir != NULL)
4989 {
4990 /* Reconstruct the comp_dir attribute to simplify the code below. */
4991 comp_dir = (struct attribute *)
4992 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4993 comp_dir->name = DW_AT_comp_dir;
4994 comp_dir->form = DW_FORM_string;
4995 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4996 DW_STRING (comp_dir) = stub_comp_dir;
4997 }
4998
4999 /* Set up for reading the DWO CU/TU. */
5000 cu->dwo_unit = dwo_unit;
5001 section = dwo_unit->section;
5002 dwarf2_read_section (objfile, section);
5003 abfd = get_section_bfd_owner (section);
5004 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5005 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5006 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5007
5008 if (this_cu->is_debug_types)
5009 {
5010 ULONGEST header_signature;
5011 cu_offset type_offset_in_tu;
5012 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5013
5014 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5015 dwo_abbrev_section,
5016 info_ptr,
5017 &header_signature,
5018 &type_offset_in_tu);
5019 /* This is not an assert because it can be caused by bad debug info. */
5020 if (sig_type->signature != header_signature)
5021 {
5022 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5023 " TU at offset 0x%x [in module %s]"),
5024 hex_string (sig_type->signature),
5025 hex_string (header_signature),
5026 dwo_unit->offset.sect_off,
5027 bfd_get_filename (abfd));
5028 }
5029 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5030 /* For DWOs coming from DWP files, we don't know the CU length
5031 nor the type's offset in the TU until now. */
5032 dwo_unit->length = get_cu_length (&cu->header);
5033 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5034
5035 /* Establish the type offset that can be used to lookup the type.
5036 For DWO files, we don't know it until now. */
5037 sig_type->type_offset_in_section.sect_off =
5038 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5039 }
5040 else
5041 {
5042 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5043 dwo_abbrev_section,
5044 info_ptr, 0);
5045 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5046 /* For DWOs coming from DWP files, we don't know the CU length
5047 until now. */
5048 dwo_unit->length = get_cu_length (&cu->header);
5049 }
5050
5051 /* Replace the CU's original abbrev table with the DWO's.
5052 Reminder: We can't read the abbrev table until we've read the header. */
5053 if (abbrev_table_provided)
5054 {
5055 /* Don't free the provided abbrev table, the caller of
5056 init_cutu_and_read_dies owns it. */
5057 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5058 /* Ensure the DWO abbrev table gets freed. */
5059 make_cleanup (dwarf2_free_abbrev_table, cu);
5060 }
5061 else
5062 {
5063 dwarf2_free_abbrev_table (cu);
5064 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5065 /* Leave any existing abbrev table cleanup as is. */
5066 }
5067
5068 /* Read in the die, but leave space to copy over the attributes
5069 from the stub. This has the benefit of simplifying the rest of
5070 the code - all the work to maintain the illusion of a single
5071 DW_TAG_{compile,type}_unit DIE is done here. */
5072 num_extra_attrs = ((stmt_list != NULL)
5073 + (low_pc != NULL)
5074 + (high_pc != NULL)
5075 + (ranges != NULL)
5076 + (comp_dir != NULL));
5077 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5078 result_has_children, num_extra_attrs);
5079
5080 /* Copy over the attributes from the stub to the DIE we just read in. */
5081 comp_unit_die = *result_comp_unit_die;
5082 i = comp_unit_die->num_attrs;
5083 if (stmt_list != NULL)
5084 comp_unit_die->attrs[i++] = *stmt_list;
5085 if (low_pc != NULL)
5086 comp_unit_die->attrs[i++] = *low_pc;
5087 if (high_pc != NULL)
5088 comp_unit_die->attrs[i++] = *high_pc;
5089 if (ranges != NULL)
5090 comp_unit_die->attrs[i++] = *ranges;
5091 if (comp_dir != NULL)
5092 comp_unit_die->attrs[i++] = *comp_dir;
5093 comp_unit_die->num_attrs += num_extra_attrs;
5094
5095 if (dwarf2_die_debug)
5096 {
5097 fprintf_unfiltered (gdb_stdlog,
5098 "Read die from %s@0x%x of %s:\n",
5099 get_section_name (section),
5100 (unsigned) (begin_info_ptr - section->buffer),
5101 bfd_get_filename (abfd));
5102 dump_die (comp_unit_die, dwarf2_die_debug);
5103 }
5104
5105 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5106 TUs by skipping the stub and going directly to the entry in the DWO file.
5107 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5108 to get it via circuitous means. Blech. */
5109 if (comp_dir != NULL)
5110 result_reader->comp_dir = DW_STRING (comp_dir);
5111
5112 /* Skip dummy compilation units. */
5113 if (info_ptr >= begin_info_ptr + dwo_unit->length
5114 || peek_abbrev_code (abfd, info_ptr) == 0)
5115 return 0;
5116
5117 *result_info_ptr = info_ptr;
5118 return 1;
5119 }
5120
5121 /* Subroutine of init_cutu_and_read_dies to simplify it.
5122 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5123 Returns NULL if the specified DWO unit cannot be found. */
5124
5125 static struct dwo_unit *
5126 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5127 struct die_info *comp_unit_die)
5128 {
5129 struct dwarf2_cu *cu = this_cu->cu;
5130 struct attribute *attr;
5131 ULONGEST signature;
5132 struct dwo_unit *dwo_unit;
5133 const char *comp_dir, *dwo_name;
5134
5135 gdb_assert (cu != NULL);
5136
5137 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5138 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5139 gdb_assert (attr != NULL);
5140 dwo_name = DW_STRING (attr);
5141 comp_dir = NULL;
5142 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5143 if (attr)
5144 comp_dir = DW_STRING (attr);
5145
5146 if (this_cu->is_debug_types)
5147 {
5148 struct signatured_type *sig_type;
5149
5150 /* Since this_cu is the first member of struct signatured_type,
5151 we can go from a pointer to one to a pointer to the other. */
5152 sig_type = (struct signatured_type *) this_cu;
5153 signature = sig_type->signature;
5154 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5155 }
5156 else
5157 {
5158 struct attribute *attr;
5159
5160 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5161 if (! attr)
5162 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5163 " [in module %s]"),
5164 dwo_name, objfile_name (this_cu->objfile));
5165 signature = DW_UNSND (attr);
5166 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5167 signature);
5168 }
5169
5170 return dwo_unit;
5171 }
5172
5173 /* Subroutine of init_cutu_and_read_dies to simplify it.
5174 Read a TU directly from a DWO file, bypassing the stub. */
5175
5176 static void
5177 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5178 die_reader_func_ftype *die_reader_func,
5179 void *data)
5180 {
5181 struct dwarf2_cu *cu;
5182 struct signatured_type *sig_type;
5183 struct cleanup *cleanups, *free_cu_cleanup;
5184 struct die_reader_specs reader;
5185 const gdb_byte *info_ptr;
5186 struct die_info *comp_unit_die;
5187 int has_children;
5188
5189 /* Verify we can do the following downcast, and that we have the
5190 data we need. */
5191 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5192 sig_type = (struct signatured_type *) this_cu;
5193 gdb_assert (sig_type->dwo_unit != NULL);
5194
5195 cleanups = make_cleanup (null_cleanup, NULL);
5196
5197 gdb_assert (this_cu->cu == NULL);
5198 cu = xmalloc (sizeof (*cu));
5199 init_one_comp_unit (cu, this_cu);
5200 /* If an error occurs while loading, release our storage. */
5201 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5202
5203 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5204 0 /* abbrev_table_provided */,
5205 NULL /* stub_comp_unit_die */,
5206 sig_type->dwo_unit->dwo_file->comp_dir,
5207 &reader, &info_ptr,
5208 &comp_unit_die, &has_children) == 0)
5209 {
5210 /* Dummy die. */
5211 do_cleanups (cleanups);
5212 return;
5213 }
5214
5215 /* All the "real" work is done here. */
5216 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5217
5218 /* This duplicates some code in init_cutu_and_read_dies,
5219 but the alternative is making the latter more complex.
5220 This function is only for the special case of using DWO files directly:
5221 no point in overly complicating the general case just to handle this. */
5222 if (keep)
5223 {
5224 /* We've successfully allocated this compilation unit. Let our
5225 caller clean it up when finished with it. */
5226 discard_cleanups (free_cu_cleanup);
5227
5228 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5229 So we have to manually free the abbrev table. */
5230 dwarf2_free_abbrev_table (cu);
5231
5232 /* Link this CU into read_in_chain. */
5233 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5234 dwarf2_per_objfile->read_in_chain = this_cu;
5235 }
5236 else
5237 do_cleanups (free_cu_cleanup);
5238
5239 do_cleanups (cleanups);
5240 }
5241
5242 /* Initialize a CU (or TU) and read its DIEs.
5243 If the CU defers to a DWO file, read the DWO file as well.
5244
5245 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5246 Otherwise the table specified in the comp unit header is read in and used.
5247 This is an optimization for when we already have the abbrev table.
5248
5249 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5250 Otherwise, a new CU is allocated with xmalloc.
5251
5252 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5253 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5254
5255 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5256 linker) then DIE_READER_FUNC will not get called. */
5257
5258 static void
5259 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5260 struct abbrev_table *abbrev_table,
5261 int use_existing_cu, int keep,
5262 die_reader_func_ftype *die_reader_func,
5263 void *data)
5264 {
5265 struct objfile *objfile = dwarf2_per_objfile->objfile;
5266 struct dwarf2_section_info *section = this_cu->section;
5267 bfd *abfd = get_section_bfd_owner (section);
5268 struct dwarf2_cu *cu;
5269 const gdb_byte *begin_info_ptr, *info_ptr;
5270 struct die_reader_specs reader;
5271 struct die_info *comp_unit_die;
5272 int has_children;
5273 struct attribute *attr;
5274 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5275 struct signatured_type *sig_type = NULL;
5276 struct dwarf2_section_info *abbrev_section;
5277 /* Non-zero if CU currently points to a DWO file and we need to
5278 reread it. When this happens we need to reread the skeleton die
5279 before we can reread the DWO file (this only applies to CUs, not TUs). */
5280 int rereading_dwo_cu = 0;
5281
5282 if (dwarf2_die_debug)
5283 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5284 this_cu->is_debug_types ? "type" : "comp",
5285 this_cu->offset.sect_off);
5286
5287 if (use_existing_cu)
5288 gdb_assert (keep);
5289
5290 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5291 file (instead of going through the stub), short-circuit all of this. */
5292 if (this_cu->reading_dwo_directly)
5293 {
5294 /* Narrow down the scope of possibilities to have to understand. */
5295 gdb_assert (this_cu->is_debug_types);
5296 gdb_assert (abbrev_table == NULL);
5297 gdb_assert (!use_existing_cu);
5298 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5299 return;
5300 }
5301
5302 cleanups = make_cleanup (null_cleanup, NULL);
5303
5304 /* This is cheap if the section is already read in. */
5305 dwarf2_read_section (objfile, section);
5306
5307 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5308
5309 abbrev_section = get_abbrev_section_for_cu (this_cu);
5310
5311 if (use_existing_cu && this_cu->cu != NULL)
5312 {
5313 cu = this_cu->cu;
5314
5315 /* If this CU is from a DWO file we need to start over, we need to
5316 refetch the attributes from the skeleton CU.
5317 This could be optimized by retrieving those attributes from when we
5318 were here the first time: the previous comp_unit_die was stored in
5319 comp_unit_obstack. But there's no data yet that we need this
5320 optimization. */
5321 if (cu->dwo_unit != NULL)
5322 rereading_dwo_cu = 1;
5323 }
5324 else
5325 {
5326 /* If !use_existing_cu, this_cu->cu must be NULL. */
5327 gdb_assert (this_cu->cu == NULL);
5328
5329 cu = xmalloc (sizeof (*cu));
5330 init_one_comp_unit (cu, this_cu);
5331
5332 /* If an error occurs while loading, release our storage. */
5333 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5334 }
5335
5336 /* Get the header. */
5337 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5338 {
5339 /* We already have the header, there's no need to read it in again. */
5340 info_ptr += cu->header.first_die_offset.cu_off;
5341 }
5342 else
5343 {
5344 if (this_cu->is_debug_types)
5345 {
5346 ULONGEST signature;
5347 cu_offset type_offset_in_tu;
5348
5349 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5350 abbrev_section, info_ptr,
5351 &signature,
5352 &type_offset_in_tu);
5353
5354 /* Since per_cu is the first member of struct signatured_type,
5355 we can go from a pointer to one to a pointer to the other. */
5356 sig_type = (struct signatured_type *) this_cu;
5357 gdb_assert (sig_type->signature == signature);
5358 gdb_assert (sig_type->type_offset_in_tu.cu_off
5359 == type_offset_in_tu.cu_off);
5360 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5361
5362 /* LENGTH has not been set yet for type units if we're
5363 using .gdb_index. */
5364 this_cu->length = get_cu_length (&cu->header);
5365
5366 /* Establish the type offset that can be used to lookup the type. */
5367 sig_type->type_offset_in_section.sect_off =
5368 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5369 }
5370 else
5371 {
5372 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5373 abbrev_section,
5374 info_ptr, 0);
5375
5376 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5377 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5378 }
5379 }
5380
5381 /* Skip dummy compilation units. */
5382 if (info_ptr >= begin_info_ptr + this_cu->length
5383 || peek_abbrev_code (abfd, info_ptr) == 0)
5384 {
5385 do_cleanups (cleanups);
5386 return;
5387 }
5388
5389 /* If we don't have them yet, read the abbrevs for this compilation unit.
5390 And if we need to read them now, make sure they're freed when we're
5391 done. Note that it's important that if the CU had an abbrev table
5392 on entry we don't free it when we're done: Somewhere up the call stack
5393 it may be in use. */
5394 if (abbrev_table != NULL)
5395 {
5396 gdb_assert (cu->abbrev_table == NULL);
5397 gdb_assert (cu->header.abbrev_offset.sect_off
5398 == abbrev_table->offset.sect_off);
5399 cu->abbrev_table = abbrev_table;
5400 }
5401 else if (cu->abbrev_table == NULL)
5402 {
5403 dwarf2_read_abbrevs (cu, abbrev_section);
5404 make_cleanup (dwarf2_free_abbrev_table, cu);
5405 }
5406 else if (rereading_dwo_cu)
5407 {
5408 dwarf2_free_abbrev_table (cu);
5409 dwarf2_read_abbrevs (cu, abbrev_section);
5410 }
5411
5412 /* Read the top level CU/TU die. */
5413 init_cu_die_reader (&reader, cu, section, NULL);
5414 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5415
5416 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5417 from the DWO file.
5418 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5419 DWO CU, that this test will fail (the attribute will not be present). */
5420 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5421 if (attr)
5422 {
5423 struct dwo_unit *dwo_unit;
5424 struct die_info *dwo_comp_unit_die;
5425
5426 if (has_children)
5427 {
5428 complaint (&symfile_complaints,
5429 _("compilation unit with DW_AT_GNU_dwo_name"
5430 " has children (offset 0x%x) [in module %s]"),
5431 this_cu->offset.sect_off, bfd_get_filename (abfd));
5432 }
5433 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5434 if (dwo_unit != NULL)
5435 {
5436 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5437 abbrev_table != NULL,
5438 comp_unit_die, NULL,
5439 &reader, &info_ptr,
5440 &dwo_comp_unit_die, &has_children) == 0)
5441 {
5442 /* Dummy die. */
5443 do_cleanups (cleanups);
5444 return;
5445 }
5446 comp_unit_die = dwo_comp_unit_die;
5447 }
5448 else
5449 {
5450 /* Yikes, we couldn't find the rest of the DIE, we only have
5451 the stub. A complaint has already been logged. There's
5452 not much more we can do except pass on the stub DIE to
5453 die_reader_func. We don't want to throw an error on bad
5454 debug info. */
5455 }
5456 }
5457
5458 /* All of the above is setup for this call. Yikes. */
5459 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5460
5461 /* Done, clean up. */
5462 if (free_cu_cleanup != NULL)
5463 {
5464 if (keep)
5465 {
5466 /* We've successfully allocated this compilation unit. Let our
5467 caller clean it up when finished with it. */
5468 discard_cleanups (free_cu_cleanup);
5469
5470 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5471 So we have to manually free the abbrev table. */
5472 dwarf2_free_abbrev_table (cu);
5473
5474 /* Link this CU into read_in_chain. */
5475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5476 dwarf2_per_objfile->read_in_chain = this_cu;
5477 }
5478 else
5479 do_cleanups (free_cu_cleanup);
5480 }
5481
5482 do_cleanups (cleanups);
5483 }
5484
5485 /* Read CU/TU THIS_CU in section SECTION,
5486 but do not follow DW_AT_GNU_dwo_name if present.
5487 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5488 to have already done the lookup to find the DWO/DWP file).
5489
5490 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5491 THIS_CU->is_debug_types, but nothing else.
5492
5493 We fill in THIS_CU->length.
5494
5495 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5496 linker) then DIE_READER_FUNC will not get called.
5497
5498 THIS_CU->cu is always freed when done.
5499 This is done in order to not leave THIS_CU->cu in a state where we have
5500 to care whether it refers to the "main" CU or the DWO CU. */
5501
5502 static void
5503 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5504 struct dwarf2_section_info *abbrev_section,
5505 struct dwo_file *dwo_file,
5506 die_reader_func_ftype *die_reader_func,
5507 void *data)
5508 {
5509 struct objfile *objfile = dwarf2_per_objfile->objfile;
5510 struct dwarf2_section_info *section = this_cu->section;
5511 bfd *abfd = get_section_bfd_owner (section);
5512 struct dwarf2_cu cu;
5513 const gdb_byte *begin_info_ptr, *info_ptr;
5514 struct die_reader_specs reader;
5515 struct cleanup *cleanups;
5516 struct die_info *comp_unit_die;
5517 int has_children;
5518
5519 if (dwarf2_die_debug)
5520 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5521 this_cu->is_debug_types ? "type" : "comp",
5522 this_cu->offset.sect_off);
5523
5524 gdb_assert (this_cu->cu == NULL);
5525
5526 /* This is cheap if the section is already read in. */
5527 dwarf2_read_section (objfile, section);
5528
5529 init_one_comp_unit (&cu, this_cu);
5530
5531 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5532
5533 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5534 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5535 abbrev_section, info_ptr,
5536 this_cu->is_debug_types);
5537
5538 this_cu->length = get_cu_length (&cu.header);
5539
5540 /* Skip dummy compilation units. */
5541 if (info_ptr >= begin_info_ptr + this_cu->length
5542 || peek_abbrev_code (abfd, info_ptr) == 0)
5543 {
5544 do_cleanups (cleanups);
5545 return;
5546 }
5547
5548 dwarf2_read_abbrevs (&cu, abbrev_section);
5549 make_cleanup (dwarf2_free_abbrev_table, &cu);
5550
5551 init_cu_die_reader (&reader, &cu, section, dwo_file);
5552 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5553
5554 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5555
5556 do_cleanups (cleanups);
5557 }
5558
5559 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5560 does not lookup the specified DWO file.
5561 This cannot be used to read DWO files.
5562
5563 THIS_CU->cu is always freed when done.
5564 This is done in order to not leave THIS_CU->cu in a state where we have
5565 to care whether it refers to the "main" CU or the DWO CU.
5566 We can revisit this if the data shows there's a performance issue. */
5567
5568 static void
5569 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5570 die_reader_func_ftype *die_reader_func,
5571 void *data)
5572 {
5573 init_cutu_and_read_dies_no_follow (this_cu,
5574 get_abbrev_section_for_cu (this_cu),
5575 NULL,
5576 die_reader_func, data);
5577 }
5578 \f
5579 /* Type Unit Groups.
5580
5581 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5582 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5583 so that all types coming from the same compilation (.o file) are grouped
5584 together. A future step could be to put the types in the same symtab as
5585 the CU the types ultimately came from. */
5586
5587 static hashval_t
5588 hash_type_unit_group (const void *item)
5589 {
5590 const struct type_unit_group *tu_group = item;
5591
5592 return hash_stmt_list_entry (&tu_group->hash);
5593 }
5594
5595 static int
5596 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5597 {
5598 const struct type_unit_group *lhs = item_lhs;
5599 const struct type_unit_group *rhs = item_rhs;
5600
5601 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5602 }
5603
5604 /* Allocate a hash table for type unit groups. */
5605
5606 static htab_t
5607 allocate_type_unit_groups_table (void)
5608 {
5609 return htab_create_alloc_ex (3,
5610 hash_type_unit_group,
5611 eq_type_unit_group,
5612 NULL,
5613 &dwarf2_per_objfile->objfile->objfile_obstack,
5614 hashtab_obstack_allocate,
5615 dummy_obstack_deallocate);
5616 }
5617
5618 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5619 partial symtabs. We combine several TUs per psymtab to not let the size
5620 of any one psymtab grow too big. */
5621 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5622 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5623
5624 /* Helper routine for get_type_unit_group.
5625 Create the type_unit_group object used to hold one or more TUs. */
5626
5627 static struct type_unit_group *
5628 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5629 {
5630 struct objfile *objfile = dwarf2_per_objfile->objfile;
5631 struct dwarf2_per_cu_data *per_cu;
5632 struct type_unit_group *tu_group;
5633
5634 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5635 struct type_unit_group);
5636 per_cu = &tu_group->per_cu;
5637 per_cu->objfile = objfile;
5638
5639 if (dwarf2_per_objfile->using_index)
5640 {
5641 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5642 struct dwarf2_per_cu_quick_data);
5643 }
5644 else
5645 {
5646 unsigned int line_offset = line_offset_struct.sect_off;
5647 struct partial_symtab *pst;
5648 char *name;
5649
5650 /* Give the symtab a useful name for debug purposes. */
5651 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5652 name = xstrprintf ("<type_units_%d>",
5653 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5654 else
5655 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5656
5657 pst = create_partial_symtab (per_cu, name);
5658 pst->anonymous = 1;
5659
5660 xfree (name);
5661 }
5662
5663 tu_group->hash.dwo_unit = cu->dwo_unit;
5664 tu_group->hash.line_offset = line_offset_struct;
5665
5666 return tu_group;
5667 }
5668
5669 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5670 STMT_LIST is a DW_AT_stmt_list attribute. */
5671
5672 static struct type_unit_group *
5673 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5674 {
5675 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5676 struct type_unit_group *tu_group;
5677 void **slot;
5678 unsigned int line_offset;
5679 struct type_unit_group type_unit_group_for_lookup;
5680
5681 if (dwarf2_per_objfile->type_unit_groups == NULL)
5682 {
5683 dwarf2_per_objfile->type_unit_groups =
5684 allocate_type_unit_groups_table ();
5685 }
5686
5687 /* Do we need to create a new group, or can we use an existing one? */
5688
5689 if (stmt_list)
5690 {
5691 line_offset = DW_UNSND (stmt_list);
5692 ++tu_stats->nr_symtab_sharers;
5693 }
5694 else
5695 {
5696 /* Ugh, no stmt_list. Rare, but we have to handle it.
5697 We can do various things here like create one group per TU or
5698 spread them over multiple groups to split up the expansion work.
5699 To avoid worst case scenarios (too many groups or too large groups)
5700 we, umm, group them in bunches. */
5701 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5702 | (tu_stats->nr_stmt_less_type_units
5703 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5704 ++tu_stats->nr_stmt_less_type_units;
5705 }
5706
5707 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5708 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5709 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5710 &type_unit_group_for_lookup, INSERT);
5711 if (*slot != NULL)
5712 {
5713 tu_group = *slot;
5714 gdb_assert (tu_group != NULL);
5715 }
5716 else
5717 {
5718 sect_offset line_offset_struct;
5719
5720 line_offset_struct.sect_off = line_offset;
5721 tu_group = create_type_unit_group (cu, line_offset_struct);
5722 *slot = tu_group;
5723 ++tu_stats->nr_symtabs;
5724 }
5725
5726 return tu_group;
5727 }
5728
5729 /* Struct used to sort TUs by their abbreviation table offset. */
5730
5731 struct tu_abbrev_offset
5732 {
5733 struct signatured_type *sig_type;
5734 sect_offset abbrev_offset;
5735 };
5736
5737 /* Helper routine for build_type_unit_groups, passed to qsort. */
5738
5739 static int
5740 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5741 {
5742 const struct tu_abbrev_offset * const *a = ap;
5743 const struct tu_abbrev_offset * const *b = bp;
5744 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5745 unsigned int boff = (*b)->abbrev_offset.sect_off;
5746
5747 return (aoff > boff) - (aoff < boff);
5748 }
5749
5750 /* A helper function to add a type_unit_group to a table. */
5751
5752 static int
5753 add_type_unit_group_to_table (void **slot, void *datum)
5754 {
5755 struct type_unit_group *tu_group = *slot;
5756 struct type_unit_group ***datap = datum;
5757
5758 **datap = tu_group;
5759 ++*datap;
5760
5761 return 1;
5762 }
5763
5764 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5765 each one passing FUNC,DATA.
5766
5767 The efficiency is because we sort TUs by the abbrev table they use and
5768 only read each abbrev table once. In one program there are 200K TUs
5769 sharing 8K abbrev tables.
5770
5771 The main purpose of this function is to support building the
5772 dwarf2_per_objfile->type_unit_groups table.
5773 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5774 can collapse the search space by grouping them by stmt_list.
5775 The savings can be significant, in the same program from above the 200K TUs
5776 share 8K stmt_list tables.
5777
5778 FUNC is expected to call get_type_unit_group, which will create the
5779 struct type_unit_group if necessary and add it to
5780 dwarf2_per_objfile->type_unit_groups. */
5781
5782 static void
5783 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5784 {
5785 struct objfile *objfile = dwarf2_per_objfile->objfile;
5786 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5787 struct cleanup *cleanups;
5788 struct abbrev_table *abbrev_table;
5789 sect_offset abbrev_offset;
5790 struct tu_abbrev_offset *sorted_by_abbrev;
5791 struct type_unit_group **iter;
5792 int i;
5793
5794 /* It's up to the caller to not call us multiple times. */
5795 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5796
5797 if (dwarf2_per_objfile->n_type_units == 0)
5798 return;
5799
5800 /* TUs typically share abbrev tables, and there can be way more TUs than
5801 abbrev tables. Sort by abbrev table to reduce the number of times we
5802 read each abbrev table in.
5803 Alternatives are to punt or to maintain a cache of abbrev tables.
5804 This is simpler and efficient enough for now.
5805
5806 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5807 symtab to use). Typically TUs with the same abbrev offset have the same
5808 stmt_list value too so in practice this should work well.
5809
5810 The basic algorithm here is:
5811
5812 sort TUs by abbrev table
5813 for each TU with same abbrev table:
5814 read abbrev table if first user
5815 read TU top level DIE
5816 [IWBN if DWO skeletons had DW_AT_stmt_list]
5817 call FUNC */
5818
5819 if (dwarf2_read_debug)
5820 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5821
5822 /* Sort in a separate table to maintain the order of all_type_units
5823 for .gdb_index: TU indices directly index all_type_units. */
5824 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5825 dwarf2_per_objfile->n_type_units);
5826 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5827 {
5828 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5829
5830 sorted_by_abbrev[i].sig_type = sig_type;
5831 sorted_by_abbrev[i].abbrev_offset =
5832 read_abbrev_offset (sig_type->per_cu.section,
5833 sig_type->per_cu.offset);
5834 }
5835 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5836 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5837 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5838
5839 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5840 called any number of times, so we don't reset tu_stats here. */
5841
5842 abbrev_offset.sect_off = ~(unsigned) 0;
5843 abbrev_table = NULL;
5844 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5845
5846 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5847 {
5848 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5849
5850 /* Switch to the next abbrev table if necessary. */
5851 if (abbrev_table == NULL
5852 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5853 {
5854 if (abbrev_table != NULL)
5855 {
5856 abbrev_table_free (abbrev_table);
5857 /* Reset to NULL in case abbrev_table_read_table throws
5858 an error: abbrev_table_free_cleanup will get called. */
5859 abbrev_table = NULL;
5860 }
5861 abbrev_offset = tu->abbrev_offset;
5862 abbrev_table =
5863 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5864 abbrev_offset);
5865 ++tu_stats->nr_uniq_abbrev_tables;
5866 }
5867
5868 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5869 func, data);
5870 }
5871
5872 /* type_unit_groups can be NULL if there is an error in the debug info.
5873 Just create an empty table so the rest of gdb doesn't have to watch
5874 for this error case. */
5875 if (dwarf2_per_objfile->type_unit_groups == NULL)
5876 {
5877 dwarf2_per_objfile->type_unit_groups =
5878 allocate_type_unit_groups_table ();
5879 dwarf2_per_objfile->n_type_unit_groups = 0;
5880 }
5881
5882 /* Create a vector of pointers to primary type units to make it easy to
5883 iterate over them and CUs. See dw2_get_primary_cu. */
5884 dwarf2_per_objfile->n_type_unit_groups =
5885 htab_elements (dwarf2_per_objfile->type_unit_groups);
5886 dwarf2_per_objfile->all_type_unit_groups =
5887 obstack_alloc (&objfile->objfile_obstack,
5888 dwarf2_per_objfile->n_type_unit_groups
5889 * sizeof (struct type_unit_group *));
5890 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5891 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5892 add_type_unit_group_to_table, &iter);
5893 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5894 == dwarf2_per_objfile->n_type_unit_groups);
5895
5896 do_cleanups (cleanups);
5897
5898 if (dwarf2_read_debug)
5899 {
5900 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5901 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5902 dwarf2_per_objfile->n_type_units);
5903 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5904 tu_stats->nr_uniq_abbrev_tables);
5905 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5906 tu_stats->nr_symtabs);
5907 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5908 tu_stats->nr_symtab_sharers);
5909 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5910 tu_stats->nr_stmt_less_type_units);
5911 }
5912 }
5913 \f
5914 /* Partial symbol tables. */
5915
5916 /* Create a psymtab named NAME and assign it to PER_CU.
5917
5918 The caller must fill in the following details:
5919 dirname, textlow, texthigh. */
5920
5921 static struct partial_symtab *
5922 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5923 {
5924 struct objfile *objfile = per_cu->objfile;
5925 struct partial_symtab *pst;
5926
5927 pst = start_psymtab_common (objfile, objfile->section_offsets,
5928 name, 0,
5929 objfile->global_psymbols.next,
5930 objfile->static_psymbols.next);
5931
5932 pst->psymtabs_addrmap_supported = 1;
5933
5934 /* This is the glue that links PST into GDB's symbol API. */
5935 pst->read_symtab_private = per_cu;
5936 pst->read_symtab = dwarf2_read_symtab;
5937 per_cu->v.psymtab = pst;
5938
5939 return pst;
5940 }
5941
5942 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5943 type. */
5944
5945 struct process_psymtab_comp_unit_data
5946 {
5947 /* True if we are reading a DW_TAG_partial_unit. */
5948
5949 int want_partial_unit;
5950
5951 /* The "pretend" language that is used if the CU doesn't declare a
5952 language. */
5953
5954 enum language pretend_language;
5955 };
5956
5957 /* die_reader_func for process_psymtab_comp_unit. */
5958
5959 static void
5960 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5961 const gdb_byte *info_ptr,
5962 struct die_info *comp_unit_die,
5963 int has_children,
5964 void *data)
5965 {
5966 struct dwarf2_cu *cu = reader->cu;
5967 struct objfile *objfile = cu->objfile;
5968 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5969 struct attribute *attr;
5970 CORE_ADDR baseaddr;
5971 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5972 struct partial_symtab *pst;
5973 int has_pc_info;
5974 const char *filename;
5975 struct process_psymtab_comp_unit_data *info = data;
5976
5977 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5978 return;
5979
5980 gdb_assert (! per_cu->is_debug_types);
5981
5982 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5983
5984 cu->list_in_scope = &file_symbols;
5985
5986 /* Allocate a new partial symbol table structure. */
5987 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5988 if (attr == NULL || !DW_STRING (attr))
5989 filename = "";
5990 else
5991 filename = DW_STRING (attr);
5992
5993 pst = create_partial_symtab (per_cu, filename);
5994
5995 /* This must be done before calling dwarf2_build_include_psymtabs. */
5996 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5997 if (attr != NULL)
5998 pst->dirname = DW_STRING (attr);
5999
6000 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6001
6002 dwarf2_find_base_address (comp_unit_die, cu);
6003
6004 /* Possibly set the default values of LOWPC and HIGHPC from
6005 `DW_AT_ranges'. */
6006 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6007 &best_highpc, cu, pst);
6008 if (has_pc_info == 1 && best_lowpc < best_highpc)
6009 /* Store the contiguous range if it is not empty; it can be empty for
6010 CUs with no code. */
6011 addrmap_set_empty (objfile->psymtabs_addrmap,
6012 best_lowpc + baseaddr,
6013 best_highpc + baseaddr - 1, pst);
6014
6015 /* Check if comp unit has_children.
6016 If so, read the rest of the partial symbols from this comp unit.
6017 If not, there's no more debug_info for this comp unit. */
6018 if (has_children)
6019 {
6020 struct partial_die_info *first_die;
6021 CORE_ADDR lowpc, highpc;
6022
6023 lowpc = ((CORE_ADDR) -1);
6024 highpc = ((CORE_ADDR) 0);
6025
6026 first_die = load_partial_dies (reader, info_ptr, 1);
6027
6028 scan_partial_symbols (first_die, &lowpc, &highpc,
6029 ! has_pc_info, cu);
6030
6031 /* If we didn't find a lowpc, set it to highpc to avoid
6032 complaints from `maint check'. */
6033 if (lowpc == ((CORE_ADDR) -1))
6034 lowpc = highpc;
6035
6036 /* If the compilation unit didn't have an explicit address range,
6037 then use the information extracted from its child dies. */
6038 if (! has_pc_info)
6039 {
6040 best_lowpc = lowpc;
6041 best_highpc = highpc;
6042 }
6043 }
6044 pst->textlow = best_lowpc + baseaddr;
6045 pst->texthigh = best_highpc + baseaddr;
6046
6047 pst->n_global_syms = objfile->global_psymbols.next -
6048 (objfile->global_psymbols.list + pst->globals_offset);
6049 pst->n_static_syms = objfile->static_psymbols.next -
6050 (objfile->static_psymbols.list + pst->statics_offset);
6051 sort_pst_symbols (objfile, pst);
6052
6053 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6054 {
6055 int i;
6056 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6057 struct dwarf2_per_cu_data *iter;
6058
6059 /* Fill in 'dependencies' here; we fill in 'users' in a
6060 post-pass. */
6061 pst->number_of_dependencies = len;
6062 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6063 len * sizeof (struct symtab *));
6064 for (i = 0;
6065 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6066 i, iter);
6067 ++i)
6068 pst->dependencies[i] = iter->v.psymtab;
6069
6070 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6071 }
6072
6073 /* Get the list of files included in the current compilation unit,
6074 and build a psymtab for each of them. */
6075 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6076
6077 if (dwarf2_read_debug)
6078 {
6079 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6080
6081 fprintf_unfiltered (gdb_stdlog,
6082 "Psymtab for %s unit @0x%x: %s - %s"
6083 ", %d global, %d static syms\n",
6084 per_cu->is_debug_types ? "type" : "comp",
6085 per_cu->offset.sect_off,
6086 paddress (gdbarch, pst->textlow),
6087 paddress (gdbarch, pst->texthigh),
6088 pst->n_global_syms, pst->n_static_syms);
6089 }
6090 }
6091
6092 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6093 Process compilation unit THIS_CU for a psymtab. */
6094
6095 static void
6096 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6097 int want_partial_unit,
6098 enum language pretend_language)
6099 {
6100 struct process_psymtab_comp_unit_data info;
6101
6102 /* If this compilation unit was already read in, free the
6103 cached copy in order to read it in again. This is
6104 necessary because we skipped some symbols when we first
6105 read in the compilation unit (see load_partial_dies).
6106 This problem could be avoided, but the benefit is unclear. */
6107 if (this_cu->cu != NULL)
6108 free_one_cached_comp_unit (this_cu);
6109
6110 gdb_assert (! this_cu->is_debug_types);
6111 info.want_partial_unit = want_partial_unit;
6112 info.pretend_language = pretend_language;
6113 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6114 process_psymtab_comp_unit_reader,
6115 &info);
6116
6117 /* Age out any secondary CUs. */
6118 age_cached_comp_units ();
6119 }
6120
6121 /* Reader function for build_type_psymtabs. */
6122
6123 static void
6124 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6125 const gdb_byte *info_ptr,
6126 struct die_info *type_unit_die,
6127 int has_children,
6128 void *data)
6129 {
6130 struct objfile *objfile = dwarf2_per_objfile->objfile;
6131 struct dwarf2_cu *cu = reader->cu;
6132 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6133 struct signatured_type *sig_type;
6134 struct type_unit_group *tu_group;
6135 struct attribute *attr;
6136 struct partial_die_info *first_die;
6137 CORE_ADDR lowpc, highpc;
6138 struct partial_symtab *pst;
6139
6140 gdb_assert (data == NULL);
6141 gdb_assert (per_cu->is_debug_types);
6142 sig_type = (struct signatured_type *) per_cu;
6143
6144 if (! has_children)
6145 return;
6146
6147 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6148 tu_group = get_type_unit_group (cu, attr);
6149
6150 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6151
6152 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6153 cu->list_in_scope = &file_symbols;
6154 pst = create_partial_symtab (per_cu, "");
6155 pst->anonymous = 1;
6156
6157 first_die = load_partial_dies (reader, info_ptr, 1);
6158
6159 lowpc = (CORE_ADDR) -1;
6160 highpc = (CORE_ADDR) 0;
6161 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6162
6163 pst->n_global_syms = objfile->global_psymbols.next -
6164 (objfile->global_psymbols.list + pst->globals_offset);
6165 pst->n_static_syms = objfile->static_psymbols.next -
6166 (objfile->static_psymbols.list + pst->statics_offset);
6167 sort_pst_symbols (objfile, pst);
6168 }
6169
6170 /* Traversal function for build_type_psymtabs. */
6171
6172 static int
6173 build_type_psymtab_dependencies (void **slot, void *info)
6174 {
6175 struct objfile *objfile = dwarf2_per_objfile->objfile;
6176 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6177 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6178 struct partial_symtab *pst = per_cu->v.psymtab;
6179 int len = VEC_length (sig_type_ptr, tu_group->tus);
6180 struct signatured_type *iter;
6181 int i;
6182
6183 gdb_assert (len > 0);
6184 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6185
6186 pst->number_of_dependencies = len;
6187 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6188 len * sizeof (struct psymtab *));
6189 for (i = 0;
6190 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6191 ++i)
6192 {
6193 gdb_assert (iter->per_cu.is_debug_types);
6194 pst->dependencies[i] = iter->per_cu.v.psymtab;
6195 iter->type_unit_group = tu_group;
6196 }
6197
6198 VEC_free (sig_type_ptr, tu_group->tus);
6199
6200 return 1;
6201 }
6202
6203 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6204 Build partial symbol tables for the .debug_types comp-units. */
6205
6206 static void
6207 build_type_psymtabs (struct objfile *objfile)
6208 {
6209 if (! create_all_type_units (objfile))
6210 return;
6211
6212 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6213
6214 /* Now that all TUs have been processed we can fill in the dependencies. */
6215 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6216 build_type_psymtab_dependencies, NULL);
6217 }
6218
6219 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6220
6221 static void
6222 psymtabs_addrmap_cleanup (void *o)
6223 {
6224 struct objfile *objfile = o;
6225
6226 objfile->psymtabs_addrmap = NULL;
6227 }
6228
6229 /* Compute the 'user' field for each psymtab in OBJFILE. */
6230
6231 static void
6232 set_partial_user (struct objfile *objfile)
6233 {
6234 int i;
6235
6236 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6237 {
6238 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6239 struct partial_symtab *pst = per_cu->v.psymtab;
6240 int j;
6241
6242 if (pst == NULL)
6243 continue;
6244
6245 for (j = 0; j < pst->number_of_dependencies; ++j)
6246 {
6247 /* Set the 'user' field only if it is not already set. */
6248 if (pst->dependencies[j]->user == NULL)
6249 pst->dependencies[j]->user = pst;
6250 }
6251 }
6252 }
6253
6254 /* Build the partial symbol table by doing a quick pass through the
6255 .debug_info and .debug_abbrev sections. */
6256
6257 static void
6258 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6259 {
6260 struct cleanup *back_to, *addrmap_cleanup;
6261 struct obstack temp_obstack;
6262 int i;
6263
6264 if (dwarf2_read_debug)
6265 {
6266 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6267 objfile_name (objfile));
6268 }
6269
6270 dwarf2_per_objfile->reading_partial_symbols = 1;
6271
6272 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6273
6274 /* Any cached compilation units will be linked by the per-objfile
6275 read_in_chain. Make sure to free them when we're done. */
6276 back_to = make_cleanup (free_cached_comp_units, NULL);
6277
6278 build_type_psymtabs (objfile);
6279
6280 create_all_comp_units (objfile);
6281
6282 /* Create a temporary address map on a temporary obstack. We later
6283 copy this to the final obstack. */
6284 obstack_init (&temp_obstack);
6285 make_cleanup_obstack_free (&temp_obstack);
6286 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6287 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6288
6289 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6290 {
6291 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6292
6293 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6294 }
6295
6296 set_partial_user (objfile);
6297
6298 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6299 &objfile->objfile_obstack);
6300 discard_cleanups (addrmap_cleanup);
6301
6302 do_cleanups (back_to);
6303
6304 if (dwarf2_read_debug)
6305 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6306 objfile_name (objfile));
6307 }
6308
6309 /* die_reader_func for load_partial_comp_unit. */
6310
6311 static void
6312 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6313 const gdb_byte *info_ptr,
6314 struct die_info *comp_unit_die,
6315 int has_children,
6316 void *data)
6317 {
6318 struct dwarf2_cu *cu = reader->cu;
6319
6320 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6321
6322 /* Check if comp unit has_children.
6323 If so, read the rest of the partial symbols from this comp unit.
6324 If not, there's no more debug_info for this comp unit. */
6325 if (has_children)
6326 load_partial_dies (reader, info_ptr, 0);
6327 }
6328
6329 /* Load the partial DIEs for a secondary CU into memory.
6330 This is also used when rereading a primary CU with load_all_dies. */
6331
6332 static void
6333 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6334 {
6335 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6336 load_partial_comp_unit_reader, NULL);
6337 }
6338
6339 static void
6340 read_comp_units_from_section (struct objfile *objfile,
6341 struct dwarf2_section_info *section,
6342 unsigned int is_dwz,
6343 int *n_allocated,
6344 int *n_comp_units,
6345 struct dwarf2_per_cu_data ***all_comp_units)
6346 {
6347 const gdb_byte *info_ptr;
6348 bfd *abfd = get_section_bfd_owner (section);
6349
6350 if (dwarf2_read_debug)
6351 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6352 get_section_name (section),
6353 get_section_file_name (section));
6354
6355 dwarf2_read_section (objfile, section);
6356
6357 info_ptr = section->buffer;
6358
6359 while (info_ptr < section->buffer + section->size)
6360 {
6361 unsigned int length, initial_length_size;
6362 struct dwarf2_per_cu_data *this_cu;
6363 sect_offset offset;
6364
6365 offset.sect_off = info_ptr - section->buffer;
6366
6367 /* Read just enough information to find out where the next
6368 compilation unit is. */
6369 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6370
6371 /* Save the compilation unit for later lookup. */
6372 this_cu = obstack_alloc (&objfile->objfile_obstack,
6373 sizeof (struct dwarf2_per_cu_data));
6374 memset (this_cu, 0, sizeof (*this_cu));
6375 this_cu->offset = offset;
6376 this_cu->length = length + initial_length_size;
6377 this_cu->is_dwz = is_dwz;
6378 this_cu->objfile = objfile;
6379 this_cu->section = section;
6380
6381 if (*n_comp_units == *n_allocated)
6382 {
6383 *n_allocated *= 2;
6384 *all_comp_units = xrealloc (*all_comp_units,
6385 *n_allocated
6386 * sizeof (struct dwarf2_per_cu_data *));
6387 }
6388 (*all_comp_units)[*n_comp_units] = this_cu;
6389 ++*n_comp_units;
6390
6391 info_ptr = info_ptr + this_cu->length;
6392 }
6393 }
6394
6395 /* Create a list of all compilation units in OBJFILE.
6396 This is only done for -readnow and building partial symtabs. */
6397
6398 static void
6399 create_all_comp_units (struct objfile *objfile)
6400 {
6401 int n_allocated;
6402 int n_comp_units;
6403 struct dwarf2_per_cu_data **all_comp_units;
6404 struct dwz_file *dwz;
6405
6406 n_comp_units = 0;
6407 n_allocated = 10;
6408 all_comp_units = xmalloc (n_allocated
6409 * sizeof (struct dwarf2_per_cu_data *));
6410
6411 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6412 &n_allocated, &n_comp_units, &all_comp_units);
6413
6414 dwz = dwarf2_get_dwz_file ();
6415 if (dwz != NULL)
6416 read_comp_units_from_section (objfile, &dwz->info, 1,
6417 &n_allocated, &n_comp_units,
6418 &all_comp_units);
6419
6420 dwarf2_per_objfile->all_comp_units
6421 = obstack_alloc (&objfile->objfile_obstack,
6422 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6423 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6424 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6425 xfree (all_comp_units);
6426 dwarf2_per_objfile->n_comp_units = n_comp_units;
6427 }
6428
6429 /* Process all loaded DIEs for compilation unit CU, starting at
6430 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6431 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6432 DW_AT_ranges). If NEED_PC is set, then this function will set
6433 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6434 and record the covered ranges in the addrmap. */
6435
6436 static void
6437 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6438 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6439 {
6440 struct partial_die_info *pdi;
6441
6442 /* Now, march along the PDI's, descending into ones which have
6443 interesting children but skipping the children of the other ones,
6444 until we reach the end of the compilation unit. */
6445
6446 pdi = first_die;
6447
6448 while (pdi != NULL)
6449 {
6450 fixup_partial_die (pdi, cu);
6451
6452 /* Anonymous namespaces or modules have no name but have interesting
6453 children, so we need to look at them. Ditto for anonymous
6454 enums. */
6455
6456 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6457 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6458 || pdi->tag == DW_TAG_imported_unit)
6459 {
6460 switch (pdi->tag)
6461 {
6462 case DW_TAG_subprogram:
6463 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6464 break;
6465 case DW_TAG_constant:
6466 case DW_TAG_variable:
6467 case DW_TAG_typedef:
6468 case DW_TAG_union_type:
6469 if (!pdi->is_declaration)
6470 {
6471 add_partial_symbol (pdi, cu);
6472 }
6473 break;
6474 case DW_TAG_class_type:
6475 case DW_TAG_interface_type:
6476 case DW_TAG_structure_type:
6477 if (!pdi->is_declaration)
6478 {
6479 add_partial_symbol (pdi, cu);
6480 }
6481 break;
6482 case DW_TAG_enumeration_type:
6483 if (!pdi->is_declaration)
6484 add_partial_enumeration (pdi, cu);
6485 break;
6486 case DW_TAG_base_type:
6487 case DW_TAG_subrange_type:
6488 /* File scope base type definitions are added to the partial
6489 symbol table. */
6490 add_partial_symbol (pdi, cu);
6491 break;
6492 case DW_TAG_namespace:
6493 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6494 break;
6495 case DW_TAG_module:
6496 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6497 break;
6498 case DW_TAG_imported_unit:
6499 {
6500 struct dwarf2_per_cu_data *per_cu;
6501
6502 /* For now we don't handle imported units in type units. */
6503 if (cu->per_cu->is_debug_types)
6504 {
6505 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6506 " supported in type units [in module %s]"),
6507 objfile_name (cu->objfile));
6508 }
6509
6510 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6511 pdi->is_dwz,
6512 cu->objfile);
6513
6514 /* Go read the partial unit, if needed. */
6515 if (per_cu->v.psymtab == NULL)
6516 process_psymtab_comp_unit (per_cu, 1, cu->language);
6517
6518 VEC_safe_push (dwarf2_per_cu_ptr,
6519 cu->per_cu->imported_symtabs, per_cu);
6520 }
6521 break;
6522 case DW_TAG_imported_declaration:
6523 add_partial_symbol (pdi, cu);
6524 break;
6525 default:
6526 break;
6527 }
6528 }
6529
6530 /* If the die has a sibling, skip to the sibling. */
6531
6532 pdi = pdi->die_sibling;
6533 }
6534 }
6535
6536 /* Functions used to compute the fully scoped name of a partial DIE.
6537
6538 Normally, this is simple. For C++, the parent DIE's fully scoped
6539 name is concatenated with "::" and the partial DIE's name. For
6540 Java, the same thing occurs except that "." is used instead of "::".
6541 Enumerators are an exception; they use the scope of their parent
6542 enumeration type, i.e. the name of the enumeration type is not
6543 prepended to the enumerator.
6544
6545 There are two complexities. One is DW_AT_specification; in this
6546 case "parent" means the parent of the target of the specification,
6547 instead of the direct parent of the DIE. The other is compilers
6548 which do not emit DW_TAG_namespace; in this case we try to guess
6549 the fully qualified name of structure types from their members'
6550 linkage names. This must be done using the DIE's children rather
6551 than the children of any DW_AT_specification target. We only need
6552 to do this for structures at the top level, i.e. if the target of
6553 any DW_AT_specification (if any; otherwise the DIE itself) does not
6554 have a parent. */
6555
6556 /* Compute the scope prefix associated with PDI's parent, in
6557 compilation unit CU. The result will be allocated on CU's
6558 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6559 field. NULL is returned if no prefix is necessary. */
6560 static const char *
6561 partial_die_parent_scope (struct partial_die_info *pdi,
6562 struct dwarf2_cu *cu)
6563 {
6564 const char *grandparent_scope;
6565 struct partial_die_info *parent, *real_pdi;
6566
6567 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6568 then this means the parent of the specification DIE. */
6569
6570 real_pdi = pdi;
6571 while (real_pdi->has_specification)
6572 real_pdi = find_partial_die (real_pdi->spec_offset,
6573 real_pdi->spec_is_dwz, cu);
6574
6575 parent = real_pdi->die_parent;
6576 if (parent == NULL)
6577 return NULL;
6578
6579 if (parent->scope_set)
6580 return parent->scope;
6581
6582 fixup_partial_die (parent, cu);
6583
6584 grandparent_scope = partial_die_parent_scope (parent, cu);
6585
6586 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6587 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6588 Work around this problem here. */
6589 if (cu->language == language_cplus
6590 && parent->tag == DW_TAG_namespace
6591 && strcmp (parent->name, "::") == 0
6592 && grandparent_scope == NULL)
6593 {
6594 parent->scope = NULL;
6595 parent->scope_set = 1;
6596 return NULL;
6597 }
6598
6599 if (pdi->tag == DW_TAG_enumerator)
6600 /* Enumerators should not get the name of the enumeration as a prefix. */
6601 parent->scope = grandparent_scope;
6602 else if (parent->tag == DW_TAG_namespace
6603 || parent->tag == DW_TAG_module
6604 || parent->tag == DW_TAG_structure_type
6605 || parent->tag == DW_TAG_class_type
6606 || parent->tag == DW_TAG_interface_type
6607 || parent->tag == DW_TAG_union_type
6608 || parent->tag == DW_TAG_enumeration_type)
6609 {
6610 if (grandparent_scope == NULL)
6611 parent->scope = parent->name;
6612 else
6613 parent->scope = typename_concat (&cu->comp_unit_obstack,
6614 grandparent_scope,
6615 parent->name, 0, cu);
6616 }
6617 else
6618 {
6619 /* FIXME drow/2004-04-01: What should we be doing with
6620 function-local names? For partial symbols, we should probably be
6621 ignoring them. */
6622 complaint (&symfile_complaints,
6623 _("unhandled containing DIE tag %d for DIE at %d"),
6624 parent->tag, pdi->offset.sect_off);
6625 parent->scope = grandparent_scope;
6626 }
6627
6628 parent->scope_set = 1;
6629 return parent->scope;
6630 }
6631
6632 /* Return the fully scoped name associated with PDI, from compilation unit
6633 CU. The result will be allocated with malloc. */
6634
6635 static char *
6636 partial_die_full_name (struct partial_die_info *pdi,
6637 struct dwarf2_cu *cu)
6638 {
6639 const char *parent_scope;
6640
6641 /* If this is a template instantiation, we can not work out the
6642 template arguments from partial DIEs. So, unfortunately, we have
6643 to go through the full DIEs. At least any work we do building
6644 types here will be reused if full symbols are loaded later. */
6645 if (pdi->has_template_arguments)
6646 {
6647 fixup_partial_die (pdi, cu);
6648
6649 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6650 {
6651 struct die_info *die;
6652 struct attribute attr;
6653 struct dwarf2_cu *ref_cu = cu;
6654
6655 /* DW_FORM_ref_addr is using section offset. */
6656 attr.name = 0;
6657 attr.form = DW_FORM_ref_addr;
6658 attr.u.unsnd = pdi->offset.sect_off;
6659 die = follow_die_ref (NULL, &attr, &ref_cu);
6660
6661 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6662 }
6663 }
6664
6665 parent_scope = partial_die_parent_scope (pdi, cu);
6666 if (parent_scope == NULL)
6667 return NULL;
6668 else
6669 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6670 }
6671
6672 static void
6673 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6674 {
6675 struct objfile *objfile = cu->objfile;
6676 CORE_ADDR addr = 0;
6677 const char *actual_name = NULL;
6678 CORE_ADDR baseaddr;
6679 char *built_actual_name;
6680
6681 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6682
6683 built_actual_name = partial_die_full_name (pdi, cu);
6684 if (built_actual_name != NULL)
6685 actual_name = built_actual_name;
6686
6687 if (actual_name == NULL)
6688 actual_name = pdi->name;
6689
6690 switch (pdi->tag)
6691 {
6692 case DW_TAG_subprogram:
6693 if (pdi->is_external || cu->language == language_ada)
6694 {
6695 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6696 of the global scope. But in Ada, we want to be able to access
6697 nested procedures globally. So all Ada subprograms are stored
6698 in the global scope. */
6699 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6700 mst_text, objfile); */
6701 add_psymbol_to_list (actual_name, strlen (actual_name),
6702 built_actual_name != NULL,
6703 VAR_DOMAIN, LOC_BLOCK,
6704 &objfile->global_psymbols,
6705 0, pdi->lowpc + baseaddr,
6706 cu->language, objfile);
6707 }
6708 else
6709 {
6710 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6711 mst_file_text, objfile); */
6712 add_psymbol_to_list (actual_name, strlen (actual_name),
6713 built_actual_name != NULL,
6714 VAR_DOMAIN, LOC_BLOCK,
6715 &objfile->static_psymbols,
6716 0, pdi->lowpc + baseaddr,
6717 cu->language, objfile);
6718 }
6719 break;
6720 case DW_TAG_constant:
6721 {
6722 struct psymbol_allocation_list *list;
6723
6724 if (pdi->is_external)
6725 list = &objfile->global_psymbols;
6726 else
6727 list = &objfile->static_psymbols;
6728 add_psymbol_to_list (actual_name, strlen (actual_name),
6729 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6730 list, 0, 0, cu->language, objfile);
6731 }
6732 break;
6733 case DW_TAG_variable:
6734 if (pdi->d.locdesc)
6735 addr = decode_locdesc (pdi->d.locdesc, cu);
6736
6737 if (pdi->d.locdesc
6738 && addr == 0
6739 && !dwarf2_per_objfile->has_section_at_zero)
6740 {
6741 /* A global or static variable may also have been stripped
6742 out by the linker if unused, in which case its address
6743 will be nullified; do not add such variables into partial
6744 symbol table then. */
6745 }
6746 else if (pdi->is_external)
6747 {
6748 /* Global Variable.
6749 Don't enter into the minimal symbol tables as there is
6750 a minimal symbol table entry from the ELF symbols already.
6751 Enter into partial symbol table if it has a location
6752 descriptor or a type.
6753 If the location descriptor is missing, new_symbol will create
6754 a LOC_UNRESOLVED symbol, the address of the variable will then
6755 be determined from the minimal symbol table whenever the variable
6756 is referenced.
6757 The address for the partial symbol table entry is not
6758 used by GDB, but it comes in handy for debugging partial symbol
6759 table building. */
6760
6761 if (pdi->d.locdesc || pdi->has_type)
6762 add_psymbol_to_list (actual_name, strlen (actual_name),
6763 built_actual_name != NULL,
6764 VAR_DOMAIN, LOC_STATIC,
6765 &objfile->global_psymbols,
6766 0, addr + baseaddr,
6767 cu->language, objfile);
6768 }
6769 else
6770 {
6771 /* Static Variable. Skip symbols without location descriptors. */
6772 if (pdi->d.locdesc == NULL)
6773 {
6774 xfree (built_actual_name);
6775 return;
6776 }
6777 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6778 mst_file_data, objfile); */
6779 add_psymbol_to_list (actual_name, strlen (actual_name),
6780 built_actual_name != NULL,
6781 VAR_DOMAIN, LOC_STATIC,
6782 &objfile->static_psymbols,
6783 0, addr + baseaddr,
6784 cu->language, objfile);
6785 }
6786 break;
6787 case DW_TAG_typedef:
6788 case DW_TAG_base_type:
6789 case DW_TAG_subrange_type:
6790 add_psymbol_to_list (actual_name, strlen (actual_name),
6791 built_actual_name != NULL,
6792 VAR_DOMAIN, LOC_TYPEDEF,
6793 &objfile->static_psymbols,
6794 0, (CORE_ADDR) 0, cu->language, objfile);
6795 break;
6796 case DW_TAG_imported_declaration:
6797 case DW_TAG_namespace:
6798 add_psymbol_to_list (actual_name, strlen (actual_name),
6799 built_actual_name != NULL,
6800 VAR_DOMAIN, LOC_TYPEDEF,
6801 &objfile->global_psymbols,
6802 0, (CORE_ADDR) 0, cu->language, objfile);
6803 break;
6804 case DW_TAG_class_type:
6805 case DW_TAG_interface_type:
6806 case DW_TAG_structure_type:
6807 case DW_TAG_union_type:
6808 case DW_TAG_enumeration_type:
6809 /* Skip external references. The DWARF standard says in the section
6810 about "Structure, Union, and Class Type Entries": "An incomplete
6811 structure, union or class type is represented by a structure,
6812 union or class entry that does not have a byte size attribute
6813 and that has a DW_AT_declaration attribute." */
6814 if (!pdi->has_byte_size && pdi->is_declaration)
6815 {
6816 xfree (built_actual_name);
6817 return;
6818 }
6819
6820 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6821 static vs. global. */
6822 add_psymbol_to_list (actual_name, strlen (actual_name),
6823 built_actual_name != NULL,
6824 STRUCT_DOMAIN, LOC_TYPEDEF,
6825 (cu->language == language_cplus
6826 || cu->language == language_java)
6827 ? &objfile->global_psymbols
6828 : &objfile->static_psymbols,
6829 0, (CORE_ADDR) 0, cu->language, objfile);
6830
6831 break;
6832 case DW_TAG_enumerator:
6833 add_psymbol_to_list (actual_name, strlen (actual_name),
6834 built_actual_name != NULL,
6835 VAR_DOMAIN, LOC_CONST,
6836 (cu->language == language_cplus
6837 || cu->language == language_java)
6838 ? &objfile->global_psymbols
6839 : &objfile->static_psymbols,
6840 0, (CORE_ADDR) 0, cu->language, objfile);
6841 break;
6842 default:
6843 break;
6844 }
6845
6846 xfree (built_actual_name);
6847 }
6848
6849 /* Read a partial die corresponding to a namespace; also, add a symbol
6850 corresponding to that namespace to the symbol table. NAMESPACE is
6851 the name of the enclosing namespace. */
6852
6853 static void
6854 add_partial_namespace (struct partial_die_info *pdi,
6855 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6856 int need_pc, struct dwarf2_cu *cu)
6857 {
6858 /* Add a symbol for the namespace. */
6859
6860 add_partial_symbol (pdi, cu);
6861
6862 /* Now scan partial symbols in that namespace. */
6863
6864 if (pdi->has_children)
6865 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6866 }
6867
6868 /* Read a partial die corresponding to a Fortran module. */
6869
6870 static void
6871 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6872 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6873 {
6874 /* Now scan partial symbols in that module. */
6875
6876 if (pdi->has_children)
6877 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6878 }
6879
6880 /* Read a partial die corresponding to a subprogram and create a partial
6881 symbol for that subprogram. When the CU language allows it, this
6882 routine also defines a partial symbol for each nested subprogram
6883 that this subprogram contains.
6884
6885 DIE my also be a lexical block, in which case we simply search
6886 recursively for suprograms defined inside that lexical block.
6887 Again, this is only performed when the CU language allows this
6888 type of definitions. */
6889
6890 static void
6891 add_partial_subprogram (struct partial_die_info *pdi,
6892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6893 int need_pc, struct dwarf2_cu *cu)
6894 {
6895 if (pdi->tag == DW_TAG_subprogram)
6896 {
6897 if (pdi->has_pc_info)
6898 {
6899 if (pdi->lowpc < *lowpc)
6900 *lowpc = pdi->lowpc;
6901 if (pdi->highpc > *highpc)
6902 *highpc = pdi->highpc;
6903 if (need_pc)
6904 {
6905 CORE_ADDR baseaddr;
6906 struct objfile *objfile = cu->objfile;
6907
6908 baseaddr = ANOFFSET (objfile->section_offsets,
6909 SECT_OFF_TEXT (objfile));
6910 addrmap_set_empty (objfile->psymtabs_addrmap,
6911 pdi->lowpc + baseaddr,
6912 pdi->highpc - 1 + baseaddr,
6913 cu->per_cu->v.psymtab);
6914 }
6915 }
6916
6917 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6918 {
6919 if (!pdi->is_declaration)
6920 /* Ignore subprogram DIEs that do not have a name, they are
6921 illegal. Do not emit a complaint at this point, we will
6922 do so when we convert this psymtab into a symtab. */
6923 if (pdi->name)
6924 add_partial_symbol (pdi, cu);
6925 }
6926 }
6927
6928 if (! pdi->has_children)
6929 return;
6930
6931 if (cu->language == language_ada)
6932 {
6933 pdi = pdi->die_child;
6934 while (pdi != NULL)
6935 {
6936 fixup_partial_die (pdi, cu);
6937 if (pdi->tag == DW_TAG_subprogram
6938 || pdi->tag == DW_TAG_lexical_block)
6939 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6940 pdi = pdi->die_sibling;
6941 }
6942 }
6943 }
6944
6945 /* Read a partial die corresponding to an enumeration type. */
6946
6947 static void
6948 add_partial_enumeration (struct partial_die_info *enum_pdi,
6949 struct dwarf2_cu *cu)
6950 {
6951 struct partial_die_info *pdi;
6952
6953 if (enum_pdi->name != NULL)
6954 add_partial_symbol (enum_pdi, cu);
6955
6956 pdi = enum_pdi->die_child;
6957 while (pdi)
6958 {
6959 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6960 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6961 else
6962 add_partial_symbol (pdi, cu);
6963 pdi = pdi->die_sibling;
6964 }
6965 }
6966
6967 /* Return the initial uleb128 in the die at INFO_PTR. */
6968
6969 static unsigned int
6970 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6971 {
6972 unsigned int bytes_read;
6973
6974 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6975 }
6976
6977 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6978 Return the corresponding abbrev, or NULL if the number is zero (indicating
6979 an empty DIE). In either case *BYTES_READ will be set to the length of
6980 the initial number. */
6981
6982 static struct abbrev_info *
6983 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6984 struct dwarf2_cu *cu)
6985 {
6986 bfd *abfd = cu->objfile->obfd;
6987 unsigned int abbrev_number;
6988 struct abbrev_info *abbrev;
6989
6990 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6991
6992 if (abbrev_number == 0)
6993 return NULL;
6994
6995 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6996 if (!abbrev)
6997 {
6998 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6999 abbrev_number, bfd_get_filename (abfd));
7000 }
7001
7002 return abbrev;
7003 }
7004
7005 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7006 Returns a pointer to the end of a series of DIEs, terminated by an empty
7007 DIE. Any children of the skipped DIEs will also be skipped. */
7008
7009 static const gdb_byte *
7010 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7011 {
7012 struct dwarf2_cu *cu = reader->cu;
7013 struct abbrev_info *abbrev;
7014 unsigned int bytes_read;
7015
7016 while (1)
7017 {
7018 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7019 if (abbrev == NULL)
7020 return info_ptr + bytes_read;
7021 else
7022 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7023 }
7024 }
7025
7026 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7027 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7028 abbrev corresponding to that skipped uleb128 should be passed in
7029 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7030 children. */
7031
7032 static const gdb_byte *
7033 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7034 struct abbrev_info *abbrev)
7035 {
7036 unsigned int bytes_read;
7037 struct attribute attr;
7038 bfd *abfd = reader->abfd;
7039 struct dwarf2_cu *cu = reader->cu;
7040 const gdb_byte *buffer = reader->buffer;
7041 const gdb_byte *buffer_end = reader->buffer_end;
7042 const gdb_byte *start_info_ptr = info_ptr;
7043 unsigned int form, i;
7044
7045 for (i = 0; i < abbrev->num_attrs; i++)
7046 {
7047 /* The only abbrev we care about is DW_AT_sibling. */
7048 if (abbrev->attrs[i].name == DW_AT_sibling)
7049 {
7050 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7051 if (attr.form == DW_FORM_ref_addr)
7052 complaint (&symfile_complaints,
7053 _("ignoring absolute DW_AT_sibling"));
7054 else
7055 {
7056 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7057 const gdb_byte *sibling_ptr = buffer + off;
7058
7059 if (sibling_ptr < info_ptr)
7060 complaint (&symfile_complaints,
7061 _("DW_AT_sibling points backwards"));
7062 else
7063 return sibling_ptr;
7064 }
7065 }
7066
7067 /* If it isn't DW_AT_sibling, skip this attribute. */
7068 form = abbrev->attrs[i].form;
7069 skip_attribute:
7070 switch (form)
7071 {
7072 case DW_FORM_ref_addr:
7073 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7074 and later it is offset sized. */
7075 if (cu->header.version == 2)
7076 info_ptr += cu->header.addr_size;
7077 else
7078 info_ptr += cu->header.offset_size;
7079 break;
7080 case DW_FORM_GNU_ref_alt:
7081 info_ptr += cu->header.offset_size;
7082 break;
7083 case DW_FORM_addr:
7084 info_ptr += cu->header.addr_size;
7085 break;
7086 case DW_FORM_data1:
7087 case DW_FORM_ref1:
7088 case DW_FORM_flag:
7089 info_ptr += 1;
7090 break;
7091 case DW_FORM_flag_present:
7092 break;
7093 case DW_FORM_data2:
7094 case DW_FORM_ref2:
7095 info_ptr += 2;
7096 break;
7097 case DW_FORM_data4:
7098 case DW_FORM_ref4:
7099 info_ptr += 4;
7100 break;
7101 case DW_FORM_data8:
7102 case DW_FORM_ref8:
7103 case DW_FORM_ref_sig8:
7104 info_ptr += 8;
7105 break;
7106 case DW_FORM_string:
7107 read_direct_string (abfd, info_ptr, &bytes_read);
7108 info_ptr += bytes_read;
7109 break;
7110 case DW_FORM_sec_offset:
7111 case DW_FORM_strp:
7112 case DW_FORM_GNU_strp_alt:
7113 info_ptr += cu->header.offset_size;
7114 break;
7115 case DW_FORM_exprloc:
7116 case DW_FORM_block:
7117 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7118 info_ptr += bytes_read;
7119 break;
7120 case DW_FORM_block1:
7121 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7122 break;
7123 case DW_FORM_block2:
7124 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7125 break;
7126 case DW_FORM_block4:
7127 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7128 break;
7129 case DW_FORM_sdata:
7130 case DW_FORM_udata:
7131 case DW_FORM_ref_udata:
7132 case DW_FORM_GNU_addr_index:
7133 case DW_FORM_GNU_str_index:
7134 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7135 break;
7136 case DW_FORM_indirect:
7137 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7138 info_ptr += bytes_read;
7139 /* We need to continue parsing from here, so just go back to
7140 the top. */
7141 goto skip_attribute;
7142
7143 default:
7144 error (_("Dwarf Error: Cannot handle %s "
7145 "in DWARF reader [in module %s]"),
7146 dwarf_form_name (form),
7147 bfd_get_filename (abfd));
7148 }
7149 }
7150
7151 if (abbrev->has_children)
7152 return skip_children (reader, info_ptr);
7153 else
7154 return info_ptr;
7155 }
7156
7157 /* Locate ORIG_PDI's sibling.
7158 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7159
7160 static const gdb_byte *
7161 locate_pdi_sibling (const struct die_reader_specs *reader,
7162 struct partial_die_info *orig_pdi,
7163 const gdb_byte *info_ptr)
7164 {
7165 /* Do we know the sibling already? */
7166
7167 if (orig_pdi->sibling)
7168 return orig_pdi->sibling;
7169
7170 /* Are there any children to deal with? */
7171
7172 if (!orig_pdi->has_children)
7173 return info_ptr;
7174
7175 /* Skip the children the long way. */
7176
7177 return skip_children (reader, info_ptr);
7178 }
7179
7180 /* Expand this partial symbol table into a full symbol table. SELF is
7181 not NULL. */
7182
7183 static void
7184 dwarf2_read_symtab (struct partial_symtab *self,
7185 struct objfile *objfile)
7186 {
7187 if (self->readin)
7188 {
7189 warning (_("bug: psymtab for %s is already read in."),
7190 self->filename);
7191 }
7192 else
7193 {
7194 if (info_verbose)
7195 {
7196 printf_filtered (_("Reading in symbols for %s..."),
7197 self->filename);
7198 gdb_flush (gdb_stdout);
7199 }
7200
7201 /* Restore our global data. */
7202 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7203
7204 /* If this psymtab is constructed from a debug-only objfile, the
7205 has_section_at_zero flag will not necessarily be correct. We
7206 can get the correct value for this flag by looking at the data
7207 associated with the (presumably stripped) associated objfile. */
7208 if (objfile->separate_debug_objfile_backlink)
7209 {
7210 struct dwarf2_per_objfile *dpo_backlink
7211 = objfile_data (objfile->separate_debug_objfile_backlink,
7212 dwarf2_objfile_data_key);
7213
7214 dwarf2_per_objfile->has_section_at_zero
7215 = dpo_backlink->has_section_at_zero;
7216 }
7217
7218 dwarf2_per_objfile->reading_partial_symbols = 0;
7219
7220 psymtab_to_symtab_1 (self);
7221
7222 /* Finish up the debug error message. */
7223 if (info_verbose)
7224 printf_filtered (_("done.\n"));
7225 }
7226
7227 process_cu_includes ();
7228 }
7229 \f
7230 /* Reading in full CUs. */
7231
7232 /* Add PER_CU to the queue. */
7233
7234 static void
7235 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7236 enum language pretend_language)
7237 {
7238 struct dwarf2_queue_item *item;
7239
7240 per_cu->queued = 1;
7241 item = xmalloc (sizeof (*item));
7242 item->per_cu = per_cu;
7243 item->pretend_language = pretend_language;
7244 item->next = NULL;
7245
7246 if (dwarf2_queue == NULL)
7247 dwarf2_queue = item;
7248 else
7249 dwarf2_queue_tail->next = item;
7250
7251 dwarf2_queue_tail = item;
7252 }
7253
7254 /* If PER_CU is not yet queued, add it to the queue.
7255 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7256 dependency.
7257 The result is non-zero if PER_CU was queued, otherwise the result is zero
7258 meaning either PER_CU is already queued or it is already loaded.
7259
7260 N.B. There is an invariant here that if a CU is queued then it is loaded.
7261 The caller is required to load PER_CU if we return non-zero. */
7262
7263 static int
7264 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7265 struct dwarf2_per_cu_data *per_cu,
7266 enum language pretend_language)
7267 {
7268 /* We may arrive here during partial symbol reading, if we need full
7269 DIEs to process an unusual case (e.g. template arguments). Do
7270 not queue PER_CU, just tell our caller to load its DIEs. */
7271 if (dwarf2_per_objfile->reading_partial_symbols)
7272 {
7273 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7274 return 1;
7275 return 0;
7276 }
7277
7278 /* Mark the dependence relation so that we don't flush PER_CU
7279 too early. */
7280 if (dependent_cu != NULL)
7281 dwarf2_add_dependence (dependent_cu, per_cu);
7282
7283 /* If it's already on the queue, we have nothing to do. */
7284 if (per_cu->queued)
7285 return 0;
7286
7287 /* If the compilation unit is already loaded, just mark it as
7288 used. */
7289 if (per_cu->cu != NULL)
7290 {
7291 per_cu->cu->last_used = 0;
7292 return 0;
7293 }
7294
7295 /* Add it to the queue. */
7296 queue_comp_unit (per_cu, pretend_language);
7297
7298 return 1;
7299 }
7300
7301 /* Process the queue. */
7302
7303 static void
7304 process_queue (void)
7305 {
7306 struct dwarf2_queue_item *item, *next_item;
7307
7308 if (dwarf2_read_debug)
7309 {
7310 fprintf_unfiltered (gdb_stdlog,
7311 "Expanding one or more symtabs of objfile %s ...\n",
7312 objfile_name (dwarf2_per_objfile->objfile));
7313 }
7314
7315 /* The queue starts out with one item, but following a DIE reference
7316 may load a new CU, adding it to the end of the queue. */
7317 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7318 {
7319 if (dwarf2_per_objfile->using_index
7320 ? !item->per_cu->v.quick->symtab
7321 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7322 {
7323 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7324 unsigned int debug_print_threshold;
7325 char buf[100];
7326
7327 if (per_cu->is_debug_types)
7328 {
7329 struct signatured_type *sig_type =
7330 (struct signatured_type *) per_cu;
7331
7332 sprintf (buf, "TU %s at offset 0x%x",
7333 hex_string (sig_type->signature),
7334 per_cu->offset.sect_off);
7335 /* There can be 100s of TUs.
7336 Only print them in verbose mode. */
7337 debug_print_threshold = 2;
7338 }
7339 else
7340 {
7341 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7342 debug_print_threshold = 1;
7343 }
7344
7345 if (dwarf2_read_debug >= debug_print_threshold)
7346 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7347
7348 if (per_cu->is_debug_types)
7349 process_full_type_unit (per_cu, item->pretend_language);
7350 else
7351 process_full_comp_unit (per_cu, item->pretend_language);
7352
7353 if (dwarf2_read_debug >= debug_print_threshold)
7354 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7355 }
7356
7357 item->per_cu->queued = 0;
7358 next_item = item->next;
7359 xfree (item);
7360 }
7361
7362 dwarf2_queue_tail = NULL;
7363
7364 if (dwarf2_read_debug)
7365 {
7366 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7367 objfile_name (dwarf2_per_objfile->objfile));
7368 }
7369 }
7370
7371 /* Free all allocated queue entries. This function only releases anything if
7372 an error was thrown; if the queue was processed then it would have been
7373 freed as we went along. */
7374
7375 static void
7376 dwarf2_release_queue (void *dummy)
7377 {
7378 struct dwarf2_queue_item *item, *last;
7379
7380 item = dwarf2_queue;
7381 while (item)
7382 {
7383 /* Anything still marked queued is likely to be in an
7384 inconsistent state, so discard it. */
7385 if (item->per_cu->queued)
7386 {
7387 if (item->per_cu->cu != NULL)
7388 free_one_cached_comp_unit (item->per_cu);
7389 item->per_cu->queued = 0;
7390 }
7391
7392 last = item;
7393 item = item->next;
7394 xfree (last);
7395 }
7396
7397 dwarf2_queue = dwarf2_queue_tail = NULL;
7398 }
7399
7400 /* Read in full symbols for PST, and anything it depends on. */
7401
7402 static void
7403 psymtab_to_symtab_1 (struct partial_symtab *pst)
7404 {
7405 struct dwarf2_per_cu_data *per_cu;
7406 int i;
7407
7408 if (pst->readin)
7409 return;
7410
7411 for (i = 0; i < pst->number_of_dependencies; i++)
7412 if (!pst->dependencies[i]->readin
7413 && pst->dependencies[i]->user == NULL)
7414 {
7415 /* Inform about additional files that need to be read in. */
7416 if (info_verbose)
7417 {
7418 /* FIXME: i18n: Need to make this a single string. */
7419 fputs_filtered (" ", gdb_stdout);
7420 wrap_here ("");
7421 fputs_filtered ("and ", gdb_stdout);
7422 wrap_here ("");
7423 printf_filtered ("%s...", pst->dependencies[i]->filename);
7424 wrap_here (""); /* Flush output. */
7425 gdb_flush (gdb_stdout);
7426 }
7427 psymtab_to_symtab_1 (pst->dependencies[i]);
7428 }
7429
7430 per_cu = pst->read_symtab_private;
7431
7432 if (per_cu == NULL)
7433 {
7434 /* It's an include file, no symbols to read for it.
7435 Everything is in the parent symtab. */
7436 pst->readin = 1;
7437 return;
7438 }
7439
7440 dw2_do_instantiate_symtab (per_cu);
7441 }
7442
7443 /* Trivial hash function for die_info: the hash value of a DIE
7444 is its offset in .debug_info for this objfile. */
7445
7446 static hashval_t
7447 die_hash (const void *item)
7448 {
7449 const struct die_info *die = item;
7450
7451 return die->offset.sect_off;
7452 }
7453
7454 /* Trivial comparison function for die_info structures: two DIEs
7455 are equal if they have the same offset. */
7456
7457 static int
7458 die_eq (const void *item_lhs, const void *item_rhs)
7459 {
7460 const struct die_info *die_lhs = item_lhs;
7461 const struct die_info *die_rhs = item_rhs;
7462
7463 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7464 }
7465
7466 /* die_reader_func for load_full_comp_unit.
7467 This is identical to read_signatured_type_reader,
7468 but is kept separate for now. */
7469
7470 static void
7471 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7472 const gdb_byte *info_ptr,
7473 struct die_info *comp_unit_die,
7474 int has_children,
7475 void *data)
7476 {
7477 struct dwarf2_cu *cu = reader->cu;
7478 enum language *language_ptr = data;
7479
7480 gdb_assert (cu->die_hash == NULL);
7481 cu->die_hash =
7482 htab_create_alloc_ex (cu->header.length / 12,
7483 die_hash,
7484 die_eq,
7485 NULL,
7486 &cu->comp_unit_obstack,
7487 hashtab_obstack_allocate,
7488 dummy_obstack_deallocate);
7489
7490 if (has_children)
7491 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7492 &info_ptr, comp_unit_die);
7493 cu->dies = comp_unit_die;
7494 /* comp_unit_die is not stored in die_hash, no need. */
7495
7496 /* We try not to read any attributes in this function, because not
7497 all CUs needed for references have been loaded yet, and symbol
7498 table processing isn't initialized. But we have to set the CU language,
7499 or we won't be able to build types correctly.
7500 Similarly, if we do not read the producer, we can not apply
7501 producer-specific interpretation. */
7502 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7503 }
7504
7505 /* Load the DIEs associated with PER_CU into memory. */
7506
7507 static void
7508 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7509 enum language pretend_language)
7510 {
7511 gdb_assert (! this_cu->is_debug_types);
7512
7513 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7514 load_full_comp_unit_reader, &pretend_language);
7515 }
7516
7517 /* Add a DIE to the delayed physname list. */
7518
7519 static void
7520 add_to_method_list (struct type *type, int fnfield_index, int index,
7521 const char *name, struct die_info *die,
7522 struct dwarf2_cu *cu)
7523 {
7524 struct delayed_method_info mi;
7525 mi.type = type;
7526 mi.fnfield_index = fnfield_index;
7527 mi.index = index;
7528 mi.name = name;
7529 mi.die = die;
7530 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7531 }
7532
7533 /* A cleanup for freeing the delayed method list. */
7534
7535 static void
7536 free_delayed_list (void *ptr)
7537 {
7538 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7539 if (cu->method_list != NULL)
7540 {
7541 VEC_free (delayed_method_info, cu->method_list);
7542 cu->method_list = NULL;
7543 }
7544 }
7545
7546 /* Compute the physnames of any methods on the CU's method list.
7547
7548 The computation of method physnames is delayed in order to avoid the
7549 (bad) condition that one of the method's formal parameters is of an as yet
7550 incomplete type. */
7551
7552 static void
7553 compute_delayed_physnames (struct dwarf2_cu *cu)
7554 {
7555 int i;
7556 struct delayed_method_info *mi;
7557 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7558 {
7559 const char *physname;
7560 struct fn_fieldlist *fn_flp
7561 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7562 physname = dwarf2_physname (mi->name, mi->die, cu);
7563 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7564 }
7565 }
7566
7567 /* Go objects should be embedded in a DW_TAG_module DIE,
7568 and it's not clear if/how imported objects will appear.
7569 To keep Go support simple until that's worked out,
7570 go back through what we've read and create something usable.
7571 We could do this while processing each DIE, and feels kinda cleaner,
7572 but that way is more invasive.
7573 This is to, for example, allow the user to type "p var" or "b main"
7574 without having to specify the package name, and allow lookups
7575 of module.object to work in contexts that use the expression
7576 parser. */
7577
7578 static void
7579 fixup_go_packaging (struct dwarf2_cu *cu)
7580 {
7581 char *package_name = NULL;
7582 struct pending *list;
7583 int i;
7584
7585 for (list = global_symbols; list != NULL; list = list->next)
7586 {
7587 for (i = 0; i < list->nsyms; ++i)
7588 {
7589 struct symbol *sym = list->symbol[i];
7590
7591 if (SYMBOL_LANGUAGE (sym) == language_go
7592 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7593 {
7594 char *this_package_name = go_symbol_package_name (sym);
7595
7596 if (this_package_name == NULL)
7597 continue;
7598 if (package_name == NULL)
7599 package_name = this_package_name;
7600 else
7601 {
7602 if (strcmp (package_name, this_package_name) != 0)
7603 complaint (&symfile_complaints,
7604 _("Symtab %s has objects from two different Go packages: %s and %s"),
7605 (SYMBOL_SYMTAB (sym)
7606 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7607 : objfile_name (cu->objfile)),
7608 this_package_name, package_name);
7609 xfree (this_package_name);
7610 }
7611 }
7612 }
7613 }
7614
7615 if (package_name != NULL)
7616 {
7617 struct objfile *objfile = cu->objfile;
7618 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7619 package_name,
7620 strlen (package_name));
7621 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7622 saved_package_name, objfile);
7623 struct symbol *sym;
7624
7625 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7626
7627 sym = allocate_symbol (objfile);
7628 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7629 SYMBOL_SET_NAMES (sym, saved_package_name,
7630 strlen (saved_package_name), 0, objfile);
7631 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7632 e.g., "main" finds the "main" module and not C's main(). */
7633 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7634 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7635 SYMBOL_TYPE (sym) = type;
7636
7637 add_symbol_to_list (sym, &global_symbols);
7638
7639 xfree (package_name);
7640 }
7641 }
7642
7643 /* Return the symtab for PER_CU. This works properly regardless of
7644 whether we're using the index or psymtabs. */
7645
7646 static struct symtab *
7647 get_symtab (struct dwarf2_per_cu_data *per_cu)
7648 {
7649 return (dwarf2_per_objfile->using_index
7650 ? per_cu->v.quick->symtab
7651 : per_cu->v.psymtab->symtab);
7652 }
7653
7654 /* A helper function for computing the list of all symbol tables
7655 included by PER_CU. */
7656
7657 static void
7658 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7659 htab_t all_children, htab_t all_type_symtabs,
7660 struct dwarf2_per_cu_data *per_cu,
7661 struct symtab *immediate_parent)
7662 {
7663 void **slot;
7664 int ix;
7665 struct symtab *symtab;
7666 struct dwarf2_per_cu_data *iter;
7667
7668 slot = htab_find_slot (all_children, per_cu, INSERT);
7669 if (*slot != NULL)
7670 {
7671 /* This inclusion and its children have been processed. */
7672 return;
7673 }
7674
7675 *slot = per_cu;
7676 /* Only add a CU if it has a symbol table. */
7677 symtab = get_symtab (per_cu);
7678 if (symtab != NULL)
7679 {
7680 /* If this is a type unit only add its symbol table if we haven't
7681 seen it yet (type unit per_cu's can share symtabs). */
7682 if (per_cu->is_debug_types)
7683 {
7684 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7685 if (*slot == NULL)
7686 {
7687 *slot = symtab;
7688 VEC_safe_push (symtab_ptr, *result, symtab);
7689 if (symtab->user == NULL)
7690 symtab->user = immediate_parent;
7691 }
7692 }
7693 else
7694 {
7695 VEC_safe_push (symtab_ptr, *result, symtab);
7696 if (symtab->user == NULL)
7697 symtab->user = immediate_parent;
7698 }
7699 }
7700
7701 for (ix = 0;
7702 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7703 ++ix)
7704 {
7705 recursively_compute_inclusions (result, all_children,
7706 all_type_symtabs, iter, symtab);
7707 }
7708 }
7709
7710 /* Compute the symtab 'includes' fields for the symtab related to
7711 PER_CU. */
7712
7713 static void
7714 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7715 {
7716 gdb_assert (! per_cu->is_debug_types);
7717
7718 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7719 {
7720 int ix, len;
7721 struct dwarf2_per_cu_data *per_cu_iter;
7722 struct symtab *symtab_iter;
7723 VEC (symtab_ptr) *result_symtabs = NULL;
7724 htab_t all_children, all_type_symtabs;
7725 struct symtab *symtab = get_symtab (per_cu);
7726
7727 /* If we don't have a symtab, we can just skip this case. */
7728 if (symtab == NULL)
7729 return;
7730
7731 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7732 NULL, xcalloc, xfree);
7733 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7734 NULL, xcalloc, xfree);
7735
7736 for (ix = 0;
7737 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7738 ix, per_cu_iter);
7739 ++ix)
7740 {
7741 recursively_compute_inclusions (&result_symtabs, all_children,
7742 all_type_symtabs, per_cu_iter,
7743 symtab);
7744 }
7745
7746 /* Now we have a transitive closure of all the included symtabs. */
7747 len = VEC_length (symtab_ptr, result_symtabs);
7748 symtab->includes
7749 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7750 (len + 1) * sizeof (struct symtab *));
7751 for (ix = 0;
7752 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7753 ++ix)
7754 symtab->includes[ix] = symtab_iter;
7755 symtab->includes[len] = NULL;
7756
7757 VEC_free (symtab_ptr, result_symtabs);
7758 htab_delete (all_children);
7759 htab_delete (all_type_symtabs);
7760 }
7761 }
7762
7763 /* Compute the 'includes' field for the symtabs of all the CUs we just
7764 read. */
7765
7766 static void
7767 process_cu_includes (void)
7768 {
7769 int ix;
7770 struct dwarf2_per_cu_data *iter;
7771
7772 for (ix = 0;
7773 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7774 ix, iter);
7775 ++ix)
7776 {
7777 if (! iter->is_debug_types)
7778 compute_symtab_includes (iter);
7779 }
7780
7781 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7782 }
7783
7784 /* Generate full symbol information for PER_CU, whose DIEs have
7785 already been loaded into memory. */
7786
7787 static void
7788 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7789 enum language pretend_language)
7790 {
7791 struct dwarf2_cu *cu = per_cu->cu;
7792 struct objfile *objfile = per_cu->objfile;
7793 CORE_ADDR lowpc, highpc;
7794 struct symtab *symtab;
7795 struct cleanup *back_to, *delayed_list_cleanup;
7796 CORE_ADDR baseaddr;
7797 struct block *static_block;
7798
7799 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7800
7801 buildsym_init ();
7802 back_to = make_cleanup (really_free_pendings, NULL);
7803 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7804
7805 cu->list_in_scope = &file_symbols;
7806
7807 cu->language = pretend_language;
7808 cu->language_defn = language_def (cu->language);
7809
7810 /* Do line number decoding in read_file_scope () */
7811 process_die (cu->dies, cu);
7812
7813 /* For now fudge the Go package. */
7814 if (cu->language == language_go)
7815 fixup_go_packaging (cu);
7816
7817 /* Now that we have processed all the DIEs in the CU, all the types
7818 should be complete, and it should now be safe to compute all of the
7819 physnames. */
7820 compute_delayed_physnames (cu);
7821 do_cleanups (delayed_list_cleanup);
7822
7823 /* Some compilers don't define a DW_AT_high_pc attribute for the
7824 compilation unit. If the DW_AT_high_pc is missing, synthesize
7825 it, by scanning the DIE's below the compilation unit. */
7826 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7827
7828 static_block
7829 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7830
7831 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7832 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7833 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7834 addrmap to help ensure it has an accurate map of pc values belonging to
7835 this comp unit. */
7836 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7837
7838 symtab = end_symtab_from_static_block (static_block, objfile,
7839 SECT_OFF_TEXT (objfile), 0);
7840
7841 if (symtab != NULL)
7842 {
7843 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7844
7845 /* Set symtab language to language from DW_AT_language. If the
7846 compilation is from a C file generated by language preprocessors, do
7847 not set the language if it was already deduced by start_subfile. */
7848 if (!(cu->language == language_c && symtab->language != language_c))
7849 symtab->language = cu->language;
7850
7851 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7852 produce DW_AT_location with location lists but it can be possibly
7853 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7854 there were bugs in prologue debug info, fixed later in GCC-4.5
7855 by "unwind info for epilogues" patch (which is not directly related).
7856
7857 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7858 needed, it would be wrong due to missing DW_AT_producer there.
7859
7860 Still one can confuse GDB by using non-standard GCC compilation
7861 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7862 */
7863 if (cu->has_loclist && gcc_4_minor >= 5)
7864 symtab->locations_valid = 1;
7865
7866 if (gcc_4_minor >= 5)
7867 symtab->epilogue_unwind_valid = 1;
7868
7869 symtab->call_site_htab = cu->call_site_htab;
7870 }
7871
7872 if (dwarf2_per_objfile->using_index)
7873 per_cu->v.quick->symtab = symtab;
7874 else
7875 {
7876 struct partial_symtab *pst = per_cu->v.psymtab;
7877 pst->symtab = symtab;
7878 pst->readin = 1;
7879 }
7880
7881 /* Push it for inclusion processing later. */
7882 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7883
7884 do_cleanups (back_to);
7885 }
7886
7887 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7888 already been loaded into memory. */
7889
7890 static void
7891 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7892 enum language pretend_language)
7893 {
7894 struct dwarf2_cu *cu = per_cu->cu;
7895 struct objfile *objfile = per_cu->objfile;
7896 struct symtab *symtab;
7897 struct cleanup *back_to, *delayed_list_cleanup;
7898 struct signatured_type *sig_type;
7899
7900 gdb_assert (per_cu->is_debug_types);
7901 sig_type = (struct signatured_type *) per_cu;
7902
7903 buildsym_init ();
7904 back_to = make_cleanup (really_free_pendings, NULL);
7905 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7906
7907 cu->list_in_scope = &file_symbols;
7908
7909 cu->language = pretend_language;
7910 cu->language_defn = language_def (cu->language);
7911
7912 /* The symbol tables are set up in read_type_unit_scope. */
7913 process_die (cu->dies, cu);
7914
7915 /* For now fudge the Go package. */
7916 if (cu->language == language_go)
7917 fixup_go_packaging (cu);
7918
7919 /* Now that we have processed all the DIEs in the CU, all the types
7920 should be complete, and it should now be safe to compute all of the
7921 physnames. */
7922 compute_delayed_physnames (cu);
7923 do_cleanups (delayed_list_cleanup);
7924
7925 /* TUs share symbol tables.
7926 If this is the first TU to use this symtab, complete the construction
7927 of it with end_expandable_symtab. Otherwise, complete the addition of
7928 this TU's symbols to the existing symtab. */
7929 if (sig_type->type_unit_group->primary_symtab == NULL)
7930 {
7931 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7932 sig_type->type_unit_group->primary_symtab = symtab;
7933
7934 if (symtab != NULL)
7935 {
7936 /* Set symtab language to language from DW_AT_language. If the
7937 compilation is from a C file generated by language preprocessors,
7938 do not set the language if it was already deduced by
7939 start_subfile. */
7940 if (!(cu->language == language_c && symtab->language != language_c))
7941 symtab->language = cu->language;
7942 }
7943 }
7944 else
7945 {
7946 augment_type_symtab (objfile,
7947 sig_type->type_unit_group->primary_symtab);
7948 symtab = sig_type->type_unit_group->primary_symtab;
7949 }
7950
7951 if (dwarf2_per_objfile->using_index)
7952 per_cu->v.quick->symtab = symtab;
7953 else
7954 {
7955 struct partial_symtab *pst = per_cu->v.psymtab;
7956 pst->symtab = symtab;
7957 pst->readin = 1;
7958 }
7959
7960 do_cleanups (back_to);
7961 }
7962
7963 /* Process an imported unit DIE. */
7964
7965 static void
7966 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7967 {
7968 struct attribute *attr;
7969
7970 /* For now we don't handle imported units in type units. */
7971 if (cu->per_cu->is_debug_types)
7972 {
7973 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7974 " supported in type units [in module %s]"),
7975 objfile_name (cu->objfile));
7976 }
7977
7978 attr = dwarf2_attr (die, DW_AT_import, cu);
7979 if (attr != NULL)
7980 {
7981 struct dwarf2_per_cu_data *per_cu;
7982 struct symtab *imported_symtab;
7983 sect_offset offset;
7984 int is_dwz;
7985
7986 offset = dwarf2_get_ref_die_offset (attr);
7987 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7988 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7989
7990 /* If necessary, add it to the queue and load its DIEs. */
7991 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7992 load_full_comp_unit (per_cu, cu->language);
7993
7994 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7995 per_cu);
7996 }
7997 }
7998
7999 /* Process a die and its children. */
8000
8001 static void
8002 process_die (struct die_info *die, struct dwarf2_cu *cu)
8003 {
8004 switch (die->tag)
8005 {
8006 case DW_TAG_padding:
8007 break;
8008 case DW_TAG_compile_unit:
8009 case DW_TAG_partial_unit:
8010 read_file_scope (die, cu);
8011 break;
8012 case DW_TAG_type_unit:
8013 read_type_unit_scope (die, cu);
8014 break;
8015 case DW_TAG_subprogram:
8016 case DW_TAG_inlined_subroutine:
8017 read_func_scope (die, cu);
8018 break;
8019 case DW_TAG_lexical_block:
8020 case DW_TAG_try_block:
8021 case DW_TAG_catch_block:
8022 read_lexical_block_scope (die, cu);
8023 break;
8024 case DW_TAG_GNU_call_site:
8025 read_call_site_scope (die, cu);
8026 break;
8027 case DW_TAG_class_type:
8028 case DW_TAG_interface_type:
8029 case DW_TAG_structure_type:
8030 case DW_TAG_union_type:
8031 process_structure_scope (die, cu);
8032 break;
8033 case DW_TAG_enumeration_type:
8034 process_enumeration_scope (die, cu);
8035 break;
8036
8037 /* These dies have a type, but processing them does not create
8038 a symbol or recurse to process the children. Therefore we can
8039 read them on-demand through read_type_die. */
8040 case DW_TAG_subroutine_type:
8041 case DW_TAG_set_type:
8042 case DW_TAG_array_type:
8043 case DW_TAG_pointer_type:
8044 case DW_TAG_ptr_to_member_type:
8045 case DW_TAG_reference_type:
8046 case DW_TAG_string_type:
8047 break;
8048
8049 case DW_TAG_base_type:
8050 case DW_TAG_subrange_type:
8051 case DW_TAG_typedef:
8052 /* Add a typedef symbol for the type definition, if it has a
8053 DW_AT_name. */
8054 new_symbol (die, read_type_die (die, cu), cu);
8055 break;
8056 case DW_TAG_common_block:
8057 read_common_block (die, cu);
8058 break;
8059 case DW_TAG_common_inclusion:
8060 break;
8061 case DW_TAG_namespace:
8062 cu->processing_has_namespace_info = 1;
8063 read_namespace (die, cu);
8064 break;
8065 case DW_TAG_module:
8066 cu->processing_has_namespace_info = 1;
8067 read_module (die, cu);
8068 break;
8069 case DW_TAG_imported_declaration:
8070 cu->processing_has_namespace_info = 1;
8071 if (read_namespace_alias (die, cu))
8072 break;
8073 /* The declaration is not a global namespace alias: fall through. */
8074 case DW_TAG_imported_module:
8075 cu->processing_has_namespace_info = 1;
8076 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8077 || cu->language != language_fortran))
8078 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8079 dwarf_tag_name (die->tag));
8080 read_import_statement (die, cu);
8081 break;
8082
8083 case DW_TAG_imported_unit:
8084 process_imported_unit_die (die, cu);
8085 break;
8086
8087 default:
8088 new_symbol (die, NULL, cu);
8089 break;
8090 }
8091 }
8092 \f
8093 /* DWARF name computation. */
8094
8095 /* A helper function for dwarf2_compute_name which determines whether DIE
8096 needs to have the name of the scope prepended to the name listed in the
8097 die. */
8098
8099 static int
8100 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8101 {
8102 struct attribute *attr;
8103
8104 switch (die->tag)
8105 {
8106 case DW_TAG_namespace:
8107 case DW_TAG_typedef:
8108 case DW_TAG_class_type:
8109 case DW_TAG_interface_type:
8110 case DW_TAG_structure_type:
8111 case DW_TAG_union_type:
8112 case DW_TAG_enumeration_type:
8113 case DW_TAG_enumerator:
8114 case DW_TAG_subprogram:
8115 case DW_TAG_member:
8116 case DW_TAG_imported_declaration:
8117 return 1;
8118
8119 case DW_TAG_variable:
8120 case DW_TAG_constant:
8121 /* We only need to prefix "globally" visible variables. These include
8122 any variable marked with DW_AT_external or any variable that
8123 lives in a namespace. [Variables in anonymous namespaces
8124 require prefixing, but they are not DW_AT_external.] */
8125
8126 if (dwarf2_attr (die, DW_AT_specification, cu))
8127 {
8128 struct dwarf2_cu *spec_cu = cu;
8129
8130 return die_needs_namespace (die_specification (die, &spec_cu),
8131 spec_cu);
8132 }
8133
8134 attr = dwarf2_attr (die, DW_AT_external, cu);
8135 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8136 && die->parent->tag != DW_TAG_module)
8137 return 0;
8138 /* A variable in a lexical block of some kind does not need a
8139 namespace, even though in C++ such variables may be external
8140 and have a mangled name. */
8141 if (die->parent->tag == DW_TAG_lexical_block
8142 || die->parent->tag == DW_TAG_try_block
8143 || die->parent->tag == DW_TAG_catch_block
8144 || die->parent->tag == DW_TAG_subprogram)
8145 return 0;
8146 return 1;
8147
8148 default:
8149 return 0;
8150 }
8151 }
8152
8153 /* Retrieve the last character from a mem_file. */
8154
8155 static void
8156 do_ui_file_peek_last (void *object, const char *buffer, long length)
8157 {
8158 char *last_char_p = (char *) object;
8159
8160 if (length > 0)
8161 *last_char_p = buffer[length - 1];
8162 }
8163
8164 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8165 compute the physname for the object, which include a method's:
8166 - formal parameters (C++/Java),
8167 - receiver type (Go),
8168 - return type (Java).
8169
8170 The term "physname" is a bit confusing.
8171 For C++, for example, it is the demangled name.
8172 For Go, for example, it's the mangled name.
8173
8174 For Ada, return the DIE's linkage name rather than the fully qualified
8175 name. PHYSNAME is ignored..
8176
8177 The result is allocated on the objfile_obstack and canonicalized. */
8178
8179 static const char *
8180 dwarf2_compute_name (const char *name,
8181 struct die_info *die, struct dwarf2_cu *cu,
8182 int physname)
8183 {
8184 struct objfile *objfile = cu->objfile;
8185
8186 if (name == NULL)
8187 name = dwarf2_name (die, cu);
8188
8189 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8190 compute it by typename_concat inside GDB. */
8191 if (cu->language == language_ada
8192 || (cu->language == language_fortran && physname))
8193 {
8194 /* For Ada unit, we prefer the linkage name over the name, as
8195 the former contains the exported name, which the user expects
8196 to be able to reference. Ideally, we want the user to be able
8197 to reference this entity using either natural or linkage name,
8198 but we haven't started looking at this enhancement yet. */
8199 struct attribute *attr;
8200
8201 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8202 if (attr == NULL)
8203 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8204 if (attr && DW_STRING (attr))
8205 return DW_STRING (attr);
8206 }
8207
8208 /* These are the only languages we know how to qualify names in. */
8209 if (name != NULL
8210 && (cu->language == language_cplus || cu->language == language_java
8211 || cu->language == language_fortran))
8212 {
8213 if (die_needs_namespace (die, cu))
8214 {
8215 long length;
8216 const char *prefix;
8217 struct ui_file *buf;
8218
8219 prefix = determine_prefix (die, cu);
8220 buf = mem_fileopen ();
8221 if (*prefix != '\0')
8222 {
8223 char *prefixed_name = typename_concat (NULL, prefix, name,
8224 physname, cu);
8225
8226 fputs_unfiltered (prefixed_name, buf);
8227 xfree (prefixed_name);
8228 }
8229 else
8230 fputs_unfiltered (name, buf);
8231
8232 /* Template parameters may be specified in the DIE's DW_AT_name, or
8233 as children with DW_TAG_template_type_param or
8234 DW_TAG_value_type_param. If the latter, add them to the name
8235 here. If the name already has template parameters, then
8236 skip this step; some versions of GCC emit both, and
8237 it is more efficient to use the pre-computed name.
8238
8239 Something to keep in mind about this process: it is very
8240 unlikely, or in some cases downright impossible, to produce
8241 something that will match the mangled name of a function.
8242 If the definition of the function has the same debug info,
8243 we should be able to match up with it anyway. But fallbacks
8244 using the minimal symbol, for instance to find a method
8245 implemented in a stripped copy of libstdc++, will not work.
8246 If we do not have debug info for the definition, we will have to
8247 match them up some other way.
8248
8249 When we do name matching there is a related problem with function
8250 templates; two instantiated function templates are allowed to
8251 differ only by their return types, which we do not add here. */
8252
8253 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8254 {
8255 struct attribute *attr;
8256 struct die_info *child;
8257 int first = 1;
8258
8259 die->building_fullname = 1;
8260
8261 for (child = die->child; child != NULL; child = child->sibling)
8262 {
8263 struct type *type;
8264 LONGEST value;
8265 const gdb_byte *bytes;
8266 struct dwarf2_locexpr_baton *baton;
8267 struct value *v;
8268
8269 if (child->tag != DW_TAG_template_type_param
8270 && child->tag != DW_TAG_template_value_param)
8271 continue;
8272
8273 if (first)
8274 {
8275 fputs_unfiltered ("<", buf);
8276 first = 0;
8277 }
8278 else
8279 fputs_unfiltered (", ", buf);
8280
8281 attr = dwarf2_attr (child, DW_AT_type, cu);
8282 if (attr == NULL)
8283 {
8284 complaint (&symfile_complaints,
8285 _("template parameter missing DW_AT_type"));
8286 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8287 continue;
8288 }
8289 type = die_type (child, cu);
8290
8291 if (child->tag == DW_TAG_template_type_param)
8292 {
8293 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8294 continue;
8295 }
8296
8297 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8298 if (attr == NULL)
8299 {
8300 complaint (&symfile_complaints,
8301 _("template parameter missing "
8302 "DW_AT_const_value"));
8303 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8304 continue;
8305 }
8306
8307 dwarf2_const_value_attr (attr, type, name,
8308 &cu->comp_unit_obstack, cu,
8309 &value, &bytes, &baton);
8310
8311 if (TYPE_NOSIGN (type))
8312 /* GDB prints characters as NUMBER 'CHAR'. If that's
8313 changed, this can use value_print instead. */
8314 c_printchar (value, type, buf);
8315 else
8316 {
8317 struct value_print_options opts;
8318
8319 if (baton != NULL)
8320 v = dwarf2_evaluate_loc_desc (type, NULL,
8321 baton->data,
8322 baton->size,
8323 baton->per_cu);
8324 else if (bytes != NULL)
8325 {
8326 v = allocate_value (type);
8327 memcpy (value_contents_writeable (v), bytes,
8328 TYPE_LENGTH (type));
8329 }
8330 else
8331 v = value_from_longest (type, value);
8332
8333 /* Specify decimal so that we do not depend on
8334 the radix. */
8335 get_formatted_print_options (&opts, 'd');
8336 opts.raw = 1;
8337 value_print (v, buf, &opts);
8338 release_value (v);
8339 value_free (v);
8340 }
8341 }
8342
8343 die->building_fullname = 0;
8344
8345 if (!first)
8346 {
8347 /* Close the argument list, with a space if necessary
8348 (nested templates). */
8349 char last_char = '\0';
8350 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8351 if (last_char == '>')
8352 fputs_unfiltered (" >", buf);
8353 else
8354 fputs_unfiltered (">", buf);
8355 }
8356 }
8357
8358 /* For Java and C++ methods, append formal parameter type
8359 information, if PHYSNAME. */
8360
8361 if (physname && die->tag == DW_TAG_subprogram
8362 && (cu->language == language_cplus
8363 || cu->language == language_java))
8364 {
8365 struct type *type = read_type_die (die, cu);
8366
8367 c_type_print_args (type, buf, 1, cu->language,
8368 &type_print_raw_options);
8369
8370 if (cu->language == language_java)
8371 {
8372 /* For java, we must append the return type to method
8373 names. */
8374 if (die->tag == DW_TAG_subprogram)
8375 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8376 0, 0, &type_print_raw_options);
8377 }
8378 else if (cu->language == language_cplus)
8379 {
8380 /* Assume that an artificial first parameter is
8381 "this", but do not crash if it is not. RealView
8382 marks unnamed (and thus unused) parameters as
8383 artificial; there is no way to differentiate
8384 the two cases. */
8385 if (TYPE_NFIELDS (type) > 0
8386 && TYPE_FIELD_ARTIFICIAL (type, 0)
8387 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8388 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8389 0))))
8390 fputs_unfiltered (" const", buf);
8391 }
8392 }
8393
8394 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8395 &length);
8396 ui_file_delete (buf);
8397
8398 if (cu->language == language_cplus)
8399 {
8400 const char *cname
8401 = dwarf2_canonicalize_name (name, cu,
8402 &objfile->objfile_obstack);
8403
8404 if (cname != NULL)
8405 name = cname;
8406 }
8407 }
8408 }
8409
8410 return name;
8411 }
8412
8413 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8414 If scope qualifiers are appropriate they will be added. The result
8415 will be allocated on the objfile_obstack, or NULL if the DIE does
8416 not have a name. NAME may either be from a previous call to
8417 dwarf2_name or NULL.
8418
8419 The output string will be canonicalized (if C++/Java). */
8420
8421 static const char *
8422 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8423 {
8424 return dwarf2_compute_name (name, die, cu, 0);
8425 }
8426
8427 /* Construct a physname for the given DIE in CU. NAME may either be
8428 from a previous call to dwarf2_name or NULL. The result will be
8429 allocated on the objfile_objstack or NULL if the DIE does not have a
8430 name.
8431
8432 The output string will be canonicalized (if C++/Java). */
8433
8434 static const char *
8435 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8436 {
8437 struct objfile *objfile = cu->objfile;
8438 struct attribute *attr;
8439 const char *retval, *mangled = NULL, *canon = NULL;
8440 struct cleanup *back_to;
8441 int need_copy = 1;
8442
8443 /* In this case dwarf2_compute_name is just a shortcut not building anything
8444 on its own. */
8445 if (!die_needs_namespace (die, cu))
8446 return dwarf2_compute_name (name, die, cu, 1);
8447
8448 back_to = make_cleanup (null_cleanup, NULL);
8449
8450 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8451 if (!attr)
8452 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8453
8454 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8455 has computed. */
8456 if (attr && DW_STRING (attr))
8457 {
8458 char *demangled;
8459
8460 mangled = DW_STRING (attr);
8461
8462 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8463 type. It is easier for GDB users to search for such functions as
8464 `name(params)' than `long name(params)'. In such case the minimal
8465 symbol names do not match the full symbol names but for template
8466 functions there is never a need to look up their definition from their
8467 declaration so the only disadvantage remains the minimal symbol
8468 variant `long name(params)' does not have the proper inferior type.
8469 */
8470
8471 if (cu->language == language_go)
8472 {
8473 /* This is a lie, but we already lie to the caller new_symbol_full.
8474 new_symbol_full assumes we return the mangled name.
8475 This just undoes that lie until things are cleaned up. */
8476 demangled = NULL;
8477 }
8478 else
8479 {
8480 demangled = gdb_demangle (mangled,
8481 (DMGL_PARAMS | DMGL_ANSI
8482 | (cu->language == language_java
8483 ? DMGL_JAVA | DMGL_RET_POSTFIX
8484 : DMGL_RET_DROP)));
8485 }
8486 if (demangled)
8487 {
8488 make_cleanup (xfree, demangled);
8489 canon = demangled;
8490 }
8491 else
8492 {
8493 canon = mangled;
8494 need_copy = 0;
8495 }
8496 }
8497
8498 if (canon == NULL || check_physname)
8499 {
8500 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8501
8502 if (canon != NULL && strcmp (physname, canon) != 0)
8503 {
8504 /* It may not mean a bug in GDB. The compiler could also
8505 compute DW_AT_linkage_name incorrectly. But in such case
8506 GDB would need to be bug-to-bug compatible. */
8507
8508 complaint (&symfile_complaints,
8509 _("Computed physname <%s> does not match demangled <%s> "
8510 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8511 physname, canon, mangled, die->offset.sect_off,
8512 objfile_name (objfile));
8513
8514 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8515 is available here - over computed PHYSNAME. It is safer
8516 against both buggy GDB and buggy compilers. */
8517
8518 retval = canon;
8519 }
8520 else
8521 {
8522 retval = physname;
8523 need_copy = 0;
8524 }
8525 }
8526 else
8527 retval = canon;
8528
8529 if (need_copy)
8530 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8531
8532 do_cleanups (back_to);
8533 return retval;
8534 }
8535
8536 /* Inspect DIE in CU for a namespace alias. If one exists, record
8537 a new symbol for it.
8538
8539 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8540
8541 static int
8542 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8543 {
8544 struct attribute *attr;
8545
8546 /* If the die does not have a name, this is not a namespace
8547 alias. */
8548 attr = dwarf2_attr (die, DW_AT_name, cu);
8549 if (attr != NULL)
8550 {
8551 int num;
8552 struct die_info *d = die;
8553 struct dwarf2_cu *imported_cu = cu;
8554
8555 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8556 keep inspecting DIEs until we hit the underlying import. */
8557 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8558 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8559 {
8560 attr = dwarf2_attr (d, DW_AT_import, cu);
8561 if (attr == NULL)
8562 break;
8563
8564 d = follow_die_ref (d, attr, &imported_cu);
8565 if (d->tag != DW_TAG_imported_declaration)
8566 break;
8567 }
8568
8569 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8570 {
8571 complaint (&symfile_complaints,
8572 _("DIE at 0x%x has too many recursively imported "
8573 "declarations"), d->offset.sect_off);
8574 return 0;
8575 }
8576
8577 if (attr != NULL)
8578 {
8579 struct type *type;
8580 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8581
8582 type = get_die_type_at_offset (offset, cu->per_cu);
8583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8584 {
8585 /* This declaration is a global namespace alias. Add
8586 a symbol for it whose type is the aliased namespace. */
8587 new_symbol (die, type, cu);
8588 return 1;
8589 }
8590 }
8591 }
8592
8593 return 0;
8594 }
8595
8596 /* Read the import statement specified by the given die and record it. */
8597
8598 static void
8599 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8600 {
8601 struct objfile *objfile = cu->objfile;
8602 struct attribute *import_attr;
8603 struct die_info *imported_die, *child_die;
8604 struct dwarf2_cu *imported_cu;
8605 const char *imported_name;
8606 const char *imported_name_prefix;
8607 const char *canonical_name;
8608 const char *import_alias;
8609 const char *imported_declaration = NULL;
8610 const char *import_prefix;
8611 VEC (const_char_ptr) *excludes = NULL;
8612 struct cleanup *cleanups;
8613
8614 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8615 if (import_attr == NULL)
8616 {
8617 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8618 dwarf_tag_name (die->tag));
8619 return;
8620 }
8621
8622 imported_cu = cu;
8623 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8624 imported_name = dwarf2_name (imported_die, imported_cu);
8625 if (imported_name == NULL)
8626 {
8627 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8628
8629 The import in the following code:
8630 namespace A
8631 {
8632 typedef int B;
8633 }
8634
8635 int main ()
8636 {
8637 using A::B;
8638 B b;
8639 return b;
8640 }
8641
8642 ...
8643 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8644 <52> DW_AT_decl_file : 1
8645 <53> DW_AT_decl_line : 6
8646 <54> DW_AT_import : <0x75>
8647 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8648 <59> DW_AT_name : B
8649 <5b> DW_AT_decl_file : 1
8650 <5c> DW_AT_decl_line : 2
8651 <5d> DW_AT_type : <0x6e>
8652 ...
8653 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8654 <76> DW_AT_byte_size : 4
8655 <77> DW_AT_encoding : 5 (signed)
8656
8657 imports the wrong die ( 0x75 instead of 0x58 ).
8658 This case will be ignored until the gcc bug is fixed. */
8659 return;
8660 }
8661
8662 /* Figure out the local name after import. */
8663 import_alias = dwarf2_name (die, cu);
8664
8665 /* Figure out where the statement is being imported to. */
8666 import_prefix = determine_prefix (die, cu);
8667
8668 /* Figure out what the scope of the imported die is and prepend it
8669 to the name of the imported die. */
8670 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8671
8672 if (imported_die->tag != DW_TAG_namespace
8673 && imported_die->tag != DW_TAG_module)
8674 {
8675 imported_declaration = imported_name;
8676 canonical_name = imported_name_prefix;
8677 }
8678 else if (strlen (imported_name_prefix) > 0)
8679 canonical_name = obconcat (&objfile->objfile_obstack,
8680 imported_name_prefix, "::", imported_name,
8681 (char *) NULL);
8682 else
8683 canonical_name = imported_name;
8684
8685 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8686
8687 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8688 for (child_die = die->child; child_die && child_die->tag;
8689 child_die = sibling_die (child_die))
8690 {
8691 /* DWARF-4: A Fortran use statement with a “rename list” may be
8692 represented by an imported module entry with an import attribute
8693 referring to the module and owned entries corresponding to those
8694 entities that are renamed as part of being imported. */
8695
8696 if (child_die->tag != DW_TAG_imported_declaration)
8697 {
8698 complaint (&symfile_complaints,
8699 _("child DW_TAG_imported_declaration expected "
8700 "- DIE at 0x%x [in module %s]"),
8701 child_die->offset.sect_off, objfile_name (objfile));
8702 continue;
8703 }
8704
8705 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8706 if (import_attr == NULL)
8707 {
8708 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8709 dwarf_tag_name (child_die->tag));
8710 continue;
8711 }
8712
8713 imported_cu = cu;
8714 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8715 &imported_cu);
8716 imported_name = dwarf2_name (imported_die, imported_cu);
8717 if (imported_name == NULL)
8718 {
8719 complaint (&symfile_complaints,
8720 _("child DW_TAG_imported_declaration has unknown "
8721 "imported name - DIE at 0x%x [in module %s]"),
8722 child_die->offset.sect_off, objfile_name (objfile));
8723 continue;
8724 }
8725
8726 VEC_safe_push (const_char_ptr, excludes, imported_name);
8727
8728 process_die (child_die, cu);
8729 }
8730
8731 cp_add_using_directive (import_prefix,
8732 canonical_name,
8733 import_alias,
8734 imported_declaration,
8735 excludes,
8736 0,
8737 &objfile->objfile_obstack);
8738
8739 do_cleanups (cleanups);
8740 }
8741
8742 /* Cleanup function for handle_DW_AT_stmt_list. */
8743
8744 static void
8745 free_cu_line_header (void *arg)
8746 {
8747 struct dwarf2_cu *cu = arg;
8748
8749 free_line_header (cu->line_header);
8750 cu->line_header = NULL;
8751 }
8752
8753 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8754 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8755 this, it was first present in GCC release 4.3.0. */
8756
8757 static int
8758 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8759 {
8760 if (!cu->checked_producer)
8761 check_producer (cu);
8762
8763 return cu->producer_is_gcc_lt_4_3;
8764 }
8765
8766 static void
8767 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8768 const char **name, const char **comp_dir)
8769 {
8770 struct attribute *attr;
8771
8772 *name = NULL;
8773 *comp_dir = NULL;
8774
8775 /* Find the filename. Do not use dwarf2_name here, since the filename
8776 is not a source language identifier. */
8777 attr = dwarf2_attr (die, DW_AT_name, cu);
8778 if (attr)
8779 {
8780 *name = DW_STRING (attr);
8781 }
8782
8783 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8784 if (attr)
8785 *comp_dir = DW_STRING (attr);
8786 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8787 && IS_ABSOLUTE_PATH (*name))
8788 {
8789 char *d = ldirname (*name);
8790
8791 *comp_dir = d;
8792 if (d != NULL)
8793 make_cleanup (xfree, d);
8794 }
8795 if (*comp_dir != NULL)
8796 {
8797 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8798 directory, get rid of it. */
8799 char *cp = strchr (*comp_dir, ':');
8800
8801 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8802 *comp_dir = cp + 1;
8803 }
8804
8805 if (*name == NULL)
8806 *name = "<unknown>";
8807 }
8808
8809 /* Handle DW_AT_stmt_list for a compilation unit.
8810 DIE is the DW_TAG_compile_unit die for CU.
8811 COMP_DIR is the compilation directory.
8812 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8813
8814 static void
8815 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8816 const char *comp_dir) /* ARI: editCase function */
8817 {
8818 struct attribute *attr;
8819
8820 gdb_assert (! cu->per_cu->is_debug_types);
8821
8822 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8823 if (attr)
8824 {
8825 unsigned int line_offset = DW_UNSND (attr);
8826 struct line_header *line_header
8827 = dwarf_decode_line_header (line_offset, cu);
8828
8829 if (line_header)
8830 {
8831 cu->line_header = line_header;
8832 make_cleanup (free_cu_line_header, cu);
8833 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8834 }
8835 }
8836 }
8837
8838 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8839
8840 static void
8841 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8842 {
8843 struct objfile *objfile = dwarf2_per_objfile->objfile;
8844 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8845 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8846 CORE_ADDR highpc = ((CORE_ADDR) 0);
8847 struct attribute *attr;
8848 const char *name = NULL;
8849 const char *comp_dir = NULL;
8850 struct die_info *child_die;
8851 bfd *abfd = objfile->obfd;
8852 CORE_ADDR baseaddr;
8853
8854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8855
8856 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8857
8858 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8859 from finish_block. */
8860 if (lowpc == ((CORE_ADDR) -1))
8861 lowpc = highpc;
8862 lowpc += baseaddr;
8863 highpc += baseaddr;
8864
8865 find_file_and_directory (die, cu, &name, &comp_dir);
8866
8867 prepare_one_comp_unit (cu, die, cu->language);
8868
8869 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8870 standardised yet. As a workaround for the language detection we fall
8871 back to the DW_AT_producer string. */
8872 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8873 cu->language = language_opencl;
8874
8875 /* Similar hack for Go. */
8876 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8877 set_cu_language (DW_LANG_Go, cu);
8878
8879 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8880
8881 /* Decode line number information if present. We do this before
8882 processing child DIEs, so that the line header table is available
8883 for DW_AT_decl_file. */
8884 handle_DW_AT_stmt_list (die, cu, comp_dir);
8885
8886 /* Process all dies in compilation unit. */
8887 if (die->child != NULL)
8888 {
8889 child_die = die->child;
8890 while (child_die && child_die->tag)
8891 {
8892 process_die (child_die, cu);
8893 child_die = sibling_die (child_die);
8894 }
8895 }
8896
8897 /* Decode macro information, if present. Dwarf 2 macro information
8898 refers to information in the line number info statement program
8899 header, so we can only read it if we've read the header
8900 successfully. */
8901 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8902 if (attr && cu->line_header)
8903 {
8904 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8905 complaint (&symfile_complaints,
8906 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8907
8908 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8909 }
8910 else
8911 {
8912 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8913 if (attr && cu->line_header)
8914 {
8915 unsigned int macro_offset = DW_UNSND (attr);
8916
8917 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8918 }
8919 }
8920
8921 do_cleanups (back_to);
8922 }
8923
8924 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8925 Create the set of symtabs used by this TU, or if this TU is sharing
8926 symtabs with another TU and the symtabs have already been created
8927 then restore those symtabs in the line header.
8928 We don't need the pc/line-number mapping for type units. */
8929
8930 static void
8931 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8932 {
8933 struct objfile *objfile = dwarf2_per_objfile->objfile;
8934 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8935 struct type_unit_group *tu_group;
8936 int first_time;
8937 struct line_header *lh;
8938 struct attribute *attr;
8939 unsigned int i, line_offset;
8940 struct signatured_type *sig_type;
8941
8942 gdb_assert (per_cu->is_debug_types);
8943 sig_type = (struct signatured_type *) per_cu;
8944
8945 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8946
8947 /* If we're using .gdb_index (includes -readnow) then
8948 per_cu->type_unit_group may not have been set up yet. */
8949 if (sig_type->type_unit_group == NULL)
8950 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8951 tu_group = sig_type->type_unit_group;
8952
8953 /* If we've already processed this stmt_list there's no real need to
8954 do it again, we could fake it and just recreate the part we need
8955 (file name,index -> symtab mapping). If data shows this optimization
8956 is useful we can do it then. */
8957 first_time = tu_group->primary_symtab == NULL;
8958
8959 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8960 debug info. */
8961 lh = NULL;
8962 if (attr != NULL)
8963 {
8964 line_offset = DW_UNSND (attr);
8965 lh = dwarf_decode_line_header (line_offset, cu);
8966 }
8967 if (lh == NULL)
8968 {
8969 if (first_time)
8970 dwarf2_start_symtab (cu, "", NULL, 0);
8971 else
8972 {
8973 gdb_assert (tu_group->symtabs == NULL);
8974 restart_symtab (0);
8975 }
8976 /* Note: The primary symtab will get allocated at the end. */
8977 return;
8978 }
8979
8980 cu->line_header = lh;
8981 make_cleanup (free_cu_line_header, cu);
8982
8983 if (first_time)
8984 {
8985 dwarf2_start_symtab (cu, "", NULL, 0);
8986
8987 tu_group->num_symtabs = lh->num_file_names;
8988 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8989
8990 for (i = 0; i < lh->num_file_names; ++i)
8991 {
8992 const char *dir = NULL;
8993 struct file_entry *fe = &lh->file_names[i];
8994
8995 if (fe->dir_index)
8996 dir = lh->include_dirs[fe->dir_index - 1];
8997 dwarf2_start_subfile (fe->name, dir, NULL);
8998
8999 /* Note: We don't have to watch for the main subfile here, type units
9000 don't have DW_AT_name. */
9001
9002 if (current_subfile->symtab == NULL)
9003 {
9004 /* NOTE: start_subfile will recognize when it's been passed
9005 a file it has already seen. So we can't assume there's a
9006 simple mapping from lh->file_names to subfiles,
9007 lh->file_names may contain dups. */
9008 current_subfile->symtab = allocate_symtab (current_subfile->name,
9009 objfile);
9010 }
9011
9012 fe->symtab = current_subfile->symtab;
9013 tu_group->symtabs[i] = fe->symtab;
9014 }
9015 }
9016 else
9017 {
9018 restart_symtab (0);
9019
9020 for (i = 0; i < lh->num_file_names; ++i)
9021 {
9022 struct file_entry *fe = &lh->file_names[i];
9023
9024 fe->symtab = tu_group->symtabs[i];
9025 }
9026 }
9027
9028 /* The main symtab is allocated last. Type units don't have DW_AT_name
9029 so they don't have a "real" (so to speak) symtab anyway.
9030 There is later code that will assign the main symtab to all symbols
9031 that don't have one. We need to handle the case of a symbol with a
9032 missing symtab (DW_AT_decl_file) anyway. */
9033 }
9034
9035 /* Process DW_TAG_type_unit.
9036 For TUs we want to skip the first top level sibling if it's not the
9037 actual type being defined by this TU. In this case the first top
9038 level sibling is there to provide context only. */
9039
9040 static void
9041 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9042 {
9043 struct die_info *child_die;
9044
9045 prepare_one_comp_unit (cu, die, language_minimal);
9046
9047 /* Initialize (or reinitialize) the machinery for building symtabs.
9048 We do this before processing child DIEs, so that the line header table
9049 is available for DW_AT_decl_file. */
9050 setup_type_unit_groups (die, cu);
9051
9052 if (die->child != NULL)
9053 {
9054 child_die = die->child;
9055 while (child_die && child_die->tag)
9056 {
9057 process_die (child_die, cu);
9058 child_die = sibling_die (child_die);
9059 }
9060 }
9061 }
9062 \f
9063 /* DWO/DWP files.
9064
9065 http://gcc.gnu.org/wiki/DebugFission
9066 http://gcc.gnu.org/wiki/DebugFissionDWP
9067
9068 To simplify handling of both DWO files ("object" files with the DWARF info)
9069 and DWP files (a file with the DWOs packaged up into one file), we treat
9070 DWP files as having a collection of virtual DWO files. */
9071
9072 static hashval_t
9073 hash_dwo_file (const void *item)
9074 {
9075 const struct dwo_file *dwo_file = item;
9076 hashval_t hash;
9077
9078 hash = htab_hash_string (dwo_file->dwo_name);
9079 if (dwo_file->comp_dir != NULL)
9080 hash += htab_hash_string (dwo_file->comp_dir);
9081 return hash;
9082 }
9083
9084 static int
9085 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9086 {
9087 const struct dwo_file *lhs = item_lhs;
9088 const struct dwo_file *rhs = item_rhs;
9089
9090 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9091 return 0;
9092 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9093 return lhs->comp_dir == rhs->comp_dir;
9094 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9095 }
9096
9097 /* Allocate a hash table for DWO files. */
9098
9099 static htab_t
9100 allocate_dwo_file_hash_table (void)
9101 {
9102 struct objfile *objfile = dwarf2_per_objfile->objfile;
9103
9104 return htab_create_alloc_ex (41,
9105 hash_dwo_file,
9106 eq_dwo_file,
9107 NULL,
9108 &objfile->objfile_obstack,
9109 hashtab_obstack_allocate,
9110 dummy_obstack_deallocate);
9111 }
9112
9113 /* Lookup DWO file DWO_NAME. */
9114
9115 static void **
9116 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9117 {
9118 struct dwo_file find_entry;
9119 void **slot;
9120
9121 if (dwarf2_per_objfile->dwo_files == NULL)
9122 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9123
9124 memset (&find_entry, 0, sizeof (find_entry));
9125 find_entry.dwo_name = dwo_name;
9126 find_entry.comp_dir = comp_dir;
9127 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9128
9129 return slot;
9130 }
9131
9132 static hashval_t
9133 hash_dwo_unit (const void *item)
9134 {
9135 const struct dwo_unit *dwo_unit = item;
9136
9137 /* This drops the top 32 bits of the id, but is ok for a hash. */
9138 return dwo_unit->signature;
9139 }
9140
9141 static int
9142 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9143 {
9144 const struct dwo_unit *lhs = item_lhs;
9145 const struct dwo_unit *rhs = item_rhs;
9146
9147 /* The signature is assumed to be unique within the DWO file.
9148 So while object file CU dwo_id's always have the value zero,
9149 that's OK, assuming each object file DWO file has only one CU,
9150 and that's the rule for now. */
9151 return lhs->signature == rhs->signature;
9152 }
9153
9154 /* Allocate a hash table for DWO CUs,TUs.
9155 There is one of these tables for each of CUs,TUs for each DWO file. */
9156
9157 static htab_t
9158 allocate_dwo_unit_table (struct objfile *objfile)
9159 {
9160 /* Start out with a pretty small number.
9161 Generally DWO files contain only one CU and maybe some TUs. */
9162 return htab_create_alloc_ex (3,
9163 hash_dwo_unit,
9164 eq_dwo_unit,
9165 NULL,
9166 &objfile->objfile_obstack,
9167 hashtab_obstack_allocate,
9168 dummy_obstack_deallocate);
9169 }
9170
9171 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9172
9173 struct create_dwo_cu_data
9174 {
9175 struct dwo_file *dwo_file;
9176 struct dwo_unit dwo_unit;
9177 };
9178
9179 /* die_reader_func for create_dwo_cu. */
9180
9181 static void
9182 create_dwo_cu_reader (const struct die_reader_specs *reader,
9183 const gdb_byte *info_ptr,
9184 struct die_info *comp_unit_die,
9185 int has_children,
9186 void *datap)
9187 {
9188 struct dwarf2_cu *cu = reader->cu;
9189 struct objfile *objfile = dwarf2_per_objfile->objfile;
9190 sect_offset offset = cu->per_cu->offset;
9191 struct dwarf2_section_info *section = cu->per_cu->section;
9192 struct create_dwo_cu_data *data = datap;
9193 struct dwo_file *dwo_file = data->dwo_file;
9194 struct dwo_unit *dwo_unit = &data->dwo_unit;
9195 struct attribute *attr;
9196
9197 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9198 if (attr == NULL)
9199 {
9200 complaint (&symfile_complaints,
9201 _("Dwarf Error: debug entry at offset 0x%x is missing"
9202 " its dwo_id [in module %s]"),
9203 offset.sect_off, dwo_file->dwo_name);
9204 return;
9205 }
9206
9207 dwo_unit->dwo_file = dwo_file;
9208 dwo_unit->signature = DW_UNSND (attr);
9209 dwo_unit->section = section;
9210 dwo_unit->offset = offset;
9211 dwo_unit->length = cu->per_cu->length;
9212
9213 if (dwarf2_read_debug)
9214 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9215 offset.sect_off, hex_string (dwo_unit->signature));
9216 }
9217
9218 /* Create the dwo_unit for the lone CU in DWO_FILE.
9219 Note: This function processes DWO files only, not DWP files. */
9220
9221 static struct dwo_unit *
9222 create_dwo_cu (struct dwo_file *dwo_file)
9223 {
9224 struct objfile *objfile = dwarf2_per_objfile->objfile;
9225 struct dwarf2_section_info *section = &dwo_file->sections.info;
9226 bfd *abfd;
9227 htab_t cu_htab;
9228 const gdb_byte *info_ptr, *end_ptr;
9229 struct create_dwo_cu_data create_dwo_cu_data;
9230 struct dwo_unit *dwo_unit;
9231
9232 dwarf2_read_section (objfile, section);
9233 info_ptr = section->buffer;
9234
9235 if (info_ptr == NULL)
9236 return NULL;
9237
9238 /* We can't set abfd until now because the section may be empty or
9239 not present, in which case section->asection will be NULL. */
9240 abfd = get_section_bfd_owner (section);
9241
9242 if (dwarf2_read_debug)
9243 {
9244 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9245 get_section_name (section),
9246 get_section_file_name (section));
9247 }
9248
9249 create_dwo_cu_data.dwo_file = dwo_file;
9250 dwo_unit = NULL;
9251
9252 end_ptr = info_ptr + section->size;
9253 while (info_ptr < end_ptr)
9254 {
9255 struct dwarf2_per_cu_data per_cu;
9256
9257 memset (&create_dwo_cu_data.dwo_unit, 0,
9258 sizeof (create_dwo_cu_data.dwo_unit));
9259 memset (&per_cu, 0, sizeof (per_cu));
9260 per_cu.objfile = objfile;
9261 per_cu.is_debug_types = 0;
9262 per_cu.offset.sect_off = info_ptr - section->buffer;
9263 per_cu.section = section;
9264
9265 init_cutu_and_read_dies_no_follow (&per_cu,
9266 &dwo_file->sections.abbrev,
9267 dwo_file,
9268 create_dwo_cu_reader,
9269 &create_dwo_cu_data);
9270
9271 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9272 {
9273 /* If we've already found one, complain. We only support one
9274 because having more than one requires hacking the dwo_name of
9275 each to match, which is highly unlikely to happen. */
9276 if (dwo_unit != NULL)
9277 {
9278 complaint (&symfile_complaints,
9279 _("Multiple CUs in DWO file %s [in module %s]"),
9280 dwo_file->dwo_name, objfile_name (objfile));
9281 break;
9282 }
9283
9284 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9285 *dwo_unit = create_dwo_cu_data.dwo_unit;
9286 }
9287
9288 info_ptr += per_cu.length;
9289 }
9290
9291 return dwo_unit;
9292 }
9293
9294 /* DWP file .debug_{cu,tu}_index section format:
9295 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9296
9297 DWP Version 1:
9298
9299 Both index sections have the same format, and serve to map a 64-bit
9300 signature to a set of section numbers. Each section begins with a header,
9301 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9302 indexes, and a pool of 32-bit section numbers. The index sections will be
9303 aligned at 8-byte boundaries in the file.
9304
9305 The index section header consists of:
9306
9307 V, 32 bit version number
9308 -, 32 bits unused
9309 N, 32 bit number of compilation units or type units in the index
9310 M, 32 bit number of slots in the hash table
9311
9312 Numbers are recorded using the byte order of the application binary.
9313
9314 The hash table begins at offset 16 in the section, and consists of an array
9315 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9316 order of the application binary). Unused slots in the hash table are 0.
9317 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9318
9319 The parallel table begins immediately after the hash table
9320 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9321 array of 32-bit indexes (using the byte order of the application binary),
9322 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9323 table contains a 32-bit index into the pool of section numbers. For unused
9324 hash table slots, the corresponding entry in the parallel table will be 0.
9325
9326 The pool of section numbers begins immediately following the hash table
9327 (at offset 16 + 12 * M from the beginning of the section). The pool of
9328 section numbers consists of an array of 32-bit words (using the byte order
9329 of the application binary). Each item in the array is indexed starting
9330 from 0. The hash table entry provides the index of the first section
9331 number in the set. Additional section numbers in the set follow, and the
9332 set is terminated by a 0 entry (section number 0 is not used in ELF).
9333
9334 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9335 section must be the first entry in the set, and the .debug_abbrev.dwo must
9336 be the second entry. Other members of the set may follow in any order.
9337
9338 ---
9339
9340 DWP Version 2:
9341
9342 DWP Version 2 combines all the .debug_info, etc. sections into one,
9343 and the entries in the index tables are now offsets into these sections.
9344 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9345 section.
9346
9347 Index Section Contents:
9348 Header
9349 Hash Table of Signatures dwp_hash_table.hash_table
9350 Parallel Table of Indices dwp_hash_table.unit_table
9351 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9352 Table of Section Sizes dwp_hash_table.v2.sizes
9353
9354 The index section header consists of:
9355
9356 V, 32 bit version number
9357 L, 32 bit number of columns in the table of section offsets
9358 N, 32 bit number of compilation units or type units in the index
9359 M, 32 bit number of slots in the hash table
9360
9361 Numbers are recorded using the byte order of the application binary.
9362
9363 The hash table has the same format as version 1.
9364 The parallel table of indices has the same format as version 1,
9365 except that the entries are origin-1 indices into the table of sections
9366 offsets and the table of section sizes.
9367
9368 The table of offsets begins immediately following the parallel table
9369 (at offset 16 + 12 * M from the beginning of the section). The table is
9370 a two-dimensional array of 32-bit words (using the byte order of the
9371 application binary), with L columns and N+1 rows, in row-major order.
9372 Each row in the array is indexed starting from 0. The first row provides
9373 a key to the remaining rows: each column in this row provides an identifier
9374 for a debug section, and the offsets in the same column of subsequent rows
9375 refer to that section. The section identifiers are:
9376
9377 DW_SECT_INFO 1 .debug_info.dwo
9378 DW_SECT_TYPES 2 .debug_types.dwo
9379 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9380 DW_SECT_LINE 4 .debug_line.dwo
9381 DW_SECT_LOC 5 .debug_loc.dwo
9382 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9383 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9384 DW_SECT_MACRO 8 .debug_macro.dwo
9385
9386 The offsets provided by the CU and TU index sections are the base offsets
9387 for the contributions made by each CU or TU to the corresponding section
9388 in the package file. Each CU and TU header contains an abbrev_offset
9389 field, used to find the abbreviations table for that CU or TU within the
9390 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9391 be interpreted as relative to the base offset given in the index section.
9392 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9393 should be interpreted as relative to the base offset for .debug_line.dwo,
9394 and offsets into other debug sections obtained from DWARF attributes should
9395 also be interpreted as relative to the corresponding base offset.
9396
9397 The table of sizes begins immediately following the table of offsets.
9398 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9399 with L columns and N rows, in row-major order. Each row in the array is
9400 indexed starting from 1 (row 0 is shared by the two tables).
9401
9402 ---
9403
9404 Hash table lookup is handled the same in version 1 and 2:
9405
9406 We assume that N and M will not exceed 2^32 - 1.
9407 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9408
9409 Given a 64-bit compilation unit signature or a type signature S, an entry
9410 in the hash table is located as follows:
9411
9412 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9413 the low-order k bits all set to 1.
9414
9415 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9416
9417 3) If the hash table entry at index H matches the signature, use that
9418 entry. If the hash table entry at index H is unused (all zeroes),
9419 terminate the search: the signature is not present in the table.
9420
9421 4) Let H = (H + H') modulo M. Repeat at Step 3.
9422
9423 Because M > N and H' and M are relatively prime, the search is guaranteed
9424 to stop at an unused slot or find the match. */
9425
9426 /* Create a hash table to map DWO IDs to their CU/TU entry in
9427 .debug_{info,types}.dwo in DWP_FILE.
9428 Returns NULL if there isn't one.
9429 Note: This function processes DWP files only, not DWO files. */
9430
9431 static struct dwp_hash_table *
9432 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9433 {
9434 struct objfile *objfile = dwarf2_per_objfile->objfile;
9435 bfd *dbfd = dwp_file->dbfd;
9436 const gdb_byte *index_ptr, *index_end;
9437 struct dwarf2_section_info *index;
9438 uint32_t version, nr_columns, nr_units, nr_slots;
9439 struct dwp_hash_table *htab;
9440
9441 if (is_debug_types)
9442 index = &dwp_file->sections.tu_index;
9443 else
9444 index = &dwp_file->sections.cu_index;
9445
9446 if (dwarf2_section_empty_p (index))
9447 return NULL;
9448 dwarf2_read_section (objfile, index);
9449
9450 index_ptr = index->buffer;
9451 index_end = index_ptr + index->size;
9452
9453 version = read_4_bytes (dbfd, index_ptr);
9454 index_ptr += 4;
9455 if (version == 2)
9456 nr_columns = read_4_bytes (dbfd, index_ptr);
9457 else
9458 nr_columns = 0;
9459 index_ptr += 4;
9460 nr_units = read_4_bytes (dbfd, index_ptr);
9461 index_ptr += 4;
9462 nr_slots = read_4_bytes (dbfd, index_ptr);
9463 index_ptr += 4;
9464
9465 if (version != 1 && version != 2)
9466 {
9467 error (_("Dwarf Error: unsupported DWP file version (%s)"
9468 " [in module %s]"),
9469 pulongest (version), dwp_file->name);
9470 }
9471 if (nr_slots != (nr_slots & -nr_slots))
9472 {
9473 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9474 " is not power of 2 [in module %s]"),
9475 pulongest (nr_slots), dwp_file->name);
9476 }
9477
9478 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9479 htab->version = version;
9480 htab->nr_columns = nr_columns;
9481 htab->nr_units = nr_units;
9482 htab->nr_slots = nr_slots;
9483 htab->hash_table = index_ptr;
9484 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9485
9486 /* Exit early if the table is empty. */
9487 if (nr_slots == 0 || nr_units == 0
9488 || (version == 2 && nr_columns == 0))
9489 {
9490 /* All must be zero. */
9491 if (nr_slots != 0 || nr_units != 0
9492 || (version == 2 && nr_columns != 0))
9493 {
9494 complaint (&symfile_complaints,
9495 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9496 " all zero [in modules %s]"),
9497 dwp_file->name);
9498 }
9499 return htab;
9500 }
9501
9502 if (version == 1)
9503 {
9504 htab->section_pool.v1.indices =
9505 htab->unit_table + sizeof (uint32_t) * nr_slots;
9506 /* It's harder to decide whether the section is too small in v1.
9507 V1 is deprecated anyway so we punt. */
9508 }
9509 else
9510 {
9511 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9512 int *ids = htab->section_pool.v2.section_ids;
9513 /* Reverse map for error checking. */
9514 int ids_seen[DW_SECT_MAX + 1];
9515 int i;
9516
9517 if (nr_columns < 2)
9518 {
9519 error (_("Dwarf Error: bad DWP hash table, too few columns"
9520 " in section table [in module %s]"),
9521 dwp_file->name);
9522 }
9523 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9524 {
9525 error (_("Dwarf Error: bad DWP hash table, too many columns"
9526 " in section table [in module %s]"),
9527 dwp_file->name);
9528 }
9529 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9530 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9531 for (i = 0; i < nr_columns; ++i)
9532 {
9533 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9534
9535 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9536 {
9537 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9538 " in section table [in module %s]"),
9539 id, dwp_file->name);
9540 }
9541 if (ids_seen[id] != -1)
9542 {
9543 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9544 " id %d in section table [in module %s]"),
9545 id, dwp_file->name);
9546 }
9547 ids_seen[id] = i;
9548 ids[i] = id;
9549 }
9550 /* Must have exactly one info or types section. */
9551 if (((ids_seen[DW_SECT_INFO] != -1)
9552 + (ids_seen[DW_SECT_TYPES] != -1))
9553 != 1)
9554 {
9555 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9556 " DWO info/types section [in module %s]"),
9557 dwp_file->name);
9558 }
9559 /* Must have an abbrev section. */
9560 if (ids_seen[DW_SECT_ABBREV] == -1)
9561 {
9562 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9563 " section [in module %s]"),
9564 dwp_file->name);
9565 }
9566 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9567 htab->section_pool.v2.sizes =
9568 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9569 * nr_units * nr_columns);
9570 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9571 * nr_units * nr_columns))
9572 > index_end)
9573 {
9574 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9575 " [in module %s]"),
9576 dwp_file->name);
9577 }
9578 }
9579
9580 return htab;
9581 }
9582
9583 /* Update SECTIONS with the data from SECTP.
9584
9585 This function is like the other "locate" section routines that are
9586 passed to bfd_map_over_sections, but in this context the sections to
9587 read comes from the DWP V1 hash table, not the full ELF section table.
9588
9589 The result is non-zero for success, or zero if an error was found. */
9590
9591 static int
9592 locate_v1_virtual_dwo_sections (asection *sectp,
9593 struct virtual_v1_dwo_sections *sections)
9594 {
9595 const struct dwop_section_names *names = &dwop_section_names;
9596
9597 if (section_is_p (sectp->name, &names->abbrev_dwo))
9598 {
9599 /* There can be only one. */
9600 if (sections->abbrev.s.asection != NULL)
9601 return 0;
9602 sections->abbrev.s.asection = sectp;
9603 sections->abbrev.size = bfd_get_section_size (sectp);
9604 }
9605 else if (section_is_p (sectp->name, &names->info_dwo)
9606 || section_is_p (sectp->name, &names->types_dwo))
9607 {
9608 /* There can be only one. */
9609 if (sections->info_or_types.s.asection != NULL)
9610 return 0;
9611 sections->info_or_types.s.asection = sectp;
9612 sections->info_or_types.size = bfd_get_section_size (sectp);
9613 }
9614 else if (section_is_p (sectp->name, &names->line_dwo))
9615 {
9616 /* There can be only one. */
9617 if (sections->line.s.asection != NULL)
9618 return 0;
9619 sections->line.s.asection = sectp;
9620 sections->line.size = bfd_get_section_size (sectp);
9621 }
9622 else if (section_is_p (sectp->name, &names->loc_dwo))
9623 {
9624 /* There can be only one. */
9625 if (sections->loc.s.asection != NULL)
9626 return 0;
9627 sections->loc.s.asection = sectp;
9628 sections->loc.size = bfd_get_section_size (sectp);
9629 }
9630 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9631 {
9632 /* There can be only one. */
9633 if (sections->macinfo.s.asection != NULL)
9634 return 0;
9635 sections->macinfo.s.asection = sectp;
9636 sections->macinfo.size = bfd_get_section_size (sectp);
9637 }
9638 else if (section_is_p (sectp->name, &names->macro_dwo))
9639 {
9640 /* There can be only one. */
9641 if (sections->macro.s.asection != NULL)
9642 return 0;
9643 sections->macro.s.asection = sectp;
9644 sections->macro.size = bfd_get_section_size (sectp);
9645 }
9646 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9647 {
9648 /* There can be only one. */
9649 if (sections->str_offsets.s.asection != NULL)
9650 return 0;
9651 sections->str_offsets.s.asection = sectp;
9652 sections->str_offsets.size = bfd_get_section_size (sectp);
9653 }
9654 else
9655 {
9656 /* No other kind of section is valid. */
9657 return 0;
9658 }
9659
9660 return 1;
9661 }
9662
9663 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9664 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9665 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9666 This is for DWP version 1 files. */
9667
9668 static struct dwo_unit *
9669 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9670 uint32_t unit_index,
9671 const char *comp_dir,
9672 ULONGEST signature, int is_debug_types)
9673 {
9674 struct objfile *objfile = dwarf2_per_objfile->objfile;
9675 const struct dwp_hash_table *dwp_htab =
9676 is_debug_types ? dwp_file->tus : dwp_file->cus;
9677 bfd *dbfd = dwp_file->dbfd;
9678 const char *kind = is_debug_types ? "TU" : "CU";
9679 struct dwo_file *dwo_file;
9680 struct dwo_unit *dwo_unit;
9681 struct virtual_v1_dwo_sections sections;
9682 void **dwo_file_slot;
9683 char *virtual_dwo_name;
9684 struct dwarf2_section_info *cutu;
9685 struct cleanup *cleanups;
9686 int i;
9687
9688 gdb_assert (dwp_file->version == 1);
9689
9690 if (dwarf2_read_debug)
9691 {
9692 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9693 kind,
9694 pulongest (unit_index), hex_string (signature),
9695 dwp_file->name);
9696 }
9697
9698 /* Fetch the sections of this DWO unit.
9699 Put a limit on the number of sections we look for so that bad data
9700 doesn't cause us to loop forever. */
9701
9702 #define MAX_NR_V1_DWO_SECTIONS \
9703 (1 /* .debug_info or .debug_types */ \
9704 + 1 /* .debug_abbrev */ \
9705 + 1 /* .debug_line */ \
9706 + 1 /* .debug_loc */ \
9707 + 1 /* .debug_str_offsets */ \
9708 + 1 /* .debug_macro or .debug_macinfo */ \
9709 + 1 /* trailing zero */)
9710
9711 memset (&sections, 0, sizeof (sections));
9712 cleanups = make_cleanup (null_cleanup, 0);
9713
9714 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9715 {
9716 asection *sectp;
9717 uint32_t section_nr =
9718 read_4_bytes (dbfd,
9719 dwp_htab->section_pool.v1.indices
9720 + (unit_index + i) * sizeof (uint32_t));
9721
9722 if (section_nr == 0)
9723 break;
9724 if (section_nr >= dwp_file->num_sections)
9725 {
9726 error (_("Dwarf Error: bad DWP hash table, section number too large"
9727 " [in module %s]"),
9728 dwp_file->name);
9729 }
9730
9731 sectp = dwp_file->elf_sections[section_nr];
9732 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9733 {
9734 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9735 " [in module %s]"),
9736 dwp_file->name);
9737 }
9738 }
9739
9740 if (i < 2
9741 || dwarf2_section_empty_p (&sections.info_or_types)
9742 || dwarf2_section_empty_p (&sections.abbrev))
9743 {
9744 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9745 " [in module %s]"),
9746 dwp_file->name);
9747 }
9748 if (i == MAX_NR_V1_DWO_SECTIONS)
9749 {
9750 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9751 " [in module %s]"),
9752 dwp_file->name);
9753 }
9754
9755 /* It's easier for the rest of the code if we fake a struct dwo_file and
9756 have dwo_unit "live" in that. At least for now.
9757
9758 The DWP file can be made up of a random collection of CUs and TUs.
9759 However, for each CU + set of TUs that came from the same original DWO
9760 file, we can combine them back into a virtual DWO file to save space
9761 (fewer struct dwo_file objects to allocate). Remember that for really
9762 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9763
9764 virtual_dwo_name =
9765 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9766 get_section_id (&sections.abbrev),
9767 get_section_id (&sections.line),
9768 get_section_id (&sections.loc),
9769 get_section_id (&sections.str_offsets));
9770 make_cleanup (xfree, virtual_dwo_name);
9771 /* Can we use an existing virtual DWO file? */
9772 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9773 /* Create one if necessary. */
9774 if (*dwo_file_slot == NULL)
9775 {
9776 if (dwarf2_read_debug)
9777 {
9778 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9779 virtual_dwo_name);
9780 }
9781 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9782 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9783 virtual_dwo_name,
9784 strlen (virtual_dwo_name));
9785 dwo_file->comp_dir = comp_dir;
9786 dwo_file->sections.abbrev = sections.abbrev;
9787 dwo_file->sections.line = sections.line;
9788 dwo_file->sections.loc = sections.loc;
9789 dwo_file->sections.macinfo = sections.macinfo;
9790 dwo_file->sections.macro = sections.macro;
9791 dwo_file->sections.str_offsets = sections.str_offsets;
9792 /* The "str" section is global to the entire DWP file. */
9793 dwo_file->sections.str = dwp_file->sections.str;
9794 /* The info or types section is assigned below to dwo_unit,
9795 there's no need to record it in dwo_file.
9796 Also, we can't simply record type sections in dwo_file because
9797 we record a pointer into the vector in dwo_unit. As we collect more
9798 types we'll grow the vector and eventually have to reallocate space
9799 for it, invalidating all copies of pointers into the previous
9800 contents. */
9801 *dwo_file_slot = dwo_file;
9802 }
9803 else
9804 {
9805 if (dwarf2_read_debug)
9806 {
9807 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9808 virtual_dwo_name);
9809 }
9810 dwo_file = *dwo_file_slot;
9811 }
9812 do_cleanups (cleanups);
9813
9814 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9815 dwo_unit->dwo_file = dwo_file;
9816 dwo_unit->signature = signature;
9817 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9818 sizeof (struct dwarf2_section_info));
9819 *dwo_unit->section = sections.info_or_types;
9820 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9821
9822 return dwo_unit;
9823 }
9824
9825 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9826 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9827 piece within that section used by a TU/CU, return a virtual section
9828 of just that piece. */
9829
9830 static struct dwarf2_section_info
9831 create_dwp_v2_section (struct dwarf2_section_info *section,
9832 bfd_size_type offset, bfd_size_type size)
9833 {
9834 struct dwarf2_section_info result;
9835 asection *sectp;
9836
9837 gdb_assert (section != NULL);
9838 gdb_assert (!section->is_virtual);
9839
9840 memset (&result, 0, sizeof (result));
9841 result.s.containing_section = section;
9842 result.is_virtual = 1;
9843
9844 if (size == 0)
9845 return result;
9846
9847 sectp = get_section_bfd_section (section);
9848
9849 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9850 bounds of the real section. This is a pretty-rare event, so just
9851 flag an error (easier) instead of a warning and trying to cope. */
9852 if (sectp == NULL
9853 || offset + size > bfd_get_section_size (sectp))
9854 {
9855 bfd *abfd = sectp->owner;
9856
9857 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9858 " in section %s [in module %s]"),
9859 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9860 objfile_name (dwarf2_per_objfile->objfile));
9861 }
9862
9863 result.virtual_offset = offset;
9864 result.size = size;
9865 return result;
9866 }
9867
9868 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9869 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9870 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9871 This is for DWP version 2 files. */
9872
9873 static struct dwo_unit *
9874 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9875 uint32_t unit_index,
9876 const char *comp_dir,
9877 ULONGEST signature, int is_debug_types)
9878 {
9879 struct objfile *objfile = dwarf2_per_objfile->objfile;
9880 const struct dwp_hash_table *dwp_htab =
9881 is_debug_types ? dwp_file->tus : dwp_file->cus;
9882 bfd *dbfd = dwp_file->dbfd;
9883 const char *kind = is_debug_types ? "TU" : "CU";
9884 struct dwo_file *dwo_file;
9885 struct dwo_unit *dwo_unit;
9886 struct virtual_v2_dwo_sections sections;
9887 void **dwo_file_slot;
9888 char *virtual_dwo_name;
9889 struct dwarf2_section_info *cutu;
9890 struct cleanup *cleanups;
9891 int i;
9892
9893 gdb_assert (dwp_file->version == 2);
9894
9895 if (dwarf2_read_debug)
9896 {
9897 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9898 kind,
9899 pulongest (unit_index), hex_string (signature),
9900 dwp_file->name);
9901 }
9902
9903 /* Fetch the section offsets of this DWO unit. */
9904
9905 memset (&sections, 0, sizeof (sections));
9906 cleanups = make_cleanup (null_cleanup, 0);
9907
9908 for (i = 0; i < dwp_htab->nr_columns; ++i)
9909 {
9910 uint32_t offset = read_4_bytes (dbfd,
9911 dwp_htab->section_pool.v2.offsets
9912 + (((unit_index - 1) * dwp_htab->nr_columns
9913 + i)
9914 * sizeof (uint32_t)));
9915 uint32_t size = read_4_bytes (dbfd,
9916 dwp_htab->section_pool.v2.sizes
9917 + (((unit_index - 1) * dwp_htab->nr_columns
9918 + i)
9919 * sizeof (uint32_t)));
9920
9921 switch (dwp_htab->section_pool.v2.section_ids[i])
9922 {
9923 case DW_SECT_INFO:
9924 case DW_SECT_TYPES:
9925 sections.info_or_types_offset = offset;
9926 sections.info_or_types_size = size;
9927 break;
9928 case DW_SECT_ABBREV:
9929 sections.abbrev_offset = offset;
9930 sections.abbrev_size = size;
9931 break;
9932 case DW_SECT_LINE:
9933 sections.line_offset = offset;
9934 sections.line_size = size;
9935 break;
9936 case DW_SECT_LOC:
9937 sections.loc_offset = offset;
9938 sections.loc_size = size;
9939 break;
9940 case DW_SECT_STR_OFFSETS:
9941 sections.str_offsets_offset = offset;
9942 sections.str_offsets_size = size;
9943 break;
9944 case DW_SECT_MACINFO:
9945 sections.macinfo_offset = offset;
9946 sections.macinfo_size = size;
9947 break;
9948 case DW_SECT_MACRO:
9949 sections.macro_offset = offset;
9950 sections.macro_size = size;
9951 break;
9952 }
9953 }
9954
9955 /* It's easier for the rest of the code if we fake a struct dwo_file and
9956 have dwo_unit "live" in that. At least for now.
9957
9958 The DWP file can be made up of a random collection of CUs and TUs.
9959 However, for each CU + set of TUs that came from the same original DWO
9960 file, we can combine them back into a virtual DWO file to save space
9961 (fewer struct dwo_file objects to allocate). Remember that for really
9962 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9963
9964 virtual_dwo_name =
9965 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9966 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9967 (long) (sections.line_size ? sections.line_offset : 0),
9968 (long) (sections.loc_size ? sections.loc_offset : 0),
9969 (long) (sections.str_offsets_size
9970 ? sections.str_offsets_offset : 0));
9971 make_cleanup (xfree, virtual_dwo_name);
9972 /* Can we use an existing virtual DWO file? */
9973 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9974 /* Create one if necessary. */
9975 if (*dwo_file_slot == NULL)
9976 {
9977 if (dwarf2_read_debug)
9978 {
9979 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9980 virtual_dwo_name);
9981 }
9982 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9983 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9984 virtual_dwo_name,
9985 strlen (virtual_dwo_name));
9986 dwo_file->comp_dir = comp_dir;
9987 dwo_file->sections.abbrev =
9988 create_dwp_v2_section (&dwp_file->sections.abbrev,
9989 sections.abbrev_offset, sections.abbrev_size);
9990 dwo_file->sections.line =
9991 create_dwp_v2_section (&dwp_file->sections.line,
9992 sections.line_offset, sections.line_size);
9993 dwo_file->sections.loc =
9994 create_dwp_v2_section (&dwp_file->sections.loc,
9995 sections.loc_offset, sections.loc_size);
9996 dwo_file->sections.macinfo =
9997 create_dwp_v2_section (&dwp_file->sections.macinfo,
9998 sections.macinfo_offset, sections.macinfo_size);
9999 dwo_file->sections.macro =
10000 create_dwp_v2_section (&dwp_file->sections.macro,
10001 sections.macro_offset, sections.macro_size);
10002 dwo_file->sections.str_offsets =
10003 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10004 sections.str_offsets_offset,
10005 sections.str_offsets_size);
10006 /* The "str" section is global to the entire DWP file. */
10007 dwo_file->sections.str = dwp_file->sections.str;
10008 /* The info or types section is assigned below to dwo_unit,
10009 there's no need to record it in dwo_file.
10010 Also, we can't simply record type sections in dwo_file because
10011 we record a pointer into the vector in dwo_unit. As we collect more
10012 types we'll grow the vector and eventually have to reallocate space
10013 for it, invalidating all copies of pointers into the previous
10014 contents. */
10015 *dwo_file_slot = dwo_file;
10016 }
10017 else
10018 {
10019 if (dwarf2_read_debug)
10020 {
10021 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10022 virtual_dwo_name);
10023 }
10024 dwo_file = *dwo_file_slot;
10025 }
10026 do_cleanups (cleanups);
10027
10028 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10029 dwo_unit->dwo_file = dwo_file;
10030 dwo_unit->signature = signature;
10031 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10032 sizeof (struct dwarf2_section_info));
10033 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10034 ? &dwp_file->sections.types
10035 : &dwp_file->sections.info,
10036 sections.info_or_types_offset,
10037 sections.info_or_types_size);
10038 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10039
10040 return dwo_unit;
10041 }
10042
10043 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10044 Returns NULL if the signature isn't found. */
10045
10046 static struct dwo_unit *
10047 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10048 ULONGEST signature, int is_debug_types)
10049 {
10050 const struct dwp_hash_table *dwp_htab =
10051 is_debug_types ? dwp_file->tus : dwp_file->cus;
10052 bfd *dbfd = dwp_file->dbfd;
10053 uint32_t mask = dwp_htab->nr_slots - 1;
10054 uint32_t hash = signature & mask;
10055 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10056 unsigned int i;
10057 void **slot;
10058 struct dwo_unit find_dwo_cu, *dwo_cu;
10059
10060 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10061 find_dwo_cu.signature = signature;
10062 slot = htab_find_slot (is_debug_types
10063 ? dwp_file->loaded_tus
10064 : dwp_file->loaded_cus,
10065 &find_dwo_cu, INSERT);
10066
10067 if (*slot != NULL)
10068 return *slot;
10069
10070 /* Use a for loop so that we don't loop forever on bad debug info. */
10071 for (i = 0; i < dwp_htab->nr_slots; ++i)
10072 {
10073 ULONGEST signature_in_table;
10074
10075 signature_in_table =
10076 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10077 if (signature_in_table == signature)
10078 {
10079 uint32_t unit_index =
10080 read_4_bytes (dbfd,
10081 dwp_htab->unit_table + hash * sizeof (uint32_t));
10082
10083 if (dwp_file->version == 1)
10084 {
10085 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10086 comp_dir, signature,
10087 is_debug_types);
10088 }
10089 else
10090 {
10091 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10092 comp_dir, signature,
10093 is_debug_types);
10094 }
10095 return *slot;
10096 }
10097 if (signature_in_table == 0)
10098 return NULL;
10099 hash = (hash + hash2) & mask;
10100 }
10101
10102 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10103 " [in module %s]"),
10104 dwp_file->name);
10105 }
10106
10107 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10108 Open the file specified by FILE_NAME and hand it off to BFD for
10109 preliminary analysis. Return a newly initialized bfd *, which
10110 includes a canonicalized copy of FILE_NAME.
10111 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10112 SEARCH_CWD is true if the current directory is to be searched.
10113 It will be searched before debug-file-directory.
10114 If unable to find/open the file, return NULL.
10115 NOTE: This function is derived from symfile_bfd_open. */
10116
10117 static bfd *
10118 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10119 {
10120 bfd *sym_bfd;
10121 int desc, flags;
10122 char *absolute_name;
10123 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10124 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10125 to debug_file_directory. */
10126 char *search_path;
10127 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10128
10129 if (search_cwd)
10130 {
10131 if (*debug_file_directory != '\0')
10132 search_path = concat (".", dirname_separator_string,
10133 debug_file_directory, NULL);
10134 else
10135 search_path = xstrdup (".");
10136 }
10137 else
10138 search_path = xstrdup (debug_file_directory);
10139
10140 flags = OPF_RETURN_REALPATH;
10141 if (is_dwp)
10142 flags |= OPF_SEARCH_IN_PATH;
10143 desc = openp (search_path, flags, file_name,
10144 O_RDONLY | O_BINARY, &absolute_name);
10145 xfree (search_path);
10146 if (desc < 0)
10147 return NULL;
10148
10149 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10150 xfree (absolute_name);
10151 if (sym_bfd == NULL)
10152 return NULL;
10153 bfd_set_cacheable (sym_bfd, 1);
10154
10155 if (!bfd_check_format (sym_bfd, bfd_object))
10156 {
10157 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10158 return NULL;
10159 }
10160
10161 return sym_bfd;
10162 }
10163
10164 /* Try to open DWO file FILE_NAME.
10165 COMP_DIR is the DW_AT_comp_dir attribute.
10166 The result is the bfd handle of the file.
10167 If there is a problem finding or opening the file, return NULL.
10168 Upon success, the canonicalized path of the file is stored in the bfd,
10169 same as symfile_bfd_open. */
10170
10171 static bfd *
10172 open_dwo_file (const char *file_name, const char *comp_dir)
10173 {
10174 bfd *abfd;
10175
10176 if (IS_ABSOLUTE_PATH (file_name))
10177 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10178
10179 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10180
10181 if (comp_dir != NULL)
10182 {
10183 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10184
10185 /* NOTE: If comp_dir is a relative path, this will also try the
10186 search path, which seems useful. */
10187 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10188 xfree (path_to_try);
10189 if (abfd != NULL)
10190 return abfd;
10191 }
10192
10193 /* That didn't work, try debug-file-directory, which, despite its name,
10194 is a list of paths. */
10195
10196 if (*debug_file_directory == '\0')
10197 return NULL;
10198
10199 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10200 }
10201
10202 /* This function is mapped across the sections and remembers the offset and
10203 size of each of the DWO debugging sections we are interested in. */
10204
10205 static void
10206 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10207 {
10208 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10209 const struct dwop_section_names *names = &dwop_section_names;
10210
10211 if (section_is_p (sectp->name, &names->abbrev_dwo))
10212 {
10213 dwo_sections->abbrev.s.asection = sectp;
10214 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10215 }
10216 else if (section_is_p (sectp->name, &names->info_dwo))
10217 {
10218 dwo_sections->info.s.asection = sectp;
10219 dwo_sections->info.size = bfd_get_section_size (sectp);
10220 }
10221 else if (section_is_p (sectp->name, &names->line_dwo))
10222 {
10223 dwo_sections->line.s.asection = sectp;
10224 dwo_sections->line.size = bfd_get_section_size (sectp);
10225 }
10226 else if (section_is_p (sectp->name, &names->loc_dwo))
10227 {
10228 dwo_sections->loc.s.asection = sectp;
10229 dwo_sections->loc.size = bfd_get_section_size (sectp);
10230 }
10231 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10232 {
10233 dwo_sections->macinfo.s.asection = sectp;
10234 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10235 }
10236 else if (section_is_p (sectp->name, &names->macro_dwo))
10237 {
10238 dwo_sections->macro.s.asection = sectp;
10239 dwo_sections->macro.size = bfd_get_section_size (sectp);
10240 }
10241 else if (section_is_p (sectp->name, &names->str_dwo))
10242 {
10243 dwo_sections->str.s.asection = sectp;
10244 dwo_sections->str.size = bfd_get_section_size (sectp);
10245 }
10246 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10247 {
10248 dwo_sections->str_offsets.s.asection = sectp;
10249 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10250 }
10251 else if (section_is_p (sectp->name, &names->types_dwo))
10252 {
10253 struct dwarf2_section_info type_section;
10254
10255 memset (&type_section, 0, sizeof (type_section));
10256 type_section.s.asection = sectp;
10257 type_section.size = bfd_get_section_size (sectp);
10258 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10259 &type_section);
10260 }
10261 }
10262
10263 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10264 by PER_CU. This is for the non-DWP case.
10265 The result is NULL if DWO_NAME can't be found. */
10266
10267 static struct dwo_file *
10268 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10269 const char *dwo_name, const char *comp_dir)
10270 {
10271 struct objfile *objfile = dwarf2_per_objfile->objfile;
10272 struct dwo_file *dwo_file;
10273 bfd *dbfd;
10274 struct cleanup *cleanups;
10275
10276 dbfd = open_dwo_file (dwo_name, comp_dir);
10277 if (dbfd == NULL)
10278 {
10279 if (dwarf2_read_debug)
10280 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10281 return NULL;
10282 }
10283 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10284 dwo_file->dwo_name = dwo_name;
10285 dwo_file->comp_dir = comp_dir;
10286 dwo_file->dbfd = dbfd;
10287
10288 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10289
10290 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10291
10292 dwo_file->cu = create_dwo_cu (dwo_file);
10293
10294 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10295 dwo_file->sections.types);
10296
10297 discard_cleanups (cleanups);
10298
10299 if (dwarf2_read_debug)
10300 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10301
10302 return dwo_file;
10303 }
10304
10305 /* This function is mapped across the sections and remembers the offset and
10306 size of each of the DWP debugging sections common to version 1 and 2 that
10307 we are interested in. */
10308
10309 static void
10310 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10311 void *dwp_file_ptr)
10312 {
10313 struct dwp_file *dwp_file = dwp_file_ptr;
10314 const struct dwop_section_names *names = &dwop_section_names;
10315 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10316
10317 /* Record the ELF section number for later lookup: this is what the
10318 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10319 gdb_assert (elf_section_nr < dwp_file->num_sections);
10320 dwp_file->elf_sections[elf_section_nr] = sectp;
10321
10322 /* Look for specific sections that we need. */
10323 if (section_is_p (sectp->name, &names->str_dwo))
10324 {
10325 dwp_file->sections.str.s.asection = sectp;
10326 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10327 }
10328 else if (section_is_p (sectp->name, &names->cu_index))
10329 {
10330 dwp_file->sections.cu_index.s.asection = sectp;
10331 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10332 }
10333 else if (section_is_p (sectp->name, &names->tu_index))
10334 {
10335 dwp_file->sections.tu_index.s.asection = sectp;
10336 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10337 }
10338 }
10339
10340 /* This function is mapped across the sections and remembers the offset and
10341 size of each of the DWP version 2 debugging sections that we are interested
10342 in. This is split into a separate function because we don't know if we
10343 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10344
10345 static void
10346 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10347 {
10348 struct dwp_file *dwp_file = dwp_file_ptr;
10349 const struct dwop_section_names *names = &dwop_section_names;
10350 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10351
10352 /* Record the ELF section number for later lookup: this is what the
10353 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10354 gdb_assert (elf_section_nr < dwp_file->num_sections);
10355 dwp_file->elf_sections[elf_section_nr] = sectp;
10356
10357 /* Look for specific sections that we need. */
10358 if (section_is_p (sectp->name, &names->abbrev_dwo))
10359 {
10360 dwp_file->sections.abbrev.s.asection = sectp;
10361 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10362 }
10363 else if (section_is_p (sectp->name, &names->info_dwo))
10364 {
10365 dwp_file->sections.info.s.asection = sectp;
10366 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10367 }
10368 else if (section_is_p (sectp->name, &names->line_dwo))
10369 {
10370 dwp_file->sections.line.s.asection = sectp;
10371 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10372 }
10373 else if (section_is_p (sectp->name, &names->loc_dwo))
10374 {
10375 dwp_file->sections.loc.s.asection = sectp;
10376 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10377 }
10378 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10379 {
10380 dwp_file->sections.macinfo.s.asection = sectp;
10381 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10382 }
10383 else if (section_is_p (sectp->name, &names->macro_dwo))
10384 {
10385 dwp_file->sections.macro.s.asection = sectp;
10386 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10387 }
10388 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10389 {
10390 dwp_file->sections.str_offsets.s.asection = sectp;
10391 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10392 }
10393 else if (section_is_p (sectp->name, &names->types_dwo))
10394 {
10395 dwp_file->sections.types.s.asection = sectp;
10396 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10397 }
10398 }
10399
10400 /* Hash function for dwp_file loaded CUs/TUs. */
10401
10402 static hashval_t
10403 hash_dwp_loaded_cutus (const void *item)
10404 {
10405 const struct dwo_unit *dwo_unit = item;
10406
10407 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10408 return dwo_unit->signature;
10409 }
10410
10411 /* Equality function for dwp_file loaded CUs/TUs. */
10412
10413 static int
10414 eq_dwp_loaded_cutus (const void *a, const void *b)
10415 {
10416 const struct dwo_unit *dua = a;
10417 const struct dwo_unit *dub = b;
10418
10419 return dua->signature == dub->signature;
10420 }
10421
10422 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10423
10424 static htab_t
10425 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10426 {
10427 return htab_create_alloc_ex (3,
10428 hash_dwp_loaded_cutus,
10429 eq_dwp_loaded_cutus,
10430 NULL,
10431 &objfile->objfile_obstack,
10432 hashtab_obstack_allocate,
10433 dummy_obstack_deallocate);
10434 }
10435
10436 /* Try to open DWP file FILE_NAME.
10437 The result is the bfd handle of the file.
10438 If there is a problem finding or opening the file, return NULL.
10439 Upon success, the canonicalized path of the file is stored in the bfd,
10440 same as symfile_bfd_open. */
10441
10442 static bfd *
10443 open_dwp_file (const char *file_name)
10444 {
10445 bfd *abfd;
10446
10447 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10448 if (abfd != NULL)
10449 return abfd;
10450
10451 /* Work around upstream bug 15652.
10452 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10453 [Whether that's a "bug" is debatable, but it is getting in our way.]
10454 We have no real idea where the dwp file is, because gdb's realpath-ing
10455 of the executable's path may have discarded the needed info.
10456 [IWBN if the dwp file name was recorded in the executable, akin to
10457 .gnu_debuglink, but that doesn't exist yet.]
10458 Strip the directory from FILE_NAME and search again. */
10459 if (*debug_file_directory != '\0')
10460 {
10461 /* Don't implicitly search the current directory here.
10462 If the user wants to search "." to handle this case,
10463 it must be added to debug-file-directory. */
10464 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10465 0 /*search_cwd*/);
10466 }
10467
10468 return NULL;
10469 }
10470
10471 /* Initialize the use of the DWP file for the current objfile.
10472 By convention the name of the DWP file is ${objfile}.dwp.
10473 The result is NULL if it can't be found. */
10474
10475 static struct dwp_file *
10476 open_and_init_dwp_file (void)
10477 {
10478 struct objfile *objfile = dwarf2_per_objfile->objfile;
10479 struct dwp_file *dwp_file;
10480 char *dwp_name;
10481 bfd *dbfd;
10482 struct cleanup *cleanups;
10483
10484 /* Try to find first .dwp for the binary file before any symbolic links
10485 resolving. */
10486 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10487 cleanups = make_cleanup (xfree, dwp_name);
10488
10489 dbfd = open_dwp_file (dwp_name);
10490 if (dbfd == NULL
10491 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10492 {
10493 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10494 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10495 make_cleanup (xfree, dwp_name);
10496 dbfd = open_dwp_file (dwp_name);
10497 }
10498
10499 if (dbfd == NULL)
10500 {
10501 if (dwarf2_read_debug)
10502 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10503 do_cleanups (cleanups);
10504 return NULL;
10505 }
10506 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10507 dwp_file->name = bfd_get_filename (dbfd);
10508 dwp_file->dbfd = dbfd;
10509 do_cleanups (cleanups);
10510
10511 /* +1: section 0 is unused */
10512 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10513 dwp_file->elf_sections =
10514 OBSTACK_CALLOC (&objfile->objfile_obstack,
10515 dwp_file->num_sections, asection *);
10516
10517 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10518
10519 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10520
10521 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10522
10523 /* The DWP file version is stored in the hash table. Oh well. */
10524 if (dwp_file->cus->version != dwp_file->tus->version)
10525 {
10526 /* Technically speaking, we should try to limp along, but this is
10527 pretty bizarre. */
10528 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10529 " TU version %d [in DWP file %s]"),
10530 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10531 }
10532 dwp_file->version = dwp_file->cus->version;
10533
10534 if (dwp_file->version == 2)
10535 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10536
10537 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10538 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10539
10540 if (dwarf2_read_debug)
10541 {
10542 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10543 fprintf_unfiltered (gdb_stdlog,
10544 " %s CUs, %s TUs\n",
10545 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10546 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10547 }
10548
10549 return dwp_file;
10550 }
10551
10552 /* Wrapper around open_and_init_dwp_file, only open it once. */
10553
10554 static struct dwp_file *
10555 get_dwp_file (void)
10556 {
10557 if (! dwarf2_per_objfile->dwp_checked)
10558 {
10559 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10560 dwarf2_per_objfile->dwp_checked = 1;
10561 }
10562 return dwarf2_per_objfile->dwp_file;
10563 }
10564
10565 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10566 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10567 or in the DWP file for the objfile, referenced by THIS_UNIT.
10568 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10569 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10570
10571 This is called, for example, when wanting to read a variable with a
10572 complex location. Therefore we don't want to do file i/o for every call.
10573 Therefore we don't want to look for a DWO file on every call.
10574 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10575 then we check if we've already seen DWO_NAME, and only THEN do we check
10576 for a DWO file.
10577
10578 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10579 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10580
10581 static struct dwo_unit *
10582 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10583 const char *dwo_name, const char *comp_dir,
10584 ULONGEST signature, int is_debug_types)
10585 {
10586 struct objfile *objfile = dwarf2_per_objfile->objfile;
10587 const char *kind = is_debug_types ? "TU" : "CU";
10588 void **dwo_file_slot;
10589 struct dwo_file *dwo_file;
10590 struct dwp_file *dwp_file;
10591
10592 /* First see if there's a DWP file.
10593 If we have a DWP file but didn't find the DWO inside it, don't
10594 look for the original DWO file. It makes gdb behave differently
10595 depending on whether one is debugging in the build tree. */
10596
10597 dwp_file = get_dwp_file ();
10598 if (dwp_file != NULL)
10599 {
10600 const struct dwp_hash_table *dwp_htab =
10601 is_debug_types ? dwp_file->tus : dwp_file->cus;
10602
10603 if (dwp_htab != NULL)
10604 {
10605 struct dwo_unit *dwo_cutu =
10606 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10607 signature, is_debug_types);
10608
10609 if (dwo_cutu != NULL)
10610 {
10611 if (dwarf2_read_debug)
10612 {
10613 fprintf_unfiltered (gdb_stdlog,
10614 "Virtual DWO %s %s found: @%s\n",
10615 kind, hex_string (signature),
10616 host_address_to_string (dwo_cutu));
10617 }
10618 return dwo_cutu;
10619 }
10620 }
10621 }
10622 else
10623 {
10624 /* No DWP file, look for the DWO file. */
10625
10626 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10627 if (*dwo_file_slot == NULL)
10628 {
10629 /* Read in the file and build a table of the CUs/TUs it contains. */
10630 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10631 }
10632 /* NOTE: This will be NULL if unable to open the file. */
10633 dwo_file = *dwo_file_slot;
10634
10635 if (dwo_file != NULL)
10636 {
10637 struct dwo_unit *dwo_cutu = NULL;
10638
10639 if (is_debug_types && dwo_file->tus)
10640 {
10641 struct dwo_unit find_dwo_cutu;
10642
10643 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10644 find_dwo_cutu.signature = signature;
10645 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10646 }
10647 else if (!is_debug_types && dwo_file->cu)
10648 {
10649 if (signature == dwo_file->cu->signature)
10650 dwo_cutu = dwo_file->cu;
10651 }
10652
10653 if (dwo_cutu != NULL)
10654 {
10655 if (dwarf2_read_debug)
10656 {
10657 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10658 kind, dwo_name, hex_string (signature),
10659 host_address_to_string (dwo_cutu));
10660 }
10661 return dwo_cutu;
10662 }
10663 }
10664 }
10665
10666 /* We didn't find it. This could mean a dwo_id mismatch, or
10667 someone deleted the DWO/DWP file, or the search path isn't set up
10668 correctly to find the file. */
10669
10670 if (dwarf2_read_debug)
10671 {
10672 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10673 kind, dwo_name, hex_string (signature));
10674 }
10675
10676 /* This is a warning and not a complaint because it can be caused by
10677 pilot error (e.g., user accidentally deleting the DWO). */
10678 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
10679 " [in module %s]"),
10680 kind, dwo_name, hex_string (signature),
10681 this_unit->is_debug_types ? "TU" : "CU",
10682 this_unit->offset.sect_off, objfile_name (objfile));
10683 return NULL;
10684 }
10685
10686 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10687 See lookup_dwo_cutu_unit for details. */
10688
10689 static struct dwo_unit *
10690 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10691 const char *dwo_name, const char *comp_dir,
10692 ULONGEST signature)
10693 {
10694 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10695 }
10696
10697 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10698 See lookup_dwo_cutu_unit for details. */
10699
10700 static struct dwo_unit *
10701 lookup_dwo_type_unit (struct signatured_type *this_tu,
10702 const char *dwo_name, const char *comp_dir)
10703 {
10704 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10705 }
10706
10707 /* Traversal function for queue_and_load_all_dwo_tus. */
10708
10709 static int
10710 queue_and_load_dwo_tu (void **slot, void *info)
10711 {
10712 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10713 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10714 ULONGEST signature = dwo_unit->signature;
10715 struct signatured_type *sig_type =
10716 lookup_dwo_signatured_type (per_cu->cu, signature);
10717
10718 if (sig_type != NULL)
10719 {
10720 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10721
10722 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10723 a real dependency of PER_CU on SIG_TYPE. That is detected later
10724 while processing PER_CU. */
10725 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10726 load_full_type_unit (sig_cu);
10727 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10728 }
10729
10730 return 1;
10731 }
10732
10733 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10734 The DWO may have the only definition of the type, though it may not be
10735 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10736 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10737
10738 static void
10739 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10740 {
10741 struct dwo_unit *dwo_unit;
10742 struct dwo_file *dwo_file;
10743
10744 gdb_assert (!per_cu->is_debug_types);
10745 gdb_assert (get_dwp_file () == NULL);
10746 gdb_assert (per_cu->cu != NULL);
10747
10748 dwo_unit = per_cu->cu->dwo_unit;
10749 gdb_assert (dwo_unit != NULL);
10750
10751 dwo_file = dwo_unit->dwo_file;
10752 if (dwo_file->tus != NULL)
10753 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10754 }
10755
10756 /* Free all resources associated with DWO_FILE.
10757 Close the DWO file and munmap the sections.
10758 All memory should be on the objfile obstack. */
10759
10760 static void
10761 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10762 {
10763 int ix;
10764 struct dwarf2_section_info *section;
10765
10766 /* Note: dbfd is NULL for virtual DWO files. */
10767 gdb_bfd_unref (dwo_file->dbfd);
10768
10769 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10770 }
10771
10772 /* Wrapper for free_dwo_file for use in cleanups. */
10773
10774 static void
10775 free_dwo_file_cleanup (void *arg)
10776 {
10777 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10778 struct objfile *objfile = dwarf2_per_objfile->objfile;
10779
10780 free_dwo_file (dwo_file, objfile);
10781 }
10782
10783 /* Traversal function for free_dwo_files. */
10784
10785 static int
10786 free_dwo_file_from_slot (void **slot, void *info)
10787 {
10788 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10789 struct objfile *objfile = (struct objfile *) info;
10790
10791 free_dwo_file (dwo_file, objfile);
10792
10793 return 1;
10794 }
10795
10796 /* Free all resources associated with DWO_FILES. */
10797
10798 static void
10799 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10800 {
10801 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10802 }
10803 \f
10804 /* Read in various DIEs. */
10805
10806 /* qsort helper for inherit_abstract_dies. */
10807
10808 static int
10809 unsigned_int_compar (const void *ap, const void *bp)
10810 {
10811 unsigned int a = *(unsigned int *) ap;
10812 unsigned int b = *(unsigned int *) bp;
10813
10814 return (a > b) - (b > a);
10815 }
10816
10817 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10818 Inherit only the children of the DW_AT_abstract_origin DIE not being
10819 already referenced by DW_AT_abstract_origin from the children of the
10820 current DIE. */
10821
10822 static void
10823 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10824 {
10825 struct die_info *child_die;
10826 unsigned die_children_count;
10827 /* CU offsets which were referenced by children of the current DIE. */
10828 sect_offset *offsets;
10829 sect_offset *offsets_end, *offsetp;
10830 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10831 struct die_info *origin_die;
10832 /* Iterator of the ORIGIN_DIE children. */
10833 struct die_info *origin_child_die;
10834 struct cleanup *cleanups;
10835 struct attribute *attr;
10836 struct dwarf2_cu *origin_cu;
10837 struct pending **origin_previous_list_in_scope;
10838
10839 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10840 if (!attr)
10841 return;
10842
10843 /* Note that following die references may follow to a die in a
10844 different cu. */
10845
10846 origin_cu = cu;
10847 origin_die = follow_die_ref (die, attr, &origin_cu);
10848
10849 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10850 symbols in. */
10851 origin_previous_list_in_scope = origin_cu->list_in_scope;
10852 origin_cu->list_in_scope = cu->list_in_scope;
10853
10854 if (die->tag != origin_die->tag
10855 && !(die->tag == DW_TAG_inlined_subroutine
10856 && origin_die->tag == DW_TAG_subprogram))
10857 complaint (&symfile_complaints,
10858 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10859 die->offset.sect_off, origin_die->offset.sect_off);
10860
10861 child_die = die->child;
10862 die_children_count = 0;
10863 while (child_die && child_die->tag)
10864 {
10865 child_die = sibling_die (child_die);
10866 die_children_count++;
10867 }
10868 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10869 cleanups = make_cleanup (xfree, offsets);
10870
10871 offsets_end = offsets;
10872 child_die = die->child;
10873 while (child_die && child_die->tag)
10874 {
10875 /* For each CHILD_DIE, find the corresponding child of
10876 ORIGIN_DIE. If there is more than one layer of
10877 DW_AT_abstract_origin, follow them all; there shouldn't be,
10878 but GCC versions at least through 4.4 generate this (GCC PR
10879 40573). */
10880 struct die_info *child_origin_die = child_die;
10881 struct dwarf2_cu *child_origin_cu = cu;
10882
10883 while (1)
10884 {
10885 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10886 child_origin_cu);
10887 if (attr == NULL)
10888 break;
10889 child_origin_die = follow_die_ref (child_origin_die, attr,
10890 &child_origin_cu);
10891 }
10892
10893 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10894 counterpart may exist. */
10895 if (child_origin_die != child_die)
10896 {
10897 if (child_die->tag != child_origin_die->tag
10898 && !(child_die->tag == DW_TAG_inlined_subroutine
10899 && child_origin_die->tag == DW_TAG_subprogram))
10900 complaint (&symfile_complaints,
10901 _("Child DIE 0x%x and its abstract origin 0x%x have "
10902 "different tags"), child_die->offset.sect_off,
10903 child_origin_die->offset.sect_off);
10904 if (child_origin_die->parent != origin_die)
10905 complaint (&symfile_complaints,
10906 _("Child DIE 0x%x and its abstract origin 0x%x have "
10907 "different parents"), child_die->offset.sect_off,
10908 child_origin_die->offset.sect_off);
10909 else
10910 *offsets_end++ = child_origin_die->offset;
10911 }
10912 child_die = sibling_die (child_die);
10913 }
10914 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10915 unsigned_int_compar);
10916 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10917 if (offsetp[-1].sect_off == offsetp->sect_off)
10918 complaint (&symfile_complaints,
10919 _("Multiple children of DIE 0x%x refer "
10920 "to DIE 0x%x as their abstract origin"),
10921 die->offset.sect_off, offsetp->sect_off);
10922
10923 offsetp = offsets;
10924 origin_child_die = origin_die->child;
10925 while (origin_child_die && origin_child_die->tag)
10926 {
10927 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10928 while (offsetp < offsets_end
10929 && offsetp->sect_off < origin_child_die->offset.sect_off)
10930 offsetp++;
10931 if (offsetp >= offsets_end
10932 || offsetp->sect_off > origin_child_die->offset.sect_off)
10933 {
10934 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10935 process_die (origin_child_die, origin_cu);
10936 }
10937 origin_child_die = sibling_die (origin_child_die);
10938 }
10939 origin_cu->list_in_scope = origin_previous_list_in_scope;
10940
10941 do_cleanups (cleanups);
10942 }
10943
10944 static void
10945 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10946 {
10947 struct objfile *objfile = cu->objfile;
10948 struct context_stack *new;
10949 CORE_ADDR lowpc;
10950 CORE_ADDR highpc;
10951 struct die_info *child_die;
10952 struct attribute *attr, *call_line, *call_file;
10953 const char *name;
10954 CORE_ADDR baseaddr;
10955 struct block *block;
10956 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10957 VEC (symbolp) *template_args = NULL;
10958 struct template_symbol *templ_func = NULL;
10959
10960 if (inlined_func)
10961 {
10962 /* If we do not have call site information, we can't show the
10963 caller of this inlined function. That's too confusing, so
10964 only use the scope for local variables. */
10965 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10966 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10967 if (call_line == NULL || call_file == NULL)
10968 {
10969 read_lexical_block_scope (die, cu);
10970 return;
10971 }
10972 }
10973
10974 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10975
10976 name = dwarf2_name (die, cu);
10977
10978 /* Ignore functions with missing or empty names. These are actually
10979 illegal according to the DWARF standard. */
10980 if (name == NULL)
10981 {
10982 complaint (&symfile_complaints,
10983 _("missing name for subprogram DIE at %d"),
10984 die->offset.sect_off);
10985 return;
10986 }
10987
10988 /* Ignore functions with missing or invalid low and high pc attributes. */
10989 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10990 {
10991 attr = dwarf2_attr (die, DW_AT_external, cu);
10992 if (!attr || !DW_UNSND (attr))
10993 complaint (&symfile_complaints,
10994 _("cannot get low and high bounds "
10995 "for subprogram DIE at %d"),
10996 die->offset.sect_off);
10997 return;
10998 }
10999
11000 lowpc += baseaddr;
11001 highpc += baseaddr;
11002
11003 /* If we have any template arguments, then we must allocate a
11004 different sort of symbol. */
11005 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11006 {
11007 if (child_die->tag == DW_TAG_template_type_param
11008 || child_die->tag == DW_TAG_template_value_param)
11009 {
11010 templ_func = allocate_template_symbol (objfile);
11011 templ_func->base.is_cplus_template_function = 1;
11012 break;
11013 }
11014 }
11015
11016 new = push_context (0, lowpc);
11017 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11018 (struct symbol *) templ_func);
11019
11020 /* If there is a location expression for DW_AT_frame_base, record
11021 it. */
11022 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11023 if (attr)
11024 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11025
11026 cu->list_in_scope = &local_symbols;
11027
11028 if (die->child != NULL)
11029 {
11030 child_die = die->child;
11031 while (child_die && child_die->tag)
11032 {
11033 if (child_die->tag == DW_TAG_template_type_param
11034 || child_die->tag == DW_TAG_template_value_param)
11035 {
11036 struct symbol *arg = new_symbol (child_die, NULL, cu);
11037
11038 if (arg != NULL)
11039 VEC_safe_push (symbolp, template_args, arg);
11040 }
11041 else
11042 process_die (child_die, cu);
11043 child_die = sibling_die (child_die);
11044 }
11045 }
11046
11047 inherit_abstract_dies (die, cu);
11048
11049 /* If we have a DW_AT_specification, we might need to import using
11050 directives from the context of the specification DIE. See the
11051 comment in determine_prefix. */
11052 if (cu->language == language_cplus
11053 && dwarf2_attr (die, DW_AT_specification, cu))
11054 {
11055 struct dwarf2_cu *spec_cu = cu;
11056 struct die_info *spec_die = die_specification (die, &spec_cu);
11057
11058 while (spec_die)
11059 {
11060 child_die = spec_die->child;
11061 while (child_die && child_die->tag)
11062 {
11063 if (child_die->tag == DW_TAG_imported_module)
11064 process_die (child_die, spec_cu);
11065 child_die = sibling_die (child_die);
11066 }
11067
11068 /* In some cases, GCC generates specification DIEs that
11069 themselves contain DW_AT_specification attributes. */
11070 spec_die = die_specification (spec_die, &spec_cu);
11071 }
11072 }
11073
11074 new = pop_context ();
11075 /* Make a block for the local symbols within. */
11076 block = finish_block (new->name, &local_symbols, new->old_blocks,
11077 lowpc, highpc, objfile);
11078
11079 /* For C++, set the block's scope. */
11080 if ((cu->language == language_cplus || cu->language == language_fortran)
11081 && cu->processing_has_namespace_info)
11082 block_set_scope (block, determine_prefix (die, cu),
11083 &objfile->objfile_obstack);
11084
11085 /* If we have address ranges, record them. */
11086 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11087
11088 /* Attach template arguments to function. */
11089 if (! VEC_empty (symbolp, template_args))
11090 {
11091 gdb_assert (templ_func != NULL);
11092
11093 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11094 templ_func->template_arguments
11095 = obstack_alloc (&objfile->objfile_obstack,
11096 (templ_func->n_template_arguments
11097 * sizeof (struct symbol *)));
11098 memcpy (templ_func->template_arguments,
11099 VEC_address (symbolp, template_args),
11100 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11101 VEC_free (symbolp, template_args);
11102 }
11103
11104 /* In C++, we can have functions nested inside functions (e.g., when
11105 a function declares a class that has methods). This means that
11106 when we finish processing a function scope, we may need to go
11107 back to building a containing block's symbol lists. */
11108 local_symbols = new->locals;
11109 using_directives = new->using_directives;
11110
11111 /* If we've finished processing a top-level function, subsequent
11112 symbols go in the file symbol list. */
11113 if (outermost_context_p ())
11114 cu->list_in_scope = &file_symbols;
11115 }
11116
11117 /* Process all the DIES contained within a lexical block scope. Start
11118 a new scope, process the dies, and then close the scope. */
11119
11120 static void
11121 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11122 {
11123 struct objfile *objfile = cu->objfile;
11124 struct context_stack *new;
11125 CORE_ADDR lowpc, highpc;
11126 struct die_info *child_die;
11127 CORE_ADDR baseaddr;
11128
11129 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11130
11131 /* Ignore blocks with missing or invalid low and high pc attributes. */
11132 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11133 as multiple lexical blocks? Handling children in a sane way would
11134 be nasty. Might be easier to properly extend generic blocks to
11135 describe ranges. */
11136 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11137 return;
11138 lowpc += baseaddr;
11139 highpc += baseaddr;
11140
11141 push_context (0, lowpc);
11142 if (die->child != NULL)
11143 {
11144 child_die = die->child;
11145 while (child_die && child_die->tag)
11146 {
11147 process_die (child_die, cu);
11148 child_die = sibling_die (child_die);
11149 }
11150 }
11151 new = pop_context ();
11152
11153 if (local_symbols != NULL || using_directives != NULL)
11154 {
11155 struct block *block
11156 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11157 highpc, objfile);
11158
11159 /* Note that recording ranges after traversing children, as we
11160 do here, means that recording a parent's ranges entails
11161 walking across all its children's ranges as they appear in
11162 the address map, which is quadratic behavior.
11163
11164 It would be nicer to record the parent's ranges before
11165 traversing its children, simply overriding whatever you find
11166 there. But since we don't even decide whether to create a
11167 block until after we've traversed its children, that's hard
11168 to do. */
11169 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11170 }
11171 local_symbols = new->locals;
11172 using_directives = new->using_directives;
11173 }
11174
11175 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11176
11177 static void
11178 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11179 {
11180 struct objfile *objfile = cu->objfile;
11181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11182 CORE_ADDR pc, baseaddr;
11183 struct attribute *attr;
11184 struct call_site *call_site, call_site_local;
11185 void **slot;
11186 int nparams;
11187 struct die_info *child_die;
11188
11189 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11190
11191 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11192 if (!attr)
11193 {
11194 complaint (&symfile_complaints,
11195 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11196 "DIE 0x%x [in module %s]"),
11197 die->offset.sect_off, objfile_name (objfile));
11198 return;
11199 }
11200 pc = DW_ADDR (attr) + baseaddr;
11201
11202 if (cu->call_site_htab == NULL)
11203 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11204 NULL, &objfile->objfile_obstack,
11205 hashtab_obstack_allocate, NULL);
11206 call_site_local.pc = pc;
11207 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11208 if (*slot != NULL)
11209 {
11210 complaint (&symfile_complaints,
11211 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11212 "DIE 0x%x [in module %s]"),
11213 paddress (gdbarch, pc), die->offset.sect_off,
11214 objfile_name (objfile));
11215 return;
11216 }
11217
11218 /* Count parameters at the caller. */
11219
11220 nparams = 0;
11221 for (child_die = die->child; child_die && child_die->tag;
11222 child_die = sibling_die (child_die))
11223 {
11224 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11225 {
11226 complaint (&symfile_complaints,
11227 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11228 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11229 child_die->tag, child_die->offset.sect_off,
11230 objfile_name (objfile));
11231 continue;
11232 }
11233
11234 nparams++;
11235 }
11236
11237 call_site = obstack_alloc (&objfile->objfile_obstack,
11238 (sizeof (*call_site)
11239 + (sizeof (*call_site->parameter)
11240 * (nparams - 1))));
11241 *slot = call_site;
11242 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11243 call_site->pc = pc;
11244
11245 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11246 {
11247 struct die_info *func_die;
11248
11249 /* Skip also over DW_TAG_inlined_subroutine. */
11250 for (func_die = die->parent;
11251 func_die && func_die->tag != DW_TAG_subprogram
11252 && func_die->tag != DW_TAG_subroutine_type;
11253 func_die = func_die->parent);
11254
11255 /* DW_AT_GNU_all_call_sites is a superset
11256 of DW_AT_GNU_all_tail_call_sites. */
11257 if (func_die
11258 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11259 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11260 {
11261 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11262 not complete. But keep CALL_SITE for look ups via call_site_htab,
11263 both the initial caller containing the real return address PC and
11264 the final callee containing the current PC of a chain of tail
11265 calls do not need to have the tail call list complete. But any
11266 function candidate for a virtual tail call frame searched via
11267 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11268 determined unambiguously. */
11269 }
11270 else
11271 {
11272 struct type *func_type = NULL;
11273
11274 if (func_die)
11275 func_type = get_die_type (func_die, cu);
11276 if (func_type != NULL)
11277 {
11278 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11279
11280 /* Enlist this call site to the function. */
11281 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11282 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11283 }
11284 else
11285 complaint (&symfile_complaints,
11286 _("Cannot find function owning DW_TAG_GNU_call_site "
11287 "DIE 0x%x [in module %s]"),
11288 die->offset.sect_off, objfile_name (objfile));
11289 }
11290 }
11291
11292 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11293 if (attr == NULL)
11294 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11295 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11296 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11297 /* Keep NULL DWARF_BLOCK. */;
11298 else if (attr_form_is_block (attr))
11299 {
11300 struct dwarf2_locexpr_baton *dlbaton;
11301
11302 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11303 dlbaton->data = DW_BLOCK (attr)->data;
11304 dlbaton->size = DW_BLOCK (attr)->size;
11305 dlbaton->per_cu = cu->per_cu;
11306
11307 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11308 }
11309 else if (attr_form_is_ref (attr))
11310 {
11311 struct dwarf2_cu *target_cu = cu;
11312 struct die_info *target_die;
11313
11314 target_die = follow_die_ref (die, attr, &target_cu);
11315 gdb_assert (target_cu->objfile == objfile);
11316 if (die_is_declaration (target_die, target_cu))
11317 {
11318 const char *target_physname = NULL;
11319 struct attribute *target_attr;
11320
11321 /* Prefer the mangled name; otherwise compute the demangled one. */
11322 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11323 if (target_attr == NULL)
11324 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11325 target_cu);
11326 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11327 target_physname = DW_STRING (target_attr);
11328 else
11329 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11330 if (target_physname == NULL)
11331 complaint (&symfile_complaints,
11332 _("DW_AT_GNU_call_site_target target DIE has invalid "
11333 "physname, for referencing DIE 0x%x [in module %s]"),
11334 die->offset.sect_off, objfile_name (objfile));
11335 else
11336 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11337 }
11338 else
11339 {
11340 CORE_ADDR lowpc;
11341
11342 /* DW_AT_entry_pc should be preferred. */
11343 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11344 complaint (&symfile_complaints,
11345 _("DW_AT_GNU_call_site_target target DIE has invalid "
11346 "low pc, for referencing DIE 0x%x [in module %s]"),
11347 die->offset.sect_off, objfile_name (objfile));
11348 else
11349 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11350 }
11351 }
11352 else
11353 complaint (&symfile_complaints,
11354 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11355 "block nor reference, for DIE 0x%x [in module %s]"),
11356 die->offset.sect_off, objfile_name (objfile));
11357
11358 call_site->per_cu = cu->per_cu;
11359
11360 for (child_die = die->child;
11361 child_die && child_die->tag;
11362 child_die = sibling_die (child_die))
11363 {
11364 struct call_site_parameter *parameter;
11365 struct attribute *loc, *origin;
11366
11367 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11368 {
11369 /* Already printed the complaint above. */
11370 continue;
11371 }
11372
11373 gdb_assert (call_site->parameter_count < nparams);
11374 parameter = &call_site->parameter[call_site->parameter_count];
11375
11376 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11377 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11378 register is contained in DW_AT_GNU_call_site_value. */
11379
11380 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11381 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11382 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11383 {
11384 sect_offset offset;
11385
11386 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11387 offset = dwarf2_get_ref_die_offset (origin);
11388 if (!offset_in_cu_p (&cu->header, offset))
11389 {
11390 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11391 binding can be done only inside one CU. Such referenced DIE
11392 therefore cannot be even moved to DW_TAG_partial_unit. */
11393 complaint (&symfile_complaints,
11394 _("DW_AT_abstract_origin offset is not in CU for "
11395 "DW_TAG_GNU_call_site child DIE 0x%x "
11396 "[in module %s]"),
11397 child_die->offset.sect_off, objfile_name (objfile));
11398 continue;
11399 }
11400 parameter->u.param_offset.cu_off = (offset.sect_off
11401 - cu->header.offset.sect_off);
11402 }
11403 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11404 {
11405 complaint (&symfile_complaints,
11406 _("No DW_FORM_block* DW_AT_location for "
11407 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11408 child_die->offset.sect_off, objfile_name (objfile));
11409 continue;
11410 }
11411 else
11412 {
11413 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11414 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11415 if (parameter->u.dwarf_reg != -1)
11416 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11417 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11418 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11419 &parameter->u.fb_offset))
11420 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11421 else
11422 {
11423 complaint (&symfile_complaints,
11424 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11425 "for DW_FORM_block* DW_AT_location is supported for "
11426 "DW_TAG_GNU_call_site child DIE 0x%x "
11427 "[in module %s]"),
11428 child_die->offset.sect_off, objfile_name (objfile));
11429 continue;
11430 }
11431 }
11432
11433 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11434 if (!attr_form_is_block (attr))
11435 {
11436 complaint (&symfile_complaints,
11437 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11438 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11439 child_die->offset.sect_off, objfile_name (objfile));
11440 continue;
11441 }
11442 parameter->value = DW_BLOCK (attr)->data;
11443 parameter->value_size = DW_BLOCK (attr)->size;
11444
11445 /* Parameters are not pre-cleared by memset above. */
11446 parameter->data_value = NULL;
11447 parameter->data_value_size = 0;
11448 call_site->parameter_count++;
11449
11450 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11451 if (attr)
11452 {
11453 if (!attr_form_is_block (attr))
11454 complaint (&symfile_complaints,
11455 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11456 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11457 child_die->offset.sect_off, objfile_name (objfile));
11458 else
11459 {
11460 parameter->data_value = DW_BLOCK (attr)->data;
11461 parameter->data_value_size = DW_BLOCK (attr)->size;
11462 }
11463 }
11464 }
11465 }
11466
11467 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11468 Return 1 if the attributes are present and valid, otherwise, return 0.
11469 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11470
11471 static int
11472 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11473 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11474 struct partial_symtab *ranges_pst)
11475 {
11476 struct objfile *objfile = cu->objfile;
11477 struct comp_unit_head *cu_header = &cu->header;
11478 bfd *obfd = objfile->obfd;
11479 unsigned int addr_size = cu_header->addr_size;
11480 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11481 /* Base address selection entry. */
11482 CORE_ADDR base;
11483 int found_base;
11484 unsigned int dummy;
11485 const gdb_byte *buffer;
11486 CORE_ADDR marker;
11487 int low_set;
11488 CORE_ADDR low = 0;
11489 CORE_ADDR high = 0;
11490 CORE_ADDR baseaddr;
11491
11492 found_base = cu->base_known;
11493 base = cu->base_address;
11494
11495 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11496 if (offset >= dwarf2_per_objfile->ranges.size)
11497 {
11498 complaint (&symfile_complaints,
11499 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11500 offset);
11501 return 0;
11502 }
11503 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11504
11505 /* Read in the largest possible address. */
11506 marker = read_address (obfd, buffer, cu, &dummy);
11507 if ((marker & mask) == mask)
11508 {
11509 /* If we found the largest possible address, then
11510 read the base address. */
11511 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11512 buffer += 2 * addr_size;
11513 offset += 2 * addr_size;
11514 found_base = 1;
11515 }
11516
11517 low_set = 0;
11518
11519 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11520
11521 while (1)
11522 {
11523 CORE_ADDR range_beginning, range_end;
11524
11525 range_beginning = read_address (obfd, buffer, cu, &dummy);
11526 buffer += addr_size;
11527 range_end = read_address (obfd, buffer, cu, &dummy);
11528 buffer += addr_size;
11529 offset += 2 * addr_size;
11530
11531 /* An end of list marker is a pair of zero addresses. */
11532 if (range_beginning == 0 && range_end == 0)
11533 /* Found the end of list entry. */
11534 break;
11535
11536 /* Each base address selection entry is a pair of 2 values.
11537 The first is the largest possible address, the second is
11538 the base address. Check for a base address here. */
11539 if ((range_beginning & mask) == mask)
11540 {
11541 /* If we found the largest possible address, then
11542 read the base address. */
11543 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11544 found_base = 1;
11545 continue;
11546 }
11547
11548 if (!found_base)
11549 {
11550 /* We have no valid base address for the ranges
11551 data. */
11552 complaint (&symfile_complaints,
11553 _("Invalid .debug_ranges data (no base address)"));
11554 return 0;
11555 }
11556
11557 if (range_beginning > range_end)
11558 {
11559 /* Inverted range entries are invalid. */
11560 complaint (&symfile_complaints,
11561 _("Invalid .debug_ranges data (inverted range)"));
11562 return 0;
11563 }
11564
11565 /* Empty range entries have no effect. */
11566 if (range_beginning == range_end)
11567 continue;
11568
11569 range_beginning += base;
11570 range_end += base;
11571
11572 /* A not-uncommon case of bad debug info.
11573 Don't pollute the addrmap with bad data. */
11574 if (range_beginning + baseaddr == 0
11575 && !dwarf2_per_objfile->has_section_at_zero)
11576 {
11577 complaint (&symfile_complaints,
11578 _(".debug_ranges entry has start address of zero"
11579 " [in module %s]"), objfile_name (objfile));
11580 continue;
11581 }
11582
11583 if (ranges_pst != NULL)
11584 addrmap_set_empty (objfile->psymtabs_addrmap,
11585 range_beginning + baseaddr,
11586 range_end - 1 + baseaddr,
11587 ranges_pst);
11588
11589 /* FIXME: This is recording everything as a low-high
11590 segment of consecutive addresses. We should have a
11591 data structure for discontiguous block ranges
11592 instead. */
11593 if (! low_set)
11594 {
11595 low = range_beginning;
11596 high = range_end;
11597 low_set = 1;
11598 }
11599 else
11600 {
11601 if (range_beginning < low)
11602 low = range_beginning;
11603 if (range_end > high)
11604 high = range_end;
11605 }
11606 }
11607
11608 if (! low_set)
11609 /* If the first entry is an end-of-list marker, the range
11610 describes an empty scope, i.e. no instructions. */
11611 return 0;
11612
11613 if (low_return)
11614 *low_return = low;
11615 if (high_return)
11616 *high_return = high;
11617 return 1;
11618 }
11619
11620 /* Get low and high pc attributes from a die. Return 1 if the attributes
11621 are present and valid, otherwise, return 0. Return -1 if the range is
11622 discontinuous, i.e. derived from DW_AT_ranges information. */
11623
11624 static int
11625 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11626 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11627 struct partial_symtab *pst)
11628 {
11629 struct attribute *attr;
11630 struct attribute *attr_high;
11631 CORE_ADDR low = 0;
11632 CORE_ADDR high = 0;
11633 int ret = 0;
11634
11635 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11636 if (attr_high)
11637 {
11638 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11639 if (attr)
11640 {
11641 low = DW_ADDR (attr);
11642 if (attr_high->form == DW_FORM_addr
11643 || attr_high->form == DW_FORM_GNU_addr_index)
11644 high = DW_ADDR (attr_high);
11645 else
11646 high = low + DW_UNSND (attr_high);
11647 }
11648 else
11649 /* Found high w/o low attribute. */
11650 return 0;
11651
11652 /* Found consecutive range of addresses. */
11653 ret = 1;
11654 }
11655 else
11656 {
11657 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11658 if (attr != NULL)
11659 {
11660 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11661 We take advantage of the fact that DW_AT_ranges does not appear
11662 in DW_TAG_compile_unit of DWO files. */
11663 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11664 unsigned int ranges_offset = (DW_UNSND (attr)
11665 + (need_ranges_base
11666 ? cu->ranges_base
11667 : 0));
11668
11669 /* Value of the DW_AT_ranges attribute is the offset in the
11670 .debug_ranges section. */
11671 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11672 return 0;
11673 /* Found discontinuous range of addresses. */
11674 ret = -1;
11675 }
11676 }
11677
11678 /* read_partial_die has also the strict LOW < HIGH requirement. */
11679 if (high <= low)
11680 return 0;
11681
11682 /* When using the GNU linker, .gnu.linkonce. sections are used to
11683 eliminate duplicate copies of functions and vtables and such.
11684 The linker will arbitrarily choose one and discard the others.
11685 The AT_*_pc values for such functions refer to local labels in
11686 these sections. If the section from that file was discarded, the
11687 labels are not in the output, so the relocs get a value of 0.
11688 If this is a discarded function, mark the pc bounds as invalid,
11689 so that GDB will ignore it. */
11690 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11691 return 0;
11692
11693 *lowpc = low;
11694 if (highpc)
11695 *highpc = high;
11696 return ret;
11697 }
11698
11699 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11700 its low and high PC addresses. Do nothing if these addresses could not
11701 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11702 and HIGHPC to the high address if greater than HIGHPC. */
11703
11704 static void
11705 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11706 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11707 struct dwarf2_cu *cu)
11708 {
11709 CORE_ADDR low, high;
11710 struct die_info *child = die->child;
11711
11712 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11713 {
11714 *lowpc = min (*lowpc, low);
11715 *highpc = max (*highpc, high);
11716 }
11717
11718 /* If the language does not allow nested subprograms (either inside
11719 subprograms or lexical blocks), we're done. */
11720 if (cu->language != language_ada)
11721 return;
11722
11723 /* Check all the children of the given DIE. If it contains nested
11724 subprograms, then check their pc bounds. Likewise, we need to
11725 check lexical blocks as well, as they may also contain subprogram
11726 definitions. */
11727 while (child && child->tag)
11728 {
11729 if (child->tag == DW_TAG_subprogram
11730 || child->tag == DW_TAG_lexical_block)
11731 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11732 child = sibling_die (child);
11733 }
11734 }
11735
11736 /* Get the low and high pc's represented by the scope DIE, and store
11737 them in *LOWPC and *HIGHPC. If the correct values can't be
11738 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11739
11740 static void
11741 get_scope_pc_bounds (struct die_info *die,
11742 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11743 struct dwarf2_cu *cu)
11744 {
11745 CORE_ADDR best_low = (CORE_ADDR) -1;
11746 CORE_ADDR best_high = (CORE_ADDR) 0;
11747 CORE_ADDR current_low, current_high;
11748
11749 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11750 {
11751 best_low = current_low;
11752 best_high = current_high;
11753 }
11754 else
11755 {
11756 struct die_info *child = die->child;
11757
11758 while (child && child->tag)
11759 {
11760 switch (child->tag) {
11761 case DW_TAG_subprogram:
11762 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11763 break;
11764 case DW_TAG_namespace:
11765 case DW_TAG_module:
11766 /* FIXME: carlton/2004-01-16: Should we do this for
11767 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11768 that current GCC's always emit the DIEs corresponding
11769 to definitions of methods of classes as children of a
11770 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11771 the DIEs giving the declarations, which could be
11772 anywhere). But I don't see any reason why the
11773 standards says that they have to be there. */
11774 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11775
11776 if (current_low != ((CORE_ADDR) -1))
11777 {
11778 best_low = min (best_low, current_low);
11779 best_high = max (best_high, current_high);
11780 }
11781 break;
11782 default:
11783 /* Ignore. */
11784 break;
11785 }
11786
11787 child = sibling_die (child);
11788 }
11789 }
11790
11791 *lowpc = best_low;
11792 *highpc = best_high;
11793 }
11794
11795 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11796 in DIE. */
11797
11798 static void
11799 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11800 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11801 {
11802 struct objfile *objfile = cu->objfile;
11803 struct attribute *attr;
11804 struct attribute *attr_high;
11805
11806 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11807 if (attr_high)
11808 {
11809 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11810 if (attr)
11811 {
11812 CORE_ADDR low = DW_ADDR (attr);
11813 CORE_ADDR high;
11814 if (attr_high->form == DW_FORM_addr
11815 || attr_high->form == DW_FORM_GNU_addr_index)
11816 high = DW_ADDR (attr_high);
11817 else
11818 high = low + DW_UNSND (attr_high);
11819
11820 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11821 }
11822 }
11823
11824 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11825 if (attr)
11826 {
11827 bfd *obfd = objfile->obfd;
11828 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11829 We take advantage of the fact that DW_AT_ranges does not appear
11830 in DW_TAG_compile_unit of DWO files. */
11831 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11832
11833 /* The value of the DW_AT_ranges attribute is the offset of the
11834 address range list in the .debug_ranges section. */
11835 unsigned long offset = (DW_UNSND (attr)
11836 + (need_ranges_base ? cu->ranges_base : 0));
11837 const gdb_byte *buffer;
11838
11839 /* For some target architectures, but not others, the
11840 read_address function sign-extends the addresses it returns.
11841 To recognize base address selection entries, we need a
11842 mask. */
11843 unsigned int addr_size = cu->header.addr_size;
11844 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11845
11846 /* The base address, to which the next pair is relative. Note
11847 that this 'base' is a DWARF concept: most entries in a range
11848 list are relative, to reduce the number of relocs against the
11849 debugging information. This is separate from this function's
11850 'baseaddr' argument, which GDB uses to relocate debugging
11851 information from a shared library based on the address at
11852 which the library was loaded. */
11853 CORE_ADDR base = cu->base_address;
11854 int base_known = cu->base_known;
11855
11856 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11857 if (offset >= dwarf2_per_objfile->ranges.size)
11858 {
11859 complaint (&symfile_complaints,
11860 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11861 offset);
11862 return;
11863 }
11864 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11865
11866 for (;;)
11867 {
11868 unsigned int bytes_read;
11869 CORE_ADDR start, end;
11870
11871 start = read_address (obfd, buffer, cu, &bytes_read);
11872 buffer += bytes_read;
11873 end = read_address (obfd, buffer, cu, &bytes_read);
11874 buffer += bytes_read;
11875
11876 /* Did we find the end of the range list? */
11877 if (start == 0 && end == 0)
11878 break;
11879
11880 /* Did we find a base address selection entry? */
11881 else if ((start & base_select_mask) == base_select_mask)
11882 {
11883 base = end;
11884 base_known = 1;
11885 }
11886
11887 /* We found an ordinary address range. */
11888 else
11889 {
11890 if (!base_known)
11891 {
11892 complaint (&symfile_complaints,
11893 _("Invalid .debug_ranges data "
11894 "(no base address)"));
11895 return;
11896 }
11897
11898 if (start > end)
11899 {
11900 /* Inverted range entries are invalid. */
11901 complaint (&symfile_complaints,
11902 _("Invalid .debug_ranges data "
11903 "(inverted range)"));
11904 return;
11905 }
11906
11907 /* Empty range entries have no effect. */
11908 if (start == end)
11909 continue;
11910
11911 start += base + baseaddr;
11912 end += base + baseaddr;
11913
11914 /* A not-uncommon case of bad debug info.
11915 Don't pollute the addrmap with bad data. */
11916 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11917 {
11918 complaint (&symfile_complaints,
11919 _(".debug_ranges entry has start address of zero"
11920 " [in module %s]"), objfile_name (objfile));
11921 continue;
11922 }
11923
11924 record_block_range (block, start, end - 1);
11925 }
11926 }
11927 }
11928 }
11929
11930 /* Check whether the producer field indicates either of GCC < 4.6, or the
11931 Intel C/C++ compiler, and cache the result in CU. */
11932
11933 static void
11934 check_producer (struct dwarf2_cu *cu)
11935 {
11936 const char *cs;
11937 int major, minor, release;
11938
11939 if (cu->producer == NULL)
11940 {
11941 /* For unknown compilers expect their behavior is DWARF version
11942 compliant.
11943
11944 GCC started to support .debug_types sections by -gdwarf-4 since
11945 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11946 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11947 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11948 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11949 }
11950 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11951 {
11952 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11953
11954 cs = &cu->producer[strlen ("GNU ")];
11955 while (*cs && !isdigit (*cs))
11956 cs++;
11957 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11958 {
11959 /* Not recognized as GCC. */
11960 }
11961 else
11962 {
11963 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11964 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11965 }
11966 }
11967 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11968 cu->producer_is_icc = 1;
11969 else
11970 {
11971 /* For other non-GCC compilers, expect their behavior is DWARF version
11972 compliant. */
11973 }
11974
11975 cu->checked_producer = 1;
11976 }
11977
11978 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11979 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11980 during 4.6.0 experimental. */
11981
11982 static int
11983 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11984 {
11985 if (!cu->checked_producer)
11986 check_producer (cu);
11987
11988 return cu->producer_is_gxx_lt_4_6;
11989 }
11990
11991 /* Return the default accessibility type if it is not overriden by
11992 DW_AT_accessibility. */
11993
11994 static enum dwarf_access_attribute
11995 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11996 {
11997 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11998 {
11999 /* The default DWARF 2 accessibility for members is public, the default
12000 accessibility for inheritance is private. */
12001
12002 if (die->tag != DW_TAG_inheritance)
12003 return DW_ACCESS_public;
12004 else
12005 return DW_ACCESS_private;
12006 }
12007 else
12008 {
12009 /* DWARF 3+ defines the default accessibility a different way. The same
12010 rules apply now for DW_TAG_inheritance as for the members and it only
12011 depends on the container kind. */
12012
12013 if (die->parent->tag == DW_TAG_class_type)
12014 return DW_ACCESS_private;
12015 else
12016 return DW_ACCESS_public;
12017 }
12018 }
12019
12020 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12021 offset. If the attribute was not found return 0, otherwise return
12022 1. If it was found but could not properly be handled, set *OFFSET
12023 to 0. */
12024
12025 static int
12026 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12027 LONGEST *offset)
12028 {
12029 struct attribute *attr;
12030
12031 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12032 if (attr != NULL)
12033 {
12034 *offset = 0;
12035
12036 /* Note that we do not check for a section offset first here.
12037 This is because DW_AT_data_member_location is new in DWARF 4,
12038 so if we see it, we can assume that a constant form is really
12039 a constant and not a section offset. */
12040 if (attr_form_is_constant (attr))
12041 *offset = dwarf2_get_attr_constant_value (attr, 0);
12042 else if (attr_form_is_section_offset (attr))
12043 dwarf2_complex_location_expr_complaint ();
12044 else if (attr_form_is_block (attr))
12045 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12046 else
12047 dwarf2_complex_location_expr_complaint ();
12048
12049 return 1;
12050 }
12051
12052 return 0;
12053 }
12054
12055 /* Add an aggregate field to the field list. */
12056
12057 static void
12058 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12059 struct dwarf2_cu *cu)
12060 {
12061 struct objfile *objfile = cu->objfile;
12062 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12063 struct nextfield *new_field;
12064 struct attribute *attr;
12065 struct field *fp;
12066 const char *fieldname = "";
12067
12068 /* Allocate a new field list entry and link it in. */
12069 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12070 make_cleanup (xfree, new_field);
12071 memset (new_field, 0, sizeof (struct nextfield));
12072
12073 if (die->tag == DW_TAG_inheritance)
12074 {
12075 new_field->next = fip->baseclasses;
12076 fip->baseclasses = new_field;
12077 }
12078 else
12079 {
12080 new_field->next = fip->fields;
12081 fip->fields = new_field;
12082 }
12083 fip->nfields++;
12084
12085 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12086 if (attr)
12087 new_field->accessibility = DW_UNSND (attr);
12088 else
12089 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12090 if (new_field->accessibility != DW_ACCESS_public)
12091 fip->non_public_fields = 1;
12092
12093 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12094 if (attr)
12095 new_field->virtuality = DW_UNSND (attr);
12096 else
12097 new_field->virtuality = DW_VIRTUALITY_none;
12098
12099 fp = &new_field->field;
12100
12101 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12102 {
12103 LONGEST offset;
12104
12105 /* Data member other than a C++ static data member. */
12106
12107 /* Get type of field. */
12108 fp->type = die_type (die, cu);
12109
12110 SET_FIELD_BITPOS (*fp, 0);
12111
12112 /* Get bit size of field (zero if none). */
12113 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12114 if (attr)
12115 {
12116 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12117 }
12118 else
12119 {
12120 FIELD_BITSIZE (*fp) = 0;
12121 }
12122
12123 /* Get bit offset of field. */
12124 if (handle_data_member_location (die, cu, &offset))
12125 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12126 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12127 if (attr)
12128 {
12129 if (gdbarch_bits_big_endian (gdbarch))
12130 {
12131 /* For big endian bits, the DW_AT_bit_offset gives the
12132 additional bit offset from the MSB of the containing
12133 anonymous object to the MSB of the field. We don't
12134 have to do anything special since we don't need to
12135 know the size of the anonymous object. */
12136 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12137 }
12138 else
12139 {
12140 /* For little endian bits, compute the bit offset to the
12141 MSB of the anonymous object, subtract off the number of
12142 bits from the MSB of the field to the MSB of the
12143 object, and then subtract off the number of bits of
12144 the field itself. The result is the bit offset of
12145 the LSB of the field. */
12146 int anonymous_size;
12147 int bit_offset = DW_UNSND (attr);
12148
12149 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12150 if (attr)
12151 {
12152 /* The size of the anonymous object containing
12153 the bit field is explicit, so use the
12154 indicated size (in bytes). */
12155 anonymous_size = DW_UNSND (attr);
12156 }
12157 else
12158 {
12159 /* The size of the anonymous object containing
12160 the bit field must be inferred from the type
12161 attribute of the data member containing the
12162 bit field. */
12163 anonymous_size = TYPE_LENGTH (fp->type);
12164 }
12165 SET_FIELD_BITPOS (*fp,
12166 (FIELD_BITPOS (*fp)
12167 + anonymous_size * bits_per_byte
12168 - bit_offset - FIELD_BITSIZE (*fp)));
12169 }
12170 }
12171
12172 /* Get name of field. */
12173 fieldname = dwarf2_name (die, cu);
12174 if (fieldname == NULL)
12175 fieldname = "";
12176
12177 /* The name is already allocated along with this objfile, so we don't
12178 need to duplicate it for the type. */
12179 fp->name = fieldname;
12180
12181 /* Change accessibility for artificial fields (e.g. virtual table
12182 pointer or virtual base class pointer) to private. */
12183 if (dwarf2_attr (die, DW_AT_artificial, cu))
12184 {
12185 FIELD_ARTIFICIAL (*fp) = 1;
12186 new_field->accessibility = DW_ACCESS_private;
12187 fip->non_public_fields = 1;
12188 }
12189 }
12190 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12191 {
12192 /* C++ static member. */
12193
12194 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12195 is a declaration, but all versions of G++ as of this writing
12196 (so through at least 3.2.1) incorrectly generate
12197 DW_TAG_variable tags. */
12198
12199 const char *physname;
12200
12201 /* Get name of field. */
12202 fieldname = dwarf2_name (die, cu);
12203 if (fieldname == NULL)
12204 return;
12205
12206 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12207 if (attr
12208 /* Only create a symbol if this is an external value.
12209 new_symbol checks this and puts the value in the global symbol
12210 table, which we want. If it is not external, new_symbol
12211 will try to put the value in cu->list_in_scope which is wrong. */
12212 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12213 {
12214 /* A static const member, not much different than an enum as far as
12215 we're concerned, except that we can support more types. */
12216 new_symbol (die, NULL, cu);
12217 }
12218
12219 /* Get physical name. */
12220 physname = dwarf2_physname (fieldname, die, cu);
12221
12222 /* The name is already allocated along with this objfile, so we don't
12223 need to duplicate it for the type. */
12224 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12225 FIELD_TYPE (*fp) = die_type (die, cu);
12226 FIELD_NAME (*fp) = fieldname;
12227 }
12228 else if (die->tag == DW_TAG_inheritance)
12229 {
12230 LONGEST offset;
12231
12232 /* C++ base class field. */
12233 if (handle_data_member_location (die, cu, &offset))
12234 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12235 FIELD_BITSIZE (*fp) = 0;
12236 FIELD_TYPE (*fp) = die_type (die, cu);
12237 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12238 fip->nbaseclasses++;
12239 }
12240 }
12241
12242 /* Add a typedef defined in the scope of the FIP's class. */
12243
12244 static void
12245 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12246 struct dwarf2_cu *cu)
12247 {
12248 struct objfile *objfile = cu->objfile;
12249 struct typedef_field_list *new_field;
12250 struct attribute *attr;
12251 struct typedef_field *fp;
12252 char *fieldname = "";
12253
12254 /* Allocate a new field list entry and link it in. */
12255 new_field = xzalloc (sizeof (*new_field));
12256 make_cleanup (xfree, new_field);
12257
12258 gdb_assert (die->tag == DW_TAG_typedef);
12259
12260 fp = &new_field->field;
12261
12262 /* Get name of field. */
12263 fp->name = dwarf2_name (die, cu);
12264 if (fp->name == NULL)
12265 return;
12266
12267 fp->type = read_type_die (die, cu);
12268
12269 new_field->next = fip->typedef_field_list;
12270 fip->typedef_field_list = new_field;
12271 fip->typedef_field_list_count++;
12272 }
12273
12274 /* Create the vector of fields, and attach it to the type. */
12275
12276 static void
12277 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12278 struct dwarf2_cu *cu)
12279 {
12280 int nfields = fip->nfields;
12281
12282 /* Record the field count, allocate space for the array of fields,
12283 and create blank accessibility bitfields if necessary. */
12284 TYPE_NFIELDS (type) = nfields;
12285 TYPE_FIELDS (type) = (struct field *)
12286 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12287 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12288
12289 if (fip->non_public_fields && cu->language != language_ada)
12290 {
12291 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12292
12293 TYPE_FIELD_PRIVATE_BITS (type) =
12294 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12295 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12296
12297 TYPE_FIELD_PROTECTED_BITS (type) =
12298 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12299 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12300
12301 TYPE_FIELD_IGNORE_BITS (type) =
12302 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12303 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12304 }
12305
12306 /* If the type has baseclasses, allocate and clear a bit vector for
12307 TYPE_FIELD_VIRTUAL_BITS. */
12308 if (fip->nbaseclasses && cu->language != language_ada)
12309 {
12310 int num_bytes = B_BYTES (fip->nbaseclasses);
12311 unsigned char *pointer;
12312
12313 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12314 pointer = TYPE_ALLOC (type, num_bytes);
12315 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12316 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12317 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12318 }
12319
12320 /* Copy the saved-up fields into the field vector. Start from the head of
12321 the list, adding to the tail of the field array, so that they end up in
12322 the same order in the array in which they were added to the list. */
12323 while (nfields-- > 0)
12324 {
12325 struct nextfield *fieldp;
12326
12327 if (fip->fields)
12328 {
12329 fieldp = fip->fields;
12330 fip->fields = fieldp->next;
12331 }
12332 else
12333 {
12334 fieldp = fip->baseclasses;
12335 fip->baseclasses = fieldp->next;
12336 }
12337
12338 TYPE_FIELD (type, nfields) = fieldp->field;
12339 switch (fieldp->accessibility)
12340 {
12341 case DW_ACCESS_private:
12342 if (cu->language != language_ada)
12343 SET_TYPE_FIELD_PRIVATE (type, nfields);
12344 break;
12345
12346 case DW_ACCESS_protected:
12347 if (cu->language != language_ada)
12348 SET_TYPE_FIELD_PROTECTED (type, nfields);
12349 break;
12350
12351 case DW_ACCESS_public:
12352 break;
12353
12354 default:
12355 /* Unknown accessibility. Complain and treat it as public. */
12356 {
12357 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12358 fieldp->accessibility);
12359 }
12360 break;
12361 }
12362 if (nfields < fip->nbaseclasses)
12363 {
12364 switch (fieldp->virtuality)
12365 {
12366 case DW_VIRTUALITY_virtual:
12367 case DW_VIRTUALITY_pure_virtual:
12368 if (cu->language == language_ada)
12369 error (_("unexpected virtuality in component of Ada type"));
12370 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12371 break;
12372 }
12373 }
12374 }
12375 }
12376
12377 /* Return true if this member function is a constructor, false
12378 otherwise. */
12379
12380 static int
12381 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12382 {
12383 const char *fieldname;
12384 const char *typename;
12385 int len;
12386
12387 if (die->parent == NULL)
12388 return 0;
12389
12390 if (die->parent->tag != DW_TAG_structure_type
12391 && die->parent->tag != DW_TAG_union_type
12392 && die->parent->tag != DW_TAG_class_type)
12393 return 0;
12394
12395 fieldname = dwarf2_name (die, cu);
12396 typename = dwarf2_name (die->parent, cu);
12397 if (fieldname == NULL || typename == NULL)
12398 return 0;
12399
12400 len = strlen (fieldname);
12401 return (strncmp (fieldname, typename, len) == 0
12402 && (typename[len] == '\0' || typename[len] == '<'));
12403 }
12404
12405 /* Add a member function to the proper fieldlist. */
12406
12407 static void
12408 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12409 struct type *type, struct dwarf2_cu *cu)
12410 {
12411 struct objfile *objfile = cu->objfile;
12412 struct attribute *attr;
12413 struct fnfieldlist *flp;
12414 int i;
12415 struct fn_field *fnp;
12416 const char *fieldname;
12417 struct nextfnfield *new_fnfield;
12418 struct type *this_type;
12419 enum dwarf_access_attribute accessibility;
12420
12421 if (cu->language == language_ada)
12422 error (_("unexpected member function in Ada type"));
12423
12424 /* Get name of member function. */
12425 fieldname = dwarf2_name (die, cu);
12426 if (fieldname == NULL)
12427 return;
12428
12429 /* Look up member function name in fieldlist. */
12430 for (i = 0; i < fip->nfnfields; i++)
12431 {
12432 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12433 break;
12434 }
12435
12436 /* Create new list element if necessary. */
12437 if (i < fip->nfnfields)
12438 flp = &fip->fnfieldlists[i];
12439 else
12440 {
12441 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12442 {
12443 fip->fnfieldlists = (struct fnfieldlist *)
12444 xrealloc (fip->fnfieldlists,
12445 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12446 * sizeof (struct fnfieldlist));
12447 if (fip->nfnfields == 0)
12448 make_cleanup (free_current_contents, &fip->fnfieldlists);
12449 }
12450 flp = &fip->fnfieldlists[fip->nfnfields];
12451 flp->name = fieldname;
12452 flp->length = 0;
12453 flp->head = NULL;
12454 i = fip->nfnfields++;
12455 }
12456
12457 /* Create a new member function field and chain it to the field list
12458 entry. */
12459 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12460 make_cleanup (xfree, new_fnfield);
12461 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12462 new_fnfield->next = flp->head;
12463 flp->head = new_fnfield;
12464 flp->length++;
12465
12466 /* Fill in the member function field info. */
12467 fnp = &new_fnfield->fnfield;
12468
12469 /* Delay processing of the physname until later. */
12470 if (cu->language == language_cplus || cu->language == language_java)
12471 {
12472 add_to_method_list (type, i, flp->length - 1, fieldname,
12473 die, cu);
12474 }
12475 else
12476 {
12477 const char *physname = dwarf2_physname (fieldname, die, cu);
12478 fnp->physname = physname ? physname : "";
12479 }
12480
12481 fnp->type = alloc_type (objfile);
12482 this_type = read_type_die (die, cu);
12483 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12484 {
12485 int nparams = TYPE_NFIELDS (this_type);
12486
12487 /* TYPE is the domain of this method, and THIS_TYPE is the type
12488 of the method itself (TYPE_CODE_METHOD). */
12489 smash_to_method_type (fnp->type, type,
12490 TYPE_TARGET_TYPE (this_type),
12491 TYPE_FIELDS (this_type),
12492 TYPE_NFIELDS (this_type),
12493 TYPE_VARARGS (this_type));
12494
12495 /* Handle static member functions.
12496 Dwarf2 has no clean way to discern C++ static and non-static
12497 member functions. G++ helps GDB by marking the first
12498 parameter for non-static member functions (which is the this
12499 pointer) as artificial. We obtain this information from
12500 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12501 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12502 fnp->voffset = VOFFSET_STATIC;
12503 }
12504 else
12505 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12506 dwarf2_full_name (fieldname, die, cu));
12507
12508 /* Get fcontext from DW_AT_containing_type if present. */
12509 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12510 fnp->fcontext = die_containing_type (die, cu);
12511
12512 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12513 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12514
12515 /* Get accessibility. */
12516 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12517 if (attr)
12518 accessibility = DW_UNSND (attr);
12519 else
12520 accessibility = dwarf2_default_access_attribute (die, cu);
12521 switch (accessibility)
12522 {
12523 case DW_ACCESS_private:
12524 fnp->is_private = 1;
12525 break;
12526 case DW_ACCESS_protected:
12527 fnp->is_protected = 1;
12528 break;
12529 }
12530
12531 /* Check for artificial methods. */
12532 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12533 if (attr && DW_UNSND (attr) != 0)
12534 fnp->is_artificial = 1;
12535
12536 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12537
12538 /* Get index in virtual function table if it is a virtual member
12539 function. For older versions of GCC, this is an offset in the
12540 appropriate virtual table, as specified by DW_AT_containing_type.
12541 For everyone else, it is an expression to be evaluated relative
12542 to the object address. */
12543
12544 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12545 if (attr)
12546 {
12547 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12548 {
12549 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12550 {
12551 /* Old-style GCC. */
12552 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12553 }
12554 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12555 || (DW_BLOCK (attr)->size > 1
12556 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12557 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12558 {
12559 struct dwarf_block blk;
12560 int offset;
12561
12562 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12563 ? 1 : 2);
12564 blk.size = DW_BLOCK (attr)->size - offset;
12565 blk.data = DW_BLOCK (attr)->data + offset;
12566 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12567 if ((fnp->voffset % cu->header.addr_size) != 0)
12568 dwarf2_complex_location_expr_complaint ();
12569 else
12570 fnp->voffset /= cu->header.addr_size;
12571 fnp->voffset += 2;
12572 }
12573 else
12574 dwarf2_complex_location_expr_complaint ();
12575
12576 if (!fnp->fcontext)
12577 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12578 }
12579 else if (attr_form_is_section_offset (attr))
12580 {
12581 dwarf2_complex_location_expr_complaint ();
12582 }
12583 else
12584 {
12585 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12586 fieldname);
12587 }
12588 }
12589 else
12590 {
12591 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12592 if (attr && DW_UNSND (attr))
12593 {
12594 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12595 complaint (&symfile_complaints,
12596 _("Member function \"%s\" (offset %d) is virtual "
12597 "but the vtable offset is not specified"),
12598 fieldname, die->offset.sect_off);
12599 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12600 TYPE_CPLUS_DYNAMIC (type) = 1;
12601 }
12602 }
12603 }
12604
12605 /* Create the vector of member function fields, and attach it to the type. */
12606
12607 static void
12608 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12609 struct dwarf2_cu *cu)
12610 {
12611 struct fnfieldlist *flp;
12612 int i;
12613
12614 if (cu->language == language_ada)
12615 error (_("unexpected member functions in Ada type"));
12616
12617 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12618 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12619 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12620
12621 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12622 {
12623 struct nextfnfield *nfp = flp->head;
12624 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12625 int k;
12626
12627 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12628 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12629 fn_flp->fn_fields = (struct fn_field *)
12630 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12631 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12632 fn_flp->fn_fields[k] = nfp->fnfield;
12633 }
12634
12635 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12636 }
12637
12638 /* Returns non-zero if NAME is the name of a vtable member in CU's
12639 language, zero otherwise. */
12640 static int
12641 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12642 {
12643 static const char vptr[] = "_vptr";
12644 static const char vtable[] = "vtable";
12645
12646 /* Look for the C++ and Java forms of the vtable. */
12647 if ((cu->language == language_java
12648 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12649 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12650 && is_cplus_marker (name[sizeof (vptr) - 1])))
12651 return 1;
12652
12653 return 0;
12654 }
12655
12656 /* GCC outputs unnamed structures that are really pointers to member
12657 functions, with the ABI-specified layout. If TYPE describes
12658 such a structure, smash it into a member function type.
12659
12660 GCC shouldn't do this; it should just output pointer to member DIEs.
12661 This is GCC PR debug/28767. */
12662
12663 static void
12664 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12665 {
12666 struct type *pfn_type, *domain_type, *new_type;
12667
12668 /* Check for a structure with no name and two children. */
12669 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12670 return;
12671
12672 /* Check for __pfn and __delta members. */
12673 if (TYPE_FIELD_NAME (type, 0) == NULL
12674 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12675 || TYPE_FIELD_NAME (type, 1) == NULL
12676 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12677 return;
12678
12679 /* Find the type of the method. */
12680 pfn_type = TYPE_FIELD_TYPE (type, 0);
12681 if (pfn_type == NULL
12682 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12683 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12684 return;
12685
12686 /* Look for the "this" argument. */
12687 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12688 if (TYPE_NFIELDS (pfn_type) == 0
12689 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12690 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12691 return;
12692
12693 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12694 new_type = alloc_type (objfile);
12695 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12696 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12697 TYPE_VARARGS (pfn_type));
12698 smash_to_methodptr_type (type, new_type);
12699 }
12700
12701 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12702 (icc). */
12703
12704 static int
12705 producer_is_icc (struct dwarf2_cu *cu)
12706 {
12707 if (!cu->checked_producer)
12708 check_producer (cu);
12709
12710 return cu->producer_is_icc;
12711 }
12712
12713 /* Called when we find the DIE that starts a structure or union scope
12714 (definition) to create a type for the structure or union. Fill in
12715 the type's name and general properties; the members will not be
12716 processed until process_structure_scope.
12717
12718 NOTE: we need to call these functions regardless of whether or not the
12719 DIE has a DW_AT_name attribute, since it might be an anonymous
12720 structure or union. This gets the type entered into our set of
12721 user defined types.
12722
12723 However, if the structure is incomplete (an opaque struct/union)
12724 then suppress creating a symbol table entry for it since gdb only
12725 wants to find the one with the complete definition. Note that if
12726 it is complete, we just call new_symbol, which does it's own
12727 checking about whether the struct/union is anonymous or not (and
12728 suppresses creating a symbol table entry itself). */
12729
12730 static struct type *
12731 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12732 {
12733 struct objfile *objfile = cu->objfile;
12734 struct type *type;
12735 struct attribute *attr;
12736 const char *name;
12737
12738 /* If the definition of this type lives in .debug_types, read that type.
12739 Don't follow DW_AT_specification though, that will take us back up
12740 the chain and we want to go down. */
12741 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12742 if (attr)
12743 {
12744 type = get_DW_AT_signature_type (die, attr, cu);
12745
12746 /* The type's CU may not be the same as CU.
12747 Ensure TYPE is recorded with CU in die_type_hash. */
12748 return set_die_type (die, type, cu);
12749 }
12750
12751 type = alloc_type (objfile);
12752 INIT_CPLUS_SPECIFIC (type);
12753
12754 name = dwarf2_name (die, cu);
12755 if (name != NULL)
12756 {
12757 if (cu->language == language_cplus
12758 || cu->language == language_java)
12759 {
12760 const char *full_name = dwarf2_full_name (name, die, cu);
12761
12762 /* dwarf2_full_name might have already finished building the DIE's
12763 type. If so, there is no need to continue. */
12764 if (get_die_type (die, cu) != NULL)
12765 return get_die_type (die, cu);
12766
12767 TYPE_TAG_NAME (type) = full_name;
12768 if (die->tag == DW_TAG_structure_type
12769 || die->tag == DW_TAG_class_type)
12770 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12771 }
12772 else
12773 {
12774 /* The name is already allocated along with this objfile, so
12775 we don't need to duplicate it for the type. */
12776 TYPE_TAG_NAME (type) = name;
12777 if (die->tag == DW_TAG_class_type)
12778 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12779 }
12780 }
12781
12782 if (die->tag == DW_TAG_structure_type)
12783 {
12784 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12785 }
12786 else if (die->tag == DW_TAG_union_type)
12787 {
12788 TYPE_CODE (type) = TYPE_CODE_UNION;
12789 }
12790 else
12791 {
12792 TYPE_CODE (type) = TYPE_CODE_CLASS;
12793 }
12794
12795 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12796 TYPE_DECLARED_CLASS (type) = 1;
12797
12798 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12799 if (attr)
12800 {
12801 TYPE_LENGTH (type) = DW_UNSND (attr);
12802 }
12803 else
12804 {
12805 TYPE_LENGTH (type) = 0;
12806 }
12807
12808 if (producer_is_icc (cu))
12809 {
12810 /* ICC does not output the required DW_AT_declaration
12811 on incomplete types, but gives them a size of zero. */
12812 }
12813 else
12814 TYPE_STUB_SUPPORTED (type) = 1;
12815
12816 if (die_is_declaration (die, cu))
12817 TYPE_STUB (type) = 1;
12818 else if (attr == NULL && die->child == NULL
12819 && producer_is_realview (cu->producer))
12820 /* RealView does not output the required DW_AT_declaration
12821 on incomplete types. */
12822 TYPE_STUB (type) = 1;
12823
12824 /* We need to add the type field to the die immediately so we don't
12825 infinitely recurse when dealing with pointers to the structure
12826 type within the structure itself. */
12827 set_die_type (die, type, cu);
12828
12829 /* set_die_type should be already done. */
12830 set_descriptive_type (type, die, cu);
12831
12832 return type;
12833 }
12834
12835 /* Finish creating a structure or union type, including filling in
12836 its members and creating a symbol for it. */
12837
12838 static void
12839 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12840 {
12841 struct objfile *objfile = cu->objfile;
12842 struct die_info *child_die = die->child;
12843 struct type *type;
12844
12845 type = get_die_type (die, cu);
12846 if (type == NULL)
12847 type = read_structure_type (die, cu);
12848
12849 if (die->child != NULL && ! die_is_declaration (die, cu))
12850 {
12851 struct field_info fi;
12852 struct die_info *child_die;
12853 VEC (symbolp) *template_args = NULL;
12854 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12855
12856 memset (&fi, 0, sizeof (struct field_info));
12857
12858 child_die = die->child;
12859
12860 while (child_die && child_die->tag)
12861 {
12862 if (child_die->tag == DW_TAG_member
12863 || child_die->tag == DW_TAG_variable)
12864 {
12865 /* NOTE: carlton/2002-11-05: A C++ static data member
12866 should be a DW_TAG_member that is a declaration, but
12867 all versions of G++ as of this writing (so through at
12868 least 3.2.1) incorrectly generate DW_TAG_variable
12869 tags for them instead. */
12870 dwarf2_add_field (&fi, child_die, cu);
12871 }
12872 else if (child_die->tag == DW_TAG_subprogram)
12873 {
12874 /* C++ member function. */
12875 dwarf2_add_member_fn (&fi, child_die, type, cu);
12876 }
12877 else if (child_die->tag == DW_TAG_inheritance)
12878 {
12879 /* C++ base class field. */
12880 dwarf2_add_field (&fi, child_die, cu);
12881 }
12882 else if (child_die->tag == DW_TAG_typedef)
12883 dwarf2_add_typedef (&fi, child_die, cu);
12884 else if (child_die->tag == DW_TAG_template_type_param
12885 || child_die->tag == DW_TAG_template_value_param)
12886 {
12887 struct symbol *arg = new_symbol (child_die, NULL, cu);
12888
12889 if (arg != NULL)
12890 VEC_safe_push (symbolp, template_args, arg);
12891 }
12892
12893 child_die = sibling_die (child_die);
12894 }
12895
12896 /* Attach template arguments to type. */
12897 if (! VEC_empty (symbolp, template_args))
12898 {
12899 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12900 TYPE_N_TEMPLATE_ARGUMENTS (type)
12901 = VEC_length (symbolp, template_args);
12902 TYPE_TEMPLATE_ARGUMENTS (type)
12903 = obstack_alloc (&objfile->objfile_obstack,
12904 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12905 * sizeof (struct symbol *)));
12906 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12907 VEC_address (symbolp, template_args),
12908 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12909 * sizeof (struct symbol *)));
12910 VEC_free (symbolp, template_args);
12911 }
12912
12913 /* Attach fields and member functions to the type. */
12914 if (fi.nfields)
12915 dwarf2_attach_fields_to_type (&fi, type, cu);
12916 if (fi.nfnfields)
12917 {
12918 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12919
12920 /* Get the type which refers to the base class (possibly this
12921 class itself) which contains the vtable pointer for the current
12922 class from the DW_AT_containing_type attribute. This use of
12923 DW_AT_containing_type is a GNU extension. */
12924
12925 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12926 {
12927 struct type *t = die_containing_type (die, cu);
12928
12929 TYPE_VPTR_BASETYPE (type) = t;
12930 if (type == t)
12931 {
12932 int i;
12933
12934 /* Our own class provides vtbl ptr. */
12935 for (i = TYPE_NFIELDS (t) - 1;
12936 i >= TYPE_N_BASECLASSES (t);
12937 --i)
12938 {
12939 const char *fieldname = TYPE_FIELD_NAME (t, i);
12940
12941 if (is_vtable_name (fieldname, cu))
12942 {
12943 TYPE_VPTR_FIELDNO (type) = i;
12944 break;
12945 }
12946 }
12947
12948 /* Complain if virtual function table field not found. */
12949 if (i < TYPE_N_BASECLASSES (t))
12950 complaint (&symfile_complaints,
12951 _("virtual function table pointer "
12952 "not found when defining class '%s'"),
12953 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12954 "");
12955 }
12956 else
12957 {
12958 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12959 }
12960 }
12961 else if (cu->producer
12962 && strncmp (cu->producer,
12963 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12964 {
12965 /* The IBM XLC compiler does not provide direct indication
12966 of the containing type, but the vtable pointer is
12967 always named __vfp. */
12968
12969 int i;
12970
12971 for (i = TYPE_NFIELDS (type) - 1;
12972 i >= TYPE_N_BASECLASSES (type);
12973 --i)
12974 {
12975 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12976 {
12977 TYPE_VPTR_FIELDNO (type) = i;
12978 TYPE_VPTR_BASETYPE (type) = type;
12979 break;
12980 }
12981 }
12982 }
12983 }
12984
12985 /* Copy fi.typedef_field_list linked list elements content into the
12986 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12987 if (fi.typedef_field_list)
12988 {
12989 int i = fi.typedef_field_list_count;
12990
12991 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12992 TYPE_TYPEDEF_FIELD_ARRAY (type)
12993 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12994 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12995
12996 /* Reverse the list order to keep the debug info elements order. */
12997 while (--i >= 0)
12998 {
12999 struct typedef_field *dest, *src;
13000
13001 dest = &TYPE_TYPEDEF_FIELD (type, i);
13002 src = &fi.typedef_field_list->field;
13003 fi.typedef_field_list = fi.typedef_field_list->next;
13004 *dest = *src;
13005 }
13006 }
13007
13008 do_cleanups (back_to);
13009
13010 if (HAVE_CPLUS_STRUCT (type))
13011 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13012 }
13013
13014 quirk_gcc_member_function_pointer (type, objfile);
13015
13016 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13017 snapshots) has been known to create a die giving a declaration
13018 for a class that has, as a child, a die giving a definition for a
13019 nested class. So we have to process our children even if the
13020 current die is a declaration. Normally, of course, a declaration
13021 won't have any children at all. */
13022
13023 while (child_die != NULL && child_die->tag)
13024 {
13025 if (child_die->tag == DW_TAG_member
13026 || child_die->tag == DW_TAG_variable
13027 || child_die->tag == DW_TAG_inheritance
13028 || child_die->tag == DW_TAG_template_value_param
13029 || child_die->tag == DW_TAG_template_type_param)
13030 {
13031 /* Do nothing. */
13032 }
13033 else
13034 process_die (child_die, cu);
13035
13036 child_die = sibling_die (child_die);
13037 }
13038
13039 /* Do not consider external references. According to the DWARF standard,
13040 these DIEs are identified by the fact that they have no byte_size
13041 attribute, and a declaration attribute. */
13042 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13043 || !die_is_declaration (die, cu))
13044 new_symbol (die, type, cu);
13045 }
13046
13047 /* Given a DW_AT_enumeration_type die, set its type. We do not
13048 complete the type's fields yet, or create any symbols. */
13049
13050 static struct type *
13051 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13052 {
13053 struct objfile *objfile = cu->objfile;
13054 struct type *type;
13055 struct attribute *attr;
13056 const char *name;
13057
13058 /* If the definition of this type lives in .debug_types, read that type.
13059 Don't follow DW_AT_specification though, that will take us back up
13060 the chain and we want to go down. */
13061 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13062 if (attr)
13063 {
13064 type = get_DW_AT_signature_type (die, attr, cu);
13065
13066 /* The type's CU may not be the same as CU.
13067 Ensure TYPE is recorded with CU in die_type_hash. */
13068 return set_die_type (die, type, cu);
13069 }
13070
13071 type = alloc_type (objfile);
13072
13073 TYPE_CODE (type) = TYPE_CODE_ENUM;
13074 name = dwarf2_full_name (NULL, die, cu);
13075 if (name != NULL)
13076 TYPE_TAG_NAME (type) = name;
13077
13078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13079 if (attr)
13080 {
13081 TYPE_LENGTH (type) = DW_UNSND (attr);
13082 }
13083 else
13084 {
13085 TYPE_LENGTH (type) = 0;
13086 }
13087
13088 /* The enumeration DIE can be incomplete. In Ada, any type can be
13089 declared as private in the package spec, and then defined only
13090 inside the package body. Such types are known as Taft Amendment
13091 Types. When another package uses such a type, an incomplete DIE
13092 may be generated by the compiler. */
13093 if (die_is_declaration (die, cu))
13094 TYPE_STUB (type) = 1;
13095
13096 return set_die_type (die, type, cu);
13097 }
13098
13099 /* Given a pointer to a die which begins an enumeration, process all
13100 the dies that define the members of the enumeration, and create the
13101 symbol for the enumeration type.
13102
13103 NOTE: We reverse the order of the element list. */
13104
13105 static void
13106 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13107 {
13108 struct type *this_type;
13109
13110 this_type = get_die_type (die, cu);
13111 if (this_type == NULL)
13112 this_type = read_enumeration_type (die, cu);
13113
13114 if (die->child != NULL)
13115 {
13116 struct die_info *child_die;
13117 struct symbol *sym;
13118 struct field *fields = NULL;
13119 int num_fields = 0;
13120 int unsigned_enum = 1;
13121 const char *name;
13122 int flag_enum = 1;
13123 ULONGEST mask = 0;
13124
13125 child_die = die->child;
13126 while (child_die && child_die->tag)
13127 {
13128 if (child_die->tag != DW_TAG_enumerator)
13129 {
13130 process_die (child_die, cu);
13131 }
13132 else
13133 {
13134 name = dwarf2_name (child_die, cu);
13135 if (name)
13136 {
13137 sym = new_symbol (child_die, this_type, cu);
13138 if (SYMBOL_VALUE (sym) < 0)
13139 {
13140 unsigned_enum = 0;
13141 flag_enum = 0;
13142 }
13143 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13144 flag_enum = 0;
13145 else
13146 mask |= SYMBOL_VALUE (sym);
13147
13148 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13149 {
13150 fields = (struct field *)
13151 xrealloc (fields,
13152 (num_fields + DW_FIELD_ALLOC_CHUNK)
13153 * sizeof (struct field));
13154 }
13155
13156 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13157 FIELD_TYPE (fields[num_fields]) = NULL;
13158 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13159 FIELD_BITSIZE (fields[num_fields]) = 0;
13160
13161 num_fields++;
13162 }
13163 }
13164
13165 child_die = sibling_die (child_die);
13166 }
13167
13168 if (num_fields)
13169 {
13170 TYPE_NFIELDS (this_type) = num_fields;
13171 TYPE_FIELDS (this_type) = (struct field *)
13172 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13173 memcpy (TYPE_FIELDS (this_type), fields,
13174 sizeof (struct field) * num_fields);
13175 xfree (fields);
13176 }
13177 if (unsigned_enum)
13178 TYPE_UNSIGNED (this_type) = 1;
13179 if (flag_enum)
13180 TYPE_FLAG_ENUM (this_type) = 1;
13181 }
13182
13183 /* If we are reading an enum from a .debug_types unit, and the enum
13184 is a declaration, and the enum is not the signatured type in the
13185 unit, then we do not want to add a symbol for it. Adding a
13186 symbol would in some cases obscure the true definition of the
13187 enum, giving users an incomplete type when the definition is
13188 actually available. Note that we do not want to do this for all
13189 enums which are just declarations, because C++0x allows forward
13190 enum declarations. */
13191 if (cu->per_cu->is_debug_types
13192 && die_is_declaration (die, cu))
13193 {
13194 struct signatured_type *sig_type;
13195
13196 sig_type = (struct signatured_type *) cu->per_cu;
13197 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13198 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13199 return;
13200 }
13201
13202 new_symbol (die, this_type, cu);
13203 }
13204
13205 /* Extract all information from a DW_TAG_array_type DIE and put it in
13206 the DIE's type field. For now, this only handles one dimensional
13207 arrays. */
13208
13209 static struct type *
13210 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13211 {
13212 struct objfile *objfile = cu->objfile;
13213 struct die_info *child_die;
13214 struct type *type;
13215 struct type *element_type, *range_type, *index_type;
13216 struct type **range_types = NULL;
13217 struct attribute *attr;
13218 int ndim = 0;
13219 struct cleanup *back_to;
13220 const char *name;
13221
13222 element_type = die_type (die, cu);
13223
13224 /* The die_type call above may have already set the type for this DIE. */
13225 type = get_die_type (die, cu);
13226 if (type)
13227 return type;
13228
13229 /* Irix 6.2 native cc creates array types without children for
13230 arrays with unspecified length. */
13231 if (die->child == NULL)
13232 {
13233 index_type = objfile_type (objfile)->builtin_int;
13234 range_type = create_range_type (NULL, index_type, 0, -1);
13235 type = create_array_type (NULL, element_type, range_type);
13236 return set_die_type (die, type, cu);
13237 }
13238
13239 back_to = make_cleanup (null_cleanup, NULL);
13240 child_die = die->child;
13241 while (child_die && child_die->tag)
13242 {
13243 if (child_die->tag == DW_TAG_subrange_type)
13244 {
13245 struct type *child_type = read_type_die (child_die, cu);
13246
13247 if (child_type != NULL)
13248 {
13249 /* The range type was succesfully read. Save it for the
13250 array type creation. */
13251 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13252 {
13253 range_types = (struct type **)
13254 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13255 * sizeof (struct type *));
13256 if (ndim == 0)
13257 make_cleanup (free_current_contents, &range_types);
13258 }
13259 range_types[ndim++] = child_type;
13260 }
13261 }
13262 child_die = sibling_die (child_die);
13263 }
13264
13265 /* Dwarf2 dimensions are output from left to right, create the
13266 necessary array types in backwards order. */
13267
13268 type = element_type;
13269
13270 if (read_array_order (die, cu) == DW_ORD_col_major)
13271 {
13272 int i = 0;
13273
13274 while (i < ndim)
13275 type = create_array_type (NULL, type, range_types[i++]);
13276 }
13277 else
13278 {
13279 while (ndim-- > 0)
13280 type = create_array_type (NULL, type, range_types[ndim]);
13281 }
13282
13283 /* Understand Dwarf2 support for vector types (like they occur on
13284 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13285 array type. This is not part of the Dwarf2/3 standard yet, but a
13286 custom vendor extension. The main difference between a regular
13287 array and the vector variant is that vectors are passed by value
13288 to functions. */
13289 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13290 if (attr)
13291 make_vector_type (type);
13292
13293 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13294 implementation may choose to implement triple vectors using this
13295 attribute. */
13296 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13297 if (attr)
13298 {
13299 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13300 TYPE_LENGTH (type) = DW_UNSND (attr);
13301 else
13302 complaint (&symfile_complaints,
13303 _("DW_AT_byte_size for array type smaller "
13304 "than the total size of elements"));
13305 }
13306
13307 name = dwarf2_name (die, cu);
13308 if (name)
13309 TYPE_NAME (type) = name;
13310
13311 /* Install the type in the die. */
13312 set_die_type (die, type, cu);
13313
13314 /* set_die_type should be already done. */
13315 set_descriptive_type (type, die, cu);
13316
13317 do_cleanups (back_to);
13318
13319 return type;
13320 }
13321
13322 static enum dwarf_array_dim_ordering
13323 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13324 {
13325 struct attribute *attr;
13326
13327 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13328
13329 if (attr) return DW_SND (attr);
13330
13331 /* GNU F77 is a special case, as at 08/2004 array type info is the
13332 opposite order to the dwarf2 specification, but data is still
13333 laid out as per normal fortran.
13334
13335 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13336 version checking. */
13337
13338 if (cu->language == language_fortran
13339 && cu->producer && strstr (cu->producer, "GNU F77"))
13340 {
13341 return DW_ORD_row_major;
13342 }
13343
13344 switch (cu->language_defn->la_array_ordering)
13345 {
13346 case array_column_major:
13347 return DW_ORD_col_major;
13348 case array_row_major:
13349 default:
13350 return DW_ORD_row_major;
13351 };
13352 }
13353
13354 /* Extract all information from a DW_TAG_set_type DIE and put it in
13355 the DIE's type field. */
13356
13357 static struct type *
13358 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13359 {
13360 struct type *domain_type, *set_type;
13361 struct attribute *attr;
13362
13363 domain_type = die_type (die, cu);
13364
13365 /* The die_type call above may have already set the type for this DIE. */
13366 set_type = get_die_type (die, cu);
13367 if (set_type)
13368 return set_type;
13369
13370 set_type = create_set_type (NULL, domain_type);
13371
13372 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13373 if (attr)
13374 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13375
13376 return set_die_type (die, set_type, cu);
13377 }
13378
13379 /* A helper for read_common_block that creates a locexpr baton.
13380 SYM is the symbol which we are marking as computed.
13381 COMMON_DIE is the DIE for the common block.
13382 COMMON_LOC is the location expression attribute for the common
13383 block itself.
13384 MEMBER_LOC is the location expression attribute for the particular
13385 member of the common block that we are processing.
13386 CU is the CU from which the above come. */
13387
13388 static void
13389 mark_common_block_symbol_computed (struct symbol *sym,
13390 struct die_info *common_die,
13391 struct attribute *common_loc,
13392 struct attribute *member_loc,
13393 struct dwarf2_cu *cu)
13394 {
13395 struct objfile *objfile = dwarf2_per_objfile->objfile;
13396 struct dwarf2_locexpr_baton *baton;
13397 gdb_byte *ptr;
13398 unsigned int cu_off;
13399 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13400 LONGEST offset = 0;
13401
13402 gdb_assert (common_loc && member_loc);
13403 gdb_assert (attr_form_is_block (common_loc));
13404 gdb_assert (attr_form_is_block (member_loc)
13405 || attr_form_is_constant (member_loc));
13406
13407 baton = obstack_alloc (&objfile->objfile_obstack,
13408 sizeof (struct dwarf2_locexpr_baton));
13409 baton->per_cu = cu->per_cu;
13410 gdb_assert (baton->per_cu);
13411
13412 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13413
13414 if (attr_form_is_constant (member_loc))
13415 {
13416 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13417 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13418 }
13419 else
13420 baton->size += DW_BLOCK (member_loc)->size;
13421
13422 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13423 baton->data = ptr;
13424
13425 *ptr++ = DW_OP_call4;
13426 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13427 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13428 ptr += 4;
13429
13430 if (attr_form_is_constant (member_loc))
13431 {
13432 *ptr++ = DW_OP_addr;
13433 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13434 ptr += cu->header.addr_size;
13435 }
13436 else
13437 {
13438 /* We have to copy the data here, because DW_OP_call4 will only
13439 use a DW_AT_location attribute. */
13440 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13441 ptr += DW_BLOCK (member_loc)->size;
13442 }
13443
13444 *ptr++ = DW_OP_plus;
13445 gdb_assert (ptr - baton->data == baton->size);
13446
13447 SYMBOL_LOCATION_BATON (sym) = baton;
13448 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13449 }
13450
13451 /* Create appropriate locally-scoped variables for all the
13452 DW_TAG_common_block entries. Also create a struct common_block
13453 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13454 is used to sepate the common blocks name namespace from regular
13455 variable names. */
13456
13457 static void
13458 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13459 {
13460 struct attribute *attr;
13461
13462 attr = dwarf2_attr (die, DW_AT_location, cu);
13463 if (attr)
13464 {
13465 /* Support the .debug_loc offsets. */
13466 if (attr_form_is_block (attr))
13467 {
13468 /* Ok. */
13469 }
13470 else if (attr_form_is_section_offset (attr))
13471 {
13472 dwarf2_complex_location_expr_complaint ();
13473 attr = NULL;
13474 }
13475 else
13476 {
13477 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13478 "common block member");
13479 attr = NULL;
13480 }
13481 }
13482
13483 if (die->child != NULL)
13484 {
13485 struct objfile *objfile = cu->objfile;
13486 struct die_info *child_die;
13487 size_t n_entries = 0, size;
13488 struct common_block *common_block;
13489 struct symbol *sym;
13490
13491 for (child_die = die->child;
13492 child_die && child_die->tag;
13493 child_die = sibling_die (child_die))
13494 ++n_entries;
13495
13496 size = (sizeof (struct common_block)
13497 + (n_entries - 1) * sizeof (struct symbol *));
13498 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13499 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13500 common_block->n_entries = 0;
13501
13502 for (child_die = die->child;
13503 child_die && child_die->tag;
13504 child_die = sibling_die (child_die))
13505 {
13506 /* Create the symbol in the DW_TAG_common_block block in the current
13507 symbol scope. */
13508 sym = new_symbol (child_die, NULL, cu);
13509 if (sym != NULL)
13510 {
13511 struct attribute *member_loc;
13512
13513 common_block->contents[common_block->n_entries++] = sym;
13514
13515 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13516 cu);
13517 if (member_loc)
13518 {
13519 /* GDB has handled this for a long time, but it is
13520 not specified by DWARF. It seems to have been
13521 emitted by gfortran at least as recently as:
13522 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13523 complaint (&symfile_complaints,
13524 _("Variable in common block has "
13525 "DW_AT_data_member_location "
13526 "- DIE at 0x%x [in module %s]"),
13527 child_die->offset.sect_off,
13528 objfile_name (cu->objfile));
13529
13530 if (attr_form_is_section_offset (member_loc))
13531 dwarf2_complex_location_expr_complaint ();
13532 else if (attr_form_is_constant (member_loc)
13533 || attr_form_is_block (member_loc))
13534 {
13535 if (attr)
13536 mark_common_block_symbol_computed (sym, die, attr,
13537 member_loc, cu);
13538 }
13539 else
13540 dwarf2_complex_location_expr_complaint ();
13541 }
13542 }
13543 }
13544
13545 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13546 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13547 }
13548 }
13549
13550 /* Create a type for a C++ namespace. */
13551
13552 static struct type *
13553 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13554 {
13555 struct objfile *objfile = cu->objfile;
13556 const char *previous_prefix, *name;
13557 int is_anonymous;
13558 struct type *type;
13559
13560 /* For extensions, reuse the type of the original namespace. */
13561 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13562 {
13563 struct die_info *ext_die;
13564 struct dwarf2_cu *ext_cu = cu;
13565
13566 ext_die = dwarf2_extension (die, &ext_cu);
13567 type = read_type_die (ext_die, ext_cu);
13568
13569 /* EXT_CU may not be the same as CU.
13570 Ensure TYPE is recorded with CU in die_type_hash. */
13571 return set_die_type (die, type, cu);
13572 }
13573
13574 name = namespace_name (die, &is_anonymous, cu);
13575
13576 /* Now build the name of the current namespace. */
13577
13578 previous_prefix = determine_prefix (die, cu);
13579 if (previous_prefix[0] != '\0')
13580 name = typename_concat (&objfile->objfile_obstack,
13581 previous_prefix, name, 0, cu);
13582
13583 /* Create the type. */
13584 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13585 objfile);
13586 TYPE_NAME (type) = name;
13587 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13588
13589 return set_die_type (die, type, cu);
13590 }
13591
13592 /* Read a C++ namespace. */
13593
13594 static void
13595 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13596 {
13597 struct objfile *objfile = cu->objfile;
13598 int is_anonymous;
13599
13600 /* Add a symbol associated to this if we haven't seen the namespace
13601 before. Also, add a using directive if it's an anonymous
13602 namespace. */
13603
13604 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13605 {
13606 struct type *type;
13607
13608 type = read_type_die (die, cu);
13609 new_symbol (die, type, cu);
13610
13611 namespace_name (die, &is_anonymous, cu);
13612 if (is_anonymous)
13613 {
13614 const char *previous_prefix = determine_prefix (die, cu);
13615
13616 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13617 NULL, NULL, 0, &objfile->objfile_obstack);
13618 }
13619 }
13620
13621 if (die->child != NULL)
13622 {
13623 struct die_info *child_die = die->child;
13624
13625 while (child_die && child_die->tag)
13626 {
13627 process_die (child_die, cu);
13628 child_die = sibling_die (child_die);
13629 }
13630 }
13631 }
13632
13633 /* Read a Fortran module as type. This DIE can be only a declaration used for
13634 imported module. Still we need that type as local Fortran "use ... only"
13635 declaration imports depend on the created type in determine_prefix. */
13636
13637 static struct type *
13638 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13639 {
13640 struct objfile *objfile = cu->objfile;
13641 const char *module_name;
13642 struct type *type;
13643
13644 module_name = dwarf2_name (die, cu);
13645 if (!module_name)
13646 complaint (&symfile_complaints,
13647 _("DW_TAG_module has no name, offset 0x%x"),
13648 die->offset.sect_off);
13649 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13650
13651 /* determine_prefix uses TYPE_TAG_NAME. */
13652 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13653
13654 return set_die_type (die, type, cu);
13655 }
13656
13657 /* Read a Fortran module. */
13658
13659 static void
13660 read_module (struct die_info *die, struct dwarf2_cu *cu)
13661 {
13662 struct die_info *child_die = die->child;
13663
13664 while (child_die && child_die->tag)
13665 {
13666 process_die (child_die, cu);
13667 child_die = sibling_die (child_die);
13668 }
13669 }
13670
13671 /* Return the name of the namespace represented by DIE. Set
13672 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13673 namespace. */
13674
13675 static const char *
13676 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13677 {
13678 struct die_info *current_die;
13679 const char *name = NULL;
13680
13681 /* Loop through the extensions until we find a name. */
13682
13683 for (current_die = die;
13684 current_die != NULL;
13685 current_die = dwarf2_extension (die, &cu))
13686 {
13687 name = dwarf2_name (current_die, cu);
13688 if (name != NULL)
13689 break;
13690 }
13691
13692 /* Is it an anonymous namespace? */
13693
13694 *is_anonymous = (name == NULL);
13695 if (*is_anonymous)
13696 name = CP_ANONYMOUS_NAMESPACE_STR;
13697
13698 return name;
13699 }
13700
13701 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13702 the user defined type vector. */
13703
13704 static struct type *
13705 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13706 {
13707 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13708 struct comp_unit_head *cu_header = &cu->header;
13709 struct type *type;
13710 struct attribute *attr_byte_size;
13711 struct attribute *attr_address_class;
13712 int byte_size, addr_class;
13713 struct type *target_type;
13714
13715 target_type = die_type (die, cu);
13716
13717 /* The die_type call above may have already set the type for this DIE. */
13718 type = get_die_type (die, cu);
13719 if (type)
13720 return type;
13721
13722 type = lookup_pointer_type (target_type);
13723
13724 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13725 if (attr_byte_size)
13726 byte_size = DW_UNSND (attr_byte_size);
13727 else
13728 byte_size = cu_header->addr_size;
13729
13730 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13731 if (attr_address_class)
13732 addr_class = DW_UNSND (attr_address_class);
13733 else
13734 addr_class = DW_ADDR_none;
13735
13736 /* If the pointer size or address class is different than the
13737 default, create a type variant marked as such and set the
13738 length accordingly. */
13739 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13740 {
13741 if (gdbarch_address_class_type_flags_p (gdbarch))
13742 {
13743 int type_flags;
13744
13745 type_flags = gdbarch_address_class_type_flags
13746 (gdbarch, byte_size, addr_class);
13747 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13748 == 0);
13749 type = make_type_with_address_space (type, type_flags);
13750 }
13751 else if (TYPE_LENGTH (type) != byte_size)
13752 {
13753 complaint (&symfile_complaints,
13754 _("invalid pointer size %d"), byte_size);
13755 }
13756 else
13757 {
13758 /* Should we also complain about unhandled address classes? */
13759 }
13760 }
13761
13762 TYPE_LENGTH (type) = byte_size;
13763 return set_die_type (die, type, cu);
13764 }
13765
13766 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13767 the user defined type vector. */
13768
13769 static struct type *
13770 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13771 {
13772 struct type *type;
13773 struct type *to_type;
13774 struct type *domain;
13775
13776 to_type = die_type (die, cu);
13777 domain = die_containing_type (die, cu);
13778
13779 /* The calls above may have already set the type for this DIE. */
13780 type = get_die_type (die, cu);
13781 if (type)
13782 return type;
13783
13784 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13785 type = lookup_methodptr_type (to_type);
13786 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13787 {
13788 struct type *new_type = alloc_type (cu->objfile);
13789
13790 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13791 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13792 TYPE_VARARGS (to_type));
13793 type = lookup_methodptr_type (new_type);
13794 }
13795 else
13796 type = lookup_memberptr_type (to_type, domain);
13797
13798 return set_die_type (die, type, cu);
13799 }
13800
13801 /* Extract all information from a DW_TAG_reference_type DIE and add to
13802 the user defined type vector. */
13803
13804 static struct type *
13805 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13806 {
13807 struct comp_unit_head *cu_header = &cu->header;
13808 struct type *type, *target_type;
13809 struct attribute *attr;
13810
13811 target_type = die_type (die, cu);
13812
13813 /* The die_type call above may have already set the type for this DIE. */
13814 type = get_die_type (die, cu);
13815 if (type)
13816 return type;
13817
13818 type = lookup_reference_type (target_type);
13819 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13820 if (attr)
13821 {
13822 TYPE_LENGTH (type) = DW_UNSND (attr);
13823 }
13824 else
13825 {
13826 TYPE_LENGTH (type) = cu_header->addr_size;
13827 }
13828 return set_die_type (die, type, cu);
13829 }
13830
13831 static struct type *
13832 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13833 {
13834 struct type *base_type, *cv_type;
13835
13836 base_type = die_type (die, cu);
13837
13838 /* The die_type call above may have already set the type for this DIE. */
13839 cv_type = get_die_type (die, cu);
13840 if (cv_type)
13841 return cv_type;
13842
13843 /* In case the const qualifier is applied to an array type, the element type
13844 is so qualified, not the array type (section 6.7.3 of C99). */
13845 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13846 {
13847 struct type *el_type, *inner_array;
13848
13849 base_type = copy_type (base_type);
13850 inner_array = base_type;
13851
13852 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13853 {
13854 TYPE_TARGET_TYPE (inner_array) =
13855 copy_type (TYPE_TARGET_TYPE (inner_array));
13856 inner_array = TYPE_TARGET_TYPE (inner_array);
13857 }
13858
13859 el_type = TYPE_TARGET_TYPE (inner_array);
13860 TYPE_TARGET_TYPE (inner_array) =
13861 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13862
13863 return set_die_type (die, base_type, cu);
13864 }
13865
13866 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13867 return set_die_type (die, cv_type, cu);
13868 }
13869
13870 static struct type *
13871 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13872 {
13873 struct type *base_type, *cv_type;
13874
13875 base_type = die_type (die, cu);
13876
13877 /* The die_type call above may have already set the type for this DIE. */
13878 cv_type = get_die_type (die, cu);
13879 if (cv_type)
13880 return cv_type;
13881
13882 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13883 return set_die_type (die, cv_type, cu);
13884 }
13885
13886 /* Handle DW_TAG_restrict_type. */
13887
13888 static struct type *
13889 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13890 {
13891 struct type *base_type, *cv_type;
13892
13893 base_type = die_type (die, cu);
13894
13895 /* The die_type call above may have already set the type for this DIE. */
13896 cv_type = get_die_type (die, cu);
13897 if (cv_type)
13898 return cv_type;
13899
13900 cv_type = make_restrict_type (base_type);
13901 return set_die_type (die, cv_type, cu);
13902 }
13903
13904 /* Extract all information from a DW_TAG_string_type DIE and add to
13905 the user defined type vector. It isn't really a user defined type,
13906 but it behaves like one, with other DIE's using an AT_user_def_type
13907 attribute to reference it. */
13908
13909 static struct type *
13910 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13911 {
13912 struct objfile *objfile = cu->objfile;
13913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13914 struct type *type, *range_type, *index_type, *char_type;
13915 struct attribute *attr;
13916 unsigned int length;
13917
13918 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13919 if (attr)
13920 {
13921 length = DW_UNSND (attr);
13922 }
13923 else
13924 {
13925 /* Check for the DW_AT_byte_size attribute. */
13926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13927 if (attr)
13928 {
13929 length = DW_UNSND (attr);
13930 }
13931 else
13932 {
13933 length = 1;
13934 }
13935 }
13936
13937 index_type = objfile_type (objfile)->builtin_int;
13938 range_type = create_range_type (NULL, index_type, 1, length);
13939 char_type = language_string_char_type (cu->language_defn, gdbarch);
13940 type = create_string_type (NULL, char_type, range_type);
13941
13942 return set_die_type (die, type, cu);
13943 }
13944
13945 /* Assuming that DIE corresponds to a function, returns nonzero
13946 if the function is prototyped. */
13947
13948 static int
13949 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13950 {
13951 struct attribute *attr;
13952
13953 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13954 if (attr && (DW_UNSND (attr) != 0))
13955 return 1;
13956
13957 /* The DWARF standard implies that the DW_AT_prototyped attribute
13958 is only meaninful for C, but the concept also extends to other
13959 languages that allow unprototyped functions (Eg: Objective C).
13960 For all other languages, assume that functions are always
13961 prototyped. */
13962 if (cu->language != language_c
13963 && cu->language != language_objc
13964 && cu->language != language_opencl)
13965 return 1;
13966
13967 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13968 prototyped and unprototyped functions; default to prototyped,
13969 since that is more common in modern code (and RealView warns
13970 about unprototyped functions). */
13971 if (producer_is_realview (cu->producer))
13972 return 1;
13973
13974 return 0;
13975 }
13976
13977 /* Handle DIES due to C code like:
13978
13979 struct foo
13980 {
13981 int (*funcp)(int a, long l);
13982 int b;
13983 };
13984
13985 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13986
13987 static struct type *
13988 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13989 {
13990 struct objfile *objfile = cu->objfile;
13991 struct type *type; /* Type that this function returns. */
13992 struct type *ftype; /* Function that returns above type. */
13993 struct attribute *attr;
13994
13995 type = die_type (die, cu);
13996
13997 /* The die_type call above may have already set the type for this DIE. */
13998 ftype = get_die_type (die, cu);
13999 if (ftype)
14000 return ftype;
14001
14002 ftype = lookup_function_type (type);
14003
14004 if (prototyped_function_p (die, cu))
14005 TYPE_PROTOTYPED (ftype) = 1;
14006
14007 /* Store the calling convention in the type if it's available in
14008 the subroutine die. Otherwise set the calling convention to
14009 the default value DW_CC_normal. */
14010 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14011 if (attr)
14012 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14013 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14014 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14015 else
14016 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14017
14018 /* We need to add the subroutine type to the die immediately so
14019 we don't infinitely recurse when dealing with parameters
14020 declared as the same subroutine type. */
14021 set_die_type (die, ftype, cu);
14022
14023 if (die->child != NULL)
14024 {
14025 struct type *void_type = objfile_type (objfile)->builtin_void;
14026 struct die_info *child_die;
14027 int nparams, iparams;
14028
14029 /* Count the number of parameters.
14030 FIXME: GDB currently ignores vararg functions, but knows about
14031 vararg member functions. */
14032 nparams = 0;
14033 child_die = die->child;
14034 while (child_die && child_die->tag)
14035 {
14036 if (child_die->tag == DW_TAG_formal_parameter)
14037 nparams++;
14038 else if (child_die->tag == DW_TAG_unspecified_parameters)
14039 TYPE_VARARGS (ftype) = 1;
14040 child_die = sibling_die (child_die);
14041 }
14042
14043 /* Allocate storage for parameters and fill them in. */
14044 TYPE_NFIELDS (ftype) = nparams;
14045 TYPE_FIELDS (ftype) = (struct field *)
14046 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14047
14048 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14049 even if we error out during the parameters reading below. */
14050 for (iparams = 0; iparams < nparams; iparams++)
14051 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14052
14053 iparams = 0;
14054 child_die = die->child;
14055 while (child_die && child_die->tag)
14056 {
14057 if (child_die->tag == DW_TAG_formal_parameter)
14058 {
14059 struct type *arg_type;
14060
14061 /* DWARF version 2 has no clean way to discern C++
14062 static and non-static member functions. G++ helps
14063 GDB by marking the first parameter for non-static
14064 member functions (which is the this pointer) as
14065 artificial. We pass this information to
14066 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14067
14068 DWARF version 3 added DW_AT_object_pointer, which GCC
14069 4.5 does not yet generate. */
14070 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14071 if (attr)
14072 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14073 else
14074 {
14075 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14076
14077 /* GCC/43521: In java, the formal parameter
14078 "this" is sometimes not marked with DW_AT_artificial. */
14079 if (cu->language == language_java)
14080 {
14081 const char *name = dwarf2_name (child_die, cu);
14082
14083 if (name && !strcmp (name, "this"))
14084 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14085 }
14086 }
14087 arg_type = die_type (child_die, cu);
14088
14089 /* RealView does not mark THIS as const, which the testsuite
14090 expects. GCC marks THIS as const in method definitions,
14091 but not in the class specifications (GCC PR 43053). */
14092 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14093 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14094 {
14095 int is_this = 0;
14096 struct dwarf2_cu *arg_cu = cu;
14097 const char *name = dwarf2_name (child_die, cu);
14098
14099 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14100 if (attr)
14101 {
14102 /* If the compiler emits this, use it. */
14103 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14104 is_this = 1;
14105 }
14106 else if (name && strcmp (name, "this") == 0)
14107 /* Function definitions will have the argument names. */
14108 is_this = 1;
14109 else if (name == NULL && iparams == 0)
14110 /* Declarations may not have the names, so like
14111 elsewhere in GDB, assume an artificial first
14112 argument is "this". */
14113 is_this = 1;
14114
14115 if (is_this)
14116 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14117 arg_type, 0);
14118 }
14119
14120 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14121 iparams++;
14122 }
14123 child_die = sibling_die (child_die);
14124 }
14125 }
14126
14127 return ftype;
14128 }
14129
14130 static struct type *
14131 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14132 {
14133 struct objfile *objfile = cu->objfile;
14134 const char *name = NULL;
14135 struct type *this_type, *target_type;
14136
14137 name = dwarf2_full_name (NULL, die, cu);
14138 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14139 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14140 TYPE_NAME (this_type) = name;
14141 set_die_type (die, this_type, cu);
14142 target_type = die_type (die, cu);
14143 if (target_type != this_type)
14144 TYPE_TARGET_TYPE (this_type) = target_type;
14145 else
14146 {
14147 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14148 spec and cause infinite loops in GDB. */
14149 complaint (&symfile_complaints,
14150 _("Self-referential DW_TAG_typedef "
14151 "- DIE at 0x%x [in module %s]"),
14152 die->offset.sect_off, objfile_name (objfile));
14153 TYPE_TARGET_TYPE (this_type) = NULL;
14154 }
14155 return this_type;
14156 }
14157
14158 /* Find a representation of a given base type and install
14159 it in the TYPE field of the die. */
14160
14161 static struct type *
14162 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14163 {
14164 struct objfile *objfile = cu->objfile;
14165 struct type *type;
14166 struct attribute *attr;
14167 int encoding = 0, size = 0;
14168 const char *name;
14169 enum type_code code = TYPE_CODE_INT;
14170 int type_flags = 0;
14171 struct type *target_type = NULL;
14172
14173 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14174 if (attr)
14175 {
14176 encoding = DW_UNSND (attr);
14177 }
14178 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14179 if (attr)
14180 {
14181 size = DW_UNSND (attr);
14182 }
14183 name = dwarf2_name (die, cu);
14184 if (!name)
14185 {
14186 complaint (&symfile_complaints,
14187 _("DW_AT_name missing from DW_TAG_base_type"));
14188 }
14189
14190 switch (encoding)
14191 {
14192 case DW_ATE_address:
14193 /* Turn DW_ATE_address into a void * pointer. */
14194 code = TYPE_CODE_PTR;
14195 type_flags |= TYPE_FLAG_UNSIGNED;
14196 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14197 break;
14198 case DW_ATE_boolean:
14199 code = TYPE_CODE_BOOL;
14200 type_flags |= TYPE_FLAG_UNSIGNED;
14201 break;
14202 case DW_ATE_complex_float:
14203 code = TYPE_CODE_COMPLEX;
14204 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14205 break;
14206 case DW_ATE_decimal_float:
14207 code = TYPE_CODE_DECFLOAT;
14208 break;
14209 case DW_ATE_float:
14210 code = TYPE_CODE_FLT;
14211 break;
14212 case DW_ATE_signed:
14213 break;
14214 case DW_ATE_unsigned:
14215 type_flags |= TYPE_FLAG_UNSIGNED;
14216 if (cu->language == language_fortran
14217 && name
14218 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14219 code = TYPE_CODE_CHAR;
14220 break;
14221 case DW_ATE_signed_char:
14222 if (cu->language == language_ada || cu->language == language_m2
14223 || cu->language == language_pascal
14224 || cu->language == language_fortran)
14225 code = TYPE_CODE_CHAR;
14226 break;
14227 case DW_ATE_unsigned_char:
14228 if (cu->language == language_ada || cu->language == language_m2
14229 || cu->language == language_pascal
14230 || cu->language == language_fortran)
14231 code = TYPE_CODE_CHAR;
14232 type_flags |= TYPE_FLAG_UNSIGNED;
14233 break;
14234 case DW_ATE_UTF:
14235 /* We just treat this as an integer and then recognize the
14236 type by name elsewhere. */
14237 break;
14238
14239 default:
14240 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14241 dwarf_type_encoding_name (encoding));
14242 break;
14243 }
14244
14245 type = init_type (code, size, type_flags, NULL, objfile);
14246 TYPE_NAME (type) = name;
14247 TYPE_TARGET_TYPE (type) = target_type;
14248
14249 if (name && strcmp (name, "char") == 0)
14250 TYPE_NOSIGN (type) = 1;
14251
14252 return set_die_type (die, type, cu);
14253 }
14254
14255 /* Read the given DW_AT_subrange DIE. */
14256
14257 static struct type *
14258 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14259 {
14260 struct type *base_type, *orig_base_type;
14261 struct type *range_type;
14262 struct attribute *attr;
14263 LONGEST low, high;
14264 int low_default_is_valid;
14265 const char *name;
14266 LONGEST negative_mask;
14267
14268 orig_base_type = die_type (die, cu);
14269 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14270 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14271 creating the range type, but we use the result of check_typedef
14272 when examining properties of the type. */
14273 base_type = check_typedef (orig_base_type);
14274
14275 /* The die_type call above may have already set the type for this DIE. */
14276 range_type = get_die_type (die, cu);
14277 if (range_type)
14278 return range_type;
14279
14280 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14281 omitting DW_AT_lower_bound. */
14282 switch (cu->language)
14283 {
14284 case language_c:
14285 case language_cplus:
14286 low = 0;
14287 low_default_is_valid = 1;
14288 break;
14289 case language_fortran:
14290 low = 1;
14291 low_default_is_valid = 1;
14292 break;
14293 case language_d:
14294 case language_java:
14295 case language_objc:
14296 low = 0;
14297 low_default_is_valid = (cu->header.version >= 4);
14298 break;
14299 case language_ada:
14300 case language_m2:
14301 case language_pascal:
14302 low = 1;
14303 low_default_is_valid = (cu->header.version >= 4);
14304 break;
14305 default:
14306 low = 0;
14307 low_default_is_valid = 0;
14308 break;
14309 }
14310
14311 /* FIXME: For variable sized arrays either of these could be
14312 a variable rather than a constant value. We'll allow it,
14313 but we don't know how to handle it. */
14314 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14315 if (attr)
14316 low = dwarf2_get_attr_constant_value (attr, low);
14317 else if (!low_default_is_valid)
14318 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14319 "- DIE at 0x%x [in module %s]"),
14320 die->offset.sect_off, objfile_name (cu->objfile));
14321
14322 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14323 if (attr)
14324 {
14325 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14326 {
14327 /* GCC encodes arrays with unspecified or dynamic length
14328 with a DW_FORM_block1 attribute or a reference attribute.
14329 FIXME: GDB does not yet know how to handle dynamic
14330 arrays properly, treat them as arrays with unspecified
14331 length for now.
14332
14333 FIXME: jimb/2003-09-22: GDB does not really know
14334 how to handle arrays of unspecified length
14335 either; we just represent them as zero-length
14336 arrays. Choose an appropriate upper bound given
14337 the lower bound we've computed above. */
14338 high = low - 1;
14339 }
14340 else
14341 high = dwarf2_get_attr_constant_value (attr, 1);
14342 }
14343 else
14344 {
14345 attr = dwarf2_attr (die, DW_AT_count, cu);
14346 if (attr)
14347 {
14348 int count = dwarf2_get_attr_constant_value (attr, 1);
14349 high = low + count - 1;
14350 }
14351 else
14352 {
14353 /* Unspecified array length. */
14354 high = low - 1;
14355 }
14356 }
14357
14358 /* Dwarf-2 specifications explicitly allows to create subrange types
14359 without specifying a base type.
14360 In that case, the base type must be set to the type of
14361 the lower bound, upper bound or count, in that order, if any of these
14362 three attributes references an object that has a type.
14363 If no base type is found, the Dwarf-2 specifications say that
14364 a signed integer type of size equal to the size of an address should
14365 be used.
14366 For the following C code: `extern char gdb_int [];'
14367 GCC produces an empty range DIE.
14368 FIXME: muller/2010-05-28: Possible references to object for low bound,
14369 high bound or count are not yet handled by this code. */
14370 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14371 {
14372 struct objfile *objfile = cu->objfile;
14373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14374 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14375 struct type *int_type = objfile_type (objfile)->builtin_int;
14376
14377 /* Test "int", "long int", and "long long int" objfile types,
14378 and select the first one having a size above or equal to the
14379 architecture address size. */
14380 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14381 base_type = int_type;
14382 else
14383 {
14384 int_type = objfile_type (objfile)->builtin_long;
14385 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14386 base_type = int_type;
14387 else
14388 {
14389 int_type = objfile_type (objfile)->builtin_long_long;
14390 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14391 base_type = int_type;
14392 }
14393 }
14394 }
14395
14396 negative_mask =
14397 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14398 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14399 low |= negative_mask;
14400 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14401 high |= negative_mask;
14402
14403 range_type = create_range_type (NULL, orig_base_type, low, high);
14404
14405 /* Mark arrays with dynamic length at least as an array of unspecified
14406 length. GDB could check the boundary but before it gets implemented at
14407 least allow accessing the array elements. */
14408 if (attr && attr_form_is_block (attr))
14409 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14410
14411 /* Ada expects an empty array on no boundary attributes. */
14412 if (attr == NULL && cu->language != language_ada)
14413 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14414
14415 name = dwarf2_name (die, cu);
14416 if (name)
14417 TYPE_NAME (range_type) = name;
14418
14419 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14420 if (attr)
14421 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14422
14423 set_die_type (die, range_type, cu);
14424
14425 /* set_die_type should be already done. */
14426 set_descriptive_type (range_type, die, cu);
14427
14428 return range_type;
14429 }
14430
14431 static struct type *
14432 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14433 {
14434 struct type *type;
14435
14436 /* For now, we only support the C meaning of an unspecified type: void. */
14437
14438 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14439 TYPE_NAME (type) = dwarf2_name (die, cu);
14440
14441 return set_die_type (die, type, cu);
14442 }
14443
14444 /* Read a single die and all its descendents. Set the die's sibling
14445 field to NULL; set other fields in the die correctly, and set all
14446 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14447 location of the info_ptr after reading all of those dies. PARENT
14448 is the parent of the die in question. */
14449
14450 static struct die_info *
14451 read_die_and_children (const struct die_reader_specs *reader,
14452 const gdb_byte *info_ptr,
14453 const gdb_byte **new_info_ptr,
14454 struct die_info *parent)
14455 {
14456 struct die_info *die;
14457 const gdb_byte *cur_ptr;
14458 int has_children;
14459
14460 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14461 if (die == NULL)
14462 {
14463 *new_info_ptr = cur_ptr;
14464 return NULL;
14465 }
14466 store_in_ref_table (die, reader->cu);
14467
14468 if (has_children)
14469 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14470 else
14471 {
14472 die->child = NULL;
14473 *new_info_ptr = cur_ptr;
14474 }
14475
14476 die->sibling = NULL;
14477 die->parent = parent;
14478 return die;
14479 }
14480
14481 /* Read a die, all of its descendents, and all of its siblings; set
14482 all of the fields of all of the dies correctly. Arguments are as
14483 in read_die_and_children. */
14484
14485 static struct die_info *
14486 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14487 const gdb_byte *info_ptr,
14488 const gdb_byte **new_info_ptr,
14489 struct die_info *parent)
14490 {
14491 struct die_info *first_die, *last_sibling;
14492 const gdb_byte *cur_ptr;
14493
14494 cur_ptr = info_ptr;
14495 first_die = last_sibling = NULL;
14496
14497 while (1)
14498 {
14499 struct die_info *die
14500 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14501
14502 if (die == NULL)
14503 {
14504 *new_info_ptr = cur_ptr;
14505 return first_die;
14506 }
14507
14508 if (!first_die)
14509 first_die = die;
14510 else
14511 last_sibling->sibling = die;
14512
14513 last_sibling = die;
14514 }
14515 }
14516
14517 /* Read a die, all of its descendents, and all of its siblings; set
14518 all of the fields of all of the dies correctly. Arguments are as
14519 in read_die_and_children.
14520 This the main entry point for reading a DIE and all its children. */
14521
14522 static struct die_info *
14523 read_die_and_siblings (const struct die_reader_specs *reader,
14524 const gdb_byte *info_ptr,
14525 const gdb_byte **new_info_ptr,
14526 struct die_info *parent)
14527 {
14528 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14529 new_info_ptr, parent);
14530
14531 if (dwarf2_die_debug)
14532 {
14533 fprintf_unfiltered (gdb_stdlog,
14534 "Read die from %s@0x%x of %s:\n",
14535 get_section_name (reader->die_section),
14536 (unsigned) (info_ptr - reader->die_section->buffer),
14537 bfd_get_filename (reader->abfd));
14538 dump_die (die, dwarf2_die_debug);
14539 }
14540
14541 return die;
14542 }
14543
14544 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14545 attributes.
14546 The caller is responsible for filling in the extra attributes
14547 and updating (*DIEP)->num_attrs.
14548 Set DIEP to point to a newly allocated die with its information,
14549 except for its child, sibling, and parent fields.
14550 Set HAS_CHILDREN to tell whether the die has children or not. */
14551
14552 static const gdb_byte *
14553 read_full_die_1 (const struct die_reader_specs *reader,
14554 struct die_info **diep, const gdb_byte *info_ptr,
14555 int *has_children, int num_extra_attrs)
14556 {
14557 unsigned int abbrev_number, bytes_read, i;
14558 sect_offset offset;
14559 struct abbrev_info *abbrev;
14560 struct die_info *die;
14561 struct dwarf2_cu *cu = reader->cu;
14562 bfd *abfd = reader->abfd;
14563
14564 offset.sect_off = info_ptr - reader->buffer;
14565 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14566 info_ptr += bytes_read;
14567 if (!abbrev_number)
14568 {
14569 *diep = NULL;
14570 *has_children = 0;
14571 return info_ptr;
14572 }
14573
14574 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14575 if (!abbrev)
14576 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14577 abbrev_number,
14578 bfd_get_filename (abfd));
14579
14580 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14581 die->offset = offset;
14582 die->tag = abbrev->tag;
14583 die->abbrev = abbrev_number;
14584
14585 /* Make the result usable.
14586 The caller needs to update num_attrs after adding the extra
14587 attributes. */
14588 die->num_attrs = abbrev->num_attrs;
14589
14590 for (i = 0; i < abbrev->num_attrs; ++i)
14591 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14592 info_ptr);
14593
14594 *diep = die;
14595 *has_children = abbrev->has_children;
14596 return info_ptr;
14597 }
14598
14599 /* Read a die and all its attributes.
14600 Set DIEP to point to a newly allocated die with its information,
14601 except for its child, sibling, and parent fields.
14602 Set HAS_CHILDREN to tell whether the die has children or not. */
14603
14604 static const gdb_byte *
14605 read_full_die (const struct die_reader_specs *reader,
14606 struct die_info **diep, const gdb_byte *info_ptr,
14607 int *has_children)
14608 {
14609 const gdb_byte *result;
14610
14611 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14612
14613 if (dwarf2_die_debug)
14614 {
14615 fprintf_unfiltered (gdb_stdlog,
14616 "Read die from %s@0x%x of %s:\n",
14617 get_section_name (reader->die_section),
14618 (unsigned) (info_ptr - reader->die_section->buffer),
14619 bfd_get_filename (reader->abfd));
14620 dump_die (*diep, dwarf2_die_debug);
14621 }
14622
14623 return result;
14624 }
14625 \f
14626 /* Abbreviation tables.
14627
14628 In DWARF version 2, the description of the debugging information is
14629 stored in a separate .debug_abbrev section. Before we read any
14630 dies from a section we read in all abbreviations and install them
14631 in a hash table. */
14632
14633 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14634
14635 static struct abbrev_info *
14636 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14637 {
14638 struct abbrev_info *abbrev;
14639
14640 abbrev = (struct abbrev_info *)
14641 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14642 memset (abbrev, 0, sizeof (struct abbrev_info));
14643 return abbrev;
14644 }
14645
14646 /* Add an abbreviation to the table. */
14647
14648 static void
14649 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14650 unsigned int abbrev_number,
14651 struct abbrev_info *abbrev)
14652 {
14653 unsigned int hash_number;
14654
14655 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14656 abbrev->next = abbrev_table->abbrevs[hash_number];
14657 abbrev_table->abbrevs[hash_number] = abbrev;
14658 }
14659
14660 /* Look up an abbrev in the table.
14661 Returns NULL if the abbrev is not found. */
14662
14663 static struct abbrev_info *
14664 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14665 unsigned int abbrev_number)
14666 {
14667 unsigned int hash_number;
14668 struct abbrev_info *abbrev;
14669
14670 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14671 abbrev = abbrev_table->abbrevs[hash_number];
14672
14673 while (abbrev)
14674 {
14675 if (abbrev->number == abbrev_number)
14676 return abbrev;
14677 abbrev = abbrev->next;
14678 }
14679 return NULL;
14680 }
14681
14682 /* Read in an abbrev table. */
14683
14684 static struct abbrev_table *
14685 abbrev_table_read_table (struct dwarf2_section_info *section,
14686 sect_offset offset)
14687 {
14688 struct objfile *objfile = dwarf2_per_objfile->objfile;
14689 bfd *abfd = get_section_bfd_owner (section);
14690 struct abbrev_table *abbrev_table;
14691 const gdb_byte *abbrev_ptr;
14692 struct abbrev_info *cur_abbrev;
14693 unsigned int abbrev_number, bytes_read, abbrev_name;
14694 unsigned int abbrev_form;
14695 struct attr_abbrev *cur_attrs;
14696 unsigned int allocated_attrs;
14697
14698 abbrev_table = XMALLOC (struct abbrev_table);
14699 abbrev_table->offset = offset;
14700 obstack_init (&abbrev_table->abbrev_obstack);
14701 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14702 (ABBREV_HASH_SIZE
14703 * sizeof (struct abbrev_info *)));
14704 memset (abbrev_table->abbrevs, 0,
14705 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14706
14707 dwarf2_read_section (objfile, section);
14708 abbrev_ptr = section->buffer + offset.sect_off;
14709 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14710 abbrev_ptr += bytes_read;
14711
14712 allocated_attrs = ATTR_ALLOC_CHUNK;
14713 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14714
14715 /* Loop until we reach an abbrev number of 0. */
14716 while (abbrev_number)
14717 {
14718 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14719
14720 /* read in abbrev header */
14721 cur_abbrev->number = abbrev_number;
14722 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14723 abbrev_ptr += bytes_read;
14724 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14725 abbrev_ptr += 1;
14726
14727 /* now read in declarations */
14728 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14729 abbrev_ptr += bytes_read;
14730 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14731 abbrev_ptr += bytes_read;
14732 while (abbrev_name)
14733 {
14734 if (cur_abbrev->num_attrs == allocated_attrs)
14735 {
14736 allocated_attrs += ATTR_ALLOC_CHUNK;
14737 cur_attrs
14738 = xrealloc (cur_attrs, (allocated_attrs
14739 * sizeof (struct attr_abbrev)));
14740 }
14741
14742 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14743 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14744 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14745 abbrev_ptr += bytes_read;
14746 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14747 abbrev_ptr += bytes_read;
14748 }
14749
14750 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14751 (cur_abbrev->num_attrs
14752 * sizeof (struct attr_abbrev)));
14753 memcpy (cur_abbrev->attrs, cur_attrs,
14754 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14755
14756 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14757
14758 /* Get next abbreviation.
14759 Under Irix6 the abbreviations for a compilation unit are not
14760 always properly terminated with an abbrev number of 0.
14761 Exit loop if we encounter an abbreviation which we have
14762 already read (which means we are about to read the abbreviations
14763 for the next compile unit) or if the end of the abbreviation
14764 table is reached. */
14765 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14766 break;
14767 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14768 abbrev_ptr += bytes_read;
14769 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14770 break;
14771 }
14772
14773 xfree (cur_attrs);
14774 return abbrev_table;
14775 }
14776
14777 /* Free the resources held by ABBREV_TABLE. */
14778
14779 static void
14780 abbrev_table_free (struct abbrev_table *abbrev_table)
14781 {
14782 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14783 xfree (abbrev_table);
14784 }
14785
14786 /* Same as abbrev_table_free but as a cleanup.
14787 We pass in a pointer to the pointer to the table so that we can
14788 set the pointer to NULL when we're done. It also simplifies
14789 build_type_unit_groups. */
14790
14791 static void
14792 abbrev_table_free_cleanup (void *table_ptr)
14793 {
14794 struct abbrev_table **abbrev_table_ptr = table_ptr;
14795
14796 if (*abbrev_table_ptr != NULL)
14797 abbrev_table_free (*abbrev_table_ptr);
14798 *abbrev_table_ptr = NULL;
14799 }
14800
14801 /* Read the abbrev table for CU from ABBREV_SECTION. */
14802
14803 static void
14804 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14805 struct dwarf2_section_info *abbrev_section)
14806 {
14807 cu->abbrev_table =
14808 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14809 }
14810
14811 /* Release the memory used by the abbrev table for a compilation unit. */
14812
14813 static void
14814 dwarf2_free_abbrev_table (void *ptr_to_cu)
14815 {
14816 struct dwarf2_cu *cu = ptr_to_cu;
14817
14818 if (cu->abbrev_table != NULL)
14819 abbrev_table_free (cu->abbrev_table);
14820 /* Set this to NULL so that we SEGV if we try to read it later,
14821 and also because free_comp_unit verifies this is NULL. */
14822 cu->abbrev_table = NULL;
14823 }
14824 \f
14825 /* Returns nonzero if TAG represents a type that we might generate a partial
14826 symbol for. */
14827
14828 static int
14829 is_type_tag_for_partial (int tag)
14830 {
14831 switch (tag)
14832 {
14833 #if 0
14834 /* Some types that would be reasonable to generate partial symbols for,
14835 that we don't at present. */
14836 case DW_TAG_array_type:
14837 case DW_TAG_file_type:
14838 case DW_TAG_ptr_to_member_type:
14839 case DW_TAG_set_type:
14840 case DW_TAG_string_type:
14841 case DW_TAG_subroutine_type:
14842 #endif
14843 case DW_TAG_base_type:
14844 case DW_TAG_class_type:
14845 case DW_TAG_interface_type:
14846 case DW_TAG_enumeration_type:
14847 case DW_TAG_structure_type:
14848 case DW_TAG_subrange_type:
14849 case DW_TAG_typedef:
14850 case DW_TAG_union_type:
14851 return 1;
14852 default:
14853 return 0;
14854 }
14855 }
14856
14857 /* Load all DIEs that are interesting for partial symbols into memory. */
14858
14859 static struct partial_die_info *
14860 load_partial_dies (const struct die_reader_specs *reader,
14861 const gdb_byte *info_ptr, int building_psymtab)
14862 {
14863 struct dwarf2_cu *cu = reader->cu;
14864 struct objfile *objfile = cu->objfile;
14865 struct partial_die_info *part_die;
14866 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14867 struct abbrev_info *abbrev;
14868 unsigned int bytes_read;
14869 unsigned int load_all = 0;
14870 int nesting_level = 1;
14871
14872 parent_die = NULL;
14873 last_die = NULL;
14874
14875 gdb_assert (cu->per_cu != NULL);
14876 if (cu->per_cu->load_all_dies)
14877 load_all = 1;
14878
14879 cu->partial_dies
14880 = htab_create_alloc_ex (cu->header.length / 12,
14881 partial_die_hash,
14882 partial_die_eq,
14883 NULL,
14884 &cu->comp_unit_obstack,
14885 hashtab_obstack_allocate,
14886 dummy_obstack_deallocate);
14887
14888 part_die = obstack_alloc (&cu->comp_unit_obstack,
14889 sizeof (struct partial_die_info));
14890
14891 while (1)
14892 {
14893 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14894
14895 /* A NULL abbrev means the end of a series of children. */
14896 if (abbrev == NULL)
14897 {
14898 if (--nesting_level == 0)
14899 {
14900 /* PART_DIE was probably the last thing allocated on the
14901 comp_unit_obstack, so we could call obstack_free
14902 here. We don't do that because the waste is small,
14903 and will be cleaned up when we're done with this
14904 compilation unit. This way, we're also more robust
14905 against other users of the comp_unit_obstack. */
14906 return first_die;
14907 }
14908 info_ptr += bytes_read;
14909 last_die = parent_die;
14910 parent_die = parent_die->die_parent;
14911 continue;
14912 }
14913
14914 /* Check for template arguments. We never save these; if
14915 they're seen, we just mark the parent, and go on our way. */
14916 if (parent_die != NULL
14917 && cu->language == language_cplus
14918 && (abbrev->tag == DW_TAG_template_type_param
14919 || abbrev->tag == DW_TAG_template_value_param))
14920 {
14921 parent_die->has_template_arguments = 1;
14922
14923 if (!load_all)
14924 {
14925 /* We don't need a partial DIE for the template argument. */
14926 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14927 continue;
14928 }
14929 }
14930
14931 /* We only recurse into c++ subprograms looking for template arguments.
14932 Skip their other children. */
14933 if (!load_all
14934 && cu->language == language_cplus
14935 && parent_die != NULL
14936 && parent_die->tag == DW_TAG_subprogram)
14937 {
14938 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14939 continue;
14940 }
14941
14942 /* Check whether this DIE is interesting enough to save. Normally
14943 we would not be interested in members here, but there may be
14944 later variables referencing them via DW_AT_specification (for
14945 static members). */
14946 if (!load_all
14947 && !is_type_tag_for_partial (abbrev->tag)
14948 && abbrev->tag != DW_TAG_constant
14949 && abbrev->tag != DW_TAG_enumerator
14950 && abbrev->tag != DW_TAG_subprogram
14951 && abbrev->tag != DW_TAG_lexical_block
14952 && abbrev->tag != DW_TAG_variable
14953 && abbrev->tag != DW_TAG_namespace
14954 && abbrev->tag != DW_TAG_module
14955 && abbrev->tag != DW_TAG_member
14956 && abbrev->tag != DW_TAG_imported_unit
14957 && abbrev->tag != DW_TAG_imported_declaration)
14958 {
14959 /* Otherwise we skip to the next sibling, if any. */
14960 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14961 continue;
14962 }
14963
14964 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14965 info_ptr);
14966
14967 /* This two-pass algorithm for processing partial symbols has a
14968 high cost in cache pressure. Thus, handle some simple cases
14969 here which cover the majority of C partial symbols. DIEs
14970 which neither have specification tags in them, nor could have
14971 specification tags elsewhere pointing at them, can simply be
14972 processed and discarded.
14973
14974 This segment is also optional; scan_partial_symbols and
14975 add_partial_symbol will handle these DIEs if we chain
14976 them in normally. When compilers which do not emit large
14977 quantities of duplicate debug information are more common,
14978 this code can probably be removed. */
14979
14980 /* Any complete simple types at the top level (pretty much all
14981 of them, for a language without namespaces), can be processed
14982 directly. */
14983 if (parent_die == NULL
14984 && part_die->has_specification == 0
14985 && part_die->is_declaration == 0
14986 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14987 || part_die->tag == DW_TAG_base_type
14988 || part_die->tag == DW_TAG_subrange_type))
14989 {
14990 if (building_psymtab && part_die->name != NULL)
14991 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14992 VAR_DOMAIN, LOC_TYPEDEF,
14993 &objfile->static_psymbols,
14994 0, (CORE_ADDR) 0, cu->language, objfile);
14995 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14996 continue;
14997 }
14998
14999 /* The exception for DW_TAG_typedef with has_children above is
15000 a workaround of GCC PR debug/47510. In the case of this complaint
15001 type_name_no_tag_or_error will error on such types later.
15002
15003 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15004 it could not find the child DIEs referenced later, this is checked
15005 above. In correct DWARF DW_TAG_typedef should have no children. */
15006
15007 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15008 complaint (&symfile_complaints,
15009 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15010 "- DIE at 0x%x [in module %s]"),
15011 part_die->offset.sect_off, objfile_name (objfile));
15012
15013 /* If we're at the second level, and we're an enumerator, and
15014 our parent has no specification (meaning possibly lives in a
15015 namespace elsewhere), then we can add the partial symbol now
15016 instead of queueing it. */
15017 if (part_die->tag == DW_TAG_enumerator
15018 && parent_die != NULL
15019 && parent_die->die_parent == NULL
15020 && parent_die->tag == DW_TAG_enumeration_type
15021 && parent_die->has_specification == 0)
15022 {
15023 if (part_die->name == NULL)
15024 complaint (&symfile_complaints,
15025 _("malformed enumerator DIE ignored"));
15026 else if (building_psymtab)
15027 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15028 VAR_DOMAIN, LOC_CONST,
15029 (cu->language == language_cplus
15030 || cu->language == language_java)
15031 ? &objfile->global_psymbols
15032 : &objfile->static_psymbols,
15033 0, (CORE_ADDR) 0, cu->language, objfile);
15034
15035 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15036 continue;
15037 }
15038
15039 /* We'll save this DIE so link it in. */
15040 part_die->die_parent = parent_die;
15041 part_die->die_sibling = NULL;
15042 part_die->die_child = NULL;
15043
15044 if (last_die && last_die == parent_die)
15045 last_die->die_child = part_die;
15046 else if (last_die)
15047 last_die->die_sibling = part_die;
15048
15049 last_die = part_die;
15050
15051 if (first_die == NULL)
15052 first_die = part_die;
15053
15054 /* Maybe add the DIE to the hash table. Not all DIEs that we
15055 find interesting need to be in the hash table, because we
15056 also have the parent/sibling/child chains; only those that we
15057 might refer to by offset later during partial symbol reading.
15058
15059 For now this means things that might have be the target of a
15060 DW_AT_specification, DW_AT_abstract_origin, or
15061 DW_AT_extension. DW_AT_extension will refer only to
15062 namespaces; DW_AT_abstract_origin refers to functions (and
15063 many things under the function DIE, but we do not recurse
15064 into function DIEs during partial symbol reading) and
15065 possibly variables as well; DW_AT_specification refers to
15066 declarations. Declarations ought to have the DW_AT_declaration
15067 flag. It happens that GCC forgets to put it in sometimes, but
15068 only for functions, not for types.
15069
15070 Adding more things than necessary to the hash table is harmless
15071 except for the performance cost. Adding too few will result in
15072 wasted time in find_partial_die, when we reread the compilation
15073 unit with load_all_dies set. */
15074
15075 if (load_all
15076 || abbrev->tag == DW_TAG_constant
15077 || abbrev->tag == DW_TAG_subprogram
15078 || abbrev->tag == DW_TAG_variable
15079 || abbrev->tag == DW_TAG_namespace
15080 || part_die->is_declaration)
15081 {
15082 void **slot;
15083
15084 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15085 part_die->offset.sect_off, INSERT);
15086 *slot = part_die;
15087 }
15088
15089 part_die = obstack_alloc (&cu->comp_unit_obstack,
15090 sizeof (struct partial_die_info));
15091
15092 /* For some DIEs we want to follow their children (if any). For C
15093 we have no reason to follow the children of structures; for other
15094 languages we have to, so that we can get at method physnames
15095 to infer fully qualified class names, for DW_AT_specification,
15096 and for C++ template arguments. For C++, we also look one level
15097 inside functions to find template arguments (if the name of the
15098 function does not already contain the template arguments).
15099
15100 For Ada, we need to scan the children of subprograms and lexical
15101 blocks as well because Ada allows the definition of nested
15102 entities that could be interesting for the debugger, such as
15103 nested subprograms for instance. */
15104 if (last_die->has_children
15105 && (load_all
15106 || last_die->tag == DW_TAG_namespace
15107 || last_die->tag == DW_TAG_module
15108 || last_die->tag == DW_TAG_enumeration_type
15109 || (cu->language == language_cplus
15110 && last_die->tag == DW_TAG_subprogram
15111 && (last_die->name == NULL
15112 || strchr (last_die->name, '<') == NULL))
15113 || (cu->language != language_c
15114 && (last_die->tag == DW_TAG_class_type
15115 || last_die->tag == DW_TAG_interface_type
15116 || last_die->tag == DW_TAG_structure_type
15117 || last_die->tag == DW_TAG_union_type))
15118 || (cu->language == language_ada
15119 && (last_die->tag == DW_TAG_subprogram
15120 || last_die->tag == DW_TAG_lexical_block))))
15121 {
15122 nesting_level++;
15123 parent_die = last_die;
15124 continue;
15125 }
15126
15127 /* Otherwise we skip to the next sibling, if any. */
15128 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15129
15130 /* Back to the top, do it again. */
15131 }
15132 }
15133
15134 /* Read a minimal amount of information into the minimal die structure. */
15135
15136 static const gdb_byte *
15137 read_partial_die (const struct die_reader_specs *reader,
15138 struct partial_die_info *part_die,
15139 struct abbrev_info *abbrev, unsigned int abbrev_len,
15140 const gdb_byte *info_ptr)
15141 {
15142 struct dwarf2_cu *cu = reader->cu;
15143 struct objfile *objfile = cu->objfile;
15144 const gdb_byte *buffer = reader->buffer;
15145 unsigned int i;
15146 struct attribute attr;
15147 int has_low_pc_attr = 0;
15148 int has_high_pc_attr = 0;
15149 int high_pc_relative = 0;
15150
15151 memset (part_die, 0, sizeof (struct partial_die_info));
15152
15153 part_die->offset.sect_off = info_ptr - buffer;
15154
15155 info_ptr += abbrev_len;
15156
15157 if (abbrev == NULL)
15158 return info_ptr;
15159
15160 part_die->tag = abbrev->tag;
15161 part_die->has_children = abbrev->has_children;
15162
15163 for (i = 0; i < abbrev->num_attrs; ++i)
15164 {
15165 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15166
15167 /* Store the data if it is of an attribute we want to keep in a
15168 partial symbol table. */
15169 switch (attr.name)
15170 {
15171 case DW_AT_name:
15172 switch (part_die->tag)
15173 {
15174 case DW_TAG_compile_unit:
15175 case DW_TAG_partial_unit:
15176 case DW_TAG_type_unit:
15177 /* Compilation units have a DW_AT_name that is a filename, not
15178 a source language identifier. */
15179 case DW_TAG_enumeration_type:
15180 case DW_TAG_enumerator:
15181 /* These tags always have simple identifiers already; no need
15182 to canonicalize them. */
15183 part_die->name = DW_STRING (&attr);
15184 break;
15185 default:
15186 part_die->name
15187 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15188 &objfile->objfile_obstack);
15189 break;
15190 }
15191 break;
15192 case DW_AT_linkage_name:
15193 case DW_AT_MIPS_linkage_name:
15194 /* Note that both forms of linkage name might appear. We
15195 assume they will be the same, and we only store the last
15196 one we see. */
15197 if (cu->language == language_ada)
15198 part_die->name = DW_STRING (&attr);
15199 part_die->linkage_name = DW_STRING (&attr);
15200 break;
15201 case DW_AT_low_pc:
15202 has_low_pc_attr = 1;
15203 part_die->lowpc = DW_ADDR (&attr);
15204 break;
15205 case DW_AT_high_pc:
15206 has_high_pc_attr = 1;
15207 if (attr.form == DW_FORM_addr
15208 || attr.form == DW_FORM_GNU_addr_index)
15209 part_die->highpc = DW_ADDR (&attr);
15210 else
15211 {
15212 high_pc_relative = 1;
15213 part_die->highpc = DW_UNSND (&attr);
15214 }
15215 break;
15216 case DW_AT_location:
15217 /* Support the .debug_loc offsets. */
15218 if (attr_form_is_block (&attr))
15219 {
15220 part_die->d.locdesc = DW_BLOCK (&attr);
15221 }
15222 else if (attr_form_is_section_offset (&attr))
15223 {
15224 dwarf2_complex_location_expr_complaint ();
15225 }
15226 else
15227 {
15228 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15229 "partial symbol information");
15230 }
15231 break;
15232 case DW_AT_external:
15233 part_die->is_external = DW_UNSND (&attr);
15234 break;
15235 case DW_AT_declaration:
15236 part_die->is_declaration = DW_UNSND (&attr);
15237 break;
15238 case DW_AT_type:
15239 part_die->has_type = 1;
15240 break;
15241 case DW_AT_abstract_origin:
15242 case DW_AT_specification:
15243 case DW_AT_extension:
15244 part_die->has_specification = 1;
15245 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15246 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15247 || cu->per_cu->is_dwz);
15248 break;
15249 case DW_AT_sibling:
15250 /* Ignore absolute siblings, they might point outside of
15251 the current compile unit. */
15252 if (attr.form == DW_FORM_ref_addr)
15253 complaint (&symfile_complaints,
15254 _("ignoring absolute DW_AT_sibling"));
15255 else
15256 {
15257 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15258 const gdb_byte *sibling_ptr = buffer + off;
15259
15260 if (sibling_ptr < info_ptr)
15261 complaint (&symfile_complaints,
15262 _("DW_AT_sibling points backwards"));
15263 else
15264 part_die->sibling = sibling_ptr;
15265 }
15266 break;
15267 case DW_AT_byte_size:
15268 part_die->has_byte_size = 1;
15269 break;
15270 case DW_AT_calling_convention:
15271 /* DWARF doesn't provide a way to identify a program's source-level
15272 entry point. DW_AT_calling_convention attributes are only meant
15273 to describe functions' calling conventions.
15274
15275 However, because it's a necessary piece of information in
15276 Fortran, and because DW_CC_program is the only piece of debugging
15277 information whose definition refers to a 'main program' at all,
15278 several compilers have begun marking Fortran main programs with
15279 DW_CC_program --- even when those functions use the standard
15280 calling conventions.
15281
15282 So until DWARF specifies a way to provide this information and
15283 compilers pick up the new representation, we'll support this
15284 practice. */
15285 if (DW_UNSND (&attr) == DW_CC_program
15286 && cu->language == language_fortran)
15287 {
15288 set_main_name (part_die->name);
15289
15290 /* As this DIE has a static linkage the name would be difficult
15291 to look up later. */
15292 language_of_main = language_fortran;
15293 }
15294 break;
15295 case DW_AT_inline:
15296 if (DW_UNSND (&attr) == DW_INL_inlined
15297 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15298 part_die->may_be_inlined = 1;
15299 break;
15300
15301 case DW_AT_import:
15302 if (part_die->tag == DW_TAG_imported_unit)
15303 {
15304 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15305 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15306 || cu->per_cu->is_dwz);
15307 }
15308 break;
15309
15310 default:
15311 break;
15312 }
15313 }
15314
15315 if (high_pc_relative)
15316 part_die->highpc += part_die->lowpc;
15317
15318 if (has_low_pc_attr && has_high_pc_attr)
15319 {
15320 /* When using the GNU linker, .gnu.linkonce. sections are used to
15321 eliminate duplicate copies of functions and vtables and such.
15322 The linker will arbitrarily choose one and discard the others.
15323 The AT_*_pc values for such functions refer to local labels in
15324 these sections. If the section from that file was discarded, the
15325 labels are not in the output, so the relocs get a value of 0.
15326 If this is a discarded function, mark the pc bounds as invalid,
15327 so that GDB will ignore it. */
15328 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15329 {
15330 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15331
15332 complaint (&symfile_complaints,
15333 _("DW_AT_low_pc %s is zero "
15334 "for DIE at 0x%x [in module %s]"),
15335 paddress (gdbarch, part_die->lowpc),
15336 part_die->offset.sect_off, objfile_name (objfile));
15337 }
15338 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15339 else if (part_die->lowpc >= part_die->highpc)
15340 {
15341 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15342
15343 complaint (&symfile_complaints,
15344 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15345 "for DIE at 0x%x [in module %s]"),
15346 paddress (gdbarch, part_die->lowpc),
15347 paddress (gdbarch, part_die->highpc),
15348 part_die->offset.sect_off, objfile_name (objfile));
15349 }
15350 else
15351 part_die->has_pc_info = 1;
15352 }
15353
15354 return info_ptr;
15355 }
15356
15357 /* Find a cached partial DIE at OFFSET in CU. */
15358
15359 static struct partial_die_info *
15360 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15361 {
15362 struct partial_die_info *lookup_die = NULL;
15363 struct partial_die_info part_die;
15364
15365 part_die.offset = offset;
15366 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15367 offset.sect_off);
15368
15369 return lookup_die;
15370 }
15371
15372 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15373 except in the case of .debug_types DIEs which do not reference
15374 outside their CU (they do however referencing other types via
15375 DW_FORM_ref_sig8). */
15376
15377 static struct partial_die_info *
15378 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15379 {
15380 struct objfile *objfile = cu->objfile;
15381 struct dwarf2_per_cu_data *per_cu = NULL;
15382 struct partial_die_info *pd = NULL;
15383
15384 if (offset_in_dwz == cu->per_cu->is_dwz
15385 && offset_in_cu_p (&cu->header, offset))
15386 {
15387 pd = find_partial_die_in_comp_unit (offset, cu);
15388 if (pd != NULL)
15389 return pd;
15390 /* We missed recording what we needed.
15391 Load all dies and try again. */
15392 per_cu = cu->per_cu;
15393 }
15394 else
15395 {
15396 /* TUs don't reference other CUs/TUs (except via type signatures). */
15397 if (cu->per_cu->is_debug_types)
15398 {
15399 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15400 " external reference to offset 0x%lx [in module %s].\n"),
15401 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15402 bfd_get_filename (objfile->obfd));
15403 }
15404 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15405 objfile);
15406
15407 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15408 load_partial_comp_unit (per_cu);
15409
15410 per_cu->cu->last_used = 0;
15411 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15412 }
15413
15414 /* If we didn't find it, and not all dies have been loaded,
15415 load them all and try again. */
15416
15417 if (pd == NULL && per_cu->load_all_dies == 0)
15418 {
15419 per_cu->load_all_dies = 1;
15420
15421 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15422 THIS_CU->cu may already be in use. So we can't just free it and
15423 replace its DIEs with the ones we read in. Instead, we leave those
15424 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15425 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15426 set. */
15427 load_partial_comp_unit (per_cu);
15428
15429 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15430 }
15431
15432 if (pd == NULL)
15433 internal_error (__FILE__, __LINE__,
15434 _("could not find partial DIE 0x%x "
15435 "in cache [from module %s]\n"),
15436 offset.sect_off, bfd_get_filename (objfile->obfd));
15437 return pd;
15438 }
15439
15440 /* See if we can figure out if the class lives in a namespace. We do
15441 this by looking for a member function; its demangled name will
15442 contain namespace info, if there is any. */
15443
15444 static void
15445 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15446 struct dwarf2_cu *cu)
15447 {
15448 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15449 what template types look like, because the demangler
15450 frequently doesn't give the same name as the debug info. We
15451 could fix this by only using the demangled name to get the
15452 prefix (but see comment in read_structure_type). */
15453
15454 struct partial_die_info *real_pdi;
15455 struct partial_die_info *child_pdi;
15456
15457 /* If this DIE (this DIE's specification, if any) has a parent, then
15458 we should not do this. We'll prepend the parent's fully qualified
15459 name when we create the partial symbol. */
15460
15461 real_pdi = struct_pdi;
15462 while (real_pdi->has_specification)
15463 real_pdi = find_partial_die (real_pdi->spec_offset,
15464 real_pdi->spec_is_dwz, cu);
15465
15466 if (real_pdi->die_parent != NULL)
15467 return;
15468
15469 for (child_pdi = struct_pdi->die_child;
15470 child_pdi != NULL;
15471 child_pdi = child_pdi->die_sibling)
15472 {
15473 if (child_pdi->tag == DW_TAG_subprogram
15474 && child_pdi->linkage_name != NULL)
15475 {
15476 char *actual_class_name
15477 = language_class_name_from_physname (cu->language_defn,
15478 child_pdi->linkage_name);
15479 if (actual_class_name != NULL)
15480 {
15481 struct_pdi->name
15482 = obstack_copy0 (&cu->objfile->objfile_obstack,
15483 actual_class_name,
15484 strlen (actual_class_name));
15485 xfree (actual_class_name);
15486 }
15487 break;
15488 }
15489 }
15490 }
15491
15492 /* Adjust PART_DIE before generating a symbol for it. This function
15493 may set the is_external flag or change the DIE's name. */
15494
15495 static void
15496 fixup_partial_die (struct partial_die_info *part_die,
15497 struct dwarf2_cu *cu)
15498 {
15499 /* Once we've fixed up a die, there's no point in doing so again.
15500 This also avoids a memory leak if we were to call
15501 guess_partial_die_structure_name multiple times. */
15502 if (part_die->fixup_called)
15503 return;
15504
15505 /* If we found a reference attribute and the DIE has no name, try
15506 to find a name in the referred to DIE. */
15507
15508 if (part_die->name == NULL && part_die->has_specification)
15509 {
15510 struct partial_die_info *spec_die;
15511
15512 spec_die = find_partial_die (part_die->spec_offset,
15513 part_die->spec_is_dwz, cu);
15514
15515 fixup_partial_die (spec_die, cu);
15516
15517 if (spec_die->name)
15518 {
15519 part_die->name = spec_die->name;
15520
15521 /* Copy DW_AT_external attribute if it is set. */
15522 if (spec_die->is_external)
15523 part_die->is_external = spec_die->is_external;
15524 }
15525 }
15526
15527 /* Set default names for some unnamed DIEs. */
15528
15529 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15530 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15531
15532 /* If there is no parent die to provide a namespace, and there are
15533 children, see if we can determine the namespace from their linkage
15534 name. */
15535 if (cu->language == language_cplus
15536 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15537 && part_die->die_parent == NULL
15538 && part_die->has_children
15539 && (part_die->tag == DW_TAG_class_type
15540 || part_die->tag == DW_TAG_structure_type
15541 || part_die->tag == DW_TAG_union_type))
15542 guess_partial_die_structure_name (part_die, cu);
15543
15544 /* GCC might emit a nameless struct or union that has a linkage
15545 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15546 if (part_die->name == NULL
15547 && (part_die->tag == DW_TAG_class_type
15548 || part_die->tag == DW_TAG_interface_type
15549 || part_die->tag == DW_TAG_structure_type
15550 || part_die->tag == DW_TAG_union_type)
15551 && part_die->linkage_name != NULL)
15552 {
15553 char *demangled;
15554
15555 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15556 if (demangled)
15557 {
15558 const char *base;
15559
15560 /* Strip any leading namespaces/classes, keep only the base name.
15561 DW_AT_name for named DIEs does not contain the prefixes. */
15562 base = strrchr (demangled, ':');
15563 if (base && base > demangled && base[-1] == ':')
15564 base++;
15565 else
15566 base = demangled;
15567
15568 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15569 base, strlen (base));
15570 xfree (demangled);
15571 }
15572 }
15573
15574 part_die->fixup_called = 1;
15575 }
15576
15577 /* Read an attribute value described by an attribute form. */
15578
15579 static const gdb_byte *
15580 read_attribute_value (const struct die_reader_specs *reader,
15581 struct attribute *attr, unsigned form,
15582 const gdb_byte *info_ptr)
15583 {
15584 struct dwarf2_cu *cu = reader->cu;
15585 bfd *abfd = reader->abfd;
15586 struct comp_unit_head *cu_header = &cu->header;
15587 unsigned int bytes_read;
15588 struct dwarf_block *blk;
15589
15590 attr->form = form;
15591 switch (form)
15592 {
15593 case DW_FORM_ref_addr:
15594 if (cu->header.version == 2)
15595 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15596 else
15597 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15598 &cu->header, &bytes_read);
15599 info_ptr += bytes_read;
15600 break;
15601 case DW_FORM_GNU_ref_alt:
15602 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15603 info_ptr += bytes_read;
15604 break;
15605 case DW_FORM_addr:
15606 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15607 info_ptr += bytes_read;
15608 break;
15609 case DW_FORM_block2:
15610 blk = dwarf_alloc_block (cu);
15611 blk->size = read_2_bytes (abfd, info_ptr);
15612 info_ptr += 2;
15613 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15614 info_ptr += blk->size;
15615 DW_BLOCK (attr) = blk;
15616 break;
15617 case DW_FORM_block4:
15618 blk = dwarf_alloc_block (cu);
15619 blk->size = read_4_bytes (abfd, info_ptr);
15620 info_ptr += 4;
15621 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15622 info_ptr += blk->size;
15623 DW_BLOCK (attr) = blk;
15624 break;
15625 case DW_FORM_data2:
15626 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15627 info_ptr += 2;
15628 break;
15629 case DW_FORM_data4:
15630 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15631 info_ptr += 4;
15632 break;
15633 case DW_FORM_data8:
15634 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15635 info_ptr += 8;
15636 break;
15637 case DW_FORM_sec_offset:
15638 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15639 info_ptr += bytes_read;
15640 break;
15641 case DW_FORM_string:
15642 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15643 DW_STRING_IS_CANONICAL (attr) = 0;
15644 info_ptr += bytes_read;
15645 break;
15646 case DW_FORM_strp:
15647 if (!cu->per_cu->is_dwz)
15648 {
15649 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15650 &bytes_read);
15651 DW_STRING_IS_CANONICAL (attr) = 0;
15652 info_ptr += bytes_read;
15653 break;
15654 }
15655 /* FALLTHROUGH */
15656 case DW_FORM_GNU_strp_alt:
15657 {
15658 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15659 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15660 &bytes_read);
15661
15662 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15663 DW_STRING_IS_CANONICAL (attr) = 0;
15664 info_ptr += bytes_read;
15665 }
15666 break;
15667 case DW_FORM_exprloc:
15668 case DW_FORM_block:
15669 blk = dwarf_alloc_block (cu);
15670 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15671 info_ptr += bytes_read;
15672 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15673 info_ptr += blk->size;
15674 DW_BLOCK (attr) = blk;
15675 break;
15676 case DW_FORM_block1:
15677 blk = dwarf_alloc_block (cu);
15678 blk->size = read_1_byte (abfd, info_ptr);
15679 info_ptr += 1;
15680 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15681 info_ptr += blk->size;
15682 DW_BLOCK (attr) = blk;
15683 break;
15684 case DW_FORM_data1:
15685 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15686 info_ptr += 1;
15687 break;
15688 case DW_FORM_flag:
15689 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15690 info_ptr += 1;
15691 break;
15692 case DW_FORM_flag_present:
15693 DW_UNSND (attr) = 1;
15694 break;
15695 case DW_FORM_sdata:
15696 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15697 info_ptr += bytes_read;
15698 break;
15699 case DW_FORM_udata:
15700 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15701 info_ptr += bytes_read;
15702 break;
15703 case DW_FORM_ref1:
15704 DW_UNSND (attr) = (cu->header.offset.sect_off
15705 + read_1_byte (abfd, info_ptr));
15706 info_ptr += 1;
15707 break;
15708 case DW_FORM_ref2:
15709 DW_UNSND (attr) = (cu->header.offset.sect_off
15710 + read_2_bytes (abfd, info_ptr));
15711 info_ptr += 2;
15712 break;
15713 case DW_FORM_ref4:
15714 DW_UNSND (attr) = (cu->header.offset.sect_off
15715 + read_4_bytes (abfd, info_ptr));
15716 info_ptr += 4;
15717 break;
15718 case DW_FORM_ref8:
15719 DW_UNSND (attr) = (cu->header.offset.sect_off
15720 + read_8_bytes (abfd, info_ptr));
15721 info_ptr += 8;
15722 break;
15723 case DW_FORM_ref_sig8:
15724 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15725 info_ptr += 8;
15726 break;
15727 case DW_FORM_ref_udata:
15728 DW_UNSND (attr) = (cu->header.offset.sect_off
15729 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15730 info_ptr += bytes_read;
15731 break;
15732 case DW_FORM_indirect:
15733 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15734 info_ptr += bytes_read;
15735 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15736 break;
15737 case DW_FORM_GNU_addr_index:
15738 if (reader->dwo_file == NULL)
15739 {
15740 /* For now flag a hard error.
15741 Later we can turn this into a complaint. */
15742 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15743 dwarf_form_name (form),
15744 bfd_get_filename (abfd));
15745 }
15746 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15747 info_ptr += bytes_read;
15748 break;
15749 case DW_FORM_GNU_str_index:
15750 if (reader->dwo_file == NULL)
15751 {
15752 /* For now flag a hard error.
15753 Later we can turn this into a complaint if warranted. */
15754 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15755 dwarf_form_name (form),
15756 bfd_get_filename (abfd));
15757 }
15758 {
15759 ULONGEST str_index =
15760 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15761
15762 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15763 DW_STRING_IS_CANONICAL (attr) = 0;
15764 info_ptr += bytes_read;
15765 }
15766 break;
15767 default:
15768 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15769 dwarf_form_name (form),
15770 bfd_get_filename (abfd));
15771 }
15772
15773 /* Super hack. */
15774 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15775 attr->form = DW_FORM_GNU_ref_alt;
15776
15777 /* We have seen instances where the compiler tried to emit a byte
15778 size attribute of -1 which ended up being encoded as an unsigned
15779 0xffffffff. Although 0xffffffff is technically a valid size value,
15780 an object of this size seems pretty unlikely so we can relatively
15781 safely treat these cases as if the size attribute was invalid and
15782 treat them as zero by default. */
15783 if (attr->name == DW_AT_byte_size
15784 && form == DW_FORM_data4
15785 && DW_UNSND (attr) >= 0xffffffff)
15786 {
15787 complaint
15788 (&symfile_complaints,
15789 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15790 hex_string (DW_UNSND (attr)));
15791 DW_UNSND (attr) = 0;
15792 }
15793
15794 return info_ptr;
15795 }
15796
15797 /* Read an attribute described by an abbreviated attribute. */
15798
15799 static const gdb_byte *
15800 read_attribute (const struct die_reader_specs *reader,
15801 struct attribute *attr, struct attr_abbrev *abbrev,
15802 const gdb_byte *info_ptr)
15803 {
15804 attr->name = abbrev->name;
15805 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15806 }
15807
15808 /* Read dwarf information from a buffer. */
15809
15810 static unsigned int
15811 read_1_byte (bfd *abfd, const gdb_byte *buf)
15812 {
15813 return bfd_get_8 (abfd, buf);
15814 }
15815
15816 static int
15817 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15818 {
15819 return bfd_get_signed_8 (abfd, buf);
15820 }
15821
15822 static unsigned int
15823 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15824 {
15825 return bfd_get_16 (abfd, buf);
15826 }
15827
15828 static int
15829 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15830 {
15831 return bfd_get_signed_16 (abfd, buf);
15832 }
15833
15834 static unsigned int
15835 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15836 {
15837 return bfd_get_32 (abfd, buf);
15838 }
15839
15840 static int
15841 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15842 {
15843 return bfd_get_signed_32 (abfd, buf);
15844 }
15845
15846 static ULONGEST
15847 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15848 {
15849 return bfd_get_64 (abfd, buf);
15850 }
15851
15852 static CORE_ADDR
15853 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15854 unsigned int *bytes_read)
15855 {
15856 struct comp_unit_head *cu_header = &cu->header;
15857 CORE_ADDR retval = 0;
15858
15859 if (cu_header->signed_addr_p)
15860 {
15861 switch (cu_header->addr_size)
15862 {
15863 case 2:
15864 retval = bfd_get_signed_16 (abfd, buf);
15865 break;
15866 case 4:
15867 retval = bfd_get_signed_32 (abfd, buf);
15868 break;
15869 case 8:
15870 retval = bfd_get_signed_64 (abfd, buf);
15871 break;
15872 default:
15873 internal_error (__FILE__, __LINE__,
15874 _("read_address: bad switch, signed [in module %s]"),
15875 bfd_get_filename (abfd));
15876 }
15877 }
15878 else
15879 {
15880 switch (cu_header->addr_size)
15881 {
15882 case 2:
15883 retval = bfd_get_16 (abfd, buf);
15884 break;
15885 case 4:
15886 retval = bfd_get_32 (abfd, buf);
15887 break;
15888 case 8:
15889 retval = bfd_get_64 (abfd, buf);
15890 break;
15891 default:
15892 internal_error (__FILE__, __LINE__,
15893 _("read_address: bad switch, "
15894 "unsigned [in module %s]"),
15895 bfd_get_filename (abfd));
15896 }
15897 }
15898
15899 *bytes_read = cu_header->addr_size;
15900 return retval;
15901 }
15902
15903 /* Read the initial length from a section. The (draft) DWARF 3
15904 specification allows the initial length to take up either 4 bytes
15905 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15906 bytes describe the length and all offsets will be 8 bytes in length
15907 instead of 4.
15908
15909 An older, non-standard 64-bit format is also handled by this
15910 function. The older format in question stores the initial length
15911 as an 8-byte quantity without an escape value. Lengths greater
15912 than 2^32 aren't very common which means that the initial 4 bytes
15913 is almost always zero. Since a length value of zero doesn't make
15914 sense for the 32-bit format, this initial zero can be considered to
15915 be an escape value which indicates the presence of the older 64-bit
15916 format. As written, the code can't detect (old format) lengths
15917 greater than 4GB. If it becomes necessary to handle lengths
15918 somewhat larger than 4GB, we could allow other small values (such
15919 as the non-sensical values of 1, 2, and 3) to also be used as
15920 escape values indicating the presence of the old format.
15921
15922 The value returned via bytes_read should be used to increment the
15923 relevant pointer after calling read_initial_length().
15924
15925 [ Note: read_initial_length() and read_offset() are based on the
15926 document entitled "DWARF Debugging Information Format", revision
15927 3, draft 8, dated November 19, 2001. This document was obtained
15928 from:
15929
15930 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15931
15932 This document is only a draft and is subject to change. (So beware.)
15933
15934 Details regarding the older, non-standard 64-bit format were
15935 determined empirically by examining 64-bit ELF files produced by
15936 the SGI toolchain on an IRIX 6.5 machine.
15937
15938 - Kevin, July 16, 2002
15939 ] */
15940
15941 static LONGEST
15942 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15943 {
15944 LONGEST length = bfd_get_32 (abfd, buf);
15945
15946 if (length == 0xffffffff)
15947 {
15948 length = bfd_get_64 (abfd, buf + 4);
15949 *bytes_read = 12;
15950 }
15951 else if (length == 0)
15952 {
15953 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15954 length = bfd_get_64 (abfd, buf);
15955 *bytes_read = 8;
15956 }
15957 else
15958 {
15959 *bytes_read = 4;
15960 }
15961
15962 return length;
15963 }
15964
15965 /* Cover function for read_initial_length.
15966 Returns the length of the object at BUF, and stores the size of the
15967 initial length in *BYTES_READ and stores the size that offsets will be in
15968 *OFFSET_SIZE.
15969 If the initial length size is not equivalent to that specified in
15970 CU_HEADER then issue a complaint.
15971 This is useful when reading non-comp-unit headers. */
15972
15973 static LONGEST
15974 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15975 const struct comp_unit_head *cu_header,
15976 unsigned int *bytes_read,
15977 unsigned int *offset_size)
15978 {
15979 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15980
15981 gdb_assert (cu_header->initial_length_size == 4
15982 || cu_header->initial_length_size == 8
15983 || cu_header->initial_length_size == 12);
15984
15985 if (cu_header->initial_length_size != *bytes_read)
15986 complaint (&symfile_complaints,
15987 _("intermixed 32-bit and 64-bit DWARF sections"));
15988
15989 *offset_size = (*bytes_read == 4) ? 4 : 8;
15990 return length;
15991 }
15992
15993 /* Read an offset from the data stream. The size of the offset is
15994 given by cu_header->offset_size. */
15995
15996 static LONGEST
15997 read_offset (bfd *abfd, const gdb_byte *buf,
15998 const struct comp_unit_head *cu_header,
15999 unsigned int *bytes_read)
16000 {
16001 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16002
16003 *bytes_read = cu_header->offset_size;
16004 return offset;
16005 }
16006
16007 /* Read an offset from the data stream. */
16008
16009 static LONGEST
16010 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16011 {
16012 LONGEST retval = 0;
16013
16014 switch (offset_size)
16015 {
16016 case 4:
16017 retval = bfd_get_32 (abfd, buf);
16018 break;
16019 case 8:
16020 retval = bfd_get_64 (abfd, buf);
16021 break;
16022 default:
16023 internal_error (__FILE__, __LINE__,
16024 _("read_offset_1: bad switch [in module %s]"),
16025 bfd_get_filename (abfd));
16026 }
16027
16028 return retval;
16029 }
16030
16031 static const gdb_byte *
16032 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16033 {
16034 /* If the size of a host char is 8 bits, we can return a pointer
16035 to the buffer, otherwise we have to copy the data to a buffer
16036 allocated on the temporary obstack. */
16037 gdb_assert (HOST_CHAR_BIT == 8);
16038 return buf;
16039 }
16040
16041 static const char *
16042 read_direct_string (bfd *abfd, const gdb_byte *buf,
16043 unsigned int *bytes_read_ptr)
16044 {
16045 /* If the size of a host char is 8 bits, we can return a pointer
16046 to the string, otherwise we have to copy the string to a buffer
16047 allocated on the temporary obstack. */
16048 gdb_assert (HOST_CHAR_BIT == 8);
16049 if (*buf == '\0')
16050 {
16051 *bytes_read_ptr = 1;
16052 return NULL;
16053 }
16054 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16055 return (const char *) buf;
16056 }
16057
16058 static const char *
16059 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16060 {
16061 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16062 if (dwarf2_per_objfile->str.buffer == NULL)
16063 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16064 bfd_get_filename (abfd));
16065 if (str_offset >= dwarf2_per_objfile->str.size)
16066 error (_("DW_FORM_strp pointing outside of "
16067 ".debug_str section [in module %s]"),
16068 bfd_get_filename (abfd));
16069 gdb_assert (HOST_CHAR_BIT == 8);
16070 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16071 return NULL;
16072 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16073 }
16074
16075 /* Read a string at offset STR_OFFSET in the .debug_str section from
16076 the .dwz file DWZ. Throw an error if the offset is too large. If
16077 the string consists of a single NUL byte, return NULL; otherwise
16078 return a pointer to the string. */
16079
16080 static const char *
16081 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16082 {
16083 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16084
16085 if (dwz->str.buffer == NULL)
16086 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16087 "section [in module %s]"),
16088 bfd_get_filename (dwz->dwz_bfd));
16089 if (str_offset >= dwz->str.size)
16090 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16091 ".debug_str section [in module %s]"),
16092 bfd_get_filename (dwz->dwz_bfd));
16093 gdb_assert (HOST_CHAR_BIT == 8);
16094 if (dwz->str.buffer[str_offset] == '\0')
16095 return NULL;
16096 return (const char *) (dwz->str.buffer + str_offset);
16097 }
16098
16099 static const char *
16100 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16101 const struct comp_unit_head *cu_header,
16102 unsigned int *bytes_read_ptr)
16103 {
16104 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16105
16106 return read_indirect_string_at_offset (abfd, str_offset);
16107 }
16108
16109 static ULONGEST
16110 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16111 unsigned int *bytes_read_ptr)
16112 {
16113 ULONGEST result;
16114 unsigned int num_read;
16115 int i, shift;
16116 unsigned char byte;
16117
16118 result = 0;
16119 shift = 0;
16120 num_read = 0;
16121 i = 0;
16122 while (1)
16123 {
16124 byte = bfd_get_8 (abfd, buf);
16125 buf++;
16126 num_read++;
16127 result |= ((ULONGEST) (byte & 127) << shift);
16128 if ((byte & 128) == 0)
16129 {
16130 break;
16131 }
16132 shift += 7;
16133 }
16134 *bytes_read_ptr = num_read;
16135 return result;
16136 }
16137
16138 static LONGEST
16139 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16140 unsigned int *bytes_read_ptr)
16141 {
16142 LONGEST result;
16143 int i, shift, num_read;
16144 unsigned char byte;
16145
16146 result = 0;
16147 shift = 0;
16148 num_read = 0;
16149 i = 0;
16150 while (1)
16151 {
16152 byte = bfd_get_8 (abfd, buf);
16153 buf++;
16154 num_read++;
16155 result |= ((LONGEST) (byte & 127) << shift);
16156 shift += 7;
16157 if ((byte & 128) == 0)
16158 {
16159 break;
16160 }
16161 }
16162 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16163 result |= -(((LONGEST) 1) << shift);
16164 *bytes_read_ptr = num_read;
16165 return result;
16166 }
16167
16168 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16169 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16170 ADDR_SIZE is the size of addresses from the CU header. */
16171
16172 static CORE_ADDR
16173 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16174 {
16175 struct objfile *objfile = dwarf2_per_objfile->objfile;
16176 bfd *abfd = objfile->obfd;
16177 const gdb_byte *info_ptr;
16178
16179 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16180 if (dwarf2_per_objfile->addr.buffer == NULL)
16181 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16182 objfile_name (objfile));
16183 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16184 error (_("DW_FORM_addr_index pointing outside of "
16185 ".debug_addr section [in module %s]"),
16186 objfile_name (objfile));
16187 info_ptr = (dwarf2_per_objfile->addr.buffer
16188 + addr_base + addr_index * addr_size);
16189 if (addr_size == 4)
16190 return bfd_get_32 (abfd, info_ptr);
16191 else
16192 return bfd_get_64 (abfd, info_ptr);
16193 }
16194
16195 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16196
16197 static CORE_ADDR
16198 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16199 {
16200 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16201 }
16202
16203 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16204
16205 static CORE_ADDR
16206 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16207 unsigned int *bytes_read)
16208 {
16209 bfd *abfd = cu->objfile->obfd;
16210 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16211
16212 return read_addr_index (cu, addr_index);
16213 }
16214
16215 /* Data structure to pass results from dwarf2_read_addr_index_reader
16216 back to dwarf2_read_addr_index. */
16217
16218 struct dwarf2_read_addr_index_data
16219 {
16220 ULONGEST addr_base;
16221 int addr_size;
16222 };
16223
16224 /* die_reader_func for dwarf2_read_addr_index. */
16225
16226 static void
16227 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16228 const gdb_byte *info_ptr,
16229 struct die_info *comp_unit_die,
16230 int has_children,
16231 void *data)
16232 {
16233 struct dwarf2_cu *cu = reader->cu;
16234 struct dwarf2_read_addr_index_data *aidata =
16235 (struct dwarf2_read_addr_index_data *) data;
16236
16237 aidata->addr_base = cu->addr_base;
16238 aidata->addr_size = cu->header.addr_size;
16239 }
16240
16241 /* Given an index in .debug_addr, fetch the value.
16242 NOTE: This can be called during dwarf expression evaluation,
16243 long after the debug information has been read, and thus per_cu->cu
16244 may no longer exist. */
16245
16246 CORE_ADDR
16247 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16248 unsigned int addr_index)
16249 {
16250 struct objfile *objfile = per_cu->objfile;
16251 struct dwarf2_cu *cu = per_cu->cu;
16252 ULONGEST addr_base;
16253 int addr_size;
16254
16255 /* This is intended to be called from outside this file. */
16256 dw2_setup (objfile);
16257
16258 /* We need addr_base and addr_size.
16259 If we don't have PER_CU->cu, we have to get it.
16260 Nasty, but the alternative is storing the needed info in PER_CU,
16261 which at this point doesn't seem justified: it's not clear how frequently
16262 it would get used and it would increase the size of every PER_CU.
16263 Entry points like dwarf2_per_cu_addr_size do a similar thing
16264 so we're not in uncharted territory here.
16265 Alas we need to be a bit more complicated as addr_base is contained
16266 in the DIE.
16267
16268 We don't need to read the entire CU(/TU).
16269 We just need the header and top level die.
16270
16271 IWBN to use the aging mechanism to let us lazily later discard the CU.
16272 For now we skip this optimization. */
16273
16274 if (cu != NULL)
16275 {
16276 addr_base = cu->addr_base;
16277 addr_size = cu->header.addr_size;
16278 }
16279 else
16280 {
16281 struct dwarf2_read_addr_index_data aidata;
16282
16283 /* Note: We can't use init_cutu_and_read_dies_simple here,
16284 we need addr_base. */
16285 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16286 dwarf2_read_addr_index_reader, &aidata);
16287 addr_base = aidata.addr_base;
16288 addr_size = aidata.addr_size;
16289 }
16290
16291 return read_addr_index_1 (addr_index, addr_base, addr_size);
16292 }
16293
16294 /* Given a DW_FORM_GNU_str_index, fetch the string.
16295 This is only used by the Fission support. */
16296
16297 static const char *
16298 read_str_index (const struct die_reader_specs *reader,
16299 struct dwarf2_cu *cu, ULONGEST str_index)
16300 {
16301 struct objfile *objfile = dwarf2_per_objfile->objfile;
16302 const char *dwo_name = objfile_name (objfile);
16303 bfd *abfd = objfile->obfd;
16304 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16305 struct dwarf2_section_info *str_offsets_section =
16306 &reader->dwo_file->sections.str_offsets;
16307 const gdb_byte *info_ptr;
16308 ULONGEST str_offset;
16309 static const char form_name[] = "DW_FORM_GNU_str_index";
16310
16311 dwarf2_read_section (objfile, str_section);
16312 dwarf2_read_section (objfile, str_offsets_section);
16313 if (str_section->buffer == NULL)
16314 error (_("%s used without .debug_str.dwo section"
16315 " in CU at offset 0x%lx [in module %s]"),
16316 form_name, (long) cu->header.offset.sect_off, dwo_name);
16317 if (str_offsets_section->buffer == NULL)
16318 error (_("%s used without .debug_str_offsets.dwo section"
16319 " in CU at offset 0x%lx [in module %s]"),
16320 form_name, (long) cu->header.offset.sect_off, dwo_name);
16321 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16322 error (_("%s pointing outside of .debug_str_offsets.dwo"
16323 " section in CU at offset 0x%lx [in module %s]"),
16324 form_name, (long) cu->header.offset.sect_off, dwo_name);
16325 info_ptr = (str_offsets_section->buffer
16326 + str_index * cu->header.offset_size);
16327 if (cu->header.offset_size == 4)
16328 str_offset = bfd_get_32 (abfd, info_ptr);
16329 else
16330 str_offset = bfd_get_64 (abfd, info_ptr);
16331 if (str_offset >= str_section->size)
16332 error (_("Offset from %s pointing outside of"
16333 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16334 form_name, (long) cu->header.offset.sect_off, dwo_name);
16335 return (const char *) (str_section->buffer + str_offset);
16336 }
16337
16338 /* Return the length of an LEB128 number in BUF. */
16339
16340 static int
16341 leb128_size (const gdb_byte *buf)
16342 {
16343 const gdb_byte *begin = buf;
16344 gdb_byte byte;
16345
16346 while (1)
16347 {
16348 byte = *buf++;
16349 if ((byte & 128) == 0)
16350 return buf - begin;
16351 }
16352 }
16353
16354 static void
16355 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16356 {
16357 switch (lang)
16358 {
16359 case DW_LANG_C89:
16360 case DW_LANG_C99:
16361 case DW_LANG_C:
16362 case DW_LANG_UPC:
16363 cu->language = language_c;
16364 break;
16365 case DW_LANG_C_plus_plus:
16366 cu->language = language_cplus;
16367 break;
16368 case DW_LANG_D:
16369 cu->language = language_d;
16370 break;
16371 case DW_LANG_Fortran77:
16372 case DW_LANG_Fortran90:
16373 case DW_LANG_Fortran95:
16374 cu->language = language_fortran;
16375 break;
16376 case DW_LANG_Go:
16377 cu->language = language_go;
16378 break;
16379 case DW_LANG_Mips_Assembler:
16380 cu->language = language_asm;
16381 break;
16382 case DW_LANG_Java:
16383 cu->language = language_java;
16384 break;
16385 case DW_LANG_Ada83:
16386 case DW_LANG_Ada95:
16387 cu->language = language_ada;
16388 break;
16389 case DW_LANG_Modula2:
16390 cu->language = language_m2;
16391 break;
16392 case DW_LANG_Pascal83:
16393 cu->language = language_pascal;
16394 break;
16395 case DW_LANG_ObjC:
16396 cu->language = language_objc;
16397 break;
16398 case DW_LANG_Cobol74:
16399 case DW_LANG_Cobol85:
16400 default:
16401 cu->language = language_minimal;
16402 break;
16403 }
16404 cu->language_defn = language_def (cu->language);
16405 }
16406
16407 /* Return the named attribute or NULL if not there. */
16408
16409 static struct attribute *
16410 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16411 {
16412 for (;;)
16413 {
16414 unsigned int i;
16415 struct attribute *spec = NULL;
16416
16417 for (i = 0; i < die->num_attrs; ++i)
16418 {
16419 if (die->attrs[i].name == name)
16420 return &die->attrs[i];
16421 if (die->attrs[i].name == DW_AT_specification
16422 || die->attrs[i].name == DW_AT_abstract_origin)
16423 spec = &die->attrs[i];
16424 }
16425
16426 if (!spec)
16427 break;
16428
16429 die = follow_die_ref (die, spec, &cu);
16430 }
16431
16432 return NULL;
16433 }
16434
16435 /* Return the named attribute or NULL if not there,
16436 but do not follow DW_AT_specification, etc.
16437 This is for use in contexts where we're reading .debug_types dies.
16438 Following DW_AT_specification, DW_AT_abstract_origin will take us
16439 back up the chain, and we want to go down. */
16440
16441 static struct attribute *
16442 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16443 {
16444 unsigned int i;
16445
16446 for (i = 0; i < die->num_attrs; ++i)
16447 if (die->attrs[i].name == name)
16448 return &die->attrs[i];
16449
16450 return NULL;
16451 }
16452
16453 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16454 and holds a non-zero value. This function should only be used for
16455 DW_FORM_flag or DW_FORM_flag_present attributes. */
16456
16457 static int
16458 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16459 {
16460 struct attribute *attr = dwarf2_attr (die, name, cu);
16461
16462 return (attr && DW_UNSND (attr));
16463 }
16464
16465 static int
16466 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16467 {
16468 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16469 which value is non-zero. However, we have to be careful with
16470 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16471 (via dwarf2_flag_true_p) follows this attribute. So we may
16472 end up accidently finding a declaration attribute that belongs
16473 to a different DIE referenced by the specification attribute,
16474 even though the given DIE does not have a declaration attribute. */
16475 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16476 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16477 }
16478
16479 /* Return the die giving the specification for DIE, if there is
16480 one. *SPEC_CU is the CU containing DIE on input, and the CU
16481 containing the return value on output. If there is no
16482 specification, but there is an abstract origin, that is
16483 returned. */
16484
16485 static struct die_info *
16486 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16487 {
16488 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16489 *spec_cu);
16490
16491 if (spec_attr == NULL)
16492 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16493
16494 if (spec_attr == NULL)
16495 return NULL;
16496 else
16497 return follow_die_ref (die, spec_attr, spec_cu);
16498 }
16499
16500 /* Free the line_header structure *LH, and any arrays and strings it
16501 refers to.
16502 NOTE: This is also used as a "cleanup" function. */
16503
16504 static void
16505 free_line_header (struct line_header *lh)
16506 {
16507 if (lh->standard_opcode_lengths)
16508 xfree (lh->standard_opcode_lengths);
16509
16510 /* Remember that all the lh->file_names[i].name pointers are
16511 pointers into debug_line_buffer, and don't need to be freed. */
16512 if (lh->file_names)
16513 xfree (lh->file_names);
16514
16515 /* Similarly for the include directory names. */
16516 if (lh->include_dirs)
16517 xfree (lh->include_dirs);
16518
16519 xfree (lh);
16520 }
16521
16522 /* Add an entry to LH's include directory table. */
16523
16524 static void
16525 add_include_dir (struct line_header *lh, const char *include_dir)
16526 {
16527 /* Grow the array if necessary. */
16528 if (lh->include_dirs_size == 0)
16529 {
16530 lh->include_dirs_size = 1; /* for testing */
16531 lh->include_dirs = xmalloc (lh->include_dirs_size
16532 * sizeof (*lh->include_dirs));
16533 }
16534 else if (lh->num_include_dirs >= lh->include_dirs_size)
16535 {
16536 lh->include_dirs_size *= 2;
16537 lh->include_dirs = xrealloc (lh->include_dirs,
16538 (lh->include_dirs_size
16539 * sizeof (*lh->include_dirs)));
16540 }
16541
16542 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16543 }
16544
16545 /* Add an entry to LH's file name table. */
16546
16547 static void
16548 add_file_name (struct line_header *lh,
16549 const char *name,
16550 unsigned int dir_index,
16551 unsigned int mod_time,
16552 unsigned int length)
16553 {
16554 struct file_entry *fe;
16555
16556 /* Grow the array if necessary. */
16557 if (lh->file_names_size == 0)
16558 {
16559 lh->file_names_size = 1; /* for testing */
16560 lh->file_names = xmalloc (lh->file_names_size
16561 * sizeof (*lh->file_names));
16562 }
16563 else if (lh->num_file_names >= lh->file_names_size)
16564 {
16565 lh->file_names_size *= 2;
16566 lh->file_names = xrealloc (lh->file_names,
16567 (lh->file_names_size
16568 * sizeof (*lh->file_names)));
16569 }
16570
16571 fe = &lh->file_names[lh->num_file_names++];
16572 fe->name = name;
16573 fe->dir_index = dir_index;
16574 fe->mod_time = mod_time;
16575 fe->length = length;
16576 fe->included_p = 0;
16577 fe->symtab = NULL;
16578 }
16579
16580 /* A convenience function to find the proper .debug_line section for a
16581 CU. */
16582
16583 static struct dwarf2_section_info *
16584 get_debug_line_section (struct dwarf2_cu *cu)
16585 {
16586 struct dwarf2_section_info *section;
16587
16588 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16589 DWO file. */
16590 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16591 section = &cu->dwo_unit->dwo_file->sections.line;
16592 else if (cu->per_cu->is_dwz)
16593 {
16594 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16595
16596 section = &dwz->line;
16597 }
16598 else
16599 section = &dwarf2_per_objfile->line;
16600
16601 return section;
16602 }
16603
16604 /* Read the statement program header starting at OFFSET in
16605 .debug_line, or .debug_line.dwo. Return a pointer
16606 to a struct line_header, allocated using xmalloc.
16607
16608 NOTE: the strings in the include directory and file name tables of
16609 the returned object point into the dwarf line section buffer,
16610 and must not be freed. */
16611
16612 static struct line_header *
16613 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16614 {
16615 struct cleanup *back_to;
16616 struct line_header *lh;
16617 const gdb_byte *line_ptr;
16618 unsigned int bytes_read, offset_size;
16619 int i;
16620 const char *cur_dir, *cur_file;
16621 struct dwarf2_section_info *section;
16622 bfd *abfd;
16623
16624 section = get_debug_line_section (cu);
16625 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16626 if (section->buffer == NULL)
16627 {
16628 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16629 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16630 else
16631 complaint (&symfile_complaints, _("missing .debug_line section"));
16632 return 0;
16633 }
16634
16635 /* We can't do this until we know the section is non-empty.
16636 Only then do we know we have such a section. */
16637 abfd = get_section_bfd_owner (section);
16638
16639 /* Make sure that at least there's room for the total_length field.
16640 That could be 12 bytes long, but we're just going to fudge that. */
16641 if (offset + 4 >= section->size)
16642 {
16643 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16644 return 0;
16645 }
16646
16647 lh = xmalloc (sizeof (*lh));
16648 memset (lh, 0, sizeof (*lh));
16649 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16650 (void *) lh);
16651
16652 line_ptr = section->buffer + offset;
16653
16654 /* Read in the header. */
16655 lh->total_length =
16656 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16657 &bytes_read, &offset_size);
16658 line_ptr += bytes_read;
16659 if (line_ptr + lh->total_length > (section->buffer + section->size))
16660 {
16661 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16662 do_cleanups (back_to);
16663 return 0;
16664 }
16665 lh->statement_program_end = line_ptr + lh->total_length;
16666 lh->version = read_2_bytes (abfd, line_ptr);
16667 line_ptr += 2;
16668 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16669 line_ptr += offset_size;
16670 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16671 line_ptr += 1;
16672 if (lh->version >= 4)
16673 {
16674 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16675 line_ptr += 1;
16676 }
16677 else
16678 lh->maximum_ops_per_instruction = 1;
16679
16680 if (lh->maximum_ops_per_instruction == 0)
16681 {
16682 lh->maximum_ops_per_instruction = 1;
16683 complaint (&symfile_complaints,
16684 _("invalid maximum_ops_per_instruction "
16685 "in `.debug_line' section"));
16686 }
16687
16688 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16689 line_ptr += 1;
16690 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16691 line_ptr += 1;
16692 lh->line_range = read_1_byte (abfd, line_ptr);
16693 line_ptr += 1;
16694 lh->opcode_base = read_1_byte (abfd, line_ptr);
16695 line_ptr += 1;
16696 lh->standard_opcode_lengths
16697 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16698
16699 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16700 for (i = 1; i < lh->opcode_base; ++i)
16701 {
16702 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16703 line_ptr += 1;
16704 }
16705
16706 /* Read directory table. */
16707 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16708 {
16709 line_ptr += bytes_read;
16710 add_include_dir (lh, cur_dir);
16711 }
16712 line_ptr += bytes_read;
16713
16714 /* Read file name table. */
16715 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16716 {
16717 unsigned int dir_index, mod_time, length;
16718
16719 line_ptr += bytes_read;
16720 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16721 line_ptr += bytes_read;
16722 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16723 line_ptr += bytes_read;
16724 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16725 line_ptr += bytes_read;
16726
16727 add_file_name (lh, cur_file, dir_index, mod_time, length);
16728 }
16729 line_ptr += bytes_read;
16730 lh->statement_program_start = line_ptr;
16731
16732 if (line_ptr > (section->buffer + section->size))
16733 complaint (&symfile_complaints,
16734 _("line number info header doesn't "
16735 "fit in `.debug_line' section"));
16736
16737 discard_cleanups (back_to);
16738 return lh;
16739 }
16740
16741 /* Subroutine of dwarf_decode_lines to simplify it.
16742 Return the file name of the psymtab for included file FILE_INDEX
16743 in line header LH of PST.
16744 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16745 If space for the result is malloc'd, it will be freed by a cleanup.
16746 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16747
16748 The function creates dangling cleanup registration. */
16749
16750 static const char *
16751 psymtab_include_file_name (const struct line_header *lh, int file_index,
16752 const struct partial_symtab *pst,
16753 const char *comp_dir)
16754 {
16755 const struct file_entry fe = lh->file_names [file_index];
16756 const char *include_name = fe.name;
16757 const char *include_name_to_compare = include_name;
16758 const char *dir_name = NULL;
16759 const char *pst_filename;
16760 char *copied_name = NULL;
16761 int file_is_pst;
16762
16763 if (fe.dir_index)
16764 dir_name = lh->include_dirs[fe.dir_index - 1];
16765
16766 if (!IS_ABSOLUTE_PATH (include_name)
16767 && (dir_name != NULL || comp_dir != NULL))
16768 {
16769 /* Avoid creating a duplicate psymtab for PST.
16770 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16771 Before we do the comparison, however, we need to account
16772 for DIR_NAME and COMP_DIR.
16773 First prepend dir_name (if non-NULL). If we still don't
16774 have an absolute path prepend comp_dir (if non-NULL).
16775 However, the directory we record in the include-file's
16776 psymtab does not contain COMP_DIR (to match the
16777 corresponding symtab(s)).
16778
16779 Example:
16780
16781 bash$ cd /tmp
16782 bash$ gcc -g ./hello.c
16783 include_name = "hello.c"
16784 dir_name = "."
16785 DW_AT_comp_dir = comp_dir = "/tmp"
16786 DW_AT_name = "./hello.c" */
16787
16788 if (dir_name != NULL)
16789 {
16790 char *tem = concat (dir_name, SLASH_STRING,
16791 include_name, (char *)NULL);
16792
16793 make_cleanup (xfree, tem);
16794 include_name = tem;
16795 include_name_to_compare = include_name;
16796 }
16797 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16798 {
16799 char *tem = concat (comp_dir, SLASH_STRING,
16800 include_name, (char *)NULL);
16801
16802 make_cleanup (xfree, tem);
16803 include_name_to_compare = tem;
16804 }
16805 }
16806
16807 pst_filename = pst->filename;
16808 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16809 {
16810 copied_name = concat (pst->dirname, SLASH_STRING,
16811 pst_filename, (char *)NULL);
16812 pst_filename = copied_name;
16813 }
16814
16815 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16816
16817 if (copied_name != NULL)
16818 xfree (copied_name);
16819
16820 if (file_is_pst)
16821 return NULL;
16822 return include_name;
16823 }
16824
16825 /* Ignore this record_line request. */
16826
16827 static void
16828 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16829 {
16830 return;
16831 }
16832
16833 /* Subroutine of dwarf_decode_lines to simplify it.
16834 Process the line number information in LH. */
16835
16836 static void
16837 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16838 struct dwarf2_cu *cu, struct partial_symtab *pst)
16839 {
16840 const gdb_byte *line_ptr, *extended_end;
16841 const gdb_byte *line_end;
16842 unsigned int bytes_read, extended_len;
16843 unsigned char op_code, extended_op, adj_opcode;
16844 CORE_ADDR baseaddr;
16845 struct objfile *objfile = cu->objfile;
16846 bfd *abfd = objfile->obfd;
16847 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16848 const int decode_for_pst_p = (pst != NULL);
16849 struct subfile *last_subfile = NULL;
16850 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16851 = record_line;
16852
16853 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16854
16855 line_ptr = lh->statement_program_start;
16856 line_end = lh->statement_program_end;
16857
16858 /* Read the statement sequences until there's nothing left. */
16859 while (line_ptr < line_end)
16860 {
16861 /* state machine registers */
16862 CORE_ADDR address = 0;
16863 unsigned int file = 1;
16864 unsigned int line = 1;
16865 unsigned int column = 0;
16866 int is_stmt = lh->default_is_stmt;
16867 int basic_block = 0;
16868 int end_sequence = 0;
16869 CORE_ADDR addr;
16870 unsigned char op_index = 0;
16871
16872 if (!decode_for_pst_p && lh->num_file_names >= file)
16873 {
16874 /* Start a subfile for the current file of the state machine. */
16875 /* lh->include_dirs and lh->file_names are 0-based, but the
16876 directory and file name numbers in the statement program
16877 are 1-based. */
16878 struct file_entry *fe = &lh->file_names[file - 1];
16879 const char *dir = NULL;
16880
16881 if (fe->dir_index)
16882 dir = lh->include_dirs[fe->dir_index - 1];
16883
16884 dwarf2_start_subfile (fe->name, dir, comp_dir);
16885 }
16886
16887 /* Decode the table. */
16888 while (!end_sequence)
16889 {
16890 op_code = read_1_byte (abfd, line_ptr);
16891 line_ptr += 1;
16892 if (line_ptr > line_end)
16893 {
16894 dwarf2_debug_line_missing_end_sequence_complaint ();
16895 break;
16896 }
16897
16898 if (op_code >= lh->opcode_base)
16899 {
16900 /* Special operand. */
16901 adj_opcode = op_code - lh->opcode_base;
16902 address += (((op_index + (adj_opcode / lh->line_range))
16903 / lh->maximum_ops_per_instruction)
16904 * lh->minimum_instruction_length);
16905 op_index = ((op_index + (adj_opcode / lh->line_range))
16906 % lh->maximum_ops_per_instruction);
16907 line += lh->line_base + (adj_opcode % lh->line_range);
16908 if (lh->num_file_names < file || file == 0)
16909 dwarf2_debug_line_missing_file_complaint ();
16910 /* For now we ignore lines not starting on an
16911 instruction boundary. */
16912 else if (op_index == 0)
16913 {
16914 lh->file_names[file - 1].included_p = 1;
16915 if (!decode_for_pst_p && is_stmt)
16916 {
16917 if (last_subfile != current_subfile)
16918 {
16919 addr = gdbarch_addr_bits_remove (gdbarch, address);
16920 if (last_subfile)
16921 (*p_record_line) (last_subfile, 0, addr);
16922 last_subfile = current_subfile;
16923 }
16924 /* Append row to matrix using current values. */
16925 addr = gdbarch_addr_bits_remove (gdbarch, address);
16926 (*p_record_line) (current_subfile, line, addr);
16927 }
16928 }
16929 basic_block = 0;
16930 }
16931 else switch (op_code)
16932 {
16933 case DW_LNS_extended_op:
16934 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16935 &bytes_read);
16936 line_ptr += bytes_read;
16937 extended_end = line_ptr + extended_len;
16938 extended_op = read_1_byte (abfd, line_ptr);
16939 line_ptr += 1;
16940 switch (extended_op)
16941 {
16942 case DW_LNE_end_sequence:
16943 p_record_line = record_line;
16944 end_sequence = 1;
16945 break;
16946 case DW_LNE_set_address:
16947 address = read_address (abfd, line_ptr, cu, &bytes_read);
16948
16949 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16950 {
16951 /* This line table is for a function which has been
16952 GCd by the linker. Ignore it. PR gdb/12528 */
16953
16954 long line_offset
16955 = line_ptr - get_debug_line_section (cu)->buffer;
16956
16957 complaint (&symfile_complaints,
16958 _(".debug_line address at offset 0x%lx is 0 "
16959 "[in module %s]"),
16960 line_offset, objfile_name (objfile));
16961 p_record_line = noop_record_line;
16962 }
16963
16964 op_index = 0;
16965 line_ptr += bytes_read;
16966 address += baseaddr;
16967 break;
16968 case DW_LNE_define_file:
16969 {
16970 const char *cur_file;
16971 unsigned int dir_index, mod_time, length;
16972
16973 cur_file = read_direct_string (abfd, line_ptr,
16974 &bytes_read);
16975 line_ptr += bytes_read;
16976 dir_index =
16977 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16978 line_ptr += bytes_read;
16979 mod_time =
16980 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16981 line_ptr += bytes_read;
16982 length =
16983 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16984 line_ptr += bytes_read;
16985 add_file_name (lh, cur_file, dir_index, mod_time, length);
16986 }
16987 break;
16988 case DW_LNE_set_discriminator:
16989 /* The discriminator is not interesting to the debugger;
16990 just ignore it. */
16991 line_ptr = extended_end;
16992 break;
16993 default:
16994 complaint (&symfile_complaints,
16995 _("mangled .debug_line section"));
16996 return;
16997 }
16998 /* Make sure that we parsed the extended op correctly. If e.g.
16999 we expected a different address size than the producer used,
17000 we may have read the wrong number of bytes. */
17001 if (line_ptr != extended_end)
17002 {
17003 complaint (&symfile_complaints,
17004 _("mangled .debug_line section"));
17005 return;
17006 }
17007 break;
17008 case DW_LNS_copy:
17009 if (lh->num_file_names < file || file == 0)
17010 dwarf2_debug_line_missing_file_complaint ();
17011 else
17012 {
17013 lh->file_names[file - 1].included_p = 1;
17014 if (!decode_for_pst_p && is_stmt)
17015 {
17016 if (last_subfile != current_subfile)
17017 {
17018 addr = gdbarch_addr_bits_remove (gdbarch, address);
17019 if (last_subfile)
17020 (*p_record_line) (last_subfile, 0, addr);
17021 last_subfile = current_subfile;
17022 }
17023 addr = gdbarch_addr_bits_remove (gdbarch, address);
17024 (*p_record_line) (current_subfile, line, addr);
17025 }
17026 }
17027 basic_block = 0;
17028 break;
17029 case DW_LNS_advance_pc:
17030 {
17031 CORE_ADDR adjust
17032 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17033
17034 address += (((op_index + adjust)
17035 / lh->maximum_ops_per_instruction)
17036 * lh->minimum_instruction_length);
17037 op_index = ((op_index + adjust)
17038 % lh->maximum_ops_per_instruction);
17039 line_ptr += bytes_read;
17040 }
17041 break;
17042 case DW_LNS_advance_line:
17043 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17044 line_ptr += bytes_read;
17045 break;
17046 case DW_LNS_set_file:
17047 {
17048 /* The arrays lh->include_dirs and lh->file_names are
17049 0-based, but the directory and file name numbers in
17050 the statement program are 1-based. */
17051 struct file_entry *fe;
17052 const char *dir = NULL;
17053
17054 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17055 line_ptr += bytes_read;
17056 if (lh->num_file_names < file || file == 0)
17057 dwarf2_debug_line_missing_file_complaint ();
17058 else
17059 {
17060 fe = &lh->file_names[file - 1];
17061 if (fe->dir_index)
17062 dir = lh->include_dirs[fe->dir_index - 1];
17063 if (!decode_for_pst_p)
17064 {
17065 last_subfile = current_subfile;
17066 dwarf2_start_subfile (fe->name, dir, comp_dir);
17067 }
17068 }
17069 }
17070 break;
17071 case DW_LNS_set_column:
17072 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17073 line_ptr += bytes_read;
17074 break;
17075 case DW_LNS_negate_stmt:
17076 is_stmt = (!is_stmt);
17077 break;
17078 case DW_LNS_set_basic_block:
17079 basic_block = 1;
17080 break;
17081 /* Add to the address register of the state machine the
17082 address increment value corresponding to special opcode
17083 255. I.e., this value is scaled by the minimum
17084 instruction length since special opcode 255 would have
17085 scaled the increment. */
17086 case DW_LNS_const_add_pc:
17087 {
17088 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17089
17090 address += (((op_index + adjust)
17091 / lh->maximum_ops_per_instruction)
17092 * lh->minimum_instruction_length);
17093 op_index = ((op_index + adjust)
17094 % lh->maximum_ops_per_instruction);
17095 }
17096 break;
17097 case DW_LNS_fixed_advance_pc:
17098 address += read_2_bytes (abfd, line_ptr);
17099 op_index = 0;
17100 line_ptr += 2;
17101 break;
17102 default:
17103 {
17104 /* Unknown standard opcode, ignore it. */
17105 int i;
17106
17107 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17108 {
17109 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17110 line_ptr += bytes_read;
17111 }
17112 }
17113 }
17114 }
17115 if (lh->num_file_names < file || file == 0)
17116 dwarf2_debug_line_missing_file_complaint ();
17117 else
17118 {
17119 lh->file_names[file - 1].included_p = 1;
17120 if (!decode_for_pst_p)
17121 {
17122 addr = gdbarch_addr_bits_remove (gdbarch, address);
17123 (*p_record_line) (current_subfile, 0, addr);
17124 }
17125 }
17126 }
17127 }
17128
17129 /* Decode the Line Number Program (LNP) for the given line_header
17130 structure and CU. The actual information extracted and the type
17131 of structures created from the LNP depends on the value of PST.
17132
17133 1. If PST is NULL, then this procedure uses the data from the program
17134 to create all necessary symbol tables, and their linetables.
17135
17136 2. If PST is not NULL, this procedure reads the program to determine
17137 the list of files included by the unit represented by PST, and
17138 builds all the associated partial symbol tables.
17139
17140 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17141 It is used for relative paths in the line table.
17142 NOTE: When processing partial symtabs (pst != NULL),
17143 comp_dir == pst->dirname.
17144
17145 NOTE: It is important that psymtabs have the same file name (via strcmp)
17146 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17147 symtab we don't use it in the name of the psymtabs we create.
17148 E.g. expand_line_sal requires this when finding psymtabs to expand.
17149 A good testcase for this is mb-inline.exp. */
17150
17151 static void
17152 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17153 struct dwarf2_cu *cu, struct partial_symtab *pst,
17154 int want_line_info)
17155 {
17156 struct objfile *objfile = cu->objfile;
17157 const int decode_for_pst_p = (pst != NULL);
17158 struct subfile *first_subfile = current_subfile;
17159
17160 if (want_line_info)
17161 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17162
17163 if (decode_for_pst_p)
17164 {
17165 int file_index;
17166
17167 /* Now that we're done scanning the Line Header Program, we can
17168 create the psymtab of each included file. */
17169 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17170 if (lh->file_names[file_index].included_p == 1)
17171 {
17172 const char *include_name =
17173 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17174 if (include_name != NULL)
17175 dwarf2_create_include_psymtab (include_name, pst, objfile);
17176 }
17177 }
17178 else
17179 {
17180 /* Make sure a symtab is created for every file, even files
17181 which contain only variables (i.e. no code with associated
17182 line numbers). */
17183 int i;
17184
17185 for (i = 0; i < lh->num_file_names; i++)
17186 {
17187 const char *dir = NULL;
17188 struct file_entry *fe;
17189
17190 fe = &lh->file_names[i];
17191 if (fe->dir_index)
17192 dir = lh->include_dirs[fe->dir_index - 1];
17193 dwarf2_start_subfile (fe->name, dir, comp_dir);
17194
17195 /* Skip the main file; we don't need it, and it must be
17196 allocated last, so that it will show up before the
17197 non-primary symtabs in the objfile's symtab list. */
17198 if (current_subfile == first_subfile)
17199 continue;
17200
17201 if (current_subfile->symtab == NULL)
17202 current_subfile->symtab = allocate_symtab (current_subfile->name,
17203 objfile);
17204 fe->symtab = current_subfile->symtab;
17205 }
17206 }
17207 }
17208
17209 /* Start a subfile for DWARF. FILENAME is the name of the file and
17210 DIRNAME the name of the source directory which contains FILENAME
17211 or NULL if not known. COMP_DIR is the compilation directory for the
17212 linetable's compilation unit or NULL if not known.
17213 This routine tries to keep line numbers from identical absolute and
17214 relative file names in a common subfile.
17215
17216 Using the `list' example from the GDB testsuite, which resides in
17217 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17218 of /srcdir/list0.c yields the following debugging information for list0.c:
17219
17220 DW_AT_name: /srcdir/list0.c
17221 DW_AT_comp_dir: /compdir
17222 files.files[0].name: list0.h
17223 files.files[0].dir: /srcdir
17224 files.files[1].name: list0.c
17225 files.files[1].dir: /srcdir
17226
17227 The line number information for list0.c has to end up in a single
17228 subfile, so that `break /srcdir/list0.c:1' works as expected.
17229 start_subfile will ensure that this happens provided that we pass the
17230 concatenation of files.files[1].dir and files.files[1].name as the
17231 subfile's name. */
17232
17233 static void
17234 dwarf2_start_subfile (const char *filename, const char *dirname,
17235 const char *comp_dir)
17236 {
17237 char *copy = NULL;
17238
17239 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17240 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17241 second argument to start_subfile. To be consistent, we do the
17242 same here. In order not to lose the line information directory,
17243 we concatenate it to the filename when it makes sense.
17244 Note that the Dwarf3 standard says (speaking of filenames in line
17245 information): ``The directory index is ignored for file names
17246 that represent full path names''. Thus ignoring dirname in the
17247 `else' branch below isn't an issue. */
17248
17249 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17250 {
17251 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17252 filename = copy;
17253 }
17254
17255 start_subfile (filename, comp_dir);
17256
17257 if (copy != NULL)
17258 xfree (copy);
17259 }
17260
17261 /* Start a symtab for DWARF.
17262 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17263
17264 static void
17265 dwarf2_start_symtab (struct dwarf2_cu *cu,
17266 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17267 {
17268 start_symtab (name, comp_dir, low_pc);
17269 record_debugformat ("DWARF 2");
17270 record_producer (cu->producer);
17271
17272 /* We assume that we're processing GCC output. */
17273 processing_gcc_compilation = 2;
17274
17275 cu->processing_has_namespace_info = 0;
17276 }
17277
17278 static void
17279 var_decode_location (struct attribute *attr, struct symbol *sym,
17280 struct dwarf2_cu *cu)
17281 {
17282 struct objfile *objfile = cu->objfile;
17283 struct comp_unit_head *cu_header = &cu->header;
17284
17285 /* NOTE drow/2003-01-30: There used to be a comment and some special
17286 code here to turn a symbol with DW_AT_external and a
17287 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17288 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17289 with some versions of binutils) where shared libraries could have
17290 relocations against symbols in their debug information - the
17291 minimal symbol would have the right address, but the debug info
17292 would not. It's no longer necessary, because we will explicitly
17293 apply relocations when we read in the debug information now. */
17294
17295 /* A DW_AT_location attribute with no contents indicates that a
17296 variable has been optimized away. */
17297 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17298 {
17299 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17300 return;
17301 }
17302
17303 /* Handle one degenerate form of location expression specially, to
17304 preserve GDB's previous behavior when section offsets are
17305 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17306 then mark this symbol as LOC_STATIC. */
17307
17308 if (attr_form_is_block (attr)
17309 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17310 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17311 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17312 && (DW_BLOCK (attr)->size
17313 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17314 {
17315 unsigned int dummy;
17316
17317 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17318 SYMBOL_VALUE_ADDRESS (sym) =
17319 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17320 else
17321 SYMBOL_VALUE_ADDRESS (sym) =
17322 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17323 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17324 fixup_symbol_section (sym, objfile);
17325 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17326 SYMBOL_SECTION (sym));
17327 return;
17328 }
17329
17330 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17331 expression evaluator, and use LOC_COMPUTED only when necessary
17332 (i.e. when the value of a register or memory location is
17333 referenced, or a thread-local block, etc.). Then again, it might
17334 not be worthwhile. I'm assuming that it isn't unless performance
17335 or memory numbers show me otherwise. */
17336
17337 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17338
17339 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17340 cu->has_loclist = 1;
17341 }
17342
17343 /* Given a pointer to a DWARF information entry, figure out if we need
17344 to make a symbol table entry for it, and if so, create a new entry
17345 and return a pointer to it.
17346 If TYPE is NULL, determine symbol type from the die, otherwise
17347 used the passed type.
17348 If SPACE is not NULL, use it to hold the new symbol. If it is
17349 NULL, allocate a new symbol on the objfile's obstack. */
17350
17351 static struct symbol *
17352 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17353 struct symbol *space)
17354 {
17355 struct objfile *objfile = cu->objfile;
17356 struct symbol *sym = NULL;
17357 const char *name;
17358 struct attribute *attr = NULL;
17359 struct attribute *attr2 = NULL;
17360 CORE_ADDR baseaddr;
17361 struct pending **list_to_add = NULL;
17362
17363 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17364
17365 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17366
17367 name = dwarf2_name (die, cu);
17368 if (name)
17369 {
17370 const char *linkagename;
17371 int suppress_add = 0;
17372
17373 if (space)
17374 sym = space;
17375 else
17376 sym = allocate_symbol (objfile);
17377 OBJSTAT (objfile, n_syms++);
17378
17379 /* Cache this symbol's name and the name's demangled form (if any). */
17380 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17381 linkagename = dwarf2_physname (name, die, cu);
17382 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17383
17384 /* Fortran does not have mangling standard and the mangling does differ
17385 between gfortran, iFort etc. */
17386 if (cu->language == language_fortran
17387 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17388 symbol_set_demangled_name (&(sym->ginfo),
17389 dwarf2_full_name (name, die, cu),
17390 NULL);
17391
17392 /* Default assumptions.
17393 Use the passed type or decode it from the die. */
17394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17395 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17396 if (type != NULL)
17397 SYMBOL_TYPE (sym) = type;
17398 else
17399 SYMBOL_TYPE (sym) = die_type (die, cu);
17400 attr = dwarf2_attr (die,
17401 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17402 cu);
17403 if (attr)
17404 {
17405 SYMBOL_LINE (sym) = DW_UNSND (attr);
17406 }
17407
17408 attr = dwarf2_attr (die,
17409 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17410 cu);
17411 if (attr)
17412 {
17413 int file_index = DW_UNSND (attr);
17414
17415 if (cu->line_header == NULL
17416 || file_index > cu->line_header->num_file_names)
17417 complaint (&symfile_complaints,
17418 _("file index out of range"));
17419 else if (file_index > 0)
17420 {
17421 struct file_entry *fe;
17422
17423 fe = &cu->line_header->file_names[file_index - 1];
17424 SYMBOL_SYMTAB (sym) = fe->symtab;
17425 }
17426 }
17427
17428 switch (die->tag)
17429 {
17430 case DW_TAG_label:
17431 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17432 if (attr)
17433 {
17434 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17435 }
17436 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17437 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17438 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17439 add_symbol_to_list (sym, cu->list_in_scope);
17440 break;
17441 case DW_TAG_subprogram:
17442 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17443 finish_block. */
17444 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17445 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17446 if ((attr2 && (DW_UNSND (attr2) != 0))
17447 || cu->language == language_ada)
17448 {
17449 /* Subprograms marked external are stored as a global symbol.
17450 Ada subprograms, whether marked external or not, are always
17451 stored as a global symbol, because we want to be able to
17452 access them globally. For instance, we want to be able
17453 to break on a nested subprogram without having to
17454 specify the context. */
17455 list_to_add = &global_symbols;
17456 }
17457 else
17458 {
17459 list_to_add = cu->list_in_scope;
17460 }
17461 break;
17462 case DW_TAG_inlined_subroutine:
17463 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17464 finish_block. */
17465 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17466 SYMBOL_INLINED (sym) = 1;
17467 list_to_add = cu->list_in_scope;
17468 break;
17469 case DW_TAG_template_value_param:
17470 suppress_add = 1;
17471 /* Fall through. */
17472 case DW_TAG_constant:
17473 case DW_TAG_variable:
17474 case DW_TAG_member:
17475 /* Compilation with minimal debug info may result in
17476 variables with missing type entries. Change the
17477 misleading `void' type to something sensible. */
17478 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17479 SYMBOL_TYPE (sym)
17480 = objfile_type (objfile)->nodebug_data_symbol;
17481
17482 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17483 /* In the case of DW_TAG_member, we should only be called for
17484 static const members. */
17485 if (die->tag == DW_TAG_member)
17486 {
17487 /* dwarf2_add_field uses die_is_declaration,
17488 so we do the same. */
17489 gdb_assert (die_is_declaration (die, cu));
17490 gdb_assert (attr);
17491 }
17492 if (attr)
17493 {
17494 dwarf2_const_value (attr, sym, cu);
17495 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17496 if (!suppress_add)
17497 {
17498 if (attr2 && (DW_UNSND (attr2) != 0))
17499 list_to_add = &global_symbols;
17500 else
17501 list_to_add = cu->list_in_scope;
17502 }
17503 break;
17504 }
17505 attr = dwarf2_attr (die, DW_AT_location, cu);
17506 if (attr)
17507 {
17508 var_decode_location (attr, sym, cu);
17509 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17510
17511 /* Fortran explicitly imports any global symbols to the local
17512 scope by DW_TAG_common_block. */
17513 if (cu->language == language_fortran && die->parent
17514 && die->parent->tag == DW_TAG_common_block)
17515 attr2 = NULL;
17516
17517 if (SYMBOL_CLASS (sym) == LOC_STATIC
17518 && SYMBOL_VALUE_ADDRESS (sym) == 0
17519 && !dwarf2_per_objfile->has_section_at_zero)
17520 {
17521 /* When a static variable is eliminated by the linker,
17522 the corresponding debug information is not stripped
17523 out, but the variable address is set to null;
17524 do not add such variables into symbol table. */
17525 }
17526 else if (attr2 && (DW_UNSND (attr2) != 0))
17527 {
17528 /* Workaround gfortran PR debug/40040 - it uses
17529 DW_AT_location for variables in -fPIC libraries which may
17530 get overriden by other libraries/executable and get
17531 a different address. Resolve it by the minimal symbol
17532 which may come from inferior's executable using copy
17533 relocation. Make this workaround only for gfortran as for
17534 other compilers GDB cannot guess the minimal symbol
17535 Fortran mangling kind. */
17536 if (cu->language == language_fortran && die->parent
17537 && die->parent->tag == DW_TAG_module
17538 && cu->producer
17539 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17540 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17541
17542 /* A variable with DW_AT_external is never static,
17543 but it may be block-scoped. */
17544 list_to_add = (cu->list_in_scope == &file_symbols
17545 ? &global_symbols : cu->list_in_scope);
17546 }
17547 else
17548 list_to_add = cu->list_in_scope;
17549 }
17550 else
17551 {
17552 /* We do not know the address of this symbol.
17553 If it is an external symbol and we have type information
17554 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17555 The address of the variable will then be determined from
17556 the minimal symbol table whenever the variable is
17557 referenced. */
17558 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17559
17560 /* Fortran explicitly imports any global symbols to the local
17561 scope by DW_TAG_common_block. */
17562 if (cu->language == language_fortran && die->parent
17563 && die->parent->tag == DW_TAG_common_block)
17564 {
17565 /* SYMBOL_CLASS doesn't matter here because
17566 read_common_block is going to reset it. */
17567 if (!suppress_add)
17568 list_to_add = cu->list_in_scope;
17569 }
17570 else if (attr2 && (DW_UNSND (attr2) != 0)
17571 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17572 {
17573 /* A variable with DW_AT_external is never static, but it
17574 may be block-scoped. */
17575 list_to_add = (cu->list_in_scope == &file_symbols
17576 ? &global_symbols : cu->list_in_scope);
17577
17578 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17579 }
17580 else if (!die_is_declaration (die, cu))
17581 {
17582 /* Use the default LOC_OPTIMIZED_OUT class. */
17583 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17584 if (!suppress_add)
17585 list_to_add = cu->list_in_scope;
17586 }
17587 }
17588 break;
17589 case DW_TAG_formal_parameter:
17590 /* If we are inside a function, mark this as an argument. If
17591 not, we might be looking at an argument to an inlined function
17592 when we do not have enough information to show inlined frames;
17593 pretend it's a local variable in that case so that the user can
17594 still see it. */
17595 if (context_stack_depth > 0
17596 && context_stack[context_stack_depth - 1].name != NULL)
17597 SYMBOL_IS_ARGUMENT (sym) = 1;
17598 attr = dwarf2_attr (die, DW_AT_location, cu);
17599 if (attr)
17600 {
17601 var_decode_location (attr, sym, cu);
17602 }
17603 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17604 if (attr)
17605 {
17606 dwarf2_const_value (attr, sym, cu);
17607 }
17608
17609 list_to_add = cu->list_in_scope;
17610 break;
17611 case DW_TAG_unspecified_parameters:
17612 /* From varargs functions; gdb doesn't seem to have any
17613 interest in this information, so just ignore it for now.
17614 (FIXME?) */
17615 break;
17616 case DW_TAG_template_type_param:
17617 suppress_add = 1;
17618 /* Fall through. */
17619 case DW_TAG_class_type:
17620 case DW_TAG_interface_type:
17621 case DW_TAG_structure_type:
17622 case DW_TAG_union_type:
17623 case DW_TAG_set_type:
17624 case DW_TAG_enumeration_type:
17625 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17626 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17627
17628 {
17629 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17630 really ever be static objects: otherwise, if you try
17631 to, say, break of a class's method and you're in a file
17632 which doesn't mention that class, it won't work unless
17633 the check for all static symbols in lookup_symbol_aux
17634 saves you. See the OtherFileClass tests in
17635 gdb.c++/namespace.exp. */
17636
17637 if (!suppress_add)
17638 {
17639 list_to_add = (cu->list_in_scope == &file_symbols
17640 && (cu->language == language_cplus
17641 || cu->language == language_java)
17642 ? &global_symbols : cu->list_in_scope);
17643
17644 /* The semantics of C++ state that "struct foo {
17645 ... }" also defines a typedef for "foo". A Java
17646 class declaration also defines a typedef for the
17647 class. */
17648 if (cu->language == language_cplus
17649 || cu->language == language_java
17650 || cu->language == language_ada)
17651 {
17652 /* The symbol's name is already allocated along
17653 with this objfile, so we don't need to
17654 duplicate it for the type. */
17655 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17656 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17657 }
17658 }
17659 }
17660 break;
17661 case DW_TAG_typedef:
17662 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17663 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17664 list_to_add = cu->list_in_scope;
17665 break;
17666 case DW_TAG_base_type:
17667 case DW_TAG_subrange_type:
17668 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17669 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17670 list_to_add = cu->list_in_scope;
17671 break;
17672 case DW_TAG_enumerator:
17673 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17674 if (attr)
17675 {
17676 dwarf2_const_value (attr, sym, cu);
17677 }
17678 {
17679 /* NOTE: carlton/2003-11-10: See comment above in the
17680 DW_TAG_class_type, etc. block. */
17681
17682 list_to_add = (cu->list_in_scope == &file_symbols
17683 && (cu->language == language_cplus
17684 || cu->language == language_java)
17685 ? &global_symbols : cu->list_in_scope);
17686 }
17687 break;
17688 case DW_TAG_imported_declaration:
17689 case DW_TAG_namespace:
17690 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17691 list_to_add = &global_symbols;
17692 break;
17693 case DW_TAG_common_block:
17694 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17695 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17696 add_symbol_to_list (sym, cu->list_in_scope);
17697 break;
17698 default:
17699 /* Not a tag we recognize. Hopefully we aren't processing
17700 trash data, but since we must specifically ignore things
17701 we don't recognize, there is nothing else we should do at
17702 this point. */
17703 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17704 dwarf_tag_name (die->tag));
17705 break;
17706 }
17707
17708 if (suppress_add)
17709 {
17710 sym->hash_next = objfile->template_symbols;
17711 objfile->template_symbols = sym;
17712 list_to_add = NULL;
17713 }
17714
17715 if (list_to_add != NULL)
17716 add_symbol_to_list (sym, list_to_add);
17717
17718 /* For the benefit of old versions of GCC, check for anonymous
17719 namespaces based on the demangled name. */
17720 if (!cu->processing_has_namespace_info
17721 && cu->language == language_cplus)
17722 cp_scan_for_anonymous_namespaces (sym, objfile);
17723 }
17724 return (sym);
17725 }
17726
17727 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17728
17729 static struct symbol *
17730 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17731 {
17732 return new_symbol_full (die, type, cu, NULL);
17733 }
17734
17735 /* Given an attr with a DW_FORM_dataN value in host byte order,
17736 zero-extend it as appropriate for the symbol's type. The DWARF
17737 standard (v4) is not entirely clear about the meaning of using
17738 DW_FORM_dataN for a constant with a signed type, where the type is
17739 wider than the data. The conclusion of a discussion on the DWARF
17740 list was that this is unspecified. We choose to always zero-extend
17741 because that is the interpretation long in use by GCC. */
17742
17743 static gdb_byte *
17744 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17745 struct dwarf2_cu *cu, LONGEST *value, int bits)
17746 {
17747 struct objfile *objfile = cu->objfile;
17748 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17749 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17750 LONGEST l = DW_UNSND (attr);
17751
17752 if (bits < sizeof (*value) * 8)
17753 {
17754 l &= ((LONGEST) 1 << bits) - 1;
17755 *value = l;
17756 }
17757 else if (bits == sizeof (*value) * 8)
17758 *value = l;
17759 else
17760 {
17761 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17762 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17763 return bytes;
17764 }
17765
17766 return NULL;
17767 }
17768
17769 /* Read a constant value from an attribute. Either set *VALUE, or if
17770 the value does not fit in *VALUE, set *BYTES - either already
17771 allocated on the objfile obstack, or newly allocated on OBSTACK,
17772 or, set *BATON, if we translated the constant to a location
17773 expression. */
17774
17775 static void
17776 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17777 const char *name, struct obstack *obstack,
17778 struct dwarf2_cu *cu,
17779 LONGEST *value, const gdb_byte **bytes,
17780 struct dwarf2_locexpr_baton **baton)
17781 {
17782 struct objfile *objfile = cu->objfile;
17783 struct comp_unit_head *cu_header = &cu->header;
17784 struct dwarf_block *blk;
17785 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17786 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17787
17788 *value = 0;
17789 *bytes = NULL;
17790 *baton = NULL;
17791
17792 switch (attr->form)
17793 {
17794 case DW_FORM_addr:
17795 case DW_FORM_GNU_addr_index:
17796 {
17797 gdb_byte *data;
17798
17799 if (TYPE_LENGTH (type) != cu_header->addr_size)
17800 dwarf2_const_value_length_mismatch_complaint (name,
17801 cu_header->addr_size,
17802 TYPE_LENGTH (type));
17803 /* Symbols of this form are reasonably rare, so we just
17804 piggyback on the existing location code rather than writing
17805 a new implementation of symbol_computed_ops. */
17806 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17807 (*baton)->per_cu = cu->per_cu;
17808 gdb_assert ((*baton)->per_cu);
17809
17810 (*baton)->size = 2 + cu_header->addr_size;
17811 data = obstack_alloc (obstack, (*baton)->size);
17812 (*baton)->data = data;
17813
17814 data[0] = DW_OP_addr;
17815 store_unsigned_integer (&data[1], cu_header->addr_size,
17816 byte_order, DW_ADDR (attr));
17817 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17818 }
17819 break;
17820 case DW_FORM_string:
17821 case DW_FORM_strp:
17822 case DW_FORM_GNU_str_index:
17823 case DW_FORM_GNU_strp_alt:
17824 /* DW_STRING is already allocated on the objfile obstack, point
17825 directly to it. */
17826 *bytes = (const gdb_byte *) DW_STRING (attr);
17827 break;
17828 case DW_FORM_block1:
17829 case DW_FORM_block2:
17830 case DW_FORM_block4:
17831 case DW_FORM_block:
17832 case DW_FORM_exprloc:
17833 blk = DW_BLOCK (attr);
17834 if (TYPE_LENGTH (type) != blk->size)
17835 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17836 TYPE_LENGTH (type));
17837 *bytes = blk->data;
17838 break;
17839
17840 /* The DW_AT_const_value attributes are supposed to carry the
17841 symbol's value "represented as it would be on the target
17842 architecture." By the time we get here, it's already been
17843 converted to host endianness, so we just need to sign- or
17844 zero-extend it as appropriate. */
17845 case DW_FORM_data1:
17846 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17847 break;
17848 case DW_FORM_data2:
17849 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17850 break;
17851 case DW_FORM_data4:
17852 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17853 break;
17854 case DW_FORM_data8:
17855 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17856 break;
17857
17858 case DW_FORM_sdata:
17859 *value = DW_SND (attr);
17860 break;
17861
17862 case DW_FORM_udata:
17863 *value = DW_UNSND (attr);
17864 break;
17865
17866 default:
17867 complaint (&symfile_complaints,
17868 _("unsupported const value attribute form: '%s'"),
17869 dwarf_form_name (attr->form));
17870 *value = 0;
17871 break;
17872 }
17873 }
17874
17875
17876 /* Copy constant value from an attribute to a symbol. */
17877
17878 static void
17879 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17880 struct dwarf2_cu *cu)
17881 {
17882 struct objfile *objfile = cu->objfile;
17883 struct comp_unit_head *cu_header = &cu->header;
17884 LONGEST value;
17885 const gdb_byte *bytes;
17886 struct dwarf2_locexpr_baton *baton;
17887
17888 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17889 SYMBOL_PRINT_NAME (sym),
17890 &objfile->objfile_obstack, cu,
17891 &value, &bytes, &baton);
17892
17893 if (baton != NULL)
17894 {
17895 SYMBOL_LOCATION_BATON (sym) = baton;
17896 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17897 }
17898 else if (bytes != NULL)
17899 {
17900 SYMBOL_VALUE_BYTES (sym) = bytes;
17901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17902 }
17903 else
17904 {
17905 SYMBOL_VALUE (sym) = value;
17906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17907 }
17908 }
17909
17910 /* Return the type of the die in question using its DW_AT_type attribute. */
17911
17912 static struct type *
17913 die_type (struct die_info *die, struct dwarf2_cu *cu)
17914 {
17915 struct attribute *type_attr;
17916
17917 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17918 if (!type_attr)
17919 {
17920 /* A missing DW_AT_type represents a void type. */
17921 return objfile_type (cu->objfile)->builtin_void;
17922 }
17923
17924 return lookup_die_type (die, type_attr, cu);
17925 }
17926
17927 /* True iff CU's producer generates GNAT Ada auxiliary information
17928 that allows to find parallel types through that information instead
17929 of having to do expensive parallel lookups by type name. */
17930
17931 static int
17932 need_gnat_info (struct dwarf2_cu *cu)
17933 {
17934 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17935 of GNAT produces this auxiliary information, without any indication
17936 that it is produced. Part of enhancing the FSF version of GNAT
17937 to produce that information will be to put in place an indicator
17938 that we can use in order to determine whether the descriptive type
17939 info is available or not. One suggestion that has been made is
17940 to use a new attribute, attached to the CU die. For now, assume
17941 that the descriptive type info is not available. */
17942 return 0;
17943 }
17944
17945 /* Return the auxiliary type of the die in question using its
17946 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17947 attribute is not present. */
17948
17949 static struct type *
17950 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17951 {
17952 struct attribute *type_attr;
17953
17954 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17955 if (!type_attr)
17956 return NULL;
17957
17958 return lookup_die_type (die, type_attr, cu);
17959 }
17960
17961 /* If DIE has a descriptive_type attribute, then set the TYPE's
17962 descriptive type accordingly. */
17963
17964 static void
17965 set_descriptive_type (struct type *type, struct die_info *die,
17966 struct dwarf2_cu *cu)
17967 {
17968 struct type *descriptive_type = die_descriptive_type (die, cu);
17969
17970 if (descriptive_type)
17971 {
17972 ALLOCATE_GNAT_AUX_TYPE (type);
17973 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17974 }
17975 }
17976
17977 /* Return the containing type of the die in question using its
17978 DW_AT_containing_type attribute. */
17979
17980 static struct type *
17981 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17982 {
17983 struct attribute *type_attr;
17984
17985 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17986 if (!type_attr)
17987 error (_("Dwarf Error: Problem turning containing type into gdb type "
17988 "[in module %s]"), objfile_name (cu->objfile));
17989
17990 return lookup_die_type (die, type_attr, cu);
17991 }
17992
17993 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17994
17995 static struct type *
17996 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17997 {
17998 struct objfile *objfile = dwarf2_per_objfile->objfile;
17999 char *message, *saved;
18000
18001 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18002 objfile_name (objfile),
18003 cu->header.offset.sect_off,
18004 die->offset.sect_off);
18005 saved = obstack_copy0 (&objfile->objfile_obstack,
18006 message, strlen (message));
18007 xfree (message);
18008
18009 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18010 }
18011
18012 /* Look up the type of DIE in CU using its type attribute ATTR.
18013 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18014 DW_AT_containing_type.
18015 If there is no type substitute an error marker. */
18016
18017 static struct type *
18018 lookup_die_type (struct die_info *die, const struct attribute *attr,
18019 struct dwarf2_cu *cu)
18020 {
18021 struct objfile *objfile = cu->objfile;
18022 struct type *this_type;
18023
18024 gdb_assert (attr->name == DW_AT_type
18025 || attr->name == DW_AT_GNAT_descriptive_type
18026 || attr->name == DW_AT_containing_type);
18027
18028 /* First see if we have it cached. */
18029
18030 if (attr->form == DW_FORM_GNU_ref_alt)
18031 {
18032 struct dwarf2_per_cu_data *per_cu;
18033 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18034
18035 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18036 this_type = get_die_type_at_offset (offset, per_cu);
18037 }
18038 else if (attr_form_is_ref (attr))
18039 {
18040 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18041
18042 this_type = get_die_type_at_offset (offset, cu->per_cu);
18043 }
18044 else if (attr->form == DW_FORM_ref_sig8)
18045 {
18046 ULONGEST signature = DW_SIGNATURE (attr);
18047
18048 return get_signatured_type (die, signature, cu);
18049 }
18050 else
18051 {
18052 complaint (&symfile_complaints,
18053 _("Dwarf Error: Bad type attribute %s in DIE"
18054 " at 0x%x [in module %s]"),
18055 dwarf_attr_name (attr->name), die->offset.sect_off,
18056 objfile_name (objfile));
18057 return build_error_marker_type (cu, die);
18058 }
18059
18060 /* If not cached we need to read it in. */
18061
18062 if (this_type == NULL)
18063 {
18064 struct die_info *type_die = NULL;
18065 struct dwarf2_cu *type_cu = cu;
18066
18067 if (attr_form_is_ref (attr))
18068 type_die = follow_die_ref (die, attr, &type_cu);
18069 if (type_die == NULL)
18070 return build_error_marker_type (cu, die);
18071 /* If we find the type now, it's probably because the type came
18072 from an inter-CU reference and the type's CU got expanded before
18073 ours. */
18074 this_type = read_type_die (type_die, type_cu);
18075 }
18076
18077 /* If we still don't have a type use an error marker. */
18078
18079 if (this_type == NULL)
18080 return build_error_marker_type (cu, die);
18081
18082 return this_type;
18083 }
18084
18085 /* Return the type in DIE, CU.
18086 Returns NULL for invalid types.
18087
18088 This first does a lookup in die_type_hash,
18089 and only reads the die in if necessary.
18090
18091 NOTE: This can be called when reading in partial or full symbols. */
18092
18093 static struct type *
18094 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18095 {
18096 struct type *this_type;
18097
18098 this_type = get_die_type (die, cu);
18099 if (this_type)
18100 return this_type;
18101
18102 return read_type_die_1 (die, cu);
18103 }
18104
18105 /* Read the type in DIE, CU.
18106 Returns NULL for invalid types. */
18107
18108 static struct type *
18109 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18110 {
18111 struct type *this_type = NULL;
18112
18113 switch (die->tag)
18114 {
18115 case DW_TAG_class_type:
18116 case DW_TAG_interface_type:
18117 case DW_TAG_structure_type:
18118 case DW_TAG_union_type:
18119 this_type = read_structure_type (die, cu);
18120 break;
18121 case DW_TAG_enumeration_type:
18122 this_type = read_enumeration_type (die, cu);
18123 break;
18124 case DW_TAG_subprogram:
18125 case DW_TAG_subroutine_type:
18126 case DW_TAG_inlined_subroutine:
18127 this_type = read_subroutine_type (die, cu);
18128 break;
18129 case DW_TAG_array_type:
18130 this_type = read_array_type (die, cu);
18131 break;
18132 case DW_TAG_set_type:
18133 this_type = read_set_type (die, cu);
18134 break;
18135 case DW_TAG_pointer_type:
18136 this_type = read_tag_pointer_type (die, cu);
18137 break;
18138 case DW_TAG_ptr_to_member_type:
18139 this_type = read_tag_ptr_to_member_type (die, cu);
18140 break;
18141 case DW_TAG_reference_type:
18142 this_type = read_tag_reference_type (die, cu);
18143 break;
18144 case DW_TAG_const_type:
18145 this_type = read_tag_const_type (die, cu);
18146 break;
18147 case DW_TAG_volatile_type:
18148 this_type = read_tag_volatile_type (die, cu);
18149 break;
18150 case DW_TAG_restrict_type:
18151 this_type = read_tag_restrict_type (die, cu);
18152 break;
18153 case DW_TAG_string_type:
18154 this_type = read_tag_string_type (die, cu);
18155 break;
18156 case DW_TAG_typedef:
18157 this_type = read_typedef (die, cu);
18158 break;
18159 case DW_TAG_subrange_type:
18160 this_type = read_subrange_type (die, cu);
18161 break;
18162 case DW_TAG_base_type:
18163 this_type = read_base_type (die, cu);
18164 break;
18165 case DW_TAG_unspecified_type:
18166 this_type = read_unspecified_type (die, cu);
18167 break;
18168 case DW_TAG_namespace:
18169 this_type = read_namespace_type (die, cu);
18170 break;
18171 case DW_TAG_module:
18172 this_type = read_module_type (die, cu);
18173 break;
18174 default:
18175 complaint (&symfile_complaints,
18176 _("unexpected tag in read_type_die: '%s'"),
18177 dwarf_tag_name (die->tag));
18178 break;
18179 }
18180
18181 return this_type;
18182 }
18183
18184 /* See if we can figure out if the class lives in a namespace. We do
18185 this by looking for a member function; its demangled name will
18186 contain namespace info, if there is any.
18187 Return the computed name or NULL.
18188 Space for the result is allocated on the objfile's obstack.
18189 This is the full-die version of guess_partial_die_structure_name.
18190 In this case we know DIE has no useful parent. */
18191
18192 static char *
18193 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18194 {
18195 struct die_info *spec_die;
18196 struct dwarf2_cu *spec_cu;
18197 struct die_info *child;
18198
18199 spec_cu = cu;
18200 spec_die = die_specification (die, &spec_cu);
18201 if (spec_die != NULL)
18202 {
18203 die = spec_die;
18204 cu = spec_cu;
18205 }
18206
18207 for (child = die->child;
18208 child != NULL;
18209 child = child->sibling)
18210 {
18211 if (child->tag == DW_TAG_subprogram)
18212 {
18213 struct attribute *attr;
18214
18215 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18216 if (attr == NULL)
18217 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18218 if (attr != NULL)
18219 {
18220 char *actual_name
18221 = language_class_name_from_physname (cu->language_defn,
18222 DW_STRING (attr));
18223 char *name = NULL;
18224
18225 if (actual_name != NULL)
18226 {
18227 const char *die_name = dwarf2_name (die, cu);
18228
18229 if (die_name != NULL
18230 && strcmp (die_name, actual_name) != 0)
18231 {
18232 /* Strip off the class name from the full name.
18233 We want the prefix. */
18234 int die_name_len = strlen (die_name);
18235 int actual_name_len = strlen (actual_name);
18236
18237 /* Test for '::' as a sanity check. */
18238 if (actual_name_len > die_name_len + 2
18239 && actual_name[actual_name_len
18240 - die_name_len - 1] == ':')
18241 name =
18242 obstack_copy0 (&cu->objfile->objfile_obstack,
18243 actual_name,
18244 actual_name_len - die_name_len - 2);
18245 }
18246 }
18247 xfree (actual_name);
18248 return name;
18249 }
18250 }
18251 }
18252
18253 return NULL;
18254 }
18255
18256 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18257 prefix part in such case. See
18258 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18259
18260 static char *
18261 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18262 {
18263 struct attribute *attr;
18264 char *base;
18265
18266 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18267 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18268 return NULL;
18269
18270 attr = dwarf2_attr (die, DW_AT_name, cu);
18271 if (attr != NULL && DW_STRING (attr) != NULL)
18272 return NULL;
18273
18274 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18275 if (attr == NULL)
18276 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18277 if (attr == NULL || DW_STRING (attr) == NULL)
18278 return NULL;
18279
18280 /* dwarf2_name had to be already called. */
18281 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18282
18283 /* Strip the base name, keep any leading namespaces/classes. */
18284 base = strrchr (DW_STRING (attr), ':');
18285 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18286 return "";
18287
18288 return obstack_copy0 (&cu->objfile->objfile_obstack,
18289 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18290 }
18291
18292 /* Return the name of the namespace/class that DIE is defined within,
18293 or "" if we can't tell. The caller should not xfree the result.
18294
18295 For example, if we're within the method foo() in the following
18296 code:
18297
18298 namespace N {
18299 class C {
18300 void foo () {
18301 }
18302 };
18303 }
18304
18305 then determine_prefix on foo's die will return "N::C". */
18306
18307 static const char *
18308 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18309 {
18310 struct die_info *parent, *spec_die;
18311 struct dwarf2_cu *spec_cu;
18312 struct type *parent_type;
18313 char *retval;
18314
18315 if (cu->language != language_cplus && cu->language != language_java
18316 && cu->language != language_fortran)
18317 return "";
18318
18319 retval = anonymous_struct_prefix (die, cu);
18320 if (retval)
18321 return retval;
18322
18323 /* We have to be careful in the presence of DW_AT_specification.
18324 For example, with GCC 3.4, given the code
18325
18326 namespace N {
18327 void foo() {
18328 // Definition of N::foo.
18329 }
18330 }
18331
18332 then we'll have a tree of DIEs like this:
18333
18334 1: DW_TAG_compile_unit
18335 2: DW_TAG_namespace // N
18336 3: DW_TAG_subprogram // declaration of N::foo
18337 4: DW_TAG_subprogram // definition of N::foo
18338 DW_AT_specification // refers to die #3
18339
18340 Thus, when processing die #4, we have to pretend that we're in
18341 the context of its DW_AT_specification, namely the contex of die
18342 #3. */
18343 spec_cu = cu;
18344 spec_die = die_specification (die, &spec_cu);
18345 if (spec_die == NULL)
18346 parent = die->parent;
18347 else
18348 {
18349 parent = spec_die->parent;
18350 cu = spec_cu;
18351 }
18352
18353 if (parent == NULL)
18354 return "";
18355 else if (parent->building_fullname)
18356 {
18357 const char *name;
18358 const char *parent_name;
18359
18360 /* It has been seen on RealView 2.2 built binaries,
18361 DW_TAG_template_type_param types actually _defined_ as
18362 children of the parent class:
18363
18364 enum E {};
18365 template class <class Enum> Class{};
18366 Class<enum E> class_e;
18367
18368 1: DW_TAG_class_type (Class)
18369 2: DW_TAG_enumeration_type (E)
18370 3: DW_TAG_enumerator (enum1:0)
18371 3: DW_TAG_enumerator (enum2:1)
18372 ...
18373 2: DW_TAG_template_type_param
18374 DW_AT_type DW_FORM_ref_udata (E)
18375
18376 Besides being broken debug info, it can put GDB into an
18377 infinite loop. Consider:
18378
18379 When we're building the full name for Class<E>, we'll start
18380 at Class, and go look over its template type parameters,
18381 finding E. We'll then try to build the full name of E, and
18382 reach here. We're now trying to build the full name of E,
18383 and look over the parent DIE for containing scope. In the
18384 broken case, if we followed the parent DIE of E, we'd again
18385 find Class, and once again go look at its template type
18386 arguments, etc., etc. Simply don't consider such parent die
18387 as source-level parent of this die (it can't be, the language
18388 doesn't allow it), and break the loop here. */
18389 name = dwarf2_name (die, cu);
18390 parent_name = dwarf2_name (parent, cu);
18391 complaint (&symfile_complaints,
18392 _("template param type '%s' defined within parent '%s'"),
18393 name ? name : "<unknown>",
18394 parent_name ? parent_name : "<unknown>");
18395 return "";
18396 }
18397 else
18398 switch (parent->tag)
18399 {
18400 case DW_TAG_namespace:
18401 parent_type = read_type_die (parent, cu);
18402 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18403 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18404 Work around this problem here. */
18405 if (cu->language == language_cplus
18406 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18407 return "";
18408 /* We give a name to even anonymous namespaces. */
18409 return TYPE_TAG_NAME (parent_type);
18410 case DW_TAG_class_type:
18411 case DW_TAG_interface_type:
18412 case DW_TAG_structure_type:
18413 case DW_TAG_union_type:
18414 case DW_TAG_module:
18415 parent_type = read_type_die (parent, cu);
18416 if (TYPE_TAG_NAME (parent_type) != NULL)
18417 return TYPE_TAG_NAME (parent_type);
18418 else
18419 /* An anonymous structure is only allowed non-static data
18420 members; no typedefs, no member functions, et cetera.
18421 So it does not need a prefix. */
18422 return "";
18423 case DW_TAG_compile_unit:
18424 case DW_TAG_partial_unit:
18425 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18426 if (cu->language == language_cplus
18427 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18428 && die->child != NULL
18429 && (die->tag == DW_TAG_class_type
18430 || die->tag == DW_TAG_structure_type
18431 || die->tag == DW_TAG_union_type))
18432 {
18433 char *name = guess_full_die_structure_name (die, cu);
18434 if (name != NULL)
18435 return name;
18436 }
18437 return "";
18438 default:
18439 return determine_prefix (parent, cu);
18440 }
18441 }
18442
18443 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18444 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18445 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18446 an obconcat, otherwise allocate storage for the result. The CU argument is
18447 used to determine the language and hence, the appropriate separator. */
18448
18449 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18450
18451 static char *
18452 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18453 int physname, struct dwarf2_cu *cu)
18454 {
18455 const char *lead = "";
18456 const char *sep;
18457
18458 if (suffix == NULL || suffix[0] == '\0'
18459 || prefix == NULL || prefix[0] == '\0')
18460 sep = "";
18461 else if (cu->language == language_java)
18462 sep = ".";
18463 else if (cu->language == language_fortran && physname)
18464 {
18465 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18466 DW_AT_MIPS_linkage_name is preferred and used instead. */
18467
18468 lead = "__";
18469 sep = "_MOD_";
18470 }
18471 else
18472 sep = "::";
18473
18474 if (prefix == NULL)
18475 prefix = "";
18476 if (suffix == NULL)
18477 suffix = "";
18478
18479 if (obs == NULL)
18480 {
18481 char *retval
18482 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18483
18484 strcpy (retval, lead);
18485 strcat (retval, prefix);
18486 strcat (retval, sep);
18487 strcat (retval, suffix);
18488 return retval;
18489 }
18490 else
18491 {
18492 /* We have an obstack. */
18493 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18494 }
18495 }
18496
18497 /* Return sibling of die, NULL if no sibling. */
18498
18499 static struct die_info *
18500 sibling_die (struct die_info *die)
18501 {
18502 return die->sibling;
18503 }
18504
18505 /* Get name of a die, return NULL if not found. */
18506
18507 static const char *
18508 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18509 struct obstack *obstack)
18510 {
18511 if (name && cu->language == language_cplus)
18512 {
18513 char *canon_name = cp_canonicalize_string (name);
18514
18515 if (canon_name != NULL)
18516 {
18517 if (strcmp (canon_name, name) != 0)
18518 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18519 xfree (canon_name);
18520 }
18521 }
18522
18523 return name;
18524 }
18525
18526 /* Get name of a die, return NULL if not found. */
18527
18528 static const char *
18529 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18530 {
18531 struct attribute *attr;
18532
18533 attr = dwarf2_attr (die, DW_AT_name, cu);
18534 if ((!attr || !DW_STRING (attr))
18535 && die->tag != DW_TAG_class_type
18536 && die->tag != DW_TAG_interface_type
18537 && die->tag != DW_TAG_structure_type
18538 && die->tag != DW_TAG_union_type)
18539 return NULL;
18540
18541 switch (die->tag)
18542 {
18543 case DW_TAG_compile_unit:
18544 case DW_TAG_partial_unit:
18545 /* Compilation units have a DW_AT_name that is a filename, not
18546 a source language identifier. */
18547 case DW_TAG_enumeration_type:
18548 case DW_TAG_enumerator:
18549 /* These tags always have simple identifiers already; no need
18550 to canonicalize them. */
18551 return DW_STRING (attr);
18552
18553 case DW_TAG_subprogram:
18554 /* Java constructors will all be named "<init>", so return
18555 the class name when we see this special case. */
18556 if (cu->language == language_java
18557 && DW_STRING (attr) != NULL
18558 && strcmp (DW_STRING (attr), "<init>") == 0)
18559 {
18560 struct dwarf2_cu *spec_cu = cu;
18561 struct die_info *spec_die;
18562
18563 /* GCJ will output '<init>' for Java constructor names.
18564 For this special case, return the name of the parent class. */
18565
18566 /* GCJ may output suprogram DIEs with AT_specification set.
18567 If so, use the name of the specified DIE. */
18568 spec_die = die_specification (die, &spec_cu);
18569 if (spec_die != NULL)
18570 return dwarf2_name (spec_die, spec_cu);
18571
18572 do
18573 {
18574 die = die->parent;
18575 if (die->tag == DW_TAG_class_type)
18576 return dwarf2_name (die, cu);
18577 }
18578 while (die->tag != DW_TAG_compile_unit
18579 && die->tag != DW_TAG_partial_unit);
18580 }
18581 break;
18582
18583 case DW_TAG_class_type:
18584 case DW_TAG_interface_type:
18585 case DW_TAG_structure_type:
18586 case DW_TAG_union_type:
18587 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18588 structures or unions. These were of the form "._%d" in GCC 4.1,
18589 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18590 and GCC 4.4. We work around this problem by ignoring these. */
18591 if (attr && DW_STRING (attr)
18592 && (strncmp (DW_STRING (attr), "._", 2) == 0
18593 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18594 return NULL;
18595
18596 /* GCC might emit a nameless typedef that has a linkage name. See
18597 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18598 if (!attr || DW_STRING (attr) == NULL)
18599 {
18600 char *demangled = NULL;
18601
18602 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18603 if (attr == NULL)
18604 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18605
18606 if (attr == NULL || DW_STRING (attr) == NULL)
18607 return NULL;
18608
18609 /* Avoid demangling DW_STRING (attr) the second time on a second
18610 call for the same DIE. */
18611 if (!DW_STRING_IS_CANONICAL (attr))
18612 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18613
18614 if (demangled)
18615 {
18616 char *base;
18617
18618 /* FIXME: we already did this for the partial symbol... */
18619 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18620 demangled, strlen (demangled));
18621 DW_STRING_IS_CANONICAL (attr) = 1;
18622 xfree (demangled);
18623
18624 /* Strip any leading namespaces/classes, keep only the base name.
18625 DW_AT_name for named DIEs does not contain the prefixes. */
18626 base = strrchr (DW_STRING (attr), ':');
18627 if (base && base > DW_STRING (attr) && base[-1] == ':')
18628 return &base[1];
18629 else
18630 return DW_STRING (attr);
18631 }
18632 }
18633 break;
18634
18635 default:
18636 break;
18637 }
18638
18639 if (!DW_STRING_IS_CANONICAL (attr))
18640 {
18641 DW_STRING (attr)
18642 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18643 &cu->objfile->objfile_obstack);
18644 DW_STRING_IS_CANONICAL (attr) = 1;
18645 }
18646 return DW_STRING (attr);
18647 }
18648
18649 /* Return the die that this die in an extension of, or NULL if there
18650 is none. *EXT_CU is the CU containing DIE on input, and the CU
18651 containing the return value on output. */
18652
18653 static struct die_info *
18654 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18655 {
18656 struct attribute *attr;
18657
18658 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18659 if (attr == NULL)
18660 return NULL;
18661
18662 return follow_die_ref (die, attr, ext_cu);
18663 }
18664
18665 /* Convert a DIE tag into its string name. */
18666
18667 static const char *
18668 dwarf_tag_name (unsigned tag)
18669 {
18670 const char *name = get_DW_TAG_name (tag);
18671
18672 if (name == NULL)
18673 return "DW_TAG_<unknown>";
18674
18675 return name;
18676 }
18677
18678 /* Convert a DWARF attribute code into its string name. */
18679
18680 static const char *
18681 dwarf_attr_name (unsigned attr)
18682 {
18683 const char *name;
18684
18685 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18686 if (attr == DW_AT_MIPS_fde)
18687 return "DW_AT_MIPS_fde";
18688 #else
18689 if (attr == DW_AT_HP_block_index)
18690 return "DW_AT_HP_block_index";
18691 #endif
18692
18693 name = get_DW_AT_name (attr);
18694
18695 if (name == NULL)
18696 return "DW_AT_<unknown>";
18697
18698 return name;
18699 }
18700
18701 /* Convert a DWARF value form code into its string name. */
18702
18703 static const char *
18704 dwarf_form_name (unsigned form)
18705 {
18706 const char *name = get_DW_FORM_name (form);
18707
18708 if (name == NULL)
18709 return "DW_FORM_<unknown>";
18710
18711 return name;
18712 }
18713
18714 static char *
18715 dwarf_bool_name (unsigned mybool)
18716 {
18717 if (mybool)
18718 return "TRUE";
18719 else
18720 return "FALSE";
18721 }
18722
18723 /* Convert a DWARF type code into its string name. */
18724
18725 static const char *
18726 dwarf_type_encoding_name (unsigned enc)
18727 {
18728 const char *name = get_DW_ATE_name (enc);
18729
18730 if (name == NULL)
18731 return "DW_ATE_<unknown>";
18732
18733 return name;
18734 }
18735
18736 static void
18737 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18738 {
18739 unsigned int i;
18740
18741 print_spaces (indent, f);
18742 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18743 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18744
18745 if (die->parent != NULL)
18746 {
18747 print_spaces (indent, f);
18748 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18749 die->parent->offset.sect_off);
18750 }
18751
18752 print_spaces (indent, f);
18753 fprintf_unfiltered (f, " has children: %s\n",
18754 dwarf_bool_name (die->child != NULL));
18755
18756 print_spaces (indent, f);
18757 fprintf_unfiltered (f, " attributes:\n");
18758
18759 for (i = 0; i < die->num_attrs; ++i)
18760 {
18761 print_spaces (indent, f);
18762 fprintf_unfiltered (f, " %s (%s) ",
18763 dwarf_attr_name (die->attrs[i].name),
18764 dwarf_form_name (die->attrs[i].form));
18765
18766 switch (die->attrs[i].form)
18767 {
18768 case DW_FORM_addr:
18769 case DW_FORM_GNU_addr_index:
18770 fprintf_unfiltered (f, "address: ");
18771 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18772 break;
18773 case DW_FORM_block2:
18774 case DW_FORM_block4:
18775 case DW_FORM_block:
18776 case DW_FORM_block1:
18777 fprintf_unfiltered (f, "block: size %s",
18778 pulongest (DW_BLOCK (&die->attrs[i])->size));
18779 break;
18780 case DW_FORM_exprloc:
18781 fprintf_unfiltered (f, "expression: size %s",
18782 pulongest (DW_BLOCK (&die->attrs[i])->size));
18783 break;
18784 case DW_FORM_ref_addr:
18785 fprintf_unfiltered (f, "ref address: ");
18786 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18787 break;
18788 case DW_FORM_GNU_ref_alt:
18789 fprintf_unfiltered (f, "alt ref address: ");
18790 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18791 break;
18792 case DW_FORM_ref1:
18793 case DW_FORM_ref2:
18794 case DW_FORM_ref4:
18795 case DW_FORM_ref8:
18796 case DW_FORM_ref_udata:
18797 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18798 (long) (DW_UNSND (&die->attrs[i])));
18799 break;
18800 case DW_FORM_data1:
18801 case DW_FORM_data2:
18802 case DW_FORM_data4:
18803 case DW_FORM_data8:
18804 case DW_FORM_udata:
18805 case DW_FORM_sdata:
18806 fprintf_unfiltered (f, "constant: %s",
18807 pulongest (DW_UNSND (&die->attrs[i])));
18808 break;
18809 case DW_FORM_sec_offset:
18810 fprintf_unfiltered (f, "section offset: %s",
18811 pulongest (DW_UNSND (&die->attrs[i])));
18812 break;
18813 case DW_FORM_ref_sig8:
18814 fprintf_unfiltered (f, "signature: %s",
18815 hex_string (DW_SIGNATURE (&die->attrs[i])));
18816 break;
18817 case DW_FORM_string:
18818 case DW_FORM_strp:
18819 case DW_FORM_GNU_str_index:
18820 case DW_FORM_GNU_strp_alt:
18821 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18822 DW_STRING (&die->attrs[i])
18823 ? DW_STRING (&die->attrs[i]) : "",
18824 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18825 break;
18826 case DW_FORM_flag:
18827 if (DW_UNSND (&die->attrs[i]))
18828 fprintf_unfiltered (f, "flag: TRUE");
18829 else
18830 fprintf_unfiltered (f, "flag: FALSE");
18831 break;
18832 case DW_FORM_flag_present:
18833 fprintf_unfiltered (f, "flag: TRUE");
18834 break;
18835 case DW_FORM_indirect:
18836 /* The reader will have reduced the indirect form to
18837 the "base form" so this form should not occur. */
18838 fprintf_unfiltered (f,
18839 "unexpected attribute form: DW_FORM_indirect");
18840 break;
18841 default:
18842 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18843 die->attrs[i].form);
18844 break;
18845 }
18846 fprintf_unfiltered (f, "\n");
18847 }
18848 }
18849
18850 static void
18851 dump_die_for_error (struct die_info *die)
18852 {
18853 dump_die_shallow (gdb_stderr, 0, die);
18854 }
18855
18856 static void
18857 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18858 {
18859 int indent = level * 4;
18860
18861 gdb_assert (die != NULL);
18862
18863 if (level >= max_level)
18864 return;
18865
18866 dump_die_shallow (f, indent, die);
18867
18868 if (die->child != NULL)
18869 {
18870 print_spaces (indent, f);
18871 fprintf_unfiltered (f, " Children:");
18872 if (level + 1 < max_level)
18873 {
18874 fprintf_unfiltered (f, "\n");
18875 dump_die_1 (f, level + 1, max_level, die->child);
18876 }
18877 else
18878 {
18879 fprintf_unfiltered (f,
18880 " [not printed, max nesting level reached]\n");
18881 }
18882 }
18883
18884 if (die->sibling != NULL && level > 0)
18885 {
18886 dump_die_1 (f, level, max_level, die->sibling);
18887 }
18888 }
18889
18890 /* This is called from the pdie macro in gdbinit.in.
18891 It's not static so gcc will keep a copy callable from gdb. */
18892
18893 void
18894 dump_die (struct die_info *die, int max_level)
18895 {
18896 dump_die_1 (gdb_stdlog, 0, max_level, die);
18897 }
18898
18899 static void
18900 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18901 {
18902 void **slot;
18903
18904 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18905 INSERT);
18906
18907 *slot = die;
18908 }
18909
18910 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18911 required kind. */
18912
18913 static sect_offset
18914 dwarf2_get_ref_die_offset (const struct attribute *attr)
18915 {
18916 sect_offset retval = { DW_UNSND (attr) };
18917
18918 if (attr_form_is_ref (attr))
18919 return retval;
18920
18921 retval.sect_off = 0;
18922 complaint (&symfile_complaints,
18923 _("unsupported die ref attribute form: '%s'"),
18924 dwarf_form_name (attr->form));
18925 return retval;
18926 }
18927
18928 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18929 * the value held by the attribute is not constant. */
18930
18931 static LONGEST
18932 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18933 {
18934 if (attr->form == DW_FORM_sdata)
18935 return DW_SND (attr);
18936 else if (attr->form == DW_FORM_udata
18937 || attr->form == DW_FORM_data1
18938 || attr->form == DW_FORM_data2
18939 || attr->form == DW_FORM_data4
18940 || attr->form == DW_FORM_data8)
18941 return DW_UNSND (attr);
18942 else
18943 {
18944 complaint (&symfile_complaints,
18945 _("Attribute value is not a constant (%s)"),
18946 dwarf_form_name (attr->form));
18947 return default_value;
18948 }
18949 }
18950
18951 /* Follow reference or signature attribute ATTR of SRC_DIE.
18952 On entry *REF_CU is the CU of SRC_DIE.
18953 On exit *REF_CU is the CU of the result. */
18954
18955 static struct die_info *
18956 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18957 struct dwarf2_cu **ref_cu)
18958 {
18959 struct die_info *die;
18960
18961 if (attr_form_is_ref (attr))
18962 die = follow_die_ref (src_die, attr, ref_cu);
18963 else if (attr->form == DW_FORM_ref_sig8)
18964 die = follow_die_sig (src_die, attr, ref_cu);
18965 else
18966 {
18967 dump_die_for_error (src_die);
18968 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18969 objfile_name ((*ref_cu)->objfile));
18970 }
18971
18972 return die;
18973 }
18974
18975 /* Follow reference OFFSET.
18976 On entry *REF_CU is the CU of the source die referencing OFFSET.
18977 On exit *REF_CU is the CU of the result.
18978 Returns NULL if OFFSET is invalid. */
18979
18980 static struct die_info *
18981 follow_die_offset (sect_offset offset, int offset_in_dwz,
18982 struct dwarf2_cu **ref_cu)
18983 {
18984 struct die_info temp_die;
18985 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18986
18987 gdb_assert (cu->per_cu != NULL);
18988
18989 target_cu = cu;
18990
18991 if (cu->per_cu->is_debug_types)
18992 {
18993 /* .debug_types CUs cannot reference anything outside their CU.
18994 If they need to, they have to reference a signatured type via
18995 DW_FORM_ref_sig8. */
18996 if (! offset_in_cu_p (&cu->header, offset))
18997 return NULL;
18998 }
18999 else if (offset_in_dwz != cu->per_cu->is_dwz
19000 || ! offset_in_cu_p (&cu->header, offset))
19001 {
19002 struct dwarf2_per_cu_data *per_cu;
19003
19004 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19005 cu->objfile);
19006
19007 /* If necessary, add it to the queue and load its DIEs. */
19008 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19009 load_full_comp_unit (per_cu, cu->language);
19010
19011 target_cu = per_cu->cu;
19012 }
19013 else if (cu->dies == NULL)
19014 {
19015 /* We're loading full DIEs during partial symbol reading. */
19016 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19017 load_full_comp_unit (cu->per_cu, language_minimal);
19018 }
19019
19020 *ref_cu = target_cu;
19021 temp_die.offset = offset;
19022 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19023 }
19024
19025 /* Follow reference attribute ATTR of SRC_DIE.
19026 On entry *REF_CU is the CU of SRC_DIE.
19027 On exit *REF_CU is the CU of the result. */
19028
19029 static struct die_info *
19030 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19031 struct dwarf2_cu **ref_cu)
19032 {
19033 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19034 struct dwarf2_cu *cu = *ref_cu;
19035 struct die_info *die;
19036
19037 die = follow_die_offset (offset,
19038 (attr->form == DW_FORM_GNU_ref_alt
19039 || cu->per_cu->is_dwz),
19040 ref_cu);
19041 if (!die)
19042 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19043 "at 0x%x [in module %s]"),
19044 offset.sect_off, src_die->offset.sect_off,
19045 objfile_name (cu->objfile));
19046
19047 return die;
19048 }
19049
19050 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19051 Returned value is intended for DW_OP_call*. Returned
19052 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19053
19054 struct dwarf2_locexpr_baton
19055 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19056 struct dwarf2_per_cu_data *per_cu,
19057 CORE_ADDR (*get_frame_pc) (void *baton),
19058 void *baton)
19059 {
19060 struct dwarf2_cu *cu;
19061 struct die_info *die;
19062 struct attribute *attr;
19063 struct dwarf2_locexpr_baton retval;
19064
19065 dw2_setup (per_cu->objfile);
19066
19067 if (per_cu->cu == NULL)
19068 load_cu (per_cu);
19069 cu = per_cu->cu;
19070
19071 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19072 if (!die)
19073 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19074 offset.sect_off, objfile_name (per_cu->objfile));
19075
19076 attr = dwarf2_attr (die, DW_AT_location, cu);
19077 if (!attr)
19078 {
19079 /* DWARF: "If there is no such attribute, then there is no effect.".
19080 DATA is ignored if SIZE is 0. */
19081
19082 retval.data = NULL;
19083 retval.size = 0;
19084 }
19085 else if (attr_form_is_section_offset (attr))
19086 {
19087 struct dwarf2_loclist_baton loclist_baton;
19088 CORE_ADDR pc = (*get_frame_pc) (baton);
19089 size_t size;
19090
19091 fill_in_loclist_baton (cu, &loclist_baton, attr);
19092
19093 retval.data = dwarf2_find_location_expression (&loclist_baton,
19094 &size, pc);
19095 retval.size = size;
19096 }
19097 else
19098 {
19099 if (!attr_form_is_block (attr))
19100 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19101 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19102 offset.sect_off, objfile_name (per_cu->objfile));
19103
19104 retval.data = DW_BLOCK (attr)->data;
19105 retval.size = DW_BLOCK (attr)->size;
19106 }
19107 retval.per_cu = cu->per_cu;
19108
19109 age_cached_comp_units ();
19110
19111 return retval;
19112 }
19113
19114 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19115 offset. */
19116
19117 struct dwarf2_locexpr_baton
19118 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19119 struct dwarf2_per_cu_data *per_cu,
19120 CORE_ADDR (*get_frame_pc) (void *baton),
19121 void *baton)
19122 {
19123 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19124
19125 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19126 }
19127
19128 /* Write a constant of a given type as target-ordered bytes into
19129 OBSTACK. */
19130
19131 static const gdb_byte *
19132 write_constant_as_bytes (struct obstack *obstack,
19133 enum bfd_endian byte_order,
19134 struct type *type,
19135 ULONGEST value,
19136 LONGEST *len)
19137 {
19138 gdb_byte *result;
19139
19140 *len = TYPE_LENGTH (type);
19141 result = obstack_alloc (obstack, *len);
19142 store_unsigned_integer (result, *len, byte_order, value);
19143
19144 return result;
19145 }
19146
19147 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19148 pointer to the constant bytes and set LEN to the length of the
19149 data. If memory is needed, allocate it on OBSTACK. If the DIE
19150 does not have a DW_AT_const_value, return NULL. */
19151
19152 const gdb_byte *
19153 dwarf2_fetch_constant_bytes (sect_offset offset,
19154 struct dwarf2_per_cu_data *per_cu,
19155 struct obstack *obstack,
19156 LONGEST *len)
19157 {
19158 struct dwarf2_cu *cu;
19159 struct die_info *die;
19160 struct attribute *attr;
19161 const gdb_byte *result = NULL;
19162 struct type *type;
19163 LONGEST value;
19164 enum bfd_endian byte_order;
19165
19166 dw2_setup (per_cu->objfile);
19167
19168 if (per_cu->cu == NULL)
19169 load_cu (per_cu);
19170 cu = per_cu->cu;
19171
19172 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19173 if (!die)
19174 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19175 offset.sect_off, objfile_name (per_cu->objfile));
19176
19177
19178 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19179 if (attr == NULL)
19180 return NULL;
19181
19182 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19183 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19184
19185 switch (attr->form)
19186 {
19187 case DW_FORM_addr:
19188 case DW_FORM_GNU_addr_index:
19189 {
19190 gdb_byte *tem;
19191
19192 *len = cu->header.addr_size;
19193 tem = obstack_alloc (obstack, *len);
19194 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19195 result = tem;
19196 }
19197 break;
19198 case DW_FORM_string:
19199 case DW_FORM_strp:
19200 case DW_FORM_GNU_str_index:
19201 case DW_FORM_GNU_strp_alt:
19202 /* DW_STRING is already allocated on the objfile obstack, point
19203 directly to it. */
19204 result = (const gdb_byte *) DW_STRING (attr);
19205 *len = strlen (DW_STRING (attr));
19206 break;
19207 case DW_FORM_block1:
19208 case DW_FORM_block2:
19209 case DW_FORM_block4:
19210 case DW_FORM_block:
19211 case DW_FORM_exprloc:
19212 result = DW_BLOCK (attr)->data;
19213 *len = DW_BLOCK (attr)->size;
19214 break;
19215
19216 /* The DW_AT_const_value attributes are supposed to carry the
19217 symbol's value "represented as it would be on the target
19218 architecture." By the time we get here, it's already been
19219 converted to host endianness, so we just need to sign- or
19220 zero-extend it as appropriate. */
19221 case DW_FORM_data1:
19222 type = die_type (die, cu);
19223 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19224 if (result == NULL)
19225 result = write_constant_as_bytes (obstack, byte_order,
19226 type, value, len);
19227 break;
19228 case DW_FORM_data2:
19229 type = die_type (die, cu);
19230 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19231 if (result == NULL)
19232 result = write_constant_as_bytes (obstack, byte_order,
19233 type, value, len);
19234 break;
19235 case DW_FORM_data4:
19236 type = die_type (die, cu);
19237 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19238 if (result == NULL)
19239 result = write_constant_as_bytes (obstack, byte_order,
19240 type, value, len);
19241 break;
19242 case DW_FORM_data8:
19243 type = die_type (die, cu);
19244 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19245 if (result == NULL)
19246 result = write_constant_as_bytes (obstack, byte_order,
19247 type, value, len);
19248 break;
19249
19250 case DW_FORM_sdata:
19251 type = die_type (die, cu);
19252 result = write_constant_as_bytes (obstack, byte_order,
19253 type, DW_SND (attr), len);
19254 break;
19255
19256 case DW_FORM_udata:
19257 type = die_type (die, cu);
19258 result = write_constant_as_bytes (obstack, byte_order,
19259 type, DW_UNSND (attr), len);
19260 break;
19261
19262 default:
19263 complaint (&symfile_complaints,
19264 _("unsupported const value attribute form: '%s'"),
19265 dwarf_form_name (attr->form));
19266 break;
19267 }
19268
19269 return result;
19270 }
19271
19272 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19273 PER_CU. */
19274
19275 struct type *
19276 dwarf2_get_die_type (cu_offset die_offset,
19277 struct dwarf2_per_cu_data *per_cu)
19278 {
19279 sect_offset die_offset_sect;
19280
19281 dw2_setup (per_cu->objfile);
19282
19283 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19284 return get_die_type_at_offset (die_offset_sect, per_cu);
19285 }
19286
19287 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19288 On entry *REF_CU is the CU of SRC_DIE.
19289 On exit *REF_CU is the CU of the result.
19290 Returns NULL if the referenced DIE isn't found. */
19291
19292 static struct die_info *
19293 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19294 struct dwarf2_cu **ref_cu)
19295 {
19296 struct objfile *objfile = (*ref_cu)->objfile;
19297 struct die_info temp_die;
19298 struct dwarf2_cu *sig_cu;
19299 struct die_info *die;
19300
19301 /* While it might be nice to assert sig_type->type == NULL here,
19302 we can get here for DW_AT_imported_declaration where we need
19303 the DIE not the type. */
19304
19305 /* If necessary, add it to the queue and load its DIEs. */
19306
19307 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19308 read_signatured_type (sig_type);
19309
19310 sig_cu = sig_type->per_cu.cu;
19311 gdb_assert (sig_cu != NULL);
19312 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19313 temp_die.offset = sig_type->type_offset_in_section;
19314 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19315 temp_die.offset.sect_off);
19316 if (die)
19317 {
19318 /* For .gdb_index version 7 keep track of included TUs.
19319 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19320 if (dwarf2_per_objfile->index_table != NULL
19321 && dwarf2_per_objfile->index_table->version <= 7)
19322 {
19323 VEC_safe_push (dwarf2_per_cu_ptr,
19324 (*ref_cu)->per_cu->imported_symtabs,
19325 sig_cu->per_cu);
19326 }
19327
19328 *ref_cu = sig_cu;
19329 return die;
19330 }
19331
19332 return NULL;
19333 }
19334
19335 /* Follow signatured type referenced by ATTR in SRC_DIE.
19336 On entry *REF_CU is the CU of SRC_DIE.
19337 On exit *REF_CU is the CU of the result.
19338 The result is the DIE of the type.
19339 If the referenced type cannot be found an error is thrown. */
19340
19341 static struct die_info *
19342 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19343 struct dwarf2_cu **ref_cu)
19344 {
19345 ULONGEST signature = DW_SIGNATURE (attr);
19346 struct signatured_type *sig_type;
19347 struct die_info *die;
19348
19349 gdb_assert (attr->form == DW_FORM_ref_sig8);
19350
19351 sig_type = lookup_signatured_type (*ref_cu, signature);
19352 /* sig_type will be NULL if the signatured type is missing from
19353 the debug info. */
19354 if (sig_type == NULL)
19355 {
19356 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19357 " from DIE at 0x%x [in module %s]"),
19358 hex_string (signature), src_die->offset.sect_off,
19359 objfile_name ((*ref_cu)->objfile));
19360 }
19361
19362 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19363 if (die == NULL)
19364 {
19365 dump_die_for_error (src_die);
19366 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19367 " from DIE at 0x%x [in module %s]"),
19368 hex_string (signature), src_die->offset.sect_off,
19369 objfile_name ((*ref_cu)->objfile));
19370 }
19371
19372 return die;
19373 }
19374
19375 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19376 reading in and processing the type unit if necessary. */
19377
19378 static struct type *
19379 get_signatured_type (struct die_info *die, ULONGEST signature,
19380 struct dwarf2_cu *cu)
19381 {
19382 struct signatured_type *sig_type;
19383 struct dwarf2_cu *type_cu;
19384 struct die_info *type_die;
19385 struct type *type;
19386
19387 sig_type = lookup_signatured_type (cu, signature);
19388 /* sig_type will be NULL if the signatured type is missing from
19389 the debug info. */
19390 if (sig_type == NULL)
19391 {
19392 complaint (&symfile_complaints,
19393 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19394 " from DIE at 0x%x [in module %s]"),
19395 hex_string (signature), die->offset.sect_off,
19396 objfile_name (dwarf2_per_objfile->objfile));
19397 return build_error_marker_type (cu, die);
19398 }
19399
19400 /* If we already know the type we're done. */
19401 if (sig_type->type != NULL)
19402 return sig_type->type;
19403
19404 type_cu = cu;
19405 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19406 if (type_die != NULL)
19407 {
19408 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19409 is created. This is important, for example, because for c++ classes
19410 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19411 type = read_type_die (type_die, type_cu);
19412 if (type == NULL)
19413 {
19414 complaint (&symfile_complaints,
19415 _("Dwarf Error: Cannot build signatured type %s"
19416 " referenced from DIE at 0x%x [in module %s]"),
19417 hex_string (signature), die->offset.sect_off,
19418 objfile_name (dwarf2_per_objfile->objfile));
19419 type = build_error_marker_type (cu, die);
19420 }
19421 }
19422 else
19423 {
19424 complaint (&symfile_complaints,
19425 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19426 " from DIE at 0x%x [in module %s]"),
19427 hex_string (signature), die->offset.sect_off,
19428 objfile_name (dwarf2_per_objfile->objfile));
19429 type = build_error_marker_type (cu, die);
19430 }
19431 sig_type->type = type;
19432
19433 return type;
19434 }
19435
19436 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19437 reading in and processing the type unit if necessary. */
19438
19439 static struct type *
19440 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19441 struct dwarf2_cu *cu) /* ARI: editCase function */
19442 {
19443 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19444 if (attr_form_is_ref (attr))
19445 {
19446 struct dwarf2_cu *type_cu = cu;
19447 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19448
19449 return read_type_die (type_die, type_cu);
19450 }
19451 else if (attr->form == DW_FORM_ref_sig8)
19452 {
19453 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19454 }
19455 else
19456 {
19457 complaint (&symfile_complaints,
19458 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19459 " at 0x%x [in module %s]"),
19460 dwarf_form_name (attr->form), die->offset.sect_off,
19461 objfile_name (dwarf2_per_objfile->objfile));
19462 return build_error_marker_type (cu, die);
19463 }
19464 }
19465
19466 /* Load the DIEs associated with type unit PER_CU into memory. */
19467
19468 static void
19469 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19470 {
19471 struct signatured_type *sig_type;
19472
19473 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19474 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19475
19476 /* We have the per_cu, but we need the signatured_type.
19477 Fortunately this is an easy translation. */
19478 gdb_assert (per_cu->is_debug_types);
19479 sig_type = (struct signatured_type *) per_cu;
19480
19481 gdb_assert (per_cu->cu == NULL);
19482
19483 read_signatured_type (sig_type);
19484
19485 gdb_assert (per_cu->cu != NULL);
19486 }
19487
19488 /* die_reader_func for read_signatured_type.
19489 This is identical to load_full_comp_unit_reader,
19490 but is kept separate for now. */
19491
19492 static void
19493 read_signatured_type_reader (const struct die_reader_specs *reader,
19494 const gdb_byte *info_ptr,
19495 struct die_info *comp_unit_die,
19496 int has_children,
19497 void *data)
19498 {
19499 struct dwarf2_cu *cu = reader->cu;
19500
19501 gdb_assert (cu->die_hash == NULL);
19502 cu->die_hash =
19503 htab_create_alloc_ex (cu->header.length / 12,
19504 die_hash,
19505 die_eq,
19506 NULL,
19507 &cu->comp_unit_obstack,
19508 hashtab_obstack_allocate,
19509 dummy_obstack_deallocate);
19510
19511 if (has_children)
19512 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19513 &info_ptr, comp_unit_die);
19514 cu->dies = comp_unit_die;
19515 /* comp_unit_die is not stored in die_hash, no need. */
19516
19517 /* We try not to read any attributes in this function, because not
19518 all CUs needed for references have been loaded yet, and symbol
19519 table processing isn't initialized. But we have to set the CU language,
19520 or we won't be able to build types correctly.
19521 Similarly, if we do not read the producer, we can not apply
19522 producer-specific interpretation. */
19523 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19524 }
19525
19526 /* Read in a signatured type and build its CU and DIEs.
19527 If the type is a stub for the real type in a DWO file,
19528 read in the real type from the DWO file as well. */
19529
19530 static void
19531 read_signatured_type (struct signatured_type *sig_type)
19532 {
19533 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19534
19535 gdb_assert (per_cu->is_debug_types);
19536 gdb_assert (per_cu->cu == NULL);
19537
19538 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19539 read_signatured_type_reader, NULL);
19540 sig_type->per_cu.tu_read = 1;
19541 }
19542
19543 /* Decode simple location descriptions.
19544 Given a pointer to a dwarf block that defines a location, compute
19545 the location and return the value.
19546
19547 NOTE drow/2003-11-18: This function is called in two situations
19548 now: for the address of static or global variables (partial symbols
19549 only) and for offsets into structures which are expected to be
19550 (more or less) constant. The partial symbol case should go away,
19551 and only the constant case should remain. That will let this
19552 function complain more accurately. A few special modes are allowed
19553 without complaint for global variables (for instance, global
19554 register values and thread-local values).
19555
19556 A location description containing no operations indicates that the
19557 object is optimized out. The return value is 0 for that case.
19558 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19559 callers will only want a very basic result and this can become a
19560 complaint.
19561
19562 Note that stack[0] is unused except as a default error return. */
19563
19564 static CORE_ADDR
19565 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19566 {
19567 struct objfile *objfile = cu->objfile;
19568 size_t i;
19569 size_t size = blk->size;
19570 const gdb_byte *data = blk->data;
19571 CORE_ADDR stack[64];
19572 int stacki;
19573 unsigned int bytes_read, unsnd;
19574 gdb_byte op;
19575
19576 i = 0;
19577 stacki = 0;
19578 stack[stacki] = 0;
19579 stack[++stacki] = 0;
19580
19581 while (i < size)
19582 {
19583 op = data[i++];
19584 switch (op)
19585 {
19586 case DW_OP_lit0:
19587 case DW_OP_lit1:
19588 case DW_OP_lit2:
19589 case DW_OP_lit3:
19590 case DW_OP_lit4:
19591 case DW_OP_lit5:
19592 case DW_OP_lit6:
19593 case DW_OP_lit7:
19594 case DW_OP_lit8:
19595 case DW_OP_lit9:
19596 case DW_OP_lit10:
19597 case DW_OP_lit11:
19598 case DW_OP_lit12:
19599 case DW_OP_lit13:
19600 case DW_OP_lit14:
19601 case DW_OP_lit15:
19602 case DW_OP_lit16:
19603 case DW_OP_lit17:
19604 case DW_OP_lit18:
19605 case DW_OP_lit19:
19606 case DW_OP_lit20:
19607 case DW_OP_lit21:
19608 case DW_OP_lit22:
19609 case DW_OP_lit23:
19610 case DW_OP_lit24:
19611 case DW_OP_lit25:
19612 case DW_OP_lit26:
19613 case DW_OP_lit27:
19614 case DW_OP_lit28:
19615 case DW_OP_lit29:
19616 case DW_OP_lit30:
19617 case DW_OP_lit31:
19618 stack[++stacki] = op - DW_OP_lit0;
19619 break;
19620
19621 case DW_OP_reg0:
19622 case DW_OP_reg1:
19623 case DW_OP_reg2:
19624 case DW_OP_reg3:
19625 case DW_OP_reg4:
19626 case DW_OP_reg5:
19627 case DW_OP_reg6:
19628 case DW_OP_reg7:
19629 case DW_OP_reg8:
19630 case DW_OP_reg9:
19631 case DW_OP_reg10:
19632 case DW_OP_reg11:
19633 case DW_OP_reg12:
19634 case DW_OP_reg13:
19635 case DW_OP_reg14:
19636 case DW_OP_reg15:
19637 case DW_OP_reg16:
19638 case DW_OP_reg17:
19639 case DW_OP_reg18:
19640 case DW_OP_reg19:
19641 case DW_OP_reg20:
19642 case DW_OP_reg21:
19643 case DW_OP_reg22:
19644 case DW_OP_reg23:
19645 case DW_OP_reg24:
19646 case DW_OP_reg25:
19647 case DW_OP_reg26:
19648 case DW_OP_reg27:
19649 case DW_OP_reg28:
19650 case DW_OP_reg29:
19651 case DW_OP_reg30:
19652 case DW_OP_reg31:
19653 stack[++stacki] = op - DW_OP_reg0;
19654 if (i < size)
19655 dwarf2_complex_location_expr_complaint ();
19656 break;
19657
19658 case DW_OP_regx:
19659 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19660 i += bytes_read;
19661 stack[++stacki] = unsnd;
19662 if (i < size)
19663 dwarf2_complex_location_expr_complaint ();
19664 break;
19665
19666 case DW_OP_addr:
19667 stack[++stacki] = read_address (objfile->obfd, &data[i],
19668 cu, &bytes_read);
19669 i += bytes_read;
19670 break;
19671
19672 case DW_OP_const1u:
19673 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19674 i += 1;
19675 break;
19676
19677 case DW_OP_const1s:
19678 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19679 i += 1;
19680 break;
19681
19682 case DW_OP_const2u:
19683 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19684 i += 2;
19685 break;
19686
19687 case DW_OP_const2s:
19688 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19689 i += 2;
19690 break;
19691
19692 case DW_OP_const4u:
19693 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19694 i += 4;
19695 break;
19696
19697 case DW_OP_const4s:
19698 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19699 i += 4;
19700 break;
19701
19702 case DW_OP_const8u:
19703 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19704 i += 8;
19705 break;
19706
19707 case DW_OP_constu:
19708 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19709 &bytes_read);
19710 i += bytes_read;
19711 break;
19712
19713 case DW_OP_consts:
19714 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19715 i += bytes_read;
19716 break;
19717
19718 case DW_OP_dup:
19719 stack[stacki + 1] = stack[stacki];
19720 stacki++;
19721 break;
19722
19723 case DW_OP_plus:
19724 stack[stacki - 1] += stack[stacki];
19725 stacki--;
19726 break;
19727
19728 case DW_OP_plus_uconst:
19729 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19730 &bytes_read);
19731 i += bytes_read;
19732 break;
19733
19734 case DW_OP_minus:
19735 stack[stacki - 1] -= stack[stacki];
19736 stacki--;
19737 break;
19738
19739 case DW_OP_deref:
19740 /* If we're not the last op, then we definitely can't encode
19741 this using GDB's address_class enum. This is valid for partial
19742 global symbols, although the variable's address will be bogus
19743 in the psymtab. */
19744 if (i < size)
19745 dwarf2_complex_location_expr_complaint ();
19746 break;
19747
19748 case DW_OP_GNU_push_tls_address:
19749 /* The top of the stack has the offset from the beginning
19750 of the thread control block at which the variable is located. */
19751 /* Nothing should follow this operator, so the top of stack would
19752 be returned. */
19753 /* This is valid for partial global symbols, but the variable's
19754 address will be bogus in the psymtab. Make it always at least
19755 non-zero to not look as a variable garbage collected by linker
19756 which have DW_OP_addr 0. */
19757 if (i < size)
19758 dwarf2_complex_location_expr_complaint ();
19759 stack[stacki]++;
19760 break;
19761
19762 case DW_OP_GNU_uninit:
19763 break;
19764
19765 case DW_OP_GNU_addr_index:
19766 case DW_OP_GNU_const_index:
19767 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19768 &bytes_read);
19769 i += bytes_read;
19770 break;
19771
19772 default:
19773 {
19774 const char *name = get_DW_OP_name (op);
19775
19776 if (name)
19777 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19778 name);
19779 else
19780 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19781 op);
19782 }
19783
19784 return (stack[stacki]);
19785 }
19786
19787 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19788 outside of the allocated space. Also enforce minimum>0. */
19789 if (stacki >= ARRAY_SIZE (stack) - 1)
19790 {
19791 complaint (&symfile_complaints,
19792 _("location description stack overflow"));
19793 return 0;
19794 }
19795
19796 if (stacki <= 0)
19797 {
19798 complaint (&symfile_complaints,
19799 _("location description stack underflow"));
19800 return 0;
19801 }
19802 }
19803 return (stack[stacki]);
19804 }
19805
19806 /* memory allocation interface */
19807
19808 static struct dwarf_block *
19809 dwarf_alloc_block (struct dwarf2_cu *cu)
19810 {
19811 struct dwarf_block *blk;
19812
19813 blk = (struct dwarf_block *)
19814 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19815 return (blk);
19816 }
19817
19818 static struct die_info *
19819 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19820 {
19821 struct die_info *die;
19822 size_t size = sizeof (struct die_info);
19823
19824 if (num_attrs > 1)
19825 size += (num_attrs - 1) * sizeof (struct attribute);
19826
19827 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19828 memset (die, 0, sizeof (struct die_info));
19829 return (die);
19830 }
19831
19832 \f
19833 /* Macro support. */
19834
19835 /* Return file name relative to the compilation directory of file number I in
19836 *LH's file name table. The result is allocated using xmalloc; the caller is
19837 responsible for freeing it. */
19838
19839 static char *
19840 file_file_name (int file, struct line_header *lh)
19841 {
19842 /* Is the file number a valid index into the line header's file name
19843 table? Remember that file numbers start with one, not zero. */
19844 if (1 <= file && file <= lh->num_file_names)
19845 {
19846 struct file_entry *fe = &lh->file_names[file - 1];
19847
19848 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19849 return xstrdup (fe->name);
19850 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19851 fe->name, NULL);
19852 }
19853 else
19854 {
19855 /* The compiler produced a bogus file number. We can at least
19856 record the macro definitions made in the file, even if we
19857 won't be able to find the file by name. */
19858 char fake_name[80];
19859
19860 xsnprintf (fake_name, sizeof (fake_name),
19861 "<bad macro file number %d>", file);
19862
19863 complaint (&symfile_complaints,
19864 _("bad file number in macro information (%d)"),
19865 file);
19866
19867 return xstrdup (fake_name);
19868 }
19869 }
19870
19871 /* Return the full name of file number I in *LH's file name table.
19872 Use COMP_DIR as the name of the current directory of the
19873 compilation. The result is allocated using xmalloc; the caller is
19874 responsible for freeing it. */
19875 static char *
19876 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19877 {
19878 /* Is the file number a valid index into the line header's file name
19879 table? Remember that file numbers start with one, not zero. */
19880 if (1 <= file && file <= lh->num_file_names)
19881 {
19882 char *relative = file_file_name (file, lh);
19883
19884 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19885 return relative;
19886 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19887 }
19888 else
19889 return file_file_name (file, lh);
19890 }
19891
19892
19893 static struct macro_source_file *
19894 macro_start_file (int file, int line,
19895 struct macro_source_file *current_file,
19896 const char *comp_dir,
19897 struct line_header *lh, struct objfile *objfile)
19898 {
19899 /* File name relative to the compilation directory of this source file. */
19900 char *file_name = file_file_name (file, lh);
19901
19902 if (! current_file)
19903 {
19904 /* Note: We don't create a macro table for this compilation unit
19905 at all until we actually get a filename. */
19906 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19907
19908 /* If we have no current file, then this must be the start_file
19909 directive for the compilation unit's main source file. */
19910 current_file = macro_set_main (macro_table, file_name);
19911 macro_define_special (macro_table);
19912 }
19913 else
19914 current_file = macro_include (current_file, line, file_name);
19915
19916 xfree (file_name);
19917
19918 return current_file;
19919 }
19920
19921
19922 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19923 followed by a null byte. */
19924 static char *
19925 copy_string (const char *buf, int len)
19926 {
19927 char *s = xmalloc (len + 1);
19928
19929 memcpy (s, buf, len);
19930 s[len] = '\0';
19931 return s;
19932 }
19933
19934
19935 static const char *
19936 consume_improper_spaces (const char *p, const char *body)
19937 {
19938 if (*p == ' ')
19939 {
19940 complaint (&symfile_complaints,
19941 _("macro definition contains spaces "
19942 "in formal argument list:\n`%s'"),
19943 body);
19944
19945 while (*p == ' ')
19946 p++;
19947 }
19948
19949 return p;
19950 }
19951
19952
19953 static void
19954 parse_macro_definition (struct macro_source_file *file, int line,
19955 const char *body)
19956 {
19957 const char *p;
19958
19959 /* The body string takes one of two forms. For object-like macro
19960 definitions, it should be:
19961
19962 <macro name> " " <definition>
19963
19964 For function-like macro definitions, it should be:
19965
19966 <macro name> "() " <definition>
19967 or
19968 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19969
19970 Spaces may appear only where explicitly indicated, and in the
19971 <definition>.
19972
19973 The Dwarf 2 spec says that an object-like macro's name is always
19974 followed by a space, but versions of GCC around March 2002 omit
19975 the space when the macro's definition is the empty string.
19976
19977 The Dwarf 2 spec says that there should be no spaces between the
19978 formal arguments in a function-like macro's formal argument list,
19979 but versions of GCC around March 2002 include spaces after the
19980 commas. */
19981
19982
19983 /* Find the extent of the macro name. The macro name is terminated
19984 by either a space or null character (for an object-like macro) or
19985 an opening paren (for a function-like macro). */
19986 for (p = body; *p; p++)
19987 if (*p == ' ' || *p == '(')
19988 break;
19989
19990 if (*p == ' ' || *p == '\0')
19991 {
19992 /* It's an object-like macro. */
19993 int name_len = p - body;
19994 char *name = copy_string (body, name_len);
19995 const char *replacement;
19996
19997 if (*p == ' ')
19998 replacement = body + name_len + 1;
19999 else
20000 {
20001 dwarf2_macro_malformed_definition_complaint (body);
20002 replacement = body + name_len;
20003 }
20004
20005 macro_define_object (file, line, name, replacement);
20006
20007 xfree (name);
20008 }
20009 else if (*p == '(')
20010 {
20011 /* It's a function-like macro. */
20012 char *name = copy_string (body, p - body);
20013 int argc = 0;
20014 int argv_size = 1;
20015 char **argv = xmalloc (argv_size * sizeof (*argv));
20016
20017 p++;
20018
20019 p = consume_improper_spaces (p, body);
20020
20021 /* Parse the formal argument list. */
20022 while (*p && *p != ')')
20023 {
20024 /* Find the extent of the current argument name. */
20025 const char *arg_start = p;
20026
20027 while (*p && *p != ',' && *p != ')' && *p != ' ')
20028 p++;
20029
20030 if (! *p || p == arg_start)
20031 dwarf2_macro_malformed_definition_complaint (body);
20032 else
20033 {
20034 /* Make sure argv has room for the new argument. */
20035 if (argc >= argv_size)
20036 {
20037 argv_size *= 2;
20038 argv = xrealloc (argv, argv_size * sizeof (*argv));
20039 }
20040
20041 argv[argc++] = copy_string (arg_start, p - arg_start);
20042 }
20043
20044 p = consume_improper_spaces (p, body);
20045
20046 /* Consume the comma, if present. */
20047 if (*p == ',')
20048 {
20049 p++;
20050
20051 p = consume_improper_spaces (p, body);
20052 }
20053 }
20054
20055 if (*p == ')')
20056 {
20057 p++;
20058
20059 if (*p == ' ')
20060 /* Perfectly formed definition, no complaints. */
20061 macro_define_function (file, line, name,
20062 argc, (const char **) argv,
20063 p + 1);
20064 else if (*p == '\0')
20065 {
20066 /* Complain, but do define it. */
20067 dwarf2_macro_malformed_definition_complaint (body);
20068 macro_define_function (file, line, name,
20069 argc, (const char **) argv,
20070 p);
20071 }
20072 else
20073 /* Just complain. */
20074 dwarf2_macro_malformed_definition_complaint (body);
20075 }
20076 else
20077 /* Just complain. */
20078 dwarf2_macro_malformed_definition_complaint (body);
20079
20080 xfree (name);
20081 {
20082 int i;
20083
20084 for (i = 0; i < argc; i++)
20085 xfree (argv[i]);
20086 }
20087 xfree (argv);
20088 }
20089 else
20090 dwarf2_macro_malformed_definition_complaint (body);
20091 }
20092
20093 /* Skip some bytes from BYTES according to the form given in FORM.
20094 Returns the new pointer. */
20095
20096 static const gdb_byte *
20097 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20098 enum dwarf_form form,
20099 unsigned int offset_size,
20100 struct dwarf2_section_info *section)
20101 {
20102 unsigned int bytes_read;
20103
20104 switch (form)
20105 {
20106 case DW_FORM_data1:
20107 case DW_FORM_flag:
20108 ++bytes;
20109 break;
20110
20111 case DW_FORM_data2:
20112 bytes += 2;
20113 break;
20114
20115 case DW_FORM_data4:
20116 bytes += 4;
20117 break;
20118
20119 case DW_FORM_data8:
20120 bytes += 8;
20121 break;
20122
20123 case DW_FORM_string:
20124 read_direct_string (abfd, bytes, &bytes_read);
20125 bytes += bytes_read;
20126 break;
20127
20128 case DW_FORM_sec_offset:
20129 case DW_FORM_strp:
20130 case DW_FORM_GNU_strp_alt:
20131 bytes += offset_size;
20132 break;
20133
20134 case DW_FORM_block:
20135 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20136 bytes += bytes_read;
20137 break;
20138
20139 case DW_FORM_block1:
20140 bytes += 1 + read_1_byte (abfd, bytes);
20141 break;
20142 case DW_FORM_block2:
20143 bytes += 2 + read_2_bytes (abfd, bytes);
20144 break;
20145 case DW_FORM_block4:
20146 bytes += 4 + read_4_bytes (abfd, bytes);
20147 break;
20148
20149 case DW_FORM_sdata:
20150 case DW_FORM_udata:
20151 case DW_FORM_GNU_addr_index:
20152 case DW_FORM_GNU_str_index:
20153 bytes = gdb_skip_leb128 (bytes, buffer_end);
20154 if (bytes == NULL)
20155 {
20156 dwarf2_section_buffer_overflow_complaint (section);
20157 return NULL;
20158 }
20159 break;
20160
20161 default:
20162 {
20163 complain:
20164 complaint (&symfile_complaints,
20165 _("invalid form 0x%x in `%s'"),
20166 form, get_section_name (section));
20167 return NULL;
20168 }
20169 }
20170
20171 return bytes;
20172 }
20173
20174 /* A helper for dwarf_decode_macros that handles skipping an unknown
20175 opcode. Returns an updated pointer to the macro data buffer; or,
20176 on error, issues a complaint and returns NULL. */
20177
20178 static const gdb_byte *
20179 skip_unknown_opcode (unsigned int opcode,
20180 const gdb_byte **opcode_definitions,
20181 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20182 bfd *abfd,
20183 unsigned int offset_size,
20184 struct dwarf2_section_info *section)
20185 {
20186 unsigned int bytes_read, i;
20187 unsigned long arg;
20188 const gdb_byte *defn;
20189
20190 if (opcode_definitions[opcode] == NULL)
20191 {
20192 complaint (&symfile_complaints,
20193 _("unrecognized DW_MACFINO opcode 0x%x"),
20194 opcode);
20195 return NULL;
20196 }
20197
20198 defn = opcode_definitions[opcode];
20199 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20200 defn += bytes_read;
20201
20202 for (i = 0; i < arg; ++i)
20203 {
20204 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20205 section);
20206 if (mac_ptr == NULL)
20207 {
20208 /* skip_form_bytes already issued the complaint. */
20209 return NULL;
20210 }
20211 }
20212
20213 return mac_ptr;
20214 }
20215
20216 /* A helper function which parses the header of a macro section.
20217 If the macro section is the extended (for now called "GNU") type,
20218 then this updates *OFFSET_SIZE. Returns a pointer to just after
20219 the header, or issues a complaint and returns NULL on error. */
20220
20221 static const gdb_byte *
20222 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20223 bfd *abfd,
20224 const gdb_byte *mac_ptr,
20225 unsigned int *offset_size,
20226 int section_is_gnu)
20227 {
20228 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20229
20230 if (section_is_gnu)
20231 {
20232 unsigned int version, flags;
20233
20234 version = read_2_bytes (abfd, mac_ptr);
20235 if (version != 4)
20236 {
20237 complaint (&symfile_complaints,
20238 _("unrecognized version `%d' in .debug_macro section"),
20239 version);
20240 return NULL;
20241 }
20242 mac_ptr += 2;
20243
20244 flags = read_1_byte (abfd, mac_ptr);
20245 ++mac_ptr;
20246 *offset_size = (flags & 1) ? 8 : 4;
20247
20248 if ((flags & 2) != 0)
20249 /* We don't need the line table offset. */
20250 mac_ptr += *offset_size;
20251
20252 /* Vendor opcode descriptions. */
20253 if ((flags & 4) != 0)
20254 {
20255 unsigned int i, count;
20256
20257 count = read_1_byte (abfd, mac_ptr);
20258 ++mac_ptr;
20259 for (i = 0; i < count; ++i)
20260 {
20261 unsigned int opcode, bytes_read;
20262 unsigned long arg;
20263
20264 opcode = read_1_byte (abfd, mac_ptr);
20265 ++mac_ptr;
20266 opcode_definitions[opcode] = mac_ptr;
20267 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20268 mac_ptr += bytes_read;
20269 mac_ptr += arg;
20270 }
20271 }
20272 }
20273
20274 return mac_ptr;
20275 }
20276
20277 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20278 including DW_MACRO_GNU_transparent_include. */
20279
20280 static void
20281 dwarf_decode_macro_bytes (bfd *abfd,
20282 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20283 struct macro_source_file *current_file,
20284 struct line_header *lh, const char *comp_dir,
20285 struct dwarf2_section_info *section,
20286 int section_is_gnu, int section_is_dwz,
20287 unsigned int offset_size,
20288 struct objfile *objfile,
20289 htab_t include_hash)
20290 {
20291 enum dwarf_macro_record_type macinfo_type;
20292 int at_commandline;
20293 const gdb_byte *opcode_definitions[256];
20294
20295 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20296 &offset_size, section_is_gnu);
20297 if (mac_ptr == NULL)
20298 {
20299 /* We already issued a complaint. */
20300 return;
20301 }
20302
20303 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20304 GDB is still reading the definitions from command line. First
20305 DW_MACINFO_start_file will need to be ignored as it was already executed
20306 to create CURRENT_FILE for the main source holding also the command line
20307 definitions. On first met DW_MACINFO_start_file this flag is reset to
20308 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20309
20310 at_commandline = 1;
20311
20312 do
20313 {
20314 /* Do we at least have room for a macinfo type byte? */
20315 if (mac_ptr >= mac_end)
20316 {
20317 dwarf2_section_buffer_overflow_complaint (section);
20318 break;
20319 }
20320
20321 macinfo_type = read_1_byte (abfd, mac_ptr);
20322 mac_ptr++;
20323
20324 /* Note that we rely on the fact that the corresponding GNU and
20325 DWARF constants are the same. */
20326 switch (macinfo_type)
20327 {
20328 /* A zero macinfo type indicates the end of the macro
20329 information. */
20330 case 0:
20331 break;
20332
20333 case DW_MACRO_GNU_define:
20334 case DW_MACRO_GNU_undef:
20335 case DW_MACRO_GNU_define_indirect:
20336 case DW_MACRO_GNU_undef_indirect:
20337 case DW_MACRO_GNU_define_indirect_alt:
20338 case DW_MACRO_GNU_undef_indirect_alt:
20339 {
20340 unsigned int bytes_read;
20341 int line;
20342 const char *body;
20343 int is_define;
20344
20345 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20346 mac_ptr += bytes_read;
20347
20348 if (macinfo_type == DW_MACRO_GNU_define
20349 || macinfo_type == DW_MACRO_GNU_undef)
20350 {
20351 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20352 mac_ptr += bytes_read;
20353 }
20354 else
20355 {
20356 LONGEST str_offset;
20357
20358 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20359 mac_ptr += offset_size;
20360
20361 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20362 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20363 || section_is_dwz)
20364 {
20365 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20366
20367 body = read_indirect_string_from_dwz (dwz, str_offset);
20368 }
20369 else
20370 body = read_indirect_string_at_offset (abfd, str_offset);
20371 }
20372
20373 is_define = (macinfo_type == DW_MACRO_GNU_define
20374 || macinfo_type == DW_MACRO_GNU_define_indirect
20375 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20376 if (! current_file)
20377 {
20378 /* DWARF violation as no main source is present. */
20379 complaint (&symfile_complaints,
20380 _("debug info with no main source gives macro %s "
20381 "on line %d: %s"),
20382 is_define ? _("definition") : _("undefinition"),
20383 line, body);
20384 break;
20385 }
20386 if ((line == 0 && !at_commandline)
20387 || (line != 0 && at_commandline))
20388 complaint (&symfile_complaints,
20389 _("debug info gives %s macro %s with %s line %d: %s"),
20390 at_commandline ? _("command-line") : _("in-file"),
20391 is_define ? _("definition") : _("undefinition"),
20392 line == 0 ? _("zero") : _("non-zero"), line, body);
20393
20394 if (is_define)
20395 parse_macro_definition (current_file, line, body);
20396 else
20397 {
20398 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20399 || macinfo_type == DW_MACRO_GNU_undef_indirect
20400 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20401 macro_undef (current_file, line, body);
20402 }
20403 }
20404 break;
20405
20406 case DW_MACRO_GNU_start_file:
20407 {
20408 unsigned int bytes_read;
20409 int line, file;
20410
20411 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20412 mac_ptr += bytes_read;
20413 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20414 mac_ptr += bytes_read;
20415
20416 if ((line == 0 && !at_commandline)
20417 || (line != 0 && at_commandline))
20418 complaint (&symfile_complaints,
20419 _("debug info gives source %d included "
20420 "from %s at %s line %d"),
20421 file, at_commandline ? _("command-line") : _("file"),
20422 line == 0 ? _("zero") : _("non-zero"), line);
20423
20424 if (at_commandline)
20425 {
20426 /* This DW_MACRO_GNU_start_file was executed in the
20427 pass one. */
20428 at_commandline = 0;
20429 }
20430 else
20431 current_file = macro_start_file (file, line,
20432 current_file, comp_dir,
20433 lh, objfile);
20434 }
20435 break;
20436
20437 case DW_MACRO_GNU_end_file:
20438 if (! current_file)
20439 complaint (&symfile_complaints,
20440 _("macro debug info has an unmatched "
20441 "`close_file' directive"));
20442 else
20443 {
20444 current_file = current_file->included_by;
20445 if (! current_file)
20446 {
20447 enum dwarf_macro_record_type next_type;
20448
20449 /* GCC circa March 2002 doesn't produce the zero
20450 type byte marking the end of the compilation
20451 unit. Complain if it's not there, but exit no
20452 matter what. */
20453
20454 /* Do we at least have room for a macinfo type byte? */
20455 if (mac_ptr >= mac_end)
20456 {
20457 dwarf2_section_buffer_overflow_complaint (section);
20458 return;
20459 }
20460
20461 /* We don't increment mac_ptr here, so this is just
20462 a look-ahead. */
20463 next_type = read_1_byte (abfd, mac_ptr);
20464 if (next_type != 0)
20465 complaint (&symfile_complaints,
20466 _("no terminating 0-type entry for "
20467 "macros in `.debug_macinfo' section"));
20468
20469 return;
20470 }
20471 }
20472 break;
20473
20474 case DW_MACRO_GNU_transparent_include:
20475 case DW_MACRO_GNU_transparent_include_alt:
20476 {
20477 LONGEST offset;
20478 void **slot;
20479 bfd *include_bfd = abfd;
20480 struct dwarf2_section_info *include_section = section;
20481 struct dwarf2_section_info alt_section;
20482 const gdb_byte *include_mac_end = mac_end;
20483 int is_dwz = section_is_dwz;
20484 const gdb_byte *new_mac_ptr;
20485
20486 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20487 mac_ptr += offset_size;
20488
20489 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20490 {
20491 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20492
20493 dwarf2_read_section (dwarf2_per_objfile->objfile,
20494 &dwz->macro);
20495
20496 include_section = &dwz->macro;
20497 include_bfd = get_section_bfd_owner (include_section);
20498 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20499 is_dwz = 1;
20500 }
20501
20502 new_mac_ptr = include_section->buffer + offset;
20503 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20504
20505 if (*slot != NULL)
20506 {
20507 /* This has actually happened; see
20508 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20509 complaint (&symfile_complaints,
20510 _("recursive DW_MACRO_GNU_transparent_include in "
20511 ".debug_macro section"));
20512 }
20513 else
20514 {
20515 *slot = (void *) new_mac_ptr;
20516
20517 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20518 include_mac_end, current_file,
20519 lh, comp_dir,
20520 section, section_is_gnu, is_dwz,
20521 offset_size, objfile, include_hash);
20522
20523 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20524 }
20525 }
20526 break;
20527
20528 case DW_MACINFO_vendor_ext:
20529 if (!section_is_gnu)
20530 {
20531 unsigned int bytes_read;
20532 int constant;
20533
20534 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20535 mac_ptr += bytes_read;
20536 read_direct_string (abfd, mac_ptr, &bytes_read);
20537 mac_ptr += bytes_read;
20538
20539 /* We don't recognize any vendor extensions. */
20540 break;
20541 }
20542 /* FALLTHROUGH */
20543
20544 default:
20545 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20546 mac_ptr, mac_end, abfd, offset_size,
20547 section);
20548 if (mac_ptr == NULL)
20549 return;
20550 break;
20551 }
20552 } while (macinfo_type != 0);
20553 }
20554
20555 static void
20556 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20557 const char *comp_dir, int section_is_gnu)
20558 {
20559 struct objfile *objfile = dwarf2_per_objfile->objfile;
20560 struct line_header *lh = cu->line_header;
20561 bfd *abfd;
20562 const gdb_byte *mac_ptr, *mac_end;
20563 struct macro_source_file *current_file = 0;
20564 enum dwarf_macro_record_type macinfo_type;
20565 unsigned int offset_size = cu->header.offset_size;
20566 const gdb_byte *opcode_definitions[256];
20567 struct cleanup *cleanup;
20568 htab_t include_hash;
20569 void **slot;
20570 struct dwarf2_section_info *section;
20571 const char *section_name;
20572
20573 if (cu->dwo_unit != NULL)
20574 {
20575 if (section_is_gnu)
20576 {
20577 section = &cu->dwo_unit->dwo_file->sections.macro;
20578 section_name = ".debug_macro.dwo";
20579 }
20580 else
20581 {
20582 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20583 section_name = ".debug_macinfo.dwo";
20584 }
20585 }
20586 else
20587 {
20588 if (section_is_gnu)
20589 {
20590 section = &dwarf2_per_objfile->macro;
20591 section_name = ".debug_macro";
20592 }
20593 else
20594 {
20595 section = &dwarf2_per_objfile->macinfo;
20596 section_name = ".debug_macinfo";
20597 }
20598 }
20599
20600 dwarf2_read_section (objfile, section);
20601 if (section->buffer == NULL)
20602 {
20603 complaint (&symfile_complaints, _("missing %s section"), section_name);
20604 return;
20605 }
20606 abfd = get_section_bfd_owner (section);
20607
20608 /* First pass: Find the name of the base filename.
20609 This filename is needed in order to process all macros whose definition
20610 (or undefinition) comes from the command line. These macros are defined
20611 before the first DW_MACINFO_start_file entry, and yet still need to be
20612 associated to the base file.
20613
20614 To determine the base file name, we scan the macro definitions until we
20615 reach the first DW_MACINFO_start_file entry. We then initialize
20616 CURRENT_FILE accordingly so that any macro definition found before the
20617 first DW_MACINFO_start_file can still be associated to the base file. */
20618
20619 mac_ptr = section->buffer + offset;
20620 mac_end = section->buffer + section->size;
20621
20622 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20623 &offset_size, section_is_gnu);
20624 if (mac_ptr == NULL)
20625 {
20626 /* We already issued a complaint. */
20627 return;
20628 }
20629
20630 do
20631 {
20632 /* Do we at least have room for a macinfo type byte? */
20633 if (mac_ptr >= mac_end)
20634 {
20635 /* Complaint is printed during the second pass as GDB will probably
20636 stop the first pass earlier upon finding
20637 DW_MACINFO_start_file. */
20638 break;
20639 }
20640
20641 macinfo_type = read_1_byte (abfd, mac_ptr);
20642 mac_ptr++;
20643
20644 /* Note that we rely on the fact that the corresponding GNU and
20645 DWARF constants are the same. */
20646 switch (macinfo_type)
20647 {
20648 /* A zero macinfo type indicates the end of the macro
20649 information. */
20650 case 0:
20651 break;
20652
20653 case DW_MACRO_GNU_define:
20654 case DW_MACRO_GNU_undef:
20655 /* Only skip the data by MAC_PTR. */
20656 {
20657 unsigned int bytes_read;
20658
20659 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20660 mac_ptr += bytes_read;
20661 read_direct_string (abfd, mac_ptr, &bytes_read);
20662 mac_ptr += bytes_read;
20663 }
20664 break;
20665
20666 case DW_MACRO_GNU_start_file:
20667 {
20668 unsigned int bytes_read;
20669 int line, file;
20670
20671 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20672 mac_ptr += bytes_read;
20673 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20674 mac_ptr += bytes_read;
20675
20676 current_file = macro_start_file (file, line, current_file,
20677 comp_dir, lh, objfile);
20678 }
20679 break;
20680
20681 case DW_MACRO_GNU_end_file:
20682 /* No data to skip by MAC_PTR. */
20683 break;
20684
20685 case DW_MACRO_GNU_define_indirect:
20686 case DW_MACRO_GNU_undef_indirect:
20687 case DW_MACRO_GNU_define_indirect_alt:
20688 case DW_MACRO_GNU_undef_indirect_alt:
20689 {
20690 unsigned int bytes_read;
20691
20692 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20693 mac_ptr += bytes_read;
20694 mac_ptr += offset_size;
20695 }
20696 break;
20697
20698 case DW_MACRO_GNU_transparent_include:
20699 case DW_MACRO_GNU_transparent_include_alt:
20700 /* Note that, according to the spec, a transparent include
20701 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20702 skip this opcode. */
20703 mac_ptr += offset_size;
20704 break;
20705
20706 case DW_MACINFO_vendor_ext:
20707 /* Only skip the data by MAC_PTR. */
20708 if (!section_is_gnu)
20709 {
20710 unsigned int bytes_read;
20711
20712 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20713 mac_ptr += bytes_read;
20714 read_direct_string (abfd, mac_ptr, &bytes_read);
20715 mac_ptr += bytes_read;
20716 }
20717 /* FALLTHROUGH */
20718
20719 default:
20720 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20721 mac_ptr, mac_end, abfd, offset_size,
20722 section);
20723 if (mac_ptr == NULL)
20724 return;
20725 break;
20726 }
20727 } while (macinfo_type != 0 && current_file == NULL);
20728
20729 /* Second pass: Process all entries.
20730
20731 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20732 command-line macro definitions/undefinitions. This flag is unset when we
20733 reach the first DW_MACINFO_start_file entry. */
20734
20735 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20736 NULL, xcalloc, xfree);
20737 cleanup = make_cleanup_htab_delete (include_hash);
20738 mac_ptr = section->buffer + offset;
20739 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20740 *slot = (void *) mac_ptr;
20741 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20742 current_file, lh, comp_dir, section,
20743 section_is_gnu, 0,
20744 offset_size, objfile, include_hash);
20745 do_cleanups (cleanup);
20746 }
20747
20748 /* Check if the attribute's form is a DW_FORM_block*
20749 if so return true else false. */
20750
20751 static int
20752 attr_form_is_block (const struct attribute *attr)
20753 {
20754 return (attr == NULL ? 0 :
20755 attr->form == DW_FORM_block1
20756 || attr->form == DW_FORM_block2
20757 || attr->form == DW_FORM_block4
20758 || attr->form == DW_FORM_block
20759 || attr->form == DW_FORM_exprloc);
20760 }
20761
20762 /* Return non-zero if ATTR's value is a section offset --- classes
20763 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20764 You may use DW_UNSND (attr) to retrieve such offsets.
20765
20766 Section 7.5.4, "Attribute Encodings", explains that no attribute
20767 may have a value that belongs to more than one of these classes; it
20768 would be ambiguous if we did, because we use the same forms for all
20769 of them. */
20770
20771 static int
20772 attr_form_is_section_offset (const struct attribute *attr)
20773 {
20774 return (attr->form == DW_FORM_data4
20775 || attr->form == DW_FORM_data8
20776 || attr->form == DW_FORM_sec_offset);
20777 }
20778
20779 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20780 zero otherwise. When this function returns true, you can apply
20781 dwarf2_get_attr_constant_value to it.
20782
20783 However, note that for some attributes you must check
20784 attr_form_is_section_offset before using this test. DW_FORM_data4
20785 and DW_FORM_data8 are members of both the constant class, and of
20786 the classes that contain offsets into other debug sections
20787 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20788 that, if an attribute's can be either a constant or one of the
20789 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20790 taken as section offsets, not constants. */
20791
20792 static int
20793 attr_form_is_constant (const struct attribute *attr)
20794 {
20795 switch (attr->form)
20796 {
20797 case DW_FORM_sdata:
20798 case DW_FORM_udata:
20799 case DW_FORM_data1:
20800 case DW_FORM_data2:
20801 case DW_FORM_data4:
20802 case DW_FORM_data8:
20803 return 1;
20804 default:
20805 return 0;
20806 }
20807 }
20808
20809
20810 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20811 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20812
20813 static int
20814 attr_form_is_ref (const struct attribute *attr)
20815 {
20816 switch (attr->form)
20817 {
20818 case DW_FORM_ref_addr:
20819 case DW_FORM_ref1:
20820 case DW_FORM_ref2:
20821 case DW_FORM_ref4:
20822 case DW_FORM_ref8:
20823 case DW_FORM_ref_udata:
20824 case DW_FORM_GNU_ref_alt:
20825 return 1;
20826 default:
20827 return 0;
20828 }
20829 }
20830
20831 /* Return the .debug_loc section to use for CU.
20832 For DWO files use .debug_loc.dwo. */
20833
20834 static struct dwarf2_section_info *
20835 cu_debug_loc_section (struct dwarf2_cu *cu)
20836 {
20837 if (cu->dwo_unit)
20838 return &cu->dwo_unit->dwo_file->sections.loc;
20839 return &dwarf2_per_objfile->loc;
20840 }
20841
20842 /* A helper function that fills in a dwarf2_loclist_baton. */
20843
20844 static void
20845 fill_in_loclist_baton (struct dwarf2_cu *cu,
20846 struct dwarf2_loclist_baton *baton,
20847 const struct attribute *attr)
20848 {
20849 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20850
20851 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20852
20853 baton->per_cu = cu->per_cu;
20854 gdb_assert (baton->per_cu);
20855 /* We don't know how long the location list is, but make sure we
20856 don't run off the edge of the section. */
20857 baton->size = section->size - DW_UNSND (attr);
20858 baton->data = section->buffer + DW_UNSND (attr);
20859 baton->base_address = cu->base_address;
20860 baton->from_dwo = cu->dwo_unit != NULL;
20861 }
20862
20863 static void
20864 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20865 struct dwarf2_cu *cu, int is_block)
20866 {
20867 struct objfile *objfile = dwarf2_per_objfile->objfile;
20868 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20869
20870 if (attr_form_is_section_offset (attr)
20871 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20872 the section. If so, fall through to the complaint in the
20873 other branch. */
20874 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20875 {
20876 struct dwarf2_loclist_baton *baton;
20877
20878 baton = obstack_alloc (&objfile->objfile_obstack,
20879 sizeof (struct dwarf2_loclist_baton));
20880
20881 fill_in_loclist_baton (cu, baton, attr);
20882
20883 if (cu->base_known == 0)
20884 complaint (&symfile_complaints,
20885 _("Location list used without "
20886 "specifying the CU base address."));
20887
20888 SYMBOL_ACLASS_INDEX (sym) = (is_block
20889 ? dwarf2_loclist_block_index
20890 : dwarf2_loclist_index);
20891 SYMBOL_LOCATION_BATON (sym) = baton;
20892 }
20893 else
20894 {
20895 struct dwarf2_locexpr_baton *baton;
20896
20897 baton = obstack_alloc (&objfile->objfile_obstack,
20898 sizeof (struct dwarf2_locexpr_baton));
20899 baton->per_cu = cu->per_cu;
20900 gdb_assert (baton->per_cu);
20901
20902 if (attr_form_is_block (attr))
20903 {
20904 /* Note that we're just copying the block's data pointer
20905 here, not the actual data. We're still pointing into the
20906 info_buffer for SYM's objfile; right now we never release
20907 that buffer, but when we do clean up properly this may
20908 need to change. */
20909 baton->size = DW_BLOCK (attr)->size;
20910 baton->data = DW_BLOCK (attr)->data;
20911 }
20912 else
20913 {
20914 dwarf2_invalid_attrib_class_complaint ("location description",
20915 SYMBOL_NATURAL_NAME (sym));
20916 baton->size = 0;
20917 }
20918
20919 SYMBOL_ACLASS_INDEX (sym) = (is_block
20920 ? dwarf2_locexpr_block_index
20921 : dwarf2_locexpr_index);
20922 SYMBOL_LOCATION_BATON (sym) = baton;
20923 }
20924 }
20925
20926 /* Return the OBJFILE associated with the compilation unit CU. If CU
20927 came from a separate debuginfo file, then the master objfile is
20928 returned. */
20929
20930 struct objfile *
20931 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20932 {
20933 struct objfile *objfile = per_cu->objfile;
20934
20935 /* Return the master objfile, so that we can report and look up the
20936 correct file containing this variable. */
20937 if (objfile->separate_debug_objfile_backlink)
20938 objfile = objfile->separate_debug_objfile_backlink;
20939
20940 return objfile;
20941 }
20942
20943 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20944 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20945 CU_HEADERP first. */
20946
20947 static const struct comp_unit_head *
20948 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20949 struct dwarf2_per_cu_data *per_cu)
20950 {
20951 const gdb_byte *info_ptr;
20952
20953 if (per_cu->cu)
20954 return &per_cu->cu->header;
20955
20956 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20957
20958 memset (cu_headerp, 0, sizeof (*cu_headerp));
20959 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20960
20961 return cu_headerp;
20962 }
20963
20964 /* Return the address size given in the compilation unit header for CU. */
20965
20966 int
20967 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20968 {
20969 struct comp_unit_head cu_header_local;
20970 const struct comp_unit_head *cu_headerp;
20971
20972 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20973
20974 return cu_headerp->addr_size;
20975 }
20976
20977 /* Return the offset size given in the compilation unit header for CU. */
20978
20979 int
20980 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20981 {
20982 struct comp_unit_head cu_header_local;
20983 const struct comp_unit_head *cu_headerp;
20984
20985 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20986
20987 return cu_headerp->offset_size;
20988 }
20989
20990 /* See its dwarf2loc.h declaration. */
20991
20992 int
20993 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20994 {
20995 struct comp_unit_head cu_header_local;
20996 const struct comp_unit_head *cu_headerp;
20997
20998 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20999
21000 if (cu_headerp->version == 2)
21001 return cu_headerp->addr_size;
21002 else
21003 return cu_headerp->offset_size;
21004 }
21005
21006 /* Return the text offset of the CU. The returned offset comes from
21007 this CU's objfile. If this objfile came from a separate debuginfo
21008 file, then the offset may be different from the corresponding
21009 offset in the parent objfile. */
21010
21011 CORE_ADDR
21012 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21013 {
21014 struct objfile *objfile = per_cu->objfile;
21015
21016 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21017 }
21018
21019 /* Locate the .debug_info compilation unit from CU's objfile which contains
21020 the DIE at OFFSET. Raises an error on failure. */
21021
21022 static struct dwarf2_per_cu_data *
21023 dwarf2_find_containing_comp_unit (sect_offset offset,
21024 unsigned int offset_in_dwz,
21025 struct objfile *objfile)
21026 {
21027 struct dwarf2_per_cu_data *this_cu;
21028 int low, high;
21029 const sect_offset *cu_off;
21030
21031 low = 0;
21032 high = dwarf2_per_objfile->n_comp_units - 1;
21033 while (high > low)
21034 {
21035 struct dwarf2_per_cu_data *mid_cu;
21036 int mid = low + (high - low) / 2;
21037
21038 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21039 cu_off = &mid_cu->offset;
21040 if (mid_cu->is_dwz > offset_in_dwz
21041 || (mid_cu->is_dwz == offset_in_dwz
21042 && cu_off->sect_off >= offset.sect_off))
21043 high = mid;
21044 else
21045 low = mid + 1;
21046 }
21047 gdb_assert (low == high);
21048 this_cu = dwarf2_per_objfile->all_comp_units[low];
21049 cu_off = &this_cu->offset;
21050 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21051 {
21052 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21053 error (_("Dwarf Error: could not find partial DIE containing "
21054 "offset 0x%lx [in module %s]"),
21055 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21056
21057 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21058 <= offset.sect_off);
21059 return dwarf2_per_objfile->all_comp_units[low-1];
21060 }
21061 else
21062 {
21063 this_cu = dwarf2_per_objfile->all_comp_units[low];
21064 if (low == dwarf2_per_objfile->n_comp_units - 1
21065 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21066 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21067 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21068 return this_cu;
21069 }
21070 }
21071
21072 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21073
21074 static void
21075 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21076 {
21077 memset (cu, 0, sizeof (*cu));
21078 per_cu->cu = cu;
21079 cu->per_cu = per_cu;
21080 cu->objfile = per_cu->objfile;
21081 obstack_init (&cu->comp_unit_obstack);
21082 }
21083
21084 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21085
21086 static void
21087 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21088 enum language pretend_language)
21089 {
21090 struct attribute *attr;
21091
21092 /* Set the language we're debugging. */
21093 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21094 if (attr)
21095 set_cu_language (DW_UNSND (attr), cu);
21096 else
21097 {
21098 cu->language = pretend_language;
21099 cu->language_defn = language_def (cu->language);
21100 }
21101
21102 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21103 if (attr)
21104 cu->producer = DW_STRING (attr);
21105 }
21106
21107 /* Release one cached compilation unit, CU. We unlink it from the tree
21108 of compilation units, but we don't remove it from the read_in_chain;
21109 the caller is responsible for that.
21110 NOTE: DATA is a void * because this function is also used as a
21111 cleanup routine. */
21112
21113 static void
21114 free_heap_comp_unit (void *data)
21115 {
21116 struct dwarf2_cu *cu = data;
21117
21118 gdb_assert (cu->per_cu != NULL);
21119 cu->per_cu->cu = NULL;
21120 cu->per_cu = NULL;
21121
21122 obstack_free (&cu->comp_unit_obstack, NULL);
21123
21124 xfree (cu);
21125 }
21126
21127 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21128 when we're finished with it. We can't free the pointer itself, but be
21129 sure to unlink it from the cache. Also release any associated storage. */
21130
21131 static void
21132 free_stack_comp_unit (void *data)
21133 {
21134 struct dwarf2_cu *cu = data;
21135
21136 gdb_assert (cu->per_cu != NULL);
21137 cu->per_cu->cu = NULL;
21138 cu->per_cu = NULL;
21139
21140 obstack_free (&cu->comp_unit_obstack, NULL);
21141 cu->partial_dies = NULL;
21142 }
21143
21144 /* Free all cached compilation units. */
21145
21146 static void
21147 free_cached_comp_units (void *data)
21148 {
21149 struct dwarf2_per_cu_data *per_cu, **last_chain;
21150
21151 per_cu = dwarf2_per_objfile->read_in_chain;
21152 last_chain = &dwarf2_per_objfile->read_in_chain;
21153 while (per_cu != NULL)
21154 {
21155 struct dwarf2_per_cu_data *next_cu;
21156
21157 next_cu = per_cu->cu->read_in_chain;
21158
21159 free_heap_comp_unit (per_cu->cu);
21160 *last_chain = next_cu;
21161
21162 per_cu = next_cu;
21163 }
21164 }
21165
21166 /* Increase the age counter on each cached compilation unit, and free
21167 any that are too old. */
21168
21169 static void
21170 age_cached_comp_units (void)
21171 {
21172 struct dwarf2_per_cu_data *per_cu, **last_chain;
21173
21174 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21175 per_cu = dwarf2_per_objfile->read_in_chain;
21176 while (per_cu != NULL)
21177 {
21178 per_cu->cu->last_used ++;
21179 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21180 dwarf2_mark (per_cu->cu);
21181 per_cu = per_cu->cu->read_in_chain;
21182 }
21183
21184 per_cu = dwarf2_per_objfile->read_in_chain;
21185 last_chain = &dwarf2_per_objfile->read_in_chain;
21186 while (per_cu != NULL)
21187 {
21188 struct dwarf2_per_cu_data *next_cu;
21189
21190 next_cu = per_cu->cu->read_in_chain;
21191
21192 if (!per_cu->cu->mark)
21193 {
21194 free_heap_comp_unit (per_cu->cu);
21195 *last_chain = next_cu;
21196 }
21197 else
21198 last_chain = &per_cu->cu->read_in_chain;
21199
21200 per_cu = next_cu;
21201 }
21202 }
21203
21204 /* Remove a single compilation unit from the cache. */
21205
21206 static void
21207 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21208 {
21209 struct dwarf2_per_cu_data *per_cu, **last_chain;
21210
21211 per_cu = dwarf2_per_objfile->read_in_chain;
21212 last_chain = &dwarf2_per_objfile->read_in_chain;
21213 while (per_cu != NULL)
21214 {
21215 struct dwarf2_per_cu_data *next_cu;
21216
21217 next_cu = per_cu->cu->read_in_chain;
21218
21219 if (per_cu == target_per_cu)
21220 {
21221 free_heap_comp_unit (per_cu->cu);
21222 per_cu->cu = NULL;
21223 *last_chain = next_cu;
21224 break;
21225 }
21226 else
21227 last_chain = &per_cu->cu->read_in_chain;
21228
21229 per_cu = next_cu;
21230 }
21231 }
21232
21233 /* Release all extra memory associated with OBJFILE. */
21234
21235 void
21236 dwarf2_free_objfile (struct objfile *objfile)
21237 {
21238 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21239
21240 if (dwarf2_per_objfile == NULL)
21241 return;
21242
21243 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21244 free_cached_comp_units (NULL);
21245
21246 if (dwarf2_per_objfile->quick_file_names_table)
21247 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21248
21249 /* Everything else should be on the objfile obstack. */
21250 }
21251
21252 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21253 We store these in a hash table separate from the DIEs, and preserve them
21254 when the DIEs are flushed out of cache.
21255
21256 The CU "per_cu" pointer is needed because offset alone is not enough to
21257 uniquely identify the type. A file may have multiple .debug_types sections,
21258 or the type may come from a DWO file. Furthermore, while it's more logical
21259 to use per_cu->section+offset, with Fission the section with the data is in
21260 the DWO file but we don't know that section at the point we need it.
21261 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21262 because we can enter the lookup routine, get_die_type_at_offset, from
21263 outside this file, and thus won't necessarily have PER_CU->cu.
21264 Fortunately, PER_CU is stable for the life of the objfile. */
21265
21266 struct dwarf2_per_cu_offset_and_type
21267 {
21268 const struct dwarf2_per_cu_data *per_cu;
21269 sect_offset offset;
21270 struct type *type;
21271 };
21272
21273 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21274
21275 static hashval_t
21276 per_cu_offset_and_type_hash (const void *item)
21277 {
21278 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21279
21280 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21281 }
21282
21283 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21284
21285 static int
21286 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21287 {
21288 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21289 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21290
21291 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21292 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21293 }
21294
21295 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21296 table if necessary. For convenience, return TYPE.
21297
21298 The DIEs reading must have careful ordering to:
21299 * Not cause infite loops trying to read in DIEs as a prerequisite for
21300 reading current DIE.
21301 * Not trying to dereference contents of still incompletely read in types
21302 while reading in other DIEs.
21303 * Enable referencing still incompletely read in types just by a pointer to
21304 the type without accessing its fields.
21305
21306 Therefore caller should follow these rules:
21307 * Try to fetch any prerequisite types we may need to build this DIE type
21308 before building the type and calling set_die_type.
21309 * After building type call set_die_type for current DIE as soon as
21310 possible before fetching more types to complete the current type.
21311 * Make the type as complete as possible before fetching more types. */
21312
21313 static struct type *
21314 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21315 {
21316 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21317 struct objfile *objfile = cu->objfile;
21318
21319 /* For Ada types, make sure that the gnat-specific data is always
21320 initialized (if not already set). There are a few types where
21321 we should not be doing so, because the type-specific area is
21322 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21323 where the type-specific area is used to store the floatformat).
21324 But this is not a problem, because the gnat-specific information
21325 is actually not needed for these types. */
21326 if (need_gnat_info (cu)
21327 && TYPE_CODE (type) != TYPE_CODE_FUNC
21328 && TYPE_CODE (type) != TYPE_CODE_FLT
21329 && !HAVE_GNAT_AUX_INFO (type))
21330 INIT_GNAT_SPECIFIC (type);
21331
21332 if (dwarf2_per_objfile->die_type_hash == NULL)
21333 {
21334 dwarf2_per_objfile->die_type_hash =
21335 htab_create_alloc_ex (127,
21336 per_cu_offset_and_type_hash,
21337 per_cu_offset_and_type_eq,
21338 NULL,
21339 &objfile->objfile_obstack,
21340 hashtab_obstack_allocate,
21341 dummy_obstack_deallocate);
21342 }
21343
21344 ofs.per_cu = cu->per_cu;
21345 ofs.offset = die->offset;
21346 ofs.type = type;
21347 slot = (struct dwarf2_per_cu_offset_and_type **)
21348 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21349 if (*slot)
21350 complaint (&symfile_complaints,
21351 _("A problem internal to GDB: DIE 0x%x has type already set"),
21352 die->offset.sect_off);
21353 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21354 **slot = ofs;
21355 return type;
21356 }
21357
21358 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21359 or return NULL if the die does not have a saved type. */
21360
21361 static struct type *
21362 get_die_type_at_offset (sect_offset offset,
21363 struct dwarf2_per_cu_data *per_cu)
21364 {
21365 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21366
21367 if (dwarf2_per_objfile->die_type_hash == NULL)
21368 return NULL;
21369
21370 ofs.per_cu = per_cu;
21371 ofs.offset = offset;
21372 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21373 if (slot)
21374 return slot->type;
21375 else
21376 return NULL;
21377 }
21378
21379 /* Look up the type for DIE in CU in die_type_hash,
21380 or return NULL if DIE does not have a saved type. */
21381
21382 static struct type *
21383 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21384 {
21385 return get_die_type_at_offset (die->offset, cu->per_cu);
21386 }
21387
21388 /* Add a dependence relationship from CU to REF_PER_CU. */
21389
21390 static void
21391 dwarf2_add_dependence (struct dwarf2_cu *cu,
21392 struct dwarf2_per_cu_data *ref_per_cu)
21393 {
21394 void **slot;
21395
21396 if (cu->dependencies == NULL)
21397 cu->dependencies
21398 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21399 NULL, &cu->comp_unit_obstack,
21400 hashtab_obstack_allocate,
21401 dummy_obstack_deallocate);
21402
21403 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21404 if (*slot == NULL)
21405 *slot = ref_per_cu;
21406 }
21407
21408 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21409 Set the mark field in every compilation unit in the
21410 cache that we must keep because we are keeping CU. */
21411
21412 static int
21413 dwarf2_mark_helper (void **slot, void *data)
21414 {
21415 struct dwarf2_per_cu_data *per_cu;
21416
21417 per_cu = (struct dwarf2_per_cu_data *) *slot;
21418
21419 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21420 reading of the chain. As such dependencies remain valid it is not much
21421 useful to track and undo them during QUIT cleanups. */
21422 if (per_cu->cu == NULL)
21423 return 1;
21424
21425 if (per_cu->cu->mark)
21426 return 1;
21427 per_cu->cu->mark = 1;
21428
21429 if (per_cu->cu->dependencies != NULL)
21430 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21431
21432 return 1;
21433 }
21434
21435 /* Set the mark field in CU and in every other compilation unit in the
21436 cache that we must keep because we are keeping CU. */
21437
21438 static void
21439 dwarf2_mark (struct dwarf2_cu *cu)
21440 {
21441 if (cu->mark)
21442 return;
21443 cu->mark = 1;
21444 if (cu->dependencies != NULL)
21445 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21446 }
21447
21448 static void
21449 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21450 {
21451 while (per_cu)
21452 {
21453 per_cu->cu->mark = 0;
21454 per_cu = per_cu->cu->read_in_chain;
21455 }
21456 }
21457
21458 /* Trivial hash function for partial_die_info: the hash value of a DIE
21459 is its offset in .debug_info for this objfile. */
21460
21461 static hashval_t
21462 partial_die_hash (const void *item)
21463 {
21464 const struct partial_die_info *part_die = item;
21465
21466 return part_die->offset.sect_off;
21467 }
21468
21469 /* Trivial comparison function for partial_die_info structures: two DIEs
21470 are equal if they have the same offset. */
21471
21472 static int
21473 partial_die_eq (const void *item_lhs, const void *item_rhs)
21474 {
21475 const struct partial_die_info *part_die_lhs = item_lhs;
21476 const struct partial_die_info *part_die_rhs = item_rhs;
21477
21478 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21479 }
21480
21481 static struct cmd_list_element *set_dwarf2_cmdlist;
21482 static struct cmd_list_element *show_dwarf2_cmdlist;
21483
21484 static void
21485 set_dwarf2_cmd (char *args, int from_tty)
21486 {
21487 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21488 }
21489
21490 static void
21491 show_dwarf2_cmd (char *args, int from_tty)
21492 {
21493 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21494 }
21495
21496 /* Free data associated with OBJFILE, if necessary. */
21497
21498 static void
21499 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21500 {
21501 struct dwarf2_per_objfile *data = d;
21502 int ix;
21503
21504 /* Make sure we don't accidentally use dwarf2_per_objfile while
21505 cleaning up. */
21506 dwarf2_per_objfile = NULL;
21507
21508 for (ix = 0; ix < data->n_comp_units; ++ix)
21509 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21510
21511 for (ix = 0; ix < data->n_type_units; ++ix)
21512 VEC_free (dwarf2_per_cu_ptr,
21513 data->all_type_units[ix]->per_cu.imported_symtabs);
21514 xfree (data->all_type_units);
21515
21516 VEC_free (dwarf2_section_info_def, data->types);
21517
21518 if (data->dwo_files)
21519 free_dwo_files (data->dwo_files, objfile);
21520 if (data->dwp_file)
21521 gdb_bfd_unref (data->dwp_file->dbfd);
21522
21523 if (data->dwz_file && data->dwz_file->dwz_bfd)
21524 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21525 }
21526
21527 \f
21528 /* The "save gdb-index" command. */
21529
21530 /* The contents of the hash table we create when building the string
21531 table. */
21532 struct strtab_entry
21533 {
21534 offset_type offset;
21535 const char *str;
21536 };
21537
21538 /* Hash function for a strtab_entry.
21539
21540 Function is used only during write_hash_table so no index format backward
21541 compatibility is needed. */
21542
21543 static hashval_t
21544 hash_strtab_entry (const void *e)
21545 {
21546 const struct strtab_entry *entry = e;
21547 return mapped_index_string_hash (INT_MAX, entry->str);
21548 }
21549
21550 /* Equality function for a strtab_entry. */
21551
21552 static int
21553 eq_strtab_entry (const void *a, const void *b)
21554 {
21555 const struct strtab_entry *ea = a;
21556 const struct strtab_entry *eb = b;
21557 return !strcmp (ea->str, eb->str);
21558 }
21559
21560 /* Create a strtab_entry hash table. */
21561
21562 static htab_t
21563 create_strtab (void)
21564 {
21565 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21566 xfree, xcalloc, xfree);
21567 }
21568
21569 /* Add a string to the constant pool. Return the string's offset in
21570 host order. */
21571
21572 static offset_type
21573 add_string (htab_t table, struct obstack *cpool, const char *str)
21574 {
21575 void **slot;
21576 struct strtab_entry entry;
21577 struct strtab_entry *result;
21578
21579 entry.str = str;
21580 slot = htab_find_slot (table, &entry, INSERT);
21581 if (*slot)
21582 result = *slot;
21583 else
21584 {
21585 result = XNEW (struct strtab_entry);
21586 result->offset = obstack_object_size (cpool);
21587 result->str = str;
21588 obstack_grow_str0 (cpool, str);
21589 *slot = result;
21590 }
21591 return result->offset;
21592 }
21593
21594 /* An entry in the symbol table. */
21595 struct symtab_index_entry
21596 {
21597 /* The name of the symbol. */
21598 const char *name;
21599 /* The offset of the name in the constant pool. */
21600 offset_type index_offset;
21601 /* A sorted vector of the indices of all the CUs that hold an object
21602 of this name. */
21603 VEC (offset_type) *cu_indices;
21604 };
21605
21606 /* The symbol table. This is a power-of-2-sized hash table. */
21607 struct mapped_symtab
21608 {
21609 offset_type n_elements;
21610 offset_type size;
21611 struct symtab_index_entry **data;
21612 };
21613
21614 /* Hash function for a symtab_index_entry. */
21615
21616 static hashval_t
21617 hash_symtab_entry (const void *e)
21618 {
21619 const struct symtab_index_entry *entry = e;
21620 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21621 sizeof (offset_type) * VEC_length (offset_type,
21622 entry->cu_indices),
21623 0);
21624 }
21625
21626 /* Equality function for a symtab_index_entry. */
21627
21628 static int
21629 eq_symtab_entry (const void *a, const void *b)
21630 {
21631 const struct symtab_index_entry *ea = a;
21632 const struct symtab_index_entry *eb = b;
21633 int len = VEC_length (offset_type, ea->cu_indices);
21634 if (len != VEC_length (offset_type, eb->cu_indices))
21635 return 0;
21636 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21637 VEC_address (offset_type, eb->cu_indices),
21638 sizeof (offset_type) * len);
21639 }
21640
21641 /* Destroy a symtab_index_entry. */
21642
21643 static void
21644 delete_symtab_entry (void *p)
21645 {
21646 struct symtab_index_entry *entry = p;
21647 VEC_free (offset_type, entry->cu_indices);
21648 xfree (entry);
21649 }
21650
21651 /* Create a hash table holding symtab_index_entry objects. */
21652
21653 static htab_t
21654 create_symbol_hash_table (void)
21655 {
21656 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21657 delete_symtab_entry, xcalloc, xfree);
21658 }
21659
21660 /* Create a new mapped symtab object. */
21661
21662 static struct mapped_symtab *
21663 create_mapped_symtab (void)
21664 {
21665 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21666 symtab->n_elements = 0;
21667 symtab->size = 1024;
21668 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21669 return symtab;
21670 }
21671
21672 /* Destroy a mapped_symtab. */
21673
21674 static void
21675 cleanup_mapped_symtab (void *p)
21676 {
21677 struct mapped_symtab *symtab = p;
21678 /* The contents of the array are freed when the other hash table is
21679 destroyed. */
21680 xfree (symtab->data);
21681 xfree (symtab);
21682 }
21683
21684 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21685 the slot.
21686
21687 Function is used only during write_hash_table so no index format backward
21688 compatibility is needed. */
21689
21690 static struct symtab_index_entry **
21691 find_slot (struct mapped_symtab *symtab, const char *name)
21692 {
21693 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21694
21695 index = hash & (symtab->size - 1);
21696 step = ((hash * 17) & (symtab->size - 1)) | 1;
21697
21698 for (;;)
21699 {
21700 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21701 return &symtab->data[index];
21702 index = (index + step) & (symtab->size - 1);
21703 }
21704 }
21705
21706 /* Expand SYMTAB's hash table. */
21707
21708 static void
21709 hash_expand (struct mapped_symtab *symtab)
21710 {
21711 offset_type old_size = symtab->size;
21712 offset_type i;
21713 struct symtab_index_entry **old_entries = symtab->data;
21714
21715 symtab->size *= 2;
21716 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21717
21718 for (i = 0; i < old_size; ++i)
21719 {
21720 if (old_entries[i])
21721 {
21722 struct symtab_index_entry **slot = find_slot (symtab,
21723 old_entries[i]->name);
21724 *slot = old_entries[i];
21725 }
21726 }
21727
21728 xfree (old_entries);
21729 }
21730
21731 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21732 CU_INDEX is the index of the CU in which the symbol appears.
21733 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21734
21735 static void
21736 add_index_entry (struct mapped_symtab *symtab, const char *name,
21737 int is_static, gdb_index_symbol_kind kind,
21738 offset_type cu_index)
21739 {
21740 struct symtab_index_entry **slot;
21741 offset_type cu_index_and_attrs;
21742
21743 ++symtab->n_elements;
21744 if (4 * symtab->n_elements / 3 >= symtab->size)
21745 hash_expand (symtab);
21746
21747 slot = find_slot (symtab, name);
21748 if (!*slot)
21749 {
21750 *slot = XNEW (struct symtab_index_entry);
21751 (*slot)->name = name;
21752 /* index_offset is set later. */
21753 (*slot)->cu_indices = NULL;
21754 }
21755
21756 cu_index_and_attrs = 0;
21757 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21758 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21759 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21760
21761 /* We don't want to record an index value twice as we want to avoid the
21762 duplication.
21763 We process all global symbols and then all static symbols
21764 (which would allow us to avoid the duplication by only having to check
21765 the last entry pushed), but a symbol could have multiple kinds in one CU.
21766 To keep things simple we don't worry about the duplication here and
21767 sort and uniqufy the list after we've processed all symbols. */
21768 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21769 }
21770
21771 /* qsort helper routine for uniquify_cu_indices. */
21772
21773 static int
21774 offset_type_compare (const void *ap, const void *bp)
21775 {
21776 offset_type a = *(offset_type *) ap;
21777 offset_type b = *(offset_type *) bp;
21778
21779 return (a > b) - (b > a);
21780 }
21781
21782 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21783
21784 static void
21785 uniquify_cu_indices (struct mapped_symtab *symtab)
21786 {
21787 int i;
21788
21789 for (i = 0; i < symtab->size; ++i)
21790 {
21791 struct symtab_index_entry *entry = symtab->data[i];
21792
21793 if (entry
21794 && entry->cu_indices != NULL)
21795 {
21796 unsigned int next_to_insert, next_to_check;
21797 offset_type last_value;
21798
21799 qsort (VEC_address (offset_type, entry->cu_indices),
21800 VEC_length (offset_type, entry->cu_indices),
21801 sizeof (offset_type), offset_type_compare);
21802
21803 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21804 next_to_insert = 1;
21805 for (next_to_check = 1;
21806 next_to_check < VEC_length (offset_type, entry->cu_indices);
21807 ++next_to_check)
21808 {
21809 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21810 != last_value)
21811 {
21812 last_value = VEC_index (offset_type, entry->cu_indices,
21813 next_to_check);
21814 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21815 last_value);
21816 ++next_to_insert;
21817 }
21818 }
21819 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21820 }
21821 }
21822 }
21823
21824 /* Add a vector of indices to the constant pool. */
21825
21826 static offset_type
21827 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21828 struct symtab_index_entry *entry)
21829 {
21830 void **slot;
21831
21832 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21833 if (!*slot)
21834 {
21835 offset_type len = VEC_length (offset_type, entry->cu_indices);
21836 offset_type val = MAYBE_SWAP (len);
21837 offset_type iter;
21838 int i;
21839
21840 *slot = entry;
21841 entry->index_offset = obstack_object_size (cpool);
21842
21843 obstack_grow (cpool, &val, sizeof (val));
21844 for (i = 0;
21845 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21846 ++i)
21847 {
21848 val = MAYBE_SWAP (iter);
21849 obstack_grow (cpool, &val, sizeof (val));
21850 }
21851 }
21852 else
21853 {
21854 struct symtab_index_entry *old_entry = *slot;
21855 entry->index_offset = old_entry->index_offset;
21856 entry = old_entry;
21857 }
21858 return entry->index_offset;
21859 }
21860
21861 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21862 constant pool entries going into the obstack CPOOL. */
21863
21864 static void
21865 write_hash_table (struct mapped_symtab *symtab,
21866 struct obstack *output, struct obstack *cpool)
21867 {
21868 offset_type i;
21869 htab_t symbol_hash_table;
21870 htab_t str_table;
21871
21872 symbol_hash_table = create_symbol_hash_table ();
21873 str_table = create_strtab ();
21874
21875 /* We add all the index vectors to the constant pool first, to
21876 ensure alignment is ok. */
21877 for (i = 0; i < symtab->size; ++i)
21878 {
21879 if (symtab->data[i])
21880 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21881 }
21882
21883 /* Now write out the hash table. */
21884 for (i = 0; i < symtab->size; ++i)
21885 {
21886 offset_type str_off, vec_off;
21887
21888 if (symtab->data[i])
21889 {
21890 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21891 vec_off = symtab->data[i]->index_offset;
21892 }
21893 else
21894 {
21895 /* While 0 is a valid constant pool index, it is not valid
21896 to have 0 for both offsets. */
21897 str_off = 0;
21898 vec_off = 0;
21899 }
21900
21901 str_off = MAYBE_SWAP (str_off);
21902 vec_off = MAYBE_SWAP (vec_off);
21903
21904 obstack_grow (output, &str_off, sizeof (str_off));
21905 obstack_grow (output, &vec_off, sizeof (vec_off));
21906 }
21907
21908 htab_delete (str_table);
21909 htab_delete (symbol_hash_table);
21910 }
21911
21912 /* Struct to map psymtab to CU index in the index file. */
21913 struct psymtab_cu_index_map
21914 {
21915 struct partial_symtab *psymtab;
21916 unsigned int cu_index;
21917 };
21918
21919 static hashval_t
21920 hash_psymtab_cu_index (const void *item)
21921 {
21922 const struct psymtab_cu_index_map *map = item;
21923
21924 return htab_hash_pointer (map->psymtab);
21925 }
21926
21927 static int
21928 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21929 {
21930 const struct psymtab_cu_index_map *lhs = item_lhs;
21931 const struct psymtab_cu_index_map *rhs = item_rhs;
21932
21933 return lhs->psymtab == rhs->psymtab;
21934 }
21935
21936 /* Helper struct for building the address table. */
21937 struct addrmap_index_data
21938 {
21939 struct objfile *objfile;
21940 struct obstack *addr_obstack;
21941 htab_t cu_index_htab;
21942
21943 /* Non-zero if the previous_* fields are valid.
21944 We can't write an entry until we see the next entry (since it is only then
21945 that we know the end of the entry). */
21946 int previous_valid;
21947 /* Index of the CU in the table of all CUs in the index file. */
21948 unsigned int previous_cu_index;
21949 /* Start address of the CU. */
21950 CORE_ADDR previous_cu_start;
21951 };
21952
21953 /* Write an address entry to OBSTACK. */
21954
21955 static void
21956 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21957 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21958 {
21959 offset_type cu_index_to_write;
21960 gdb_byte addr[8];
21961 CORE_ADDR baseaddr;
21962
21963 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21964
21965 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21966 obstack_grow (obstack, addr, 8);
21967 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21968 obstack_grow (obstack, addr, 8);
21969 cu_index_to_write = MAYBE_SWAP (cu_index);
21970 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21971 }
21972
21973 /* Worker function for traversing an addrmap to build the address table. */
21974
21975 static int
21976 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21977 {
21978 struct addrmap_index_data *data = datap;
21979 struct partial_symtab *pst = obj;
21980
21981 if (data->previous_valid)
21982 add_address_entry (data->objfile, data->addr_obstack,
21983 data->previous_cu_start, start_addr,
21984 data->previous_cu_index);
21985
21986 data->previous_cu_start = start_addr;
21987 if (pst != NULL)
21988 {
21989 struct psymtab_cu_index_map find_map, *map;
21990 find_map.psymtab = pst;
21991 map = htab_find (data->cu_index_htab, &find_map);
21992 gdb_assert (map != NULL);
21993 data->previous_cu_index = map->cu_index;
21994 data->previous_valid = 1;
21995 }
21996 else
21997 data->previous_valid = 0;
21998
21999 return 0;
22000 }
22001
22002 /* Write OBJFILE's address map to OBSTACK.
22003 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22004 in the index file. */
22005
22006 static void
22007 write_address_map (struct objfile *objfile, struct obstack *obstack,
22008 htab_t cu_index_htab)
22009 {
22010 struct addrmap_index_data addrmap_index_data;
22011
22012 /* When writing the address table, we have to cope with the fact that
22013 the addrmap iterator only provides the start of a region; we have to
22014 wait until the next invocation to get the start of the next region. */
22015
22016 addrmap_index_data.objfile = objfile;
22017 addrmap_index_data.addr_obstack = obstack;
22018 addrmap_index_data.cu_index_htab = cu_index_htab;
22019 addrmap_index_data.previous_valid = 0;
22020
22021 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22022 &addrmap_index_data);
22023
22024 /* It's highly unlikely the last entry (end address = 0xff...ff)
22025 is valid, but we should still handle it.
22026 The end address is recorded as the start of the next region, but that
22027 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22028 anyway. */
22029 if (addrmap_index_data.previous_valid)
22030 add_address_entry (objfile, obstack,
22031 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22032 addrmap_index_data.previous_cu_index);
22033 }
22034
22035 /* Return the symbol kind of PSYM. */
22036
22037 static gdb_index_symbol_kind
22038 symbol_kind (struct partial_symbol *psym)
22039 {
22040 domain_enum domain = PSYMBOL_DOMAIN (psym);
22041 enum address_class aclass = PSYMBOL_CLASS (psym);
22042
22043 switch (domain)
22044 {
22045 case VAR_DOMAIN:
22046 switch (aclass)
22047 {
22048 case LOC_BLOCK:
22049 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22050 case LOC_TYPEDEF:
22051 return GDB_INDEX_SYMBOL_KIND_TYPE;
22052 case LOC_COMPUTED:
22053 case LOC_CONST_BYTES:
22054 case LOC_OPTIMIZED_OUT:
22055 case LOC_STATIC:
22056 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22057 case LOC_CONST:
22058 /* Note: It's currently impossible to recognize psyms as enum values
22059 short of reading the type info. For now punt. */
22060 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22061 default:
22062 /* There are other LOC_FOO values that one might want to classify
22063 as variables, but dwarf2read.c doesn't currently use them. */
22064 return GDB_INDEX_SYMBOL_KIND_OTHER;
22065 }
22066 case STRUCT_DOMAIN:
22067 return GDB_INDEX_SYMBOL_KIND_TYPE;
22068 default:
22069 return GDB_INDEX_SYMBOL_KIND_OTHER;
22070 }
22071 }
22072
22073 /* Add a list of partial symbols to SYMTAB. */
22074
22075 static void
22076 write_psymbols (struct mapped_symtab *symtab,
22077 htab_t psyms_seen,
22078 struct partial_symbol **psymp,
22079 int count,
22080 offset_type cu_index,
22081 int is_static)
22082 {
22083 for (; count-- > 0; ++psymp)
22084 {
22085 struct partial_symbol *psym = *psymp;
22086 void **slot;
22087
22088 if (SYMBOL_LANGUAGE (psym) == language_ada)
22089 error (_("Ada is not currently supported by the index"));
22090
22091 /* Only add a given psymbol once. */
22092 slot = htab_find_slot (psyms_seen, psym, INSERT);
22093 if (!*slot)
22094 {
22095 gdb_index_symbol_kind kind = symbol_kind (psym);
22096
22097 *slot = psym;
22098 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22099 is_static, kind, cu_index);
22100 }
22101 }
22102 }
22103
22104 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22105 exception if there is an error. */
22106
22107 static void
22108 write_obstack (FILE *file, struct obstack *obstack)
22109 {
22110 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22111 file)
22112 != obstack_object_size (obstack))
22113 error (_("couldn't data write to file"));
22114 }
22115
22116 /* Unlink a file if the argument is not NULL. */
22117
22118 static void
22119 unlink_if_set (void *p)
22120 {
22121 char **filename = p;
22122 if (*filename)
22123 unlink (*filename);
22124 }
22125
22126 /* A helper struct used when iterating over debug_types. */
22127 struct signatured_type_index_data
22128 {
22129 struct objfile *objfile;
22130 struct mapped_symtab *symtab;
22131 struct obstack *types_list;
22132 htab_t psyms_seen;
22133 int cu_index;
22134 };
22135
22136 /* A helper function that writes a single signatured_type to an
22137 obstack. */
22138
22139 static int
22140 write_one_signatured_type (void **slot, void *d)
22141 {
22142 struct signatured_type_index_data *info = d;
22143 struct signatured_type *entry = (struct signatured_type *) *slot;
22144 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22145 gdb_byte val[8];
22146
22147 write_psymbols (info->symtab,
22148 info->psyms_seen,
22149 info->objfile->global_psymbols.list
22150 + psymtab->globals_offset,
22151 psymtab->n_global_syms, info->cu_index,
22152 0);
22153 write_psymbols (info->symtab,
22154 info->psyms_seen,
22155 info->objfile->static_psymbols.list
22156 + psymtab->statics_offset,
22157 psymtab->n_static_syms, info->cu_index,
22158 1);
22159
22160 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22161 entry->per_cu.offset.sect_off);
22162 obstack_grow (info->types_list, val, 8);
22163 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22164 entry->type_offset_in_tu.cu_off);
22165 obstack_grow (info->types_list, val, 8);
22166 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22167 obstack_grow (info->types_list, val, 8);
22168
22169 ++info->cu_index;
22170
22171 return 1;
22172 }
22173
22174 /* Recurse into all "included" dependencies and write their symbols as
22175 if they appeared in this psymtab. */
22176
22177 static void
22178 recursively_write_psymbols (struct objfile *objfile,
22179 struct partial_symtab *psymtab,
22180 struct mapped_symtab *symtab,
22181 htab_t psyms_seen,
22182 offset_type cu_index)
22183 {
22184 int i;
22185
22186 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22187 if (psymtab->dependencies[i]->user != NULL)
22188 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22189 symtab, psyms_seen, cu_index);
22190
22191 write_psymbols (symtab,
22192 psyms_seen,
22193 objfile->global_psymbols.list + psymtab->globals_offset,
22194 psymtab->n_global_syms, cu_index,
22195 0);
22196 write_psymbols (symtab,
22197 psyms_seen,
22198 objfile->static_psymbols.list + psymtab->statics_offset,
22199 psymtab->n_static_syms, cu_index,
22200 1);
22201 }
22202
22203 /* Create an index file for OBJFILE in the directory DIR. */
22204
22205 static void
22206 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22207 {
22208 struct cleanup *cleanup;
22209 char *filename, *cleanup_filename;
22210 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22211 struct obstack cu_list, types_cu_list;
22212 int i;
22213 FILE *out_file;
22214 struct mapped_symtab *symtab;
22215 offset_type val, size_of_contents, total_len;
22216 struct stat st;
22217 htab_t psyms_seen;
22218 htab_t cu_index_htab;
22219 struct psymtab_cu_index_map *psymtab_cu_index_map;
22220
22221 if (dwarf2_per_objfile->using_index)
22222 error (_("Cannot use an index to create the index"));
22223
22224 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22225 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22226
22227 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22228 return;
22229
22230 if (stat (objfile_name (objfile), &st) < 0)
22231 perror_with_name (objfile_name (objfile));
22232
22233 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22234 INDEX_SUFFIX, (char *) NULL);
22235 cleanup = make_cleanup (xfree, filename);
22236
22237 out_file = gdb_fopen_cloexec (filename, "wb");
22238 if (!out_file)
22239 error (_("Can't open `%s' for writing"), filename);
22240
22241 cleanup_filename = filename;
22242 make_cleanup (unlink_if_set, &cleanup_filename);
22243
22244 symtab = create_mapped_symtab ();
22245 make_cleanup (cleanup_mapped_symtab, symtab);
22246
22247 obstack_init (&addr_obstack);
22248 make_cleanup_obstack_free (&addr_obstack);
22249
22250 obstack_init (&cu_list);
22251 make_cleanup_obstack_free (&cu_list);
22252
22253 obstack_init (&types_cu_list);
22254 make_cleanup_obstack_free (&types_cu_list);
22255
22256 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22257 NULL, xcalloc, xfree);
22258 make_cleanup_htab_delete (psyms_seen);
22259
22260 /* While we're scanning CU's create a table that maps a psymtab pointer
22261 (which is what addrmap records) to its index (which is what is recorded
22262 in the index file). This will later be needed to write the address
22263 table. */
22264 cu_index_htab = htab_create_alloc (100,
22265 hash_psymtab_cu_index,
22266 eq_psymtab_cu_index,
22267 NULL, xcalloc, xfree);
22268 make_cleanup_htab_delete (cu_index_htab);
22269 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22270 xmalloc (sizeof (struct psymtab_cu_index_map)
22271 * dwarf2_per_objfile->n_comp_units);
22272 make_cleanup (xfree, psymtab_cu_index_map);
22273
22274 /* The CU list is already sorted, so we don't need to do additional
22275 work here. Also, the debug_types entries do not appear in
22276 all_comp_units, but only in their own hash table. */
22277 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22278 {
22279 struct dwarf2_per_cu_data *per_cu
22280 = dwarf2_per_objfile->all_comp_units[i];
22281 struct partial_symtab *psymtab = per_cu->v.psymtab;
22282 gdb_byte val[8];
22283 struct psymtab_cu_index_map *map;
22284 void **slot;
22285
22286 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22287 It may be referenced from a local scope but in such case it does not
22288 need to be present in .gdb_index. */
22289 if (psymtab == NULL)
22290 continue;
22291
22292 if (psymtab->user == NULL)
22293 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22294
22295 map = &psymtab_cu_index_map[i];
22296 map->psymtab = psymtab;
22297 map->cu_index = i;
22298 slot = htab_find_slot (cu_index_htab, map, INSERT);
22299 gdb_assert (slot != NULL);
22300 gdb_assert (*slot == NULL);
22301 *slot = map;
22302
22303 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22304 per_cu->offset.sect_off);
22305 obstack_grow (&cu_list, val, 8);
22306 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22307 obstack_grow (&cu_list, val, 8);
22308 }
22309
22310 /* Dump the address map. */
22311 write_address_map (objfile, &addr_obstack, cu_index_htab);
22312
22313 /* Write out the .debug_type entries, if any. */
22314 if (dwarf2_per_objfile->signatured_types)
22315 {
22316 struct signatured_type_index_data sig_data;
22317
22318 sig_data.objfile = objfile;
22319 sig_data.symtab = symtab;
22320 sig_data.types_list = &types_cu_list;
22321 sig_data.psyms_seen = psyms_seen;
22322 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22323 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22324 write_one_signatured_type, &sig_data);
22325 }
22326
22327 /* Now that we've processed all symbols we can shrink their cu_indices
22328 lists. */
22329 uniquify_cu_indices (symtab);
22330
22331 obstack_init (&constant_pool);
22332 make_cleanup_obstack_free (&constant_pool);
22333 obstack_init (&symtab_obstack);
22334 make_cleanup_obstack_free (&symtab_obstack);
22335 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22336
22337 obstack_init (&contents);
22338 make_cleanup_obstack_free (&contents);
22339 size_of_contents = 6 * sizeof (offset_type);
22340 total_len = size_of_contents;
22341
22342 /* The version number. */
22343 val = MAYBE_SWAP (8);
22344 obstack_grow (&contents, &val, sizeof (val));
22345
22346 /* The offset of the CU list from the start of the file. */
22347 val = MAYBE_SWAP (total_len);
22348 obstack_grow (&contents, &val, sizeof (val));
22349 total_len += obstack_object_size (&cu_list);
22350
22351 /* The offset of the types CU list from the start of the file. */
22352 val = MAYBE_SWAP (total_len);
22353 obstack_grow (&contents, &val, sizeof (val));
22354 total_len += obstack_object_size (&types_cu_list);
22355
22356 /* The offset of the address table from the start of the file. */
22357 val = MAYBE_SWAP (total_len);
22358 obstack_grow (&contents, &val, sizeof (val));
22359 total_len += obstack_object_size (&addr_obstack);
22360
22361 /* The offset of the symbol table from the start of the file. */
22362 val = MAYBE_SWAP (total_len);
22363 obstack_grow (&contents, &val, sizeof (val));
22364 total_len += obstack_object_size (&symtab_obstack);
22365
22366 /* The offset of the constant pool from the start of the file. */
22367 val = MAYBE_SWAP (total_len);
22368 obstack_grow (&contents, &val, sizeof (val));
22369 total_len += obstack_object_size (&constant_pool);
22370
22371 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22372
22373 write_obstack (out_file, &contents);
22374 write_obstack (out_file, &cu_list);
22375 write_obstack (out_file, &types_cu_list);
22376 write_obstack (out_file, &addr_obstack);
22377 write_obstack (out_file, &symtab_obstack);
22378 write_obstack (out_file, &constant_pool);
22379
22380 fclose (out_file);
22381
22382 /* We want to keep the file, so we set cleanup_filename to NULL
22383 here. See unlink_if_set. */
22384 cleanup_filename = NULL;
22385
22386 do_cleanups (cleanup);
22387 }
22388
22389 /* Implementation of the `save gdb-index' command.
22390
22391 Note that the file format used by this command is documented in the
22392 GDB manual. Any changes here must be documented there. */
22393
22394 static void
22395 save_gdb_index_command (char *arg, int from_tty)
22396 {
22397 struct objfile *objfile;
22398
22399 if (!arg || !*arg)
22400 error (_("usage: save gdb-index DIRECTORY"));
22401
22402 ALL_OBJFILES (objfile)
22403 {
22404 struct stat st;
22405
22406 /* If the objfile does not correspond to an actual file, skip it. */
22407 if (stat (objfile_name (objfile), &st) < 0)
22408 continue;
22409
22410 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22411 if (dwarf2_per_objfile)
22412 {
22413 volatile struct gdb_exception except;
22414
22415 TRY_CATCH (except, RETURN_MASK_ERROR)
22416 {
22417 write_psymtabs_to_index (objfile, arg);
22418 }
22419 if (except.reason < 0)
22420 exception_fprintf (gdb_stderr, except,
22421 _("Error while writing index for `%s': "),
22422 objfile_name (objfile));
22423 }
22424 }
22425 }
22426
22427 \f
22428
22429 int dwarf2_always_disassemble;
22430
22431 static void
22432 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22433 struct cmd_list_element *c, const char *value)
22434 {
22435 fprintf_filtered (file,
22436 _("Whether to always disassemble "
22437 "DWARF expressions is %s.\n"),
22438 value);
22439 }
22440
22441 static void
22442 show_check_physname (struct ui_file *file, int from_tty,
22443 struct cmd_list_element *c, const char *value)
22444 {
22445 fprintf_filtered (file,
22446 _("Whether to check \"physname\" is %s.\n"),
22447 value);
22448 }
22449
22450 void _initialize_dwarf2_read (void);
22451
22452 void
22453 _initialize_dwarf2_read (void)
22454 {
22455 struct cmd_list_element *c;
22456
22457 dwarf2_objfile_data_key
22458 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22459
22460 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22461 Set DWARF 2 specific variables.\n\
22462 Configure DWARF 2 variables such as the cache size"),
22463 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22464 0/*allow-unknown*/, &maintenance_set_cmdlist);
22465
22466 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22467 Show DWARF 2 specific variables\n\
22468 Show DWARF 2 variables such as the cache size"),
22469 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22470 0/*allow-unknown*/, &maintenance_show_cmdlist);
22471
22472 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22473 &dwarf2_max_cache_age, _("\
22474 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22475 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22476 A higher limit means that cached compilation units will be stored\n\
22477 in memory longer, and more total memory will be used. Zero disables\n\
22478 caching, which can slow down startup."),
22479 NULL,
22480 show_dwarf2_max_cache_age,
22481 &set_dwarf2_cmdlist,
22482 &show_dwarf2_cmdlist);
22483
22484 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22485 &dwarf2_always_disassemble, _("\
22486 Set whether `info address' always disassembles DWARF expressions."), _("\
22487 Show whether `info address' always disassembles DWARF expressions."), _("\
22488 When enabled, DWARF expressions are always printed in an assembly-like\n\
22489 syntax. When disabled, expressions will be printed in a more\n\
22490 conversational style, when possible."),
22491 NULL,
22492 show_dwarf2_always_disassemble,
22493 &set_dwarf2_cmdlist,
22494 &show_dwarf2_cmdlist);
22495
22496 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22497 Set debugging of the dwarf2 reader."), _("\
22498 Show debugging of the dwarf2 reader."), _("\
22499 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22500 reading and symtab expansion. A value of 1 (one) provides basic\n\
22501 information. A value greater than 1 provides more verbose information."),
22502 NULL,
22503 NULL,
22504 &setdebuglist, &showdebuglist);
22505
22506 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22507 Set debugging of the dwarf2 DIE reader."), _("\
22508 Show debugging of the dwarf2 DIE reader."), _("\
22509 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22510 The value is the maximum depth to print."),
22511 NULL,
22512 NULL,
22513 &setdebuglist, &showdebuglist);
22514
22515 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22516 Set cross-checking of \"physname\" code against demangler."), _("\
22517 Show cross-checking of \"physname\" code against demangler."), _("\
22518 When enabled, GDB's internal \"physname\" code is checked against\n\
22519 the demangler."),
22520 NULL, show_check_physname,
22521 &setdebuglist, &showdebuglist);
22522
22523 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22524 no_class, &use_deprecated_index_sections, _("\
22525 Set whether to use deprecated gdb_index sections."), _("\
22526 Show whether to use deprecated gdb_index sections."), _("\
22527 When enabled, deprecated .gdb_index sections are used anyway.\n\
22528 Normally they are ignored either because of a missing feature or\n\
22529 performance issue.\n\
22530 Warning: This option must be enabled before gdb reads the file."),
22531 NULL,
22532 NULL,
22533 &setlist, &showlist);
22534
22535 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22536 _("\
22537 Save a gdb-index file.\n\
22538 Usage: save gdb-index DIRECTORY"),
22539 &save_cmdlist);
22540 set_cmd_completer (c, filename_completer);
22541
22542 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22543 &dwarf2_locexpr_funcs);
22544 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22545 &dwarf2_loclist_funcs);
22546
22547 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22548 &dwarf2_block_frame_base_locexpr_funcs);
22549 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22550 &dwarf2_block_frame_base_loclist_funcs);
22551 }
This page took 0.500948 seconds and 4 git commands to generate.