2013-04-30 Chao-ying Fu <Chao-ying.Fu@imgtec.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs). */
206 struct signatured_type **all_type_units;
207
208 /* The number of entries in all_type_unit_groups. */
209 int n_type_unit_groups;
210
211 /* Table of type unit groups.
212 This exists to make it easy to iterate over all CUs and TU groups. */
213 struct type_unit_group **all_type_unit_groups;
214
215 /* Table of struct type_unit_group objects.
216 The hash key is the DW_AT_stmt_list value. */
217 htab_t type_unit_groups;
218
219 /* A table mapping .debug_types signatures to its signatured_type entry.
220 This is NULL if the .debug_types section hasn't been read in yet. */
221 htab_t signatured_types;
222
223 /* Type unit statistics, to see how well the scaling improvements
224 are doing. */
225 struct tu_stats
226 {
227 int nr_uniq_abbrev_tables;
228 int nr_symtabs;
229 int nr_symtab_sharers;
230 int nr_stmt_less_type_units;
231 } tu_stats;
232
233 /* A chain of compilation units that are currently read in, so that
234 they can be freed later. */
235 struct dwarf2_per_cu_data *read_in_chain;
236
237 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
238 This is NULL if the table hasn't been allocated yet. */
239 htab_t dwo_files;
240
241 /* Non-zero if we've check for whether there is a DWP file. */
242 int dwp_checked;
243
244 /* The DWP file if there is one, or NULL. */
245 struct dwp_file *dwp_file;
246
247 /* The shared '.dwz' file, if one exists. This is used when the
248 original data was compressed using 'dwz -m'. */
249 struct dwz_file *dwz_file;
250
251 /* A flag indicating wether this objfile has a section loaded at a
252 VMA of 0. */
253 int has_section_at_zero;
254
255 /* True if we are using the mapped index,
256 or we are faking it for OBJF_READNOW's sake. */
257 unsigned char using_index;
258
259 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
260 struct mapped_index *index_table;
261
262 /* When using index_table, this keeps track of all quick_file_names entries.
263 TUs typically share line table entries with a CU, so we maintain a
264 separate table of all line table entries to support the sharing.
265 Note that while there can be way more TUs than CUs, we've already
266 sorted all the TUs into "type unit groups", grouped by their
267 DW_AT_stmt_list value. Therefore the only sharing done here is with a
268 CU and its associated TU group if there is one. */
269 htab_t quick_file_names_table;
270
271 /* Set during partial symbol reading, to prevent queueing of full
272 symbols. */
273 int reading_partial_symbols;
274
275 /* Table mapping type DIEs to their struct type *.
276 This is NULL if not allocated yet.
277 The mapping is done via (CU/TU + DIE offset) -> type. */
278 htab_t die_type_hash;
279
280 /* The CUs we recently read. */
281 VEC (dwarf2_per_cu_ptr) *just_read_cus;
282 };
283
284 static struct dwarf2_per_objfile *dwarf2_per_objfile;
285
286 /* Default names of the debugging sections. */
287
288 /* Note that if the debugging section has been compressed, it might
289 have a name like .zdebug_info. */
290
291 static const struct dwarf2_debug_sections dwarf2_elf_names =
292 {
293 { ".debug_info", ".zdebug_info" },
294 { ".debug_abbrev", ".zdebug_abbrev" },
295 { ".debug_line", ".zdebug_line" },
296 { ".debug_loc", ".zdebug_loc" },
297 { ".debug_macinfo", ".zdebug_macinfo" },
298 { ".debug_macro", ".zdebug_macro" },
299 { ".debug_str", ".zdebug_str" },
300 { ".debug_ranges", ".zdebug_ranges" },
301 { ".debug_types", ".zdebug_types" },
302 { ".debug_addr", ".zdebug_addr" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
305 { ".gdb_index", ".zgdb_index" },
306 23
307 };
308
309 /* List of DWO/DWP sections. */
310
311 static const struct dwop_section_names
312 {
313 struct dwarf2_section_names abbrev_dwo;
314 struct dwarf2_section_names info_dwo;
315 struct dwarf2_section_names line_dwo;
316 struct dwarf2_section_names loc_dwo;
317 struct dwarf2_section_names macinfo_dwo;
318 struct dwarf2_section_names macro_dwo;
319 struct dwarf2_section_names str_dwo;
320 struct dwarf2_section_names str_offsets_dwo;
321 struct dwarf2_section_names types_dwo;
322 struct dwarf2_section_names cu_index;
323 struct dwarf2_section_names tu_index;
324 }
325 dwop_section_names =
326 {
327 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
328 { ".debug_info.dwo", ".zdebug_info.dwo" },
329 { ".debug_line.dwo", ".zdebug_line.dwo" },
330 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
331 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
332 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
333 { ".debug_str.dwo", ".zdebug_str.dwo" },
334 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
335 { ".debug_types.dwo", ".zdebug_types.dwo" },
336 { ".debug_cu_index", ".zdebug_cu_index" },
337 { ".debug_tu_index", ".zdebug_tu_index" },
338 };
339
340 /* local data types */
341
342 /* The data in a compilation unit header, after target2host
343 translation, looks like this. */
344 struct comp_unit_head
345 {
346 unsigned int length;
347 short version;
348 unsigned char addr_size;
349 unsigned char signed_addr_p;
350 sect_offset abbrev_offset;
351
352 /* Size of file offsets; either 4 or 8. */
353 unsigned int offset_size;
354
355 /* Size of the length field; either 4 or 12. */
356 unsigned int initial_length_size;
357
358 /* Offset to the first byte of this compilation unit header in the
359 .debug_info section, for resolving relative reference dies. */
360 sect_offset offset;
361
362 /* Offset to first die in this cu from the start of the cu.
363 This will be the first byte following the compilation unit header. */
364 cu_offset first_die_offset;
365 };
366
367 /* Type used for delaying computation of method physnames.
368 See comments for compute_delayed_physnames. */
369 struct delayed_method_info
370 {
371 /* The type to which the method is attached, i.e., its parent class. */
372 struct type *type;
373
374 /* The index of the method in the type's function fieldlists. */
375 int fnfield_index;
376
377 /* The index of the method in the fieldlist. */
378 int index;
379
380 /* The name of the DIE. */
381 const char *name;
382
383 /* The DIE associated with this method. */
384 struct die_info *die;
385 };
386
387 typedef struct delayed_method_info delayed_method_info;
388 DEF_VEC_O (delayed_method_info);
389
390 /* Internal state when decoding a particular compilation unit. */
391 struct dwarf2_cu
392 {
393 /* The objfile containing this compilation unit. */
394 struct objfile *objfile;
395
396 /* The header of the compilation unit. */
397 struct comp_unit_head header;
398
399 /* Base address of this compilation unit. */
400 CORE_ADDR base_address;
401
402 /* Non-zero if base_address has been set. */
403 int base_known;
404
405 /* The language we are debugging. */
406 enum language language;
407 const struct language_defn *language_defn;
408
409 const char *producer;
410
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
415
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope;
421
422 /* The abbrev table for this CU.
423 Normally this points to the abbrev table in the objfile.
424 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
425 struct abbrev_table *abbrev_table;
426
427 /* Hash table holding all the loaded partial DIEs
428 with partial_die->offset.SECT_OFF as hash. */
429 htab_t partial_dies;
430
431 /* Storage for things with the same lifetime as this read-in compilation
432 unit, including partial DIEs. */
433 struct obstack comp_unit_obstack;
434
435 /* When multiple dwarf2_cu structures are living in memory, this field
436 chains them all together, so that they can be released efficiently.
437 We will probably also want a generation counter so that most-recently-used
438 compilation units are cached... */
439 struct dwarf2_per_cu_data *read_in_chain;
440
441 /* Backchain to our per_cu entry if the tree has been built. */
442 struct dwarf2_per_cu_data *per_cu;
443
444 /* How many compilation units ago was this CU last referenced? */
445 int last_used;
446
447 /* A hash table of DIE cu_offset for following references with
448 die_info->offset.sect_off as hash. */
449 htab_t die_hash;
450
451 /* Full DIEs if read in. */
452 struct die_info *dies;
453
454 /* A set of pointers to dwarf2_per_cu_data objects for compilation
455 units referenced by this one. Only set during full symbol processing;
456 partial symbol tables do not have dependencies. */
457 htab_t dependencies;
458
459 /* Header data from the line table, during full symbol processing. */
460 struct line_header *line_header;
461
462 /* A list of methods which need to have physnames computed
463 after all type information has been read. */
464 VEC (delayed_method_info) *method_list;
465
466 /* To be copied to symtab->call_site_htab. */
467 htab_t call_site_htab;
468
469 /* Non-NULL if this CU came from a DWO file.
470 There is an invariant here that is important to remember:
471 Except for attributes copied from the top level DIE in the "main"
472 (or "stub") file in preparation for reading the DWO file
473 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
474 Either there isn't a DWO file (in which case this is NULL and the point
475 is moot), or there is and either we're not going to read it (in which
476 case this is NULL) or there is and we are reading it (in which case this
477 is non-NULL). */
478 struct dwo_unit *dwo_unit;
479
480 /* The DW_AT_addr_base attribute if present, zero otherwise
481 (zero is a valid value though).
482 Note this value comes from the stub CU/TU's DIE. */
483 ULONGEST addr_base;
484
485 /* The DW_AT_ranges_base attribute if present, zero otherwise
486 (zero is a valid value though).
487 Note this value comes from the stub CU/TU's DIE.
488 Also note that the value is zero in the non-DWO case so this value can
489 be used without needing to know whether DWO files are in use or not.
490 N.B. This does not apply to DW_AT_ranges appearing in
491 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
492 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
493 DW_AT_ranges_base *would* have to be applied, and we'd have to care
494 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
495 ULONGEST ranges_base;
496
497 /* Mark used when releasing cached dies. */
498 unsigned int mark : 1;
499
500 /* This CU references .debug_loc. See the symtab->locations_valid field.
501 This test is imperfect as there may exist optimized debug code not using
502 any location list and still facing inlining issues if handled as
503 unoptimized code. For a future better test see GCC PR other/32998. */
504 unsigned int has_loclist : 1;
505
506 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
507 if all the producer_is_* fields are valid. This information is cached
508 because profiling CU expansion showed excessive time spent in
509 producer_is_gxx_lt_4_6. */
510 unsigned int checked_producer : 1;
511 unsigned int producer_is_gxx_lt_4_6 : 1;
512 unsigned int producer_is_gcc_lt_4_3 : 1;
513 unsigned int producer_is_icc : 1;
514
515 /* When set, the file that we're processing is known to have
516 debugging info for C++ namespaces. GCC 3.3.x did not produce
517 this information, but later versions do. */
518
519 unsigned int processing_has_namespace_info : 1;
520 };
521
522 /* Persistent data held for a compilation unit, even when not
523 processing it. We put a pointer to this structure in the
524 read_symtab_private field of the psymtab. */
525
526 struct dwarf2_per_cu_data
527 {
528 /* The start offset and length of this compilation unit.
529 NOTE: Unlike comp_unit_head.length, this length includes
530 initial_length_size.
531 If the DIE refers to a DWO file, this is always of the original die,
532 not the DWO file. */
533 sect_offset offset;
534 unsigned int length;
535
536 /* Flag indicating this compilation unit will be read in before
537 any of the current compilation units are processed. */
538 unsigned int queued : 1;
539
540 /* This flag will be set when reading partial DIEs if we need to load
541 absolutely all DIEs for this compilation unit, instead of just the ones
542 we think are interesting. It gets set if we look for a DIE in the
543 hash table and don't find it. */
544 unsigned int load_all_dies : 1;
545
546 /* Non-zero if this CU is from .debug_types.
547 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
548 this is non-zero. */
549 unsigned int is_debug_types : 1;
550
551 /* Non-zero if this CU is from the .dwz file. */
552 unsigned int is_dwz : 1;
553
554 /* The section this CU/TU lives in.
555 If the DIE refers to a DWO file, this is always the original die,
556 not the DWO file. */
557 struct dwarf2_section_info *section;
558
559 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
560 of the CU cache it gets reset to NULL again. */
561 struct dwarf2_cu *cu;
562
563 /* The corresponding objfile.
564 Normally we can get the objfile from dwarf2_per_objfile.
565 However we can enter this file with just a "per_cu" handle. */
566 struct objfile *objfile;
567
568 /* When using partial symbol tables, the 'psymtab' field is active.
569 Otherwise the 'quick' field is active. */
570 union
571 {
572 /* The partial symbol table associated with this compilation unit,
573 or NULL for unread partial units. */
574 struct partial_symtab *psymtab;
575
576 /* Data needed by the "quick" functions. */
577 struct dwarf2_per_cu_quick_data *quick;
578 } v;
579
580 /* The CUs we import using DW_TAG_imported_unit. This is filled in
581 while reading psymtabs, used to compute the psymtab dependencies,
582 and then cleared. Then it is filled in again while reading full
583 symbols, and only deleted when the objfile is destroyed.
584
585 This is also used to work around a difference between the way gold
586 generates .gdb_index version <=7 and the way gdb does. Arguably this
587 is a gold bug. For symbols coming from TUs, gold records in the index
588 the CU that includes the TU instead of the TU itself. This breaks
589 dw2_lookup_symbol: It assumes that if the index says symbol X lives
590 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
591 will find X. Alas TUs live in their own symtab, so after expanding CU Y
592 we need to look in TU Z to find X. Fortunately, this is akin to
593 DW_TAG_imported_unit, so we just use the same mechanism: For
594 .gdb_index version <=7 this also records the TUs that the CU referred
595 to. Concurrently with this change gdb was modified to emit version 8
596 indices so we only pay a price for gold generated indices. */
597 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
598 };
599
600 /* Entry in the signatured_types hash table. */
601
602 struct signatured_type
603 {
604 /* The "per_cu" object of this type.
605 This struct is used iff per_cu.is_debug_types.
606 N.B.: This is the first member so that it's easy to convert pointers
607 between them. */
608 struct dwarf2_per_cu_data per_cu;
609
610 /* The type's signature. */
611 ULONGEST signature;
612
613 /* Offset in the TU of the type's DIE, as read from the TU header.
614 If this TU is a DWO stub and the definition lives in a DWO file
615 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
616 cu_offset type_offset_in_tu;
617
618 /* Offset in the section of the type's DIE.
619 If the definition lives in a DWO file, this is the offset in the
620 .debug_types.dwo section.
621 The value is zero until the actual value is known.
622 Zero is otherwise not a valid section offset. */
623 sect_offset type_offset_in_section;
624
625 /* Type units are grouped by their DW_AT_stmt_list entry so that they
626 can share them. This points to the containing symtab. */
627 struct type_unit_group *type_unit_group;
628
629 /* The type.
630 The first time we encounter this type we fully read it in and install it
631 in the symbol tables. Subsequent times we only need the type. */
632 struct type *type;
633 };
634
635 typedef struct signatured_type *sig_type_ptr;
636 DEF_VEC_P (sig_type_ptr);
637
638 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
639 This includes type_unit_group and quick_file_names. */
640
641 struct stmt_list_hash
642 {
643 /* The DWO unit this table is from or NULL if there is none. */
644 struct dwo_unit *dwo_unit;
645
646 /* Offset in .debug_line or .debug_line.dwo. */
647 sect_offset line_offset;
648 };
649
650 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
651 an object of this type. */
652
653 struct type_unit_group
654 {
655 /* dwarf2read.c's main "handle" on a TU symtab.
656 To simplify things we create an artificial CU that "includes" all the
657 type units using this stmt_list so that the rest of the code still has
658 a "per_cu" handle on the symtab.
659 This PER_CU is recognized by having no section. */
660 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
661 struct dwarf2_per_cu_data per_cu;
662
663 /* The TUs that share this DW_AT_stmt_list entry.
664 This is added to while parsing type units to build partial symtabs,
665 and is deleted afterwards and not used again. */
666 VEC (sig_type_ptr) *tus;
667
668 /* The primary symtab.
669 Type units in a group needn't all be defined in the same source file,
670 so we create an essentially anonymous symtab as the primary symtab. */
671 struct symtab *primary_symtab;
672
673 /* The data used to construct the hash key. */
674 struct stmt_list_hash hash;
675
676 /* The number of symtabs from the line header.
677 The value here must match line_header.num_file_names. */
678 unsigned int num_symtabs;
679
680 /* The symbol tables for this TU (obtained from the files listed in
681 DW_AT_stmt_list).
682 WARNING: The order of entries here must match the order of entries
683 in the line header. After the first TU using this type_unit_group, the
684 line header for the subsequent TUs is recreated from this. This is done
685 because we need to use the same symtabs for each TU using the same
686 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
687 there's no guarantee the line header doesn't have duplicate entries. */
688 struct symtab **symtabs;
689 };
690
691 /* These sections are what may appear in a DWO file. */
692
693 struct dwo_sections
694 {
695 struct dwarf2_section_info abbrev;
696 struct dwarf2_section_info line;
697 struct dwarf2_section_info loc;
698 struct dwarf2_section_info macinfo;
699 struct dwarf2_section_info macro;
700 struct dwarf2_section_info str;
701 struct dwarf2_section_info str_offsets;
702 /* In the case of a virtual DWO file, these two are unused. */
703 struct dwarf2_section_info info;
704 VEC (dwarf2_section_info_def) *types;
705 };
706
707 /* CUs/TUs in DWP/DWO files. */
708
709 struct dwo_unit
710 {
711 /* Backlink to the containing struct dwo_file. */
712 struct dwo_file *dwo_file;
713
714 /* The "id" that distinguishes this CU/TU.
715 .debug_info calls this "dwo_id", .debug_types calls this "signature".
716 Since signatures came first, we stick with it for consistency. */
717 ULONGEST signature;
718
719 /* The section this CU/TU lives in, in the DWO file. */
720 struct dwarf2_section_info *section;
721
722 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
723 sect_offset offset;
724 unsigned int length;
725
726 /* For types, offset in the type's DIE of the type defined by this TU. */
727 cu_offset type_offset_in_tu;
728 };
729
730 /* Data for one DWO file.
731 This includes virtual DWO files that have been packaged into a
732 DWP file. */
733
734 struct dwo_file
735 {
736 /* The DW_AT_GNU_dwo_name attribute.
737 For virtual DWO files the name is constructed from the section offsets
738 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
739 from related CU+TUs. */
740 const char *dwo_name;
741
742 /* The DW_AT_comp_dir attribute. */
743 const char *comp_dir;
744
745 /* The bfd, when the file is open. Otherwise this is NULL.
746 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
747 bfd *dbfd;
748
749 /* Section info for this file. */
750 struct dwo_sections sections;
751
752 /* The CU in the file.
753 We only support one because having more than one requires hacking the
754 dwo_name of each to match, which is highly unlikely to happen.
755 Doing this means all TUs can share comp_dir: We also assume that
756 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
757 struct dwo_unit *cu;
758
759 /* Table of TUs in the file.
760 Each element is a struct dwo_unit. */
761 htab_t tus;
762 };
763
764 /* These sections are what may appear in a DWP file. */
765
766 struct dwp_sections
767 {
768 struct dwarf2_section_info str;
769 struct dwarf2_section_info cu_index;
770 struct dwarf2_section_info tu_index;
771 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
772 by section number. We don't need to record them here. */
773 };
774
775 /* These sections are what may appear in a virtual DWO file. */
776
777 struct virtual_dwo_sections
778 {
779 struct dwarf2_section_info abbrev;
780 struct dwarf2_section_info line;
781 struct dwarf2_section_info loc;
782 struct dwarf2_section_info macinfo;
783 struct dwarf2_section_info macro;
784 struct dwarf2_section_info str_offsets;
785 /* Each DWP hash table entry records one CU or one TU.
786 That is recorded here, and copied to dwo_unit.section. */
787 struct dwarf2_section_info info_or_types;
788 };
789
790 /* Contents of DWP hash tables. */
791
792 struct dwp_hash_table
793 {
794 uint32_t nr_units, nr_slots;
795 const gdb_byte *hash_table, *unit_table, *section_pool;
796 };
797
798 /* Data for one DWP file. */
799
800 struct dwp_file
801 {
802 /* Name of the file. */
803 const char *name;
804
805 /* The bfd, when the file is open. Otherwise this is NULL. */
806 bfd *dbfd;
807
808 /* Section info for this file. */
809 struct dwp_sections sections;
810
811 /* Table of CUs in the file. */
812 const struct dwp_hash_table *cus;
813
814 /* Table of TUs in the file. */
815 const struct dwp_hash_table *tus;
816
817 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
818 htab_t loaded_cutus;
819
820 /* Table to map ELF section numbers to their sections. */
821 unsigned int num_sections;
822 asection **elf_sections;
823 };
824
825 /* This represents a '.dwz' file. */
826
827 struct dwz_file
828 {
829 /* A dwz file can only contain a few sections. */
830 struct dwarf2_section_info abbrev;
831 struct dwarf2_section_info info;
832 struct dwarf2_section_info str;
833 struct dwarf2_section_info line;
834 struct dwarf2_section_info macro;
835 struct dwarf2_section_info gdb_index;
836
837 /* The dwz's BFD. */
838 bfd *dwz_bfd;
839 };
840
841 /* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
844 struct exists to abstract away the constant parameters of die reading. */
845
846 struct die_reader_specs
847 {
848 /* die_section->asection->owner. */
849 bfd* abfd;
850
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
853
854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
855 struct dwo_file *dwo_file;
856
857 /* The section the die comes from.
858 This is either .debug_info or .debug_types, or the .dwo variants. */
859 struct dwarf2_section_info *die_section;
860
861 /* die_section->buffer. */
862 const gdb_byte *buffer;
863
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
866 };
867
868 /* Type of function passed to init_cutu_and_read_dies, et.al. */
869 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
870 const gdb_byte *info_ptr,
871 struct die_info *comp_unit_die,
872 int has_children,
873 void *data);
874
875 /* The line number information for a compilation unit (found in the
876 .debug_line section) begins with a "statement program header",
877 which contains the following information. */
878 struct line_header
879 {
880 unsigned int total_length;
881 unsigned short version;
882 unsigned int header_length;
883 unsigned char minimum_instruction_length;
884 unsigned char maximum_ops_per_instruction;
885 unsigned char default_is_stmt;
886 int line_base;
887 unsigned char line_range;
888 unsigned char opcode_base;
889
890 /* standard_opcode_lengths[i] is the number of operands for the
891 standard opcode whose value is i. This means that
892 standard_opcode_lengths[0] is unused, and the last meaningful
893 element is standard_opcode_lengths[opcode_base - 1]. */
894 unsigned char *standard_opcode_lengths;
895
896 /* The include_directories table. NOTE! These strings are not
897 allocated with xmalloc; instead, they are pointers into
898 debug_line_buffer. If you try to free them, `free' will get
899 indigestion. */
900 unsigned int num_include_dirs, include_dirs_size;
901 const char **include_dirs;
902
903 /* The file_names table. NOTE! These strings are not allocated
904 with xmalloc; instead, they are pointers into debug_line_buffer.
905 Don't try to free them directly. */
906 unsigned int num_file_names, file_names_size;
907 struct file_entry
908 {
909 const char *name;
910 unsigned int dir_index;
911 unsigned int mod_time;
912 unsigned int length;
913 int included_p; /* Non-zero if referenced by the Line Number Program. */
914 struct symtab *symtab; /* The associated symbol table, if any. */
915 } *file_names;
916
917 /* The start and end of the statement program following this
918 header. These point into dwarf2_per_objfile->line_buffer. */
919 const gdb_byte *statement_program_start, *statement_program_end;
920 };
921
922 /* When we construct a partial symbol table entry we only
923 need this much information. */
924 struct partial_die_info
925 {
926 /* Offset of this DIE. */
927 sect_offset offset;
928
929 /* DWARF-2 tag for this DIE. */
930 ENUM_BITFIELD(dwarf_tag) tag : 16;
931
932 /* Assorted flags describing the data found in this DIE. */
933 unsigned int has_children : 1;
934 unsigned int is_external : 1;
935 unsigned int is_declaration : 1;
936 unsigned int has_type : 1;
937 unsigned int has_specification : 1;
938 unsigned int has_pc_info : 1;
939 unsigned int may_be_inlined : 1;
940
941 /* Flag set if the SCOPE field of this structure has been
942 computed. */
943 unsigned int scope_set : 1;
944
945 /* Flag set if the DIE has a byte_size attribute. */
946 unsigned int has_byte_size : 1;
947
948 /* Flag set if any of the DIE's children are template arguments. */
949 unsigned int has_template_arguments : 1;
950
951 /* Flag set if fixup_partial_die has been called on this die. */
952 unsigned int fixup_called : 1;
953
954 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
955 unsigned int is_dwz : 1;
956
957 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
958 unsigned int spec_is_dwz : 1;
959
960 /* The name of this DIE. Normally the value of DW_AT_name, but
961 sometimes a default name for unnamed DIEs. */
962 const char *name;
963
964 /* The linkage name, if present. */
965 const char *linkage_name;
966
967 /* The scope to prepend to our children. This is generally
968 allocated on the comp_unit_obstack, so will disappear
969 when this compilation unit leaves the cache. */
970 const char *scope;
971
972 /* Some data associated with the partial DIE. The tag determines
973 which field is live. */
974 union
975 {
976 /* The location description associated with this DIE, if any. */
977 struct dwarf_block *locdesc;
978 /* The offset of an import, for DW_TAG_imported_unit. */
979 sect_offset offset;
980 } d;
981
982 /* If HAS_PC_INFO, the PC range associated with this DIE. */
983 CORE_ADDR lowpc;
984 CORE_ADDR highpc;
985
986 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
987 DW_AT_sibling, if any. */
988 /* NOTE: This member isn't strictly necessary, read_partial_die could
989 return DW_AT_sibling values to its caller load_partial_dies. */
990 const gdb_byte *sibling;
991
992 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
993 DW_AT_specification (or DW_AT_abstract_origin or
994 DW_AT_extension). */
995 sect_offset spec_offset;
996
997 /* Pointers to this DIE's parent, first child, and next sibling,
998 if any. */
999 struct partial_die_info *die_parent, *die_child, *die_sibling;
1000 };
1001
1002 /* This data structure holds the information of an abbrev. */
1003 struct abbrev_info
1004 {
1005 unsigned int number; /* number identifying abbrev */
1006 enum dwarf_tag tag; /* dwarf tag */
1007 unsigned short has_children; /* boolean */
1008 unsigned short num_attrs; /* number of attributes */
1009 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1010 struct abbrev_info *next; /* next in chain */
1011 };
1012
1013 struct attr_abbrev
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 16;
1017 };
1018
1019 /* Size of abbrev_table.abbrev_hash_table. */
1020 #define ABBREV_HASH_SIZE 121
1021
1022 /* Top level data structure to contain an abbreviation table. */
1023
1024 struct abbrev_table
1025 {
1026 /* Where the abbrev table came from.
1027 This is used as a sanity check when the table is used. */
1028 sect_offset offset;
1029
1030 /* Storage for the abbrev table. */
1031 struct obstack abbrev_obstack;
1032
1033 /* Hash table of abbrevs.
1034 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1035 It could be statically allocated, but the previous code didn't so we
1036 don't either. */
1037 struct abbrev_info **abbrevs;
1038 };
1039
1040 /* Attributes have a name and a value. */
1041 struct attribute
1042 {
1043 ENUM_BITFIELD(dwarf_attribute) name : 16;
1044 ENUM_BITFIELD(dwarf_form) form : 15;
1045
1046 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1047 field should be in u.str (existing only for DW_STRING) but it is kept
1048 here for better struct attribute alignment. */
1049 unsigned int string_is_canonical : 1;
1050
1051 union
1052 {
1053 const char *str;
1054 struct dwarf_block *blk;
1055 ULONGEST unsnd;
1056 LONGEST snd;
1057 CORE_ADDR addr;
1058 ULONGEST signature;
1059 }
1060 u;
1061 };
1062
1063 /* This data structure holds a complete die structure. */
1064 struct die_info
1065 {
1066 /* DWARF-2 tag for this DIE. */
1067 ENUM_BITFIELD(dwarf_tag) tag : 16;
1068
1069 /* Number of attributes */
1070 unsigned char num_attrs;
1071
1072 /* True if we're presently building the full type name for the
1073 type derived from this DIE. */
1074 unsigned char building_fullname : 1;
1075
1076 /* Abbrev number */
1077 unsigned int abbrev;
1078
1079 /* Offset in .debug_info or .debug_types section. */
1080 sect_offset offset;
1081
1082 /* The dies in a compilation unit form an n-ary tree. PARENT
1083 points to this die's parent; CHILD points to the first child of
1084 this node; and all the children of a given node are chained
1085 together via their SIBLING fields. */
1086 struct die_info *child; /* Its first child, if any. */
1087 struct die_info *sibling; /* Its next sibling, if any. */
1088 struct die_info *parent; /* Its parent, if any. */
1089
1090 /* An array of attributes, with NUM_ATTRS elements. There may be
1091 zero, but it's not common and zero-sized arrays are not
1092 sufficiently portable C. */
1093 struct attribute attrs[1];
1094 };
1095
1096 /* Get at parts of an attribute structure. */
1097
1098 #define DW_STRING(attr) ((attr)->u.str)
1099 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1100 #define DW_UNSND(attr) ((attr)->u.unsnd)
1101 #define DW_BLOCK(attr) ((attr)->u.blk)
1102 #define DW_SND(attr) ((attr)->u.snd)
1103 #define DW_ADDR(attr) ((attr)->u.addr)
1104 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1105
1106 /* Blocks are a bunch of untyped bytes. */
1107 struct dwarf_block
1108 {
1109 size_t size;
1110
1111 /* Valid only if SIZE is not zero. */
1112 const gdb_byte *data;
1113 };
1114
1115 #ifndef ATTR_ALLOC_CHUNK
1116 #define ATTR_ALLOC_CHUNK 4
1117 #endif
1118
1119 /* Allocate fields for structs, unions and enums in this size. */
1120 #ifndef DW_FIELD_ALLOC_CHUNK
1121 #define DW_FIELD_ALLOC_CHUNK 4
1122 #endif
1123
1124 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1125 but this would require a corresponding change in unpack_field_as_long
1126 and friends. */
1127 static int bits_per_byte = 8;
1128
1129 /* The routines that read and process dies for a C struct or C++ class
1130 pass lists of data member fields and lists of member function fields
1131 in an instance of a field_info structure, as defined below. */
1132 struct field_info
1133 {
1134 /* List of data member and baseclasses fields. */
1135 struct nextfield
1136 {
1137 struct nextfield *next;
1138 int accessibility;
1139 int virtuality;
1140 struct field field;
1141 }
1142 *fields, *baseclasses;
1143
1144 /* Number of fields (including baseclasses). */
1145 int nfields;
1146
1147 /* Number of baseclasses. */
1148 int nbaseclasses;
1149
1150 /* Set if the accesibility of one of the fields is not public. */
1151 int non_public_fields;
1152
1153 /* Member function fields array, entries are allocated in the order they
1154 are encountered in the object file. */
1155 struct nextfnfield
1156 {
1157 struct nextfnfield *next;
1158 struct fn_field fnfield;
1159 }
1160 *fnfields;
1161
1162 /* Member function fieldlist array, contains name of possibly overloaded
1163 member function, number of overloaded member functions and a pointer
1164 to the head of the member function field chain. */
1165 struct fnfieldlist
1166 {
1167 const char *name;
1168 int length;
1169 struct nextfnfield *head;
1170 }
1171 *fnfieldlists;
1172
1173 /* Number of entries in the fnfieldlists array. */
1174 int nfnfields;
1175
1176 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1177 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1178 struct typedef_field_list
1179 {
1180 struct typedef_field field;
1181 struct typedef_field_list *next;
1182 }
1183 *typedef_field_list;
1184 unsigned typedef_field_list_count;
1185 };
1186
1187 /* One item on the queue of compilation units to read in full symbols
1188 for. */
1189 struct dwarf2_queue_item
1190 {
1191 struct dwarf2_per_cu_data *per_cu;
1192 enum language pretend_language;
1193 struct dwarf2_queue_item *next;
1194 };
1195
1196 /* The current queue. */
1197 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1198
1199 /* Loaded secondary compilation units are kept in memory until they
1200 have not been referenced for the processing of this many
1201 compilation units. Set this to zero to disable caching. Cache
1202 sizes of up to at least twenty will improve startup time for
1203 typical inter-CU-reference binaries, at an obvious memory cost. */
1204 static int dwarf2_max_cache_age = 5;
1205 static void
1206 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1207 struct cmd_list_element *c, const char *value)
1208 {
1209 fprintf_filtered (file, _("The upper bound on the age of cached "
1210 "dwarf2 compilation units is %s.\n"),
1211 value);
1212 }
1213
1214
1215 /* Various complaints about symbol reading that don't abort the process. */
1216
1217 static void
1218 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1219 {
1220 complaint (&symfile_complaints,
1221 _("statement list doesn't fit in .debug_line section"));
1222 }
1223
1224 static void
1225 dwarf2_debug_line_missing_file_complaint (void)
1226 {
1227 complaint (&symfile_complaints,
1228 _(".debug_line section has line data without a file"));
1229 }
1230
1231 static void
1232 dwarf2_debug_line_missing_end_sequence_complaint (void)
1233 {
1234 complaint (&symfile_complaints,
1235 _(".debug_line section has line "
1236 "program sequence without an end"));
1237 }
1238
1239 static void
1240 dwarf2_complex_location_expr_complaint (void)
1241 {
1242 complaint (&symfile_complaints, _("location expression too complex"));
1243 }
1244
1245 static void
1246 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1247 int arg3)
1248 {
1249 complaint (&symfile_complaints,
1250 _("const value length mismatch for '%s', got %d, expected %d"),
1251 arg1, arg2, arg3);
1252 }
1253
1254 static void
1255 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1256 {
1257 complaint (&symfile_complaints,
1258 _("debug info runs off end of %s section"
1259 " [in module %s]"),
1260 section->asection->name,
1261 bfd_get_filename (section->asection->owner));
1262 }
1263
1264 static void
1265 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1266 {
1267 complaint (&symfile_complaints,
1268 _("macro debug info contains a "
1269 "malformed macro definition:\n`%s'"),
1270 arg1);
1271 }
1272
1273 static void
1274 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1275 {
1276 complaint (&symfile_complaints,
1277 _("invalid attribute class or form for '%s' in '%s'"),
1278 arg1, arg2);
1279 }
1280
1281 /* local function prototypes */
1282
1283 static void dwarf2_locate_sections (bfd *, asection *, void *);
1284
1285 static void dwarf2_find_base_address (struct die_info *die,
1286 struct dwarf2_cu *cu);
1287
1288 static struct partial_symtab *create_partial_symtab
1289 (struct dwarf2_per_cu_data *per_cu, const char *name);
1290
1291 static void dwarf2_build_psymtabs_hard (struct objfile *);
1292
1293 static void scan_partial_symbols (struct partial_die_info *,
1294 CORE_ADDR *, CORE_ADDR *,
1295 int, struct dwarf2_cu *);
1296
1297 static void add_partial_symbol (struct partial_die_info *,
1298 struct dwarf2_cu *);
1299
1300 static void add_partial_namespace (struct partial_die_info *pdi,
1301 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1302 int need_pc, struct dwarf2_cu *cu);
1303
1304 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1305 CORE_ADDR *highpc, int need_pc,
1306 struct dwarf2_cu *cu);
1307
1308 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1309 struct dwarf2_cu *cu);
1310
1311 static void add_partial_subprogram (struct partial_die_info *pdi,
1312 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1313 int need_pc, struct dwarf2_cu *cu);
1314
1315 static void dwarf2_read_symtab (struct partial_symtab *,
1316 struct objfile *);
1317
1318 static void psymtab_to_symtab_1 (struct partial_symtab *);
1319
1320 static struct abbrev_info *abbrev_table_lookup_abbrev
1321 (const struct abbrev_table *, unsigned int);
1322
1323 static struct abbrev_table *abbrev_table_read_table
1324 (struct dwarf2_section_info *, sect_offset);
1325
1326 static void abbrev_table_free (struct abbrev_table *);
1327
1328 static void abbrev_table_free_cleanup (void *);
1329
1330 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1331 struct dwarf2_section_info *);
1332
1333 static void dwarf2_free_abbrev_table (void *);
1334
1335 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1336
1337 static struct partial_die_info *load_partial_dies
1338 (const struct die_reader_specs *, const gdb_byte *, int);
1339
1340 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1341 struct partial_die_info *,
1342 struct abbrev_info *,
1343 unsigned int,
1344 const gdb_byte *);
1345
1346 static struct partial_die_info *find_partial_die (sect_offset, int,
1347 struct dwarf2_cu *);
1348
1349 static void fixup_partial_die (struct partial_die_info *,
1350 struct dwarf2_cu *);
1351
1352 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1353 struct attribute *, struct attr_abbrev *,
1354 const gdb_byte *);
1355
1356 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1357
1358 static int read_1_signed_byte (bfd *, const gdb_byte *);
1359
1360 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1361
1362 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1363
1364 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1365
1366 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1367 unsigned int *);
1368
1369 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1370
1371 static LONGEST read_checked_initial_length_and_offset
1372 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1373 unsigned int *, unsigned int *);
1374
1375 static LONGEST read_offset (bfd *, const gdb_byte *,
1376 const struct comp_unit_head *,
1377 unsigned int *);
1378
1379 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1380
1381 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1382 sect_offset);
1383
1384 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1385
1386 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1387
1388 static const char *read_indirect_string (bfd *, const gdb_byte *,
1389 const struct comp_unit_head *,
1390 unsigned int *);
1391
1392 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1393
1394 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1395
1396 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1397
1398 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1399 const gdb_byte *,
1400 unsigned int *);
1401
1402 static const char *read_str_index (const struct die_reader_specs *reader,
1403 struct dwarf2_cu *cu, ULONGEST str_index);
1404
1405 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1406
1407 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1408 struct dwarf2_cu *);
1409
1410 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1411 unsigned int);
1412
1413 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1414 struct dwarf2_cu *cu);
1415
1416 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1417
1418 static struct die_info *die_specification (struct die_info *die,
1419 struct dwarf2_cu **);
1420
1421 static void free_line_header (struct line_header *lh);
1422
1423 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1424 struct dwarf2_cu *cu);
1425
1426 static void dwarf_decode_lines (struct line_header *, const char *,
1427 struct dwarf2_cu *, struct partial_symtab *,
1428 int);
1429
1430 static void dwarf2_start_subfile (const char *, const char *, const char *);
1431
1432 static void dwarf2_start_symtab (struct dwarf2_cu *,
1433 const char *, const char *, CORE_ADDR);
1434
1435 static struct symbol *new_symbol (struct die_info *, struct type *,
1436 struct dwarf2_cu *);
1437
1438 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1439 struct dwarf2_cu *, struct symbol *);
1440
1441 static void dwarf2_const_value (struct attribute *, struct symbol *,
1442 struct dwarf2_cu *);
1443
1444 static void dwarf2_const_value_attr (struct attribute *attr,
1445 struct type *type,
1446 const char *name,
1447 struct obstack *obstack,
1448 struct dwarf2_cu *cu, LONGEST *value,
1449 const gdb_byte **bytes,
1450 struct dwarf2_locexpr_baton **baton);
1451
1452 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1453
1454 static int need_gnat_info (struct dwarf2_cu *);
1455
1456 static struct type *die_descriptive_type (struct die_info *,
1457 struct dwarf2_cu *);
1458
1459 static void set_descriptive_type (struct type *, struct die_info *,
1460 struct dwarf2_cu *);
1461
1462 static struct type *die_containing_type (struct die_info *,
1463 struct dwarf2_cu *);
1464
1465 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1466 struct dwarf2_cu *);
1467
1468 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1469
1470 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1471
1472 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1473
1474 static char *typename_concat (struct obstack *obs, const char *prefix,
1475 const char *suffix, int physname,
1476 struct dwarf2_cu *cu);
1477
1478 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1479
1480 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1481
1482 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1483
1484 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1485
1486 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1487
1488 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1489 struct dwarf2_cu *, struct partial_symtab *);
1490
1491 static int dwarf2_get_pc_bounds (struct die_info *,
1492 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1493 struct partial_symtab *);
1494
1495 static void get_scope_pc_bounds (struct die_info *,
1496 CORE_ADDR *, CORE_ADDR *,
1497 struct dwarf2_cu *);
1498
1499 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1500 CORE_ADDR, struct dwarf2_cu *);
1501
1502 static void dwarf2_add_field (struct field_info *, struct die_info *,
1503 struct dwarf2_cu *);
1504
1505 static void dwarf2_attach_fields_to_type (struct field_info *,
1506 struct type *, struct dwarf2_cu *);
1507
1508 static void dwarf2_add_member_fn (struct field_info *,
1509 struct die_info *, struct type *,
1510 struct dwarf2_cu *);
1511
1512 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1513 struct type *,
1514 struct dwarf2_cu *);
1515
1516 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1517
1518 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1519
1520 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1521
1522 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1523
1524 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1525
1526 static struct type *read_module_type (struct die_info *die,
1527 struct dwarf2_cu *cu);
1528
1529 static const char *namespace_name (struct die_info *die,
1530 int *is_anonymous, struct dwarf2_cu *);
1531
1532 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1533
1534 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1535
1536 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1537 struct dwarf2_cu *);
1538
1539 static struct die_info *read_die_and_siblings_1
1540 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1541 struct die_info *);
1542
1543 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1544 const gdb_byte *info_ptr,
1545 const gdb_byte **new_info_ptr,
1546 struct die_info *parent);
1547
1548 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1549 struct die_info **, const gdb_byte *,
1550 int *, int);
1551
1552 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1553 struct die_info **, const gdb_byte *,
1554 int *);
1555
1556 static void process_die (struct die_info *, struct dwarf2_cu *);
1557
1558 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1559 struct obstack *);
1560
1561 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1562
1563 static const char *dwarf2_full_name (const char *name,
1564 struct die_info *die,
1565 struct dwarf2_cu *cu);
1566
1567 static const char *dwarf2_physname (const char *name, struct die_info *die,
1568 struct dwarf2_cu *cu);
1569
1570 static struct die_info *dwarf2_extension (struct die_info *die,
1571 struct dwarf2_cu **);
1572
1573 static const char *dwarf_tag_name (unsigned int);
1574
1575 static const char *dwarf_attr_name (unsigned int);
1576
1577 static const char *dwarf_form_name (unsigned int);
1578
1579 static char *dwarf_bool_name (unsigned int);
1580
1581 static const char *dwarf_type_encoding_name (unsigned int);
1582
1583 static struct die_info *sibling_die (struct die_info *);
1584
1585 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1586
1587 static void dump_die_for_error (struct die_info *);
1588
1589 static void dump_die_1 (struct ui_file *, int level, int max_level,
1590 struct die_info *);
1591
1592 /*static*/ void dump_die (struct die_info *, int max_level);
1593
1594 static void store_in_ref_table (struct die_info *,
1595 struct dwarf2_cu *);
1596
1597 static int is_ref_attr (struct attribute *);
1598
1599 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1600
1601 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1602
1603 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1604 struct attribute *,
1605 struct dwarf2_cu **);
1606
1607 static struct die_info *follow_die_ref (struct die_info *,
1608 struct attribute *,
1609 struct dwarf2_cu **);
1610
1611 static struct die_info *follow_die_sig (struct die_info *,
1612 struct attribute *,
1613 struct dwarf2_cu **);
1614
1615 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1616 struct dwarf2_cu *);
1617
1618 static struct type *get_DW_AT_signature_type (struct die_info *,
1619 struct attribute *,
1620 struct dwarf2_cu *);
1621
1622 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1623
1624 static void read_signatured_type (struct signatured_type *);
1625
1626 static struct type_unit_group *get_type_unit_group
1627 (struct dwarf2_cu *, struct attribute *);
1628
1629 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1630
1631 /* memory allocation interface */
1632
1633 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1634
1635 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1636
1637 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1638 const char *, int);
1639
1640 static int attr_form_is_block (struct attribute *);
1641
1642 static int attr_form_is_section_offset (struct attribute *);
1643
1644 static int attr_form_is_constant (struct attribute *);
1645
1646 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1647 struct dwarf2_loclist_baton *baton,
1648 struct attribute *attr);
1649
1650 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1651 struct symbol *sym,
1652 struct dwarf2_cu *cu,
1653 int is_block);
1654
1655 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1656 const gdb_byte *info_ptr,
1657 struct abbrev_info *abbrev);
1658
1659 static void free_stack_comp_unit (void *);
1660
1661 static hashval_t partial_die_hash (const void *item);
1662
1663 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1664
1665 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1666 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1667
1668 static void init_one_comp_unit (struct dwarf2_cu *cu,
1669 struct dwarf2_per_cu_data *per_cu);
1670
1671 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1672 struct die_info *comp_unit_die,
1673 enum language pretend_language);
1674
1675 static void free_heap_comp_unit (void *);
1676
1677 static void free_cached_comp_units (void *);
1678
1679 static void age_cached_comp_units (void);
1680
1681 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1682
1683 static struct type *set_die_type (struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static void create_all_comp_units (struct objfile *);
1687
1688 static int create_all_type_units (struct objfile *);
1689
1690 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1691 enum language);
1692
1693 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1694 enum language);
1695
1696 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1697 enum language);
1698
1699 static void dwarf2_add_dependence (struct dwarf2_cu *,
1700 struct dwarf2_per_cu_data *);
1701
1702 static void dwarf2_mark (struct dwarf2_cu *);
1703
1704 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1705
1706 static struct type *get_die_type_at_offset (sect_offset,
1707 struct dwarf2_per_cu_data *);
1708
1709 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1710
1711 static void dwarf2_release_queue (void *dummy);
1712
1713 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1714 enum language pretend_language);
1715
1716 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1717 struct dwarf2_per_cu_data *per_cu,
1718 enum language pretend_language);
1719
1720 static void process_queue (void);
1721
1722 static void find_file_and_directory (struct die_info *die,
1723 struct dwarf2_cu *cu,
1724 const char **name, const char **comp_dir);
1725
1726 static char *file_full_name (int file, struct line_header *lh,
1727 const char *comp_dir);
1728
1729 static const gdb_byte *read_and_check_comp_unit_head
1730 (struct comp_unit_head *header,
1731 struct dwarf2_section_info *section,
1732 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1733 int is_debug_types_section);
1734
1735 static void init_cutu_and_read_dies
1736 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1737 int use_existing_cu, int keep,
1738 die_reader_func_ftype *die_reader_func, void *data);
1739
1740 static void init_cutu_and_read_dies_simple
1741 (struct dwarf2_per_cu_data *this_cu,
1742 die_reader_func_ftype *die_reader_func, void *data);
1743
1744 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1745
1746 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1747
1748 static struct dwo_unit *lookup_dwo_comp_unit
1749 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1750
1751 static struct dwo_unit *lookup_dwo_type_unit
1752 (struct signatured_type *, const char *, const char *);
1753
1754 static void free_dwo_file_cleanup (void *);
1755
1756 static void process_cu_includes (void);
1757
1758 static void check_producer (struct dwarf2_cu *cu);
1759
1760 #if WORDS_BIGENDIAN
1761
1762 /* Convert VALUE between big- and little-endian. */
1763 static offset_type
1764 byte_swap (offset_type value)
1765 {
1766 offset_type result;
1767
1768 result = (value & 0xff) << 24;
1769 result |= (value & 0xff00) << 8;
1770 result |= (value & 0xff0000) >> 8;
1771 result |= (value & 0xff000000) >> 24;
1772 return result;
1773 }
1774
1775 #define MAYBE_SWAP(V) byte_swap (V)
1776
1777 #else
1778 #define MAYBE_SWAP(V) (V)
1779 #endif /* WORDS_BIGENDIAN */
1780
1781 /* The suffix for an index file. */
1782 #define INDEX_SUFFIX ".gdb-index"
1783
1784 /* Try to locate the sections we need for DWARF 2 debugging
1785 information and return true if we have enough to do something.
1786 NAMES points to the dwarf2 section names, or is NULL if the standard
1787 ELF names are used. */
1788
1789 int
1790 dwarf2_has_info (struct objfile *objfile,
1791 const struct dwarf2_debug_sections *names)
1792 {
1793 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1794 if (!dwarf2_per_objfile)
1795 {
1796 /* Initialize per-objfile state. */
1797 struct dwarf2_per_objfile *data
1798 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1799
1800 memset (data, 0, sizeof (*data));
1801 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1802 dwarf2_per_objfile = data;
1803
1804 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1805 (void *) names);
1806 dwarf2_per_objfile->objfile = objfile;
1807 }
1808 return (dwarf2_per_objfile->info.asection != NULL
1809 && dwarf2_per_objfile->abbrev.asection != NULL);
1810 }
1811
1812 /* When loading sections, we look either for uncompressed section or for
1813 compressed section names. */
1814
1815 static int
1816 section_is_p (const char *section_name,
1817 const struct dwarf2_section_names *names)
1818 {
1819 if (names->normal != NULL
1820 && strcmp (section_name, names->normal) == 0)
1821 return 1;
1822 if (names->compressed != NULL
1823 && strcmp (section_name, names->compressed) == 0)
1824 return 1;
1825 return 0;
1826 }
1827
1828 /* This function is mapped across the sections and remembers the
1829 offset and size of each of the debugging sections we are interested
1830 in. */
1831
1832 static void
1833 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1834 {
1835 const struct dwarf2_debug_sections *names;
1836 flagword aflag = bfd_get_section_flags (abfd, sectp);
1837
1838 if (vnames == NULL)
1839 names = &dwarf2_elf_names;
1840 else
1841 names = (const struct dwarf2_debug_sections *) vnames;
1842
1843 if ((aflag & SEC_HAS_CONTENTS) == 0)
1844 {
1845 }
1846 else if (section_is_p (sectp->name, &names->info))
1847 {
1848 dwarf2_per_objfile->info.asection = sectp;
1849 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1850 }
1851 else if (section_is_p (sectp->name, &names->abbrev))
1852 {
1853 dwarf2_per_objfile->abbrev.asection = sectp;
1854 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1855 }
1856 else if (section_is_p (sectp->name, &names->line))
1857 {
1858 dwarf2_per_objfile->line.asection = sectp;
1859 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1860 }
1861 else if (section_is_p (sectp->name, &names->loc))
1862 {
1863 dwarf2_per_objfile->loc.asection = sectp;
1864 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1865 }
1866 else if (section_is_p (sectp->name, &names->macinfo))
1867 {
1868 dwarf2_per_objfile->macinfo.asection = sectp;
1869 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1870 }
1871 else if (section_is_p (sectp->name, &names->macro))
1872 {
1873 dwarf2_per_objfile->macro.asection = sectp;
1874 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1875 }
1876 else if (section_is_p (sectp->name, &names->str))
1877 {
1878 dwarf2_per_objfile->str.asection = sectp;
1879 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->addr))
1882 {
1883 dwarf2_per_objfile->addr.asection = sectp;
1884 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->frame))
1887 {
1888 dwarf2_per_objfile->frame.asection = sectp;
1889 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->eh_frame))
1892 {
1893 dwarf2_per_objfile->eh_frame.asection = sectp;
1894 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->ranges))
1897 {
1898 dwarf2_per_objfile->ranges.asection = sectp;
1899 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->types))
1902 {
1903 struct dwarf2_section_info type_section;
1904
1905 memset (&type_section, 0, sizeof (type_section));
1906 type_section.asection = sectp;
1907 type_section.size = bfd_get_section_size (sectp);
1908
1909 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1910 &type_section);
1911 }
1912 else if (section_is_p (sectp->name, &names->gdb_index))
1913 {
1914 dwarf2_per_objfile->gdb_index.asection = sectp;
1915 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1916 }
1917
1918 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1919 && bfd_section_vma (abfd, sectp) == 0)
1920 dwarf2_per_objfile->has_section_at_zero = 1;
1921 }
1922
1923 /* A helper function that decides whether a section is empty,
1924 or not present. */
1925
1926 static int
1927 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1928 {
1929 return info->asection == NULL || info->size == 0;
1930 }
1931
1932 /* Read the contents of the section INFO.
1933 OBJFILE is the main object file, but not necessarily the file where
1934 the section comes from. E.g., for DWO files INFO->asection->owner
1935 is the bfd of the DWO file.
1936 If the section is compressed, uncompress it before returning. */
1937
1938 static void
1939 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1940 {
1941 asection *sectp = info->asection;
1942 bfd *abfd;
1943 gdb_byte *buf, *retbuf;
1944 unsigned char header[4];
1945
1946 if (info->readin)
1947 return;
1948 info->buffer = NULL;
1949 info->readin = 1;
1950
1951 if (dwarf2_section_empty_p (info))
1952 return;
1953
1954 abfd = sectp->owner;
1955
1956 /* If the section has relocations, we must read it ourselves.
1957 Otherwise we attach it to the BFD. */
1958 if ((sectp->flags & SEC_RELOC) == 0)
1959 {
1960 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1961 return;
1962 }
1963
1964 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1965 info->buffer = buf;
1966
1967 /* When debugging .o files, we may need to apply relocations; see
1968 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1969 We never compress sections in .o files, so we only need to
1970 try this when the section is not compressed. */
1971 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1972 if (retbuf != NULL)
1973 {
1974 info->buffer = retbuf;
1975 return;
1976 }
1977
1978 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1979 || bfd_bread (buf, info->size, abfd) != info->size)
1980 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1981 bfd_get_filename (abfd));
1982 }
1983
1984 /* A helper function that returns the size of a section in a safe way.
1985 If you are positive that the section has been read before using the
1986 size, then it is safe to refer to the dwarf2_section_info object's
1987 "size" field directly. In other cases, you must call this
1988 function, because for compressed sections the size field is not set
1989 correctly until the section has been read. */
1990
1991 static bfd_size_type
1992 dwarf2_section_size (struct objfile *objfile,
1993 struct dwarf2_section_info *info)
1994 {
1995 if (!info->readin)
1996 dwarf2_read_section (objfile, info);
1997 return info->size;
1998 }
1999
2000 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2001 SECTION_NAME. */
2002
2003 void
2004 dwarf2_get_section_info (struct objfile *objfile,
2005 enum dwarf2_section_enum sect,
2006 asection **sectp, const gdb_byte **bufp,
2007 bfd_size_type *sizep)
2008 {
2009 struct dwarf2_per_objfile *data
2010 = objfile_data (objfile, dwarf2_objfile_data_key);
2011 struct dwarf2_section_info *info;
2012
2013 /* We may see an objfile without any DWARF, in which case we just
2014 return nothing. */
2015 if (data == NULL)
2016 {
2017 *sectp = NULL;
2018 *bufp = NULL;
2019 *sizep = 0;
2020 return;
2021 }
2022 switch (sect)
2023 {
2024 case DWARF2_DEBUG_FRAME:
2025 info = &data->frame;
2026 break;
2027 case DWARF2_EH_FRAME:
2028 info = &data->eh_frame;
2029 break;
2030 default:
2031 gdb_assert_not_reached ("unexpected section");
2032 }
2033
2034 dwarf2_read_section (objfile, info);
2035
2036 *sectp = info->asection;
2037 *bufp = info->buffer;
2038 *sizep = info->size;
2039 }
2040
2041 /* A helper function to find the sections for a .dwz file. */
2042
2043 static void
2044 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2045 {
2046 struct dwz_file *dwz_file = arg;
2047
2048 /* Note that we only support the standard ELF names, because .dwz
2049 is ELF-only (at the time of writing). */
2050 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2051 {
2052 dwz_file->abbrev.asection = sectp;
2053 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2054 }
2055 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2056 {
2057 dwz_file->info.asection = sectp;
2058 dwz_file->info.size = bfd_get_section_size (sectp);
2059 }
2060 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2061 {
2062 dwz_file->str.asection = sectp;
2063 dwz_file->str.size = bfd_get_section_size (sectp);
2064 }
2065 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2066 {
2067 dwz_file->line.asection = sectp;
2068 dwz_file->line.size = bfd_get_section_size (sectp);
2069 }
2070 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2071 {
2072 dwz_file->macro.asection = sectp;
2073 dwz_file->macro.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2076 {
2077 dwz_file->gdb_index.asection = sectp;
2078 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2079 }
2080 }
2081
2082 /* Open the separate '.dwz' debug file, if needed. Error if the file
2083 cannot be found. */
2084
2085 static struct dwz_file *
2086 dwarf2_get_dwz_file (void)
2087 {
2088 bfd *abfd, *dwz_bfd;
2089 asection *section;
2090 gdb_byte *data;
2091 struct cleanup *cleanup;
2092 const char *filename;
2093 struct dwz_file *result;
2094
2095 if (dwarf2_per_objfile->dwz_file != NULL)
2096 return dwarf2_per_objfile->dwz_file;
2097
2098 abfd = dwarf2_per_objfile->objfile->obfd;
2099 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2100 if (section == NULL)
2101 error (_("could not find '.gnu_debugaltlink' section"));
2102 if (!bfd_malloc_and_get_section (abfd, section, &data))
2103 error (_("could not read '.gnu_debugaltlink' section: %s"),
2104 bfd_errmsg (bfd_get_error ()));
2105 cleanup = make_cleanup (xfree, data);
2106
2107 filename = (const char *) data;
2108 if (!IS_ABSOLUTE_PATH (filename))
2109 {
2110 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2111 char *rel;
2112
2113 make_cleanup (xfree, abs);
2114 abs = ldirname (abs);
2115 make_cleanup (xfree, abs);
2116
2117 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2118 make_cleanup (xfree, rel);
2119 filename = rel;
2120 }
2121
2122 /* The format is just a NUL-terminated file name, followed by the
2123 build-id. For now, though, we ignore the build-id. */
2124 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2125 if (dwz_bfd == NULL)
2126 error (_("could not read '%s': %s"), filename,
2127 bfd_errmsg (bfd_get_error ()));
2128
2129 if (!bfd_check_format (dwz_bfd, bfd_object))
2130 {
2131 gdb_bfd_unref (dwz_bfd);
2132 error (_("file '%s' was not usable: %s"), filename,
2133 bfd_errmsg (bfd_get_error ()));
2134 }
2135
2136 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2137 struct dwz_file);
2138 result->dwz_bfd = dwz_bfd;
2139
2140 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2141
2142 do_cleanups (cleanup);
2143
2144 dwarf2_per_objfile->dwz_file = result;
2145 return result;
2146 }
2147 \f
2148 /* DWARF quick_symbols_functions support. */
2149
2150 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2151 unique line tables, so we maintain a separate table of all .debug_line
2152 derived entries to support the sharing.
2153 All the quick functions need is the list of file names. We discard the
2154 line_header when we're done and don't need to record it here. */
2155 struct quick_file_names
2156 {
2157 /* The data used to construct the hash key. */
2158 struct stmt_list_hash hash;
2159
2160 /* The number of entries in file_names, real_names. */
2161 unsigned int num_file_names;
2162
2163 /* The file names from the line table, after being run through
2164 file_full_name. */
2165 const char **file_names;
2166
2167 /* The file names from the line table after being run through
2168 gdb_realpath. These are computed lazily. */
2169 const char **real_names;
2170 };
2171
2172 /* When using the index (and thus not using psymtabs), each CU has an
2173 object of this type. This is used to hold information needed by
2174 the various "quick" methods. */
2175 struct dwarf2_per_cu_quick_data
2176 {
2177 /* The file table. This can be NULL if there was no file table
2178 or it's currently not read in.
2179 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2180 struct quick_file_names *file_names;
2181
2182 /* The corresponding symbol table. This is NULL if symbols for this
2183 CU have not yet been read. */
2184 struct symtab *symtab;
2185
2186 /* A temporary mark bit used when iterating over all CUs in
2187 expand_symtabs_matching. */
2188 unsigned int mark : 1;
2189
2190 /* True if we've tried to read the file table and found there isn't one.
2191 There will be no point in trying to read it again next time. */
2192 unsigned int no_file_data : 1;
2193 };
2194
2195 /* Utility hash function for a stmt_list_hash. */
2196
2197 static hashval_t
2198 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2199 {
2200 hashval_t v = 0;
2201
2202 if (stmt_list_hash->dwo_unit != NULL)
2203 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2204 v += stmt_list_hash->line_offset.sect_off;
2205 return v;
2206 }
2207
2208 /* Utility equality function for a stmt_list_hash. */
2209
2210 static int
2211 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2212 const struct stmt_list_hash *rhs)
2213 {
2214 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2215 return 0;
2216 if (lhs->dwo_unit != NULL
2217 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2218 return 0;
2219
2220 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2221 }
2222
2223 /* Hash function for a quick_file_names. */
2224
2225 static hashval_t
2226 hash_file_name_entry (const void *e)
2227 {
2228 const struct quick_file_names *file_data = e;
2229
2230 return hash_stmt_list_entry (&file_data->hash);
2231 }
2232
2233 /* Equality function for a quick_file_names. */
2234
2235 static int
2236 eq_file_name_entry (const void *a, const void *b)
2237 {
2238 const struct quick_file_names *ea = a;
2239 const struct quick_file_names *eb = b;
2240
2241 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2242 }
2243
2244 /* Delete function for a quick_file_names. */
2245
2246 static void
2247 delete_file_name_entry (void *e)
2248 {
2249 struct quick_file_names *file_data = e;
2250 int i;
2251
2252 for (i = 0; i < file_data->num_file_names; ++i)
2253 {
2254 xfree ((void*) file_data->file_names[i]);
2255 if (file_data->real_names)
2256 xfree ((void*) file_data->real_names[i]);
2257 }
2258
2259 /* The space for the struct itself lives on objfile_obstack,
2260 so we don't free it here. */
2261 }
2262
2263 /* Create a quick_file_names hash table. */
2264
2265 static htab_t
2266 create_quick_file_names_table (unsigned int nr_initial_entries)
2267 {
2268 return htab_create_alloc (nr_initial_entries,
2269 hash_file_name_entry, eq_file_name_entry,
2270 delete_file_name_entry, xcalloc, xfree);
2271 }
2272
2273 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2274 have to be created afterwards. You should call age_cached_comp_units after
2275 processing PER_CU->CU. dw2_setup must have been already called. */
2276
2277 static void
2278 load_cu (struct dwarf2_per_cu_data *per_cu)
2279 {
2280 if (per_cu->is_debug_types)
2281 load_full_type_unit (per_cu);
2282 else
2283 load_full_comp_unit (per_cu, language_minimal);
2284
2285 gdb_assert (per_cu->cu != NULL);
2286
2287 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2288 }
2289
2290 /* Read in the symbols for PER_CU. */
2291
2292 static void
2293 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2294 {
2295 struct cleanup *back_to;
2296
2297 /* Skip type_unit_groups, reading the type units they contain
2298 is handled elsewhere. */
2299 if (IS_TYPE_UNIT_GROUP (per_cu))
2300 return;
2301
2302 back_to = make_cleanup (dwarf2_release_queue, NULL);
2303
2304 if (dwarf2_per_objfile->using_index
2305 ? per_cu->v.quick->symtab == NULL
2306 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2307 {
2308 queue_comp_unit (per_cu, language_minimal);
2309 load_cu (per_cu);
2310 }
2311
2312 process_queue ();
2313
2314 /* Age the cache, releasing compilation units that have not
2315 been used recently. */
2316 age_cached_comp_units ();
2317
2318 do_cleanups (back_to);
2319 }
2320
2321 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2322 the objfile from which this CU came. Returns the resulting symbol
2323 table. */
2324
2325 static struct symtab *
2326 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2327 {
2328 gdb_assert (dwarf2_per_objfile->using_index);
2329 if (!per_cu->v.quick->symtab)
2330 {
2331 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2332 increment_reading_symtab ();
2333 dw2_do_instantiate_symtab (per_cu);
2334 process_cu_includes ();
2335 do_cleanups (back_to);
2336 }
2337 return per_cu->v.quick->symtab;
2338 }
2339
2340 /* Return the CU given its index.
2341
2342 This is intended for loops like:
2343
2344 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2345 + dwarf2_per_objfile->n_type_units); ++i)
2346 {
2347 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2348
2349 ...;
2350 }
2351 */
2352
2353 static struct dwarf2_per_cu_data *
2354 dw2_get_cu (int index)
2355 {
2356 if (index >= dwarf2_per_objfile->n_comp_units)
2357 {
2358 index -= dwarf2_per_objfile->n_comp_units;
2359 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2360 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2361 }
2362
2363 return dwarf2_per_objfile->all_comp_units[index];
2364 }
2365
2366 /* Return the primary CU given its index.
2367 The difference between this function and dw2_get_cu is in the handling
2368 of type units (TUs). Here we return the type_unit_group object.
2369
2370 This is intended for loops like:
2371
2372 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2373 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2374 {
2375 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2376
2377 ...;
2378 }
2379 */
2380
2381 static struct dwarf2_per_cu_data *
2382 dw2_get_primary_cu (int index)
2383 {
2384 if (index >= dwarf2_per_objfile->n_comp_units)
2385 {
2386 index -= dwarf2_per_objfile->n_comp_units;
2387 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2388 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2389 }
2390
2391 return dwarf2_per_objfile->all_comp_units[index];
2392 }
2393
2394 /* A helper for create_cus_from_index that handles a given list of
2395 CUs. */
2396
2397 static void
2398 create_cus_from_index_list (struct objfile *objfile,
2399 const gdb_byte *cu_list, offset_type n_elements,
2400 struct dwarf2_section_info *section,
2401 int is_dwz,
2402 int base_offset)
2403 {
2404 offset_type i;
2405
2406 for (i = 0; i < n_elements; i += 2)
2407 {
2408 struct dwarf2_per_cu_data *the_cu;
2409 ULONGEST offset, length;
2410
2411 gdb_static_assert (sizeof (ULONGEST) >= 8);
2412 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2413 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2414 cu_list += 2 * 8;
2415
2416 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2417 struct dwarf2_per_cu_data);
2418 the_cu->offset.sect_off = offset;
2419 the_cu->length = length;
2420 the_cu->objfile = objfile;
2421 the_cu->section = section;
2422 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2423 struct dwarf2_per_cu_quick_data);
2424 the_cu->is_dwz = is_dwz;
2425 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2426 }
2427 }
2428
2429 /* Read the CU list from the mapped index, and use it to create all
2430 the CU objects for this objfile. */
2431
2432 static void
2433 create_cus_from_index (struct objfile *objfile,
2434 const gdb_byte *cu_list, offset_type cu_list_elements,
2435 const gdb_byte *dwz_list, offset_type dwz_elements)
2436 {
2437 struct dwz_file *dwz;
2438
2439 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2440 dwarf2_per_objfile->all_comp_units
2441 = obstack_alloc (&objfile->objfile_obstack,
2442 dwarf2_per_objfile->n_comp_units
2443 * sizeof (struct dwarf2_per_cu_data *));
2444
2445 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2446 &dwarf2_per_objfile->info, 0, 0);
2447
2448 if (dwz_elements == 0)
2449 return;
2450
2451 dwz = dwarf2_get_dwz_file ();
2452 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2453 cu_list_elements / 2);
2454 }
2455
2456 /* Create the signatured type hash table from the index. */
2457
2458 static void
2459 create_signatured_type_table_from_index (struct objfile *objfile,
2460 struct dwarf2_section_info *section,
2461 const gdb_byte *bytes,
2462 offset_type elements)
2463 {
2464 offset_type i;
2465 htab_t sig_types_hash;
2466
2467 dwarf2_per_objfile->n_type_units = elements / 3;
2468 dwarf2_per_objfile->all_type_units
2469 = obstack_alloc (&objfile->objfile_obstack,
2470 dwarf2_per_objfile->n_type_units
2471 * sizeof (struct signatured_type *));
2472
2473 sig_types_hash = allocate_signatured_type_table (objfile);
2474
2475 for (i = 0; i < elements; i += 3)
2476 {
2477 struct signatured_type *sig_type;
2478 ULONGEST offset, type_offset_in_tu, signature;
2479 void **slot;
2480
2481 gdb_static_assert (sizeof (ULONGEST) >= 8);
2482 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2483 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2484 BFD_ENDIAN_LITTLE);
2485 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2486 bytes += 3 * 8;
2487
2488 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2489 struct signatured_type);
2490 sig_type->signature = signature;
2491 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2492 sig_type->per_cu.is_debug_types = 1;
2493 sig_type->per_cu.section = section;
2494 sig_type->per_cu.offset.sect_off = offset;
2495 sig_type->per_cu.objfile = objfile;
2496 sig_type->per_cu.v.quick
2497 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2498 struct dwarf2_per_cu_quick_data);
2499
2500 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2501 *slot = sig_type;
2502
2503 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2504 }
2505
2506 dwarf2_per_objfile->signatured_types = sig_types_hash;
2507 }
2508
2509 /* Read the address map data from the mapped index, and use it to
2510 populate the objfile's psymtabs_addrmap. */
2511
2512 static void
2513 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2514 {
2515 const gdb_byte *iter, *end;
2516 struct obstack temp_obstack;
2517 struct addrmap *mutable_map;
2518 struct cleanup *cleanup;
2519 CORE_ADDR baseaddr;
2520
2521 obstack_init (&temp_obstack);
2522 cleanup = make_cleanup_obstack_free (&temp_obstack);
2523 mutable_map = addrmap_create_mutable (&temp_obstack);
2524
2525 iter = index->address_table;
2526 end = iter + index->address_table_size;
2527
2528 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2529
2530 while (iter < end)
2531 {
2532 ULONGEST hi, lo, cu_index;
2533 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2534 iter += 8;
2535 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2536 iter += 8;
2537 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2538 iter += 4;
2539
2540 if (cu_index < dwarf2_per_objfile->n_comp_units)
2541 {
2542 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2543 dw2_get_cu (cu_index));
2544 }
2545 else
2546 {
2547 complaint (&symfile_complaints,
2548 _(".gdb_index address table has invalid CU number %u"),
2549 (unsigned) cu_index);
2550 }
2551 }
2552
2553 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2554 &objfile->objfile_obstack);
2555 do_cleanups (cleanup);
2556 }
2557
2558 /* The hash function for strings in the mapped index. This is the same as
2559 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2560 implementation. This is necessary because the hash function is tied to the
2561 format of the mapped index file. The hash values do not have to match with
2562 SYMBOL_HASH_NEXT.
2563
2564 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2565
2566 static hashval_t
2567 mapped_index_string_hash (int index_version, const void *p)
2568 {
2569 const unsigned char *str = (const unsigned char *) p;
2570 hashval_t r = 0;
2571 unsigned char c;
2572
2573 while ((c = *str++) != 0)
2574 {
2575 if (index_version >= 5)
2576 c = tolower (c);
2577 r = r * 67 + c - 113;
2578 }
2579
2580 return r;
2581 }
2582
2583 /* Find a slot in the mapped index INDEX for the object named NAME.
2584 If NAME is found, set *VEC_OUT to point to the CU vector in the
2585 constant pool and return 1. If NAME cannot be found, return 0. */
2586
2587 static int
2588 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2589 offset_type **vec_out)
2590 {
2591 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2592 offset_type hash;
2593 offset_type slot, step;
2594 int (*cmp) (const char *, const char *);
2595
2596 if (current_language->la_language == language_cplus
2597 || current_language->la_language == language_java
2598 || current_language->la_language == language_fortran)
2599 {
2600 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2601 not contain any. */
2602 const char *paren = strchr (name, '(');
2603
2604 if (paren)
2605 {
2606 char *dup;
2607
2608 dup = xmalloc (paren - name + 1);
2609 memcpy (dup, name, paren - name);
2610 dup[paren - name] = 0;
2611
2612 make_cleanup (xfree, dup);
2613 name = dup;
2614 }
2615 }
2616
2617 /* Index version 4 did not support case insensitive searches. But the
2618 indices for case insensitive languages are built in lowercase, therefore
2619 simulate our NAME being searched is also lowercased. */
2620 hash = mapped_index_string_hash ((index->version == 4
2621 && case_sensitivity == case_sensitive_off
2622 ? 5 : index->version),
2623 name);
2624
2625 slot = hash & (index->symbol_table_slots - 1);
2626 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2627 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2628
2629 for (;;)
2630 {
2631 /* Convert a slot number to an offset into the table. */
2632 offset_type i = 2 * slot;
2633 const char *str;
2634 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2635 {
2636 do_cleanups (back_to);
2637 return 0;
2638 }
2639
2640 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2641 if (!cmp (name, str))
2642 {
2643 *vec_out = (offset_type *) (index->constant_pool
2644 + MAYBE_SWAP (index->symbol_table[i + 1]));
2645 do_cleanups (back_to);
2646 return 1;
2647 }
2648
2649 slot = (slot + step) & (index->symbol_table_slots - 1);
2650 }
2651 }
2652
2653 /* A helper function that reads the .gdb_index from SECTION and fills
2654 in MAP. FILENAME is the name of the file containing the section;
2655 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2656 ok to use deprecated sections.
2657
2658 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2659 out parameters that are filled in with information about the CU and
2660 TU lists in the section.
2661
2662 Returns 1 if all went well, 0 otherwise. */
2663
2664 static int
2665 read_index_from_section (struct objfile *objfile,
2666 const char *filename,
2667 int deprecated_ok,
2668 struct dwarf2_section_info *section,
2669 struct mapped_index *map,
2670 const gdb_byte **cu_list,
2671 offset_type *cu_list_elements,
2672 const gdb_byte **types_list,
2673 offset_type *types_list_elements)
2674 {
2675 const gdb_byte *addr;
2676 offset_type version;
2677 offset_type *metadata;
2678 int i;
2679
2680 if (dwarf2_section_empty_p (section))
2681 return 0;
2682
2683 /* Older elfutils strip versions could keep the section in the main
2684 executable while splitting it for the separate debug info file. */
2685 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2686 return 0;
2687
2688 dwarf2_read_section (objfile, section);
2689
2690 addr = section->buffer;
2691 /* Version check. */
2692 version = MAYBE_SWAP (*(offset_type *) addr);
2693 /* Versions earlier than 3 emitted every copy of a psymbol. This
2694 causes the index to behave very poorly for certain requests. Version 3
2695 contained incomplete addrmap. So, it seems better to just ignore such
2696 indices. */
2697 if (version < 4)
2698 {
2699 static int warning_printed = 0;
2700 if (!warning_printed)
2701 {
2702 warning (_("Skipping obsolete .gdb_index section in %s."),
2703 filename);
2704 warning_printed = 1;
2705 }
2706 return 0;
2707 }
2708 /* Index version 4 uses a different hash function than index version
2709 5 and later.
2710
2711 Versions earlier than 6 did not emit psymbols for inlined
2712 functions. Using these files will cause GDB not to be able to
2713 set breakpoints on inlined functions by name, so we ignore these
2714 indices unless the user has done
2715 "set use-deprecated-index-sections on". */
2716 if (version < 6 && !deprecated_ok)
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("\
2722 Skipping deprecated .gdb_index section in %s.\n\
2723 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2724 to use the section anyway."),
2725 filename);
2726 warning_printed = 1;
2727 }
2728 return 0;
2729 }
2730 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2731 of the TU (for symbols coming from TUs). It's just a performance bug, and
2732 we can't distinguish gdb-generated indices from gold-generated ones, so
2733 nothing to do here. */
2734
2735 /* Indexes with higher version than the one supported by GDB may be no
2736 longer backward compatible. */
2737 if (version > 8)
2738 return 0;
2739
2740 map->version = version;
2741 map->total_size = section->size;
2742
2743 metadata = (offset_type *) (addr + sizeof (offset_type));
2744
2745 i = 0;
2746 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2747 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2748 / 8);
2749 ++i;
2750
2751 *types_list = addr + MAYBE_SWAP (metadata[i]);
2752 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2753 - MAYBE_SWAP (metadata[i]))
2754 / 8);
2755 ++i;
2756
2757 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2758 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2759 - MAYBE_SWAP (metadata[i]));
2760 ++i;
2761
2762 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2763 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2764 - MAYBE_SWAP (metadata[i]))
2765 / (2 * sizeof (offset_type)));
2766 ++i;
2767
2768 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2769
2770 return 1;
2771 }
2772
2773
2774 /* Read the index file. If everything went ok, initialize the "quick"
2775 elements of all the CUs and return 1. Otherwise, return 0. */
2776
2777 static int
2778 dwarf2_read_index (struct objfile *objfile)
2779 {
2780 struct mapped_index local_map, *map;
2781 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2782 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2783
2784 if (!read_index_from_section (objfile, objfile->name,
2785 use_deprecated_index_sections,
2786 &dwarf2_per_objfile->gdb_index, &local_map,
2787 &cu_list, &cu_list_elements,
2788 &types_list, &types_list_elements))
2789 return 0;
2790
2791 /* Don't use the index if it's empty. */
2792 if (local_map.symbol_table_slots == 0)
2793 return 0;
2794
2795 /* If there is a .dwz file, read it so we can get its CU list as
2796 well. */
2797 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2798 {
2799 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2800 struct mapped_index dwz_map;
2801 const gdb_byte *dwz_types_ignore;
2802 offset_type dwz_types_elements_ignore;
2803
2804 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2805 1,
2806 &dwz->gdb_index, &dwz_map,
2807 &dwz_list, &dwz_list_elements,
2808 &dwz_types_ignore,
2809 &dwz_types_elements_ignore))
2810 {
2811 warning (_("could not read '.gdb_index' section from %s; skipping"),
2812 bfd_get_filename (dwz->dwz_bfd));
2813 return 0;
2814 }
2815 }
2816
2817 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2818 dwz_list_elements);
2819
2820 if (types_list_elements)
2821 {
2822 struct dwarf2_section_info *section;
2823
2824 /* We can only handle a single .debug_types when we have an
2825 index. */
2826 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2827 return 0;
2828
2829 section = VEC_index (dwarf2_section_info_def,
2830 dwarf2_per_objfile->types, 0);
2831
2832 create_signatured_type_table_from_index (objfile, section, types_list,
2833 types_list_elements);
2834 }
2835
2836 create_addrmap_from_index (objfile, &local_map);
2837
2838 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2839 *map = local_map;
2840
2841 dwarf2_per_objfile->index_table = map;
2842 dwarf2_per_objfile->using_index = 1;
2843 dwarf2_per_objfile->quick_file_names_table =
2844 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2845
2846 return 1;
2847 }
2848
2849 /* A helper for the "quick" functions which sets the global
2850 dwarf2_per_objfile according to OBJFILE. */
2851
2852 static void
2853 dw2_setup (struct objfile *objfile)
2854 {
2855 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2856 gdb_assert (dwarf2_per_objfile);
2857 }
2858
2859 /* die_reader_func for dw2_get_file_names. */
2860
2861 static void
2862 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2863 const gdb_byte *info_ptr,
2864 struct die_info *comp_unit_die,
2865 int has_children,
2866 void *data)
2867 {
2868 struct dwarf2_cu *cu = reader->cu;
2869 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2870 struct objfile *objfile = dwarf2_per_objfile->objfile;
2871 struct dwarf2_per_cu_data *lh_cu;
2872 struct line_header *lh;
2873 struct attribute *attr;
2874 int i;
2875 const char *name, *comp_dir;
2876 void **slot;
2877 struct quick_file_names *qfn;
2878 unsigned int line_offset;
2879
2880 gdb_assert (! this_cu->is_debug_types);
2881
2882 /* Our callers never want to match partial units -- instead they
2883 will match the enclosing full CU. */
2884 if (comp_unit_die->tag == DW_TAG_partial_unit)
2885 {
2886 this_cu->v.quick->no_file_data = 1;
2887 return;
2888 }
2889
2890 lh_cu = this_cu;
2891 lh = NULL;
2892 slot = NULL;
2893 line_offset = 0;
2894
2895 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2896 if (attr)
2897 {
2898 struct quick_file_names find_entry;
2899
2900 line_offset = DW_UNSND (attr);
2901
2902 /* We may have already read in this line header (TU line header sharing).
2903 If we have we're done. */
2904 find_entry.hash.dwo_unit = cu->dwo_unit;
2905 find_entry.hash.line_offset.sect_off = line_offset;
2906 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2907 &find_entry, INSERT);
2908 if (*slot != NULL)
2909 {
2910 lh_cu->v.quick->file_names = *slot;
2911 return;
2912 }
2913
2914 lh = dwarf_decode_line_header (line_offset, cu);
2915 }
2916 if (lh == NULL)
2917 {
2918 lh_cu->v.quick->no_file_data = 1;
2919 return;
2920 }
2921
2922 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2923 qfn->hash.dwo_unit = cu->dwo_unit;
2924 qfn->hash.line_offset.sect_off = line_offset;
2925 gdb_assert (slot != NULL);
2926 *slot = qfn;
2927
2928 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2929
2930 qfn->num_file_names = lh->num_file_names;
2931 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2932 lh->num_file_names * sizeof (char *));
2933 for (i = 0; i < lh->num_file_names; ++i)
2934 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2935 qfn->real_names = NULL;
2936
2937 free_line_header (lh);
2938
2939 lh_cu->v.quick->file_names = qfn;
2940 }
2941
2942 /* A helper for the "quick" functions which attempts to read the line
2943 table for THIS_CU. */
2944
2945 static struct quick_file_names *
2946 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2947 {
2948 /* This should never be called for TUs. */
2949 gdb_assert (! this_cu->is_debug_types);
2950 /* Nor type unit groups. */
2951 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2952
2953 if (this_cu->v.quick->file_names != NULL)
2954 return this_cu->v.quick->file_names;
2955 /* If we know there is no line data, no point in looking again. */
2956 if (this_cu->v.quick->no_file_data)
2957 return NULL;
2958
2959 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2960
2961 if (this_cu->v.quick->no_file_data)
2962 return NULL;
2963 return this_cu->v.quick->file_names;
2964 }
2965
2966 /* A helper for the "quick" functions which computes and caches the
2967 real path for a given file name from the line table. */
2968
2969 static const char *
2970 dw2_get_real_path (struct objfile *objfile,
2971 struct quick_file_names *qfn, int index)
2972 {
2973 if (qfn->real_names == NULL)
2974 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2975 qfn->num_file_names, sizeof (char *));
2976
2977 if (qfn->real_names[index] == NULL)
2978 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2979
2980 return qfn->real_names[index];
2981 }
2982
2983 static struct symtab *
2984 dw2_find_last_source_symtab (struct objfile *objfile)
2985 {
2986 int index;
2987
2988 dw2_setup (objfile);
2989 index = dwarf2_per_objfile->n_comp_units - 1;
2990 return dw2_instantiate_symtab (dw2_get_cu (index));
2991 }
2992
2993 /* Traversal function for dw2_forget_cached_source_info. */
2994
2995 static int
2996 dw2_free_cached_file_names (void **slot, void *info)
2997 {
2998 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2999
3000 if (file_data->real_names)
3001 {
3002 int i;
3003
3004 for (i = 0; i < file_data->num_file_names; ++i)
3005 {
3006 xfree ((void*) file_data->real_names[i]);
3007 file_data->real_names[i] = NULL;
3008 }
3009 }
3010
3011 return 1;
3012 }
3013
3014 static void
3015 dw2_forget_cached_source_info (struct objfile *objfile)
3016 {
3017 dw2_setup (objfile);
3018
3019 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3020 dw2_free_cached_file_names, NULL);
3021 }
3022
3023 /* Helper function for dw2_map_symtabs_matching_filename that expands
3024 the symtabs and calls the iterator. */
3025
3026 static int
3027 dw2_map_expand_apply (struct objfile *objfile,
3028 struct dwarf2_per_cu_data *per_cu,
3029 const char *name, const char *real_path,
3030 int (*callback) (struct symtab *, void *),
3031 void *data)
3032 {
3033 struct symtab *last_made = objfile->symtabs;
3034
3035 /* Don't visit already-expanded CUs. */
3036 if (per_cu->v.quick->symtab)
3037 return 0;
3038
3039 /* This may expand more than one symtab, and we want to iterate over
3040 all of them. */
3041 dw2_instantiate_symtab (per_cu);
3042
3043 return iterate_over_some_symtabs (name, real_path, callback, data,
3044 objfile->symtabs, last_made);
3045 }
3046
3047 /* Implementation of the map_symtabs_matching_filename method. */
3048
3049 static int
3050 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3051 const char *real_path,
3052 int (*callback) (struct symtab *, void *),
3053 void *data)
3054 {
3055 int i;
3056 const char *name_basename = lbasename (name);
3057
3058 dw2_setup (objfile);
3059
3060 /* The rule is CUs specify all the files, including those used by
3061 any TU, so there's no need to scan TUs here. */
3062
3063 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3064 {
3065 int j;
3066 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3067 struct quick_file_names *file_data;
3068
3069 /* We only need to look at symtabs not already expanded. */
3070 if (per_cu->v.quick->symtab)
3071 continue;
3072
3073 file_data = dw2_get_file_names (per_cu);
3074 if (file_data == NULL)
3075 continue;
3076
3077 for (j = 0; j < file_data->num_file_names; ++j)
3078 {
3079 const char *this_name = file_data->file_names[j];
3080 const char *this_real_name;
3081
3082 if (compare_filenames_for_search (this_name, name))
3083 {
3084 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3085 callback, data))
3086 return 1;
3087 continue;
3088 }
3089
3090 /* Before we invoke realpath, which can get expensive when many
3091 files are involved, do a quick comparison of the basenames. */
3092 if (! basenames_may_differ
3093 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3094 continue;
3095
3096 this_real_name = dw2_get_real_path (objfile, file_data, j);
3097 if (compare_filenames_for_search (this_real_name, name))
3098 {
3099 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3100 callback, data))
3101 return 1;
3102 continue;
3103 }
3104
3105 if (real_path != NULL)
3106 {
3107 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3108 gdb_assert (IS_ABSOLUTE_PATH (name));
3109 if (this_real_name != NULL
3110 && FILENAME_CMP (real_path, this_real_name) == 0)
3111 {
3112 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3113 callback, data))
3114 return 1;
3115 continue;
3116 }
3117 }
3118 }
3119 }
3120
3121 return 0;
3122 }
3123
3124 /* Struct used to manage iterating over all CUs looking for a symbol. */
3125
3126 struct dw2_symtab_iterator
3127 {
3128 /* The internalized form of .gdb_index. */
3129 struct mapped_index *index;
3130 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3131 int want_specific_block;
3132 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3133 Unused if !WANT_SPECIFIC_BLOCK. */
3134 int block_index;
3135 /* The kind of symbol we're looking for. */
3136 domain_enum domain;
3137 /* The list of CUs from the index entry of the symbol,
3138 or NULL if not found. */
3139 offset_type *vec;
3140 /* The next element in VEC to look at. */
3141 int next;
3142 /* The number of elements in VEC, or zero if there is no match. */
3143 int length;
3144 };
3145
3146 /* Initialize the index symtab iterator ITER.
3147 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3148 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3149
3150 static void
3151 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3152 struct mapped_index *index,
3153 int want_specific_block,
3154 int block_index,
3155 domain_enum domain,
3156 const char *name)
3157 {
3158 iter->index = index;
3159 iter->want_specific_block = want_specific_block;
3160 iter->block_index = block_index;
3161 iter->domain = domain;
3162 iter->next = 0;
3163
3164 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3165 iter->length = MAYBE_SWAP (*iter->vec);
3166 else
3167 {
3168 iter->vec = NULL;
3169 iter->length = 0;
3170 }
3171 }
3172
3173 /* Return the next matching CU or NULL if there are no more. */
3174
3175 static struct dwarf2_per_cu_data *
3176 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3177 {
3178 for ( ; iter->next < iter->length; ++iter->next)
3179 {
3180 offset_type cu_index_and_attrs =
3181 MAYBE_SWAP (iter->vec[iter->next + 1]);
3182 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3183 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3184 int want_static = iter->block_index != GLOBAL_BLOCK;
3185 /* This value is only valid for index versions >= 7. */
3186 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3187 gdb_index_symbol_kind symbol_kind =
3188 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3189 /* Only check the symbol attributes if they're present.
3190 Indices prior to version 7 don't record them,
3191 and indices >= 7 may elide them for certain symbols
3192 (gold does this). */
3193 int attrs_valid =
3194 (iter->index->version >= 7
3195 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3196
3197 /* Skip if already read in. */
3198 if (per_cu->v.quick->symtab)
3199 continue;
3200
3201 if (attrs_valid
3202 && iter->want_specific_block
3203 && want_static != is_static)
3204 continue;
3205
3206 /* Only check the symbol's kind if it has one. */
3207 if (attrs_valid)
3208 {
3209 switch (iter->domain)
3210 {
3211 case VAR_DOMAIN:
3212 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3213 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3214 /* Some types are also in VAR_DOMAIN. */
3215 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3216 continue;
3217 break;
3218 case STRUCT_DOMAIN:
3219 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3220 continue;
3221 break;
3222 case LABEL_DOMAIN:
3223 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3224 continue;
3225 break;
3226 default:
3227 break;
3228 }
3229 }
3230
3231 ++iter->next;
3232 return per_cu;
3233 }
3234
3235 return NULL;
3236 }
3237
3238 static struct symtab *
3239 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3240 const char *name, domain_enum domain)
3241 {
3242 struct symtab *stab_best = NULL;
3243 struct mapped_index *index;
3244
3245 dw2_setup (objfile);
3246
3247 index = dwarf2_per_objfile->index_table;
3248
3249 /* index is NULL if OBJF_READNOW. */
3250 if (index)
3251 {
3252 struct dw2_symtab_iterator iter;
3253 struct dwarf2_per_cu_data *per_cu;
3254
3255 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3256
3257 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3258 {
3259 struct symbol *sym = NULL;
3260 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3261
3262 /* Some caution must be observed with overloaded functions
3263 and methods, since the index will not contain any overload
3264 information (but NAME might contain it). */
3265 if (stab->primary)
3266 {
3267 struct blockvector *bv = BLOCKVECTOR (stab);
3268 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3269
3270 sym = lookup_block_symbol (block, name, domain);
3271 }
3272
3273 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3274 {
3275 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3276 return stab;
3277
3278 stab_best = stab;
3279 }
3280
3281 /* Keep looking through other CUs. */
3282 }
3283 }
3284
3285 return stab_best;
3286 }
3287
3288 static void
3289 dw2_print_stats (struct objfile *objfile)
3290 {
3291 int i, total, count;
3292
3293 dw2_setup (objfile);
3294 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3295 count = 0;
3296 for (i = 0; i < total; ++i)
3297 {
3298 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3299
3300 if (!per_cu->v.quick->symtab)
3301 ++count;
3302 }
3303 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3304 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3305 }
3306
3307 static void
3308 dw2_dump (struct objfile *objfile)
3309 {
3310 /* Nothing worth printing. */
3311 }
3312
3313 static void
3314 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3315 struct section_offsets *delta)
3316 {
3317 /* There's nothing to relocate here. */
3318 }
3319
3320 static void
3321 dw2_expand_symtabs_for_function (struct objfile *objfile,
3322 const char *func_name)
3323 {
3324 struct mapped_index *index;
3325
3326 dw2_setup (objfile);
3327
3328 index = dwarf2_per_objfile->index_table;
3329
3330 /* index is NULL if OBJF_READNOW. */
3331 if (index)
3332 {
3333 struct dw2_symtab_iterator iter;
3334 struct dwarf2_per_cu_data *per_cu;
3335
3336 /* Note: It doesn't matter what we pass for block_index here. */
3337 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3338 func_name);
3339
3340 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3341 dw2_instantiate_symtab (per_cu);
3342 }
3343 }
3344
3345 static void
3346 dw2_expand_all_symtabs (struct objfile *objfile)
3347 {
3348 int i;
3349
3350 dw2_setup (objfile);
3351
3352 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3353 + dwarf2_per_objfile->n_type_units); ++i)
3354 {
3355 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3356
3357 dw2_instantiate_symtab (per_cu);
3358 }
3359 }
3360
3361 static void
3362 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3363 const char *fullname)
3364 {
3365 int i;
3366
3367 dw2_setup (objfile);
3368
3369 /* We don't need to consider type units here.
3370 This is only called for examining code, e.g. expand_line_sal.
3371 There can be an order of magnitude (or more) more type units
3372 than comp units, and we avoid them if we can. */
3373
3374 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3375 {
3376 int j;
3377 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3378 struct quick_file_names *file_data;
3379
3380 /* We only need to look at symtabs not already expanded. */
3381 if (per_cu->v.quick->symtab)
3382 continue;
3383
3384 file_data = dw2_get_file_names (per_cu);
3385 if (file_data == NULL)
3386 continue;
3387
3388 for (j = 0; j < file_data->num_file_names; ++j)
3389 {
3390 const char *this_fullname = file_data->file_names[j];
3391
3392 if (filename_cmp (this_fullname, fullname) == 0)
3393 {
3394 dw2_instantiate_symtab (per_cu);
3395 break;
3396 }
3397 }
3398 }
3399 }
3400
3401 /* A helper function for dw2_find_symbol_file that finds the primary
3402 file name for a given CU. This is a die_reader_func. */
3403
3404 static void
3405 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3406 const gdb_byte *info_ptr,
3407 struct die_info *comp_unit_die,
3408 int has_children,
3409 void *data)
3410 {
3411 const char **result_ptr = data;
3412 struct dwarf2_cu *cu = reader->cu;
3413 struct attribute *attr;
3414
3415 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3416 if (attr == NULL)
3417 *result_ptr = NULL;
3418 else
3419 *result_ptr = DW_STRING (attr);
3420 }
3421
3422 static const char *
3423 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3424 {
3425 struct dwarf2_per_cu_data *per_cu;
3426 offset_type *vec;
3427 const char *filename;
3428
3429 dw2_setup (objfile);
3430
3431 /* index_table is NULL if OBJF_READNOW. */
3432 if (!dwarf2_per_objfile->index_table)
3433 {
3434 struct symtab *s;
3435
3436 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3437 {
3438 struct blockvector *bv = BLOCKVECTOR (s);
3439 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3440 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3441
3442 if (sym)
3443 {
3444 /* Only file extension of returned filename is recognized. */
3445 return SYMBOL_SYMTAB (sym)->filename;
3446 }
3447 }
3448 return NULL;
3449 }
3450
3451 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3452 name, &vec))
3453 return NULL;
3454
3455 /* Note that this just looks at the very first one named NAME -- but
3456 actually we are looking for a function. find_main_filename
3457 should be rewritten so that it doesn't require a custom hook. It
3458 could just use the ordinary symbol tables. */
3459 /* vec[0] is the length, which must always be >0. */
3460 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3461
3462 if (per_cu->v.quick->symtab != NULL)
3463 {
3464 /* Only file extension of returned filename is recognized. */
3465 return per_cu->v.quick->symtab->filename;
3466 }
3467
3468 /* Initialize filename in case there's a problem reading the DWARF,
3469 dw2_get_primary_filename_reader may not get called. */
3470 filename = NULL;
3471 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3472 dw2_get_primary_filename_reader, &filename);
3473
3474 /* Only file extension of returned filename is recognized. */
3475 return filename;
3476 }
3477
3478 static void
3479 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3480 struct objfile *objfile, int global,
3481 int (*callback) (struct block *,
3482 struct symbol *, void *),
3483 void *data, symbol_compare_ftype *match,
3484 symbol_compare_ftype *ordered_compare)
3485 {
3486 /* Currently unimplemented; used for Ada. The function can be called if the
3487 current language is Ada for a non-Ada objfile using GNU index. As Ada
3488 does not look for non-Ada symbols this function should just return. */
3489 }
3490
3491 static void
3492 dw2_expand_symtabs_matching
3493 (struct objfile *objfile,
3494 int (*file_matcher) (const char *, void *, int basenames),
3495 int (*name_matcher) (const char *, void *),
3496 enum search_domain kind,
3497 void *data)
3498 {
3499 int i;
3500 offset_type iter;
3501 struct mapped_index *index;
3502
3503 dw2_setup (objfile);
3504
3505 /* index_table is NULL if OBJF_READNOW. */
3506 if (!dwarf2_per_objfile->index_table)
3507 return;
3508 index = dwarf2_per_objfile->index_table;
3509
3510 if (file_matcher != NULL)
3511 {
3512 struct cleanup *cleanup;
3513 htab_t visited_found, visited_not_found;
3514
3515 visited_found = htab_create_alloc (10,
3516 htab_hash_pointer, htab_eq_pointer,
3517 NULL, xcalloc, xfree);
3518 cleanup = make_cleanup_htab_delete (visited_found);
3519 visited_not_found = htab_create_alloc (10,
3520 htab_hash_pointer, htab_eq_pointer,
3521 NULL, xcalloc, xfree);
3522 make_cleanup_htab_delete (visited_not_found);
3523
3524 /* The rule is CUs specify all the files, including those used by
3525 any TU, so there's no need to scan TUs here. */
3526
3527 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3528 {
3529 int j;
3530 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3531 struct quick_file_names *file_data;
3532 void **slot;
3533
3534 per_cu->v.quick->mark = 0;
3535
3536 /* We only need to look at symtabs not already expanded. */
3537 if (per_cu->v.quick->symtab)
3538 continue;
3539
3540 file_data = dw2_get_file_names (per_cu);
3541 if (file_data == NULL)
3542 continue;
3543
3544 if (htab_find (visited_not_found, file_data) != NULL)
3545 continue;
3546 else if (htab_find (visited_found, file_data) != NULL)
3547 {
3548 per_cu->v.quick->mark = 1;
3549 continue;
3550 }
3551
3552 for (j = 0; j < file_data->num_file_names; ++j)
3553 {
3554 const char *this_real_name;
3555
3556 if (file_matcher (file_data->file_names[j], data, 0))
3557 {
3558 per_cu->v.quick->mark = 1;
3559 break;
3560 }
3561
3562 /* Before we invoke realpath, which can get expensive when many
3563 files are involved, do a quick comparison of the basenames. */
3564 if (!basenames_may_differ
3565 && !file_matcher (lbasename (file_data->file_names[j]),
3566 data, 1))
3567 continue;
3568
3569 this_real_name = dw2_get_real_path (objfile, file_data, j);
3570 if (file_matcher (this_real_name, data, 0))
3571 {
3572 per_cu->v.quick->mark = 1;
3573 break;
3574 }
3575 }
3576
3577 slot = htab_find_slot (per_cu->v.quick->mark
3578 ? visited_found
3579 : visited_not_found,
3580 file_data, INSERT);
3581 *slot = file_data;
3582 }
3583
3584 do_cleanups (cleanup);
3585 }
3586
3587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3588 {
3589 offset_type idx = 2 * iter;
3590 const char *name;
3591 offset_type *vec, vec_len, vec_idx;
3592
3593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3594 continue;
3595
3596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3597
3598 if (! (*name_matcher) (name, data))
3599 continue;
3600
3601 /* The name was matched, now expand corresponding CUs that were
3602 marked. */
3603 vec = (offset_type *) (index->constant_pool
3604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3605 vec_len = MAYBE_SWAP (vec[0]);
3606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3607 {
3608 struct dwarf2_per_cu_data *per_cu;
3609 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3610 gdb_index_symbol_kind symbol_kind =
3611 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3612 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3613
3614 /* Don't crash on bad data. */
3615 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3616 + dwarf2_per_objfile->n_type_units))
3617 continue;
3618
3619 /* Only check the symbol's kind if it has one.
3620 Indices prior to version 7 don't record it. */
3621 if (index->version >= 7)
3622 {
3623 switch (kind)
3624 {
3625 case VARIABLES_DOMAIN:
3626 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3627 continue;
3628 break;
3629 case FUNCTIONS_DOMAIN:
3630 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3631 continue;
3632 break;
3633 case TYPES_DOMAIN:
3634 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3635 continue;
3636 break;
3637 default:
3638 break;
3639 }
3640 }
3641
3642 per_cu = dw2_get_cu (cu_index);
3643 if (file_matcher == NULL || per_cu->v.quick->mark)
3644 dw2_instantiate_symtab (per_cu);
3645 }
3646 }
3647 }
3648
3649 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3650 symtab. */
3651
3652 static struct symtab *
3653 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3654 {
3655 int i;
3656
3657 if (BLOCKVECTOR (symtab) != NULL
3658 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3659 return symtab;
3660
3661 if (symtab->includes == NULL)
3662 return NULL;
3663
3664 for (i = 0; symtab->includes[i]; ++i)
3665 {
3666 struct symtab *s = symtab->includes[i];
3667
3668 s = recursively_find_pc_sect_symtab (s, pc);
3669 if (s != NULL)
3670 return s;
3671 }
3672
3673 return NULL;
3674 }
3675
3676 static struct symtab *
3677 dw2_find_pc_sect_symtab (struct objfile *objfile,
3678 struct minimal_symbol *msymbol,
3679 CORE_ADDR pc,
3680 struct obj_section *section,
3681 int warn_if_readin)
3682 {
3683 struct dwarf2_per_cu_data *data;
3684 struct symtab *result;
3685
3686 dw2_setup (objfile);
3687
3688 if (!objfile->psymtabs_addrmap)
3689 return NULL;
3690
3691 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3692 if (!data)
3693 return NULL;
3694
3695 if (warn_if_readin && data->v.quick->symtab)
3696 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3697 paddress (get_objfile_arch (objfile), pc));
3698
3699 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3700 gdb_assert (result != NULL);
3701 return result;
3702 }
3703
3704 static void
3705 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3706 void *data, int need_fullname)
3707 {
3708 int i;
3709 struct cleanup *cleanup;
3710 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3711 NULL, xcalloc, xfree);
3712
3713 cleanup = make_cleanup_htab_delete (visited);
3714 dw2_setup (objfile);
3715
3716 /* The rule is CUs specify all the files, including those used by
3717 any TU, so there's no need to scan TUs here.
3718 We can ignore file names coming from already-expanded CUs. */
3719
3720 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3721 {
3722 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3723
3724 if (per_cu->v.quick->symtab)
3725 {
3726 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3727 INSERT);
3728
3729 *slot = per_cu->v.quick->file_names;
3730 }
3731 }
3732
3733 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3734 {
3735 int j;
3736 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3737 struct quick_file_names *file_data;
3738 void **slot;
3739
3740 /* We only need to look at symtabs not already expanded. */
3741 if (per_cu->v.quick->symtab)
3742 continue;
3743
3744 file_data = dw2_get_file_names (per_cu);
3745 if (file_data == NULL)
3746 continue;
3747
3748 slot = htab_find_slot (visited, file_data, INSERT);
3749 if (*slot)
3750 {
3751 /* Already visited. */
3752 continue;
3753 }
3754 *slot = file_data;
3755
3756 for (j = 0; j < file_data->num_file_names; ++j)
3757 {
3758 const char *this_real_name;
3759
3760 if (need_fullname)
3761 this_real_name = dw2_get_real_path (objfile, file_data, j);
3762 else
3763 this_real_name = NULL;
3764 (*fun) (file_data->file_names[j], this_real_name, data);
3765 }
3766 }
3767
3768 do_cleanups (cleanup);
3769 }
3770
3771 static int
3772 dw2_has_symbols (struct objfile *objfile)
3773 {
3774 return 1;
3775 }
3776
3777 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3778 {
3779 dw2_has_symbols,
3780 dw2_find_last_source_symtab,
3781 dw2_forget_cached_source_info,
3782 dw2_map_symtabs_matching_filename,
3783 dw2_lookup_symbol,
3784 dw2_print_stats,
3785 dw2_dump,
3786 dw2_relocate,
3787 dw2_expand_symtabs_for_function,
3788 dw2_expand_all_symtabs,
3789 dw2_expand_symtabs_with_fullname,
3790 dw2_find_symbol_file,
3791 dw2_map_matching_symbols,
3792 dw2_expand_symtabs_matching,
3793 dw2_find_pc_sect_symtab,
3794 dw2_map_symbol_filenames
3795 };
3796
3797 /* Initialize for reading DWARF for this objfile. Return 0 if this
3798 file will use psymtabs, or 1 if using the GNU index. */
3799
3800 int
3801 dwarf2_initialize_objfile (struct objfile *objfile)
3802 {
3803 /* If we're about to read full symbols, don't bother with the
3804 indices. In this case we also don't care if some other debug
3805 format is making psymtabs, because they are all about to be
3806 expanded anyway. */
3807 if ((objfile->flags & OBJF_READNOW))
3808 {
3809 int i;
3810
3811 dwarf2_per_objfile->using_index = 1;
3812 create_all_comp_units (objfile);
3813 create_all_type_units (objfile);
3814 dwarf2_per_objfile->quick_file_names_table =
3815 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3816
3817 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3818 + dwarf2_per_objfile->n_type_units); ++i)
3819 {
3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3821
3822 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3823 struct dwarf2_per_cu_quick_data);
3824 }
3825
3826 /* Return 1 so that gdb sees the "quick" functions. However,
3827 these functions will be no-ops because we will have expanded
3828 all symtabs. */
3829 return 1;
3830 }
3831
3832 if (dwarf2_read_index (objfile))
3833 return 1;
3834
3835 return 0;
3836 }
3837
3838 \f
3839
3840 /* Build a partial symbol table. */
3841
3842 void
3843 dwarf2_build_psymtabs (struct objfile *objfile)
3844 {
3845 volatile struct gdb_exception except;
3846
3847 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3848 {
3849 init_psymbol_list (objfile, 1024);
3850 }
3851
3852 TRY_CATCH (except, RETURN_MASK_ERROR)
3853 {
3854 /* This isn't really ideal: all the data we allocate on the
3855 objfile's obstack is still uselessly kept around. However,
3856 freeing it seems unsafe. */
3857 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3858
3859 dwarf2_build_psymtabs_hard (objfile);
3860 discard_cleanups (cleanups);
3861 }
3862 if (except.reason < 0)
3863 exception_print (gdb_stderr, except);
3864 }
3865
3866 /* Return the total length of the CU described by HEADER. */
3867
3868 static unsigned int
3869 get_cu_length (const struct comp_unit_head *header)
3870 {
3871 return header->initial_length_size + header->length;
3872 }
3873
3874 /* Return TRUE if OFFSET is within CU_HEADER. */
3875
3876 static inline int
3877 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3878 {
3879 sect_offset bottom = { cu_header->offset.sect_off };
3880 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3881
3882 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3883 }
3884
3885 /* Find the base address of the compilation unit for range lists and
3886 location lists. It will normally be specified by DW_AT_low_pc.
3887 In DWARF-3 draft 4, the base address could be overridden by
3888 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3889 compilation units with discontinuous ranges. */
3890
3891 static void
3892 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3893 {
3894 struct attribute *attr;
3895
3896 cu->base_known = 0;
3897 cu->base_address = 0;
3898
3899 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3900 if (attr)
3901 {
3902 cu->base_address = DW_ADDR (attr);
3903 cu->base_known = 1;
3904 }
3905 else
3906 {
3907 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3908 if (attr)
3909 {
3910 cu->base_address = DW_ADDR (attr);
3911 cu->base_known = 1;
3912 }
3913 }
3914 }
3915
3916 /* Read in the comp unit header information from the debug_info at info_ptr.
3917 NOTE: This leaves members offset, first_die_offset to be filled in
3918 by the caller. */
3919
3920 static const gdb_byte *
3921 read_comp_unit_head (struct comp_unit_head *cu_header,
3922 const gdb_byte *info_ptr, bfd *abfd)
3923 {
3924 int signed_addr;
3925 unsigned int bytes_read;
3926
3927 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3928 cu_header->initial_length_size = bytes_read;
3929 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3930 info_ptr += bytes_read;
3931 cu_header->version = read_2_bytes (abfd, info_ptr);
3932 info_ptr += 2;
3933 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3934 &bytes_read);
3935 info_ptr += bytes_read;
3936 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3937 info_ptr += 1;
3938 signed_addr = bfd_get_sign_extend_vma (abfd);
3939 if (signed_addr < 0)
3940 internal_error (__FILE__, __LINE__,
3941 _("read_comp_unit_head: dwarf from non elf file"));
3942 cu_header->signed_addr_p = signed_addr;
3943
3944 return info_ptr;
3945 }
3946
3947 /* Helper function that returns the proper abbrev section for
3948 THIS_CU. */
3949
3950 static struct dwarf2_section_info *
3951 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3952 {
3953 struct dwarf2_section_info *abbrev;
3954
3955 if (this_cu->is_dwz)
3956 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3957 else
3958 abbrev = &dwarf2_per_objfile->abbrev;
3959
3960 return abbrev;
3961 }
3962
3963 /* Subroutine of read_and_check_comp_unit_head and
3964 read_and_check_type_unit_head to simplify them.
3965 Perform various error checking on the header. */
3966
3967 static void
3968 error_check_comp_unit_head (struct comp_unit_head *header,
3969 struct dwarf2_section_info *section,
3970 struct dwarf2_section_info *abbrev_section)
3971 {
3972 bfd *abfd = section->asection->owner;
3973 const char *filename = bfd_get_filename (abfd);
3974
3975 if (header->version != 2 && header->version != 3 && header->version != 4)
3976 error (_("Dwarf Error: wrong version in compilation unit header "
3977 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3978 filename);
3979
3980 if (header->abbrev_offset.sect_off
3981 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3982 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3983 "(offset 0x%lx + 6) [in module %s]"),
3984 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3985 filename);
3986
3987 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3988 avoid potential 32-bit overflow. */
3989 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3990 > section->size)
3991 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3992 "(offset 0x%lx + 0) [in module %s]"),
3993 (long) header->length, (long) header->offset.sect_off,
3994 filename);
3995 }
3996
3997 /* Read in a CU/TU header and perform some basic error checking.
3998 The contents of the header are stored in HEADER.
3999 The result is a pointer to the start of the first DIE. */
4000
4001 static const gdb_byte *
4002 read_and_check_comp_unit_head (struct comp_unit_head *header,
4003 struct dwarf2_section_info *section,
4004 struct dwarf2_section_info *abbrev_section,
4005 const gdb_byte *info_ptr,
4006 int is_debug_types_section)
4007 {
4008 const gdb_byte *beg_of_comp_unit = info_ptr;
4009 bfd *abfd = section->asection->owner;
4010
4011 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4012
4013 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4014
4015 /* If we're reading a type unit, skip over the signature and
4016 type_offset fields. */
4017 if (is_debug_types_section)
4018 info_ptr += 8 /*signature*/ + header->offset_size;
4019
4020 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4021
4022 error_check_comp_unit_head (header, section, abbrev_section);
4023
4024 return info_ptr;
4025 }
4026
4027 /* Read in the types comp unit header information from .debug_types entry at
4028 types_ptr. The result is a pointer to one past the end of the header. */
4029
4030 static const gdb_byte *
4031 read_and_check_type_unit_head (struct comp_unit_head *header,
4032 struct dwarf2_section_info *section,
4033 struct dwarf2_section_info *abbrev_section,
4034 const gdb_byte *info_ptr,
4035 ULONGEST *signature,
4036 cu_offset *type_offset_in_tu)
4037 {
4038 const gdb_byte *beg_of_comp_unit = info_ptr;
4039 bfd *abfd = section->asection->owner;
4040
4041 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4042
4043 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4044
4045 /* If we're reading a type unit, skip over the signature and
4046 type_offset fields. */
4047 if (signature != NULL)
4048 *signature = read_8_bytes (abfd, info_ptr);
4049 info_ptr += 8;
4050 if (type_offset_in_tu != NULL)
4051 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4052 header->offset_size);
4053 info_ptr += header->offset_size;
4054
4055 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4056
4057 error_check_comp_unit_head (header, section, abbrev_section);
4058
4059 return info_ptr;
4060 }
4061
4062 /* Fetch the abbreviation table offset from a comp or type unit header. */
4063
4064 static sect_offset
4065 read_abbrev_offset (struct dwarf2_section_info *section,
4066 sect_offset offset)
4067 {
4068 bfd *abfd = section->asection->owner;
4069 const gdb_byte *info_ptr;
4070 unsigned int length, initial_length_size, offset_size;
4071 sect_offset abbrev_offset;
4072
4073 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4074 info_ptr = section->buffer + offset.sect_off;
4075 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4076 offset_size = initial_length_size == 4 ? 4 : 8;
4077 info_ptr += initial_length_size + 2 /*version*/;
4078 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4079 return abbrev_offset;
4080 }
4081
4082 /* Allocate a new partial symtab for file named NAME and mark this new
4083 partial symtab as being an include of PST. */
4084
4085 static void
4086 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4087 struct objfile *objfile)
4088 {
4089 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4090
4091 if (!IS_ABSOLUTE_PATH (subpst->filename))
4092 {
4093 /* It shares objfile->objfile_obstack. */
4094 subpst->dirname = pst->dirname;
4095 }
4096
4097 subpst->section_offsets = pst->section_offsets;
4098 subpst->textlow = 0;
4099 subpst->texthigh = 0;
4100
4101 subpst->dependencies = (struct partial_symtab **)
4102 obstack_alloc (&objfile->objfile_obstack,
4103 sizeof (struct partial_symtab *));
4104 subpst->dependencies[0] = pst;
4105 subpst->number_of_dependencies = 1;
4106
4107 subpst->globals_offset = 0;
4108 subpst->n_global_syms = 0;
4109 subpst->statics_offset = 0;
4110 subpst->n_static_syms = 0;
4111 subpst->symtab = NULL;
4112 subpst->read_symtab = pst->read_symtab;
4113 subpst->readin = 0;
4114
4115 /* No private part is necessary for include psymtabs. This property
4116 can be used to differentiate between such include psymtabs and
4117 the regular ones. */
4118 subpst->read_symtab_private = NULL;
4119 }
4120
4121 /* Read the Line Number Program data and extract the list of files
4122 included by the source file represented by PST. Build an include
4123 partial symtab for each of these included files. */
4124
4125 static void
4126 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4127 struct die_info *die,
4128 struct partial_symtab *pst)
4129 {
4130 struct line_header *lh = NULL;
4131 struct attribute *attr;
4132
4133 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4134 if (attr)
4135 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4136 if (lh == NULL)
4137 return; /* No linetable, so no includes. */
4138
4139 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4140 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4141
4142 free_line_header (lh);
4143 }
4144
4145 static hashval_t
4146 hash_signatured_type (const void *item)
4147 {
4148 const struct signatured_type *sig_type = item;
4149
4150 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4151 return sig_type->signature;
4152 }
4153
4154 static int
4155 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4156 {
4157 const struct signatured_type *lhs = item_lhs;
4158 const struct signatured_type *rhs = item_rhs;
4159
4160 return lhs->signature == rhs->signature;
4161 }
4162
4163 /* Allocate a hash table for signatured types. */
4164
4165 static htab_t
4166 allocate_signatured_type_table (struct objfile *objfile)
4167 {
4168 return htab_create_alloc_ex (41,
4169 hash_signatured_type,
4170 eq_signatured_type,
4171 NULL,
4172 &objfile->objfile_obstack,
4173 hashtab_obstack_allocate,
4174 dummy_obstack_deallocate);
4175 }
4176
4177 /* A helper function to add a signatured type CU to a table. */
4178
4179 static int
4180 add_signatured_type_cu_to_table (void **slot, void *datum)
4181 {
4182 struct signatured_type *sigt = *slot;
4183 struct signatured_type ***datap = datum;
4184
4185 **datap = sigt;
4186 ++*datap;
4187
4188 return 1;
4189 }
4190
4191 /* Create the hash table of all entries in the .debug_types
4192 (or .debug_types.dwo) section(s).
4193 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4194 otherwise it is NULL.
4195
4196 The result is a pointer to the hash table or NULL if there are no types.
4197
4198 Note: This function processes DWO files only, not DWP files. */
4199
4200 static htab_t
4201 create_debug_types_hash_table (struct dwo_file *dwo_file,
4202 VEC (dwarf2_section_info_def) *types)
4203 {
4204 struct objfile *objfile = dwarf2_per_objfile->objfile;
4205 htab_t types_htab = NULL;
4206 int ix;
4207 struct dwarf2_section_info *section;
4208 struct dwarf2_section_info *abbrev_section;
4209
4210 if (VEC_empty (dwarf2_section_info_def, types))
4211 return NULL;
4212
4213 abbrev_section = (dwo_file != NULL
4214 ? &dwo_file->sections.abbrev
4215 : &dwarf2_per_objfile->abbrev);
4216
4217 if (dwarf2_read_debug)
4218 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4219 dwo_file ? ".dwo" : "",
4220 bfd_get_filename (abbrev_section->asection->owner));
4221
4222 for (ix = 0;
4223 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4224 ++ix)
4225 {
4226 bfd *abfd;
4227 const gdb_byte *info_ptr, *end_ptr;
4228 struct dwarf2_section_info *abbrev_section;
4229
4230 dwarf2_read_section (objfile, section);
4231 info_ptr = section->buffer;
4232
4233 if (info_ptr == NULL)
4234 continue;
4235
4236 /* We can't set abfd until now because the section may be empty or
4237 not present, in which case section->asection will be NULL. */
4238 abfd = section->asection->owner;
4239
4240 if (dwo_file)
4241 abbrev_section = &dwo_file->sections.abbrev;
4242 else
4243 abbrev_section = &dwarf2_per_objfile->abbrev;
4244
4245 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4246 because we don't need to read any dies: the signature is in the
4247 header. */
4248
4249 end_ptr = info_ptr + section->size;
4250 while (info_ptr < end_ptr)
4251 {
4252 sect_offset offset;
4253 cu_offset type_offset_in_tu;
4254 ULONGEST signature;
4255 struct signatured_type *sig_type;
4256 struct dwo_unit *dwo_tu;
4257 void **slot;
4258 const gdb_byte *ptr = info_ptr;
4259 struct comp_unit_head header;
4260 unsigned int length;
4261
4262 offset.sect_off = ptr - section->buffer;
4263
4264 /* We need to read the type's signature in order to build the hash
4265 table, but we don't need anything else just yet. */
4266
4267 ptr = read_and_check_type_unit_head (&header, section,
4268 abbrev_section, ptr,
4269 &signature, &type_offset_in_tu);
4270
4271 length = get_cu_length (&header);
4272
4273 /* Skip dummy type units. */
4274 if (ptr >= info_ptr + length
4275 || peek_abbrev_code (abfd, ptr) == 0)
4276 {
4277 info_ptr += length;
4278 continue;
4279 }
4280
4281 if (types_htab == NULL)
4282 {
4283 if (dwo_file)
4284 types_htab = allocate_dwo_unit_table (objfile);
4285 else
4286 types_htab = allocate_signatured_type_table (objfile);
4287 }
4288
4289 if (dwo_file)
4290 {
4291 sig_type = NULL;
4292 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4293 struct dwo_unit);
4294 dwo_tu->dwo_file = dwo_file;
4295 dwo_tu->signature = signature;
4296 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4297 dwo_tu->section = section;
4298 dwo_tu->offset = offset;
4299 dwo_tu->length = length;
4300 }
4301 else
4302 {
4303 /* N.B.: type_offset is not usable if this type uses a DWO file.
4304 The real type_offset is in the DWO file. */
4305 dwo_tu = NULL;
4306 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4307 struct signatured_type);
4308 sig_type->signature = signature;
4309 sig_type->type_offset_in_tu = type_offset_in_tu;
4310 sig_type->per_cu.objfile = objfile;
4311 sig_type->per_cu.is_debug_types = 1;
4312 sig_type->per_cu.section = section;
4313 sig_type->per_cu.offset = offset;
4314 sig_type->per_cu.length = length;
4315 }
4316
4317 slot = htab_find_slot (types_htab,
4318 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4319 INSERT);
4320 gdb_assert (slot != NULL);
4321 if (*slot != NULL)
4322 {
4323 sect_offset dup_offset;
4324
4325 if (dwo_file)
4326 {
4327 const struct dwo_unit *dup_tu = *slot;
4328
4329 dup_offset = dup_tu->offset;
4330 }
4331 else
4332 {
4333 const struct signatured_type *dup_tu = *slot;
4334
4335 dup_offset = dup_tu->per_cu.offset;
4336 }
4337
4338 complaint (&symfile_complaints,
4339 _("debug type entry at offset 0x%x is duplicate to"
4340 " the entry at offset 0x%x, signature %s"),
4341 offset.sect_off, dup_offset.sect_off,
4342 hex_string (signature));
4343 }
4344 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4345
4346 if (dwarf2_read_debug)
4347 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4348 offset.sect_off,
4349 hex_string (signature));
4350
4351 info_ptr += length;
4352 }
4353 }
4354
4355 return types_htab;
4356 }
4357
4358 /* Create the hash table of all entries in the .debug_types section,
4359 and initialize all_type_units.
4360 The result is zero if there is an error (e.g. missing .debug_types section),
4361 otherwise non-zero. */
4362
4363 static int
4364 create_all_type_units (struct objfile *objfile)
4365 {
4366 htab_t types_htab;
4367 struct signatured_type **iter;
4368
4369 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4370 if (types_htab == NULL)
4371 {
4372 dwarf2_per_objfile->signatured_types = NULL;
4373 return 0;
4374 }
4375
4376 dwarf2_per_objfile->signatured_types = types_htab;
4377
4378 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4379 dwarf2_per_objfile->all_type_units
4380 = obstack_alloc (&objfile->objfile_obstack,
4381 dwarf2_per_objfile->n_type_units
4382 * sizeof (struct signatured_type *));
4383 iter = &dwarf2_per_objfile->all_type_units[0];
4384 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4385 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4386 == dwarf2_per_objfile->n_type_units);
4387
4388 return 1;
4389 }
4390
4391 /* Lookup a signature based type for DW_FORM_ref_sig8.
4392 Returns NULL if signature SIG is not present in the table.
4393 It is up to the caller to complain about this. */
4394
4395 static struct signatured_type *
4396 lookup_signatured_type (ULONGEST sig)
4397 {
4398 struct signatured_type find_entry, *entry;
4399
4400 if (dwarf2_per_objfile->signatured_types == NULL)
4401 return NULL;
4402 find_entry.signature = sig;
4403 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4404 return entry;
4405 }
4406 \f
4407 /* Low level DIE reading support. */
4408
4409 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4410
4411 static void
4412 init_cu_die_reader (struct die_reader_specs *reader,
4413 struct dwarf2_cu *cu,
4414 struct dwarf2_section_info *section,
4415 struct dwo_file *dwo_file)
4416 {
4417 gdb_assert (section->readin && section->buffer != NULL);
4418 reader->abfd = section->asection->owner;
4419 reader->cu = cu;
4420 reader->dwo_file = dwo_file;
4421 reader->die_section = section;
4422 reader->buffer = section->buffer;
4423 reader->buffer_end = section->buffer + section->size;
4424 }
4425
4426 /* Subroutine of init_cutu_and_read_dies to simplify it.
4427 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4428 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4429 already.
4430
4431 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4432 from it to the DIE in the DWO. If NULL we are skipping the stub.
4433 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4434 are filled in with the info of the DIE from the DWO file.
4435 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4436 provided an abbrev table to use.
4437 The result is non-zero if a valid (non-dummy) DIE was found. */
4438
4439 static int
4440 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4441 struct dwo_unit *dwo_unit,
4442 int abbrev_table_provided,
4443 struct die_info *stub_comp_unit_die,
4444 struct die_reader_specs *result_reader,
4445 const gdb_byte **result_info_ptr,
4446 struct die_info **result_comp_unit_die,
4447 int *result_has_children)
4448 {
4449 struct objfile *objfile = dwarf2_per_objfile->objfile;
4450 struct dwarf2_cu *cu = this_cu->cu;
4451 struct dwarf2_section_info *section;
4452 bfd *abfd;
4453 const gdb_byte *begin_info_ptr, *info_ptr;
4454 const char *comp_dir_string;
4455 ULONGEST signature; /* Or dwo_id. */
4456 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4457 int i,num_extra_attrs;
4458 struct dwarf2_section_info *dwo_abbrev_section;
4459 struct attribute *attr;
4460 struct die_info *comp_unit_die;
4461
4462 /* These attributes aren't processed until later:
4463 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4464 However, the attribute is found in the stub which we won't have later.
4465 In order to not impose this complication on the rest of the code,
4466 we read them here and copy them to the DWO CU/TU die. */
4467
4468 stmt_list = NULL;
4469 low_pc = NULL;
4470 high_pc = NULL;
4471 ranges = NULL;
4472 comp_dir = NULL;
4473
4474 if (stub_comp_unit_die != NULL)
4475 {
4476 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4477 DWO file. */
4478 if (! this_cu->is_debug_types)
4479 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4480 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4481 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4482 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4483 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4484
4485 /* There should be a DW_AT_addr_base attribute here (if needed).
4486 We need the value before we can process DW_FORM_GNU_addr_index. */
4487 cu->addr_base = 0;
4488 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4489 if (attr)
4490 cu->addr_base = DW_UNSND (attr);
4491
4492 /* There should be a DW_AT_ranges_base attribute here (if needed).
4493 We need the value before we can process DW_AT_ranges. */
4494 cu->ranges_base = 0;
4495 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4496 if (attr)
4497 cu->ranges_base = DW_UNSND (attr);
4498 }
4499
4500 /* Set up for reading the DWO CU/TU. */
4501 cu->dwo_unit = dwo_unit;
4502 section = dwo_unit->section;
4503 dwarf2_read_section (objfile, section);
4504 abfd = section->asection->owner;
4505 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4506 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4507 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4508
4509 if (this_cu->is_debug_types)
4510 {
4511 ULONGEST header_signature;
4512 cu_offset type_offset_in_tu;
4513 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4514
4515 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4516 dwo_abbrev_section,
4517 info_ptr,
4518 &header_signature,
4519 &type_offset_in_tu);
4520 gdb_assert (sig_type->signature == header_signature);
4521 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4522 /* For DWOs coming from DWP files, we don't know the CU length
4523 nor the type's offset in the TU until now. */
4524 dwo_unit->length = get_cu_length (&cu->header);
4525 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4526
4527 /* Establish the type offset that can be used to lookup the type.
4528 For DWO files, we don't know it until now. */
4529 sig_type->type_offset_in_section.sect_off =
4530 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4531 }
4532 else
4533 {
4534 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4535 dwo_abbrev_section,
4536 info_ptr, 0);
4537 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4538 /* For DWOs coming from DWP files, we don't know the CU length
4539 until now. */
4540 dwo_unit->length = get_cu_length (&cu->header);
4541 }
4542
4543 /* Replace the CU's original abbrev table with the DWO's.
4544 Reminder: We can't read the abbrev table until we've read the header. */
4545 if (abbrev_table_provided)
4546 {
4547 /* Don't free the provided abbrev table, the caller of
4548 init_cutu_and_read_dies owns it. */
4549 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4550 /* Ensure the DWO abbrev table gets freed. */
4551 make_cleanup (dwarf2_free_abbrev_table, cu);
4552 }
4553 else
4554 {
4555 dwarf2_free_abbrev_table (cu);
4556 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4557 /* Leave any existing abbrev table cleanup as is. */
4558 }
4559
4560 /* Read in the die, but leave space to copy over the attributes
4561 from the stub. This has the benefit of simplifying the rest of
4562 the code - all the work to maintain the illusion of a single
4563 DW_TAG_{compile,type}_unit DIE is done here. */
4564 num_extra_attrs = ((stmt_list != NULL)
4565 + (low_pc != NULL)
4566 + (high_pc != NULL)
4567 + (ranges != NULL)
4568 + (comp_dir != NULL));
4569 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4570 result_has_children, num_extra_attrs);
4571
4572 /* Copy over the attributes from the stub to the DIE we just read in. */
4573 comp_unit_die = *result_comp_unit_die;
4574 i = comp_unit_die->num_attrs;
4575 if (stmt_list != NULL)
4576 comp_unit_die->attrs[i++] = *stmt_list;
4577 if (low_pc != NULL)
4578 comp_unit_die->attrs[i++] = *low_pc;
4579 if (high_pc != NULL)
4580 comp_unit_die->attrs[i++] = *high_pc;
4581 if (ranges != NULL)
4582 comp_unit_die->attrs[i++] = *ranges;
4583 if (comp_dir != NULL)
4584 comp_unit_die->attrs[i++] = *comp_dir;
4585 comp_unit_die->num_attrs += num_extra_attrs;
4586
4587 if (dwarf2_die_debug)
4588 {
4589 fprintf_unfiltered (gdb_stdlog,
4590 "Read die from %s@0x%x of %s:\n",
4591 bfd_section_name (abfd, section->asection),
4592 (unsigned) (begin_info_ptr - section->buffer),
4593 bfd_get_filename (abfd));
4594 dump_die (comp_unit_die, dwarf2_die_debug);
4595 }
4596
4597 /* Skip dummy compilation units. */
4598 if (info_ptr >= begin_info_ptr + dwo_unit->length
4599 || peek_abbrev_code (abfd, info_ptr) == 0)
4600 return 0;
4601
4602 *result_info_ptr = info_ptr;
4603 return 1;
4604 }
4605
4606 /* Subroutine of init_cutu_and_read_dies to simplify it.
4607 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4608 Returns NULL if the specified DWO unit cannot be found. */
4609
4610 static struct dwo_unit *
4611 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4612 struct die_info *comp_unit_die)
4613 {
4614 struct dwarf2_cu *cu = this_cu->cu;
4615 struct attribute *attr;
4616 ULONGEST signature;
4617 struct dwo_unit *dwo_unit;
4618 const char *comp_dir, *dwo_name;
4619
4620 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4621 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4622 gdb_assert (attr != NULL);
4623 dwo_name = DW_STRING (attr);
4624 comp_dir = NULL;
4625 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4626 if (attr)
4627 comp_dir = DW_STRING (attr);
4628
4629 if (this_cu->is_debug_types)
4630 {
4631 struct signatured_type *sig_type;
4632
4633 /* Since this_cu is the first member of struct signatured_type,
4634 we can go from a pointer to one to a pointer to the other. */
4635 sig_type = (struct signatured_type *) this_cu;
4636 signature = sig_type->signature;
4637 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4638 }
4639 else
4640 {
4641 struct attribute *attr;
4642
4643 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4644 if (! attr)
4645 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4646 " [in module %s]"),
4647 dwo_name, this_cu->objfile->name);
4648 signature = DW_UNSND (attr);
4649 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4650 signature);
4651 }
4652
4653 return dwo_unit;
4654 }
4655
4656 /* Initialize a CU (or TU) and read its DIEs.
4657 If the CU defers to a DWO file, read the DWO file as well.
4658
4659 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4660 Otherwise the table specified in the comp unit header is read in and used.
4661 This is an optimization for when we already have the abbrev table.
4662
4663 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4664 Otherwise, a new CU is allocated with xmalloc.
4665
4666 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4667 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4668
4669 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4670 linker) then DIE_READER_FUNC will not get called. */
4671
4672 static void
4673 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4674 struct abbrev_table *abbrev_table,
4675 int use_existing_cu, int keep,
4676 die_reader_func_ftype *die_reader_func,
4677 void *data)
4678 {
4679 struct objfile *objfile = dwarf2_per_objfile->objfile;
4680 struct dwarf2_section_info *section = this_cu->section;
4681 bfd *abfd = section->asection->owner;
4682 struct dwarf2_cu *cu;
4683 const gdb_byte *begin_info_ptr, *info_ptr;
4684 struct die_reader_specs reader;
4685 struct die_info *comp_unit_die;
4686 int has_children;
4687 struct attribute *attr;
4688 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4689 struct signatured_type *sig_type = NULL;
4690 struct dwarf2_section_info *abbrev_section;
4691 /* Non-zero if CU currently points to a DWO file and we need to
4692 reread it. When this happens we need to reread the skeleton die
4693 before we can reread the DWO file. */
4694 int rereading_dwo_cu = 0;
4695
4696 if (dwarf2_die_debug)
4697 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4698 this_cu->is_debug_types ? "type" : "comp",
4699 this_cu->offset.sect_off);
4700
4701 if (use_existing_cu)
4702 gdb_assert (keep);
4703
4704 cleanups = make_cleanup (null_cleanup, NULL);
4705
4706 /* This is cheap if the section is already read in. */
4707 dwarf2_read_section (objfile, section);
4708
4709 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4710
4711 abbrev_section = get_abbrev_section_for_cu (this_cu);
4712
4713 if (use_existing_cu && this_cu->cu != NULL)
4714 {
4715 cu = this_cu->cu;
4716
4717 /* If this CU is from a DWO file we need to start over, we need to
4718 refetch the attributes from the skeleton CU.
4719 This could be optimized by retrieving those attributes from when we
4720 were here the first time: the previous comp_unit_die was stored in
4721 comp_unit_obstack. But there's no data yet that we need this
4722 optimization. */
4723 if (cu->dwo_unit != NULL)
4724 rereading_dwo_cu = 1;
4725 }
4726 else
4727 {
4728 /* If !use_existing_cu, this_cu->cu must be NULL. */
4729 gdb_assert (this_cu->cu == NULL);
4730
4731 cu = xmalloc (sizeof (*cu));
4732 init_one_comp_unit (cu, this_cu);
4733
4734 /* If an error occurs while loading, release our storage. */
4735 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4736 }
4737
4738 /* Get the header. */
4739 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4740 {
4741 /* We already have the header, there's no need to read it in again. */
4742 info_ptr += cu->header.first_die_offset.cu_off;
4743 }
4744 else
4745 {
4746 if (this_cu->is_debug_types)
4747 {
4748 ULONGEST signature;
4749 cu_offset type_offset_in_tu;
4750
4751 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4752 abbrev_section, info_ptr,
4753 &signature,
4754 &type_offset_in_tu);
4755
4756 /* Since per_cu is the first member of struct signatured_type,
4757 we can go from a pointer to one to a pointer to the other. */
4758 sig_type = (struct signatured_type *) this_cu;
4759 gdb_assert (sig_type->signature == signature);
4760 gdb_assert (sig_type->type_offset_in_tu.cu_off
4761 == type_offset_in_tu.cu_off);
4762 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4763
4764 /* LENGTH has not been set yet for type units if we're
4765 using .gdb_index. */
4766 this_cu->length = get_cu_length (&cu->header);
4767
4768 /* Establish the type offset that can be used to lookup the type. */
4769 sig_type->type_offset_in_section.sect_off =
4770 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4771 }
4772 else
4773 {
4774 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4775 abbrev_section,
4776 info_ptr, 0);
4777
4778 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4779 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4780 }
4781 }
4782
4783 /* Skip dummy compilation units. */
4784 if (info_ptr >= begin_info_ptr + this_cu->length
4785 || peek_abbrev_code (abfd, info_ptr) == 0)
4786 {
4787 do_cleanups (cleanups);
4788 return;
4789 }
4790
4791 /* If we don't have them yet, read the abbrevs for this compilation unit.
4792 And if we need to read them now, make sure they're freed when we're
4793 done. Note that it's important that if the CU had an abbrev table
4794 on entry we don't free it when we're done: Somewhere up the call stack
4795 it may be in use. */
4796 if (abbrev_table != NULL)
4797 {
4798 gdb_assert (cu->abbrev_table == NULL);
4799 gdb_assert (cu->header.abbrev_offset.sect_off
4800 == abbrev_table->offset.sect_off);
4801 cu->abbrev_table = abbrev_table;
4802 }
4803 else if (cu->abbrev_table == NULL)
4804 {
4805 dwarf2_read_abbrevs (cu, abbrev_section);
4806 make_cleanup (dwarf2_free_abbrev_table, cu);
4807 }
4808 else if (rereading_dwo_cu)
4809 {
4810 dwarf2_free_abbrev_table (cu);
4811 dwarf2_read_abbrevs (cu, abbrev_section);
4812 }
4813
4814 /* Read the top level CU/TU die. */
4815 init_cu_die_reader (&reader, cu, section, NULL);
4816 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4817
4818 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
4819 from the DWO file.
4820 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
4821 DWO CU, that this test will fail (the attribute will not be present). */
4822 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4823 if (attr)
4824 {
4825 struct dwo_unit *dwo_unit;
4826 struct die_info *dwo_comp_unit_die;
4827
4828 if (has_children)
4829 {
4830 complaint (&symfile_complaints,
4831 _("compilation unit with DW_AT_GNU_dwo_name"
4832 " has children (offset 0x%x) [in module %s]"),
4833 this_cu->offset.sect_off, bfd_get_filename (abfd));
4834 }
4835 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
4836 if (dwo_unit != NULL)
4837 {
4838 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
4839 abbrev_table != NULL,
4840 comp_unit_die,
4841 &reader, &info_ptr,
4842 &dwo_comp_unit_die, &has_children) == 0)
4843 {
4844 /* Dummy die. */
4845 do_cleanups (cleanups);
4846 return;
4847 }
4848 comp_unit_die = dwo_comp_unit_die;
4849 }
4850 else
4851 {
4852 /* Yikes, we couldn't find the rest of the DIE, we only have
4853 the stub. A complaint has already been logged. There's
4854 not much more we can do except pass on the stub DIE to
4855 die_reader_func. We don't want to throw an error on bad
4856 debug info. */
4857 }
4858 }
4859
4860 /* All of the above is setup for this call. Yikes. */
4861 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4862
4863 /* Done, clean up. */
4864 if (free_cu_cleanup != NULL)
4865 {
4866 if (keep)
4867 {
4868 /* We've successfully allocated this compilation unit. Let our
4869 caller clean it up when finished with it. */
4870 discard_cleanups (free_cu_cleanup);
4871
4872 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4873 So we have to manually free the abbrev table. */
4874 dwarf2_free_abbrev_table (cu);
4875
4876 /* Link this CU into read_in_chain. */
4877 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4878 dwarf2_per_objfile->read_in_chain = this_cu;
4879 }
4880 else
4881 do_cleanups (free_cu_cleanup);
4882 }
4883
4884 do_cleanups (cleanups);
4885 }
4886
4887 /* Read CU/TU THIS_CU in section SECTION,
4888 but do not follow DW_AT_GNU_dwo_name if present.
4889 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4890 to have already done the lookup to find the DWO/DWP file).
4891
4892 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4893 THIS_CU->is_debug_types, but nothing else.
4894
4895 We fill in THIS_CU->length.
4896
4897 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4898 linker) then DIE_READER_FUNC will not get called.
4899
4900 THIS_CU->cu is always freed when done.
4901 This is done in order to not leave THIS_CU->cu in a state where we have
4902 to care whether it refers to the "main" CU or the DWO CU. */
4903
4904 static void
4905 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4906 struct dwarf2_section_info *abbrev_section,
4907 struct dwo_file *dwo_file,
4908 die_reader_func_ftype *die_reader_func,
4909 void *data)
4910 {
4911 struct objfile *objfile = dwarf2_per_objfile->objfile;
4912 struct dwarf2_section_info *section = this_cu->section;
4913 bfd *abfd = section->asection->owner;
4914 struct dwarf2_cu cu;
4915 const gdb_byte *begin_info_ptr, *info_ptr;
4916 struct die_reader_specs reader;
4917 struct cleanup *cleanups;
4918 struct die_info *comp_unit_die;
4919 int has_children;
4920
4921 if (dwarf2_die_debug)
4922 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4923 this_cu->is_debug_types ? "type" : "comp",
4924 this_cu->offset.sect_off);
4925
4926 gdb_assert (this_cu->cu == NULL);
4927
4928 /* This is cheap if the section is already read in. */
4929 dwarf2_read_section (objfile, section);
4930
4931 init_one_comp_unit (&cu, this_cu);
4932
4933 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4934
4935 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4936 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4937 abbrev_section, info_ptr,
4938 this_cu->is_debug_types);
4939
4940 this_cu->length = get_cu_length (&cu.header);
4941
4942 /* Skip dummy compilation units. */
4943 if (info_ptr >= begin_info_ptr + this_cu->length
4944 || peek_abbrev_code (abfd, info_ptr) == 0)
4945 {
4946 do_cleanups (cleanups);
4947 return;
4948 }
4949
4950 dwarf2_read_abbrevs (&cu, abbrev_section);
4951 make_cleanup (dwarf2_free_abbrev_table, &cu);
4952
4953 init_cu_die_reader (&reader, &cu, section, dwo_file);
4954 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4955
4956 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4957
4958 do_cleanups (cleanups);
4959 }
4960
4961 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4962 does not lookup the specified DWO file.
4963 This cannot be used to read DWO files.
4964
4965 THIS_CU->cu is always freed when done.
4966 This is done in order to not leave THIS_CU->cu in a state where we have
4967 to care whether it refers to the "main" CU or the DWO CU.
4968 We can revisit this if the data shows there's a performance issue. */
4969
4970 static void
4971 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4972 die_reader_func_ftype *die_reader_func,
4973 void *data)
4974 {
4975 init_cutu_and_read_dies_no_follow (this_cu,
4976 get_abbrev_section_for_cu (this_cu),
4977 NULL,
4978 die_reader_func, data);
4979 }
4980 \f
4981 /* Type Unit Groups.
4982
4983 Type Unit Groups are a way to collapse the set of all TUs (type units) into
4984 a more manageable set. The grouping is done by DW_AT_stmt_list entry
4985 so that all types coming from the same compilation (.o file) are grouped
4986 together. A future step could be to put the types in the same symtab as
4987 the CU the types ultimately came from. */
4988
4989 static hashval_t
4990 hash_type_unit_group (const void *item)
4991 {
4992 const struct type_unit_group *tu_group = item;
4993
4994 return hash_stmt_list_entry (&tu_group->hash);
4995 }
4996
4997 static int
4998 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4999 {
5000 const struct type_unit_group *lhs = item_lhs;
5001 const struct type_unit_group *rhs = item_rhs;
5002
5003 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5004 }
5005
5006 /* Allocate a hash table for type unit groups. */
5007
5008 static htab_t
5009 allocate_type_unit_groups_table (void)
5010 {
5011 return htab_create_alloc_ex (3,
5012 hash_type_unit_group,
5013 eq_type_unit_group,
5014 NULL,
5015 &dwarf2_per_objfile->objfile->objfile_obstack,
5016 hashtab_obstack_allocate,
5017 dummy_obstack_deallocate);
5018 }
5019
5020 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5021 partial symtabs. We combine several TUs per psymtab to not let the size
5022 of any one psymtab grow too big. */
5023 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5024 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5025
5026 /* Helper routine for get_type_unit_group.
5027 Create the type_unit_group object used to hold one or more TUs. */
5028
5029 static struct type_unit_group *
5030 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5031 {
5032 struct objfile *objfile = dwarf2_per_objfile->objfile;
5033 struct dwarf2_per_cu_data *per_cu;
5034 struct type_unit_group *tu_group;
5035
5036 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5037 struct type_unit_group);
5038 per_cu = &tu_group->per_cu;
5039 per_cu->objfile = objfile;
5040
5041 if (dwarf2_per_objfile->using_index)
5042 {
5043 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5044 struct dwarf2_per_cu_quick_data);
5045 }
5046 else
5047 {
5048 unsigned int line_offset = line_offset_struct.sect_off;
5049 struct partial_symtab *pst;
5050 char *name;
5051
5052 /* Give the symtab a useful name for debug purposes. */
5053 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5054 name = xstrprintf ("<type_units_%d>",
5055 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5056 else
5057 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5058
5059 pst = create_partial_symtab (per_cu, name);
5060 pst->anonymous = 1;
5061
5062 xfree (name);
5063 }
5064
5065 tu_group->hash.dwo_unit = cu->dwo_unit;
5066 tu_group->hash.line_offset = line_offset_struct;
5067
5068 return tu_group;
5069 }
5070
5071 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5072 STMT_LIST is a DW_AT_stmt_list attribute. */
5073
5074 static struct type_unit_group *
5075 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5076 {
5077 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5078 struct type_unit_group *tu_group;
5079 void **slot;
5080 unsigned int line_offset;
5081 struct type_unit_group type_unit_group_for_lookup;
5082
5083 if (dwarf2_per_objfile->type_unit_groups == NULL)
5084 {
5085 dwarf2_per_objfile->type_unit_groups =
5086 allocate_type_unit_groups_table ();
5087 }
5088
5089 /* Do we need to create a new group, or can we use an existing one? */
5090
5091 if (stmt_list)
5092 {
5093 line_offset = DW_UNSND (stmt_list);
5094 ++tu_stats->nr_symtab_sharers;
5095 }
5096 else
5097 {
5098 /* Ugh, no stmt_list. Rare, but we have to handle it.
5099 We can do various things here like create one group per TU or
5100 spread them over multiple groups to split up the expansion work.
5101 To avoid worst case scenarios (too many groups or too large groups)
5102 we, umm, group them in bunches. */
5103 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5104 | (tu_stats->nr_stmt_less_type_units
5105 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5106 ++tu_stats->nr_stmt_less_type_units;
5107 }
5108
5109 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5110 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5111 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5112 &type_unit_group_for_lookup, INSERT);
5113 if (*slot != NULL)
5114 {
5115 tu_group = *slot;
5116 gdb_assert (tu_group != NULL);
5117 }
5118 else
5119 {
5120 sect_offset line_offset_struct;
5121
5122 line_offset_struct.sect_off = line_offset;
5123 tu_group = create_type_unit_group (cu, line_offset_struct);
5124 *slot = tu_group;
5125 ++tu_stats->nr_symtabs;
5126 }
5127
5128 return tu_group;
5129 }
5130
5131 /* Struct used to sort TUs by their abbreviation table offset. */
5132
5133 struct tu_abbrev_offset
5134 {
5135 struct signatured_type *sig_type;
5136 sect_offset abbrev_offset;
5137 };
5138
5139 /* Helper routine for build_type_unit_groups, passed to qsort. */
5140
5141 static int
5142 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5143 {
5144 const struct tu_abbrev_offset * const *a = ap;
5145 const struct tu_abbrev_offset * const *b = bp;
5146 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5147 unsigned int boff = (*b)->abbrev_offset.sect_off;
5148
5149 return (aoff > boff) - (aoff < boff);
5150 }
5151
5152 /* A helper function to add a type_unit_group to a table. */
5153
5154 static int
5155 add_type_unit_group_to_table (void **slot, void *datum)
5156 {
5157 struct type_unit_group *tu_group = *slot;
5158 struct type_unit_group ***datap = datum;
5159
5160 **datap = tu_group;
5161 ++*datap;
5162
5163 return 1;
5164 }
5165
5166 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5167 each one passing FUNC,DATA.
5168
5169 The efficiency is because we sort TUs by the abbrev table they use and
5170 only read each abbrev table once. In one program there are 200K TUs
5171 sharing 8K abbrev tables.
5172
5173 The main purpose of this function is to support building the
5174 dwarf2_per_objfile->type_unit_groups table.
5175 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5176 can collapse the search space by grouping them by stmt_list.
5177 The savings can be significant, in the same program from above the 200K TUs
5178 share 8K stmt_list tables.
5179
5180 FUNC is expected to call get_type_unit_group, which will create the
5181 struct type_unit_group if necessary and add it to
5182 dwarf2_per_objfile->type_unit_groups. */
5183
5184 static void
5185 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5186 {
5187 struct objfile *objfile = dwarf2_per_objfile->objfile;
5188 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5189 struct cleanup *cleanups;
5190 struct abbrev_table *abbrev_table;
5191 sect_offset abbrev_offset;
5192 struct tu_abbrev_offset *sorted_by_abbrev;
5193 struct type_unit_group **iter;
5194 int i;
5195
5196 /* It's up to the caller to not call us multiple times. */
5197 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5198
5199 if (dwarf2_per_objfile->n_type_units == 0)
5200 return;
5201
5202 /* TUs typically share abbrev tables, and there can be way more TUs than
5203 abbrev tables. Sort by abbrev table to reduce the number of times we
5204 read each abbrev table in.
5205 Alternatives are to punt or to maintain a cache of abbrev tables.
5206 This is simpler and efficient enough for now.
5207
5208 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5209 symtab to use). Typically TUs with the same abbrev offset have the same
5210 stmt_list value too so in practice this should work well.
5211
5212 The basic algorithm here is:
5213
5214 sort TUs by abbrev table
5215 for each TU with same abbrev table:
5216 read abbrev table if first user
5217 read TU top level DIE
5218 [IWBN if DWO skeletons had DW_AT_stmt_list]
5219 call FUNC */
5220
5221 if (dwarf2_read_debug)
5222 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5223
5224 /* Sort in a separate table to maintain the order of all_type_units
5225 for .gdb_index: TU indices directly index all_type_units. */
5226 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5227 dwarf2_per_objfile->n_type_units);
5228 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5229 {
5230 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5231
5232 sorted_by_abbrev[i].sig_type = sig_type;
5233 sorted_by_abbrev[i].abbrev_offset =
5234 read_abbrev_offset (sig_type->per_cu.section,
5235 sig_type->per_cu.offset);
5236 }
5237 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5238 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5239 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5240
5241 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5242 called any number of times, so we don't reset tu_stats here. */
5243
5244 abbrev_offset.sect_off = ~(unsigned) 0;
5245 abbrev_table = NULL;
5246 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5247
5248 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5249 {
5250 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5251
5252 /* Switch to the next abbrev table if necessary. */
5253 if (abbrev_table == NULL
5254 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5255 {
5256 if (abbrev_table != NULL)
5257 {
5258 abbrev_table_free (abbrev_table);
5259 /* Reset to NULL in case abbrev_table_read_table throws
5260 an error: abbrev_table_free_cleanup will get called. */
5261 abbrev_table = NULL;
5262 }
5263 abbrev_offset = tu->abbrev_offset;
5264 abbrev_table =
5265 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5266 abbrev_offset);
5267 ++tu_stats->nr_uniq_abbrev_tables;
5268 }
5269
5270 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5271 func, data);
5272 }
5273
5274 /* Create a vector of pointers to primary type units to make it easy to
5275 iterate over them and CUs. See dw2_get_primary_cu. */
5276 dwarf2_per_objfile->n_type_unit_groups =
5277 htab_elements (dwarf2_per_objfile->type_unit_groups);
5278 dwarf2_per_objfile->all_type_unit_groups =
5279 obstack_alloc (&objfile->objfile_obstack,
5280 dwarf2_per_objfile->n_type_unit_groups
5281 * sizeof (struct type_unit_group *));
5282 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5283 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5284 add_type_unit_group_to_table, &iter);
5285 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5286 == dwarf2_per_objfile->n_type_unit_groups);
5287
5288 do_cleanups (cleanups);
5289
5290 if (dwarf2_read_debug)
5291 {
5292 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5293 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5294 dwarf2_per_objfile->n_type_units);
5295 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5296 tu_stats->nr_uniq_abbrev_tables);
5297 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5298 tu_stats->nr_symtabs);
5299 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5300 tu_stats->nr_symtab_sharers);
5301 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5302 tu_stats->nr_stmt_less_type_units);
5303 }
5304 }
5305 \f
5306 /* Partial symbol tables. */
5307
5308 /* Create a psymtab named NAME and assign it to PER_CU.
5309
5310 The caller must fill in the following details:
5311 dirname, textlow, texthigh. */
5312
5313 static struct partial_symtab *
5314 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5315 {
5316 struct objfile *objfile = per_cu->objfile;
5317 struct partial_symtab *pst;
5318
5319 pst = start_psymtab_common (objfile, objfile->section_offsets,
5320 name, 0,
5321 objfile->global_psymbols.next,
5322 objfile->static_psymbols.next);
5323
5324 pst->psymtabs_addrmap_supported = 1;
5325
5326 /* This is the glue that links PST into GDB's symbol API. */
5327 pst->read_symtab_private = per_cu;
5328 pst->read_symtab = dwarf2_read_symtab;
5329 per_cu->v.psymtab = pst;
5330
5331 return pst;
5332 }
5333
5334 /* die_reader_func for process_psymtab_comp_unit. */
5335
5336 static void
5337 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5338 const gdb_byte *info_ptr,
5339 struct die_info *comp_unit_die,
5340 int has_children,
5341 void *data)
5342 {
5343 struct dwarf2_cu *cu = reader->cu;
5344 struct objfile *objfile = cu->objfile;
5345 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5346 struct attribute *attr;
5347 CORE_ADDR baseaddr;
5348 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5349 struct partial_symtab *pst;
5350 int has_pc_info;
5351 const char *filename;
5352 int *want_partial_unit_ptr = data;
5353
5354 if (comp_unit_die->tag == DW_TAG_partial_unit
5355 && (want_partial_unit_ptr == NULL
5356 || !*want_partial_unit_ptr))
5357 return;
5358
5359 gdb_assert (! per_cu->is_debug_types);
5360
5361 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5362
5363 cu->list_in_scope = &file_symbols;
5364
5365 /* Allocate a new partial symbol table structure. */
5366 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5367 if (attr == NULL || !DW_STRING (attr))
5368 filename = "";
5369 else
5370 filename = DW_STRING (attr);
5371
5372 pst = create_partial_symtab (per_cu, filename);
5373
5374 /* This must be done before calling dwarf2_build_include_psymtabs. */
5375 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5376 if (attr != NULL)
5377 pst->dirname = DW_STRING (attr);
5378
5379 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5380
5381 dwarf2_find_base_address (comp_unit_die, cu);
5382
5383 /* Possibly set the default values of LOWPC and HIGHPC from
5384 `DW_AT_ranges'. */
5385 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5386 &best_highpc, cu, pst);
5387 if (has_pc_info == 1 && best_lowpc < best_highpc)
5388 /* Store the contiguous range if it is not empty; it can be empty for
5389 CUs with no code. */
5390 addrmap_set_empty (objfile->psymtabs_addrmap,
5391 best_lowpc + baseaddr,
5392 best_highpc + baseaddr - 1, pst);
5393
5394 /* Check if comp unit has_children.
5395 If so, read the rest of the partial symbols from this comp unit.
5396 If not, there's no more debug_info for this comp unit. */
5397 if (has_children)
5398 {
5399 struct partial_die_info *first_die;
5400 CORE_ADDR lowpc, highpc;
5401
5402 lowpc = ((CORE_ADDR) -1);
5403 highpc = ((CORE_ADDR) 0);
5404
5405 first_die = load_partial_dies (reader, info_ptr, 1);
5406
5407 scan_partial_symbols (first_die, &lowpc, &highpc,
5408 ! has_pc_info, cu);
5409
5410 /* If we didn't find a lowpc, set it to highpc to avoid
5411 complaints from `maint check'. */
5412 if (lowpc == ((CORE_ADDR) -1))
5413 lowpc = highpc;
5414
5415 /* If the compilation unit didn't have an explicit address range,
5416 then use the information extracted from its child dies. */
5417 if (! has_pc_info)
5418 {
5419 best_lowpc = lowpc;
5420 best_highpc = highpc;
5421 }
5422 }
5423 pst->textlow = best_lowpc + baseaddr;
5424 pst->texthigh = best_highpc + baseaddr;
5425
5426 pst->n_global_syms = objfile->global_psymbols.next -
5427 (objfile->global_psymbols.list + pst->globals_offset);
5428 pst->n_static_syms = objfile->static_psymbols.next -
5429 (objfile->static_psymbols.list + pst->statics_offset);
5430 sort_pst_symbols (objfile, pst);
5431
5432 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5433 {
5434 int i;
5435 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5436 struct dwarf2_per_cu_data *iter;
5437
5438 /* Fill in 'dependencies' here; we fill in 'users' in a
5439 post-pass. */
5440 pst->number_of_dependencies = len;
5441 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5442 len * sizeof (struct symtab *));
5443 for (i = 0;
5444 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5445 i, iter);
5446 ++i)
5447 pst->dependencies[i] = iter->v.psymtab;
5448
5449 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5450 }
5451
5452 /* Get the list of files included in the current compilation unit,
5453 and build a psymtab for each of them. */
5454 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5455
5456 if (dwarf2_read_debug)
5457 {
5458 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5459
5460 fprintf_unfiltered (gdb_stdlog,
5461 "Psymtab for %s unit @0x%x: %s - %s"
5462 ", %d global, %d static syms\n",
5463 per_cu->is_debug_types ? "type" : "comp",
5464 per_cu->offset.sect_off,
5465 paddress (gdbarch, pst->textlow),
5466 paddress (gdbarch, pst->texthigh),
5467 pst->n_global_syms, pst->n_static_syms);
5468 }
5469 }
5470
5471 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5472 Process compilation unit THIS_CU for a psymtab. */
5473
5474 static void
5475 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5476 int want_partial_unit)
5477 {
5478 /* If this compilation unit was already read in, free the
5479 cached copy in order to read it in again. This is
5480 necessary because we skipped some symbols when we first
5481 read in the compilation unit (see load_partial_dies).
5482 This problem could be avoided, but the benefit is unclear. */
5483 if (this_cu->cu != NULL)
5484 free_one_cached_comp_unit (this_cu);
5485
5486 gdb_assert (! this_cu->is_debug_types);
5487 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5488 process_psymtab_comp_unit_reader,
5489 &want_partial_unit);
5490
5491 /* Age out any secondary CUs. */
5492 age_cached_comp_units ();
5493 }
5494
5495 /* Reader function for build_type_psymtabs. */
5496
5497 static void
5498 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5499 const gdb_byte *info_ptr,
5500 struct die_info *type_unit_die,
5501 int has_children,
5502 void *data)
5503 {
5504 struct objfile *objfile = dwarf2_per_objfile->objfile;
5505 struct dwarf2_cu *cu = reader->cu;
5506 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5507 struct signatured_type *sig_type;
5508 struct type_unit_group *tu_group;
5509 struct attribute *attr;
5510 struct partial_die_info *first_die;
5511 CORE_ADDR lowpc, highpc;
5512 struct partial_symtab *pst;
5513
5514 gdb_assert (data == NULL);
5515 gdb_assert (per_cu->is_debug_types);
5516 sig_type = (struct signatured_type *) per_cu;
5517
5518 if (! has_children)
5519 return;
5520
5521 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5522 tu_group = get_type_unit_group (cu, attr);
5523
5524 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5525
5526 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5527 cu->list_in_scope = &file_symbols;
5528 pst = create_partial_symtab (per_cu, "");
5529 pst->anonymous = 1;
5530
5531 first_die = load_partial_dies (reader, info_ptr, 1);
5532
5533 lowpc = (CORE_ADDR) -1;
5534 highpc = (CORE_ADDR) 0;
5535 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5536
5537 pst->n_global_syms = objfile->global_psymbols.next -
5538 (objfile->global_psymbols.list + pst->globals_offset);
5539 pst->n_static_syms = objfile->static_psymbols.next -
5540 (objfile->static_psymbols.list + pst->statics_offset);
5541 sort_pst_symbols (objfile, pst);
5542 }
5543
5544 /* Traversal function for build_type_psymtabs. */
5545
5546 static int
5547 build_type_psymtab_dependencies (void **slot, void *info)
5548 {
5549 struct objfile *objfile = dwarf2_per_objfile->objfile;
5550 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5551 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5552 struct partial_symtab *pst = per_cu->v.psymtab;
5553 int len = VEC_length (sig_type_ptr, tu_group->tus);
5554 struct signatured_type *iter;
5555 int i;
5556
5557 gdb_assert (len > 0);
5558 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5559
5560 pst->number_of_dependencies = len;
5561 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5562 len * sizeof (struct psymtab *));
5563 for (i = 0;
5564 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5565 ++i)
5566 {
5567 gdb_assert (iter->per_cu.is_debug_types);
5568 pst->dependencies[i] = iter->per_cu.v.psymtab;
5569 iter->type_unit_group = tu_group;
5570 }
5571
5572 VEC_free (sig_type_ptr, tu_group->tus);
5573
5574 return 1;
5575 }
5576
5577 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5578 Build partial symbol tables for the .debug_types comp-units. */
5579
5580 static void
5581 build_type_psymtabs (struct objfile *objfile)
5582 {
5583 if (! create_all_type_units (objfile))
5584 return;
5585
5586 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5587
5588 /* Now that all TUs have been processed we can fill in the dependencies. */
5589 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5590 build_type_psymtab_dependencies, NULL);
5591 }
5592
5593 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5594
5595 static void
5596 psymtabs_addrmap_cleanup (void *o)
5597 {
5598 struct objfile *objfile = o;
5599
5600 objfile->psymtabs_addrmap = NULL;
5601 }
5602
5603 /* Compute the 'user' field for each psymtab in OBJFILE. */
5604
5605 static void
5606 set_partial_user (struct objfile *objfile)
5607 {
5608 int i;
5609
5610 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5611 {
5612 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5613 struct partial_symtab *pst = per_cu->v.psymtab;
5614 int j;
5615
5616 if (pst == NULL)
5617 continue;
5618
5619 for (j = 0; j < pst->number_of_dependencies; ++j)
5620 {
5621 /* Set the 'user' field only if it is not already set. */
5622 if (pst->dependencies[j]->user == NULL)
5623 pst->dependencies[j]->user = pst;
5624 }
5625 }
5626 }
5627
5628 /* Build the partial symbol table by doing a quick pass through the
5629 .debug_info and .debug_abbrev sections. */
5630
5631 static void
5632 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5633 {
5634 struct cleanup *back_to, *addrmap_cleanup;
5635 struct obstack temp_obstack;
5636 int i;
5637
5638 if (dwarf2_read_debug)
5639 {
5640 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5641 objfile->name);
5642 }
5643
5644 dwarf2_per_objfile->reading_partial_symbols = 1;
5645
5646 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5647
5648 /* Any cached compilation units will be linked by the per-objfile
5649 read_in_chain. Make sure to free them when we're done. */
5650 back_to = make_cleanup (free_cached_comp_units, NULL);
5651
5652 build_type_psymtabs (objfile);
5653
5654 create_all_comp_units (objfile);
5655
5656 /* Create a temporary address map on a temporary obstack. We later
5657 copy this to the final obstack. */
5658 obstack_init (&temp_obstack);
5659 make_cleanup_obstack_free (&temp_obstack);
5660 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5661 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5662
5663 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5664 {
5665 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5666
5667 process_psymtab_comp_unit (per_cu, 0);
5668 }
5669
5670 set_partial_user (objfile);
5671
5672 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5673 &objfile->objfile_obstack);
5674 discard_cleanups (addrmap_cleanup);
5675
5676 do_cleanups (back_to);
5677
5678 if (dwarf2_read_debug)
5679 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5680 objfile->name);
5681 }
5682
5683 /* die_reader_func for load_partial_comp_unit. */
5684
5685 static void
5686 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5687 const gdb_byte *info_ptr,
5688 struct die_info *comp_unit_die,
5689 int has_children,
5690 void *data)
5691 {
5692 struct dwarf2_cu *cu = reader->cu;
5693
5694 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5695
5696 /* Check if comp unit has_children.
5697 If so, read the rest of the partial symbols from this comp unit.
5698 If not, there's no more debug_info for this comp unit. */
5699 if (has_children)
5700 load_partial_dies (reader, info_ptr, 0);
5701 }
5702
5703 /* Load the partial DIEs for a secondary CU into memory.
5704 This is also used when rereading a primary CU with load_all_dies. */
5705
5706 static void
5707 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5708 {
5709 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5710 load_partial_comp_unit_reader, NULL);
5711 }
5712
5713 static void
5714 read_comp_units_from_section (struct objfile *objfile,
5715 struct dwarf2_section_info *section,
5716 unsigned int is_dwz,
5717 int *n_allocated,
5718 int *n_comp_units,
5719 struct dwarf2_per_cu_data ***all_comp_units)
5720 {
5721 const gdb_byte *info_ptr;
5722 bfd *abfd = section->asection->owner;
5723
5724 if (dwarf2_read_debug)
5725 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
5726 section->asection->name, bfd_get_filename (abfd));
5727
5728 dwarf2_read_section (objfile, section);
5729
5730 info_ptr = section->buffer;
5731
5732 while (info_ptr < section->buffer + section->size)
5733 {
5734 unsigned int length, initial_length_size;
5735 struct dwarf2_per_cu_data *this_cu;
5736 sect_offset offset;
5737
5738 offset.sect_off = info_ptr - section->buffer;
5739
5740 /* Read just enough information to find out where the next
5741 compilation unit is. */
5742 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5743
5744 /* Save the compilation unit for later lookup. */
5745 this_cu = obstack_alloc (&objfile->objfile_obstack,
5746 sizeof (struct dwarf2_per_cu_data));
5747 memset (this_cu, 0, sizeof (*this_cu));
5748 this_cu->offset = offset;
5749 this_cu->length = length + initial_length_size;
5750 this_cu->is_dwz = is_dwz;
5751 this_cu->objfile = objfile;
5752 this_cu->section = section;
5753
5754 if (*n_comp_units == *n_allocated)
5755 {
5756 *n_allocated *= 2;
5757 *all_comp_units = xrealloc (*all_comp_units,
5758 *n_allocated
5759 * sizeof (struct dwarf2_per_cu_data *));
5760 }
5761 (*all_comp_units)[*n_comp_units] = this_cu;
5762 ++*n_comp_units;
5763
5764 info_ptr = info_ptr + this_cu->length;
5765 }
5766 }
5767
5768 /* Create a list of all compilation units in OBJFILE.
5769 This is only done for -readnow and building partial symtabs. */
5770
5771 static void
5772 create_all_comp_units (struct objfile *objfile)
5773 {
5774 int n_allocated;
5775 int n_comp_units;
5776 struct dwarf2_per_cu_data **all_comp_units;
5777
5778 n_comp_units = 0;
5779 n_allocated = 10;
5780 all_comp_units = xmalloc (n_allocated
5781 * sizeof (struct dwarf2_per_cu_data *));
5782
5783 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5784 &n_allocated, &n_comp_units, &all_comp_units);
5785
5786 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5787 {
5788 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5789
5790 read_comp_units_from_section (objfile, &dwz->info, 1,
5791 &n_allocated, &n_comp_units,
5792 &all_comp_units);
5793 }
5794
5795 dwarf2_per_objfile->all_comp_units
5796 = obstack_alloc (&objfile->objfile_obstack,
5797 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5798 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5799 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5800 xfree (all_comp_units);
5801 dwarf2_per_objfile->n_comp_units = n_comp_units;
5802 }
5803
5804 /* Process all loaded DIEs for compilation unit CU, starting at
5805 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5806 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5807 DW_AT_ranges). If NEED_PC is set, then this function will set
5808 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5809 and record the covered ranges in the addrmap. */
5810
5811 static void
5812 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5813 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5814 {
5815 struct partial_die_info *pdi;
5816
5817 /* Now, march along the PDI's, descending into ones which have
5818 interesting children but skipping the children of the other ones,
5819 until we reach the end of the compilation unit. */
5820
5821 pdi = first_die;
5822
5823 while (pdi != NULL)
5824 {
5825 fixup_partial_die (pdi, cu);
5826
5827 /* Anonymous namespaces or modules have no name but have interesting
5828 children, so we need to look at them. Ditto for anonymous
5829 enums. */
5830
5831 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5832 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5833 || pdi->tag == DW_TAG_imported_unit)
5834 {
5835 switch (pdi->tag)
5836 {
5837 case DW_TAG_subprogram:
5838 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5839 break;
5840 case DW_TAG_constant:
5841 case DW_TAG_variable:
5842 case DW_TAG_typedef:
5843 case DW_TAG_union_type:
5844 if (!pdi->is_declaration)
5845 {
5846 add_partial_symbol (pdi, cu);
5847 }
5848 break;
5849 case DW_TAG_class_type:
5850 case DW_TAG_interface_type:
5851 case DW_TAG_structure_type:
5852 if (!pdi->is_declaration)
5853 {
5854 add_partial_symbol (pdi, cu);
5855 }
5856 break;
5857 case DW_TAG_enumeration_type:
5858 if (!pdi->is_declaration)
5859 add_partial_enumeration (pdi, cu);
5860 break;
5861 case DW_TAG_base_type:
5862 case DW_TAG_subrange_type:
5863 /* File scope base type definitions are added to the partial
5864 symbol table. */
5865 add_partial_symbol (pdi, cu);
5866 break;
5867 case DW_TAG_namespace:
5868 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5869 break;
5870 case DW_TAG_module:
5871 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5872 break;
5873 case DW_TAG_imported_unit:
5874 {
5875 struct dwarf2_per_cu_data *per_cu;
5876
5877 /* For now we don't handle imported units in type units. */
5878 if (cu->per_cu->is_debug_types)
5879 {
5880 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5881 " supported in type units [in module %s]"),
5882 cu->objfile->name);
5883 }
5884
5885 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5886 pdi->is_dwz,
5887 cu->objfile);
5888
5889 /* Go read the partial unit, if needed. */
5890 if (per_cu->v.psymtab == NULL)
5891 process_psymtab_comp_unit (per_cu, 1);
5892
5893 VEC_safe_push (dwarf2_per_cu_ptr,
5894 cu->per_cu->imported_symtabs, per_cu);
5895 }
5896 break;
5897 default:
5898 break;
5899 }
5900 }
5901
5902 /* If the die has a sibling, skip to the sibling. */
5903
5904 pdi = pdi->die_sibling;
5905 }
5906 }
5907
5908 /* Functions used to compute the fully scoped name of a partial DIE.
5909
5910 Normally, this is simple. For C++, the parent DIE's fully scoped
5911 name is concatenated with "::" and the partial DIE's name. For
5912 Java, the same thing occurs except that "." is used instead of "::".
5913 Enumerators are an exception; they use the scope of their parent
5914 enumeration type, i.e. the name of the enumeration type is not
5915 prepended to the enumerator.
5916
5917 There are two complexities. One is DW_AT_specification; in this
5918 case "parent" means the parent of the target of the specification,
5919 instead of the direct parent of the DIE. The other is compilers
5920 which do not emit DW_TAG_namespace; in this case we try to guess
5921 the fully qualified name of structure types from their members'
5922 linkage names. This must be done using the DIE's children rather
5923 than the children of any DW_AT_specification target. We only need
5924 to do this for structures at the top level, i.e. if the target of
5925 any DW_AT_specification (if any; otherwise the DIE itself) does not
5926 have a parent. */
5927
5928 /* Compute the scope prefix associated with PDI's parent, in
5929 compilation unit CU. The result will be allocated on CU's
5930 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5931 field. NULL is returned if no prefix is necessary. */
5932 static const char *
5933 partial_die_parent_scope (struct partial_die_info *pdi,
5934 struct dwarf2_cu *cu)
5935 {
5936 const char *grandparent_scope;
5937 struct partial_die_info *parent, *real_pdi;
5938
5939 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5940 then this means the parent of the specification DIE. */
5941
5942 real_pdi = pdi;
5943 while (real_pdi->has_specification)
5944 real_pdi = find_partial_die (real_pdi->spec_offset,
5945 real_pdi->spec_is_dwz, cu);
5946
5947 parent = real_pdi->die_parent;
5948 if (parent == NULL)
5949 return NULL;
5950
5951 if (parent->scope_set)
5952 return parent->scope;
5953
5954 fixup_partial_die (parent, cu);
5955
5956 grandparent_scope = partial_die_parent_scope (parent, cu);
5957
5958 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5959 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5960 Work around this problem here. */
5961 if (cu->language == language_cplus
5962 && parent->tag == DW_TAG_namespace
5963 && strcmp (parent->name, "::") == 0
5964 && grandparent_scope == NULL)
5965 {
5966 parent->scope = NULL;
5967 parent->scope_set = 1;
5968 return NULL;
5969 }
5970
5971 if (pdi->tag == DW_TAG_enumerator)
5972 /* Enumerators should not get the name of the enumeration as a prefix. */
5973 parent->scope = grandparent_scope;
5974 else if (parent->tag == DW_TAG_namespace
5975 || parent->tag == DW_TAG_module
5976 || parent->tag == DW_TAG_structure_type
5977 || parent->tag == DW_TAG_class_type
5978 || parent->tag == DW_TAG_interface_type
5979 || parent->tag == DW_TAG_union_type
5980 || parent->tag == DW_TAG_enumeration_type)
5981 {
5982 if (grandparent_scope == NULL)
5983 parent->scope = parent->name;
5984 else
5985 parent->scope = typename_concat (&cu->comp_unit_obstack,
5986 grandparent_scope,
5987 parent->name, 0, cu);
5988 }
5989 else
5990 {
5991 /* FIXME drow/2004-04-01: What should we be doing with
5992 function-local names? For partial symbols, we should probably be
5993 ignoring them. */
5994 complaint (&symfile_complaints,
5995 _("unhandled containing DIE tag %d for DIE at %d"),
5996 parent->tag, pdi->offset.sect_off);
5997 parent->scope = grandparent_scope;
5998 }
5999
6000 parent->scope_set = 1;
6001 return parent->scope;
6002 }
6003
6004 /* Return the fully scoped name associated with PDI, from compilation unit
6005 CU. The result will be allocated with malloc. */
6006
6007 static char *
6008 partial_die_full_name (struct partial_die_info *pdi,
6009 struct dwarf2_cu *cu)
6010 {
6011 const char *parent_scope;
6012
6013 /* If this is a template instantiation, we can not work out the
6014 template arguments from partial DIEs. So, unfortunately, we have
6015 to go through the full DIEs. At least any work we do building
6016 types here will be reused if full symbols are loaded later. */
6017 if (pdi->has_template_arguments)
6018 {
6019 fixup_partial_die (pdi, cu);
6020
6021 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6022 {
6023 struct die_info *die;
6024 struct attribute attr;
6025 struct dwarf2_cu *ref_cu = cu;
6026
6027 /* DW_FORM_ref_addr is using section offset. */
6028 attr.name = 0;
6029 attr.form = DW_FORM_ref_addr;
6030 attr.u.unsnd = pdi->offset.sect_off;
6031 die = follow_die_ref (NULL, &attr, &ref_cu);
6032
6033 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6034 }
6035 }
6036
6037 parent_scope = partial_die_parent_scope (pdi, cu);
6038 if (parent_scope == NULL)
6039 return NULL;
6040 else
6041 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6042 }
6043
6044 static void
6045 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6046 {
6047 struct objfile *objfile = cu->objfile;
6048 CORE_ADDR addr = 0;
6049 const char *actual_name = NULL;
6050 CORE_ADDR baseaddr;
6051 char *built_actual_name;
6052
6053 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6054
6055 built_actual_name = partial_die_full_name (pdi, cu);
6056 if (built_actual_name != NULL)
6057 actual_name = built_actual_name;
6058
6059 if (actual_name == NULL)
6060 actual_name = pdi->name;
6061
6062 switch (pdi->tag)
6063 {
6064 case DW_TAG_subprogram:
6065 if (pdi->is_external || cu->language == language_ada)
6066 {
6067 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6068 of the global scope. But in Ada, we want to be able to access
6069 nested procedures globally. So all Ada subprograms are stored
6070 in the global scope. */
6071 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6072 mst_text, objfile); */
6073 add_psymbol_to_list (actual_name, strlen (actual_name),
6074 built_actual_name != NULL,
6075 VAR_DOMAIN, LOC_BLOCK,
6076 &objfile->global_psymbols,
6077 0, pdi->lowpc + baseaddr,
6078 cu->language, objfile);
6079 }
6080 else
6081 {
6082 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6083 mst_file_text, objfile); */
6084 add_psymbol_to_list (actual_name, strlen (actual_name),
6085 built_actual_name != NULL,
6086 VAR_DOMAIN, LOC_BLOCK,
6087 &objfile->static_psymbols,
6088 0, pdi->lowpc + baseaddr,
6089 cu->language, objfile);
6090 }
6091 break;
6092 case DW_TAG_constant:
6093 {
6094 struct psymbol_allocation_list *list;
6095
6096 if (pdi->is_external)
6097 list = &objfile->global_psymbols;
6098 else
6099 list = &objfile->static_psymbols;
6100 add_psymbol_to_list (actual_name, strlen (actual_name),
6101 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6102 list, 0, 0, cu->language, objfile);
6103 }
6104 break;
6105 case DW_TAG_variable:
6106 if (pdi->d.locdesc)
6107 addr = decode_locdesc (pdi->d.locdesc, cu);
6108
6109 if (pdi->d.locdesc
6110 && addr == 0
6111 && !dwarf2_per_objfile->has_section_at_zero)
6112 {
6113 /* A global or static variable may also have been stripped
6114 out by the linker if unused, in which case its address
6115 will be nullified; do not add such variables into partial
6116 symbol table then. */
6117 }
6118 else if (pdi->is_external)
6119 {
6120 /* Global Variable.
6121 Don't enter into the minimal symbol tables as there is
6122 a minimal symbol table entry from the ELF symbols already.
6123 Enter into partial symbol table if it has a location
6124 descriptor or a type.
6125 If the location descriptor is missing, new_symbol will create
6126 a LOC_UNRESOLVED symbol, the address of the variable will then
6127 be determined from the minimal symbol table whenever the variable
6128 is referenced.
6129 The address for the partial symbol table entry is not
6130 used by GDB, but it comes in handy for debugging partial symbol
6131 table building. */
6132
6133 if (pdi->d.locdesc || pdi->has_type)
6134 add_psymbol_to_list (actual_name, strlen (actual_name),
6135 built_actual_name != NULL,
6136 VAR_DOMAIN, LOC_STATIC,
6137 &objfile->global_psymbols,
6138 0, addr + baseaddr,
6139 cu->language, objfile);
6140 }
6141 else
6142 {
6143 /* Static Variable. Skip symbols without location descriptors. */
6144 if (pdi->d.locdesc == NULL)
6145 {
6146 xfree (built_actual_name);
6147 return;
6148 }
6149 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6150 mst_file_data, objfile); */
6151 add_psymbol_to_list (actual_name, strlen (actual_name),
6152 built_actual_name != NULL,
6153 VAR_DOMAIN, LOC_STATIC,
6154 &objfile->static_psymbols,
6155 0, addr + baseaddr,
6156 cu->language, objfile);
6157 }
6158 break;
6159 case DW_TAG_typedef:
6160 case DW_TAG_base_type:
6161 case DW_TAG_subrange_type:
6162 add_psymbol_to_list (actual_name, strlen (actual_name),
6163 built_actual_name != NULL,
6164 VAR_DOMAIN, LOC_TYPEDEF,
6165 &objfile->static_psymbols,
6166 0, (CORE_ADDR) 0, cu->language, objfile);
6167 break;
6168 case DW_TAG_namespace:
6169 add_psymbol_to_list (actual_name, strlen (actual_name),
6170 built_actual_name != NULL,
6171 VAR_DOMAIN, LOC_TYPEDEF,
6172 &objfile->global_psymbols,
6173 0, (CORE_ADDR) 0, cu->language, objfile);
6174 break;
6175 case DW_TAG_class_type:
6176 case DW_TAG_interface_type:
6177 case DW_TAG_structure_type:
6178 case DW_TAG_union_type:
6179 case DW_TAG_enumeration_type:
6180 /* Skip external references. The DWARF standard says in the section
6181 about "Structure, Union, and Class Type Entries": "An incomplete
6182 structure, union or class type is represented by a structure,
6183 union or class entry that does not have a byte size attribute
6184 and that has a DW_AT_declaration attribute." */
6185 if (!pdi->has_byte_size && pdi->is_declaration)
6186 {
6187 xfree (built_actual_name);
6188 return;
6189 }
6190
6191 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6192 static vs. global. */
6193 add_psymbol_to_list (actual_name, strlen (actual_name),
6194 built_actual_name != NULL,
6195 STRUCT_DOMAIN, LOC_TYPEDEF,
6196 (cu->language == language_cplus
6197 || cu->language == language_java)
6198 ? &objfile->global_psymbols
6199 : &objfile->static_psymbols,
6200 0, (CORE_ADDR) 0, cu->language, objfile);
6201
6202 break;
6203 case DW_TAG_enumerator:
6204 add_psymbol_to_list (actual_name, strlen (actual_name),
6205 built_actual_name != NULL,
6206 VAR_DOMAIN, LOC_CONST,
6207 (cu->language == language_cplus
6208 || cu->language == language_java)
6209 ? &objfile->global_psymbols
6210 : &objfile->static_psymbols,
6211 0, (CORE_ADDR) 0, cu->language, objfile);
6212 break;
6213 default:
6214 break;
6215 }
6216
6217 xfree (built_actual_name);
6218 }
6219
6220 /* Read a partial die corresponding to a namespace; also, add a symbol
6221 corresponding to that namespace to the symbol table. NAMESPACE is
6222 the name of the enclosing namespace. */
6223
6224 static void
6225 add_partial_namespace (struct partial_die_info *pdi,
6226 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6227 int need_pc, struct dwarf2_cu *cu)
6228 {
6229 /* Add a symbol for the namespace. */
6230
6231 add_partial_symbol (pdi, cu);
6232
6233 /* Now scan partial symbols in that namespace. */
6234
6235 if (pdi->has_children)
6236 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6237 }
6238
6239 /* Read a partial die corresponding to a Fortran module. */
6240
6241 static void
6242 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6243 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6244 {
6245 /* Now scan partial symbols in that module. */
6246
6247 if (pdi->has_children)
6248 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6249 }
6250
6251 /* Read a partial die corresponding to a subprogram and create a partial
6252 symbol for that subprogram. When the CU language allows it, this
6253 routine also defines a partial symbol for each nested subprogram
6254 that this subprogram contains.
6255
6256 DIE my also be a lexical block, in which case we simply search
6257 recursively for suprograms defined inside that lexical block.
6258 Again, this is only performed when the CU language allows this
6259 type of definitions. */
6260
6261 static void
6262 add_partial_subprogram (struct partial_die_info *pdi,
6263 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6264 int need_pc, struct dwarf2_cu *cu)
6265 {
6266 if (pdi->tag == DW_TAG_subprogram)
6267 {
6268 if (pdi->has_pc_info)
6269 {
6270 if (pdi->lowpc < *lowpc)
6271 *lowpc = pdi->lowpc;
6272 if (pdi->highpc > *highpc)
6273 *highpc = pdi->highpc;
6274 if (need_pc)
6275 {
6276 CORE_ADDR baseaddr;
6277 struct objfile *objfile = cu->objfile;
6278
6279 baseaddr = ANOFFSET (objfile->section_offsets,
6280 SECT_OFF_TEXT (objfile));
6281 addrmap_set_empty (objfile->psymtabs_addrmap,
6282 pdi->lowpc + baseaddr,
6283 pdi->highpc - 1 + baseaddr,
6284 cu->per_cu->v.psymtab);
6285 }
6286 }
6287
6288 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6289 {
6290 if (!pdi->is_declaration)
6291 /* Ignore subprogram DIEs that do not have a name, they are
6292 illegal. Do not emit a complaint at this point, we will
6293 do so when we convert this psymtab into a symtab. */
6294 if (pdi->name)
6295 add_partial_symbol (pdi, cu);
6296 }
6297 }
6298
6299 if (! pdi->has_children)
6300 return;
6301
6302 if (cu->language == language_ada)
6303 {
6304 pdi = pdi->die_child;
6305 while (pdi != NULL)
6306 {
6307 fixup_partial_die (pdi, cu);
6308 if (pdi->tag == DW_TAG_subprogram
6309 || pdi->tag == DW_TAG_lexical_block)
6310 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6311 pdi = pdi->die_sibling;
6312 }
6313 }
6314 }
6315
6316 /* Read a partial die corresponding to an enumeration type. */
6317
6318 static void
6319 add_partial_enumeration (struct partial_die_info *enum_pdi,
6320 struct dwarf2_cu *cu)
6321 {
6322 struct partial_die_info *pdi;
6323
6324 if (enum_pdi->name != NULL)
6325 add_partial_symbol (enum_pdi, cu);
6326
6327 pdi = enum_pdi->die_child;
6328 while (pdi)
6329 {
6330 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6331 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6332 else
6333 add_partial_symbol (pdi, cu);
6334 pdi = pdi->die_sibling;
6335 }
6336 }
6337
6338 /* Return the initial uleb128 in the die at INFO_PTR. */
6339
6340 static unsigned int
6341 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6342 {
6343 unsigned int bytes_read;
6344
6345 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6346 }
6347
6348 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6349 Return the corresponding abbrev, or NULL if the number is zero (indicating
6350 an empty DIE). In either case *BYTES_READ will be set to the length of
6351 the initial number. */
6352
6353 static struct abbrev_info *
6354 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6355 struct dwarf2_cu *cu)
6356 {
6357 bfd *abfd = cu->objfile->obfd;
6358 unsigned int abbrev_number;
6359 struct abbrev_info *abbrev;
6360
6361 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6362
6363 if (abbrev_number == 0)
6364 return NULL;
6365
6366 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6367 if (!abbrev)
6368 {
6369 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6370 abbrev_number, bfd_get_filename (abfd));
6371 }
6372
6373 return abbrev;
6374 }
6375
6376 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6377 Returns a pointer to the end of a series of DIEs, terminated by an empty
6378 DIE. Any children of the skipped DIEs will also be skipped. */
6379
6380 static const gdb_byte *
6381 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6382 {
6383 struct dwarf2_cu *cu = reader->cu;
6384 struct abbrev_info *abbrev;
6385 unsigned int bytes_read;
6386
6387 while (1)
6388 {
6389 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6390 if (abbrev == NULL)
6391 return info_ptr + bytes_read;
6392 else
6393 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6394 }
6395 }
6396
6397 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6398 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6399 abbrev corresponding to that skipped uleb128 should be passed in
6400 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6401 children. */
6402
6403 static const gdb_byte *
6404 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6405 struct abbrev_info *abbrev)
6406 {
6407 unsigned int bytes_read;
6408 struct attribute attr;
6409 bfd *abfd = reader->abfd;
6410 struct dwarf2_cu *cu = reader->cu;
6411 const gdb_byte *buffer = reader->buffer;
6412 const gdb_byte *buffer_end = reader->buffer_end;
6413 const gdb_byte *start_info_ptr = info_ptr;
6414 unsigned int form, i;
6415
6416 for (i = 0; i < abbrev->num_attrs; i++)
6417 {
6418 /* The only abbrev we care about is DW_AT_sibling. */
6419 if (abbrev->attrs[i].name == DW_AT_sibling)
6420 {
6421 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6422 if (attr.form == DW_FORM_ref_addr)
6423 complaint (&symfile_complaints,
6424 _("ignoring absolute DW_AT_sibling"));
6425 else
6426 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6427 }
6428
6429 /* If it isn't DW_AT_sibling, skip this attribute. */
6430 form = abbrev->attrs[i].form;
6431 skip_attribute:
6432 switch (form)
6433 {
6434 case DW_FORM_ref_addr:
6435 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6436 and later it is offset sized. */
6437 if (cu->header.version == 2)
6438 info_ptr += cu->header.addr_size;
6439 else
6440 info_ptr += cu->header.offset_size;
6441 break;
6442 case DW_FORM_GNU_ref_alt:
6443 info_ptr += cu->header.offset_size;
6444 break;
6445 case DW_FORM_addr:
6446 info_ptr += cu->header.addr_size;
6447 break;
6448 case DW_FORM_data1:
6449 case DW_FORM_ref1:
6450 case DW_FORM_flag:
6451 info_ptr += 1;
6452 break;
6453 case DW_FORM_flag_present:
6454 break;
6455 case DW_FORM_data2:
6456 case DW_FORM_ref2:
6457 info_ptr += 2;
6458 break;
6459 case DW_FORM_data4:
6460 case DW_FORM_ref4:
6461 info_ptr += 4;
6462 break;
6463 case DW_FORM_data8:
6464 case DW_FORM_ref8:
6465 case DW_FORM_ref_sig8:
6466 info_ptr += 8;
6467 break;
6468 case DW_FORM_string:
6469 read_direct_string (abfd, info_ptr, &bytes_read);
6470 info_ptr += bytes_read;
6471 break;
6472 case DW_FORM_sec_offset:
6473 case DW_FORM_strp:
6474 case DW_FORM_GNU_strp_alt:
6475 info_ptr += cu->header.offset_size;
6476 break;
6477 case DW_FORM_exprloc:
6478 case DW_FORM_block:
6479 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6480 info_ptr += bytes_read;
6481 break;
6482 case DW_FORM_block1:
6483 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6484 break;
6485 case DW_FORM_block2:
6486 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6487 break;
6488 case DW_FORM_block4:
6489 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6490 break;
6491 case DW_FORM_sdata:
6492 case DW_FORM_udata:
6493 case DW_FORM_ref_udata:
6494 case DW_FORM_GNU_addr_index:
6495 case DW_FORM_GNU_str_index:
6496 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6497 break;
6498 case DW_FORM_indirect:
6499 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6500 info_ptr += bytes_read;
6501 /* We need to continue parsing from here, so just go back to
6502 the top. */
6503 goto skip_attribute;
6504
6505 default:
6506 error (_("Dwarf Error: Cannot handle %s "
6507 "in DWARF reader [in module %s]"),
6508 dwarf_form_name (form),
6509 bfd_get_filename (abfd));
6510 }
6511 }
6512
6513 if (abbrev->has_children)
6514 return skip_children (reader, info_ptr);
6515 else
6516 return info_ptr;
6517 }
6518
6519 /* Locate ORIG_PDI's sibling.
6520 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6521
6522 static const gdb_byte *
6523 locate_pdi_sibling (const struct die_reader_specs *reader,
6524 struct partial_die_info *orig_pdi,
6525 const gdb_byte *info_ptr)
6526 {
6527 /* Do we know the sibling already? */
6528
6529 if (orig_pdi->sibling)
6530 return orig_pdi->sibling;
6531
6532 /* Are there any children to deal with? */
6533
6534 if (!orig_pdi->has_children)
6535 return info_ptr;
6536
6537 /* Skip the children the long way. */
6538
6539 return skip_children (reader, info_ptr);
6540 }
6541
6542 /* Expand this partial symbol table into a full symbol table. SELF is
6543 not NULL. */
6544
6545 static void
6546 dwarf2_read_symtab (struct partial_symtab *self,
6547 struct objfile *objfile)
6548 {
6549 if (self->readin)
6550 {
6551 warning (_("bug: psymtab for %s is already read in."),
6552 self->filename);
6553 }
6554 else
6555 {
6556 if (info_verbose)
6557 {
6558 printf_filtered (_("Reading in symbols for %s..."),
6559 self->filename);
6560 gdb_flush (gdb_stdout);
6561 }
6562
6563 /* Restore our global data. */
6564 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6565
6566 /* If this psymtab is constructed from a debug-only objfile, the
6567 has_section_at_zero flag will not necessarily be correct. We
6568 can get the correct value for this flag by looking at the data
6569 associated with the (presumably stripped) associated objfile. */
6570 if (objfile->separate_debug_objfile_backlink)
6571 {
6572 struct dwarf2_per_objfile *dpo_backlink
6573 = objfile_data (objfile->separate_debug_objfile_backlink,
6574 dwarf2_objfile_data_key);
6575
6576 dwarf2_per_objfile->has_section_at_zero
6577 = dpo_backlink->has_section_at_zero;
6578 }
6579
6580 dwarf2_per_objfile->reading_partial_symbols = 0;
6581
6582 psymtab_to_symtab_1 (self);
6583
6584 /* Finish up the debug error message. */
6585 if (info_verbose)
6586 printf_filtered (_("done.\n"));
6587 }
6588
6589 process_cu_includes ();
6590 }
6591 \f
6592 /* Reading in full CUs. */
6593
6594 /* Add PER_CU to the queue. */
6595
6596 static void
6597 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6598 enum language pretend_language)
6599 {
6600 struct dwarf2_queue_item *item;
6601
6602 per_cu->queued = 1;
6603 item = xmalloc (sizeof (*item));
6604 item->per_cu = per_cu;
6605 item->pretend_language = pretend_language;
6606 item->next = NULL;
6607
6608 if (dwarf2_queue == NULL)
6609 dwarf2_queue = item;
6610 else
6611 dwarf2_queue_tail->next = item;
6612
6613 dwarf2_queue_tail = item;
6614 }
6615
6616 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6617 unit and add it to our queue.
6618 The result is non-zero if PER_CU was queued, otherwise the result is zero
6619 meaning either PER_CU is already queued or it is already loaded. */
6620
6621 static int
6622 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6623 struct dwarf2_per_cu_data *per_cu,
6624 enum language pretend_language)
6625 {
6626 /* We may arrive here during partial symbol reading, if we need full
6627 DIEs to process an unusual case (e.g. template arguments). Do
6628 not queue PER_CU, just tell our caller to load its DIEs. */
6629 if (dwarf2_per_objfile->reading_partial_symbols)
6630 {
6631 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6632 return 1;
6633 return 0;
6634 }
6635
6636 /* Mark the dependence relation so that we don't flush PER_CU
6637 too early. */
6638 dwarf2_add_dependence (this_cu, per_cu);
6639
6640 /* If it's already on the queue, we have nothing to do. */
6641 if (per_cu->queued)
6642 return 0;
6643
6644 /* If the compilation unit is already loaded, just mark it as
6645 used. */
6646 if (per_cu->cu != NULL)
6647 {
6648 per_cu->cu->last_used = 0;
6649 return 0;
6650 }
6651
6652 /* Add it to the queue. */
6653 queue_comp_unit (per_cu, pretend_language);
6654
6655 return 1;
6656 }
6657
6658 /* Process the queue. */
6659
6660 static void
6661 process_queue (void)
6662 {
6663 struct dwarf2_queue_item *item, *next_item;
6664
6665 if (dwarf2_read_debug)
6666 {
6667 fprintf_unfiltered (gdb_stdlog,
6668 "Expanding one or more symtabs of objfile %s ...\n",
6669 dwarf2_per_objfile->objfile->name);
6670 }
6671
6672 /* The queue starts out with one item, but following a DIE reference
6673 may load a new CU, adding it to the end of the queue. */
6674 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6675 {
6676 if (dwarf2_per_objfile->using_index
6677 ? !item->per_cu->v.quick->symtab
6678 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6679 {
6680 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6681
6682 if (dwarf2_read_debug)
6683 {
6684 fprintf_unfiltered (gdb_stdlog,
6685 "Expanding symtab of %s at offset 0x%x\n",
6686 per_cu->is_debug_types ? "TU" : "CU",
6687 per_cu->offset.sect_off);
6688 }
6689
6690 if (per_cu->is_debug_types)
6691 process_full_type_unit (per_cu, item->pretend_language);
6692 else
6693 process_full_comp_unit (per_cu, item->pretend_language);
6694
6695 if (dwarf2_read_debug)
6696 {
6697 fprintf_unfiltered (gdb_stdlog,
6698 "Done expanding %s at offset 0x%x\n",
6699 per_cu->is_debug_types ? "TU" : "CU",
6700 per_cu->offset.sect_off);
6701 }
6702 }
6703
6704 item->per_cu->queued = 0;
6705 next_item = item->next;
6706 xfree (item);
6707 }
6708
6709 dwarf2_queue_tail = NULL;
6710
6711 if (dwarf2_read_debug)
6712 {
6713 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6714 dwarf2_per_objfile->objfile->name);
6715 }
6716 }
6717
6718 /* Free all allocated queue entries. This function only releases anything if
6719 an error was thrown; if the queue was processed then it would have been
6720 freed as we went along. */
6721
6722 static void
6723 dwarf2_release_queue (void *dummy)
6724 {
6725 struct dwarf2_queue_item *item, *last;
6726
6727 item = dwarf2_queue;
6728 while (item)
6729 {
6730 /* Anything still marked queued is likely to be in an
6731 inconsistent state, so discard it. */
6732 if (item->per_cu->queued)
6733 {
6734 if (item->per_cu->cu != NULL)
6735 free_one_cached_comp_unit (item->per_cu);
6736 item->per_cu->queued = 0;
6737 }
6738
6739 last = item;
6740 item = item->next;
6741 xfree (last);
6742 }
6743
6744 dwarf2_queue = dwarf2_queue_tail = NULL;
6745 }
6746
6747 /* Read in full symbols for PST, and anything it depends on. */
6748
6749 static void
6750 psymtab_to_symtab_1 (struct partial_symtab *pst)
6751 {
6752 struct dwarf2_per_cu_data *per_cu;
6753 int i;
6754
6755 if (pst->readin)
6756 return;
6757
6758 for (i = 0; i < pst->number_of_dependencies; i++)
6759 if (!pst->dependencies[i]->readin
6760 && pst->dependencies[i]->user == NULL)
6761 {
6762 /* Inform about additional files that need to be read in. */
6763 if (info_verbose)
6764 {
6765 /* FIXME: i18n: Need to make this a single string. */
6766 fputs_filtered (" ", gdb_stdout);
6767 wrap_here ("");
6768 fputs_filtered ("and ", gdb_stdout);
6769 wrap_here ("");
6770 printf_filtered ("%s...", pst->dependencies[i]->filename);
6771 wrap_here (""); /* Flush output. */
6772 gdb_flush (gdb_stdout);
6773 }
6774 psymtab_to_symtab_1 (pst->dependencies[i]);
6775 }
6776
6777 per_cu = pst->read_symtab_private;
6778
6779 if (per_cu == NULL)
6780 {
6781 /* It's an include file, no symbols to read for it.
6782 Everything is in the parent symtab. */
6783 pst->readin = 1;
6784 return;
6785 }
6786
6787 dw2_do_instantiate_symtab (per_cu);
6788 }
6789
6790 /* Trivial hash function for die_info: the hash value of a DIE
6791 is its offset in .debug_info for this objfile. */
6792
6793 static hashval_t
6794 die_hash (const void *item)
6795 {
6796 const struct die_info *die = item;
6797
6798 return die->offset.sect_off;
6799 }
6800
6801 /* Trivial comparison function for die_info structures: two DIEs
6802 are equal if they have the same offset. */
6803
6804 static int
6805 die_eq (const void *item_lhs, const void *item_rhs)
6806 {
6807 const struct die_info *die_lhs = item_lhs;
6808 const struct die_info *die_rhs = item_rhs;
6809
6810 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6811 }
6812
6813 /* die_reader_func for load_full_comp_unit.
6814 This is identical to read_signatured_type_reader,
6815 but is kept separate for now. */
6816
6817 static void
6818 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6819 const gdb_byte *info_ptr,
6820 struct die_info *comp_unit_die,
6821 int has_children,
6822 void *data)
6823 {
6824 struct dwarf2_cu *cu = reader->cu;
6825 enum language *language_ptr = data;
6826
6827 gdb_assert (cu->die_hash == NULL);
6828 cu->die_hash =
6829 htab_create_alloc_ex (cu->header.length / 12,
6830 die_hash,
6831 die_eq,
6832 NULL,
6833 &cu->comp_unit_obstack,
6834 hashtab_obstack_allocate,
6835 dummy_obstack_deallocate);
6836
6837 if (has_children)
6838 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6839 &info_ptr, comp_unit_die);
6840 cu->dies = comp_unit_die;
6841 /* comp_unit_die is not stored in die_hash, no need. */
6842
6843 /* We try not to read any attributes in this function, because not
6844 all CUs needed for references have been loaded yet, and symbol
6845 table processing isn't initialized. But we have to set the CU language,
6846 or we won't be able to build types correctly.
6847 Similarly, if we do not read the producer, we can not apply
6848 producer-specific interpretation. */
6849 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6850 }
6851
6852 /* Load the DIEs associated with PER_CU into memory. */
6853
6854 static void
6855 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6856 enum language pretend_language)
6857 {
6858 gdb_assert (! this_cu->is_debug_types);
6859
6860 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6861 load_full_comp_unit_reader, &pretend_language);
6862 }
6863
6864 /* Add a DIE to the delayed physname list. */
6865
6866 static void
6867 add_to_method_list (struct type *type, int fnfield_index, int index,
6868 const char *name, struct die_info *die,
6869 struct dwarf2_cu *cu)
6870 {
6871 struct delayed_method_info mi;
6872 mi.type = type;
6873 mi.fnfield_index = fnfield_index;
6874 mi.index = index;
6875 mi.name = name;
6876 mi.die = die;
6877 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6878 }
6879
6880 /* A cleanup for freeing the delayed method list. */
6881
6882 static void
6883 free_delayed_list (void *ptr)
6884 {
6885 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6886 if (cu->method_list != NULL)
6887 {
6888 VEC_free (delayed_method_info, cu->method_list);
6889 cu->method_list = NULL;
6890 }
6891 }
6892
6893 /* Compute the physnames of any methods on the CU's method list.
6894
6895 The computation of method physnames is delayed in order to avoid the
6896 (bad) condition that one of the method's formal parameters is of an as yet
6897 incomplete type. */
6898
6899 static void
6900 compute_delayed_physnames (struct dwarf2_cu *cu)
6901 {
6902 int i;
6903 struct delayed_method_info *mi;
6904 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6905 {
6906 const char *physname;
6907 struct fn_fieldlist *fn_flp
6908 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6909 physname = dwarf2_physname (mi->name, mi->die, cu);
6910 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6911 }
6912 }
6913
6914 /* Go objects should be embedded in a DW_TAG_module DIE,
6915 and it's not clear if/how imported objects will appear.
6916 To keep Go support simple until that's worked out,
6917 go back through what we've read and create something usable.
6918 We could do this while processing each DIE, and feels kinda cleaner,
6919 but that way is more invasive.
6920 This is to, for example, allow the user to type "p var" or "b main"
6921 without having to specify the package name, and allow lookups
6922 of module.object to work in contexts that use the expression
6923 parser. */
6924
6925 static void
6926 fixup_go_packaging (struct dwarf2_cu *cu)
6927 {
6928 char *package_name = NULL;
6929 struct pending *list;
6930 int i;
6931
6932 for (list = global_symbols; list != NULL; list = list->next)
6933 {
6934 for (i = 0; i < list->nsyms; ++i)
6935 {
6936 struct symbol *sym = list->symbol[i];
6937
6938 if (SYMBOL_LANGUAGE (sym) == language_go
6939 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6940 {
6941 char *this_package_name = go_symbol_package_name (sym);
6942
6943 if (this_package_name == NULL)
6944 continue;
6945 if (package_name == NULL)
6946 package_name = this_package_name;
6947 else
6948 {
6949 if (strcmp (package_name, this_package_name) != 0)
6950 complaint (&symfile_complaints,
6951 _("Symtab %s has objects from two different Go packages: %s and %s"),
6952 (SYMBOL_SYMTAB (sym)
6953 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6954 : cu->objfile->name),
6955 this_package_name, package_name);
6956 xfree (this_package_name);
6957 }
6958 }
6959 }
6960 }
6961
6962 if (package_name != NULL)
6963 {
6964 struct objfile *objfile = cu->objfile;
6965 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6966 package_name,
6967 strlen (package_name));
6968 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6969 saved_package_name, objfile);
6970 struct symbol *sym;
6971
6972 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6973
6974 sym = allocate_symbol (objfile);
6975 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
6976 SYMBOL_SET_NAMES (sym, saved_package_name,
6977 strlen (saved_package_name), 0, objfile);
6978 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6979 e.g., "main" finds the "main" module and not C's main(). */
6980 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6981 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
6982 SYMBOL_TYPE (sym) = type;
6983
6984 add_symbol_to_list (sym, &global_symbols);
6985
6986 xfree (package_name);
6987 }
6988 }
6989
6990 /* Return the symtab for PER_CU. This works properly regardless of
6991 whether we're using the index or psymtabs. */
6992
6993 static struct symtab *
6994 get_symtab (struct dwarf2_per_cu_data *per_cu)
6995 {
6996 return (dwarf2_per_objfile->using_index
6997 ? per_cu->v.quick->symtab
6998 : per_cu->v.psymtab->symtab);
6999 }
7000
7001 /* A helper function for computing the list of all symbol tables
7002 included by PER_CU. */
7003
7004 static void
7005 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7006 htab_t all_children,
7007 struct dwarf2_per_cu_data *per_cu)
7008 {
7009 void **slot;
7010 int ix;
7011 struct dwarf2_per_cu_data *iter;
7012
7013 slot = htab_find_slot (all_children, per_cu, INSERT);
7014 if (*slot != NULL)
7015 {
7016 /* This inclusion and its children have been processed. */
7017 return;
7018 }
7019
7020 *slot = per_cu;
7021 /* Only add a CU if it has a symbol table. */
7022 if (get_symtab (per_cu) != NULL)
7023 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7024
7025 for (ix = 0;
7026 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7027 ++ix)
7028 recursively_compute_inclusions (result, all_children, iter);
7029 }
7030
7031 /* Compute the symtab 'includes' fields for the symtab related to
7032 PER_CU. */
7033
7034 static void
7035 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7036 {
7037 gdb_assert (! per_cu->is_debug_types);
7038
7039 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7040 {
7041 int ix, len;
7042 struct dwarf2_per_cu_data *iter;
7043 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7044 htab_t all_children;
7045 struct symtab *symtab = get_symtab (per_cu);
7046
7047 /* If we don't have a symtab, we can just skip this case. */
7048 if (symtab == NULL)
7049 return;
7050
7051 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7052 NULL, xcalloc, xfree);
7053
7054 for (ix = 0;
7055 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7056 ix, iter);
7057 ++ix)
7058 recursively_compute_inclusions (&result_children, all_children, iter);
7059
7060 /* Now we have a transitive closure of all the included CUs, and
7061 for .gdb_index version 7 the included TUs, so we can convert it
7062 to a list of symtabs. */
7063 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7064 symtab->includes
7065 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7066 (len + 1) * sizeof (struct symtab *));
7067 for (ix = 0;
7068 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7069 ++ix)
7070 symtab->includes[ix] = get_symtab (iter);
7071 symtab->includes[len] = NULL;
7072
7073 VEC_free (dwarf2_per_cu_ptr, result_children);
7074 htab_delete (all_children);
7075 }
7076 }
7077
7078 /* Compute the 'includes' field for the symtabs of all the CUs we just
7079 read. */
7080
7081 static void
7082 process_cu_includes (void)
7083 {
7084 int ix;
7085 struct dwarf2_per_cu_data *iter;
7086
7087 for (ix = 0;
7088 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7089 ix, iter);
7090 ++ix)
7091 {
7092 if (! iter->is_debug_types)
7093 compute_symtab_includes (iter);
7094 }
7095
7096 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7097 }
7098
7099 /* Generate full symbol information for PER_CU, whose DIEs have
7100 already been loaded into memory. */
7101
7102 static void
7103 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7104 enum language pretend_language)
7105 {
7106 struct dwarf2_cu *cu = per_cu->cu;
7107 struct objfile *objfile = per_cu->objfile;
7108 CORE_ADDR lowpc, highpc;
7109 struct symtab *symtab;
7110 struct cleanup *back_to, *delayed_list_cleanup;
7111 CORE_ADDR baseaddr;
7112 struct block *static_block;
7113
7114 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7115
7116 buildsym_init ();
7117 back_to = make_cleanup (really_free_pendings, NULL);
7118 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7119
7120 cu->list_in_scope = &file_symbols;
7121
7122 cu->language = pretend_language;
7123 cu->language_defn = language_def (cu->language);
7124
7125 /* Do line number decoding in read_file_scope () */
7126 process_die (cu->dies, cu);
7127
7128 /* For now fudge the Go package. */
7129 if (cu->language == language_go)
7130 fixup_go_packaging (cu);
7131
7132 /* Now that we have processed all the DIEs in the CU, all the types
7133 should be complete, and it should now be safe to compute all of the
7134 physnames. */
7135 compute_delayed_physnames (cu);
7136 do_cleanups (delayed_list_cleanup);
7137
7138 /* Some compilers don't define a DW_AT_high_pc attribute for the
7139 compilation unit. If the DW_AT_high_pc is missing, synthesize
7140 it, by scanning the DIE's below the compilation unit. */
7141 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7142
7143 static_block
7144 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7145
7146 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7147 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7148 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7149 addrmap to help ensure it has an accurate map of pc values belonging to
7150 this comp unit. */
7151 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7152
7153 symtab = end_symtab_from_static_block (static_block, objfile,
7154 SECT_OFF_TEXT (objfile), 0);
7155
7156 if (symtab != NULL)
7157 {
7158 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7159
7160 /* Set symtab language to language from DW_AT_language. If the
7161 compilation is from a C file generated by language preprocessors, do
7162 not set the language if it was already deduced by start_subfile. */
7163 if (!(cu->language == language_c && symtab->language != language_c))
7164 symtab->language = cu->language;
7165
7166 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7167 produce DW_AT_location with location lists but it can be possibly
7168 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7169 there were bugs in prologue debug info, fixed later in GCC-4.5
7170 by "unwind info for epilogues" patch (which is not directly related).
7171
7172 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7173 needed, it would be wrong due to missing DW_AT_producer there.
7174
7175 Still one can confuse GDB by using non-standard GCC compilation
7176 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7177 */
7178 if (cu->has_loclist && gcc_4_minor >= 5)
7179 symtab->locations_valid = 1;
7180
7181 if (gcc_4_minor >= 5)
7182 symtab->epilogue_unwind_valid = 1;
7183
7184 symtab->call_site_htab = cu->call_site_htab;
7185 }
7186
7187 if (dwarf2_per_objfile->using_index)
7188 per_cu->v.quick->symtab = symtab;
7189 else
7190 {
7191 struct partial_symtab *pst = per_cu->v.psymtab;
7192 pst->symtab = symtab;
7193 pst->readin = 1;
7194 }
7195
7196 /* Push it for inclusion processing later. */
7197 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7198
7199 do_cleanups (back_to);
7200 }
7201
7202 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7203 already been loaded into memory. */
7204
7205 static void
7206 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7207 enum language pretend_language)
7208 {
7209 struct dwarf2_cu *cu = per_cu->cu;
7210 struct objfile *objfile = per_cu->objfile;
7211 struct symtab *symtab;
7212 struct cleanup *back_to, *delayed_list_cleanup;
7213 struct signatured_type *sig_type;
7214
7215 gdb_assert (per_cu->is_debug_types);
7216 sig_type = (struct signatured_type *) per_cu;
7217
7218 buildsym_init ();
7219 back_to = make_cleanup (really_free_pendings, NULL);
7220 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7221
7222 cu->list_in_scope = &file_symbols;
7223
7224 cu->language = pretend_language;
7225 cu->language_defn = language_def (cu->language);
7226
7227 /* The symbol tables are set up in read_type_unit_scope. */
7228 process_die (cu->dies, cu);
7229
7230 /* For now fudge the Go package. */
7231 if (cu->language == language_go)
7232 fixup_go_packaging (cu);
7233
7234 /* Now that we have processed all the DIEs in the CU, all the types
7235 should be complete, and it should now be safe to compute all of the
7236 physnames. */
7237 compute_delayed_physnames (cu);
7238 do_cleanups (delayed_list_cleanup);
7239
7240 /* TUs share symbol tables.
7241 If this is the first TU to use this symtab, complete the construction
7242 of it with end_expandable_symtab. Otherwise, complete the addition of
7243 this TU's symbols to the existing symtab. */
7244 if (sig_type->type_unit_group->primary_symtab == NULL)
7245 {
7246 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7247 sig_type->type_unit_group->primary_symtab = symtab;
7248
7249 if (symtab != NULL)
7250 {
7251 /* Set symtab language to language from DW_AT_language. If the
7252 compilation is from a C file generated by language preprocessors,
7253 do not set the language if it was already deduced by
7254 start_subfile. */
7255 if (!(cu->language == language_c && symtab->language != language_c))
7256 symtab->language = cu->language;
7257 }
7258 }
7259 else
7260 {
7261 augment_type_symtab (objfile,
7262 sig_type->type_unit_group->primary_symtab);
7263 symtab = sig_type->type_unit_group->primary_symtab;
7264 }
7265
7266 if (dwarf2_per_objfile->using_index)
7267 per_cu->v.quick->symtab = symtab;
7268 else
7269 {
7270 struct partial_symtab *pst = per_cu->v.psymtab;
7271 pst->symtab = symtab;
7272 pst->readin = 1;
7273 }
7274
7275 do_cleanups (back_to);
7276 }
7277
7278 /* Process an imported unit DIE. */
7279
7280 static void
7281 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7282 {
7283 struct attribute *attr;
7284
7285 /* For now we don't handle imported units in type units. */
7286 if (cu->per_cu->is_debug_types)
7287 {
7288 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7289 " supported in type units [in module %s]"),
7290 cu->objfile->name);
7291 }
7292
7293 attr = dwarf2_attr (die, DW_AT_import, cu);
7294 if (attr != NULL)
7295 {
7296 struct dwarf2_per_cu_data *per_cu;
7297 struct symtab *imported_symtab;
7298 sect_offset offset;
7299 int is_dwz;
7300
7301 offset = dwarf2_get_ref_die_offset (attr);
7302 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7303 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7304
7305 /* Queue the unit, if needed. */
7306 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7307 load_full_comp_unit (per_cu, cu->language);
7308
7309 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7310 per_cu);
7311 }
7312 }
7313
7314 /* Process a die and its children. */
7315
7316 static void
7317 process_die (struct die_info *die, struct dwarf2_cu *cu)
7318 {
7319 switch (die->tag)
7320 {
7321 case DW_TAG_padding:
7322 break;
7323 case DW_TAG_compile_unit:
7324 case DW_TAG_partial_unit:
7325 read_file_scope (die, cu);
7326 break;
7327 case DW_TAG_type_unit:
7328 read_type_unit_scope (die, cu);
7329 break;
7330 case DW_TAG_subprogram:
7331 case DW_TAG_inlined_subroutine:
7332 read_func_scope (die, cu);
7333 break;
7334 case DW_TAG_lexical_block:
7335 case DW_TAG_try_block:
7336 case DW_TAG_catch_block:
7337 read_lexical_block_scope (die, cu);
7338 break;
7339 case DW_TAG_GNU_call_site:
7340 read_call_site_scope (die, cu);
7341 break;
7342 case DW_TAG_class_type:
7343 case DW_TAG_interface_type:
7344 case DW_TAG_structure_type:
7345 case DW_TAG_union_type:
7346 process_structure_scope (die, cu);
7347 break;
7348 case DW_TAG_enumeration_type:
7349 process_enumeration_scope (die, cu);
7350 break;
7351
7352 /* These dies have a type, but processing them does not create
7353 a symbol or recurse to process the children. Therefore we can
7354 read them on-demand through read_type_die. */
7355 case DW_TAG_subroutine_type:
7356 case DW_TAG_set_type:
7357 case DW_TAG_array_type:
7358 case DW_TAG_pointer_type:
7359 case DW_TAG_ptr_to_member_type:
7360 case DW_TAG_reference_type:
7361 case DW_TAG_string_type:
7362 break;
7363
7364 case DW_TAG_base_type:
7365 case DW_TAG_subrange_type:
7366 case DW_TAG_typedef:
7367 /* Add a typedef symbol for the type definition, if it has a
7368 DW_AT_name. */
7369 new_symbol (die, read_type_die (die, cu), cu);
7370 break;
7371 case DW_TAG_common_block:
7372 read_common_block (die, cu);
7373 break;
7374 case DW_TAG_common_inclusion:
7375 break;
7376 case DW_TAG_namespace:
7377 cu->processing_has_namespace_info = 1;
7378 read_namespace (die, cu);
7379 break;
7380 case DW_TAG_module:
7381 cu->processing_has_namespace_info = 1;
7382 read_module (die, cu);
7383 break;
7384 case DW_TAG_imported_declaration:
7385 case DW_TAG_imported_module:
7386 cu->processing_has_namespace_info = 1;
7387 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7388 || cu->language != language_fortran))
7389 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7390 dwarf_tag_name (die->tag));
7391 read_import_statement (die, cu);
7392 break;
7393
7394 case DW_TAG_imported_unit:
7395 process_imported_unit_die (die, cu);
7396 break;
7397
7398 default:
7399 new_symbol (die, NULL, cu);
7400 break;
7401 }
7402 }
7403 \f
7404 /* DWARF name computation. */
7405
7406 /* A helper function for dwarf2_compute_name which determines whether DIE
7407 needs to have the name of the scope prepended to the name listed in the
7408 die. */
7409
7410 static int
7411 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7412 {
7413 struct attribute *attr;
7414
7415 switch (die->tag)
7416 {
7417 case DW_TAG_namespace:
7418 case DW_TAG_typedef:
7419 case DW_TAG_class_type:
7420 case DW_TAG_interface_type:
7421 case DW_TAG_structure_type:
7422 case DW_TAG_union_type:
7423 case DW_TAG_enumeration_type:
7424 case DW_TAG_enumerator:
7425 case DW_TAG_subprogram:
7426 case DW_TAG_member:
7427 return 1;
7428
7429 case DW_TAG_variable:
7430 case DW_TAG_constant:
7431 /* We only need to prefix "globally" visible variables. These include
7432 any variable marked with DW_AT_external or any variable that
7433 lives in a namespace. [Variables in anonymous namespaces
7434 require prefixing, but they are not DW_AT_external.] */
7435
7436 if (dwarf2_attr (die, DW_AT_specification, cu))
7437 {
7438 struct dwarf2_cu *spec_cu = cu;
7439
7440 return die_needs_namespace (die_specification (die, &spec_cu),
7441 spec_cu);
7442 }
7443
7444 attr = dwarf2_attr (die, DW_AT_external, cu);
7445 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7446 && die->parent->tag != DW_TAG_module)
7447 return 0;
7448 /* A variable in a lexical block of some kind does not need a
7449 namespace, even though in C++ such variables may be external
7450 and have a mangled name. */
7451 if (die->parent->tag == DW_TAG_lexical_block
7452 || die->parent->tag == DW_TAG_try_block
7453 || die->parent->tag == DW_TAG_catch_block
7454 || die->parent->tag == DW_TAG_subprogram)
7455 return 0;
7456 return 1;
7457
7458 default:
7459 return 0;
7460 }
7461 }
7462
7463 /* Retrieve the last character from a mem_file. */
7464
7465 static void
7466 do_ui_file_peek_last (void *object, const char *buffer, long length)
7467 {
7468 char *last_char_p = (char *) object;
7469
7470 if (length > 0)
7471 *last_char_p = buffer[length - 1];
7472 }
7473
7474 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7475 compute the physname for the object, which include a method's:
7476 - formal parameters (C++/Java),
7477 - receiver type (Go),
7478 - return type (Java).
7479
7480 The term "physname" is a bit confusing.
7481 For C++, for example, it is the demangled name.
7482 For Go, for example, it's the mangled name.
7483
7484 For Ada, return the DIE's linkage name rather than the fully qualified
7485 name. PHYSNAME is ignored..
7486
7487 The result is allocated on the objfile_obstack and canonicalized. */
7488
7489 static const char *
7490 dwarf2_compute_name (const char *name,
7491 struct die_info *die, struct dwarf2_cu *cu,
7492 int physname)
7493 {
7494 struct objfile *objfile = cu->objfile;
7495
7496 if (name == NULL)
7497 name = dwarf2_name (die, cu);
7498
7499 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7500 compute it by typename_concat inside GDB. */
7501 if (cu->language == language_ada
7502 || (cu->language == language_fortran && physname))
7503 {
7504 /* For Ada unit, we prefer the linkage name over the name, as
7505 the former contains the exported name, which the user expects
7506 to be able to reference. Ideally, we want the user to be able
7507 to reference this entity using either natural or linkage name,
7508 but we haven't started looking at this enhancement yet. */
7509 struct attribute *attr;
7510
7511 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7512 if (attr == NULL)
7513 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7514 if (attr && DW_STRING (attr))
7515 return DW_STRING (attr);
7516 }
7517
7518 /* These are the only languages we know how to qualify names in. */
7519 if (name != NULL
7520 && (cu->language == language_cplus || cu->language == language_java
7521 || cu->language == language_fortran))
7522 {
7523 if (die_needs_namespace (die, cu))
7524 {
7525 long length;
7526 const char *prefix;
7527 struct ui_file *buf;
7528
7529 prefix = determine_prefix (die, cu);
7530 buf = mem_fileopen ();
7531 if (*prefix != '\0')
7532 {
7533 char *prefixed_name = typename_concat (NULL, prefix, name,
7534 physname, cu);
7535
7536 fputs_unfiltered (prefixed_name, buf);
7537 xfree (prefixed_name);
7538 }
7539 else
7540 fputs_unfiltered (name, buf);
7541
7542 /* Template parameters may be specified in the DIE's DW_AT_name, or
7543 as children with DW_TAG_template_type_param or
7544 DW_TAG_value_type_param. If the latter, add them to the name
7545 here. If the name already has template parameters, then
7546 skip this step; some versions of GCC emit both, and
7547 it is more efficient to use the pre-computed name.
7548
7549 Something to keep in mind about this process: it is very
7550 unlikely, or in some cases downright impossible, to produce
7551 something that will match the mangled name of a function.
7552 If the definition of the function has the same debug info,
7553 we should be able to match up with it anyway. But fallbacks
7554 using the minimal symbol, for instance to find a method
7555 implemented in a stripped copy of libstdc++, will not work.
7556 If we do not have debug info for the definition, we will have to
7557 match them up some other way.
7558
7559 When we do name matching there is a related problem with function
7560 templates; two instantiated function templates are allowed to
7561 differ only by their return types, which we do not add here. */
7562
7563 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7564 {
7565 struct attribute *attr;
7566 struct die_info *child;
7567 int first = 1;
7568
7569 die->building_fullname = 1;
7570
7571 for (child = die->child; child != NULL; child = child->sibling)
7572 {
7573 struct type *type;
7574 LONGEST value;
7575 const gdb_byte *bytes;
7576 struct dwarf2_locexpr_baton *baton;
7577 struct value *v;
7578
7579 if (child->tag != DW_TAG_template_type_param
7580 && child->tag != DW_TAG_template_value_param)
7581 continue;
7582
7583 if (first)
7584 {
7585 fputs_unfiltered ("<", buf);
7586 first = 0;
7587 }
7588 else
7589 fputs_unfiltered (", ", buf);
7590
7591 attr = dwarf2_attr (child, DW_AT_type, cu);
7592 if (attr == NULL)
7593 {
7594 complaint (&symfile_complaints,
7595 _("template parameter missing DW_AT_type"));
7596 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7597 continue;
7598 }
7599 type = die_type (child, cu);
7600
7601 if (child->tag == DW_TAG_template_type_param)
7602 {
7603 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7604 continue;
7605 }
7606
7607 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7608 if (attr == NULL)
7609 {
7610 complaint (&symfile_complaints,
7611 _("template parameter missing "
7612 "DW_AT_const_value"));
7613 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7614 continue;
7615 }
7616
7617 dwarf2_const_value_attr (attr, type, name,
7618 &cu->comp_unit_obstack, cu,
7619 &value, &bytes, &baton);
7620
7621 if (TYPE_NOSIGN (type))
7622 /* GDB prints characters as NUMBER 'CHAR'. If that's
7623 changed, this can use value_print instead. */
7624 c_printchar (value, type, buf);
7625 else
7626 {
7627 struct value_print_options opts;
7628
7629 if (baton != NULL)
7630 v = dwarf2_evaluate_loc_desc (type, NULL,
7631 baton->data,
7632 baton->size,
7633 baton->per_cu);
7634 else if (bytes != NULL)
7635 {
7636 v = allocate_value (type);
7637 memcpy (value_contents_writeable (v), bytes,
7638 TYPE_LENGTH (type));
7639 }
7640 else
7641 v = value_from_longest (type, value);
7642
7643 /* Specify decimal so that we do not depend on
7644 the radix. */
7645 get_formatted_print_options (&opts, 'd');
7646 opts.raw = 1;
7647 value_print (v, buf, &opts);
7648 release_value (v);
7649 value_free (v);
7650 }
7651 }
7652
7653 die->building_fullname = 0;
7654
7655 if (!first)
7656 {
7657 /* Close the argument list, with a space if necessary
7658 (nested templates). */
7659 char last_char = '\0';
7660 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7661 if (last_char == '>')
7662 fputs_unfiltered (" >", buf);
7663 else
7664 fputs_unfiltered (">", buf);
7665 }
7666 }
7667
7668 /* For Java and C++ methods, append formal parameter type
7669 information, if PHYSNAME. */
7670
7671 if (physname && die->tag == DW_TAG_subprogram
7672 && (cu->language == language_cplus
7673 || cu->language == language_java))
7674 {
7675 struct type *type = read_type_die (die, cu);
7676
7677 c_type_print_args (type, buf, 1, cu->language,
7678 &type_print_raw_options);
7679
7680 if (cu->language == language_java)
7681 {
7682 /* For java, we must append the return type to method
7683 names. */
7684 if (die->tag == DW_TAG_subprogram)
7685 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7686 0, 0, &type_print_raw_options);
7687 }
7688 else if (cu->language == language_cplus)
7689 {
7690 /* Assume that an artificial first parameter is
7691 "this", but do not crash if it is not. RealView
7692 marks unnamed (and thus unused) parameters as
7693 artificial; there is no way to differentiate
7694 the two cases. */
7695 if (TYPE_NFIELDS (type) > 0
7696 && TYPE_FIELD_ARTIFICIAL (type, 0)
7697 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7698 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7699 0))))
7700 fputs_unfiltered (" const", buf);
7701 }
7702 }
7703
7704 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7705 &length);
7706 ui_file_delete (buf);
7707
7708 if (cu->language == language_cplus)
7709 {
7710 const char *cname
7711 = dwarf2_canonicalize_name (name, cu,
7712 &objfile->objfile_obstack);
7713
7714 if (cname != NULL)
7715 name = cname;
7716 }
7717 }
7718 }
7719
7720 return name;
7721 }
7722
7723 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7724 If scope qualifiers are appropriate they will be added. The result
7725 will be allocated on the objfile_obstack, or NULL if the DIE does
7726 not have a name. NAME may either be from a previous call to
7727 dwarf2_name or NULL.
7728
7729 The output string will be canonicalized (if C++/Java). */
7730
7731 static const char *
7732 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7733 {
7734 return dwarf2_compute_name (name, die, cu, 0);
7735 }
7736
7737 /* Construct a physname for the given DIE in CU. NAME may either be
7738 from a previous call to dwarf2_name or NULL. The result will be
7739 allocated on the objfile_objstack or NULL if the DIE does not have a
7740 name.
7741
7742 The output string will be canonicalized (if C++/Java). */
7743
7744 static const char *
7745 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7746 {
7747 struct objfile *objfile = cu->objfile;
7748 struct attribute *attr;
7749 const char *retval, *mangled = NULL, *canon = NULL;
7750 struct cleanup *back_to;
7751 int need_copy = 1;
7752
7753 /* In this case dwarf2_compute_name is just a shortcut not building anything
7754 on its own. */
7755 if (!die_needs_namespace (die, cu))
7756 return dwarf2_compute_name (name, die, cu, 1);
7757
7758 back_to = make_cleanup (null_cleanup, NULL);
7759
7760 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7761 if (!attr)
7762 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7763
7764 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7765 has computed. */
7766 if (attr && DW_STRING (attr))
7767 {
7768 char *demangled;
7769
7770 mangled = DW_STRING (attr);
7771
7772 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7773 type. It is easier for GDB users to search for such functions as
7774 `name(params)' than `long name(params)'. In such case the minimal
7775 symbol names do not match the full symbol names but for template
7776 functions there is never a need to look up their definition from their
7777 declaration so the only disadvantage remains the minimal symbol
7778 variant `long name(params)' does not have the proper inferior type.
7779 */
7780
7781 if (cu->language == language_go)
7782 {
7783 /* This is a lie, but we already lie to the caller new_symbol_full.
7784 new_symbol_full assumes we return the mangled name.
7785 This just undoes that lie until things are cleaned up. */
7786 demangled = NULL;
7787 }
7788 else
7789 {
7790 demangled = gdb_demangle (mangled,
7791 (DMGL_PARAMS | DMGL_ANSI
7792 | (cu->language == language_java
7793 ? DMGL_JAVA | DMGL_RET_POSTFIX
7794 : DMGL_RET_DROP)));
7795 }
7796 if (demangled)
7797 {
7798 make_cleanup (xfree, demangled);
7799 canon = demangled;
7800 }
7801 else
7802 {
7803 canon = mangled;
7804 need_copy = 0;
7805 }
7806 }
7807
7808 if (canon == NULL || check_physname)
7809 {
7810 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7811
7812 if (canon != NULL && strcmp (physname, canon) != 0)
7813 {
7814 /* It may not mean a bug in GDB. The compiler could also
7815 compute DW_AT_linkage_name incorrectly. But in such case
7816 GDB would need to be bug-to-bug compatible. */
7817
7818 complaint (&symfile_complaints,
7819 _("Computed physname <%s> does not match demangled <%s> "
7820 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7821 physname, canon, mangled, die->offset.sect_off, objfile->name);
7822
7823 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7824 is available here - over computed PHYSNAME. It is safer
7825 against both buggy GDB and buggy compilers. */
7826
7827 retval = canon;
7828 }
7829 else
7830 {
7831 retval = physname;
7832 need_copy = 0;
7833 }
7834 }
7835 else
7836 retval = canon;
7837
7838 if (need_copy)
7839 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7840
7841 do_cleanups (back_to);
7842 return retval;
7843 }
7844
7845 /* Read the import statement specified by the given die and record it. */
7846
7847 static void
7848 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7849 {
7850 struct objfile *objfile = cu->objfile;
7851 struct attribute *import_attr;
7852 struct die_info *imported_die, *child_die;
7853 struct dwarf2_cu *imported_cu;
7854 const char *imported_name;
7855 const char *imported_name_prefix;
7856 const char *canonical_name;
7857 const char *import_alias;
7858 const char *imported_declaration = NULL;
7859 const char *import_prefix;
7860 VEC (const_char_ptr) *excludes = NULL;
7861 struct cleanup *cleanups;
7862
7863 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7864 if (import_attr == NULL)
7865 {
7866 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7867 dwarf_tag_name (die->tag));
7868 return;
7869 }
7870
7871 imported_cu = cu;
7872 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7873 imported_name = dwarf2_name (imported_die, imported_cu);
7874 if (imported_name == NULL)
7875 {
7876 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7877
7878 The import in the following code:
7879 namespace A
7880 {
7881 typedef int B;
7882 }
7883
7884 int main ()
7885 {
7886 using A::B;
7887 B b;
7888 return b;
7889 }
7890
7891 ...
7892 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7893 <52> DW_AT_decl_file : 1
7894 <53> DW_AT_decl_line : 6
7895 <54> DW_AT_import : <0x75>
7896 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7897 <59> DW_AT_name : B
7898 <5b> DW_AT_decl_file : 1
7899 <5c> DW_AT_decl_line : 2
7900 <5d> DW_AT_type : <0x6e>
7901 ...
7902 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7903 <76> DW_AT_byte_size : 4
7904 <77> DW_AT_encoding : 5 (signed)
7905
7906 imports the wrong die ( 0x75 instead of 0x58 ).
7907 This case will be ignored until the gcc bug is fixed. */
7908 return;
7909 }
7910
7911 /* Figure out the local name after import. */
7912 import_alias = dwarf2_name (die, cu);
7913
7914 /* Figure out where the statement is being imported to. */
7915 import_prefix = determine_prefix (die, cu);
7916
7917 /* Figure out what the scope of the imported die is and prepend it
7918 to the name of the imported die. */
7919 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7920
7921 if (imported_die->tag != DW_TAG_namespace
7922 && imported_die->tag != DW_TAG_module)
7923 {
7924 imported_declaration = imported_name;
7925 canonical_name = imported_name_prefix;
7926 }
7927 else if (strlen (imported_name_prefix) > 0)
7928 canonical_name = obconcat (&objfile->objfile_obstack,
7929 imported_name_prefix, "::", imported_name,
7930 (char *) NULL);
7931 else
7932 canonical_name = imported_name;
7933
7934 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7935
7936 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7937 for (child_die = die->child; child_die && child_die->tag;
7938 child_die = sibling_die (child_die))
7939 {
7940 /* DWARF-4: A Fortran use statement with a “rename list” may be
7941 represented by an imported module entry with an import attribute
7942 referring to the module and owned entries corresponding to those
7943 entities that are renamed as part of being imported. */
7944
7945 if (child_die->tag != DW_TAG_imported_declaration)
7946 {
7947 complaint (&symfile_complaints,
7948 _("child DW_TAG_imported_declaration expected "
7949 "- DIE at 0x%x [in module %s]"),
7950 child_die->offset.sect_off, objfile->name);
7951 continue;
7952 }
7953
7954 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7955 if (import_attr == NULL)
7956 {
7957 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7958 dwarf_tag_name (child_die->tag));
7959 continue;
7960 }
7961
7962 imported_cu = cu;
7963 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7964 &imported_cu);
7965 imported_name = dwarf2_name (imported_die, imported_cu);
7966 if (imported_name == NULL)
7967 {
7968 complaint (&symfile_complaints,
7969 _("child DW_TAG_imported_declaration has unknown "
7970 "imported name - DIE at 0x%x [in module %s]"),
7971 child_die->offset.sect_off, objfile->name);
7972 continue;
7973 }
7974
7975 VEC_safe_push (const_char_ptr, excludes, imported_name);
7976
7977 process_die (child_die, cu);
7978 }
7979
7980 cp_add_using_directive (import_prefix,
7981 canonical_name,
7982 import_alias,
7983 imported_declaration,
7984 excludes,
7985 0,
7986 &objfile->objfile_obstack);
7987
7988 do_cleanups (cleanups);
7989 }
7990
7991 /* Cleanup function for handle_DW_AT_stmt_list. */
7992
7993 static void
7994 free_cu_line_header (void *arg)
7995 {
7996 struct dwarf2_cu *cu = arg;
7997
7998 free_line_header (cu->line_header);
7999 cu->line_header = NULL;
8000 }
8001
8002 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8003 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8004 this, it was first present in GCC release 4.3.0. */
8005
8006 static int
8007 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8008 {
8009 if (!cu->checked_producer)
8010 check_producer (cu);
8011
8012 return cu->producer_is_gcc_lt_4_3;
8013 }
8014
8015 static void
8016 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8017 const char **name, const char **comp_dir)
8018 {
8019 struct attribute *attr;
8020
8021 *name = NULL;
8022 *comp_dir = NULL;
8023
8024 /* Find the filename. Do not use dwarf2_name here, since the filename
8025 is not a source language identifier. */
8026 attr = dwarf2_attr (die, DW_AT_name, cu);
8027 if (attr)
8028 {
8029 *name = DW_STRING (attr);
8030 }
8031
8032 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8033 if (attr)
8034 *comp_dir = DW_STRING (attr);
8035 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8036 && IS_ABSOLUTE_PATH (*name))
8037 {
8038 char *d = ldirname (*name);
8039
8040 *comp_dir = d;
8041 if (d != NULL)
8042 make_cleanup (xfree, d);
8043 }
8044 if (*comp_dir != NULL)
8045 {
8046 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8047 directory, get rid of it. */
8048 char *cp = strchr (*comp_dir, ':');
8049
8050 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8051 *comp_dir = cp + 1;
8052 }
8053
8054 if (*name == NULL)
8055 *name = "<unknown>";
8056 }
8057
8058 /* Handle DW_AT_stmt_list for a compilation unit.
8059 DIE is the DW_TAG_compile_unit die for CU.
8060 COMP_DIR is the compilation directory.
8061 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8062
8063 static void
8064 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8065 const char *comp_dir) /* ARI: editCase function */
8066 {
8067 struct attribute *attr;
8068
8069 gdb_assert (! cu->per_cu->is_debug_types);
8070
8071 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8072 if (attr)
8073 {
8074 unsigned int line_offset = DW_UNSND (attr);
8075 struct line_header *line_header
8076 = dwarf_decode_line_header (line_offset, cu);
8077
8078 if (line_header)
8079 {
8080 cu->line_header = line_header;
8081 make_cleanup (free_cu_line_header, cu);
8082 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8083 }
8084 }
8085 }
8086
8087 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8088
8089 static void
8090 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8091 {
8092 struct objfile *objfile = dwarf2_per_objfile->objfile;
8093 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8094 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8095 CORE_ADDR highpc = ((CORE_ADDR) 0);
8096 struct attribute *attr;
8097 const char *name = NULL;
8098 const char *comp_dir = NULL;
8099 struct die_info *child_die;
8100 bfd *abfd = objfile->obfd;
8101 CORE_ADDR baseaddr;
8102
8103 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8104
8105 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8106
8107 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8108 from finish_block. */
8109 if (lowpc == ((CORE_ADDR) -1))
8110 lowpc = highpc;
8111 lowpc += baseaddr;
8112 highpc += baseaddr;
8113
8114 find_file_and_directory (die, cu, &name, &comp_dir);
8115
8116 prepare_one_comp_unit (cu, die, cu->language);
8117
8118 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8119 standardised yet. As a workaround for the language detection we fall
8120 back to the DW_AT_producer string. */
8121 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8122 cu->language = language_opencl;
8123
8124 /* Similar hack for Go. */
8125 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8126 set_cu_language (DW_LANG_Go, cu);
8127
8128 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8129
8130 /* Decode line number information if present. We do this before
8131 processing child DIEs, so that the line header table is available
8132 for DW_AT_decl_file. */
8133 handle_DW_AT_stmt_list (die, cu, comp_dir);
8134
8135 /* Process all dies in compilation unit. */
8136 if (die->child != NULL)
8137 {
8138 child_die = die->child;
8139 while (child_die && child_die->tag)
8140 {
8141 process_die (child_die, cu);
8142 child_die = sibling_die (child_die);
8143 }
8144 }
8145
8146 /* Decode macro information, if present. Dwarf 2 macro information
8147 refers to information in the line number info statement program
8148 header, so we can only read it if we've read the header
8149 successfully. */
8150 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8151 if (attr && cu->line_header)
8152 {
8153 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8154 complaint (&symfile_complaints,
8155 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8156
8157 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8158 }
8159 else
8160 {
8161 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8162 if (attr && cu->line_header)
8163 {
8164 unsigned int macro_offset = DW_UNSND (attr);
8165
8166 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8167 }
8168 }
8169
8170 do_cleanups (back_to);
8171 }
8172
8173 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8174 Create the set of symtabs used by this TU, or if this TU is sharing
8175 symtabs with another TU and the symtabs have already been created
8176 then restore those symtabs in the line header.
8177 We don't need the pc/line-number mapping for type units. */
8178
8179 static void
8180 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8181 {
8182 struct objfile *objfile = dwarf2_per_objfile->objfile;
8183 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8184 struct type_unit_group *tu_group;
8185 int first_time;
8186 struct line_header *lh;
8187 struct attribute *attr;
8188 unsigned int i, line_offset;
8189 struct signatured_type *sig_type;
8190
8191 gdb_assert (per_cu->is_debug_types);
8192 sig_type = (struct signatured_type *) per_cu;
8193
8194 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8195
8196 /* If we're using .gdb_index (includes -readnow) then
8197 per_cu->type_unit_group may not have been set up yet. */
8198 if (sig_type->type_unit_group == NULL)
8199 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8200 tu_group = sig_type->type_unit_group;
8201
8202 /* If we've already processed this stmt_list there's no real need to
8203 do it again, we could fake it and just recreate the part we need
8204 (file name,index -> symtab mapping). If data shows this optimization
8205 is useful we can do it then. */
8206 first_time = tu_group->primary_symtab == NULL;
8207
8208 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8209 debug info. */
8210 lh = NULL;
8211 if (attr != NULL)
8212 {
8213 line_offset = DW_UNSND (attr);
8214 lh = dwarf_decode_line_header (line_offset, cu);
8215 }
8216 if (lh == NULL)
8217 {
8218 if (first_time)
8219 dwarf2_start_symtab (cu, "", NULL, 0);
8220 else
8221 {
8222 gdb_assert (tu_group->symtabs == NULL);
8223 restart_symtab (0);
8224 }
8225 /* Note: The primary symtab will get allocated at the end. */
8226 return;
8227 }
8228
8229 cu->line_header = lh;
8230 make_cleanup (free_cu_line_header, cu);
8231
8232 if (first_time)
8233 {
8234 dwarf2_start_symtab (cu, "", NULL, 0);
8235
8236 tu_group->num_symtabs = lh->num_file_names;
8237 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8238
8239 for (i = 0; i < lh->num_file_names; ++i)
8240 {
8241 const char *dir = NULL;
8242 struct file_entry *fe = &lh->file_names[i];
8243
8244 if (fe->dir_index)
8245 dir = lh->include_dirs[fe->dir_index - 1];
8246 dwarf2_start_subfile (fe->name, dir, NULL);
8247
8248 /* Note: We don't have to watch for the main subfile here, type units
8249 don't have DW_AT_name. */
8250
8251 if (current_subfile->symtab == NULL)
8252 {
8253 /* NOTE: start_subfile will recognize when it's been passed
8254 a file it has already seen. So we can't assume there's a
8255 simple mapping from lh->file_names to subfiles,
8256 lh->file_names may contain dups. */
8257 current_subfile->symtab = allocate_symtab (current_subfile->name,
8258 objfile);
8259 }
8260
8261 fe->symtab = current_subfile->symtab;
8262 tu_group->symtabs[i] = fe->symtab;
8263 }
8264 }
8265 else
8266 {
8267 restart_symtab (0);
8268
8269 for (i = 0; i < lh->num_file_names; ++i)
8270 {
8271 struct file_entry *fe = &lh->file_names[i];
8272
8273 fe->symtab = tu_group->symtabs[i];
8274 }
8275 }
8276
8277 /* The main symtab is allocated last. Type units don't have DW_AT_name
8278 so they don't have a "real" (so to speak) symtab anyway.
8279 There is later code that will assign the main symtab to all symbols
8280 that don't have one. We need to handle the case of a symbol with a
8281 missing symtab (DW_AT_decl_file) anyway. */
8282 }
8283
8284 /* Process DW_TAG_type_unit.
8285 For TUs we want to skip the first top level sibling if it's not the
8286 actual type being defined by this TU. In this case the first top
8287 level sibling is there to provide context only. */
8288
8289 static void
8290 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8291 {
8292 struct die_info *child_die;
8293
8294 prepare_one_comp_unit (cu, die, language_minimal);
8295
8296 /* Initialize (or reinitialize) the machinery for building symtabs.
8297 We do this before processing child DIEs, so that the line header table
8298 is available for DW_AT_decl_file. */
8299 setup_type_unit_groups (die, cu);
8300
8301 if (die->child != NULL)
8302 {
8303 child_die = die->child;
8304 while (child_die && child_die->tag)
8305 {
8306 process_die (child_die, cu);
8307 child_die = sibling_die (child_die);
8308 }
8309 }
8310 }
8311 \f
8312 /* DWO/DWP files.
8313
8314 http://gcc.gnu.org/wiki/DebugFission
8315 http://gcc.gnu.org/wiki/DebugFissionDWP
8316
8317 To simplify handling of both DWO files ("object" files with the DWARF info)
8318 and DWP files (a file with the DWOs packaged up into one file), we treat
8319 DWP files as having a collection of virtual DWO files. */
8320
8321 static hashval_t
8322 hash_dwo_file (const void *item)
8323 {
8324 const struct dwo_file *dwo_file = item;
8325
8326 return (htab_hash_string (dwo_file->dwo_name)
8327 + htab_hash_string (dwo_file->comp_dir));
8328 }
8329
8330 static int
8331 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8332 {
8333 const struct dwo_file *lhs = item_lhs;
8334 const struct dwo_file *rhs = item_rhs;
8335
8336 return (strcmp (lhs->dwo_name, rhs->dwo_name) == 0
8337 && strcmp (lhs->comp_dir, rhs->comp_dir) == 0);
8338 }
8339
8340 /* Allocate a hash table for DWO files. */
8341
8342 static htab_t
8343 allocate_dwo_file_hash_table (void)
8344 {
8345 struct objfile *objfile = dwarf2_per_objfile->objfile;
8346
8347 return htab_create_alloc_ex (41,
8348 hash_dwo_file,
8349 eq_dwo_file,
8350 NULL,
8351 &objfile->objfile_obstack,
8352 hashtab_obstack_allocate,
8353 dummy_obstack_deallocate);
8354 }
8355
8356 /* Lookup DWO file DWO_NAME. */
8357
8358 static void **
8359 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8360 {
8361 struct dwo_file find_entry;
8362 void **slot;
8363
8364 if (dwarf2_per_objfile->dwo_files == NULL)
8365 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8366
8367 memset (&find_entry, 0, sizeof (find_entry));
8368 find_entry.dwo_name = dwo_name;
8369 find_entry.comp_dir = comp_dir;
8370 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8371
8372 return slot;
8373 }
8374
8375 static hashval_t
8376 hash_dwo_unit (const void *item)
8377 {
8378 const struct dwo_unit *dwo_unit = item;
8379
8380 /* This drops the top 32 bits of the id, but is ok for a hash. */
8381 return dwo_unit->signature;
8382 }
8383
8384 static int
8385 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8386 {
8387 const struct dwo_unit *lhs = item_lhs;
8388 const struct dwo_unit *rhs = item_rhs;
8389
8390 /* The signature is assumed to be unique within the DWO file.
8391 So while object file CU dwo_id's always have the value zero,
8392 that's OK, assuming each object file DWO file has only one CU,
8393 and that's the rule for now. */
8394 return lhs->signature == rhs->signature;
8395 }
8396
8397 /* Allocate a hash table for DWO CUs,TUs.
8398 There is one of these tables for each of CUs,TUs for each DWO file. */
8399
8400 static htab_t
8401 allocate_dwo_unit_table (struct objfile *objfile)
8402 {
8403 /* Start out with a pretty small number.
8404 Generally DWO files contain only one CU and maybe some TUs. */
8405 return htab_create_alloc_ex (3,
8406 hash_dwo_unit,
8407 eq_dwo_unit,
8408 NULL,
8409 &objfile->objfile_obstack,
8410 hashtab_obstack_allocate,
8411 dummy_obstack_deallocate);
8412 }
8413
8414 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8415
8416 struct create_dwo_cu_data
8417 {
8418 struct dwo_file *dwo_file;
8419 struct dwo_unit dwo_unit;
8420 };
8421
8422 /* die_reader_func for create_dwo_cu. */
8423
8424 static void
8425 create_dwo_cu_reader (const struct die_reader_specs *reader,
8426 const gdb_byte *info_ptr,
8427 struct die_info *comp_unit_die,
8428 int has_children,
8429 void *datap)
8430 {
8431 struct dwarf2_cu *cu = reader->cu;
8432 struct objfile *objfile = dwarf2_per_objfile->objfile;
8433 sect_offset offset = cu->per_cu->offset;
8434 struct dwarf2_section_info *section = cu->per_cu->section;
8435 struct create_dwo_cu_data *data = datap;
8436 struct dwo_file *dwo_file = data->dwo_file;
8437 struct dwo_unit *dwo_unit = &data->dwo_unit;
8438 struct attribute *attr;
8439
8440 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8441 if (attr == NULL)
8442 {
8443 complaint (&symfile_complaints,
8444 _("Dwarf Error: debug entry at offset 0x%x is missing"
8445 " its dwo_id [in module %s]"),
8446 offset.sect_off, dwo_file->dwo_name);
8447 return;
8448 }
8449
8450 dwo_unit->dwo_file = dwo_file;
8451 dwo_unit->signature = DW_UNSND (attr);
8452 dwo_unit->section = section;
8453 dwo_unit->offset = offset;
8454 dwo_unit->length = cu->per_cu->length;
8455
8456 if (dwarf2_read_debug)
8457 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8458 offset.sect_off, hex_string (dwo_unit->signature));
8459 }
8460
8461 /* Create the dwo_unit for the lone CU in DWO_FILE.
8462 Note: This function processes DWO files only, not DWP files. */
8463
8464 static struct dwo_unit *
8465 create_dwo_cu (struct dwo_file *dwo_file)
8466 {
8467 struct objfile *objfile = dwarf2_per_objfile->objfile;
8468 struct dwarf2_section_info *section = &dwo_file->sections.info;
8469 bfd *abfd;
8470 htab_t cu_htab;
8471 const gdb_byte *info_ptr, *end_ptr;
8472 struct create_dwo_cu_data create_dwo_cu_data;
8473 struct dwo_unit *dwo_unit;
8474
8475 dwarf2_read_section (objfile, section);
8476 info_ptr = section->buffer;
8477
8478 if (info_ptr == NULL)
8479 return NULL;
8480
8481 /* We can't set abfd until now because the section may be empty or
8482 not present, in which case section->asection will be NULL. */
8483 abfd = section->asection->owner;
8484
8485 if (dwarf2_read_debug)
8486 {
8487 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8488 bfd_section_name (abfd, section->asection),
8489 bfd_get_filename (abfd));
8490 }
8491
8492 create_dwo_cu_data.dwo_file = dwo_file;
8493 dwo_unit = NULL;
8494
8495 end_ptr = info_ptr + section->size;
8496 while (info_ptr < end_ptr)
8497 {
8498 struct dwarf2_per_cu_data per_cu;
8499
8500 memset (&create_dwo_cu_data.dwo_unit, 0,
8501 sizeof (create_dwo_cu_data.dwo_unit));
8502 memset (&per_cu, 0, sizeof (per_cu));
8503 per_cu.objfile = objfile;
8504 per_cu.is_debug_types = 0;
8505 per_cu.offset.sect_off = info_ptr - section->buffer;
8506 per_cu.section = section;
8507
8508 init_cutu_and_read_dies_no_follow (&per_cu,
8509 &dwo_file->sections.abbrev,
8510 dwo_file,
8511 create_dwo_cu_reader,
8512 &create_dwo_cu_data);
8513
8514 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8515 {
8516 /* If we've already found one, complain. We only support one
8517 because having more than one requires hacking the dwo_name of
8518 each to match, which is highly unlikely to happen. */
8519 if (dwo_unit != NULL)
8520 {
8521 complaint (&symfile_complaints,
8522 _("Multiple CUs in DWO file %s [in module %s]"),
8523 dwo_file->dwo_name, objfile->name);
8524 break;
8525 }
8526
8527 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8528 *dwo_unit = create_dwo_cu_data.dwo_unit;
8529 }
8530
8531 info_ptr += per_cu.length;
8532 }
8533
8534 return dwo_unit;
8535 }
8536
8537 /* DWP file .debug_{cu,tu}_index section format:
8538 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8539
8540 Both index sections have the same format, and serve to map a 64-bit
8541 signature to a set of section numbers. Each section begins with a header,
8542 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8543 indexes, and a pool of 32-bit section numbers. The index sections will be
8544 aligned at 8-byte boundaries in the file.
8545
8546 The index section header contains two unsigned 32-bit values (using the
8547 byte order of the application binary):
8548
8549 N, the number of compilation units or type units in the index
8550 M, the number of slots in the hash table
8551
8552 (We assume that N and M will not exceed 2^32 - 1.)
8553
8554 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8555
8556 The hash table begins at offset 8 in the section, and consists of an array
8557 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8558 order of the application binary). Unused slots in the hash table are 0.
8559 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8560
8561 The parallel table begins immediately after the hash table
8562 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8563 array of 32-bit indexes (using the byte order of the application binary),
8564 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8565 table contains a 32-bit index into the pool of section numbers. For unused
8566 hash table slots, the corresponding entry in the parallel table will be 0.
8567
8568 Given a 64-bit compilation unit signature or a type signature S, an entry
8569 in the hash table is located as follows:
8570
8571 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8572 the low-order k bits all set to 1.
8573
8574 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8575
8576 3) If the hash table entry at index H matches the signature, use that
8577 entry. If the hash table entry at index H is unused (all zeroes),
8578 terminate the search: the signature is not present in the table.
8579
8580 4) Let H = (H + H') modulo M. Repeat at Step 3.
8581
8582 Because M > N and H' and M are relatively prime, the search is guaranteed
8583 to stop at an unused slot or find the match.
8584
8585 The pool of section numbers begins immediately following the hash table
8586 (at offset 8 + 12 * M from the beginning of the section). The pool of
8587 section numbers consists of an array of 32-bit words (using the byte order
8588 of the application binary). Each item in the array is indexed starting
8589 from 0. The hash table entry provides the index of the first section
8590 number in the set. Additional section numbers in the set follow, and the
8591 set is terminated by a 0 entry (section number 0 is not used in ELF).
8592
8593 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8594 section must be the first entry in the set, and the .debug_abbrev.dwo must
8595 be the second entry. Other members of the set may follow in any order. */
8596
8597 /* Create a hash table to map DWO IDs to their CU/TU entry in
8598 .debug_{info,types}.dwo in DWP_FILE.
8599 Returns NULL if there isn't one.
8600 Note: This function processes DWP files only, not DWO files. */
8601
8602 static struct dwp_hash_table *
8603 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8604 {
8605 struct objfile *objfile = dwarf2_per_objfile->objfile;
8606 bfd *dbfd = dwp_file->dbfd;
8607 const gdb_byte *index_ptr, *index_end;
8608 struct dwarf2_section_info *index;
8609 uint32_t version, nr_units, nr_slots;
8610 struct dwp_hash_table *htab;
8611
8612 if (is_debug_types)
8613 index = &dwp_file->sections.tu_index;
8614 else
8615 index = &dwp_file->sections.cu_index;
8616
8617 if (dwarf2_section_empty_p (index))
8618 return NULL;
8619 dwarf2_read_section (objfile, index);
8620
8621 index_ptr = index->buffer;
8622 index_end = index_ptr + index->size;
8623
8624 version = read_4_bytes (dbfd, index_ptr);
8625 index_ptr += 8; /* Skip the unused word. */
8626 nr_units = read_4_bytes (dbfd, index_ptr);
8627 index_ptr += 4;
8628 nr_slots = read_4_bytes (dbfd, index_ptr);
8629 index_ptr += 4;
8630
8631 if (version != 1)
8632 {
8633 error (_("Dwarf Error: unsupported DWP file version (%u)"
8634 " [in module %s]"),
8635 version, dwp_file->name);
8636 }
8637 if (nr_slots != (nr_slots & -nr_slots))
8638 {
8639 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8640 " is not power of 2 [in module %s]"),
8641 nr_slots, dwp_file->name);
8642 }
8643
8644 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8645 htab->nr_units = nr_units;
8646 htab->nr_slots = nr_slots;
8647 htab->hash_table = index_ptr;
8648 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8649 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8650
8651 return htab;
8652 }
8653
8654 /* Update SECTIONS with the data from SECTP.
8655
8656 This function is like the other "locate" section routines that are
8657 passed to bfd_map_over_sections, but in this context the sections to
8658 read comes from the DWP hash table, not the full ELF section table.
8659
8660 The result is non-zero for success, or zero if an error was found. */
8661
8662 static int
8663 locate_virtual_dwo_sections (asection *sectp,
8664 struct virtual_dwo_sections *sections)
8665 {
8666 const struct dwop_section_names *names = &dwop_section_names;
8667
8668 if (section_is_p (sectp->name, &names->abbrev_dwo))
8669 {
8670 /* There can be only one. */
8671 if (sections->abbrev.asection != NULL)
8672 return 0;
8673 sections->abbrev.asection = sectp;
8674 sections->abbrev.size = bfd_get_section_size (sectp);
8675 }
8676 else if (section_is_p (sectp->name, &names->info_dwo)
8677 || section_is_p (sectp->name, &names->types_dwo))
8678 {
8679 /* There can be only one. */
8680 if (sections->info_or_types.asection != NULL)
8681 return 0;
8682 sections->info_or_types.asection = sectp;
8683 sections->info_or_types.size = bfd_get_section_size (sectp);
8684 }
8685 else if (section_is_p (sectp->name, &names->line_dwo))
8686 {
8687 /* There can be only one. */
8688 if (sections->line.asection != NULL)
8689 return 0;
8690 sections->line.asection = sectp;
8691 sections->line.size = bfd_get_section_size (sectp);
8692 }
8693 else if (section_is_p (sectp->name, &names->loc_dwo))
8694 {
8695 /* There can be only one. */
8696 if (sections->loc.asection != NULL)
8697 return 0;
8698 sections->loc.asection = sectp;
8699 sections->loc.size = bfd_get_section_size (sectp);
8700 }
8701 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8702 {
8703 /* There can be only one. */
8704 if (sections->macinfo.asection != NULL)
8705 return 0;
8706 sections->macinfo.asection = sectp;
8707 sections->macinfo.size = bfd_get_section_size (sectp);
8708 }
8709 else if (section_is_p (sectp->name, &names->macro_dwo))
8710 {
8711 /* There can be only one. */
8712 if (sections->macro.asection != NULL)
8713 return 0;
8714 sections->macro.asection = sectp;
8715 sections->macro.size = bfd_get_section_size (sectp);
8716 }
8717 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8718 {
8719 /* There can be only one. */
8720 if (sections->str_offsets.asection != NULL)
8721 return 0;
8722 sections->str_offsets.asection = sectp;
8723 sections->str_offsets.size = bfd_get_section_size (sectp);
8724 }
8725 else
8726 {
8727 /* No other kind of section is valid. */
8728 return 0;
8729 }
8730
8731 return 1;
8732 }
8733
8734 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8735 HTAB is the hash table from the DWP file.
8736 SECTION_INDEX is the index of the DWO in HTAB.
8737 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
8738
8739 static struct dwo_unit *
8740 create_dwo_in_dwp (struct dwp_file *dwp_file,
8741 const struct dwp_hash_table *htab,
8742 uint32_t section_index,
8743 const char *comp_dir,
8744 ULONGEST signature, int is_debug_types)
8745 {
8746 struct objfile *objfile = dwarf2_per_objfile->objfile;
8747 bfd *dbfd = dwp_file->dbfd;
8748 const char *kind = is_debug_types ? "TU" : "CU";
8749 struct dwo_file *dwo_file;
8750 struct dwo_unit *dwo_unit;
8751 struct virtual_dwo_sections sections;
8752 void **dwo_file_slot;
8753 char *virtual_dwo_name;
8754 struct dwarf2_section_info *cutu;
8755 struct cleanup *cleanups;
8756 int i;
8757
8758 if (dwarf2_read_debug)
8759 {
8760 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/%s in DWP file: %s\n",
8761 kind,
8762 section_index, hex_string (signature),
8763 dwp_file->name);
8764 }
8765
8766 /* Fetch the sections of this DWO.
8767 Put a limit on the number of sections we look for so that bad data
8768 doesn't cause us to loop forever. */
8769
8770 #define MAX_NR_DWO_SECTIONS \
8771 (1 /* .debug_info or .debug_types */ \
8772 + 1 /* .debug_abbrev */ \
8773 + 1 /* .debug_line */ \
8774 + 1 /* .debug_loc */ \
8775 + 1 /* .debug_str_offsets */ \
8776 + 1 /* .debug_macro */ \
8777 + 1 /* .debug_macinfo */ \
8778 + 1 /* trailing zero */)
8779
8780 memset (&sections, 0, sizeof (sections));
8781 cleanups = make_cleanup (null_cleanup, 0);
8782
8783 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8784 {
8785 asection *sectp;
8786 uint32_t section_nr =
8787 read_4_bytes (dbfd,
8788 htab->section_pool
8789 + (section_index + i) * sizeof (uint32_t));
8790
8791 if (section_nr == 0)
8792 break;
8793 if (section_nr >= dwp_file->num_sections)
8794 {
8795 error (_("Dwarf Error: bad DWP hash table, section number too large"
8796 " [in module %s]"),
8797 dwp_file->name);
8798 }
8799
8800 sectp = dwp_file->elf_sections[section_nr];
8801 if (! locate_virtual_dwo_sections (sectp, &sections))
8802 {
8803 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8804 " [in module %s]"),
8805 dwp_file->name);
8806 }
8807 }
8808
8809 if (i < 2
8810 || sections.info_or_types.asection == NULL
8811 || sections.abbrev.asection == NULL)
8812 {
8813 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8814 " [in module %s]"),
8815 dwp_file->name);
8816 }
8817 if (i == MAX_NR_DWO_SECTIONS)
8818 {
8819 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8820 " [in module %s]"),
8821 dwp_file->name);
8822 }
8823
8824 /* It's easier for the rest of the code if we fake a struct dwo_file and
8825 have dwo_unit "live" in that. At least for now.
8826
8827 The DWP file can be made up of a random collection of CUs and TUs.
8828 However, for each CU + set of TUs that came from the same original DWO
8829 file, we want to combine them back into a virtual DWO file to save space
8830 (fewer struct dwo_file objects to allocated). Remember that for really
8831 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8832
8833 virtual_dwo_name =
8834 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8835 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8836 sections.line.asection ? sections.line.asection->id : 0,
8837 sections.loc.asection ? sections.loc.asection->id : 0,
8838 (sections.str_offsets.asection
8839 ? sections.str_offsets.asection->id
8840 : 0));
8841 make_cleanup (xfree, virtual_dwo_name);
8842 /* Can we use an existing virtual DWO file? */
8843 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
8844 /* Create one if necessary. */
8845 if (*dwo_file_slot == NULL)
8846 {
8847 if (dwarf2_read_debug)
8848 {
8849 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8850 virtual_dwo_name);
8851 }
8852 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8853 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
8854 virtual_dwo_name,
8855 strlen (virtual_dwo_name));
8856 dwo_file->comp_dir = comp_dir;
8857 dwo_file->sections.abbrev = sections.abbrev;
8858 dwo_file->sections.line = sections.line;
8859 dwo_file->sections.loc = sections.loc;
8860 dwo_file->sections.macinfo = sections.macinfo;
8861 dwo_file->sections.macro = sections.macro;
8862 dwo_file->sections.str_offsets = sections.str_offsets;
8863 /* The "str" section is global to the entire DWP file. */
8864 dwo_file->sections.str = dwp_file->sections.str;
8865 /* The info or types section is assigned later to dwo_unit,
8866 there's no need to record it in dwo_file.
8867 Also, we can't simply record type sections in dwo_file because
8868 we record a pointer into the vector in dwo_unit. As we collect more
8869 types we'll grow the vector and eventually have to reallocate space
8870 for it, invalidating all the pointers into the current copy. */
8871 *dwo_file_slot = dwo_file;
8872 }
8873 else
8874 {
8875 if (dwarf2_read_debug)
8876 {
8877 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8878 virtual_dwo_name);
8879 }
8880 dwo_file = *dwo_file_slot;
8881 }
8882 do_cleanups (cleanups);
8883
8884 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8885 dwo_unit->dwo_file = dwo_file;
8886 dwo_unit->signature = signature;
8887 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
8888 sizeof (struct dwarf2_section_info));
8889 *dwo_unit->section = sections.info_or_types;
8890 /* offset, length, type_offset_in_tu are set later. */
8891
8892 return dwo_unit;
8893 }
8894
8895 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8896
8897 static struct dwo_unit *
8898 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8899 const struct dwp_hash_table *htab,
8900 const char *comp_dir,
8901 ULONGEST signature, int is_debug_types)
8902 {
8903 bfd *dbfd = dwp_file->dbfd;
8904 uint32_t mask = htab->nr_slots - 1;
8905 uint32_t hash = signature & mask;
8906 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8907 unsigned int i;
8908 void **slot;
8909 struct dwo_unit find_dwo_cu, *dwo_cu;
8910
8911 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8912 find_dwo_cu.signature = signature;
8913 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8914
8915 if (*slot != NULL)
8916 return *slot;
8917
8918 /* Use a for loop so that we don't loop forever on bad debug info. */
8919 for (i = 0; i < htab->nr_slots; ++i)
8920 {
8921 ULONGEST signature_in_table;
8922
8923 signature_in_table =
8924 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8925 if (signature_in_table == signature)
8926 {
8927 uint32_t section_index =
8928 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8929
8930 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8931 comp_dir, signature, is_debug_types);
8932 return *slot;
8933 }
8934 if (signature_in_table == 0)
8935 return NULL;
8936 hash = (hash + hash2) & mask;
8937 }
8938
8939 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8940 " [in module %s]"),
8941 dwp_file->name);
8942 }
8943
8944 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
8945 Open the file specified by FILE_NAME and hand it off to BFD for
8946 preliminary analysis. Return a newly initialized bfd *, which
8947 includes a canonicalized copy of FILE_NAME.
8948 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8949 In case of trouble, return NULL.
8950 NOTE: This function is derived from symfile_bfd_open. */
8951
8952 static bfd *
8953 try_open_dwop_file (const char *file_name, int is_dwp)
8954 {
8955 bfd *sym_bfd;
8956 int desc, flags;
8957 char *absolute_name;
8958
8959 flags = OPF_TRY_CWD_FIRST;
8960 if (is_dwp)
8961 flags |= OPF_SEARCH_IN_PATH;
8962 desc = openp (debug_file_directory, flags, file_name,
8963 O_RDONLY | O_BINARY, &absolute_name);
8964 if (desc < 0)
8965 return NULL;
8966
8967 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8968 if (!sym_bfd)
8969 {
8970 xfree (absolute_name);
8971 return NULL;
8972 }
8973 xfree (absolute_name);
8974 bfd_set_cacheable (sym_bfd, 1);
8975
8976 if (!bfd_check_format (sym_bfd, bfd_object))
8977 {
8978 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8979 return NULL;
8980 }
8981
8982 return sym_bfd;
8983 }
8984
8985 /* Try to open DWO file FILE_NAME.
8986 COMP_DIR is the DW_AT_comp_dir attribute.
8987 The result is the bfd handle of the file.
8988 If there is a problem finding or opening the file, return NULL.
8989 Upon success, the canonicalized path of the file is stored in the bfd,
8990 same as symfile_bfd_open. */
8991
8992 static bfd *
8993 open_dwo_file (const char *file_name, const char *comp_dir)
8994 {
8995 bfd *abfd;
8996
8997 if (IS_ABSOLUTE_PATH (file_name))
8998 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
8999
9000 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9001
9002 if (comp_dir != NULL)
9003 {
9004 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9005
9006 /* NOTE: If comp_dir is a relative path, this will also try the
9007 search path, which seems useful. */
9008 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
9009 xfree (path_to_try);
9010 if (abfd != NULL)
9011 return abfd;
9012 }
9013
9014 /* That didn't work, try debug-file-directory, which, despite its name,
9015 is a list of paths. */
9016
9017 if (*debug_file_directory == '\0')
9018 return NULL;
9019
9020 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9021 }
9022
9023 /* This function is mapped across the sections and remembers the offset and
9024 size of each of the DWO debugging sections we are interested in. */
9025
9026 static void
9027 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9028 {
9029 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9030 const struct dwop_section_names *names = &dwop_section_names;
9031
9032 if (section_is_p (sectp->name, &names->abbrev_dwo))
9033 {
9034 dwo_sections->abbrev.asection = sectp;
9035 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9036 }
9037 else if (section_is_p (sectp->name, &names->info_dwo))
9038 {
9039 dwo_sections->info.asection = sectp;
9040 dwo_sections->info.size = bfd_get_section_size (sectp);
9041 }
9042 else if (section_is_p (sectp->name, &names->line_dwo))
9043 {
9044 dwo_sections->line.asection = sectp;
9045 dwo_sections->line.size = bfd_get_section_size (sectp);
9046 }
9047 else if (section_is_p (sectp->name, &names->loc_dwo))
9048 {
9049 dwo_sections->loc.asection = sectp;
9050 dwo_sections->loc.size = bfd_get_section_size (sectp);
9051 }
9052 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9053 {
9054 dwo_sections->macinfo.asection = sectp;
9055 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9056 }
9057 else if (section_is_p (sectp->name, &names->macro_dwo))
9058 {
9059 dwo_sections->macro.asection = sectp;
9060 dwo_sections->macro.size = bfd_get_section_size (sectp);
9061 }
9062 else if (section_is_p (sectp->name, &names->str_dwo))
9063 {
9064 dwo_sections->str.asection = sectp;
9065 dwo_sections->str.size = bfd_get_section_size (sectp);
9066 }
9067 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9068 {
9069 dwo_sections->str_offsets.asection = sectp;
9070 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9071 }
9072 else if (section_is_p (sectp->name, &names->types_dwo))
9073 {
9074 struct dwarf2_section_info type_section;
9075
9076 memset (&type_section, 0, sizeof (type_section));
9077 type_section.asection = sectp;
9078 type_section.size = bfd_get_section_size (sectp);
9079 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9080 &type_section);
9081 }
9082 }
9083
9084 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9085 by PER_CU. This is for the non-DWP case.
9086 The result is NULL if DWO_NAME can't be found. */
9087
9088 static struct dwo_file *
9089 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9090 const char *dwo_name, const char *comp_dir)
9091 {
9092 struct objfile *objfile = dwarf2_per_objfile->objfile;
9093 struct dwo_file *dwo_file;
9094 bfd *dbfd;
9095 struct cleanup *cleanups;
9096
9097 dbfd = open_dwo_file (dwo_name, comp_dir);
9098 if (dbfd == NULL)
9099 {
9100 if (dwarf2_read_debug)
9101 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9102 return NULL;
9103 }
9104 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9105 dwo_file->dwo_name = dwo_name;
9106 dwo_file->comp_dir = comp_dir;
9107 dwo_file->dbfd = dbfd;
9108
9109 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9110
9111 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9112
9113 dwo_file->cu = create_dwo_cu (dwo_file);
9114
9115 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9116 dwo_file->sections.types);
9117
9118 discard_cleanups (cleanups);
9119
9120 if (dwarf2_read_debug)
9121 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9122
9123 return dwo_file;
9124 }
9125
9126 /* This function is mapped across the sections and remembers the offset and
9127 size of each of the DWP debugging sections we are interested in. */
9128
9129 static void
9130 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9131 {
9132 struct dwp_file *dwp_file = dwp_file_ptr;
9133 const struct dwop_section_names *names = &dwop_section_names;
9134 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9135
9136 /* Record the ELF section number for later lookup: this is what the
9137 .debug_cu_index,.debug_tu_index tables use. */
9138 gdb_assert (elf_section_nr < dwp_file->num_sections);
9139 dwp_file->elf_sections[elf_section_nr] = sectp;
9140
9141 /* Look for specific sections that we need. */
9142 if (section_is_p (sectp->name, &names->str_dwo))
9143 {
9144 dwp_file->sections.str.asection = sectp;
9145 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9146 }
9147 else if (section_is_p (sectp->name, &names->cu_index))
9148 {
9149 dwp_file->sections.cu_index.asection = sectp;
9150 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9151 }
9152 else if (section_is_p (sectp->name, &names->tu_index))
9153 {
9154 dwp_file->sections.tu_index.asection = sectp;
9155 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9156 }
9157 }
9158
9159 /* Hash function for dwp_file loaded CUs/TUs. */
9160
9161 static hashval_t
9162 hash_dwp_loaded_cutus (const void *item)
9163 {
9164 const struct dwo_unit *dwo_unit = item;
9165
9166 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9167 return dwo_unit->signature;
9168 }
9169
9170 /* Equality function for dwp_file loaded CUs/TUs. */
9171
9172 static int
9173 eq_dwp_loaded_cutus (const void *a, const void *b)
9174 {
9175 const struct dwo_unit *dua = a;
9176 const struct dwo_unit *dub = b;
9177
9178 return dua->signature == dub->signature;
9179 }
9180
9181 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9182
9183 static htab_t
9184 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9185 {
9186 return htab_create_alloc_ex (3,
9187 hash_dwp_loaded_cutus,
9188 eq_dwp_loaded_cutus,
9189 NULL,
9190 &objfile->objfile_obstack,
9191 hashtab_obstack_allocate,
9192 dummy_obstack_deallocate);
9193 }
9194
9195 /* Try to open DWP file FILE_NAME.
9196 The result is the bfd handle of the file.
9197 If there is a problem finding or opening the file, return NULL.
9198 Upon success, the canonicalized path of the file is stored in the bfd,
9199 same as symfile_bfd_open. */
9200
9201 static bfd *
9202 open_dwp_file (const char *file_name)
9203 {
9204 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9205 }
9206
9207 /* Initialize the use of the DWP file for the current objfile.
9208 By convention the name of the DWP file is ${objfile}.dwp.
9209 The result is NULL if it can't be found. */
9210
9211 static struct dwp_file *
9212 open_and_init_dwp_file (void)
9213 {
9214 struct objfile *objfile = dwarf2_per_objfile->objfile;
9215 struct dwp_file *dwp_file;
9216 char *dwp_name;
9217 bfd *dbfd;
9218 struct cleanup *cleanups;
9219
9220 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9221 cleanups = make_cleanup (xfree, dwp_name);
9222
9223 dbfd = open_dwp_file (dwp_name);
9224 if (dbfd == NULL)
9225 {
9226 if (dwarf2_read_debug)
9227 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9228 do_cleanups (cleanups);
9229 return NULL;
9230 }
9231 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9232 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9233 dwp_name, strlen (dwp_name));
9234 dwp_file->dbfd = dbfd;
9235 do_cleanups (cleanups);
9236
9237 /* +1: section 0 is unused */
9238 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9239 dwp_file->elf_sections =
9240 OBSTACK_CALLOC (&objfile->objfile_obstack,
9241 dwp_file->num_sections, asection *);
9242
9243 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9244
9245 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9246
9247 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9248
9249 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9250
9251 if (dwarf2_read_debug)
9252 {
9253 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9254 fprintf_unfiltered (gdb_stdlog,
9255 " %u CUs, %u TUs\n",
9256 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9257 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9258 }
9259
9260 return dwp_file;
9261 }
9262
9263 /* Wrapper around open_and_init_dwp_file, only open it once. */
9264
9265 static struct dwp_file *
9266 get_dwp_file (void)
9267 {
9268 if (! dwarf2_per_objfile->dwp_checked)
9269 {
9270 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9271 dwarf2_per_objfile->dwp_checked = 1;
9272 }
9273 return dwarf2_per_objfile->dwp_file;
9274 }
9275
9276 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9277 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9278 or in the DWP file for the objfile, referenced by THIS_UNIT.
9279 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9280 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9281
9282 This is called, for example, when wanting to read a variable with a
9283 complex location. Therefore we don't want to do file i/o for every call.
9284 Therefore we don't want to look for a DWO file on every call.
9285 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9286 then we check if we've already seen DWO_NAME, and only THEN do we check
9287 for a DWO file.
9288
9289 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9290 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9291
9292 static struct dwo_unit *
9293 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9294 const char *dwo_name, const char *comp_dir,
9295 ULONGEST signature, int is_debug_types)
9296 {
9297 struct objfile *objfile = dwarf2_per_objfile->objfile;
9298 const char *kind = is_debug_types ? "TU" : "CU";
9299 void **dwo_file_slot;
9300 struct dwo_file *dwo_file;
9301 struct dwp_file *dwp_file;
9302
9303 /* First see if there's a DWP file.
9304 If we have a DWP file but didn't find the DWO inside it, don't
9305 look for the original DWO file. It makes gdb behave differently
9306 depending on whether one is debugging in the build tree. */
9307
9308 dwp_file = get_dwp_file ();
9309 if (dwp_file != NULL)
9310 {
9311 const struct dwp_hash_table *dwp_htab =
9312 is_debug_types ? dwp_file->tus : dwp_file->cus;
9313
9314 if (dwp_htab != NULL)
9315 {
9316 struct dwo_unit *dwo_cutu =
9317 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9318 signature, is_debug_types);
9319
9320 if (dwo_cutu != NULL)
9321 {
9322 if (dwarf2_read_debug)
9323 {
9324 fprintf_unfiltered (gdb_stdlog,
9325 "Virtual DWO %s %s found: @%s\n",
9326 kind, hex_string (signature),
9327 host_address_to_string (dwo_cutu));
9328 }
9329 return dwo_cutu;
9330 }
9331 }
9332 }
9333 else
9334 {
9335 /* No DWP file, look for the DWO file. */
9336
9337 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9338 if (*dwo_file_slot == NULL)
9339 {
9340 /* Read in the file and build a table of the CUs/TUs it contains. */
9341 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9342 }
9343 /* NOTE: This will be NULL if unable to open the file. */
9344 dwo_file = *dwo_file_slot;
9345
9346 if (dwo_file != NULL)
9347 {
9348 struct dwo_unit *dwo_cutu = NULL;
9349
9350 if (is_debug_types && dwo_file->tus)
9351 {
9352 struct dwo_unit find_dwo_cutu;
9353
9354 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9355 find_dwo_cutu.signature = signature;
9356 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9357 }
9358 else if (!is_debug_types && dwo_file->cu)
9359 {
9360 if (signature == dwo_file->cu->signature)
9361 dwo_cutu = dwo_file->cu;
9362 }
9363
9364 if (dwo_cutu != NULL)
9365 {
9366 if (dwarf2_read_debug)
9367 {
9368 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9369 kind, dwo_name, hex_string (signature),
9370 host_address_to_string (dwo_cutu));
9371 }
9372 return dwo_cutu;
9373 }
9374 }
9375 }
9376
9377 /* We didn't find it. This could mean a dwo_id mismatch, or
9378 someone deleted the DWO/DWP file, or the search path isn't set up
9379 correctly to find the file. */
9380
9381 if (dwarf2_read_debug)
9382 {
9383 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9384 kind, dwo_name, hex_string (signature));
9385 }
9386
9387 complaint (&symfile_complaints,
9388 _("Could not find DWO %s %s(%s) referenced by CU at offset 0x%x"
9389 " [in module %s]"),
9390 kind, dwo_name, hex_string (signature),
9391 this_unit->offset.sect_off, objfile->name);
9392 return NULL;
9393 }
9394
9395 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9396 See lookup_dwo_cutu_unit for details. */
9397
9398 static struct dwo_unit *
9399 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9400 const char *dwo_name, const char *comp_dir,
9401 ULONGEST signature)
9402 {
9403 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9404 }
9405
9406 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9407 See lookup_dwo_cutu_unit for details. */
9408
9409 static struct dwo_unit *
9410 lookup_dwo_type_unit (struct signatured_type *this_tu,
9411 const char *dwo_name, const char *comp_dir)
9412 {
9413 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9414 }
9415
9416 /* Free all resources associated with DWO_FILE.
9417 Close the DWO file and munmap the sections.
9418 All memory should be on the objfile obstack. */
9419
9420 static void
9421 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9422 {
9423 int ix;
9424 struct dwarf2_section_info *section;
9425
9426 /* Note: dbfd is NULL for virtual DWO files. */
9427 gdb_bfd_unref (dwo_file->dbfd);
9428
9429 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9430 }
9431
9432 /* Wrapper for free_dwo_file for use in cleanups. */
9433
9434 static void
9435 free_dwo_file_cleanup (void *arg)
9436 {
9437 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9438 struct objfile *objfile = dwarf2_per_objfile->objfile;
9439
9440 free_dwo_file (dwo_file, objfile);
9441 }
9442
9443 /* Traversal function for free_dwo_files. */
9444
9445 static int
9446 free_dwo_file_from_slot (void **slot, void *info)
9447 {
9448 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9449 struct objfile *objfile = (struct objfile *) info;
9450
9451 free_dwo_file (dwo_file, objfile);
9452
9453 return 1;
9454 }
9455
9456 /* Free all resources associated with DWO_FILES. */
9457
9458 static void
9459 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9460 {
9461 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9462 }
9463 \f
9464 /* Read in various DIEs. */
9465
9466 /* qsort helper for inherit_abstract_dies. */
9467
9468 static int
9469 unsigned_int_compar (const void *ap, const void *bp)
9470 {
9471 unsigned int a = *(unsigned int *) ap;
9472 unsigned int b = *(unsigned int *) bp;
9473
9474 return (a > b) - (b > a);
9475 }
9476
9477 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9478 Inherit only the children of the DW_AT_abstract_origin DIE not being
9479 already referenced by DW_AT_abstract_origin from the children of the
9480 current DIE. */
9481
9482 static void
9483 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9484 {
9485 struct die_info *child_die;
9486 unsigned die_children_count;
9487 /* CU offsets which were referenced by children of the current DIE. */
9488 sect_offset *offsets;
9489 sect_offset *offsets_end, *offsetp;
9490 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9491 struct die_info *origin_die;
9492 /* Iterator of the ORIGIN_DIE children. */
9493 struct die_info *origin_child_die;
9494 struct cleanup *cleanups;
9495 struct attribute *attr;
9496 struct dwarf2_cu *origin_cu;
9497 struct pending **origin_previous_list_in_scope;
9498
9499 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9500 if (!attr)
9501 return;
9502
9503 /* Note that following die references may follow to a die in a
9504 different cu. */
9505
9506 origin_cu = cu;
9507 origin_die = follow_die_ref (die, attr, &origin_cu);
9508
9509 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9510 symbols in. */
9511 origin_previous_list_in_scope = origin_cu->list_in_scope;
9512 origin_cu->list_in_scope = cu->list_in_scope;
9513
9514 if (die->tag != origin_die->tag
9515 && !(die->tag == DW_TAG_inlined_subroutine
9516 && origin_die->tag == DW_TAG_subprogram))
9517 complaint (&symfile_complaints,
9518 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9519 die->offset.sect_off, origin_die->offset.sect_off);
9520
9521 child_die = die->child;
9522 die_children_count = 0;
9523 while (child_die && child_die->tag)
9524 {
9525 child_die = sibling_die (child_die);
9526 die_children_count++;
9527 }
9528 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9529 cleanups = make_cleanup (xfree, offsets);
9530
9531 offsets_end = offsets;
9532 child_die = die->child;
9533 while (child_die && child_die->tag)
9534 {
9535 /* For each CHILD_DIE, find the corresponding child of
9536 ORIGIN_DIE. If there is more than one layer of
9537 DW_AT_abstract_origin, follow them all; there shouldn't be,
9538 but GCC versions at least through 4.4 generate this (GCC PR
9539 40573). */
9540 struct die_info *child_origin_die = child_die;
9541 struct dwarf2_cu *child_origin_cu = cu;
9542
9543 while (1)
9544 {
9545 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9546 child_origin_cu);
9547 if (attr == NULL)
9548 break;
9549 child_origin_die = follow_die_ref (child_origin_die, attr,
9550 &child_origin_cu);
9551 }
9552
9553 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9554 counterpart may exist. */
9555 if (child_origin_die != child_die)
9556 {
9557 if (child_die->tag != child_origin_die->tag
9558 && !(child_die->tag == DW_TAG_inlined_subroutine
9559 && child_origin_die->tag == DW_TAG_subprogram))
9560 complaint (&symfile_complaints,
9561 _("Child DIE 0x%x and its abstract origin 0x%x have "
9562 "different tags"), child_die->offset.sect_off,
9563 child_origin_die->offset.sect_off);
9564 if (child_origin_die->parent != origin_die)
9565 complaint (&symfile_complaints,
9566 _("Child DIE 0x%x and its abstract origin 0x%x have "
9567 "different parents"), child_die->offset.sect_off,
9568 child_origin_die->offset.sect_off);
9569 else
9570 *offsets_end++ = child_origin_die->offset;
9571 }
9572 child_die = sibling_die (child_die);
9573 }
9574 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9575 unsigned_int_compar);
9576 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9577 if (offsetp[-1].sect_off == offsetp->sect_off)
9578 complaint (&symfile_complaints,
9579 _("Multiple children of DIE 0x%x refer "
9580 "to DIE 0x%x as their abstract origin"),
9581 die->offset.sect_off, offsetp->sect_off);
9582
9583 offsetp = offsets;
9584 origin_child_die = origin_die->child;
9585 while (origin_child_die && origin_child_die->tag)
9586 {
9587 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9588 while (offsetp < offsets_end
9589 && offsetp->sect_off < origin_child_die->offset.sect_off)
9590 offsetp++;
9591 if (offsetp >= offsets_end
9592 || offsetp->sect_off > origin_child_die->offset.sect_off)
9593 {
9594 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9595 process_die (origin_child_die, origin_cu);
9596 }
9597 origin_child_die = sibling_die (origin_child_die);
9598 }
9599 origin_cu->list_in_scope = origin_previous_list_in_scope;
9600
9601 do_cleanups (cleanups);
9602 }
9603
9604 static void
9605 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9606 {
9607 struct objfile *objfile = cu->objfile;
9608 struct context_stack *new;
9609 CORE_ADDR lowpc;
9610 CORE_ADDR highpc;
9611 struct die_info *child_die;
9612 struct attribute *attr, *call_line, *call_file;
9613 const char *name;
9614 CORE_ADDR baseaddr;
9615 struct block *block;
9616 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9617 VEC (symbolp) *template_args = NULL;
9618 struct template_symbol *templ_func = NULL;
9619
9620 if (inlined_func)
9621 {
9622 /* If we do not have call site information, we can't show the
9623 caller of this inlined function. That's too confusing, so
9624 only use the scope for local variables. */
9625 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9626 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9627 if (call_line == NULL || call_file == NULL)
9628 {
9629 read_lexical_block_scope (die, cu);
9630 return;
9631 }
9632 }
9633
9634 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9635
9636 name = dwarf2_name (die, cu);
9637
9638 /* Ignore functions with missing or empty names. These are actually
9639 illegal according to the DWARF standard. */
9640 if (name == NULL)
9641 {
9642 complaint (&symfile_complaints,
9643 _("missing name for subprogram DIE at %d"),
9644 die->offset.sect_off);
9645 return;
9646 }
9647
9648 /* Ignore functions with missing or invalid low and high pc attributes. */
9649 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9650 {
9651 attr = dwarf2_attr (die, DW_AT_external, cu);
9652 if (!attr || !DW_UNSND (attr))
9653 complaint (&symfile_complaints,
9654 _("cannot get low and high bounds "
9655 "for subprogram DIE at %d"),
9656 die->offset.sect_off);
9657 return;
9658 }
9659
9660 lowpc += baseaddr;
9661 highpc += baseaddr;
9662
9663 /* If we have any template arguments, then we must allocate a
9664 different sort of symbol. */
9665 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9666 {
9667 if (child_die->tag == DW_TAG_template_type_param
9668 || child_die->tag == DW_TAG_template_value_param)
9669 {
9670 templ_func = allocate_template_symbol (objfile);
9671 templ_func->base.is_cplus_template_function = 1;
9672 break;
9673 }
9674 }
9675
9676 new = push_context (0, lowpc);
9677 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9678 (struct symbol *) templ_func);
9679
9680 /* If there is a location expression for DW_AT_frame_base, record
9681 it. */
9682 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9683 if (attr)
9684 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
9685
9686 cu->list_in_scope = &local_symbols;
9687
9688 if (die->child != NULL)
9689 {
9690 child_die = die->child;
9691 while (child_die && child_die->tag)
9692 {
9693 if (child_die->tag == DW_TAG_template_type_param
9694 || child_die->tag == DW_TAG_template_value_param)
9695 {
9696 struct symbol *arg = new_symbol (child_die, NULL, cu);
9697
9698 if (arg != NULL)
9699 VEC_safe_push (symbolp, template_args, arg);
9700 }
9701 else
9702 process_die (child_die, cu);
9703 child_die = sibling_die (child_die);
9704 }
9705 }
9706
9707 inherit_abstract_dies (die, cu);
9708
9709 /* If we have a DW_AT_specification, we might need to import using
9710 directives from the context of the specification DIE. See the
9711 comment in determine_prefix. */
9712 if (cu->language == language_cplus
9713 && dwarf2_attr (die, DW_AT_specification, cu))
9714 {
9715 struct dwarf2_cu *spec_cu = cu;
9716 struct die_info *spec_die = die_specification (die, &spec_cu);
9717
9718 while (spec_die)
9719 {
9720 child_die = spec_die->child;
9721 while (child_die && child_die->tag)
9722 {
9723 if (child_die->tag == DW_TAG_imported_module)
9724 process_die (child_die, spec_cu);
9725 child_die = sibling_die (child_die);
9726 }
9727
9728 /* In some cases, GCC generates specification DIEs that
9729 themselves contain DW_AT_specification attributes. */
9730 spec_die = die_specification (spec_die, &spec_cu);
9731 }
9732 }
9733
9734 new = pop_context ();
9735 /* Make a block for the local symbols within. */
9736 block = finish_block (new->name, &local_symbols, new->old_blocks,
9737 lowpc, highpc, objfile);
9738
9739 /* For C++, set the block's scope. */
9740 if ((cu->language == language_cplus || cu->language == language_fortran)
9741 && cu->processing_has_namespace_info)
9742 block_set_scope (block, determine_prefix (die, cu),
9743 &objfile->objfile_obstack);
9744
9745 /* If we have address ranges, record them. */
9746 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9747
9748 /* Attach template arguments to function. */
9749 if (! VEC_empty (symbolp, template_args))
9750 {
9751 gdb_assert (templ_func != NULL);
9752
9753 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9754 templ_func->template_arguments
9755 = obstack_alloc (&objfile->objfile_obstack,
9756 (templ_func->n_template_arguments
9757 * sizeof (struct symbol *)));
9758 memcpy (templ_func->template_arguments,
9759 VEC_address (symbolp, template_args),
9760 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9761 VEC_free (symbolp, template_args);
9762 }
9763
9764 /* In C++, we can have functions nested inside functions (e.g., when
9765 a function declares a class that has methods). This means that
9766 when we finish processing a function scope, we may need to go
9767 back to building a containing block's symbol lists. */
9768 local_symbols = new->locals;
9769 using_directives = new->using_directives;
9770
9771 /* If we've finished processing a top-level function, subsequent
9772 symbols go in the file symbol list. */
9773 if (outermost_context_p ())
9774 cu->list_in_scope = &file_symbols;
9775 }
9776
9777 /* Process all the DIES contained within a lexical block scope. Start
9778 a new scope, process the dies, and then close the scope. */
9779
9780 static void
9781 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9782 {
9783 struct objfile *objfile = cu->objfile;
9784 struct context_stack *new;
9785 CORE_ADDR lowpc, highpc;
9786 struct die_info *child_die;
9787 CORE_ADDR baseaddr;
9788
9789 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9790
9791 /* Ignore blocks with missing or invalid low and high pc attributes. */
9792 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9793 as multiple lexical blocks? Handling children in a sane way would
9794 be nasty. Might be easier to properly extend generic blocks to
9795 describe ranges. */
9796 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9797 return;
9798 lowpc += baseaddr;
9799 highpc += baseaddr;
9800
9801 push_context (0, lowpc);
9802 if (die->child != NULL)
9803 {
9804 child_die = die->child;
9805 while (child_die && child_die->tag)
9806 {
9807 process_die (child_die, cu);
9808 child_die = sibling_die (child_die);
9809 }
9810 }
9811 new = pop_context ();
9812
9813 if (local_symbols != NULL || using_directives != NULL)
9814 {
9815 struct block *block
9816 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9817 highpc, objfile);
9818
9819 /* Note that recording ranges after traversing children, as we
9820 do here, means that recording a parent's ranges entails
9821 walking across all its children's ranges as they appear in
9822 the address map, which is quadratic behavior.
9823
9824 It would be nicer to record the parent's ranges before
9825 traversing its children, simply overriding whatever you find
9826 there. But since we don't even decide whether to create a
9827 block until after we've traversed its children, that's hard
9828 to do. */
9829 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9830 }
9831 local_symbols = new->locals;
9832 using_directives = new->using_directives;
9833 }
9834
9835 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9836
9837 static void
9838 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9839 {
9840 struct objfile *objfile = cu->objfile;
9841 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9842 CORE_ADDR pc, baseaddr;
9843 struct attribute *attr;
9844 struct call_site *call_site, call_site_local;
9845 void **slot;
9846 int nparams;
9847 struct die_info *child_die;
9848
9849 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9850
9851 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9852 if (!attr)
9853 {
9854 complaint (&symfile_complaints,
9855 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9856 "DIE 0x%x [in module %s]"),
9857 die->offset.sect_off, objfile->name);
9858 return;
9859 }
9860 pc = DW_ADDR (attr) + baseaddr;
9861
9862 if (cu->call_site_htab == NULL)
9863 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9864 NULL, &objfile->objfile_obstack,
9865 hashtab_obstack_allocate, NULL);
9866 call_site_local.pc = pc;
9867 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9868 if (*slot != NULL)
9869 {
9870 complaint (&symfile_complaints,
9871 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9872 "DIE 0x%x [in module %s]"),
9873 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9874 return;
9875 }
9876
9877 /* Count parameters at the caller. */
9878
9879 nparams = 0;
9880 for (child_die = die->child; child_die && child_die->tag;
9881 child_die = sibling_die (child_die))
9882 {
9883 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9884 {
9885 complaint (&symfile_complaints,
9886 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9887 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9888 child_die->tag, child_die->offset.sect_off, objfile->name);
9889 continue;
9890 }
9891
9892 nparams++;
9893 }
9894
9895 call_site = obstack_alloc (&objfile->objfile_obstack,
9896 (sizeof (*call_site)
9897 + (sizeof (*call_site->parameter)
9898 * (nparams - 1))));
9899 *slot = call_site;
9900 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9901 call_site->pc = pc;
9902
9903 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9904 {
9905 struct die_info *func_die;
9906
9907 /* Skip also over DW_TAG_inlined_subroutine. */
9908 for (func_die = die->parent;
9909 func_die && func_die->tag != DW_TAG_subprogram
9910 && func_die->tag != DW_TAG_subroutine_type;
9911 func_die = func_die->parent);
9912
9913 /* DW_AT_GNU_all_call_sites is a superset
9914 of DW_AT_GNU_all_tail_call_sites. */
9915 if (func_die
9916 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9917 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9918 {
9919 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9920 not complete. But keep CALL_SITE for look ups via call_site_htab,
9921 both the initial caller containing the real return address PC and
9922 the final callee containing the current PC of a chain of tail
9923 calls do not need to have the tail call list complete. But any
9924 function candidate for a virtual tail call frame searched via
9925 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9926 determined unambiguously. */
9927 }
9928 else
9929 {
9930 struct type *func_type = NULL;
9931
9932 if (func_die)
9933 func_type = get_die_type (func_die, cu);
9934 if (func_type != NULL)
9935 {
9936 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9937
9938 /* Enlist this call site to the function. */
9939 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9940 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9941 }
9942 else
9943 complaint (&symfile_complaints,
9944 _("Cannot find function owning DW_TAG_GNU_call_site "
9945 "DIE 0x%x [in module %s]"),
9946 die->offset.sect_off, objfile->name);
9947 }
9948 }
9949
9950 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9951 if (attr == NULL)
9952 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9953 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9954 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9955 /* Keep NULL DWARF_BLOCK. */;
9956 else if (attr_form_is_block (attr))
9957 {
9958 struct dwarf2_locexpr_baton *dlbaton;
9959
9960 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9961 dlbaton->data = DW_BLOCK (attr)->data;
9962 dlbaton->size = DW_BLOCK (attr)->size;
9963 dlbaton->per_cu = cu->per_cu;
9964
9965 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9966 }
9967 else if (is_ref_attr (attr))
9968 {
9969 struct dwarf2_cu *target_cu = cu;
9970 struct die_info *target_die;
9971
9972 target_die = follow_die_ref (die, attr, &target_cu);
9973 gdb_assert (target_cu->objfile == objfile);
9974 if (die_is_declaration (target_die, target_cu))
9975 {
9976 const char *target_physname = NULL;
9977 struct attribute *target_attr;
9978
9979 /* Prefer the mangled name; otherwise compute the demangled one. */
9980 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9981 if (target_attr == NULL)
9982 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9983 target_cu);
9984 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9985 target_physname = DW_STRING (target_attr);
9986 else
9987 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9988 if (target_physname == NULL)
9989 complaint (&symfile_complaints,
9990 _("DW_AT_GNU_call_site_target target DIE has invalid "
9991 "physname, for referencing DIE 0x%x [in module %s]"),
9992 die->offset.sect_off, objfile->name);
9993 else
9994 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9995 }
9996 else
9997 {
9998 CORE_ADDR lowpc;
9999
10000 /* DW_AT_entry_pc should be preferred. */
10001 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10002 complaint (&symfile_complaints,
10003 _("DW_AT_GNU_call_site_target target DIE has invalid "
10004 "low pc, for referencing DIE 0x%x [in module %s]"),
10005 die->offset.sect_off, objfile->name);
10006 else
10007 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10008 }
10009 }
10010 else
10011 complaint (&symfile_complaints,
10012 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10013 "block nor reference, for DIE 0x%x [in module %s]"),
10014 die->offset.sect_off, objfile->name);
10015
10016 call_site->per_cu = cu->per_cu;
10017
10018 for (child_die = die->child;
10019 child_die && child_die->tag;
10020 child_die = sibling_die (child_die))
10021 {
10022 struct call_site_parameter *parameter;
10023 struct attribute *loc, *origin;
10024
10025 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10026 {
10027 /* Already printed the complaint above. */
10028 continue;
10029 }
10030
10031 gdb_assert (call_site->parameter_count < nparams);
10032 parameter = &call_site->parameter[call_site->parameter_count];
10033
10034 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10035 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10036 register is contained in DW_AT_GNU_call_site_value. */
10037
10038 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10039 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10040 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10041 {
10042 sect_offset offset;
10043
10044 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10045 offset = dwarf2_get_ref_die_offset (origin);
10046 if (!offset_in_cu_p (&cu->header, offset))
10047 {
10048 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10049 binding can be done only inside one CU. Such referenced DIE
10050 therefore cannot be even moved to DW_TAG_partial_unit. */
10051 complaint (&symfile_complaints,
10052 _("DW_AT_abstract_origin offset is not in CU for "
10053 "DW_TAG_GNU_call_site child DIE 0x%x "
10054 "[in module %s]"),
10055 child_die->offset.sect_off, objfile->name);
10056 continue;
10057 }
10058 parameter->u.param_offset.cu_off = (offset.sect_off
10059 - cu->header.offset.sect_off);
10060 }
10061 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10062 {
10063 complaint (&symfile_complaints,
10064 _("No DW_FORM_block* DW_AT_location for "
10065 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10066 child_die->offset.sect_off, objfile->name);
10067 continue;
10068 }
10069 else
10070 {
10071 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10072 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10073 if (parameter->u.dwarf_reg != -1)
10074 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10075 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10076 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10077 &parameter->u.fb_offset))
10078 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10079 else
10080 {
10081 complaint (&symfile_complaints,
10082 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10083 "for DW_FORM_block* DW_AT_location is supported for "
10084 "DW_TAG_GNU_call_site child DIE 0x%x "
10085 "[in module %s]"),
10086 child_die->offset.sect_off, objfile->name);
10087 continue;
10088 }
10089 }
10090
10091 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10092 if (!attr_form_is_block (attr))
10093 {
10094 complaint (&symfile_complaints,
10095 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10096 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10097 child_die->offset.sect_off, objfile->name);
10098 continue;
10099 }
10100 parameter->value = DW_BLOCK (attr)->data;
10101 parameter->value_size = DW_BLOCK (attr)->size;
10102
10103 /* Parameters are not pre-cleared by memset above. */
10104 parameter->data_value = NULL;
10105 parameter->data_value_size = 0;
10106 call_site->parameter_count++;
10107
10108 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10109 if (attr)
10110 {
10111 if (!attr_form_is_block (attr))
10112 complaint (&symfile_complaints,
10113 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10114 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10115 child_die->offset.sect_off, objfile->name);
10116 else
10117 {
10118 parameter->data_value = DW_BLOCK (attr)->data;
10119 parameter->data_value_size = DW_BLOCK (attr)->size;
10120 }
10121 }
10122 }
10123 }
10124
10125 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10126 Return 1 if the attributes are present and valid, otherwise, return 0.
10127 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10128
10129 static int
10130 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10131 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10132 struct partial_symtab *ranges_pst)
10133 {
10134 struct objfile *objfile = cu->objfile;
10135 struct comp_unit_head *cu_header = &cu->header;
10136 bfd *obfd = objfile->obfd;
10137 unsigned int addr_size = cu_header->addr_size;
10138 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10139 /* Base address selection entry. */
10140 CORE_ADDR base;
10141 int found_base;
10142 unsigned int dummy;
10143 const gdb_byte *buffer;
10144 CORE_ADDR marker;
10145 int low_set;
10146 CORE_ADDR low = 0;
10147 CORE_ADDR high = 0;
10148 CORE_ADDR baseaddr;
10149
10150 found_base = cu->base_known;
10151 base = cu->base_address;
10152
10153 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10154 if (offset >= dwarf2_per_objfile->ranges.size)
10155 {
10156 complaint (&symfile_complaints,
10157 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10158 offset);
10159 return 0;
10160 }
10161 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10162
10163 /* Read in the largest possible address. */
10164 marker = read_address (obfd, buffer, cu, &dummy);
10165 if ((marker & mask) == mask)
10166 {
10167 /* If we found the largest possible address, then
10168 read the base address. */
10169 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10170 buffer += 2 * addr_size;
10171 offset += 2 * addr_size;
10172 found_base = 1;
10173 }
10174
10175 low_set = 0;
10176
10177 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10178
10179 while (1)
10180 {
10181 CORE_ADDR range_beginning, range_end;
10182
10183 range_beginning = read_address (obfd, buffer, cu, &dummy);
10184 buffer += addr_size;
10185 range_end = read_address (obfd, buffer, cu, &dummy);
10186 buffer += addr_size;
10187 offset += 2 * addr_size;
10188
10189 /* An end of list marker is a pair of zero addresses. */
10190 if (range_beginning == 0 && range_end == 0)
10191 /* Found the end of list entry. */
10192 break;
10193
10194 /* Each base address selection entry is a pair of 2 values.
10195 The first is the largest possible address, the second is
10196 the base address. Check for a base address here. */
10197 if ((range_beginning & mask) == mask)
10198 {
10199 /* If we found the largest possible address, then
10200 read the base address. */
10201 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10202 found_base = 1;
10203 continue;
10204 }
10205
10206 if (!found_base)
10207 {
10208 /* We have no valid base address for the ranges
10209 data. */
10210 complaint (&symfile_complaints,
10211 _("Invalid .debug_ranges data (no base address)"));
10212 return 0;
10213 }
10214
10215 if (range_beginning > range_end)
10216 {
10217 /* Inverted range entries are invalid. */
10218 complaint (&symfile_complaints,
10219 _("Invalid .debug_ranges data (inverted range)"));
10220 return 0;
10221 }
10222
10223 /* Empty range entries have no effect. */
10224 if (range_beginning == range_end)
10225 continue;
10226
10227 range_beginning += base;
10228 range_end += base;
10229
10230 /* A not-uncommon case of bad debug info.
10231 Don't pollute the addrmap with bad data. */
10232 if (range_beginning + baseaddr == 0
10233 && !dwarf2_per_objfile->has_section_at_zero)
10234 {
10235 complaint (&symfile_complaints,
10236 _(".debug_ranges entry has start address of zero"
10237 " [in module %s]"), objfile->name);
10238 continue;
10239 }
10240
10241 if (ranges_pst != NULL)
10242 addrmap_set_empty (objfile->psymtabs_addrmap,
10243 range_beginning + baseaddr,
10244 range_end - 1 + baseaddr,
10245 ranges_pst);
10246
10247 /* FIXME: This is recording everything as a low-high
10248 segment of consecutive addresses. We should have a
10249 data structure for discontiguous block ranges
10250 instead. */
10251 if (! low_set)
10252 {
10253 low = range_beginning;
10254 high = range_end;
10255 low_set = 1;
10256 }
10257 else
10258 {
10259 if (range_beginning < low)
10260 low = range_beginning;
10261 if (range_end > high)
10262 high = range_end;
10263 }
10264 }
10265
10266 if (! low_set)
10267 /* If the first entry is an end-of-list marker, the range
10268 describes an empty scope, i.e. no instructions. */
10269 return 0;
10270
10271 if (low_return)
10272 *low_return = low;
10273 if (high_return)
10274 *high_return = high;
10275 return 1;
10276 }
10277
10278 /* Get low and high pc attributes from a die. Return 1 if the attributes
10279 are present and valid, otherwise, return 0. Return -1 if the range is
10280 discontinuous, i.e. derived from DW_AT_ranges information. */
10281
10282 static int
10283 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10284 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10285 struct partial_symtab *pst)
10286 {
10287 struct attribute *attr;
10288 struct attribute *attr_high;
10289 CORE_ADDR low = 0;
10290 CORE_ADDR high = 0;
10291 int ret = 0;
10292
10293 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10294 if (attr_high)
10295 {
10296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10297 if (attr)
10298 {
10299 low = DW_ADDR (attr);
10300 if (attr_high->form == DW_FORM_addr
10301 || attr_high->form == DW_FORM_GNU_addr_index)
10302 high = DW_ADDR (attr_high);
10303 else
10304 high = low + DW_UNSND (attr_high);
10305 }
10306 else
10307 /* Found high w/o low attribute. */
10308 return 0;
10309
10310 /* Found consecutive range of addresses. */
10311 ret = 1;
10312 }
10313 else
10314 {
10315 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10316 if (attr != NULL)
10317 {
10318 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10319 We take advantage of the fact that DW_AT_ranges does not appear
10320 in DW_TAG_compile_unit of DWO files. */
10321 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10322 unsigned int ranges_offset = (DW_UNSND (attr)
10323 + (need_ranges_base
10324 ? cu->ranges_base
10325 : 0));
10326
10327 /* Value of the DW_AT_ranges attribute is the offset in the
10328 .debug_ranges section. */
10329 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10330 return 0;
10331 /* Found discontinuous range of addresses. */
10332 ret = -1;
10333 }
10334 }
10335
10336 /* read_partial_die has also the strict LOW < HIGH requirement. */
10337 if (high <= low)
10338 return 0;
10339
10340 /* When using the GNU linker, .gnu.linkonce. sections are used to
10341 eliminate duplicate copies of functions and vtables and such.
10342 The linker will arbitrarily choose one and discard the others.
10343 The AT_*_pc values for such functions refer to local labels in
10344 these sections. If the section from that file was discarded, the
10345 labels are not in the output, so the relocs get a value of 0.
10346 If this is a discarded function, mark the pc bounds as invalid,
10347 so that GDB will ignore it. */
10348 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10349 return 0;
10350
10351 *lowpc = low;
10352 if (highpc)
10353 *highpc = high;
10354 return ret;
10355 }
10356
10357 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10358 its low and high PC addresses. Do nothing if these addresses could not
10359 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10360 and HIGHPC to the high address if greater than HIGHPC. */
10361
10362 static void
10363 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10364 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10365 struct dwarf2_cu *cu)
10366 {
10367 CORE_ADDR low, high;
10368 struct die_info *child = die->child;
10369
10370 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10371 {
10372 *lowpc = min (*lowpc, low);
10373 *highpc = max (*highpc, high);
10374 }
10375
10376 /* If the language does not allow nested subprograms (either inside
10377 subprograms or lexical blocks), we're done. */
10378 if (cu->language != language_ada)
10379 return;
10380
10381 /* Check all the children of the given DIE. If it contains nested
10382 subprograms, then check their pc bounds. Likewise, we need to
10383 check lexical blocks as well, as they may also contain subprogram
10384 definitions. */
10385 while (child && child->tag)
10386 {
10387 if (child->tag == DW_TAG_subprogram
10388 || child->tag == DW_TAG_lexical_block)
10389 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10390 child = sibling_die (child);
10391 }
10392 }
10393
10394 /* Get the low and high pc's represented by the scope DIE, and store
10395 them in *LOWPC and *HIGHPC. If the correct values can't be
10396 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10397
10398 static void
10399 get_scope_pc_bounds (struct die_info *die,
10400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10401 struct dwarf2_cu *cu)
10402 {
10403 CORE_ADDR best_low = (CORE_ADDR) -1;
10404 CORE_ADDR best_high = (CORE_ADDR) 0;
10405 CORE_ADDR current_low, current_high;
10406
10407 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10408 {
10409 best_low = current_low;
10410 best_high = current_high;
10411 }
10412 else
10413 {
10414 struct die_info *child = die->child;
10415
10416 while (child && child->tag)
10417 {
10418 switch (child->tag) {
10419 case DW_TAG_subprogram:
10420 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10421 break;
10422 case DW_TAG_namespace:
10423 case DW_TAG_module:
10424 /* FIXME: carlton/2004-01-16: Should we do this for
10425 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10426 that current GCC's always emit the DIEs corresponding
10427 to definitions of methods of classes as children of a
10428 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10429 the DIEs giving the declarations, which could be
10430 anywhere). But I don't see any reason why the
10431 standards says that they have to be there. */
10432 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10433
10434 if (current_low != ((CORE_ADDR) -1))
10435 {
10436 best_low = min (best_low, current_low);
10437 best_high = max (best_high, current_high);
10438 }
10439 break;
10440 default:
10441 /* Ignore. */
10442 break;
10443 }
10444
10445 child = sibling_die (child);
10446 }
10447 }
10448
10449 *lowpc = best_low;
10450 *highpc = best_high;
10451 }
10452
10453 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10454 in DIE. */
10455
10456 static void
10457 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10458 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10459 {
10460 struct objfile *objfile = cu->objfile;
10461 struct attribute *attr;
10462 struct attribute *attr_high;
10463
10464 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10465 if (attr_high)
10466 {
10467 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10468 if (attr)
10469 {
10470 CORE_ADDR low = DW_ADDR (attr);
10471 CORE_ADDR high;
10472 if (attr_high->form == DW_FORM_addr
10473 || attr_high->form == DW_FORM_GNU_addr_index)
10474 high = DW_ADDR (attr_high);
10475 else
10476 high = low + DW_UNSND (attr_high);
10477
10478 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10479 }
10480 }
10481
10482 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10483 if (attr)
10484 {
10485 bfd *obfd = objfile->obfd;
10486 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10487 We take advantage of the fact that DW_AT_ranges does not appear
10488 in DW_TAG_compile_unit of DWO files. */
10489 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10490
10491 /* The value of the DW_AT_ranges attribute is the offset of the
10492 address range list in the .debug_ranges section. */
10493 unsigned long offset = (DW_UNSND (attr)
10494 + (need_ranges_base ? cu->ranges_base : 0));
10495 const gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10496
10497 /* For some target architectures, but not others, the
10498 read_address function sign-extends the addresses it returns.
10499 To recognize base address selection entries, we need a
10500 mask. */
10501 unsigned int addr_size = cu->header.addr_size;
10502 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10503
10504 /* The base address, to which the next pair is relative. Note
10505 that this 'base' is a DWARF concept: most entries in a range
10506 list are relative, to reduce the number of relocs against the
10507 debugging information. This is separate from this function's
10508 'baseaddr' argument, which GDB uses to relocate debugging
10509 information from a shared library based on the address at
10510 which the library was loaded. */
10511 CORE_ADDR base = cu->base_address;
10512 int base_known = cu->base_known;
10513
10514 gdb_assert (dwarf2_per_objfile->ranges.readin);
10515 if (offset >= dwarf2_per_objfile->ranges.size)
10516 {
10517 complaint (&symfile_complaints,
10518 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10519 offset);
10520 return;
10521 }
10522
10523 for (;;)
10524 {
10525 unsigned int bytes_read;
10526 CORE_ADDR start, end;
10527
10528 start = read_address (obfd, buffer, cu, &bytes_read);
10529 buffer += bytes_read;
10530 end = read_address (obfd, buffer, cu, &bytes_read);
10531 buffer += bytes_read;
10532
10533 /* Did we find the end of the range list? */
10534 if (start == 0 && end == 0)
10535 break;
10536
10537 /* Did we find a base address selection entry? */
10538 else if ((start & base_select_mask) == base_select_mask)
10539 {
10540 base = end;
10541 base_known = 1;
10542 }
10543
10544 /* We found an ordinary address range. */
10545 else
10546 {
10547 if (!base_known)
10548 {
10549 complaint (&symfile_complaints,
10550 _("Invalid .debug_ranges data "
10551 "(no base address)"));
10552 return;
10553 }
10554
10555 if (start > end)
10556 {
10557 /* Inverted range entries are invalid. */
10558 complaint (&symfile_complaints,
10559 _("Invalid .debug_ranges data "
10560 "(inverted range)"));
10561 return;
10562 }
10563
10564 /* Empty range entries have no effect. */
10565 if (start == end)
10566 continue;
10567
10568 start += base + baseaddr;
10569 end += base + baseaddr;
10570
10571 /* A not-uncommon case of bad debug info.
10572 Don't pollute the addrmap with bad data. */
10573 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10574 {
10575 complaint (&symfile_complaints,
10576 _(".debug_ranges entry has start address of zero"
10577 " [in module %s]"), objfile->name);
10578 continue;
10579 }
10580
10581 record_block_range (block, start, end - 1);
10582 }
10583 }
10584 }
10585 }
10586
10587 /* Check whether the producer field indicates either of GCC < 4.6, or the
10588 Intel C/C++ compiler, and cache the result in CU. */
10589
10590 static void
10591 check_producer (struct dwarf2_cu *cu)
10592 {
10593 const char *cs;
10594 int major, minor, release;
10595
10596 if (cu->producer == NULL)
10597 {
10598 /* For unknown compilers expect their behavior is DWARF version
10599 compliant.
10600
10601 GCC started to support .debug_types sections by -gdwarf-4 since
10602 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10603 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10604 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10605 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10606 }
10607 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10608 {
10609 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10610
10611 cs = &cu->producer[strlen ("GNU ")];
10612 while (*cs && !isdigit (*cs))
10613 cs++;
10614 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10615 {
10616 /* Not recognized as GCC. */
10617 }
10618 else
10619 {
10620 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10621 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10622 }
10623 }
10624 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10625 cu->producer_is_icc = 1;
10626 else
10627 {
10628 /* For other non-GCC compilers, expect their behavior is DWARF version
10629 compliant. */
10630 }
10631
10632 cu->checked_producer = 1;
10633 }
10634
10635 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10636 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10637 during 4.6.0 experimental. */
10638
10639 static int
10640 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10641 {
10642 if (!cu->checked_producer)
10643 check_producer (cu);
10644
10645 return cu->producer_is_gxx_lt_4_6;
10646 }
10647
10648 /* Return the default accessibility type if it is not overriden by
10649 DW_AT_accessibility. */
10650
10651 static enum dwarf_access_attribute
10652 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10653 {
10654 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10655 {
10656 /* The default DWARF 2 accessibility for members is public, the default
10657 accessibility for inheritance is private. */
10658
10659 if (die->tag != DW_TAG_inheritance)
10660 return DW_ACCESS_public;
10661 else
10662 return DW_ACCESS_private;
10663 }
10664 else
10665 {
10666 /* DWARF 3+ defines the default accessibility a different way. The same
10667 rules apply now for DW_TAG_inheritance as for the members and it only
10668 depends on the container kind. */
10669
10670 if (die->parent->tag == DW_TAG_class_type)
10671 return DW_ACCESS_private;
10672 else
10673 return DW_ACCESS_public;
10674 }
10675 }
10676
10677 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10678 offset. If the attribute was not found return 0, otherwise return
10679 1. If it was found but could not properly be handled, set *OFFSET
10680 to 0. */
10681
10682 static int
10683 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10684 LONGEST *offset)
10685 {
10686 struct attribute *attr;
10687
10688 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10689 if (attr != NULL)
10690 {
10691 *offset = 0;
10692
10693 /* Note that we do not check for a section offset first here.
10694 This is because DW_AT_data_member_location is new in DWARF 4,
10695 so if we see it, we can assume that a constant form is really
10696 a constant and not a section offset. */
10697 if (attr_form_is_constant (attr))
10698 *offset = dwarf2_get_attr_constant_value (attr, 0);
10699 else if (attr_form_is_section_offset (attr))
10700 dwarf2_complex_location_expr_complaint ();
10701 else if (attr_form_is_block (attr))
10702 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10703 else
10704 dwarf2_complex_location_expr_complaint ();
10705
10706 return 1;
10707 }
10708
10709 return 0;
10710 }
10711
10712 /* Add an aggregate field to the field list. */
10713
10714 static void
10715 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10716 struct dwarf2_cu *cu)
10717 {
10718 struct objfile *objfile = cu->objfile;
10719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10720 struct nextfield *new_field;
10721 struct attribute *attr;
10722 struct field *fp;
10723 const char *fieldname = "";
10724
10725 /* Allocate a new field list entry and link it in. */
10726 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10727 make_cleanup (xfree, new_field);
10728 memset (new_field, 0, sizeof (struct nextfield));
10729
10730 if (die->tag == DW_TAG_inheritance)
10731 {
10732 new_field->next = fip->baseclasses;
10733 fip->baseclasses = new_field;
10734 }
10735 else
10736 {
10737 new_field->next = fip->fields;
10738 fip->fields = new_field;
10739 }
10740 fip->nfields++;
10741
10742 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10743 if (attr)
10744 new_field->accessibility = DW_UNSND (attr);
10745 else
10746 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10747 if (new_field->accessibility != DW_ACCESS_public)
10748 fip->non_public_fields = 1;
10749
10750 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10751 if (attr)
10752 new_field->virtuality = DW_UNSND (attr);
10753 else
10754 new_field->virtuality = DW_VIRTUALITY_none;
10755
10756 fp = &new_field->field;
10757
10758 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10759 {
10760 LONGEST offset;
10761
10762 /* Data member other than a C++ static data member. */
10763
10764 /* Get type of field. */
10765 fp->type = die_type (die, cu);
10766
10767 SET_FIELD_BITPOS (*fp, 0);
10768
10769 /* Get bit size of field (zero if none). */
10770 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10771 if (attr)
10772 {
10773 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10774 }
10775 else
10776 {
10777 FIELD_BITSIZE (*fp) = 0;
10778 }
10779
10780 /* Get bit offset of field. */
10781 if (handle_data_member_location (die, cu, &offset))
10782 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10783 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10784 if (attr)
10785 {
10786 if (gdbarch_bits_big_endian (gdbarch))
10787 {
10788 /* For big endian bits, the DW_AT_bit_offset gives the
10789 additional bit offset from the MSB of the containing
10790 anonymous object to the MSB of the field. We don't
10791 have to do anything special since we don't need to
10792 know the size of the anonymous object. */
10793 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10794 }
10795 else
10796 {
10797 /* For little endian bits, compute the bit offset to the
10798 MSB of the anonymous object, subtract off the number of
10799 bits from the MSB of the field to the MSB of the
10800 object, and then subtract off the number of bits of
10801 the field itself. The result is the bit offset of
10802 the LSB of the field. */
10803 int anonymous_size;
10804 int bit_offset = DW_UNSND (attr);
10805
10806 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10807 if (attr)
10808 {
10809 /* The size of the anonymous object containing
10810 the bit field is explicit, so use the
10811 indicated size (in bytes). */
10812 anonymous_size = DW_UNSND (attr);
10813 }
10814 else
10815 {
10816 /* The size of the anonymous object containing
10817 the bit field must be inferred from the type
10818 attribute of the data member containing the
10819 bit field. */
10820 anonymous_size = TYPE_LENGTH (fp->type);
10821 }
10822 SET_FIELD_BITPOS (*fp,
10823 (FIELD_BITPOS (*fp)
10824 + anonymous_size * bits_per_byte
10825 - bit_offset - FIELD_BITSIZE (*fp)));
10826 }
10827 }
10828
10829 /* Get name of field. */
10830 fieldname = dwarf2_name (die, cu);
10831 if (fieldname == NULL)
10832 fieldname = "";
10833
10834 /* The name is already allocated along with this objfile, so we don't
10835 need to duplicate it for the type. */
10836 fp->name = fieldname;
10837
10838 /* Change accessibility for artificial fields (e.g. virtual table
10839 pointer or virtual base class pointer) to private. */
10840 if (dwarf2_attr (die, DW_AT_artificial, cu))
10841 {
10842 FIELD_ARTIFICIAL (*fp) = 1;
10843 new_field->accessibility = DW_ACCESS_private;
10844 fip->non_public_fields = 1;
10845 }
10846 }
10847 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10848 {
10849 /* C++ static member. */
10850
10851 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10852 is a declaration, but all versions of G++ as of this writing
10853 (so through at least 3.2.1) incorrectly generate
10854 DW_TAG_variable tags. */
10855
10856 const char *physname;
10857
10858 /* Get name of field. */
10859 fieldname = dwarf2_name (die, cu);
10860 if (fieldname == NULL)
10861 return;
10862
10863 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10864 if (attr
10865 /* Only create a symbol if this is an external value.
10866 new_symbol checks this and puts the value in the global symbol
10867 table, which we want. If it is not external, new_symbol
10868 will try to put the value in cu->list_in_scope which is wrong. */
10869 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10870 {
10871 /* A static const member, not much different than an enum as far as
10872 we're concerned, except that we can support more types. */
10873 new_symbol (die, NULL, cu);
10874 }
10875
10876 /* Get physical name. */
10877 physname = dwarf2_physname (fieldname, die, cu);
10878
10879 /* The name is already allocated along with this objfile, so we don't
10880 need to duplicate it for the type. */
10881 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10882 FIELD_TYPE (*fp) = die_type (die, cu);
10883 FIELD_NAME (*fp) = fieldname;
10884 }
10885 else if (die->tag == DW_TAG_inheritance)
10886 {
10887 LONGEST offset;
10888
10889 /* C++ base class field. */
10890 if (handle_data_member_location (die, cu, &offset))
10891 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10892 FIELD_BITSIZE (*fp) = 0;
10893 FIELD_TYPE (*fp) = die_type (die, cu);
10894 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10895 fip->nbaseclasses++;
10896 }
10897 }
10898
10899 /* Add a typedef defined in the scope of the FIP's class. */
10900
10901 static void
10902 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10903 struct dwarf2_cu *cu)
10904 {
10905 struct objfile *objfile = cu->objfile;
10906 struct typedef_field_list *new_field;
10907 struct attribute *attr;
10908 struct typedef_field *fp;
10909 char *fieldname = "";
10910
10911 /* Allocate a new field list entry and link it in. */
10912 new_field = xzalloc (sizeof (*new_field));
10913 make_cleanup (xfree, new_field);
10914
10915 gdb_assert (die->tag == DW_TAG_typedef);
10916
10917 fp = &new_field->field;
10918
10919 /* Get name of field. */
10920 fp->name = dwarf2_name (die, cu);
10921 if (fp->name == NULL)
10922 return;
10923
10924 fp->type = read_type_die (die, cu);
10925
10926 new_field->next = fip->typedef_field_list;
10927 fip->typedef_field_list = new_field;
10928 fip->typedef_field_list_count++;
10929 }
10930
10931 /* Create the vector of fields, and attach it to the type. */
10932
10933 static void
10934 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10935 struct dwarf2_cu *cu)
10936 {
10937 int nfields = fip->nfields;
10938
10939 /* Record the field count, allocate space for the array of fields,
10940 and create blank accessibility bitfields if necessary. */
10941 TYPE_NFIELDS (type) = nfields;
10942 TYPE_FIELDS (type) = (struct field *)
10943 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10944 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10945
10946 if (fip->non_public_fields && cu->language != language_ada)
10947 {
10948 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10949
10950 TYPE_FIELD_PRIVATE_BITS (type) =
10951 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10952 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10953
10954 TYPE_FIELD_PROTECTED_BITS (type) =
10955 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10956 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10957
10958 TYPE_FIELD_IGNORE_BITS (type) =
10959 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10960 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10961 }
10962
10963 /* If the type has baseclasses, allocate and clear a bit vector for
10964 TYPE_FIELD_VIRTUAL_BITS. */
10965 if (fip->nbaseclasses && cu->language != language_ada)
10966 {
10967 int num_bytes = B_BYTES (fip->nbaseclasses);
10968 unsigned char *pointer;
10969
10970 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10971 pointer = TYPE_ALLOC (type, num_bytes);
10972 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10973 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10974 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10975 }
10976
10977 /* Copy the saved-up fields into the field vector. Start from the head of
10978 the list, adding to the tail of the field array, so that they end up in
10979 the same order in the array in which they were added to the list. */
10980 while (nfields-- > 0)
10981 {
10982 struct nextfield *fieldp;
10983
10984 if (fip->fields)
10985 {
10986 fieldp = fip->fields;
10987 fip->fields = fieldp->next;
10988 }
10989 else
10990 {
10991 fieldp = fip->baseclasses;
10992 fip->baseclasses = fieldp->next;
10993 }
10994
10995 TYPE_FIELD (type, nfields) = fieldp->field;
10996 switch (fieldp->accessibility)
10997 {
10998 case DW_ACCESS_private:
10999 if (cu->language != language_ada)
11000 SET_TYPE_FIELD_PRIVATE (type, nfields);
11001 break;
11002
11003 case DW_ACCESS_protected:
11004 if (cu->language != language_ada)
11005 SET_TYPE_FIELD_PROTECTED (type, nfields);
11006 break;
11007
11008 case DW_ACCESS_public:
11009 break;
11010
11011 default:
11012 /* Unknown accessibility. Complain and treat it as public. */
11013 {
11014 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11015 fieldp->accessibility);
11016 }
11017 break;
11018 }
11019 if (nfields < fip->nbaseclasses)
11020 {
11021 switch (fieldp->virtuality)
11022 {
11023 case DW_VIRTUALITY_virtual:
11024 case DW_VIRTUALITY_pure_virtual:
11025 if (cu->language == language_ada)
11026 error (_("unexpected virtuality in component of Ada type"));
11027 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11028 break;
11029 }
11030 }
11031 }
11032 }
11033
11034 /* Return true if this member function is a constructor, false
11035 otherwise. */
11036
11037 static int
11038 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11039 {
11040 const char *fieldname;
11041 const char *typename;
11042 int len;
11043
11044 if (die->parent == NULL)
11045 return 0;
11046
11047 if (die->parent->tag != DW_TAG_structure_type
11048 && die->parent->tag != DW_TAG_union_type
11049 && die->parent->tag != DW_TAG_class_type)
11050 return 0;
11051
11052 fieldname = dwarf2_name (die, cu);
11053 typename = dwarf2_name (die->parent, cu);
11054 if (fieldname == NULL || typename == NULL)
11055 return 0;
11056
11057 len = strlen (fieldname);
11058 return (strncmp (fieldname, typename, len) == 0
11059 && (typename[len] == '\0' || typename[len] == '<'));
11060 }
11061
11062 /* Add a member function to the proper fieldlist. */
11063
11064 static void
11065 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11066 struct type *type, struct dwarf2_cu *cu)
11067 {
11068 struct objfile *objfile = cu->objfile;
11069 struct attribute *attr;
11070 struct fnfieldlist *flp;
11071 int i;
11072 struct fn_field *fnp;
11073 const char *fieldname;
11074 struct nextfnfield *new_fnfield;
11075 struct type *this_type;
11076 enum dwarf_access_attribute accessibility;
11077
11078 if (cu->language == language_ada)
11079 error (_("unexpected member function in Ada type"));
11080
11081 /* Get name of member function. */
11082 fieldname = dwarf2_name (die, cu);
11083 if (fieldname == NULL)
11084 return;
11085
11086 /* Look up member function name in fieldlist. */
11087 for (i = 0; i < fip->nfnfields; i++)
11088 {
11089 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11090 break;
11091 }
11092
11093 /* Create new list element if necessary. */
11094 if (i < fip->nfnfields)
11095 flp = &fip->fnfieldlists[i];
11096 else
11097 {
11098 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11099 {
11100 fip->fnfieldlists = (struct fnfieldlist *)
11101 xrealloc (fip->fnfieldlists,
11102 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11103 * sizeof (struct fnfieldlist));
11104 if (fip->nfnfields == 0)
11105 make_cleanup (free_current_contents, &fip->fnfieldlists);
11106 }
11107 flp = &fip->fnfieldlists[fip->nfnfields];
11108 flp->name = fieldname;
11109 flp->length = 0;
11110 flp->head = NULL;
11111 i = fip->nfnfields++;
11112 }
11113
11114 /* Create a new member function field and chain it to the field list
11115 entry. */
11116 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11117 make_cleanup (xfree, new_fnfield);
11118 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11119 new_fnfield->next = flp->head;
11120 flp->head = new_fnfield;
11121 flp->length++;
11122
11123 /* Fill in the member function field info. */
11124 fnp = &new_fnfield->fnfield;
11125
11126 /* Delay processing of the physname until later. */
11127 if (cu->language == language_cplus || cu->language == language_java)
11128 {
11129 add_to_method_list (type, i, flp->length - 1, fieldname,
11130 die, cu);
11131 }
11132 else
11133 {
11134 const char *physname = dwarf2_physname (fieldname, die, cu);
11135 fnp->physname = physname ? physname : "";
11136 }
11137
11138 fnp->type = alloc_type (objfile);
11139 this_type = read_type_die (die, cu);
11140 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11141 {
11142 int nparams = TYPE_NFIELDS (this_type);
11143
11144 /* TYPE is the domain of this method, and THIS_TYPE is the type
11145 of the method itself (TYPE_CODE_METHOD). */
11146 smash_to_method_type (fnp->type, type,
11147 TYPE_TARGET_TYPE (this_type),
11148 TYPE_FIELDS (this_type),
11149 TYPE_NFIELDS (this_type),
11150 TYPE_VARARGS (this_type));
11151
11152 /* Handle static member functions.
11153 Dwarf2 has no clean way to discern C++ static and non-static
11154 member functions. G++ helps GDB by marking the first
11155 parameter for non-static member functions (which is the this
11156 pointer) as artificial. We obtain this information from
11157 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11158 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11159 fnp->voffset = VOFFSET_STATIC;
11160 }
11161 else
11162 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11163 dwarf2_full_name (fieldname, die, cu));
11164
11165 /* Get fcontext from DW_AT_containing_type if present. */
11166 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11167 fnp->fcontext = die_containing_type (die, cu);
11168
11169 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11170 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11171
11172 /* Get accessibility. */
11173 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11174 if (attr)
11175 accessibility = DW_UNSND (attr);
11176 else
11177 accessibility = dwarf2_default_access_attribute (die, cu);
11178 switch (accessibility)
11179 {
11180 case DW_ACCESS_private:
11181 fnp->is_private = 1;
11182 break;
11183 case DW_ACCESS_protected:
11184 fnp->is_protected = 1;
11185 break;
11186 }
11187
11188 /* Check for artificial methods. */
11189 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11190 if (attr && DW_UNSND (attr) != 0)
11191 fnp->is_artificial = 1;
11192
11193 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11194
11195 /* Get index in virtual function table if it is a virtual member
11196 function. For older versions of GCC, this is an offset in the
11197 appropriate virtual table, as specified by DW_AT_containing_type.
11198 For everyone else, it is an expression to be evaluated relative
11199 to the object address. */
11200
11201 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11202 if (attr)
11203 {
11204 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11205 {
11206 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11207 {
11208 /* Old-style GCC. */
11209 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11210 }
11211 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11212 || (DW_BLOCK (attr)->size > 1
11213 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11214 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11215 {
11216 struct dwarf_block blk;
11217 int offset;
11218
11219 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11220 ? 1 : 2);
11221 blk.size = DW_BLOCK (attr)->size - offset;
11222 blk.data = DW_BLOCK (attr)->data + offset;
11223 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11224 if ((fnp->voffset % cu->header.addr_size) != 0)
11225 dwarf2_complex_location_expr_complaint ();
11226 else
11227 fnp->voffset /= cu->header.addr_size;
11228 fnp->voffset += 2;
11229 }
11230 else
11231 dwarf2_complex_location_expr_complaint ();
11232
11233 if (!fnp->fcontext)
11234 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11235 }
11236 else if (attr_form_is_section_offset (attr))
11237 {
11238 dwarf2_complex_location_expr_complaint ();
11239 }
11240 else
11241 {
11242 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11243 fieldname);
11244 }
11245 }
11246 else
11247 {
11248 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11249 if (attr && DW_UNSND (attr))
11250 {
11251 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11252 complaint (&symfile_complaints,
11253 _("Member function \"%s\" (offset %d) is virtual "
11254 "but the vtable offset is not specified"),
11255 fieldname, die->offset.sect_off);
11256 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11257 TYPE_CPLUS_DYNAMIC (type) = 1;
11258 }
11259 }
11260 }
11261
11262 /* Create the vector of member function fields, and attach it to the type. */
11263
11264 static void
11265 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11266 struct dwarf2_cu *cu)
11267 {
11268 struct fnfieldlist *flp;
11269 int i;
11270
11271 if (cu->language == language_ada)
11272 error (_("unexpected member functions in Ada type"));
11273
11274 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11275 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11276 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11277
11278 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11279 {
11280 struct nextfnfield *nfp = flp->head;
11281 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11282 int k;
11283
11284 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11285 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11286 fn_flp->fn_fields = (struct fn_field *)
11287 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11288 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11289 fn_flp->fn_fields[k] = nfp->fnfield;
11290 }
11291
11292 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11293 }
11294
11295 /* Returns non-zero if NAME is the name of a vtable member in CU's
11296 language, zero otherwise. */
11297 static int
11298 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11299 {
11300 static const char vptr[] = "_vptr";
11301 static const char vtable[] = "vtable";
11302
11303 /* Look for the C++ and Java forms of the vtable. */
11304 if ((cu->language == language_java
11305 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11306 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11307 && is_cplus_marker (name[sizeof (vptr) - 1])))
11308 return 1;
11309
11310 return 0;
11311 }
11312
11313 /* GCC outputs unnamed structures that are really pointers to member
11314 functions, with the ABI-specified layout. If TYPE describes
11315 such a structure, smash it into a member function type.
11316
11317 GCC shouldn't do this; it should just output pointer to member DIEs.
11318 This is GCC PR debug/28767. */
11319
11320 static void
11321 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11322 {
11323 struct type *pfn_type, *domain_type, *new_type;
11324
11325 /* Check for a structure with no name and two children. */
11326 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11327 return;
11328
11329 /* Check for __pfn and __delta members. */
11330 if (TYPE_FIELD_NAME (type, 0) == NULL
11331 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11332 || TYPE_FIELD_NAME (type, 1) == NULL
11333 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11334 return;
11335
11336 /* Find the type of the method. */
11337 pfn_type = TYPE_FIELD_TYPE (type, 0);
11338 if (pfn_type == NULL
11339 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11340 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11341 return;
11342
11343 /* Look for the "this" argument. */
11344 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11345 if (TYPE_NFIELDS (pfn_type) == 0
11346 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11347 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11348 return;
11349
11350 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11351 new_type = alloc_type (objfile);
11352 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11353 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11354 TYPE_VARARGS (pfn_type));
11355 smash_to_methodptr_type (type, new_type);
11356 }
11357
11358 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11359 (icc). */
11360
11361 static int
11362 producer_is_icc (struct dwarf2_cu *cu)
11363 {
11364 if (!cu->checked_producer)
11365 check_producer (cu);
11366
11367 return cu->producer_is_icc;
11368 }
11369
11370 /* Called when we find the DIE that starts a structure or union scope
11371 (definition) to create a type for the structure or union. Fill in
11372 the type's name and general properties; the members will not be
11373 processed until process_structure_scope.
11374
11375 NOTE: we need to call these functions regardless of whether or not the
11376 DIE has a DW_AT_name attribute, since it might be an anonymous
11377 structure or union. This gets the type entered into our set of
11378 user defined types.
11379
11380 However, if the structure is incomplete (an opaque struct/union)
11381 then suppress creating a symbol table entry for it since gdb only
11382 wants to find the one with the complete definition. Note that if
11383 it is complete, we just call new_symbol, which does it's own
11384 checking about whether the struct/union is anonymous or not (and
11385 suppresses creating a symbol table entry itself). */
11386
11387 static struct type *
11388 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11389 {
11390 struct objfile *objfile = cu->objfile;
11391 struct type *type;
11392 struct attribute *attr;
11393 const char *name;
11394
11395 /* If the definition of this type lives in .debug_types, read that type.
11396 Don't follow DW_AT_specification though, that will take us back up
11397 the chain and we want to go down. */
11398 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11399 if (attr)
11400 {
11401 type = get_DW_AT_signature_type (die, attr, cu);
11402
11403 /* The type's CU may not be the same as CU.
11404 Ensure TYPE is recorded with CU in die_type_hash. */
11405 return set_die_type (die, type, cu);
11406 }
11407
11408 type = alloc_type (objfile);
11409 INIT_CPLUS_SPECIFIC (type);
11410
11411 name = dwarf2_name (die, cu);
11412 if (name != NULL)
11413 {
11414 if (cu->language == language_cplus
11415 || cu->language == language_java)
11416 {
11417 const char *full_name = dwarf2_full_name (name, die, cu);
11418
11419 /* dwarf2_full_name might have already finished building the DIE's
11420 type. If so, there is no need to continue. */
11421 if (get_die_type (die, cu) != NULL)
11422 return get_die_type (die, cu);
11423
11424 TYPE_TAG_NAME (type) = full_name;
11425 if (die->tag == DW_TAG_structure_type
11426 || die->tag == DW_TAG_class_type)
11427 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11428 }
11429 else
11430 {
11431 /* The name is already allocated along with this objfile, so
11432 we don't need to duplicate it for the type. */
11433 TYPE_TAG_NAME (type) = name;
11434 if (die->tag == DW_TAG_class_type)
11435 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11436 }
11437 }
11438
11439 if (die->tag == DW_TAG_structure_type)
11440 {
11441 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11442 }
11443 else if (die->tag == DW_TAG_union_type)
11444 {
11445 TYPE_CODE (type) = TYPE_CODE_UNION;
11446 }
11447 else
11448 {
11449 TYPE_CODE (type) = TYPE_CODE_CLASS;
11450 }
11451
11452 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11453 TYPE_DECLARED_CLASS (type) = 1;
11454
11455 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11456 if (attr)
11457 {
11458 TYPE_LENGTH (type) = DW_UNSND (attr);
11459 }
11460 else
11461 {
11462 TYPE_LENGTH (type) = 0;
11463 }
11464
11465 if (producer_is_icc (cu))
11466 {
11467 /* ICC does not output the required DW_AT_declaration
11468 on incomplete types, but gives them a size of zero. */
11469 }
11470 else
11471 TYPE_STUB_SUPPORTED (type) = 1;
11472
11473 if (die_is_declaration (die, cu))
11474 TYPE_STUB (type) = 1;
11475 else if (attr == NULL && die->child == NULL
11476 && producer_is_realview (cu->producer))
11477 /* RealView does not output the required DW_AT_declaration
11478 on incomplete types. */
11479 TYPE_STUB (type) = 1;
11480
11481 /* We need to add the type field to the die immediately so we don't
11482 infinitely recurse when dealing with pointers to the structure
11483 type within the structure itself. */
11484 set_die_type (die, type, cu);
11485
11486 /* set_die_type should be already done. */
11487 set_descriptive_type (type, die, cu);
11488
11489 return type;
11490 }
11491
11492 /* Finish creating a structure or union type, including filling in
11493 its members and creating a symbol for it. */
11494
11495 static void
11496 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11497 {
11498 struct objfile *objfile = cu->objfile;
11499 struct die_info *child_die = die->child;
11500 struct type *type;
11501
11502 type = get_die_type (die, cu);
11503 if (type == NULL)
11504 type = read_structure_type (die, cu);
11505
11506 if (die->child != NULL && ! die_is_declaration (die, cu))
11507 {
11508 struct field_info fi;
11509 struct die_info *child_die;
11510 VEC (symbolp) *template_args = NULL;
11511 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11512
11513 memset (&fi, 0, sizeof (struct field_info));
11514
11515 child_die = die->child;
11516
11517 while (child_die && child_die->tag)
11518 {
11519 if (child_die->tag == DW_TAG_member
11520 || child_die->tag == DW_TAG_variable)
11521 {
11522 /* NOTE: carlton/2002-11-05: A C++ static data member
11523 should be a DW_TAG_member that is a declaration, but
11524 all versions of G++ as of this writing (so through at
11525 least 3.2.1) incorrectly generate DW_TAG_variable
11526 tags for them instead. */
11527 dwarf2_add_field (&fi, child_die, cu);
11528 }
11529 else if (child_die->tag == DW_TAG_subprogram)
11530 {
11531 /* C++ member function. */
11532 dwarf2_add_member_fn (&fi, child_die, type, cu);
11533 }
11534 else if (child_die->tag == DW_TAG_inheritance)
11535 {
11536 /* C++ base class field. */
11537 dwarf2_add_field (&fi, child_die, cu);
11538 }
11539 else if (child_die->tag == DW_TAG_typedef)
11540 dwarf2_add_typedef (&fi, child_die, cu);
11541 else if (child_die->tag == DW_TAG_template_type_param
11542 || child_die->tag == DW_TAG_template_value_param)
11543 {
11544 struct symbol *arg = new_symbol (child_die, NULL, cu);
11545
11546 if (arg != NULL)
11547 VEC_safe_push (symbolp, template_args, arg);
11548 }
11549
11550 child_die = sibling_die (child_die);
11551 }
11552
11553 /* Attach template arguments to type. */
11554 if (! VEC_empty (symbolp, template_args))
11555 {
11556 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11557 TYPE_N_TEMPLATE_ARGUMENTS (type)
11558 = VEC_length (symbolp, template_args);
11559 TYPE_TEMPLATE_ARGUMENTS (type)
11560 = obstack_alloc (&objfile->objfile_obstack,
11561 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11562 * sizeof (struct symbol *)));
11563 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11564 VEC_address (symbolp, template_args),
11565 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11566 * sizeof (struct symbol *)));
11567 VEC_free (symbolp, template_args);
11568 }
11569
11570 /* Attach fields and member functions to the type. */
11571 if (fi.nfields)
11572 dwarf2_attach_fields_to_type (&fi, type, cu);
11573 if (fi.nfnfields)
11574 {
11575 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11576
11577 /* Get the type which refers to the base class (possibly this
11578 class itself) which contains the vtable pointer for the current
11579 class from the DW_AT_containing_type attribute. This use of
11580 DW_AT_containing_type is a GNU extension. */
11581
11582 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11583 {
11584 struct type *t = die_containing_type (die, cu);
11585
11586 TYPE_VPTR_BASETYPE (type) = t;
11587 if (type == t)
11588 {
11589 int i;
11590
11591 /* Our own class provides vtbl ptr. */
11592 for (i = TYPE_NFIELDS (t) - 1;
11593 i >= TYPE_N_BASECLASSES (t);
11594 --i)
11595 {
11596 const char *fieldname = TYPE_FIELD_NAME (t, i);
11597
11598 if (is_vtable_name (fieldname, cu))
11599 {
11600 TYPE_VPTR_FIELDNO (type) = i;
11601 break;
11602 }
11603 }
11604
11605 /* Complain if virtual function table field not found. */
11606 if (i < TYPE_N_BASECLASSES (t))
11607 complaint (&symfile_complaints,
11608 _("virtual function table pointer "
11609 "not found when defining class '%s'"),
11610 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11611 "");
11612 }
11613 else
11614 {
11615 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11616 }
11617 }
11618 else if (cu->producer
11619 && strncmp (cu->producer,
11620 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11621 {
11622 /* The IBM XLC compiler does not provide direct indication
11623 of the containing type, but the vtable pointer is
11624 always named __vfp. */
11625
11626 int i;
11627
11628 for (i = TYPE_NFIELDS (type) - 1;
11629 i >= TYPE_N_BASECLASSES (type);
11630 --i)
11631 {
11632 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11633 {
11634 TYPE_VPTR_FIELDNO (type) = i;
11635 TYPE_VPTR_BASETYPE (type) = type;
11636 break;
11637 }
11638 }
11639 }
11640 }
11641
11642 /* Copy fi.typedef_field_list linked list elements content into the
11643 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11644 if (fi.typedef_field_list)
11645 {
11646 int i = fi.typedef_field_list_count;
11647
11648 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11649 TYPE_TYPEDEF_FIELD_ARRAY (type)
11650 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11651 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11652
11653 /* Reverse the list order to keep the debug info elements order. */
11654 while (--i >= 0)
11655 {
11656 struct typedef_field *dest, *src;
11657
11658 dest = &TYPE_TYPEDEF_FIELD (type, i);
11659 src = &fi.typedef_field_list->field;
11660 fi.typedef_field_list = fi.typedef_field_list->next;
11661 *dest = *src;
11662 }
11663 }
11664
11665 do_cleanups (back_to);
11666
11667 if (HAVE_CPLUS_STRUCT (type))
11668 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11669 }
11670
11671 quirk_gcc_member_function_pointer (type, objfile);
11672
11673 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11674 snapshots) has been known to create a die giving a declaration
11675 for a class that has, as a child, a die giving a definition for a
11676 nested class. So we have to process our children even if the
11677 current die is a declaration. Normally, of course, a declaration
11678 won't have any children at all. */
11679
11680 while (child_die != NULL && child_die->tag)
11681 {
11682 if (child_die->tag == DW_TAG_member
11683 || child_die->tag == DW_TAG_variable
11684 || child_die->tag == DW_TAG_inheritance
11685 || child_die->tag == DW_TAG_template_value_param
11686 || child_die->tag == DW_TAG_template_type_param)
11687 {
11688 /* Do nothing. */
11689 }
11690 else
11691 process_die (child_die, cu);
11692
11693 child_die = sibling_die (child_die);
11694 }
11695
11696 /* Do not consider external references. According to the DWARF standard,
11697 these DIEs are identified by the fact that they have no byte_size
11698 attribute, and a declaration attribute. */
11699 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11700 || !die_is_declaration (die, cu))
11701 new_symbol (die, type, cu);
11702 }
11703
11704 /* Given a DW_AT_enumeration_type die, set its type. We do not
11705 complete the type's fields yet, or create any symbols. */
11706
11707 static struct type *
11708 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11709 {
11710 struct objfile *objfile = cu->objfile;
11711 struct type *type;
11712 struct attribute *attr;
11713 const char *name;
11714
11715 /* If the definition of this type lives in .debug_types, read that type.
11716 Don't follow DW_AT_specification though, that will take us back up
11717 the chain and we want to go down. */
11718 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11719 if (attr)
11720 {
11721 type = get_DW_AT_signature_type (die, attr, cu);
11722
11723 /* The type's CU may not be the same as CU.
11724 Ensure TYPE is recorded with CU in die_type_hash. */
11725 return set_die_type (die, type, cu);
11726 }
11727
11728 type = alloc_type (objfile);
11729
11730 TYPE_CODE (type) = TYPE_CODE_ENUM;
11731 name = dwarf2_full_name (NULL, die, cu);
11732 if (name != NULL)
11733 TYPE_TAG_NAME (type) = name;
11734
11735 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11736 if (attr)
11737 {
11738 TYPE_LENGTH (type) = DW_UNSND (attr);
11739 }
11740 else
11741 {
11742 TYPE_LENGTH (type) = 0;
11743 }
11744
11745 /* The enumeration DIE can be incomplete. In Ada, any type can be
11746 declared as private in the package spec, and then defined only
11747 inside the package body. Such types are known as Taft Amendment
11748 Types. When another package uses such a type, an incomplete DIE
11749 may be generated by the compiler. */
11750 if (die_is_declaration (die, cu))
11751 TYPE_STUB (type) = 1;
11752
11753 return set_die_type (die, type, cu);
11754 }
11755
11756 /* Given a pointer to a die which begins an enumeration, process all
11757 the dies that define the members of the enumeration, and create the
11758 symbol for the enumeration type.
11759
11760 NOTE: We reverse the order of the element list. */
11761
11762 static void
11763 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11764 {
11765 struct type *this_type;
11766
11767 this_type = get_die_type (die, cu);
11768 if (this_type == NULL)
11769 this_type = read_enumeration_type (die, cu);
11770
11771 if (die->child != NULL)
11772 {
11773 struct die_info *child_die;
11774 struct symbol *sym;
11775 struct field *fields = NULL;
11776 int num_fields = 0;
11777 int unsigned_enum = 1;
11778 const char *name;
11779 int flag_enum = 1;
11780 ULONGEST mask = 0;
11781
11782 child_die = die->child;
11783 while (child_die && child_die->tag)
11784 {
11785 if (child_die->tag != DW_TAG_enumerator)
11786 {
11787 process_die (child_die, cu);
11788 }
11789 else
11790 {
11791 name = dwarf2_name (child_die, cu);
11792 if (name)
11793 {
11794 sym = new_symbol (child_die, this_type, cu);
11795 if (SYMBOL_VALUE (sym) < 0)
11796 {
11797 unsigned_enum = 0;
11798 flag_enum = 0;
11799 }
11800 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11801 flag_enum = 0;
11802 else
11803 mask |= SYMBOL_VALUE (sym);
11804
11805 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11806 {
11807 fields = (struct field *)
11808 xrealloc (fields,
11809 (num_fields + DW_FIELD_ALLOC_CHUNK)
11810 * sizeof (struct field));
11811 }
11812
11813 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11814 FIELD_TYPE (fields[num_fields]) = NULL;
11815 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11816 FIELD_BITSIZE (fields[num_fields]) = 0;
11817
11818 num_fields++;
11819 }
11820 }
11821
11822 child_die = sibling_die (child_die);
11823 }
11824
11825 if (num_fields)
11826 {
11827 TYPE_NFIELDS (this_type) = num_fields;
11828 TYPE_FIELDS (this_type) = (struct field *)
11829 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11830 memcpy (TYPE_FIELDS (this_type), fields,
11831 sizeof (struct field) * num_fields);
11832 xfree (fields);
11833 }
11834 if (unsigned_enum)
11835 TYPE_UNSIGNED (this_type) = 1;
11836 if (flag_enum)
11837 TYPE_FLAG_ENUM (this_type) = 1;
11838 }
11839
11840 /* If we are reading an enum from a .debug_types unit, and the enum
11841 is a declaration, and the enum is not the signatured type in the
11842 unit, then we do not want to add a symbol for it. Adding a
11843 symbol would in some cases obscure the true definition of the
11844 enum, giving users an incomplete type when the definition is
11845 actually available. Note that we do not want to do this for all
11846 enums which are just declarations, because C++0x allows forward
11847 enum declarations. */
11848 if (cu->per_cu->is_debug_types
11849 && die_is_declaration (die, cu))
11850 {
11851 struct signatured_type *sig_type;
11852
11853 sig_type = (struct signatured_type *) cu->per_cu;
11854 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11855 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11856 return;
11857 }
11858
11859 new_symbol (die, this_type, cu);
11860 }
11861
11862 /* Extract all information from a DW_TAG_array_type DIE and put it in
11863 the DIE's type field. For now, this only handles one dimensional
11864 arrays. */
11865
11866 static struct type *
11867 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11868 {
11869 struct objfile *objfile = cu->objfile;
11870 struct die_info *child_die;
11871 struct type *type;
11872 struct type *element_type, *range_type, *index_type;
11873 struct type **range_types = NULL;
11874 struct attribute *attr;
11875 int ndim = 0;
11876 struct cleanup *back_to;
11877 const char *name;
11878
11879 element_type = die_type (die, cu);
11880
11881 /* The die_type call above may have already set the type for this DIE. */
11882 type = get_die_type (die, cu);
11883 if (type)
11884 return type;
11885
11886 /* Irix 6.2 native cc creates array types without children for
11887 arrays with unspecified length. */
11888 if (die->child == NULL)
11889 {
11890 index_type = objfile_type (objfile)->builtin_int;
11891 range_type = create_range_type (NULL, index_type, 0, -1);
11892 type = create_array_type (NULL, element_type, range_type);
11893 return set_die_type (die, type, cu);
11894 }
11895
11896 back_to = make_cleanup (null_cleanup, NULL);
11897 child_die = die->child;
11898 while (child_die && child_die->tag)
11899 {
11900 if (child_die->tag == DW_TAG_subrange_type)
11901 {
11902 struct type *child_type = read_type_die (child_die, cu);
11903
11904 if (child_type != NULL)
11905 {
11906 /* The range type was succesfully read. Save it for the
11907 array type creation. */
11908 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11909 {
11910 range_types = (struct type **)
11911 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11912 * sizeof (struct type *));
11913 if (ndim == 0)
11914 make_cleanup (free_current_contents, &range_types);
11915 }
11916 range_types[ndim++] = child_type;
11917 }
11918 }
11919 child_die = sibling_die (child_die);
11920 }
11921
11922 /* Dwarf2 dimensions are output from left to right, create the
11923 necessary array types in backwards order. */
11924
11925 type = element_type;
11926
11927 if (read_array_order (die, cu) == DW_ORD_col_major)
11928 {
11929 int i = 0;
11930
11931 while (i < ndim)
11932 type = create_array_type (NULL, type, range_types[i++]);
11933 }
11934 else
11935 {
11936 while (ndim-- > 0)
11937 type = create_array_type (NULL, type, range_types[ndim]);
11938 }
11939
11940 /* Understand Dwarf2 support for vector types (like they occur on
11941 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11942 array type. This is not part of the Dwarf2/3 standard yet, but a
11943 custom vendor extension. The main difference between a regular
11944 array and the vector variant is that vectors are passed by value
11945 to functions. */
11946 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11947 if (attr)
11948 make_vector_type (type);
11949
11950 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11951 implementation may choose to implement triple vectors using this
11952 attribute. */
11953 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11954 if (attr)
11955 {
11956 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11957 TYPE_LENGTH (type) = DW_UNSND (attr);
11958 else
11959 complaint (&symfile_complaints,
11960 _("DW_AT_byte_size for array type smaller "
11961 "than the total size of elements"));
11962 }
11963
11964 name = dwarf2_name (die, cu);
11965 if (name)
11966 TYPE_NAME (type) = name;
11967
11968 /* Install the type in the die. */
11969 set_die_type (die, type, cu);
11970
11971 /* set_die_type should be already done. */
11972 set_descriptive_type (type, die, cu);
11973
11974 do_cleanups (back_to);
11975
11976 return type;
11977 }
11978
11979 static enum dwarf_array_dim_ordering
11980 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11981 {
11982 struct attribute *attr;
11983
11984 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11985
11986 if (attr) return DW_SND (attr);
11987
11988 /* GNU F77 is a special case, as at 08/2004 array type info is the
11989 opposite order to the dwarf2 specification, but data is still
11990 laid out as per normal fortran.
11991
11992 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11993 version checking. */
11994
11995 if (cu->language == language_fortran
11996 && cu->producer && strstr (cu->producer, "GNU F77"))
11997 {
11998 return DW_ORD_row_major;
11999 }
12000
12001 switch (cu->language_defn->la_array_ordering)
12002 {
12003 case array_column_major:
12004 return DW_ORD_col_major;
12005 case array_row_major:
12006 default:
12007 return DW_ORD_row_major;
12008 };
12009 }
12010
12011 /* Extract all information from a DW_TAG_set_type DIE and put it in
12012 the DIE's type field. */
12013
12014 static struct type *
12015 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12016 {
12017 struct type *domain_type, *set_type;
12018 struct attribute *attr;
12019
12020 domain_type = die_type (die, cu);
12021
12022 /* The die_type call above may have already set the type for this DIE. */
12023 set_type = get_die_type (die, cu);
12024 if (set_type)
12025 return set_type;
12026
12027 set_type = create_set_type (NULL, domain_type);
12028
12029 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12030 if (attr)
12031 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12032
12033 return set_die_type (die, set_type, cu);
12034 }
12035
12036 /* A helper for read_common_block that creates a locexpr baton.
12037 SYM is the symbol which we are marking as computed.
12038 COMMON_DIE is the DIE for the common block.
12039 COMMON_LOC is the location expression attribute for the common
12040 block itself.
12041 MEMBER_LOC is the location expression attribute for the particular
12042 member of the common block that we are processing.
12043 CU is the CU from which the above come. */
12044
12045 static void
12046 mark_common_block_symbol_computed (struct symbol *sym,
12047 struct die_info *common_die,
12048 struct attribute *common_loc,
12049 struct attribute *member_loc,
12050 struct dwarf2_cu *cu)
12051 {
12052 struct objfile *objfile = dwarf2_per_objfile->objfile;
12053 struct dwarf2_locexpr_baton *baton;
12054 gdb_byte *ptr;
12055 unsigned int cu_off;
12056 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12057 LONGEST offset = 0;
12058
12059 gdb_assert (common_loc && member_loc);
12060 gdb_assert (attr_form_is_block (common_loc));
12061 gdb_assert (attr_form_is_block (member_loc)
12062 || attr_form_is_constant (member_loc));
12063
12064 baton = obstack_alloc (&objfile->objfile_obstack,
12065 sizeof (struct dwarf2_locexpr_baton));
12066 baton->per_cu = cu->per_cu;
12067 gdb_assert (baton->per_cu);
12068
12069 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12070
12071 if (attr_form_is_constant (member_loc))
12072 {
12073 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12074 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12075 }
12076 else
12077 baton->size += DW_BLOCK (member_loc)->size;
12078
12079 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12080 baton->data = ptr;
12081
12082 *ptr++ = DW_OP_call4;
12083 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12084 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12085 ptr += 4;
12086
12087 if (attr_form_is_constant (member_loc))
12088 {
12089 *ptr++ = DW_OP_addr;
12090 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12091 ptr += cu->header.addr_size;
12092 }
12093 else
12094 {
12095 /* We have to copy the data here, because DW_OP_call4 will only
12096 use a DW_AT_location attribute. */
12097 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12098 ptr += DW_BLOCK (member_loc)->size;
12099 }
12100
12101 *ptr++ = DW_OP_plus;
12102 gdb_assert (ptr - baton->data == baton->size);
12103
12104 SYMBOL_LOCATION_BATON (sym) = baton;
12105 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12106 }
12107
12108 /* Create appropriate locally-scoped variables for all the
12109 DW_TAG_common_block entries. Also create a struct common_block
12110 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12111 is used to sepate the common blocks name namespace from regular
12112 variable names. */
12113
12114 static void
12115 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12116 {
12117 struct attribute *attr;
12118
12119 attr = dwarf2_attr (die, DW_AT_location, cu);
12120 if (attr)
12121 {
12122 /* Support the .debug_loc offsets. */
12123 if (attr_form_is_block (attr))
12124 {
12125 /* Ok. */
12126 }
12127 else if (attr_form_is_section_offset (attr))
12128 {
12129 dwarf2_complex_location_expr_complaint ();
12130 attr = NULL;
12131 }
12132 else
12133 {
12134 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12135 "common block member");
12136 attr = NULL;
12137 }
12138 }
12139
12140 if (die->child != NULL)
12141 {
12142 struct objfile *objfile = cu->objfile;
12143 struct die_info *child_die;
12144 size_t n_entries = 0, size;
12145 struct common_block *common_block;
12146 struct symbol *sym;
12147
12148 for (child_die = die->child;
12149 child_die && child_die->tag;
12150 child_die = sibling_die (child_die))
12151 ++n_entries;
12152
12153 size = (sizeof (struct common_block)
12154 + (n_entries - 1) * sizeof (struct symbol *));
12155 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12156 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12157 common_block->n_entries = 0;
12158
12159 for (child_die = die->child;
12160 child_die && child_die->tag;
12161 child_die = sibling_die (child_die))
12162 {
12163 /* Create the symbol in the DW_TAG_common_block block in the current
12164 symbol scope. */
12165 sym = new_symbol (child_die, NULL, cu);
12166 if (sym != NULL)
12167 {
12168 struct attribute *member_loc;
12169
12170 common_block->contents[common_block->n_entries++] = sym;
12171
12172 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12173 cu);
12174 if (member_loc)
12175 {
12176 /* GDB has handled this for a long time, but it is
12177 not specified by DWARF. It seems to have been
12178 emitted by gfortran at least as recently as:
12179 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12180 complaint (&symfile_complaints,
12181 _("Variable in common block has "
12182 "DW_AT_data_member_location "
12183 "- DIE at 0x%x [in module %s]"),
12184 child_die->offset.sect_off, cu->objfile->name);
12185
12186 if (attr_form_is_section_offset (member_loc))
12187 dwarf2_complex_location_expr_complaint ();
12188 else if (attr_form_is_constant (member_loc)
12189 || attr_form_is_block (member_loc))
12190 {
12191 if (attr)
12192 mark_common_block_symbol_computed (sym, die, attr,
12193 member_loc, cu);
12194 }
12195 else
12196 dwarf2_complex_location_expr_complaint ();
12197 }
12198 }
12199 }
12200
12201 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12202 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12203 }
12204 }
12205
12206 /* Create a type for a C++ namespace. */
12207
12208 static struct type *
12209 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12210 {
12211 struct objfile *objfile = cu->objfile;
12212 const char *previous_prefix, *name;
12213 int is_anonymous;
12214 struct type *type;
12215
12216 /* For extensions, reuse the type of the original namespace. */
12217 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12218 {
12219 struct die_info *ext_die;
12220 struct dwarf2_cu *ext_cu = cu;
12221
12222 ext_die = dwarf2_extension (die, &ext_cu);
12223 type = read_type_die (ext_die, ext_cu);
12224
12225 /* EXT_CU may not be the same as CU.
12226 Ensure TYPE is recorded with CU in die_type_hash. */
12227 return set_die_type (die, type, cu);
12228 }
12229
12230 name = namespace_name (die, &is_anonymous, cu);
12231
12232 /* Now build the name of the current namespace. */
12233
12234 previous_prefix = determine_prefix (die, cu);
12235 if (previous_prefix[0] != '\0')
12236 name = typename_concat (&objfile->objfile_obstack,
12237 previous_prefix, name, 0, cu);
12238
12239 /* Create the type. */
12240 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12241 objfile);
12242 TYPE_NAME (type) = name;
12243 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12244
12245 return set_die_type (die, type, cu);
12246 }
12247
12248 /* Read a C++ namespace. */
12249
12250 static void
12251 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12252 {
12253 struct objfile *objfile = cu->objfile;
12254 int is_anonymous;
12255
12256 /* Add a symbol associated to this if we haven't seen the namespace
12257 before. Also, add a using directive if it's an anonymous
12258 namespace. */
12259
12260 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12261 {
12262 struct type *type;
12263
12264 type = read_type_die (die, cu);
12265 new_symbol (die, type, cu);
12266
12267 namespace_name (die, &is_anonymous, cu);
12268 if (is_anonymous)
12269 {
12270 const char *previous_prefix = determine_prefix (die, cu);
12271
12272 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12273 NULL, NULL, 0, &objfile->objfile_obstack);
12274 }
12275 }
12276
12277 if (die->child != NULL)
12278 {
12279 struct die_info *child_die = die->child;
12280
12281 while (child_die && child_die->tag)
12282 {
12283 process_die (child_die, cu);
12284 child_die = sibling_die (child_die);
12285 }
12286 }
12287 }
12288
12289 /* Read a Fortran module as type. This DIE can be only a declaration used for
12290 imported module. Still we need that type as local Fortran "use ... only"
12291 declaration imports depend on the created type in determine_prefix. */
12292
12293 static struct type *
12294 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12295 {
12296 struct objfile *objfile = cu->objfile;
12297 const char *module_name;
12298 struct type *type;
12299
12300 module_name = dwarf2_name (die, cu);
12301 if (!module_name)
12302 complaint (&symfile_complaints,
12303 _("DW_TAG_module has no name, offset 0x%x"),
12304 die->offset.sect_off);
12305 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12306
12307 /* determine_prefix uses TYPE_TAG_NAME. */
12308 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12309
12310 return set_die_type (die, type, cu);
12311 }
12312
12313 /* Read a Fortran module. */
12314
12315 static void
12316 read_module (struct die_info *die, struct dwarf2_cu *cu)
12317 {
12318 struct die_info *child_die = die->child;
12319
12320 while (child_die && child_die->tag)
12321 {
12322 process_die (child_die, cu);
12323 child_die = sibling_die (child_die);
12324 }
12325 }
12326
12327 /* Return the name of the namespace represented by DIE. Set
12328 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12329 namespace. */
12330
12331 static const char *
12332 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12333 {
12334 struct die_info *current_die;
12335 const char *name = NULL;
12336
12337 /* Loop through the extensions until we find a name. */
12338
12339 for (current_die = die;
12340 current_die != NULL;
12341 current_die = dwarf2_extension (die, &cu))
12342 {
12343 name = dwarf2_name (current_die, cu);
12344 if (name != NULL)
12345 break;
12346 }
12347
12348 /* Is it an anonymous namespace? */
12349
12350 *is_anonymous = (name == NULL);
12351 if (*is_anonymous)
12352 name = CP_ANONYMOUS_NAMESPACE_STR;
12353
12354 return name;
12355 }
12356
12357 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12358 the user defined type vector. */
12359
12360 static struct type *
12361 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12362 {
12363 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12364 struct comp_unit_head *cu_header = &cu->header;
12365 struct type *type;
12366 struct attribute *attr_byte_size;
12367 struct attribute *attr_address_class;
12368 int byte_size, addr_class;
12369 struct type *target_type;
12370
12371 target_type = die_type (die, cu);
12372
12373 /* The die_type call above may have already set the type for this DIE. */
12374 type = get_die_type (die, cu);
12375 if (type)
12376 return type;
12377
12378 type = lookup_pointer_type (target_type);
12379
12380 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12381 if (attr_byte_size)
12382 byte_size = DW_UNSND (attr_byte_size);
12383 else
12384 byte_size = cu_header->addr_size;
12385
12386 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12387 if (attr_address_class)
12388 addr_class = DW_UNSND (attr_address_class);
12389 else
12390 addr_class = DW_ADDR_none;
12391
12392 /* If the pointer size or address class is different than the
12393 default, create a type variant marked as such and set the
12394 length accordingly. */
12395 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12396 {
12397 if (gdbarch_address_class_type_flags_p (gdbarch))
12398 {
12399 int type_flags;
12400
12401 type_flags = gdbarch_address_class_type_flags
12402 (gdbarch, byte_size, addr_class);
12403 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12404 == 0);
12405 type = make_type_with_address_space (type, type_flags);
12406 }
12407 else if (TYPE_LENGTH (type) != byte_size)
12408 {
12409 complaint (&symfile_complaints,
12410 _("invalid pointer size %d"), byte_size);
12411 }
12412 else
12413 {
12414 /* Should we also complain about unhandled address classes? */
12415 }
12416 }
12417
12418 TYPE_LENGTH (type) = byte_size;
12419 return set_die_type (die, type, cu);
12420 }
12421
12422 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12423 the user defined type vector. */
12424
12425 static struct type *
12426 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12427 {
12428 struct type *type;
12429 struct type *to_type;
12430 struct type *domain;
12431
12432 to_type = die_type (die, cu);
12433 domain = die_containing_type (die, cu);
12434
12435 /* The calls above may have already set the type for this DIE. */
12436 type = get_die_type (die, cu);
12437 if (type)
12438 return type;
12439
12440 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12441 type = lookup_methodptr_type (to_type);
12442 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12443 {
12444 struct type *new_type = alloc_type (cu->objfile);
12445
12446 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12447 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12448 TYPE_VARARGS (to_type));
12449 type = lookup_methodptr_type (new_type);
12450 }
12451 else
12452 type = lookup_memberptr_type (to_type, domain);
12453
12454 return set_die_type (die, type, cu);
12455 }
12456
12457 /* Extract all information from a DW_TAG_reference_type DIE and add to
12458 the user defined type vector. */
12459
12460 static struct type *
12461 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12462 {
12463 struct comp_unit_head *cu_header = &cu->header;
12464 struct type *type, *target_type;
12465 struct attribute *attr;
12466
12467 target_type = die_type (die, cu);
12468
12469 /* The die_type call above may have already set the type for this DIE. */
12470 type = get_die_type (die, cu);
12471 if (type)
12472 return type;
12473
12474 type = lookup_reference_type (target_type);
12475 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12476 if (attr)
12477 {
12478 TYPE_LENGTH (type) = DW_UNSND (attr);
12479 }
12480 else
12481 {
12482 TYPE_LENGTH (type) = cu_header->addr_size;
12483 }
12484 return set_die_type (die, type, cu);
12485 }
12486
12487 static struct type *
12488 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12489 {
12490 struct type *base_type, *cv_type;
12491
12492 base_type = die_type (die, cu);
12493
12494 /* The die_type call above may have already set the type for this DIE. */
12495 cv_type = get_die_type (die, cu);
12496 if (cv_type)
12497 return cv_type;
12498
12499 /* In case the const qualifier is applied to an array type, the element type
12500 is so qualified, not the array type (section 6.7.3 of C99). */
12501 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12502 {
12503 struct type *el_type, *inner_array;
12504
12505 base_type = copy_type (base_type);
12506 inner_array = base_type;
12507
12508 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12509 {
12510 TYPE_TARGET_TYPE (inner_array) =
12511 copy_type (TYPE_TARGET_TYPE (inner_array));
12512 inner_array = TYPE_TARGET_TYPE (inner_array);
12513 }
12514
12515 el_type = TYPE_TARGET_TYPE (inner_array);
12516 TYPE_TARGET_TYPE (inner_array) =
12517 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12518
12519 return set_die_type (die, base_type, cu);
12520 }
12521
12522 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12523 return set_die_type (die, cv_type, cu);
12524 }
12525
12526 static struct type *
12527 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12528 {
12529 struct type *base_type, *cv_type;
12530
12531 base_type = die_type (die, cu);
12532
12533 /* The die_type call above may have already set the type for this DIE. */
12534 cv_type = get_die_type (die, cu);
12535 if (cv_type)
12536 return cv_type;
12537
12538 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12539 return set_die_type (die, cv_type, cu);
12540 }
12541
12542 /* Handle DW_TAG_restrict_type. */
12543
12544 static struct type *
12545 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12546 {
12547 struct type *base_type, *cv_type;
12548
12549 base_type = die_type (die, cu);
12550
12551 /* The die_type call above may have already set the type for this DIE. */
12552 cv_type = get_die_type (die, cu);
12553 if (cv_type)
12554 return cv_type;
12555
12556 cv_type = make_restrict_type (base_type);
12557 return set_die_type (die, cv_type, cu);
12558 }
12559
12560 /* Extract all information from a DW_TAG_string_type DIE and add to
12561 the user defined type vector. It isn't really a user defined type,
12562 but it behaves like one, with other DIE's using an AT_user_def_type
12563 attribute to reference it. */
12564
12565 static struct type *
12566 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12567 {
12568 struct objfile *objfile = cu->objfile;
12569 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12570 struct type *type, *range_type, *index_type, *char_type;
12571 struct attribute *attr;
12572 unsigned int length;
12573
12574 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12575 if (attr)
12576 {
12577 length = DW_UNSND (attr);
12578 }
12579 else
12580 {
12581 /* Check for the DW_AT_byte_size attribute. */
12582 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12583 if (attr)
12584 {
12585 length = DW_UNSND (attr);
12586 }
12587 else
12588 {
12589 length = 1;
12590 }
12591 }
12592
12593 index_type = objfile_type (objfile)->builtin_int;
12594 range_type = create_range_type (NULL, index_type, 1, length);
12595 char_type = language_string_char_type (cu->language_defn, gdbarch);
12596 type = create_string_type (NULL, char_type, range_type);
12597
12598 return set_die_type (die, type, cu);
12599 }
12600
12601 /* Handle DIES due to C code like:
12602
12603 struct foo
12604 {
12605 int (*funcp)(int a, long l);
12606 int b;
12607 };
12608
12609 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12610
12611 static struct type *
12612 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12613 {
12614 struct objfile *objfile = cu->objfile;
12615 struct type *type; /* Type that this function returns. */
12616 struct type *ftype; /* Function that returns above type. */
12617 struct attribute *attr;
12618
12619 type = die_type (die, cu);
12620
12621 /* The die_type call above may have already set the type for this DIE. */
12622 ftype = get_die_type (die, cu);
12623 if (ftype)
12624 return ftype;
12625
12626 ftype = lookup_function_type (type);
12627
12628 /* All functions in C++, Pascal and Java have prototypes. */
12629 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12630 if ((attr && (DW_UNSND (attr) != 0))
12631 || cu->language == language_cplus
12632 || cu->language == language_java
12633 || cu->language == language_pascal)
12634 TYPE_PROTOTYPED (ftype) = 1;
12635 else if (producer_is_realview (cu->producer))
12636 /* RealView does not emit DW_AT_prototyped. We can not
12637 distinguish prototyped and unprototyped functions; default to
12638 prototyped, since that is more common in modern code (and
12639 RealView warns about unprototyped functions). */
12640 TYPE_PROTOTYPED (ftype) = 1;
12641
12642 /* Store the calling convention in the type if it's available in
12643 the subroutine die. Otherwise set the calling convention to
12644 the default value DW_CC_normal. */
12645 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12646 if (attr)
12647 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12648 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12649 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12650 else
12651 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12652
12653 /* We need to add the subroutine type to the die immediately so
12654 we don't infinitely recurse when dealing with parameters
12655 declared as the same subroutine type. */
12656 set_die_type (die, ftype, cu);
12657
12658 if (die->child != NULL)
12659 {
12660 struct type *void_type = objfile_type (objfile)->builtin_void;
12661 struct die_info *child_die;
12662 int nparams, iparams;
12663
12664 /* Count the number of parameters.
12665 FIXME: GDB currently ignores vararg functions, but knows about
12666 vararg member functions. */
12667 nparams = 0;
12668 child_die = die->child;
12669 while (child_die && child_die->tag)
12670 {
12671 if (child_die->tag == DW_TAG_formal_parameter)
12672 nparams++;
12673 else if (child_die->tag == DW_TAG_unspecified_parameters)
12674 TYPE_VARARGS (ftype) = 1;
12675 child_die = sibling_die (child_die);
12676 }
12677
12678 /* Allocate storage for parameters and fill them in. */
12679 TYPE_NFIELDS (ftype) = nparams;
12680 TYPE_FIELDS (ftype) = (struct field *)
12681 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12682
12683 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12684 even if we error out during the parameters reading below. */
12685 for (iparams = 0; iparams < nparams; iparams++)
12686 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12687
12688 iparams = 0;
12689 child_die = die->child;
12690 while (child_die && child_die->tag)
12691 {
12692 if (child_die->tag == DW_TAG_formal_parameter)
12693 {
12694 struct type *arg_type;
12695
12696 /* DWARF version 2 has no clean way to discern C++
12697 static and non-static member functions. G++ helps
12698 GDB by marking the first parameter for non-static
12699 member functions (which is the this pointer) as
12700 artificial. We pass this information to
12701 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12702
12703 DWARF version 3 added DW_AT_object_pointer, which GCC
12704 4.5 does not yet generate. */
12705 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12706 if (attr)
12707 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12708 else
12709 {
12710 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12711
12712 /* GCC/43521: In java, the formal parameter
12713 "this" is sometimes not marked with DW_AT_artificial. */
12714 if (cu->language == language_java)
12715 {
12716 const char *name = dwarf2_name (child_die, cu);
12717
12718 if (name && !strcmp (name, "this"))
12719 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12720 }
12721 }
12722 arg_type = die_type (child_die, cu);
12723
12724 /* RealView does not mark THIS as const, which the testsuite
12725 expects. GCC marks THIS as const in method definitions,
12726 but not in the class specifications (GCC PR 43053). */
12727 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12728 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12729 {
12730 int is_this = 0;
12731 struct dwarf2_cu *arg_cu = cu;
12732 const char *name = dwarf2_name (child_die, cu);
12733
12734 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12735 if (attr)
12736 {
12737 /* If the compiler emits this, use it. */
12738 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12739 is_this = 1;
12740 }
12741 else if (name && strcmp (name, "this") == 0)
12742 /* Function definitions will have the argument names. */
12743 is_this = 1;
12744 else if (name == NULL && iparams == 0)
12745 /* Declarations may not have the names, so like
12746 elsewhere in GDB, assume an artificial first
12747 argument is "this". */
12748 is_this = 1;
12749
12750 if (is_this)
12751 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12752 arg_type, 0);
12753 }
12754
12755 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12756 iparams++;
12757 }
12758 child_die = sibling_die (child_die);
12759 }
12760 }
12761
12762 return ftype;
12763 }
12764
12765 static struct type *
12766 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12767 {
12768 struct objfile *objfile = cu->objfile;
12769 const char *name = NULL;
12770 struct type *this_type, *target_type;
12771
12772 name = dwarf2_full_name (NULL, die, cu);
12773 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12774 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12775 TYPE_NAME (this_type) = name;
12776 set_die_type (die, this_type, cu);
12777 target_type = die_type (die, cu);
12778 if (target_type != this_type)
12779 TYPE_TARGET_TYPE (this_type) = target_type;
12780 else
12781 {
12782 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12783 spec and cause infinite loops in GDB. */
12784 complaint (&symfile_complaints,
12785 _("Self-referential DW_TAG_typedef "
12786 "- DIE at 0x%x [in module %s]"),
12787 die->offset.sect_off, objfile->name);
12788 TYPE_TARGET_TYPE (this_type) = NULL;
12789 }
12790 return this_type;
12791 }
12792
12793 /* Find a representation of a given base type and install
12794 it in the TYPE field of the die. */
12795
12796 static struct type *
12797 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12798 {
12799 struct objfile *objfile = cu->objfile;
12800 struct type *type;
12801 struct attribute *attr;
12802 int encoding = 0, size = 0;
12803 const char *name;
12804 enum type_code code = TYPE_CODE_INT;
12805 int type_flags = 0;
12806 struct type *target_type = NULL;
12807
12808 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12809 if (attr)
12810 {
12811 encoding = DW_UNSND (attr);
12812 }
12813 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12814 if (attr)
12815 {
12816 size = DW_UNSND (attr);
12817 }
12818 name = dwarf2_name (die, cu);
12819 if (!name)
12820 {
12821 complaint (&symfile_complaints,
12822 _("DW_AT_name missing from DW_TAG_base_type"));
12823 }
12824
12825 switch (encoding)
12826 {
12827 case DW_ATE_address:
12828 /* Turn DW_ATE_address into a void * pointer. */
12829 code = TYPE_CODE_PTR;
12830 type_flags |= TYPE_FLAG_UNSIGNED;
12831 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12832 break;
12833 case DW_ATE_boolean:
12834 code = TYPE_CODE_BOOL;
12835 type_flags |= TYPE_FLAG_UNSIGNED;
12836 break;
12837 case DW_ATE_complex_float:
12838 code = TYPE_CODE_COMPLEX;
12839 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12840 break;
12841 case DW_ATE_decimal_float:
12842 code = TYPE_CODE_DECFLOAT;
12843 break;
12844 case DW_ATE_float:
12845 code = TYPE_CODE_FLT;
12846 break;
12847 case DW_ATE_signed:
12848 break;
12849 case DW_ATE_unsigned:
12850 type_flags |= TYPE_FLAG_UNSIGNED;
12851 if (cu->language == language_fortran
12852 && name
12853 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12854 code = TYPE_CODE_CHAR;
12855 break;
12856 case DW_ATE_signed_char:
12857 if (cu->language == language_ada || cu->language == language_m2
12858 || cu->language == language_pascal
12859 || cu->language == language_fortran)
12860 code = TYPE_CODE_CHAR;
12861 break;
12862 case DW_ATE_unsigned_char:
12863 if (cu->language == language_ada || cu->language == language_m2
12864 || cu->language == language_pascal
12865 || cu->language == language_fortran)
12866 code = TYPE_CODE_CHAR;
12867 type_flags |= TYPE_FLAG_UNSIGNED;
12868 break;
12869 case DW_ATE_UTF:
12870 /* We just treat this as an integer and then recognize the
12871 type by name elsewhere. */
12872 break;
12873
12874 default:
12875 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12876 dwarf_type_encoding_name (encoding));
12877 break;
12878 }
12879
12880 type = init_type (code, size, type_flags, NULL, objfile);
12881 TYPE_NAME (type) = name;
12882 TYPE_TARGET_TYPE (type) = target_type;
12883
12884 if (name && strcmp (name, "char") == 0)
12885 TYPE_NOSIGN (type) = 1;
12886
12887 return set_die_type (die, type, cu);
12888 }
12889
12890 /* Read the given DW_AT_subrange DIE. */
12891
12892 static struct type *
12893 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12894 {
12895 struct type *base_type, *orig_base_type;
12896 struct type *range_type;
12897 struct attribute *attr;
12898 LONGEST low, high;
12899 int low_default_is_valid;
12900 const char *name;
12901 LONGEST negative_mask;
12902
12903 orig_base_type = die_type (die, cu);
12904 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12905 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12906 creating the range type, but we use the result of check_typedef
12907 when examining properties of the type. */
12908 base_type = check_typedef (orig_base_type);
12909
12910 /* The die_type call above may have already set the type for this DIE. */
12911 range_type = get_die_type (die, cu);
12912 if (range_type)
12913 return range_type;
12914
12915 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12916 omitting DW_AT_lower_bound. */
12917 switch (cu->language)
12918 {
12919 case language_c:
12920 case language_cplus:
12921 low = 0;
12922 low_default_is_valid = 1;
12923 break;
12924 case language_fortran:
12925 low = 1;
12926 low_default_is_valid = 1;
12927 break;
12928 case language_d:
12929 case language_java:
12930 case language_objc:
12931 low = 0;
12932 low_default_is_valid = (cu->header.version >= 4);
12933 break;
12934 case language_ada:
12935 case language_m2:
12936 case language_pascal:
12937 low = 1;
12938 low_default_is_valid = (cu->header.version >= 4);
12939 break;
12940 default:
12941 low = 0;
12942 low_default_is_valid = 0;
12943 break;
12944 }
12945
12946 /* FIXME: For variable sized arrays either of these could be
12947 a variable rather than a constant value. We'll allow it,
12948 but we don't know how to handle it. */
12949 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12950 if (attr)
12951 low = dwarf2_get_attr_constant_value (attr, low);
12952 else if (!low_default_is_valid)
12953 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12954 "- DIE at 0x%x [in module %s]"),
12955 die->offset.sect_off, cu->objfile->name);
12956
12957 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12958 if (attr)
12959 {
12960 if (attr_form_is_block (attr) || is_ref_attr (attr))
12961 {
12962 /* GCC encodes arrays with unspecified or dynamic length
12963 with a DW_FORM_block1 attribute or a reference attribute.
12964 FIXME: GDB does not yet know how to handle dynamic
12965 arrays properly, treat them as arrays with unspecified
12966 length for now.
12967
12968 FIXME: jimb/2003-09-22: GDB does not really know
12969 how to handle arrays of unspecified length
12970 either; we just represent them as zero-length
12971 arrays. Choose an appropriate upper bound given
12972 the lower bound we've computed above. */
12973 high = low - 1;
12974 }
12975 else
12976 high = dwarf2_get_attr_constant_value (attr, 1);
12977 }
12978 else
12979 {
12980 attr = dwarf2_attr (die, DW_AT_count, cu);
12981 if (attr)
12982 {
12983 int count = dwarf2_get_attr_constant_value (attr, 1);
12984 high = low + count - 1;
12985 }
12986 else
12987 {
12988 /* Unspecified array length. */
12989 high = low - 1;
12990 }
12991 }
12992
12993 /* Dwarf-2 specifications explicitly allows to create subrange types
12994 without specifying a base type.
12995 In that case, the base type must be set to the type of
12996 the lower bound, upper bound or count, in that order, if any of these
12997 three attributes references an object that has a type.
12998 If no base type is found, the Dwarf-2 specifications say that
12999 a signed integer type of size equal to the size of an address should
13000 be used.
13001 For the following C code: `extern char gdb_int [];'
13002 GCC produces an empty range DIE.
13003 FIXME: muller/2010-05-28: Possible references to object for low bound,
13004 high bound or count are not yet handled by this code. */
13005 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13006 {
13007 struct objfile *objfile = cu->objfile;
13008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13009 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13010 struct type *int_type = objfile_type (objfile)->builtin_int;
13011
13012 /* Test "int", "long int", and "long long int" objfile types,
13013 and select the first one having a size above or equal to the
13014 architecture address size. */
13015 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13016 base_type = int_type;
13017 else
13018 {
13019 int_type = objfile_type (objfile)->builtin_long;
13020 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13021 base_type = int_type;
13022 else
13023 {
13024 int_type = objfile_type (objfile)->builtin_long_long;
13025 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13026 base_type = int_type;
13027 }
13028 }
13029 }
13030
13031 negative_mask =
13032 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13033 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13034 low |= negative_mask;
13035 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13036 high |= negative_mask;
13037
13038 range_type = create_range_type (NULL, orig_base_type, low, high);
13039
13040 /* Mark arrays with dynamic length at least as an array of unspecified
13041 length. GDB could check the boundary but before it gets implemented at
13042 least allow accessing the array elements. */
13043 if (attr && attr_form_is_block (attr))
13044 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13045
13046 /* Ada expects an empty array on no boundary attributes. */
13047 if (attr == NULL && cu->language != language_ada)
13048 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13049
13050 name = dwarf2_name (die, cu);
13051 if (name)
13052 TYPE_NAME (range_type) = name;
13053
13054 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13055 if (attr)
13056 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13057
13058 set_die_type (die, range_type, cu);
13059
13060 /* set_die_type should be already done. */
13061 set_descriptive_type (range_type, die, cu);
13062
13063 return range_type;
13064 }
13065
13066 static struct type *
13067 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13068 {
13069 struct type *type;
13070
13071 /* For now, we only support the C meaning of an unspecified type: void. */
13072
13073 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13074 TYPE_NAME (type) = dwarf2_name (die, cu);
13075
13076 return set_die_type (die, type, cu);
13077 }
13078
13079 /* Read a single die and all its descendents. Set the die's sibling
13080 field to NULL; set other fields in the die correctly, and set all
13081 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13082 location of the info_ptr after reading all of those dies. PARENT
13083 is the parent of the die in question. */
13084
13085 static struct die_info *
13086 read_die_and_children (const struct die_reader_specs *reader,
13087 const gdb_byte *info_ptr,
13088 const gdb_byte **new_info_ptr,
13089 struct die_info *parent)
13090 {
13091 struct die_info *die;
13092 const gdb_byte *cur_ptr;
13093 int has_children;
13094
13095 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13096 if (die == NULL)
13097 {
13098 *new_info_ptr = cur_ptr;
13099 return NULL;
13100 }
13101 store_in_ref_table (die, reader->cu);
13102
13103 if (has_children)
13104 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13105 else
13106 {
13107 die->child = NULL;
13108 *new_info_ptr = cur_ptr;
13109 }
13110
13111 die->sibling = NULL;
13112 die->parent = parent;
13113 return die;
13114 }
13115
13116 /* Read a die, all of its descendents, and all of its siblings; set
13117 all of the fields of all of the dies correctly. Arguments are as
13118 in read_die_and_children. */
13119
13120 static struct die_info *
13121 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13122 const gdb_byte *info_ptr,
13123 const gdb_byte **new_info_ptr,
13124 struct die_info *parent)
13125 {
13126 struct die_info *first_die, *last_sibling;
13127 const gdb_byte *cur_ptr;
13128
13129 cur_ptr = info_ptr;
13130 first_die = last_sibling = NULL;
13131
13132 while (1)
13133 {
13134 struct die_info *die
13135 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13136
13137 if (die == NULL)
13138 {
13139 *new_info_ptr = cur_ptr;
13140 return first_die;
13141 }
13142
13143 if (!first_die)
13144 first_die = die;
13145 else
13146 last_sibling->sibling = die;
13147
13148 last_sibling = die;
13149 }
13150 }
13151
13152 /* Read a die, all of its descendents, and all of its siblings; set
13153 all of the fields of all of the dies correctly. Arguments are as
13154 in read_die_and_children.
13155 This the main entry point for reading a DIE and all its children. */
13156
13157 static struct die_info *
13158 read_die_and_siblings (const struct die_reader_specs *reader,
13159 const gdb_byte *info_ptr,
13160 const gdb_byte **new_info_ptr,
13161 struct die_info *parent)
13162 {
13163 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13164 new_info_ptr, parent);
13165
13166 if (dwarf2_die_debug)
13167 {
13168 fprintf_unfiltered (gdb_stdlog,
13169 "Read die from %s@0x%x of %s:\n",
13170 bfd_section_name (reader->abfd,
13171 reader->die_section->asection),
13172 (unsigned) (info_ptr - reader->die_section->buffer),
13173 bfd_get_filename (reader->abfd));
13174 dump_die (die, dwarf2_die_debug);
13175 }
13176
13177 return die;
13178 }
13179
13180 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13181 attributes.
13182 The caller is responsible for filling in the extra attributes
13183 and updating (*DIEP)->num_attrs.
13184 Set DIEP to point to a newly allocated die with its information,
13185 except for its child, sibling, and parent fields.
13186 Set HAS_CHILDREN to tell whether the die has children or not. */
13187
13188 static const gdb_byte *
13189 read_full_die_1 (const struct die_reader_specs *reader,
13190 struct die_info **diep, const gdb_byte *info_ptr,
13191 int *has_children, int num_extra_attrs)
13192 {
13193 unsigned int abbrev_number, bytes_read, i;
13194 sect_offset offset;
13195 struct abbrev_info *abbrev;
13196 struct die_info *die;
13197 struct dwarf2_cu *cu = reader->cu;
13198 bfd *abfd = reader->abfd;
13199
13200 offset.sect_off = info_ptr - reader->buffer;
13201 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13202 info_ptr += bytes_read;
13203 if (!abbrev_number)
13204 {
13205 *diep = NULL;
13206 *has_children = 0;
13207 return info_ptr;
13208 }
13209
13210 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13211 if (!abbrev)
13212 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13213 abbrev_number,
13214 bfd_get_filename (abfd));
13215
13216 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13217 die->offset = offset;
13218 die->tag = abbrev->tag;
13219 die->abbrev = abbrev_number;
13220
13221 /* Make the result usable.
13222 The caller needs to update num_attrs after adding the extra
13223 attributes. */
13224 die->num_attrs = abbrev->num_attrs;
13225
13226 for (i = 0; i < abbrev->num_attrs; ++i)
13227 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13228 info_ptr);
13229
13230 *diep = die;
13231 *has_children = abbrev->has_children;
13232 return info_ptr;
13233 }
13234
13235 /* Read a die and all its attributes.
13236 Set DIEP to point to a newly allocated die with its information,
13237 except for its child, sibling, and parent fields.
13238 Set HAS_CHILDREN to tell whether the die has children or not. */
13239
13240 static const gdb_byte *
13241 read_full_die (const struct die_reader_specs *reader,
13242 struct die_info **diep, const gdb_byte *info_ptr,
13243 int *has_children)
13244 {
13245 const gdb_byte *result;
13246
13247 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13248
13249 if (dwarf2_die_debug)
13250 {
13251 fprintf_unfiltered (gdb_stdlog,
13252 "Read die from %s@0x%x of %s:\n",
13253 bfd_section_name (reader->abfd,
13254 reader->die_section->asection),
13255 (unsigned) (info_ptr - reader->die_section->buffer),
13256 bfd_get_filename (reader->abfd));
13257 dump_die (*diep, dwarf2_die_debug);
13258 }
13259
13260 return result;
13261 }
13262 \f
13263 /* Abbreviation tables.
13264
13265 In DWARF version 2, the description of the debugging information is
13266 stored in a separate .debug_abbrev section. Before we read any
13267 dies from a section we read in all abbreviations and install them
13268 in a hash table. */
13269
13270 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13271
13272 static struct abbrev_info *
13273 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13274 {
13275 struct abbrev_info *abbrev;
13276
13277 abbrev = (struct abbrev_info *)
13278 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13279 memset (abbrev, 0, sizeof (struct abbrev_info));
13280 return abbrev;
13281 }
13282
13283 /* Add an abbreviation to the table. */
13284
13285 static void
13286 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13287 unsigned int abbrev_number,
13288 struct abbrev_info *abbrev)
13289 {
13290 unsigned int hash_number;
13291
13292 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13293 abbrev->next = abbrev_table->abbrevs[hash_number];
13294 abbrev_table->abbrevs[hash_number] = abbrev;
13295 }
13296
13297 /* Look up an abbrev in the table.
13298 Returns NULL if the abbrev is not found. */
13299
13300 static struct abbrev_info *
13301 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13302 unsigned int abbrev_number)
13303 {
13304 unsigned int hash_number;
13305 struct abbrev_info *abbrev;
13306
13307 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13308 abbrev = abbrev_table->abbrevs[hash_number];
13309
13310 while (abbrev)
13311 {
13312 if (abbrev->number == abbrev_number)
13313 return abbrev;
13314 abbrev = abbrev->next;
13315 }
13316 return NULL;
13317 }
13318
13319 /* Read in an abbrev table. */
13320
13321 static struct abbrev_table *
13322 abbrev_table_read_table (struct dwarf2_section_info *section,
13323 sect_offset offset)
13324 {
13325 struct objfile *objfile = dwarf2_per_objfile->objfile;
13326 bfd *abfd = section->asection->owner;
13327 struct abbrev_table *abbrev_table;
13328 const gdb_byte *abbrev_ptr;
13329 struct abbrev_info *cur_abbrev;
13330 unsigned int abbrev_number, bytes_read, abbrev_name;
13331 unsigned int abbrev_form;
13332 struct attr_abbrev *cur_attrs;
13333 unsigned int allocated_attrs;
13334
13335 abbrev_table = XMALLOC (struct abbrev_table);
13336 abbrev_table->offset = offset;
13337 obstack_init (&abbrev_table->abbrev_obstack);
13338 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13339 (ABBREV_HASH_SIZE
13340 * sizeof (struct abbrev_info *)));
13341 memset (abbrev_table->abbrevs, 0,
13342 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13343
13344 dwarf2_read_section (objfile, section);
13345 abbrev_ptr = section->buffer + offset.sect_off;
13346 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13347 abbrev_ptr += bytes_read;
13348
13349 allocated_attrs = ATTR_ALLOC_CHUNK;
13350 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13351
13352 /* Loop until we reach an abbrev number of 0. */
13353 while (abbrev_number)
13354 {
13355 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13356
13357 /* read in abbrev header */
13358 cur_abbrev->number = abbrev_number;
13359 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13360 abbrev_ptr += bytes_read;
13361 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13362 abbrev_ptr += 1;
13363
13364 /* now read in declarations */
13365 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13366 abbrev_ptr += bytes_read;
13367 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13368 abbrev_ptr += bytes_read;
13369 while (abbrev_name)
13370 {
13371 if (cur_abbrev->num_attrs == allocated_attrs)
13372 {
13373 allocated_attrs += ATTR_ALLOC_CHUNK;
13374 cur_attrs
13375 = xrealloc (cur_attrs, (allocated_attrs
13376 * sizeof (struct attr_abbrev)));
13377 }
13378
13379 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13380 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13381 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13382 abbrev_ptr += bytes_read;
13383 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13384 abbrev_ptr += bytes_read;
13385 }
13386
13387 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13388 (cur_abbrev->num_attrs
13389 * sizeof (struct attr_abbrev)));
13390 memcpy (cur_abbrev->attrs, cur_attrs,
13391 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13392
13393 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13394
13395 /* Get next abbreviation.
13396 Under Irix6 the abbreviations for a compilation unit are not
13397 always properly terminated with an abbrev number of 0.
13398 Exit loop if we encounter an abbreviation which we have
13399 already read (which means we are about to read the abbreviations
13400 for the next compile unit) or if the end of the abbreviation
13401 table is reached. */
13402 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13403 break;
13404 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13405 abbrev_ptr += bytes_read;
13406 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13407 break;
13408 }
13409
13410 xfree (cur_attrs);
13411 return abbrev_table;
13412 }
13413
13414 /* Free the resources held by ABBREV_TABLE. */
13415
13416 static void
13417 abbrev_table_free (struct abbrev_table *abbrev_table)
13418 {
13419 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13420 xfree (abbrev_table);
13421 }
13422
13423 /* Same as abbrev_table_free but as a cleanup.
13424 We pass in a pointer to the pointer to the table so that we can
13425 set the pointer to NULL when we're done. It also simplifies
13426 build_type_unit_groups. */
13427
13428 static void
13429 abbrev_table_free_cleanup (void *table_ptr)
13430 {
13431 struct abbrev_table **abbrev_table_ptr = table_ptr;
13432
13433 if (*abbrev_table_ptr != NULL)
13434 abbrev_table_free (*abbrev_table_ptr);
13435 *abbrev_table_ptr = NULL;
13436 }
13437
13438 /* Read the abbrev table for CU from ABBREV_SECTION. */
13439
13440 static void
13441 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13442 struct dwarf2_section_info *abbrev_section)
13443 {
13444 cu->abbrev_table =
13445 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13446 }
13447
13448 /* Release the memory used by the abbrev table for a compilation unit. */
13449
13450 static void
13451 dwarf2_free_abbrev_table (void *ptr_to_cu)
13452 {
13453 struct dwarf2_cu *cu = ptr_to_cu;
13454
13455 abbrev_table_free (cu->abbrev_table);
13456 /* Set this to NULL so that we SEGV if we try to read it later,
13457 and also because free_comp_unit verifies this is NULL. */
13458 cu->abbrev_table = NULL;
13459 }
13460 \f
13461 /* Returns nonzero if TAG represents a type that we might generate a partial
13462 symbol for. */
13463
13464 static int
13465 is_type_tag_for_partial (int tag)
13466 {
13467 switch (tag)
13468 {
13469 #if 0
13470 /* Some types that would be reasonable to generate partial symbols for,
13471 that we don't at present. */
13472 case DW_TAG_array_type:
13473 case DW_TAG_file_type:
13474 case DW_TAG_ptr_to_member_type:
13475 case DW_TAG_set_type:
13476 case DW_TAG_string_type:
13477 case DW_TAG_subroutine_type:
13478 #endif
13479 case DW_TAG_base_type:
13480 case DW_TAG_class_type:
13481 case DW_TAG_interface_type:
13482 case DW_TAG_enumeration_type:
13483 case DW_TAG_structure_type:
13484 case DW_TAG_subrange_type:
13485 case DW_TAG_typedef:
13486 case DW_TAG_union_type:
13487 return 1;
13488 default:
13489 return 0;
13490 }
13491 }
13492
13493 /* Load all DIEs that are interesting for partial symbols into memory. */
13494
13495 static struct partial_die_info *
13496 load_partial_dies (const struct die_reader_specs *reader,
13497 const gdb_byte *info_ptr, int building_psymtab)
13498 {
13499 struct dwarf2_cu *cu = reader->cu;
13500 struct objfile *objfile = cu->objfile;
13501 struct partial_die_info *part_die;
13502 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13503 struct abbrev_info *abbrev;
13504 unsigned int bytes_read;
13505 unsigned int load_all = 0;
13506 int nesting_level = 1;
13507
13508 parent_die = NULL;
13509 last_die = NULL;
13510
13511 gdb_assert (cu->per_cu != NULL);
13512 if (cu->per_cu->load_all_dies)
13513 load_all = 1;
13514
13515 cu->partial_dies
13516 = htab_create_alloc_ex (cu->header.length / 12,
13517 partial_die_hash,
13518 partial_die_eq,
13519 NULL,
13520 &cu->comp_unit_obstack,
13521 hashtab_obstack_allocate,
13522 dummy_obstack_deallocate);
13523
13524 part_die = obstack_alloc (&cu->comp_unit_obstack,
13525 sizeof (struct partial_die_info));
13526
13527 while (1)
13528 {
13529 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13530
13531 /* A NULL abbrev means the end of a series of children. */
13532 if (abbrev == NULL)
13533 {
13534 if (--nesting_level == 0)
13535 {
13536 /* PART_DIE was probably the last thing allocated on the
13537 comp_unit_obstack, so we could call obstack_free
13538 here. We don't do that because the waste is small,
13539 and will be cleaned up when we're done with this
13540 compilation unit. This way, we're also more robust
13541 against other users of the comp_unit_obstack. */
13542 return first_die;
13543 }
13544 info_ptr += bytes_read;
13545 last_die = parent_die;
13546 parent_die = parent_die->die_parent;
13547 continue;
13548 }
13549
13550 /* Check for template arguments. We never save these; if
13551 they're seen, we just mark the parent, and go on our way. */
13552 if (parent_die != NULL
13553 && cu->language == language_cplus
13554 && (abbrev->tag == DW_TAG_template_type_param
13555 || abbrev->tag == DW_TAG_template_value_param))
13556 {
13557 parent_die->has_template_arguments = 1;
13558
13559 if (!load_all)
13560 {
13561 /* We don't need a partial DIE for the template argument. */
13562 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13563 continue;
13564 }
13565 }
13566
13567 /* We only recurse into c++ subprograms looking for template arguments.
13568 Skip their other children. */
13569 if (!load_all
13570 && cu->language == language_cplus
13571 && parent_die != NULL
13572 && parent_die->tag == DW_TAG_subprogram)
13573 {
13574 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13575 continue;
13576 }
13577
13578 /* Check whether this DIE is interesting enough to save. Normally
13579 we would not be interested in members here, but there may be
13580 later variables referencing them via DW_AT_specification (for
13581 static members). */
13582 if (!load_all
13583 && !is_type_tag_for_partial (abbrev->tag)
13584 && abbrev->tag != DW_TAG_constant
13585 && abbrev->tag != DW_TAG_enumerator
13586 && abbrev->tag != DW_TAG_subprogram
13587 && abbrev->tag != DW_TAG_lexical_block
13588 && abbrev->tag != DW_TAG_variable
13589 && abbrev->tag != DW_TAG_namespace
13590 && abbrev->tag != DW_TAG_module
13591 && abbrev->tag != DW_TAG_member
13592 && abbrev->tag != DW_TAG_imported_unit)
13593 {
13594 /* Otherwise we skip to the next sibling, if any. */
13595 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13596 continue;
13597 }
13598
13599 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13600 info_ptr);
13601
13602 /* This two-pass algorithm for processing partial symbols has a
13603 high cost in cache pressure. Thus, handle some simple cases
13604 here which cover the majority of C partial symbols. DIEs
13605 which neither have specification tags in them, nor could have
13606 specification tags elsewhere pointing at them, can simply be
13607 processed and discarded.
13608
13609 This segment is also optional; scan_partial_symbols and
13610 add_partial_symbol will handle these DIEs if we chain
13611 them in normally. When compilers which do not emit large
13612 quantities of duplicate debug information are more common,
13613 this code can probably be removed. */
13614
13615 /* Any complete simple types at the top level (pretty much all
13616 of them, for a language without namespaces), can be processed
13617 directly. */
13618 if (parent_die == NULL
13619 && part_die->has_specification == 0
13620 && part_die->is_declaration == 0
13621 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13622 || part_die->tag == DW_TAG_base_type
13623 || part_die->tag == DW_TAG_subrange_type))
13624 {
13625 if (building_psymtab && part_die->name != NULL)
13626 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13627 VAR_DOMAIN, LOC_TYPEDEF,
13628 &objfile->static_psymbols,
13629 0, (CORE_ADDR) 0, cu->language, objfile);
13630 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13631 continue;
13632 }
13633
13634 /* The exception for DW_TAG_typedef with has_children above is
13635 a workaround of GCC PR debug/47510. In the case of this complaint
13636 type_name_no_tag_or_error will error on such types later.
13637
13638 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13639 it could not find the child DIEs referenced later, this is checked
13640 above. In correct DWARF DW_TAG_typedef should have no children. */
13641
13642 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13643 complaint (&symfile_complaints,
13644 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13645 "- DIE at 0x%x [in module %s]"),
13646 part_die->offset.sect_off, objfile->name);
13647
13648 /* If we're at the second level, and we're an enumerator, and
13649 our parent has no specification (meaning possibly lives in a
13650 namespace elsewhere), then we can add the partial symbol now
13651 instead of queueing it. */
13652 if (part_die->tag == DW_TAG_enumerator
13653 && parent_die != NULL
13654 && parent_die->die_parent == NULL
13655 && parent_die->tag == DW_TAG_enumeration_type
13656 && parent_die->has_specification == 0)
13657 {
13658 if (part_die->name == NULL)
13659 complaint (&symfile_complaints,
13660 _("malformed enumerator DIE ignored"));
13661 else if (building_psymtab)
13662 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13663 VAR_DOMAIN, LOC_CONST,
13664 (cu->language == language_cplus
13665 || cu->language == language_java)
13666 ? &objfile->global_psymbols
13667 : &objfile->static_psymbols,
13668 0, (CORE_ADDR) 0, cu->language, objfile);
13669
13670 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13671 continue;
13672 }
13673
13674 /* We'll save this DIE so link it in. */
13675 part_die->die_parent = parent_die;
13676 part_die->die_sibling = NULL;
13677 part_die->die_child = NULL;
13678
13679 if (last_die && last_die == parent_die)
13680 last_die->die_child = part_die;
13681 else if (last_die)
13682 last_die->die_sibling = part_die;
13683
13684 last_die = part_die;
13685
13686 if (first_die == NULL)
13687 first_die = part_die;
13688
13689 /* Maybe add the DIE to the hash table. Not all DIEs that we
13690 find interesting need to be in the hash table, because we
13691 also have the parent/sibling/child chains; only those that we
13692 might refer to by offset later during partial symbol reading.
13693
13694 For now this means things that might have be the target of a
13695 DW_AT_specification, DW_AT_abstract_origin, or
13696 DW_AT_extension. DW_AT_extension will refer only to
13697 namespaces; DW_AT_abstract_origin refers to functions (and
13698 many things under the function DIE, but we do not recurse
13699 into function DIEs during partial symbol reading) and
13700 possibly variables as well; DW_AT_specification refers to
13701 declarations. Declarations ought to have the DW_AT_declaration
13702 flag. It happens that GCC forgets to put it in sometimes, but
13703 only for functions, not for types.
13704
13705 Adding more things than necessary to the hash table is harmless
13706 except for the performance cost. Adding too few will result in
13707 wasted time in find_partial_die, when we reread the compilation
13708 unit with load_all_dies set. */
13709
13710 if (load_all
13711 || abbrev->tag == DW_TAG_constant
13712 || abbrev->tag == DW_TAG_subprogram
13713 || abbrev->tag == DW_TAG_variable
13714 || abbrev->tag == DW_TAG_namespace
13715 || part_die->is_declaration)
13716 {
13717 void **slot;
13718
13719 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13720 part_die->offset.sect_off, INSERT);
13721 *slot = part_die;
13722 }
13723
13724 part_die = obstack_alloc (&cu->comp_unit_obstack,
13725 sizeof (struct partial_die_info));
13726
13727 /* For some DIEs we want to follow their children (if any). For C
13728 we have no reason to follow the children of structures; for other
13729 languages we have to, so that we can get at method physnames
13730 to infer fully qualified class names, for DW_AT_specification,
13731 and for C++ template arguments. For C++, we also look one level
13732 inside functions to find template arguments (if the name of the
13733 function does not already contain the template arguments).
13734
13735 For Ada, we need to scan the children of subprograms and lexical
13736 blocks as well because Ada allows the definition of nested
13737 entities that could be interesting for the debugger, such as
13738 nested subprograms for instance. */
13739 if (last_die->has_children
13740 && (load_all
13741 || last_die->tag == DW_TAG_namespace
13742 || last_die->tag == DW_TAG_module
13743 || last_die->tag == DW_TAG_enumeration_type
13744 || (cu->language == language_cplus
13745 && last_die->tag == DW_TAG_subprogram
13746 && (last_die->name == NULL
13747 || strchr (last_die->name, '<') == NULL))
13748 || (cu->language != language_c
13749 && (last_die->tag == DW_TAG_class_type
13750 || last_die->tag == DW_TAG_interface_type
13751 || last_die->tag == DW_TAG_structure_type
13752 || last_die->tag == DW_TAG_union_type))
13753 || (cu->language == language_ada
13754 && (last_die->tag == DW_TAG_subprogram
13755 || last_die->tag == DW_TAG_lexical_block))))
13756 {
13757 nesting_level++;
13758 parent_die = last_die;
13759 continue;
13760 }
13761
13762 /* Otherwise we skip to the next sibling, if any. */
13763 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13764
13765 /* Back to the top, do it again. */
13766 }
13767 }
13768
13769 /* Read a minimal amount of information into the minimal die structure. */
13770
13771 static const gdb_byte *
13772 read_partial_die (const struct die_reader_specs *reader,
13773 struct partial_die_info *part_die,
13774 struct abbrev_info *abbrev, unsigned int abbrev_len,
13775 const gdb_byte *info_ptr)
13776 {
13777 struct dwarf2_cu *cu = reader->cu;
13778 struct objfile *objfile = cu->objfile;
13779 const gdb_byte *buffer = reader->buffer;
13780 unsigned int i;
13781 struct attribute attr;
13782 int has_low_pc_attr = 0;
13783 int has_high_pc_attr = 0;
13784 int high_pc_relative = 0;
13785
13786 memset (part_die, 0, sizeof (struct partial_die_info));
13787
13788 part_die->offset.sect_off = info_ptr - buffer;
13789
13790 info_ptr += abbrev_len;
13791
13792 if (abbrev == NULL)
13793 return info_ptr;
13794
13795 part_die->tag = abbrev->tag;
13796 part_die->has_children = abbrev->has_children;
13797
13798 for (i = 0; i < abbrev->num_attrs; ++i)
13799 {
13800 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13801
13802 /* Store the data if it is of an attribute we want to keep in a
13803 partial symbol table. */
13804 switch (attr.name)
13805 {
13806 case DW_AT_name:
13807 switch (part_die->tag)
13808 {
13809 case DW_TAG_compile_unit:
13810 case DW_TAG_partial_unit:
13811 case DW_TAG_type_unit:
13812 /* Compilation units have a DW_AT_name that is a filename, not
13813 a source language identifier. */
13814 case DW_TAG_enumeration_type:
13815 case DW_TAG_enumerator:
13816 /* These tags always have simple identifiers already; no need
13817 to canonicalize them. */
13818 part_die->name = DW_STRING (&attr);
13819 break;
13820 default:
13821 part_die->name
13822 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13823 &objfile->objfile_obstack);
13824 break;
13825 }
13826 break;
13827 case DW_AT_linkage_name:
13828 case DW_AT_MIPS_linkage_name:
13829 /* Note that both forms of linkage name might appear. We
13830 assume they will be the same, and we only store the last
13831 one we see. */
13832 if (cu->language == language_ada)
13833 part_die->name = DW_STRING (&attr);
13834 part_die->linkage_name = DW_STRING (&attr);
13835 break;
13836 case DW_AT_low_pc:
13837 has_low_pc_attr = 1;
13838 part_die->lowpc = DW_ADDR (&attr);
13839 break;
13840 case DW_AT_high_pc:
13841 has_high_pc_attr = 1;
13842 if (attr.form == DW_FORM_addr
13843 || attr.form == DW_FORM_GNU_addr_index)
13844 part_die->highpc = DW_ADDR (&attr);
13845 else
13846 {
13847 high_pc_relative = 1;
13848 part_die->highpc = DW_UNSND (&attr);
13849 }
13850 break;
13851 case DW_AT_location:
13852 /* Support the .debug_loc offsets. */
13853 if (attr_form_is_block (&attr))
13854 {
13855 part_die->d.locdesc = DW_BLOCK (&attr);
13856 }
13857 else if (attr_form_is_section_offset (&attr))
13858 {
13859 dwarf2_complex_location_expr_complaint ();
13860 }
13861 else
13862 {
13863 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13864 "partial symbol information");
13865 }
13866 break;
13867 case DW_AT_external:
13868 part_die->is_external = DW_UNSND (&attr);
13869 break;
13870 case DW_AT_declaration:
13871 part_die->is_declaration = DW_UNSND (&attr);
13872 break;
13873 case DW_AT_type:
13874 part_die->has_type = 1;
13875 break;
13876 case DW_AT_abstract_origin:
13877 case DW_AT_specification:
13878 case DW_AT_extension:
13879 part_die->has_specification = 1;
13880 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13881 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13882 || cu->per_cu->is_dwz);
13883 break;
13884 case DW_AT_sibling:
13885 /* Ignore absolute siblings, they might point outside of
13886 the current compile unit. */
13887 if (attr.form == DW_FORM_ref_addr)
13888 complaint (&symfile_complaints,
13889 _("ignoring absolute DW_AT_sibling"));
13890 else
13891 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13892 break;
13893 case DW_AT_byte_size:
13894 part_die->has_byte_size = 1;
13895 break;
13896 case DW_AT_calling_convention:
13897 /* DWARF doesn't provide a way to identify a program's source-level
13898 entry point. DW_AT_calling_convention attributes are only meant
13899 to describe functions' calling conventions.
13900
13901 However, because it's a necessary piece of information in
13902 Fortran, and because DW_CC_program is the only piece of debugging
13903 information whose definition refers to a 'main program' at all,
13904 several compilers have begun marking Fortran main programs with
13905 DW_CC_program --- even when those functions use the standard
13906 calling conventions.
13907
13908 So until DWARF specifies a way to provide this information and
13909 compilers pick up the new representation, we'll support this
13910 practice. */
13911 if (DW_UNSND (&attr) == DW_CC_program
13912 && cu->language == language_fortran)
13913 {
13914 set_main_name (part_die->name);
13915
13916 /* As this DIE has a static linkage the name would be difficult
13917 to look up later. */
13918 language_of_main = language_fortran;
13919 }
13920 break;
13921 case DW_AT_inline:
13922 if (DW_UNSND (&attr) == DW_INL_inlined
13923 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13924 part_die->may_be_inlined = 1;
13925 break;
13926
13927 case DW_AT_import:
13928 if (part_die->tag == DW_TAG_imported_unit)
13929 {
13930 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13931 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13932 || cu->per_cu->is_dwz);
13933 }
13934 break;
13935
13936 default:
13937 break;
13938 }
13939 }
13940
13941 if (high_pc_relative)
13942 part_die->highpc += part_die->lowpc;
13943
13944 if (has_low_pc_attr && has_high_pc_attr)
13945 {
13946 /* When using the GNU linker, .gnu.linkonce. sections are used to
13947 eliminate duplicate copies of functions and vtables and such.
13948 The linker will arbitrarily choose one and discard the others.
13949 The AT_*_pc values for such functions refer to local labels in
13950 these sections. If the section from that file was discarded, the
13951 labels are not in the output, so the relocs get a value of 0.
13952 If this is a discarded function, mark the pc bounds as invalid,
13953 so that GDB will ignore it. */
13954 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13955 {
13956 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13957
13958 complaint (&symfile_complaints,
13959 _("DW_AT_low_pc %s is zero "
13960 "for DIE at 0x%x [in module %s]"),
13961 paddress (gdbarch, part_die->lowpc),
13962 part_die->offset.sect_off, objfile->name);
13963 }
13964 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13965 else if (part_die->lowpc >= part_die->highpc)
13966 {
13967 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13968
13969 complaint (&symfile_complaints,
13970 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13971 "for DIE at 0x%x [in module %s]"),
13972 paddress (gdbarch, part_die->lowpc),
13973 paddress (gdbarch, part_die->highpc),
13974 part_die->offset.sect_off, objfile->name);
13975 }
13976 else
13977 part_die->has_pc_info = 1;
13978 }
13979
13980 return info_ptr;
13981 }
13982
13983 /* Find a cached partial DIE at OFFSET in CU. */
13984
13985 static struct partial_die_info *
13986 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13987 {
13988 struct partial_die_info *lookup_die = NULL;
13989 struct partial_die_info part_die;
13990
13991 part_die.offset = offset;
13992 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13993 offset.sect_off);
13994
13995 return lookup_die;
13996 }
13997
13998 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13999 except in the case of .debug_types DIEs which do not reference
14000 outside their CU (they do however referencing other types via
14001 DW_FORM_ref_sig8). */
14002
14003 static struct partial_die_info *
14004 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14005 {
14006 struct objfile *objfile = cu->objfile;
14007 struct dwarf2_per_cu_data *per_cu = NULL;
14008 struct partial_die_info *pd = NULL;
14009
14010 if (offset_in_dwz == cu->per_cu->is_dwz
14011 && offset_in_cu_p (&cu->header, offset))
14012 {
14013 pd = find_partial_die_in_comp_unit (offset, cu);
14014 if (pd != NULL)
14015 return pd;
14016 /* We missed recording what we needed.
14017 Load all dies and try again. */
14018 per_cu = cu->per_cu;
14019 }
14020 else
14021 {
14022 /* TUs don't reference other CUs/TUs (except via type signatures). */
14023 if (cu->per_cu->is_debug_types)
14024 {
14025 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14026 " external reference to offset 0x%lx [in module %s].\n"),
14027 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14028 bfd_get_filename (objfile->obfd));
14029 }
14030 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14031 objfile);
14032
14033 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14034 load_partial_comp_unit (per_cu);
14035
14036 per_cu->cu->last_used = 0;
14037 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14038 }
14039
14040 /* If we didn't find it, and not all dies have been loaded,
14041 load them all and try again. */
14042
14043 if (pd == NULL && per_cu->load_all_dies == 0)
14044 {
14045 per_cu->load_all_dies = 1;
14046
14047 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14048 THIS_CU->cu may already be in use. So we can't just free it and
14049 replace its DIEs with the ones we read in. Instead, we leave those
14050 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14051 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14052 set. */
14053 load_partial_comp_unit (per_cu);
14054
14055 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14056 }
14057
14058 if (pd == NULL)
14059 internal_error (__FILE__, __LINE__,
14060 _("could not find partial DIE 0x%x "
14061 "in cache [from module %s]\n"),
14062 offset.sect_off, bfd_get_filename (objfile->obfd));
14063 return pd;
14064 }
14065
14066 /* See if we can figure out if the class lives in a namespace. We do
14067 this by looking for a member function; its demangled name will
14068 contain namespace info, if there is any. */
14069
14070 static void
14071 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14072 struct dwarf2_cu *cu)
14073 {
14074 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14075 what template types look like, because the demangler
14076 frequently doesn't give the same name as the debug info. We
14077 could fix this by only using the demangled name to get the
14078 prefix (but see comment in read_structure_type). */
14079
14080 struct partial_die_info *real_pdi;
14081 struct partial_die_info *child_pdi;
14082
14083 /* If this DIE (this DIE's specification, if any) has a parent, then
14084 we should not do this. We'll prepend the parent's fully qualified
14085 name when we create the partial symbol. */
14086
14087 real_pdi = struct_pdi;
14088 while (real_pdi->has_specification)
14089 real_pdi = find_partial_die (real_pdi->spec_offset,
14090 real_pdi->spec_is_dwz, cu);
14091
14092 if (real_pdi->die_parent != NULL)
14093 return;
14094
14095 for (child_pdi = struct_pdi->die_child;
14096 child_pdi != NULL;
14097 child_pdi = child_pdi->die_sibling)
14098 {
14099 if (child_pdi->tag == DW_TAG_subprogram
14100 && child_pdi->linkage_name != NULL)
14101 {
14102 char *actual_class_name
14103 = language_class_name_from_physname (cu->language_defn,
14104 child_pdi->linkage_name);
14105 if (actual_class_name != NULL)
14106 {
14107 struct_pdi->name
14108 = obstack_copy0 (&cu->objfile->objfile_obstack,
14109 actual_class_name,
14110 strlen (actual_class_name));
14111 xfree (actual_class_name);
14112 }
14113 break;
14114 }
14115 }
14116 }
14117
14118 /* Adjust PART_DIE before generating a symbol for it. This function
14119 may set the is_external flag or change the DIE's name. */
14120
14121 static void
14122 fixup_partial_die (struct partial_die_info *part_die,
14123 struct dwarf2_cu *cu)
14124 {
14125 /* Once we've fixed up a die, there's no point in doing so again.
14126 This also avoids a memory leak if we were to call
14127 guess_partial_die_structure_name multiple times. */
14128 if (part_die->fixup_called)
14129 return;
14130
14131 /* If we found a reference attribute and the DIE has no name, try
14132 to find a name in the referred to DIE. */
14133
14134 if (part_die->name == NULL && part_die->has_specification)
14135 {
14136 struct partial_die_info *spec_die;
14137
14138 spec_die = find_partial_die (part_die->spec_offset,
14139 part_die->spec_is_dwz, cu);
14140
14141 fixup_partial_die (spec_die, cu);
14142
14143 if (spec_die->name)
14144 {
14145 part_die->name = spec_die->name;
14146
14147 /* Copy DW_AT_external attribute if it is set. */
14148 if (spec_die->is_external)
14149 part_die->is_external = spec_die->is_external;
14150 }
14151 }
14152
14153 /* Set default names for some unnamed DIEs. */
14154
14155 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14156 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14157
14158 /* If there is no parent die to provide a namespace, and there are
14159 children, see if we can determine the namespace from their linkage
14160 name. */
14161 if (cu->language == language_cplus
14162 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14163 && part_die->die_parent == NULL
14164 && part_die->has_children
14165 && (part_die->tag == DW_TAG_class_type
14166 || part_die->tag == DW_TAG_structure_type
14167 || part_die->tag == DW_TAG_union_type))
14168 guess_partial_die_structure_name (part_die, cu);
14169
14170 /* GCC might emit a nameless struct or union that has a linkage
14171 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14172 if (part_die->name == NULL
14173 && (part_die->tag == DW_TAG_class_type
14174 || part_die->tag == DW_TAG_interface_type
14175 || part_die->tag == DW_TAG_structure_type
14176 || part_die->tag == DW_TAG_union_type)
14177 && part_die->linkage_name != NULL)
14178 {
14179 char *demangled;
14180
14181 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14182 if (demangled)
14183 {
14184 const char *base;
14185
14186 /* Strip any leading namespaces/classes, keep only the base name.
14187 DW_AT_name for named DIEs does not contain the prefixes. */
14188 base = strrchr (demangled, ':');
14189 if (base && base > demangled && base[-1] == ':')
14190 base++;
14191 else
14192 base = demangled;
14193
14194 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14195 base, strlen (base));
14196 xfree (demangled);
14197 }
14198 }
14199
14200 part_die->fixup_called = 1;
14201 }
14202
14203 /* Read an attribute value described by an attribute form. */
14204
14205 static const gdb_byte *
14206 read_attribute_value (const struct die_reader_specs *reader,
14207 struct attribute *attr, unsigned form,
14208 const gdb_byte *info_ptr)
14209 {
14210 struct dwarf2_cu *cu = reader->cu;
14211 bfd *abfd = reader->abfd;
14212 struct comp_unit_head *cu_header = &cu->header;
14213 unsigned int bytes_read;
14214 struct dwarf_block *blk;
14215
14216 attr->form = form;
14217 switch (form)
14218 {
14219 case DW_FORM_ref_addr:
14220 if (cu->header.version == 2)
14221 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14222 else
14223 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14224 &cu->header, &bytes_read);
14225 info_ptr += bytes_read;
14226 break;
14227 case DW_FORM_GNU_ref_alt:
14228 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14229 info_ptr += bytes_read;
14230 break;
14231 case DW_FORM_addr:
14232 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14233 info_ptr += bytes_read;
14234 break;
14235 case DW_FORM_block2:
14236 blk = dwarf_alloc_block (cu);
14237 blk->size = read_2_bytes (abfd, info_ptr);
14238 info_ptr += 2;
14239 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14240 info_ptr += blk->size;
14241 DW_BLOCK (attr) = blk;
14242 break;
14243 case DW_FORM_block4:
14244 blk = dwarf_alloc_block (cu);
14245 blk->size = read_4_bytes (abfd, info_ptr);
14246 info_ptr += 4;
14247 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14248 info_ptr += blk->size;
14249 DW_BLOCK (attr) = blk;
14250 break;
14251 case DW_FORM_data2:
14252 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14253 info_ptr += 2;
14254 break;
14255 case DW_FORM_data4:
14256 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14257 info_ptr += 4;
14258 break;
14259 case DW_FORM_data8:
14260 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14261 info_ptr += 8;
14262 break;
14263 case DW_FORM_sec_offset:
14264 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14265 info_ptr += bytes_read;
14266 break;
14267 case DW_FORM_string:
14268 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14269 DW_STRING_IS_CANONICAL (attr) = 0;
14270 info_ptr += bytes_read;
14271 break;
14272 case DW_FORM_strp:
14273 if (!cu->per_cu->is_dwz)
14274 {
14275 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14276 &bytes_read);
14277 DW_STRING_IS_CANONICAL (attr) = 0;
14278 info_ptr += bytes_read;
14279 break;
14280 }
14281 /* FALLTHROUGH */
14282 case DW_FORM_GNU_strp_alt:
14283 {
14284 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14285 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14286 &bytes_read);
14287
14288 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14289 DW_STRING_IS_CANONICAL (attr) = 0;
14290 info_ptr += bytes_read;
14291 }
14292 break;
14293 case DW_FORM_exprloc:
14294 case DW_FORM_block:
14295 blk = dwarf_alloc_block (cu);
14296 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14297 info_ptr += bytes_read;
14298 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14299 info_ptr += blk->size;
14300 DW_BLOCK (attr) = blk;
14301 break;
14302 case DW_FORM_block1:
14303 blk = dwarf_alloc_block (cu);
14304 blk->size = read_1_byte (abfd, info_ptr);
14305 info_ptr += 1;
14306 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14307 info_ptr += blk->size;
14308 DW_BLOCK (attr) = blk;
14309 break;
14310 case DW_FORM_data1:
14311 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14312 info_ptr += 1;
14313 break;
14314 case DW_FORM_flag:
14315 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14316 info_ptr += 1;
14317 break;
14318 case DW_FORM_flag_present:
14319 DW_UNSND (attr) = 1;
14320 break;
14321 case DW_FORM_sdata:
14322 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14323 info_ptr += bytes_read;
14324 break;
14325 case DW_FORM_udata:
14326 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14327 info_ptr += bytes_read;
14328 break;
14329 case DW_FORM_ref1:
14330 DW_UNSND (attr) = (cu->header.offset.sect_off
14331 + read_1_byte (abfd, info_ptr));
14332 info_ptr += 1;
14333 break;
14334 case DW_FORM_ref2:
14335 DW_UNSND (attr) = (cu->header.offset.sect_off
14336 + read_2_bytes (abfd, info_ptr));
14337 info_ptr += 2;
14338 break;
14339 case DW_FORM_ref4:
14340 DW_UNSND (attr) = (cu->header.offset.sect_off
14341 + read_4_bytes (abfd, info_ptr));
14342 info_ptr += 4;
14343 break;
14344 case DW_FORM_ref8:
14345 DW_UNSND (attr) = (cu->header.offset.sect_off
14346 + read_8_bytes (abfd, info_ptr));
14347 info_ptr += 8;
14348 break;
14349 case DW_FORM_ref_sig8:
14350 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14351 info_ptr += 8;
14352 break;
14353 case DW_FORM_ref_udata:
14354 DW_UNSND (attr) = (cu->header.offset.sect_off
14355 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14356 info_ptr += bytes_read;
14357 break;
14358 case DW_FORM_indirect:
14359 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14360 info_ptr += bytes_read;
14361 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14362 break;
14363 case DW_FORM_GNU_addr_index:
14364 if (reader->dwo_file == NULL)
14365 {
14366 /* For now flag a hard error.
14367 Later we can turn this into a complaint. */
14368 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14369 dwarf_form_name (form),
14370 bfd_get_filename (abfd));
14371 }
14372 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14373 info_ptr += bytes_read;
14374 break;
14375 case DW_FORM_GNU_str_index:
14376 if (reader->dwo_file == NULL)
14377 {
14378 /* For now flag a hard error.
14379 Later we can turn this into a complaint if warranted. */
14380 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14381 dwarf_form_name (form),
14382 bfd_get_filename (abfd));
14383 }
14384 {
14385 ULONGEST str_index =
14386 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14387
14388 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14389 DW_STRING_IS_CANONICAL (attr) = 0;
14390 info_ptr += bytes_read;
14391 }
14392 break;
14393 default:
14394 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14395 dwarf_form_name (form),
14396 bfd_get_filename (abfd));
14397 }
14398
14399 /* Super hack. */
14400 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14401 attr->form = DW_FORM_GNU_ref_alt;
14402
14403 /* We have seen instances where the compiler tried to emit a byte
14404 size attribute of -1 which ended up being encoded as an unsigned
14405 0xffffffff. Although 0xffffffff is technically a valid size value,
14406 an object of this size seems pretty unlikely so we can relatively
14407 safely treat these cases as if the size attribute was invalid and
14408 treat them as zero by default. */
14409 if (attr->name == DW_AT_byte_size
14410 && form == DW_FORM_data4
14411 && DW_UNSND (attr) >= 0xffffffff)
14412 {
14413 complaint
14414 (&symfile_complaints,
14415 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14416 hex_string (DW_UNSND (attr)));
14417 DW_UNSND (attr) = 0;
14418 }
14419
14420 return info_ptr;
14421 }
14422
14423 /* Read an attribute described by an abbreviated attribute. */
14424
14425 static const gdb_byte *
14426 read_attribute (const struct die_reader_specs *reader,
14427 struct attribute *attr, struct attr_abbrev *abbrev,
14428 const gdb_byte *info_ptr)
14429 {
14430 attr->name = abbrev->name;
14431 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14432 }
14433
14434 /* Read dwarf information from a buffer. */
14435
14436 static unsigned int
14437 read_1_byte (bfd *abfd, const gdb_byte *buf)
14438 {
14439 return bfd_get_8 (abfd, buf);
14440 }
14441
14442 static int
14443 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14444 {
14445 return bfd_get_signed_8 (abfd, buf);
14446 }
14447
14448 static unsigned int
14449 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14450 {
14451 return bfd_get_16 (abfd, buf);
14452 }
14453
14454 static int
14455 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14456 {
14457 return bfd_get_signed_16 (abfd, buf);
14458 }
14459
14460 static unsigned int
14461 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14462 {
14463 return bfd_get_32 (abfd, buf);
14464 }
14465
14466 static int
14467 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14468 {
14469 return bfd_get_signed_32 (abfd, buf);
14470 }
14471
14472 static ULONGEST
14473 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14474 {
14475 return bfd_get_64 (abfd, buf);
14476 }
14477
14478 static CORE_ADDR
14479 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14480 unsigned int *bytes_read)
14481 {
14482 struct comp_unit_head *cu_header = &cu->header;
14483 CORE_ADDR retval = 0;
14484
14485 if (cu_header->signed_addr_p)
14486 {
14487 switch (cu_header->addr_size)
14488 {
14489 case 2:
14490 retval = bfd_get_signed_16 (abfd, buf);
14491 break;
14492 case 4:
14493 retval = bfd_get_signed_32 (abfd, buf);
14494 break;
14495 case 8:
14496 retval = bfd_get_signed_64 (abfd, buf);
14497 break;
14498 default:
14499 internal_error (__FILE__, __LINE__,
14500 _("read_address: bad switch, signed [in module %s]"),
14501 bfd_get_filename (abfd));
14502 }
14503 }
14504 else
14505 {
14506 switch (cu_header->addr_size)
14507 {
14508 case 2:
14509 retval = bfd_get_16 (abfd, buf);
14510 break;
14511 case 4:
14512 retval = bfd_get_32 (abfd, buf);
14513 break;
14514 case 8:
14515 retval = bfd_get_64 (abfd, buf);
14516 break;
14517 default:
14518 internal_error (__FILE__, __LINE__,
14519 _("read_address: bad switch, "
14520 "unsigned [in module %s]"),
14521 bfd_get_filename (abfd));
14522 }
14523 }
14524
14525 *bytes_read = cu_header->addr_size;
14526 return retval;
14527 }
14528
14529 /* Read the initial length from a section. The (draft) DWARF 3
14530 specification allows the initial length to take up either 4 bytes
14531 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14532 bytes describe the length and all offsets will be 8 bytes in length
14533 instead of 4.
14534
14535 An older, non-standard 64-bit format is also handled by this
14536 function. The older format in question stores the initial length
14537 as an 8-byte quantity without an escape value. Lengths greater
14538 than 2^32 aren't very common which means that the initial 4 bytes
14539 is almost always zero. Since a length value of zero doesn't make
14540 sense for the 32-bit format, this initial zero can be considered to
14541 be an escape value which indicates the presence of the older 64-bit
14542 format. As written, the code can't detect (old format) lengths
14543 greater than 4GB. If it becomes necessary to handle lengths
14544 somewhat larger than 4GB, we could allow other small values (such
14545 as the non-sensical values of 1, 2, and 3) to also be used as
14546 escape values indicating the presence of the old format.
14547
14548 The value returned via bytes_read should be used to increment the
14549 relevant pointer after calling read_initial_length().
14550
14551 [ Note: read_initial_length() and read_offset() are based on the
14552 document entitled "DWARF Debugging Information Format", revision
14553 3, draft 8, dated November 19, 2001. This document was obtained
14554 from:
14555
14556 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14557
14558 This document is only a draft and is subject to change. (So beware.)
14559
14560 Details regarding the older, non-standard 64-bit format were
14561 determined empirically by examining 64-bit ELF files produced by
14562 the SGI toolchain on an IRIX 6.5 machine.
14563
14564 - Kevin, July 16, 2002
14565 ] */
14566
14567 static LONGEST
14568 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14569 {
14570 LONGEST length = bfd_get_32 (abfd, buf);
14571
14572 if (length == 0xffffffff)
14573 {
14574 length = bfd_get_64 (abfd, buf + 4);
14575 *bytes_read = 12;
14576 }
14577 else if (length == 0)
14578 {
14579 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14580 length = bfd_get_64 (abfd, buf);
14581 *bytes_read = 8;
14582 }
14583 else
14584 {
14585 *bytes_read = 4;
14586 }
14587
14588 return length;
14589 }
14590
14591 /* Cover function for read_initial_length.
14592 Returns the length of the object at BUF, and stores the size of the
14593 initial length in *BYTES_READ and stores the size that offsets will be in
14594 *OFFSET_SIZE.
14595 If the initial length size is not equivalent to that specified in
14596 CU_HEADER then issue a complaint.
14597 This is useful when reading non-comp-unit headers. */
14598
14599 static LONGEST
14600 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14601 const struct comp_unit_head *cu_header,
14602 unsigned int *bytes_read,
14603 unsigned int *offset_size)
14604 {
14605 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14606
14607 gdb_assert (cu_header->initial_length_size == 4
14608 || cu_header->initial_length_size == 8
14609 || cu_header->initial_length_size == 12);
14610
14611 if (cu_header->initial_length_size != *bytes_read)
14612 complaint (&symfile_complaints,
14613 _("intermixed 32-bit and 64-bit DWARF sections"));
14614
14615 *offset_size = (*bytes_read == 4) ? 4 : 8;
14616 return length;
14617 }
14618
14619 /* Read an offset from the data stream. The size of the offset is
14620 given by cu_header->offset_size. */
14621
14622 static LONGEST
14623 read_offset (bfd *abfd, const gdb_byte *buf,
14624 const struct comp_unit_head *cu_header,
14625 unsigned int *bytes_read)
14626 {
14627 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14628
14629 *bytes_read = cu_header->offset_size;
14630 return offset;
14631 }
14632
14633 /* Read an offset from the data stream. */
14634
14635 static LONGEST
14636 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
14637 {
14638 LONGEST retval = 0;
14639
14640 switch (offset_size)
14641 {
14642 case 4:
14643 retval = bfd_get_32 (abfd, buf);
14644 break;
14645 case 8:
14646 retval = bfd_get_64 (abfd, buf);
14647 break;
14648 default:
14649 internal_error (__FILE__, __LINE__,
14650 _("read_offset_1: bad switch [in module %s]"),
14651 bfd_get_filename (abfd));
14652 }
14653
14654 return retval;
14655 }
14656
14657 static const gdb_byte *
14658 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
14659 {
14660 /* If the size of a host char is 8 bits, we can return a pointer
14661 to the buffer, otherwise we have to copy the data to a buffer
14662 allocated on the temporary obstack. */
14663 gdb_assert (HOST_CHAR_BIT == 8);
14664 return buf;
14665 }
14666
14667 static const char *
14668 read_direct_string (bfd *abfd, const gdb_byte *buf,
14669 unsigned int *bytes_read_ptr)
14670 {
14671 /* If the size of a host char is 8 bits, we can return a pointer
14672 to the string, otherwise we have to copy the string to a buffer
14673 allocated on the temporary obstack. */
14674 gdb_assert (HOST_CHAR_BIT == 8);
14675 if (*buf == '\0')
14676 {
14677 *bytes_read_ptr = 1;
14678 return NULL;
14679 }
14680 *bytes_read_ptr = strlen ((const char *) buf) + 1;
14681 return (const char *) buf;
14682 }
14683
14684 static const char *
14685 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14686 {
14687 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14688 if (dwarf2_per_objfile->str.buffer == NULL)
14689 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14690 bfd_get_filename (abfd));
14691 if (str_offset >= dwarf2_per_objfile->str.size)
14692 error (_("DW_FORM_strp pointing outside of "
14693 ".debug_str section [in module %s]"),
14694 bfd_get_filename (abfd));
14695 gdb_assert (HOST_CHAR_BIT == 8);
14696 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14697 return NULL;
14698 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
14699 }
14700
14701 /* Read a string at offset STR_OFFSET in the .debug_str section from
14702 the .dwz file DWZ. Throw an error if the offset is too large. If
14703 the string consists of a single NUL byte, return NULL; otherwise
14704 return a pointer to the string. */
14705
14706 static const char *
14707 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14708 {
14709 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14710
14711 if (dwz->str.buffer == NULL)
14712 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14713 "section [in module %s]"),
14714 bfd_get_filename (dwz->dwz_bfd));
14715 if (str_offset >= dwz->str.size)
14716 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14717 ".debug_str section [in module %s]"),
14718 bfd_get_filename (dwz->dwz_bfd));
14719 gdb_assert (HOST_CHAR_BIT == 8);
14720 if (dwz->str.buffer[str_offset] == '\0')
14721 return NULL;
14722 return (const char *) (dwz->str.buffer + str_offset);
14723 }
14724
14725 static const char *
14726 read_indirect_string (bfd *abfd, const gdb_byte *buf,
14727 const struct comp_unit_head *cu_header,
14728 unsigned int *bytes_read_ptr)
14729 {
14730 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14731
14732 return read_indirect_string_at_offset (abfd, str_offset);
14733 }
14734
14735 static ULONGEST
14736 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
14737 unsigned int *bytes_read_ptr)
14738 {
14739 ULONGEST result;
14740 unsigned int num_read;
14741 int i, shift;
14742 unsigned char byte;
14743
14744 result = 0;
14745 shift = 0;
14746 num_read = 0;
14747 i = 0;
14748 while (1)
14749 {
14750 byte = bfd_get_8 (abfd, buf);
14751 buf++;
14752 num_read++;
14753 result |= ((ULONGEST) (byte & 127) << shift);
14754 if ((byte & 128) == 0)
14755 {
14756 break;
14757 }
14758 shift += 7;
14759 }
14760 *bytes_read_ptr = num_read;
14761 return result;
14762 }
14763
14764 static LONGEST
14765 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
14766 unsigned int *bytes_read_ptr)
14767 {
14768 LONGEST result;
14769 int i, shift, num_read;
14770 unsigned char byte;
14771
14772 result = 0;
14773 shift = 0;
14774 num_read = 0;
14775 i = 0;
14776 while (1)
14777 {
14778 byte = bfd_get_8 (abfd, buf);
14779 buf++;
14780 num_read++;
14781 result |= ((LONGEST) (byte & 127) << shift);
14782 shift += 7;
14783 if ((byte & 128) == 0)
14784 {
14785 break;
14786 }
14787 }
14788 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14789 result |= -(((LONGEST) 1) << shift);
14790 *bytes_read_ptr = num_read;
14791 return result;
14792 }
14793
14794 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14795 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14796 ADDR_SIZE is the size of addresses from the CU header. */
14797
14798 static CORE_ADDR
14799 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14800 {
14801 struct objfile *objfile = dwarf2_per_objfile->objfile;
14802 bfd *abfd = objfile->obfd;
14803 const gdb_byte *info_ptr;
14804
14805 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14806 if (dwarf2_per_objfile->addr.buffer == NULL)
14807 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14808 objfile->name);
14809 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14810 error (_("DW_FORM_addr_index pointing outside of "
14811 ".debug_addr section [in module %s]"),
14812 objfile->name);
14813 info_ptr = (dwarf2_per_objfile->addr.buffer
14814 + addr_base + addr_index * addr_size);
14815 if (addr_size == 4)
14816 return bfd_get_32 (abfd, info_ptr);
14817 else
14818 return bfd_get_64 (abfd, info_ptr);
14819 }
14820
14821 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14822
14823 static CORE_ADDR
14824 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14825 {
14826 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14827 }
14828
14829 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14830
14831 static CORE_ADDR
14832 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
14833 unsigned int *bytes_read)
14834 {
14835 bfd *abfd = cu->objfile->obfd;
14836 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14837
14838 return read_addr_index (cu, addr_index);
14839 }
14840
14841 /* Data structure to pass results from dwarf2_read_addr_index_reader
14842 back to dwarf2_read_addr_index. */
14843
14844 struct dwarf2_read_addr_index_data
14845 {
14846 ULONGEST addr_base;
14847 int addr_size;
14848 };
14849
14850 /* die_reader_func for dwarf2_read_addr_index. */
14851
14852 static void
14853 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14854 const gdb_byte *info_ptr,
14855 struct die_info *comp_unit_die,
14856 int has_children,
14857 void *data)
14858 {
14859 struct dwarf2_cu *cu = reader->cu;
14860 struct dwarf2_read_addr_index_data *aidata =
14861 (struct dwarf2_read_addr_index_data *) data;
14862
14863 aidata->addr_base = cu->addr_base;
14864 aidata->addr_size = cu->header.addr_size;
14865 }
14866
14867 /* Given an index in .debug_addr, fetch the value.
14868 NOTE: This can be called during dwarf expression evaluation,
14869 long after the debug information has been read, and thus per_cu->cu
14870 may no longer exist. */
14871
14872 CORE_ADDR
14873 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14874 unsigned int addr_index)
14875 {
14876 struct objfile *objfile = per_cu->objfile;
14877 struct dwarf2_cu *cu = per_cu->cu;
14878 ULONGEST addr_base;
14879 int addr_size;
14880
14881 /* This is intended to be called from outside this file. */
14882 dw2_setup (objfile);
14883
14884 /* We need addr_base and addr_size.
14885 If we don't have PER_CU->cu, we have to get it.
14886 Nasty, but the alternative is storing the needed info in PER_CU,
14887 which at this point doesn't seem justified: it's not clear how frequently
14888 it would get used and it would increase the size of every PER_CU.
14889 Entry points like dwarf2_per_cu_addr_size do a similar thing
14890 so we're not in uncharted territory here.
14891 Alas we need to be a bit more complicated as addr_base is contained
14892 in the DIE.
14893
14894 We don't need to read the entire CU(/TU).
14895 We just need the header and top level die.
14896
14897 IWBN to use the aging mechanism to let us lazily later discard the CU.
14898 For now we skip this optimization. */
14899
14900 if (cu != NULL)
14901 {
14902 addr_base = cu->addr_base;
14903 addr_size = cu->header.addr_size;
14904 }
14905 else
14906 {
14907 struct dwarf2_read_addr_index_data aidata;
14908
14909 /* Note: We can't use init_cutu_and_read_dies_simple here,
14910 we need addr_base. */
14911 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14912 dwarf2_read_addr_index_reader, &aidata);
14913 addr_base = aidata.addr_base;
14914 addr_size = aidata.addr_size;
14915 }
14916
14917 return read_addr_index_1 (addr_index, addr_base, addr_size);
14918 }
14919
14920 /* Given a DW_AT_str_index, fetch the string. */
14921
14922 static const char *
14923 read_str_index (const struct die_reader_specs *reader,
14924 struct dwarf2_cu *cu, ULONGEST str_index)
14925 {
14926 struct objfile *objfile = dwarf2_per_objfile->objfile;
14927 const char *dwo_name = objfile->name;
14928 bfd *abfd = objfile->obfd;
14929 struct dwo_sections *sections = &reader->dwo_file->sections;
14930 const gdb_byte *info_ptr;
14931 ULONGEST str_offset;
14932
14933 dwarf2_read_section (objfile, &sections->str);
14934 dwarf2_read_section (objfile, &sections->str_offsets);
14935 if (sections->str.buffer == NULL)
14936 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14937 " in CU at offset 0x%lx [in module %s]"),
14938 (long) cu->header.offset.sect_off, dwo_name);
14939 if (sections->str_offsets.buffer == NULL)
14940 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14941 " in CU at offset 0x%lx [in module %s]"),
14942 (long) cu->header.offset.sect_off, dwo_name);
14943 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14944 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14945 " section in CU at offset 0x%lx [in module %s]"),
14946 (long) cu->header.offset.sect_off, dwo_name);
14947 info_ptr = (sections->str_offsets.buffer
14948 + str_index * cu->header.offset_size);
14949 if (cu->header.offset_size == 4)
14950 str_offset = bfd_get_32 (abfd, info_ptr);
14951 else
14952 str_offset = bfd_get_64 (abfd, info_ptr);
14953 if (str_offset >= sections->str.size)
14954 error (_("Offset from DW_FORM_str_index pointing outside of"
14955 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14956 (long) cu->header.offset.sect_off, dwo_name);
14957 return (const char *) (sections->str.buffer + str_offset);
14958 }
14959
14960 /* Return the length of an LEB128 number in BUF. */
14961
14962 static int
14963 leb128_size (const gdb_byte *buf)
14964 {
14965 const gdb_byte *begin = buf;
14966 gdb_byte byte;
14967
14968 while (1)
14969 {
14970 byte = *buf++;
14971 if ((byte & 128) == 0)
14972 return buf - begin;
14973 }
14974 }
14975
14976 static void
14977 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14978 {
14979 switch (lang)
14980 {
14981 case DW_LANG_C89:
14982 case DW_LANG_C99:
14983 case DW_LANG_C:
14984 cu->language = language_c;
14985 break;
14986 case DW_LANG_C_plus_plus:
14987 cu->language = language_cplus;
14988 break;
14989 case DW_LANG_D:
14990 cu->language = language_d;
14991 break;
14992 case DW_LANG_Fortran77:
14993 case DW_LANG_Fortran90:
14994 case DW_LANG_Fortran95:
14995 cu->language = language_fortran;
14996 break;
14997 case DW_LANG_Go:
14998 cu->language = language_go;
14999 break;
15000 case DW_LANG_Mips_Assembler:
15001 cu->language = language_asm;
15002 break;
15003 case DW_LANG_Java:
15004 cu->language = language_java;
15005 break;
15006 case DW_LANG_Ada83:
15007 case DW_LANG_Ada95:
15008 cu->language = language_ada;
15009 break;
15010 case DW_LANG_Modula2:
15011 cu->language = language_m2;
15012 break;
15013 case DW_LANG_Pascal83:
15014 cu->language = language_pascal;
15015 break;
15016 case DW_LANG_ObjC:
15017 cu->language = language_objc;
15018 break;
15019 case DW_LANG_Cobol74:
15020 case DW_LANG_Cobol85:
15021 default:
15022 cu->language = language_minimal;
15023 break;
15024 }
15025 cu->language_defn = language_def (cu->language);
15026 }
15027
15028 /* Return the named attribute or NULL if not there. */
15029
15030 static struct attribute *
15031 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15032 {
15033 for (;;)
15034 {
15035 unsigned int i;
15036 struct attribute *spec = NULL;
15037
15038 for (i = 0; i < die->num_attrs; ++i)
15039 {
15040 if (die->attrs[i].name == name)
15041 return &die->attrs[i];
15042 if (die->attrs[i].name == DW_AT_specification
15043 || die->attrs[i].name == DW_AT_abstract_origin)
15044 spec = &die->attrs[i];
15045 }
15046
15047 if (!spec)
15048 break;
15049
15050 die = follow_die_ref (die, spec, &cu);
15051 }
15052
15053 return NULL;
15054 }
15055
15056 /* Return the named attribute or NULL if not there,
15057 but do not follow DW_AT_specification, etc.
15058 This is for use in contexts where we're reading .debug_types dies.
15059 Following DW_AT_specification, DW_AT_abstract_origin will take us
15060 back up the chain, and we want to go down. */
15061
15062 static struct attribute *
15063 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15064 {
15065 unsigned int i;
15066
15067 for (i = 0; i < die->num_attrs; ++i)
15068 if (die->attrs[i].name == name)
15069 return &die->attrs[i];
15070
15071 return NULL;
15072 }
15073
15074 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15075 and holds a non-zero value. This function should only be used for
15076 DW_FORM_flag or DW_FORM_flag_present attributes. */
15077
15078 static int
15079 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15080 {
15081 struct attribute *attr = dwarf2_attr (die, name, cu);
15082
15083 return (attr && DW_UNSND (attr));
15084 }
15085
15086 static int
15087 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15088 {
15089 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15090 which value is non-zero. However, we have to be careful with
15091 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15092 (via dwarf2_flag_true_p) follows this attribute. So we may
15093 end up accidently finding a declaration attribute that belongs
15094 to a different DIE referenced by the specification attribute,
15095 even though the given DIE does not have a declaration attribute. */
15096 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15097 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15098 }
15099
15100 /* Return the die giving the specification for DIE, if there is
15101 one. *SPEC_CU is the CU containing DIE on input, and the CU
15102 containing the return value on output. If there is no
15103 specification, but there is an abstract origin, that is
15104 returned. */
15105
15106 static struct die_info *
15107 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15108 {
15109 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15110 *spec_cu);
15111
15112 if (spec_attr == NULL)
15113 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15114
15115 if (spec_attr == NULL)
15116 return NULL;
15117 else
15118 return follow_die_ref (die, spec_attr, spec_cu);
15119 }
15120
15121 /* Free the line_header structure *LH, and any arrays and strings it
15122 refers to.
15123 NOTE: This is also used as a "cleanup" function. */
15124
15125 static void
15126 free_line_header (struct line_header *lh)
15127 {
15128 if (lh->standard_opcode_lengths)
15129 xfree (lh->standard_opcode_lengths);
15130
15131 /* Remember that all the lh->file_names[i].name pointers are
15132 pointers into debug_line_buffer, and don't need to be freed. */
15133 if (lh->file_names)
15134 xfree (lh->file_names);
15135
15136 /* Similarly for the include directory names. */
15137 if (lh->include_dirs)
15138 xfree (lh->include_dirs);
15139
15140 xfree (lh);
15141 }
15142
15143 /* Add an entry to LH's include directory table. */
15144
15145 static void
15146 add_include_dir (struct line_header *lh, const char *include_dir)
15147 {
15148 /* Grow the array if necessary. */
15149 if (lh->include_dirs_size == 0)
15150 {
15151 lh->include_dirs_size = 1; /* for testing */
15152 lh->include_dirs = xmalloc (lh->include_dirs_size
15153 * sizeof (*lh->include_dirs));
15154 }
15155 else if (lh->num_include_dirs >= lh->include_dirs_size)
15156 {
15157 lh->include_dirs_size *= 2;
15158 lh->include_dirs = xrealloc (lh->include_dirs,
15159 (lh->include_dirs_size
15160 * sizeof (*lh->include_dirs)));
15161 }
15162
15163 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15164 }
15165
15166 /* Add an entry to LH's file name table. */
15167
15168 static void
15169 add_file_name (struct line_header *lh,
15170 const char *name,
15171 unsigned int dir_index,
15172 unsigned int mod_time,
15173 unsigned int length)
15174 {
15175 struct file_entry *fe;
15176
15177 /* Grow the array if necessary. */
15178 if (lh->file_names_size == 0)
15179 {
15180 lh->file_names_size = 1; /* for testing */
15181 lh->file_names = xmalloc (lh->file_names_size
15182 * sizeof (*lh->file_names));
15183 }
15184 else if (lh->num_file_names >= lh->file_names_size)
15185 {
15186 lh->file_names_size *= 2;
15187 lh->file_names = xrealloc (lh->file_names,
15188 (lh->file_names_size
15189 * sizeof (*lh->file_names)));
15190 }
15191
15192 fe = &lh->file_names[lh->num_file_names++];
15193 fe->name = name;
15194 fe->dir_index = dir_index;
15195 fe->mod_time = mod_time;
15196 fe->length = length;
15197 fe->included_p = 0;
15198 fe->symtab = NULL;
15199 }
15200
15201 /* A convenience function to find the proper .debug_line section for a
15202 CU. */
15203
15204 static struct dwarf2_section_info *
15205 get_debug_line_section (struct dwarf2_cu *cu)
15206 {
15207 struct dwarf2_section_info *section;
15208
15209 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15210 DWO file. */
15211 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15212 section = &cu->dwo_unit->dwo_file->sections.line;
15213 else if (cu->per_cu->is_dwz)
15214 {
15215 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15216
15217 section = &dwz->line;
15218 }
15219 else
15220 section = &dwarf2_per_objfile->line;
15221
15222 return section;
15223 }
15224
15225 /* Read the statement program header starting at OFFSET in
15226 .debug_line, or .debug_line.dwo. Return a pointer
15227 to a struct line_header, allocated using xmalloc.
15228
15229 NOTE: the strings in the include directory and file name tables of
15230 the returned object point into the dwarf line section buffer,
15231 and must not be freed. */
15232
15233 static struct line_header *
15234 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15235 {
15236 struct cleanup *back_to;
15237 struct line_header *lh;
15238 const gdb_byte *line_ptr;
15239 unsigned int bytes_read, offset_size;
15240 int i;
15241 const char *cur_dir, *cur_file;
15242 struct dwarf2_section_info *section;
15243 bfd *abfd;
15244
15245 section = get_debug_line_section (cu);
15246 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15247 if (section->buffer == NULL)
15248 {
15249 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15250 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15251 else
15252 complaint (&symfile_complaints, _("missing .debug_line section"));
15253 return 0;
15254 }
15255
15256 /* We can't do this until we know the section is non-empty.
15257 Only then do we know we have such a section. */
15258 abfd = section->asection->owner;
15259
15260 /* Make sure that at least there's room for the total_length field.
15261 That could be 12 bytes long, but we're just going to fudge that. */
15262 if (offset + 4 >= section->size)
15263 {
15264 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15265 return 0;
15266 }
15267
15268 lh = xmalloc (sizeof (*lh));
15269 memset (lh, 0, sizeof (*lh));
15270 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15271 (void *) lh);
15272
15273 line_ptr = section->buffer + offset;
15274
15275 /* Read in the header. */
15276 lh->total_length =
15277 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15278 &bytes_read, &offset_size);
15279 line_ptr += bytes_read;
15280 if (line_ptr + lh->total_length > (section->buffer + section->size))
15281 {
15282 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15283 return 0;
15284 }
15285 lh->statement_program_end = line_ptr + lh->total_length;
15286 lh->version = read_2_bytes (abfd, line_ptr);
15287 line_ptr += 2;
15288 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15289 line_ptr += offset_size;
15290 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15291 line_ptr += 1;
15292 if (lh->version >= 4)
15293 {
15294 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15295 line_ptr += 1;
15296 }
15297 else
15298 lh->maximum_ops_per_instruction = 1;
15299
15300 if (lh->maximum_ops_per_instruction == 0)
15301 {
15302 lh->maximum_ops_per_instruction = 1;
15303 complaint (&symfile_complaints,
15304 _("invalid maximum_ops_per_instruction "
15305 "in `.debug_line' section"));
15306 }
15307
15308 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15309 line_ptr += 1;
15310 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15311 line_ptr += 1;
15312 lh->line_range = read_1_byte (abfd, line_ptr);
15313 line_ptr += 1;
15314 lh->opcode_base = read_1_byte (abfd, line_ptr);
15315 line_ptr += 1;
15316 lh->standard_opcode_lengths
15317 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15318
15319 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15320 for (i = 1; i < lh->opcode_base; ++i)
15321 {
15322 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15323 line_ptr += 1;
15324 }
15325
15326 /* Read directory table. */
15327 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15328 {
15329 line_ptr += bytes_read;
15330 add_include_dir (lh, cur_dir);
15331 }
15332 line_ptr += bytes_read;
15333
15334 /* Read file name table. */
15335 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15336 {
15337 unsigned int dir_index, mod_time, length;
15338
15339 line_ptr += bytes_read;
15340 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15341 line_ptr += bytes_read;
15342 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15343 line_ptr += bytes_read;
15344 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15345 line_ptr += bytes_read;
15346
15347 add_file_name (lh, cur_file, dir_index, mod_time, length);
15348 }
15349 line_ptr += bytes_read;
15350 lh->statement_program_start = line_ptr;
15351
15352 if (line_ptr > (section->buffer + section->size))
15353 complaint (&symfile_complaints,
15354 _("line number info header doesn't "
15355 "fit in `.debug_line' section"));
15356
15357 discard_cleanups (back_to);
15358 return lh;
15359 }
15360
15361 /* Subroutine of dwarf_decode_lines to simplify it.
15362 Return the file name of the psymtab for included file FILE_INDEX
15363 in line header LH of PST.
15364 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15365 If space for the result is malloc'd, it will be freed by a cleanup.
15366 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15367
15368 The function creates dangling cleanup registration. */
15369
15370 static const char *
15371 psymtab_include_file_name (const struct line_header *lh, int file_index,
15372 const struct partial_symtab *pst,
15373 const char *comp_dir)
15374 {
15375 const struct file_entry fe = lh->file_names [file_index];
15376 const char *include_name = fe.name;
15377 const char *include_name_to_compare = include_name;
15378 const char *dir_name = NULL;
15379 const char *pst_filename;
15380 char *copied_name = NULL;
15381 int file_is_pst;
15382
15383 if (fe.dir_index)
15384 dir_name = lh->include_dirs[fe.dir_index - 1];
15385
15386 if (!IS_ABSOLUTE_PATH (include_name)
15387 && (dir_name != NULL || comp_dir != NULL))
15388 {
15389 /* Avoid creating a duplicate psymtab for PST.
15390 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15391 Before we do the comparison, however, we need to account
15392 for DIR_NAME and COMP_DIR.
15393 First prepend dir_name (if non-NULL). If we still don't
15394 have an absolute path prepend comp_dir (if non-NULL).
15395 However, the directory we record in the include-file's
15396 psymtab does not contain COMP_DIR (to match the
15397 corresponding symtab(s)).
15398
15399 Example:
15400
15401 bash$ cd /tmp
15402 bash$ gcc -g ./hello.c
15403 include_name = "hello.c"
15404 dir_name = "."
15405 DW_AT_comp_dir = comp_dir = "/tmp"
15406 DW_AT_name = "./hello.c" */
15407
15408 if (dir_name != NULL)
15409 {
15410 char *tem = concat (dir_name, SLASH_STRING,
15411 include_name, (char *)NULL);
15412
15413 make_cleanup (xfree, tem);
15414 include_name = tem;
15415 include_name_to_compare = include_name;
15416 }
15417 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15418 {
15419 char *tem = concat (comp_dir, SLASH_STRING,
15420 include_name, (char *)NULL);
15421
15422 make_cleanup (xfree, tem);
15423 include_name_to_compare = tem;
15424 }
15425 }
15426
15427 pst_filename = pst->filename;
15428 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15429 {
15430 copied_name = concat (pst->dirname, SLASH_STRING,
15431 pst_filename, (char *)NULL);
15432 pst_filename = copied_name;
15433 }
15434
15435 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15436
15437 if (copied_name != NULL)
15438 xfree (copied_name);
15439
15440 if (file_is_pst)
15441 return NULL;
15442 return include_name;
15443 }
15444
15445 /* Ignore this record_line request. */
15446
15447 static void
15448 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15449 {
15450 return;
15451 }
15452
15453 /* Subroutine of dwarf_decode_lines to simplify it.
15454 Process the line number information in LH. */
15455
15456 static void
15457 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15458 struct dwarf2_cu *cu, struct partial_symtab *pst)
15459 {
15460 const gdb_byte *line_ptr, *extended_end;
15461 const gdb_byte *line_end;
15462 unsigned int bytes_read, extended_len;
15463 unsigned char op_code, extended_op, adj_opcode;
15464 CORE_ADDR baseaddr;
15465 struct objfile *objfile = cu->objfile;
15466 bfd *abfd = objfile->obfd;
15467 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15468 const int decode_for_pst_p = (pst != NULL);
15469 struct subfile *last_subfile = NULL;
15470 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15471 = record_line;
15472
15473 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15474
15475 line_ptr = lh->statement_program_start;
15476 line_end = lh->statement_program_end;
15477
15478 /* Read the statement sequences until there's nothing left. */
15479 while (line_ptr < line_end)
15480 {
15481 /* state machine registers */
15482 CORE_ADDR address = 0;
15483 unsigned int file = 1;
15484 unsigned int line = 1;
15485 unsigned int column = 0;
15486 int is_stmt = lh->default_is_stmt;
15487 int basic_block = 0;
15488 int end_sequence = 0;
15489 CORE_ADDR addr;
15490 unsigned char op_index = 0;
15491
15492 if (!decode_for_pst_p && lh->num_file_names >= file)
15493 {
15494 /* Start a subfile for the current file of the state machine. */
15495 /* lh->include_dirs and lh->file_names are 0-based, but the
15496 directory and file name numbers in the statement program
15497 are 1-based. */
15498 struct file_entry *fe = &lh->file_names[file - 1];
15499 const char *dir = NULL;
15500
15501 if (fe->dir_index)
15502 dir = lh->include_dirs[fe->dir_index - 1];
15503
15504 dwarf2_start_subfile (fe->name, dir, comp_dir);
15505 }
15506
15507 /* Decode the table. */
15508 while (!end_sequence)
15509 {
15510 op_code = read_1_byte (abfd, line_ptr);
15511 line_ptr += 1;
15512 if (line_ptr > line_end)
15513 {
15514 dwarf2_debug_line_missing_end_sequence_complaint ();
15515 break;
15516 }
15517
15518 if (op_code >= lh->opcode_base)
15519 {
15520 /* Special operand. */
15521 adj_opcode = op_code - lh->opcode_base;
15522 address += (((op_index + (adj_opcode / lh->line_range))
15523 / lh->maximum_ops_per_instruction)
15524 * lh->minimum_instruction_length);
15525 op_index = ((op_index + (adj_opcode / lh->line_range))
15526 % lh->maximum_ops_per_instruction);
15527 line += lh->line_base + (adj_opcode % lh->line_range);
15528 if (lh->num_file_names < file || file == 0)
15529 dwarf2_debug_line_missing_file_complaint ();
15530 /* For now we ignore lines not starting on an
15531 instruction boundary. */
15532 else if (op_index == 0)
15533 {
15534 lh->file_names[file - 1].included_p = 1;
15535 if (!decode_for_pst_p && is_stmt)
15536 {
15537 if (last_subfile != current_subfile)
15538 {
15539 addr = gdbarch_addr_bits_remove (gdbarch, address);
15540 if (last_subfile)
15541 (*p_record_line) (last_subfile, 0, addr);
15542 last_subfile = current_subfile;
15543 }
15544 /* Append row to matrix using current values. */
15545 addr = gdbarch_addr_bits_remove (gdbarch, address);
15546 (*p_record_line) (current_subfile, line, addr);
15547 }
15548 }
15549 basic_block = 0;
15550 }
15551 else switch (op_code)
15552 {
15553 case DW_LNS_extended_op:
15554 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15555 &bytes_read);
15556 line_ptr += bytes_read;
15557 extended_end = line_ptr + extended_len;
15558 extended_op = read_1_byte (abfd, line_ptr);
15559 line_ptr += 1;
15560 switch (extended_op)
15561 {
15562 case DW_LNE_end_sequence:
15563 p_record_line = record_line;
15564 end_sequence = 1;
15565 break;
15566 case DW_LNE_set_address:
15567 address = read_address (abfd, line_ptr, cu, &bytes_read);
15568
15569 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15570 {
15571 /* This line table is for a function which has been
15572 GCd by the linker. Ignore it. PR gdb/12528 */
15573
15574 long line_offset
15575 = line_ptr - get_debug_line_section (cu)->buffer;
15576
15577 complaint (&symfile_complaints,
15578 _(".debug_line address at offset 0x%lx is 0 "
15579 "[in module %s]"),
15580 line_offset, objfile->name);
15581 p_record_line = noop_record_line;
15582 }
15583
15584 op_index = 0;
15585 line_ptr += bytes_read;
15586 address += baseaddr;
15587 break;
15588 case DW_LNE_define_file:
15589 {
15590 const char *cur_file;
15591 unsigned int dir_index, mod_time, length;
15592
15593 cur_file = read_direct_string (abfd, line_ptr,
15594 &bytes_read);
15595 line_ptr += bytes_read;
15596 dir_index =
15597 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15598 line_ptr += bytes_read;
15599 mod_time =
15600 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15601 line_ptr += bytes_read;
15602 length =
15603 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15604 line_ptr += bytes_read;
15605 add_file_name (lh, cur_file, dir_index, mod_time, length);
15606 }
15607 break;
15608 case DW_LNE_set_discriminator:
15609 /* The discriminator is not interesting to the debugger;
15610 just ignore it. */
15611 line_ptr = extended_end;
15612 break;
15613 default:
15614 complaint (&symfile_complaints,
15615 _("mangled .debug_line section"));
15616 return;
15617 }
15618 /* Make sure that we parsed the extended op correctly. If e.g.
15619 we expected a different address size than the producer used,
15620 we may have read the wrong number of bytes. */
15621 if (line_ptr != extended_end)
15622 {
15623 complaint (&symfile_complaints,
15624 _("mangled .debug_line section"));
15625 return;
15626 }
15627 break;
15628 case DW_LNS_copy:
15629 if (lh->num_file_names < file || file == 0)
15630 dwarf2_debug_line_missing_file_complaint ();
15631 else
15632 {
15633 lh->file_names[file - 1].included_p = 1;
15634 if (!decode_for_pst_p && is_stmt)
15635 {
15636 if (last_subfile != current_subfile)
15637 {
15638 addr = gdbarch_addr_bits_remove (gdbarch, address);
15639 if (last_subfile)
15640 (*p_record_line) (last_subfile, 0, addr);
15641 last_subfile = current_subfile;
15642 }
15643 addr = gdbarch_addr_bits_remove (gdbarch, address);
15644 (*p_record_line) (current_subfile, line, addr);
15645 }
15646 }
15647 basic_block = 0;
15648 break;
15649 case DW_LNS_advance_pc:
15650 {
15651 CORE_ADDR adjust
15652 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15653
15654 address += (((op_index + adjust)
15655 / lh->maximum_ops_per_instruction)
15656 * lh->minimum_instruction_length);
15657 op_index = ((op_index + adjust)
15658 % lh->maximum_ops_per_instruction);
15659 line_ptr += bytes_read;
15660 }
15661 break;
15662 case DW_LNS_advance_line:
15663 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15664 line_ptr += bytes_read;
15665 break;
15666 case DW_LNS_set_file:
15667 {
15668 /* The arrays lh->include_dirs and lh->file_names are
15669 0-based, but the directory and file name numbers in
15670 the statement program are 1-based. */
15671 struct file_entry *fe;
15672 const char *dir = NULL;
15673
15674 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15675 line_ptr += bytes_read;
15676 if (lh->num_file_names < file || file == 0)
15677 dwarf2_debug_line_missing_file_complaint ();
15678 else
15679 {
15680 fe = &lh->file_names[file - 1];
15681 if (fe->dir_index)
15682 dir = lh->include_dirs[fe->dir_index - 1];
15683 if (!decode_for_pst_p)
15684 {
15685 last_subfile = current_subfile;
15686 dwarf2_start_subfile (fe->name, dir, comp_dir);
15687 }
15688 }
15689 }
15690 break;
15691 case DW_LNS_set_column:
15692 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15693 line_ptr += bytes_read;
15694 break;
15695 case DW_LNS_negate_stmt:
15696 is_stmt = (!is_stmt);
15697 break;
15698 case DW_LNS_set_basic_block:
15699 basic_block = 1;
15700 break;
15701 /* Add to the address register of the state machine the
15702 address increment value corresponding to special opcode
15703 255. I.e., this value is scaled by the minimum
15704 instruction length since special opcode 255 would have
15705 scaled the increment. */
15706 case DW_LNS_const_add_pc:
15707 {
15708 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15709
15710 address += (((op_index + adjust)
15711 / lh->maximum_ops_per_instruction)
15712 * lh->minimum_instruction_length);
15713 op_index = ((op_index + adjust)
15714 % lh->maximum_ops_per_instruction);
15715 }
15716 break;
15717 case DW_LNS_fixed_advance_pc:
15718 address += read_2_bytes (abfd, line_ptr);
15719 op_index = 0;
15720 line_ptr += 2;
15721 break;
15722 default:
15723 {
15724 /* Unknown standard opcode, ignore it. */
15725 int i;
15726
15727 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15728 {
15729 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15730 line_ptr += bytes_read;
15731 }
15732 }
15733 }
15734 }
15735 if (lh->num_file_names < file || file == 0)
15736 dwarf2_debug_line_missing_file_complaint ();
15737 else
15738 {
15739 lh->file_names[file - 1].included_p = 1;
15740 if (!decode_for_pst_p)
15741 {
15742 addr = gdbarch_addr_bits_remove (gdbarch, address);
15743 (*p_record_line) (current_subfile, 0, addr);
15744 }
15745 }
15746 }
15747 }
15748
15749 /* Decode the Line Number Program (LNP) for the given line_header
15750 structure and CU. The actual information extracted and the type
15751 of structures created from the LNP depends on the value of PST.
15752
15753 1. If PST is NULL, then this procedure uses the data from the program
15754 to create all necessary symbol tables, and their linetables.
15755
15756 2. If PST is not NULL, this procedure reads the program to determine
15757 the list of files included by the unit represented by PST, and
15758 builds all the associated partial symbol tables.
15759
15760 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15761 It is used for relative paths in the line table.
15762 NOTE: When processing partial symtabs (pst != NULL),
15763 comp_dir == pst->dirname.
15764
15765 NOTE: It is important that psymtabs have the same file name (via strcmp)
15766 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15767 symtab we don't use it in the name of the psymtabs we create.
15768 E.g. expand_line_sal requires this when finding psymtabs to expand.
15769 A good testcase for this is mb-inline.exp. */
15770
15771 static void
15772 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15773 struct dwarf2_cu *cu, struct partial_symtab *pst,
15774 int want_line_info)
15775 {
15776 struct objfile *objfile = cu->objfile;
15777 const int decode_for_pst_p = (pst != NULL);
15778 struct subfile *first_subfile = current_subfile;
15779
15780 if (want_line_info)
15781 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15782
15783 if (decode_for_pst_p)
15784 {
15785 int file_index;
15786
15787 /* Now that we're done scanning the Line Header Program, we can
15788 create the psymtab of each included file. */
15789 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15790 if (lh->file_names[file_index].included_p == 1)
15791 {
15792 const char *include_name =
15793 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15794 if (include_name != NULL)
15795 dwarf2_create_include_psymtab (include_name, pst, objfile);
15796 }
15797 }
15798 else
15799 {
15800 /* Make sure a symtab is created for every file, even files
15801 which contain only variables (i.e. no code with associated
15802 line numbers). */
15803 int i;
15804
15805 for (i = 0; i < lh->num_file_names; i++)
15806 {
15807 const char *dir = NULL;
15808 struct file_entry *fe;
15809
15810 fe = &lh->file_names[i];
15811 if (fe->dir_index)
15812 dir = lh->include_dirs[fe->dir_index - 1];
15813 dwarf2_start_subfile (fe->name, dir, comp_dir);
15814
15815 /* Skip the main file; we don't need it, and it must be
15816 allocated last, so that it will show up before the
15817 non-primary symtabs in the objfile's symtab list. */
15818 if (current_subfile == first_subfile)
15819 continue;
15820
15821 if (current_subfile->symtab == NULL)
15822 current_subfile->symtab = allocate_symtab (current_subfile->name,
15823 objfile);
15824 fe->symtab = current_subfile->symtab;
15825 }
15826 }
15827 }
15828
15829 /* Start a subfile for DWARF. FILENAME is the name of the file and
15830 DIRNAME the name of the source directory which contains FILENAME
15831 or NULL if not known. COMP_DIR is the compilation directory for the
15832 linetable's compilation unit or NULL if not known.
15833 This routine tries to keep line numbers from identical absolute and
15834 relative file names in a common subfile.
15835
15836 Using the `list' example from the GDB testsuite, which resides in
15837 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15838 of /srcdir/list0.c yields the following debugging information for list0.c:
15839
15840 DW_AT_name: /srcdir/list0.c
15841 DW_AT_comp_dir: /compdir
15842 files.files[0].name: list0.h
15843 files.files[0].dir: /srcdir
15844 files.files[1].name: list0.c
15845 files.files[1].dir: /srcdir
15846
15847 The line number information for list0.c has to end up in a single
15848 subfile, so that `break /srcdir/list0.c:1' works as expected.
15849 start_subfile will ensure that this happens provided that we pass the
15850 concatenation of files.files[1].dir and files.files[1].name as the
15851 subfile's name. */
15852
15853 static void
15854 dwarf2_start_subfile (const char *filename, const char *dirname,
15855 const char *comp_dir)
15856 {
15857 char *copy = NULL;
15858
15859 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15860 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15861 second argument to start_subfile. To be consistent, we do the
15862 same here. In order not to lose the line information directory,
15863 we concatenate it to the filename when it makes sense.
15864 Note that the Dwarf3 standard says (speaking of filenames in line
15865 information): ``The directory index is ignored for file names
15866 that represent full path names''. Thus ignoring dirname in the
15867 `else' branch below isn't an issue. */
15868
15869 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15870 {
15871 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15872 filename = copy;
15873 }
15874
15875 start_subfile (filename, comp_dir);
15876
15877 if (copy != NULL)
15878 xfree (copy);
15879 }
15880
15881 /* Start a symtab for DWARF.
15882 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15883
15884 static void
15885 dwarf2_start_symtab (struct dwarf2_cu *cu,
15886 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15887 {
15888 start_symtab (name, comp_dir, low_pc);
15889 record_debugformat ("DWARF 2");
15890 record_producer (cu->producer);
15891
15892 /* We assume that we're processing GCC output. */
15893 processing_gcc_compilation = 2;
15894
15895 cu->processing_has_namespace_info = 0;
15896 }
15897
15898 static void
15899 var_decode_location (struct attribute *attr, struct symbol *sym,
15900 struct dwarf2_cu *cu)
15901 {
15902 struct objfile *objfile = cu->objfile;
15903 struct comp_unit_head *cu_header = &cu->header;
15904
15905 /* NOTE drow/2003-01-30: There used to be a comment and some special
15906 code here to turn a symbol with DW_AT_external and a
15907 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15908 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15909 with some versions of binutils) where shared libraries could have
15910 relocations against symbols in their debug information - the
15911 minimal symbol would have the right address, but the debug info
15912 would not. It's no longer necessary, because we will explicitly
15913 apply relocations when we read in the debug information now. */
15914
15915 /* A DW_AT_location attribute with no contents indicates that a
15916 variable has been optimized away. */
15917 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15918 {
15919 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15920 return;
15921 }
15922
15923 /* Handle one degenerate form of location expression specially, to
15924 preserve GDB's previous behavior when section offsets are
15925 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15926 then mark this symbol as LOC_STATIC. */
15927
15928 if (attr_form_is_block (attr)
15929 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15930 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15931 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15932 && (DW_BLOCK (attr)->size
15933 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15934 {
15935 unsigned int dummy;
15936
15937 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15938 SYMBOL_VALUE_ADDRESS (sym) =
15939 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15940 else
15941 SYMBOL_VALUE_ADDRESS (sym) =
15942 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15943 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
15944 fixup_symbol_section (sym, objfile);
15945 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15946 SYMBOL_SECTION (sym));
15947 return;
15948 }
15949
15950 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15951 expression evaluator, and use LOC_COMPUTED only when necessary
15952 (i.e. when the value of a register or memory location is
15953 referenced, or a thread-local block, etc.). Then again, it might
15954 not be worthwhile. I'm assuming that it isn't unless performance
15955 or memory numbers show me otherwise. */
15956
15957 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
15958
15959 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
15960 cu->has_loclist = 1;
15961 }
15962
15963 /* Given a pointer to a DWARF information entry, figure out if we need
15964 to make a symbol table entry for it, and if so, create a new entry
15965 and return a pointer to it.
15966 If TYPE is NULL, determine symbol type from the die, otherwise
15967 used the passed type.
15968 If SPACE is not NULL, use it to hold the new symbol. If it is
15969 NULL, allocate a new symbol on the objfile's obstack. */
15970
15971 static struct symbol *
15972 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15973 struct symbol *space)
15974 {
15975 struct objfile *objfile = cu->objfile;
15976 struct symbol *sym = NULL;
15977 const char *name;
15978 struct attribute *attr = NULL;
15979 struct attribute *attr2 = NULL;
15980 CORE_ADDR baseaddr;
15981 struct pending **list_to_add = NULL;
15982
15983 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15984
15985 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15986
15987 name = dwarf2_name (die, cu);
15988 if (name)
15989 {
15990 const char *linkagename;
15991 int suppress_add = 0;
15992
15993 if (space)
15994 sym = space;
15995 else
15996 sym = allocate_symbol (objfile);
15997 OBJSTAT (objfile, n_syms++);
15998
15999 /* Cache this symbol's name and the name's demangled form (if any). */
16000 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16001 linkagename = dwarf2_physname (name, die, cu);
16002 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16003
16004 /* Fortran does not have mangling standard and the mangling does differ
16005 between gfortran, iFort etc. */
16006 if (cu->language == language_fortran
16007 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16008 symbol_set_demangled_name (&(sym->ginfo),
16009 dwarf2_full_name (name, die, cu),
16010 NULL);
16011
16012 /* Default assumptions.
16013 Use the passed type or decode it from the die. */
16014 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16015 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16016 if (type != NULL)
16017 SYMBOL_TYPE (sym) = type;
16018 else
16019 SYMBOL_TYPE (sym) = die_type (die, cu);
16020 attr = dwarf2_attr (die,
16021 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16022 cu);
16023 if (attr)
16024 {
16025 SYMBOL_LINE (sym) = DW_UNSND (attr);
16026 }
16027
16028 attr = dwarf2_attr (die,
16029 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16030 cu);
16031 if (attr)
16032 {
16033 int file_index = DW_UNSND (attr);
16034
16035 if (cu->line_header == NULL
16036 || file_index > cu->line_header->num_file_names)
16037 complaint (&symfile_complaints,
16038 _("file index out of range"));
16039 else if (file_index > 0)
16040 {
16041 struct file_entry *fe;
16042
16043 fe = &cu->line_header->file_names[file_index - 1];
16044 SYMBOL_SYMTAB (sym) = fe->symtab;
16045 }
16046 }
16047
16048 switch (die->tag)
16049 {
16050 case DW_TAG_label:
16051 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16052 if (attr)
16053 {
16054 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16055 }
16056 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16057 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16058 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16059 add_symbol_to_list (sym, cu->list_in_scope);
16060 break;
16061 case DW_TAG_subprogram:
16062 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16063 finish_block. */
16064 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16065 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16066 if ((attr2 && (DW_UNSND (attr2) != 0))
16067 || cu->language == language_ada)
16068 {
16069 /* Subprograms marked external are stored as a global symbol.
16070 Ada subprograms, whether marked external or not, are always
16071 stored as a global symbol, because we want to be able to
16072 access them globally. For instance, we want to be able
16073 to break on a nested subprogram without having to
16074 specify the context. */
16075 list_to_add = &global_symbols;
16076 }
16077 else
16078 {
16079 list_to_add = cu->list_in_scope;
16080 }
16081 break;
16082 case DW_TAG_inlined_subroutine:
16083 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16084 finish_block. */
16085 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16086 SYMBOL_INLINED (sym) = 1;
16087 list_to_add = cu->list_in_scope;
16088 break;
16089 case DW_TAG_template_value_param:
16090 suppress_add = 1;
16091 /* Fall through. */
16092 case DW_TAG_constant:
16093 case DW_TAG_variable:
16094 case DW_TAG_member:
16095 /* Compilation with minimal debug info may result in
16096 variables with missing type entries. Change the
16097 misleading `void' type to something sensible. */
16098 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16099 SYMBOL_TYPE (sym)
16100 = objfile_type (objfile)->nodebug_data_symbol;
16101
16102 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16103 /* In the case of DW_TAG_member, we should only be called for
16104 static const members. */
16105 if (die->tag == DW_TAG_member)
16106 {
16107 /* dwarf2_add_field uses die_is_declaration,
16108 so we do the same. */
16109 gdb_assert (die_is_declaration (die, cu));
16110 gdb_assert (attr);
16111 }
16112 if (attr)
16113 {
16114 dwarf2_const_value (attr, sym, cu);
16115 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16116 if (!suppress_add)
16117 {
16118 if (attr2 && (DW_UNSND (attr2) != 0))
16119 list_to_add = &global_symbols;
16120 else
16121 list_to_add = cu->list_in_scope;
16122 }
16123 break;
16124 }
16125 attr = dwarf2_attr (die, DW_AT_location, cu);
16126 if (attr)
16127 {
16128 var_decode_location (attr, sym, cu);
16129 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16130
16131 /* Fortran explicitly imports any global symbols to the local
16132 scope by DW_TAG_common_block. */
16133 if (cu->language == language_fortran && die->parent
16134 && die->parent->tag == DW_TAG_common_block)
16135 attr2 = NULL;
16136
16137 if (SYMBOL_CLASS (sym) == LOC_STATIC
16138 && SYMBOL_VALUE_ADDRESS (sym) == 0
16139 && !dwarf2_per_objfile->has_section_at_zero)
16140 {
16141 /* When a static variable is eliminated by the linker,
16142 the corresponding debug information is not stripped
16143 out, but the variable address is set to null;
16144 do not add such variables into symbol table. */
16145 }
16146 else if (attr2 && (DW_UNSND (attr2) != 0))
16147 {
16148 /* Workaround gfortran PR debug/40040 - it uses
16149 DW_AT_location for variables in -fPIC libraries which may
16150 get overriden by other libraries/executable and get
16151 a different address. Resolve it by the minimal symbol
16152 which may come from inferior's executable using copy
16153 relocation. Make this workaround only for gfortran as for
16154 other compilers GDB cannot guess the minimal symbol
16155 Fortran mangling kind. */
16156 if (cu->language == language_fortran && die->parent
16157 && die->parent->tag == DW_TAG_module
16158 && cu->producer
16159 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16160 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16161
16162 /* A variable with DW_AT_external is never static,
16163 but it may be block-scoped. */
16164 list_to_add = (cu->list_in_scope == &file_symbols
16165 ? &global_symbols : cu->list_in_scope);
16166 }
16167 else
16168 list_to_add = cu->list_in_scope;
16169 }
16170 else
16171 {
16172 /* We do not know the address of this symbol.
16173 If it is an external symbol and we have type information
16174 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16175 The address of the variable will then be determined from
16176 the minimal symbol table whenever the variable is
16177 referenced. */
16178 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16179
16180 /* Fortran explicitly imports any global symbols to the local
16181 scope by DW_TAG_common_block. */
16182 if (cu->language == language_fortran && die->parent
16183 && die->parent->tag == DW_TAG_common_block)
16184 {
16185 /* SYMBOL_CLASS doesn't matter here because
16186 read_common_block is going to reset it. */
16187 if (!suppress_add)
16188 list_to_add = cu->list_in_scope;
16189 }
16190 else if (attr2 && (DW_UNSND (attr2) != 0)
16191 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16192 {
16193 /* A variable with DW_AT_external is never static, but it
16194 may be block-scoped. */
16195 list_to_add = (cu->list_in_scope == &file_symbols
16196 ? &global_symbols : cu->list_in_scope);
16197
16198 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16199 }
16200 else if (!die_is_declaration (die, cu))
16201 {
16202 /* Use the default LOC_OPTIMIZED_OUT class. */
16203 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16204 if (!suppress_add)
16205 list_to_add = cu->list_in_scope;
16206 }
16207 }
16208 break;
16209 case DW_TAG_formal_parameter:
16210 /* If we are inside a function, mark this as an argument. If
16211 not, we might be looking at an argument to an inlined function
16212 when we do not have enough information to show inlined frames;
16213 pretend it's a local variable in that case so that the user can
16214 still see it. */
16215 if (context_stack_depth > 0
16216 && context_stack[context_stack_depth - 1].name != NULL)
16217 SYMBOL_IS_ARGUMENT (sym) = 1;
16218 attr = dwarf2_attr (die, DW_AT_location, cu);
16219 if (attr)
16220 {
16221 var_decode_location (attr, sym, cu);
16222 }
16223 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16224 if (attr)
16225 {
16226 dwarf2_const_value (attr, sym, cu);
16227 }
16228
16229 list_to_add = cu->list_in_scope;
16230 break;
16231 case DW_TAG_unspecified_parameters:
16232 /* From varargs functions; gdb doesn't seem to have any
16233 interest in this information, so just ignore it for now.
16234 (FIXME?) */
16235 break;
16236 case DW_TAG_template_type_param:
16237 suppress_add = 1;
16238 /* Fall through. */
16239 case DW_TAG_class_type:
16240 case DW_TAG_interface_type:
16241 case DW_TAG_structure_type:
16242 case DW_TAG_union_type:
16243 case DW_TAG_set_type:
16244 case DW_TAG_enumeration_type:
16245 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16246 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16247
16248 {
16249 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16250 really ever be static objects: otherwise, if you try
16251 to, say, break of a class's method and you're in a file
16252 which doesn't mention that class, it won't work unless
16253 the check for all static symbols in lookup_symbol_aux
16254 saves you. See the OtherFileClass tests in
16255 gdb.c++/namespace.exp. */
16256
16257 if (!suppress_add)
16258 {
16259 list_to_add = (cu->list_in_scope == &file_symbols
16260 && (cu->language == language_cplus
16261 || cu->language == language_java)
16262 ? &global_symbols : cu->list_in_scope);
16263
16264 /* The semantics of C++ state that "struct foo {
16265 ... }" also defines a typedef for "foo". A Java
16266 class declaration also defines a typedef for the
16267 class. */
16268 if (cu->language == language_cplus
16269 || cu->language == language_java
16270 || cu->language == language_ada)
16271 {
16272 /* The symbol's name is already allocated along
16273 with this objfile, so we don't need to
16274 duplicate it for the type. */
16275 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16276 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16277 }
16278 }
16279 }
16280 break;
16281 case DW_TAG_typedef:
16282 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16283 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16284 list_to_add = cu->list_in_scope;
16285 break;
16286 case DW_TAG_base_type:
16287 case DW_TAG_subrange_type:
16288 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16289 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16290 list_to_add = cu->list_in_scope;
16291 break;
16292 case DW_TAG_enumerator:
16293 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16294 if (attr)
16295 {
16296 dwarf2_const_value (attr, sym, cu);
16297 }
16298 {
16299 /* NOTE: carlton/2003-11-10: See comment above in the
16300 DW_TAG_class_type, etc. block. */
16301
16302 list_to_add = (cu->list_in_scope == &file_symbols
16303 && (cu->language == language_cplus
16304 || cu->language == language_java)
16305 ? &global_symbols : cu->list_in_scope);
16306 }
16307 break;
16308 case DW_TAG_namespace:
16309 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16310 list_to_add = &global_symbols;
16311 break;
16312 case DW_TAG_common_block:
16313 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16314 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16315 add_symbol_to_list (sym, cu->list_in_scope);
16316 break;
16317 default:
16318 /* Not a tag we recognize. Hopefully we aren't processing
16319 trash data, but since we must specifically ignore things
16320 we don't recognize, there is nothing else we should do at
16321 this point. */
16322 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16323 dwarf_tag_name (die->tag));
16324 break;
16325 }
16326
16327 if (suppress_add)
16328 {
16329 sym->hash_next = objfile->template_symbols;
16330 objfile->template_symbols = sym;
16331 list_to_add = NULL;
16332 }
16333
16334 if (list_to_add != NULL)
16335 add_symbol_to_list (sym, list_to_add);
16336
16337 /* For the benefit of old versions of GCC, check for anonymous
16338 namespaces based on the demangled name. */
16339 if (!cu->processing_has_namespace_info
16340 && cu->language == language_cplus)
16341 cp_scan_for_anonymous_namespaces (sym, objfile);
16342 }
16343 return (sym);
16344 }
16345
16346 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16347
16348 static struct symbol *
16349 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16350 {
16351 return new_symbol_full (die, type, cu, NULL);
16352 }
16353
16354 /* Given an attr with a DW_FORM_dataN value in host byte order,
16355 zero-extend it as appropriate for the symbol's type. The DWARF
16356 standard (v4) is not entirely clear about the meaning of using
16357 DW_FORM_dataN for a constant with a signed type, where the type is
16358 wider than the data. The conclusion of a discussion on the DWARF
16359 list was that this is unspecified. We choose to always zero-extend
16360 because that is the interpretation long in use by GCC. */
16361
16362 static gdb_byte *
16363 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16364 const char *name, struct obstack *obstack,
16365 struct dwarf2_cu *cu, LONGEST *value, int bits)
16366 {
16367 struct objfile *objfile = cu->objfile;
16368 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16369 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16370 LONGEST l = DW_UNSND (attr);
16371
16372 if (bits < sizeof (*value) * 8)
16373 {
16374 l &= ((LONGEST) 1 << bits) - 1;
16375 *value = l;
16376 }
16377 else if (bits == sizeof (*value) * 8)
16378 *value = l;
16379 else
16380 {
16381 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16382 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16383 return bytes;
16384 }
16385
16386 return NULL;
16387 }
16388
16389 /* Read a constant value from an attribute. Either set *VALUE, or if
16390 the value does not fit in *VALUE, set *BYTES - either already
16391 allocated on the objfile obstack, or newly allocated on OBSTACK,
16392 or, set *BATON, if we translated the constant to a location
16393 expression. */
16394
16395 static void
16396 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16397 const char *name, struct obstack *obstack,
16398 struct dwarf2_cu *cu,
16399 LONGEST *value, const gdb_byte **bytes,
16400 struct dwarf2_locexpr_baton **baton)
16401 {
16402 struct objfile *objfile = cu->objfile;
16403 struct comp_unit_head *cu_header = &cu->header;
16404 struct dwarf_block *blk;
16405 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16406 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16407
16408 *value = 0;
16409 *bytes = NULL;
16410 *baton = NULL;
16411
16412 switch (attr->form)
16413 {
16414 case DW_FORM_addr:
16415 case DW_FORM_GNU_addr_index:
16416 {
16417 gdb_byte *data;
16418
16419 if (TYPE_LENGTH (type) != cu_header->addr_size)
16420 dwarf2_const_value_length_mismatch_complaint (name,
16421 cu_header->addr_size,
16422 TYPE_LENGTH (type));
16423 /* Symbols of this form are reasonably rare, so we just
16424 piggyback on the existing location code rather than writing
16425 a new implementation of symbol_computed_ops. */
16426 *baton = obstack_alloc (&objfile->objfile_obstack,
16427 sizeof (struct dwarf2_locexpr_baton));
16428 (*baton)->per_cu = cu->per_cu;
16429 gdb_assert ((*baton)->per_cu);
16430
16431 (*baton)->size = 2 + cu_header->addr_size;
16432 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16433 (*baton)->data = data;
16434
16435 data[0] = DW_OP_addr;
16436 store_unsigned_integer (&data[1], cu_header->addr_size,
16437 byte_order, DW_ADDR (attr));
16438 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16439 }
16440 break;
16441 case DW_FORM_string:
16442 case DW_FORM_strp:
16443 case DW_FORM_GNU_str_index:
16444 case DW_FORM_GNU_strp_alt:
16445 /* DW_STRING is already allocated on the objfile obstack, point
16446 directly to it. */
16447 *bytes = (const gdb_byte *) DW_STRING (attr);
16448 break;
16449 case DW_FORM_block1:
16450 case DW_FORM_block2:
16451 case DW_FORM_block4:
16452 case DW_FORM_block:
16453 case DW_FORM_exprloc:
16454 blk = DW_BLOCK (attr);
16455 if (TYPE_LENGTH (type) != blk->size)
16456 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16457 TYPE_LENGTH (type));
16458 *bytes = blk->data;
16459 break;
16460
16461 /* The DW_AT_const_value attributes are supposed to carry the
16462 symbol's value "represented as it would be on the target
16463 architecture." By the time we get here, it's already been
16464 converted to host endianness, so we just need to sign- or
16465 zero-extend it as appropriate. */
16466 case DW_FORM_data1:
16467 *bytes = dwarf2_const_value_data (attr, type, name,
16468 obstack, cu, value, 8);
16469 break;
16470 case DW_FORM_data2:
16471 *bytes = dwarf2_const_value_data (attr, type, name,
16472 obstack, cu, value, 16);
16473 break;
16474 case DW_FORM_data4:
16475 *bytes = dwarf2_const_value_data (attr, type, name,
16476 obstack, cu, value, 32);
16477 break;
16478 case DW_FORM_data8:
16479 *bytes = dwarf2_const_value_data (attr, type, name,
16480 obstack, cu, value, 64);
16481 break;
16482
16483 case DW_FORM_sdata:
16484 *value = DW_SND (attr);
16485 break;
16486
16487 case DW_FORM_udata:
16488 *value = DW_UNSND (attr);
16489 break;
16490
16491 default:
16492 complaint (&symfile_complaints,
16493 _("unsupported const value attribute form: '%s'"),
16494 dwarf_form_name (attr->form));
16495 *value = 0;
16496 break;
16497 }
16498 }
16499
16500
16501 /* Copy constant value from an attribute to a symbol. */
16502
16503 static void
16504 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16505 struct dwarf2_cu *cu)
16506 {
16507 struct objfile *objfile = cu->objfile;
16508 struct comp_unit_head *cu_header = &cu->header;
16509 LONGEST value;
16510 const gdb_byte *bytes;
16511 struct dwarf2_locexpr_baton *baton;
16512
16513 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16514 SYMBOL_PRINT_NAME (sym),
16515 &objfile->objfile_obstack, cu,
16516 &value, &bytes, &baton);
16517
16518 if (baton != NULL)
16519 {
16520 SYMBOL_LOCATION_BATON (sym) = baton;
16521 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16522 }
16523 else if (bytes != NULL)
16524 {
16525 SYMBOL_VALUE_BYTES (sym) = bytes;
16526 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16527 }
16528 else
16529 {
16530 SYMBOL_VALUE (sym) = value;
16531 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16532 }
16533 }
16534
16535 /* Return the type of the die in question using its DW_AT_type attribute. */
16536
16537 static struct type *
16538 die_type (struct die_info *die, struct dwarf2_cu *cu)
16539 {
16540 struct attribute *type_attr;
16541
16542 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16543 if (!type_attr)
16544 {
16545 /* A missing DW_AT_type represents a void type. */
16546 return objfile_type (cu->objfile)->builtin_void;
16547 }
16548
16549 return lookup_die_type (die, type_attr, cu);
16550 }
16551
16552 /* True iff CU's producer generates GNAT Ada auxiliary information
16553 that allows to find parallel types through that information instead
16554 of having to do expensive parallel lookups by type name. */
16555
16556 static int
16557 need_gnat_info (struct dwarf2_cu *cu)
16558 {
16559 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16560 of GNAT produces this auxiliary information, without any indication
16561 that it is produced. Part of enhancing the FSF version of GNAT
16562 to produce that information will be to put in place an indicator
16563 that we can use in order to determine whether the descriptive type
16564 info is available or not. One suggestion that has been made is
16565 to use a new attribute, attached to the CU die. For now, assume
16566 that the descriptive type info is not available. */
16567 return 0;
16568 }
16569
16570 /* Return the auxiliary type of the die in question using its
16571 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16572 attribute is not present. */
16573
16574 static struct type *
16575 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16576 {
16577 struct attribute *type_attr;
16578
16579 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16580 if (!type_attr)
16581 return NULL;
16582
16583 return lookup_die_type (die, type_attr, cu);
16584 }
16585
16586 /* If DIE has a descriptive_type attribute, then set the TYPE's
16587 descriptive type accordingly. */
16588
16589 static void
16590 set_descriptive_type (struct type *type, struct die_info *die,
16591 struct dwarf2_cu *cu)
16592 {
16593 struct type *descriptive_type = die_descriptive_type (die, cu);
16594
16595 if (descriptive_type)
16596 {
16597 ALLOCATE_GNAT_AUX_TYPE (type);
16598 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16599 }
16600 }
16601
16602 /* Return the containing type of the die in question using its
16603 DW_AT_containing_type attribute. */
16604
16605 static struct type *
16606 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16607 {
16608 struct attribute *type_attr;
16609
16610 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16611 if (!type_attr)
16612 error (_("Dwarf Error: Problem turning containing type into gdb type "
16613 "[in module %s]"), cu->objfile->name);
16614
16615 return lookup_die_type (die, type_attr, cu);
16616 }
16617
16618 /* Return an error marker type to use for the ill formed type in DIE/CU. */
16619
16620 static struct type *
16621 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
16622 {
16623 struct objfile *objfile = dwarf2_per_objfile->objfile;
16624 char *message, *saved;
16625
16626 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16627 objfile->name,
16628 cu->header.offset.sect_off,
16629 die->offset.sect_off);
16630 saved = obstack_copy0 (&objfile->objfile_obstack,
16631 message, strlen (message));
16632 xfree (message);
16633
16634 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16635 }
16636
16637 /* Look up the type of DIE in CU using its type attribute ATTR.
16638 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
16639 DW_AT_containing_type.
16640 If there is no type substitute an error marker. */
16641
16642 static struct type *
16643 lookup_die_type (struct die_info *die, struct attribute *attr,
16644 struct dwarf2_cu *cu)
16645 {
16646 struct objfile *objfile = cu->objfile;
16647 struct type *this_type;
16648
16649 gdb_assert (attr->name == DW_AT_type
16650 || attr->name == DW_AT_GNAT_descriptive_type
16651 || attr->name == DW_AT_containing_type);
16652
16653 /* First see if we have it cached. */
16654
16655 if (attr->form == DW_FORM_GNU_ref_alt)
16656 {
16657 struct dwarf2_per_cu_data *per_cu;
16658 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16659
16660 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16661 this_type = get_die_type_at_offset (offset, per_cu);
16662 }
16663 else if (is_ref_attr (attr))
16664 {
16665 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16666
16667 this_type = get_die_type_at_offset (offset, cu->per_cu);
16668 }
16669 else if (attr->form == DW_FORM_ref_sig8)
16670 {
16671 ULONGEST signature = DW_SIGNATURE (attr);
16672
16673 return get_signatured_type (die, signature, cu);
16674 }
16675 else
16676 {
16677 complaint (&symfile_complaints,
16678 _("Dwarf Error: Bad type attribute %s in DIE"
16679 " at 0x%x [in module %s]"),
16680 dwarf_attr_name (attr->name), die->offset.sect_off,
16681 objfile->name);
16682 return build_error_marker_type (cu, die);
16683 }
16684
16685 /* If not cached we need to read it in. */
16686
16687 if (this_type == NULL)
16688 {
16689 struct die_info *type_die = NULL;
16690 struct dwarf2_cu *type_cu = cu;
16691
16692 if (is_ref_attr (attr))
16693 type_die = follow_die_ref (die, attr, &type_cu);
16694 if (type_die == NULL)
16695 return build_error_marker_type (cu, die);
16696 /* If we find the type now, it's probably because the type came
16697 from an inter-CU reference and the type's CU got expanded before
16698 ours. */
16699 this_type = read_type_die (type_die, type_cu);
16700 }
16701
16702 /* If we still don't have a type use an error marker. */
16703
16704 if (this_type == NULL)
16705 return build_error_marker_type (cu, die);
16706
16707 return this_type;
16708 }
16709
16710 /* Return the type in DIE, CU.
16711 Returns NULL for invalid types.
16712
16713 This first does a lookup in die_type_hash,
16714 and only reads the die in if necessary.
16715
16716 NOTE: This can be called when reading in partial or full symbols. */
16717
16718 static struct type *
16719 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16720 {
16721 struct type *this_type;
16722
16723 this_type = get_die_type (die, cu);
16724 if (this_type)
16725 return this_type;
16726
16727 return read_type_die_1 (die, cu);
16728 }
16729
16730 /* Read the type in DIE, CU.
16731 Returns NULL for invalid types. */
16732
16733 static struct type *
16734 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16735 {
16736 struct type *this_type = NULL;
16737
16738 switch (die->tag)
16739 {
16740 case DW_TAG_class_type:
16741 case DW_TAG_interface_type:
16742 case DW_TAG_structure_type:
16743 case DW_TAG_union_type:
16744 this_type = read_structure_type (die, cu);
16745 break;
16746 case DW_TAG_enumeration_type:
16747 this_type = read_enumeration_type (die, cu);
16748 break;
16749 case DW_TAG_subprogram:
16750 case DW_TAG_subroutine_type:
16751 case DW_TAG_inlined_subroutine:
16752 this_type = read_subroutine_type (die, cu);
16753 break;
16754 case DW_TAG_array_type:
16755 this_type = read_array_type (die, cu);
16756 break;
16757 case DW_TAG_set_type:
16758 this_type = read_set_type (die, cu);
16759 break;
16760 case DW_TAG_pointer_type:
16761 this_type = read_tag_pointer_type (die, cu);
16762 break;
16763 case DW_TAG_ptr_to_member_type:
16764 this_type = read_tag_ptr_to_member_type (die, cu);
16765 break;
16766 case DW_TAG_reference_type:
16767 this_type = read_tag_reference_type (die, cu);
16768 break;
16769 case DW_TAG_const_type:
16770 this_type = read_tag_const_type (die, cu);
16771 break;
16772 case DW_TAG_volatile_type:
16773 this_type = read_tag_volatile_type (die, cu);
16774 break;
16775 case DW_TAG_restrict_type:
16776 this_type = read_tag_restrict_type (die, cu);
16777 break;
16778 case DW_TAG_string_type:
16779 this_type = read_tag_string_type (die, cu);
16780 break;
16781 case DW_TAG_typedef:
16782 this_type = read_typedef (die, cu);
16783 break;
16784 case DW_TAG_subrange_type:
16785 this_type = read_subrange_type (die, cu);
16786 break;
16787 case DW_TAG_base_type:
16788 this_type = read_base_type (die, cu);
16789 break;
16790 case DW_TAG_unspecified_type:
16791 this_type = read_unspecified_type (die, cu);
16792 break;
16793 case DW_TAG_namespace:
16794 this_type = read_namespace_type (die, cu);
16795 break;
16796 case DW_TAG_module:
16797 this_type = read_module_type (die, cu);
16798 break;
16799 default:
16800 complaint (&symfile_complaints,
16801 _("unexpected tag in read_type_die: '%s'"),
16802 dwarf_tag_name (die->tag));
16803 break;
16804 }
16805
16806 return this_type;
16807 }
16808
16809 /* See if we can figure out if the class lives in a namespace. We do
16810 this by looking for a member function; its demangled name will
16811 contain namespace info, if there is any.
16812 Return the computed name or NULL.
16813 Space for the result is allocated on the objfile's obstack.
16814 This is the full-die version of guess_partial_die_structure_name.
16815 In this case we know DIE has no useful parent. */
16816
16817 static char *
16818 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16819 {
16820 struct die_info *spec_die;
16821 struct dwarf2_cu *spec_cu;
16822 struct die_info *child;
16823
16824 spec_cu = cu;
16825 spec_die = die_specification (die, &spec_cu);
16826 if (spec_die != NULL)
16827 {
16828 die = spec_die;
16829 cu = spec_cu;
16830 }
16831
16832 for (child = die->child;
16833 child != NULL;
16834 child = child->sibling)
16835 {
16836 if (child->tag == DW_TAG_subprogram)
16837 {
16838 struct attribute *attr;
16839
16840 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16841 if (attr == NULL)
16842 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16843 if (attr != NULL)
16844 {
16845 char *actual_name
16846 = language_class_name_from_physname (cu->language_defn,
16847 DW_STRING (attr));
16848 char *name = NULL;
16849
16850 if (actual_name != NULL)
16851 {
16852 const char *die_name = dwarf2_name (die, cu);
16853
16854 if (die_name != NULL
16855 && strcmp (die_name, actual_name) != 0)
16856 {
16857 /* Strip off the class name from the full name.
16858 We want the prefix. */
16859 int die_name_len = strlen (die_name);
16860 int actual_name_len = strlen (actual_name);
16861
16862 /* Test for '::' as a sanity check. */
16863 if (actual_name_len > die_name_len + 2
16864 && actual_name[actual_name_len
16865 - die_name_len - 1] == ':')
16866 name =
16867 obstack_copy0 (&cu->objfile->objfile_obstack,
16868 actual_name,
16869 actual_name_len - die_name_len - 2);
16870 }
16871 }
16872 xfree (actual_name);
16873 return name;
16874 }
16875 }
16876 }
16877
16878 return NULL;
16879 }
16880
16881 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16882 prefix part in such case. See
16883 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16884
16885 static char *
16886 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16887 {
16888 struct attribute *attr;
16889 char *base;
16890
16891 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16892 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16893 return NULL;
16894
16895 attr = dwarf2_attr (die, DW_AT_name, cu);
16896 if (attr != NULL && DW_STRING (attr) != NULL)
16897 return NULL;
16898
16899 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16900 if (attr == NULL)
16901 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16902 if (attr == NULL || DW_STRING (attr) == NULL)
16903 return NULL;
16904
16905 /* dwarf2_name had to be already called. */
16906 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16907
16908 /* Strip the base name, keep any leading namespaces/classes. */
16909 base = strrchr (DW_STRING (attr), ':');
16910 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16911 return "";
16912
16913 return obstack_copy0 (&cu->objfile->objfile_obstack,
16914 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16915 }
16916
16917 /* Return the name of the namespace/class that DIE is defined within,
16918 or "" if we can't tell. The caller should not xfree the result.
16919
16920 For example, if we're within the method foo() in the following
16921 code:
16922
16923 namespace N {
16924 class C {
16925 void foo () {
16926 }
16927 };
16928 }
16929
16930 then determine_prefix on foo's die will return "N::C". */
16931
16932 static const char *
16933 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16934 {
16935 struct die_info *parent, *spec_die;
16936 struct dwarf2_cu *spec_cu;
16937 struct type *parent_type;
16938 char *retval;
16939
16940 if (cu->language != language_cplus && cu->language != language_java
16941 && cu->language != language_fortran)
16942 return "";
16943
16944 retval = anonymous_struct_prefix (die, cu);
16945 if (retval)
16946 return retval;
16947
16948 /* We have to be careful in the presence of DW_AT_specification.
16949 For example, with GCC 3.4, given the code
16950
16951 namespace N {
16952 void foo() {
16953 // Definition of N::foo.
16954 }
16955 }
16956
16957 then we'll have a tree of DIEs like this:
16958
16959 1: DW_TAG_compile_unit
16960 2: DW_TAG_namespace // N
16961 3: DW_TAG_subprogram // declaration of N::foo
16962 4: DW_TAG_subprogram // definition of N::foo
16963 DW_AT_specification // refers to die #3
16964
16965 Thus, when processing die #4, we have to pretend that we're in
16966 the context of its DW_AT_specification, namely the contex of die
16967 #3. */
16968 spec_cu = cu;
16969 spec_die = die_specification (die, &spec_cu);
16970 if (spec_die == NULL)
16971 parent = die->parent;
16972 else
16973 {
16974 parent = spec_die->parent;
16975 cu = spec_cu;
16976 }
16977
16978 if (parent == NULL)
16979 return "";
16980 else if (parent->building_fullname)
16981 {
16982 const char *name;
16983 const char *parent_name;
16984
16985 /* It has been seen on RealView 2.2 built binaries,
16986 DW_TAG_template_type_param types actually _defined_ as
16987 children of the parent class:
16988
16989 enum E {};
16990 template class <class Enum> Class{};
16991 Class<enum E> class_e;
16992
16993 1: DW_TAG_class_type (Class)
16994 2: DW_TAG_enumeration_type (E)
16995 3: DW_TAG_enumerator (enum1:0)
16996 3: DW_TAG_enumerator (enum2:1)
16997 ...
16998 2: DW_TAG_template_type_param
16999 DW_AT_type DW_FORM_ref_udata (E)
17000
17001 Besides being broken debug info, it can put GDB into an
17002 infinite loop. Consider:
17003
17004 When we're building the full name for Class<E>, we'll start
17005 at Class, and go look over its template type parameters,
17006 finding E. We'll then try to build the full name of E, and
17007 reach here. We're now trying to build the full name of E,
17008 and look over the parent DIE for containing scope. In the
17009 broken case, if we followed the parent DIE of E, we'd again
17010 find Class, and once again go look at its template type
17011 arguments, etc., etc. Simply don't consider such parent die
17012 as source-level parent of this die (it can't be, the language
17013 doesn't allow it), and break the loop here. */
17014 name = dwarf2_name (die, cu);
17015 parent_name = dwarf2_name (parent, cu);
17016 complaint (&symfile_complaints,
17017 _("template param type '%s' defined within parent '%s'"),
17018 name ? name : "<unknown>",
17019 parent_name ? parent_name : "<unknown>");
17020 return "";
17021 }
17022 else
17023 switch (parent->tag)
17024 {
17025 case DW_TAG_namespace:
17026 parent_type = read_type_die (parent, cu);
17027 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17028 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17029 Work around this problem here. */
17030 if (cu->language == language_cplus
17031 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17032 return "";
17033 /* We give a name to even anonymous namespaces. */
17034 return TYPE_TAG_NAME (parent_type);
17035 case DW_TAG_class_type:
17036 case DW_TAG_interface_type:
17037 case DW_TAG_structure_type:
17038 case DW_TAG_union_type:
17039 case DW_TAG_module:
17040 parent_type = read_type_die (parent, cu);
17041 if (TYPE_TAG_NAME (parent_type) != NULL)
17042 return TYPE_TAG_NAME (parent_type);
17043 else
17044 /* An anonymous structure is only allowed non-static data
17045 members; no typedefs, no member functions, et cetera.
17046 So it does not need a prefix. */
17047 return "";
17048 case DW_TAG_compile_unit:
17049 case DW_TAG_partial_unit:
17050 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17051 if (cu->language == language_cplus
17052 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17053 && die->child != NULL
17054 && (die->tag == DW_TAG_class_type
17055 || die->tag == DW_TAG_structure_type
17056 || die->tag == DW_TAG_union_type))
17057 {
17058 char *name = guess_full_die_structure_name (die, cu);
17059 if (name != NULL)
17060 return name;
17061 }
17062 return "";
17063 default:
17064 return determine_prefix (parent, cu);
17065 }
17066 }
17067
17068 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17069 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17070 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17071 an obconcat, otherwise allocate storage for the result. The CU argument is
17072 used to determine the language and hence, the appropriate separator. */
17073
17074 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17075
17076 static char *
17077 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17078 int physname, struct dwarf2_cu *cu)
17079 {
17080 const char *lead = "";
17081 const char *sep;
17082
17083 if (suffix == NULL || suffix[0] == '\0'
17084 || prefix == NULL || prefix[0] == '\0')
17085 sep = "";
17086 else if (cu->language == language_java)
17087 sep = ".";
17088 else if (cu->language == language_fortran && physname)
17089 {
17090 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17091 DW_AT_MIPS_linkage_name is preferred and used instead. */
17092
17093 lead = "__";
17094 sep = "_MOD_";
17095 }
17096 else
17097 sep = "::";
17098
17099 if (prefix == NULL)
17100 prefix = "";
17101 if (suffix == NULL)
17102 suffix = "";
17103
17104 if (obs == NULL)
17105 {
17106 char *retval
17107 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17108
17109 strcpy (retval, lead);
17110 strcat (retval, prefix);
17111 strcat (retval, sep);
17112 strcat (retval, suffix);
17113 return retval;
17114 }
17115 else
17116 {
17117 /* We have an obstack. */
17118 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17119 }
17120 }
17121
17122 /* Return sibling of die, NULL if no sibling. */
17123
17124 static struct die_info *
17125 sibling_die (struct die_info *die)
17126 {
17127 return die->sibling;
17128 }
17129
17130 /* Get name of a die, return NULL if not found. */
17131
17132 static const char *
17133 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17134 struct obstack *obstack)
17135 {
17136 if (name && cu->language == language_cplus)
17137 {
17138 char *canon_name = cp_canonicalize_string (name);
17139
17140 if (canon_name != NULL)
17141 {
17142 if (strcmp (canon_name, name) != 0)
17143 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17144 xfree (canon_name);
17145 }
17146 }
17147
17148 return name;
17149 }
17150
17151 /* Get name of a die, return NULL if not found. */
17152
17153 static const char *
17154 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17155 {
17156 struct attribute *attr;
17157
17158 attr = dwarf2_attr (die, DW_AT_name, cu);
17159 if ((!attr || !DW_STRING (attr))
17160 && die->tag != DW_TAG_class_type
17161 && die->tag != DW_TAG_interface_type
17162 && die->tag != DW_TAG_structure_type
17163 && die->tag != DW_TAG_union_type)
17164 return NULL;
17165
17166 switch (die->tag)
17167 {
17168 case DW_TAG_compile_unit:
17169 case DW_TAG_partial_unit:
17170 /* Compilation units have a DW_AT_name that is a filename, not
17171 a source language identifier. */
17172 case DW_TAG_enumeration_type:
17173 case DW_TAG_enumerator:
17174 /* These tags always have simple identifiers already; no need
17175 to canonicalize them. */
17176 return DW_STRING (attr);
17177
17178 case DW_TAG_subprogram:
17179 /* Java constructors will all be named "<init>", so return
17180 the class name when we see this special case. */
17181 if (cu->language == language_java
17182 && DW_STRING (attr) != NULL
17183 && strcmp (DW_STRING (attr), "<init>") == 0)
17184 {
17185 struct dwarf2_cu *spec_cu = cu;
17186 struct die_info *spec_die;
17187
17188 /* GCJ will output '<init>' for Java constructor names.
17189 For this special case, return the name of the parent class. */
17190
17191 /* GCJ may output suprogram DIEs with AT_specification set.
17192 If so, use the name of the specified DIE. */
17193 spec_die = die_specification (die, &spec_cu);
17194 if (spec_die != NULL)
17195 return dwarf2_name (spec_die, spec_cu);
17196
17197 do
17198 {
17199 die = die->parent;
17200 if (die->tag == DW_TAG_class_type)
17201 return dwarf2_name (die, cu);
17202 }
17203 while (die->tag != DW_TAG_compile_unit
17204 && die->tag != DW_TAG_partial_unit);
17205 }
17206 break;
17207
17208 case DW_TAG_class_type:
17209 case DW_TAG_interface_type:
17210 case DW_TAG_structure_type:
17211 case DW_TAG_union_type:
17212 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17213 structures or unions. These were of the form "._%d" in GCC 4.1,
17214 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17215 and GCC 4.4. We work around this problem by ignoring these. */
17216 if (attr && DW_STRING (attr)
17217 && (strncmp (DW_STRING (attr), "._", 2) == 0
17218 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17219 return NULL;
17220
17221 /* GCC might emit a nameless typedef that has a linkage name. See
17222 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17223 if (!attr || DW_STRING (attr) == NULL)
17224 {
17225 char *demangled = NULL;
17226
17227 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17228 if (attr == NULL)
17229 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17230
17231 if (attr == NULL || DW_STRING (attr) == NULL)
17232 return NULL;
17233
17234 /* Avoid demangling DW_STRING (attr) the second time on a second
17235 call for the same DIE. */
17236 if (!DW_STRING_IS_CANONICAL (attr))
17237 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17238
17239 if (demangled)
17240 {
17241 char *base;
17242
17243 /* FIXME: we already did this for the partial symbol... */
17244 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17245 demangled, strlen (demangled));
17246 DW_STRING_IS_CANONICAL (attr) = 1;
17247 xfree (demangled);
17248
17249 /* Strip any leading namespaces/classes, keep only the base name.
17250 DW_AT_name for named DIEs does not contain the prefixes. */
17251 base = strrchr (DW_STRING (attr), ':');
17252 if (base && base > DW_STRING (attr) && base[-1] == ':')
17253 return &base[1];
17254 else
17255 return DW_STRING (attr);
17256 }
17257 }
17258 break;
17259
17260 default:
17261 break;
17262 }
17263
17264 if (!DW_STRING_IS_CANONICAL (attr))
17265 {
17266 DW_STRING (attr)
17267 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17268 &cu->objfile->objfile_obstack);
17269 DW_STRING_IS_CANONICAL (attr) = 1;
17270 }
17271 return DW_STRING (attr);
17272 }
17273
17274 /* Return the die that this die in an extension of, or NULL if there
17275 is none. *EXT_CU is the CU containing DIE on input, and the CU
17276 containing the return value on output. */
17277
17278 static struct die_info *
17279 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17280 {
17281 struct attribute *attr;
17282
17283 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17284 if (attr == NULL)
17285 return NULL;
17286
17287 return follow_die_ref (die, attr, ext_cu);
17288 }
17289
17290 /* Convert a DIE tag into its string name. */
17291
17292 static const char *
17293 dwarf_tag_name (unsigned tag)
17294 {
17295 const char *name = get_DW_TAG_name (tag);
17296
17297 if (name == NULL)
17298 return "DW_TAG_<unknown>";
17299
17300 return name;
17301 }
17302
17303 /* Convert a DWARF attribute code into its string name. */
17304
17305 static const char *
17306 dwarf_attr_name (unsigned attr)
17307 {
17308 const char *name;
17309
17310 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17311 if (attr == DW_AT_MIPS_fde)
17312 return "DW_AT_MIPS_fde";
17313 #else
17314 if (attr == DW_AT_HP_block_index)
17315 return "DW_AT_HP_block_index";
17316 #endif
17317
17318 name = get_DW_AT_name (attr);
17319
17320 if (name == NULL)
17321 return "DW_AT_<unknown>";
17322
17323 return name;
17324 }
17325
17326 /* Convert a DWARF value form code into its string name. */
17327
17328 static const char *
17329 dwarf_form_name (unsigned form)
17330 {
17331 const char *name = get_DW_FORM_name (form);
17332
17333 if (name == NULL)
17334 return "DW_FORM_<unknown>";
17335
17336 return name;
17337 }
17338
17339 static char *
17340 dwarf_bool_name (unsigned mybool)
17341 {
17342 if (mybool)
17343 return "TRUE";
17344 else
17345 return "FALSE";
17346 }
17347
17348 /* Convert a DWARF type code into its string name. */
17349
17350 static const char *
17351 dwarf_type_encoding_name (unsigned enc)
17352 {
17353 const char *name = get_DW_ATE_name (enc);
17354
17355 if (name == NULL)
17356 return "DW_ATE_<unknown>";
17357
17358 return name;
17359 }
17360
17361 static void
17362 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17363 {
17364 unsigned int i;
17365
17366 print_spaces (indent, f);
17367 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17368 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17369
17370 if (die->parent != NULL)
17371 {
17372 print_spaces (indent, f);
17373 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17374 die->parent->offset.sect_off);
17375 }
17376
17377 print_spaces (indent, f);
17378 fprintf_unfiltered (f, " has children: %s\n",
17379 dwarf_bool_name (die->child != NULL));
17380
17381 print_spaces (indent, f);
17382 fprintf_unfiltered (f, " attributes:\n");
17383
17384 for (i = 0; i < die->num_attrs; ++i)
17385 {
17386 print_spaces (indent, f);
17387 fprintf_unfiltered (f, " %s (%s) ",
17388 dwarf_attr_name (die->attrs[i].name),
17389 dwarf_form_name (die->attrs[i].form));
17390
17391 switch (die->attrs[i].form)
17392 {
17393 case DW_FORM_addr:
17394 case DW_FORM_GNU_addr_index:
17395 fprintf_unfiltered (f, "address: ");
17396 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17397 break;
17398 case DW_FORM_block2:
17399 case DW_FORM_block4:
17400 case DW_FORM_block:
17401 case DW_FORM_block1:
17402 fprintf_unfiltered (f, "block: size %s",
17403 pulongest (DW_BLOCK (&die->attrs[i])->size));
17404 break;
17405 case DW_FORM_exprloc:
17406 fprintf_unfiltered (f, "expression: size %s",
17407 pulongest (DW_BLOCK (&die->attrs[i])->size));
17408 break;
17409 case DW_FORM_ref_addr:
17410 fprintf_unfiltered (f, "ref address: ");
17411 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17412 break;
17413 case DW_FORM_GNU_ref_alt:
17414 fprintf_unfiltered (f, "alt ref address: ");
17415 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17416 break;
17417 case DW_FORM_ref1:
17418 case DW_FORM_ref2:
17419 case DW_FORM_ref4:
17420 case DW_FORM_ref8:
17421 case DW_FORM_ref_udata:
17422 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17423 (long) (DW_UNSND (&die->attrs[i])));
17424 break;
17425 case DW_FORM_data1:
17426 case DW_FORM_data2:
17427 case DW_FORM_data4:
17428 case DW_FORM_data8:
17429 case DW_FORM_udata:
17430 case DW_FORM_sdata:
17431 fprintf_unfiltered (f, "constant: %s",
17432 pulongest (DW_UNSND (&die->attrs[i])));
17433 break;
17434 case DW_FORM_sec_offset:
17435 fprintf_unfiltered (f, "section offset: %s",
17436 pulongest (DW_UNSND (&die->attrs[i])));
17437 break;
17438 case DW_FORM_ref_sig8:
17439 fprintf_unfiltered (f, "signature: %s",
17440 hex_string (DW_SIGNATURE (&die->attrs[i])));
17441 break;
17442 case DW_FORM_string:
17443 case DW_FORM_strp:
17444 case DW_FORM_GNU_str_index:
17445 case DW_FORM_GNU_strp_alt:
17446 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17447 DW_STRING (&die->attrs[i])
17448 ? DW_STRING (&die->attrs[i]) : "",
17449 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17450 break;
17451 case DW_FORM_flag:
17452 if (DW_UNSND (&die->attrs[i]))
17453 fprintf_unfiltered (f, "flag: TRUE");
17454 else
17455 fprintf_unfiltered (f, "flag: FALSE");
17456 break;
17457 case DW_FORM_flag_present:
17458 fprintf_unfiltered (f, "flag: TRUE");
17459 break;
17460 case DW_FORM_indirect:
17461 /* The reader will have reduced the indirect form to
17462 the "base form" so this form should not occur. */
17463 fprintf_unfiltered (f,
17464 "unexpected attribute form: DW_FORM_indirect");
17465 break;
17466 default:
17467 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17468 die->attrs[i].form);
17469 break;
17470 }
17471 fprintf_unfiltered (f, "\n");
17472 }
17473 }
17474
17475 static void
17476 dump_die_for_error (struct die_info *die)
17477 {
17478 dump_die_shallow (gdb_stderr, 0, die);
17479 }
17480
17481 static void
17482 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17483 {
17484 int indent = level * 4;
17485
17486 gdb_assert (die != NULL);
17487
17488 if (level >= max_level)
17489 return;
17490
17491 dump_die_shallow (f, indent, die);
17492
17493 if (die->child != NULL)
17494 {
17495 print_spaces (indent, f);
17496 fprintf_unfiltered (f, " Children:");
17497 if (level + 1 < max_level)
17498 {
17499 fprintf_unfiltered (f, "\n");
17500 dump_die_1 (f, level + 1, max_level, die->child);
17501 }
17502 else
17503 {
17504 fprintf_unfiltered (f,
17505 " [not printed, max nesting level reached]\n");
17506 }
17507 }
17508
17509 if (die->sibling != NULL && level > 0)
17510 {
17511 dump_die_1 (f, level, max_level, die->sibling);
17512 }
17513 }
17514
17515 /* This is called from the pdie macro in gdbinit.in.
17516 It's not static so gcc will keep a copy callable from gdb. */
17517
17518 void
17519 dump_die (struct die_info *die, int max_level)
17520 {
17521 dump_die_1 (gdb_stdlog, 0, max_level, die);
17522 }
17523
17524 static void
17525 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17526 {
17527 void **slot;
17528
17529 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17530 INSERT);
17531
17532 *slot = die;
17533 }
17534
17535 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17536 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17537
17538 static int
17539 is_ref_attr (struct attribute *attr)
17540 {
17541 switch (attr->form)
17542 {
17543 case DW_FORM_ref_addr:
17544 case DW_FORM_ref1:
17545 case DW_FORM_ref2:
17546 case DW_FORM_ref4:
17547 case DW_FORM_ref8:
17548 case DW_FORM_ref_udata:
17549 case DW_FORM_GNU_ref_alt:
17550 return 1;
17551 default:
17552 return 0;
17553 }
17554 }
17555
17556 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17557 required kind. */
17558
17559 static sect_offset
17560 dwarf2_get_ref_die_offset (struct attribute *attr)
17561 {
17562 sect_offset retval = { DW_UNSND (attr) };
17563
17564 if (is_ref_attr (attr))
17565 return retval;
17566
17567 retval.sect_off = 0;
17568 complaint (&symfile_complaints,
17569 _("unsupported die ref attribute form: '%s'"),
17570 dwarf_form_name (attr->form));
17571 return retval;
17572 }
17573
17574 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17575 * the value held by the attribute is not constant. */
17576
17577 static LONGEST
17578 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17579 {
17580 if (attr->form == DW_FORM_sdata)
17581 return DW_SND (attr);
17582 else if (attr->form == DW_FORM_udata
17583 || attr->form == DW_FORM_data1
17584 || attr->form == DW_FORM_data2
17585 || attr->form == DW_FORM_data4
17586 || attr->form == DW_FORM_data8)
17587 return DW_UNSND (attr);
17588 else
17589 {
17590 complaint (&symfile_complaints,
17591 _("Attribute value is not a constant (%s)"),
17592 dwarf_form_name (attr->form));
17593 return default_value;
17594 }
17595 }
17596
17597 /* Follow reference or signature attribute ATTR of SRC_DIE.
17598 On entry *REF_CU is the CU of SRC_DIE.
17599 On exit *REF_CU is the CU of the result. */
17600
17601 static struct die_info *
17602 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17603 struct dwarf2_cu **ref_cu)
17604 {
17605 struct die_info *die;
17606
17607 if (is_ref_attr (attr))
17608 die = follow_die_ref (src_die, attr, ref_cu);
17609 else if (attr->form == DW_FORM_ref_sig8)
17610 die = follow_die_sig (src_die, attr, ref_cu);
17611 else
17612 {
17613 dump_die_for_error (src_die);
17614 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17615 (*ref_cu)->objfile->name);
17616 }
17617
17618 return die;
17619 }
17620
17621 /* Follow reference OFFSET.
17622 On entry *REF_CU is the CU of the source die referencing OFFSET.
17623 On exit *REF_CU is the CU of the result.
17624 Returns NULL if OFFSET is invalid. */
17625
17626 static struct die_info *
17627 follow_die_offset (sect_offset offset, int offset_in_dwz,
17628 struct dwarf2_cu **ref_cu)
17629 {
17630 struct die_info temp_die;
17631 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17632
17633 gdb_assert (cu->per_cu != NULL);
17634
17635 target_cu = cu;
17636
17637 if (cu->per_cu->is_debug_types)
17638 {
17639 /* .debug_types CUs cannot reference anything outside their CU.
17640 If they need to, they have to reference a signatured type via
17641 DW_FORM_ref_sig8. */
17642 if (! offset_in_cu_p (&cu->header, offset))
17643 return NULL;
17644 }
17645 else if (offset_in_dwz != cu->per_cu->is_dwz
17646 || ! offset_in_cu_p (&cu->header, offset))
17647 {
17648 struct dwarf2_per_cu_data *per_cu;
17649
17650 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17651 cu->objfile);
17652
17653 /* If necessary, add it to the queue and load its DIEs. */
17654 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17655 load_full_comp_unit (per_cu, cu->language);
17656
17657 target_cu = per_cu->cu;
17658 }
17659 else if (cu->dies == NULL)
17660 {
17661 /* We're loading full DIEs during partial symbol reading. */
17662 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17663 load_full_comp_unit (cu->per_cu, language_minimal);
17664 }
17665
17666 *ref_cu = target_cu;
17667 temp_die.offset = offset;
17668 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17669 }
17670
17671 /* Follow reference attribute ATTR of SRC_DIE.
17672 On entry *REF_CU is the CU of SRC_DIE.
17673 On exit *REF_CU is the CU of the result. */
17674
17675 static struct die_info *
17676 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17677 struct dwarf2_cu **ref_cu)
17678 {
17679 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17680 struct dwarf2_cu *cu = *ref_cu;
17681 struct die_info *die;
17682
17683 die = follow_die_offset (offset,
17684 (attr->form == DW_FORM_GNU_ref_alt
17685 || cu->per_cu->is_dwz),
17686 ref_cu);
17687 if (!die)
17688 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17689 "at 0x%x [in module %s]"),
17690 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17691
17692 return die;
17693 }
17694
17695 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17696 Returned value is intended for DW_OP_call*. Returned
17697 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17698
17699 struct dwarf2_locexpr_baton
17700 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17701 struct dwarf2_per_cu_data *per_cu,
17702 CORE_ADDR (*get_frame_pc) (void *baton),
17703 void *baton)
17704 {
17705 struct dwarf2_cu *cu;
17706 struct die_info *die;
17707 struct attribute *attr;
17708 struct dwarf2_locexpr_baton retval;
17709
17710 dw2_setup (per_cu->objfile);
17711
17712 if (per_cu->cu == NULL)
17713 load_cu (per_cu);
17714 cu = per_cu->cu;
17715
17716 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17717 if (!die)
17718 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17719 offset.sect_off, per_cu->objfile->name);
17720
17721 attr = dwarf2_attr (die, DW_AT_location, cu);
17722 if (!attr)
17723 {
17724 /* DWARF: "If there is no such attribute, then there is no effect.".
17725 DATA is ignored if SIZE is 0. */
17726
17727 retval.data = NULL;
17728 retval.size = 0;
17729 }
17730 else if (attr_form_is_section_offset (attr))
17731 {
17732 struct dwarf2_loclist_baton loclist_baton;
17733 CORE_ADDR pc = (*get_frame_pc) (baton);
17734 size_t size;
17735
17736 fill_in_loclist_baton (cu, &loclist_baton, attr);
17737
17738 retval.data = dwarf2_find_location_expression (&loclist_baton,
17739 &size, pc);
17740 retval.size = size;
17741 }
17742 else
17743 {
17744 if (!attr_form_is_block (attr))
17745 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17746 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17747 offset.sect_off, per_cu->objfile->name);
17748
17749 retval.data = DW_BLOCK (attr)->data;
17750 retval.size = DW_BLOCK (attr)->size;
17751 }
17752 retval.per_cu = cu->per_cu;
17753
17754 age_cached_comp_units ();
17755
17756 return retval;
17757 }
17758
17759 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17760 offset. */
17761
17762 struct dwarf2_locexpr_baton
17763 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17764 struct dwarf2_per_cu_data *per_cu,
17765 CORE_ADDR (*get_frame_pc) (void *baton),
17766 void *baton)
17767 {
17768 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17769
17770 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17771 }
17772
17773 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17774 PER_CU. */
17775
17776 struct type *
17777 dwarf2_get_die_type (cu_offset die_offset,
17778 struct dwarf2_per_cu_data *per_cu)
17779 {
17780 sect_offset die_offset_sect;
17781
17782 dw2_setup (per_cu->objfile);
17783
17784 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17785 return get_die_type_at_offset (die_offset_sect, per_cu);
17786 }
17787
17788 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
17789 On entry *REF_CU is the CU of SRC_DIE.
17790 On exit *REF_CU is the CU of the result.
17791 Returns NULL if the referenced DIE isn't found. */
17792
17793 static struct die_info *
17794 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
17795 struct dwarf2_cu **ref_cu)
17796 {
17797 struct objfile *objfile = (*ref_cu)->objfile;
17798 struct die_info temp_die;
17799 struct dwarf2_cu *sig_cu;
17800 struct die_info *die;
17801
17802 /* While it might be nice to assert sig_type->type == NULL here,
17803 we can get here for DW_AT_imported_declaration where we need
17804 the DIE not the type. */
17805
17806 /* If necessary, add it to the queue and load its DIEs. */
17807
17808 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17809 read_signatured_type (sig_type);
17810
17811 gdb_assert (sig_type->per_cu.cu != NULL);
17812
17813 sig_cu = sig_type->per_cu.cu;
17814 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17815 temp_die.offset = sig_type->type_offset_in_section;
17816 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17817 temp_die.offset.sect_off);
17818 if (die)
17819 {
17820 /* For .gdb_index version 7 keep track of included TUs.
17821 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17822 if (dwarf2_per_objfile->index_table != NULL
17823 && dwarf2_per_objfile->index_table->version <= 7)
17824 {
17825 VEC_safe_push (dwarf2_per_cu_ptr,
17826 (*ref_cu)->per_cu->imported_symtabs,
17827 sig_cu->per_cu);
17828 }
17829
17830 *ref_cu = sig_cu;
17831 return die;
17832 }
17833
17834 return NULL;
17835 }
17836
17837 /* Follow signatured type referenced by ATTR in SRC_DIE.
17838 On entry *REF_CU is the CU of SRC_DIE.
17839 On exit *REF_CU is the CU of the result.
17840 The result is the DIE of the type.
17841 If the referenced type cannot be found an error is thrown. */
17842
17843 static struct die_info *
17844 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17845 struct dwarf2_cu **ref_cu)
17846 {
17847 ULONGEST signature = DW_SIGNATURE (attr);
17848 struct signatured_type *sig_type;
17849 struct die_info *die;
17850
17851 gdb_assert (attr->form == DW_FORM_ref_sig8);
17852
17853 sig_type = lookup_signatured_type (signature);
17854 /* sig_type will be NULL if the signatured type is missing from
17855 the debug info. */
17856 if (sig_type == NULL)
17857 {
17858 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
17859 " from DIE at 0x%x [in module %s]"),
17860 hex_string (signature), src_die->offset.sect_off,
17861 (*ref_cu)->objfile->name);
17862 }
17863
17864 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
17865 if (die == NULL)
17866 {
17867 dump_die_for_error (src_die);
17868 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
17869 " from DIE at 0x%x [in module %s]"),
17870 hex_string (signature), src_die->offset.sect_off,
17871 (*ref_cu)->objfile->name);
17872 }
17873
17874 return die;
17875 }
17876
17877 /* Get the type specified by SIGNATURE referenced in DIE/CU,
17878 reading in and processing the type unit if necessary. */
17879
17880 static struct type *
17881 get_signatured_type (struct die_info *die, ULONGEST signature,
17882 struct dwarf2_cu *cu)
17883 {
17884 struct signatured_type *sig_type;
17885 struct dwarf2_cu *type_cu;
17886 struct die_info *type_die;
17887 struct type *type;
17888
17889 sig_type = lookup_signatured_type (signature);
17890 /* sig_type will be NULL if the signatured type is missing from
17891 the debug info. */
17892 if (sig_type == NULL)
17893 {
17894 complaint (&symfile_complaints,
17895 _("Dwarf Error: Cannot find signatured DIE %s referenced"
17896 " from DIE at 0x%x [in module %s]"),
17897 hex_string (signature), die->offset.sect_off,
17898 dwarf2_per_objfile->objfile->name);
17899 return build_error_marker_type (cu, die);
17900 }
17901
17902 /* If we already know the type we're done. */
17903 if (sig_type->type != NULL)
17904 return sig_type->type;
17905
17906 type_cu = cu;
17907 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
17908 if (type_die != NULL)
17909 {
17910 /* N.B. We need to call get_die_type to ensure only one type for this DIE
17911 is created. This is important, for example, because for c++ classes
17912 we need TYPE_NAME set which is only done by new_symbol. Blech. */
17913 type = read_type_die (type_die, type_cu);
17914 if (type == NULL)
17915 {
17916 complaint (&symfile_complaints,
17917 _("Dwarf Error: Cannot build signatured type %s"
17918 " referenced from DIE at 0x%x [in module %s]"),
17919 hex_string (signature), die->offset.sect_off,
17920 dwarf2_per_objfile->objfile->name);
17921 type = build_error_marker_type (cu, die);
17922 }
17923 }
17924 else
17925 {
17926 complaint (&symfile_complaints,
17927 _("Dwarf Error: Problem reading signatured DIE %s referenced"
17928 " from DIE at 0x%x [in module %s]"),
17929 hex_string (signature), die->offset.sect_off,
17930 dwarf2_per_objfile->objfile->name);
17931 type = build_error_marker_type (cu, die);
17932 }
17933 sig_type->type = type;
17934
17935 return type;
17936 }
17937
17938 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
17939 reading in and processing the type unit if necessary. */
17940
17941 static struct type *
17942 get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
17943 struct dwarf2_cu *cu) /* ARI: editCase function */
17944 {
17945 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
17946 if (is_ref_attr (attr))
17947 {
17948 struct dwarf2_cu *type_cu = cu;
17949 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
17950
17951 return read_type_die (type_die, type_cu);
17952 }
17953 else if (attr->form == DW_FORM_ref_sig8)
17954 {
17955 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
17956 }
17957 else
17958 {
17959 complaint (&symfile_complaints,
17960 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
17961 " at 0x%x [in module %s]"),
17962 dwarf_form_name (attr->form), die->offset.sect_off,
17963 dwarf2_per_objfile->objfile->name);
17964 return build_error_marker_type (cu, die);
17965 }
17966 }
17967
17968 /* Load the DIEs associated with type unit PER_CU into memory. */
17969
17970 static void
17971 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17972 {
17973 struct signatured_type *sig_type;
17974
17975 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17976 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17977
17978 /* We have the per_cu, but we need the signatured_type.
17979 Fortunately this is an easy translation. */
17980 gdb_assert (per_cu->is_debug_types);
17981 sig_type = (struct signatured_type *) per_cu;
17982
17983 gdb_assert (per_cu->cu == NULL);
17984
17985 read_signatured_type (sig_type);
17986
17987 gdb_assert (per_cu->cu != NULL);
17988 }
17989
17990 /* die_reader_func for read_signatured_type.
17991 This is identical to load_full_comp_unit_reader,
17992 but is kept separate for now. */
17993
17994 static void
17995 read_signatured_type_reader (const struct die_reader_specs *reader,
17996 const gdb_byte *info_ptr,
17997 struct die_info *comp_unit_die,
17998 int has_children,
17999 void *data)
18000 {
18001 struct dwarf2_cu *cu = reader->cu;
18002
18003 gdb_assert (cu->die_hash == NULL);
18004 cu->die_hash =
18005 htab_create_alloc_ex (cu->header.length / 12,
18006 die_hash,
18007 die_eq,
18008 NULL,
18009 &cu->comp_unit_obstack,
18010 hashtab_obstack_allocate,
18011 dummy_obstack_deallocate);
18012
18013 if (has_children)
18014 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18015 &info_ptr, comp_unit_die);
18016 cu->dies = comp_unit_die;
18017 /* comp_unit_die is not stored in die_hash, no need. */
18018
18019 /* We try not to read any attributes in this function, because not
18020 all CUs needed for references have been loaded yet, and symbol
18021 table processing isn't initialized. But we have to set the CU language,
18022 or we won't be able to build types correctly.
18023 Similarly, if we do not read the producer, we can not apply
18024 producer-specific interpretation. */
18025 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18026 }
18027
18028 /* Read in a signatured type and build its CU and DIEs.
18029 If the type is a stub for the real type in a DWO file,
18030 read in the real type from the DWO file as well. */
18031
18032 static void
18033 read_signatured_type (struct signatured_type *sig_type)
18034 {
18035 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18036
18037 gdb_assert (per_cu->is_debug_types);
18038 gdb_assert (per_cu->cu == NULL);
18039
18040 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18041 read_signatured_type_reader, NULL);
18042 }
18043
18044 /* Decode simple location descriptions.
18045 Given a pointer to a dwarf block that defines a location, compute
18046 the location and return the value.
18047
18048 NOTE drow/2003-11-18: This function is called in two situations
18049 now: for the address of static or global variables (partial symbols
18050 only) and for offsets into structures which are expected to be
18051 (more or less) constant. The partial symbol case should go away,
18052 and only the constant case should remain. That will let this
18053 function complain more accurately. A few special modes are allowed
18054 without complaint for global variables (for instance, global
18055 register values and thread-local values).
18056
18057 A location description containing no operations indicates that the
18058 object is optimized out. The return value is 0 for that case.
18059 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18060 callers will only want a very basic result and this can become a
18061 complaint.
18062
18063 Note that stack[0] is unused except as a default error return. */
18064
18065 static CORE_ADDR
18066 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18067 {
18068 struct objfile *objfile = cu->objfile;
18069 size_t i;
18070 size_t size = blk->size;
18071 const gdb_byte *data = blk->data;
18072 CORE_ADDR stack[64];
18073 int stacki;
18074 unsigned int bytes_read, unsnd;
18075 gdb_byte op;
18076
18077 i = 0;
18078 stacki = 0;
18079 stack[stacki] = 0;
18080 stack[++stacki] = 0;
18081
18082 while (i < size)
18083 {
18084 op = data[i++];
18085 switch (op)
18086 {
18087 case DW_OP_lit0:
18088 case DW_OP_lit1:
18089 case DW_OP_lit2:
18090 case DW_OP_lit3:
18091 case DW_OP_lit4:
18092 case DW_OP_lit5:
18093 case DW_OP_lit6:
18094 case DW_OP_lit7:
18095 case DW_OP_lit8:
18096 case DW_OP_lit9:
18097 case DW_OP_lit10:
18098 case DW_OP_lit11:
18099 case DW_OP_lit12:
18100 case DW_OP_lit13:
18101 case DW_OP_lit14:
18102 case DW_OP_lit15:
18103 case DW_OP_lit16:
18104 case DW_OP_lit17:
18105 case DW_OP_lit18:
18106 case DW_OP_lit19:
18107 case DW_OP_lit20:
18108 case DW_OP_lit21:
18109 case DW_OP_lit22:
18110 case DW_OP_lit23:
18111 case DW_OP_lit24:
18112 case DW_OP_lit25:
18113 case DW_OP_lit26:
18114 case DW_OP_lit27:
18115 case DW_OP_lit28:
18116 case DW_OP_lit29:
18117 case DW_OP_lit30:
18118 case DW_OP_lit31:
18119 stack[++stacki] = op - DW_OP_lit0;
18120 break;
18121
18122 case DW_OP_reg0:
18123 case DW_OP_reg1:
18124 case DW_OP_reg2:
18125 case DW_OP_reg3:
18126 case DW_OP_reg4:
18127 case DW_OP_reg5:
18128 case DW_OP_reg6:
18129 case DW_OP_reg7:
18130 case DW_OP_reg8:
18131 case DW_OP_reg9:
18132 case DW_OP_reg10:
18133 case DW_OP_reg11:
18134 case DW_OP_reg12:
18135 case DW_OP_reg13:
18136 case DW_OP_reg14:
18137 case DW_OP_reg15:
18138 case DW_OP_reg16:
18139 case DW_OP_reg17:
18140 case DW_OP_reg18:
18141 case DW_OP_reg19:
18142 case DW_OP_reg20:
18143 case DW_OP_reg21:
18144 case DW_OP_reg22:
18145 case DW_OP_reg23:
18146 case DW_OP_reg24:
18147 case DW_OP_reg25:
18148 case DW_OP_reg26:
18149 case DW_OP_reg27:
18150 case DW_OP_reg28:
18151 case DW_OP_reg29:
18152 case DW_OP_reg30:
18153 case DW_OP_reg31:
18154 stack[++stacki] = op - DW_OP_reg0;
18155 if (i < size)
18156 dwarf2_complex_location_expr_complaint ();
18157 break;
18158
18159 case DW_OP_regx:
18160 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18161 i += bytes_read;
18162 stack[++stacki] = unsnd;
18163 if (i < size)
18164 dwarf2_complex_location_expr_complaint ();
18165 break;
18166
18167 case DW_OP_addr:
18168 stack[++stacki] = read_address (objfile->obfd, &data[i],
18169 cu, &bytes_read);
18170 i += bytes_read;
18171 break;
18172
18173 case DW_OP_const1u:
18174 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18175 i += 1;
18176 break;
18177
18178 case DW_OP_const1s:
18179 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18180 i += 1;
18181 break;
18182
18183 case DW_OP_const2u:
18184 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18185 i += 2;
18186 break;
18187
18188 case DW_OP_const2s:
18189 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18190 i += 2;
18191 break;
18192
18193 case DW_OP_const4u:
18194 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18195 i += 4;
18196 break;
18197
18198 case DW_OP_const4s:
18199 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18200 i += 4;
18201 break;
18202
18203 case DW_OP_const8u:
18204 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18205 i += 8;
18206 break;
18207
18208 case DW_OP_constu:
18209 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18210 &bytes_read);
18211 i += bytes_read;
18212 break;
18213
18214 case DW_OP_consts:
18215 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18216 i += bytes_read;
18217 break;
18218
18219 case DW_OP_dup:
18220 stack[stacki + 1] = stack[stacki];
18221 stacki++;
18222 break;
18223
18224 case DW_OP_plus:
18225 stack[stacki - 1] += stack[stacki];
18226 stacki--;
18227 break;
18228
18229 case DW_OP_plus_uconst:
18230 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18231 &bytes_read);
18232 i += bytes_read;
18233 break;
18234
18235 case DW_OP_minus:
18236 stack[stacki - 1] -= stack[stacki];
18237 stacki--;
18238 break;
18239
18240 case DW_OP_deref:
18241 /* If we're not the last op, then we definitely can't encode
18242 this using GDB's address_class enum. This is valid for partial
18243 global symbols, although the variable's address will be bogus
18244 in the psymtab. */
18245 if (i < size)
18246 dwarf2_complex_location_expr_complaint ();
18247 break;
18248
18249 case DW_OP_GNU_push_tls_address:
18250 /* The top of the stack has the offset from the beginning
18251 of the thread control block at which the variable is located. */
18252 /* Nothing should follow this operator, so the top of stack would
18253 be returned. */
18254 /* This is valid for partial global symbols, but the variable's
18255 address will be bogus in the psymtab. Make it always at least
18256 non-zero to not look as a variable garbage collected by linker
18257 which have DW_OP_addr 0. */
18258 if (i < size)
18259 dwarf2_complex_location_expr_complaint ();
18260 stack[stacki]++;
18261 break;
18262
18263 case DW_OP_GNU_uninit:
18264 break;
18265
18266 case DW_OP_GNU_addr_index:
18267 case DW_OP_GNU_const_index:
18268 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18269 &bytes_read);
18270 i += bytes_read;
18271 break;
18272
18273 default:
18274 {
18275 const char *name = get_DW_OP_name (op);
18276
18277 if (name)
18278 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18279 name);
18280 else
18281 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18282 op);
18283 }
18284
18285 return (stack[stacki]);
18286 }
18287
18288 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18289 outside of the allocated space. Also enforce minimum>0. */
18290 if (stacki >= ARRAY_SIZE (stack) - 1)
18291 {
18292 complaint (&symfile_complaints,
18293 _("location description stack overflow"));
18294 return 0;
18295 }
18296
18297 if (stacki <= 0)
18298 {
18299 complaint (&symfile_complaints,
18300 _("location description stack underflow"));
18301 return 0;
18302 }
18303 }
18304 return (stack[stacki]);
18305 }
18306
18307 /* memory allocation interface */
18308
18309 static struct dwarf_block *
18310 dwarf_alloc_block (struct dwarf2_cu *cu)
18311 {
18312 struct dwarf_block *blk;
18313
18314 blk = (struct dwarf_block *)
18315 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18316 return (blk);
18317 }
18318
18319 static struct die_info *
18320 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18321 {
18322 struct die_info *die;
18323 size_t size = sizeof (struct die_info);
18324
18325 if (num_attrs > 1)
18326 size += (num_attrs - 1) * sizeof (struct attribute);
18327
18328 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18329 memset (die, 0, sizeof (struct die_info));
18330 return (die);
18331 }
18332
18333 \f
18334 /* Macro support. */
18335
18336 /* Return file name relative to the compilation directory of file number I in
18337 *LH's file name table. The result is allocated using xmalloc; the caller is
18338 responsible for freeing it. */
18339
18340 static char *
18341 file_file_name (int file, struct line_header *lh)
18342 {
18343 /* Is the file number a valid index into the line header's file name
18344 table? Remember that file numbers start with one, not zero. */
18345 if (1 <= file && file <= lh->num_file_names)
18346 {
18347 struct file_entry *fe = &lh->file_names[file - 1];
18348
18349 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18350 return xstrdup (fe->name);
18351 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18352 fe->name, NULL);
18353 }
18354 else
18355 {
18356 /* The compiler produced a bogus file number. We can at least
18357 record the macro definitions made in the file, even if we
18358 won't be able to find the file by name. */
18359 char fake_name[80];
18360
18361 xsnprintf (fake_name, sizeof (fake_name),
18362 "<bad macro file number %d>", file);
18363
18364 complaint (&symfile_complaints,
18365 _("bad file number in macro information (%d)"),
18366 file);
18367
18368 return xstrdup (fake_name);
18369 }
18370 }
18371
18372 /* Return the full name of file number I in *LH's file name table.
18373 Use COMP_DIR as the name of the current directory of the
18374 compilation. The result is allocated using xmalloc; the caller is
18375 responsible for freeing it. */
18376 static char *
18377 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18378 {
18379 /* Is the file number a valid index into the line header's file name
18380 table? Remember that file numbers start with one, not zero. */
18381 if (1 <= file && file <= lh->num_file_names)
18382 {
18383 char *relative = file_file_name (file, lh);
18384
18385 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18386 return relative;
18387 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18388 }
18389 else
18390 return file_file_name (file, lh);
18391 }
18392
18393
18394 static struct macro_source_file *
18395 macro_start_file (int file, int line,
18396 struct macro_source_file *current_file,
18397 const char *comp_dir,
18398 struct line_header *lh, struct objfile *objfile)
18399 {
18400 /* File name relative to the compilation directory of this source file. */
18401 char *file_name = file_file_name (file, lh);
18402
18403 /* We don't create a macro table for this compilation unit
18404 at all until we actually get a filename. */
18405 if (! pending_macros)
18406 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18407 objfile->per_bfd->macro_cache,
18408 comp_dir);
18409
18410 if (! current_file)
18411 {
18412 /* If we have no current file, then this must be the start_file
18413 directive for the compilation unit's main source file. */
18414 current_file = macro_set_main (pending_macros, file_name);
18415 macro_define_special (pending_macros);
18416 }
18417 else
18418 current_file = macro_include (current_file, line, file_name);
18419
18420 xfree (file_name);
18421
18422 return current_file;
18423 }
18424
18425
18426 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18427 followed by a null byte. */
18428 static char *
18429 copy_string (const char *buf, int len)
18430 {
18431 char *s = xmalloc (len + 1);
18432
18433 memcpy (s, buf, len);
18434 s[len] = '\0';
18435 return s;
18436 }
18437
18438
18439 static const char *
18440 consume_improper_spaces (const char *p, const char *body)
18441 {
18442 if (*p == ' ')
18443 {
18444 complaint (&symfile_complaints,
18445 _("macro definition contains spaces "
18446 "in formal argument list:\n`%s'"),
18447 body);
18448
18449 while (*p == ' ')
18450 p++;
18451 }
18452
18453 return p;
18454 }
18455
18456
18457 static void
18458 parse_macro_definition (struct macro_source_file *file, int line,
18459 const char *body)
18460 {
18461 const char *p;
18462
18463 /* The body string takes one of two forms. For object-like macro
18464 definitions, it should be:
18465
18466 <macro name> " " <definition>
18467
18468 For function-like macro definitions, it should be:
18469
18470 <macro name> "() " <definition>
18471 or
18472 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18473
18474 Spaces may appear only where explicitly indicated, and in the
18475 <definition>.
18476
18477 The Dwarf 2 spec says that an object-like macro's name is always
18478 followed by a space, but versions of GCC around March 2002 omit
18479 the space when the macro's definition is the empty string.
18480
18481 The Dwarf 2 spec says that there should be no spaces between the
18482 formal arguments in a function-like macro's formal argument list,
18483 but versions of GCC around March 2002 include spaces after the
18484 commas. */
18485
18486
18487 /* Find the extent of the macro name. The macro name is terminated
18488 by either a space or null character (for an object-like macro) or
18489 an opening paren (for a function-like macro). */
18490 for (p = body; *p; p++)
18491 if (*p == ' ' || *p == '(')
18492 break;
18493
18494 if (*p == ' ' || *p == '\0')
18495 {
18496 /* It's an object-like macro. */
18497 int name_len = p - body;
18498 char *name = copy_string (body, name_len);
18499 const char *replacement;
18500
18501 if (*p == ' ')
18502 replacement = body + name_len + 1;
18503 else
18504 {
18505 dwarf2_macro_malformed_definition_complaint (body);
18506 replacement = body + name_len;
18507 }
18508
18509 macro_define_object (file, line, name, replacement);
18510
18511 xfree (name);
18512 }
18513 else if (*p == '(')
18514 {
18515 /* It's a function-like macro. */
18516 char *name = copy_string (body, p - body);
18517 int argc = 0;
18518 int argv_size = 1;
18519 char **argv = xmalloc (argv_size * sizeof (*argv));
18520
18521 p++;
18522
18523 p = consume_improper_spaces (p, body);
18524
18525 /* Parse the formal argument list. */
18526 while (*p && *p != ')')
18527 {
18528 /* Find the extent of the current argument name. */
18529 const char *arg_start = p;
18530
18531 while (*p && *p != ',' && *p != ')' && *p != ' ')
18532 p++;
18533
18534 if (! *p || p == arg_start)
18535 dwarf2_macro_malformed_definition_complaint (body);
18536 else
18537 {
18538 /* Make sure argv has room for the new argument. */
18539 if (argc >= argv_size)
18540 {
18541 argv_size *= 2;
18542 argv = xrealloc (argv, argv_size * sizeof (*argv));
18543 }
18544
18545 argv[argc++] = copy_string (arg_start, p - arg_start);
18546 }
18547
18548 p = consume_improper_spaces (p, body);
18549
18550 /* Consume the comma, if present. */
18551 if (*p == ',')
18552 {
18553 p++;
18554
18555 p = consume_improper_spaces (p, body);
18556 }
18557 }
18558
18559 if (*p == ')')
18560 {
18561 p++;
18562
18563 if (*p == ' ')
18564 /* Perfectly formed definition, no complaints. */
18565 macro_define_function (file, line, name,
18566 argc, (const char **) argv,
18567 p + 1);
18568 else if (*p == '\0')
18569 {
18570 /* Complain, but do define it. */
18571 dwarf2_macro_malformed_definition_complaint (body);
18572 macro_define_function (file, line, name,
18573 argc, (const char **) argv,
18574 p);
18575 }
18576 else
18577 /* Just complain. */
18578 dwarf2_macro_malformed_definition_complaint (body);
18579 }
18580 else
18581 /* Just complain. */
18582 dwarf2_macro_malformed_definition_complaint (body);
18583
18584 xfree (name);
18585 {
18586 int i;
18587
18588 for (i = 0; i < argc; i++)
18589 xfree (argv[i]);
18590 }
18591 xfree (argv);
18592 }
18593 else
18594 dwarf2_macro_malformed_definition_complaint (body);
18595 }
18596
18597 /* Skip some bytes from BYTES according to the form given in FORM.
18598 Returns the new pointer. */
18599
18600 static const gdb_byte *
18601 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
18602 enum dwarf_form form,
18603 unsigned int offset_size,
18604 struct dwarf2_section_info *section)
18605 {
18606 unsigned int bytes_read;
18607
18608 switch (form)
18609 {
18610 case DW_FORM_data1:
18611 case DW_FORM_flag:
18612 ++bytes;
18613 break;
18614
18615 case DW_FORM_data2:
18616 bytes += 2;
18617 break;
18618
18619 case DW_FORM_data4:
18620 bytes += 4;
18621 break;
18622
18623 case DW_FORM_data8:
18624 bytes += 8;
18625 break;
18626
18627 case DW_FORM_string:
18628 read_direct_string (abfd, bytes, &bytes_read);
18629 bytes += bytes_read;
18630 break;
18631
18632 case DW_FORM_sec_offset:
18633 case DW_FORM_strp:
18634 case DW_FORM_GNU_strp_alt:
18635 bytes += offset_size;
18636 break;
18637
18638 case DW_FORM_block:
18639 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18640 bytes += bytes_read;
18641 break;
18642
18643 case DW_FORM_block1:
18644 bytes += 1 + read_1_byte (abfd, bytes);
18645 break;
18646 case DW_FORM_block2:
18647 bytes += 2 + read_2_bytes (abfd, bytes);
18648 break;
18649 case DW_FORM_block4:
18650 bytes += 4 + read_4_bytes (abfd, bytes);
18651 break;
18652
18653 case DW_FORM_sdata:
18654 case DW_FORM_udata:
18655 case DW_FORM_GNU_addr_index:
18656 case DW_FORM_GNU_str_index:
18657 bytes = gdb_skip_leb128 (bytes, buffer_end);
18658 if (bytes == NULL)
18659 {
18660 dwarf2_section_buffer_overflow_complaint (section);
18661 return NULL;
18662 }
18663 break;
18664
18665 default:
18666 {
18667 complain:
18668 complaint (&symfile_complaints,
18669 _("invalid form 0x%x in `%s'"),
18670 form,
18671 section->asection->name);
18672 return NULL;
18673 }
18674 }
18675
18676 return bytes;
18677 }
18678
18679 /* A helper for dwarf_decode_macros that handles skipping an unknown
18680 opcode. Returns an updated pointer to the macro data buffer; or,
18681 on error, issues a complaint and returns NULL. */
18682
18683 static const gdb_byte *
18684 skip_unknown_opcode (unsigned int opcode,
18685 const gdb_byte **opcode_definitions,
18686 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18687 bfd *abfd,
18688 unsigned int offset_size,
18689 struct dwarf2_section_info *section)
18690 {
18691 unsigned int bytes_read, i;
18692 unsigned long arg;
18693 const gdb_byte *defn;
18694
18695 if (opcode_definitions[opcode] == NULL)
18696 {
18697 complaint (&symfile_complaints,
18698 _("unrecognized DW_MACFINO opcode 0x%x"),
18699 opcode);
18700 return NULL;
18701 }
18702
18703 defn = opcode_definitions[opcode];
18704 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18705 defn += bytes_read;
18706
18707 for (i = 0; i < arg; ++i)
18708 {
18709 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18710 section);
18711 if (mac_ptr == NULL)
18712 {
18713 /* skip_form_bytes already issued the complaint. */
18714 return NULL;
18715 }
18716 }
18717
18718 return mac_ptr;
18719 }
18720
18721 /* A helper function which parses the header of a macro section.
18722 If the macro section is the extended (for now called "GNU") type,
18723 then this updates *OFFSET_SIZE. Returns a pointer to just after
18724 the header, or issues a complaint and returns NULL on error. */
18725
18726 static const gdb_byte *
18727 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
18728 bfd *abfd,
18729 const gdb_byte *mac_ptr,
18730 unsigned int *offset_size,
18731 int section_is_gnu)
18732 {
18733 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18734
18735 if (section_is_gnu)
18736 {
18737 unsigned int version, flags;
18738
18739 version = read_2_bytes (abfd, mac_ptr);
18740 if (version != 4)
18741 {
18742 complaint (&symfile_complaints,
18743 _("unrecognized version `%d' in .debug_macro section"),
18744 version);
18745 return NULL;
18746 }
18747 mac_ptr += 2;
18748
18749 flags = read_1_byte (abfd, mac_ptr);
18750 ++mac_ptr;
18751 *offset_size = (flags & 1) ? 8 : 4;
18752
18753 if ((flags & 2) != 0)
18754 /* We don't need the line table offset. */
18755 mac_ptr += *offset_size;
18756
18757 /* Vendor opcode descriptions. */
18758 if ((flags & 4) != 0)
18759 {
18760 unsigned int i, count;
18761
18762 count = read_1_byte (abfd, mac_ptr);
18763 ++mac_ptr;
18764 for (i = 0; i < count; ++i)
18765 {
18766 unsigned int opcode, bytes_read;
18767 unsigned long arg;
18768
18769 opcode = read_1_byte (abfd, mac_ptr);
18770 ++mac_ptr;
18771 opcode_definitions[opcode] = mac_ptr;
18772 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18773 mac_ptr += bytes_read;
18774 mac_ptr += arg;
18775 }
18776 }
18777 }
18778
18779 return mac_ptr;
18780 }
18781
18782 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18783 including DW_MACRO_GNU_transparent_include. */
18784
18785 static void
18786 dwarf_decode_macro_bytes (bfd *abfd,
18787 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18788 struct macro_source_file *current_file,
18789 struct line_header *lh, const char *comp_dir,
18790 struct dwarf2_section_info *section,
18791 int section_is_gnu, int section_is_dwz,
18792 unsigned int offset_size,
18793 struct objfile *objfile,
18794 htab_t include_hash)
18795 {
18796 enum dwarf_macro_record_type macinfo_type;
18797 int at_commandline;
18798 const gdb_byte *opcode_definitions[256];
18799
18800 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18801 &offset_size, section_is_gnu);
18802 if (mac_ptr == NULL)
18803 {
18804 /* We already issued a complaint. */
18805 return;
18806 }
18807
18808 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18809 GDB is still reading the definitions from command line. First
18810 DW_MACINFO_start_file will need to be ignored as it was already executed
18811 to create CURRENT_FILE for the main source holding also the command line
18812 definitions. On first met DW_MACINFO_start_file this flag is reset to
18813 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18814
18815 at_commandline = 1;
18816
18817 do
18818 {
18819 /* Do we at least have room for a macinfo type byte? */
18820 if (mac_ptr >= mac_end)
18821 {
18822 dwarf2_section_buffer_overflow_complaint (section);
18823 break;
18824 }
18825
18826 macinfo_type = read_1_byte (abfd, mac_ptr);
18827 mac_ptr++;
18828
18829 /* Note that we rely on the fact that the corresponding GNU and
18830 DWARF constants are the same. */
18831 switch (macinfo_type)
18832 {
18833 /* A zero macinfo type indicates the end of the macro
18834 information. */
18835 case 0:
18836 break;
18837
18838 case DW_MACRO_GNU_define:
18839 case DW_MACRO_GNU_undef:
18840 case DW_MACRO_GNU_define_indirect:
18841 case DW_MACRO_GNU_undef_indirect:
18842 case DW_MACRO_GNU_define_indirect_alt:
18843 case DW_MACRO_GNU_undef_indirect_alt:
18844 {
18845 unsigned int bytes_read;
18846 int line;
18847 const char *body;
18848 int is_define;
18849
18850 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18851 mac_ptr += bytes_read;
18852
18853 if (macinfo_type == DW_MACRO_GNU_define
18854 || macinfo_type == DW_MACRO_GNU_undef)
18855 {
18856 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18857 mac_ptr += bytes_read;
18858 }
18859 else
18860 {
18861 LONGEST str_offset;
18862
18863 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18864 mac_ptr += offset_size;
18865
18866 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18867 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18868 || section_is_dwz)
18869 {
18870 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18871
18872 body = read_indirect_string_from_dwz (dwz, str_offset);
18873 }
18874 else
18875 body = read_indirect_string_at_offset (abfd, str_offset);
18876 }
18877
18878 is_define = (macinfo_type == DW_MACRO_GNU_define
18879 || macinfo_type == DW_MACRO_GNU_define_indirect
18880 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18881 if (! current_file)
18882 {
18883 /* DWARF violation as no main source is present. */
18884 complaint (&symfile_complaints,
18885 _("debug info with no main source gives macro %s "
18886 "on line %d: %s"),
18887 is_define ? _("definition") : _("undefinition"),
18888 line, body);
18889 break;
18890 }
18891 if ((line == 0 && !at_commandline)
18892 || (line != 0 && at_commandline))
18893 complaint (&symfile_complaints,
18894 _("debug info gives %s macro %s with %s line %d: %s"),
18895 at_commandline ? _("command-line") : _("in-file"),
18896 is_define ? _("definition") : _("undefinition"),
18897 line == 0 ? _("zero") : _("non-zero"), line, body);
18898
18899 if (is_define)
18900 parse_macro_definition (current_file, line, body);
18901 else
18902 {
18903 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18904 || macinfo_type == DW_MACRO_GNU_undef_indirect
18905 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18906 macro_undef (current_file, line, body);
18907 }
18908 }
18909 break;
18910
18911 case DW_MACRO_GNU_start_file:
18912 {
18913 unsigned int bytes_read;
18914 int line, file;
18915
18916 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18917 mac_ptr += bytes_read;
18918 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18919 mac_ptr += bytes_read;
18920
18921 if ((line == 0 && !at_commandline)
18922 || (line != 0 && at_commandline))
18923 complaint (&symfile_complaints,
18924 _("debug info gives source %d included "
18925 "from %s at %s line %d"),
18926 file, at_commandline ? _("command-line") : _("file"),
18927 line == 0 ? _("zero") : _("non-zero"), line);
18928
18929 if (at_commandline)
18930 {
18931 /* This DW_MACRO_GNU_start_file was executed in the
18932 pass one. */
18933 at_commandline = 0;
18934 }
18935 else
18936 current_file = macro_start_file (file, line,
18937 current_file, comp_dir,
18938 lh, objfile);
18939 }
18940 break;
18941
18942 case DW_MACRO_GNU_end_file:
18943 if (! current_file)
18944 complaint (&symfile_complaints,
18945 _("macro debug info has an unmatched "
18946 "`close_file' directive"));
18947 else
18948 {
18949 current_file = current_file->included_by;
18950 if (! current_file)
18951 {
18952 enum dwarf_macro_record_type next_type;
18953
18954 /* GCC circa March 2002 doesn't produce the zero
18955 type byte marking the end of the compilation
18956 unit. Complain if it's not there, but exit no
18957 matter what. */
18958
18959 /* Do we at least have room for a macinfo type byte? */
18960 if (mac_ptr >= mac_end)
18961 {
18962 dwarf2_section_buffer_overflow_complaint (section);
18963 return;
18964 }
18965
18966 /* We don't increment mac_ptr here, so this is just
18967 a look-ahead. */
18968 next_type = read_1_byte (abfd, mac_ptr);
18969 if (next_type != 0)
18970 complaint (&symfile_complaints,
18971 _("no terminating 0-type entry for "
18972 "macros in `.debug_macinfo' section"));
18973
18974 return;
18975 }
18976 }
18977 break;
18978
18979 case DW_MACRO_GNU_transparent_include:
18980 case DW_MACRO_GNU_transparent_include_alt:
18981 {
18982 LONGEST offset;
18983 void **slot;
18984 bfd *include_bfd = abfd;
18985 struct dwarf2_section_info *include_section = section;
18986 struct dwarf2_section_info alt_section;
18987 const gdb_byte *include_mac_end = mac_end;
18988 int is_dwz = section_is_dwz;
18989 const gdb_byte *new_mac_ptr;
18990
18991 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18992 mac_ptr += offset_size;
18993
18994 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18995 {
18996 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18997
18998 dwarf2_read_section (dwarf2_per_objfile->objfile,
18999 &dwz->macro);
19000
19001 include_bfd = dwz->macro.asection->owner;
19002 include_section = &dwz->macro;
19003 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19004 is_dwz = 1;
19005 }
19006
19007 new_mac_ptr = include_section->buffer + offset;
19008 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19009
19010 if (*slot != NULL)
19011 {
19012 /* This has actually happened; see
19013 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19014 complaint (&symfile_complaints,
19015 _("recursive DW_MACRO_GNU_transparent_include in "
19016 ".debug_macro section"));
19017 }
19018 else
19019 {
19020 *slot = (void *) new_mac_ptr;
19021
19022 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19023 include_mac_end, current_file,
19024 lh, comp_dir,
19025 section, section_is_gnu, is_dwz,
19026 offset_size, objfile, include_hash);
19027
19028 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19029 }
19030 }
19031 break;
19032
19033 case DW_MACINFO_vendor_ext:
19034 if (!section_is_gnu)
19035 {
19036 unsigned int bytes_read;
19037 int constant;
19038
19039 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19040 mac_ptr += bytes_read;
19041 read_direct_string (abfd, mac_ptr, &bytes_read);
19042 mac_ptr += bytes_read;
19043
19044 /* We don't recognize any vendor extensions. */
19045 break;
19046 }
19047 /* FALLTHROUGH */
19048
19049 default:
19050 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19051 mac_ptr, mac_end, abfd, offset_size,
19052 section);
19053 if (mac_ptr == NULL)
19054 return;
19055 break;
19056 }
19057 } while (macinfo_type != 0);
19058 }
19059
19060 static void
19061 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19062 const char *comp_dir, int section_is_gnu)
19063 {
19064 struct objfile *objfile = dwarf2_per_objfile->objfile;
19065 struct line_header *lh = cu->line_header;
19066 bfd *abfd;
19067 const gdb_byte *mac_ptr, *mac_end;
19068 struct macro_source_file *current_file = 0;
19069 enum dwarf_macro_record_type macinfo_type;
19070 unsigned int offset_size = cu->header.offset_size;
19071 const gdb_byte *opcode_definitions[256];
19072 struct cleanup *cleanup;
19073 htab_t include_hash;
19074 void **slot;
19075 struct dwarf2_section_info *section;
19076 const char *section_name;
19077
19078 if (cu->dwo_unit != NULL)
19079 {
19080 if (section_is_gnu)
19081 {
19082 section = &cu->dwo_unit->dwo_file->sections.macro;
19083 section_name = ".debug_macro.dwo";
19084 }
19085 else
19086 {
19087 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19088 section_name = ".debug_macinfo.dwo";
19089 }
19090 }
19091 else
19092 {
19093 if (section_is_gnu)
19094 {
19095 section = &dwarf2_per_objfile->macro;
19096 section_name = ".debug_macro";
19097 }
19098 else
19099 {
19100 section = &dwarf2_per_objfile->macinfo;
19101 section_name = ".debug_macinfo";
19102 }
19103 }
19104
19105 dwarf2_read_section (objfile, section);
19106 if (section->buffer == NULL)
19107 {
19108 complaint (&symfile_complaints, _("missing %s section"), section_name);
19109 return;
19110 }
19111 abfd = section->asection->owner;
19112
19113 /* First pass: Find the name of the base filename.
19114 This filename is needed in order to process all macros whose definition
19115 (or undefinition) comes from the command line. These macros are defined
19116 before the first DW_MACINFO_start_file entry, and yet still need to be
19117 associated to the base file.
19118
19119 To determine the base file name, we scan the macro definitions until we
19120 reach the first DW_MACINFO_start_file entry. We then initialize
19121 CURRENT_FILE accordingly so that any macro definition found before the
19122 first DW_MACINFO_start_file can still be associated to the base file. */
19123
19124 mac_ptr = section->buffer + offset;
19125 mac_end = section->buffer + section->size;
19126
19127 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19128 &offset_size, section_is_gnu);
19129 if (mac_ptr == NULL)
19130 {
19131 /* We already issued a complaint. */
19132 return;
19133 }
19134
19135 do
19136 {
19137 /* Do we at least have room for a macinfo type byte? */
19138 if (mac_ptr >= mac_end)
19139 {
19140 /* Complaint is printed during the second pass as GDB will probably
19141 stop the first pass earlier upon finding
19142 DW_MACINFO_start_file. */
19143 break;
19144 }
19145
19146 macinfo_type = read_1_byte (abfd, mac_ptr);
19147 mac_ptr++;
19148
19149 /* Note that we rely on the fact that the corresponding GNU and
19150 DWARF constants are the same. */
19151 switch (macinfo_type)
19152 {
19153 /* A zero macinfo type indicates the end of the macro
19154 information. */
19155 case 0:
19156 break;
19157
19158 case DW_MACRO_GNU_define:
19159 case DW_MACRO_GNU_undef:
19160 /* Only skip the data by MAC_PTR. */
19161 {
19162 unsigned int bytes_read;
19163
19164 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19165 mac_ptr += bytes_read;
19166 read_direct_string (abfd, mac_ptr, &bytes_read);
19167 mac_ptr += bytes_read;
19168 }
19169 break;
19170
19171 case DW_MACRO_GNU_start_file:
19172 {
19173 unsigned int bytes_read;
19174 int line, file;
19175
19176 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19177 mac_ptr += bytes_read;
19178 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19179 mac_ptr += bytes_read;
19180
19181 current_file = macro_start_file (file, line, current_file,
19182 comp_dir, lh, objfile);
19183 }
19184 break;
19185
19186 case DW_MACRO_GNU_end_file:
19187 /* No data to skip by MAC_PTR. */
19188 break;
19189
19190 case DW_MACRO_GNU_define_indirect:
19191 case DW_MACRO_GNU_undef_indirect:
19192 case DW_MACRO_GNU_define_indirect_alt:
19193 case DW_MACRO_GNU_undef_indirect_alt:
19194 {
19195 unsigned int bytes_read;
19196
19197 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19198 mac_ptr += bytes_read;
19199 mac_ptr += offset_size;
19200 }
19201 break;
19202
19203 case DW_MACRO_GNU_transparent_include:
19204 case DW_MACRO_GNU_transparent_include_alt:
19205 /* Note that, according to the spec, a transparent include
19206 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19207 skip this opcode. */
19208 mac_ptr += offset_size;
19209 break;
19210
19211 case DW_MACINFO_vendor_ext:
19212 /* Only skip the data by MAC_PTR. */
19213 if (!section_is_gnu)
19214 {
19215 unsigned int bytes_read;
19216
19217 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19218 mac_ptr += bytes_read;
19219 read_direct_string (abfd, mac_ptr, &bytes_read);
19220 mac_ptr += bytes_read;
19221 }
19222 /* FALLTHROUGH */
19223
19224 default:
19225 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19226 mac_ptr, mac_end, abfd, offset_size,
19227 section);
19228 if (mac_ptr == NULL)
19229 return;
19230 break;
19231 }
19232 } while (macinfo_type != 0 && current_file == NULL);
19233
19234 /* Second pass: Process all entries.
19235
19236 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19237 command-line macro definitions/undefinitions. This flag is unset when we
19238 reach the first DW_MACINFO_start_file entry. */
19239
19240 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19241 NULL, xcalloc, xfree);
19242 cleanup = make_cleanup_htab_delete (include_hash);
19243 mac_ptr = section->buffer + offset;
19244 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19245 *slot = (void *) mac_ptr;
19246 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19247 current_file, lh, comp_dir, section,
19248 section_is_gnu, 0,
19249 offset_size, objfile, include_hash);
19250 do_cleanups (cleanup);
19251 }
19252
19253 /* Check if the attribute's form is a DW_FORM_block*
19254 if so return true else false. */
19255
19256 static int
19257 attr_form_is_block (struct attribute *attr)
19258 {
19259 return (attr == NULL ? 0 :
19260 attr->form == DW_FORM_block1
19261 || attr->form == DW_FORM_block2
19262 || attr->form == DW_FORM_block4
19263 || attr->form == DW_FORM_block
19264 || attr->form == DW_FORM_exprloc);
19265 }
19266
19267 /* Return non-zero if ATTR's value is a section offset --- classes
19268 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19269 You may use DW_UNSND (attr) to retrieve such offsets.
19270
19271 Section 7.5.4, "Attribute Encodings", explains that no attribute
19272 may have a value that belongs to more than one of these classes; it
19273 would be ambiguous if we did, because we use the same forms for all
19274 of them. */
19275
19276 static int
19277 attr_form_is_section_offset (struct attribute *attr)
19278 {
19279 return (attr->form == DW_FORM_data4
19280 || attr->form == DW_FORM_data8
19281 || attr->form == DW_FORM_sec_offset);
19282 }
19283
19284 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19285 zero otherwise. When this function returns true, you can apply
19286 dwarf2_get_attr_constant_value to it.
19287
19288 However, note that for some attributes you must check
19289 attr_form_is_section_offset before using this test. DW_FORM_data4
19290 and DW_FORM_data8 are members of both the constant class, and of
19291 the classes that contain offsets into other debug sections
19292 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19293 that, if an attribute's can be either a constant or one of the
19294 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19295 taken as section offsets, not constants. */
19296
19297 static int
19298 attr_form_is_constant (struct attribute *attr)
19299 {
19300 switch (attr->form)
19301 {
19302 case DW_FORM_sdata:
19303 case DW_FORM_udata:
19304 case DW_FORM_data1:
19305 case DW_FORM_data2:
19306 case DW_FORM_data4:
19307 case DW_FORM_data8:
19308 return 1;
19309 default:
19310 return 0;
19311 }
19312 }
19313
19314 /* Return the .debug_loc section to use for CU.
19315 For DWO files use .debug_loc.dwo. */
19316
19317 static struct dwarf2_section_info *
19318 cu_debug_loc_section (struct dwarf2_cu *cu)
19319 {
19320 if (cu->dwo_unit)
19321 return &cu->dwo_unit->dwo_file->sections.loc;
19322 return &dwarf2_per_objfile->loc;
19323 }
19324
19325 /* A helper function that fills in a dwarf2_loclist_baton. */
19326
19327 static void
19328 fill_in_loclist_baton (struct dwarf2_cu *cu,
19329 struct dwarf2_loclist_baton *baton,
19330 struct attribute *attr)
19331 {
19332 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19333
19334 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19335
19336 baton->per_cu = cu->per_cu;
19337 gdb_assert (baton->per_cu);
19338 /* We don't know how long the location list is, but make sure we
19339 don't run off the edge of the section. */
19340 baton->size = section->size - DW_UNSND (attr);
19341 baton->data = section->buffer + DW_UNSND (attr);
19342 baton->base_address = cu->base_address;
19343 baton->from_dwo = cu->dwo_unit != NULL;
19344 }
19345
19346 static void
19347 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19348 struct dwarf2_cu *cu, int is_block)
19349 {
19350 struct objfile *objfile = dwarf2_per_objfile->objfile;
19351 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19352
19353 if (attr_form_is_section_offset (attr)
19354 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19355 the section. If so, fall through to the complaint in the
19356 other branch. */
19357 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19358 {
19359 struct dwarf2_loclist_baton *baton;
19360
19361 baton = obstack_alloc (&objfile->objfile_obstack,
19362 sizeof (struct dwarf2_loclist_baton));
19363
19364 fill_in_loclist_baton (cu, baton, attr);
19365
19366 if (cu->base_known == 0)
19367 complaint (&symfile_complaints,
19368 _("Location list used without "
19369 "specifying the CU base address."));
19370
19371 SYMBOL_ACLASS_INDEX (sym) = (is_block
19372 ? dwarf2_loclist_block_index
19373 : dwarf2_loclist_index);
19374 SYMBOL_LOCATION_BATON (sym) = baton;
19375 }
19376 else
19377 {
19378 struct dwarf2_locexpr_baton *baton;
19379
19380 baton = obstack_alloc (&objfile->objfile_obstack,
19381 sizeof (struct dwarf2_locexpr_baton));
19382 baton->per_cu = cu->per_cu;
19383 gdb_assert (baton->per_cu);
19384
19385 if (attr_form_is_block (attr))
19386 {
19387 /* Note that we're just copying the block's data pointer
19388 here, not the actual data. We're still pointing into the
19389 info_buffer for SYM's objfile; right now we never release
19390 that buffer, but when we do clean up properly this may
19391 need to change. */
19392 baton->size = DW_BLOCK (attr)->size;
19393 baton->data = DW_BLOCK (attr)->data;
19394 }
19395 else
19396 {
19397 dwarf2_invalid_attrib_class_complaint ("location description",
19398 SYMBOL_NATURAL_NAME (sym));
19399 baton->size = 0;
19400 }
19401
19402 SYMBOL_ACLASS_INDEX (sym) = (is_block
19403 ? dwarf2_locexpr_block_index
19404 : dwarf2_locexpr_index);
19405 SYMBOL_LOCATION_BATON (sym) = baton;
19406 }
19407 }
19408
19409 /* Return the OBJFILE associated with the compilation unit CU. If CU
19410 came from a separate debuginfo file, then the master objfile is
19411 returned. */
19412
19413 struct objfile *
19414 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19415 {
19416 struct objfile *objfile = per_cu->objfile;
19417
19418 /* Return the master objfile, so that we can report and look up the
19419 correct file containing this variable. */
19420 if (objfile->separate_debug_objfile_backlink)
19421 objfile = objfile->separate_debug_objfile_backlink;
19422
19423 return objfile;
19424 }
19425
19426 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19427 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19428 CU_HEADERP first. */
19429
19430 static const struct comp_unit_head *
19431 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19432 struct dwarf2_per_cu_data *per_cu)
19433 {
19434 const gdb_byte *info_ptr;
19435
19436 if (per_cu->cu)
19437 return &per_cu->cu->header;
19438
19439 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19440
19441 memset (cu_headerp, 0, sizeof (*cu_headerp));
19442 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19443
19444 return cu_headerp;
19445 }
19446
19447 /* Return the address size given in the compilation unit header for CU. */
19448
19449 int
19450 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19451 {
19452 struct comp_unit_head cu_header_local;
19453 const struct comp_unit_head *cu_headerp;
19454
19455 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19456
19457 return cu_headerp->addr_size;
19458 }
19459
19460 /* Return the offset size given in the compilation unit header for CU. */
19461
19462 int
19463 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19464 {
19465 struct comp_unit_head cu_header_local;
19466 const struct comp_unit_head *cu_headerp;
19467
19468 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19469
19470 return cu_headerp->offset_size;
19471 }
19472
19473 /* See its dwarf2loc.h declaration. */
19474
19475 int
19476 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19477 {
19478 struct comp_unit_head cu_header_local;
19479 const struct comp_unit_head *cu_headerp;
19480
19481 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19482
19483 if (cu_headerp->version == 2)
19484 return cu_headerp->addr_size;
19485 else
19486 return cu_headerp->offset_size;
19487 }
19488
19489 /* Return the text offset of the CU. The returned offset comes from
19490 this CU's objfile. If this objfile came from a separate debuginfo
19491 file, then the offset may be different from the corresponding
19492 offset in the parent objfile. */
19493
19494 CORE_ADDR
19495 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19496 {
19497 struct objfile *objfile = per_cu->objfile;
19498
19499 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19500 }
19501
19502 /* Locate the .debug_info compilation unit from CU's objfile which contains
19503 the DIE at OFFSET. Raises an error on failure. */
19504
19505 static struct dwarf2_per_cu_data *
19506 dwarf2_find_containing_comp_unit (sect_offset offset,
19507 unsigned int offset_in_dwz,
19508 struct objfile *objfile)
19509 {
19510 struct dwarf2_per_cu_data *this_cu;
19511 int low, high;
19512 const sect_offset *cu_off;
19513
19514 low = 0;
19515 high = dwarf2_per_objfile->n_comp_units - 1;
19516 while (high > low)
19517 {
19518 struct dwarf2_per_cu_data *mid_cu;
19519 int mid = low + (high - low) / 2;
19520
19521 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19522 cu_off = &mid_cu->offset;
19523 if (mid_cu->is_dwz > offset_in_dwz
19524 || (mid_cu->is_dwz == offset_in_dwz
19525 && cu_off->sect_off >= offset.sect_off))
19526 high = mid;
19527 else
19528 low = mid + 1;
19529 }
19530 gdb_assert (low == high);
19531 this_cu = dwarf2_per_objfile->all_comp_units[low];
19532 cu_off = &this_cu->offset;
19533 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19534 {
19535 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19536 error (_("Dwarf Error: could not find partial DIE containing "
19537 "offset 0x%lx [in module %s]"),
19538 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19539
19540 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19541 <= offset.sect_off);
19542 return dwarf2_per_objfile->all_comp_units[low-1];
19543 }
19544 else
19545 {
19546 this_cu = dwarf2_per_objfile->all_comp_units[low];
19547 if (low == dwarf2_per_objfile->n_comp_units - 1
19548 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19549 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19550 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19551 return this_cu;
19552 }
19553 }
19554
19555 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19556
19557 static void
19558 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19559 {
19560 memset (cu, 0, sizeof (*cu));
19561 per_cu->cu = cu;
19562 cu->per_cu = per_cu;
19563 cu->objfile = per_cu->objfile;
19564 obstack_init (&cu->comp_unit_obstack);
19565 }
19566
19567 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19568
19569 static void
19570 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19571 enum language pretend_language)
19572 {
19573 struct attribute *attr;
19574
19575 /* Set the language we're debugging. */
19576 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19577 if (attr)
19578 set_cu_language (DW_UNSND (attr), cu);
19579 else
19580 {
19581 cu->language = pretend_language;
19582 cu->language_defn = language_def (cu->language);
19583 }
19584
19585 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19586 if (attr)
19587 cu->producer = DW_STRING (attr);
19588 }
19589
19590 /* Release one cached compilation unit, CU. We unlink it from the tree
19591 of compilation units, but we don't remove it from the read_in_chain;
19592 the caller is responsible for that.
19593 NOTE: DATA is a void * because this function is also used as a
19594 cleanup routine. */
19595
19596 static void
19597 free_heap_comp_unit (void *data)
19598 {
19599 struct dwarf2_cu *cu = data;
19600
19601 gdb_assert (cu->per_cu != NULL);
19602 cu->per_cu->cu = NULL;
19603 cu->per_cu = NULL;
19604
19605 obstack_free (&cu->comp_unit_obstack, NULL);
19606
19607 xfree (cu);
19608 }
19609
19610 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19611 when we're finished with it. We can't free the pointer itself, but be
19612 sure to unlink it from the cache. Also release any associated storage. */
19613
19614 static void
19615 free_stack_comp_unit (void *data)
19616 {
19617 struct dwarf2_cu *cu = data;
19618
19619 gdb_assert (cu->per_cu != NULL);
19620 cu->per_cu->cu = NULL;
19621 cu->per_cu = NULL;
19622
19623 obstack_free (&cu->comp_unit_obstack, NULL);
19624 cu->partial_dies = NULL;
19625 }
19626
19627 /* Free all cached compilation units. */
19628
19629 static void
19630 free_cached_comp_units (void *data)
19631 {
19632 struct dwarf2_per_cu_data *per_cu, **last_chain;
19633
19634 per_cu = dwarf2_per_objfile->read_in_chain;
19635 last_chain = &dwarf2_per_objfile->read_in_chain;
19636 while (per_cu != NULL)
19637 {
19638 struct dwarf2_per_cu_data *next_cu;
19639
19640 next_cu = per_cu->cu->read_in_chain;
19641
19642 free_heap_comp_unit (per_cu->cu);
19643 *last_chain = next_cu;
19644
19645 per_cu = next_cu;
19646 }
19647 }
19648
19649 /* Increase the age counter on each cached compilation unit, and free
19650 any that are too old. */
19651
19652 static void
19653 age_cached_comp_units (void)
19654 {
19655 struct dwarf2_per_cu_data *per_cu, **last_chain;
19656
19657 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19658 per_cu = dwarf2_per_objfile->read_in_chain;
19659 while (per_cu != NULL)
19660 {
19661 per_cu->cu->last_used ++;
19662 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19663 dwarf2_mark (per_cu->cu);
19664 per_cu = per_cu->cu->read_in_chain;
19665 }
19666
19667 per_cu = dwarf2_per_objfile->read_in_chain;
19668 last_chain = &dwarf2_per_objfile->read_in_chain;
19669 while (per_cu != NULL)
19670 {
19671 struct dwarf2_per_cu_data *next_cu;
19672
19673 next_cu = per_cu->cu->read_in_chain;
19674
19675 if (!per_cu->cu->mark)
19676 {
19677 free_heap_comp_unit (per_cu->cu);
19678 *last_chain = next_cu;
19679 }
19680 else
19681 last_chain = &per_cu->cu->read_in_chain;
19682
19683 per_cu = next_cu;
19684 }
19685 }
19686
19687 /* Remove a single compilation unit from the cache. */
19688
19689 static void
19690 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19691 {
19692 struct dwarf2_per_cu_data *per_cu, **last_chain;
19693
19694 per_cu = dwarf2_per_objfile->read_in_chain;
19695 last_chain = &dwarf2_per_objfile->read_in_chain;
19696 while (per_cu != NULL)
19697 {
19698 struct dwarf2_per_cu_data *next_cu;
19699
19700 next_cu = per_cu->cu->read_in_chain;
19701
19702 if (per_cu == target_per_cu)
19703 {
19704 free_heap_comp_unit (per_cu->cu);
19705 per_cu->cu = NULL;
19706 *last_chain = next_cu;
19707 break;
19708 }
19709 else
19710 last_chain = &per_cu->cu->read_in_chain;
19711
19712 per_cu = next_cu;
19713 }
19714 }
19715
19716 /* Release all extra memory associated with OBJFILE. */
19717
19718 void
19719 dwarf2_free_objfile (struct objfile *objfile)
19720 {
19721 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19722
19723 if (dwarf2_per_objfile == NULL)
19724 return;
19725
19726 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19727 free_cached_comp_units (NULL);
19728
19729 if (dwarf2_per_objfile->quick_file_names_table)
19730 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19731
19732 /* Everything else should be on the objfile obstack. */
19733 }
19734
19735 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19736 We store these in a hash table separate from the DIEs, and preserve them
19737 when the DIEs are flushed out of cache.
19738
19739 The CU "per_cu" pointer is needed because offset alone is not enough to
19740 uniquely identify the type. A file may have multiple .debug_types sections,
19741 or the type may come from a DWO file. Furthermore, while it's more logical
19742 to use per_cu->section+offset, with Fission the section with the data is in
19743 the DWO file but we don't know that section at the point we need it.
19744 We have to use something in dwarf2_per_cu_data (or the pointer to it)
19745 because we can enter the lookup routine, get_die_type_at_offset, from
19746 outside this file, and thus won't necessarily have PER_CU->cu.
19747 Fortunately, PER_CU is stable for the life of the objfile. */
19748
19749 struct dwarf2_per_cu_offset_and_type
19750 {
19751 const struct dwarf2_per_cu_data *per_cu;
19752 sect_offset offset;
19753 struct type *type;
19754 };
19755
19756 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19757
19758 static hashval_t
19759 per_cu_offset_and_type_hash (const void *item)
19760 {
19761 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19762
19763 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19764 }
19765
19766 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19767
19768 static int
19769 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19770 {
19771 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19772 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19773
19774 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19775 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19776 }
19777
19778 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19779 table if necessary. For convenience, return TYPE.
19780
19781 The DIEs reading must have careful ordering to:
19782 * Not cause infite loops trying to read in DIEs as a prerequisite for
19783 reading current DIE.
19784 * Not trying to dereference contents of still incompletely read in types
19785 while reading in other DIEs.
19786 * Enable referencing still incompletely read in types just by a pointer to
19787 the type without accessing its fields.
19788
19789 Therefore caller should follow these rules:
19790 * Try to fetch any prerequisite types we may need to build this DIE type
19791 before building the type and calling set_die_type.
19792 * After building type call set_die_type for current DIE as soon as
19793 possible before fetching more types to complete the current type.
19794 * Make the type as complete as possible before fetching more types. */
19795
19796 static struct type *
19797 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19798 {
19799 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19800 struct objfile *objfile = cu->objfile;
19801
19802 /* For Ada types, make sure that the gnat-specific data is always
19803 initialized (if not already set). There are a few types where
19804 we should not be doing so, because the type-specific area is
19805 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19806 where the type-specific area is used to store the floatformat).
19807 But this is not a problem, because the gnat-specific information
19808 is actually not needed for these types. */
19809 if (need_gnat_info (cu)
19810 && TYPE_CODE (type) != TYPE_CODE_FUNC
19811 && TYPE_CODE (type) != TYPE_CODE_FLT
19812 && !HAVE_GNAT_AUX_INFO (type))
19813 INIT_GNAT_SPECIFIC (type);
19814
19815 if (dwarf2_per_objfile->die_type_hash == NULL)
19816 {
19817 dwarf2_per_objfile->die_type_hash =
19818 htab_create_alloc_ex (127,
19819 per_cu_offset_and_type_hash,
19820 per_cu_offset_and_type_eq,
19821 NULL,
19822 &objfile->objfile_obstack,
19823 hashtab_obstack_allocate,
19824 dummy_obstack_deallocate);
19825 }
19826
19827 ofs.per_cu = cu->per_cu;
19828 ofs.offset = die->offset;
19829 ofs.type = type;
19830 slot = (struct dwarf2_per_cu_offset_and_type **)
19831 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19832 if (*slot)
19833 complaint (&symfile_complaints,
19834 _("A problem internal to GDB: DIE 0x%x has type already set"),
19835 die->offset.sect_off);
19836 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19837 **slot = ofs;
19838 return type;
19839 }
19840
19841 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
19842 or return NULL if the die does not have a saved type. */
19843
19844 static struct type *
19845 get_die_type_at_offset (sect_offset offset,
19846 struct dwarf2_per_cu_data *per_cu)
19847 {
19848 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19849
19850 if (dwarf2_per_objfile->die_type_hash == NULL)
19851 return NULL;
19852
19853 ofs.per_cu = per_cu;
19854 ofs.offset = offset;
19855 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19856 if (slot)
19857 return slot->type;
19858 else
19859 return NULL;
19860 }
19861
19862 /* Look up the type for DIE in CU in die_type_hash,
19863 or return NULL if DIE does not have a saved type. */
19864
19865 static struct type *
19866 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19867 {
19868 return get_die_type_at_offset (die->offset, cu->per_cu);
19869 }
19870
19871 /* Add a dependence relationship from CU to REF_PER_CU. */
19872
19873 static void
19874 dwarf2_add_dependence (struct dwarf2_cu *cu,
19875 struct dwarf2_per_cu_data *ref_per_cu)
19876 {
19877 void **slot;
19878
19879 if (cu->dependencies == NULL)
19880 cu->dependencies
19881 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19882 NULL, &cu->comp_unit_obstack,
19883 hashtab_obstack_allocate,
19884 dummy_obstack_deallocate);
19885
19886 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19887 if (*slot == NULL)
19888 *slot = ref_per_cu;
19889 }
19890
19891 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19892 Set the mark field in every compilation unit in the
19893 cache that we must keep because we are keeping CU. */
19894
19895 static int
19896 dwarf2_mark_helper (void **slot, void *data)
19897 {
19898 struct dwarf2_per_cu_data *per_cu;
19899
19900 per_cu = (struct dwarf2_per_cu_data *) *slot;
19901
19902 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19903 reading of the chain. As such dependencies remain valid it is not much
19904 useful to track and undo them during QUIT cleanups. */
19905 if (per_cu->cu == NULL)
19906 return 1;
19907
19908 if (per_cu->cu->mark)
19909 return 1;
19910 per_cu->cu->mark = 1;
19911
19912 if (per_cu->cu->dependencies != NULL)
19913 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19914
19915 return 1;
19916 }
19917
19918 /* Set the mark field in CU and in every other compilation unit in the
19919 cache that we must keep because we are keeping CU. */
19920
19921 static void
19922 dwarf2_mark (struct dwarf2_cu *cu)
19923 {
19924 if (cu->mark)
19925 return;
19926 cu->mark = 1;
19927 if (cu->dependencies != NULL)
19928 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19929 }
19930
19931 static void
19932 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19933 {
19934 while (per_cu)
19935 {
19936 per_cu->cu->mark = 0;
19937 per_cu = per_cu->cu->read_in_chain;
19938 }
19939 }
19940
19941 /* Trivial hash function for partial_die_info: the hash value of a DIE
19942 is its offset in .debug_info for this objfile. */
19943
19944 static hashval_t
19945 partial_die_hash (const void *item)
19946 {
19947 const struct partial_die_info *part_die = item;
19948
19949 return part_die->offset.sect_off;
19950 }
19951
19952 /* Trivial comparison function for partial_die_info structures: two DIEs
19953 are equal if they have the same offset. */
19954
19955 static int
19956 partial_die_eq (const void *item_lhs, const void *item_rhs)
19957 {
19958 const struct partial_die_info *part_die_lhs = item_lhs;
19959 const struct partial_die_info *part_die_rhs = item_rhs;
19960
19961 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19962 }
19963
19964 static struct cmd_list_element *set_dwarf2_cmdlist;
19965 static struct cmd_list_element *show_dwarf2_cmdlist;
19966
19967 static void
19968 set_dwarf2_cmd (char *args, int from_tty)
19969 {
19970 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19971 }
19972
19973 static void
19974 show_dwarf2_cmd (char *args, int from_tty)
19975 {
19976 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19977 }
19978
19979 /* Free data associated with OBJFILE, if necessary. */
19980
19981 static void
19982 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19983 {
19984 struct dwarf2_per_objfile *data = d;
19985 int ix;
19986
19987 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19988 VEC_free (dwarf2_per_cu_ptr,
19989 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19990
19991 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19992 VEC_free (dwarf2_per_cu_ptr,
19993 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19994
19995 VEC_free (dwarf2_section_info_def, data->types);
19996
19997 if (data->dwo_files)
19998 free_dwo_files (data->dwo_files, objfile);
19999 if (data->dwp_file)
20000 gdb_bfd_unref (data->dwp_file->dbfd);
20001
20002 if (data->dwz_file && data->dwz_file->dwz_bfd)
20003 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20004 }
20005
20006 \f
20007 /* The "save gdb-index" command. */
20008
20009 /* The contents of the hash table we create when building the string
20010 table. */
20011 struct strtab_entry
20012 {
20013 offset_type offset;
20014 const char *str;
20015 };
20016
20017 /* Hash function for a strtab_entry.
20018
20019 Function is used only during write_hash_table so no index format backward
20020 compatibility is needed. */
20021
20022 static hashval_t
20023 hash_strtab_entry (const void *e)
20024 {
20025 const struct strtab_entry *entry = e;
20026 return mapped_index_string_hash (INT_MAX, entry->str);
20027 }
20028
20029 /* Equality function for a strtab_entry. */
20030
20031 static int
20032 eq_strtab_entry (const void *a, const void *b)
20033 {
20034 const struct strtab_entry *ea = a;
20035 const struct strtab_entry *eb = b;
20036 return !strcmp (ea->str, eb->str);
20037 }
20038
20039 /* Create a strtab_entry hash table. */
20040
20041 static htab_t
20042 create_strtab (void)
20043 {
20044 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20045 xfree, xcalloc, xfree);
20046 }
20047
20048 /* Add a string to the constant pool. Return the string's offset in
20049 host order. */
20050
20051 static offset_type
20052 add_string (htab_t table, struct obstack *cpool, const char *str)
20053 {
20054 void **slot;
20055 struct strtab_entry entry;
20056 struct strtab_entry *result;
20057
20058 entry.str = str;
20059 slot = htab_find_slot (table, &entry, INSERT);
20060 if (*slot)
20061 result = *slot;
20062 else
20063 {
20064 result = XNEW (struct strtab_entry);
20065 result->offset = obstack_object_size (cpool);
20066 result->str = str;
20067 obstack_grow_str0 (cpool, str);
20068 *slot = result;
20069 }
20070 return result->offset;
20071 }
20072
20073 /* An entry in the symbol table. */
20074 struct symtab_index_entry
20075 {
20076 /* The name of the symbol. */
20077 const char *name;
20078 /* The offset of the name in the constant pool. */
20079 offset_type index_offset;
20080 /* A sorted vector of the indices of all the CUs that hold an object
20081 of this name. */
20082 VEC (offset_type) *cu_indices;
20083 };
20084
20085 /* The symbol table. This is a power-of-2-sized hash table. */
20086 struct mapped_symtab
20087 {
20088 offset_type n_elements;
20089 offset_type size;
20090 struct symtab_index_entry **data;
20091 };
20092
20093 /* Hash function for a symtab_index_entry. */
20094
20095 static hashval_t
20096 hash_symtab_entry (const void *e)
20097 {
20098 const struct symtab_index_entry *entry = e;
20099 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20100 sizeof (offset_type) * VEC_length (offset_type,
20101 entry->cu_indices),
20102 0);
20103 }
20104
20105 /* Equality function for a symtab_index_entry. */
20106
20107 static int
20108 eq_symtab_entry (const void *a, const void *b)
20109 {
20110 const struct symtab_index_entry *ea = a;
20111 const struct symtab_index_entry *eb = b;
20112 int len = VEC_length (offset_type, ea->cu_indices);
20113 if (len != VEC_length (offset_type, eb->cu_indices))
20114 return 0;
20115 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20116 VEC_address (offset_type, eb->cu_indices),
20117 sizeof (offset_type) * len);
20118 }
20119
20120 /* Destroy a symtab_index_entry. */
20121
20122 static void
20123 delete_symtab_entry (void *p)
20124 {
20125 struct symtab_index_entry *entry = p;
20126 VEC_free (offset_type, entry->cu_indices);
20127 xfree (entry);
20128 }
20129
20130 /* Create a hash table holding symtab_index_entry objects. */
20131
20132 static htab_t
20133 create_symbol_hash_table (void)
20134 {
20135 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20136 delete_symtab_entry, xcalloc, xfree);
20137 }
20138
20139 /* Create a new mapped symtab object. */
20140
20141 static struct mapped_symtab *
20142 create_mapped_symtab (void)
20143 {
20144 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20145 symtab->n_elements = 0;
20146 symtab->size = 1024;
20147 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20148 return symtab;
20149 }
20150
20151 /* Destroy a mapped_symtab. */
20152
20153 static void
20154 cleanup_mapped_symtab (void *p)
20155 {
20156 struct mapped_symtab *symtab = p;
20157 /* The contents of the array are freed when the other hash table is
20158 destroyed. */
20159 xfree (symtab->data);
20160 xfree (symtab);
20161 }
20162
20163 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20164 the slot.
20165
20166 Function is used only during write_hash_table so no index format backward
20167 compatibility is needed. */
20168
20169 static struct symtab_index_entry **
20170 find_slot (struct mapped_symtab *symtab, const char *name)
20171 {
20172 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20173
20174 index = hash & (symtab->size - 1);
20175 step = ((hash * 17) & (symtab->size - 1)) | 1;
20176
20177 for (;;)
20178 {
20179 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20180 return &symtab->data[index];
20181 index = (index + step) & (symtab->size - 1);
20182 }
20183 }
20184
20185 /* Expand SYMTAB's hash table. */
20186
20187 static void
20188 hash_expand (struct mapped_symtab *symtab)
20189 {
20190 offset_type old_size = symtab->size;
20191 offset_type i;
20192 struct symtab_index_entry **old_entries = symtab->data;
20193
20194 symtab->size *= 2;
20195 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20196
20197 for (i = 0; i < old_size; ++i)
20198 {
20199 if (old_entries[i])
20200 {
20201 struct symtab_index_entry **slot = find_slot (symtab,
20202 old_entries[i]->name);
20203 *slot = old_entries[i];
20204 }
20205 }
20206
20207 xfree (old_entries);
20208 }
20209
20210 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20211 CU_INDEX is the index of the CU in which the symbol appears.
20212 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20213
20214 static void
20215 add_index_entry (struct mapped_symtab *symtab, const char *name,
20216 int is_static, gdb_index_symbol_kind kind,
20217 offset_type cu_index)
20218 {
20219 struct symtab_index_entry **slot;
20220 offset_type cu_index_and_attrs;
20221
20222 ++symtab->n_elements;
20223 if (4 * symtab->n_elements / 3 >= symtab->size)
20224 hash_expand (symtab);
20225
20226 slot = find_slot (symtab, name);
20227 if (!*slot)
20228 {
20229 *slot = XNEW (struct symtab_index_entry);
20230 (*slot)->name = name;
20231 /* index_offset is set later. */
20232 (*slot)->cu_indices = NULL;
20233 }
20234
20235 cu_index_and_attrs = 0;
20236 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20237 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20238 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20239
20240 /* We don't want to record an index value twice as we want to avoid the
20241 duplication.
20242 We process all global symbols and then all static symbols
20243 (which would allow us to avoid the duplication by only having to check
20244 the last entry pushed), but a symbol could have multiple kinds in one CU.
20245 To keep things simple we don't worry about the duplication here and
20246 sort and uniqufy the list after we've processed all symbols. */
20247 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20248 }
20249
20250 /* qsort helper routine for uniquify_cu_indices. */
20251
20252 static int
20253 offset_type_compare (const void *ap, const void *bp)
20254 {
20255 offset_type a = *(offset_type *) ap;
20256 offset_type b = *(offset_type *) bp;
20257
20258 return (a > b) - (b > a);
20259 }
20260
20261 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20262
20263 static void
20264 uniquify_cu_indices (struct mapped_symtab *symtab)
20265 {
20266 int i;
20267
20268 for (i = 0; i < symtab->size; ++i)
20269 {
20270 struct symtab_index_entry *entry = symtab->data[i];
20271
20272 if (entry
20273 && entry->cu_indices != NULL)
20274 {
20275 unsigned int next_to_insert, next_to_check;
20276 offset_type last_value;
20277
20278 qsort (VEC_address (offset_type, entry->cu_indices),
20279 VEC_length (offset_type, entry->cu_indices),
20280 sizeof (offset_type), offset_type_compare);
20281
20282 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20283 next_to_insert = 1;
20284 for (next_to_check = 1;
20285 next_to_check < VEC_length (offset_type, entry->cu_indices);
20286 ++next_to_check)
20287 {
20288 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20289 != last_value)
20290 {
20291 last_value = VEC_index (offset_type, entry->cu_indices,
20292 next_to_check);
20293 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20294 last_value);
20295 ++next_to_insert;
20296 }
20297 }
20298 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20299 }
20300 }
20301 }
20302
20303 /* Add a vector of indices to the constant pool. */
20304
20305 static offset_type
20306 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20307 struct symtab_index_entry *entry)
20308 {
20309 void **slot;
20310
20311 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20312 if (!*slot)
20313 {
20314 offset_type len = VEC_length (offset_type, entry->cu_indices);
20315 offset_type val = MAYBE_SWAP (len);
20316 offset_type iter;
20317 int i;
20318
20319 *slot = entry;
20320 entry->index_offset = obstack_object_size (cpool);
20321
20322 obstack_grow (cpool, &val, sizeof (val));
20323 for (i = 0;
20324 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20325 ++i)
20326 {
20327 val = MAYBE_SWAP (iter);
20328 obstack_grow (cpool, &val, sizeof (val));
20329 }
20330 }
20331 else
20332 {
20333 struct symtab_index_entry *old_entry = *slot;
20334 entry->index_offset = old_entry->index_offset;
20335 entry = old_entry;
20336 }
20337 return entry->index_offset;
20338 }
20339
20340 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20341 constant pool entries going into the obstack CPOOL. */
20342
20343 static void
20344 write_hash_table (struct mapped_symtab *symtab,
20345 struct obstack *output, struct obstack *cpool)
20346 {
20347 offset_type i;
20348 htab_t symbol_hash_table;
20349 htab_t str_table;
20350
20351 symbol_hash_table = create_symbol_hash_table ();
20352 str_table = create_strtab ();
20353
20354 /* We add all the index vectors to the constant pool first, to
20355 ensure alignment is ok. */
20356 for (i = 0; i < symtab->size; ++i)
20357 {
20358 if (symtab->data[i])
20359 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20360 }
20361
20362 /* Now write out the hash table. */
20363 for (i = 0; i < symtab->size; ++i)
20364 {
20365 offset_type str_off, vec_off;
20366
20367 if (symtab->data[i])
20368 {
20369 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20370 vec_off = symtab->data[i]->index_offset;
20371 }
20372 else
20373 {
20374 /* While 0 is a valid constant pool index, it is not valid
20375 to have 0 for both offsets. */
20376 str_off = 0;
20377 vec_off = 0;
20378 }
20379
20380 str_off = MAYBE_SWAP (str_off);
20381 vec_off = MAYBE_SWAP (vec_off);
20382
20383 obstack_grow (output, &str_off, sizeof (str_off));
20384 obstack_grow (output, &vec_off, sizeof (vec_off));
20385 }
20386
20387 htab_delete (str_table);
20388 htab_delete (symbol_hash_table);
20389 }
20390
20391 /* Struct to map psymtab to CU index in the index file. */
20392 struct psymtab_cu_index_map
20393 {
20394 struct partial_symtab *psymtab;
20395 unsigned int cu_index;
20396 };
20397
20398 static hashval_t
20399 hash_psymtab_cu_index (const void *item)
20400 {
20401 const struct psymtab_cu_index_map *map = item;
20402
20403 return htab_hash_pointer (map->psymtab);
20404 }
20405
20406 static int
20407 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20408 {
20409 const struct psymtab_cu_index_map *lhs = item_lhs;
20410 const struct psymtab_cu_index_map *rhs = item_rhs;
20411
20412 return lhs->psymtab == rhs->psymtab;
20413 }
20414
20415 /* Helper struct for building the address table. */
20416 struct addrmap_index_data
20417 {
20418 struct objfile *objfile;
20419 struct obstack *addr_obstack;
20420 htab_t cu_index_htab;
20421
20422 /* Non-zero if the previous_* fields are valid.
20423 We can't write an entry until we see the next entry (since it is only then
20424 that we know the end of the entry). */
20425 int previous_valid;
20426 /* Index of the CU in the table of all CUs in the index file. */
20427 unsigned int previous_cu_index;
20428 /* Start address of the CU. */
20429 CORE_ADDR previous_cu_start;
20430 };
20431
20432 /* Write an address entry to OBSTACK. */
20433
20434 static void
20435 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20436 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20437 {
20438 offset_type cu_index_to_write;
20439 gdb_byte addr[8];
20440 CORE_ADDR baseaddr;
20441
20442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20443
20444 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20445 obstack_grow (obstack, addr, 8);
20446 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20447 obstack_grow (obstack, addr, 8);
20448 cu_index_to_write = MAYBE_SWAP (cu_index);
20449 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20450 }
20451
20452 /* Worker function for traversing an addrmap to build the address table. */
20453
20454 static int
20455 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20456 {
20457 struct addrmap_index_data *data = datap;
20458 struct partial_symtab *pst = obj;
20459
20460 if (data->previous_valid)
20461 add_address_entry (data->objfile, data->addr_obstack,
20462 data->previous_cu_start, start_addr,
20463 data->previous_cu_index);
20464
20465 data->previous_cu_start = start_addr;
20466 if (pst != NULL)
20467 {
20468 struct psymtab_cu_index_map find_map, *map;
20469 find_map.psymtab = pst;
20470 map = htab_find (data->cu_index_htab, &find_map);
20471 gdb_assert (map != NULL);
20472 data->previous_cu_index = map->cu_index;
20473 data->previous_valid = 1;
20474 }
20475 else
20476 data->previous_valid = 0;
20477
20478 return 0;
20479 }
20480
20481 /* Write OBJFILE's address map to OBSTACK.
20482 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20483 in the index file. */
20484
20485 static void
20486 write_address_map (struct objfile *objfile, struct obstack *obstack,
20487 htab_t cu_index_htab)
20488 {
20489 struct addrmap_index_data addrmap_index_data;
20490
20491 /* When writing the address table, we have to cope with the fact that
20492 the addrmap iterator only provides the start of a region; we have to
20493 wait until the next invocation to get the start of the next region. */
20494
20495 addrmap_index_data.objfile = objfile;
20496 addrmap_index_data.addr_obstack = obstack;
20497 addrmap_index_data.cu_index_htab = cu_index_htab;
20498 addrmap_index_data.previous_valid = 0;
20499
20500 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20501 &addrmap_index_data);
20502
20503 /* It's highly unlikely the last entry (end address = 0xff...ff)
20504 is valid, but we should still handle it.
20505 The end address is recorded as the start of the next region, but that
20506 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20507 anyway. */
20508 if (addrmap_index_data.previous_valid)
20509 add_address_entry (objfile, obstack,
20510 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20511 addrmap_index_data.previous_cu_index);
20512 }
20513
20514 /* Return the symbol kind of PSYM. */
20515
20516 static gdb_index_symbol_kind
20517 symbol_kind (struct partial_symbol *psym)
20518 {
20519 domain_enum domain = PSYMBOL_DOMAIN (psym);
20520 enum address_class aclass = PSYMBOL_CLASS (psym);
20521
20522 switch (domain)
20523 {
20524 case VAR_DOMAIN:
20525 switch (aclass)
20526 {
20527 case LOC_BLOCK:
20528 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20529 case LOC_TYPEDEF:
20530 return GDB_INDEX_SYMBOL_KIND_TYPE;
20531 case LOC_COMPUTED:
20532 case LOC_CONST_BYTES:
20533 case LOC_OPTIMIZED_OUT:
20534 case LOC_STATIC:
20535 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20536 case LOC_CONST:
20537 /* Note: It's currently impossible to recognize psyms as enum values
20538 short of reading the type info. For now punt. */
20539 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20540 default:
20541 /* There are other LOC_FOO values that one might want to classify
20542 as variables, but dwarf2read.c doesn't currently use them. */
20543 return GDB_INDEX_SYMBOL_KIND_OTHER;
20544 }
20545 case STRUCT_DOMAIN:
20546 return GDB_INDEX_SYMBOL_KIND_TYPE;
20547 default:
20548 return GDB_INDEX_SYMBOL_KIND_OTHER;
20549 }
20550 }
20551
20552 /* Add a list of partial symbols to SYMTAB. */
20553
20554 static void
20555 write_psymbols (struct mapped_symtab *symtab,
20556 htab_t psyms_seen,
20557 struct partial_symbol **psymp,
20558 int count,
20559 offset_type cu_index,
20560 int is_static)
20561 {
20562 for (; count-- > 0; ++psymp)
20563 {
20564 struct partial_symbol *psym = *psymp;
20565 void **slot;
20566
20567 if (SYMBOL_LANGUAGE (psym) == language_ada)
20568 error (_("Ada is not currently supported by the index"));
20569
20570 /* Only add a given psymbol once. */
20571 slot = htab_find_slot (psyms_seen, psym, INSERT);
20572 if (!*slot)
20573 {
20574 gdb_index_symbol_kind kind = symbol_kind (psym);
20575
20576 *slot = psym;
20577 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20578 is_static, kind, cu_index);
20579 }
20580 }
20581 }
20582
20583 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20584 exception if there is an error. */
20585
20586 static void
20587 write_obstack (FILE *file, struct obstack *obstack)
20588 {
20589 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20590 file)
20591 != obstack_object_size (obstack))
20592 error (_("couldn't data write to file"));
20593 }
20594
20595 /* Unlink a file if the argument is not NULL. */
20596
20597 static void
20598 unlink_if_set (void *p)
20599 {
20600 char **filename = p;
20601 if (*filename)
20602 unlink (*filename);
20603 }
20604
20605 /* A helper struct used when iterating over debug_types. */
20606 struct signatured_type_index_data
20607 {
20608 struct objfile *objfile;
20609 struct mapped_symtab *symtab;
20610 struct obstack *types_list;
20611 htab_t psyms_seen;
20612 int cu_index;
20613 };
20614
20615 /* A helper function that writes a single signatured_type to an
20616 obstack. */
20617
20618 static int
20619 write_one_signatured_type (void **slot, void *d)
20620 {
20621 struct signatured_type_index_data *info = d;
20622 struct signatured_type *entry = (struct signatured_type *) *slot;
20623 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
20624 gdb_byte val[8];
20625
20626 write_psymbols (info->symtab,
20627 info->psyms_seen,
20628 info->objfile->global_psymbols.list
20629 + psymtab->globals_offset,
20630 psymtab->n_global_syms, info->cu_index,
20631 0);
20632 write_psymbols (info->symtab,
20633 info->psyms_seen,
20634 info->objfile->static_psymbols.list
20635 + psymtab->statics_offset,
20636 psymtab->n_static_syms, info->cu_index,
20637 1);
20638
20639 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20640 entry->per_cu.offset.sect_off);
20641 obstack_grow (info->types_list, val, 8);
20642 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20643 entry->type_offset_in_tu.cu_off);
20644 obstack_grow (info->types_list, val, 8);
20645 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20646 obstack_grow (info->types_list, val, 8);
20647
20648 ++info->cu_index;
20649
20650 return 1;
20651 }
20652
20653 /* Recurse into all "included" dependencies and write their symbols as
20654 if they appeared in this psymtab. */
20655
20656 static void
20657 recursively_write_psymbols (struct objfile *objfile,
20658 struct partial_symtab *psymtab,
20659 struct mapped_symtab *symtab,
20660 htab_t psyms_seen,
20661 offset_type cu_index)
20662 {
20663 int i;
20664
20665 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20666 if (psymtab->dependencies[i]->user != NULL)
20667 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20668 symtab, psyms_seen, cu_index);
20669
20670 write_psymbols (symtab,
20671 psyms_seen,
20672 objfile->global_psymbols.list + psymtab->globals_offset,
20673 psymtab->n_global_syms, cu_index,
20674 0);
20675 write_psymbols (symtab,
20676 psyms_seen,
20677 objfile->static_psymbols.list + psymtab->statics_offset,
20678 psymtab->n_static_syms, cu_index,
20679 1);
20680 }
20681
20682 /* Create an index file for OBJFILE in the directory DIR. */
20683
20684 static void
20685 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20686 {
20687 struct cleanup *cleanup;
20688 char *filename, *cleanup_filename;
20689 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20690 struct obstack cu_list, types_cu_list;
20691 int i;
20692 FILE *out_file;
20693 struct mapped_symtab *symtab;
20694 offset_type val, size_of_contents, total_len;
20695 struct stat st;
20696 htab_t psyms_seen;
20697 htab_t cu_index_htab;
20698 struct psymtab_cu_index_map *psymtab_cu_index_map;
20699
20700 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20701 return;
20702
20703 if (dwarf2_per_objfile->using_index)
20704 error (_("Cannot use an index to create the index"));
20705
20706 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20707 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20708
20709 if (stat (objfile->name, &st) < 0)
20710 perror_with_name (objfile->name);
20711
20712 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20713 INDEX_SUFFIX, (char *) NULL);
20714 cleanup = make_cleanup (xfree, filename);
20715
20716 out_file = gdb_fopen_cloexec (filename, "wb");
20717 if (!out_file)
20718 error (_("Can't open `%s' for writing"), filename);
20719
20720 cleanup_filename = filename;
20721 make_cleanup (unlink_if_set, &cleanup_filename);
20722
20723 symtab = create_mapped_symtab ();
20724 make_cleanup (cleanup_mapped_symtab, symtab);
20725
20726 obstack_init (&addr_obstack);
20727 make_cleanup_obstack_free (&addr_obstack);
20728
20729 obstack_init (&cu_list);
20730 make_cleanup_obstack_free (&cu_list);
20731
20732 obstack_init (&types_cu_list);
20733 make_cleanup_obstack_free (&types_cu_list);
20734
20735 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20736 NULL, xcalloc, xfree);
20737 make_cleanup_htab_delete (psyms_seen);
20738
20739 /* While we're scanning CU's create a table that maps a psymtab pointer
20740 (which is what addrmap records) to its index (which is what is recorded
20741 in the index file). This will later be needed to write the address
20742 table. */
20743 cu_index_htab = htab_create_alloc (100,
20744 hash_psymtab_cu_index,
20745 eq_psymtab_cu_index,
20746 NULL, xcalloc, xfree);
20747 make_cleanup_htab_delete (cu_index_htab);
20748 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20749 xmalloc (sizeof (struct psymtab_cu_index_map)
20750 * dwarf2_per_objfile->n_comp_units);
20751 make_cleanup (xfree, psymtab_cu_index_map);
20752
20753 /* The CU list is already sorted, so we don't need to do additional
20754 work here. Also, the debug_types entries do not appear in
20755 all_comp_units, but only in their own hash table. */
20756 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20757 {
20758 struct dwarf2_per_cu_data *per_cu
20759 = dwarf2_per_objfile->all_comp_units[i];
20760 struct partial_symtab *psymtab = per_cu->v.psymtab;
20761 gdb_byte val[8];
20762 struct psymtab_cu_index_map *map;
20763 void **slot;
20764
20765 if (psymtab->user == NULL)
20766 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20767
20768 map = &psymtab_cu_index_map[i];
20769 map->psymtab = psymtab;
20770 map->cu_index = i;
20771 slot = htab_find_slot (cu_index_htab, map, INSERT);
20772 gdb_assert (slot != NULL);
20773 gdb_assert (*slot == NULL);
20774 *slot = map;
20775
20776 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20777 per_cu->offset.sect_off);
20778 obstack_grow (&cu_list, val, 8);
20779 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20780 obstack_grow (&cu_list, val, 8);
20781 }
20782
20783 /* Dump the address map. */
20784 write_address_map (objfile, &addr_obstack, cu_index_htab);
20785
20786 /* Write out the .debug_type entries, if any. */
20787 if (dwarf2_per_objfile->signatured_types)
20788 {
20789 struct signatured_type_index_data sig_data;
20790
20791 sig_data.objfile = objfile;
20792 sig_data.symtab = symtab;
20793 sig_data.types_list = &types_cu_list;
20794 sig_data.psyms_seen = psyms_seen;
20795 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20796 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20797 write_one_signatured_type, &sig_data);
20798 }
20799
20800 /* Now that we've processed all symbols we can shrink their cu_indices
20801 lists. */
20802 uniquify_cu_indices (symtab);
20803
20804 obstack_init (&constant_pool);
20805 make_cleanup_obstack_free (&constant_pool);
20806 obstack_init (&symtab_obstack);
20807 make_cleanup_obstack_free (&symtab_obstack);
20808 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20809
20810 obstack_init (&contents);
20811 make_cleanup_obstack_free (&contents);
20812 size_of_contents = 6 * sizeof (offset_type);
20813 total_len = size_of_contents;
20814
20815 /* The version number. */
20816 val = MAYBE_SWAP (8);
20817 obstack_grow (&contents, &val, sizeof (val));
20818
20819 /* The offset of the CU list from the start of the file. */
20820 val = MAYBE_SWAP (total_len);
20821 obstack_grow (&contents, &val, sizeof (val));
20822 total_len += obstack_object_size (&cu_list);
20823
20824 /* The offset of the types CU list from the start of the file. */
20825 val = MAYBE_SWAP (total_len);
20826 obstack_grow (&contents, &val, sizeof (val));
20827 total_len += obstack_object_size (&types_cu_list);
20828
20829 /* The offset of the address table from the start of the file. */
20830 val = MAYBE_SWAP (total_len);
20831 obstack_grow (&contents, &val, sizeof (val));
20832 total_len += obstack_object_size (&addr_obstack);
20833
20834 /* The offset of the symbol table from the start of the file. */
20835 val = MAYBE_SWAP (total_len);
20836 obstack_grow (&contents, &val, sizeof (val));
20837 total_len += obstack_object_size (&symtab_obstack);
20838
20839 /* The offset of the constant pool from the start of the file. */
20840 val = MAYBE_SWAP (total_len);
20841 obstack_grow (&contents, &val, sizeof (val));
20842 total_len += obstack_object_size (&constant_pool);
20843
20844 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20845
20846 write_obstack (out_file, &contents);
20847 write_obstack (out_file, &cu_list);
20848 write_obstack (out_file, &types_cu_list);
20849 write_obstack (out_file, &addr_obstack);
20850 write_obstack (out_file, &symtab_obstack);
20851 write_obstack (out_file, &constant_pool);
20852
20853 fclose (out_file);
20854
20855 /* We want to keep the file, so we set cleanup_filename to NULL
20856 here. See unlink_if_set. */
20857 cleanup_filename = NULL;
20858
20859 do_cleanups (cleanup);
20860 }
20861
20862 /* Implementation of the `save gdb-index' command.
20863
20864 Note that the file format used by this command is documented in the
20865 GDB manual. Any changes here must be documented there. */
20866
20867 static void
20868 save_gdb_index_command (char *arg, int from_tty)
20869 {
20870 struct objfile *objfile;
20871
20872 if (!arg || !*arg)
20873 error (_("usage: save gdb-index DIRECTORY"));
20874
20875 ALL_OBJFILES (objfile)
20876 {
20877 struct stat st;
20878
20879 /* If the objfile does not correspond to an actual file, skip it. */
20880 if (stat (objfile->name, &st) < 0)
20881 continue;
20882
20883 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20884 if (dwarf2_per_objfile)
20885 {
20886 volatile struct gdb_exception except;
20887
20888 TRY_CATCH (except, RETURN_MASK_ERROR)
20889 {
20890 write_psymtabs_to_index (objfile, arg);
20891 }
20892 if (except.reason < 0)
20893 exception_fprintf (gdb_stderr, except,
20894 _("Error while writing index for `%s': "),
20895 objfile->name);
20896 }
20897 }
20898 }
20899
20900 \f
20901
20902 int dwarf2_always_disassemble;
20903
20904 static void
20905 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20906 struct cmd_list_element *c, const char *value)
20907 {
20908 fprintf_filtered (file,
20909 _("Whether to always disassemble "
20910 "DWARF expressions is %s.\n"),
20911 value);
20912 }
20913
20914 static void
20915 show_check_physname (struct ui_file *file, int from_tty,
20916 struct cmd_list_element *c, const char *value)
20917 {
20918 fprintf_filtered (file,
20919 _("Whether to check \"physname\" is %s.\n"),
20920 value);
20921 }
20922
20923 void _initialize_dwarf2_read (void);
20924
20925 void
20926 _initialize_dwarf2_read (void)
20927 {
20928 struct cmd_list_element *c;
20929
20930 dwarf2_objfile_data_key
20931 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20932
20933 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20934 Set DWARF 2 specific variables.\n\
20935 Configure DWARF 2 variables such as the cache size"),
20936 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20937 0/*allow-unknown*/, &maintenance_set_cmdlist);
20938
20939 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20940 Show DWARF 2 specific variables\n\
20941 Show DWARF 2 variables such as the cache size"),
20942 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20943 0/*allow-unknown*/, &maintenance_show_cmdlist);
20944
20945 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20946 &dwarf2_max_cache_age, _("\
20947 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20948 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20949 A higher limit means that cached compilation units will be stored\n\
20950 in memory longer, and more total memory will be used. Zero disables\n\
20951 caching, which can slow down startup."),
20952 NULL,
20953 show_dwarf2_max_cache_age,
20954 &set_dwarf2_cmdlist,
20955 &show_dwarf2_cmdlist);
20956
20957 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20958 &dwarf2_always_disassemble, _("\
20959 Set whether `info address' always disassembles DWARF expressions."), _("\
20960 Show whether `info address' always disassembles DWARF expressions."), _("\
20961 When enabled, DWARF expressions are always printed in an assembly-like\n\
20962 syntax. When disabled, expressions will be printed in a more\n\
20963 conversational style, when possible."),
20964 NULL,
20965 show_dwarf2_always_disassemble,
20966 &set_dwarf2_cmdlist,
20967 &show_dwarf2_cmdlist);
20968
20969 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20970 Set debugging of the dwarf2 reader."), _("\
20971 Show debugging of the dwarf2 reader."), _("\
20972 When enabled, debugging messages are printed during dwarf2 reading\n\
20973 and symtab expansion."),
20974 NULL,
20975 NULL,
20976 &setdebuglist, &showdebuglist);
20977
20978 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20979 Set debugging of the dwarf2 DIE reader."), _("\
20980 Show debugging of the dwarf2 DIE reader."), _("\
20981 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20982 The value is the maximum depth to print."),
20983 NULL,
20984 NULL,
20985 &setdebuglist, &showdebuglist);
20986
20987 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20988 Set cross-checking of \"physname\" code against demangler."), _("\
20989 Show cross-checking of \"physname\" code against demangler."), _("\
20990 When enabled, GDB's internal \"physname\" code is checked against\n\
20991 the demangler."),
20992 NULL, show_check_physname,
20993 &setdebuglist, &showdebuglist);
20994
20995 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20996 no_class, &use_deprecated_index_sections, _("\
20997 Set whether to use deprecated gdb_index sections."), _("\
20998 Show whether to use deprecated gdb_index sections."), _("\
20999 When enabled, deprecated .gdb_index sections are used anyway.\n\
21000 Normally they are ignored either because of a missing feature or\n\
21001 performance issue.\n\
21002 Warning: This option must be enabled before gdb reads the file."),
21003 NULL,
21004 NULL,
21005 &setlist, &showlist);
21006
21007 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21008 _("\
21009 Save a gdb-index file.\n\
21010 Usage: save gdb-index DIRECTORY"),
21011 &save_cmdlist);
21012 set_cmd_completer (c, filename_completer);
21013
21014 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21015 &dwarf2_locexpr_funcs);
21016 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21017 &dwarf2_loclist_funcs);
21018
21019 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21020 &dwarf2_block_frame_base_locexpr_funcs);
21021 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21022 &dwarf2_block_frame_base_loclist_funcs);
21023 }
This page took 0.507617 seconds and 4 git commands to generate.