PR ld/10340
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "valprint.h"
63 #include <ctype.h>
64
65 #include <fcntl.h>
66 #include "gdb_string.h"
67 #include "gdb_assert.h"
68 #include <sys/types.h>
69 #ifdef HAVE_ZLIB_H
70 #include <zlib.h>
71 #endif
72 #ifdef HAVE_MMAP
73 #include <sys/mman.h>
74 #ifndef MAP_FAILED
75 #define MAP_FAILED ((void *) -1)
76 #endif
77 #endif
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When non-zero, dump DIEs after they are read in. */
83 static int dwarf2_die_debug = 0;
84
85 /* When non-zero, cross-check physname against demangler. */
86 static int check_physname = 0;
87
88 static int pagesize;
89
90 /* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
93
94 static int processing_has_namespace_info;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 struct dwarf2_section_info
99 {
100 asection *asection;
101 gdb_byte *buffer;
102 bfd_size_type size;
103 /* Not NULL if the section was actually mmapped. */
104 void *map_addr;
105 /* Page aligned size of mmapped area. */
106 bfd_size_type map_len;
107 /* True if we have tried to read this section. */
108 int readin;
109 };
110
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
113
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
117
118 DEF_VEC_I (offset_type);
119
120 /* A description of the mapped index. The file format is described in
121 a comment by the code that writes the index. */
122 struct mapped_index
123 {
124 /* Index data format version. */
125 int version;
126
127 /* The total length of the buffer. */
128 off_t total_size;
129
130 /* A pointer to the address table data. */
131 const gdb_byte *address_table;
132
133 /* Size of the address table data in bytes. */
134 offset_type address_table_size;
135
136 /* The symbol table, implemented as a hash table. */
137 const offset_type *symbol_table;
138
139 /* Size in slots, each slot is 2 offset_types. */
140 offset_type symbol_table_slots;
141
142 /* A pointer to the constant pool. */
143 const char *constant_pool;
144 };
145
146 /* Collection of data recorded per objfile.
147 This hangs off of dwarf2_objfile_data_key. */
148
149 struct dwarf2_per_objfile
150 {
151 struct dwarf2_section_info info;
152 struct dwarf2_section_info abbrev;
153 struct dwarf2_section_info line;
154 struct dwarf2_section_info loc;
155 struct dwarf2_section_info macinfo;
156 struct dwarf2_section_info macro;
157 struct dwarf2_section_info str;
158 struct dwarf2_section_info ranges;
159 struct dwarf2_section_info frame;
160 struct dwarf2_section_info eh_frame;
161 struct dwarf2_section_info gdb_index;
162
163 VEC (dwarf2_section_info_def) *types;
164
165 /* Back link. */
166 struct objfile *objfile;
167
168 /* Table of all the compilation units. This is used to locate
169 the target compilation unit of a particular reference. */
170 struct dwarf2_per_cu_data **all_comp_units;
171
172 /* The number of compilation units in ALL_COMP_UNITS. */
173 int n_comp_units;
174
175 /* The number of .debug_types-related CUs. */
176 int n_type_units;
177
178 /* The .debug_types-related CUs (TUs). */
179 struct dwarf2_per_cu_data **all_type_units;
180
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
184
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
192
193 /* True if we are using the mapped index,
194 or we are faking it for OBJF_READNOW's sake. */
195 unsigned char using_index;
196
197 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
198 struct mapped_index *index_table;
199
200 /* When using index_table, this keeps track of all quick_file_names entries.
201 TUs can share line table entries with CUs or other TUs, and there can be
202 a lot more TUs than unique line tables, so we maintain a separate table
203 of all line table entries to support the sharing. */
204 htab_t quick_file_names_table;
205
206 /* Set during partial symbol reading, to prevent queueing of full
207 symbols. */
208 int reading_partial_symbols;
209
210 /* Table mapping type .debug_info DIE offsets to types.
211 This is NULL if not allocated yet.
212 It (currently) makes sense to allocate debug_types_type_hash lazily.
213 To keep things simple we allocate both lazily. */
214 htab_t debug_info_type_hash;
215
216 /* Table mapping type .debug_types DIE offsets to types.
217 This is NULL if not allocated yet. */
218 htab_t debug_types_type_hash;
219 };
220
221 static struct dwarf2_per_objfile *dwarf2_per_objfile;
222
223 /* Default names of the debugging sections. */
224
225 /* Note that if the debugging section has been compressed, it might
226 have a name like .zdebug_info. */
227
228 static const struct dwarf2_debug_sections dwarf2_elf_names =
229 {
230 { ".debug_info", ".zdebug_info" },
231 { ".debug_abbrev", ".zdebug_abbrev" },
232 { ".debug_line", ".zdebug_line" },
233 { ".debug_loc", ".zdebug_loc" },
234 { ".debug_macinfo", ".zdebug_macinfo" },
235 { ".debug_macro", ".zdebug_macro" },
236 { ".debug_str", ".zdebug_str" },
237 { ".debug_ranges", ".zdebug_ranges" },
238 { ".debug_types", ".zdebug_types" },
239 { ".debug_frame", ".zdebug_frame" },
240 { ".eh_frame", NULL },
241 { ".gdb_index", ".zgdb_index" },
242 23
243 };
244
245 /* local data types */
246
247 /* We hold several abbreviation tables in memory at the same time. */
248 #ifndef ABBREV_HASH_SIZE
249 #define ABBREV_HASH_SIZE 121
250 #endif
251
252 /* The data in a compilation unit header, after target2host
253 translation, looks like this. */
254 struct comp_unit_head
255 {
256 unsigned int length;
257 short version;
258 unsigned char addr_size;
259 unsigned char signed_addr_p;
260 unsigned int abbrev_offset;
261
262 /* Size of file offsets; either 4 or 8. */
263 unsigned int offset_size;
264
265 /* Size of the length field; either 4 or 12. */
266 unsigned int initial_length_size;
267
268 /* Offset to the first byte of this compilation unit header in the
269 .debug_info section, for resolving relative reference dies. */
270 unsigned int offset;
271
272 /* Offset to first die in this cu from the start of the cu.
273 This will be the first byte following the compilation unit header. */
274 unsigned int first_die_offset;
275 };
276
277 /* Type used for delaying computation of method physnames.
278 See comments for compute_delayed_physnames. */
279 struct delayed_method_info
280 {
281 /* The type to which the method is attached, i.e., its parent class. */
282 struct type *type;
283
284 /* The index of the method in the type's function fieldlists. */
285 int fnfield_index;
286
287 /* The index of the method in the fieldlist. */
288 int index;
289
290 /* The name of the DIE. */
291 const char *name;
292
293 /* The DIE associated with this method. */
294 struct die_info *die;
295 };
296
297 typedef struct delayed_method_info delayed_method_info;
298 DEF_VEC_O (delayed_method_info);
299
300 /* Internal state when decoding a particular compilation unit. */
301 struct dwarf2_cu
302 {
303 /* The objfile containing this compilation unit. */
304 struct objfile *objfile;
305
306 /* The header of the compilation unit. */
307 struct comp_unit_head header;
308
309 /* Base address of this compilation unit. */
310 CORE_ADDR base_address;
311
312 /* Non-zero if base_address has been set. */
313 int base_known;
314
315 /* The language we are debugging. */
316 enum language language;
317 const struct language_defn *language_defn;
318
319 const char *producer;
320
321 /* The generic symbol table building routines have separate lists for
322 file scope symbols and all all other scopes (local scopes). So
323 we need to select the right one to pass to add_symbol_to_list().
324 We do it by keeping a pointer to the correct list in list_in_scope.
325
326 FIXME: The original dwarf code just treated the file scope as the
327 first local scope, and all other local scopes as nested local
328 scopes, and worked fine. Check to see if we really need to
329 distinguish these in buildsym.c. */
330 struct pending **list_in_scope;
331
332 /* DWARF abbreviation table associated with this compilation unit. */
333 struct abbrev_info **dwarf2_abbrevs;
334
335 /* Storage for the abbrev table. */
336 struct obstack abbrev_obstack;
337
338 /* Hash table holding all the loaded partial DIEs. */
339 htab_t partial_dies;
340
341 /* Storage for things with the same lifetime as this read-in compilation
342 unit, including partial DIEs. */
343 struct obstack comp_unit_obstack;
344
345 /* When multiple dwarf2_cu structures are living in memory, this field
346 chains them all together, so that they can be released efficiently.
347 We will probably also want a generation counter so that most-recently-used
348 compilation units are cached... */
349 struct dwarf2_per_cu_data *read_in_chain;
350
351 /* Backchain to our per_cu entry if the tree has been built. */
352 struct dwarf2_per_cu_data *per_cu;
353
354 /* How many compilation units ago was this CU last referenced? */
355 int last_used;
356
357 /* A hash table of die offsets for following references. */
358 htab_t die_hash;
359
360 /* Full DIEs if read in. */
361 struct die_info *dies;
362
363 /* A set of pointers to dwarf2_per_cu_data objects for compilation
364 units referenced by this one. Only set during full symbol processing;
365 partial symbol tables do not have dependencies. */
366 htab_t dependencies;
367
368 /* Header data from the line table, during full symbol processing. */
369 struct line_header *line_header;
370
371 /* A list of methods which need to have physnames computed
372 after all type information has been read. */
373 VEC (delayed_method_info) *method_list;
374
375 /* To be copied to symtab->call_site_htab. */
376 htab_t call_site_htab;
377
378 /* Mark used when releasing cached dies. */
379 unsigned int mark : 1;
380
381 /* This CU references .debug_loc. See the symtab->locations_valid field.
382 This test is imperfect as there may exist optimized debug code not using
383 any location list and still facing inlining issues if handled as
384 unoptimized code. For a future better test see GCC PR other/32998. */
385 unsigned int has_loclist : 1;
386 };
387
388 /* Persistent data held for a compilation unit, even when not
389 processing it. We put a pointer to this structure in the
390 read_symtab_private field of the psymtab. */
391
392 struct dwarf2_per_cu_data
393 {
394 /* The start offset and length of this compilation unit. 2**29-1
395 bytes should suffice to store the length of any compilation unit
396 - if it doesn't, GDB will fall over anyway.
397 NOTE: Unlike comp_unit_head.length, this length includes
398 initial_length_size. */
399 unsigned int offset;
400 unsigned int length : 29;
401
402 /* Flag indicating this compilation unit will be read in before
403 any of the current compilation units are processed. */
404 unsigned int queued : 1;
405
406 /* This flag will be set if we need to load absolutely all DIEs
407 for this compilation unit, instead of just the ones we think
408 are interesting. It gets set if we look for a DIE in the
409 hash table and don't find it. */
410 unsigned int load_all_dies : 1;
411
412 /* Non-null if this CU is from .debug_types; in which case it points
413 to the section. Otherwise it's from .debug_info. */
414 struct dwarf2_section_info *debug_types_section;
415
416 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
417 of the CU cache it gets reset to NULL again. */
418 struct dwarf2_cu *cu;
419
420 /* The corresponding objfile.
421 Normally we can get the objfile from dwarf2_per_objfile.
422 However we can enter this file with just a "per_cu" handle. */
423 struct objfile *objfile;
424
425 /* When using partial symbol tables, the 'psymtab' field is active.
426 Otherwise the 'quick' field is active. */
427 union
428 {
429 /* The partial symbol table associated with this compilation unit,
430 or NULL for partial units (which do not have an associated
431 symtab). */
432 struct partial_symtab *psymtab;
433
434 /* Data needed by the "quick" functions. */
435 struct dwarf2_per_cu_quick_data *quick;
436 } v;
437 };
438
439 /* Entry in the signatured_types hash table. */
440
441 struct signatured_type
442 {
443 ULONGEST signature;
444
445 /* Offset in .debug_types of the type defined by this TU. */
446 unsigned int type_offset;
447
448 /* The CU(/TU) of this type. */
449 struct dwarf2_per_cu_data per_cu;
450 };
451
452 /* Struct used to pass misc. parameters to read_die_and_children, et
453 al. which are used for both .debug_info and .debug_types dies.
454 All parameters here are unchanging for the life of the call. This
455 struct exists to abstract away the constant parameters of die
456 reading. */
457
458 struct die_reader_specs
459 {
460 /* The bfd of this objfile. */
461 bfd* abfd;
462
463 /* The CU of the DIE we are parsing. */
464 struct dwarf2_cu *cu;
465
466 /* Pointer to start of section buffer.
467 This is either the start of .debug_info or .debug_types. */
468 const gdb_byte *buffer;
469 };
470
471 /* The line number information for a compilation unit (found in the
472 .debug_line section) begins with a "statement program header",
473 which contains the following information. */
474 struct line_header
475 {
476 unsigned int total_length;
477 unsigned short version;
478 unsigned int header_length;
479 unsigned char minimum_instruction_length;
480 unsigned char maximum_ops_per_instruction;
481 unsigned char default_is_stmt;
482 int line_base;
483 unsigned char line_range;
484 unsigned char opcode_base;
485
486 /* standard_opcode_lengths[i] is the number of operands for the
487 standard opcode whose value is i. This means that
488 standard_opcode_lengths[0] is unused, and the last meaningful
489 element is standard_opcode_lengths[opcode_base - 1]. */
490 unsigned char *standard_opcode_lengths;
491
492 /* The include_directories table. NOTE! These strings are not
493 allocated with xmalloc; instead, they are pointers into
494 debug_line_buffer. If you try to free them, `free' will get
495 indigestion. */
496 unsigned int num_include_dirs, include_dirs_size;
497 char **include_dirs;
498
499 /* The file_names table. NOTE! These strings are not allocated
500 with xmalloc; instead, they are pointers into debug_line_buffer.
501 Don't try to free them directly. */
502 unsigned int num_file_names, file_names_size;
503 struct file_entry
504 {
505 char *name;
506 unsigned int dir_index;
507 unsigned int mod_time;
508 unsigned int length;
509 int included_p; /* Non-zero if referenced by the Line Number Program. */
510 struct symtab *symtab; /* The associated symbol table, if any. */
511 } *file_names;
512
513 /* The start and end of the statement program following this
514 header. These point into dwarf2_per_objfile->line_buffer. */
515 gdb_byte *statement_program_start, *statement_program_end;
516 };
517
518 /* When we construct a partial symbol table entry we only
519 need this much information. */
520 struct partial_die_info
521 {
522 /* Offset of this DIE. */
523 unsigned int offset;
524
525 /* DWARF-2 tag for this DIE. */
526 ENUM_BITFIELD(dwarf_tag) tag : 16;
527
528 /* Assorted flags describing the data found in this DIE. */
529 unsigned int has_children : 1;
530 unsigned int is_external : 1;
531 unsigned int is_declaration : 1;
532 unsigned int has_type : 1;
533 unsigned int has_specification : 1;
534 unsigned int has_pc_info : 1;
535
536 /* Flag set if the SCOPE field of this structure has been
537 computed. */
538 unsigned int scope_set : 1;
539
540 /* Flag set if the DIE has a byte_size attribute. */
541 unsigned int has_byte_size : 1;
542
543 /* Flag set if any of the DIE's children are template arguments. */
544 unsigned int has_template_arguments : 1;
545
546 /* Flag set if fixup_partial_die has been called on this die. */
547 unsigned int fixup_called : 1;
548
549 /* The name of this DIE. Normally the value of DW_AT_name, but
550 sometimes a default name for unnamed DIEs. */
551 char *name;
552
553 /* The linkage name, if present. */
554 const char *linkage_name;
555
556 /* The scope to prepend to our children. This is generally
557 allocated on the comp_unit_obstack, so will disappear
558 when this compilation unit leaves the cache. */
559 char *scope;
560
561 /* The location description associated with this DIE, if any. */
562 struct dwarf_block *locdesc;
563
564 /* If HAS_PC_INFO, the PC range associated with this DIE. */
565 CORE_ADDR lowpc;
566 CORE_ADDR highpc;
567
568 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
569 DW_AT_sibling, if any. */
570 /* NOTE: This member isn't strictly necessary, read_partial_die could
571 return DW_AT_sibling values to its caller load_partial_dies. */
572 gdb_byte *sibling;
573
574 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
575 DW_AT_specification (or DW_AT_abstract_origin or
576 DW_AT_extension). */
577 unsigned int spec_offset;
578
579 /* Pointers to this DIE's parent, first child, and next sibling,
580 if any. */
581 struct partial_die_info *die_parent, *die_child, *die_sibling;
582 };
583
584 /* This data structure holds the information of an abbrev. */
585 struct abbrev_info
586 {
587 unsigned int number; /* number identifying abbrev */
588 enum dwarf_tag tag; /* dwarf tag */
589 unsigned short has_children; /* boolean */
590 unsigned short num_attrs; /* number of attributes */
591 struct attr_abbrev *attrs; /* an array of attribute descriptions */
592 struct abbrev_info *next; /* next in chain */
593 };
594
595 struct attr_abbrev
596 {
597 ENUM_BITFIELD(dwarf_attribute) name : 16;
598 ENUM_BITFIELD(dwarf_form) form : 16;
599 };
600
601 /* Attributes have a name and a value. */
602 struct attribute
603 {
604 ENUM_BITFIELD(dwarf_attribute) name : 16;
605 ENUM_BITFIELD(dwarf_form) form : 15;
606
607 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
608 field should be in u.str (existing only for DW_STRING) but it is kept
609 here for better struct attribute alignment. */
610 unsigned int string_is_canonical : 1;
611
612 union
613 {
614 char *str;
615 struct dwarf_block *blk;
616 ULONGEST unsnd;
617 LONGEST snd;
618 CORE_ADDR addr;
619 struct signatured_type *signatured_type;
620 }
621 u;
622 };
623
624 /* This data structure holds a complete die structure. */
625 struct die_info
626 {
627 /* DWARF-2 tag for this DIE. */
628 ENUM_BITFIELD(dwarf_tag) tag : 16;
629
630 /* Number of attributes */
631 unsigned char num_attrs;
632
633 /* True if we're presently building the full type name for the
634 type derived from this DIE. */
635 unsigned char building_fullname : 1;
636
637 /* Abbrev number */
638 unsigned int abbrev;
639
640 /* Offset in .debug_info or .debug_types section. */
641 unsigned int offset;
642
643 /* The dies in a compilation unit form an n-ary tree. PARENT
644 points to this die's parent; CHILD points to the first child of
645 this node; and all the children of a given node are chained
646 together via their SIBLING fields. */
647 struct die_info *child; /* Its first child, if any. */
648 struct die_info *sibling; /* Its next sibling, if any. */
649 struct die_info *parent; /* Its parent, if any. */
650
651 /* An array of attributes, with NUM_ATTRS elements. There may be
652 zero, but it's not common and zero-sized arrays are not
653 sufficiently portable C. */
654 struct attribute attrs[1];
655 };
656
657 /* Get at parts of an attribute structure. */
658
659 #define DW_STRING(attr) ((attr)->u.str)
660 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
661 #define DW_UNSND(attr) ((attr)->u.unsnd)
662 #define DW_BLOCK(attr) ((attr)->u.blk)
663 #define DW_SND(attr) ((attr)->u.snd)
664 #define DW_ADDR(attr) ((attr)->u.addr)
665 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
666
667 /* Blocks are a bunch of untyped bytes. */
668 struct dwarf_block
669 {
670 unsigned int size;
671
672 /* Valid only if SIZE is not zero. */
673 gdb_byte *data;
674 };
675
676 #ifndef ATTR_ALLOC_CHUNK
677 #define ATTR_ALLOC_CHUNK 4
678 #endif
679
680 /* Allocate fields for structs, unions and enums in this size. */
681 #ifndef DW_FIELD_ALLOC_CHUNK
682 #define DW_FIELD_ALLOC_CHUNK 4
683 #endif
684
685 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
686 but this would require a corresponding change in unpack_field_as_long
687 and friends. */
688 static int bits_per_byte = 8;
689
690 /* The routines that read and process dies for a C struct or C++ class
691 pass lists of data member fields and lists of member function fields
692 in an instance of a field_info structure, as defined below. */
693 struct field_info
694 {
695 /* List of data member and baseclasses fields. */
696 struct nextfield
697 {
698 struct nextfield *next;
699 int accessibility;
700 int virtuality;
701 struct field field;
702 }
703 *fields, *baseclasses;
704
705 /* Number of fields (including baseclasses). */
706 int nfields;
707
708 /* Number of baseclasses. */
709 int nbaseclasses;
710
711 /* Set if the accesibility of one of the fields is not public. */
712 int non_public_fields;
713
714 /* Member function fields array, entries are allocated in the order they
715 are encountered in the object file. */
716 struct nextfnfield
717 {
718 struct nextfnfield *next;
719 struct fn_field fnfield;
720 }
721 *fnfields;
722
723 /* Member function fieldlist array, contains name of possibly overloaded
724 member function, number of overloaded member functions and a pointer
725 to the head of the member function field chain. */
726 struct fnfieldlist
727 {
728 char *name;
729 int length;
730 struct nextfnfield *head;
731 }
732 *fnfieldlists;
733
734 /* Number of entries in the fnfieldlists array. */
735 int nfnfields;
736
737 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
738 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
739 struct typedef_field_list
740 {
741 struct typedef_field field;
742 struct typedef_field_list *next;
743 }
744 *typedef_field_list;
745 unsigned typedef_field_list_count;
746 };
747
748 /* One item on the queue of compilation units to read in full symbols
749 for. */
750 struct dwarf2_queue_item
751 {
752 struct dwarf2_per_cu_data *per_cu;
753 struct dwarf2_queue_item *next;
754 };
755
756 /* The current queue. */
757 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
758
759 /* Loaded secondary compilation units are kept in memory until they
760 have not been referenced for the processing of this many
761 compilation units. Set this to zero to disable caching. Cache
762 sizes of up to at least twenty will improve startup time for
763 typical inter-CU-reference binaries, at an obvious memory cost. */
764 static int dwarf2_max_cache_age = 5;
765 static void
766 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 fprintf_filtered (file, _("The upper bound on the age of cached "
770 "dwarf2 compilation units is %s.\n"),
771 value);
772 }
773
774
775 /* Various complaints about symbol reading that don't abort the process. */
776
777 static void
778 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
779 {
780 complaint (&symfile_complaints,
781 _("statement list doesn't fit in .debug_line section"));
782 }
783
784 static void
785 dwarf2_debug_line_missing_file_complaint (void)
786 {
787 complaint (&symfile_complaints,
788 _(".debug_line section has line data without a file"));
789 }
790
791 static void
792 dwarf2_debug_line_missing_end_sequence_complaint (void)
793 {
794 complaint (&symfile_complaints,
795 _(".debug_line section has line "
796 "program sequence without an end"));
797 }
798
799 static void
800 dwarf2_complex_location_expr_complaint (void)
801 {
802 complaint (&symfile_complaints, _("location expression too complex"));
803 }
804
805 static void
806 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
807 int arg3)
808 {
809 complaint (&symfile_complaints,
810 _("const value length mismatch for '%s', got %d, expected %d"),
811 arg1, arg2, arg3);
812 }
813
814 static void
815 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
816 {
817 complaint (&symfile_complaints,
818 _("macro info runs off end of `%s' section"),
819 section->asection->name);
820 }
821
822 static void
823 dwarf2_macro_malformed_definition_complaint (const char *arg1)
824 {
825 complaint (&symfile_complaints,
826 _("macro debug info contains a "
827 "malformed macro definition:\n`%s'"),
828 arg1);
829 }
830
831 static void
832 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
833 {
834 complaint (&symfile_complaints,
835 _("invalid attribute class or form for '%s' in '%s'"),
836 arg1, arg2);
837 }
838
839 /* local function prototypes */
840
841 static void dwarf2_locate_sections (bfd *, asection *, void *);
842
843 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
844 struct objfile *);
845
846 static void dwarf2_find_base_address (struct die_info *die,
847 struct dwarf2_cu *cu);
848
849 static void dwarf2_build_psymtabs_hard (struct objfile *);
850
851 static void scan_partial_symbols (struct partial_die_info *,
852 CORE_ADDR *, CORE_ADDR *,
853 int, struct dwarf2_cu *);
854
855 static void add_partial_symbol (struct partial_die_info *,
856 struct dwarf2_cu *);
857
858 static void add_partial_namespace (struct partial_die_info *pdi,
859 CORE_ADDR *lowpc, CORE_ADDR *highpc,
860 int need_pc, struct dwarf2_cu *cu);
861
862 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
863 CORE_ADDR *highpc, int need_pc,
864 struct dwarf2_cu *cu);
865
866 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
867 struct dwarf2_cu *cu);
868
869 static void add_partial_subprogram (struct partial_die_info *pdi,
870 CORE_ADDR *lowpc, CORE_ADDR *highpc,
871 int need_pc, struct dwarf2_cu *cu);
872
873 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
874 gdb_byte *buffer, gdb_byte *info_ptr,
875 bfd *abfd, struct dwarf2_cu *cu);
876
877 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
878
879 static void psymtab_to_symtab_1 (struct partial_symtab *);
880
881 static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
882
883 static void dwarf2_free_abbrev_table (void *);
884
885 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
886
887 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
888 struct dwarf2_cu *);
889
890 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
891 struct dwarf2_cu *);
892
893 static struct partial_die_info *load_partial_dies (bfd *,
894 gdb_byte *, gdb_byte *,
895 int, struct dwarf2_cu *);
896
897 static gdb_byte *read_partial_die (struct partial_die_info *,
898 struct abbrev_info *abbrev,
899 unsigned int, bfd *,
900 gdb_byte *, gdb_byte *,
901 struct dwarf2_cu *);
902
903 static struct partial_die_info *find_partial_die (unsigned int,
904 struct dwarf2_cu *);
905
906 static void fixup_partial_die (struct partial_die_info *,
907 struct dwarf2_cu *);
908
909 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
910 bfd *, gdb_byte *, struct dwarf2_cu *);
911
912 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
913 bfd *, gdb_byte *, struct dwarf2_cu *);
914
915 static unsigned int read_1_byte (bfd *, gdb_byte *);
916
917 static int read_1_signed_byte (bfd *, gdb_byte *);
918
919 static unsigned int read_2_bytes (bfd *, gdb_byte *);
920
921 static unsigned int read_4_bytes (bfd *, gdb_byte *);
922
923 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
924
925 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
926 unsigned int *);
927
928 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
929
930 static LONGEST read_checked_initial_length_and_offset
931 (bfd *, gdb_byte *, const struct comp_unit_head *,
932 unsigned int *, unsigned int *);
933
934 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
935 unsigned int *);
936
937 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
938
939 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
940
941 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
942
943 static char *read_indirect_string (bfd *, gdb_byte *,
944 const struct comp_unit_head *,
945 unsigned int *);
946
947 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
948
949 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
950
951 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
952
953 static void set_cu_language (unsigned int, struct dwarf2_cu *);
954
955 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
956 struct dwarf2_cu *);
957
958 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
959 unsigned int,
960 struct dwarf2_cu *);
961
962 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
963 struct dwarf2_cu *cu);
964
965 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
966
967 static struct die_info *die_specification (struct die_info *die,
968 struct dwarf2_cu **);
969
970 static void free_line_header (struct line_header *lh);
971
972 static void add_file_name (struct line_header *, char *, unsigned int,
973 unsigned int, unsigned int);
974
975 static struct line_header *(dwarf_decode_line_header
976 (unsigned int offset,
977 bfd *abfd, struct dwarf2_cu *cu));
978
979 static void dwarf_decode_lines (struct line_header *, const char *,
980 struct dwarf2_cu *, struct partial_symtab *,
981 int);
982
983 static void dwarf2_start_subfile (char *, const char *, const char *);
984
985 static struct symbol *new_symbol (struct die_info *, struct type *,
986 struct dwarf2_cu *);
987
988 static struct symbol *new_symbol_full (struct die_info *, struct type *,
989 struct dwarf2_cu *, struct symbol *);
990
991 static void dwarf2_const_value (struct attribute *, struct symbol *,
992 struct dwarf2_cu *);
993
994 static void dwarf2_const_value_attr (struct attribute *attr,
995 struct type *type,
996 const char *name,
997 struct obstack *obstack,
998 struct dwarf2_cu *cu, long *value,
999 gdb_byte **bytes,
1000 struct dwarf2_locexpr_baton **baton);
1001
1002 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1003
1004 static int need_gnat_info (struct dwarf2_cu *);
1005
1006 static struct type *die_descriptive_type (struct die_info *,
1007 struct dwarf2_cu *);
1008
1009 static void set_descriptive_type (struct type *, struct die_info *,
1010 struct dwarf2_cu *);
1011
1012 static struct type *die_containing_type (struct die_info *,
1013 struct dwarf2_cu *);
1014
1015 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1016 struct dwarf2_cu *);
1017
1018 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1019
1020 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1021
1022 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1023
1024 static char *typename_concat (struct obstack *obs, const char *prefix,
1025 const char *suffix, int physname,
1026 struct dwarf2_cu *cu);
1027
1028 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1029
1030 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1031
1032 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1033
1034 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1035
1036 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1037
1038 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1039 struct dwarf2_cu *, struct partial_symtab *);
1040
1041 static int dwarf2_get_pc_bounds (struct die_info *,
1042 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1043 struct partial_symtab *);
1044
1045 static void get_scope_pc_bounds (struct die_info *,
1046 CORE_ADDR *, CORE_ADDR *,
1047 struct dwarf2_cu *);
1048
1049 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1050 CORE_ADDR, struct dwarf2_cu *);
1051
1052 static void dwarf2_add_field (struct field_info *, struct die_info *,
1053 struct dwarf2_cu *);
1054
1055 static void dwarf2_attach_fields_to_type (struct field_info *,
1056 struct type *, struct dwarf2_cu *);
1057
1058 static void dwarf2_add_member_fn (struct field_info *,
1059 struct die_info *, struct type *,
1060 struct dwarf2_cu *);
1061
1062 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1063 struct type *,
1064 struct dwarf2_cu *);
1065
1066 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1067
1068 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1069
1070 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1071
1072 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1073
1074 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1075
1076 static struct type *read_module_type (struct die_info *die,
1077 struct dwarf2_cu *cu);
1078
1079 static const char *namespace_name (struct die_info *die,
1080 int *is_anonymous, struct dwarf2_cu *);
1081
1082 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1083
1084 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1085
1086 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1087 struct dwarf2_cu *);
1088
1089 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1090
1091 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1092 gdb_byte *info_ptr,
1093 gdb_byte **new_info_ptr,
1094 struct die_info *parent);
1095
1096 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1097 gdb_byte *info_ptr,
1098 gdb_byte **new_info_ptr,
1099 struct die_info *parent);
1100
1101 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1102 gdb_byte *info_ptr,
1103 gdb_byte **new_info_ptr,
1104 struct die_info *parent);
1105
1106 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1107 struct die_info **, gdb_byte *,
1108 int *);
1109
1110 static void process_die (struct die_info *, struct dwarf2_cu *);
1111
1112 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1113 struct obstack *);
1114
1115 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1116
1117 static const char *dwarf2_full_name (char *name,
1118 struct die_info *die,
1119 struct dwarf2_cu *cu);
1120
1121 static struct die_info *dwarf2_extension (struct die_info *die,
1122 struct dwarf2_cu **);
1123
1124 static char *dwarf_tag_name (unsigned int);
1125
1126 static char *dwarf_attr_name (unsigned int);
1127
1128 static char *dwarf_form_name (unsigned int);
1129
1130 static char *dwarf_bool_name (unsigned int);
1131
1132 static char *dwarf_type_encoding_name (unsigned int);
1133
1134 #if 0
1135 static char *dwarf_cfi_name (unsigned int);
1136 #endif
1137
1138 static struct die_info *sibling_die (struct die_info *);
1139
1140 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1141
1142 static void dump_die_for_error (struct die_info *);
1143
1144 static void dump_die_1 (struct ui_file *, int level, int max_level,
1145 struct die_info *);
1146
1147 /*static*/ void dump_die (struct die_info *, int max_level);
1148
1149 static void store_in_ref_table (struct die_info *,
1150 struct dwarf2_cu *);
1151
1152 static int is_ref_attr (struct attribute *);
1153
1154 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1155
1156 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1157
1158 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1159 struct attribute *,
1160 struct dwarf2_cu **);
1161
1162 static struct die_info *follow_die_ref (struct die_info *,
1163 struct attribute *,
1164 struct dwarf2_cu **);
1165
1166 static struct die_info *follow_die_sig (struct die_info *,
1167 struct attribute *,
1168 struct dwarf2_cu **);
1169
1170 static struct signatured_type *lookup_signatured_type_at_offset
1171 (struct objfile *objfile,
1172 struct dwarf2_section_info *section,
1173 unsigned int offset);
1174
1175 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1176
1177 static void read_signatured_type (struct signatured_type *type_sig);
1178
1179 /* memory allocation interface */
1180
1181 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1182
1183 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1184
1185 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1186
1187 static void dwarf_decode_macros (struct line_header *, unsigned int,
1188 char *, bfd *, struct dwarf2_cu *,
1189 struct dwarf2_section_info *,
1190 int);
1191
1192 static int attr_form_is_block (struct attribute *);
1193
1194 static int attr_form_is_section_offset (struct attribute *);
1195
1196 static int attr_form_is_constant (struct attribute *);
1197
1198 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1199 struct dwarf2_loclist_baton *baton,
1200 struct attribute *attr);
1201
1202 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1203 struct symbol *sym,
1204 struct dwarf2_cu *cu);
1205
1206 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1207 struct abbrev_info *abbrev,
1208 struct dwarf2_cu *cu);
1209
1210 static void free_stack_comp_unit (void *);
1211
1212 static hashval_t partial_die_hash (const void *item);
1213
1214 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1215
1216 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1217 (unsigned int offset, struct objfile *objfile);
1218
1219 static void init_one_comp_unit (struct dwarf2_cu *cu,
1220 struct dwarf2_per_cu_data *per_cu);
1221
1222 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1223 struct die_info *comp_unit_die);
1224
1225 static void free_heap_comp_unit (void *);
1226
1227 static void free_cached_comp_units (void *);
1228
1229 static void age_cached_comp_units (void);
1230
1231 static void free_one_cached_comp_unit (void *);
1232
1233 static struct type *set_die_type (struct die_info *, struct type *,
1234 struct dwarf2_cu *);
1235
1236 static void create_all_comp_units (struct objfile *);
1237
1238 static int create_debug_types_hash_table (struct objfile *objfile);
1239
1240 static void load_full_comp_unit (struct dwarf2_per_cu_data *);
1241
1242 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1243
1244 static void dwarf2_add_dependence (struct dwarf2_cu *,
1245 struct dwarf2_per_cu_data *);
1246
1247 static void dwarf2_mark (struct dwarf2_cu *);
1248
1249 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1250
1251 static struct type *get_die_type_at_offset (unsigned int,
1252 struct dwarf2_per_cu_data *per_cu);
1253
1254 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1255
1256 static void dwarf2_release_queue (void *dummy);
1257
1258 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
1259
1260 static void process_queue (void);
1261
1262 static void find_file_and_directory (struct die_info *die,
1263 struct dwarf2_cu *cu,
1264 char **name, char **comp_dir);
1265
1266 static char *file_full_name (int file, struct line_header *lh,
1267 const char *comp_dir);
1268
1269 static gdb_byte *read_and_check_comp_unit_head
1270 (struct comp_unit_head *header,
1271 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1272 int is_debug_types_section);
1273
1274 static void init_cu_die_reader (struct die_reader_specs *reader,
1275 struct dwarf2_cu *cu);
1276
1277 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1278
1279 #if WORDS_BIGENDIAN
1280
1281 /* Convert VALUE between big- and little-endian. */
1282 static offset_type
1283 byte_swap (offset_type value)
1284 {
1285 offset_type result;
1286
1287 result = (value & 0xff) << 24;
1288 result |= (value & 0xff00) << 8;
1289 result |= (value & 0xff0000) >> 8;
1290 result |= (value & 0xff000000) >> 24;
1291 return result;
1292 }
1293
1294 #define MAYBE_SWAP(V) byte_swap (V)
1295
1296 #else
1297 #define MAYBE_SWAP(V) (V)
1298 #endif /* WORDS_BIGENDIAN */
1299
1300 /* The suffix for an index file. */
1301 #define INDEX_SUFFIX ".gdb-index"
1302
1303 static const char *dwarf2_physname (char *name, struct die_info *die,
1304 struct dwarf2_cu *cu);
1305
1306 /* Try to locate the sections we need for DWARF 2 debugging
1307 information and return true if we have enough to do something.
1308 NAMES points to the dwarf2 section names, or is NULL if the standard
1309 ELF names are used. */
1310
1311 int
1312 dwarf2_has_info (struct objfile *objfile,
1313 const struct dwarf2_debug_sections *names)
1314 {
1315 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1316 if (!dwarf2_per_objfile)
1317 {
1318 /* Initialize per-objfile state. */
1319 struct dwarf2_per_objfile *data
1320 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1321
1322 memset (data, 0, sizeof (*data));
1323 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1324 dwarf2_per_objfile = data;
1325
1326 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1327 (void *) names);
1328 dwarf2_per_objfile->objfile = objfile;
1329 }
1330 return (dwarf2_per_objfile->info.asection != NULL
1331 && dwarf2_per_objfile->abbrev.asection != NULL);
1332 }
1333
1334 /* When loading sections, we look either for uncompressed section or for
1335 compressed section names. */
1336
1337 static int
1338 section_is_p (const char *section_name,
1339 const struct dwarf2_section_names *names)
1340 {
1341 if (names->normal != NULL
1342 && strcmp (section_name, names->normal) == 0)
1343 return 1;
1344 if (names->compressed != NULL
1345 && strcmp (section_name, names->compressed) == 0)
1346 return 1;
1347 return 0;
1348 }
1349
1350 /* This function is mapped across the sections and remembers the
1351 offset and size of each of the debugging sections we are interested
1352 in. */
1353
1354 static void
1355 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1356 {
1357 const struct dwarf2_debug_sections *names;
1358
1359 if (vnames == NULL)
1360 names = &dwarf2_elf_names;
1361 else
1362 names = (const struct dwarf2_debug_sections *) vnames;
1363
1364 if (section_is_p (sectp->name, &names->info))
1365 {
1366 dwarf2_per_objfile->info.asection = sectp;
1367 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1368 }
1369 else if (section_is_p (sectp->name, &names->abbrev))
1370 {
1371 dwarf2_per_objfile->abbrev.asection = sectp;
1372 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1373 }
1374 else if (section_is_p (sectp->name, &names->line))
1375 {
1376 dwarf2_per_objfile->line.asection = sectp;
1377 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1378 }
1379 else if (section_is_p (sectp->name, &names->loc))
1380 {
1381 dwarf2_per_objfile->loc.asection = sectp;
1382 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1383 }
1384 else if (section_is_p (sectp->name, &names->macinfo))
1385 {
1386 dwarf2_per_objfile->macinfo.asection = sectp;
1387 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1388 }
1389 else if (section_is_p (sectp->name, &names->macro))
1390 {
1391 dwarf2_per_objfile->macro.asection = sectp;
1392 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1393 }
1394 else if (section_is_p (sectp->name, &names->str))
1395 {
1396 dwarf2_per_objfile->str.asection = sectp;
1397 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1398 }
1399 else if (section_is_p (sectp->name, &names->frame))
1400 {
1401 dwarf2_per_objfile->frame.asection = sectp;
1402 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1403 }
1404 else if (section_is_p (sectp->name, &names->eh_frame))
1405 {
1406 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1407
1408 if (aflag & SEC_HAS_CONTENTS)
1409 {
1410 dwarf2_per_objfile->eh_frame.asection = sectp;
1411 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1412 }
1413 }
1414 else if (section_is_p (sectp->name, &names->ranges))
1415 {
1416 dwarf2_per_objfile->ranges.asection = sectp;
1417 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1418 }
1419 else if (section_is_p (sectp->name, &names->types))
1420 {
1421 struct dwarf2_section_info type_section;
1422
1423 memset (&type_section, 0, sizeof (type_section));
1424 type_section.asection = sectp;
1425 type_section.size = bfd_get_section_size (sectp);
1426
1427 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1428 &type_section);
1429 }
1430 else if (section_is_p (sectp->name, &names->gdb_index))
1431 {
1432 dwarf2_per_objfile->gdb_index.asection = sectp;
1433 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1434 }
1435
1436 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1437 && bfd_section_vma (abfd, sectp) == 0)
1438 dwarf2_per_objfile->has_section_at_zero = 1;
1439 }
1440
1441 /* Decompress a section that was compressed using zlib. Store the
1442 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1443
1444 static void
1445 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1446 gdb_byte **outbuf, bfd_size_type *outsize)
1447 {
1448 bfd *abfd = objfile->obfd;
1449 #ifndef HAVE_ZLIB_H
1450 error (_("Support for zlib-compressed DWARF data (from '%s') "
1451 "is disabled in this copy of GDB"),
1452 bfd_get_filename (abfd));
1453 #else
1454 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1455 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1456 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1457 bfd_size_type uncompressed_size;
1458 gdb_byte *uncompressed_buffer;
1459 z_stream strm;
1460 int rc;
1461 int header_size = 12;
1462
1463 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1464 || bfd_bread (compressed_buffer,
1465 compressed_size, abfd) != compressed_size)
1466 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1467 bfd_get_filename (abfd));
1468
1469 /* Read the zlib header. In this case, it should be "ZLIB" followed
1470 by the uncompressed section size, 8 bytes in big-endian order. */
1471 if (compressed_size < header_size
1472 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1473 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1474 bfd_get_filename (abfd));
1475 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1476 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1477 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1478 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1479 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1480 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1481 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1482 uncompressed_size += compressed_buffer[11];
1483
1484 /* It is possible the section consists of several compressed
1485 buffers concatenated together, so we uncompress in a loop. */
1486 strm.zalloc = NULL;
1487 strm.zfree = NULL;
1488 strm.opaque = NULL;
1489 strm.avail_in = compressed_size - header_size;
1490 strm.next_in = (Bytef*) compressed_buffer + header_size;
1491 strm.avail_out = uncompressed_size;
1492 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1493 uncompressed_size);
1494 rc = inflateInit (&strm);
1495 while (strm.avail_in > 0)
1496 {
1497 if (rc != Z_OK)
1498 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1499 bfd_get_filename (abfd), rc);
1500 strm.next_out = ((Bytef*) uncompressed_buffer
1501 + (uncompressed_size - strm.avail_out));
1502 rc = inflate (&strm, Z_FINISH);
1503 if (rc != Z_STREAM_END)
1504 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1505 bfd_get_filename (abfd), rc);
1506 rc = inflateReset (&strm);
1507 }
1508 rc = inflateEnd (&strm);
1509 if (rc != Z_OK
1510 || strm.avail_out != 0)
1511 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1512 bfd_get_filename (abfd), rc);
1513
1514 do_cleanups (cleanup);
1515 *outbuf = uncompressed_buffer;
1516 *outsize = uncompressed_size;
1517 #endif
1518 }
1519
1520 /* A helper function that decides whether a section is empty. */
1521
1522 static int
1523 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1524 {
1525 return info->asection == NULL || info->size == 0;
1526 }
1527
1528 /* Read the contents of the section INFO from object file specified by
1529 OBJFILE, store info about the section into INFO.
1530 If the section is compressed, uncompress it before returning. */
1531
1532 static void
1533 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1534 {
1535 bfd *abfd = objfile->obfd;
1536 asection *sectp = info->asection;
1537 gdb_byte *buf, *retbuf;
1538 unsigned char header[4];
1539
1540 if (info->readin)
1541 return;
1542 info->buffer = NULL;
1543 info->map_addr = NULL;
1544 info->readin = 1;
1545
1546 if (dwarf2_section_empty_p (info))
1547 return;
1548
1549 /* Check if the file has a 4-byte header indicating compression. */
1550 if (info->size > sizeof (header)
1551 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1552 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1553 {
1554 /* Upon decompression, update the buffer and its size. */
1555 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1556 {
1557 zlib_decompress_section (objfile, sectp, &info->buffer,
1558 &info->size);
1559 return;
1560 }
1561 }
1562
1563 #ifdef HAVE_MMAP
1564 if (pagesize == 0)
1565 pagesize = getpagesize ();
1566
1567 /* Only try to mmap sections which are large enough: we don't want to
1568 waste space due to fragmentation. Also, only try mmap for sections
1569 without relocations. */
1570
1571 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1572 {
1573 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1574 MAP_PRIVATE, sectp->filepos,
1575 &info->map_addr, &info->map_len);
1576
1577 if ((caddr_t)info->buffer != MAP_FAILED)
1578 {
1579 #if HAVE_POSIX_MADVISE
1580 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1581 #endif
1582 return;
1583 }
1584 }
1585 #endif
1586
1587 /* If we get here, we are a normal, not-compressed section. */
1588 info->buffer = buf
1589 = obstack_alloc (&objfile->objfile_obstack, info->size);
1590
1591 /* When debugging .o files, we may need to apply relocations; see
1592 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1593 We never compress sections in .o files, so we only need to
1594 try this when the section is not compressed. */
1595 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1596 if (retbuf != NULL)
1597 {
1598 info->buffer = retbuf;
1599 return;
1600 }
1601
1602 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1603 || bfd_bread (buf, info->size, abfd) != info->size)
1604 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1605 bfd_get_filename (abfd));
1606 }
1607
1608 /* A helper function that returns the size of a section in a safe way.
1609 If you are positive that the section has been read before using the
1610 size, then it is safe to refer to the dwarf2_section_info object's
1611 "size" field directly. In other cases, you must call this
1612 function, because for compressed sections the size field is not set
1613 correctly until the section has been read. */
1614
1615 static bfd_size_type
1616 dwarf2_section_size (struct objfile *objfile,
1617 struct dwarf2_section_info *info)
1618 {
1619 if (!info->readin)
1620 dwarf2_read_section (objfile, info);
1621 return info->size;
1622 }
1623
1624 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1625 SECTION_NAME. */
1626
1627 void
1628 dwarf2_get_section_info (struct objfile *objfile,
1629 enum dwarf2_section_enum sect,
1630 asection **sectp, gdb_byte **bufp,
1631 bfd_size_type *sizep)
1632 {
1633 struct dwarf2_per_objfile *data
1634 = objfile_data (objfile, dwarf2_objfile_data_key);
1635 struct dwarf2_section_info *info;
1636
1637 /* We may see an objfile without any DWARF, in which case we just
1638 return nothing. */
1639 if (data == NULL)
1640 {
1641 *sectp = NULL;
1642 *bufp = NULL;
1643 *sizep = 0;
1644 return;
1645 }
1646 switch (sect)
1647 {
1648 case DWARF2_DEBUG_FRAME:
1649 info = &data->frame;
1650 break;
1651 case DWARF2_EH_FRAME:
1652 info = &data->eh_frame;
1653 break;
1654 default:
1655 gdb_assert_not_reached ("unexpected section");
1656 }
1657
1658 dwarf2_read_section (objfile, info);
1659
1660 *sectp = info->asection;
1661 *bufp = info->buffer;
1662 *sizep = info->size;
1663 }
1664
1665 \f
1666 /* DWARF quick_symbols_functions support. */
1667
1668 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1669 unique line tables, so we maintain a separate table of all .debug_line
1670 derived entries to support the sharing.
1671 All the quick functions need is the list of file names. We discard the
1672 line_header when we're done and don't need to record it here. */
1673 struct quick_file_names
1674 {
1675 /* The offset in .debug_line of the line table. We hash on this. */
1676 unsigned int offset;
1677
1678 /* The number of entries in file_names, real_names. */
1679 unsigned int num_file_names;
1680
1681 /* The file names from the line table, after being run through
1682 file_full_name. */
1683 const char **file_names;
1684
1685 /* The file names from the line table after being run through
1686 gdb_realpath. These are computed lazily. */
1687 const char **real_names;
1688 };
1689
1690 /* When using the index (and thus not using psymtabs), each CU has an
1691 object of this type. This is used to hold information needed by
1692 the various "quick" methods. */
1693 struct dwarf2_per_cu_quick_data
1694 {
1695 /* The file table. This can be NULL if there was no file table
1696 or it's currently not read in.
1697 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1698 struct quick_file_names *file_names;
1699
1700 /* The corresponding symbol table. This is NULL if symbols for this
1701 CU have not yet been read. */
1702 struct symtab *symtab;
1703
1704 /* A temporary mark bit used when iterating over all CUs in
1705 expand_symtabs_matching. */
1706 unsigned int mark : 1;
1707
1708 /* True if we've tried to read the file table and found there isn't one.
1709 There will be no point in trying to read it again next time. */
1710 unsigned int no_file_data : 1;
1711 };
1712
1713 /* Hash function for a quick_file_names. */
1714
1715 static hashval_t
1716 hash_file_name_entry (const void *e)
1717 {
1718 const struct quick_file_names *file_data = e;
1719
1720 return file_data->offset;
1721 }
1722
1723 /* Equality function for a quick_file_names. */
1724
1725 static int
1726 eq_file_name_entry (const void *a, const void *b)
1727 {
1728 const struct quick_file_names *ea = a;
1729 const struct quick_file_names *eb = b;
1730
1731 return ea->offset == eb->offset;
1732 }
1733
1734 /* Delete function for a quick_file_names. */
1735
1736 static void
1737 delete_file_name_entry (void *e)
1738 {
1739 struct quick_file_names *file_data = e;
1740 int i;
1741
1742 for (i = 0; i < file_data->num_file_names; ++i)
1743 {
1744 xfree ((void*) file_data->file_names[i]);
1745 if (file_data->real_names)
1746 xfree ((void*) file_data->real_names[i]);
1747 }
1748
1749 /* The space for the struct itself lives on objfile_obstack,
1750 so we don't free it here. */
1751 }
1752
1753 /* Create a quick_file_names hash table. */
1754
1755 static htab_t
1756 create_quick_file_names_table (unsigned int nr_initial_entries)
1757 {
1758 return htab_create_alloc (nr_initial_entries,
1759 hash_file_name_entry, eq_file_name_entry,
1760 delete_file_name_entry, xcalloc, xfree);
1761 }
1762
1763 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1764 have to be created afterwards. You should call age_cached_comp_units after
1765 processing PER_CU->CU. dw2_setup must have been already called. */
1766
1767 static void
1768 load_cu (struct dwarf2_per_cu_data *per_cu)
1769 {
1770 if (per_cu->debug_types_section)
1771 load_full_type_unit (per_cu);
1772 else
1773 load_full_comp_unit (per_cu);
1774
1775 gdb_assert (per_cu->cu != NULL);
1776
1777 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1778 }
1779
1780 /* Read in the symbols for PER_CU. */
1781
1782 static void
1783 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1784 {
1785 struct cleanup *back_to;
1786
1787 back_to = make_cleanup (dwarf2_release_queue, NULL);
1788
1789 queue_comp_unit (per_cu);
1790
1791 load_cu (per_cu);
1792
1793 process_queue ();
1794
1795 /* Age the cache, releasing compilation units that have not
1796 been used recently. */
1797 age_cached_comp_units ();
1798
1799 do_cleanups (back_to);
1800 }
1801
1802 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1803 the objfile from which this CU came. Returns the resulting symbol
1804 table. */
1805
1806 static struct symtab *
1807 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1808 {
1809 if (!per_cu->v.quick->symtab)
1810 {
1811 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1812 increment_reading_symtab ();
1813 dw2_do_instantiate_symtab (per_cu);
1814 do_cleanups (back_to);
1815 }
1816 return per_cu->v.quick->symtab;
1817 }
1818
1819 /* Return the CU given its index. */
1820
1821 static struct dwarf2_per_cu_data *
1822 dw2_get_cu (int index)
1823 {
1824 if (index >= dwarf2_per_objfile->n_comp_units)
1825 {
1826 index -= dwarf2_per_objfile->n_comp_units;
1827 return dwarf2_per_objfile->all_type_units[index];
1828 }
1829 return dwarf2_per_objfile->all_comp_units[index];
1830 }
1831
1832 /* A helper function that knows how to read a 64-bit value in a way
1833 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1834 otherwise. */
1835
1836 static int
1837 extract_cu_value (const char *bytes, ULONGEST *result)
1838 {
1839 if (sizeof (ULONGEST) < 8)
1840 {
1841 int i;
1842
1843 /* Ignore the upper 4 bytes if they are all zero. */
1844 for (i = 0; i < 4; ++i)
1845 if (bytes[i + 4] != 0)
1846 return 0;
1847
1848 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1849 }
1850 else
1851 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1852 return 1;
1853 }
1854
1855 /* Read the CU list from the mapped index, and use it to create all
1856 the CU objects for this objfile. Return 0 if something went wrong,
1857 1 if everything went ok. */
1858
1859 static int
1860 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1861 offset_type cu_list_elements)
1862 {
1863 offset_type i;
1864
1865 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1866 dwarf2_per_objfile->all_comp_units
1867 = obstack_alloc (&objfile->objfile_obstack,
1868 dwarf2_per_objfile->n_comp_units
1869 * sizeof (struct dwarf2_per_cu_data *));
1870
1871 for (i = 0; i < cu_list_elements; i += 2)
1872 {
1873 struct dwarf2_per_cu_data *the_cu;
1874 ULONGEST offset, length;
1875
1876 if (!extract_cu_value (cu_list, &offset)
1877 || !extract_cu_value (cu_list + 8, &length))
1878 return 0;
1879 cu_list += 2 * 8;
1880
1881 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1882 struct dwarf2_per_cu_data);
1883 the_cu->offset = offset;
1884 the_cu->length = length;
1885 the_cu->objfile = objfile;
1886 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1887 struct dwarf2_per_cu_quick_data);
1888 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1889 }
1890
1891 return 1;
1892 }
1893
1894 /* Create the signatured type hash table from the index. */
1895
1896 static int
1897 create_signatured_type_table_from_index (struct objfile *objfile,
1898 struct dwarf2_section_info *section,
1899 const gdb_byte *bytes,
1900 offset_type elements)
1901 {
1902 offset_type i;
1903 htab_t sig_types_hash;
1904
1905 dwarf2_per_objfile->n_type_units = elements / 3;
1906 dwarf2_per_objfile->all_type_units
1907 = obstack_alloc (&objfile->objfile_obstack,
1908 dwarf2_per_objfile->n_type_units
1909 * sizeof (struct dwarf2_per_cu_data *));
1910
1911 sig_types_hash = allocate_signatured_type_table (objfile);
1912
1913 for (i = 0; i < elements; i += 3)
1914 {
1915 struct signatured_type *type_sig;
1916 ULONGEST offset, type_offset, signature;
1917 void **slot;
1918
1919 if (!extract_cu_value (bytes, &offset)
1920 || !extract_cu_value (bytes + 8, &type_offset))
1921 return 0;
1922 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1923 bytes += 3 * 8;
1924
1925 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1926 struct signatured_type);
1927 type_sig->signature = signature;
1928 type_sig->type_offset = type_offset;
1929 type_sig->per_cu.debug_types_section = section;
1930 type_sig->per_cu.offset = offset;
1931 type_sig->per_cu.objfile = objfile;
1932 type_sig->per_cu.v.quick
1933 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1934 struct dwarf2_per_cu_quick_data);
1935
1936 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1937 *slot = type_sig;
1938
1939 dwarf2_per_objfile->all_type_units[i / 3] = &type_sig->per_cu;
1940 }
1941
1942 dwarf2_per_objfile->signatured_types = sig_types_hash;
1943
1944 return 1;
1945 }
1946
1947 /* Read the address map data from the mapped index, and use it to
1948 populate the objfile's psymtabs_addrmap. */
1949
1950 static void
1951 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1952 {
1953 const gdb_byte *iter, *end;
1954 struct obstack temp_obstack;
1955 struct addrmap *mutable_map;
1956 struct cleanup *cleanup;
1957 CORE_ADDR baseaddr;
1958
1959 obstack_init (&temp_obstack);
1960 cleanup = make_cleanup_obstack_free (&temp_obstack);
1961 mutable_map = addrmap_create_mutable (&temp_obstack);
1962
1963 iter = index->address_table;
1964 end = iter + index->address_table_size;
1965
1966 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1967
1968 while (iter < end)
1969 {
1970 ULONGEST hi, lo, cu_index;
1971 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1972 iter += 8;
1973 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1974 iter += 8;
1975 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1976 iter += 4;
1977
1978 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1979 dw2_get_cu (cu_index));
1980 }
1981
1982 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1983 &objfile->objfile_obstack);
1984 do_cleanups (cleanup);
1985 }
1986
1987 /* The hash function for strings in the mapped index. This is the same as
1988 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
1989 implementation. This is necessary because the hash function is tied to the
1990 format of the mapped index file. The hash values do not have to match with
1991 SYMBOL_HASH_NEXT.
1992
1993 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
1994
1995 static hashval_t
1996 mapped_index_string_hash (int index_version, const void *p)
1997 {
1998 const unsigned char *str = (const unsigned char *) p;
1999 hashval_t r = 0;
2000 unsigned char c;
2001
2002 while ((c = *str++) != 0)
2003 {
2004 if (index_version >= 5)
2005 c = tolower (c);
2006 r = r * 67 + c - 113;
2007 }
2008
2009 return r;
2010 }
2011
2012 /* Find a slot in the mapped index INDEX for the object named NAME.
2013 If NAME is found, set *VEC_OUT to point to the CU vector in the
2014 constant pool and return 1. If NAME cannot be found, return 0. */
2015
2016 static int
2017 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2018 offset_type **vec_out)
2019 {
2020 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2021 offset_type hash;
2022 offset_type slot, step;
2023 int (*cmp) (const char *, const char *);
2024
2025 if (current_language->la_language == language_cplus
2026 || current_language->la_language == language_java
2027 || current_language->la_language == language_fortran)
2028 {
2029 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2030 not contain any. */
2031 const char *paren = strchr (name, '(');
2032
2033 if (paren)
2034 {
2035 char *dup;
2036
2037 dup = xmalloc (paren - name + 1);
2038 memcpy (dup, name, paren - name);
2039 dup[paren - name] = 0;
2040
2041 make_cleanup (xfree, dup);
2042 name = dup;
2043 }
2044 }
2045
2046 /* Index version 4 did not support case insensitive searches. But the
2047 indices for case insensitive languages are built in lowercase, therefore
2048 simulate our NAME being searched is also lowercased. */
2049 hash = mapped_index_string_hash ((index->version == 4
2050 && case_sensitivity == case_sensitive_off
2051 ? 5 : index->version),
2052 name);
2053
2054 slot = hash & (index->symbol_table_slots - 1);
2055 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2056 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2057
2058 for (;;)
2059 {
2060 /* Convert a slot number to an offset into the table. */
2061 offset_type i = 2 * slot;
2062 const char *str;
2063 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2064 {
2065 do_cleanups (back_to);
2066 return 0;
2067 }
2068
2069 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2070 if (!cmp (name, str))
2071 {
2072 *vec_out = (offset_type *) (index->constant_pool
2073 + MAYBE_SWAP (index->symbol_table[i + 1]));
2074 do_cleanups (back_to);
2075 return 1;
2076 }
2077
2078 slot = (slot + step) & (index->symbol_table_slots - 1);
2079 }
2080 }
2081
2082 /* Read the index file. If everything went ok, initialize the "quick"
2083 elements of all the CUs and return 1. Otherwise, return 0. */
2084
2085 static int
2086 dwarf2_read_index (struct objfile *objfile)
2087 {
2088 char *addr;
2089 struct mapped_index *map;
2090 offset_type *metadata;
2091 const gdb_byte *cu_list;
2092 const gdb_byte *types_list = NULL;
2093 offset_type version, cu_list_elements;
2094 offset_type types_list_elements = 0;
2095 int i;
2096
2097 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2098 return 0;
2099
2100 /* Older elfutils strip versions could keep the section in the main
2101 executable while splitting it for the separate debug info file. */
2102 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2103 & SEC_HAS_CONTENTS) == 0)
2104 return 0;
2105
2106 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2107
2108 addr = dwarf2_per_objfile->gdb_index.buffer;
2109 /* Version check. */
2110 version = MAYBE_SWAP (*(offset_type *) addr);
2111 /* Versions earlier than 3 emitted every copy of a psymbol. This
2112 causes the index to behave very poorly for certain requests. Version 3
2113 contained incomplete addrmap. So, it seems better to just ignore such
2114 indices. Index version 4 uses a different hash function than index
2115 version 5 and later. */
2116 if (version < 4)
2117 return 0;
2118 /* Indices with higher version than the one supported by GDB may be no
2119 longer backward compatible. */
2120 if (version > 5)
2121 return 0;
2122
2123 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2124 map->version = version;
2125 map->total_size = dwarf2_per_objfile->gdb_index.size;
2126
2127 metadata = (offset_type *) (addr + sizeof (offset_type));
2128
2129 i = 0;
2130 cu_list = addr + MAYBE_SWAP (metadata[i]);
2131 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2132 / 8);
2133 ++i;
2134
2135 types_list = addr + MAYBE_SWAP (metadata[i]);
2136 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2137 - MAYBE_SWAP (metadata[i]))
2138 / 8);
2139 ++i;
2140
2141 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2142 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2143 - MAYBE_SWAP (metadata[i]));
2144 ++i;
2145
2146 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2147 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2148 - MAYBE_SWAP (metadata[i]))
2149 / (2 * sizeof (offset_type)));
2150 ++i;
2151
2152 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2153
2154 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2155 return 0;
2156
2157 if (types_list_elements)
2158 {
2159 struct dwarf2_section_info *section;
2160
2161 /* We can only handle a single .debug_types when we have an
2162 index. */
2163 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2164 return 0;
2165
2166 section = VEC_index (dwarf2_section_info_def,
2167 dwarf2_per_objfile->types, 0);
2168
2169 if (!create_signatured_type_table_from_index (objfile, section,
2170 types_list,
2171 types_list_elements))
2172 return 0;
2173 }
2174
2175 create_addrmap_from_index (objfile, map);
2176
2177 dwarf2_per_objfile->index_table = map;
2178 dwarf2_per_objfile->using_index = 1;
2179 dwarf2_per_objfile->quick_file_names_table =
2180 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2181
2182 return 1;
2183 }
2184
2185 /* A helper for the "quick" functions which sets the global
2186 dwarf2_per_objfile according to OBJFILE. */
2187
2188 static void
2189 dw2_setup (struct objfile *objfile)
2190 {
2191 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2192 gdb_assert (dwarf2_per_objfile);
2193 }
2194
2195 /* A helper for the "quick" functions which attempts to read the line
2196 table for THIS_CU. */
2197
2198 static struct quick_file_names *
2199 dw2_get_file_names (struct objfile *objfile,
2200 struct dwarf2_per_cu_data *this_cu)
2201 {
2202 bfd *abfd = objfile->obfd;
2203 struct line_header *lh;
2204 struct attribute *attr;
2205 struct cleanup *cleanups;
2206 struct die_info *comp_unit_die;
2207 struct dwarf2_section_info* sec;
2208 gdb_byte *info_ptr;
2209 int has_children, i;
2210 struct dwarf2_cu cu;
2211 unsigned int bytes_read;
2212 struct die_reader_specs reader_specs;
2213 char *name, *comp_dir;
2214 void **slot;
2215 struct quick_file_names *qfn;
2216 unsigned int line_offset;
2217
2218 if (this_cu->v.quick->file_names != NULL)
2219 return this_cu->v.quick->file_names;
2220 /* If we know there is no line data, no point in looking again. */
2221 if (this_cu->v.quick->no_file_data)
2222 return NULL;
2223
2224 init_one_comp_unit (&cu, this_cu);
2225 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2226
2227 if (this_cu->debug_types_section)
2228 sec = this_cu->debug_types_section;
2229 else
2230 sec = &dwarf2_per_objfile->info;
2231 dwarf2_read_section (objfile, sec);
2232 info_ptr = sec->buffer + this_cu->offset;
2233
2234 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2235 this_cu->debug_types_section != NULL);
2236
2237 /* Skip dummy compilation units. */
2238 if (info_ptr >= (sec->buffer + sec->size)
2239 || peek_abbrev_code (abfd, info_ptr) == 0)
2240 {
2241 do_cleanups (cleanups);
2242 return NULL;
2243 }
2244
2245 dwarf2_read_abbrevs (&cu);
2246 make_cleanup (dwarf2_free_abbrev_table, &cu);
2247
2248 init_cu_die_reader (&reader_specs, &cu);
2249 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2250 &has_children);
2251
2252 lh = NULL;
2253 slot = NULL;
2254 line_offset = 0;
2255 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2256 if (attr)
2257 {
2258 struct quick_file_names find_entry;
2259
2260 line_offset = DW_UNSND (attr);
2261
2262 /* We may have already read in this line header (TU line header sharing).
2263 If we have we're done. */
2264 find_entry.offset = line_offset;
2265 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2266 &find_entry, INSERT);
2267 if (*slot != NULL)
2268 {
2269 do_cleanups (cleanups);
2270 this_cu->v.quick->file_names = *slot;
2271 return *slot;
2272 }
2273
2274 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2275 }
2276 if (lh == NULL)
2277 {
2278 do_cleanups (cleanups);
2279 this_cu->v.quick->no_file_data = 1;
2280 return NULL;
2281 }
2282
2283 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2284 qfn->offset = line_offset;
2285 gdb_assert (slot != NULL);
2286 *slot = qfn;
2287
2288 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2289
2290 qfn->num_file_names = lh->num_file_names;
2291 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2292 lh->num_file_names * sizeof (char *));
2293 for (i = 0; i < lh->num_file_names; ++i)
2294 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2295 qfn->real_names = NULL;
2296
2297 free_line_header (lh);
2298 do_cleanups (cleanups);
2299
2300 this_cu->v.quick->file_names = qfn;
2301 return qfn;
2302 }
2303
2304 /* A helper for the "quick" functions which computes and caches the
2305 real path for a given file name from the line table. */
2306
2307 static const char *
2308 dw2_get_real_path (struct objfile *objfile,
2309 struct quick_file_names *qfn, int index)
2310 {
2311 if (qfn->real_names == NULL)
2312 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2313 qfn->num_file_names, sizeof (char *));
2314
2315 if (qfn->real_names[index] == NULL)
2316 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2317
2318 return qfn->real_names[index];
2319 }
2320
2321 static struct symtab *
2322 dw2_find_last_source_symtab (struct objfile *objfile)
2323 {
2324 int index;
2325
2326 dw2_setup (objfile);
2327 index = dwarf2_per_objfile->n_comp_units - 1;
2328 return dw2_instantiate_symtab (dw2_get_cu (index));
2329 }
2330
2331 /* Traversal function for dw2_forget_cached_source_info. */
2332
2333 static int
2334 dw2_free_cached_file_names (void **slot, void *info)
2335 {
2336 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2337
2338 if (file_data->real_names)
2339 {
2340 int i;
2341
2342 for (i = 0; i < file_data->num_file_names; ++i)
2343 {
2344 xfree ((void*) file_data->real_names[i]);
2345 file_data->real_names[i] = NULL;
2346 }
2347 }
2348
2349 return 1;
2350 }
2351
2352 static void
2353 dw2_forget_cached_source_info (struct objfile *objfile)
2354 {
2355 dw2_setup (objfile);
2356
2357 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2358 dw2_free_cached_file_names, NULL);
2359 }
2360
2361 /* Helper function for dw2_map_symtabs_matching_filename that expands
2362 the symtabs and calls the iterator. */
2363
2364 static int
2365 dw2_map_expand_apply (struct objfile *objfile,
2366 struct dwarf2_per_cu_data *per_cu,
2367 const char *name,
2368 const char *full_path, const char *real_path,
2369 int (*callback) (struct symtab *, void *),
2370 void *data)
2371 {
2372 struct symtab *last_made = objfile->symtabs;
2373
2374 /* Don't visit already-expanded CUs. */
2375 if (per_cu->v.quick->symtab)
2376 return 0;
2377
2378 /* This may expand more than one symtab, and we want to iterate over
2379 all of them. */
2380 dw2_instantiate_symtab (per_cu);
2381
2382 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2383 objfile->symtabs, last_made);
2384 }
2385
2386 /* Implementation of the map_symtabs_matching_filename method. */
2387
2388 static int
2389 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2390 const char *full_path, const char *real_path,
2391 int (*callback) (struct symtab *, void *),
2392 void *data)
2393 {
2394 int i;
2395 const char *name_basename = lbasename (name);
2396 int name_len = strlen (name);
2397 int is_abs = IS_ABSOLUTE_PATH (name);
2398
2399 dw2_setup (objfile);
2400
2401 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2402 + dwarf2_per_objfile->n_type_units); ++i)
2403 {
2404 int j;
2405 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2406 struct quick_file_names *file_data;
2407
2408 /* We only need to look at symtabs not already expanded. */
2409 if (per_cu->v.quick->symtab)
2410 continue;
2411
2412 file_data = dw2_get_file_names (objfile, per_cu);
2413 if (file_data == NULL)
2414 continue;
2415
2416 for (j = 0; j < file_data->num_file_names; ++j)
2417 {
2418 const char *this_name = file_data->file_names[j];
2419
2420 if (FILENAME_CMP (name, this_name) == 0
2421 || (!is_abs && compare_filenames_for_search (this_name,
2422 name, name_len)))
2423 {
2424 if (dw2_map_expand_apply (objfile, per_cu,
2425 name, full_path, real_path,
2426 callback, data))
2427 return 1;
2428 }
2429
2430 /* Before we invoke realpath, which can get expensive when many
2431 files are involved, do a quick comparison of the basenames. */
2432 if (! basenames_may_differ
2433 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2434 continue;
2435
2436 if (full_path != NULL)
2437 {
2438 const char *this_real_name = dw2_get_real_path (objfile,
2439 file_data, j);
2440
2441 if (this_real_name != NULL
2442 && (FILENAME_CMP (full_path, this_real_name) == 0
2443 || (!is_abs
2444 && compare_filenames_for_search (this_real_name,
2445 name, name_len))))
2446 {
2447 if (dw2_map_expand_apply (objfile, per_cu,
2448 name, full_path, real_path,
2449 callback, data))
2450 return 1;
2451 }
2452 }
2453
2454 if (real_path != NULL)
2455 {
2456 const char *this_real_name = dw2_get_real_path (objfile,
2457 file_data, j);
2458
2459 if (this_real_name != NULL
2460 && (FILENAME_CMP (real_path, this_real_name) == 0
2461 || (!is_abs
2462 && compare_filenames_for_search (this_real_name,
2463 name, name_len))))
2464 {
2465 if (dw2_map_expand_apply (objfile, per_cu,
2466 name, full_path, real_path,
2467 callback, data))
2468 return 1;
2469 }
2470 }
2471 }
2472 }
2473
2474 return 0;
2475 }
2476
2477 static struct symtab *
2478 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2479 const char *name, domain_enum domain)
2480 {
2481 /* We do all the work in the pre_expand_symtabs_matching hook
2482 instead. */
2483 return NULL;
2484 }
2485
2486 /* A helper function that expands all symtabs that hold an object
2487 named NAME. */
2488
2489 static void
2490 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2491 {
2492 dw2_setup (objfile);
2493
2494 /* index_table is NULL if OBJF_READNOW. */
2495 if (dwarf2_per_objfile->index_table)
2496 {
2497 offset_type *vec;
2498
2499 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2500 name, &vec))
2501 {
2502 offset_type i, len = MAYBE_SWAP (*vec);
2503 for (i = 0; i < len; ++i)
2504 {
2505 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2506 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2507
2508 dw2_instantiate_symtab (per_cu);
2509 }
2510 }
2511 }
2512 }
2513
2514 static void
2515 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2516 enum block_enum block_kind, const char *name,
2517 domain_enum domain)
2518 {
2519 dw2_do_expand_symtabs_matching (objfile, name);
2520 }
2521
2522 static void
2523 dw2_print_stats (struct objfile *objfile)
2524 {
2525 int i, count;
2526
2527 dw2_setup (objfile);
2528 count = 0;
2529 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2530 + dwarf2_per_objfile->n_type_units); ++i)
2531 {
2532 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2533
2534 if (!per_cu->v.quick->symtab)
2535 ++count;
2536 }
2537 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2538 }
2539
2540 static void
2541 dw2_dump (struct objfile *objfile)
2542 {
2543 /* Nothing worth printing. */
2544 }
2545
2546 static void
2547 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2548 struct section_offsets *delta)
2549 {
2550 /* There's nothing to relocate here. */
2551 }
2552
2553 static void
2554 dw2_expand_symtabs_for_function (struct objfile *objfile,
2555 const char *func_name)
2556 {
2557 dw2_do_expand_symtabs_matching (objfile, func_name);
2558 }
2559
2560 static void
2561 dw2_expand_all_symtabs (struct objfile *objfile)
2562 {
2563 int i;
2564
2565 dw2_setup (objfile);
2566
2567 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2568 + dwarf2_per_objfile->n_type_units); ++i)
2569 {
2570 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2571
2572 dw2_instantiate_symtab (per_cu);
2573 }
2574 }
2575
2576 static void
2577 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2578 const char *filename)
2579 {
2580 int i;
2581
2582 dw2_setup (objfile);
2583
2584 /* We don't need to consider type units here.
2585 This is only called for examining code, e.g. expand_line_sal.
2586 There can be an order of magnitude (or more) more type units
2587 than comp units, and we avoid them if we can. */
2588
2589 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2590 {
2591 int j;
2592 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2593 struct quick_file_names *file_data;
2594
2595 /* We only need to look at symtabs not already expanded. */
2596 if (per_cu->v.quick->symtab)
2597 continue;
2598
2599 file_data = dw2_get_file_names (objfile, per_cu);
2600 if (file_data == NULL)
2601 continue;
2602
2603 for (j = 0; j < file_data->num_file_names; ++j)
2604 {
2605 const char *this_name = file_data->file_names[j];
2606 if (FILENAME_CMP (this_name, filename) == 0)
2607 {
2608 dw2_instantiate_symtab (per_cu);
2609 break;
2610 }
2611 }
2612 }
2613 }
2614
2615 static const char *
2616 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2617 {
2618 struct dwarf2_per_cu_data *per_cu;
2619 offset_type *vec;
2620 struct quick_file_names *file_data;
2621
2622 dw2_setup (objfile);
2623
2624 /* index_table is NULL if OBJF_READNOW. */
2625 if (!dwarf2_per_objfile->index_table)
2626 {
2627 struct symtab *s;
2628
2629 ALL_OBJFILE_SYMTABS (objfile, s)
2630 if (s->primary)
2631 {
2632 struct blockvector *bv = BLOCKVECTOR (s);
2633 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2634 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2635
2636 if (sym)
2637 return sym->symtab->filename;
2638 }
2639 return NULL;
2640 }
2641
2642 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2643 name, &vec))
2644 return NULL;
2645
2646 /* Note that this just looks at the very first one named NAME -- but
2647 actually we are looking for a function. find_main_filename
2648 should be rewritten so that it doesn't require a custom hook. It
2649 could just use the ordinary symbol tables. */
2650 /* vec[0] is the length, which must always be >0. */
2651 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2652
2653 file_data = dw2_get_file_names (objfile, per_cu);
2654 if (file_data == NULL)
2655 return NULL;
2656
2657 return file_data->file_names[file_data->num_file_names - 1];
2658 }
2659
2660 static void
2661 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2662 struct objfile *objfile, int global,
2663 int (*callback) (struct block *,
2664 struct symbol *, void *),
2665 void *data, symbol_compare_ftype *match,
2666 symbol_compare_ftype *ordered_compare)
2667 {
2668 /* Currently unimplemented; used for Ada. The function can be called if the
2669 current language is Ada for a non-Ada objfile using GNU index. As Ada
2670 does not look for non-Ada symbols this function should just return. */
2671 }
2672
2673 static void
2674 dw2_expand_symtabs_matching
2675 (struct objfile *objfile,
2676 int (*file_matcher) (const char *, void *),
2677 int (*name_matcher) (const char *, void *),
2678 enum search_domain kind,
2679 void *data)
2680 {
2681 int i;
2682 offset_type iter;
2683 struct mapped_index *index;
2684
2685 dw2_setup (objfile);
2686
2687 /* index_table is NULL if OBJF_READNOW. */
2688 if (!dwarf2_per_objfile->index_table)
2689 return;
2690 index = dwarf2_per_objfile->index_table;
2691
2692 if (file_matcher != NULL)
2693 {
2694 struct cleanup *cleanup;
2695 htab_t visited_found, visited_not_found;
2696
2697 visited_found = htab_create_alloc (10,
2698 htab_hash_pointer, htab_eq_pointer,
2699 NULL, xcalloc, xfree);
2700 cleanup = make_cleanup_htab_delete (visited_found);
2701 visited_not_found = htab_create_alloc (10,
2702 htab_hash_pointer, htab_eq_pointer,
2703 NULL, xcalloc, xfree);
2704 make_cleanup_htab_delete (visited_not_found);
2705
2706 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2707 + dwarf2_per_objfile->n_type_units); ++i)
2708 {
2709 int j;
2710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2711 struct quick_file_names *file_data;
2712 void **slot;
2713
2714 per_cu->v.quick->mark = 0;
2715
2716 /* We only need to look at symtabs not already expanded. */
2717 if (per_cu->v.quick->symtab)
2718 continue;
2719
2720 file_data = dw2_get_file_names (objfile, per_cu);
2721 if (file_data == NULL)
2722 continue;
2723
2724 if (htab_find (visited_not_found, file_data) != NULL)
2725 continue;
2726 else if (htab_find (visited_found, file_data) != NULL)
2727 {
2728 per_cu->v.quick->mark = 1;
2729 continue;
2730 }
2731
2732 for (j = 0; j < file_data->num_file_names; ++j)
2733 {
2734 if (file_matcher (file_data->file_names[j], data))
2735 {
2736 per_cu->v.quick->mark = 1;
2737 break;
2738 }
2739 }
2740
2741 slot = htab_find_slot (per_cu->v.quick->mark
2742 ? visited_found
2743 : visited_not_found,
2744 file_data, INSERT);
2745 *slot = file_data;
2746 }
2747
2748 do_cleanups (cleanup);
2749 }
2750
2751 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2752 {
2753 offset_type idx = 2 * iter;
2754 const char *name;
2755 offset_type *vec, vec_len, vec_idx;
2756
2757 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2758 continue;
2759
2760 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2761
2762 if (! (*name_matcher) (name, data))
2763 continue;
2764
2765 /* The name was matched, now expand corresponding CUs that were
2766 marked. */
2767 vec = (offset_type *) (index->constant_pool
2768 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2769 vec_len = MAYBE_SWAP (vec[0]);
2770 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2771 {
2772 struct dwarf2_per_cu_data *per_cu;
2773
2774 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2775 if (file_matcher == NULL || per_cu->v.quick->mark)
2776 dw2_instantiate_symtab (per_cu);
2777 }
2778 }
2779 }
2780
2781 static struct symtab *
2782 dw2_find_pc_sect_symtab (struct objfile *objfile,
2783 struct minimal_symbol *msymbol,
2784 CORE_ADDR pc,
2785 struct obj_section *section,
2786 int warn_if_readin)
2787 {
2788 struct dwarf2_per_cu_data *data;
2789
2790 dw2_setup (objfile);
2791
2792 if (!objfile->psymtabs_addrmap)
2793 return NULL;
2794
2795 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2796 if (!data)
2797 return NULL;
2798
2799 if (warn_if_readin && data->v.quick->symtab)
2800 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2801 paddress (get_objfile_arch (objfile), pc));
2802
2803 return dw2_instantiate_symtab (data);
2804 }
2805
2806 static void
2807 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2808 void *data, int need_fullname)
2809 {
2810 int i;
2811 struct cleanup *cleanup;
2812 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
2813 NULL, xcalloc, xfree);
2814
2815 cleanup = make_cleanup_htab_delete (visited);
2816 dw2_setup (objfile);
2817
2818 /* We can ignore file names coming from already-expanded CUs. */
2819 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2820 + dwarf2_per_objfile->n_type_units); ++i)
2821 {
2822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2823
2824 if (per_cu->v.quick->symtab)
2825 {
2826 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
2827 INSERT);
2828
2829 *slot = per_cu->v.quick->file_names;
2830 }
2831 }
2832
2833 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2834 + dwarf2_per_objfile->n_type_units); ++i)
2835 {
2836 int j;
2837 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2838 struct quick_file_names *file_data;
2839 void **slot;
2840
2841 /* We only need to look at symtabs not already expanded. */
2842 if (per_cu->v.quick->symtab)
2843 continue;
2844
2845 file_data = dw2_get_file_names (objfile, per_cu);
2846 if (file_data == NULL)
2847 continue;
2848
2849 slot = htab_find_slot (visited, file_data, INSERT);
2850 if (*slot)
2851 {
2852 /* Already visited. */
2853 continue;
2854 }
2855 *slot = file_data;
2856
2857 for (j = 0; j < file_data->num_file_names; ++j)
2858 {
2859 const char *this_real_name;
2860
2861 if (need_fullname)
2862 this_real_name = dw2_get_real_path (objfile, file_data, j);
2863 else
2864 this_real_name = NULL;
2865 (*fun) (file_data->file_names[j], this_real_name, data);
2866 }
2867 }
2868
2869 do_cleanups (cleanup);
2870 }
2871
2872 static int
2873 dw2_has_symbols (struct objfile *objfile)
2874 {
2875 return 1;
2876 }
2877
2878 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2879 {
2880 dw2_has_symbols,
2881 dw2_find_last_source_symtab,
2882 dw2_forget_cached_source_info,
2883 dw2_map_symtabs_matching_filename,
2884 dw2_lookup_symbol,
2885 dw2_pre_expand_symtabs_matching,
2886 dw2_print_stats,
2887 dw2_dump,
2888 dw2_relocate,
2889 dw2_expand_symtabs_for_function,
2890 dw2_expand_all_symtabs,
2891 dw2_expand_symtabs_with_filename,
2892 dw2_find_symbol_file,
2893 dw2_map_matching_symbols,
2894 dw2_expand_symtabs_matching,
2895 dw2_find_pc_sect_symtab,
2896 dw2_map_symbol_filenames
2897 };
2898
2899 /* Initialize for reading DWARF for this objfile. Return 0 if this
2900 file will use psymtabs, or 1 if using the GNU index. */
2901
2902 int
2903 dwarf2_initialize_objfile (struct objfile *objfile)
2904 {
2905 /* If we're about to read full symbols, don't bother with the
2906 indices. In this case we also don't care if some other debug
2907 format is making psymtabs, because they are all about to be
2908 expanded anyway. */
2909 if ((objfile->flags & OBJF_READNOW))
2910 {
2911 int i;
2912
2913 dwarf2_per_objfile->using_index = 1;
2914 create_all_comp_units (objfile);
2915 create_debug_types_hash_table (objfile);
2916 dwarf2_per_objfile->quick_file_names_table =
2917 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2918
2919 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2920 + dwarf2_per_objfile->n_type_units); ++i)
2921 {
2922 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2923
2924 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2925 struct dwarf2_per_cu_quick_data);
2926 }
2927
2928 /* Return 1 so that gdb sees the "quick" functions. However,
2929 these functions will be no-ops because we will have expanded
2930 all symtabs. */
2931 return 1;
2932 }
2933
2934 if (dwarf2_read_index (objfile))
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 \f
2941
2942 /* Build a partial symbol table. */
2943
2944 void
2945 dwarf2_build_psymtabs (struct objfile *objfile)
2946 {
2947 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2948 {
2949 init_psymbol_list (objfile, 1024);
2950 }
2951
2952 dwarf2_build_psymtabs_hard (objfile);
2953 }
2954
2955 /* Return TRUE if OFFSET is within CU_HEADER. */
2956
2957 static inline int
2958 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2959 {
2960 unsigned int bottom = cu_header->offset;
2961 unsigned int top = (cu_header->offset
2962 + cu_header->length
2963 + cu_header->initial_length_size);
2964
2965 return (offset >= bottom && offset < top);
2966 }
2967
2968 /* Read in the comp unit header information from the debug_info at info_ptr.
2969 NOTE: This leaves members offset, first_die_offset to be filled in
2970 by the caller. */
2971
2972 static gdb_byte *
2973 read_comp_unit_head (struct comp_unit_head *cu_header,
2974 gdb_byte *info_ptr, bfd *abfd)
2975 {
2976 int signed_addr;
2977 unsigned int bytes_read;
2978
2979 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2980 cu_header->initial_length_size = bytes_read;
2981 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2982 info_ptr += bytes_read;
2983 cu_header->version = read_2_bytes (abfd, info_ptr);
2984 info_ptr += 2;
2985 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2986 &bytes_read);
2987 info_ptr += bytes_read;
2988 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2989 info_ptr += 1;
2990 signed_addr = bfd_get_sign_extend_vma (abfd);
2991 if (signed_addr < 0)
2992 internal_error (__FILE__, __LINE__,
2993 _("read_comp_unit_head: dwarf from non elf file"));
2994 cu_header->signed_addr_p = signed_addr;
2995
2996 return info_ptr;
2997 }
2998
2999 /* Subroutine of read_and_check_comp_unit_head and
3000 read_and_check_type_unit_head to simplify them.
3001 Perform various error checking on the header. */
3002
3003 static void
3004 error_check_comp_unit_head (struct comp_unit_head *header,
3005 struct dwarf2_section_info *section)
3006 {
3007 bfd *abfd = section->asection->owner;
3008 const char *filename = bfd_get_filename (abfd);
3009
3010 if (header->version != 2 && header->version != 3 && header->version != 4)
3011 error (_("Dwarf Error: wrong version in compilation unit header "
3012 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3013 filename);
3014
3015 if (header->abbrev_offset
3016 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3017 &dwarf2_per_objfile->abbrev))
3018 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3019 "(offset 0x%lx + 6) [in module %s]"),
3020 (long) header->abbrev_offset, (long) header->offset,
3021 filename);
3022
3023 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3024 avoid potential 32-bit overflow. */
3025 if (((unsigned long) header->offset
3026 + header->length + header->initial_length_size)
3027 > section->size)
3028 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3029 "(offset 0x%lx + 0) [in module %s]"),
3030 (long) header->length, (long) header->offset,
3031 filename);
3032 }
3033
3034 /* Read in a CU/TU header and perform some basic error checking.
3035 The contents of the header are stored in HEADER.
3036 The result is a pointer to the start of the first DIE. */
3037
3038 static gdb_byte *
3039 read_and_check_comp_unit_head (struct comp_unit_head *header,
3040 struct dwarf2_section_info *section,
3041 gdb_byte *info_ptr,
3042 int is_debug_types_section)
3043 {
3044 gdb_byte *beg_of_comp_unit = info_ptr;
3045 bfd *abfd = section->asection->owner;
3046
3047 header->offset = beg_of_comp_unit - section->buffer;
3048
3049 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3050
3051 /* If we're reading a type unit, skip over the signature and
3052 type_offset fields. */
3053 if (is_debug_types_section)
3054 info_ptr += 8 /*signature*/ + header->offset_size;
3055
3056 header->first_die_offset = info_ptr - beg_of_comp_unit;
3057
3058 error_check_comp_unit_head (header, section);
3059
3060 return info_ptr;
3061 }
3062
3063 /* Read in the types comp unit header information from .debug_types entry at
3064 types_ptr. The result is a pointer to one past the end of the header. */
3065
3066 static gdb_byte *
3067 read_and_check_type_unit_head (struct comp_unit_head *header,
3068 struct dwarf2_section_info *section,
3069 gdb_byte *info_ptr,
3070 ULONGEST *signature, unsigned int *type_offset)
3071 {
3072 gdb_byte *beg_of_comp_unit = info_ptr;
3073 bfd *abfd = section->asection->owner;
3074
3075 header->offset = beg_of_comp_unit - section->buffer;
3076
3077 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3078
3079 /* If we're reading a type unit, skip over the signature and
3080 type_offset fields. */
3081 if (signature != NULL)
3082 *signature = read_8_bytes (abfd, info_ptr);
3083 info_ptr += 8;
3084 if (type_offset != NULL)
3085 *type_offset = read_offset_1 (abfd, info_ptr, header->offset_size);
3086 info_ptr += header->offset_size;
3087
3088 header->first_die_offset = info_ptr - beg_of_comp_unit;
3089
3090 error_check_comp_unit_head (header, section);
3091
3092 return info_ptr;
3093 }
3094
3095 /* Allocate a new partial symtab for file named NAME and mark this new
3096 partial symtab as being an include of PST. */
3097
3098 static void
3099 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3100 struct objfile *objfile)
3101 {
3102 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3103
3104 subpst->section_offsets = pst->section_offsets;
3105 subpst->textlow = 0;
3106 subpst->texthigh = 0;
3107
3108 subpst->dependencies = (struct partial_symtab **)
3109 obstack_alloc (&objfile->objfile_obstack,
3110 sizeof (struct partial_symtab *));
3111 subpst->dependencies[0] = pst;
3112 subpst->number_of_dependencies = 1;
3113
3114 subpst->globals_offset = 0;
3115 subpst->n_global_syms = 0;
3116 subpst->statics_offset = 0;
3117 subpst->n_static_syms = 0;
3118 subpst->symtab = NULL;
3119 subpst->read_symtab = pst->read_symtab;
3120 subpst->readin = 0;
3121
3122 /* No private part is necessary for include psymtabs. This property
3123 can be used to differentiate between such include psymtabs and
3124 the regular ones. */
3125 subpst->read_symtab_private = NULL;
3126 }
3127
3128 /* Read the Line Number Program data and extract the list of files
3129 included by the source file represented by PST. Build an include
3130 partial symtab for each of these included files. */
3131
3132 static void
3133 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3134 struct die_info *die,
3135 struct partial_symtab *pst)
3136 {
3137 struct objfile *objfile = cu->objfile;
3138 bfd *abfd = objfile->obfd;
3139 struct line_header *lh = NULL;
3140 struct attribute *attr;
3141
3142 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3143 if (attr)
3144 {
3145 unsigned int line_offset = DW_UNSND (attr);
3146
3147 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3148 }
3149 if (lh == NULL)
3150 return; /* No linetable, so no includes. */
3151
3152 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3153 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3154
3155 free_line_header (lh);
3156 }
3157
3158 static hashval_t
3159 hash_type_signature (const void *item)
3160 {
3161 const struct signatured_type *type_sig = item;
3162
3163 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3164 return type_sig->signature;
3165 }
3166
3167 static int
3168 eq_type_signature (const void *item_lhs, const void *item_rhs)
3169 {
3170 const struct signatured_type *lhs = item_lhs;
3171 const struct signatured_type *rhs = item_rhs;
3172
3173 return lhs->signature == rhs->signature;
3174 }
3175
3176 /* Allocate a hash table for signatured types. */
3177
3178 static htab_t
3179 allocate_signatured_type_table (struct objfile *objfile)
3180 {
3181 return htab_create_alloc_ex (41,
3182 hash_type_signature,
3183 eq_type_signature,
3184 NULL,
3185 &objfile->objfile_obstack,
3186 hashtab_obstack_allocate,
3187 dummy_obstack_deallocate);
3188 }
3189
3190 /* A helper function to add a signatured type CU to a table. */
3191
3192 static int
3193 add_signatured_type_cu_to_table (void **slot, void *datum)
3194 {
3195 struct signatured_type *sigt = *slot;
3196 struct dwarf2_per_cu_data ***datap = datum;
3197
3198 **datap = &sigt->per_cu;
3199 ++*datap;
3200
3201 return 1;
3202 }
3203
3204 /* Create the hash table of all entries in the .debug_types section(s).
3205 The result is zero if there is an error (e.g. missing .debug_types section),
3206 otherwise non-zero. */
3207
3208 static int
3209 create_debug_types_hash_table (struct objfile *objfile)
3210 {
3211 htab_t types_htab = NULL;
3212 struct dwarf2_per_cu_data **iter;
3213 int ix;
3214 struct dwarf2_section_info *section;
3215
3216 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3217 {
3218 dwarf2_per_objfile->signatured_types = NULL;
3219 return 0;
3220 }
3221
3222 for (ix = 0;
3223 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3224 ix, section);
3225 ++ix)
3226 {
3227 gdb_byte *info_ptr, *end_ptr;
3228
3229 dwarf2_read_section (objfile, section);
3230 info_ptr = section->buffer;
3231
3232 if (info_ptr == NULL)
3233 continue;
3234
3235 if (types_htab == NULL)
3236 types_htab = allocate_signatured_type_table (objfile);
3237
3238 if (dwarf2_die_debug)
3239 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3240
3241 end_ptr = info_ptr + section->size;
3242 while (info_ptr < end_ptr)
3243 {
3244 unsigned int offset;
3245 unsigned int type_offset;
3246 ULONGEST signature;
3247 struct signatured_type *type_sig;
3248 void **slot;
3249 gdb_byte *ptr = info_ptr;
3250 struct comp_unit_head header;
3251
3252 offset = ptr - section->buffer;
3253
3254 /* We need to read the type's signature in order to build the hash
3255 table, but we don't need anything else just yet. */
3256
3257 ptr = read_and_check_type_unit_head (&header, section, ptr,
3258 &signature, &type_offset);
3259
3260 /* Skip dummy type units. */
3261 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3262 {
3263 info_ptr = info_ptr + header.initial_length_size + header.length;
3264 continue;
3265 }
3266
3267 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3268 memset (type_sig, 0, sizeof (*type_sig));
3269 type_sig->signature = signature;
3270 type_sig->type_offset = type_offset;
3271 type_sig->per_cu.objfile = objfile;
3272 type_sig->per_cu.debug_types_section = section;
3273 type_sig->per_cu.offset = offset;
3274
3275 slot = htab_find_slot (types_htab, type_sig, INSERT);
3276 gdb_assert (slot != NULL);
3277 if (*slot != NULL)
3278 {
3279 const struct signatured_type *dup_sig = *slot;
3280
3281 complaint (&symfile_complaints,
3282 _("debug type entry at offset 0x%x is duplicate to the "
3283 "entry at offset 0x%x, signature 0x%s"),
3284 offset, dup_sig->per_cu.offset,
3285 phex (signature, sizeof (signature)));
3286 gdb_assert (signature == dup_sig->signature);
3287 }
3288 *slot = type_sig;
3289
3290 if (dwarf2_die_debug)
3291 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3292 offset, phex (signature, sizeof (signature)));
3293
3294 info_ptr = info_ptr + header.initial_length_size + header.length;
3295 }
3296 }
3297
3298 dwarf2_per_objfile->signatured_types = types_htab;
3299
3300 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3301 dwarf2_per_objfile->all_type_units
3302 = obstack_alloc (&objfile->objfile_obstack,
3303 dwarf2_per_objfile->n_type_units
3304 * sizeof (struct dwarf2_per_cu_data *));
3305 iter = &dwarf2_per_objfile->all_type_units[0];
3306 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3307 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3308 == dwarf2_per_objfile->n_type_units);
3309
3310 return 1;
3311 }
3312
3313 /* Lookup a signature based type.
3314 Returns NULL if SIG is not present in the table. */
3315
3316 static struct signatured_type *
3317 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3318 {
3319 struct signatured_type find_entry, *entry;
3320
3321 if (dwarf2_per_objfile->signatured_types == NULL)
3322 {
3323 complaint (&symfile_complaints,
3324 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3325 return 0;
3326 }
3327
3328 find_entry.signature = sig;
3329 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3330 return entry;
3331 }
3332
3333 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3334
3335 static void
3336 init_cu_die_reader (struct die_reader_specs *reader,
3337 struct dwarf2_cu *cu)
3338 {
3339 reader->abfd = cu->objfile->obfd;
3340 reader->cu = cu;
3341 if (cu->per_cu->debug_types_section)
3342 {
3343 gdb_assert (cu->per_cu->debug_types_section->readin);
3344 reader->buffer = cu->per_cu->debug_types_section->buffer;
3345 }
3346 else
3347 {
3348 gdb_assert (dwarf2_per_objfile->info.readin);
3349 reader->buffer = dwarf2_per_objfile->info.buffer;
3350 }
3351 }
3352
3353 /* Find the base address of the compilation unit for range lists and
3354 location lists. It will normally be specified by DW_AT_low_pc.
3355 In DWARF-3 draft 4, the base address could be overridden by
3356 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3357 compilation units with discontinuous ranges. */
3358
3359 static void
3360 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3361 {
3362 struct attribute *attr;
3363
3364 cu->base_known = 0;
3365 cu->base_address = 0;
3366
3367 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3368 if (attr)
3369 {
3370 cu->base_address = DW_ADDR (attr);
3371 cu->base_known = 1;
3372 }
3373 else
3374 {
3375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3376 if (attr)
3377 {
3378 cu->base_address = DW_ADDR (attr);
3379 cu->base_known = 1;
3380 }
3381 }
3382 }
3383
3384 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3385 to combine the common parts.
3386 Process compilation unit THIS_CU for a psymtab.
3387 SECTION is the section the CU/TU comes from,
3388 either .debug_info or .debug_types. */
3389
3390 static void
3391 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
3392 struct dwarf2_section_info *section,
3393 int is_debug_types_section)
3394 {
3395 struct objfile *objfile = this_cu->objfile;
3396 bfd *abfd = objfile->obfd;
3397 gdb_byte *buffer = section->buffer;
3398 gdb_byte *info_ptr = buffer + this_cu->offset;
3399 unsigned int buffer_size = section->size;
3400 gdb_byte *beg_of_comp_unit = info_ptr;
3401 struct die_info *comp_unit_die;
3402 struct partial_symtab *pst;
3403 CORE_ADDR baseaddr;
3404 struct cleanup *back_to_inner;
3405 struct dwarf2_cu cu;
3406 int has_children, has_pc_info;
3407 struct attribute *attr;
3408 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3409 struct die_reader_specs reader_specs;
3410 const char *filename;
3411
3412 /* If this compilation unit was already read in, free the
3413 cached copy in order to read it in again. This is
3414 necessary because we skipped some symbols when we first
3415 read in the compilation unit (see load_partial_dies).
3416 This problem could be avoided, but the benefit is
3417 unclear. */
3418 if (this_cu->cu != NULL)
3419 free_one_cached_comp_unit (this_cu->cu);
3420
3421 /* Note that this is a pointer to our stack frame, being
3422 added to a global data structure. It will be cleaned up
3423 in free_stack_comp_unit when we finish with this
3424 compilation unit. */
3425 init_one_comp_unit (&cu, this_cu);
3426 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3427
3428 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3429 is_debug_types_section);
3430
3431 /* Skip dummy compilation units. */
3432 if (info_ptr >= buffer + buffer_size
3433 || peek_abbrev_code (abfd, info_ptr) == 0)
3434 {
3435 do_cleanups (back_to_inner);
3436 return;
3437 }
3438
3439 cu.list_in_scope = &file_symbols;
3440
3441 /* Read the abbrevs for this compilation unit into a table. */
3442 dwarf2_read_abbrevs (&cu);
3443 make_cleanup (dwarf2_free_abbrev_table, &cu);
3444
3445 /* Read the compilation unit die. */
3446 init_cu_die_reader (&reader_specs, &cu);
3447 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3448 &has_children);
3449
3450 if (is_debug_types_section)
3451 {
3452 /* LENGTH has not been set yet for type units. */
3453 gdb_assert (this_cu->offset == cu.header.offset);
3454 this_cu->length = cu.header.length + cu.header.initial_length_size;
3455 }
3456 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3457 {
3458 do_cleanups (back_to_inner);
3459 return;
3460 }
3461
3462 prepare_one_comp_unit (&cu, comp_unit_die);
3463
3464 /* Allocate a new partial symbol table structure. */
3465 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3466 if (attr == NULL || !DW_STRING (attr))
3467 filename = "";
3468 else
3469 filename = DW_STRING (attr);
3470 pst = start_psymtab_common (objfile, objfile->section_offsets,
3471 filename,
3472 /* TEXTLOW and TEXTHIGH are set below. */
3473 0,
3474 objfile->global_psymbols.next,
3475 objfile->static_psymbols.next);
3476 pst->psymtabs_addrmap_supported = 1;
3477
3478 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3479 if (attr != NULL)
3480 pst->dirname = DW_STRING (attr);
3481
3482 pst->read_symtab_private = this_cu;
3483
3484 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3485
3486 /* Store the function that reads in the rest of the symbol table. */
3487 pst->read_symtab = dwarf2_psymtab_to_symtab;
3488
3489 this_cu->v.psymtab = pst;
3490
3491 dwarf2_find_base_address (comp_unit_die, &cu);
3492
3493 /* Possibly set the default values of LOWPC and HIGHPC from
3494 `DW_AT_ranges'. */
3495 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3496 &best_highpc, &cu, pst);
3497 if (has_pc_info == 1 && best_lowpc < best_highpc)
3498 /* Store the contiguous range if it is not empty; it can be empty for
3499 CUs with no code. */
3500 addrmap_set_empty (objfile->psymtabs_addrmap,
3501 best_lowpc + baseaddr,
3502 best_highpc + baseaddr - 1, pst);
3503
3504 /* Check if comp unit has_children.
3505 If so, read the rest of the partial symbols from this comp unit.
3506 If not, there's no more debug_info for this comp unit. */
3507 if (has_children)
3508 {
3509 struct partial_die_info *first_die;
3510 CORE_ADDR lowpc, highpc;
3511
3512 lowpc = ((CORE_ADDR) -1);
3513 highpc = ((CORE_ADDR) 0);
3514
3515 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3516
3517 scan_partial_symbols (first_die, &lowpc, &highpc,
3518 ! has_pc_info, &cu);
3519
3520 /* If we didn't find a lowpc, set it to highpc to avoid
3521 complaints from `maint check'. */
3522 if (lowpc == ((CORE_ADDR) -1))
3523 lowpc = highpc;
3524
3525 /* If the compilation unit didn't have an explicit address range,
3526 then use the information extracted from its child dies. */
3527 if (! has_pc_info)
3528 {
3529 best_lowpc = lowpc;
3530 best_highpc = highpc;
3531 }
3532 }
3533 pst->textlow = best_lowpc + baseaddr;
3534 pst->texthigh = best_highpc + baseaddr;
3535
3536 pst->n_global_syms = objfile->global_psymbols.next -
3537 (objfile->global_psymbols.list + pst->globals_offset);
3538 pst->n_static_syms = objfile->static_psymbols.next -
3539 (objfile->static_psymbols.list + pst->statics_offset);
3540 sort_pst_symbols (pst);
3541
3542 if (is_debug_types_section)
3543 {
3544 /* It's not clear we want to do anything with stmt lists here.
3545 Waiting to see what gcc ultimately does. */
3546 }
3547 else
3548 {
3549 /* Get the list of files included in the current compilation unit,
3550 and build a psymtab for each of them. */
3551 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3552 }
3553
3554 do_cleanups (back_to_inner);
3555 }
3556
3557 /* Traversal function for htab_traverse_noresize.
3558 Process one .debug_types comp-unit. */
3559
3560 static int
3561 process_type_comp_unit (void **slot, void *info)
3562 {
3563 struct signatured_type *entry = (struct signatured_type *) *slot;
3564 struct dwarf2_per_cu_data *this_cu;
3565
3566 gdb_assert (info == NULL);
3567 this_cu = &entry->per_cu;
3568
3569 gdb_assert (this_cu->debug_types_section->readin);
3570 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
3571
3572 return 1;
3573 }
3574
3575 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3576 Build partial symbol tables for the .debug_types comp-units. */
3577
3578 static void
3579 build_type_psymtabs (struct objfile *objfile)
3580 {
3581 if (! create_debug_types_hash_table (objfile))
3582 return;
3583
3584 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3585 process_type_comp_unit, NULL);
3586 }
3587
3588 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3589
3590 static void
3591 psymtabs_addrmap_cleanup (void *o)
3592 {
3593 struct objfile *objfile = o;
3594
3595 objfile->psymtabs_addrmap = NULL;
3596 }
3597
3598 /* Build the partial symbol table by doing a quick pass through the
3599 .debug_info and .debug_abbrev sections. */
3600
3601 static void
3602 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3603 {
3604 struct cleanup *back_to, *addrmap_cleanup;
3605 struct obstack temp_obstack;
3606 int i;
3607
3608 dwarf2_per_objfile->reading_partial_symbols = 1;
3609
3610 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3611
3612 /* Any cached compilation units will be linked by the per-objfile
3613 read_in_chain. Make sure to free them when we're done. */
3614 back_to = make_cleanup (free_cached_comp_units, NULL);
3615
3616 build_type_psymtabs (objfile);
3617
3618 create_all_comp_units (objfile);
3619
3620 /* Create a temporary address map on a temporary obstack. We later
3621 copy this to the final obstack. */
3622 obstack_init (&temp_obstack);
3623 make_cleanup_obstack_free (&temp_obstack);
3624 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3625 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3626
3627 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3628 {
3629 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3630
3631 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
3632 }
3633
3634 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3635 &objfile->objfile_obstack);
3636 discard_cleanups (addrmap_cleanup);
3637
3638 do_cleanups (back_to);
3639 }
3640
3641 /* Load the partial DIEs for a secondary CU into memory. */
3642
3643 static void
3644 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
3645 {
3646 struct objfile *objfile = this_cu->objfile;
3647 bfd *abfd = objfile->obfd;
3648 gdb_byte *info_ptr;
3649 struct die_info *comp_unit_die;
3650 struct dwarf2_cu *cu;
3651 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3652 int has_children;
3653 struct die_reader_specs reader_specs;
3654 int read_cu = 0;
3655 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
3656
3657 gdb_assert (! this_cu->debug_types_section);
3658
3659 gdb_assert (section->readin);
3660 info_ptr = section->buffer + this_cu->offset;
3661
3662 if (this_cu->cu == NULL)
3663 {
3664 cu = xmalloc (sizeof (*cu));
3665 init_one_comp_unit (cu, this_cu);
3666
3667 read_cu = 1;
3668
3669 /* If an error occurs while loading, release our storage. */
3670 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3671
3672 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3673 0);
3674
3675 /* Skip dummy compilation units. */
3676 if (info_ptr >= (section->buffer + section->size)
3677 || peek_abbrev_code (abfd, info_ptr) == 0)
3678 {
3679 do_cleanups (free_cu_cleanup);
3680 return;
3681 }
3682
3683 /* Link this CU into read_in_chain. */
3684 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3685 dwarf2_per_objfile->read_in_chain = this_cu;
3686 }
3687 else
3688 {
3689 cu = this_cu->cu;
3690 info_ptr += cu->header.first_die_offset;
3691 }
3692
3693 /* Read the abbrevs for this compilation unit into a table. */
3694 gdb_assert (cu->dwarf2_abbrevs == NULL);
3695 dwarf2_read_abbrevs (cu);
3696 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3697
3698 /* Read the compilation unit die. */
3699 init_cu_die_reader (&reader_specs, cu);
3700 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3701 &has_children);
3702
3703 prepare_one_comp_unit (cu, comp_unit_die);
3704
3705 /* Check if comp unit has_children.
3706 If so, read the rest of the partial symbols from this comp unit.
3707 If not, there's no more debug_info for this comp unit. */
3708 if (has_children)
3709 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
3710
3711 do_cleanups (free_abbrevs_cleanup);
3712
3713 if (read_cu)
3714 {
3715 /* We've successfully allocated this compilation unit. Let our
3716 caller clean it up when finished with it. */
3717 discard_cleanups (free_cu_cleanup);
3718 }
3719 }
3720
3721 /* Create a list of all compilation units in OBJFILE.
3722 This is only done for -readnow and building partial symtabs. */
3723
3724 static void
3725 create_all_comp_units (struct objfile *objfile)
3726 {
3727 int n_allocated;
3728 int n_comp_units;
3729 struct dwarf2_per_cu_data **all_comp_units;
3730 gdb_byte *info_ptr;
3731
3732 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3733 info_ptr = dwarf2_per_objfile->info.buffer;
3734
3735 n_comp_units = 0;
3736 n_allocated = 10;
3737 all_comp_units = xmalloc (n_allocated
3738 * sizeof (struct dwarf2_per_cu_data *));
3739
3740 while (info_ptr < dwarf2_per_objfile->info.buffer
3741 + dwarf2_per_objfile->info.size)
3742 {
3743 unsigned int length, initial_length_size;
3744 struct dwarf2_per_cu_data *this_cu;
3745 unsigned int offset;
3746
3747 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3748
3749 /* Read just enough information to find out where the next
3750 compilation unit is. */
3751 length = read_initial_length (objfile->obfd, info_ptr,
3752 &initial_length_size);
3753
3754 /* Save the compilation unit for later lookup. */
3755 this_cu = obstack_alloc (&objfile->objfile_obstack,
3756 sizeof (struct dwarf2_per_cu_data));
3757 memset (this_cu, 0, sizeof (*this_cu));
3758 this_cu->offset = offset;
3759 this_cu->length = length + initial_length_size;
3760 this_cu->objfile = objfile;
3761
3762 if (n_comp_units == n_allocated)
3763 {
3764 n_allocated *= 2;
3765 all_comp_units = xrealloc (all_comp_units,
3766 n_allocated
3767 * sizeof (struct dwarf2_per_cu_data *));
3768 }
3769 all_comp_units[n_comp_units++] = this_cu;
3770
3771 info_ptr = info_ptr + this_cu->length;
3772 }
3773
3774 dwarf2_per_objfile->all_comp_units
3775 = obstack_alloc (&objfile->objfile_obstack,
3776 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3777 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3778 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3779 xfree (all_comp_units);
3780 dwarf2_per_objfile->n_comp_units = n_comp_units;
3781 }
3782
3783 /* Process all loaded DIEs for compilation unit CU, starting at
3784 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3785 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3786 DW_AT_ranges). If NEED_PC is set, then this function will set
3787 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3788 and record the covered ranges in the addrmap. */
3789
3790 static void
3791 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3792 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3793 {
3794 struct partial_die_info *pdi;
3795
3796 /* Now, march along the PDI's, descending into ones which have
3797 interesting children but skipping the children of the other ones,
3798 until we reach the end of the compilation unit. */
3799
3800 pdi = first_die;
3801
3802 while (pdi != NULL)
3803 {
3804 fixup_partial_die (pdi, cu);
3805
3806 /* Anonymous namespaces or modules have no name but have interesting
3807 children, so we need to look at them. Ditto for anonymous
3808 enums. */
3809
3810 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3811 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3812 {
3813 switch (pdi->tag)
3814 {
3815 case DW_TAG_subprogram:
3816 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3817 break;
3818 case DW_TAG_constant:
3819 case DW_TAG_variable:
3820 case DW_TAG_typedef:
3821 case DW_TAG_union_type:
3822 if (!pdi->is_declaration)
3823 {
3824 add_partial_symbol (pdi, cu);
3825 }
3826 break;
3827 case DW_TAG_class_type:
3828 case DW_TAG_interface_type:
3829 case DW_TAG_structure_type:
3830 if (!pdi->is_declaration)
3831 {
3832 add_partial_symbol (pdi, cu);
3833 }
3834 break;
3835 case DW_TAG_enumeration_type:
3836 if (!pdi->is_declaration)
3837 add_partial_enumeration (pdi, cu);
3838 break;
3839 case DW_TAG_base_type:
3840 case DW_TAG_subrange_type:
3841 /* File scope base type definitions are added to the partial
3842 symbol table. */
3843 add_partial_symbol (pdi, cu);
3844 break;
3845 case DW_TAG_namespace:
3846 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3847 break;
3848 case DW_TAG_module:
3849 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3850 break;
3851 default:
3852 break;
3853 }
3854 }
3855
3856 /* If the die has a sibling, skip to the sibling. */
3857
3858 pdi = pdi->die_sibling;
3859 }
3860 }
3861
3862 /* Functions used to compute the fully scoped name of a partial DIE.
3863
3864 Normally, this is simple. For C++, the parent DIE's fully scoped
3865 name is concatenated with "::" and the partial DIE's name. For
3866 Java, the same thing occurs except that "." is used instead of "::".
3867 Enumerators are an exception; they use the scope of their parent
3868 enumeration type, i.e. the name of the enumeration type is not
3869 prepended to the enumerator.
3870
3871 There are two complexities. One is DW_AT_specification; in this
3872 case "parent" means the parent of the target of the specification,
3873 instead of the direct parent of the DIE. The other is compilers
3874 which do not emit DW_TAG_namespace; in this case we try to guess
3875 the fully qualified name of structure types from their members'
3876 linkage names. This must be done using the DIE's children rather
3877 than the children of any DW_AT_specification target. We only need
3878 to do this for structures at the top level, i.e. if the target of
3879 any DW_AT_specification (if any; otherwise the DIE itself) does not
3880 have a parent. */
3881
3882 /* Compute the scope prefix associated with PDI's parent, in
3883 compilation unit CU. The result will be allocated on CU's
3884 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3885 field. NULL is returned if no prefix is necessary. */
3886 static char *
3887 partial_die_parent_scope (struct partial_die_info *pdi,
3888 struct dwarf2_cu *cu)
3889 {
3890 char *grandparent_scope;
3891 struct partial_die_info *parent, *real_pdi;
3892
3893 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3894 then this means the parent of the specification DIE. */
3895
3896 real_pdi = pdi;
3897 while (real_pdi->has_specification)
3898 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3899
3900 parent = real_pdi->die_parent;
3901 if (parent == NULL)
3902 return NULL;
3903
3904 if (parent->scope_set)
3905 return parent->scope;
3906
3907 fixup_partial_die (parent, cu);
3908
3909 grandparent_scope = partial_die_parent_scope (parent, cu);
3910
3911 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3912 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3913 Work around this problem here. */
3914 if (cu->language == language_cplus
3915 && parent->tag == DW_TAG_namespace
3916 && strcmp (parent->name, "::") == 0
3917 && grandparent_scope == NULL)
3918 {
3919 parent->scope = NULL;
3920 parent->scope_set = 1;
3921 return NULL;
3922 }
3923
3924 if (pdi->tag == DW_TAG_enumerator)
3925 /* Enumerators should not get the name of the enumeration as a prefix. */
3926 parent->scope = grandparent_scope;
3927 else if (parent->tag == DW_TAG_namespace
3928 || parent->tag == DW_TAG_module
3929 || parent->tag == DW_TAG_structure_type
3930 || parent->tag == DW_TAG_class_type
3931 || parent->tag == DW_TAG_interface_type
3932 || parent->tag == DW_TAG_union_type
3933 || parent->tag == DW_TAG_enumeration_type)
3934 {
3935 if (grandparent_scope == NULL)
3936 parent->scope = parent->name;
3937 else
3938 parent->scope = typename_concat (&cu->comp_unit_obstack,
3939 grandparent_scope,
3940 parent->name, 0, cu);
3941 }
3942 else
3943 {
3944 /* FIXME drow/2004-04-01: What should we be doing with
3945 function-local names? For partial symbols, we should probably be
3946 ignoring them. */
3947 complaint (&symfile_complaints,
3948 _("unhandled containing DIE tag %d for DIE at %d"),
3949 parent->tag, pdi->offset);
3950 parent->scope = grandparent_scope;
3951 }
3952
3953 parent->scope_set = 1;
3954 return parent->scope;
3955 }
3956
3957 /* Return the fully scoped name associated with PDI, from compilation unit
3958 CU. The result will be allocated with malloc. */
3959 static char *
3960 partial_die_full_name (struct partial_die_info *pdi,
3961 struct dwarf2_cu *cu)
3962 {
3963 char *parent_scope;
3964
3965 /* If this is a template instantiation, we can not work out the
3966 template arguments from partial DIEs. So, unfortunately, we have
3967 to go through the full DIEs. At least any work we do building
3968 types here will be reused if full symbols are loaded later. */
3969 if (pdi->has_template_arguments)
3970 {
3971 fixup_partial_die (pdi, cu);
3972
3973 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3974 {
3975 struct die_info *die;
3976 struct attribute attr;
3977 struct dwarf2_cu *ref_cu = cu;
3978
3979 attr.name = 0;
3980 attr.form = DW_FORM_ref_addr;
3981 attr.u.addr = pdi->offset;
3982 die = follow_die_ref (NULL, &attr, &ref_cu);
3983
3984 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3985 }
3986 }
3987
3988 parent_scope = partial_die_parent_scope (pdi, cu);
3989 if (parent_scope == NULL)
3990 return NULL;
3991 else
3992 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3993 }
3994
3995 static void
3996 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3997 {
3998 struct objfile *objfile = cu->objfile;
3999 CORE_ADDR addr = 0;
4000 char *actual_name = NULL;
4001 CORE_ADDR baseaddr;
4002 int built_actual_name = 0;
4003
4004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4005
4006 actual_name = partial_die_full_name (pdi, cu);
4007 if (actual_name)
4008 built_actual_name = 1;
4009
4010 if (actual_name == NULL)
4011 actual_name = pdi->name;
4012
4013 switch (pdi->tag)
4014 {
4015 case DW_TAG_subprogram:
4016 if (pdi->is_external || cu->language == language_ada)
4017 {
4018 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4019 of the global scope. But in Ada, we want to be able to access
4020 nested procedures globally. So all Ada subprograms are stored
4021 in the global scope. */
4022 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4023 mst_text, objfile); */
4024 add_psymbol_to_list (actual_name, strlen (actual_name),
4025 built_actual_name,
4026 VAR_DOMAIN, LOC_BLOCK,
4027 &objfile->global_psymbols,
4028 0, pdi->lowpc + baseaddr,
4029 cu->language, objfile);
4030 }
4031 else
4032 {
4033 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4034 mst_file_text, objfile); */
4035 add_psymbol_to_list (actual_name, strlen (actual_name),
4036 built_actual_name,
4037 VAR_DOMAIN, LOC_BLOCK,
4038 &objfile->static_psymbols,
4039 0, pdi->lowpc + baseaddr,
4040 cu->language, objfile);
4041 }
4042 break;
4043 case DW_TAG_constant:
4044 {
4045 struct psymbol_allocation_list *list;
4046
4047 if (pdi->is_external)
4048 list = &objfile->global_psymbols;
4049 else
4050 list = &objfile->static_psymbols;
4051 add_psymbol_to_list (actual_name, strlen (actual_name),
4052 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4053 list, 0, 0, cu->language, objfile);
4054 }
4055 break;
4056 case DW_TAG_variable:
4057 if (pdi->locdesc)
4058 addr = decode_locdesc (pdi->locdesc, cu);
4059
4060 if (pdi->locdesc
4061 && addr == 0
4062 && !dwarf2_per_objfile->has_section_at_zero)
4063 {
4064 /* A global or static variable may also have been stripped
4065 out by the linker if unused, in which case its address
4066 will be nullified; do not add such variables into partial
4067 symbol table then. */
4068 }
4069 else if (pdi->is_external)
4070 {
4071 /* Global Variable.
4072 Don't enter into the minimal symbol tables as there is
4073 a minimal symbol table entry from the ELF symbols already.
4074 Enter into partial symbol table if it has a location
4075 descriptor or a type.
4076 If the location descriptor is missing, new_symbol will create
4077 a LOC_UNRESOLVED symbol, the address of the variable will then
4078 be determined from the minimal symbol table whenever the variable
4079 is referenced.
4080 The address for the partial symbol table entry is not
4081 used by GDB, but it comes in handy for debugging partial symbol
4082 table building. */
4083
4084 if (pdi->locdesc || pdi->has_type)
4085 add_psymbol_to_list (actual_name, strlen (actual_name),
4086 built_actual_name,
4087 VAR_DOMAIN, LOC_STATIC,
4088 &objfile->global_psymbols,
4089 0, addr + baseaddr,
4090 cu->language, objfile);
4091 }
4092 else
4093 {
4094 /* Static Variable. Skip symbols without location descriptors. */
4095 if (pdi->locdesc == NULL)
4096 {
4097 if (built_actual_name)
4098 xfree (actual_name);
4099 return;
4100 }
4101 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4102 mst_file_data, objfile); */
4103 add_psymbol_to_list (actual_name, strlen (actual_name),
4104 built_actual_name,
4105 VAR_DOMAIN, LOC_STATIC,
4106 &objfile->static_psymbols,
4107 0, addr + baseaddr,
4108 cu->language, objfile);
4109 }
4110 break;
4111 case DW_TAG_typedef:
4112 case DW_TAG_base_type:
4113 case DW_TAG_subrange_type:
4114 add_psymbol_to_list (actual_name, strlen (actual_name),
4115 built_actual_name,
4116 VAR_DOMAIN, LOC_TYPEDEF,
4117 &objfile->static_psymbols,
4118 0, (CORE_ADDR) 0, cu->language, objfile);
4119 break;
4120 case DW_TAG_namespace:
4121 add_psymbol_to_list (actual_name, strlen (actual_name),
4122 built_actual_name,
4123 VAR_DOMAIN, LOC_TYPEDEF,
4124 &objfile->global_psymbols,
4125 0, (CORE_ADDR) 0, cu->language, objfile);
4126 break;
4127 case DW_TAG_class_type:
4128 case DW_TAG_interface_type:
4129 case DW_TAG_structure_type:
4130 case DW_TAG_union_type:
4131 case DW_TAG_enumeration_type:
4132 /* Skip external references. The DWARF standard says in the section
4133 about "Structure, Union, and Class Type Entries": "An incomplete
4134 structure, union or class type is represented by a structure,
4135 union or class entry that does not have a byte size attribute
4136 and that has a DW_AT_declaration attribute." */
4137 if (!pdi->has_byte_size && pdi->is_declaration)
4138 {
4139 if (built_actual_name)
4140 xfree (actual_name);
4141 return;
4142 }
4143
4144 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4145 static vs. global. */
4146 add_psymbol_to_list (actual_name, strlen (actual_name),
4147 built_actual_name,
4148 STRUCT_DOMAIN, LOC_TYPEDEF,
4149 (cu->language == language_cplus
4150 || cu->language == language_java)
4151 ? &objfile->global_psymbols
4152 : &objfile->static_psymbols,
4153 0, (CORE_ADDR) 0, cu->language, objfile);
4154
4155 break;
4156 case DW_TAG_enumerator:
4157 add_psymbol_to_list (actual_name, strlen (actual_name),
4158 built_actual_name,
4159 VAR_DOMAIN, LOC_CONST,
4160 (cu->language == language_cplus
4161 || cu->language == language_java)
4162 ? &objfile->global_psymbols
4163 : &objfile->static_psymbols,
4164 0, (CORE_ADDR) 0, cu->language, objfile);
4165 break;
4166 default:
4167 break;
4168 }
4169
4170 if (built_actual_name)
4171 xfree (actual_name);
4172 }
4173
4174 /* Read a partial die corresponding to a namespace; also, add a symbol
4175 corresponding to that namespace to the symbol table. NAMESPACE is
4176 the name of the enclosing namespace. */
4177
4178 static void
4179 add_partial_namespace (struct partial_die_info *pdi,
4180 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4181 int need_pc, struct dwarf2_cu *cu)
4182 {
4183 /* Add a symbol for the namespace. */
4184
4185 add_partial_symbol (pdi, cu);
4186
4187 /* Now scan partial symbols in that namespace. */
4188
4189 if (pdi->has_children)
4190 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4191 }
4192
4193 /* Read a partial die corresponding to a Fortran module. */
4194
4195 static void
4196 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4197 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4198 {
4199 /* Now scan partial symbols in that module. */
4200
4201 if (pdi->has_children)
4202 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4203 }
4204
4205 /* Read a partial die corresponding to a subprogram and create a partial
4206 symbol for that subprogram. When the CU language allows it, this
4207 routine also defines a partial symbol for each nested subprogram
4208 that this subprogram contains.
4209
4210 DIE my also be a lexical block, in which case we simply search
4211 recursively for suprograms defined inside that lexical block.
4212 Again, this is only performed when the CU language allows this
4213 type of definitions. */
4214
4215 static void
4216 add_partial_subprogram (struct partial_die_info *pdi,
4217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4218 int need_pc, struct dwarf2_cu *cu)
4219 {
4220 if (pdi->tag == DW_TAG_subprogram)
4221 {
4222 if (pdi->has_pc_info)
4223 {
4224 if (pdi->lowpc < *lowpc)
4225 *lowpc = pdi->lowpc;
4226 if (pdi->highpc > *highpc)
4227 *highpc = pdi->highpc;
4228 if (need_pc)
4229 {
4230 CORE_ADDR baseaddr;
4231 struct objfile *objfile = cu->objfile;
4232
4233 baseaddr = ANOFFSET (objfile->section_offsets,
4234 SECT_OFF_TEXT (objfile));
4235 addrmap_set_empty (objfile->psymtabs_addrmap,
4236 pdi->lowpc + baseaddr,
4237 pdi->highpc - 1 + baseaddr,
4238 cu->per_cu->v.psymtab);
4239 }
4240 if (!pdi->is_declaration)
4241 /* Ignore subprogram DIEs that do not have a name, they are
4242 illegal. Do not emit a complaint at this point, we will
4243 do so when we convert this psymtab into a symtab. */
4244 if (pdi->name)
4245 add_partial_symbol (pdi, cu);
4246 }
4247 }
4248
4249 if (! pdi->has_children)
4250 return;
4251
4252 if (cu->language == language_ada)
4253 {
4254 pdi = pdi->die_child;
4255 while (pdi != NULL)
4256 {
4257 fixup_partial_die (pdi, cu);
4258 if (pdi->tag == DW_TAG_subprogram
4259 || pdi->tag == DW_TAG_lexical_block)
4260 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4261 pdi = pdi->die_sibling;
4262 }
4263 }
4264 }
4265
4266 /* Read a partial die corresponding to an enumeration type. */
4267
4268 static void
4269 add_partial_enumeration (struct partial_die_info *enum_pdi,
4270 struct dwarf2_cu *cu)
4271 {
4272 struct partial_die_info *pdi;
4273
4274 if (enum_pdi->name != NULL)
4275 add_partial_symbol (enum_pdi, cu);
4276
4277 pdi = enum_pdi->die_child;
4278 while (pdi)
4279 {
4280 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4281 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4282 else
4283 add_partial_symbol (pdi, cu);
4284 pdi = pdi->die_sibling;
4285 }
4286 }
4287
4288 /* Return the initial uleb128 in the die at INFO_PTR. */
4289
4290 static unsigned int
4291 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4292 {
4293 unsigned int bytes_read;
4294
4295 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4296 }
4297
4298 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4299 Return the corresponding abbrev, or NULL if the number is zero (indicating
4300 an empty DIE). In either case *BYTES_READ will be set to the length of
4301 the initial number. */
4302
4303 static struct abbrev_info *
4304 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4305 struct dwarf2_cu *cu)
4306 {
4307 bfd *abfd = cu->objfile->obfd;
4308 unsigned int abbrev_number;
4309 struct abbrev_info *abbrev;
4310
4311 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4312
4313 if (abbrev_number == 0)
4314 return NULL;
4315
4316 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4317 if (!abbrev)
4318 {
4319 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4320 abbrev_number, bfd_get_filename (abfd));
4321 }
4322
4323 return abbrev;
4324 }
4325
4326 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4327 Returns a pointer to the end of a series of DIEs, terminated by an empty
4328 DIE. Any children of the skipped DIEs will also be skipped. */
4329
4330 static gdb_byte *
4331 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4332 {
4333 struct abbrev_info *abbrev;
4334 unsigned int bytes_read;
4335
4336 while (1)
4337 {
4338 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4339 if (abbrev == NULL)
4340 return info_ptr + bytes_read;
4341 else
4342 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4343 }
4344 }
4345
4346 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4347 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4348 abbrev corresponding to that skipped uleb128 should be passed in
4349 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4350 children. */
4351
4352 static gdb_byte *
4353 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4354 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4355 {
4356 unsigned int bytes_read;
4357 struct attribute attr;
4358 bfd *abfd = cu->objfile->obfd;
4359 unsigned int form, i;
4360
4361 for (i = 0; i < abbrev->num_attrs; i++)
4362 {
4363 /* The only abbrev we care about is DW_AT_sibling. */
4364 if (abbrev->attrs[i].name == DW_AT_sibling)
4365 {
4366 read_attribute (&attr, &abbrev->attrs[i],
4367 abfd, info_ptr, cu);
4368 if (attr.form == DW_FORM_ref_addr)
4369 complaint (&symfile_complaints,
4370 _("ignoring absolute DW_AT_sibling"));
4371 else
4372 return buffer + dwarf2_get_ref_die_offset (&attr);
4373 }
4374
4375 /* If it isn't DW_AT_sibling, skip this attribute. */
4376 form = abbrev->attrs[i].form;
4377 skip_attribute:
4378 switch (form)
4379 {
4380 case DW_FORM_ref_addr:
4381 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4382 and later it is offset sized. */
4383 if (cu->header.version == 2)
4384 info_ptr += cu->header.addr_size;
4385 else
4386 info_ptr += cu->header.offset_size;
4387 break;
4388 case DW_FORM_addr:
4389 info_ptr += cu->header.addr_size;
4390 break;
4391 case DW_FORM_data1:
4392 case DW_FORM_ref1:
4393 case DW_FORM_flag:
4394 info_ptr += 1;
4395 break;
4396 case DW_FORM_flag_present:
4397 break;
4398 case DW_FORM_data2:
4399 case DW_FORM_ref2:
4400 info_ptr += 2;
4401 break;
4402 case DW_FORM_data4:
4403 case DW_FORM_ref4:
4404 info_ptr += 4;
4405 break;
4406 case DW_FORM_data8:
4407 case DW_FORM_ref8:
4408 case DW_FORM_ref_sig8:
4409 info_ptr += 8;
4410 break;
4411 case DW_FORM_string:
4412 read_direct_string (abfd, info_ptr, &bytes_read);
4413 info_ptr += bytes_read;
4414 break;
4415 case DW_FORM_sec_offset:
4416 case DW_FORM_strp:
4417 info_ptr += cu->header.offset_size;
4418 break;
4419 case DW_FORM_exprloc:
4420 case DW_FORM_block:
4421 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4422 info_ptr += bytes_read;
4423 break;
4424 case DW_FORM_block1:
4425 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4426 break;
4427 case DW_FORM_block2:
4428 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4429 break;
4430 case DW_FORM_block4:
4431 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4432 break;
4433 case DW_FORM_sdata:
4434 case DW_FORM_udata:
4435 case DW_FORM_ref_udata:
4436 info_ptr = skip_leb128 (abfd, info_ptr);
4437 break;
4438 case DW_FORM_indirect:
4439 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4440 info_ptr += bytes_read;
4441 /* We need to continue parsing from here, so just go back to
4442 the top. */
4443 goto skip_attribute;
4444
4445 default:
4446 error (_("Dwarf Error: Cannot handle %s "
4447 "in DWARF reader [in module %s]"),
4448 dwarf_form_name (form),
4449 bfd_get_filename (abfd));
4450 }
4451 }
4452
4453 if (abbrev->has_children)
4454 return skip_children (buffer, info_ptr, cu);
4455 else
4456 return info_ptr;
4457 }
4458
4459 /* Locate ORIG_PDI's sibling.
4460 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4461 in BUFFER. */
4462
4463 static gdb_byte *
4464 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4465 gdb_byte *buffer, gdb_byte *info_ptr,
4466 bfd *abfd, struct dwarf2_cu *cu)
4467 {
4468 /* Do we know the sibling already? */
4469
4470 if (orig_pdi->sibling)
4471 return orig_pdi->sibling;
4472
4473 /* Are there any children to deal with? */
4474
4475 if (!orig_pdi->has_children)
4476 return info_ptr;
4477
4478 /* Skip the children the long way. */
4479
4480 return skip_children (buffer, info_ptr, cu);
4481 }
4482
4483 /* Expand this partial symbol table into a full symbol table. */
4484
4485 static void
4486 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4487 {
4488 if (pst != NULL)
4489 {
4490 if (pst->readin)
4491 {
4492 warning (_("bug: psymtab for %s is already read in."),
4493 pst->filename);
4494 }
4495 else
4496 {
4497 if (info_verbose)
4498 {
4499 printf_filtered (_("Reading in symbols for %s..."),
4500 pst->filename);
4501 gdb_flush (gdb_stdout);
4502 }
4503
4504 /* Restore our global data. */
4505 dwarf2_per_objfile = objfile_data (pst->objfile,
4506 dwarf2_objfile_data_key);
4507
4508 /* If this psymtab is constructed from a debug-only objfile, the
4509 has_section_at_zero flag will not necessarily be correct. We
4510 can get the correct value for this flag by looking at the data
4511 associated with the (presumably stripped) associated objfile. */
4512 if (pst->objfile->separate_debug_objfile_backlink)
4513 {
4514 struct dwarf2_per_objfile *dpo_backlink
4515 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4516 dwarf2_objfile_data_key);
4517
4518 dwarf2_per_objfile->has_section_at_zero
4519 = dpo_backlink->has_section_at_zero;
4520 }
4521
4522 dwarf2_per_objfile->reading_partial_symbols = 0;
4523
4524 psymtab_to_symtab_1 (pst);
4525
4526 /* Finish up the debug error message. */
4527 if (info_verbose)
4528 printf_filtered (_("done.\n"));
4529 }
4530 }
4531 }
4532 \f
4533 /* Reading in full CUs. */
4534
4535 /* Add PER_CU to the queue. */
4536
4537 static void
4538 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
4539 {
4540 struct dwarf2_queue_item *item;
4541
4542 per_cu->queued = 1;
4543 item = xmalloc (sizeof (*item));
4544 item->per_cu = per_cu;
4545 item->next = NULL;
4546
4547 if (dwarf2_queue == NULL)
4548 dwarf2_queue = item;
4549 else
4550 dwarf2_queue_tail->next = item;
4551
4552 dwarf2_queue_tail = item;
4553 }
4554
4555 /* Process the queue. */
4556
4557 static void
4558 process_queue (void)
4559 {
4560 struct dwarf2_queue_item *item, *next_item;
4561
4562 /* The queue starts out with one item, but following a DIE reference
4563 may load a new CU, adding it to the end of the queue. */
4564 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4565 {
4566 if (dwarf2_per_objfile->using_index
4567 ? !item->per_cu->v.quick->symtab
4568 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4569 process_full_comp_unit (item->per_cu);
4570
4571 item->per_cu->queued = 0;
4572 next_item = item->next;
4573 xfree (item);
4574 }
4575
4576 dwarf2_queue_tail = NULL;
4577 }
4578
4579 /* Free all allocated queue entries. This function only releases anything if
4580 an error was thrown; if the queue was processed then it would have been
4581 freed as we went along. */
4582
4583 static void
4584 dwarf2_release_queue (void *dummy)
4585 {
4586 struct dwarf2_queue_item *item, *last;
4587
4588 item = dwarf2_queue;
4589 while (item)
4590 {
4591 /* Anything still marked queued is likely to be in an
4592 inconsistent state, so discard it. */
4593 if (item->per_cu->queued)
4594 {
4595 if (item->per_cu->cu != NULL)
4596 free_one_cached_comp_unit (item->per_cu->cu);
4597 item->per_cu->queued = 0;
4598 }
4599
4600 last = item;
4601 item = item->next;
4602 xfree (last);
4603 }
4604
4605 dwarf2_queue = dwarf2_queue_tail = NULL;
4606 }
4607
4608 /* Read in full symbols for PST, and anything it depends on. */
4609
4610 static void
4611 psymtab_to_symtab_1 (struct partial_symtab *pst)
4612 {
4613 struct dwarf2_per_cu_data *per_cu;
4614 struct cleanup *back_to;
4615 int i;
4616
4617 for (i = 0; i < pst->number_of_dependencies; i++)
4618 if (!pst->dependencies[i]->readin)
4619 {
4620 /* Inform about additional files that need to be read in. */
4621 if (info_verbose)
4622 {
4623 /* FIXME: i18n: Need to make this a single string. */
4624 fputs_filtered (" ", gdb_stdout);
4625 wrap_here ("");
4626 fputs_filtered ("and ", gdb_stdout);
4627 wrap_here ("");
4628 printf_filtered ("%s...", pst->dependencies[i]->filename);
4629 wrap_here (""); /* Flush output. */
4630 gdb_flush (gdb_stdout);
4631 }
4632 psymtab_to_symtab_1 (pst->dependencies[i]);
4633 }
4634
4635 per_cu = pst->read_symtab_private;
4636
4637 if (per_cu == NULL)
4638 {
4639 /* It's an include file, no symbols to read for it.
4640 Everything is in the parent symtab. */
4641 pst->readin = 1;
4642 return;
4643 }
4644
4645 dw2_do_instantiate_symtab (per_cu);
4646 }
4647
4648 /* Load the DIEs associated with PER_CU into memory. */
4649
4650 static void
4651 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4652 {
4653 struct objfile *objfile = per_cu->objfile;
4654 bfd *abfd = objfile->obfd;
4655 struct dwarf2_cu *cu;
4656 unsigned int offset;
4657 gdb_byte *info_ptr, *beg_of_comp_unit;
4658 struct cleanup *free_cu_cleanup = NULL;
4659 struct attribute *attr;
4660 int read_cu = 0;
4661
4662 gdb_assert (! per_cu->debug_types_section);
4663
4664 /* Set local variables from the partial symbol table info. */
4665 offset = per_cu->offset;
4666
4667 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4668 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4669 beg_of_comp_unit = info_ptr;
4670
4671 if (per_cu->cu == NULL)
4672 {
4673 cu = xmalloc (sizeof (*cu));
4674 init_one_comp_unit (cu, per_cu);
4675
4676 read_cu = 1;
4677
4678 /* If an error occurs while loading, release our storage. */
4679 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4680
4681 /* Read in the comp_unit header. */
4682 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4683
4684 /* Skip dummy compilation units. */
4685 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4686 + dwarf2_per_objfile->info.size)
4687 || peek_abbrev_code (abfd, info_ptr) == 0)
4688 {
4689 do_cleanups (free_cu_cleanup);
4690 return;
4691 }
4692
4693 /* Complete the cu_header. */
4694 cu->header.offset = offset;
4695 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4696
4697 /* Link this CU into read_in_chain. */
4698 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4699 dwarf2_per_objfile->read_in_chain = per_cu;
4700 }
4701 else
4702 {
4703 cu = per_cu->cu;
4704 info_ptr += cu->header.first_die_offset;
4705 }
4706
4707 cu->dies = read_comp_unit (info_ptr, cu);
4708
4709 /* We try not to read any attributes in this function, because not
4710 all CUs needed for references have been loaded yet, and symbol
4711 table processing isn't initialized. But we have to set the CU language,
4712 or we won't be able to build types correctly. */
4713 prepare_one_comp_unit (cu, cu->dies);
4714
4715 /* Similarly, if we do not read the producer, we can not apply
4716 producer-specific interpretation. */
4717 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4718 if (attr)
4719 cu->producer = DW_STRING (attr);
4720
4721 if (read_cu)
4722 {
4723 /* We've successfully allocated this compilation unit. Let our
4724 caller clean it up when finished with it. */
4725 discard_cleanups (free_cu_cleanup);
4726 }
4727 }
4728
4729 /* Add a DIE to the delayed physname list. */
4730
4731 static void
4732 add_to_method_list (struct type *type, int fnfield_index, int index,
4733 const char *name, struct die_info *die,
4734 struct dwarf2_cu *cu)
4735 {
4736 struct delayed_method_info mi;
4737 mi.type = type;
4738 mi.fnfield_index = fnfield_index;
4739 mi.index = index;
4740 mi.name = name;
4741 mi.die = die;
4742 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4743 }
4744
4745 /* A cleanup for freeing the delayed method list. */
4746
4747 static void
4748 free_delayed_list (void *ptr)
4749 {
4750 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4751 if (cu->method_list != NULL)
4752 {
4753 VEC_free (delayed_method_info, cu->method_list);
4754 cu->method_list = NULL;
4755 }
4756 }
4757
4758 /* Compute the physnames of any methods on the CU's method list.
4759
4760 The computation of method physnames is delayed in order to avoid the
4761 (bad) condition that one of the method's formal parameters is of an as yet
4762 incomplete type. */
4763
4764 static void
4765 compute_delayed_physnames (struct dwarf2_cu *cu)
4766 {
4767 int i;
4768 struct delayed_method_info *mi;
4769 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4770 {
4771 const char *physname;
4772 struct fn_fieldlist *fn_flp
4773 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4774 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4775 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4776 }
4777 }
4778
4779 /* Generate full symbol information for PER_CU, whose DIEs have
4780 already been loaded into memory. */
4781
4782 static void
4783 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4784 {
4785 struct dwarf2_cu *cu = per_cu->cu;
4786 struct objfile *objfile = per_cu->objfile;
4787 CORE_ADDR lowpc, highpc;
4788 struct symtab *symtab;
4789 struct cleanup *back_to, *delayed_list_cleanup;
4790 CORE_ADDR baseaddr;
4791
4792 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4793
4794 buildsym_init ();
4795 back_to = make_cleanup (really_free_pendings, NULL);
4796 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4797
4798 cu->list_in_scope = &file_symbols;
4799
4800 /* Do line number decoding in read_file_scope () */
4801 process_die (cu->dies, cu);
4802
4803 /* Now that we have processed all the DIEs in the CU, all the types
4804 should be complete, and it should now be safe to compute all of the
4805 physnames. */
4806 compute_delayed_physnames (cu);
4807 do_cleanups (delayed_list_cleanup);
4808
4809 /* Some compilers don't define a DW_AT_high_pc attribute for the
4810 compilation unit. If the DW_AT_high_pc is missing, synthesize
4811 it, by scanning the DIE's below the compilation unit. */
4812 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4813
4814 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4815
4816 if (symtab != NULL)
4817 {
4818 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4819
4820 /* Set symtab language to language from DW_AT_language. If the
4821 compilation is from a C file generated by language preprocessors, do
4822 not set the language if it was already deduced by start_subfile. */
4823 if (!(cu->language == language_c && symtab->language != language_c))
4824 symtab->language = cu->language;
4825
4826 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4827 produce DW_AT_location with location lists but it can be possibly
4828 invalid without -fvar-tracking.
4829
4830 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4831 needed, it would be wrong due to missing DW_AT_producer there.
4832
4833 Still one can confuse GDB by using non-standard GCC compilation
4834 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4835 */
4836 if (cu->has_loclist && gcc_4_minor >= 0)
4837 symtab->locations_valid = 1;
4838
4839 if (gcc_4_minor >= 5)
4840 symtab->epilogue_unwind_valid = 1;
4841
4842 symtab->call_site_htab = cu->call_site_htab;
4843 }
4844
4845 if (dwarf2_per_objfile->using_index)
4846 per_cu->v.quick->symtab = symtab;
4847 else
4848 {
4849 struct partial_symtab *pst = per_cu->v.psymtab;
4850 pst->symtab = symtab;
4851 pst->readin = 1;
4852 }
4853
4854 do_cleanups (back_to);
4855 }
4856
4857 /* Process a die and its children. */
4858
4859 static void
4860 process_die (struct die_info *die, struct dwarf2_cu *cu)
4861 {
4862 switch (die->tag)
4863 {
4864 case DW_TAG_padding:
4865 break;
4866 case DW_TAG_compile_unit:
4867 read_file_scope (die, cu);
4868 break;
4869 case DW_TAG_type_unit:
4870 read_type_unit_scope (die, cu);
4871 break;
4872 case DW_TAG_subprogram:
4873 case DW_TAG_inlined_subroutine:
4874 read_func_scope (die, cu);
4875 break;
4876 case DW_TAG_lexical_block:
4877 case DW_TAG_try_block:
4878 case DW_TAG_catch_block:
4879 read_lexical_block_scope (die, cu);
4880 break;
4881 case DW_TAG_GNU_call_site:
4882 read_call_site_scope (die, cu);
4883 break;
4884 case DW_TAG_class_type:
4885 case DW_TAG_interface_type:
4886 case DW_TAG_structure_type:
4887 case DW_TAG_union_type:
4888 process_structure_scope (die, cu);
4889 break;
4890 case DW_TAG_enumeration_type:
4891 process_enumeration_scope (die, cu);
4892 break;
4893
4894 /* These dies have a type, but processing them does not create
4895 a symbol or recurse to process the children. Therefore we can
4896 read them on-demand through read_type_die. */
4897 case DW_TAG_subroutine_type:
4898 case DW_TAG_set_type:
4899 case DW_TAG_array_type:
4900 case DW_TAG_pointer_type:
4901 case DW_TAG_ptr_to_member_type:
4902 case DW_TAG_reference_type:
4903 case DW_TAG_string_type:
4904 break;
4905
4906 case DW_TAG_base_type:
4907 case DW_TAG_subrange_type:
4908 case DW_TAG_typedef:
4909 /* Add a typedef symbol for the type definition, if it has a
4910 DW_AT_name. */
4911 new_symbol (die, read_type_die (die, cu), cu);
4912 break;
4913 case DW_TAG_common_block:
4914 read_common_block (die, cu);
4915 break;
4916 case DW_TAG_common_inclusion:
4917 break;
4918 case DW_TAG_namespace:
4919 processing_has_namespace_info = 1;
4920 read_namespace (die, cu);
4921 break;
4922 case DW_TAG_module:
4923 processing_has_namespace_info = 1;
4924 read_module (die, cu);
4925 break;
4926 case DW_TAG_imported_declaration:
4927 case DW_TAG_imported_module:
4928 processing_has_namespace_info = 1;
4929 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4930 || cu->language != language_fortran))
4931 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4932 dwarf_tag_name (die->tag));
4933 read_import_statement (die, cu);
4934 break;
4935 default:
4936 new_symbol (die, NULL, cu);
4937 break;
4938 }
4939 }
4940
4941 /* A helper function for dwarf2_compute_name which determines whether DIE
4942 needs to have the name of the scope prepended to the name listed in the
4943 die. */
4944
4945 static int
4946 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4947 {
4948 struct attribute *attr;
4949
4950 switch (die->tag)
4951 {
4952 case DW_TAG_namespace:
4953 case DW_TAG_typedef:
4954 case DW_TAG_class_type:
4955 case DW_TAG_interface_type:
4956 case DW_TAG_structure_type:
4957 case DW_TAG_union_type:
4958 case DW_TAG_enumeration_type:
4959 case DW_TAG_enumerator:
4960 case DW_TAG_subprogram:
4961 case DW_TAG_member:
4962 return 1;
4963
4964 case DW_TAG_variable:
4965 case DW_TAG_constant:
4966 /* We only need to prefix "globally" visible variables. These include
4967 any variable marked with DW_AT_external or any variable that
4968 lives in a namespace. [Variables in anonymous namespaces
4969 require prefixing, but they are not DW_AT_external.] */
4970
4971 if (dwarf2_attr (die, DW_AT_specification, cu))
4972 {
4973 struct dwarf2_cu *spec_cu = cu;
4974
4975 return die_needs_namespace (die_specification (die, &spec_cu),
4976 spec_cu);
4977 }
4978
4979 attr = dwarf2_attr (die, DW_AT_external, cu);
4980 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4981 && die->parent->tag != DW_TAG_module)
4982 return 0;
4983 /* A variable in a lexical block of some kind does not need a
4984 namespace, even though in C++ such variables may be external
4985 and have a mangled name. */
4986 if (die->parent->tag == DW_TAG_lexical_block
4987 || die->parent->tag == DW_TAG_try_block
4988 || die->parent->tag == DW_TAG_catch_block
4989 || die->parent->tag == DW_TAG_subprogram)
4990 return 0;
4991 return 1;
4992
4993 default:
4994 return 0;
4995 }
4996 }
4997
4998 /* Retrieve the last character from a mem_file. */
4999
5000 static void
5001 do_ui_file_peek_last (void *object, const char *buffer, long length)
5002 {
5003 char *last_char_p = (char *) object;
5004
5005 if (length > 0)
5006 *last_char_p = buffer[length - 1];
5007 }
5008
5009 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5010 compute the physname for the object, which include a method's
5011 formal parameters (C++/Java) and return type (Java).
5012
5013 For Ada, return the DIE's linkage name rather than the fully qualified
5014 name. PHYSNAME is ignored..
5015
5016 The result is allocated on the objfile_obstack and canonicalized. */
5017
5018 static const char *
5019 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5020 int physname)
5021 {
5022 struct objfile *objfile = cu->objfile;
5023
5024 if (name == NULL)
5025 name = dwarf2_name (die, cu);
5026
5027 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5028 compute it by typename_concat inside GDB. */
5029 if (cu->language == language_ada
5030 || (cu->language == language_fortran && physname))
5031 {
5032 /* For Ada unit, we prefer the linkage name over the name, as
5033 the former contains the exported name, which the user expects
5034 to be able to reference. Ideally, we want the user to be able
5035 to reference this entity using either natural or linkage name,
5036 but we haven't started looking at this enhancement yet. */
5037 struct attribute *attr;
5038
5039 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5040 if (attr == NULL)
5041 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5042 if (attr && DW_STRING (attr))
5043 return DW_STRING (attr);
5044 }
5045
5046 /* These are the only languages we know how to qualify names in. */
5047 if (name != NULL
5048 && (cu->language == language_cplus || cu->language == language_java
5049 || cu->language == language_fortran))
5050 {
5051 if (die_needs_namespace (die, cu))
5052 {
5053 long length;
5054 const char *prefix;
5055 struct ui_file *buf;
5056
5057 prefix = determine_prefix (die, cu);
5058 buf = mem_fileopen ();
5059 if (*prefix != '\0')
5060 {
5061 char *prefixed_name = typename_concat (NULL, prefix, name,
5062 physname, cu);
5063
5064 fputs_unfiltered (prefixed_name, buf);
5065 xfree (prefixed_name);
5066 }
5067 else
5068 fputs_unfiltered (name, buf);
5069
5070 /* Template parameters may be specified in the DIE's DW_AT_name, or
5071 as children with DW_TAG_template_type_param or
5072 DW_TAG_value_type_param. If the latter, add them to the name
5073 here. If the name already has template parameters, then
5074 skip this step; some versions of GCC emit both, and
5075 it is more efficient to use the pre-computed name.
5076
5077 Something to keep in mind about this process: it is very
5078 unlikely, or in some cases downright impossible, to produce
5079 something that will match the mangled name of a function.
5080 If the definition of the function has the same debug info,
5081 we should be able to match up with it anyway. But fallbacks
5082 using the minimal symbol, for instance to find a method
5083 implemented in a stripped copy of libstdc++, will not work.
5084 If we do not have debug info for the definition, we will have to
5085 match them up some other way.
5086
5087 When we do name matching there is a related problem with function
5088 templates; two instantiated function templates are allowed to
5089 differ only by their return types, which we do not add here. */
5090
5091 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5092 {
5093 struct attribute *attr;
5094 struct die_info *child;
5095 int first = 1;
5096
5097 die->building_fullname = 1;
5098
5099 for (child = die->child; child != NULL; child = child->sibling)
5100 {
5101 struct type *type;
5102 long value;
5103 gdb_byte *bytes;
5104 struct dwarf2_locexpr_baton *baton;
5105 struct value *v;
5106
5107 if (child->tag != DW_TAG_template_type_param
5108 && child->tag != DW_TAG_template_value_param)
5109 continue;
5110
5111 if (first)
5112 {
5113 fputs_unfiltered ("<", buf);
5114 first = 0;
5115 }
5116 else
5117 fputs_unfiltered (", ", buf);
5118
5119 attr = dwarf2_attr (child, DW_AT_type, cu);
5120 if (attr == NULL)
5121 {
5122 complaint (&symfile_complaints,
5123 _("template parameter missing DW_AT_type"));
5124 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5125 continue;
5126 }
5127 type = die_type (child, cu);
5128
5129 if (child->tag == DW_TAG_template_type_param)
5130 {
5131 c_print_type (type, "", buf, -1, 0);
5132 continue;
5133 }
5134
5135 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5136 if (attr == NULL)
5137 {
5138 complaint (&symfile_complaints,
5139 _("template parameter missing "
5140 "DW_AT_const_value"));
5141 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5142 continue;
5143 }
5144
5145 dwarf2_const_value_attr (attr, type, name,
5146 &cu->comp_unit_obstack, cu,
5147 &value, &bytes, &baton);
5148
5149 if (TYPE_NOSIGN (type))
5150 /* GDB prints characters as NUMBER 'CHAR'. If that's
5151 changed, this can use value_print instead. */
5152 c_printchar (value, type, buf);
5153 else
5154 {
5155 struct value_print_options opts;
5156
5157 if (baton != NULL)
5158 v = dwarf2_evaluate_loc_desc (type, NULL,
5159 baton->data,
5160 baton->size,
5161 baton->per_cu);
5162 else if (bytes != NULL)
5163 {
5164 v = allocate_value (type);
5165 memcpy (value_contents_writeable (v), bytes,
5166 TYPE_LENGTH (type));
5167 }
5168 else
5169 v = value_from_longest (type, value);
5170
5171 /* Specify decimal so that we do not depend on
5172 the radix. */
5173 get_formatted_print_options (&opts, 'd');
5174 opts.raw = 1;
5175 value_print (v, buf, &opts);
5176 release_value (v);
5177 value_free (v);
5178 }
5179 }
5180
5181 die->building_fullname = 0;
5182
5183 if (!first)
5184 {
5185 /* Close the argument list, with a space if necessary
5186 (nested templates). */
5187 char last_char = '\0';
5188 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5189 if (last_char == '>')
5190 fputs_unfiltered (" >", buf);
5191 else
5192 fputs_unfiltered (">", buf);
5193 }
5194 }
5195
5196 /* For Java and C++ methods, append formal parameter type
5197 information, if PHYSNAME. */
5198
5199 if (physname && die->tag == DW_TAG_subprogram
5200 && (cu->language == language_cplus
5201 || cu->language == language_java))
5202 {
5203 struct type *type = read_type_die (die, cu);
5204
5205 c_type_print_args (type, buf, 1, cu->language);
5206
5207 if (cu->language == language_java)
5208 {
5209 /* For java, we must append the return type to method
5210 names. */
5211 if (die->tag == DW_TAG_subprogram)
5212 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5213 0, 0);
5214 }
5215 else if (cu->language == language_cplus)
5216 {
5217 /* Assume that an artificial first parameter is
5218 "this", but do not crash if it is not. RealView
5219 marks unnamed (and thus unused) parameters as
5220 artificial; there is no way to differentiate
5221 the two cases. */
5222 if (TYPE_NFIELDS (type) > 0
5223 && TYPE_FIELD_ARTIFICIAL (type, 0)
5224 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5225 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5226 0))))
5227 fputs_unfiltered (" const", buf);
5228 }
5229 }
5230
5231 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
5232 &length);
5233 ui_file_delete (buf);
5234
5235 if (cu->language == language_cplus)
5236 {
5237 char *cname
5238 = dwarf2_canonicalize_name (name, cu,
5239 &objfile->objfile_obstack);
5240
5241 if (cname != NULL)
5242 name = cname;
5243 }
5244 }
5245 }
5246
5247 return name;
5248 }
5249
5250 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5251 If scope qualifiers are appropriate they will be added. The result
5252 will be allocated on the objfile_obstack, or NULL if the DIE does
5253 not have a name. NAME may either be from a previous call to
5254 dwarf2_name or NULL.
5255
5256 The output string will be canonicalized (if C++/Java). */
5257
5258 static const char *
5259 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5260 {
5261 return dwarf2_compute_name (name, die, cu, 0);
5262 }
5263
5264 /* Construct a physname for the given DIE in CU. NAME may either be
5265 from a previous call to dwarf2_name or NULL. The result will be
5266 allocated on the objfile_objstack or NULL if the DIE does not have a
5267 name.
5268
5269 The output string will be canonicalized (if C++/Java). */
5270
5271 static const char *
5272 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5273 {
5274 struct objfile *objfile = cu->objfile;
5275 struct attribute *attr;
5276 const char *retval, *mangled = NULL, *canon = NULL;
5277 struct cleanup *back_to;
5278 int need_copy = 1;
5279
5280 /* In this case dwarf2_compute_name is just a shortcut not building anything
5281 on its own. */
5282 if (!die_needs_namespace (die, cu))
5283 return dwarf2_compute_name (name, die, cu, 1);
5284
5285 back_to = make_cleanup (null_cleanup, NULL);
5286
5287 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5288 if (!attr)
5289 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5290
5291 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5292 has computed. */
5293 if (attr && DW_STRING (attr))
5294 {
5295 char *demangled;
5296
5297 mangled = DW_STRING (attr);
5298
5299 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5300 type. It is easier for GDB users to search for such functions as
5301 `name(params)' than `long name(params)'. In such case the minimal
5302 symbol names do not match the full symbol names but for template
5303 functions there is never a need to look up their definition from their
5304 declaration so the only disadvantage remains the minimal symbol
5305 variant `long name(params)' does not have the proper inferior type.
5306 */
5307
5308 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5309 | (cu->language == language_java
5310 ? DMGL_JAVA | DMGL_RET_POSTFIX
5311 : DMGL_RET_DROP)));
5312 if (demangled)
5313 {
5314 make_cleanup (xfree, demangled);
5315 canon = demangled;
5316 }
5317 else
5318 {
5319 canon = mangled;
5320 need_copy = 0;
5321 }
5322 }
5323
5324 if (canon == NULL || check_physname)
5325 {
5326 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5327
5328 if (canon != NULL && strcmp (physname, canon) != 0)
5329 {
5330 /* It may not mean a bug in GDB. The compiler could also
5331 compute DW_AT_linkage_name incorrectly. But in such case
5332 GDB would need to be bug-to-bug compatible. */
5333
5334 complaint (&symfile_complaints,
5335 _("Computed physname <%s> does not match demangled <%s> "
5336 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5337 physname, canon, mangled, die->offset, objfile->name);
5338
5339 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5340 is available here - over computed PHYSNAME. It is safer
5341 against both buggy GDB and buggy compilers. */
5342
5343 retval = canon;
5344 }
5345 else
5346 {
5347 retval = physname;
5348 need_copy = 0;
5349 }
5350 }
5351 else
5352 retval = canon;
5353
5354 if (need_copy)
5355 retval = obsavestring (retval, strlen (retval),
5356 &objfile->objfile_obstack);
5357
5358 do_cleanups (back_to);
5359 return retval;
5360 }
5361
5362 /* Read the import statement specified by the given die and record it. */
5363
5364 static void
5365 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5366 {
5367 struct objfile *objfile = cu->objfile;
5368 struct attribute *import_attr;
5369 struct die_info *imported_die, *child_die;
5370 struct dwarf2_cu *imported_cu;
5371 const char *imported_name;
5372 const char *imported_name_prefix;
5373 const char *canonical_name;
5374 const char *import_alias;
5375 const char *imported_declaration = NULL;
5376 const char *import_prefix;
5377 VEC (const_char_ptr) *excludes = NULL;
5378 struct cleanup *cleanups;
5379
5380 char *temp;
5381
5382 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5383 if (import_attr == NULL)
5384 {
5385 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5386 dwarf_tag_name (die->tag));
5387 return;
5388 }
5389
5390 imported_cu = cu;
5391 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5392 imported_name = dwarf2_name (imported_die, imported_cu);
5393 if (imported_name == NULL)
5394 {
5395 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5396
5397 The import in the following code:
5398 namespace A
5399 {
5400 typedef int B;
5401 }
5402
5403 int main ()
5404 {
5405 using A::B;
5406 B b;
5407 return b;
5408 }
5409
5410 ...
5411 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5412 <52> DW_AT_decl_file : 1
5413 <53> DW_AT_decl_line : 6
5414 <54> DW_AT_import : <0x75>
5415 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5416 <59> DW_AT_name : B
5417 <5b> DW_AT_decl_file : 1
5418 <5c> DW_AT_decl_line : 2
5419 <5d> DW_AT_type : <0x6e>
5420 ...
5421 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5422 <76> DW_AT_byte_size : 4
5423 <77> DW_AT_encoding : 5 (signed)
5424
5425 imports the wrong die ( 0x75 instead of 0x58 ).
5426 This case will be ignored until the gcc bug is fixed. */
5427 return;
5428 }
5429
5430 /* Figure out the local name after import. */
5431 import_alias = dwarf2_name (die, cu);
5432
5433 /* Figure out where the statement is being imported to. */
5434 import_prefix = determine_prefix (die, cu);
5435
5436 /* Figure out what the scope of the imported die is and prepend it
5437 to the name of the imported die. */
5438 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5439
5440 if (imported_die->tag != DW_TAG_namespace
5441 && imported_die->tag != DW_TAG_module)
5442 {
5443 imported_declaration = imported_name;
5444 canonical_name = imported_name_prefix;
5445 }
5446 else if (strlen (imported_name_prefix) > 0)
5447 {
5448 temp = alloca (strlen (imported_name_prefix)
5449 + 2 + strlen (imported_name) + 1);
5450 strcpy (temp, imported_name_prefix);
5451 strcat (temp, "::");
5452 strcat (temp, imported_name);
5453 canonical_name = temp;
5454 }
5455 else
5456 canonical_name = imported_name;
5457
5458 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5459
5460 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5461 for (child_die = die->child; child_die && child_die->tag;
5462 child_die = sibling_die (child_die))
5463 {
5464 /* DWARF-4: A Fortran use statement with a “rename list” may be
5465 represented by an imported module entry with an import attribute
5466 referring to the module and owned entries corresponding to those
5467 entities that are renamed as part of being imported. */
5468
5469 if (child_die->tag != DW_TAG_imported_declaration)
5470 {
5471 complaint (&symfile_complaints,
5472 _("child DW_TAG_imported_declaration expected "
5473 "- DIE at 0x%x [in module %s]"),
5474 child_die->offset, objfile->name);
5475 continue;
5476 }
5477
5478 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5479 if (import_attr == NULL)
5480 {
5481 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5482 dwarf_tag_name (child_die->tag));
5483 continue;
5484 }
5485
5486 imported_cu = cu;
5487 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5488 &imported_cu);
5489 imported_name = dwarf2_name (imported_die, imported_cu);
5490 if (imported_name == NULL)
5491 {
5492 complaint (&symfile_complaints,
5493 _("child DW_TAG_imported_declaration has unknown "
5494 "imported name - DIE at 0x%x [in module %s]"),
5495 child_die->offset, objfile->name);
5496 continue;
5497 }
5498
5499 VEC_safe_push (const_char_ptr, excludes, imported_name);
5500
5501 process_die (child_die, cu);
5502 }
5503
5504 cp_add_using_directive (import_prefix,
5505 canonical_name,
5506 import_alias,
5507 imported_declaration,
5508 excludes,
5509 &objfile->objfile_obstack);
5510
5511 do_cleanups (cleanups);
5512 }
5513
5514 /* Cleanup function for read_file_scope. */
5515
5516 static void
5517 free_cu_line_header (void *arg)
5518 {
5519 struct dwarf2_cu *cu = arg;
5520
5521 free_line_header (cu->line_header);
5522 cu->line_header = NULL;
5523 }
5524
5525 static void
5526 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5527 char **name, char **comp_dir)
5528 {
5529 struct attribute *attr;
5530
5531 *name = NULL;
5532 *comp_dir = NULL;
5533
5534 /* Find the filename. Do not use dwarf2_name here, since the filename
5535 is not a source language identifier. */
5536 attr = dwarf2_attr (die, DW_AT_name, cu);
5537 if (attr)
5538 {
5539 *name = DW_STRING (attr);
5540 }
5541
5542 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5543 if (attr)
5544 *comp_dir = DW_STRING (attr);
5545 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5546 {
5547 *comp_dir = ldirname (*name);
5548 if (*comp_dir != NULL)
5549 make_cleanup (xfree, *comp_dir);
5550 }
5551 if (*comp_dir != NULL)
5552 {
5553 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5554 directory, get rid of it. */
5555 char *cp = strchr (*comp_dir, ':');
5556
5557 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5558 *comp_dir = cp + 1;
5559 }
5560
5561 if (*name == NULL)
5562 *name = "<unknown>";
5563 }
5564
5565 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
5566 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5567 COMP_DIR is the compilation directory.
5568 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
5569
5570 static void
5571 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5572 const char *comp_dir, int want_line_info)
5573 {
5574 struct attribute *attr;
5575 struct objfile *objfile = cu->objfile;
5576 bfd *abfd = objfile->obfd;
5577
5578 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5579 if (attr)
5580 {
5581 unsigned int line_offset = DW_UNSND (attr);
5582 struct line_header *line_header
5583 = dwarf_decode_line_header (line_offset, abfd, cu);
5584
5585 if (line_header)
5586 {
5587 cu->line_header = line_header;
5588 make_cleanup (free_cu_line_header, cu);
5589 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5590 }
5591 }
5592 }
5593
5594 /* Process DW_TAG_compile_unit. */
5595
5596 static void
5597 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5598 {
5599 struct objfile *objfile = cu->objfile;
5600 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5601 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5602 CORE_ADDR highpc = ((CORE_ADDR) 0);
5603 struct attribute *attr;
5604 char *name = NULL;
5605 char *comp_dir = NULL;
5606 struct die_info *child_die;
5607 bfd *abfd = objfile->obfd;
5608 CORE_ADDR baseaddr;
5609
5610 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5611
5612 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5613
5614 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5615 from finish_block. */
5616 if (lowpc == ((CORE_ADDR) -1))
5617 lowpc = highpc;
5618 lowpc += baseaddr;
5619 highpc += baseaddr;
5620
5621 find_file_and_directory (die, cu, &name, &comp_dir);
5622
5623 attr = dwarf2_attr (die, DW_AT_language, cu);
5624 if (attr)
5625 {
5626 set_cu_language (DW_UNSND (attr), cu);
5627 }
5628
5629 attr = dwarf2_attr (die, DW_AT_producer, cu);
5630 if (attr)
5631 cu->producer = DW_STRING (attr);
5632
5633 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5634 standardised yet. As a workaround for the language detection we fall
5635 back to the DW_AT_producer string. */
5636 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5637 cu->language = language_opencl;
5638
5639 /* We assume that we're processing GCC output. */
5640 processing_gcc_compilation = 2;
5641
5642 processing_has_namespace_info = 0;
5643
5644 start_symtab (name, comp_dir, lowpc);
5645 record_debugformat ("DWARF 2");
5646 record_producer (cu->producer);
5647
5648 /* Decode line number information if present. We do this before
5649 processing child DIEs, so that the line header table is available
5650 for DW_AT_decl_file. */
5651 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5652
5653 /* Process all dies in compilation unit. */
5654 if (die->child != NULL)
5655 {
5656 child_die = die->child;
5657 while (child_die && child_die->tag)
5658 {
5659 process_die (child_die, cu);
5660 child_die = sibling_die (child_die);
5661 }
5662 }
5663
5664 /* Decode macro information, if present. Dwarf 2 macro information
5665 refers to information in the line number info statement program
5666 header, so we can only read it if we've read the header
5667 successfully. */
5668 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5669 if (attr && cu->line_header)
5670 {
5671 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5672 complaint (&symfile_complaints,
5673 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5674
5675 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5676 comp_dir, abfd, cu,
5677 &dwarf2_per_objfile->macro, 1);
5678 }
5679 else
5680 {
5681 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5682 if (attr && cu->line_header)
5683 {
5684 unsigned int macro_offset = DW_UNSND (attr);
5685
5686 dwarf_decode_macros (cu->line_header, macro_offset,
5687 comp_dir, abfd, cu,
5688 &dwarf2_per_objfile->macinfo, 0);
5689 }
5690 }
5691
5692 do_cleanups (back_to);
5693 }
5694
5695 /* Process DW_TAG_type_unit.
5696 For TUs we want to skip the first top level sibling if it's not the
5697 actual type being defined by this TU. In this case the first top
5698 level sibling is there to provide context only. */
5699
5700 static void
5701 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5702 {
5703 struct objfile *objfile = cu->objfile;
5704 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5705 CORE_ADDR lowpc;
5706 struct attribute *attr;
5707 char *name = NULL;
5708 char *comp_dir = NULL;
5709 struct die_info *child_die;
5710 bfd *abfd = objfile->obfd;
5711
5712 /* start_symtab needs a low pc, but we don't really have one.
5713 Do what read_file_scope would do in the absence of such info. */
5714 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5715
5716 /* Find the filename. Do not use dwarf2_name here, since the filename
5717 is not a source language identifier. */
5718 attr = dwarf2_attr (die, DW_AT_name, cu);
5719 if (attr)
5720 name = DW_STRING (attr);
5721
5722 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5723 if (attr)
5724 comp_dir = DW_STRING (attr);
5725 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5726 {
5727 comp_dir = ldirname (name);
5728 if (comp_dir != NULL)
5729 make_cleanup (xfree, comp_dir);
5730 }
5731
5732 if (name == NULL)
5733 name = "<unknown>";
5734
5735 attr = dwarf2_attr (die, DW_AT_language, cu);
5736 if (attr)
5737 set_cu_language (DW_UNSND (attr), cu);
5738
5739 /* This isn't technically needed today. It is done for symmetry
5740 with read_file_scope. */
5741 attr = dwarf2_attr (die, DW_AT_producer, cu);
5742 if (attr)
5743 cu->producer = DW_STRING (attr);
5744
5745 /* We assume that we're processing GCC output. */
5746 processing_gcc_compilation = 2;
5747
5748 processing_has_namespace_info = 0;
5749
5750 start_symtab (name, comp_dir, lowpc);
5751 record_debugformat ("DWARF 2");
5752 record_producer (cu->producer);
5753
5754 /* Decode line number information if present. We do this before
5755 processing child DIEs, so that the line header table is available
5756 for DW_AT_decl_file.
5757 We don't need the pc/line-number mapping for type units. */
5758 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5759
5760 /* Process the dies in the type unit. */
5761 if (die->child == NULL)
5762 {
5763 dump_die_for_error (die);
5764 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5765 bfd_get_filename (abfd));
5766 }
5767
5768 child_die = die->child;
5769
5770 while (child_die && child_die->tag)
5771 {
5772 process_die (child_die, cu);
5773
5774 child_die = sibling_die (child_die);
5775 }
5776
5777 do_cleanups (back_to);
5778 }
5779
5780 /* qsort helper for inherit_abstract_dies. */
5781
5782 static int
5783 unsigned_int_compar (const void *ap, const void *bp)
5784 {
5785 unsigned int a = *(unsigned int *) ap;
5786 unsigned int b = *(unsigned int *) bp;
5787
5788 return (a > b) - (b > a);
5789 }
5790
5791 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5792 Inherit only the children of the DW_AT_abstract_origin DIE not being
5793 already referenced by DW_AT_abstract_origin from the children of the
5794 current DIE. */
5795
5796 static void
5797 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5798 {
5799 struct die_info *child_die;
5800 unsigned die_children_count;
5801 /* CU offsets which were referenced by children of the current DIE. */
5802 unsigned *offsets;
5803 unsigned *offsets_end, *offsetp;
5804 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5805 struct die_info *origin_die;
5806 /* Iterator of the ORIGIN_DIE children. */
5807 struct die_info *origin_child_die;
5808 struct cleanup *cleanups;
5809 struct attribute *attr;
5810 struct dwarf2_cu *origin_cu;
5811 struct pending **origin_previous_list_in_scope;
5812
5813 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5814 if (!attr)
5815 return;
5816
5817 /* Note that following die references may follow to a die in a
5818 different cu. */
5819
5820 origin_cu = cu;
5821 origin_die = follow_die_ref (die, attr, &origin_cu);
5822
5823 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5824 symbols in. */
5825 origin_previous_list_in_scope = origin_cu->list_in_scope;
5826 origin_cu->list_in_scope = cu->list_in_scope;
5827
5828 if (die->tag != origin_die->tag
5829 && !(die->tag == DW_TAG_inlined_subroutine
5830 && origin_die->tag == DW_TAG_subprogram))
5831 complaint (&symfile_complaints,
5832 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5833 die->offset, origin_die->offset);
5834
5835 child_die = die->child;
5836 die_children_count = 0;
5837 while (child_die && child_die->tag)
5838 {
5839 child_die = sibling_die (child_die);
5840 die_children_count++;
5841 }
5842 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5843 cleanups = make_cleanup (xfree, offsets);
5844
5845 offsets_end = offsets;
5846 child_die = die->child;
5847 while (child_die && child_die->tag)
5848 {
5849 /* For each CHILD_DIE, find the corresponding child of
5850 ORIGIN_DIE. If there is more than one layer of
5851 DW_AT_abstract_origin, follow them all; there shouldn't be,
5852 but GCC versions at least through 4.4 generate this (GCC PR
5853 40573). */
5854 struct die_info *child_origin_die = child_die;
5855 struct dwarf2_cu *child_origin_cu = cu;
5856
5857 while (1)
5858 {
5859 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5860 child_origin_cu);
5861 if (attr == NULL)
5862 break;
5863 child_origin_die = follow_die_ref (child_origin_die, attr,
5864 &child_origin_cu);
5865 }
5866
5867 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5868 counterpart may exist. */
5869 if (child_origin_die != child_die)
5870 {
5871 if (child_die->tag != child_origin_die->tag
5872 && !(child_die->tag == DW_TAG_inlined_subroutine
5873 && child_origin_die->tag == DW_TAG_subprogram))
5874 complaint (&symfile_complaints,
5875 _("Child DIE 0x%x and its abstract origin 0x%x have "
5876 "different tags"), child_die->offset,
5877 child_origin_die->offset);
5878 if (child_origin_die->parent != origin_die)
5879 complaint (&symfile_complaints,
5880 _("Child DIE 0x%x and its abstract origin 0x%x have "
5881 "different parents"), child_die->offset,
5882 child_origin_die->offset);
5883 else
5884 *offsets_end++ = child_origin_die->offset;
5885 }
5886 child_die = sibling_die (child_die);
5887 }
5888 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5889 unsigned_int_compar);
5890 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5891 if (offsetp[-1] == *offsetp)
5892 complaint (&symfile_complaints,
5893 _("Multiple children of DIE 0x%x refer "
5894 "to DIE 0x%x as their abstract origin"),
5895 die->offset, *offsetp);
5896
5897 offsetp = offsets;
5898 origin_child_die = origin_die->child;
5899 while (origin_child_die && origin_child_die->tag)
5900 {
5901 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5902 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5903 offsetp++;
5904 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5905 {
5906 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5907 process_die (origin_child_die, origin_cu);
5908 }
5909 origin_child_die = sibling_die (origin_child_die);
5910 }
5911 origin_cu->list_in_scope = origin_previous_list_in_scope;
5912
5913 do_cleanups (cleanups);
5914 }
5915
5916 static void
5917 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5918 {
5919 struct objfile *objfile = cu->objfile;
5920 struct context_stack *new;
5921 CORE_ADDR lowpc;
5922 CORE_ADDR highpc;
5923 struct die_info *child_die;
5924 struct attribute *attr, *call_line, *call_file;
5925 char *name;
5926 CORE_ADDR baseaddr;
5927 struct block *block;
5928 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5929 VEC (symbolp) *template_args = NULL;
5930 struct template_symbol *templ_func = NULL;
5931
5932 if (inlined_func)
5933 {
5934 /* If we do not have call site information, we can't show the
5935 caller of this inlined function. That's too confusing, so
5936 only use the scope for local variables. */
5937 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5938 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5939 if (call_line == NULL || call_file == NULL)
5940 {
5941 read_lexical_block_scope (die, cu);
5942 return;
5943 }
5944 }
5945
5946 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5947
5948 name = dwarf2_name (die, cu);
5949
5950 /* Ignore functions with missing or empty names. These are actually
5951 illegal according to the DWARF standard. */
5952 if (name == NULL)
5953 {
5954 complaint (&symfile_complaints,
5955 _("missing name for subprogram DIE at %d"), die->offset);
5956 return;
5957 }
5958
5959 /* Ignore functions with missing or invalid low and high pc attributes. */
5960 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5961 {
5962 attr = dwarf2_attr (die, DW_AT_external, cu);
5963 if (!attr || !DW_UNSND (attr))
5964 complaint (&symfile_complaints,
5965 _("cannot get low and high bounds "
5966 "for subprogram DIE at %d"),
5967 die->offset);
5968 return;
5969 }
5970
5971 lowpc += baseaddr;
5972 highpc += baseaddr;
5973
5974 /* If we have any template arguments, then we must allocate a
5975 different sort of symbol. */
5976 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5977 {
5978 if (child_die->tag == DW_TAG_template_type_param
5979 || child_die->tag == DW_TAG_template_value_param)
5980 {
5981 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5982 struct template_symbol);
5983 templ_func->base.is_cplus_template_function = 1;
5984 break;
5985 }
5986 }
5987
5988 new = push_context (0, lowpc);
5989 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5990 (struct symbol *) templ_func);
5991
5992 /* If there is a location expression for DW_AT_frame_base, record
5993 it. */
5994 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5995 if (attr)
5996 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5997 expression is being recorded directly in the function's symbol
5998 and not in a separate frame-base object. I guess this hack is
5999 to avoid adding some sort of frame-base adjunct/annex to the
6000 function's symbol :-(. The problem with doing this is that it
6001 results in a function symbol with a location expression that
6002 has nothing to do with the location of the function, ouch! The
6003 relationship should be: a function's symbol has-a frame base; a
6004 frame-base has-a location expression. */
6005 dwarf2_symbol_mark_computed (attr, new->name, cu);
6006
6007 cu->list_in_scope = &local_symbols;
6008
6009 if (die->child != NULL)
6010 {
6011 child_die = die->child;
6012 while (child_die && child_die->tag)
6013 {
6014 if (child_die->tag == DW_TAG_template_type_param
6015 || child_die->tag == DW_TAG_template_value_param)
6016 {
6017 struct symbol *arg = new_symbol (child_die, NULL, cu);
6018
6019 if (arg != NULL)
6020 VEC_safe_push (symbolp, template_args, arg);
6021 }
6022 else
6023 process_die (child_die, cu);
6024 child_die = sibling_die (child_die);
6025 }
6026 }
6027
6028 inherit_abstract_dies (die, cu);
6029
6030 /* If we have a DW_AT_specification, we might need to import using
6031 directives from the context of the specification DIE. See the
6032 comment in determine_prefix. */
6033 if (cu->language == language_cplus
6034 && dwarf2_attr (die, DW_AT_specification, cu))
6035 {
6036 struct dwarf2_cu *spec_cu = cu;
6037 struct die_info *spec_die = die_specification (die, &spec_cu);
6038
6039 while (spec_die)
6040 {
6041 child_die = spec_die->child;
6042 while (child_die && child_die->tag)
6043 {
6044 if (child_die->tag == DW_TAG_imported_module)
6045 process_die (child_die, spec_cu);
6046 child_die = sibling_die (child_die);
6047 }
6048
6049 /* In some cases, GCC generates specification DIEs that
6050 themselves contain DW_AT_specification attributes. */
6051 spec_die = die_specification (spec_die, &spec_cu);
6052 }
6053 }
6054
6055 new = pop_context ();
6056 /* Make a block for the local symbols within. */
6057 block = finish_block (new->name, &local_symbols, new->old_blocks,
6058 lowpc, highpc, objfile);
6059
6060 /* For C++, set the block's scope. */
6061 if (cu->language == language_cplus || cu->language == language_fortran)
6062 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6063 determine_prefix (die, cu),
6064 processing_has_namespace_info);
6065
6066 /* If we have address ranges, record them. */
6067 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6068
6069 /* Attach template arguments to function. */
6070 if (! VEC_empty (symbolp, template_args))
6071 {
6072 gdb_assert (templ_func != NULL);
6073
6074 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6075 templ_func->template_arguments
6076 = obstack_alloc (&objfile->objfile_obstack,
6077 (templ_func->n_template_arguments
6078 * sizeof (struct symbol *)));
6079 memcpy (templ_func->template_arguments,
6080 VEC_address (symbolp, template_args),
6081 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6082 VEC_free (symbolp, template_args);
6083 }
6084
6085 /* In C++, we can have functions nested inside functions (e.g., when
6086 a function declares a class that has methods). This means that
6087 when we finish processing a function scope, we may need to go
6088 back to building a containing block's symbol lists. */
6089 local_symbols = new->locals;
6090 param_symbols = new->params;
6091 using_directives = new->using_directives;
6092
6093 /* If we've finished processing a top-level function, subsequent
6094 symbols go in the file symbol list. */
6095 if (outermost_context_p ())
6096 cu->list_in_scope = &file_symbols;
6097 }
6098
6099 /* Process all the DIES contained within a lexical block scope. Start
6100 a new scope, process the dies, and then close the scope. */
6101
6102 static void
6103 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6104 {
6105 struct objfile *objfile = cu->objfile;
6106 struct context_stack *new;
6107 CORE_ADDR lowpc, highpc;
6108 struct die_info *child_die;
6109 CORE_ADDR baseaddr;
6110
6111 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6112
6113 /* Ignore blocks with missing or invalid low and high pc attributes. */
6114 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6115 as multiple lexical blocks? Handling children in a sane way would
6116 be nasty. Might be easier to properly extend generic blocks to
6117 describe ranges. */
6118 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6119 return;
6120 lowpc += baseaddr;
6121 highpc += baseaddr;
6122
6123 push_context (0, lowpc);
6124 if (die->child != NULL)
6125 {
6126 child_die = die->child;
6127 while (child_die && child_die->tag)
6128 {
6129 process_die (child_die, cu);
6130 child_die = sibling_die (child_die);
6131 }
6132 }
6133 new = pop_context ();
6134
6135 if (local_symbols != NULL || using_directives != NULL)
6136 {
6137 struct block *block
6138 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6139 highpc, objfile);
6140
6141 /* Note that recording ranges after traversing children, as we
6142 do here, means that recording a parent's ranges entails
6143 walking across all its children's ranges as they appear in
6144 the address map, which is quadratic behavior.
6145
6146 It would be nicer to record the parent's ranges before
6147 traversing its children, simply overriding whatever you find
6148 there. But since we don't even decide whether to create a
6149 block until after we've traversed its children, that's hard
6150 to do. */
6151 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6152 }
6153 local_symbols = new->locals;
6154 using_directives = new->using_directives;
6155 }
6156
6157 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6158
6159 static void
6160 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6161 {
6162 struct objfile *objfile = cu->objfile;
6163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6164 CORE_ADDR pc, baseaddr;
6165 struct attribute *attr;
6166 struct call_site *call_site, call_site_local;
6167 void **slot;
6168 int nparams;
6169 struct die_info *child_die;
6170
6171 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6172
6173 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6174 if (!attr)
6175 {
6176 complaint (&symfile_complaints,
6177 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6178 "DIE 0x%x [in module %s]"),
6179 die->offset, objfile->name);
6180 return;
6181 }
6182 pc = DW_ADDR (attr) + baseaddr;
6183
6184 if (cu->call_site_htab == NULL)
6185 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6186 NULL, &objfile->objfile_obstack,
6187 hashtab_obstack_allocate, NULL);
6188 call_site_local.pc = pc;
6189 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6190 if (*slot != NULL)
6191 {
6192 complaint (&symfile_complaints,
6193 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6194 "DIE 0x%x [in module %s]"),
6195 paddress (gdbarch, pc), die->offset, objfile->name);
6196 return;
6197 }
6198
6199 /* Count parameters at the caller. */
6200
6201 nparams = 0;
6202 for (child_die = die->child; child_die && child_die->tag;
6203 child_die = sibling_die (child_die))
6204 {
6205 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6206 {
6207 complaint (&symfile_complaints,
6208 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6209 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6210 child_die->tag, child_die->offset, objfile->name);
6211 continue;
6212 }
6213
6214 nparams++;
6215 }
6216
6217 call_site = obstack_alloc (&objfile->objfile_obstack,
6218 (sizeof (*call_site)
6219 + (sizeof (*call_site->parameter)
6220 * (nparams - 1))));
6221 *slot = call_site;
6222 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6223 call_site->pc = pc;
6224
6225 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6226 {
6227 struct die_info *func_die;
6228
6229 /* Skip also over DW_TAG_inlined_subroutine. */
6230 for (func_die = die->parent;
6231 func_die && func_die->tag != DW_TAG_subprogram
6232 && func_die->tag != DW_TAG_subroutine_type;
6233 func_die = func_die->parent);
6234
6235 /* DW_AT_GNU_all_call_sites is a superset
6236 of DW_AT_GNU_all_tail_call_sites. */
6237 if (func_die
6238 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6239 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6240 {
6241 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6242 not complete. But keep CALL_SITE for look ups via call_site_htab,
6243 both the initial caller containing the real return address PC and
6244 the final callee containing the current PC of a chain of tail
6245 calls do not need to have the tail call list complete. But any
6246 function candidate for a virtual tail call frame searched via
6247 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6248 determined unambiguously. */
6249 }
6250 else
6251 {
6252 struct type *func_type = NULL;
6253
6254 if (func_die)
6255 func_type = get_die_type (func_die, cu);
6256 if (func_type != NULL)
6257 {
6258 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6259
6260 /* Enlist this call site to the function. */
6261 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6262 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6263 }
6264 else
6265 complaint (&symfile_complaints,
6266 _("Cannot find function owning DW_TAG_GNU_call_site "
6267 "DIE 0x%x [in module %s]"),
6268 die->offset, objfile->name);
6269 }
6270 }
6271
6272 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6273 if (attr == NULL)
6274 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6275 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6276 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6277 /* Keep NULL DWARF_BLOCK. */;
6278 else if (attr_form_is_block (attr))
6279 {
6280 struct dwarf2_locexpr_baton *dlbaton;
6281
6282 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6283 dlbaton->data = DW_BLOCK (attr)->data;
6284 dlbaton->size = DW_BLOCK (attr)->size;
6285 dlbaton->per_cu = cu->per_cu;
6286
6287 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6288 }
6289 else if (is_ref_attr (attr))
6290 {
6291 struct dwarf2_cu *target_cu = cu;
6292 struct die_info *target_die;
6293
6294 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6295 gdb_assert (target_cu->objfile == objfile);
6296 if (die_is_declaration (target_die, target_cu))
6297 {
6298 const char *target_physname;
6299
6300 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6301 if (target_physname == NULL)
6302 complaint (&symfile_complaints,
6303 _("DW_AT_GNU_call_site_target target DIE has invalid "
6304 "physname, for referencing DIE 0x%x [in module %s]"),
6305 die->offset, objfile->name);
6306 else
6307 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6308 }
6309 else
6310 {
6311 CORE_ADDR lowpc;
6312
6313 /* DW_AT_entry_pc should be preferred. */
6314 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6315 complaint (&symfile_complaints,
6316 _("DW_AT_GNU_call_site_target target DIE has invalid "
6317 "low pc, for referencing DIE 0x%x [in module %s]"),
6318 die->offset, objfile->name);
6319 else
6320 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6321 }
6322 }
6323 else
6324 complaint (&symfile_complaints,
6325 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6326 "block nor reference, for DIE 0x%x [in module %s]"),
6327 die->offset, objfile->name);
6328
6329 call_site->per_cu = cu->per_cu;
6330
6331 for (child_die = die->child;
6332 child_die && child_die->tag;
6333 child_die = sibling_die (child_die))
6334 {
6335 struct dwarf2_locexpr_baton *dlbaton;
6336 struct call_site_parameter *parameter;
6337
6338 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6339 {
6340 /* Already printed the complaint above. */
6341 continue;
6342 }
6343
6344 gdb_assert (call_site->parameter_count < nparams);
6345 parameter = &call_site->parameter[call_site->parameter_count];
6346
6347 /* DW_AT_location specifies the register number. Value of the data
6348 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6349
6350 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6351 if (!attr || !attr_form_is_block (attr))
6352 {
6353 complaint (&symfile_complaints,
6354 _("No DW_FORM_block* DW_AT_location for "
6355 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6356 child_die->offset, objfile->name);
6357 continue;
6358 }
6359 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6360 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6361 if (parameter->dwarf_reg == -1
6362 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6363 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6364 &parameter->fb_offset))
6365 {
6366 complaint (&symfile_complaints,
6367 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6368 "for DW_FORM_block* DW_AT_location for "
6369 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6370 child_die->offset, objfile->name);
6371 continue;
6372 }
6373
6374 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6375 if (!attr_form_is_block (attr))
6376 {
6377 complaint (&symfile_complaints,
6378 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6379 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6380 child_die->offset, objfile->name);
6381 continue;
6382 }
6383 parameter->value = DW_BLOCK (attr)->data;
6384 parameter->value_size = DW_BLOCK (attr)->size;
6385
6386 /* Parameters are not pre-cleared by memset above. */
6387 parameter->data_value = NULL;
6388 parameter->data_value_size = 0;
6389 call_site->parameter_count++;
6390
6391 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6392 if (attr)
6393 {
6394 if (!attr_form_is_block (attr))
6395 complaint (&symfile_complaints,
6396 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6397 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6398 child_die->offset, objfile->name);
6399 else
6400 {
6401 parameter->data_value = DW_BLOCK (attr)->data;
6402 parameter->data_value_size = DW_BLOCK (attr)->size;
6403 }
6404 }
6405 }
6406 }
6407
6408 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6409 Return 1 if the attributes are present and valid, otherwise, return 0.
6410 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6411
6412 static int
6413 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6414 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6415 struct partial_symtab *ranges_pst)
6416 {
6417 struct objfile *objfile = cu->objfile;
6418 struct comp_unit_head *cu_header = &cu->header;
6419 bfd *obfd = objfile->obfd;
6420 unsigned int addr_size = cu_header->addr_size;
6421 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6422 /* Base address selection entry. */
6423 CORE_ADDR base;
6424 int found_base;
6425 unsigned int dummy;
6426 gdb_byte *buffer;
6427 CORE_ADDR marker;
6428 int low_set;
6429 CORE_ADDR low = 0;
6430 CORE_ADDR high = 0;
6431 CORE_ADDR baseaddr;
6432
6433 found_base = cu->base_known;
6434 base = cu->base_address;
6435
6436 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6437 if (offset >= dwarf2_per_objfile->ranges.size)
6438 {
6439 complaint (&symfile_complaints,
6440 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6441 offset);
6442 return 0;
6443 }
6444 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6445
6446 /* Read in the largest possible address. */
6447 marker = read_address (obfd, buffer, cu, &dummy);
6448 if ((marker & mask) == mask)
6449 {
6450 /* If we found the largest possible address, then
6451 read the base address. */
6452 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6453 buffer += 2 * addr_size;
6454 offset += 2 * addr_size;
6455 found_base = 1;
6456 }
6457
6458 low_set = 0;
6459
6460 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6461
6462 while (1)
6463 {
6464 CORE_ADDR range_beginning, range_end;
6465
6466 range_beginning = read_address (obfd, buffer, cu, &dummy);
6467 buffer += addr_size;
6468 range_end = read_address (obfd, buffer, cu, &dummy);
6469 buffer += addr_size;
6470 offset += 2 * addr_size;
6471
6472 /* An end of list marker is a pair of zero addresses. */
6473 if (range_beginning == 0 && range_end == 0)
6474 /* Found the end of list entry. */
6475 break;
6476
6477 /* Each base address selection entry is a pair of 2 values.
6478 The first is the largest possible address, the second is
6479 the base address. Check for a base address here. */
6480 if ((range_beginning & mask) == mask)
6481 {
6482 /* If we found the largest possible address, then
6483 read the base address. */
6484 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6485 found_base = 1;
6486 continue;
6487 }
6488
6489 if (!found_base)
6490 {
6491 /* We have no valid base address for the ranges
6492 data. */
6493 complaint (&symfile_complaints,
6494 _("Invalid .debug_ranges data (no base address)"));
6495 return 0;
6496 }
6497
6498 if (range_beginning > range_end)
6499 {
6500 /* Inverted range entries are invalid. */
6501 complaint (&symfile_complaints,
6502 _("Invalid .debug_ranges data (inverted range)"));
6503 return 0;
6504 }
6505
6506 /* Empty range entries have no effect. */
6507 if (range_beginning == range_end)
6508 continue;
6509
6510 range_beginning += base;
6511 range_end += base;
6512
6513 if (ranges_pst != NULL)
6514 addrmap_set_empty (objfile->psymtabs_addrmap,
6515 range_beginning + baseaddr,
6516 range_end - 1 + baseaddr,
6517 ranges_pst);
6518
6519 /* FIXME: This is recording everything as a low-high
6520 segment of consecutive addresses. We should have a
6521 data structure for discontiguous block ranges
6522 instead. */
6523 if (! low_set)
6524 {
6525 low = range_beginning;
6526 high = range_end;
6527 low_set = 1;
6528 }
6529 else
6530 {
6531 if (range_beginning < low)
6532 low = range_beginning;
6533 if (range_end > high)
6534 high = range_end;
6535 }
6536 }
6537
6538 if (! low_set)
6539 /* If the first entry is an end-of-list marker, the range
6540 describes an empty scope, i.e. no instructions. */
6541 return 0;
6542
6543 if (low_return)
6544 *low_return = low;
6545 if (high_return)
6546 *high_return = high;
6547 return 1;
6548 }
6549
6550 /* Get low and high pc attributes from a die. Return 1 if the attributes
6551 are present and valid, otherwise, return 0. Return -1 if the range is
6552 discontinuous, i.e. derived from DW_AT_ranges information. */
6553 static int
6554 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6555 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6556 struct partial_symtab *pst)
6557 {
6558 struct attribute *attr;
6559 CORE_ADDR low = 0;
6560 CORE_ADDR high = 0;
6561 int ret = 0;
6562
6563 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6564 if (attr)
6565 {
6566 high = DW_ADDR (attr);
6567 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6568 if (attr)
6569 low = DW_ADDR (attr);
6570 else
6571 /* Found high w/o low attribute. */
6572 return 0;
6573
6574 /* Found consecutive range of addresses. */
6575 ret = 1;
6576 }
6577 else
6578 {
6579 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6580 if (attr != NULL)
6581 {
6582 /* Value of the DW_AT_ranges attribute is the offset in the
6583 .debug_ranges section. */
6584 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6585 return 0;
6586 /* Found discontinuous range of addresses. */
6587 ret = -1;
6588 }
6589 }
6590
6591 /* read_partial_die has also the strict LOW < HIGH requirement. */
6592 if (high <= low)
6593 return 0;
6594
6595 /* When using the GNU linker, .gnu.linkonce. sections are used to
6596 eliminate duplicate copies of functions and vtables and such.
6597 The linker will arbitrarily choose one and discard the others.
6598 The AT_*_pc values for such functions refer to local labels in
6599 these sections. If the section from that file was discarded, the
6600 labels are not in the output, so the relocs get a value of 0.
6601 If this is a discarded function, mark the pc bounds as invalid,
6602 so that GDB will ignore it. */
6603 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6604 return 0;
6605
6606 *lowpc = low;
6607 if (highpc)
6608 *highpc = high;
6609 return ret;
6610 }
6611
6612 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6613 its low and high PC addresses. Do nothing if these addresses could not
6614 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6615 and HIGHPC to the high address if greater than HIGHPC. */
6616
6617 static void
6618 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6619 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6620 struct dwarf2_cu *cu)
6621 {
6622 CORE_ADDR low, high;
6623 struct die_info *child = die->child;
6624
6625 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6626 {
6627 *lowpc = min (*lowpc, low);
6628 *highpc = max (*highpc, high);
6629 }
6630
6631 /* If the language does not allow nested subprograms (either inside
6632 subprograms or lexical blocks), we're done. */
6633 if (cu->language != language_ada)
6634 return;
6635
6636 /* Check all the children of the given DIE. If it contains nested
6637 subprograms, then check their pc bounds. Likewise, we need to
6638 check lexical blocks as well, as they may also contain subprogram
6639 definitions. */
6640 while (child && child->tag)
6641 {
6642 if (child->tag == DW_TAG_subprogram
6643 || child->tag == DW_TAG_lexical_block)
6644 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6645 child = sibling_die (child);
6646 }
6647 }
6648
6649 /* Get the low and high pc's represented by the scope DIE, and store
6650 them in *LOWPC and *HIGHPC. If the correct values can't be
6651 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6652
6653 static void
6654 get_scope_pc_bounds (struct die_info *die,
6655 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6656 struct dwarf2_cu *cu)
6657 {
6658 CORE_ADDR best_low = (CORE_ADDR) -1;
6659 CORE_ADDR best_high = (CORE_ADDR) 0;
6660 CORE_ADDR current_low, current_high;
6661
6662 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6663 {
6664 best_low = current_low;
6665 best_high = current_high;
6666 }
6667 else
6668 {
6669 struct die_info *child = die->child;
6670
6671 while (child && child->tag)
6672 {
6673 switch (child->tag) {
6674 case DW_TAG_subprogram:
6675 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6676 break;
6677 case DW_TAG_namespace:
6678 case DW_TAG_module:
6679 /* FIXME: carlton/2004-01-16: Should we do this for
6680 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6681 that current GCC's always emit the DIEs corresponding
6682 to definitions of methods of classes as children of a
6683 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6684 the DIEs giving the declarations, which could be
6685 anywhere). But I don't see any reason why the
6686 standards says that they have to be there. */
6687 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6688
6689 if (current_low != ((CORE_ADDR) -1))
6690 {
6691 best_low = min (best_low, current_low);
6692 best_high = max (best_high, current_high);
6693 }
6694 break;
6695 default:
6696 /* Ignore. */
6697 break;
6698 }
6699
6700 child = sibling_die (child);
6701 }
6702 }
6703
6704 *lowpc = best_low;
6705 *highpc = best_high;
6706 }
6707
6708 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6709 in DIE. */
6710 static void
6711 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6712 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6713 {
6714 struct objfile *objfile = cu->objfile;
6715 struct attribute *attr;
6716
6717 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6718 if (attr)
6719 {
6720 CORE_ADDR high = DW_ADDR (attr);
6721
6722 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6723 if (attr)
6724 {
6725 CORE_ADDR low = DW_ADDR (attr);
6726
6727 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6728 }
6729 }
6730
6731 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6732 if (attr)
6733 {
6734 bfd *obfd = objfile->obfd;
6735
6736 /* The value of the DW_AT_ranges attribute is the offset of the
6737 address range list in the .debug_ranges section. */
6738 unsigned long offset = DW_UNSND (attr);
6739 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6740
6741 /* For some target architectures, but not others, the
6742 read_address function sign-extends the addresses it returns.
6743 To recognize base address selection entries, we need a
6744 mask. */
6745 unsigned int addr_size = cu->header.addr_size;
6746 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6747
6748 /* The base address, to which the next pair is relative. Note
6749 that this 'base' is a DWARF concept: most entries in a range
6750 list are relative, to reduce the number of relocs against the
6751 debugging information. This is separate from this function's
6752 'baseaddr' argument, which GDB uses to relocate debugging
6753 information from a shared library based on the address at
6754 which the library was loaded. */
6755 CORE_ADDR base = cu->base_address;
6756 int base_known = cu->base_known;
6757
6758 gdb_assert (dwarf2_per_objfile->ranges.readin);
6759 if (offset >= dwarf2_per_objfile->ranges.size)
6760 {
6761 complaint (&symfile_complaints,
6762 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6763 offset);
6764 return;
6765 }
6766
6767 for (;;)
6768 {
6769 unsigned int bytes_read;
6770 CORE_ADDR start, end;
6771
6772 start = read_address (obfd, buffer, cu, &bytes_read);
6773 buffer += bytes_read;
6774 end = read_address (obfd, buffer, cu, &bytes_read);
6775 buffer += bytes_read;
6776
6777 /* Did we find the end of the range list? */
6778 if (start == 0 && end == 0)
6779 break;
6780
6781 /* Did we find a base address selection entry? */
6782 else if ((start & base_select_mask) == base_select_mask)
6783 {
6784 base = end;
6785 base_known = 1;
6786 }
6787
6788 /* We found an ordinary address range. */
6789 else
6790 {
6791 if (!base_known)
6792 {
6793 complaint (&symfile_complaints,
6794 _("Invalid .debug_ranges data "
6795 "(no base address)"));
6796 return;
6797 }
6798
6799 if (start > end)
6800 {
6801 /* Inverted range entries are invalid. */
6802 complaint (&symfile_complaints,
6803 _("Invalid .debug_ranges data "
6804 "(inverted range)"));
6805 return;
6806 }
6807
6808 /* Empty range entries have no effect. */
6809 if (start == end)
6810 continue;
6811
6812 record_block_range (block,
6813 baseaddr + base + start,
6814 baseaddr + base + end - 1);
6815 }
6816 }
6817 }
6818 }
6819
6820 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6821 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6822 during 4.6.0 experimental. */
6823
6824 static int
6825 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6826 {
6827 const char *cs;
6828 int major, minor, release;
6829
6830 if (cu->producer == NULL)
6831 {
6832 /* For unknown compilers expect their behavior is DWARF version
6833 compliant.
6834
6835 GCC started to support .debug_types sections by -gdwarf-4 since
6836 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6837 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6838 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6839 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6840
6841 return 0;
6842 }
6843
6844 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6845
6846 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6847 {
6848 /* For non-GCC compilers expect their behavior is DWARF version
6849 compliant. */
6850
6851 return 0;
6852 }
6853 cs = &cu->producer[strlen ("GNU ")];
6854 while (*cs && !isdigit (*cs))
6855 cs++;
6856 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6857 {
6858 /* Not recognized as GCC. */
6859
6860 return 0;
6861 }
6862
6863 return major < 4 || (major == 4 && minor < 6);
6864 }
6865
6866 /* Return the default accessibility type if it is not overriden by
6867 DW_AT_accessibility. */
6868
6869 static enum dwarf_access_attribute
6870 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6871 {
6872 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6873 {
6874 /* The default DWARF 2 accessibility for members is public, the default
6875 accessibility for inheritance is private. */
6876
6877 if (die->tag != DW_TAG_inheritance)
6878 return DW_ACCESS_public;
6879 else
6880 return DW_ACCESS_private;
6881 }
6882 else
6883 {
6884 /* DWARF 3+ defines the default accessibility a different way. The same
6885 rules apply now for DW_TAG_inheritance as for the members and it only
6886 depends on the container kind. */
6887
6888 if (die->parent->tag == DW_TAG_class_type)
6889 return DW_ACCESS_private;
6890 else
6891 return DW_ACCESS_public;
6892 }
6893 }
6894
6895 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6896 offset. If the attribute was not found return 0, otherwise return
6897 1. If it was found but could not properly be handled, set *OFFSET
6898 to 0. */
6899
6900 static int
6901 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6902 LONGEST *offset)
6903 {
6904 struct attribute *attr;
6905
6906 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6907 if (attr != NULL)
6908 {
6909 *offset = 0;
6910
6911 /* Note that we do not check for a section offset first here.
6912 This is because DW_AT_data_member_location is new in DWARF 4,
6913 so if we see it, we can assume that a constant form is really
6914 a constant and not a section offset. */
6915 if (attr_form_is_constant (attr))
6916 *offset = dwarf2_get_attr_constant_value (attr, 0);
6917 else if (attr_form_is_section_offset (attr))
6918 dwarf2_complex_location_expr_complaint ();
6919 else if (attr_form_is_block (attr))
6920 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6921 else
6922 dwarf2_complex_location_expr_complaint ();
6923
6924 return 1;
6925 }
6926
6927 return 0;
6928 }
6929
6930 /* Add an aggregate field to the field list. */
6931
6932 static void
6933 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6934 struct dwarf2_cu *cu)
6935 {
6936 struct objfile *objfile = cu->objfile;
6937 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6938 struct nextfield *new_field;
6939 struct attribute *attr;
6940 struct field *fp;
6941 char *fieldname = "";
6942
6943 /* Allocate a new field list entry and link it in. */
6944 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6945 make_cleanup (xfree, new_field);
6946 memset (new_field, 0, sizeof (struct nextfield));
6947
6948 if (die->tag == DW_TAG_inheritance)
6949 {
6950 new_field->next = fip->baseclasses;
6951 fip->baseclasses = new_field;
6952 }
6953 else
6954 {
6955 new_field->next = fip->fields;
6956 fip->fields = new_field;
6957 }
6958 fip->nfields++;
6959
6960 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6961 if (attr)
6962 new_field->accessibility = DW_UNSND (attr);
6963 else
6964 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
6965 if (new_field->accessibility != DW_ACCESS_public)
6966 fip->non_public_fields = 1;
6967
6968 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6969 if (attr)
6970 new_field->virtuality = DW_UNSND (attr);
6971 else
6972 new_field->virtuality = DW_VIRTUALITY_none;
6973
6974 fp = &new_field->field;
6975
6976 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6977 {
6978 LONGEST offset;
6979
6980 /* Data member other than a C++ static data member. */
6981
6982 /* Get type of field. */
6983 fp->type = die_type (die, cu);
6984
6985 SET_FIELD_BITPOS (*fp, 0);
6986
6987 /* Get bit size of field (zero if none). */
6988 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6989 if (attr)
6990 {
6991 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6992 }
6993 else
6994 {
6995 FIELD_BITSIZE (*fp) = 0;
6996 }
6997
6998 /* Get bit offset of field. */
6999 if (handle_data_member_location (die, cu, &offset))
7000 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7001 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7002 if (attr)
7003 {
7004 if (gdbarch_bits_big_endian (gdbarch))
7005 {
7006 /* For big endian bits, the DW_AT_bit_offset gives the
7007 additional bit offset from the MSB of the containing
7008 anonymous object to the MSB of the field. We don't
7009 have to do anything special since we don't need to
7010 know the size of the anonymous object. */
7011 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7012 }
7013 else
7014 {
7015 /* For little endian bits, compute the bit offset to the
7016 MSB of the anonymous object, subtract off the number of
7017 bits from the MSB of the field to the MSB of the
7018 object, and then subtract off the number of bits of
7019 the field itself. The result is the bit offset of
7020 the LSB of the field. */
7021 int anonymous_size;
7022 int bit_offset = DW_UNSND (attr);
7023
7024 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7025 if (attr)
7026 {
7027 /* The size of the anonymous object containing
7028 the bit field is explicit, so use the
7029 indicated size (in bytes). */
7030 anonymous_size = DW_UNSND (attr);
7031 }
7032 else
7033 {
7034 /* The size of the anonymous object containing
7035 the bit field must be inferred from the type
7036 attribute of the data member containing the
7037 bit field. */
7038 anonymous_size = TYPE_LENGTH (fp->type);
7039 }
7040 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7041 - bit_offset - FIELD_BITSIZE (*fp);
7042 }
7043 }
7044
7045 /* Get name of field. */
7046 fieldname = dwarf2_name (die, cu);
7047 if (fieldname == NULL)
7048 fieldname = "";
7049
7050 /* The name is already allocated along with this objfile, so we don't
7051 need to duplicate it for the type. */
7052 fp->name = fieldname;
7053
7054 /* Change accessibility for artificial fields (e.g. virtual table
7055 pointer or virtual base class pointer) to private. */
7056 if (dwarf2_attr (die, DW_AT_artificial, cu))
7057 {
7058 FIELD_ARTIFICIAL (*fp) = 1;
7059 new_field->accessibility = DW_ACCESS_private;
7060 fip->non_public_fields = 1;
7061 }
7062 }
7063 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7064 {
7065 /* C++ static member. */
7066
7067 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7068 is a declaration, but all versions of G++ as of this writing
7069 (so through at least 3.2.1) incorrectly generate
7070 DW_TAG_variable tags. */
7071
7072 const char *physname;
7073
7074 /* Get name of field. */
7075 fieldname = dwarf2_name (die, cu);
7076 if (fieldname == NULL)
7077 return;
7078
7079 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7080 if (attr
7081 /* Only create a symbol if this is an external value.
7082 new_symbol checks this and puts the value in the global symbol
7083 table, which we want. If it is not external, new_symbol
7084 will try to put the value in cu->list_in_scope which is wrong. */
7085 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7086 {
7087 /* A static const member, not much different than an enum as far as
7088 we're concerned, except that we can support more types. */
7089 new_symbol (die, NULL, cu);
7090 }
7091
7092 /* Get physical name. */
7093 physname = dwarf2_physname (fieldname, die, cu);
7094
7095 /* The name is already allocated along with this objfile, so we don't
7096 need to duplicate it for the type. */
7097 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7098 FIELD_TYPE (*fp) = die_type (die, cu);
7099 FIELD_NAME (*fp) = fieldname;
7100 }
7101 else if (die->tag == DW_TAG_inheritance)
7102 {
7103 LONGEST offset;
7104
7105 /* C++ base class field. */
7106 if (handle_data_member_location (die, cu, &offset))
7107 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7108 FIELD_BITSIZE (*fp) = 0;
7109 FIELD_TYPE (*fp) = die_type (die, cu);
7110 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7111 fip->nbaseclasses++;
7112 }
7113 }
7114
7115 /* Add a typedef defined in the scope of the FIP's class. */
7116
7117 static void
7118 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7119 struct dwarf2_cu *cu)
7120 {
7121 struct objfile *objfile = cu->objfile;
7122 struct typedef_field_list *new_field;
7123 struct attribute *attr;
7124 struct typedef_field *fp;
7125 char *fieldname = "";
7126
7127 /* Allocate a new field list entry and link it in. */
7128 new_field = xzalloc (sizeof (*new_field));
7129 make_cleanup (xfree, new_field);
7130
7131 gdb_assert (die->tag == DW_TAG_typedef);
7132
7133 fp = &new_field->field;
7134
7135 /* Get name of field. */
7136 fp->name = dwarf2_name (die, cu);
7137 if (fp->name == NULL)
7138 return;
7139
7140 fp->type = read_type_die (die, cu);
7141
7142 new_field->next = fip->typedef_field_list;
7143 fip->typedef_field_list = new_field;
7144 fip->typedef_field_list_count++;
7145 }
7146
7147 /* Create the vector of fields, and attach it to the type. */
7148
7149 static void
7150 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7151 struct dwarf2_cu *cu)
7152 {
7153 int nfields = fip->nfields;
7154
7155 /* Record the field count, allocate space for the array of fields,
7156 and create blank accessibility bitfields if necessary. */
7157 TYPE_NFIELDS (type) = nfields;
7158 TYPE_FIELDS (type) = (struct field *)
7159 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7160 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7161
7162 if (fip->non_public_fields && cu->language != language_ada)
7163 {
7164 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7165
7166 TYPE_FIELD_PRIVATE_BITS (type) =
7167 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7168 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7169
7170 TYPE_FIELD_PROTECTED_BITS (type) =
7171 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7172 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7173
7174 TYPE_FIELD_IGNORE_BITS (type) =
7175 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7176 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7177 }
7178
7179 /* If the type has baseclasses, allocate and clear a bit vector for
7180 TYPE_FIELD_VIRTUAL_BITS. */
7181 if (fip->nbaseclasses && cu->language != language_ada)
7182 {
7183 int num_bytes = B_BYTES (fip->nbaseclasses);
7184 unsigned char *pointer;
7185
7186 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7187 pointer = TYPE_ALLOC (type, num_bytes);
7188 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7189 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7190 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7191 }
7192
7193 /* Copy the saved-up fields into the field vector. Start from the head of
7194 the list, adding to the tail of the field array, so that they end up in
7195 the same order in the array in which they were added to the list. */
7196 while (nfields-- > 0)
7197 {
7198 struct nextfield *fieldp;
7199
7200 if (fip->fields)
7201 {
7202 fieldp = fip->fields;
7203 fip->fields = fieldp->next;
7204 }
7205 else
7206 {
7207 fieldp = fip->baseclasses;
7208 fip->baseclasses = fieldp->next;
7209 }
7210
7211 TYPE_FIELD (type, nfields) = fieldp->field;
7212 switch (fieldp->accessibility)
7213 {
7214 case DW_ACCESS_private:
7215 if (cu->language != language_ada)
7216 SET_TYPE_FIELD_PRIVATE (type, nfields);
7217 break;
7218
7219 case DW_ACCESS_protected:
7220 if (cu->language != language_ada)
7221 SET_TYPE_FIELD_PROTECTED (type, nfields);
7222 break;
7223
7224 case DW_ACCESS_public:
7225 break;
7226
7227 default:
7228 /* Unknown accessibility. Complain and treat it as public. */
7229 {
7230 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7231 fieldp->accessibility);
7232 }
7233 break;
7234 }
7235 if (nfields < fip->nbaseclasses)
7236 {
7237 switch (fieldp->virtuality)
7238 {
7239 case DW_VIRTUALITY_virtual:
7240 case DW_VIRTUALITY_pure_virtual:
7241 if (cu->language == language_ada)
7242 error (_("unexpected virtuality in component of Ada type"));
7243 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7244 break;
7245 }
7246 }
7247 }
7248 }
7249
7250 /* Add a member function to the proper fieldlist. */
7251
7252 static void
7253 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7254 struct type *type, struct dwarf2_cu *cu)
7255 {
7256 struct objfile *objfile = cu->objfile;
7257 struct attribute *attr;
7258 struct fnfieldlist *flp;
7259 int i;
7260 struct fn_field *fnp;
7261 char *fieldname;
7262 struct nextfnfield *new_fnfield;
7263 struct type *this_type;
7264 enum dwarf_access_attribute accessibility;
7265
7266 if (cu->language == language_ada)
7267 error (_("unexpected member function in Ada type"));
7268
7269 /* Get name of member function. */
7270 fieldname = dwarf2_name (die, cu);
7271 if (fieldname == NULL)
7272 return;
7273
7274 /* Look up member function name in fieldlist. */
7275 for (i = 0; i < fip->nfnfields; i++)
7276 {
7277 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7278 break;
7279 }
7280
7281 /* Create new list element if necessary. */
7282 if (i < fip->nfnfields)
7283 flp = &fip->fnfieldlists[i];
7284 else
7285 {
7286 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7287 {
7288 fip->fnfieldlists = (struct fnfieldlist *)
7289 xrealloc (fip->fnfieldlists,
7290 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7291 * sizeof (struct fnfieldlist));
7292 if (fip->nfnfields == 0)
7293 make_cleanup (free_current_contents, &fip->fnfieldlists);
7294 }
7295 flp = &fip->fnfieldlists[fip->nfnfields];
7296 flp->name = fieldname;
7297 flp->length = 0;
7298 flp->head = NULL;
7299 i = fip->nfnfields++;
7300 }
7301
7302 /* Create a new member function field and chain it to the field list
7303 entry. */
7304 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7305 make_cleanup (xfree, new_fnfield);
7306 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7307 new_fnfield->next = flp->head;
7308 flp->head = new_fnfield;
7309 flp->length++;
7310
7311 /* Fill in the member function field info. */
7312 fnp = &new_fnfield->fnfield;
7313
7314 /* Delay processing of the physname until later. */
7315 if (cu->language == language_cplus || cu->language == language_java)
7316 {
7317 add_to_method_list (type, i, flp->length - 1, fieldname,
7318 die, cu);
7319 }
7320 else
7321 {
7322 const char *physname = dwarf2_physname (fieldname, die, cu);
7323 fnp->physname = physname ? physname : "";
7324 }
7325
7326 fnp->type = alloc_type (objfile);
7327 this_type = read_type_die (die, cu);
7328 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7329 {
7330 int nparams = TYPE_NFIELDS (this_type);
7331
7332 /* TYPE is the domain of this method, and THIS_TYPE is the type
7333 of the method itself (TYPE_CODE_METHOD). */
7334 smash_to_method_type (fnp->type, type,
7335 TYPE_TARGET_TYPE (this_type),
7336 TYPE_FIELDS (this_type),
7337 TYPE_NFIELDS (this_type),
7338 TYPE_VARARGS (this_type));
7339
7340 /* Handle static member functions.
7341 Dwarf2 has no clean way to discern C++ static and non-static
7342 member functions. G++ helps GDB by marking the first
7343 parameter for non-static member functions (which is the this
7344 pointer) as artificial. We obtain this information from
7345 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7346 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7347 fnp->voffset = VOFFSET_STATIC;
7348 }
7349 else
7350 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7351 dwarf2_full_name (fieldname, die, cu));
7352
7353 /* Get fcontext from DW_AT_containing_type if present. */
7354 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7355 fnp->fcontext = die_containing_type (die, cu);
7356
7357 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7358 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7359
7360 /* Get accessibility. */
7361 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7362 if (attr)
7363 accessibility = DW_UNSND (attr);
7364 else
7365 accessibility = dwarf2_default_access_attribute (die, cu);
7366 switch (accessibility)
7367 {
7368 case DW_ACCESS_private:
7369 fnp->is_private = 1;
7370 break;
7371 case DW_ACCESS_protected:
7372 fnp->is_protected = 1;
7373 break;
7374 }
7375
7376 /* Check for artificial methods. */
7377 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7378 if (attr && DW_UNSND (attr) != 0)
7379 fnp->is_artificial = 1;
7380
7381 /* Get index in virtual function table if it is a virtual member
7382 function. For older versions of GCC, this is an offset in the
7383 appropriate virtual table, as specified by DW_AT_containing_type.
7384 For everyone else, it is an expression to be evaluated relative
7385 to the object address. */
7386
7387 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7388 if (attr)
7389 {
7390 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7391 {
7392 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7393 {
7394 /* Old-style GCC. */
7395 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7396 }
7397 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7398 || (DW_BLOCK (attr)->size > 1
7399 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7400 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7401 {
7402 struct dwarf_block blk;
7403 int offset;
7404
7405 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7406 ? 1 : 2);
7407 blk.size = DW_BLOCK (attr)->size - offset;
7408 blk.data = DW_BLOCK (attr)->data + offset;
7409 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7410 if ((fnp->voffset % cu->header.addr_size) != 0)
7411 dwarf2_complex_location_expr_complaint ();
7412 else
7413 fnp->voffset /= cu->header.addr_size;
7414 fnp->voffset += 2;
7415 }
7416 else
7417 dwarf2_complex_location_expr_complaint ();
7418
7419 if (!fnp->fcontext)
7420 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7421 }
7422 else if (attr_form_is_section_offset (attr))
7423 {
7424 dwarf2_complex_location_expr_complaint ();
7425 }
7426 else
7427 {
7428 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7429 fieldname);
7430 }
7431 }
7432 else
7433 {
7434 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7435 if (attr && DW_UNSND (attr))
7436 {
7437 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7438 complaint (&symfile_complaints,
7439 _("Member function \"%s\" (offset %d) is virtual "
7440 "but the vtable offset is not specified"),
7441 fieldname, die->offset);
7442 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7443 TYPE_CPLUS_DYNAMIC (type) = 1;
7444 }
7445 }
7446 }
7447
7448 /* Create the vector of member function fields, and attach it to the type. */
7449
7450 static void
7451 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7452 struct dwarf2_cu *cu)
7453 {
7454 struct fnfieldlist *flp;
7455 int i;
7456
7457 if (cu->language == language_ada)
7458 error (_("unexpected member functions in Ada type"));
7459
7460 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7461 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7462 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7463
7464 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7465 {
7466 struct nextfnfield *nfp = flp->head;
7467 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7468 int k;
7469
7470 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7471 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7472 fn_flp->fn_fields = (struct fn_field *)
7473 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7474 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7475 fn_flp->fn_fields[k] = nfp->fnfield;
7476 }
7477
7478 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7479 }
7480
7481 /* Returns non-zero if NAME is the name of a vtable member in CU's
7482 language, zero otherwise. */
7483 static int
7484 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7485 {
7486 static const char vptr[] = "_vptr";
7487 static const char vtable[] = "vtable";
7488
7489 /* Look for the C++ and Java forms of the vtable. */
7490 if ((cu->language == language_java
7491 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7492 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7493 && is_cplus_marker (name[sizeof (vptr) - 1])))
7494 return 1;
7495
7496 return 0;
7497 }
7498
7499 /* GCC outputs unnamed structures that are really pointers to member
7500 functions, with the ABI-specified layout. If TYPE describes
7501 such a structure, smash it into a member function type.
7502
7503 GCC shouldn't do this; it should just output pointer to member DIEs.
7504 This is GCC PR debug/28767. */
7505
7506 static void
7507 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7508 {
7509 struct type *pfn_type, *domain_type, *new_type;
7510
7511 /* Check for a structure with no name and two children. */
7512 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7513 return;
7514
7515 /* Check for __pfn and __delta members. */
7516 if (TYPE_FIELD_NAME (type, 0) == NULL
7517 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7518 || TYPE_FIELD_NAME (type, 1) == NULL
7519 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7520 return;
7521
7522 /* Find the type of the method. */
7523 pfn_type = TYPE_FIELD_TYPE (type, 0);
7524 if (pfn_type == NULL
7525 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7526 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7527 return;
7528
7529 /* Look for the "this" argument. */
7530 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7531 if (TYPE_NFIELDS (pfn_type) == 0
7532 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7533 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7534 return;
7535
7536 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7537 new_type = alloc_type (objfile);
7538 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7539 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7540 TYPE_VARARGS (pfn_type));
7541 smash_to_methodptr_type (type, new_type);
7542 }
7543
7544 /* Called when we find the DIE that starts a structure or union scope
7545 (definition) to create a type for the structure or union. Fill in
7546 the type's name and general properties; the members will not be
7547 processed until process_structure_type.
7548
7549 NOTE: we need to call these functions regardless of whether or not the
7550 DIE has a DW_AT_name attribute, since it might be an anonymous
7551 structure or union. This gets the type entered into our set of
7552 user defined types.
7553
7554 However, if the structure is incomplete (an opaque struct/union)
7555 then suppress creating a symbol table entry for it since gdb only
7556 wants to find the one with the complete definition. Note that if
7557 it is complete, we just call new_symbol, which does it's own
7558 checking about whether the struct/union is anonymous or not (and
7559 suppresses creating a symbol table entry itself). */
7560
7561 static struct type *
7562 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7563 {
7564 struct objfile *objfile = cu->objfile;
7565 struct type *type;
7566 struct attribute *attr;
7567 char *name;
7568
7569 /* If the definition of this type lives in .debug_types, read that type.
7570 Don't follow DW_AT_specification though, that will take us back up
7571 the chain and we want to go down. */
7572 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7573 if (attr)
7574 {
7575 struct dwarf2_cu *type_cu = cu;
7576 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7577
7578 /* We could just recurse on read_structure_type, but we need to call
7579 get_die_type to ensure only one type for this DIE is created.
7580 This is important, for example, because for c++ classes we need
7581 TYPE_NAME set which is only done by new_symbol. Blech. */
7582 type = read_type_die (type_die, type_cu);
7583
7584 /* TYPE_CU may not be the same as CU.
7585 Ensure TYPE is recorded in CU's type_hash table. */
7586 return set_die_type (die, type, cu);
7587 }
7588
7589 type = alloc_type (objfile);
7590 INIT_CPLUS_SPECIFIC (type);
7591
7592 name = dwarf2_name (die, cu);
7593 if (name != NULL)
7594 {
7595 if (cu->language == language_cplus
7596 || cu->language == language_java)
7597 {
7598 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7599
7600 /* dwarf2_full_name might have already finished building the DIE's
7601 type. If so, there is no need to continue. */
7602 if (get_die_type (die, cu) != NULL)
7603 return get_die_type (die, cu);
7604
7605 TYPE_TAG_NAME (type) = full_name;
7606 if (die->tag == DW_TAG_structure_type
7607 || die->tag == DW_TAG_class_type)
7608 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7609 }
7610 else
7611 {
7612 /* The name is already allocated along with this objfile, so
7613 we don't need to duplicate it for the type. */
7614 TYPE_TAG_NAME (type) = (char *) name;
7615 if (die->tag == DW_TAG_class_type)
7616 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7617 }
7618 }
7619
7620 if (die->tag == DW_TAG_structure_type)
7621 {
7622 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7623 }
7624 else if (die->tag == DW_TAG_union_type)
7625 {
7626 TYPE_CODE (type) = TYPE_CODE_UNION;
7627 }
7628 else
7629 {
7630 TYPE_CODE (type) = TYPE_CODE_CLASS;
7631 }
7632
7633 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7634 TYPE_DECLARED_CLASS (type) = 1;
7635
7636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7637 if (attr)
7638 {
7639 TYPE_LENGTH (type) = DW_UNSND (attr);
7640 }
7641 else
7642 {
7643 TYPE_LENGTH (type) = 0;
7644 }
7645
7646 TYPE_STUB_SUPPORTED (type) = 1;
7647 if (die_is_declaration (die, cu))
7648 TYPE_STUB (type) = 1;
7649 else if (attr == NULL && die->child == NULL
7650 && producer_is_realview (cu->producer))
7651 /* RealView does not output the required DW_AT_declaration
7652 on incomplete types. */
7653 TYPE_STUB (type) = 1;
7654
7655 /* We need to add the type field to the die immediately so we don't
7656 infinitely recurse when dealing with pointers to the structure
7657 type within the structure itself. */
7658 set_die_type (die, type, cu);
7659
7660 /* set_die_type should be already done. */
7661 set_descriptive_type (type, die, cu);
7662
7663 return type;
7664 }
7665
7666 /* Finish creating a structure or union type, including filling in
7667 its members and creating a symbol for it. */
7668
7669 static void
7670 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7671 {
7672 struct objfile *objfile = cu->objfile;
7673 struct die_info *child_die = die->child;
7674 struct type *type;
7675
7676 type = get_die_type (die, cu);
7677 if (type == NULL)
7678 type = read_structure_type (die, cu);
7679
7680 if (die->child != NULL && ! die_is_declaration (die, cu))
7681 {
7682 struct field_info fi;
7683 struct die_info *child_die;
7684 VEC (symbolp) *template_args = NULL;
7685 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7686
7687 memset (&fi, 0, sizeof (struct field_info));
7688
7689 child_die = die->child;
7690
7691 while (child_die && child_die->tag)
7692 {
7693 if (child_die->tag == DW_TAG_member
7694 || child_die->tag == DW_TAG_variable)
7695 {
7696 /* NOTE: carlton/2002-11-05: A C++ static data member
7697 should be a DW_TAG_member that is a declaration, but
7698 all versions of G++ as of this writing (so through at
7699 least 3.2.1) incorrectly generate DW_TAG_variable
7700 tags for them instead. */
7701 dwarf2_add_field (&fi, child_die, cu);
7702 }
7703 else if (child_die->tag == DW_TAG_subprogram)
7704 {
7705 /* C++ member function. */
7706 dwarf2_add_member_fn (&fi, child_die, type, cu);
7707 }
7708 else if (child_die->tag == DW_TAG_inheritance)
7709 {
7710 /* C++ base class field. */
7711 dwarf2_add_field (&fi, child_die, cu);
7712 }
7713 else if (child_die->tag == DW_TAG_typedef)
7714 dwarf2_add_typedef (&fi, child_die, cu);
7715 else if (child_die->tag == DW_TAG_template_type_param
7716 || child_die->tag == DW_TAG_template_value_param)
7717 {
7718 struct symbol *arg = new_symbol (child_die, NULL, cu);
7719
7720 if (arg != NULL)
7721 VEC_safe_push (symbolp, template_args, arg);
7722 }
7723
7724 child_die = sibling_die (child_die);
7725 }
7726
7727 /* Attach template arguments to type. */
7728 if (! VEC_empty (symbolp, template_args))
7729 {
7730 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7731 TYPE_N_TEMPLATE_ARGUMENTS (type)
7732 = VEC_length (symbolp, template_args);
7733 TYPE_TEMPLATE_ARGUMENTS (type)
7734 = obstack_alloc (&objfile->objfile_obstack,
7735 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7736 * sizeof (struct symbol *)));
7737 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7738 VEC_address (symbolp, template_args),
7739 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7740 * sizeof (struct symbol *)));
7741 VEC_free (symbolp, template_args);
7742 }
7743
7744 /* Attach fields and member functions to the type. */
7745 if (fi.nfields)
7746 dwarf2_attach_fields_to_type (&fi, type, cu);
7747 if (fi.nfnfields)
7748 {
7749 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7750
7751 /* Get the type which refers to the base class (possibly this
7752 class itself) which contains the vtable pointer for the current
7753 class from the DW_AT_containing_type attribute. This use of
7754 DW_AT_containing_type is a GNU extension. */
7755
7756 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7757 {
7758 struct type *t = die_containing_type (die, cu);
7759
7760 TYPE_VPTR_BASETYPE (type) = t;
7761 if (type == t)
7762 {
7763 int i;
7764
7765 /* Our own class provides vtbl ptr. */
7766 for (i = TYPE_NFIELDS (t) - 1;
7767 i >= TYPE_N_BASECLASSES (t);
7768 --i)
7769 {
7770 const char *fieldname = TYPE_FIELD_NAME (t, i);
7771
7772 if (is_vtable_name (fieldname, cu))
7773 {
7774 TYPE_VPTR_FIELDNO (type) = i;
7775 break;
7776 }
7777 }
7778
7779 /* Complain if virtual function table field not found. */
7780 if (i < TYPE_N_BASECLASSES (t))
7781 complaint (&symfile_complaints,
7782 _("virtual function table pointer "
7783 "not found when defining class '%s'"),
7784 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7785 "");
7786 }
7787 else
7788 {
7789 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7790 }
7791 }
7792 else if (cu->producer
7793 && strncmp (cu->producer,
7794 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7795 {
7796 /* The IBM XLC compiler does not provide direct indication
7797 of the containing type, but the vtable pointer is
7798 always named __vfp. */
7799
7800 int i;
7801
7802 for (i = TYPE_NFIELDS (type) - 1;
7803 i >= TYPE_N_BASECLASSES (type);
7804 --i)
7805 {
7806 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7807 {
7808 TYPE_VPTR_FIELDNO (type) = i;
7809 TYPE_VPTR_BASETYPE (type) = type;
7810 break;
7811 }
7812 }
7813 }
7814 }
7815
7816 /* Copy fi.typedef_field_list linked list elements content into the
7817 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7818 if (fi.typedef_field_list)
7819 {
7820 int i = fi.typedef_field_list_count;
7821
7822 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7823 TYPE_TYPEDEF_FIELD_ARRAY (type)
7824 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7825 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7826
7827 /* Reverse the list order to keep the debug info elements order. */
7828 while (--i >= 0)
7829 {
7830 struct typedef_field *dest, *src;
7831
7832 dest = &TYPE_TYPEDEF_FIELD (type, i);
7833 src = &fi.typedef_field_list->field;
7834 fi.typedef_field_list = fi.typedef_field_list->next;
7835 *dest = *src;
7836 }
7837 }
7838
7839 do_cleanups (back_to);
7840
7841 if (HAVE_CPLUS_STRUCT (type))
7842 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7843 }
7844
7845 quirk_gcc_member_function_pointer (type, objfile);
7846
7847 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7848 snapshots) has been known to create a die giving a declaration
7849 for a class that has, as a child, a die giving a definition for a
7850 nested class. So we have to process our children even if the
7851 current die is a declaration. Normally, of course, a declaration
7852 won't have any children at all. */
7853
7854 while (child_die != NULL && child_die->tag)
7855 {
7856 if (child_die->tag == DW_TAG_member
7857 || child_die->tag == DW_TAG_variable
7858 || child_die->tag == DW_TAG_inheritance
7859 || child_die->tag == DW_TAG_template_value_param
7860 || child_die->tag == DW_TAG_template_type_param)
7861 {
7862 /* Do nothing. */
7863 }
7864 else
7865 process_die (child_die, cu);
7866
7867 child_die = sibling_die (child_die);
7868 }
7869
7870 /* Do not consider external references. According to the DWARF standard,
7871 these DIEs are identified by the fact that they have no byte_size
7872 attribute, and a declaration attribute. */
7873 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7874 || !die_is_declaration (die, cu))
7875 new_symbol (die, type, cu);
7876 }
7877
7878 /* Given a DW_AT_enumeration_type die, set its type. We do not
7879 complete the type's fields yet, or create any symbols. */
7880
7881 static struct type *
7882 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7883 {
7884 struct objfile *objfile = cu->objfile;
7885 struct type *type;
7886 struct attribute *attr;
7887 const char *name;
7888
7889 /* If the definition of this type lives in .debug_types, read that type.
7890 Don't follow DW_AT_specification though, that will take us back up
7891 the chain and we want to go down. */
7892 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7893 if (attr)
7894 {
7895 struct dwarf2_cu *type_cu = cu;
7896 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7897
7898 type = read_type_die (type_die, type_cu);
7899
7900 /* TYPE_CU may not be the same as CU.
7901 Ensure TYPE is recorded in CU's type_hash table. */
7902 return set_die_type (die, type, cu);
7903 }
7904
7905 type = alloc_type (objfile);
7906
7907 TYPE_CODE (type) = TYPE_CODE_ENUM;
7908 name = dwarf2_full_name (NULL, die, cu);
7909 if (name != NULL)
7910 TYPE_TAG_NAME (type) = (char *) name;
7911
7912 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7913 if (attr)
7914 {
7915 TYPE_LENGTH (type) = DW_UNSND (attr);
7916 }
7917 else
7918 {
7919 TYPE_LENGTH (type) = 0;
7920 }
7921
7922 /* The enumeration DIE can be incomplete. In Ada, any type can be
7923 declared as private in the package spec, and then defined only
7924 inside the package body. Such types are known as Taft Amendment
7925 Types. When another package uses such a type, an incomplete DIE
7926 may be generated by the compiler. */
7927 if (die_is_declaration (die, cu))
7928 TYPE_STUB (type) = 1;
7929
7930 return set_die_type (die, type, cu);
7931 }
7932
7933 /* Given a pointer to a die which begins an enumeration, process all
7934 the dies that define the members of the enumeration, and create the
7935 symbol for the enumeration type.
7936
7937 NOTE: We reverse the order of the element list. */
7938
7939 static void
7940 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7941 {
7942 struct type *this_type;
7943
7944 this_type = get_die_type (die, cu);
7945 if (this_type == NULL)
7946 this_type = read_enumeration_type (die, cu);
7947
7948 if (die->child != NULL)
7949 {
7950 struct die_info *child_die;
7951 struct symbol *sym;
7952 struct field *fields = NULL;
7953 int num_fields = 0;
7954 int unsigned_enum = 1;
7955 char *name;
7956 int flag_enum = 1;
7957 ULONGEST mask = 0;
7958
7959 child_die = die->child;
7960 while (child_die && child_die->tag)
7961 {
7962 if (child_die->tag != DW_TAG_enumerator)
7963 {
7964 process_die (child_die, cu);
7965 }
7966 else
7967 {
7968 name = dwarf2_name (child_die, cu);
7969 if (name)
7970 {
7971 sym = new_symbol (child_die, this_type, cu);
7972 if (SYMBOL_VALUE (sym) < 0)
7973 {
7974 unsigned_enum = 0;
7975 flag_enum = 0;
7976 }
7977 else if ((mask & SYMBOL_VALUE (sym)) != 0)
7978 flag_enum = 0;
7979 else
7980 mask |= SYMBOL_VALUE (sym);
7981
7982 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7983 {
7984 fields = (struct field *)
7985 xrealloc (fields,
7986 (num_fields + DW_FIELD_ALLOC_CHUNK)
7987 * sizeof (struct field));
7988 }
7989
7990 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7991 FIELD_TYPE (fields[num_fields]) = NULL;
7992 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7993 FIELD_BITSIZE (fields[num_fields]) = 0;
7994
7995 num_fields++;
7996 }
7997 }
7998
7999 child_die = sibling_die (child_die);
8000 }
8001
8002 if (num_fields)
8003 {
8004 TYPE_NFIELDS (this_type) = num_fields;
8005 TYPE_FIELDS (this_type) = (struct field *)
8006 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8007 memcpy (TYPE_FIELDS (this_type), fields,
8008 sizeof (struct field) * num_fields);
8009 xfree (fields);
8010 }
8011 if (unsigned_enum)
8012 TYPE_UNSIGNED (this_type) = 1;
8013 if (flag_enum)
8014 TYPE_FLAG_ENUM (this_type) = 1;
8015 }
8016
8017 /* If we are reading an enum from a .debug_types unit, and the enum
8018 is a declaration, and the enum is not the signatured type in the
8019 unit, then we do not want to add a symbol for it. Adding a
8020 symbol would in some cases obscure the true definition of the
8021 enum, giving users an incomplete type when the definition is
8022 actually available. Note that we do not want to do this for all
8023 enums which are just declarations, because C++0x allows forward
8024 enum declarations. */
8025 if (cu->per_cu->debug_types_section
8026 && die_is_declaration (die, cu))
8027 {
8028 struct signatured_type *type_sig;
8029
8030 type_sig
8031 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8032 cu->per_cu->debug_types_section,
8033 cu->per_cu->offset);
8034 if (type_sig->type_offset != die->offset)
8035 return;
8036 }
8037
8038 new_symbol (die, this_type, cu);
8039 }
8040
8041 /* Extract all information from a DW_TAG_array_type DIE and put it in
8042 the DIE's type field. For now, this only handles one dimensional
8043 arrays. */
8044
8045 static struct type *
8046 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8047 {
8048 struct objfile *objfile = cu->objfile;
8049 struct die_info *child_die;
8050 struct type *type;
8051 struct type *element_type, *range_type, *index_type;
8052 struct type **range_types = NULL;
8053 struct attribute *attr;
8054 int ndim = 0;
8055 struct cleanup *back_to;
8056 char *name;
8057
8058 element_type = die_type (die, cu);
8059
8060 /* The die_type call above may have already set the type for this DIE. */
8061 type = get_die_type (die, cu);
8062 if (type)
8063 return type;
8064
8065 /* Irix 6.2 native cc creates array types without children for
8066 arrays with unspecified length. */
8067 if (die->child == NULL)
8068 {
8069 index_type = objfile_type (objfile)->builtin_int;
8070 range_type = create_range_type (NULL, index_type, 0, -1);
8071 type = create_array_type (NULL, element_type, range_type);
8072 return set_die_type (die, type, cu);
8073 }
8074
8075 back_to = make_cleanup (null_cleanup, NULL);
8076 child_die = die->child;
8077 while (child_die && child_die->tag)
8078 {
8079 if (child_die->tag == DW_TAG_subrange_type)
8080 {
8081 struct type *child_type = read_type_die (child_die, cu);
8082
8083 if (child_type != NULL)
8084 {
8085 /* The range type was succesfully read. Save it for the
8086 array type creation. */
8087 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8088 {
8089 range_types = (struct type **)
8090 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8091 * sizeof (struct type *));
8092 if (ndim == 0)
8093 make_cleanup (free_current_contents, &range_types);
8094 }
8095 range_types[ndim++] = child_type;
8096 }
8097 }
8098 child_die = sibling_die (child_die);
8099 }
8100
8101 /* Dwarf2 dimensions are output from left to right, create the
8102 necessary array types in backwards order. */
8103
8104 type = element_type;
8105
8106 if (read_array_order (die, cu) == DW_ORD_col_major)
8107 {
8108 int i = 0;
8109
8110 while (i < ndim)
8111 type = create_array_type (NULL, type, range_types[i++]);
8112 }
8113 else
8114 {
8115 while (ndim-- > 0)
8116 type = create_array_type (NULL, type, range_types[ndim]);
8117 }
8118
8119 /* Understand Dwarf2 support for vector types (like they occur on
8120 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8121 array type. This is not part of the Dwarf2/3 standard yet, but a
8122 custom vendor extension. The main difference between a regular
8123 array and the vector variant is that vectors are passed by value
8124 to functions. */
8125 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8126 if (attr)
8127 make_vector_type (type);
8128
8129 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8130 implementation may choose to implement triple vectors using this
8131 attribute. */
8132 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8133 if (attr)
8134 {
8135 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8136 TYPE_LENGTH (type) = DW_UNSND (attr);
8137 else
8138 complaint (&symfile_complaints,
8139 _("DW_AT_byte_size for array type smaller "
8140 "than the total size of elements"));
8141 }
8142
8143 name = dwarf2_name (die, cu);
8144 if (name)
8145 TYPE_NAME (type) = name;
8146
8147 /* Install the type in the die. */
8148 set_die_type (die, type, cu);
8149
8150 /* set_die_type should be already done. */
8151 set_descriptive_type (type, die, cu);
8152
8153 do_cleanups (back_to);
8154
8155 return type;
8156 }
8157
8158 static enum dwarf_array_dim_ordering
8159 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8160 {
8161 struct attribute *attr;
8162
8163 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8164
8165 if (attr) return DW_SND (attr);
8166
8167 /* GNU F77 is a special case, as at 08/2004 array type info is the
8168 opposite order to the dwarf2 specification, but data is still
8169 laid out as per normal fortran.
8170
8171 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8172 version checking. */
8173
8174 if (cu->language == language_fortran
8175 && cu->producer && strstr (cu->producer, "GNU F77"))
8176 {
8177 return DW_ORD_row_major;
8178 }
8179
8180 switch (cu->language_defn->la_array_ordering)
8181 {
8182 case array_column_major:
8183 return DW_ORD_col_major;
8184 case array_row_major:
8185 default:
8186 return DW_ORD_row_major;
8187 };
8188 }
8189
8190 /* Extract all information from a DW_TAG_set_type DIE and put it in
8191 the DIE's type field. */
8192
8193 static struct type *
8194 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8195 {
8196 struct type *domain_type, *set_type;
8197 struct attribute *attr;
8198
8199 domain_type = die_type (die, cu);
8200
8201 /* The die_type call above may have already set the type for this DIE. */
8202 set_type = get_die_type (die, cu);
8203 if (set_type)
8204 return set_type;
8205
8206 set_type = create_set_type (NULL, domain_type);
8207
8208 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8209 if (attr)
8210 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8211
8212 return set_die_type (die, set_type, cu);
8213 }
8214
8215 /* First cut: install each common block member as a global variable. */
8216
8217 static void
8218 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8219 {
8220 struct die_info *child_die;
8221 struct attribute *attr;
8222 struct symbol *sym;
8223 CORE_ADDR base = (CORE_ADDR) 0;
8224
8225 attr = dwarf2_attr (die, DW_AT_location, cu);
8226 if (attr)
8227 {
8228 /* Support the .debug_loc offsets. */
8229 if (attr_form_is_block (attr))
8230 {
8231 base = decode_locdesc (DW_BLOCK (attr), cu);
8232 }
8233 else if (attr_form_is_section_offset (attr))
8234 {
8235 dwarf2_complex_location_expr_complaint ();
8236 }
8237 else
8238 {
8239 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8240 "common block member");
8241 }
8242 }
8243 if (die->child != NULL)
8244 {
8245 child_die = die->child;
8246 while (child_die && child_die->tag)
8247 {
8248 LONGEST offset;
8249
8250 sym = new_symbol (child_die, NULL, cu);
8251 if (sym != NULL
8252 && handle_data_member_location (child_die, cu, &offset))
8253 {
8254 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8255 add_symbol_to_list (sym, &global_symbols);
8256 }
8257 child_die = sibling_die (child_die);
8258 }
8259 }
8260 }
8261
8262 /* Create a type for a C++ namespace. */
8263
8264 static struct type *
8265 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8266 {
8267 struct objfile *objfile = cu->objfile;
8268 const char *previous_prefix, *name;
8269 int is_anonymous;
8270 struct type *type;
8271
8272 /* For extensions, reuse the type of the original namespace. */
8273 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8274 {
8275 struct die_info *ext_die;
8276 struct dwarf2_cu *ext_cu = cu;
8277
8278 ext_die = dwarf2_extension (die, &ext_cu);
8279 type = read_type_die (ext_die, ext_cu);
8280
8281 /* EXT_CU may not be the same as CU.
8282 Ensure TYPE is recorded in CU's type_hash table. */
8283 return set_die_type (die, type, cu);
8284 }
8285
8286 name = namespace_name (die, &is_anonymous, cu);
8287
8288 /* Now build the name of the current namespace. */
8289
8290 previous_prefix = determine_prefix (die, cu);
8291 if (previous_prefix[0] != '\0')
8292 name = typename_concat (&objfile->objfile_obstack,
8293 previous_prefix, name, 0, cu);
8294
8295 /* Create the type. */
8296 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8297 objfile);
8298 TYPE_NAME (type) = (char *) name;
8299 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8300
8301 return set_die_type (die, type, cu);
8302 }
8303
8304 /* Read a C++ namespace. */
8305
8306 static void
8307 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8308 {
8309 struct objfile *objfile = cu->objfile;
8310 int is_anonymous;
8311
8312 /* Add a symbol associated to this if we haven't seen the namespace
8313 before. Also, add a using directive if it's an anonymous
8314 namespace. */
8315
8316 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8317 {
8318 struct type *type;
8319
8320 type = read_type_die (die, cu);
8321 new_symbol (die, type, cu);
8322
8323 namespace_name (die, &is_anonymous, cu);
8324 if (is_anonymous)
8325 {
8326 const char *previous_prefix = determine_prefix (die, cu);
8327
8328 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8329 NULL, NULL, &objfile->objfile_obstack);
8330 }
8331 }
8332
8333 if (die->child != NULL)
8334 {
8335 struct die_info *child_die = die->child;
8336
8337 while (child_die && child_die->tag)
8338 {
8339 process_die (child_die, cu);
8340 child_die = sibling_die (child_die);
8341 }
8342 }
8343 }
8344
8345 /* Read a Fortran module as type. This DIE can be only a declaration used for
8346 imported module. Still we need that type as local Fortran "use ... only"
8347 declaration imports depend on the created type in determine_prefix. */
8348
8349 static struct type *
8350 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8351 {
8352 struct objfile *objfile = cu->objfile;
8353 char *module_name;
8354 struct type *type;
8355
8356 module_name = dwarf2_name (die, cu);
8357 if (!module_name)
8358 complaint (&symfile_complaints,
8359 _("DW_TAG_module has no name, offset 0x%x"),
8360 die->offset);
8361 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8362
8363 /* determine_prefix uses TYPE_TAG_NAME. */
8364 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8365
8366 return set_die_type (die, type, cu);
8367 }
8368
8369 /* Read a Fortran module. */
8370
8371 static void
8372 read_module (struct die_info *die, struct dwarf2_cu *cu)
8373 {
8374 struct die_info *child_die = die->child;
8375
8376 while (child_die && child_die->tag)
8377 {
8378 process_die (child_die, cu);
8379 child_die = sibling_die (child_die);
8380 }
8381 }
8382
8383 /* Return the name of the namespace represented by DIE. Set
8384 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8385 namespace. */
8386
8387 static const char *
8388 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8389 {
8390 struct die_info *current_die;
8391 const char *name = NULL;
8392
8393 /* Loop through the extensions until we find a name. */
8394
8395 for (current_die = die;
8396 current_die != NULL;
8397 current_die = dwarf2_extension (die, &cu))
8398 {
8399 name = dwarf2_name (current_die, cu);
8400 if (name != NULL)
8401 break;
8402 }
8403
8404 /* Is it an anonymous namespace? */
8405
8406 *is_anonymous = (name == NULL);
8407 if (*is_anonymous)
8408 name = CP_ANONYMOUS_NAMESPACE_STR;
8409
8410 return name;
8411 }
8412
8413 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8414 the user defined type vector. */
8415
8416 static struct type *
8417 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8418 {
8419 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8420 struct comp_unit_head *cu_header = &cu->header;
8421 struct type *type;
8422 struct attribute *attr_byte_size;
8423 struct attribute *attr_address_class;
8424 int byte_size, addr_class;
8425 struct type *target_type;
8426
8427 target_type = die_type (die, cu);
8428
8429 /* The die_type call above may have already set the type for this DIE. */
8430 type = get_die_type (die, cu);
8431 if (type)
8432 return type;
8433
8434 type = lookup_pointer_type (target_type);
8435
8436 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8437 if (attr_byte_size)
8438 byte_size = DW_UNSND (attr_byte_size);
8439 else
8440 byte_size = cu_header->addr_size;
8441
8442 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8443 if (attr_address_class)
8444 addr_class = DW_UNSND (attr_address_class);
8445 else
8446 addr_class = DW_ADDR_none;
8447
8448 /* If the pointer size or address class is different than the
8449 default, create a type variant marked as such and set the
8450 length accordingly. */
8451 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8452 {
8453 if (gdbarch_address_class_type_flags_p (gdbarch))
8454 {
8455 int type_flags;
8456
8457 type_flags = gdbarch_address_class_type_flags
8458 (gdbarch, byte_size, addr_class);
8459 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8460 == 0);
8461 type = make_type_with_address_space (type, type_flags);
8462 }
8463 else if (TYPE_LENGTH (type) != byte_size)
8464 {
8465 complaint (&symfile_complaints,
8466 _("invalid pointer size %d"), byte_size);
8467 }
8468 else
8469 {
8470 /* Should we also complain about unhandled address classes? */
8471 }
8472 }
8473
8474 TYPE_LENGTH (type) = byte_size;
8475 return set_die_type (die, type, cu);
8476 }
8477
8478 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8479 the user defined type vector. */
8480
8481 static struct type *
8482 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8483 {
8484 struct type *type;
8485 struct type *to_type;
8486 struct type *domain;
8487
8488 to_type = die_type (die, cu);
8489 domain = die_containing_type (die, cu);
8490
8491 /* The calls above may have already set the type for this DIE. */
8492 type = get_die_type (die, cu);
8493 if (type)
8494 return type;
8495
8496 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8497 type = lookup_methodptr_type (to_type);
8498 else
8499 type = lookup_memberptr_type (to_type, domain);
8500
8501 return set_die_type (die, type, cu);
8502 }
8503
8504 /* Extract all information from a DW_TAG_reference_type DIE and add to
8505 the user defined type vector. */
8506
8507 static struct type *
8508 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8509 {
8510 struct comp_unit_head *cu_header = &cu->header;
8511 struct type *type, *target_type;
8512 struct attribute *attr;
8513
8514 target_type = die_type (die, cu);
8515
8516 /* The die_type call above may have already set the type for this DIE. */
8517 type = get_die_type (die, cu);
8518 if (type)
8519 return type;
8520
8521 type = lookup_reference_type (target_type);
8522 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8523 if (attr)
8524 {
8525 TYPE_LENGTH (type) = DW_UNSND (attr);
8526 }
8527 else
8528 {
8529 TYPE_LENGTH (type) = cu_header->addr_size;
8530 }
8531 return set_die_type (die, type, cu);
8532 }
8533
8534 static struct type *
8535 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8536 {
8537 struct type *base_type, *cv_type;
8538
8539 base_type = die_type (die, cu);
8540
8541 /* The die_type call above may have already set the type for this DIE. */
8542 cv_type = get_die_type (die, cu);
8543 if (cv_type)
8544 return cv_type;
8545
8546 /* In case the const qualifier is applied to an array type, the element type
8547 is so qualified, not the array type (section 6.7.3 of C99). */
8548 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8549 {
8550 struct type *el_type, *inner_array;
8551
8552 base_type = copy_type (base_type);
8553 inner_array = base_type;
8554
8555 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8556 {
8557 TYPE_TARGET_TYPE (inner_array) =
8558 copy_type (TYPE_TARGET_TYPE (inner_array));
8559 inner_array = TYPE_TARGET_TYPE (inner_array);
8560 }
8561
8562 el_type = TYPE_TARGET_TYPE (inner_array);
8563 TYPE_TARGET_TYPE (inner_array) =
8564 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8565
8566 return set_die_type (die, base_type, cu);
8567 }
8568
8569 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8570 return set_die_type (die, cv_type, cu);
8571 }
8572
8573 static struct type *
8574 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8575 {
8576 struct type *base_type, *cv_type;
8577
8578 base_type = die_type (die, cu);
8579
8580 /* The die_type call above may have already set the type for this DIE. */
8581 cv_type = get_die_type (die, cu);
8582 if (cv_type)
8583 return cv_type;
8584
8585 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8586 return set_die_type (die, cv_type, cu);
8587 }
8588
8589 /* Extract all information from a DW_TAG_string_type DIE and add to
8590 the user defined type vector. It isn't really a user defined type,
8591 but it behaves like one, with other DIE's using an AT_user_def_type
8592 attribute to reference it. */
8593
8594 static struct type *
8595 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8596 {
8597 struct objfile *objfile = cu->objfile;
8598 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8599 struct type *type, *range_type, *index_type, *char_type;
8600 struct attribute *attr;
8601 unsigned int length;
8602
8603 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8604 if (attr)
8605 {
8606 length = DW_UNSND (attr);
8607 }
8608 else
8609 {
8610 /* Check for the DW_AT_byte_size attribute. */
8611 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8612 if (attr)
8613 {
8614 length = DW_UNSND (attr);
8615 }
8616 else
8617 {
8618 length = 1;
8619 }
8620 }
8621
8622 index_type = objfile_type (objfile)->builtin_int;
8623 range_type = create_range_type (NULL, index_type, 1, length);
8624 char_type = language_string_char_type (cu->language_defn, gdbarch);
8625 type = create_string_type (NULL, char_type, range_type);
8626
8627 return set_die_type (die, type, cu);
8628 }
8629
8630 /* Handle DIES due to C code like:
8631
8632 struct foo
8633 {
8634 int (*funcp)(int a, long l);
8635 int b;
8636 };
8637
8638 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8639
8640 static struct type *
8641 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8642 {
8643 struct objfile *objfile = cu->objfile;
8644 struct type *type; /* Type that this function returns. */
8645 struct type *ftype; /* Function that returns above type. */
8646 struct attribute *attr;
8647
8648 type = die_type (die, cu);
8649
8650 /* The die_type call above may have already set the type for this DIE. */
8651 ftype = get_die_type (die, cu);
8652 if (ftype)
8653 return ftype;
8654
8655 ftype = lookup_function_type (type);
8656
8657 /* All functions in C++, Pascal and Java have prototypes. */
8658 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8659 if ((attr && (DW_UNSND (attr) != 0))
8660 || cu->language == language_cplus
8661 || cu->language == language_java
8662 || cu->language == language_pascal)
8663 TYPE_PROTOTYPED (ftype) = 1;
8664 else if (producer_is_realview (cu->producer))
8665 /* RealView does not emit DW_AT_prototyped. We can not
8666 distinguish prototyped and unprototyped functions; default to
8667 prototyped, since that is more common in modern code (and
8668 RealView warns about unprototyped functions). */
8669 TYPE_PROTOTYPED (ftype) = 1;
8670
8671 /* Store the calling convention in the type if it's available in
8672 the subroutine die. Otherwise set the calling convention to
8673 the default value DW_CC_normal. */
8674 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8675 if (attr)
8676 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8677 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8678 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8679 else
8680 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8681
8682 /* We need to add the subroutine type to the die immediately so
8683 we don't infinitely recurse when dealing with parameters
8684 declared as the same subroutine type. */
8685 set_die_type (die, ftype, cu);
8686
8687 if (die->child != NULL)
8688 {
8689 struct type *void_type = objfile_type (objfile)->builtin_void;
8690 struct die_info *child_die;
8691 int nparams, iparams;
8692
8693 /* Count the number of parameters.
8694 FIXME: GDB currently ignores vararg functions, but knows about
8695 vararg member functions. */
8696 nparams = 0;
8697 child_die = die->child;
8698 while (child_die && child_die->tag)
8699 {
8700 if (child_die->tag == DW_TAG_formal_parameter)
8701 nparams++;
8702 else if (child_die->tag == DW_TAG_unspecified_parameters)
8703 TYPE_VARARGS (ftype) = 1;
8704 child_die = sibling_die (child_die);
8705 }
8706
8707 /* Allocate storage for parameters and fill them in. */
8708 TYPE_NFIELDS (ftype) = nparams;
8709 TYPE_FIELDS (ftype) = (struct field *)
8710 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8711
8712 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8713 even if we error out during the parameters reading below. */
8714 for (iparams = 0; iparams < nparams; iparams++)
8715 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8716
8717 iparams = 0;
8718 child_die = die->child;
8719 while (child_die && child_die->tag)
8720 {
8721 if (child_die->tag == DW_TAG_formal_parameter)
8722 {
8723 struct type *arg_type;
8724
8725 /* DWARF version 2 has no clean way to discern C++
8726 static and non-static member functions. G++ helps
8727 GDB by marking the first parameter for non-static
8728 member functions (which is the this pointer) as
8729 artificial. We pass this information to
8730 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8731
8732 DWARF version 3 added DW_AT_object_pointer, which GCC
8733 4.5 does not yet generate. */
8734 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8735 if (attr)
8736 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8737 else
8738 {
8739 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8740
8741 /* GCC/43521: In java, the formal parameter
8742 "this" is sometimes not marked with DW_AT_artificial. */
8743 if (cu->language == language_java)
8744 {
8745 const char *name = dwarf2_name (child_die, cu);
8746
8747 if (name && !strcmp (name, "this"))
8748 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8749 }
8750 }
8751 arg_type = die_type (child_die, cu);
8752
8753 /* RealView does not mark THIS as const, which the testsuite
8754 expects. GCC marks THIS as const in method definitions,
8755 but not in the class specifications (GCC PR 43053). */
8756 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8757 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8758 {
8759 int is_this = 0;
8760 struct dwarf2_cu *arg_cu = cu;
8761 const char *name = dwarf2_name (child_die, cu);
8762
8763 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8764 if (attr)
8765 {
8766 /* If the compiler emits this, use it. */
8767 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8768 is_this = 1;
8769 }
8770 else if (name && strcmp (name, "this") == 0)
8771 /* Function definitions will have the argument names. */
8772 is_this = 1;
8773 else if (name == NULL && iparams == 0)
8774 /* Declarations may not have the names, so like
8775 elsewhere in GDB, assume an artificial first
8776 argument is "this". */
8777 is_this = 1;
8778
8779 if (is_this)
8780 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8781 arg_type, 0);
8782 }
8783
8784 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8785 iparams++;
8786 }
8787 child_die = sibling_die (child_die);
8788 }
8789 }
8790
8791 return ftype;
8792 }
8793
8794 static struct type *
8795 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8796 {
8797 struct objfile *objfile = cu->objfile;
8798 const char *name = NULL;
8799 struct type *this_type, *target_type;
8800
8801 name = dwarf2_full_name (NULL, die, cu);
8802 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8803 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8804 TYPE_NAME (this_type) = (char *) name;
8805 set_die_type (die, this_type, cu);
8806 target_type = die_type (die, cu);
8807 if (target_type != this_type)
8808 TYPE_TARGET_TYPE (this_type) = target_type;
8809 else
8810 {
8811 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8812 spec and cause infinite loops in GDB. */
8813 complaint (&symfile_complaints,
8814 _("Self-referential DW_TAG_typedef "
8815 "- DIE at 0x%x [in module %s]"),
8816 die->offset, objfile->name);
8817 TYPE_TARGET_TYPE (this_type) = NULL;
8818 }
8819 return this_type;
8820 }
8821
8822 /* Find a representation of a given base type and install
8823 it in the TYPE field of the die. */
8824
8825 static struct type *
8826 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8827 {
8828 struct objfile *objfile = cu->objfile;
8829 struct type *type;
8830 struct attribute *attr;
8831 int encoding = 0, size = 0;
8832 char *name;
8833 enum type_code code = TYPE_CODE_INT;
8834 int type_flags = 0;
8835 struct type *target_type = NULL;
8836
8837 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8838 if (attr)
8839 {
8840 encoding = DW_UNSND (attr);
8841 }
8842 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8843 if (attr)
8844 {
8845 size = DW_UNSND (attr);
8846 }
8847 name = dwarf2_name (die, cu);
8848 if (!name)
8849 {
8850 complaint (&symfile_complaints,
8851 _("DW_AT_name missing from DW_TAG_base_type"));
8852 }
8853
8854 switch (encoding)
8855 {
8856 case DW_ATE_address:
8857 /* Turn DW_ATE_address into a void * pointer. */
8858 code = TYPE_CODE_PTR;
8859 type_flags |= TYPE_FLAG_UNSIGNED;
8860 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8861 break;
8862 case DW_ATE_boolean:
8863 code = TYPE_CODE_BOOL;
8864 type_flags |= TYPE_FLAG_UNSIGNED;
8865 break;
8866 case DW_ATE_complex_float:
8867 code = TYPE_CODE_COMPLEX;
8868 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8869 break;
8870 case DW_ATE_decimal_float:
8871 code = TYPE_CODE_DECFLOAT;
8872 break;
8873 case DW_ATE_float:
8874 code = TYPE_CODE_FLT;
8875 break;
8876 case DW_ATE_signed:
8877 break;
8878 case DW_ATE_unsigned:
8879 type_flags |= TYPE_FLAG_UNSIGNED;
8880 if (cu->language == language_fortran
8881 && name
8882 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8883 code = TYPE_CODE_CHAR;
8884 break;
8885 case DW_ATE_signed_char:
8886 if (cu->language == language_ada || cu->language == language_m2
8887 || cu->language == language_pascal
8888 || cu->language == language_fortran)
8889 code = TYPE_CODE_CHAR;
8890 break;
8891 case DW_ATE_unsigned_char:
8892 if (cu->language == language_ada || cu->language == language_m2
8893 || cu->language == language_pascal
8894 || cu->language == language_fortran)
8895 code = TYPE_CODE_CHAR;
8896 type_flags |= TYPE_FLAG_UNSIGNED;
8897 break;
8898 case DW_ATE_UTF:
8899 /* We just treat this as an integer and then recognize the
8900 type by name elsewhere. */
8901 break;
8902
8903 default:
8904 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8905 dwarf_type_encoding_name (encoding));
8906 break;
8907 }
8908
8909 type = init_type (code, size, type_flags, NULL, objfile);
8910 TYPE_NAME (type) = name;
8911 TYPE_TARGET_TYPE (type) = target_type;
8912
8913 if (name && strcmp (name, "char") == 0)
8914 TYPE_NOSIGN (type) = 1;
8915
8916 return set_die_type (die, type, cu);
8917 }
8918
8919 /* Read the given DW_AT_subrange DIE. */
8920
8921 static struct type *
8922 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8923 {
8924 struct type *base_type;
8925 struct type *range_type;
8926 struct attribute *attr;
8927 LONGEST low = 0;
8928 LONGEST high = -1;
8929 char *name;
8930 LONGEST negative_mask;
8931
8932 base_type = die_type (die, cu);
8933 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8934 check_typedef (base_type);
8935
8936 /* The die_type call above may have already set the type for this DIE. */
8937 range_type = get_die_type (die, cu);
8938 if (range_type)
8939 return range_type;
8940
8941 if (cu->language == language_fortran)
8942 {
8943 /* FORTRAN implies a lower bound of 1, if not given. */
8944 low = 1;
8945 }
8946
8947 /* FIXME: For variable sized arrays either of these could be
8948 a variable rather than a constant value. We'll allow it,
8949 but we don't know how to handle it. */
8950 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8951 if (attr)
8952 low = dwarf2_get_attr_constant_value (attr, 0);
8953
8954 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8955 if (attr)
8956 {
8957 if (attr_form_is_block (attr) || is_ref_attr (attr))
8958 {
8959 /* GCC encodes arrays with unspecified or dynamic length
8960 with a DW_FORM_block1 attribute or a reference attribute.
8961 FIXME: GDB does not yet know how to handle dynamic
8962 arrays properly, treat them as arrays with unspecified
8963 length for now.
8964
8965 FIXME: jimb/2003-09-22: GDB does not really know
8966 how to handle arrays of unspecified length
8967 either; we just represent them as zero-length
8968 arrays. Choose an appropriate upper bound given
8969 the lower bound we've computed above. */
8970 high = low - 1;
8971 }
8972 else
8973 high = dwarf2_get_attr_constant_value (attr, 1);
8974 }
8975 else
8976 {
8977 attr = dwarf2_attr (die, DW_AT_count, cu);
8978 if (attr)
8979 {
8980 int count = dwarf2_get_attr_constant_value (attr, 1);
8981 high = low + count - 1;
8982 }
8983 else
8984 {
8985 /* Unspecified array length. */
8986 high = low - 1;
8987 }
8988 }
8989
8990 /* Dwarf-2 specifications explicitly allows to create subrange types
8991 without specifying a base type.
8992 In that case, the base type must be set to the type of
8993 the lower bound, upper bound or count, in that order, if any of these
8994 three attributes references an object that has a type.
8995 If no base type is found, the Dwarf-2 specifications say that
8996 a signed integer type of size equal to the size of an address should
8997 be used.
8998 For the following C code: `extern char gdb_int [];'
8999 GCC produces an empty range DIE.
9000 FIXME: muller/2010-05-28: Possible references to object for low bound,
9001 high bound or count are not yet handled by this code. */
9002 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9003 {
9004 struct objfile *objfile = cu->objfile;
9005 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9006 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9007 struct type *int_type = objfile_type (objfile)->builtin_int;
9008
9009 /* Test "int", "long int", and "long long int" objfile types,
9010 and select the first one having a size above or equal to the
9011 architecture address size. */
9012 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9013 base_type = int_type;
9014 else
9015 {
9016 int_type = objfile_type (objfile)->builtin_long;
9017 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9018 base_type = int_type;
9019 else
9020 {
9021 int_type = objfile_type (objfile)->builtin_long_long;
9022 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9023 base_type = int_type;
9024 }
9025 }
9026 }
9027
9028 negative_mask =
9029 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9030 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9031 low |= negative_mask;
9032 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9033 high |= negative_mask;
9034
9035 range_type = create_range_type (NULL, base_type, low, high);
9036
9037 /* Mark arrays with dynamic length at least as an array of unspecified
9038 length. GDB could check the boundary but before it gets implemented at
9039 least allow accessing the array elements. */
9040 if (attr && attr_form_is_block (attr))
9041 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9042
9043 /* Ada expects an empty array on no boundary attributes. */
9044 if (attr == NULL && cu->language != language_ada)
9045 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9046
9047 name = dwarf2_name (die, cu);
9048 if (name)
9049 TYPE_NAME (range_type) = name;
9050
9051 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9052 if (attr)
9053 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9054
9055 set_die_type (die, range_type, cu);
9056
9057 /* set_die_type should be already done. */
9058 set_descriptive_type (range_type, die, cu);
9059
9060 return range_type;
9061 }
9062
9063 static struct type *
9064 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9065 {
9066 struct type *type;
9067
9068 /* For now, we only support the C meaning of an unspecified type: void. */
9069
9070 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9071 TYPE_NAME (type) = dwarf2_name (die, cu);
9072
9073 return set_die_type (die, type, cu);
9074 }
9075
9076 /* Trivial hash function for die_info: the hash value of a DIE
9077 is its offset in .debug_info for this objfile. */
9078
9079 static hashval_t
9080 die_hash (const void *item)
9081 {
9082 const struct die_info *die = item;
9083
9084 return die->offset;
9085 }
9086
9087 /* Trivial comparison function for die_info structures: two DIEs
9088 are equal if they have the same offset. */
9089
9090 static int
9091 die_eq (const void *item_lhs, const void *item_rhs)
9092 {
9093 const struct die_info *die_lhs = item_lhs;
9094 const struct die_info *die_rhs = item_rhs;
9095
9096 return die_lhs->offset == die_rhs->offset;
9097 }
9098
9099 /* Read a whole compilation unit into a linked list of dies. */
9100
9101 static struct die_info *
9102 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9103 {
9104 struct die_reader_specs reader_specs;
9105 int read_abbrevs = 0;
9106 struct cleanup *back_to = NULL;
9107 struct die_info *die;
9108
9109 if (cu->dwarf2_abbrevs == NULL)
9110 {
9111 dwarf2_read_abbrevs (cu);
9112 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9113 read_abbrevs = 1;
9114 }
9115
9116 gdb_assert (cu->die_hash == NULL);
9117 cu->die_hash
9118 = htab_create_alloc_ex (cu->header.length / 12,
9119 die_hash,
9120 die_eq,
9121 NULL,
9122 &cu->comp_unit_obstack,
9123 hashtab_obstack_allocate,
9124 dummy_obstack_deallocate);
9125
9126 init_cu_die_reader (&reader_specs, cu);
9127
9128 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9129
9130 if (read_abbrevs)
9131 do_cleanups (back_to);
9132
9133 return die;
9134 }
9135
9136 /* Main entry point for reading a DIE and all children.
9137 Read the DIE and dump it if requested. */
9138
9139 static struct die_info *
9140 read_die_and_children (const struct die_reader_specs *reader,
9141 gdb_byte *info_ptr,
9142 gdb_byte **new_info_ptr,
9143 struct die_info *parent)
9144 {
9145 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9146 new_info_ptr, parent);
9147
9148 if (dwarf2_die_debug)
9149 {
9150 fprintf_unfiltered (gdb_stdlog,
9151 "\nRead die from %s of %s:\n",
9152 (reader->cu->per_cu->debug_types_section
9153 ? ".debug_types"
9154 : ".debug_info"),
9155 reader->abfd->filename);
9156 dump_die (result, dwarf2_die_debug);
9157 }
9158
9159 return result;
9160 }
9161
9162 /* Read a single die and all its descendents. Set the die's sibling
9163 field to NULL; set other fields in the die correctly, and set all
9164 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9165 location of the info_ptr after reading all of those dies. PARENT
9166 is the parent of the die in question. */
9167
9168 static struct die_info *
9169 read_die_and_children_1 (const struct die_reader_specs *reader,
9170 gdb_byte *info_ptr,
9171 gdb_byte **new_info_ptr,
9172 struct die_info *parent)
9173 {
9174 struct die_info *die;
9175 gdb_byte *cur_ptr;
9176 int has_children;
9177
9178 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9179 if (die == NULL)
9180 {
9181 *new_info_ptr = cur_ptr;
9182 return NULL;
9183 }
9184 store_in_ref_table (die, reader->cu);
9185
9186 if (has_children)
9187 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9188 else
9189 {
9190 die->child = NULL;
9191 *new_info_ptr = cur_ptr;
9192 }
9193
9194 die->sibling = NULL;
9195 die->parent = parent;
9196 return die;
9197 }
9198
9199 /* Read a die, all of its descendents, and all of its siblings; set
9200 all of the fields of all of the dies correctly. Arguments are as
9201 in read_die_and_children. */
9202
9203 static struct die_info *
9204 read_die_and_siblings (const struct die_reader_specs *reader,
9205 gdb_byte *info_ptr,
9206 gdb_byte **new_info_ptr,
9207 struct die_info *parent)
9208 {
9209 struct die_info *first_die, *last_sibling;
9210 gdb_byte *cur_ptr;
9211
9212 cur_ptr = info_ptr;
9213 first_die = last_sibling = NULL;
9214
9215 while (1)
9216 {
9217 struct die_info *die
9218 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9219
9220 if (die == NULL)
9221 {
9222 *new_info_ptr = cur_ptr;
9223 return first_die;
9224 }
9225
9226 if (!first_die)
9227 first_die = die;
9228 else
9229 last_sibling->sibling = die;
9230
9231 last_sibling = die;
9232 }
9233 }
9234
9235 /* Read the die from the .debug_info section buffer. Set DIEP to
9236 point to a newly allocated die with its information, except for its
9237 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9238 whether the die has children or not. */
9239
9240 static gdb_byte *
9241 read_full_die (const struct die_reader_specs *reader,
9242 struct die_info **diep, gdb_byte *info_ptr,
9243 int *has_children)
9244 {
9245 unsigned int abbrev_number, bytes_read, i, offset;
9246 struct abbrev_info *abbrev;
9247 struct die_info *die;
9248 struct dwarf2_cu *cu = reader->cu;
9249 bfd *abfd = reader->abfd;
9250
9251 offset = info_ptr - reader->buffer;
9252 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9253 info_ptr += bytes_read;
9254 if (!abbrev_number)
9255 {
9256 *diep = NULL;
9257 *has_children = 0;
9258 return info_ptr;
9259 }
9260
9261 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9262 if (!abbrev)
9263 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9264 abbrev_number,
9265 bfd_get_filename (abfd));
9266
9267 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9268 die->offset = offset;
9269 die->tag = abbrev->tag;
9270 die->abbrev = abbrev_number;
9271
9272 die->num_attrs = abbrev->num_attrs;
9273
9274 for (i = 0; i < abbrev->num_attrs; ++i)
9275 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9276 abfd, info_ptr, cu);
9277
9278 *diep = die;
9279 *has_children = abbrev->has_children;
9280 return info_ptr;
9281 }
9282
9283 /* In DWARF version 2, the description of the debugging information is
9284 stored in a separate .debug_abbrev section. Before we read any
9285 dies from a section we read in all abbreviations and install them
9286 in a hash table. This function also sets flags in CU describing
9287 the data found in the abbrev table. */
9288
9289 static void
9290 dwarf2_read_abbrevs (struct dwarf2_cu *cu)
9291 {
9292 bfd *abfd = cu->objfile->obfd;
9293 struct comp_unit_head *cu_header = &cu->header;
9294 gdb_byte *abbrev_ptr;
9295 struct abbrev_info *cur_abbrev;
9296 unsigned int abbrev_number, bytes_read, abbrev_name;
9297 unsigned int abbrev_form, hash_number;
9298 struct attr_abbrev *cur_attrs;
9299 unsigned int allocated_attrs;
9300
9301 /* Initialize dwarf2 abbrevs. */
9302 obstack_init (&cu->abbrev_obstack);
9303 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9304 (ABBREV_HASH_SIZE
9305 * sizeof (struct abbrev_info *)));
9306 memset (cu->dwarf2_abbrevs, 0,
9307 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9308
9309 dwarf2_read_section (dwarf2_per_objfile->objfile,
9310 &dwarf2_per_objfile->abbrev);
9311 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9312 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9313 abbrev_ptr += bytes_read;
9314
9315 allocated_attrs = ATTR_ALLOC_CHUNK;
9316 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9317
9318 /* Loop until we reach an abbrev number of 0. */
9319 while (abbrev_number)
9320 {
9321 cur_abbrev = dwarf_alloc_abbrev (cu);
9322
9323 /* read in abbrev header */
9324 cur_abbrev->number = abbrev_number;
9325 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9326 abbrev_ptr += bytes_read;
9327 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9328 abbrev_ptr += 1;
9329
9330 /* now read in declarations */
9331 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9332 abbrev_ptr += bytes_read;
9333 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9334 abbrev_ptr += bytes_read;
9335 while (abbrev_name)
9336 {
9337 if (cur_abbrev->num_attrs == allocated_attrs)
9338 {
9339 allocated_attrs += ATTR_ALLOC_CHUNK;
9340 cur_attrs
9341 = xrealloc (cur_attrs, (allocated_attrs
9342 * sizeof (struct attr_abbrev)));
9343 }
9344
9345 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9346 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9347 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9348 abbrev_ptr += bytes_read;
9349 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9350 abbrev_ptr += bytes_read;
9351 }
9352
9353 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9354 (cur_abbrev->num_attrs
9355 * sizeof (struct attr_abbrev)));
9356 memcpy (cur_abbrev->attrs, cur_attrs,
9357 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9358
9359 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9360 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9361 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9362
9363 /* Get next abbreviation.
9364 Under Irix6 the abbreviations for a compilation unit are not
9365 always properly terminated with an abbrev number of 0.
9366 Exit loop if we encounter an abbreviation which we have
9367 already read (which means we are about to read the abbreviations
9368 for the next compile unit) or if the end of the abbreviation
9369 table is reached. */
9370 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9371 >= dwarf2_per_objfile->abbrev.size)
9372 break;
9373 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9374 abbrev_ptr += bytes_read;
9375 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9376 break;
9377 }
9378
9379 xfree (cur_attrs);
9380 }
9381
9382 /* Release the memory used by the abbrev table for a compilation unit. */
9383
9384 static void
9385 dwarf2_free_abbrev_table (void *ptr_to_cu)
9386 {
9387 struct dwarf2_cu *cu = ptr_to_cu;
9388
9389 obstack_free (&cu->abbrev_obstack, NULL);
9390 cu->dwarf2_abbrevs = NULL;
9391 }
9392
9393 /* Lookup an abbrev_info structure in the abbrev hash table. */
9394
9395 static struct abbrev_info *
9396 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9397 {
9398 unsigned int hash_number;
9399 struct abbrev_info *abbrev;
9400
9401 hash_number = number % ABBREV_HASH_SIZE;
9402 abbrev = cu->dwarf2_abbrevs[hash_number];
9403
9404 while (abbrev)
9405 {
9406 if (abbrev->number == number)
9407 return abbrev;
9408 else
9409 abbrev = abbrev->next;
9410 }
9411 return NULL;
9412 }
9413
9414 /* Returns nonzero if TAG represents a type that we might generate a partial
9415 symbol for. */
9416
9417 static int
9418 is_type_tag_for_partial (int tag)
9419 {
9420 switch (tag)
9421 {
9422 #if 0
9423 /* Some types that would be reasonable to generate partial symbols for,
9424 that we don't at present. */
9425 case DW_TAG_array_type:
9426 case DW_TAG_file_type:
9427 case DW_TAG_ptr_to_member_type:
9428 case DW_TAG_set_type:
9429 case DW_TAG_string_type:
9430 case DW_TAG_subroutine_type:
9431 #endif
9432 case DW_TAG_base_type:
9433 case DW_TAG_class_type:
9434 case DW_TAG_interface_type:
9435 case DW_TAG_enumeration_type:
9436 case DW_TAG_structure_type:
9437 case DW_TAG_subrange_type:
9438 case DW_TAG_typedef:
9439 case DW_TAG_union_type:
9440 return 1;
9441 default:
9442 return 0;
9443 }
9444 }
9445
9446 /* Load all DIEs that are interesting for partial symbols into memory. */
9447
9448 static struct partial_die_info *
9449 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9450 int building_psymtab, struct dwarf2_cu *cu)
9451 {
9452 struct objfile *objfile = cu->objfile;
9453 struct partial_die_info *part_die;
9454 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9455 struct abbrev_info *abbrev;
9456 unsigned int bytes_read;
9457 unsigned int load_all = 0;
9458
9459 int nesting_level = 1;
9460
9461 parent_die = NULL;
9462 last_die = NULL;
9463
9464 if (cu->per_cu && cu->per_cu->load_all_dies)
9465 load_all = 1;
9466
9467 cu->partial_dies
9468 = htab_create_alloc_ex (cu->header.length / 12,
9469 partial_die_hash,
9470 partial_die_eq,
9471 NULL,
9472 &cu->comp_unit_obstack,
9473 hashtab_obstack_allocate,
9474 dummy_obstack_deallocate);
9475
9476 part_die = obstack_alloc (&cu->comp_unit_obstack,
9477 sizeof (struct partial_die_info));
9478
9479 while (1)
9480 {
9481 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9482
9483 /* A NULL abbrev means the end of a series of children. */
9484 if (abbrev == NULL)
9485 {
9486 if (--nesting_level == 0)
9487 {
9488 /* PART_DIE was probably the last thing allocated on the
9489 comp_unit_obstack, so we could call obstack_free
9490 here. We don't do that because the waste is small,
9491 and will be cleaned up when we're done with this
9492 compilation unit. This way, we're also more robust
9493 against other users of the comp_unit_obstack. */
9494 return first_die;
9495 }
9496 info_ptr += bytes_read;
9497 last_die = parent_die;
9498 parent_die = parent_die->die_parent;
9499 continue;
9500 }
9501
9502 /* Check for template arguments. We never save these; if
9503 they're seen, we just mark the parent, and go on our way. */
9504 if (parent_die != NULL
9505 && cu->language == language_cplus
9506 && (abbrev->tag == DW_TAG_template_type_param
9507 || abbrev->tag == DW_TAG_template_value_param))
9508 {
9509 parent_die->has_template_arguments = 1;
9510
9511 if (!load_all)
9512 {
9513 /* We don't need a partial DIE for the template argument. */
9514 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9515 cu);
9516 continue;
9517 }
9518 }
9519
9520 /* We only recurse into subprograms looking for template arguments.
9521 Skip their other children. */
9522 if (!load_all
9523 && cu->language == language_cplus
9524 && parent_die != NULL
9525 && parent_die->tag == DW_TAG_subprogram)
9526 {
9527 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9528 continue;
9529 }
9530
9531 /* Check whether this DIE is interesting enough to save. Normally
9532 we would not be interested in members here, but there may be
9533 later variables referencing them via DW_AT_specification (for
9534 static members). */
9535 if (!load_all
9536 && !is_type_tag_for_partial (abbrev->tag)
9537 && abbrev->tag != DW_TAG_constant
9538 && abbrev->tag != DW_TAG_enumerator
9539 && abbrev->tag != DW_TAG_subprogram
9540 && abbrev->tag != DW_TAG_lexical_block
9541 && abbrev->tag != DW_TAG_variable
9542 && abbrev->tag != DW_TAG_namespace
9543 && abbrev->tag != DW_TAG_module
9544 && abbrev->tag != DW_TAG_member)
9545 {
9546 /* Otherwise we skip to the next sibling, if any. */
9547 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9548 continue;
9549 }
9550
9551 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9552 buffer, info_ptr, cu);
9553
9554 /* This two-pass algorithm for processing partial symbols has a
9555 high cost in cache pressure. Thus, handle some simple cases
9556 here which cover the majority of C partial symbols. DIEs
9557 which neither have specification tags in them, nor could have
9558 specification tags elsewhere pointing at them, can simply be
9559 processed and discarded.
9560
9561 This segment is also optional; scan_partial_symbols and
9562 add_partial_symbol will handle these DIEs if we chain
9563 them in normally. When compilers which do not emit large
9564 quantities of duplicate debug information are more common,
9565 this code can probably be removed. */
9566
9567 /* Any complete simple types at the top level (pretty much all
9568 of them, for a language without namespaces), can be processed
9569 directly. */
9570 if (parent_die == NULL
9571 && part_die->has_specification == 0
9572 && part_die->is_declaration == 0
9573 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9574 || part_die->tag == DW_TAG_base_type
9575 || part_die->tag == DW_TAG_subrange_type))
9576 {
9577 if (building_psymtab && part_die->name != NULL)
9578 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9579 VAR_DOMAIN, LOC_TYPEDEF,
9580 &objfile->static_psymbols,
9581 0, (CORE_ADDR) 0, cu->language, objfile);
9582 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9583 continue;
9584 }
9585
9586 /* The exception for DW_TAG_typedef with has_children above is
9587 a workaround of GCC PR debug/47510. In the case of this complaint
9588 type_name_no_tag_or_error will error on such types later.
9589
9590 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9591 it could not find the child DIEs referenced later, this is checked
9592 above. In correct DWARF DW_TAG_typedef should have no children. */
9593
9594 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9595 complaint (&symfile_complaints,
9596 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9597 "- DIE at 0x%x [in module %s]"),
9598 part_die->offset, objfile->name);
9599
9600 /* If we're at the second level, and we're an enumerator, and
9601 our parent has no specification (meaning possibly lives in a
9602 namespace elsewhere), then we can add the partial symbol now
9603 instead of queueing it. */
9604 if (part_die->tag == DW_TAG_enumerator
9605 && parent_die != NULL
9606 && parent_die->die_parent == NULL
9607 && parent_die->tag == DW_TAG_enumeration_type
9608 && parent_die->has_specification == 0)
9609 {
9610 if (part_die->name == NULL)
9611 complaint (&symfile_complaints,
9612 _("malformed enumerator DIE ignored"));
9613 else if (building_psymtab)
9614 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9615 VAR_DOMAIN, LOC_CONST,
9616 (cu->language == language_cplus
9617 || cu->language == language_java)
9618 ? &objfile->global_psymbols
9619 : &objfile->static_psymbols,
9620 0, (CORE_ADDR) 0, cu->language, objfile);
9621
9622 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9623 continue;
9624 }
9625
9626 /* We'll save this DIE so link it in. */
9627 part_die->die_parent = parent_die;
9628 part_die->die_sibling = NULL;
9629 part_die->die_child = NULL;
9630
9631 if (last_die && last_die == parent_die)
9632 last_die->die_child = part_die;
9633 else if (last_die)
9634 last_die->die_sibling = part_die;
9635
9636 last_die = part_die;
9637
9638 if (first_die == NULL)
9639 first_die = part_die;
9640
9641 /* Maybe add the DIE to the hash table. Not all DIEs that we
9642 find interesting need to be in the hash table, because we
9643 also have the parent/sibling/child chains; only those that we
9644 might refer to by offset later during partial symbol reading.
9645
9646 For now this means things that might have be the target of a
9647 DW_AT_specification, DW_AT_abstract_origin, or
9648 DW_AT_extension. DW_AT_extension will refer only to
9649 namespaces; DW_AT_abstract_origin refers to functions (and
9650 many things under the function DIE, but we do not recurse
9651 into function DIEs during partial symbol reading) and
9652 possibly variables as well; DW_AT_specification refers to
9653 declarations. Declarations ought to have the DW_AT_declaration
9654 flag. It happens that GCC forgets to put it in sometimes, but
9655 only for functions, not for types.
9656
9657 Adding more things than necessary to the hash table is harmless
9658 except for the performance cost. Adding too few will result in
9659 wasted time in find_partial_die, when we reread the compilation
9660 unit with load_all_dies set. */
9661
9662 if (load_all
9663 || abbrev->tag == DW_TAG_constant
9664 || abbrev->tag == DW_TAG_subprogram
9665 || abbrev->tag == DW_TAG_variable
9666 || abbrev->tag == DW_TAG_namespace
9667 || part_die->is_declaration)
9668 {
9669 void **slot;
9670
9671 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9672 part_die->offset, INSERT);
9673 *slot = part_die;
9674 }
9675
9676 part_die = obstack_alloc (&cu->comp_unit_obstack,
9677 sizeof (struct partial_die_info));
9678
9679 /* For some DIEs we want to follow their children (if any). For C
9680 we have no reason to follow the children of structures; for other
9681 languages we have to, so that we can get at method physnames
9682 to infer fully qualified class names, for DW_AT_specification,
9683 and for C++ template arguments. For C++, we also look one level
9684 inside functions to find template arguments (if the name of the
9685 function does not already contain the template arguments).
9686
9687 For Ada, we need to scan the children of subprograms and lexical
9688 blocks as well because Ada allows the definition of nested
9689 entities that could be interesting for the debugger, such as
9690 nested subprograms for instance. */
9691 if (last_die->has_children
9692 && (load_all
9693 || last_die->tag == DW_TAG_namespace
9694 || last_die->tag == DW_TAG_module
9695 || last_die->tag == DW_TAG_enumeration_type
9696 || (cu->language == language_cplus
9697 && last_die->tag == DW_TAG_subprogram
9698 && (last_die->name == NULL
9699 || strchr (last_die->name, '<') == NULL))
9700 || (cu->language != language_c
9701 && (last_die->tag == DW_TAG_class_type
9702 || last_die->tag == DW_TAG_interface_type
9703 || last_die->tag == DW_TAG_structure_type
9704 || last_die->tag == DW_TAG_union_type))
9705 || (cu->language == language_ada
9706 && (last_die->tag == DW_TAG_subprogram
9707 || last_die->tag == DW_TAG_lexical_block))))
9708 {
9709 nesting_level++;
9710 parent_die = last_die;
9711 continue;
9712 }
9713
9714 /* Otherwise we skip to the next sibling, if any. */
9715 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9716
9717 /* Back to the top, do it again. */
9718 }
9719 }
9720
9721 /* Read a minimal amount of information into the minimal die structure. */
9722
9723 static gdb_byte *
9724 read_partial_die (struct partial_die_info *part_die,
9725 struct abbrev_info *abbrev,
9726 unsigned int abbrev_len, bfd *abfd,
9727 gdb_byte *buffer, gdb_byte *info_ptr,
9728 struct dwarf2_cu *cu)
9729 {
9730 struct objfile *objfile = cu->objfile;
9731 unsigned int i;
9732 struct attribute attr;
9733 int has_low_pc_attr = 0;
9734 int has_high_pc_attr = 0;
9735
9736 memset (part_die, 0, sizeof (struct partial_die_info));
9737
9738 part_die->offset = info_ptr - buffer;
9739
9740 info_ptr += abbrev_len;
9741
9742 if (abbrev == NULL)
9743 return info_ptr;
9744
9745 part_die->tag = abbrev->tag;
9746 part_die->has_children = abbrev->has_children;
9747
9748 for (i = 0; i < abbrev->num_attrs; ++i)
9749 {
9750 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9751
9752 /* Store the data if it is of an attribute we want to keep in a
9753 partial symbol table. */
9754 switch (attr.name)
9755 {
9756 case DW_AT_name:
9757 switch (part_die->tag)
9758 {
9759 case DW_TAG_compile_unit:
9760 case DW_TAG_type_unit:
9761 /* Compilation units have a DW_AT_name that is a filename, not
9762 a source language identifier. */
9763 case DW_TAG_enumeration_type:
9764 case DW_TAG_enumerator:
9765 /* These tags always have simple identifiers already; no need
9766 to canonicalize them. */
9767 part_die->name = DW_STRING (&attr);
9768 break;
9769 default:
9770 part_die->name
9771 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9772 &objfile->objfile_obstack);
9773 break;
9774 }
9775 break;
9776 case DW_AT_linkage_name:
9777 case DW_AT_MIPS_linkage_name:
9778 /* Note that both forms of linkage name might appear. We
9779 assume they will be the same, and we only store the last
9780 one we see. */
9781 if (cu->language == language_ada)
9782 part_die->name = DW_STRING (&attr);
9783 part_die->linkage_name = DW_STRING (&attr);
9784 break;
9785 case DW_AT_low_pc:
9786 has_low_pc_attr = 1;
9787 part_die->lowpc = DW_ADDR (&attr);
9788 break;
9789 case DW_AT_high_pc:
9790 has_high_pc_attr = 1;
9791 part_die->highpc = DW_ADDR (&attr);
9792 break;
9793 case DW_AT_location:
9794 /* Support the .debug_loc offsets. */
9795 if (attr_form_is_block (&attr))
9796 {
9797 part_die->locdesc = DW_BLOCK (&attr);
9798 }
9799 else if (attr_form_is_section_offset (&attr))
9800 {
9801 dwarf2_complex_location_expr_complaint ();
9802 }
9803 else
9804 {
9805 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9806 "partial symbol information");
9807 }
9808 break;
9809 case DW_AT_external:
9810 part_die->is_external = DW_UNSND (&attr);
9811 break;
9812 case DW_AT_declaration:
9813 part_die->is_declaration = DW_UNSND (&attr);
9814 break;
9815 case DW_AT_type:
9816 part_die->has_type = 1;
9817 break;
9818 case DW_AT_abstract_origin:
9819 case DW_AT_specification:
9820 case DW_AT_extension:
9821 part_die->has_specification = 1;
9822 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9823 break;
9824 case DW_AT_sibling:
9825 /* Ignore absolute siblings, they might point outside of
9826 the current compile unit. */
9827 if (attr.form == DW_FORM_ref_addr)
9828 complaint (&symfile_complaints,
9829 _("ignoring absolute DW_AT_sibling"));
9830 else
9831 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9832 break;
9833 case DW_AT_byte_size:
9834 part_die->has_byte_size = 1;
9835 break;
9836 case DW_AT_calling_convention:
9837 /* DWARF doesn't provide a way to identify a program's source-level
9838 entry point. DW_AT_calling_convention attributes are only meant
9839 to describe functions' calling conventions.
9840
9841 However, because it's a necessary piece of information in
9842 Fortran, and because DW_CC_program is the only piece of debugging
9843 information whose definition refers to a 'main program' at all,
9844 several compilers have begun marking Fortran main programs with
9845 DW_CC_program --- even when those functions use the standard
9846 calling conventions.
9847
9848 So until DWARF specifies a way to provide this information and
9849 compilers pick up the new representation, we'll support this
9850 practice. */
9851 if (DW_UNSND (&attr) == DW_CC_program
9852 && cu->language == language_fortran)
9853 {
9854 set_main_name (part_die->name);
9855
9856 /* As this DIE has a static linkage the name would be difficult
9857 to look up later. */
9858 language_of_main = language_fortran;
9859 }
9860 break;
9861 default:
9862 break;
9863 }
9864 }
9865
9866 if (has_low_pc_attr && has_high_pc_attr)
9867 {
9868 /* When using the GNU linker, .gnu.linkonce. sections are used to
9869 eliminate duplicate copies of functions and vtables and such.
9870 The linker will arbitrarily choose one and discard the others.
9871 The AT_*_pc values for such functions refer to local labels in
9872 these sections. If the section from that file was discarded, the
9873 labels are not in the output, so the relocs get a value of 0.
9874 If this is a discarded function, mark the pc bounds as invalid,
9875 so that GDB will ignore it. */
9876 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9877 {
9878 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9879
9880 complaint (&symfile_complaints,
9881 _("DW_AT_low_pc %s is zero "
9882 "for DIE at 0x%x [in module %s]"),
9883 paddress (gdbarch, part_die->lowpc),
9884 part_die->offset, objfile->name);
9885 }
9886 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9887 else if (part_die->lowpc >= part_die->highpc)
9888 {
9889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9890
9891 complaint (&symfile_complaints,
9892 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9893 "for DIE at 0x%x [in module %s]"),
9894 paddress (gdbarch, part_die->lowpc),
9895 paddress (gdbarch, part_die->highpc),
9896 part_die->offset, objfile->name);
9897 }
9898 else
9899 part_die->has_pc_info = 1;
9900 }
9901
9902 return info_ptr;
9903 }
9904
9905 /* Find a cached partial DIE at OFFSET in CU. */
9906
9907 static struct partial_die_info *
9908 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9909 {
9910 struct partial_die_info *lookup_die = NULL;
9911 struct partial_die_info part_die;
9912
9913 part_die.offset = offset;
9914 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9915
9916 return lookup_die;
9917 }
9918
9919 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9920 except in the case of .debug_types DIEs which do not reference
9921 outside their CU (they do however referencing other types via
9922 DW_FORM_ref_sig8). */
9923
9924 static struct partial_die_info *
9925 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9926 {
9927 struct objfile *objfile = cu->objfile;
9928 struct dwarf2_per_cu_data *per_cu = NULL;
9929 struct partial_die_info *pd = NULL;
9930
9931 if (cu->per_cu->debug_types_section)
9932 {
9933 pd = find_partial_die_in_comp_unit (offset, cu);
9934 if (pd != NULL)
9935 return pd;
9936 goto not_found;
9937 }
9938
9939 if (offset_in_cu_p (&cu->header, offset))
9940 {
9941 pd = find_partial_die_in_comp_unit (offset, cu);
9942 if (pd != NULL)
9943 return pd;
9944 }
9945
9946 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9947
9948 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9949 load_partial_comp_unit (per_cu);
9950
9951 per_cu->cu->last_used = 0;
9952 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9953
9954 if (pd == NULL && per_cu->load_all_dies == 0)
9955 {
9956 struct cleanup *back_to;
9957 struct partial_die_info comp_unit_die;
9958 struct abbrev_info *abbrev;
9959 unsigned int bytes_read;
9960 char *info_ptr;
9961
9962 per_cu->load_all_dies = 1;
9963
9964 /* Re-read the DIEs. */
9965 back_to = make_cleanup (null_cleanup, 0);
9966 if (per_cu->cu->dwarf2_abbrevs == NULL)
9967 {
9968 dwarf2_read_abbrevs (per_cu->cu);
9969 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9970 }
9971 info_ptr = (dwarf2_per_objfile->info.buffer
9972 + per_cu->cu->header.offset
9973 + per_cu->cu->header.first_die_offset);
9974 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9975 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9976 objfile->obfd,
9977 dwarf2_per_objfile->info.buffer, info_ptr,
9978 per_cu->cu);
9979 if (comp_unit_die.has_children)
9980 load_partial_dies (objfile->obfd,
9981 dwarf2_per_objfile->info.buffer, info_ptr,
9982 0, per_cu->cu);
9983 do_cleanups (back_to);
9984
9985 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9986 }
9987
9988 not_found:
9989
9990 if (pd == NULL)
9991 internal_error (__FILE__, __LINE__,
9992 _("could not find partial DIE 0x%x "
9993 "in cache [from module %s]\n"),
9994 offset, bfd_get_filename (objfile->obfd));
9995 return pd;
9996 }
9997
9998 /* See if we can figure out if the class lives in a namespace. We do
9999 this by looking for a member function; its demangled name will
10000 contain namespace info, if there is any. */
10001
10002 static void
10003 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10004 struct dwarf2_cu *cu)
10005 {
10006 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10007 what template types look like, because the demangler
10008 frequently doesn't give the same name as the debug info. We
10009 could fix this by only using the demangled name to get the
10010 prefix (but see comment in read_structure_type). */
10011
10012 struct partial_die_info *real_pdi;
10013 struct partial_die_info *child_pdi;
10014
10015 /* If this DIE (this DIE's specification, if any) has a parent, then
10016 we should not do this. We'll prepend the parent's fully qualified
10017 name when we create the partial symbol. */
10018
10019 real_pdi = struct_pdi;
10020 while (real_pdi->has_specification)
10021 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10022
10023 if (real_pdi->die_parent != NULL)
10024 return;
10025
10026 for (child_pdi = struct_pdi->die_child;
10027 child_pdi != NULL;
10028 child_pdi = child_pdi->die_sibling)
10029 {
10030 if (child_pdi->tag == DW_TAG_subprogram
10031 && child_pdi->linkage_name != NULL)
10032 {
10033 char *actual_class_name
10034 = language_class_name_from_physname (cu->language_defn,
10035 child_pdi->linkage_name);
10036 if (actual_class_name != NULL)
10037 {
10038 struct_pdi->name
10039 = obsavestring (actual_class_name,
10040 strlen (actual_class_name),
10041 &cu->objfile->objfile_obstack);
10042 xfree (actual_class_name);
10043 }
10044 break;
10045 }
10046 }
10047 }
10048
10049 /* Adjust PART_DIE before generating a symbol for it. This function
10050 may set the is_external flag or change the DIE's name. */
10051
10052 static void
10053 fixup_partial_die (struct partial_die_info *part_die,
10054 struct dwarf2_cu *cu)
10055 {
10056 /* Once we've fixed up a die, there's no point in doing so again.
10057 This also avoids a memory leak if we were to call
10058 guess_partial_die_structure_name multiple times. */
10059 if (part_die->fixup_called)
10060 return;
10061
10062 /* If we found a reference attribute and the DIE has no name, try
10063 to find a name in the referred to DIE. */
10064
10065 if (part_die->name == NULL && part_die->has_specification)
10066 {
10067 struct partial_die_info *spec_die;
10068
10069 spec_die = find_partial_die (part_die->spec_offset, cu);
10070
10071 fixup_partial_die (spec_die, cu);
10072
10073 if (spec_die->name)
10074 {
10075 part_die->name = spec_die->name;
10076
10077 /* Copy DW_AT_external attribute if it is set. */
10078 if (spec_die->is_external)
10079 part_die->is_external = spec_die->is_external;
10080 }
10081 }
10082
10083 /* Set default names for some unnamed DIEs. */
10084
10085 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10086 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10087
10088 /* If there is no parent die to provide a namespace, and there are
10089 children, see if we can determine the namespace from their linkage
10090 name. */
10091 if (cu->language == language_cplus
10092 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10093 && part_die->die_parent == NULL
10094 && part_die->has_children
10095 && (part_die->tag == DW_TAG_class_type
10096 || part_die->tag == DW_TAG_structure_type
10097 || part_die->tag == DW_TAG_union_type))
10098 guess_partial_die_structure_name (part_die, cu);
10099
10100 /* GCC might emit a nameless struct or union that has a linkage
10101 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10102 if (part_die->name == NULL
10103 && (part_die->tag == DW_TAG_class_type
10104 || part_die->tag == DW_TAG_interface_type
10105 || part_die->tag == DW_TAG_structure_type
10106 || part_die->tag == DW_TAG_union_type)
10107 && part_die->linkage_name != NULL)
10108 {
10109 char *demangled;
10110
10111 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10112 if (demangled)
10113 {
10114 const char *base;
10115
10116 /* Strip any leading namespaces/classes, keep only the base name.
10117 DW_AT_name for named DIEs does not contain the prefixes. */
10118 base = strrchr (demangled, ':');
10119 if (base && base > demangled && base[-1] == ':')
10120 base++;
10121 else
10122 base = demangled;
10123
10124 part_die->name = obsavestring (base, strlen (base),
10125 &cu->objfile->objfile_obstack);
10126 xfree (demangled);
10127 }
10128 }
10129
10130 part_die->fixup_called = 1;
10131 }
10132
10133 /* Read an attribute value described by an attribute form. */
10134
10135 static gdb_byte *
10136 read_attribute_value (struct attribute *attr, unsigned form,
10137 bfd *abfd, gdb_byte *info_ptr,
10138 struct dwarf2_cu *cu)
10139 {
10140 struct comp_unit_head *cu_header = &cu->header;
10141 unsigned int bytes_read;
10142 struct dwarf_block *blk;
10143
10144 attr->form = form;
10145 switch (form)
10146 {
10147 case DW_FORM_ref_addr:
10148 if (cu->header.version == 2)
10149 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10150 else
10151 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10152 &cu->header, &bytes_read);
10153 info_ptr += bytes_read;
10154 break;
10155 case DW_FORM_addr:
10156 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10157 info_ptr += bytes_read;
10158 break;
10159 case DW_FORM_block2:
10160 blk = dwarf_alloc_block (cu);
10161 blk->size = read_2_bytes (abfd, info_ptr);
10162 info_ptr += 2;
10163 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10164 info_ptr += blk->size;
10165 DW_BLOCK (attr) = blk;
10166 break;
10167 case DW_FORM_block4:
10168 blk = dwarf_alloc_block (cu);
10169 blk->size = read_4_bytes (abfd, info_ptr);
10170 info_ptr += 4;
10171 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10172 info_ptr += blk->size;
10173 DW_BLOCK (attr) = blk;
10174 break;
10175 case DW_FORM_data2:
10176 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10177 info_ptr += 2;
10178 break;
10179 case DW_FORM_data4:
10180 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10181 info_ptr += 4;
10182 break;
10183 case DW_FORM_data8:
10184 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10185 info_ptr += 8;
10186 break;
10187 case DW_FORM_sec_offset:
10188 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10189 info_ptr += bytes_read;
10190 break;
10191 case DW_FORM_string:
10192 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10193 DW_STRING_IS_CANONICAL (attr) = 0;
10194 info_ptr += bytes_read;
10195 break;
10196 case DW_FORM_strp:
10197 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10198 &bytes_read);
10199 DW_STRING_IS_CANONICAL (attr) = 0;
10200 info_ptr += bytes_read;
10201 break;
10202 case DW_FORM_exprloc:
10203 case DW_FORM_block:
10204 blk = dwarf_alloc_block (cu);
10205 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10206 info_ptr += bytes_read;
10207 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10208 info_ptr += blk->size;
10209 DW_BLOCK (attr) = blk;
10210 break;
10211 case DW_FORM_block1:
10212 blk = dwarf_alloc_block (cu);
10213 blk->size = read_1_byte (abfd, info_ptr);
10214 info_ptr += 1;
10215 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10216 info_ptr += blk->size;
10217 DW_BLOCK (attr) = blk;
10218 break;
10219 case DW_FORM_data1:
10220 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10221 info_ptr += 1;
10222 break;
10223 case DW_FORM_flag:
10224 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10225 info_ptr += 1;
10226 break;
10227 case DW_FORM_flag_present:
10228 DW_UNSND (attr) = 1;
10229 break;
10230 case DW_FORM_sdata:
10231 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10232 info_ptr += bytes_read;
10233 break;
10234 case DW_FORM_udata:
10235 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10236 info_ptr += bytes_read;
10237 break;
10238 case DW_FORM_ref1:
10239 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10240 info_ptr += 1;
10241 break;
10242 case DW_FORM_ref2:
10243 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10244 info_ptr += 2;
10245 break;
10246 case DW_FORM_ref4:
10247 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10248 info_ptr += 4;
10249 break;
10250 case DW_FORM_ref8:
10251 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10252 info_ptr += 8;
10253 break;
10254 case DW_FORM_ref_sig8:
10255 /* Convert the signature to something we can record in DW_UNSND
10256 for later lookup.
10257 NOTE: This is NULL if the type wasn't found. */
10258 DW_SIGNATURED_TYPE (attr) =
10259 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10260 info_ptr += 8;
10261 break;
10262 case DW_FORM_ref_udata:
10263 DW_ADDR (attr) = (cu->header.offset
10264 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10265 info_ptr += bytes_read;
10266 break;
10267 case DW_FORM_indirect:
10268 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10269 info_ptr += bytes_read;
10270 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10271 break;
10272 default:
10273 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10274 dwarf_form_name (form),
10275 bfd_get_filename (abfd));
10276 }
10277
10278 /* We have seen instances where the compiler tried to emit a byte
10279 size attribute of -1 which ended up being encoded as an unsigned
10280 0xffffffff. Although 0xffffffff is technically a valid size value,
10281 an object of this size seems pretty unlikely so we can relatively
10282 safely treat these cases as if the size attribute was invalid and
10283 treat them as zero by default. */
10284 if (attr->name == DW_AT_byte_size
10285 && form == DW_FORM_data4
10286 && DW_UNSND (attr) >= 0xffffffff)
10287 {
10288 complaint
10289 (&symfile_complaints,
10290 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10291 hex_string (DW_UNSND (attr)));
10292 DW_UNSND (attr) = 0;
10293 }
10294
10295 return info_ptr;
10296 }
10297
10298 /* Read an attribute described by an abbreviated attribute. */
10299
10300 static gdb_byte *
10301 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10302 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10303 {
10304 attr->name = abbrev->name;
10305 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10306 }
10307
10308 /* Read dwarf information from a buffer. */
10309
10310 static unsigned int
10311 read_1_byte (bfd *abfd, gdb_byte *buf)
10312 {
10313 return bfd_get_8 (abfd, buf);
10314 }
10315
10316 static int
10317 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10318 {
10319 return bfd_get_signed_8 (abfd, buf);
10320 }
10321
10322 static unsigned int
10323 read_2_bytes (bfd *abfd, gdb_byte *buf)
10324 {
10325 return bfd_get_16 (abfd, buf);
10326 }
10327
10328 static int
10329 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10330 {
10331 return bfd_get_signed_16 (abfd, buf);
10332 }
10333
10334 static unsigned int
10335 read_4_bytes (bfd *abfd, gdb_byte *buf)
10336 {
10337 return bfd_get_32 (abfd, buf);
10338 }
10339
10340 static int
10341 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10342 {
10343 return bfd_get_signed_32 (abfd, buf);
10344 }
10345
10346 static ULONGEST
10347 read_8_bytes (bfd *abfd, gdb_byte *buf)
10348 {
10349 return bfd_get_64 (abfd, buf);
10350 }
10351
10352 static CORE_ADDR
10353 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10354 unsigned int *bytes_read)
10355 {
10356 struct comp_unit_head *cu_header = &cu->header;
10357 CORE_ADDR retval = 0;
10358
10359 if (cu_header->signed_addr_p)
10360 {
10361 switch (cu_header->addr_size)
10362 {
10363 case 2:
10364 retval = bfd_get_signed_16 (abfd, buf);
10365 break;
10366 case 4:
10367 retval = bfd_get_signed_32 (abfd, buf);
10368 break;
10369 case 8:
10370 retval = bfd_get_signed_64 (abfd, buf);
10371 break;
10372 default:
10373 internal_error (__FILE__, __LINE__,
10374 _("read_address: bad switch, signed [in module %s]"),
10375 bfd_get_filename (abfd));
10376 }
10377 }
10378 else
10379 {
10380 switch (cu_header->addr_size)
10381 {
10382 case 2:
10383 retval = bfd_get_16 (abfd, buf);
10384 break;
10385 case 4:
10386 retval = bfd_get_32 (abfd, buf);
10387 break;
10388 case 8:
10389 retval = bfd_get_64 (abfd, buf);
10390 break;
10391 default:
10392 internal_error (__FILE__, __LINE__,
10393 _("read_address: bad switch, "
10394 "unsigned [in module %s]"),
10395 bfd_get_filename (abfd));
10396 }
10397 }
10398
10399 *bytes_read = cu_header->addr_size;
10400 return retval;
10401 }
10402
10403 /* Read the initial length from a section. The (draft) DWARF 3
10404 specification allows the initial length to take up either 4 bytes
10405 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10406 bytes describe the length and all offsets will be 8 bytes in length
10407 instead of 4.
10408
10409 An older, non-standard 64-bit format is also handled by this
10410 function. The older format in question stores the initial length
10411 as an 8-byte quantity without an escape value. Lengths greater
10412 than 2^32 aren't very common which means that the initial 4 bytes
10413 is almost always zero. Since a length value of zero doesn't make
10414 sense for the 32-bit format, this initial zero can be considered to
10415 be an escape value which indicates the presence of the older 64-bit
10416 format. As written, the code can't detect (old format) lengths
10417 greater than 4GB. If it becomes necessary to handle lengths
10418 somewhat larger than 4GB, we could allow other small values (such
10419 as the non-sensical values of 1, 2, and 3) to also be used as
10420 escape values indicating the presence of the old format.
10421
10422 The value returned via bytes_read should be used to increment the
10423 relevant pointer after calling read_initial_length().
10424
10425 [ Note: read_initial_length() and read_offset() are based on the
10426 document entitled "DWARF Debugging Information Format", revision
10427 3, draft 8, dated November 19, 2001. This document was obtained
10428 from:
10429
10430 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10431
10432 This document is only a draft and is subject to change. (So beware.)
10433
10434 Details regarding the older, non-standard 64-bit format were
10435 determined empirically by examining 64-bit ELF files produced by
10436 the SGI toolchain on an IRIX 6.5 machine.
10437
10438 - Kevin, July 16, 2002
10439 ] */
10440
10441 static LONGEST
10442 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10443 {
10444 LONGEST length = bfd_get_32 (abfd, buf);
10445
10446 if (length == 0xffffffff)
10447 {
10448 length = bfd_get_64 (abfd, buf + 4);
10449 *bytes_read = 12;
10450 }
10451 else if (length == 0)
10452 {
10453 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10454 length = bfd_get_64 (abfd, buf);
10455 *bytes_read = 8;
10456 }
10457 else
10458 {
10459 *bytes_read = 4;
10460 }
10461
10462 return length;
10463 }
10464
10465 /* Cover function for read_initial_length.
10466 Returns the length of the object at BUF, and stores the size of the
10467 initial length in *BYTES_READ and stores the size that offsets will be in
10468 *OFFSET_SIZE.
10469 If the initial length size is not equivalent to that specified in
10470 CU_HEADER then issue a complaint.
10471 This is useful when reading non-comp-unit headers. */
10472
10473 static LONGEST
10474 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10475 const struct comp_unit_head *cu_header,
10476 unsigned int *bytes_read,
10477 unsigned int *offset_size)
10478 {
10479 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10480
10481 gdb_assert (cu_header->initial_length_size == 4
10482 || cu_header->initial_length_size == 8
10483 || cu_header->initial_length_size == 12);
10484
10485 if (cu_header->initial_length_size != *bytes_read)
10486 complaint (&symfile_complaints,
10487 _("intermixed 32-bit and 64-bit DWARF sections"));
10488
10489 *offset_size = (*bytes_read == 4) ? 4 : 8;
10490 return length;
10491 }
10492
10493 /* Read an offset from the data stream. The size of the offset is
10494 given by cu_header->offset_size. */
10495
10496 static LONGEST
10497 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10498 unsigned int *bytes_read)
10499 {
10500 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10501
10502 *bytes_read = cu_header->offset_size;
10503 return offset;
10504 }
10505
10506 /* Read an offset from the data stream. */
10507
10508 static LONGEST
10509 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10510 {
10511 LONGEST retval = 0;
10512
10513 switch (offset_size)
10514 {
10515 case 4:
10516 retval = bfd_get_32 (abfd, buf);
10517 break;
10518 case 8:
10519 retval = bfd_get_64 (abfd, buf);
10520 break;
10521 default:
10522 internal_error (__FILE__, __LINE__,
10523 _("read_offset_1: bad switch [in module %s]"),
10524 bfd_get_filename (abfd));
10525 }
10526
10527 return retval;
10528 }
10529
10530 static gdb_byte *
10531 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10532 {
10533 /* If the size of a host char is 8 bits, we can return a pointer
10534 to the buffer, otherwise we have to copy the data to a buffer
10535 allocated on the temporary obstack. */
10536 gdb_assert (HOST_CHAR_BIT == 8);
10537 return buf;
10538 }
10539
10540 static char *
10541 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10542 {
10543 /* If the size of a host char is 8 bits, we can return a pointer
10544 to the string, otherwise we have to copy the string to a buffer
10545 allocated on the temporary obstack. */
10546 gdb_assert (HOST_CHAR_BIT == 8);
10547 if (*buf == '\0')
10548 {
10549 *bytes_read_ptr = 1;
10550 return NULL;
10551 }
10552 *bytes_read_ptr = strlen ((char *) buf) + 1;
10553 return (char *) buf;
10554 }
10555
10556 static char *
10557 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10558 {
10559 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10560 if (dwarf2_per_objfile->str.buffer == NULL)
10561 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10562 bfd_get_filename (abfd));
10563 if (str_offset >= dwarf2_per_objfile->str.size)
10564 error (_("DW_FORM_strp pointing outside of "
10565 ".debug_str section [in module %s]"),
10566 bfd_get_filename (abfd));
10567 gdb_assert (HOST_CHAR_BIT == 8);
10568 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10569 return NULL;
10570 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10571 }
10572
10573 static char *
10574 read_indirect_string (bfd *abfd, gdb_byte *buf,
10575 const struct comp_unit_head *cu_header,
10576 unsigned int *bytes_read_ptr)
10577 {
10578 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10579
10580 return read_indirect_string_at_offset (abfd, str_offset);
10581 }
10582
10583 static unsigned long
10584 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10585 {
10586 unsigned long result;
10587 unsigned int num_read;
10588 int i, shift;
10589 unsigned char byte;
10590
10591 result = 0;
10592 shift = 0;
10593 num_read = 0;
10594 i = 0;
10595 while (1)
10596 {
10597 byte = bfd_get_8 (abfd, buf);
10598 buf++;
10599 num_read++;
10600 result |= ((unsigned long)(byte & 127) << shift);
10601 if ((byte & 128) == 0)
10602 {
10603 break;
10604 }
10605 shift += 7;
10606 }
10607 *bytes_read_ptr = num_read;
10608 return result;
10609 }
10610
10611 static long
10612 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10613 {
10614 long result;
10615 int i, shift, num_read;
10616 unsigned char byte;
10617
10618 result = 0;
10619 shift = 0;
10620 num_read = 0;
10621 i = 0;
10622 while (1)
10623 {
10624 byte = bfd_get_8 (abfd, buf);
10625 buf++;
10626 num_read++;
10627 result |= ((long)(byte & 127) << shift);
10628 shift += 7;
10629 if ((byte & 128) == 0)
10630 {
10631 break;
10632 }
10633 }
10634 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10635 result |= -(((long)1) << shift);
10636 *bytes_read_ptr = num_read;
10637 return result;
10638 }
10639
10640 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10641
10642 static gdb_byte *
10643 skip_leb128 (bfd *abfd, gdb_byte *buf)
10644 {
10645 int byte;
10646
10647 while (1)
10648 {
10649 byte = bfd_get_8 (abfd, buf);
10650 buf++;
10651 if ((byte & 128) == 0)
10652 return buf;
10653 }
10654 }
10655
10656 static void
10657 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10658 {
10659 switch (lang)
10660 {
10661 case DW_LANG_C89:
10662 case DW_LANG_C99:
10663 case DW_LANG_C:
10664 cu->language = language_c;
10665 break;
10666 case DW_LANG_C_plus_plus:
10667 cu->language = language_cplus;
10668 break;
10669 case DW_LANG_D:
10670 cu->language = language_d;
10671 break;
10672 case DW_LANG_Fortran77:
10673 case DW_LANG_Fortran90:
10674 case DW_LANG_Fortran95:
10675 cu->language = language_fortran;
10676 break;
10677 case DW_LANG_Mips_Assembler:
10678 cu->language = language_asm;
10679 break;
10680 case DW_LANG_Java:
10681 cu->language = language_java;
10682 break;
10683 case DW_LANG_Ada83:
10684 case DW_LANG_Ada95:
10685 cu->language = language_ada;
10686 break;
10687 case DW_LANG_Modula2:
10688 cu->language = language_m2;
10689 break;
10690 case DW_LANG_Pascal83:
10691 cu->language = language_pascal;
10692 break;
10693 case DW_LANG_ObjC:
10694 cu->language = language_objc;
10695 break;
10696 case DW_LANG_Cobol74:
10697 case DW_LANG_Cobol85:
10698 default:
10699 cu->language = language_minimal;
10700 break;
10701 }
10702 cu->language_defn = language_def (cu->language);
10703 }
10704
10705 /* Return the named attribute or NULL if not there. */
10706
10707 static struct attribute *
10708 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10709 {
10710 unsigned int i;
10711 struct attribute *spec = NULL;
10712
10713 for (i = 0; i < die->num_attrs; ++i)
10714 {
10715 if (die->attrs[i].name == name)
10716 return &die->attrs[i];
10717 if (die->attrs[i].name == DW_AT_specification
10718 || die->attrs[i].name == DW_AT_abstract_origin)
10719 spec = &die->attrs[i];
10720 }
10721
10722 if (spec)
10723 {
10724 die = follow_die_ref (die, spec, &cu);
10725 return dwarf2_attr (die, name, cu);
10726 }
10727
10728 return NULL;
10729 }
10730
10731 /* Return the named attribute or NULL if not there,
10732 but do not follow DW_AT_specification, etc.
10733 This is for use in contexts where we're reading .debug_types dies.
10734 Following DW_AT_specification, DW_AT_abstract_origin will take us
10735 back up the chain, and we want to go down. */
10736
10737 static struct attribute *
10738 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10739 struct dwarf2_cu *cu)
10740 {
10741 unsigned int i;
10742
10743 for (i = 0; i < die->num_attrs; ++i)
10744 if (die->attrs[i].name == name)
10745 return &die->attrs[i];
10746
10747 return NULL;
10748 }
10749
10750 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10751 and holds a non-zero value. This function should only be used for
10752 DW_FORM_flag or DW_FORM_flag_present attributes. */
10753
10754 static int
10755 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10756 {
10757 struct attribute *attr = dwarf2_attr (die, name, cu);
10758
10759 return (attr && DW_UNSND (attr));
10760 }
10761
10762 static int
10763 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10764 {
10765 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10766 which value is non-zero. However, we have to be careful with
10767 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10768 (via dwarf2_flag_true_p) follows this attribute. So we may
10769 end up accidently finding a declaration attribute that belongs
10770 to a different DIE referenced by the specification attribute,
10771 even though the given DIE does not have a declaration attribute. */
10772 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10773 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10774 }
10775
10776 /* Return the die giving the specification for DIE, if there is
10777 one. *SPEC_CU is the CU containing DIE on input, and the CU
10778 containing the return value on output. If there is no
10779 specification, but there is an abstract origin, that is
10780 returned. */
10781
10782 static struct die_info *
10783 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10784 {
10785 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10786 *spec_cu);
10787
10788 if (spec_attr == NULL)
10789 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10790
10791 if (spec_attr == NULL)
10792 return NULL;
10793 else
10794 return follow_die_ref (die, spec_attr, spec_cu);
10795 }
10796
10797 /* Free the line_header structure *LH, and any arrays and strings it
10798 refers to.
10799 NOTE: This is also used as a "cleanup" function. */
10800
10801 static void
10802 free_line_header (struct line_header *lh)
10803 {
10804 if (lh->standard_opcode_lengths)
10805 xfree (lh->standard_opcode_lengths);
10806
10807 /* Remember that all the lh->file_names[i].name pointers are
10808 pointers into debug_line_buffer, and don't need to be freed. */
10809 if (lh->file_names)
10810 xfree (lh->file_names);
10811
10812 /* Similarly for the include directory names. */
10813 if (lh->include_dirs)
10814 xfree (lh->include_dirs);
10815
10816 xfree (lh);
10817 }
10818
10819 /* Add an entry to LH's include directory table. */
10820
10821 static void
10822 add_include_dir (struct line_header *lh, char *include_dir)
10823 {
10824 /* Grow the array if necessary. */
10825 if (lh->include_dirs_size == 0)
10826 {
10827 lh->include_dirs_size = 1; /* for testing */
10828 lh->include_dirs = xmalloc (lh->include_dirs_size
10829 * sizeof (*lh->include_dirs));
10830 }
10831 else if (lh->num_include_dirs >= lh->include_dirs_size)
10832 {
10833 lh->include_dirs_size *= 2;
10834 lh->include_dirs = xrealloc (lh->include_dirs,
10835 (lh->include_dirs_size
10836 * sizeof (*lh->include_dirs)));
10837 }
10838
10839 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10840 }
10841
10842 /* Add an entry to LH's file name table. */
10843
10844 static void
10845 add_file_name (struct line_header *lh,
10846 char *name,
10847 unsigned int dir_index,
10848 unsigned int mod_time,
10849 unsigned int length)
10850 {
10851 struct file_entry *fe;
10852
10853 /* Grow the array if necessary. */
10854 if (lh->file_names_size == 0)
10855 {
10856 lh->file_names_size = 1; /* for testing */
10857 lh->file_names = xmalloc (lh->file_names_size
10858 * sizeof (*lh->file_names));
10859 }
10860 else if (lh->num_file_names >= lh->file_names_size)
10861 {
10862 lh->file_names_size *= 2;
10863 lh->file_names = xrealloc (lh->file_names,
10864 (lh->file_names_size
10865 * sizeof (*lh->file_names)));
10866 }
10867
10868 fe = &lh->file_names[lh->num_file_names++];
10869 fe->name = name;
10870 fe->dir_index = dir_index;
10871 fe->mod_time = mod_time;
10872 fe->length = length;
10873 fe->included_p = 0;
10874 fe->symtab = NULL;
10875 }
10876
10877 /* Read the statement program header starting at OFFSET in
10878 .debug_line, according to the endianness of ABFD. Return a pointer
10879 to a struct line_header, allocated using xmalloc.
10880
10881 NOTE: the strings in the include directory and file name tables of
10882 the returned object point into debug_line_buffer, and must not be
10883 freed. */
10884
10885 static struct line_header *
10886 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10887 struct dwarf2_cu *cu)
10888 {
10889 struct cleanup *back_to;
10890 struct line_header *lh;
10891 gdb_byte *line_ptr;
10892 unsigned int bytes_read, offset_size;
10893 int i;
10894 char *cur_dir, *cur_file;
10895
10896 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10897 if (dwarf2_per_objfile->line.buffer == NULL)
10898 {
10899 complaint (&symfile_complaints, _("missing .debug_line section"));
10900 return 0;
10901 }
10902
10903 /* Make sure that at least there's room for the total_length field.
10904 That could be 12 bytes long, but we're just going to fudge that. */
10905 if (offset + 4 >= dwarf2_per_objfile->line.size)
10906 {
10907 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10908 return 0;
10909 }
10910
10911 lh = xmalloc (sizeof (*lh));
10912 memset (lh, 0, sizeof (*lh));
10913 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10914 (void *) lh);
10915
10916 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10917
10918 /* Read in the header. */
10919 lh->total_length =
10920 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10921 &bytes_read, &offset_size);
10922 line_ptr += bytes_read;
10923 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10924 + dwarf2_per_objfile->line.size))
10925 {
10926 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10927 return 0;
10928 }
10929 lh->statement_program_end = line_ptr + lh->total_length;
10930 lh->version = read_2_bytes (abfd, line_ptr);
10931 line_ptr += 2;
10932 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10933 line_ptr += offset_size;
10934 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10935 line_ptr += 1;
10936 if (lh->version >= 4)
10937 {
10938 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10939 line_ptr += 1;
10940 }
10941 else
10942 lh->maximum_ops_per_instruction = 1;
10943
10944 if (lh->maximum_ops_per_instruction == 0)
10945 {
10946 lh->maximum_ops_per_instruction = 1;
10947 complaint (&symfile_complaints,
10948 _("invalid maximum_ops_per_instruction "
10949 "in `.debug_line' section"));
10950 }
10951
10952 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10953 line_ptr += 1;
10954 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10955 line_ptr += 1;
10956 lh->line_range = read_1_byte (abfd, line_ptr);
10957 line_ptr += 1;
10958 lh->opcode_base = read_1_byte (abfd, line_ptr);
10959 line_ptr += 1;
10960 lh->standard_opcode_lengths
10961 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10962
10963 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10964 for (i = 1; i < lh->opcode_base; ++i)
10965 {
10966 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10967 line_ptr += 1;
10968 }
10969
10970 /* Read directory table. */
10971 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10972 {
10973 line_ptr += bytes_read;
10974 add_include_dir (lh, cur_dir);
10975 }
10976 line_ptr += bytes_read;
10977
10978 /* Read file name table. */
10979 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10980 {
10981 unsigned int dir_index, mod_time, length;
10982
10983 line_ptr += bytes_read;
10984 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10985 line_ptr += bytes_read;
10986 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10987 line_ptr += bytes_read;
10988 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10989 line_ptr += bytes_read;
10990
10991 add_file_name (lh, cur_file, dir_index, mod_time, length);
10992 }
10993 line_ptr += bytes_read;
10994 lh->statement_program_start = line_ptr;
10995
10996 if (line_ptr > (dwarf2_per_objfile->line.buffer
10997 + dwarf2_per_objfile->line.size))
10998 complaint (&symfile_complaints,
10999 _("line number info header doesn't "
11000 "fit in `.debug_line' section"));
11001
11002 discard_cleanups (back_to);
11003 return lh;
11004 }
11005
11006 /* Subroutine of dwarf_decode_lines to simplify it.
11007 Return the file name of the psymtab for included file FILE_INDEX
11008 in line header LH of PST.
11009 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11010 If space for the result is malloc'd, it will be freed by a cleanup.
11011 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11012
11013 static char *
11014 psymtab_include_file_name (const struct line_header *lh, int file_index,
11015 const struct partial_symtab *pst,
11016 const char *comp_dir)
11017 {
11018 const struct file_entry fe = lh->file_names [file_index];
11019 char *include_name = fe.name;
11020 char *include_name_to_compare = include_name;
11021 char *dir_name = NULL;
11022 const char *pst_filename;
11023 char *copied_name = NULL;
11024 int file_is_pst;
11025
11026 if (fe.dir_index)
11027 dir_name = lh->include_dirs[fe.dir_index - 1];
11028
11029 if (!IS_ABSOLUTE_PATH (include_name)
11030 && (dir_name != NULL || comp_dir != NULL))
11031 {
11032 /* Avoid creating a duplicate psymtab for PST.
11033 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11034 Before we do the comparison, however, we need to account
11035 for DIR_NAME and COMP_DIR.
11036 First prepend dir_name (if non-NULL). If we still don't
11037 have an absolute path prepend comp_dir (if non-NULL).
11038 However, the directory we record in the include-file's
11039 psymtab does not contain COMP_DIR (to match the
11040 corresponding symtab(s)).
11041
11042 Example:
11043
11044 bash$ cd /tmp
11045 bash$ gcc -g ./hello.c
11046 include_name = "hello.c"
11047 dir_name = "."
11048 DW_AT_comp_dir = comp_dir = "/tmp"
11049 DW_AT_name = "./hello.c" */
11050
11051 if (dir_name != NULL)
11052 {
11053 include_name = concat (dir_name, SLASH_STRING,
11054 include_name, (char *)NULL);
11055 include_name_to_compare = include_name;
11056 make_cleanup (xfree, include_name);
11057 }
11058 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11059 {
11060 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11061 include_name, (char *)NULL);
11062 }
11063 }
11064
11065 pst_filename = pst->filename;
11066 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11067 {
11068 copied_name = concat (pst->dirname, SLASH_STRING,
11069 pst_filename, (char *)NULL);
11070 pst_filename = copied_name;
11071 }
11072
11073 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11074
11075 if (include_name_to_compare != include_name)
11076 xfree (include_name_to_compare);
11077 if (copied_name != NULL)
11078 xfree (copied_name);
11079
11080 if (file_is_pst)
11081 return NULL;
11082 return include_name;
11083 }
11084
11085 /* Ignore this record_line request. */
11086
11087 static void
11088 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11089 {
11090 return;
11091 }
11092
11093 /* Subroutine of dwarf_decode_lines to simplify it.
11094 Process the line number information in LH. */
11095
11096 static void
11097 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11098 struct dwarf2_cu *cu, struct partial_symtab *pst)
11099 {
11100 gdb_byte *line_ptr, *extended_end;
11101 gdb_byte *line_end;
11102 unsigned int bytes_read, extended_len;
11103 unsigned char op_code, extended_op, adj_opcode;
11104 CORE_ADDR baseaddr;
11105 struct objfile *objfile = cu->objfile;
11106 bfd *abfd = objfile->obfd;
11107 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11108 const int decode_for_pst_p = (pst != NULL);
11109 struct subfile *last_subfile = NULL;
11110 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11111 = record_line;
11112
11113 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11114
11115 line_ptr = lh->statement_program_start;
11116 line_end = lh->statement_program_end;
11117
11118 /* Read the statement sequences until there's nothing left. */
11119 while (line_ptr < line_end)
11120 {
11121 /* state machine registers */
11122 CORE_ADDR address = 0;
11123 unsigned int file = 1;
11124 unsigned int line = 1;
11125 unsigned int column = 0;
11126 int is_stmt = lh->default_is_stmt;
11127 int basic_block = 0;
11128 int end_sequence = 0;
11129 CORE_ADDR addr;
11130 unsigned char op_index = 0;
11131
11132 if (!decode_for_pst_p && lh->num_file_names >= file)
11133 {
11134 /* Start a subfile for the current file of the state machine. */
11135 /* lh->include_dirs and lh->file_names are 0-based, but the
11136 directory and file name numbers in the statement program
11137 are 1-based. */
11138 struct file_entry *fe = &lh->file_names[file - 1];
11139 char *dir = NULL;
11140
11141 if (fe->dir_index)
11142 dir = lh->include_dirs[fe->dir_index - 1];
11143
11144 dwarf2_start_subfile (fe->name, dir, comp_dir);
11145 }
11146
11147 /* Decode the table. */
11148 while (!end_sequence)
11149 {
11150 op_code = read_1_byte (abfd, line_ptr);
11151 line_ptr += 1;
11152 if (line_ptr > line_end)
11153 {
11154 dwarf2_debug_line_missing_end_sequence_complaint ();
11155 break;
11156 }
11157
11158 if (op_code >= lh->opcode_base)
11159 {
11160 /* Special operand. */
11161 adj_opcode = op_code - lh->opcode_base;
11162 address += (((op_index + (adj_opcode / lh->line_range))
11163 / lh->maximum_ops_per_instruction)
11164 * lh->minimum_instruction_length);
11165 op_index = ((op_index + (adj_opcode / lh->line_range))
11166 % lh->maximum_ops_per_instruction);
11167 line += lh->line_base + (adj_opcode % lh->line_range);
11168 if (lh->num_file_names < file || file == 0)
11169 dwarf2_debug_line_missing_file_complaint ();
11170 /* For now we ignore lines not starting on an
11171 instruction boundary. */
11172 else if (op_index == 0)
11173 {
11174 lh->file_names[file - 1].included_p = 1;
11175 if (!decode_for_pst_p && is_stmt)
11176 {
11177 if (last_subfile != current_subfile)
11178 {
11179 addr = gdbarch_addr_bits_remove (gdbarch, address);
11180 if (last_subfile)
11181 (*p_record_line) (last_subfile, 0, addr);
11182 last_subfile = current_subfile;
11183 }
11184 /* Append row to matrix using current values. */
11185 addr = gdbarch_addr_bits_remove (gdbarch, address);
11186 (*p_record_line) (current_subfile, line, addr);
11187 }
11188 }
11189 basic_block = 0;
11190 }
11191 else switch (op_code)
11192 {
11193 case DW_LNS_extended_op:
11194 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11195 &bytes_read);
11196 line_ptr += bytes_read;
11197 extended_end = line_ptr + extended_len;
11198 extended_op = read_1_byte (abfd, line_ptr);
11199 line_ptr += 1;
11200 switch (extended_op)
11201 {
11202 case DW_LNE_end_sequence:
11203 p_record_line = record_line;
11204 end_sequence = 1;
11205 break;
11206 case DW_LNE_set_address:
11207 address = read_address (abfd, line_ptr, cu, &bytes_read);
11208
11209 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11210 {
11211 /* This line table is for a function which has been
11212 GCd by the linker. Ignore it. PR gdb/12528 */
11213
11214 long line_offset
11215 = line_ptr - dwarf2_per_objfile->line.buffer;
11216
11217 complaint (&symfile_complaints,
11218 _(".debug_line address at offset 0x%lx is 0 "
11219 "[in module %s]"),
11220 line_offset, objfile->name);
11221 p_record_line = noop_record_line;
11222 }
11223
11224 op_index = 0;
11225 line_ptr += bytes_read;
11226 address += baseaddr;
11227 break;
11228 case DW_LNE_define_file:
11229 {
11230 char *cur_file;
11231 unsigned int dir_index, mod_time, length;
11232
11233 cur_file = read_direct_string (abfd, line_ptr,
11234 &bytes_read);
11235 line_ptr += bytes_read;
11236 dir_index =
11237 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11238 line_ptr += bytes_read;
11239 mod_time =
11240 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11241 line_ptr += bytes_read;
11242 length =
11243 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11244 line_ptr += bytes_read;
11245 add_file_name (lh, cur_file, dir_index, mod_time, length);
11246 }
11247 break;
11248 case DW_LNE_set_discriminator:
11249 /* The discriminator is not interesting to the debugger;
11250 just ignore it. */
11251 line_ptr = extended_end;
11252 break;
11253 default:
11254 complaint (&symfile_complaints,
11255 _("mangled .debug_line section"));
11256 return;
11257 }
11258 /* Make sure that we parsed the extended op correctly. If e.g.
11259 we expected a different address size than the producer used,
11260 we may have read the wrong number of bytes. */
11261 if (line_ptr != extended_end)
11262 {
11263 complaint (&symfile_complaints,
11264 _("mangled .debug_line section"));
11265 return;
11266 }
11267 break;
11268 case DW_LNS_copy:
11269 if (lh->num_file_names < file || file == 0)
11270 dwarf2_debug_line_missing_file_complaint ();
11271 else
11272 {
11273 lh->file_names[file - 1].included_p = 1;
11274 if (!decode_for_pst_p && is_stmt)
11275 {
11276 if (last_subfile != current_subfile)
11277 {
11278 addr = gdbarch_addr_bits_remove (gdbarch, address);
11279 if (last_subfile)
11280 (*p_record_line) (last_subfile, 0, addr);
11281 last_subfile = current_subfile;
11282 }
11283 addr = gdbarch_addr_bits_remove (gdbarch, address);
11284 (*p_record_line) (current_subfile, line, addr);
11285 }
11286 }
11287 basic_block = 0;
11288 break;
11289 case DW_LNS_advance_pc:
11290 {
11291 CORE_ADDR adjust
11292 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11293
11294 address += (((op_index + adjust)
11295 / lh->maximum_ops_per_instruction)
11296 * lh->minimum_instruction_length);
11297 op_index = ((op_index + adjust)
11298 % lh->maximum_ops_per_instruction);
11299 line_ptr += bytes_read;
11300 }
11301 break;
11302 case DW_LNS_advance_line:
11303 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11304 line_ptr += bytes_read;
11305 break;
11306 case DW_LNS_set_file:
11307 {
11308 /* The arrays lh->include_dirs and lh->file_names are
11309 0-based, but the directory and file name numbers in
11310 the statement program are 1-based. */
11311 struct file_entry *fe;
11312 char *dir = NULL;
11313
11314 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11315 line_ptr += bytes_read;
11316 if (lh->num_file_names < file || file == 0)
11317 dwarf2_debug_line_missing_file_complaint ();
11318 else
11319 {
11320 fe = &lh->file_names[file - 1];
11321 if (fe->dir_index)
11322 dir = lh->include_dirs[fe->dir_index - 1];
11323 if (!decode_for_pst_p)
11324 {
11325 last_subfile = current_subfile;
11326 dwarf2_start_subfile (fe->name, dir, comp_dir);
11327 }
11328 }
11329 }
11330 break;
11331 case DW_LNS_set_column:
11332 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11333 line_ptr += bytes_read;
11334 break;
11335 case DW_LNS_negate_stmt:
11336 is_stmt = (!is_stmt);
11337 break;
11338 case DW_LNS_set_basic_block:
11339 basic_block = 1;
11340 break;
11341 /* Add to the address register of the state machine the
11342 address increment value corresponding to special opcode
11343 255. I.e., this value is scaled by the minimum
11344 instruction length since special opcode 255 would have
11345 scaled the increment. */
11346 case DW_LNS_const_add_pc:
11347 {
11348 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11349
11350 address += (((op_index + adjust)
11351 / lh->maximum_ops_per_instruction)
11352 * lh->minimum_instruction_length);
11353 op_index = ((op_index + adjust)
11354 % lh->maximum_ops_per_instruction);
11355 }
11356 break;
11357 case DW_LNS_fixed_advance_pc:
11358 address += read_2_bytes (abfd, line_ptr);
11359 op_index = 0;
11360 line_ptr += 2;
11361 break;
11362 default:
11363 {
11364 /* Unknown standard opcode, ignore it. */
11365 int i;
11366
11367 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11368 {
11369 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11370 line_ptr += bytes_read;
11371 }
11372 }
11373 }
11374 }
11375 if (lh->num_file_names < file || file == 0)
11376 dwarf2_debug_line_missing_file_complaint ();
11377 else
11378 {
11379 lh->file_names[file - 1].included_p = 1;
11380 if (!decode_for_pst_p)
11381 {
11382 addr = gdbarch_addr_bits_remove (gdbarch, address);
11383 (*p_record_line) (current_subfile, 0, addr);
11384 }
11385 }
11386 }
11387 }
11388
11389 /* Decode the Line Number Program (LNP) for the given line_header
11390 structure and CU. The actual information extracted and the type
11391 of structures created from the LNP depends on the value of PST.
11392
11393 1. If PST is NULL, then this procedure uses the data from the program
11394 to create all necessary symbol tables, and their linetables.
11395
11396 2. If PST is not NULL, this procedure reads the program to determine
11397 the list of files included by the unit represented by PST, and
11398 builds all the associated partial symbol tables.
11399
11400 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11401 It is used for relative paths in the line table.
11402 NOTE: When processing partial symtabs (pst != NULL),
11403 comp_dir == pst->dirname.
11404
11405 NOTE: It is important that psymtabs have the same file name (via strcmp)
11406 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11407 symtab we don't use it in the name of the psymtabs we create.
11408 E.g. expand_line_sal requires this when finding psymtabs to expand.
11409 A good testcase for this is mb-inline.exp. */
11410
11411 static void
11412 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11413 struct dwarf2_cu *cu, struct partial_symtab *pst,
11414 int want_line_info)
11415 {
11416 struct objfile *objfile = cu->objfile;
11417 const int decode_for_pst_p = (pst != NULL);
11418 struct subfile *first_subfile = current_subfile;
11419
11420 if (want_line_info)
11421 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11422
11423 if (decode_for_pst_p)
11424 {
11425 int file_index;
11426
11427 /* Now that we're done scanning the Line Header Program, we can
11428 create the psymtab of each included file. */
11429 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11430 if (lh->file_names[file_index].included_p == 1)
11431 {
11432 char *include_name =
11433 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11434 if (include_name != NULL)
11435 dwarf2_create_include_psymtab (include_name, pst, objfile);
11436 }
11437 }
11438 else
11439 {
11440 /* Make sure a symtab is created for every file, even files
11441 which contain only variables (i.e. no code with associated
11442 line numbers). */
11443 int i;
11444
11445 for (i = 0; i < lh->num_file_names; i++)
11446 {
11447 char *dir = NULL;
11448 struct file_entry *fe;
11449
11450 fe = &lh->file_names[i];
11451 if (fe->dir_index)
11452 dir = lh->include_dirs[fe->dir_index - 1];
11453 dwarf2_start_subfile (fe->name, dir, comp_dir);
11454
11455 /* Skip the main file; we don't need it, and it must be
11456 allocated last, so that it will show up before the
11457 non-primary symtabs in the objfile's symtab list. */
11458 if (current_subfile == first_subfile)
11459 continue;
11460
11461 if (current_subfile->symtab == NULL)
11462 current_subfile->symtab = allocate_symtab (current_subfile->name,
11463 objfile);
11464 fe->symtab = current_subfile->symtab;
11465 }
11466 }
11467 }
11468
11469 /* Start a subfile for DWARF. FILENAME is the name of the file and
11470 DIRNAME the name of the source directory which contains FILENAME
11471 or NULL if not known. COMP_DIR is the compilation directory for the
11472 linetable's compilation unit or NULL if not known.
11473 This routine tries to keep line numbers from identical absolute and
11474 relative file names in a common subfile.
11475
11476 Using the `list' example from the GDB testsuite, which resides in
11477 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11478 of /srcdir/list0.c yields the following debugging information for list0.c:
11479
11480 DW_AT_name: /srcdir/list0.c
11481 DW_AT_comp_dir: /compdir
11482 files.files[0].name: list0.h
11483 files.files[0].dir: /srcdir
11484 files.files[1].name: list0.c
11485 files.files[1].dir: /srcdir
11486
11487 The line number information for list0.c has to end up in a single
11488 subfile, so that `break /srcdir/list0.c:1' works as expected.
11489 start_subfile will ensure that this happens provided that we pass the
11490 concatenation of files.files[1].dir and files.files[1].name as the
11491 subfile's name. */
11492
11493 static void
11494 dwarf2_start_subfile (char *filename, const char *dirname,
11495 const char *comp_dir)
11496 {
11497 char *fullname;
11498
11499 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11500 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11501 second argument to start_subfile. To be consistent, we do the
11502 same here. In order not to lose the line information directory,
11503 we concatenate it to the filename when it makes sense.
11504 Note that the Dwarf3 standard says (speaking of filenames in line
11505 information): ``The directory index is ignored for file names
11506 that represent full path names''. Thus ignoring dirname in the
11507 `else' branch below isn't an issue. */
11508
11509 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11510 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11511 else
11512 fullname = filename;
11513
11514 start_subfile (fullname, comp_dir);
11515
11516 if (fullname != filename)
11517 xfree (fullname);
11518 }
11519
11520 static void
11521 var_decode_location (struct attribute *attr, struct symbol *sym,
11522 struct dwarf2_cu *cu)
11523 {
11524 struct objfile *objfile = cu->objfile;
11525 struct comp_unit_head *cu_header = &cu->header;
11526
11527 /* NOTE drow/2003-01-30: There used to be a comment and some special
11528 code here to turn a symbol with DW_AT_external and a
11529 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11530 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11531 with some versions of binutils) where shared libraries could have
11532 relocations against symbols in their debug information - the
11533 minimal symbol would have the right address, but the debug info
11534 would not. It's no longer necessary, because we will explicitly
11535 apply relocations when we read in the debug information now. */
11536
11537 /* A DW_AT_location attribute with no contents indicates that a
11538 variable has been optimized away. */
11539 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11540 {
11541 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11542 return;
11543 }
11544
11545 /* Handle one degenerate form of location expression specially, to
11546 preserve GDB's previous behavior when section offsets are
11547 specified. If this is just a DW_OP_addr then mark this symbol
11548 as LOC_STATIC. */
11549
11550 if (attr_form_is_block (attr)
11551 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11552 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11553 {
11554 unsigned int dummy;
11555
11556 SYMBOL_VALUE_ADDRESS (sym) =
11557 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11558 SYMBOL_CLASS (sym) = LOC_STATIC;
11559 fixup_symbol_section (sym, objfile);
11560 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11561 SYMBOL_SECTION (sym));
11562 return;
11563 }
11564
11565 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11566 expression evaluator, and use LOC_COMPUTED only when necessary
11567 (i.e. when the value of a register or memory location is
11568 referenced, or a thread-local block, etc.). Then again, it might
11569 not be worthwhile. I'm assuming that it isn't unless performance
11570 or memory numbers show me otherwise. */
11571
11572 dwarf2_symbol_mark_computed (attr, sym, cu);
11573 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11574
11575 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11576 cu->has_loclist = 1;
11577 }
11578
11579 /* Given a pointer to a DWARF information entry, figure out if we need
11580 to make a symbol table entry for it, and if so, create a new entry
11581 and return a pointer to it.
11582 If TYPE is NULL, determine symbol type from the die, otherwise
11583 used the passed type.
11584 If SPACE is not NULL, use it to hold the new symbol. If it is
11585 NULL, allocate a new symbol on the objfile's obstack. */
11586
11587 static struct symbol *
11588 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11589 struct symbol *space)
11590 {
11591 struct objfile *objfile = cu->objfile;
11592 struct symbol *sym = NULL;
11593 char *name;
11594 struct attribute *attr = NULL;
11595 struct attribute *attr2 = NULL;
11596 CORE_ADDR baseaddr;
11597 struct pending **list_to_add = NULL;
11598
11599 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11600
11601 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11602
11603 name = dwarf2_name (die, cu);
11604 if (name)
11605 {
11606 const char *linkagename;
11607 int suppress_add = 0;
11608
11609 if (space)
11610 sym = space;
11611 else
11612 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11613 OBJSTAT (objfile, n_syms++);
11614
11615 /* Cache this symbol's name and the name's demangled form (if any). */
11616 SYMBOL_SET_LANGUAGE (sym, cu->language);
11617 linkagename = dwarf2_physname (name, die, cu);
11618 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11619
11620 /* Fortran does not have mangling standard and the mangling does differ
11621 between gfortran, iFort etc. */
11622 if (cu->language == language_fortran
11623 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11624 symbol_set_demangled_name (&(sym->ginfo),
11625 (char *) dwarf2_full_name (name, die, cu),
11626 NULL);
11627
11628 /* Default assumptions.
11629 Use the passed type or decode it from the die. */
11630 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11631 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11632 if (type != NULL)
11633 SYMBOL_TYPE (sym) = type;
11634 else
11635 SYMBOL_TYPE (sym) = die_type (die, cu);
11636 attr = dwarf2_attr (die,
11637 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11638 cu);
11639 if (attr)
11640 {
11641 SYMBOL_LINE (sym) = DW_UNSND (attr);
11642 }
11643
11644 attr = dwarf2_attr (die,
11645 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11646 cu);
11647 if (attr)
11648 {
11649 int file_index = DW_UNSND (attr);
11650
11651 if (cu->line_header == NULL
11652 || file_index > cu->line_header->num_file_names)
11653 complaint (&symfile_complaints,
11654 _("file index out of range"));
11655 else if (file_index > 0)
11656 {
11657 struct file_entry *fe;
11658
11659 fe = &cu->line_header->file_names[file_index - 1];
11660 SYMBOL_SYMTAB (sym) = fe->symtab;
11661 }
11662 }
11663
11664 switch (die->tag)
11665 {
11666 case DW_TAG_label:
11667 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11668 if (attr)
11669 {
11670 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11671 }
11672 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11673 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11674 SYMBOL_CLASS (sym) = LOC_LABEL;
11675 add_symbol_to_list (sym, cu->list_in_scope);
11676 break;
11677 case DW_TAG_subprogram:
11678 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11679 finish_block. */
11680 SYMBOL_CLASS (sym) = LOC_BLOCK;
11681 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11682 if ((attr2 && (DW_UNSND (attr2) != 0))
11683 || cu->language == language_ada)
11684 {
11685 /* Subprograms marked external are stored as a global symbol.
11686 Ada subprograms, whether marked external or not, are always
11687 stored as a global symbol, because we want to be able to
11688 access them globally. For instance, we want to be able
11689 to break on a nested subprogram without having to
11690 specify the context. */
11691 list_to_add = &global_symbols;
11692 }
11693 else
11694 {
11695 list_to_add = cu->list_in_scope;
11696 }
11697 break;
11698 case DW_TAG_inlined_subroutine:
11699 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11700 finish_block. */
11701 SYMBOL_CLASS (sym) = LOC_BLOCK;
11702 SYMBOL_INLINED (sym) = 1;
11703 /* Do not add the symbol to any lists. It will be found via
11704 BLOCK_FUNCTION from the blockvector. */
11705 break;
11706 case DW_TAG_template_value_param:
11707 suppress_add = 1;
11708 /* Fall through. */
11709 case DW_TAG_constant:
11710 case DW_TAG_variable:
11711 case DW_TAG_member:
11712 /* Compilation with minimal debug info may result in
11713 variables with missing type entries. Change the
11714 misleading `void' type to something sensible. */
11715 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11716 SYMBOL_TYPE (sym)
11717 = objfile_type (objfile)->nodebug_data_symbol;
11718
11719 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11720 /* In the case of DW_TAG_member, we should only be called for
11721 static const members. */
11722 if (die->tag == DW_TAG_member)
11723 {
11724 /* dwarf2_add_field uses die_is_declaration,
11725 so we do the same. */
11726 gdb_assert (die_is_declaration (die, cu));
11727 gdb_assert (attr);
11728 }
11729 if (attr)
11730 {
11731 dwarf2_const_value (attr, sym, cu);
11732 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11733 if (!suppress_add)
11734 {
11735 if (attr2 && (DW_UNSND (attr2) != 0))
11736 list_to_add = &global_symbols;
11737 else
11738 list_to_add = cu->list_in_scope;
11739 }
11740 break;
11741 }
11742 attr = dwarf2_attr (die, DW_AT_location, cu);
11743 if (attr)
11744 {
11745 var_decode_location (attr, sym, cu);
11746 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11747 if (SYMBOL_CLASS (sym) == LOC_STATIC
11748 && SYMBOL_VALUE_ADDRESS (sym) == 0
11749 && !dwarf2_per_objfile->has_section_at_zero)
11750 {
11751 /* When a static variable is eliminated by the linker,
11752 the corresponding debug information is not stripped
11753 out, but the variable address is set to null;
11754 do not add such variables into symbol table. */
11755 }
11756 else if (attr2 && (DW_UNSND (attr2) != 0))
11757 {
11758 /* Workaround gfortran PR debug/40040 - it uses
11759 DW_AT_location for variables in -fPIC libraries which may
11760 get overriden by other libraries/executable and get
11761 a different address. Resolve it by the minimal symbol
11762 which may come from inferior's executable using copy
11763 relocation. Make this workaround only for gfortran as for
11764 other compilers GDB cannot guess the minimal symbol
11765 Fortran mangling kind. */
11766 if (cu->language == language_fortran && die->parent
11767 && die->parent->tag == DW_TAG_module
11768 && cu->producer
11769 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11770 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11771
11772 /* A variable with DW_AT_external is never static,
11773 but it may be block-scoped. */
11774 list_to_add = (cu->list_in_scope == &file_symbols
11775 ? &global_symbols : cu->list_in_scope);
11776 }
11777 else
11778 list_to_add = cu->list_in_scope;
11779 }
11780 else
11781 {
11782 /* We do not know the address of this symbol.
11783 If it is an external symbol and we have type information
11784 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11785 The address of the variable will then be determined from
11786 the minimal symbol table whenever the variable is
11787 referenced. */
11788 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11789 if (attr2 && (DW_UNSND (attr2) != 0)
11790 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11791 {
11792 /* A variable with DW_AT_external is never static, but it
11793 may be block-scoped. */
11794 list_to_add = (cu->list_in_scope == &file_symbols
11795 ? &global_symbols : cu->list_in_scope);
11796
11797 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11798 }
11799 else if (!die_is_declaration (die, cu))
11800 {
11801 /* Use the default LOC_OPTIMIZED_OUT class. */
11802 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11803 if (!suppress_add)
11804 list_to_add = cu->list_in_scope;
11805 }
11806 }
11807 break;
11808 case DW_TAG_formal_parameter:
11809 /* If we are inside a function, mark this as an argument. If
11810 not, we might be looking at an argument to an inlined function
11811 when we do not have enough information to show inlined frames;
11812 pretend it's a local variable in that case so that the user can
11813 still see it. */
11814 if (context_stack_depth > 0
11815 && context_stack[context_stack_depth - 1].name != NULL)
11816 SYMBOL_IS_ARGUMENT (sym) = 1;
11817 attr = dwarf2_attr (die, DW_AT_location, cu);
11818 if (attr)
11819 {
11820 var_decode_location (attr, sym, cu);
11821 }
11822 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11823 if (attr)
11824 {
11825 dwarf2_const_value (attr, sym, cu);
11826 }
11827
11828 list_to_add = cu->list_in_scope;
11829 break;
11830 case DW_TAG_unspecified_parameters:
11831 /* From varargs functions; gdb doesn't seem to have any
11832 interest in this information, so just ignore it for now.
11833 (FIXME?) */
11834 break;
11835 case DW_TAG_template_type_param:
11836 suppress_add = 1;
11837 /* Fall through. */
11838 case DW_TAG_class_type:
11839 case DW_TAG_interface_type:
11840 case DW_TAG_structure_type:
11841 case DW_TAG_union_type:
11842 case DW_TAG_set_type:
11843 case DW_TAG_enumeration_type:
11844 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11845 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11846
11847 {
11848 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11849 really ever be static objects: otherwise, if you try
11850 to, say, break of a class's method and you're in a file
11851 which doesn't mention that class, it won't work unless
11852 the check for all static symbols in lookup_symbol_aux
11853 saves you. See the OtherFileClass tests in
11854 gdb.c++/namespace.exp. */
11855
11856 if (!suppress_add)
11857 {
11858 list_to_add = (cu->list_in_scope == &file_symbols
11859 && (cu->language == language_cplus
11860 || cu->language == language_java)
11861 ? &global_symbols : cu->list_in_scope);
11862
11863 /* The semantics of C++ state that "struct foo {
11864 ... }" also defines a typedef for "foo". A Java
11865 class declaration also defines a typedef for the
11866 class. */
11867 if (cu->language == language_cplus
11868 || cu->language == language_java
11869 || cu->language == language_ada)
11870 {
11871 /* The symbol's name is already allocated along
11872 with this objfile, so we don't need to
11873 duplicate it for the type. */
11874 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11875 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11876 }
11877 }
11878 }
11879 break;
11880 case DW_TAG_typedef:
11881 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11882 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11883 list_to_add = cu->list_in_scope;
11884 break;
11885 case DW_TAG_base_type:
11886 case DW_TAG_subrange_type:
11887 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11888 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11889 list_to_add = cu->list_in_scope;
11890 break;
11891 case DW_TAG_enumerator:
11892 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11893 if (attr)
11894 {
11895 dwarf2_const_value (attr, sym, cu);
11896 }
11897 {
11898 /* NOTE: carlton/2003-11-10: See comment above in the
11899 DW_TAG_class_type, etc. block. */
11900
11901 list_to_add = (cu->list_in_scope == &file_symbols
11902 && (cu->language == language_cplus
11903 || cu->language == language_java)
11904 ? &global_symbols : cu->list_in_scope);
11905 }
11906 break;
11907 case DW_TAG_namespace:
11908 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11909 list_to_add = &global_symbols;
11910 break;
11911 default:
11912 /* Not a tag we recognize. Hopefully we aren't processing
11913 trash data, but since we must specifically ignore things
11914 we don't recognize, there is nothing else we should do at
11915 this point. */
11916 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11917 dwarf_tag_name (die->tag));
11918 break;
11919 }
11920
11921 if (suppress_add)
11922 {
11923 sym->hash_next = objfile->template_symbols;
11924 objfile->template_symbols = sym;
11925 list_to_add = NULL;
11926 }
11927
11928 if (list_to_add != NULL)
11929 add_symbol_to_list (sym, list_to_add);
11930
11931 /* For the benefit of old versions of GCC, check for anonymous
11932 namespaces based on the demangled name. */
11933 if (!processing_has_namespace_info
11934 && cu->language == language_cplus)
11935 cp_scan_for_anonymous_namespaces (sym, objfile);
11936 }
11937 return (sym);
11938 }
11939
11940 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11941
11942 static struct symbol *
11943 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11944 {
11945 return new_symbol_full (die, type, cu, NULL);
11946 }
11947
11948 /* Given an attr with a DW_FORM_dataN value in host byte order,
11949 zero-extend it as appropriate for the symbol's type. The DWARF
11950 standard (v4) is not entirely clear about the meaning of using
11951 DW_FORM_dataN for a constant with a signed type, where the type is
11952 wider than the data. The conclusion of a discussion on the DWARF
11953 list was that this is unspecified. We choose to always zero-extend
11954 because that is the interpretation long in use by GCC. */
11955
11956 static gdb_byte *
11957 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11958 const char *name, struct obstack *obstack,
11959 struct dwarf2_cu *cu, long *value, int bits)
11960 {
11961 struct objfile *objfile = cu->objfile;
11962 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11963 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11964 LONGEST l = DW_UNSND (attr);
11965
11966 if (bits < sizeof (*value) * 8)
11967 {
11968 l &= ((LONGEST) 1 << bits) - 1;
11969 *value = l;
11970 }
11971 else if (bits == sizeof (*value) * 8)
11972 *value = l;
11973 else
11974 {
11975 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11976 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11977 return bytes;
11978 }
11979
11980 return NULL;
11981 }
11982
11983 /* Read a constant value from an attribute. Either set *VALUE, or if
11984 the value does not fit in *VALUE, set *BYTES - either already
11985 allocated on the objfile obstack, or newly allocated on OBSTACK,
11986 or, set *BATON, if we translated the constant to a location
11987 expression. */
11988
11989 static void
11990 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11991 const char *name, struct obstack *obstack,
11992 struct dwarf2_cu *cu,
11993 long *value, gdb_byte **bytes,
11994 struct dwarf2_locexpr_baton **baton)
11995 {
11996 struct objfile *objfile = cu->objfile;
11997 struct comp_unit_head *cu_header = &cu->header;
11998 struct dwarf_block *blk;
11999 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12000 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12001
12002 *value = 0;
12003 *bytes = NULL;
12004 *baton = NULL;
12005
12006 switch (attr->form)
12007 {
12008 case DW_FORM_addr:
12009 {
12010 gdb_byte *data;
12011
12012 if (TYPE_LENGTH (type) != cu_header->addr_size)
12013 dwarf2_const_value_length_mismatch_complaint (name,
12014 cu_header->addr_size,
12015 TYPE_LENGTH (type));
12016 /* Symbols of this form are reasonably rare, so we just
12017 piggyback on the existing location code rather than writing
12018 a new implementation of symbol_computed_ops. */
12019 *baton = obstack_alloc (&objfile->objfile_obstack,
12020 sizeof (struct dwarf2_locexpr_baton));
12021 (*baton)->per_cu = cu->per_cu;
12022 gdb_assert ((*baton)->per_cu);
12023
12024 (*baton)->size = 2 + cu_header->addr_size;
12025 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12026 (*baton)->data = data;
12027
12028 data[0] = DW_OP_addr;
12029 store_unsigned_integer (&data[1], cu_header->addr_size,
12030 byte_order, DW_ADDR (attr));
12031 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12032 }
12033 break;
12034 case DW_FORM_string:
12035 case DW_FORM_strp:
12036 /* DW_STRING is already allocated on the objfile obstack, point
12037 directly to it. */
12038 *bytes = (gdb_byte *) DW_STRING (attr);
12039 break;
12040 case DW_FORM_block1:
12041 case DW_FORM_block2:
12042 case DW_FORM_block4:
12043 case DW_FORM_block:
12044 case DW_FORM_exprloc:
12045 blk = DW_BLOCK (attr);
12046 if (TYPE_LENGTH (type) != blk->size)
12047 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12048 TYPE_LENGTH (type));
12049 *bytes = blk->data;
12050 break;
12051
12052 /* The DW_AT_const_value attributes are supposed to carry the
12053 symbol's value "represented as it would be on the target
12054 architecture." By the time we get here, it's already been
12055 converted to host endianness, so we just need to sign- or
12056 zero-extend it as appropriate. */
12057 case DW_FORM_data1:
12058 *bytes = dwarf2_const_value_data (attr, type, name,
12059 obstack, cu, value, 8);
12060 break;
12061 case DW_FORM_data2:
12062 *bytes = dwarf2_const_value_data (attr, type, name,
12063 obstack, cu, value, 16);
12064 break;
12065 case DW_FORM_data4:
12066 *bytes = dwarf2_const_value_data (attr, type, name,
12067 obstack, cu, value, 32);
12068 break;
12069 case DW_FORM_data8:
12070 *bytes = dwarf2_const_value_data (attr, type, name,
12071 obstack, cu, value, 64);
12072 break;
12073
12074 case DW_FORM_sdata:
12075 *value = DW_SND (attr);
12076 break;
12077
12078 case DW_FORM_udata:
12079 *value = DW_UNSND (attr);
12080 break;
12081
12082 default:
12083 complaint (&symfile_complaints,
12084 _("unsupported const value attribute form: '%s'"),
12085 dwarf_form_name (attr->form));
12086 *value = 0;
12087 break;
12088 }
12089 }
12090
12091
12092 /* Copy constant value from an attribute to a symbol. */
12093
12094 static void
12095 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12096 struct dwarf2_cu *cu)
12097 {
12098 struct objfile *objfile = cu->objfile;
12099 struct comp_unit_head *cu_header = &cu->header;
12100 long value;
12101 gdb_byte *bytes;
12102 struct dwarf2_locexpr_baton *baton;
12103
12104 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12105 SYMBOL_PRINT_NAME (sym),
12106 &objfile->objfile_obstack, cu,
12107 &value, &bytes, &baton);
12108
12109 if (baton != NULL)
12110 {
12111 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12112 SYMBOL_LOCATION_BATON (sym) = baton;
12113 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12114 }
12115 else if (bytes != NULL)
12116 {
12117 SYMBOL_VALUE_BYTES (sym) = bytes;
12118 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12119 }
12120 else
12121 {
12122 SYMBOL_VALUE (sym) = value;
12123 SYMBOL_CLASS (sym) = LOC_CONST;
12124 }
12125 }
12126
12127 /* Return the type of the die in question using its DW_AT_type attribute. */
12128
12129 static struct type *
12130 die_type (struct die_info *die, struct dwarf2_cu *cu)
12131 {
12132 struct attribute *type_attr;
12133
12134 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12135 if (!type_attr)
12136 {
12137 /* A missing DW_AT_type represents a void type. */
12138 return objfile_type (cu->objfile)->builtin_void;
12139 }
12140
12141 return lookup_die_type (die, type_attr, cu);
12142 }
12143
12144 /* True iff CU's producer generates GNAT Ada auxiliary information
12145 that allows to find parallel types through that information instead
12146 of having to do expensive parallel lookups by type name. */
12147
12148 static int
12149 need_gnat_info (struct dwarf2_cu *cu)
12150 {
12151 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12152 of GNAT produces this auxiliary information, without any indication
12153 that it is produced. Part of enhancing the FSF version of GNAT
12154 to produce that information will be to put in place an indicator
12155 that we can use in order to determine whether the descriptive type
12156 info is available or not. One suggestion that has been made is
12157 to use a new attribute, attached to the CU die. For now, assume
12158 that the descriptive type info is not available. */
12159 return 0;
12160 }
12161
12162 /* Return the auxiliary type of the die in question using its
12163 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12164 attribute is not present. */
12165
12166 static struct type *
12167 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12168 {
12169 struct attribute *type_attr;
12170
12171 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12172 if (!type_attr)
12173 return NULL;
12174
12175 return lookup_die_type (die, type_attr, cu);
12176 }
12177
12178 /* If DIE has a descriptive_type attribute, then set the TYPE's
12179 descriptive type accordingly. */
12180
12181 static void
12182 set_descriptive_type (struct type *type, struct die_info *die,
12183 struct dwarf2_cu *cu)
12184 {
12185 struct type *descriptive_type = die_descriptive_type (die, cu);
12186
12187 if (descriptive_type)
12188 {
12189 ALLOCATE_GNAT_AUX_TYPE (type);
12190 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12191 }
12192 }
12193
12194 /* Return the containing type of the die in question using its
12195 DW_AT_containing_type attribute. */
12196
12197 static struct type *
12198 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12199 {
12200 struct attribute *type_attr;
12201
12202 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12203 if (!type_attr)
12204 error (_("Dwarf Error: Problem turning containing type into gdb type "
12205 "[in module %s]"), cu->objfile->name);
12206
12207 return lookup_die_type (die, type_attr, cu);
12208 }
12209
12210 /* Look up the type of DIE in CU using its type attribute ATTR.
12211 If there is no type substitute an error marker. */
12212
12213 static struct type *
12214 lookup_die_type (struct die_info *die, struct attribute *attr,
12215 struct dwarf2_cu *cu)
12216 {
12217 struct objfile *objfile = cu->objfile;
12218 struct type *this_type;
12219
12220 /* First see if we have it cached. */
12221
12222 if (is_ref_attr (attr))
12223 {
12224 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12225
12226 this_type = get_die_type_at_offset (offset, cu->per_cu);
12227 }
12228 else if (attr->form == DW_FORM_ref_sig8)
12229 {
12230 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12231 struct dwarf2_cu *sig_cu;
12232 unsigned int offset;
12233
12234 /* sig_type will be NULL if the signatured type is missing from
12235 the debug info. */
12236 if (sig_type == NULL)
12237 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12238 "at 0x%x [in module %s]"),
12239 die->offset, objfile->name);
12240
12241 gdb_assert (sig_type->per_cu.debug_types_section);
12242 offset = sig_type->per_cu.offset + sig_type->type_offset;
12243 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12244 }
12245 else
12246 {
12247 dump_die_for_error (die);
12248 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12249 dwarf_attr_name (attr->name), objfile->name);
12250 }
12251
12252 /* If not cached we need to read it in. */
12253
12254 if (this_type == NULL)
12255 {
12256 struct die_info *type_die;
12257 struct dwarf2_cu *type_cu = cu;
12258
12259 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12260 /* If the type is cached, we should have found it above. */
12261 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12262 this_type = read_type_die_1 (type_die, type_cu);
12263 }
12264
12265 /* If we still don't have a type use an error marker. */
12266
12267 if (this_type == NULL)
12268 {
12269 char *message, *saved;
12270
12271 /* read_type_die already issued a complaint. */
12272 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12273 objfile->name,
12274 cu->header.offset,
12275 die->offset);
12276 saved = obstack_copy0 (&objfile->objfile_obstack,
12277 message, strlen (message));
12278 xfree (message);
12279
12280 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
12281 }
12282
12283 return this_type;
12284 }
12285
12286 /* Return the type in DIE, CU.
12287 Returns NULL for invalid types.
12288
12289 This first does a lookup in the appropriate type_hash table,
12290 and only reads the die in if necessary.
12291
12292 NOTE: This can be called when reading in partial or full symbols. */
12293
12294 static struct type *
12295 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12296 {
12297 struct type *this_type;
12298
12299 this_type = get_die_type (die, cu);
12300 if (this_type)
12301 return this_type;
12302
12303 return read_type_die_1 (die, cu);
12304 }
12305
12306 /* Read the type in DIE, CU.
12307 Returns NULL for invalid types. */
12308
12309 static struct type *
12310 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12311 {
12312 struct type *this_type = NULL;
12313
12314 switch (die->tag)
12315 {
12316 case DW_TAG_class_type:
12317 case DW_TAG_interface_type:
12318 case DW_TAG_structure_type:
12319 case DW_TAG_union_type:
12320 this_type = read_structure_type (die, cu);
12321 break;
12322 case DW_TAG_enumeration_type:
12323 this_type = read_enumeration_type (die, cu);
12324 break;
12325 case DW_TAG_subprogram:
12326 case DW_TAG_subroutine_type:
12327 case DW_TAG_inlined_subroutine:
12328 this_type = read_subroutine_type (die, cu);
12329 break;
12330 case DW_TAG_array_type:
12331 this_type = read_array_type (die, cu);
12332 break;
12333 case DW_TAG_set_type:
12334 this_type = read_set_type (die, cu);
12335 break;
12336 case DW_TAG_pointer_type:
12337 this_type = read_tag_pointer_type (die, cu);
12338 break;
12339 case DW_TAG_ptr_to_member_type:
12340 this_type = read_tag_ptr_to_member_type (die, cu);
12341 break;
12342 case DW_TAG_reference_type:
12343 this_type = read_tag_reference_type (die, cu);
12344 break;
12345 case DW_TAG_const_type:
12346 this_type = read_tag_const_type (die, cu);
12347 break;
12348 case DW_TAG_volatile_type:
12349 this_type = read_tag_volatile_type (die, cu);
12350 break;
12351 case DW_TAG_string_type:
12352 this_type = read_tag_string_type (die, cu);
12353 break;
12354 case DW_TAG_typedef:
12355 this_type = read_typedef (die, cu);
12356 break;
12357 case DW_TAG_subrange_type:
12358 this_type = read_subrange_type (die, cu);
12359 break;
12360 case DW_TAG_base_type:
12361 this_type = read_base_type (die, cu);
12362 break;
12363 case DW_TAG_unspecified_type:
12364 this_type = read_unspecified_type (die, cu);
12365 break;
12366 case DW_TAG_namespace:
12367 this_type = read_namespace_type (die, cu);
12368 break;
12369 case DW_TAG_module:
12370 this_type = read_module_type (die, cu);
12371 break;
12372 default:
12373 complaint (&symfile_complaints,
12374 _("unexpected tag in read_type_die: '%s'"),
12375 dwarf_tag_name (die->tag));
12376 break;
12377 }
12378
12379 return this_type;
12380 }
12381
12382 /* See if we can figure out if the class lives in a namespace. We do
12383 this by looking for a member function; its demangled name will
12384 contain namespace info, if there is any.
12385 Return the computed name or NULL.
12386 Space for the result is allocated on the objfile's obstack.
12387 This is the full-die version of guess_partial_die_structure_name.
12388 In this case we know DIE has no useful parent. */
12389
12390 static char *
12391 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12392 {
12393 struct die_info *spec_die;
12394 struct dwarf2_cu *spec_cu;
12395 struct die_info *child;
12396
12397 spec_cu = cu;
12398 spec_die = die_specification (die, &spec_cu);
12399 if (spec_die != NULL)
12400 {
12401 die = spec_die;
12402 cu = spec_cu;
12403 }
12404
12405 for (child = die->child;
12406 child != NULL;
12407 child = child->sibling)
12408 {
12409 if (child->tag == DW_TAG_subprogram)
12410 {
12411 struct attribute *attr;
12412
12413 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12414 if (attr == NULL)
12415 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12416 if (attr != NULL)
12417 {
12418 char *actual_name
12419 = language_class_name_from_physname (cu->language_defn,
12420 DW_STRING (attr));
12421 char *name = NULL;
12422
12423 if (actual_name != NULL)
12424 {
12425 char *die_name = dwarf2_name (die, cu);
12426
12427 if (die_name != NULL
12428 && strcmp (die_name, actual_name) != 0)
12429 {
12430 /* Strip off the class name from the full name.
12431 We want the prefix. */
12432 int die_name_len = strlen (die_name);
12433 int actual_name_len = strlen (actual_name);
12434
12435 /* Test for '::' as a sanity check. */
12436 if (actual_name_len > die_name_len + 2
12437 && actual_name[actual_name_len
12438 - die_name_len - 1] == ':')
12439 name =
12440 obsavestring (actual_name,
12441 actual_name_len - die_name_len - 2,
12442 &cu->objfile->objfile_obstack);
12443 }
12444 }
12445 xfree (actual_name);
12446 return name;
12447 }
12448 }
12449 }
12450
12451 return NULL;
12452 }
12453
12454 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12455 prefix part in such case. See
12456 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12457
12458 static char *
12459 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12460 {
12461 struct attribute *attr;
12462 char *base;
12463
12464 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12465 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12466 return NULL;
12467
12468 attr = dwarf2_attr (die, DW_AT_name, cu);
12469 if (attr != NULL && DW_STRING (attr) != NULL)
12470 return NULL;
12471
12472 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12473 if (attr == NULL)
12474 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12475 if (attr == NULL || DW_STRING (attr) == NULL)
12476 return NULL;
12477
12478 /* dwarf2_name had to be already called. */
12479 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12480
12481 /* Strip the base name, keep any leading namespaces/classes. */
12482 base = strrchr (DW_STRING (attr), ':');
12483 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12484 return "";
12485
12486 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12487 &cu->objfile->objfile_obstack);
12488 }
12489
12490 /* Return the name of the namespace/class that DIE is defined within,
12491 or "" if we can't tell. The caller should not xfree the result.
12492
12493 For example, if we're within the method foo() in the following
12494 code:
12495
12496 namespace N {
12497 class C {
12498 void foo () {
12499 }
12500 };
12501 }
12502
12503 then determine_prefix on foo's die will return "N::C". */
12504
12505 static const char *
12506 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12507 {
12508 struct die_info *parent, *spec_die;
12509 struct dwarf2_cu *spec_cu;
12510 struct type *parent_type;
12511 char *retval;
12512
12513 if (cu->language != language_cplus && cu->language != language_java
12514 && cu->language != language_fortran)
12515 return "";
12516
12517 retval = anonymous_struct_prefix (die, cu);
12518 if (retval)
12519 return retval;
12520
12521 /* We have to be careful in the presence of DW_AT_specification.
12522 For example, with GCC 3.4, given the code
12523
12524 namespace N {
12525 void foo() {
12526 // Definition of N::foo.
12527 }
12528 }
12529
12530 then we'll have a tree of DIEs like this:
12531
12532 1: DW_TAG_compile_unit
12533 2: DW_TAG_namespace // N
12534 3: DW_TAG_subprogram // declaration of N::foo
12535 4: DW_TAG_subprogram // definition of N::foo
12536 DW_AT_specification // refers to die #3
12537
12538 Thus, when processing die #4, we have to pretend that we're in
12539 the context of its DW_AT_specification, namely the contex of die
12540 #3. */
12541 spec_cu = cu;
12542 spec_die = die_specification (die, &spec_cu);
12543 if (spec_die == NULL)
12544 parent = die->parent;
12545 else
12546 {
12547 parent = spec_die->parent;
12548 cu = spec_cu;
12549 }
12550
12551 if (parent == NULL)
12552 return "";
12553 else if (parent->building_fullname)
12554 {
12555 const char *name;
12556 const char *parent_name;
12557
12558 /* It has been seen on RealView 2.2 built binaries,
12559 DW_TAG_template_type_param types actually _defined_ as
12560 children of the parent class:
12561
12562 enum E {};
12563 template class <class Enum> Class{};
12564 Class<enum E> class_e;
12565
12566 1: DW_TAG_class_type (Class)
12567 2: DW_TAG_enumeration_type (E)
12568 3: DW_TAG_enumerator (enum1:0)
12569 3: DW_TAG_enumerator (enum2:1)
12570 ...
12571 2: DW_TAG_template_type_param
12572 DW_AT_type DW_FORM_ref_udata (E)
12573
12574 Besides being broken debug info, it can put GDB into an
12575 infinite loop. Consider:
12576
12577 When we're building the full name for Class<E>, we'll start
12578 at Class, and go look over its template type parameters,
12579 finding E. We'll then try to build the full name of E, and
12580 reach here. We're now trying to build the full name of E,
12581 and look over the parent DIE for containing scope. In the
12582 broken case, if we followed the parent DIE of E, we'd again
12583 find Class, and once again go look at its template type
12584 arguments, etc., etc. Simply don't consider such parent die
12585 as source-level parent of this die (it can't be, the language
12586 doesn't allow it), and break the loop here. */
12587 name = dwarf2_name (die, cu);
12588 parent_name = dwarf2_name (parent, cu);
12589 complaint (&symfile_complaints,
12590 _("template param type '%s' defined within parent '%s'"),
12591 name ? name : "<unknown>",
12592 parent_name ? parent_name : "<unknown>");
12593 return "";
12594 }
12595 else
12596 switch (parent->tag)
12597 {
12598 case DW_TAG_namespace:
12599 parent_type = read_type_die (parent, cu);
12600 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12601 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12602 Work around this problem here. */
12603 if (cu->language == language_cplus
12604 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12605 return "";
12606 /* We give a name to even anonymous namespaces. */
12607 return TYPE_TAG_NAME (parent_type);
12608 case DW_TAG_class_type:
12609 case DW_TAG_interface_type:
12610 case DW_TAG_structure_type:
12611 case DW_TAG_union_type:
12612 case DW_TAG_module:
12613 parent_type = read_type_die (parent, cu);
12614 if (TYPE_TAG_NAME (parent_type) != NULL)
12615 return TYPE_TAG_NAME (parent_type);
12616 else
12617 /* An anonymous structure is only allowed non-static data
12618 members; no typedefs, no member functions, et cetera.
12619 So it does not need a prefix. */
12620 return "";
12621 case DW_TAG_compile_unit:
12622 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12623 if (cu->language == language_cplus
12624 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12625 && die->child != NULL
12626 && (die->tag == DW_TAG_class_type
12627 || die->tag == DW_TAG_structure_type
12628 || die->tag == DW_TAG_union_type))
12629 {
12630 char *name = guess_full_die_structure_name (die, cu);
12631 if (name != NULL)
12632 return name;
12633 }
12634 return "";
12635 default:
12636 return determine_prefix (parent, cu);
12637 }
12638 }
12639
12640 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12641 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12642 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12643 an obconcat, otherwise allocate storage for the result. The CU argument is
12644 used to determine the language and hence, the appropriate separator. */
12645
12646 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12647
12648 static char *
12649 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12650 int physname, struct dwarf2_cu *cu)
12651 {
12652 const char *lead = "";
12653 const char *sep;
12654
12655 if (suffix == NULL || suffix[0] == '\0'
12656 || prefix == NULL || prefix[0] == '\0')
12657 sep = "";
12658 else if (cu->language == language_java)
12659 sep = ".";
12660 else if (cu->language == language_fortran && physname)
12661 {
12662 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12663 DW_AT_MIPS_linkage_name is preferred and used instead. */
12664
12665 lead = "__";
12666 sep = "_MOD_";
12667 }
12668 else
12669 sep = "::";
12670
12671 if (prefix == NULL)
12672 prefix = "";
12673 if (suffix == NULL)
12674 suffix = "";
12675
12676 if (obs == NULL)
12677 {
12678 char *retval
12679 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12680
12681 strcpy (retval, lead);
12682 strcat (retval, prefix);
12683 strcat (retval, sep);
12684 strcat (retval, suffix);
12685 return retval;
12686 }
12687 else
12688 {
12689 /* We have an obstack. */
12690 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12691 }
12692 }
12693
12694 /* Return sibling of die, NULL if no sibling. */
12695
12696 static struct die_info *
12697 sibling_die (struct die_info *die)
12698 {
12699 return die->sibling;
12700 }
12701
12702 /* Get name of a die, return NULL if not found. */
12703
12704 static char *
12705 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12706 struct obstack *obstack)
12707 {
12708 if (name && cu->language == language_cplus)
12709 {
12710 char *canon_name = cp_canonicalize_string (name);
12711
12712 if (canon_name != NULL)
12713 {
12714 if (strcmp (canon_name, name) != 0)
12715 name = obsavestring (canon_name, strlen (canon_name),
12716 obstack);
12717 xfree (canon_name);
12718 }
12719 }
12720
12721 return name;
12722 }
12723
12724 /* Get name of a die, return NULL if not found. */
12725
12726 static char *
12727 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12728 {
12729 struct attribute *attr;
12730
12731 attr = dwarf2_attr (die, DW_AT_name, cu);
12732 if ((!attr || !DW_STRING (attr))
12733 && die->tag != DW_TAG_class_type
12734 && die->tag != DW_TAG_interface_type
12735 && die->tag != DW_TAG_structure_type
12736 && die->tag != DW_TAG_union_type)
12737 return NULL;
12738
12739 switch (die->tag)
12740 {
12741 case DW_TAG_compile_unit:
12742 /* Compilation units have a DW_AT_name that is a filename, not
12743 a source language identifier. */
12744 case DW_TAG_enumeration_type:
12745 case DW_TAG_enumerator:
12746 /* These tags always have simple identifiers already; no need
12747 to canonicalize them. */
12748 return DW_STRING (attr);
12749
12750 case DW_TAG_subprogram:
12751 /* Java constructors will all be named "<init>", so return
12752 the class name when we see this special case. */
12753 if (cu->language == language_java
12754 && DW_STRING (attr) != NULL
12755 && strcmp (DW_STRING (attr), "<init>") == 0)
12756 {
12757 struct dwarf2_cu *spec_cu = cu;
12758 struct die_info *spec_die;
12759
12760 /* GCJ will output '<init>' for Java constructor names.
12761 For this special case, return the name of the parent class. */
12762
12763 /* GCJ may output suprogram DIEs with AT_specification set.
12764 If so, use the name of the specified DIE. */
12765 spec_die = die_specification (die, &spec_cu);
12766 if (spec_die != NULL)
12767 return dwarf2_name (spec_die, spec_cu);
12768
12769 do
12770 {
12771 die = die->parent;
12772 if (die->tag == DW_TAG_class_type)
12773 return dwarf2_name (die, cu);
12774 }
12775 while (die->tag != DW_TAG_compile_unit);
12776 }
12777 break;
12778
12779 case DW_TAG_class_type:
12780 case DW_TAG_interface_type:
12781 case DW_TAG_structure_type:
12782 case DW_TAG_union_type:
12783 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12784 structures or unions. These were of the form "._%d" in GCC 4.1,
12785 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12786 and GCC 4.4. We work around this problem by ignoring these. */
12787 if (attr && DW_STRING (attr)
12788 && (strncmp (DW_STRING (attr), "._", 2) == 0
12789 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12790 return NULL;
12791
12792 /* GCC might emit a nameless typedef that has a linkage name. See
12793 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12794 if (!attr || DW_STRING (attr) == NULL)
12795 {
12796 char *demangled = NULL;
12797
12798 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12799 if (attr == NULL)
12800 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12801
12802 if (attr == NULL || DW_STRING (attr) == NULL)
12803 return NULL;
12804
12805 /* Avoid demangling DW_STRING (attr) the second time on a second
12806 call for the same DIE. */
12807 if (!DW_STRING_IS_CANONICAL (attr))
12808 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12809
12810 if (demangled)
12811 {
12812 char *base;
12813
12814 /* FIXME: we already did this for the partial symbol... */
12815 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12816 &cu->objfile->objfile_obstack);
12817 DW_STRING_IS_CANONICAL (attr) = 1;
12818 xfree (demangled);
12819
12820 /* Strip any leading namespaces/classes, keep only the base name.
12821 DW_AT_name for named DIEs does not contain the prefixes. */
12822 base = strrchr (DW_STRING (attr), ':');
12823 if (base && base > DW_STRING (attr) && base[-1] == ':')
12824 return &base[1];
12825 else
12826 return DW_STRING (attr);
12827 }
12828 }
12829 break;
12830
12831 default:
12832 break;
12833 }
12834
12835 if (!DW_STRING_IS_CANONICAL (attr))
12836 {
12837 DW_STRING (attr)
12838 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12839 &cu->objfile->objfile_obstack);
12840 DW_STRING_IS_CANONICAL (attr) = 1;
12841 }
12842 return DW_STRING (attr);
12843 }
12844
12845 /* Return the die that this die in an extension of, or NULL if there
12846 is none. *EXT_CU is the CU containing DIE on input, and the CU
12847 containing the return value on output. */
12848
12849 static struct die_info *
12850 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12851 {
12852 struct attribute *attr;
12853
12854 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12855 if (attr == NULL)
12856 return NULL;
12857
12858 return follow_die_ref (die, attr, ext_cu);
12859 }
12860
12861 /* Convert a DIE tag into its string name. */
12862
12863 static char *
12864 dwarf_tag_name (unsigned tag)
12865 {
12866 switch (tag)
12867 {
12868 case DW_TAG_padding:
12869 return "DW_TAG_padding";
12870 case DW_TAG_array_type:
12871 return "DW_TAG_array_type";
12872 case DW_TAG_class_type:
12873 return "DW_TAG_class_type";
12874 case DW_TAG_entry_point:
12875 return "DW_TAG_entry_point";
12876 case DW_TAG_enumeration_type:
12877 return "DW_TAG_enumeration_type";
12878 case DW_TAG_formal_parameter:
12879 return "DW_TAG_formal_parameter";
12880 case DW_TAG_imported_declaration:
12881 return "DW_TAG_imported_declaration";
12882 case DW_TAG_label:
12883 return "DW_TAG_label";
12884 case DW_TAG_lexical_block:
12885 return "DW_TAG_lexical_block";
12886 case DW_TAG_member:
12887 return "DW_TAG_member";
12888 case DW_TAG_pointer_type:
12889 return "DW_TAG_pointer_type";
12890 case DW_TAG_reference_type:
12891 return "DW_TAG_reference_type";
12892 case DW_TAG_compile_unit:
12893 return "DW_TAG_compile_unit";
12894 case DW_TAG_string_type:
12895 return "DW_TAG_string_type";
12896 case DW_TAG_structure_type:
12897 return "DW_TAG_structure_type";
12898 case DW_TAG_subroutine_type:
12899 return "DW_TAG_subroutine_type";
12900 case DW_TAG_typedef:
12901 return "DW_TAG_typedef";
12902 case DW_TAG_union_type:
12903 return "DW_TAG_union_type";
12904 case DW_TAG_unspecified_parameters:
12905 return "DW_TAG_unspecified_parameters";
12906 case DW_TAG_variant:
12907 return "DW_TAG_variant";
12908 case DW_TAG_common_block:
12909 return "DW_TAG_common_block";
12910 case DW_TAG_common_inclusion:
12911 return "DW_TAG_common_inclusion";
12912 case DW_TAG_inheritance:
12913 return "DW_TAG_inheritance";
12914 case DW_TAG_inlined_subroutine:
12915 return "DW_TAG_inlined_subroutine";
12916 case DW_TAG_module:
12917 return "DW_TAG_module";
12918 case DW_TAG_ptr_to_member_type:
12919 return "DW_TAG_ptr_to_member_type";
12920 case DW_TAG_set_type:
12921 return "DW_TAG_set_type";
12922 case DW_TAG_subrange_type:
12923 return "DW_TAG_subrange_type";
12924 case DW_TAG_with_stmt:
12925 return "DW_TAG_with_stmt";
12926 case DW_TAG_access_declaration:
12927 return "DW_TAG_access_declaration";
12928 case DW_TAG_base_type:
12929 return "DW_TAG_base_type";
12930 case DW_TAG_catch_block:
12931 return "DW_TAG_catch_block";
12932 case DW_TAG_const_type:
12933 return "DW_TAG_const_type";
12934 case DW_TAG_constant:
12935 return "DW_TAG_constant";
12936 case DW_TAG_enumerator:
12937 return "DW_TAG_enumerator";
12938 case DW_TAG_file_type:
12939 return "DW_TAG_file_type";
12940 case DW_TAG_friend:
12941 return "DW_TAG_friend";
12942 case DW_TAG_namelist:
12943 return "DW_TAG_namelist";
12944 case DW_TAG_namelist_item:
12945 return "DW_TAG_namelist_item";
12946 case DW_TAG_packed_type:
12947 return "DW_TAG_packed_type";
12948 case DW_TAG_subprogram:
12949 return "DW_TAG_subprogram";
12950 case DW_TAG_template_type_param:
12951 return "DW_TAG_template_type_param";
12952 case DW_TAG_template_value_param:
12953 return "DW_TAG_template_value_param";
12954 case DW_TAG_thrown_type:
12955 return "DW_TAG_thrown_type";
12956 case DW_TAG_try_block:
12957 return "DW_TAG_try_block";
12958 case DW_TAG_variant_part:
12959 return "DW_TAG_variant_part";
12960 case DW_TAG_variable:
12961 return "DW_TAG_variable";
12962 case DW_TAG_volatile_type:
12963 return "DW_TAG_volatile_type";
12964 case DW_TAG_dwarf_procedure:
12965 return "DW_TAG_dwarf_procedure";
12966 case DW_TAG_restrict_type:
12967 return "DW_TAG_restrict_type";
12968 case DW_TAG_interface_type:
12969 return "DW_TAG_interface_type";
12970 case DW_TAG_namespace:
12971 return "DW_TAG_namespace";
12972 case DW_TAG_imported_module:
12973 return "DW_TAG_imported_module";
12974 case DW_TAG_unspecified_type:
12975 return "DW_TAG_unspecified_type";
12976 case DW_TAG_partial_unit:
12977 return "DW_TAG_partial_unit";
12978 case DW_TAG_imported_unit:
12979 return "DW_TAG_imported_unit";
12980 case DW_TAG_condition:
12981 return "DW_TAG_condition";
12982 case DW_TAG_shared_type:
12983 return "DW_TAG_shared_type";
12984 case DW_TAG_type_unit:
12985 return "DW_TAG_type_unit";
12986 case DW_TAG_MIPS_loop:
12987 return "DW_TAG_MIPS_loop";
12988 case DW_TAG_HP_array_descriptor:
12989 return "DW_TAG_HP_array_descriptor";
12990 case DW_TAG_format_label:
12991 return "DW_TAG_format_label";
12992 case DW_TAG_function_template:
12993 return "DW_TAG_function_template";
12994 case DW_TAG_class_template:
12995 return "DW_TAG_class_template";
12996 case DW_TAG_GNU_BINCL:
12997 return "DW_TAG_GNU_BINCL";
12998 case DW_TAG_GNU_EINCL:
12999 return "DW_TAG_GNU_EINCL";
13000 case DW_TAG_upc_shared_type:
13001 return "DW_TAG_upc_shared_type";
13002 case DW_TAG_upc_strict_type:
13003 return "DW_TAG_upc_strict_type";
13004 case DW_TAG_upc_relaxed_type:
13005 return "DW_TAG_upc_relaxed_type";
13006 case DW_TAG_PGI_kanji_type:
13007 return "DW_TAG_PGI_kanji_type";
13008 case DW_TAG_PGI_interface_block:
13009 return "DW_TAG_PGI_interface_block";
13010 case DW_TAG_GNU_call_site:
13011 return "DW_TAG_GNU_call_site";
13012 default:
13013 return "DW_TAG_<unknown>";
13014 }
13015 }
13016
13017 /* Convert a DWARF attribute code into its string name. */
13018
13019 static char *
13020 dwarf_attr_name (unsigned attr)
13021 {
13022 switch (attr)
13023 {
13024 case DW_AT_sibling:
13025 return "DW_AT_sibling";
13026 case DW_AT_location:
13027 return "DW_AT_location";
13028 case DW_AT_name:
13029 return "DW_AT_name";
13030 case DW_AT_ordering:
13031 return "DW_AT_ordering";
13032 case DW_AT_subscr_data:
13033 return "DW_AT_subscr_data";
13034 case DW_AT_byte_size:
13035 return "DW_AT_byte_size";
13036 case DW_AT_bit_offset:
13037 return "DW_AT_bit_offset";
13038 case DW_AT_bit_size:
13039 return "DW_AT_bit_size";
13040 case DW_AT_element_list:
13041 return "DW_AT_element_list";
13042 case DW_AT_stmt_list:
13043 return "DW_AT_stmt_list";
13044 case DW_AT_low_pc:
13045 return "DW_AT_low_pc";
13046 case DW_AT_high_pc:
13047 return "DW_AT_high_pc";
13048 case DW_AT_language:
13049 return "DW_AT_language";
13050 case DW_AT_member:
13051 return "DW_AT_member";
13052 case DW_AT_discr:
13053 return "DW_AT_discr";
13054 case DW_AT_discr_value:
13055 return "DW_AT_discr_value";
13056 case DW_AT_visibility:
13057 return "DW_AT_visibility";
13058 case DW_AT_import:
13059 return "DW_AT_import";
13060 case DW_AT_string_length:
13061 return "DW_AT_string_length";
13062 case DW_AT_common_reference:
13063 return "DW_AT_common_reference";
13064 case DW_AT_comp_dir:
13065 return "DW_AT_comp_dir";
13066 case DW_AT_const_value:
13067 return "DW_AT_const_value";
13068 case DW_AT_containing_type:
13069 return "DW_AT_containing_type";
13070 case DW_AT_default_value:
13071 return "DW_AT_default_value";
13072 case DW_AT_inline:
13073 return "DW_AT_inline";
13074 case DW_AT_is_optional:
13075 return "DW_AT_is_optional";
13076 case DW_AT_lower_bound:
13077 return "DW_AT_lower_bound";
13078 case DW_AT_producer:
13079 return "DW_AT_producer";
13080 case DW_AT_prototyped:
13081 return "DW_AT_prototyped";
13082 case DW_AT_return_addr:
13083 return "DW_AT_return_addr";
13084 case DW_AT_start_scope:
13085 return "DW_AT_start_scope";
13086 case DW_AT_bit_stride:
13087 return "DW_AT_bit_stride";
13088 case DW_AT_upper_bound:
13089 return "DW_AT_upper_bound";
13090 case DW_AT_abstract_origin:
13091 return "DW_AT_abstract_origin";
13092 case DW_AT_accessibility:
13093 return "DW_AT_accessibility";
13094 case DW_AT_address_class:
13095 return "DW_AT_address_class";
13096 case DW_AT_artificial:
13097 return "DW_AT_artificial";
13098 case DW_AT_base_types:
13099 return "DW_AT_base_types";
13100 case DW_AT_calling_convention:
13101 return "DW_AT_calling_convention";
13102 case DW_AT_count:
13103 return "DW_AT_count";
13104 case DW_AT_data_member_location:
13105 return "DW_AT_data_member_location";
13106 case DW_AT_decl_column:
13107 return "DW_AT_decl_column";
13108 case DW_AT_decl_file:
13109 return "DW_AT_decl_file";
13110 case DW_AT_decl_line:
13111 return "DW_AT_decl_line";
13112 case DW_AT_declaration:
13113 return "DW_AT_declaration";
13114 case DW_AT_discr_list:
13115 return "DW_AT_discr_list";
13116 case DW_AT_encoding:
13117 return "DW_AT_encoding";
13118 case DW_AT_external:
13119 return "DW_AT_external";
13120 case DW_AT_frame_base:
13121 return "DW_AT_frame_base";
13122 case DW_AT_friend:
13123 return "DW_AT_friend";
13124 case DW_AT_identifier_case:
13125 return "DW_AT_identifier_case";
13126 case DW_AT_macro_info:
13127 return "DW_AT_macro_info";
13128 case DW_AT_namelist_items:
13129 return "DW_AT_namelist_items";
13130 case DW_AT_priority:
13131 return "DW_AT_priority";
13132 case DW_AT_segment:
13133 return "DW_AT_segment";
13134 case DW_AT_specification:
13135 return "DW_AT_specification";
13136 case DW_AT_static_link:
13137 return "DW_AT_static_link";
13138 case DW_AT_type:
13139 return "DW_AT_type";
13140 case DW_AT_use_location:
13141 return "DW_AT_use_location";
13142 case DW_AT_variable_parameter:
13143 return "DW_AT_variable_parameter";
13144 case DW_AT_virtuality:
13145 return "DW_AT_virtuality";
13146 case DW_AT_vtable_elem_location:
13147 return "DW_AT_vtable_elem_location";
13148 /* DWARF 3 values. */
13149 case DW_AT_allocated:
13150 return "DW_AT_allocated";
13151 case DW_AT_associated:
13152 return "DW_AT_associated";
13153 case DW_AT_data_location:
13154 return "DW_AT_data_location";
13155 case DW_AT_byte_stride:
13156 return "DW_AT_byte_stride";
13157 case DW_AT_entry_pc:
13158 return "DW_AT_entry_pc";
13159 case DW_AT_use_UTF8:
13160 return "DW_AT_use_UTF8";
13161 case DW_AT_extension:
13162 return "DW_AT_extension";
13163 case DW_AT_ranges:
13164 return "DW_AT_ranges";
13165 case DW_AT_trampoline:
13166 return "DW_AT_trampoline";
13167 case DW_AT_call_column:
13168 return "DW_AT_call_column";
13169 case DW_AT_call_file:
13170 return "DW_AT_call_file";
13171 case DW_AT_call_line:
13172 return "DW_AT_call_line";
13173 case DW_AT_description:
13174 return "DW_AT_description";
13175 case DW_AT_binary_scale:
13176 return "DW_AT_binary_scale";
13177 case DW_AT_decimal_scale:
13178 return "DW_AT_decimal_scale";
13179 case DW_AT_small:
13180 return "DW_AT_small";
13181 case DW_AT_decimal_sign:
13182 return "DW_AT_decimal_sign";
13183 case DW_AT_digit_count:
13184 return "DW_AT_digit_count";
13185 case DW_AT_picture_string:
13186 return "DW_AT_picture_string";
13187 case DW_AT_mutable:
13188 return "DW_AT_mutable";
13189 case DW_AT_threads_scaled:
13190 return "DW_AT_threads_scaled";
13191 case DW_AT_explicit:
13192 return "DW_AT_explicit";
13193 case DW_AT_object_pointer:
13194 return "DW_AT_object_pointer";
13195 case DW_AT_endianity:
13196 return "DW_AT_endianity";
13197 case DW_AT_elemental:
13198 return "DW_AT_elemental";
13199 case DW_AT_pure:
13200 return "DW_AT_pure";
13201 case DW_AT_recursive:
13202 return "DW_AT_recursive";
13203 /* DWARF 4 values. */
13204 case DW_AT_signature:
13205 return "DW_AT_signature";
13206 case DW_AT_linkage_name:
13207 return "DW_AT_linkage_name";
13208 /* SGI/MIPS extensions. */
13209 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13210 case DW_AT_MIPS_fde:
13211 return "DW_AT_MIPS_fde";
13212 #endif
13213 case DW_AT_MIPS_loop_begin:
13214 return "DW_AT_MIPS_loop_begin";
13215 case DW_AT_MIPS_tail_loop_begin:
13216 return "DW_AT_MIPS_tail_loop_begin";
13217 case DW_AT_MIPS_epilog_begin:
13218 return "DW_AT_MIPS_epilog_begin";
13219 case DW_AT_MIPS_loop_unroll_factor:
13220 return "DW_AT_MIPS_loop_unroll_factor";
13221 case DW_AT_MIPS_software_pipeline_depth:
13222 return "DW_AT_MIPS_software_pipeline_depth";
13223 case DW_AT_MIPS_linkage_name:
13224 return "DW_AT_MIPS_linkage_name";
13225 case DW_AT_MIPS_stride:
13226 return "DW_AT_MIPS_stride";
13227 case DW_AT_MIPS_abstract_name:
13228 return "DW_AT_MIPS_abstract_name";
13229 case DW_AT_MIPS_clone_origin:
13230 return "DW_AT_MIPS_clone_origin";
13231 case DW_AT_MIPS_has_inlines:
13232 return "DW_AT_MIPS_has_inlines";
13233 /* HP extensions. */
13234 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13235 case DW_AT_HP_block_index:
13236 return "DW_AT_HP_block_index";
13237 #endif
13238 case DW_AT_HP_unmodifiable:
13239 return "DW_AT_HP_unmodifiable";
13240 case DW_AT_HP_actuals_stmt_list:
13241 return "DW_AT_HP_actuals_stmt_list";
13242 case DW_AT_HP_proc_per_section:
13243 return "DW_AT_HP_proc_per_section";
13244 case DW_AT_HP_raw_data_ptr:
13245 return "DW_AT_HP_raw_data_ptr";
13246 case DW_AT_HP_pass_by_reference:
13247 return "DW_AT_HP_pass_by_reference";
13248 case DW_AT_HP_opt_level:
13249 return "DW_AT_HP_opt_level";
13250 case DW_AT_HP_prof_version_id:
13251 return "DW_AT_HP_prof_version_id";
13252 case DW_AT_HP_opt_flags:
13253 return "DW_AT_HP_opt_flags";
13254 case DW_AT_HP_cold_region_low_pc:
13255 return "DW_AT_HP_cold_region_low_pc";
13256 case DW_AT_HP_cold_region_high_pc:
13257 return "DW_AT_HP_cold_region_high_pc";
13258 case DW_AT_HP_all_variables_modifiable:
13259 return "DW_AT_HP_all_variables_modifiable";
13260 case DW_AT_HP_linkage_name:
13261 return "DW_AT_HP_linkage_name";
13262 case DW_AT_HP_prof_flags:
13263 return "DW_AT_HP_prof_flags";
13264 /* GNU extensions. */
13265 case DW_AT_sf_names:
13266 return "DW_AT_sf_names";
13267 case DW_AT_src_info:
13268 return "DW_AT_src_info";
13269 case DW_AT_mac_info:
13270 return "DW_AT_mac_info";
13271 case DW_AT_src_coords:
13272 return "DW_AT_src_coords";
13273 case DW_AT_body_begin:
13274 return "DW_AT_body_begin";
13275 case DW_AT_body_end:
13276 return "DW_AT_body_end";
13277 case DW_AT_GNU_vector:
13278 return "DW_AT_GNU_vector";
13279 case DW_AT_GNU_odr_signature:
13280 return "DW_AT_GNU_odr_signature";
13281 /* VMS extensions. */
13282 case DW_AT_VMS_rtnbeg_pd_address:
13283 return "DW_AT_VMS_rtnbeg_pd_address";
13284 /* UPC extension. */
13285 case DW_AT_upc_threads_scaled:
13286 return "DW_AT_upc_threads_scaled";
13287 /* PGI (STMicroelectronics) extensions. */
13288 case DW_AT_PGI_lbase:
13289 return "DW_AT_PGI_lbase";
13290 case DW_AT_PGI_soffset:
13291 return "DW_AT_PGI_soffset";
13292 case DW_AT_PGI_lstride:
13293 return "DW_AT_PGI_lstride";
13294 default:
13295 return "DW_AT_<unknown>";
13296 }
13297 }
13298
13299 /* Convert a DWARF value form code into its string name. */
13300
13301 static char *
13302 dwarf_form_name (unsigned form)
13303 {
13304 switch (form)
13305 {
13306 case DW_FORM_addr:
13307 return "DW_FORM_addr";
13308 case DW_FORM_block2:
13309 return "DW_FORM_block2";
13310 case DW_FORM_block4:
13311 return "DW_FORM_block4";
13312 case DW_FORM_data2:
13313 return "DW_FORM_data2";
13314 case DW_FORM_data4:
13315 return "DW_FORM_data4";
13316 case DW_FORM_data8:
13317 return "DW_FORM_data8";
13318 case DW_FORM_string:
13319 return "DW_FORM_string";
13320 case DW_FORM_block:
13321 return "DW_FORM_block";
13322 case DW_FORM_block1:
13323 return "DW_FORM_block1";
13324 case DW_FORM_data1:
13325 return "DW_FORM_data1";
13326 case DW_FORM_flag:
13327 return "DW_FORM_flag";
13328 case DW_FORM_sdata:
13329 return "DW_FORM_sdata";
13330 case DW_FORM_strp:
13331 return "DW_FORM_strp";
13332 case DW_FORM_udata:
13333 return "DW_FORM_udata";
13334 case DW_FORM_ref_addr:
13335 return "DW_FORM_ref_addr";
13336 case DW_FORM_ref1:
13337 return "DW_FORM_ref1";
13338 case DW_FORM_ref2:
13339 return "DW_FORM_ref2";
13340 case DW_FORM_ref4:
13341 return "DW_FORM_ref4";
13342 case DW_FORM_ref8:
13343 return "DW_FORM_ref8";
13344 case DW_FORM_ref_udata:
13345 return "DW_FORM_ref_udata";
13346 case DW_FORM_indirect:
13347 return "DW_FORM_indirect";
13348 case DW_FORM_sec_offset:
13349 return "DW_FORM_sec_offset";
13350 case DW_FORM_exprloc:
13351 return "DW_FORM_exprloc";
13352 case DW_FORM_flag_present:
13353 return "DW_FORM_flag_present";
13354 case DW_FORM_ref_sig8:
13355 return "DW_FORM_ref_sig8";
13356 default:
13357 return "DW_FORM_<unknown>";
13358 }
13359 }
13360
13361 /* Convert a DWARF stack opcode into its string name. */
13362
13363 const char *
13364 dwarf_stack_op_name (unsigned op)
13365 {
13366 switch (op)
13367 {
13368 case DW_OP_addr:
13369 return "DW_OP_addr";
13370 case DW_OP_deref:
13371 return "DW_OP_deref";
13372 case DW_OP_const1u:
13373 return "DW_OP_const1u";
13374 case DW_OP_const1s:
13375 return "DW_OP_const1s";
13376 case DW_OP_const2u:
13377 return "DW_OP_const2u";
13378 case DW_OP_const2s:
13379 return "DW_OP_const2s";
13380 case DW_OP_const4u:
13381 return "DW_OP_const4u";
13382 case DW_OP_const4s:
13383 return "DW_OP_const4s";
13384 case DW_OP_const8u:
13385 return "DW_OP_const8u";
13386 case DW_OP_const8s:
13387 return "DW_OP_const8s";
13388 case DW_OP_constu:
13389 return "DW_OP_constu";
13390 case DW_OP_consts:
13391 return "DW_OP_consts";
13392 case DW_OP_dup:
13393 return "DW_OP_dup";
13394 case DW_OP_drop:
13395 return "DW_OP_drop";
13396 case DW_OP_over:
13397 return "DW_OP_over";
13398 case DW_OP_pick:
13399 return "DW_OP_pick";
13400 case DW_OP_swap:
13401 return "DW_OP_swap";
13402 case DW_OP_rot:
13403 return "DW_OP_rot";
13404 case DW_OP_xderef:
13405 return "DW_OP_xderef";
13406 case DW_OP_abs:
13407 return "DW_OP_abs";
13408 case DW_OP_and:
13409 return "DW_OP_and";
13410 case DW_OP_div:
13411 return "DW_OP_div";
13412 case DW_OP_minus:
13413 return "DW_OP_minus";
13414 case DW_OP_mod:
13415 return "DW_OP_mod";
13416 case DW_OP_mul:
13417 return "DW_OP_mul";
13418 case DW_OP_neg:
13419 return "DW_OP_neg";
13420 case DW_OP_not:
13421 return "DW_OP_not";
13422 case DW_OP_or:
13423 return "DW_OP_or";
13424 case DW_OP_plus:
13425 return "DW_OP_plus";
13426 case DW_OP_plus_uconst:
13427 return "DW_OP_plus_uconst";
13428 case DW_OP_shl:
13429 return "DW_OP_shl";
13430 case DW_OP_shr:
13431 return "DW_OP_shr";
13432 case DW_OP_shra:
13433 return "DW_OP_shra";
13434 case DW_OP_xor:
13435 return "DW_OP_xor";
13436 case DW_OP_bra:
13437 return "DW_OP_bra";
13438 case DW_OP_eq:
13439 return "DW_OP_eq";
13440 case DW_OP_ge:
13441 return "DW_OP_ge";
13442 case DW_OP_gt:
13443 return "DW_OP_gt";
13444 case DW_OP_le:
13445 return "DW_OP_le";
13446 case DW_OP_lt:
13447 return "DW_OP_lt";
13448 case DW_OP_ne:
13449 return "DW_OP_ne";
13450 case DW_OP_skip:
13451 return "DW_OP_skip";
13452 case DW_OP_lit0:
13453 return "DW_OP_lit0";
13454 case DW_OP_lit1:
13455 return "DW_OP_lit1";
13456 case DW_OP_lit2:
13457 return "DW_OP_lit2";
13458 case DW_OP_lit3:
13459 return "DW_OP_lit3";
13460 case DW_OP_lit4:
13461 return "DW_OP_lit4";
13462 case DW_OP_lit5:
13463 return "DW_OP_lit5";
13464 case DW_OP_lit6:
13465 return "DW_OP_lit6";
13466 case DW_OP_lit7:
13467 return "DW_OP_lit7";
13468 case DW_OP_lit8:
13469 return "DW_OP_lit8";
13470 case DW_OP_lit9:
13471 return "DW_OP_lit9";
13472 case DW_OP_lit10:
13473 return "DW_OP_lit10";
13474 case DW_OP_lit11:
13475 return "DW_OP_lit11";
13476 case DW_OP_lit12:
13477 return "DW_OP_lit12";
13478 case DW_OP_lit13:
13479 return "DW_OP_lit13";
13480 case DW_OP_lit14:
13481 return "DW_OP_lit14";
13482 case DW_OP_lit15:
13483 return "DW_OP_lit15";
13484 case DW_OP_lit16:
13485 return "DW_OP_lit16";
13486 case DW_OP_lit17:
13487 return "DW_OP_lit17";
13488 case DW_OP_lit18:
13489 return "DW_OP_lit18";
13490 case DW_OP_lit19:
13491 return "DW_OP_lit19";
13492 case DW_OP_lit20:
13493 return "DW_OP_lit20";
13494 case DW_OP_lit21:
13495 return "DW_OP_lit21";
13496 case DW_OP_lit22:
13497 return "DW_OP_lit22";
13498 case DW_OP_lit23:
13499 return "DW_OP_lit23";
13500 case DW_OP_lit24:
13501 return "DW_OP_lit24";
13502 case DW_OP_lit25:
13503 return "DW_OP_lit25";
13504 case DW_OP_lit26:
13505 return "DW_OP_lit26";
13506 case DW_OP_lit27:
13507 return "DW_OP_lit27";
13508 case DW_OP_lit28:
13509 return "DW_OP_lit28";
13510 case DW_OP_lit29:
13511 return "DW_OP_lit29";
13512 case DW_OP_lit30:
13513 return "DW_OP_lit30";
13514 case DW_OP_lit31:
13515 return "DW_OP_lit31";
13516 case DW_OP_reg0:
13517 return "DW_OP_reg0";
13518 case DW_OP_reg1:
13519 return "DW_OP_reg1";
13520 case DW_OP_reg2:
13521 return "DW_OP_reg2";
13522 case DW_OP_reg3:
13523 return "DW_OP_reg3";
13524 case DW_OP_reg4:
13525 return "DW_OP_reg4";
13526 case DW_OP_reg5:
13527 return "DW_OP_reg5";
13528 case DW_OP_reg6:
13529 return "DW_OP_reg6";
13530 case DW_OP_reg7:
13531 return "DW_OP_reg7";
13532 case DW_OP_reg8:
13533 return "DW_OP_reg8";
13534 case DW_OP_reg9:
13535 return "DW_OP_reg9";
13536 case DW_OP_reg10:
13537 return "DW_OP_reg10";
13538 case DW_OP_reg11:
13539 return "DW_OP_reg11";
13540 case DW_OP_reg12:
13541 return "DW_OP_reg12";
13542 case DW_OP_reg13:
13543 return "DW_OP_reg13";
13544 case DW_OP_reg14:
13545 return "DW_OP_reg14";
13546 case DW_OP_reg15:
13547 return "DW_OP_reg15";
13548 case DW_OP_reg16:
13549 return "DW_OP_reg16";
13550 case DW_OP_reg17:
13551 return "DW_OP_reg17";
13552 case DW_OP_reg18:
13553 return "DW_OP_reg18";
13554 case DW_OP_reg19:
13555 return "DW_OP_reg19";
13556 case DW_OP_reg20:
13557 return "DW_OP_reg20";
13558 case DW_OP_reg21:
13559 return "DW_OP_reg21";
13560 case DW_OP_reg22:
13561 return "DW_OP_reg22";
13562 case DW_OP_reg23:
13563 return "DW_OP_reg23";
13564 case DW_OP_reg24:
13565 return "DW_OP_reg24";
13566 case DW_OP_reg25:
13567 return "DW_OP_reg25";
13568 case DW_OP_reg26:
13569 return "DW_OP_reg26";
13570 case DW_OP_reg27:
13571 return "DW_OP_reg27";
13572 case DW_OP_reg28:
13573 return "DW_OP_reg28";
13574 case DW_OP_reg29:
13575 return "DW_OP_reg29";
13576 case DW_OP_reg30:
13577 return "DW_OP_reg30";
13578 case DW_OP_reg31:
13579 return "DW_OP_reg31";
13580 case DW_OP_breg0:
13581 return "DW_OP_breg0";
13582 case DW_OP_breg1:
13583 return "DW_OP_breg1";
13584 case DW_OP_breg2:
13585 return "DW_OP_breg2";
13586 case DW_OP_breg3:
13587 return "DW_OP_breg3";
13588 case DW_OP_breg4:
13589 return "DW_OP_breg4";
13590 case DW_OP_breg5:
13591 return "DW_OP_breg5";
13592 case DW_OP_breg6:
13593 return "DW_OP_breg6";
13594 case DW_OP_breg7:
13595 return "DW_OP_breg7";
13596 case DW_OP_breg8:
13597 return "DW_OP_breg8";
13598 case DW_OP_breg9:
13599 return "DW_OP_breg9";
13600 case DW_OP_breg10:
13601 return "DW_OP_breg10";
13602 case DW_OP_breg11:
13603 return "DW_OP_breg11";
13604 case DW_OP_breg12:
13605 return "DW_OP_breg12";
13606 case DW_OP_breg13:
13607 return "DW_OP_breg13";
13608 case DW_OP_breg14:
13609 return "DW_OP_breg14";
13610 case DW_OP_breg15:
13611 return "DW_OP_breg15";
13612 case DW_OP_breg16:
13613 return "DW_OP_breg16";
13614 case DW_OP_breg17:
13615 return "DW_OP_breg17";
13616 case DW_OP_breg18:
13617 return "DW_OP_breg18";
13618 case DW_OP_breg19:
13619 return "DW_OP_breg19";
13620 case DW_OP_breg20:
13621 return "DW_OP_breg20";
13622 case DW_OP_breg21:
13623 return "DW_OP_breg21";
13624 case DW_OP_breg22:
13625 return "DW_OP_breg22";
13626 case DW_OP_breg23:
13627 return "DW_OP_breg23";
13628 case DW_OP_breg24:
13629 return "DW_OP_breg24";
13630 case DW_OP_breg25:
13631 return "DW_OP_breg25";
13632 case DW_OP_breg26:
13633 return "DW_OP_breg26";
13634 case DW_OP_breg27:
13635 return "DW_OP_breg27";
13636 case DW_OP_breg28:
13637 return "DW_OP_breg28";
13638 case DW_OP_breg29:
13639 return "DW_OP_breg29";
13640 case DW_OP_breg30:
13641 return "DW_OP_breg30";
13642 case DW_OP_breg31:
13643 return "DW_OP_breg31";
13644 case DW_OP_regx:
13645 return "DW_OP_regx";
13646 case DW_OP_fbreg:
13647 return "DW_OP_fbreg";
13648 case DW_OP_bregx:
13649 return "DW_OP_bregx";
13650 case DW_OP_piece:
13651 return "DW_OP_piece";
13652 case DW_OP_deref_size:
13653 return "DW_OP_deref_size";
13654 case DW_OP_xderef_size:
13655 return "DW_OP_xderef_size";
13656 case DW_OP_nop:
13657 return "DW_OP_nop";
13658 /* DWARF 3 extensions. */
13659 case DW_OP_push_object_address:
13660 return "DW_OP_push_object_address";
13661 case DW_OP_call2:
13662 return "DW_OP_call2";
13663 case DW_OP_call4:
13664 return "DW_OP_call4";
13665 case DW_OP_call_ref:
13666 return "DW_OP_call_ref";
13667 case DW_OP_form_tls_address:
13668 return "DW_OP_form_tls_address";
13669 case DW_OP_call_frame_cfa:
13670 return "DW_OP_call_frame_cfa";
13671 case DW_OP_bit_piece:
13672 return "DW_OP_bit_piece";
13673 /* DWARF 4 extensions. */
13674 case DW_OP_implicit_value:
13675 return "DW_OP_implicit_value";
13676 case DW_OP_stack_value:
13677 return "DW_OP_stack_value";
13678 /* GNU extensions. */
13679 case DW_OP_GNU_push_tls_address:
13680 return "DW_OP_GNU_push_tls_address";
13681 case DW_OP_GNU_uninit:
13682 return "DW_OP_GNU_uninit";
13683 case DW_OP_GNU_implicit_pointer:
13684 return "DW_OP_GNU_implicit_pointer";
13685 case DW_OP_GNU_entry_value:
13686 return "DW_OP_GNU_entry_value";
13687 case DW_OP_GNU_const_type:
13688 return "DW_OP_GNU_const_type";
13689 case DW_OP_GNU_regval_type:
13690 return "DW_OP_GNU_regval_type";
13691 case DW_OP_GNU_deref_type:
13692 return "DW_OP_GNU_deref_type";
13693 case DW_OP_GNU_convert:
13694 return "DW_OP_GNU_convert";
13695 case DW_OP_GNU_reinterpret:
13696 return "DW_OP_GNU_reinterpret";
13697 default:
13698 return NULL;
13699 }
13700 }
13701
13702 static char *
13703 dwarf_bool_name (unsigned mybool)
13704 {
13705 if (mybool)
13706 return "TRUE";
13707 else
13708 return "FALSE";
13709 }
13710
13711 /* Convert a DWARF type code into its string name. */
13712
13713 static char *
13714 dwarf_type_encoding_name (unsigned enc)
13715 {
13716 switch (enc)
13717 {
13718 case DW_ATE_void:
13719 return "DW_ATE_void";
13720 case DW_ATE_address:
13721 return "DW_ATE_address";
13722 case DW_ATE_boolean:
13723 return "DW_ATE_boolean";
13724 case DW_ATE_complex_float:
13725 return "DW_ATE_complex_float";
13726 case DW_ATE_float:
13727 return "DW_ATE_float";
13728 case DW_ATE_signed:
13729 return "DW_ATE_signed";
13730 case DW_ATE_signed_char:
13731 return "DW_ATE_signed_char";
13732 case DW_ATE_unsigned:
13733 return "DW_ATE_unsigned";
13734 case DW_ATE_unsigned_char:
13735 return "DW_ATE_unsigned_char";
13736 /* DWARF 3. */
13737 case DW_ATE_imaginary_float:
13738 return "DW_ATE_imaginary_float";
13739 case DW_ATE_packed_decimal:
13740 return "DW_ATE_packed_decimal";
13741 case DW_ATE_numeric_string:
13742 return "DW_ATE_numeric_string";
13743 case DW_ATE_edited:
13744 return "DW_ATE_edited";
13745 case DW_ATE_signed_fixed:
13746 return "DW_ATE_signed_fixed";
13747 case DW_ATE_unsigned_fixed:
13748 return "DW_ATE_unsigned_fixed";
13749 case DW_ATE_decimal_float:
13750 return "DW_ATE_decimal_float";
13751 /* DWARF 4. */
13752 case DW_ATE_UTF:
13753 return "DW_ATE_UTF";
13754 /* HP extensions. */
13755 case DW_ATE_HP_float80:
13756 return "DW_ATE_HP_float80";
13757 case DW_ATE_HP_complex_float80:
13758 return "DW_ATE_HP_complex_float80";
13759 case DW_ATE_HP_float128:
13760 return "DW_ATE_HP_float128";
13761 case DW_ATE_HP_complex_float128:
13762 return "DW_ATE_HP_complex_float128";
13763 case DW_ATE_HP_floathpintel:
13764 return "DW_ATE_HP_floathpintel";
13765 case DW_ATE_HP_imaginary_float80:
13766 return "DW_ATE_HP_imaginary_float80";
13767 case DW_ATE_HP_imaginary_float128:
13768 return "DW_ATE_HP_imaginary_float128";
13769 default:
13770 return "DW_ATE_<unknown>";
13771 }
13772 }
13773
13774 /* Convert a DWARF call frame info operation to its string name. */
13775
13776 #if 0
13777 static char *
13778 dwarf_cfi_name (unsigned cfi_opc)
13779 {
13780 switch (cfi_opc)
13781 {
13782 case DW_CFA_advance_loc:
13783 return "DW_CFA_advance_loc";
13784 case DW_CFA_offset:
13785 return "DW_CFA_offset";
13786 case DW_CFA_restore:
13787 return "DW_CFA_restore";
13788 case DW_CFA_nop:
13789 return "DW_CFA_nop";
13790 case DW_CFA_set_loc:
13791 return "DW_CFA_set_loc";
13792 case DW_CFA_advance_loc1:
13793 return "DW_CFA_advance_loc1";
13794 case DW_CFA_advance_loc2:
13795 return "DW_CFA_advance_loc2";
13796 case DW_CFA_advance_loc4:
13797 return "DW_CFA_advance_loc4";
13798 case DW_CFA_offset_extended:
13799 return "DW_CFA_offset_extended";
13800 case DW_CFA_restore_extended:
13801 return "DW_CFA_restore_extended";
13802 case DW_CFA_undefined:
13803 return "DW_CFA_undefined";
13804 case DW_CFA_same_value:
13805 return "DW_CFA_same_value";
13806 case DW_CFA_register:
13807 return "DW_CFA_register";
13808 case DW_CFA_remember_state:
13809 return "DW_CFA_remember_state";
13810 case DW_CFA_restore_state:
13811 return "DW_CFA_restore_state";
13812 case DW_CFA_def_cfa:
13813 return "DW_CFA_def_cfa";
13814 case DW_CFA_def_cfa_register:
13815 return "DW_CFA_def_cfa_register";
13816 case DW_CFA_def_cfa_offset:
13817 return "DW_CFA_def_cfa_offset";
13818 /* DWARF 3. */
13819 case DW_CFA_def_cfa_expression:
13820 return "DW_CFA_def_cfa_expression";
13821 case DW_CFA_expression:
13822 return "DW_CFA_expression";
13823 case DW_CFA_offset_extended_sf:
13824 return "DW_CFA_offset_extended_sf";
13825 case DW_CFA_def_cfa_sf:
13826 return "DW_CFA_def_cfa_sf";
13827 case DW_CFA_def_cfa_offset_sf:
13828 return "DW_CFA_def_cfa_offset_sf";
13829 case DW_CFA_val_offset:
13830 return "DW_CFA_val_offset";
13831 case DW_CFA_val_offset_sf:
13832 return "DW_CFA_val_offset_sf";
13833 case DW_CFA_val_expression:
13834 return "DW_CFA_val_expression";
13835 /* SGI/MIPS specific. */
13836 case DW_CFA_MIPS_advance_loc8:
13837 return "DW_CFA_MIPS_advance_loc8";
13838 /* GNU extensions. */
13839 case DW_CFA_GNU_window_save:
13840 return "DW_CFA_GNU_window_save";
13841 case DW_CFA_GNU_args_size:
13842 return "DW_CFA_GNU_args_size";
13843 case DW_CFA_GNU_negative_offset_extended:
13844 return "DW_CFA_GNU_negative_offset_extended";
13845 default:
13846 return "DW_CFA_<unknown>";
13847 }
13848 }
13849 #endif
13850
13851 static void
13852 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13853 {
13854 unsigned int i;
13855
13856 print_spaces (indent, f);
13857 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13858 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13859
13860 if (die->parent != NULL)
13861 {
13862 print_spaces (indent, f);
13863 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13864 die->parent->offset);
13865 }
13866
13867 print_spaces (indent, f);
13868 fprintf_unfiltered (f, " has children: %s\n",
13869 dwarf_bool_name (die->child != NULL));
13870
13871 print_spaces (indent, f);
13872 fprintf_unfiltered (f, " attributes:\n");
13873
13874 for (i = 0; i < die->num_attrs; ++i)
13875 {
13876 print_spaces (indent, f);
13877 fprintf_unfiltered (f, " %s (%s) ",
13878 dwarf_attr_name (die->attrs[i].name),
13879 dwarf_form_name (die->attrs[i].form));
13880
13881 switch (die->attrs[i].form)
13882 {
13883 case DW_FORM_ref_addr:
13884 case DW_FORM_addr:
13885 fprintf_unfiltered (f, "address: ");
13886 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13887 break;
13888 case DW_FORM_block2:
13889 case DW_FORM_block4:
13890 case DW_FORM_block:
13891 case DW_FORM_block1:
13892 fprintf_unfiltered (f, "block: size %d",
13893 DW_BLOCK (&die->attrs[i])->size);
13894 break;
13895 case DW_FORM_exprloc:
13896 fprintf_unfiltered (f, "expression: size %u",
13897 DW_BLOCK (&die->attrs[i])->size);
13898 break;
13899 case DW_FORM_ref1:
13900 case DW_FORM_ref2:
13901 case DW_FORM_ref4:
13902 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13903 (long) (DW_ADDR (&die->attrs[i])));
13904 break;
13905 case DW_FORM_data1:
13906 case DW_FORM_data2:
13907 case DW_FORM_data4:
13908 case DW_FORM_data8:
13909 case DW_FORM_udata:
13910 case DW_FORM_sdata:
13911 fprintf_unfiltered (f, "constant: %s",
13912 pulongest (DW_UNSND (&die->attrs[i])));
13913 break;
13914 case DW_FORM_sec_offset:
13915 fprintf_unfiltered (f, "section offset: %s",
13916 pulongest (DW_UNSND (&die->attrs[i])));
13917 break;
13918 case DW_FORM_ref_sig8:
13919 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13920 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13921 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
13922 else
13923 fprintf_unfiltered (f, "signatured type, offset: unknown");
13924 break;
13925 case DW_FORM_string:
13926 case DW_FORM_strp:
13927 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13928 DW_STRING (&die->attrs[i])
13929 ? DW_STRING (&die->attrs[i]) : "",
13930 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13931 break;
13932 case DW_FORM_flag:
13933 if (DW_UNSND (&die->attrs[i]))
13934 fprintf_unfiltered (f, "flag: TRUE");
13935 else
13936 fprintf_unfiltered (f, "flag: FALSE");
13937 break;
13938 case DW_FORM_flag_present:
13939 fprintf_unfiltered (f, "flag: TRUE");
13940 break;
13941 case DW_FORM_indirect:
13942 /* The reader will have reduced the indirect form to
13943 the "base form" so this form should not occur. */
13944 fprintf_unfiltered (f,
13945 "unexpected attribute form: DW_FORM_indirect");
13946 break;
13947 default:
13948 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13949 die->attrs[i].form);
13950 break;
13951 }
13952 fprintf_unfiltered (f, "\n");
13953 }
13954 }
13955
13956 static void
13957 dump_die_for_error (struct die_info *die)
13958 {
13959 dump_die_shallow (gdb_stderr, 0, die);
13960 }
13961
13962 static void
13963 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13964 {
13965 int indent = level * 4;
13966
13967 gdb_assert (die != NULL);
13968
13969 if (level >= max_level)
13970 return;
13971
13972 dump_die_shallow (f, indent, die);
13973
13974 if (die->child != NULL)
13975 {
13976 print_spaces (indent, f);
13977 fprintf_unfiltered (f, " Children:");
13978 if (level + 1 < max_level)
13979 {
13980 fprintf_unfiltered (f, "\n");
13981 dump_die_1 (f, level + 1, max_level, die->child);
13982 }
13983 else
13984 {
13985 fprintf_unfiltered (f,
13986 " [not printed, max nesting level reached]\n");
13987 }
13988 }
13989
13990 if (die->sibling != NULL && level > 0)
13991 {
13992 dump_die_1 (f, level, max_level, die->sibling);
13993 }
13994 }
13995
13996 /* This is called from the pdie macro in gdbinit.in.
13997 It's not static so gcc will keep a copy callable from gdb. */
13998
13999 void
14000 dump_die (struct die_info *die, int max_level)
14001 {
14002 dump_die_1 (gdb_stdlog, 0, max_level, die);
14003 }
14004
14005 static void
14006 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14007 {
14008 void **slot;
14009
14010 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
14011
14012 *slot = die;
14013 }
14014
14015 static int
14016 is_ref_attr (struct attribute *attr)
14017 {
14018 switch (attr->form)
14019 {
14020 case DW_FORM_ref_addr:
14021 case DW_FORM_ref1:
14022 case DW_FORM_ref2:
14023 case DW_FORM_ref4:
14024 case DW_FORM_ref8:
14025 case DW_FORM_ref_udata:
14026 return 1;
14027 default:
14028 return 0;
14029 }
14030 }
14031
14032 static unsigned int
14033 dwarf2_get_ref_die_offset (struct attribute *attr)
14034 {
14035 if (is_ref_attr (attr))
14036 return DW_ADDR (attr);
14037
14038 complaint (&symfile_complaints,
14039 _("unsupported die ref attribute form: '%s'"),
14040 dwarf_form_name (attr->form));
14041 return 0;
14042 }
14043
14044 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14045 * the value held by the attribute is not constant. */
14046
14047 static LONGEST
14048 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14049 {
14050 if (attr->form == DW_FORM_sdata)
14051 return DW_SND (attr);
14052 else if (attr->form == DW_FORM_udata
14053 || attr->form == DW_FORM_data1
14054 || attr->form == DW_FORM_data2
14055 || attr->form == DW_FORM_data4
14056 || attr->form == DW_FORM_data8)
14057 return DW_UNSND (attr);
14058 else
14059 {
14060 complaint (&symfile_complaints,
14061 _("Attribute value is not a constant (%s)"),
14062 dwarf_form_name (attr->form));
14063 return default_value;
14064 }
14065 }
14066
14067 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14068 unit and add it to our queue.
14069 The result is non-zero if PER_CU was queued, otherwise the result is zero
14070 meaning either PER_CU is already queued or it is already loaded. */
14071
14072 static int
14073 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14074 struct dwarf2_per_cu_data *per_cu)
14075 {
14076 /* We may arrive here during partial symbol reading, if we need full
14077 DIEs to process an unusual case (e.g. template arguments). Do
14078 not queue PER_CU, just tell our caller to load its DIEs. */
14079 if (dwarf2_per_objfile->reading_partial_symbols)
14080 {
14081 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14082 return 1;
14083 return 0;
14084 }
14085
14086 /* Mark the dependence relation so that we don't flush PER_CU
14087 too early. */
14088 dwarf2_add_dependence (this_cu, per_cu);
14089
14090 /* If it's already on the queue, we have nothing to do. */
14091 if (per_cu->queued)
14092 return 0;
14093
14094 /* If the compilation unit is already loaded, just mark it as
14095 used. */
14096 if (per_cu->cu != NULL)
14097 {
14098 per_cu->cu->last_used = 0;
14099 return 0;
14100 }
14101
14102 /* Add it to the queue. */
14103 queue_comp_unit (per_cu);
14104
14105 return 1;
14106 }
14107
14108 /* Follow reference or signature attribute ATTR of SRC_DIE.
14109 On entry *REF_CU is the CU of SRC_DIE.
14110 On exit *REF_CU is the CU of the result. */
14111
14112 static struct die_info *
14113 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14114 struct dwarf2_cu **ref_cu)
14115 {
14116 struct die_info *die;
14117
14118 if (is_ref_attr (attr))
14119 die = follow_die_ref (src_die, attr, ref_cu);
14120 else if (attr->form == DW_FORM_ref_sig8)
14121 die = follow_die_sig (src_die, attr, ref_cu);
14122 else
14123 {
14124 dump_die_for_error (src_die);
14125 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14126 (*ref_cu)->objfile->name);
14127 }
14128
14129 return die;
14130 }
14131
14132 /* Follow reference OFFSET.
14133 On entry *REF_CU is the CU of the source die referencing OFFSET.
14134 On exit *REF_CU is the CU of the result.
14135 Returns NULL if OFFSET is invalid. */
14136
14137 static struct die_info *
14138 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14139 {
14140 struct die_info temp_die;
14141 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14142
14143 gdb_assert (cu->per_cu != NULL);
14144
14145 target_cu = cu;
14146
14147 if (cu->per_cu->debug_types_section)
14148 {
14149 /* .debug_types CUs cannot reference anything outside their CU.
14150 If they need to, they have to reference a signatured type via
14151 DW_FORM_ref_sig8. */
14152 if (! offset_in_cu_p (&cu->header, offset))
14153 return NULL;
14154 }
14155 else if (! offset_in_cu_p (&cu->header, offset))
14156 {
14157 struct dwarf2_per_cu_data *per_cu;
14158
14159 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14160
14161 /* If necessary, add it to the queue and load its DIEs. */
14162 if (maybe_queue_comp_unit (cu, per_cu))
14163 load_full_comp_unit (per_cu);
14164
14165 target_cu = per_cu->cu;
14166 }
14167 else if (cu->dies == NULL)
14168 {
14169 /* We're loading full DIEs during partial symbol reading. */
14170 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14171 load_full_comp_unit (cu->per_cu);
14172 }
14173
14174 *ref_cu = target_cu;
14175 temp_die.offset = offset;
14176 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14177 }
14178
14179 /* Follow reference attribute ATTR of SRC_DIE.
14180 On entry *REF_CU is the CU of SRC_DIE.
14181 On exit *REF_CU is the CU of the result. */
14182
14183 static struct die_info *
14184 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14185 struct dwarf2_cu **ref_cu)
14186 {
14187 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14188 struct dwarf2_cu *cu = *ref_cu;
14189 struct die_info *die;
14190
14191 die = follow_die_offset (offset, ref_cu);
14192 if (!die)
14193 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14194 "at 0x%x [in module %s]"),
14195 offset, src_die->offset, cu->objfile->name);
14196
14197 return die;
14198 }
14199
14200 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14201 Returned value is intended for DW_OP_call*. Returned
14202 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14203
14204 struct dwarf2_locexpr_baton
14205 dwarf2_fetch_die_location_block (unsigned int offset,
14206 struct dwarf2_per_cu_data *per_cu,
14207 CORE_ADDR (*get_frame_pc) (void *baton),
14208 void *baton)
14209 {
14210 struct dwarf2_cu *cu;
14211 struct die_info *die;
14212 struct attribute *attr;
14213 struct dwarf2_locexpr_baton retval;
14214
14215 dw2_setup (per_cu->objfile);
14216
14217 if (per_cu->cu == NULL)
14218 load_cu (per_cu);
14219 cu = per_cu->cu;
14220
14221 die = follow_die_offset (offset, &cu);
14222 if (!die)
14223 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14224 offset, per_cu->objfile->name);
14225
14226 attr = dwarf2_attr (die, DW_AT_location, cu);
14227 if (!attr)
14228 {
14229 /* DWARF: "If there is no such attribute, then there is no effect.".
14230 DATA is ignored if SIZE is 0. */
14231
14232 retval.data = NULL;
14233 retval.size = 0;
14234 }
14235 else if (attr_form_is_section_offset (attr))
14236 {
14237 struct dwarf2_loclist_baton loclist_baton;
14238 CORE_ADDR pc = (*get_frame_pc) (baton);
14239 size_t size;
14240
14241 fill_in_loclist_baton (cu, &loclist_baton, attr);
14242
14243 retval.data = dwarf2_find_location_expression (&loclist_baton,
14244 &size, pc);
14245 retval.size = size;
14246 }
14247 else
14248 {
14249 if (!attr_form_is_block (attr))
14250 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14251 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14252 offset, per_cu->objfile->name);
14253
14254 retval.data = DW_BLOCK (attr)->data;
14255 retval.size = DW_BLOCK (attr)->size;
14256 }
14257 retval.per_cu = cu->per_cu;
14258
14259 age_cached_comp_units ();
14260
14261 return retval;
14262 }
14263
14264 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14265 PER_CU. */
14266
14267 struct type *
14268 dwarf2_get_die_type (unsigned int die_offset,
14269 struct dwarf2_per_cu_data *per_cu)
14270 {
14271 dw2_setup (per_cu->objfile);
14272 return get_die_type_at_offset (per_cu->offset + die_offset, per_cu);
14273 }
14274
14275 /* Follow the signature attribute ATTR in SRC_DIE.
14276 On entry *REF_CU is the CU of SRC_DIE.
14277 On exit *REF_CU is the CU of the result. */
14278
14279 static struct die_info *
14280 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14281 struct dwarf2_cu **ref_cu)
14282 {
14283 struct objfile *objfile = (*ref_cu)->objfile;
14284 struct die_info temp_die;
14285 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14286 struct dwarf2_cu *sig_cu;
14287 struct die_info *die;
14288
14289 /* sig_type will be NULL if the signatured type is missing from
14290 the debug info. */
14291 if (sig_type == NULL)
14292 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14293 "at 0x%x [in module %s]"),
14294 src_die->offset, objfile->name);
14295
14296 /* If necessary, add it to the queue and load its DIEs. */
14297
14298 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14299 read_signatured_type (sig_type);
14300
14301 gdb_assert (sig_type->per_cu.cu != NULL);
14302
14303 sig_cu = sig_type->per_cu.cu;
14304 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14305 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14306 if (die)
14307 {
14308 *ref_cu = sig_cu;
14309 return die;
14310 }
14311
14312 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14313 "from DIE at 0x%x [in module %s]"),
14314 sig_type->type_offset, src_die->offset, objfile->name);
14315 }
14316
14317 /* Given an offset of a signatured type, return its signatured_type. */
14318
14319 static struct signatured_type *
14320 lookup_signatured_type_at_offset (struct objfile *objfile,
14321 struct dwarf2_section_info *section,
14322 unsigned int offset)
14323 {
14324 gdb_byte *info_ptr = section->buffer + offset;
14325 unsigned int length, initial_length_size;
14326 unsigned int sig_offset;
14327 struct signatured_type find_entry, *type_sig;
14328
14329 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14330 sig_offset = (initial_length_size
14331 + 2 /*version*/
14332 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14333 + 1 /*address_size*/);
14334 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14335 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14336
14337 /* This is only used to lookup previously recorded types.
14338 If we didn't find it, it's our bug. */
14339 gdb_assert (type_sig != NULL);
14340 gdb_assert (offset == type_sig->per_cu.offset);
14341
14342 return type_sig;
14343 }
14344
14345 /* Load the DIEs associated with type unit PER_CU into memory. */
14346
14347 static void
14348 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
14349 {
14350 struct objfile *objfile = per_cu->objfile;
14351 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14352 unsigned int offset = per_cu->offset;
14353 struct signatured_type *type_sig;
14354
14355 dwarf2_read_section (objfile, sect);
14356
14357 /* We have the section offset, but we need the signature to do the
14358 hash table lookup. */
14359 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14360 the signature to assert we found the right one.
14361 Ok, but it's a lot of work. We should simplify things so any needed
14362 assert doesn't require all this clumsiness. */
14363 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14364
14365 gdb_assert (type_sig->per_cu.cu == NULL);
14366
14367 read_signatured_type (type_sig);
14368
14369 gdb_assert (type_sig->per_cu.cu != NULL);
14370 }
14371
14372 /* Read in a signatured type and build its CU and DIEs. */
14373
14374 static void
14375 read_signatured_type (struct signatured_type *type_sig)
14376 {
14377 struct objfile *objfile = type_sig->per_cu.objfile;
14378 gdb_byte *types_ptr;
14379 struct die_reader_specs reader_specs;
14380 struct dwarf2_cu *cu;
14381 ULONGEST signature;
14382 struct cleanup *back_to, *free_cu_cleanup;
14383 struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
14384
14385 dwarf2_read_section (objfile, section);
14386 types_ptr = section->buffer + type_sig->per_cu.offset;
14387
14388 gdb_assert (type_sig->per_cu.cu == NULL);
14389
14390 cu = xmalloc (sizeof (*cu));
14391 init_one_comp_unit (cu, &type_sig->per_cu);
14392
14393 /* If an error occurs while loading, release our storage. */
14394 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
14395
14396 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14397 &signature, NULL);
14398 gdb_assert (signature == type_sig->signature);
14399
14400 cu->die_hash
14401 = htab_create_alloc_ex (cu->header.length / 12,
14402 die_hash,
14403 die_eq,
14404 NULL,
14405 &cu->comp_unit_obstack,
14406 hashtab_obstack_allocate,
14407 dummy_obstack_deallocate);
14408
14409 dwarf2_read_abbrevs (cu);
14410 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14411
14412 init_cu_die_reader (&reader_specs, cu);
14413
14414 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14415 NULL /*parent*/);
14416
14417 /* We try not to read any attributes in this function, because not
14418 all CUs needed for references have been loaded yet, and symbol
14419 table processing isn't initialized. But we have to set the CU language,
14420 or we won't be able to build types correctly. */
14421 prepare_one_comp_unit (cu, cu->dies);
14422
14423 do_cleanups (back_to);
14424
14425 /* We've successfully allocated this compilation unit. Let our caller
14426 clean it up when finished with it. */
14427 discard_cleanups (free_cu_cleanup);
14428
14429 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14430 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14431 }
14432
14433 /* Decode simple location descriptions.
14434 Given a pointer to a dwarf block that defines a location, compute
14435 the location and return the value.
14436
14437 NOTE drow/2003-11-18: This function is called in two situations
14438 now: for the address of static or global variables (partial symbols
14439 only) and for offsets into structures which are expected to be
14440 (more or less) constant. The partial symbol case should go away,
14441 and only the constant case should remain. That will let this
14442 function complain more accurately. A few special modes are allowed
14443 without complaint for global variables (for instance, global
14444 register values and thread-local values).
14445
14446 A location description containing no operations indicates that the
14447 object is optimized out. The return value is 0 for that case.
14448 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14449 callers will only want a very basic result and this can become a
14450 complaint.
14451
14452 Note that stack[0] is unused except as a default error return. */
14453
14454 static CORE_ADDR
14455 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14456 {
14457 struct objfile *objfile = cu->objfile;
14458 int i;
14459 int size = blk->size;
14460 gdb_byte *data = blk->data;
14461 CORE_ADDR stack[64];
14462 int stacki;
14463 unsigned int bytes_read, unsnd;
14464 gdb_byte op;
14465
14466 i = 0;
14467 stacki = 0;
14468 stack[stacki] = 0;
14469 stack[++stacki] = 0;
14470
14471 while (i < size)
14472 {
14473 op = data[i++];
14474 switch (op)
14475 {
14476 case DW_OP_lit0:
14477 case DW_OP_lit1:
14478 case DW_OP_lit2:
14479 case DW_OP_lit3:
14480 case DW_OP_lit4:
14481 case DW_OP_lit5:
14482 case DW_OP_lit6:
14483 case DW_OP_lit7:
14484 case DW_OP_lit8:
14485 case DW_OP_lit9:
14486 case DW_OP_lit10:
14487 case DW_OP_lit11:
14488 case DW_OP_lit12:
14489 case DW_OP_lit13:
14490 case DW_OP_lit14:
14491 case DW_OP_lit15:
14492 case DW_OP_lit16:
14493 case DW_OP_lit17:
14494 case DW_OP_lit18:
14495 case DW_OP_lit19:
14496 case DW_OP_lit20:
14497 case DW_OP_lit21:
14498 case DW_OP_lit22:
14499 case DW_OP_lit23:
14500 case DW_OP_lit24:
14501 case DW_OP_lit25:
14502 case DW_OP_lit26:
14503 case DW_OP_lit27:
14504 case DW_OP_lit28:
14505 case DW_OP_lit29:
14506 case DW_OP_lit30:
14507 case DW_OP_lit31:
14508 stack[++stacki] = op - DW_OP_lit0;
14509 break;
14510
14511 case DW_OP_reg0:
14512 case DW_OP_reg1:
14513 case DW_OP_reg2:
14514 case DW_OP_reg3:
14515 case DW_OP_reg4:
14516 case DW_OP_reg5:
14517 case DW_OP_reg6:
14518 case DW_OP_reg7:
14519 case DW_OP_reg8:
14520 case DW_OP_reg9:
14521 case DW_OP_reg10:
14522 case DW_OP_reg11:
14523 case DW_OP_reg12:
14524 case DW_OP_reg13:
14525 case DW_OP_reg14:
14526 case DW_OP_reg15:
14527 case DW_OP_reg16:
14528 case DW_OP_reg17:
14529 case DW_OP_reg18:
14530 case DW_OP_reg19:
14531 case DW_OP_reg20:
14532 case DW_OP_reg21:
14533 case DW_OP_reg22:
14534 case DW_OP_reg23:
14535 case DW_OP_reg24:
14536 case DW_OP_reg25:
14537 case DW_OP_reg26:
14538 case DW_OP_reg27:
14539 case DW_OP_reg28:
14540 case DW_OP_reg29:
14541 case DW_OP_reg30:
14542 case DW_OP_reg31:
14543 stack[++stacki] = op - DW_OP_reg0;
14544 if (i < size)
14545 dwarf2_complex_location_expr_complaint ();
14546 break;
14547
14548 case DW_OP_regx:
14549 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14550 i += bytes_read;
14551 stack[++stacki] = unsnd;
14552 if (i < size)
14553 dwarf2_complex_location_expr_complaint ();
14554 break;
14555
14556 case DW_OP_addr:
14557 stack[++stacki] = read_address (objfile->obfd, &data[i],
14558 cu, &bytes_read);
14559 i += bytes_read;
14560 break;
14561
14562 case DW_OP_const1u:
14563 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14564 i += 1;
14565 break;
14566
14567 case DW_OP_const1s:
14568 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14569 i += 1;
14570 break;
14571
14572 case DW_OP_const2u:
14573 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14574 i += 2;
14575 break;
14576
14577 case DW_OP_const2s:
14578 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14579 i += 2;
14580 break;
14581
14582 case DW_OP_const4u:
14583 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14584 i += 4;
14585 break;
14586
14587 case DW_OP_const4s:
14588 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14589 i += 4;
14590 break;
14591
14592 case DW_OP_const8u:
14593 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14594 i += 8;
14595 break;
14596
14597 case DW_OP_constu:
14598 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14599 &bytes_read);
14600 i += bytes_read;
14601 break;
14602
14603 case DW_OP_consts:
14604 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14605 i += bytes_read;
14606 break;
14607
14608 case DW_OP_dup:
14609 stack[stacki + 1] = stack[stacki];
14610 stacki++;
14611 break;
14612
14613 case DW_OP_plus:
14614 stack[stacki - 1] += stack[stacki];
14615 stacki--;
14616 break;
14617
14618 case DW_OP_plus_uconst:
14619 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14620 &bytes_read);
14621 i += bytes_read;
14622 break;
14623
14624 case DW_OP_minus:
14625 stack[stacki - 1] -= stack[stacki];
14626 stacki--;
14627 break;
14628
14629 case DW_OP_deref:
14630 /* If we're not the last op, then we definitely can't encode
14631 this using GDB's address_class enum. This is valid for partial
14632 global symbols, although the variable's address will be bogus
14633 in the psymtab. */
14634 if (i < size)
14635 dwarf2_complex_location_expr_complaint ();
14636 break;
14637
14638 case DW_OP_GNU_push_tls_address:
14639 /* The top of the stack has the offset from the beginning
14640 of the thread control block at which the variable is located. */
14641 /* Nothing should follow this operator, so the top of stack would
14642 be returned. */
14643 /* This is valid for partial global symbols, but the variable's
14644 address will be bogus in the psymtab. Make it always at least
14645 non-zero to not look as a variable garbage collected by linker
14646 which have DW_OP_addr 0. */
14647 if (i < size)
14648 dwarf2_complex_location_expr_complaint ();
14649 stack[stacki]++;
14650 break;
14651
14652 case DW_OP_GNU_uninit:
14653 break;
14654
14655 default:
14656 {
14657 const char *name = dwarf_stack_op_name (op);
14658
14659 if (name)
14660 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14661 name);
14662 else
14663 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14664 op);
14665 }
14666
14667 return (stack[stacki]);
14668 }
14669
14670 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14671 outside of the allocated space. Also enforce minimum>0. */
14672 if (stacki >= ARRAY_SIZE (stack) - 1)
14673 {
14674 complaint (&symfile_complaints,
14675 _("location description stack overflow"));
14676 return 0;
14677 }
14678
14679 if (stacki <= 0)
14680 {
14681 complaint (&symfile_complaints,
14682 _("location description stack underflow"));
14683 return 0;
14684 }
14685 }
14686 return (stack[stacki]);
14687 }
14688
14689 /* memory allocation interface */
14690
14691 static struct dwarf_block *
14692 dwarf_alloc_block (struct dwarf2_cu *cu)
14693 {
14694 struct dwarf_block *blk;
14695
14696 blk = (struct dwarf_block *)
14697 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14698 return (blk);
14699 }
14700
14701 static struct abbrev_info *
14702 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14703 {
14704 struct abbrev_info *abbrev;
14705
14706 abbrev = (struct abbrev_info *)
14707 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14708 memset (abbrev, 0, sizeof (struct abbrev_info));
14709 return (abbrev);
14710 }
14711
14712 static struct die_info *
14713 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14714 {
14715 struct die_info *die;
14716 size_t size = sizeof (struct die_info);
14717
14718 if (num_attrs > 1)
14719 size += (num_attrs - 1) * sizeof (struct attribute);
14720
14721 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14722 memset (die, 0, sizeof (struct die_info));
14723 return (die);
14724 }
14725
14726 \f
14727 /* Macro support. */
14728
14729 /* Return the full name of file number I in *LH's file name table.
14730 Use COMP_DIR as the name of the current directory of the
14731 compilation. The result is allocated using xmalloc; the caller is
14732 responsible for freeing it. */
14733 static char *
14734 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14735 {
14736 /* Is the file number a valid index into the line header's file name
14737 table? Remember that file numbers start with one, not zero. */
14738 if (1 <= file && file <= lh->num_file_names)
14739 {
14740 struct file_entry *fe = &lh->file_names[file - 1];
14741
14742 if (IS_ABSOLUTE_PATH (fe->name))
14743 return xstrdup (fe->name);
14744 else
14745 {
14746 const char *dir;
14747 int dir_len;
14748 char *full_name;
14749
14750 if (fe->dir_index)
14751 dir = lh->include_dirs[fe->dir_index - 1];
14752 else
14753 dir = comp_dir;
14754
14755 if (dir)
14756 {
14757 dir_len = strlen (dir);
14758 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14759 strcpy (full_name, dir);
14760 full_name[dir_len] = '/';
14761 strcpy (full_name + dir_len + 1, fe->name);
14762 return full_name;
14763 }
14764 else
14765 return xstrdup (fe->name);
14766 }
14767 }
14768 else
14769 {
14770 /* The compiler produced a bogus file number. We can at least
14771 record the macro definitions made in the file, even if we
14772 won't be able to find the file by name. */
14773 char fake_name[80];
14774
14775 sprintf (fake_name, "<bad macro file number %d>", file);
14776
14777 complaint (&symfile_complaints,
14778 _("bad file number in macro information (%d)"),
14779 file);
14780
14781 return xstrdup (fake_name);
14782 }
14783 }
14784
14785
14786 static struct macro_source_file *
14787 macro_start_file (int file, int line,
14788 struct macro_source_file *current_file,
14789 const char *comp_dir,
14790 struct line_header *lh, struct objfile *objfile)
14791 {
14792 /* The full name of this source file. */
14793 char *full_name = file_full_name (file, lh, comp_dir);
14794
14795 /* We don't create a macro table for this compilation unit
14796 at all until we actually get a filename. */
14797 if (! pending_macros)
14798 pending_macros = new_macro_table (&objfile->objfile_obstack,
14799 objfile->macro_cache);
14800
14801 if (! current_file)
14802 /* If we have no current file, then this must be the start_file
14803 directive for the compilation unit's main source file. */
14804 current_file = macro_set_main (pending_macros, full_name);
14805 else
14806 current_file = macro_include (current_file, line, full_name);
14807
14808 xfree (full_name);
14809
14810 return current_file;
14811 }
14812
14813
14814 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14815 followed by a null byte. */
14816 static char *
14817 copy_string (const char *buf, int len)
14818 {
14819 char *s = xmalloc (len + 1);
14820
14821 memcpy (s, buf, len);
14822 s[len] = '\0';
14823 return s;
14824 }
14825
14826
14827 static const char *
14828 consume_improper_spaces (const char *p, const char *body)
14829 {
14830 if (*p == ' ')
14831 {
14832 complaint (&symfile_complaints,
14833 _("macro definition contains spaces "
14834 "in formal argument list:\n`%s'"),
14835 body);
14836
14837 while (*p == ' ')
14838 p++;
14839 }
14840
14841 return p;
14842 }
14843
14844
14845 static void
14846 parse_macro_definition (struct macro_source_file *file, int line,
14847 const char *body)
14848 {
14849 const char *p;
14850
14851 /* The body string takes one of two forms. For object-like macro
14852 definitions, it should be:
14853
14854 <macro name> " " <definition>
14855
14856 For function-like macro definitions, it should be:
14857
14858 <macro name> "() " <definition>
14859 or
14860 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14861
14862 Spaces may appear only where explicitly indicated, and in the
14863 <definition>.
14864
14865 The Dwarf 2 spec says that an object-like macro's name is always
14866 followed by a space, but versions of GCC around March 2002 omit
14867 the space when the macro's definition is the empty string.
14868
14869 The Dwarf 2 spec says that there should be no spaces between the
14870 formal arguments in a function-like macro's formal argument list,
14871 but versions of GCC around March 2002 include spaces after the
14872 commas. */
14873
14874
14875 /* Find the extent of the macro name. The macro name is terminated
14876 by either a space or null character (for an object-like macro) or
14877 an opening paren (for a function-like macro). */
14878 for (p = body; *p; p++)
14879 if (*p == ' ' || *p == '(')
14880 break;
14881
14882 if (*p == ' ' || *p == '\0')
14883 {
14884 /* It's an object-like macro. */
14885 int name_len = p - body;
14886 char *name = copy_string (body, name_len);
14887 const char *replacement;
14888
14889 if (*p == ' ')
14890 replacement = body + name_len + 1;
14891 else
14892 {
14893 dwarf2_macro_malformed_definition_complaint (body);
14894 replacement = body + name_len;
14895 }
14896
14897 macro_define_object (file, line, name, replacement);
14898
14899 xfree (name);
14900 }
14901 else if (*p == '(')
14902 {
14903 /* It's a function-like macro. */
14904 char *name = copy_string (body, p - body);
14905 int argc = 0;
14906 int argv_size = 1;
14907 char **argv = xmalloc (argv_size * sizeof (*argv));
14908
14909 p++;
14910
14911 p = consume_improper_spaces (p, body);
14912
14913 /* Parse the formal argument list. */
14914 while (*p && *p != ')')
14915 {
14916 /* Find the extent of the current argument name. */
14917 const char *arg_start = p;
14918
14919 while (*p && *p != ',' && *p != ')' && *p != ' ')
14920 p++;
14921
14922 if (! *p || p == arg_start)
14923 dwarf2_macro_malformed_definition_complaint (body);
14924 else
14925 {
14926 /* Make sure argv has room for the new argument. */
14927 if (argc >= argv_size)
14928 {
14929 argv_size *= 2;
14930 argv = xrealloc (argv, argv_size * sizeof (*argv));
14931 }
14932
14933 argv[argc++] = copy_string (arg_start, p - arg_start);
14934 }
14935
14936 p = consume_improper_spaces (p, body);
14937
14938 /* Consume the comma, if present. */
14939 if (*p == ',')
14940 {
14941 p++;
14942
14943 p = consume_improper_spaces (p, body);
14944 }
14945 }
14946
14947 if (*p == ')')
14948 {
14949 p++;
14950
14951 if (*p == ' ')
14952 /* Perfectly formed definition, no complaints. */
14953 macro_define_function (file, line, name,
14954 argc, (const char **) argv,
14955 p + 1);
14956 else if (*p == '\0')
14957 {
14958 /* Complain, but do define it. */
14959 dwarf2_macro_malformed_definition_complaint (body);
14960 macro_define_function (file, line, name,
14961 argc, (const char **) argv,
14962 p);
14963 }
14964 else
14965 /* Just complain. */
14966 dwarf2_macro_malformed_definition_complaint (body);
14967 }
14968 else
14969 /* Just complain. */
14970 dwarf2_macro_malformed_definition_complaint (body);
14971
14972 xfree (name);
14973 {
14974 int i;
14975
14976 for (i = 0; i < argc; i++)
14977 xfree (argv[i]);
14978 }
14979 xfree (argv);
14980 }
14981 else
14982 dwarf2_macro_malformed_definition_complaint (body);
14983 }
14984
14985 /* Skip some bytes from BYTES according to the form given in FORM.
14986 Returns the new pointer. */
14987
14988 static gdb_byte *
14989 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
14990 enum dwarf_form form,
14991 unsigned int offset_size,
14992 struct dwarf2_section_info *section)
14993 {
14994 unsigned int bytes_read;
14995
14996 switch (form)
14997 {
14998 case DW_FORM_data1:
14999 case DW_FORM_flag:
15000 ++bytes;
15001 break;
15002
15003 case DW_FORM_data2:
15004 bytes += 2;
15005 break;
15006
15007 case DW_FORM_data4:
15008 bytes += 4;
15009 break;
15010
15011 case DW_FORM_data8:
15012 bytes += 8;
15013 break;
15014
15015 case DW_FORM_string:
15016 read_direct_string (abfd, bytes, &bytes_read);
15017 bytes += bytes_read;
15018 break;
15019
15020 case DW_FORM_sec_offset:
15021 case DW_FORM_strp:
15022 bytes += offset_size;
15023 break;
15024
15025 case DW_FORM_block:
15026 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15027 bytes += bytes_read;
15028 break;
15029
15030 case DW_FORM_block1:
15031 bytes += 1 + read_1_byte (abfd, bytes);
15032 break;
15033 case DW_FORM_block2:
15034 bytes += 2 + read_2_bytes (abfd, bytes);
15035 break;
15036 case DW_FORM_block4:
15037 bytes += 4 + read_4_bytes (abfd, bytes);
15038 break;
15039
15040 case DW_FORM_sdata:
15041 case DW_FORM_udata:
15042 bytes = skip_leb128 (abfd, bytes);
15043 break;
15044
15045 default:
15046 {
15047 complain:
15048 complaint (&symfile_complaints,
15049 _("invalid form 0x%x in `%s'"),
15050 form,
15051 section->asection->name);
15052 return NULL;
15053 }
15054 }
15055
15056 return bytes;
15057 }
15058
15059 /* A helper for dwarf_decode_macros that handles skipping an unknown
15060 opcode. Returns an updated pointer to the macro data buffer; or,
15061 on error, issues a complaint and returns NULL. */
15062
15063 static gdb_byte *
15064 skip_unknown_opcode (unsigned int opcode,
15065 gdb_byte **opcode_definitions,
15066 gdb_byte *mac_ptr,
15067 bfd *abfd,
15068 unsigned int offset_size,
15069 struct dwarf2_section_info *section)
15070 {
15071 unsigned int bytes_read, i;
15072 unsigned long arg;
15073 gdb_byte *defn;
15074
15075 if (opcode_definitions[opcode] == NULL)
15076 {
15077 complaint (&symfile_complaints,
15078 _("unrecognized DW_MACFINO opcode 0x%x"),
15079 opcode);
15080 return NULL;
15081 }
15082
15083 defn = opcode_definitions[opcode];
15084 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15085 defn += bytes_read;
15086
15087 for (i = 0; i < arg; ++i)
15088 {
15089 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15090 if (mac_ptr == NULL)
15091 {
15092 /* skip_form_bytes already issued the complaint. */
15093 return NULL;
15094 }
15095 }
15096
15097 return mac_ptr;
15098 }
15099
15100 /* A helper function which parses the header of a macro section.
15101 If the macro section is the extended (for now called "GNU") type,
15102 then this updates *OFFSET_SIZE. Returns a pointer to just after
15103 the header, or issues a complaint and returns NULL on error. */
15104
15105 static gdb_byte *
15106 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15107 bfd *abfd,
15108 gdb_byte *mac_ptr,
15109 unsigned int *offset_size,
15110 int section_is_gnu)
15111 {
15112 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15113
15114 if (section_is_gnu)
15115 {
15116 unsigned int version, flags;
15117
15118 version = read_2_bytes (abfd, mac_ptr);
15119 if (version != 4)
15120 {
15121 complaint (&symfile_complaints,
15122 _("unrecognized version `%d' in .debug_macro section"),
15123 version);
15124 return NULL;
15125 }
15126 mac_ptr += 2;
15127
15128 flags = read_1_byte (abfd, mac_ptr);
15129 ++mac_ptr;
15130 *offset_size = (flags & 1) ? 8 : 4;
15131
15132 if ((flags & 2) != 0)
15133 /* We don't need the line table offset. */
15134 mac_ptr += *offset_size;
15135
15136 /* Vendor opcode descriptions. */
15137 if ((flags & 4) != 0)
15138 {
15139 unsigned int i, count;
15140
15141 count = read_1_byte (abfd, mac_ptr);
15142 ++mac_ptr;
15143 for (i = 0; i < count; ++i)
15144 {
15145 unsigned int opcode, bytes_read;
15146 unsigned long arg;
15147
15148 opcode = read_1_byte (abfd, mac_ptr);
15149 ++mac_ptr;
15150 opcode_definitions[opcode] = mac_ptr;
15151 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15152 mac_ptr += bytes_read;
15153 mac_ptr += arg;
15154 }
15155 }
15156 }
15157
15158 return mac_ptr;
15159 }
15160
15161 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15162 including DW_MACRO_GNU_transparent_include. */
15163
15164 static void
15165 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15166 struct macro_source_file *current_file,
15167 struct line_header *lh, char *comp_dir,
15168 struct dwarf2_section_info *section,
15169 int section_is_gnu,
15170 unsigned int offset_size,
15171 struct objfile *objfile,
15172 htab_t include_hash)
15173 {
15174 enum dwarf_macro_record_type macinfo_type;
15175 int at_commandline;
15176 gdb_byte *opcode_definitions[256];
15177
15178 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15179 &offset_size, section_is_gnu);
15180 if (mac_ptr == NULL)
15181 {
15182 /* We already issued a complaint. */
15183 return;
15184 }
15185
15186 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15187 GDB is still reading the definitions from command line. First
15188 DW_MACINFO_start_file will need to be ignored as it was already executed
15189 to create CURRENT_FILE for the main source holding also the command line
15190 definitions. On first met DW_MACINFO_start_file this flag is reset to
15191 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15192
15193 at_commandline = 1;
15194
15195 do
15196 {
15197 /* Do we at least have room for a macinfo type byte? */
15198 if (mac_ptr >= mac_end)
15199 {
15200 dwarf2_macros_too_long_complaint (section);
15201 break;
15202 }
15203
15204 macinfo_type = read_1_byte (abfd, mac_ptr);
15205 mac_ptr++;
15206
15207 /* Note that we rely on the fact that the corresponding GNU and
15208 DWARF constants are the same. */
15209 switch (macinfo_type)
15210 {
15211 /* A zero macinfo type indicates the end of the macro
15212 information. */
15213 case 0:
15214 break;
15215
15216 case DW_MACRO_GNU_define:
15217 case DW_MACRO_GNU_undef:
15218 case DW_MACRO_GNU_define_indirect:
15219 case DW_MACRO_GNU_undef_indirect:
15220 {
15221 unsigned int bytes_read;
15222 int line;
15223 char *body;
15224 int is_define;
15225
15226 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15227 mac_ptr += bytes_read;
15228
15229 if (macinfo_type == DW_MACRO_GNU_define
15230 || macinfo_type == DW_MACRO_GNU_undef)
15231 {
15232 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15233 mac_ptr += bytes_read;
15234 }
15235 else
15236 {
15237 LONGEST str_offset;
15238
15239 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15240 mac_ptr += offset_size;
15241
15242 body = read_indirect_string_at_offset (abfd, str_offset);
15243 }
15244
15245 is_define = (macinfo_type == DW_MACRO_GNU_define
15246 || macinfo_type == DW_MACRO_GNU_define_indirect);
15247 if (! current_file)
15248 {
15249 /* DWARF violation as no main source is present. */
15250 complaint (&symfile_complaints,
15251 _("debug info with no main source gives macro %s "
15252 "on line %d: %s"),
15253 is_define ? _("definition") : _("undefinition"),
15254 line, body);
15255 break;
15256 }
15257 if ((line == 0 && !at_commandline)
15258 || (line != 0 && at_commandline))
15259 complaint (&symfile_complaints,
15260 _("debug info gives %s macro %s with %s line %d: %s"),
15261 at_commandline ? _("command-line") : _("in-file"),
15262 is_define ? _("definition") : _("undefinition"),
15263 line == 0 ? _("zero") : _("non-zero"), line, body);
15264
15265 if (is_define)
15266 parse_macro_definition (current_file, line, body);
15267 else
15268 {
15269 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15270 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15271 macro_undef (current_file, line, body);
15272 }
15273 }
15274 break;
15275
15276 case DW_MACRO_GNU_start_file:
15277 {
15278 unsigned int bytes_read;
15279 int line, file;
15280
15281 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15282 mac_ptr += bytes_read;
15283 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15284 mac_ptr += bytes_read;
15285
15286 if ((line == 0 && !at_commandline)
15287 || (line != 0 && at_commandline))
15288 complaint (&symfile_complaints,
15289 _("debug info gives source %d included "
15290 "from %s at %s line %d"),
15291 file, at_commandline ? _("command-line") : _("file"),
15292 line == 0 ? _("zero") : _("non-zero"), line);
15293
15294 if (at_commandline)
15295 {
15296 /* This DW_MACRO_GNU_start_file was executed in the
15297 pass one. */
15298 at_commandline = 0;
15299 }
15300 else
15301 current_file = macro_start_file (file, line,
15302 current_file, comp_dir,
15303 lh, objfile);
15304 }
15305 break;
15306
15307 case DW_MACRO_GNU_end_file:
15308 if (! current_file)
15309 complaint (&symfile_complaints,
15310 _("macro debug info has an unmatched "
15311 "`close_file' directive"));
15312 else
15313 {
15314 current_file = current_file->included_by;
15315 if (! current_file)
15316 {
15317 enum dwarf_macro_record_type next_type;
15318
15319 /* GCC circa March 2002 doesn't produce the zero
15320 type byte marking the end of the compilation
15321 unit. Complain if it's not there, but exit no
15322 matter what. */
15323
15324 /* Do we at least have room for a macinfo type byte? */
15325 if (mac_ptr >= mac_end)
15326 {
15327 dwarf2_macros_too_long_complaint (section);
15328 return;
15329 }
15330
15331 /* We don't increment mac_ptr here, so this is just
15332 a look-ahead. */
15333 next_type = read_1_byte (abfd, mac_ptr);
15334 if (next_type != 0)
15335 complaint (&symfile_complaints,
15336 _("no terminating 0-type entry for "
15337 "macros in `.debug_macinfo' section"));
15338
15339 return;
15340 }
15341 }
15342 break;
15343
15344 case DW_MACRO_GNU_transparent_include:
15345 {
15346 LONGEST offset;
15347 void **slot;
15348
15349 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15350 mac_ptr += offset_size;
15351
15352 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15353 if (*slot != NULL)
15354 {
15355 /* This has actually happened; see
15356 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
15357 complaint (&symfile_complaints,
15358 _("recursive DW_MACRO_GNU_transparent_include in "
15359 ".debug_macro section"));
15360 }
15361 else
15362 {
15363 *slot = mac_ptr;
15364
15365 dwarf_decode_macro_bytes (abfd,
15366 section->buffer + offset,
15367 mac_end, current_file,
15368 lh, comp_dir,
15369 section, section_is_gnu,
15370 offset_size, objfile, include_hash);
15371
15372 htab_remove_elt (include_hash, mac_ptr);
15373 }
15374 }
15375 break;
15376
15377 case DW_MACINFO_vendor_ext:
15378 if (!section_is_gnu)
15379 {
15380 unsigned int bytes_read;
15381 int constant;
15382
15383 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15384 mac_ptr += bytes_read;
15385 read_direct_string (abfd, mac_ptr, &bytes_read);
15386 mac_ptr += bytes_read;
15387
15388 /* We don't recognize any vendor extensions. */
15389 break;
15390 }
15391 /* FALLTHROUGH */
15392
15393 default:
15394 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15395 mac_ptr, abfd, offset_size,
15396 section);
15397 if (mac_ptr == NULL)
15398 return;
15399 break;
15400 }
15401 } while (macinfo_type != 0);
15402 }
15403
15404 static void
15405 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15406 char *comp_dir, bfd *abfd,
15407 struct dwarf2_cu *cu,
15408 struct dwarf2_section_info *section,
15409 int section_is_gnu)
15410 {
15411 struct objfile *objfile = dwarf2_per_objfile->objfile;
15412 gdb_byte *mac_ptr, *mac_end;
15413 struct macro_source_file *current_file = 0;
15414 enum dwarf_macro_record_type macinfo_type;
15415 unsigned int offset_size = cu->header.offset_size;
15416 gdb_byte *opcode_definitions[256];
15417 struct cleanup *cleanup;
15418 htab_t include_hash;
15419 void **slot;
15420
15421 dwarf2_read_section (objfile, section);
15422 if (section->buffer == NULL)
15423 {
15424 complaint (&symfile_complaints, _("missing %s section"),
15425 section->asection->name);
15426 return;
15427 }
15428
15429 /* First pass: Find the name of the base filename.
15430 This filename is needed in order to process all macros whose definition
15431 (or undefinition) comes from the command line. These macros are defined
15432 before the first DW_MACINFO_start_file entry, and yet still need to be
15433 associated to the base file.
15434
15435 To determine the base file name, we scan the macro definitions until we
15436 reach the first DW_MACINFO_start_file entry. We then initialize
15437 CURRENT_FILE accordingly so that any macro definition found before the
15438 first DW_MACINFO_start_file can still be associated to the base file. */
15439
15440 mac_ptr = section->buffer + offset;
15441 mac_end = section->buffer + section->size;
15442
15443 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15444 &offset_size, section_is_gnu);
15445 if (mac_ptr == NULL)
15446 {
15447 /* We already issued a complaint. */
15448 return;
15449 }
15450
15451 do
15452 {
15453 /* Do we at least have room for a macinfo type byte? */
15454 if (mac_ptr >= mac_end)
15455 {
15456 /* Complaint is printed during the second pass as GDB will probably
15457 stop the first pass earlier upon finding
15458 DW_MACINFO_start_file. */
15459 break;
15460 }
15461
15462 macinfo_type = read_1_byte (abfd, mac_ptr);
15463 mac_ptr++;
15464
15465 /* Note that we rely on the fact that the corresponding GNU and
15466 DWARF constants are the same. */
15467 switch (macinfo_type)
15468 {
15469 /* A zero macinfo type indicates the end of the macro
15470 information. */
15471 case 0:
15472 break;
15473
15474 case DW_MACRO_GNU_define:
15475 case DW_MACRO_GNU_undef:
15476 /* Only skip the data by MAC_PTR. */
15477 {
15478 unsigned int bytes_read;
15479
15480 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15481 mac_ptr += bytes_read;
15482 read_direct_string (abfd, mac_ptr, &bytes_read);
15483 mac_ptr += bytes_read;
15484 }
15485 break;
15486
15487 case DW_MACRO_GNU_start_file:
15488 {
15489 unsigned int bytes_read;
15490 int line, file;
15491
15492 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15493 mac_ptr += bytes_read;
15494 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15495 mac_ptr += bytes_read;
15496
15497 current_file = macro_start_file (file, line, current_file,
15498 comp_dir, lh, objfile);
15499 }
15500 break;
15501
15502 case DW_MACRO_GNU_end_file:
15503 /* No data to skip by MAC_PTR. */
15504 break;
15505
15506 case DW_MACRO_GNU_define_indirect:
15507 case DW_MACRO_GNU_undef_indirect:
15508 {
15509 unsigned int bytes_read;
15510
15511 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15512 mac_ptr += bytes_read;
15513 mac_ptr += offset_size;
15514 }
15515 break;
15516
15517 case DW_MACRO_GNU_transparent_include:
15518 /* Note that, according to the spec, a transparent include
15519 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15520 skip this opcode. */
15521 mac_ptr += offset_size;
15522 break;
15523
15524 case DW_MACINFO_vendor_ext:
15525 /* Only skip the data by MAC_PTR. */
15526 if (!section_is_gnu)
15527 {
15528 unsigned int bytes_read;
15529
15530 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15531 mac_ptr += bytes_read;
15532 read_direct_string (abfd, mac_ptr, &bytes_read);
15533 mac_ptr += bytes_read;
15534 }
15535 /* FALLTHROUGH */
15536
15537 default:
15538 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15539 mac_ptr, abfd, offset_size,
15540 section);
15541 if (mac_ptr == NULL)
15542 return;
15543 break;
15544 }
15545 } while (macinfo_type != 0 && current_file == NULL);
15546
15547 /* Second pass: Process all entries.
15548
15549 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15550 command-line macro definitions/undefinitions. This flag is unset when we
15551 reach the first DW_MACINFO_start_file entry. */
15552
15553 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
15554 NULL, xcalloc, xfree);
15555 cleanup = make_cleanup_htab_delete (include_hash);
15556 mac_ptr = section->buffer + offset;
15557 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15558 *slot = mac_ptr;
15559 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
15560 current_file, lh, comp_dir, section, section_is_gnu,
15561 offset_size, objfile, include_hash);
15562 do_cleanups (cleanup);
15563 }
15564
15565 /* Check if the attribute's form is a DW_FORM_block*
15566 if so return true else false. */
15567 static int
15568 attr_form_is_block (struct attribute *attr)
15569 {
15570 return (attr == NULL ? 0 :
15571 attr->form == DW_FORM_block1
15572 || attr->form == DW_FORM_block2
15573 || attr->form == DW_FORM_block4
15574 || attr->form == DW_FORM_block
15575 || attr->form == DW_FORM_exprloc);
15576 }
15577
15578 /* Return non-zero if ATTR's value is a section offset --- classes
15579 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15580 You may use DW_UNSND (attr) to retrieve such offsets.
15581
15582 Section 7.5.4, "Attribute Encodings", explains that no attribute
15583 may have a value that belongs to more than one of these classes; it
15584 would be ambiguous if we did, because we use the same forms for all
15585 of them. */
15586 static int
15587 attr_form_is_section_offset (struct attribute *attr)
15588 {
15589 return (attr->form == DW_FORM_data4
15590 || attr->form == DW_FORM_data8
15591 || attr->form == DW_FORM_sec_offset);
15592 }
15593
15594
15595 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15596 zero otherwise. When this function returns true, you can apply
15597 dwarf2_get_attr_constant_value to it.
15598
15599 However, note that for some attributes you must check
15600 attr_form_is_section_offset before using this test. DW_FORM_data4
15601 and DW_FORM_data8 are members of both the constant class, and of
15602 the classes that contain offsets into other debug sections
15603 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15604 that, if an attribute's can be either a constant or one of the
15605 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15606 taken as section offsets, not constants. */
15607 static int
15608 attr_form_is_constant (struct attribute *attr)
15609 {
15610 switch (attr->form)
15611 {
15612 case DW_FORM_sdata:
15613 case DW_FORM_udata:
15614 case DW_FORM_data1:
15615 case DW_FORM_data2:
15616 case DW_FORM_data4:
15617 case DW_FORM_data8:
15618 return 1;
15619 default:
15620 return 0;
15621 }
15622 }
15623
15624 /* A helper function that fills in a dwarf2_loclist_baton. */
15625
15626 static void
15627 fill_in_loclist_baton (struct dwarf2_cu *cu,
15628 struct dwarf2_loclist_baton *baton,
15629 struct attribute *attr)
15630 {
15631 dwarf2_read_section (dwarf2_per_objfile->objfile,
15632 &dwarf2_per_objfile->loc);
15633
15634 baton->per_cu = cu->per_cu;
15635 gdb_assert (baton->per_cu);
15636 /* We don't know how long the location list is, but make sure we
15637 don't run off the edge of the section. */
15638 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15639 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15640 baton->base_address = cu->base_address;
15641 }
15642
15643 static void
15644 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15645 struct dwarf2_cu *cu)
15646 {
15647 struct objfile *objfile = dwarf2_per_objfile->objfile;
15648
15649 if (attr_form_is_section_offset (attr)
15650 /* ".debug_loc" may not exist at all, or the offset may be outside
15651 the section. If so, fall through to the complaint in the
15652 other branch. */
15653 && DW_UNSND (attr) < dwarf2_section_size (objfile,
15654 &dwarf2_per_objfile->loc))
15655 {
15656 struct dwarf2_loclist_baton *baton;
15657
15658 baton = obstack_alloc (&objfile->objfile_obstack,
15659 sizeof (struct dwarf2_loclist_baton));
15660
15661 fill_in_loclist_baton (cu, baton, attr);
15662
15663 if (cu->base_known == 0)
15664 complaint (&symfile_complaints,
15665 _("Location list used without "
15666 "specifying the CU base address."));
15667
15668 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15669 SYMBOL_LOCATION_BATON (sym) = baton;
15670 }
15671 else
15672 {
15673 struct dwarf2_locexpr_baton *baton;
15674
15675 baton = obstack_alloc (&objfile->objfile_obstack,
15676 sizeof (struct dwarf2_locexpr_baton));
15677 baton->per_cu = cu->per_cu;
15678 gdb_assert (baton->per_cu);
15679
15680 if (attr_form_is_block (attr))
15681 {
15682 /* Note that we're just copying the block's data pointer
15683 here, not the actual data. We're still pointing into the
15684 info_buffer for SYM's objfile; right now we never release
15685 that buffer, but when we do clean up properly this may
15686 need to change. */
15687 baton->size = DW_BLOCK (attr)->size;
15688 baton->data = DW_BLOCK (attr)->data;
15689 }
15690 else
15691 {
15692 dwarf2_invalid_attrib_class_complaint ("location description",
15693 SYMBOL_NATURAL_NAME (sym));
15694 baton->size = 0;
15695 }
15696
15697 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15698 SYMBOL_LOCATION_BATON (sym) = baton;
15699 }
15700 }
15701
15702 /* Return the OBJFILE associated with the compilation unit CU. If CU
15703 came from a separate debuginfo file, then the master objfile is
15704 returned. */
15705
15706 struct objfile *
15707 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15708 {
15709 struct objfile *objfile = per_cu->objfile;
15710
15711 /* Return the master objfile, so that we can report and look up the
15712 correct file containing this variable. */
15713 if (objfile->separate_debug_objfile_backlink)
15714 objfile = objfile->separate_debug_objfile_backlink;
15715
15716 return objfile;
15717 }
15718
15719 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15720 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15721 CU_HEADERP first. */
15722
15723 static const struct comp_unit_head *
15724 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15725 struct dwarf2_per_cu_data *per_cu)
15726 {
15727 struct objfile *objfile;
15728 struct dwarf2_per_objfile *per_objfile;
15729 gdb_byte *info_ptr;
15730
15731 if (per_cu->cu)
15732 return &per_cu->cu->header;
15733
15734 objfile = per_cu->objfile;
15735 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15736 info_ptr = per_objfile->info.buffer + per_cu->offset;
15737
15738 memset (cu_headerp, 0, sizeof (*cu_headerp));
15739 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15740
15741 return cu_headerp;
15742 }
15743
15744 /* Return the address size given in the compilation unit header for CU. */
15745
15746 int
15747 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15748 {
15749 struct comp_unit_head cu_header_local;
15750 const struct comp_unit_head *cu_headerp;
15751
15752 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15753
15754 return cu_headerp->addr_size;
15755 }
15756
15757 /* Return the offset size given in the compilation unit header for CU. */
15758
15759 int
15760 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15761 {
15762 struct comp_unit_head cu_header_local;
15763 const struct comp_unit_head *cu_headerp;
15764
15765 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15766
15767 return cu_headerp->offset_size;
15768 }
15769
15770 /* See its dwarf2loc.h declaration. */
15771
15772 int
15773 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15774 {
15775 struct comp_unit_head cu_header_local;
15776 const struct comp_unit_head *cu_headerp;
15777
15778 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15779
15780 if (cu_headerp->version == 2)
15781 return cu_headerp->addr_size;
15782 else
15783 return cu_headerp->offset_size;
15784 }
15785
15786 /* Return the text offset of the CU. The returned offset comes from
15787 this CU's objfile. If this objfile came from a separate debuginfo
15788 file, then the offset may be different from the corresponding
15789 offset in the parent objfile. */
15790
15791 CORE_ADDR
15792 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15793 {
15794 struct objfile *objfile = per_cu->objfile;
15795
15796 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15797 }
15798
15799 /* Locate the .debug_info compilation unit from CU's objfile which contains
15800 the DIE at OFFSET. Raises an error on failure. */
15801
15802 static struct dwarf2_per_cu_data *
15803 dwarf2_find_containing_comp_unit (unsigned int offset,
15804 struct objfile *objfile)
15805 {
15806 struct dwarf2_per_cu_data *this_cu;
15807 int low, high;
15808
15809 low = 0;
15810 high = dwarf2_per_objfile->n_comp_units - 1;
15811 while (high > low)
15812 {
15813 int mid = low + (high - low) / 2;
15814
15815 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15816 high = mid;
15817 else
15818 low = mid + 1;
15819 }
15820 gdb_assert (low == high);
15821 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15822 {
15823 if (low == 0)
15824 error (_("Dwarf Error: could not find partial DIE containing "
15825 "offset 0x%lx [in module %s]"),
15826 (long) offset, bfd_get_filename (objfile->obfd));
15827
15828 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15829 return dwarf2_per_objfile->all_comp_units[low-1];
15830 }
15831 else
15832 {
15833 this_cu = dwarf2_per_objfile->all_comp_units[low];
15834 if (low == dwarf2_per_objfile->n_comp_units - 1
15835 && offset >= this_cu->offset + this_cu->length)
15836 error (_("invalid dwarf2 offset %u"), offset);
15837 gdb_assert (offset < this_cu->offset + this_cu->length);
15838 return this_cu;
15839 }
15840 }
15841
15842 /* Initialize dwarf2_cu CU, owned by PER_CU. */
15843
15844 static void
15845 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
15846 {
15847 memset (cu, 0, sizeof (*cu));
15848 per_cu->cu = cu;
15849 cu->per_cu = per_cu;
15850 cu->objfile = per_cu->objfile;
15851 obstack_init (&cu->comp_unit_obstack);
15852 }
15853
15854 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15855
15856 static void
15857 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15858 {
15859 struct attribute *attr;
15860
15861 /* Set the language we're debugging. */
15862 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15863 if (attr)
15864 set_cu_language (DW_UNSND (attr), cu);
15865 else
15866 {
15867 cu->language = language_minimal;
15868 cu->language_defn = language_def (cu->language);
15869 }
15870 }
15871
15872 /* Release one cached compilation unit, CU. We unlink it from the tree
15873 of compilation units, but we don't remove it from the read_in_chain;
15874 the caller is responsible for that.
15875 NOTE: DATA is a void * because this function is also used as a
15876 cleanup routine. */
15877
15878 static void
15879 free_heap_comp_unit (void *data)
15880 {
15881 struct dwarf2_cu *cu = data;
15882
15883 gdb_assert (cu->per_cu != NULL);
15884 cu->per_cu->cu = NULL;
15885 cu->per_cu = NULL;
15886
15887 obstack_free (&cu->comp_unit_obstack, NULL);
15888
15889 xfree (cu);
15890 }
15891
15892 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15893 when we're finished with it. We can't free the pointer itself, but be
15894 sure to unlink it from the cache. Also release any associated storage
15895 and perform cache maintenance.
15896
15897 Only used during partial symbol parsing. */
15898
15899 static void
15900 free_stack_comp_unit (void *data)
15901 {
15902 struct dwarf2_cu *cu = data;
15903
15904 gdb_assert (cu->per_cu != NULL);
15905 cu->per_cu->cu = NULL;
15906 cu->per_cu = NULL;
15907
15908 obstack_free (&cu->comp_unit_obstack, NULL);
15909 cu->partial_dies = NULL;
15910
15911 /* The previous code only did this if per_cu != NULL.
15912 But that would always succeed, so now we just unconditionally do
15913 the aging. This seems like the wrong place to do such aging,
15914 but cleaning that up is left for later. */
15915 age_cached_comp_units ();
15916 }
15917
15918 /* Free all cached compilation units. */
15919
15920 static void
15921 free_cached_comp_units (void *data)
15922 {
15923 struct dwarf2_per_cu_data *per_cu, **last_chain;
15924
15925 per_cu = dwarf2_per_objfile->read_in_chain;
15926 last_chain = &dwarf2_per_objfile->read_in_chain;
15927 while (per_cu != NULL)
15928 {
15929 struct dwarf2_per_cu_data *next_cu;
15930
15931 next_cu = per_cu->cu->read_in_chain;
15932
15933 free_heap_comp_unit (per_cu->cu);
15934 *last_chain = next_cu;
15935
15936 per_cu = next_cu;
15937 }
15938 }
15939
15940 /* Increase the age counter on each cached compilation unit, and free
15941 any that are too old. */
15942
15943 static void
15944 age_cached_comp_units (void)
15945 {
15946 struct dwarf2_per_cu_data *per_cu, **last_chain;
15947
15948 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15949 per_cu = dwarf2_per_objfile->read_in_chain;
15950 while (per_cu != NULL)
15951 {
15952 per_cu->cu->last_used ++;
15953 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
15954 dwarf2_mark (per_cu->cu);
15955 per_cu = per_cu->cu->read_in_chain;
15956 }
15957
15958 per_cu = dwarf2_per_objfile->read_in_chain;
15959 last_chain = &dwarf2_per_objfile->read_in_chain;
15960 while (per_cu != NULL)
15961 {
15962 struct dwarf2_per_cu_data *next_cu;
15963
15964 next_cu = per_cu->cu->read_in_chain;
15965
15966 if (!per_cu->cu->mark)
15967 {
15968 free_heap_comp_unit (per_cu->cu);
15969 *last_chain = next_cu;
15970 }
15971 else
15972 last_chain = &per_cu->cu->read_in_chain;
15973
15974 per_cu = next_cu;
15975 }
15976 }
15977
15978 /* Remove a single compilation unit from the cache. */
15979
15980 static void
15981 free_one_cached_comp_unit (void *target_cu)
15982 {
15983 struct dwarf2_per_cu_data *per_cu, **last_chain;
15984
15985 per_cu = dwarf2_per_objfile->read_in_chain;
15986 last_chain = &dwarf2_per_objfile->read_in_chain;
15987 while (per_cu != NULL)
15988 {
15989 struct dwarf2_per_cu_data *next_cu;
15990
15991 next_cu = per_cu->cu->read_in_chain;
15992
15993 if (per_cu->cu == target_cu)
15994 {
15995 free_heap_comp_unit (per_cu->cu);
15996 *last_chain = next_cu;
15997 break;
15998 }
15999 else
16000 last_chain = &per_cu->cu->read_in_chain;
16001
16002 per_cu = next_cu;
16003 }
16004 }
16005
16006 /* Release all extra memory associated with OBJFILE. */
16007
16008 void
16009 dwarf2_free_objfile (struct objfile *objfile)
16010 {
16011 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16012
16013 if (dwarf2_per_objfile == NULL)
16014 return;
16015
16016 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16017 free_cached_comp_units (NULL);
16018
16019 if (dwarf2_per_objfile->quick_file_names_table)
16020 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16021
16022 /* Everything else should be on the objfile obstack. */
16023 }
16024
16025 /* A pair of DIE offset and GDB type pointer. We store these
16026 in a hash table separate from the DIEs, and preserve them
16027 when the DIEs are flushed out of cache. */
16028
16029 struct dwarf2_offset_and_type
16030 {
16031 unsigned int offset;
16032 struct type *type;
16033 };
16034
16035 /* Hash function for a dwarf2_offset_and_type. */
16036
16037 static hashval_t
16038 offset_and_type_hash (const void *item)
16039 {
16040 const struct dwarf2_offset_and_type *ofs = item;
16041
16042 return ofs->offset;
16043 }
16044
16045 /* Equality function for a dwarf2_offset_and_type. */
16046
16047 static int
16048 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16049 {
16050 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16051 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16052
16053 return ofs_lhs->offset == ofs_rhs->offset;
16054 }
16055
16056 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16057 table if necessary. For convenience, return TYPE.
16058
16059 The DIEs reading must have careful ordering to:
16060 * Not cause infite loops trying to read in DIEs as a prerequisite for
16061 reading current DIE.
16062 * Not trying to dereference contents of still incompletely read in types
16063 while reading in other DIEs.
16064 * Enable referencing still incompletely read in types just by a pointer to
16065 the type without accessing its fields.
16066
16067 Therefore caller should follow these rules:
16068 * Try to fetch any prerequisite types we may need to build this DIE type
16069 before building the type and calling set_die_type.
16070 * After building type call set_die_type for current DIE as soon as
16071 possible before fetching more types to complete the current type.
16072 * Make the type as complete as possible before fetching more types. */
16073
16074 static struct type *
16075 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16076 {
16077 struct dwarf2_offset_and_type **slot, ofs;
16078 struct objfile *objfile = cu->objfile;
16079 htab_t *type_hash_ptr;
16080
16081 /* For Ada types, make sure that the gnat-specific data is always
16082 initialized (if not already set). There are a few types where
16083 we should not be doing so, because the type-specific area is
16084 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16085 where the type-specific area is used to store the floatformat).
16086 But this is not a problem, because the gnat-specific information
16087 is actually not needed for these types. */
16088 if (need_gnat_info (cu)
16089 && TYPE_CODE (type) != TYPE_CODE_FUNC
16090 && TYPE_CODE (type) != TYPE_CODE_FLT
16091 && !HAVE_GNAT_AUX_INFO (type))
16092 INIT_GNAT_SPECIFIC (type);
16093
16094 if (cu->per_cu->debug_types_section)
16095 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16096 else
16097 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16098
16099 if (*type_hash_ptr == NULL)
16100 {
16101 *type_hash_ptr
16102 = htab_create_alloc_ex (127,
16103 offset_and_type_hash,
16104 offset_and_type_eq,
16105 NULL,
16106 &objfile->objfile_obstack,
16107 hashtab_obstack_allocate,
16108 dummy_obstack_deallocate);
16109 }
16110
16111 ofs.offset = die->offset;
16112 ofs.type = type;
16113 slot = (struct dwarf2_offset_and_type **)
16114 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16115 if (*slot)
16116 complaint (&symfile_complaints,
16117 _("A problem internal to GDB: DIE 0x%x has type already set"),
16118 die->offset);
16119 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16120 **slot = ofs;
16121 return type;
16122 }
16123
16124 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16125 table, or return NULL if the die does not have a saved type. */
16126
16127 static struct type *
16128 get_die_type_at_offset (unsigned int offset,
16129 struct dwarf2_per_cu_data *per_cu)
16130 {
16131 struct dwarf2_offset_and_type *slot, ofs;
16132 htab_t type_hash;
16133
16134 if (per_cu->debug_types_section)
16135 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16136 else
16137 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16138 if (type_hash == NULL)
16139 return NULL;
16140
16141 ofs.offset = offset;
16142 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16143 if (slot)
16144 return slot->type;
16145 else
16146 return NULL;
16147 }
16148
16149 /* Look up the type for DIE in the appropriate type_hash table,
16150 or return NULL if DIE does not have a saved type. */
16151
16152 static struct type *
16153 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16154 {
16155 return get_die_type_at_offset (die->offset, cu->per_cu);
16156 }
16157
16158 /* Add a dependence relationship from CU to REF_PER_CU. */
16159
16160 static void
16161 dwarf2_add_dependence (struct dwarf2_cu *cu,
16162 struct dwarf2_per_cu_data *ref_per_cu)
16163 {
16164 void **slot;
16165
16166 if (cu->dependencies == NULL)
16167 cu->dependencies
16168 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16169 NULL, &cu->comp_unit_obstack,
16170 hashtab_obstack_allocate,
16171 dummy_obstack_deallocate);
16172
16173 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16174 if (*slot == NULL)
16175 *slot = ref_per_cu;
16176 }
16177
16178 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16179 Set the mark field in every compilation unit in the
16180 cache that we must keep because we are keeping CU. */
16181
16182 static int
16183 dwarf2_mark_helper (void **slot, void *data)
16184 {
16185 struct dwarf2_per_cu_data *per_cu;
16186
16187 per_cu = (struct dwarf2_per_cu_data *) *slot;
16188
16189 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16190 reading of the chain. As such dependencies remain valid it is not much
16191 useful to track and undo them during QUIT cleanups. */
16192 if (per_cu->cu == NULL)
16193 return 1;
16194
16195 if (per_cu->cu->mark)
16196 return 1;
16197 per_cu->cu->mark = 1;
16198
16199 if (per_cu->cu->dependencies != NULL)
16200 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16201
16202 return 1;
16203 }
16204
16205 /* Set the mark field in CU and in every other compilation unit in the
16206 cache that we must keep because we are keeping CU. */
16207
16208 static void
16209 dwarf2_mark (struct dwarf2_cu *cu)
16210 {
16211 if (cu->mark)
16212 return;
16213 cu->mark = 1;
16214 if (cu->dependencies != NULL)
16215 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16216 }
16217
16218 static void
16219 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16220 {
16221 while (per_cu)
16222 {
16223 per_cu->cu->mark = 0;
16224 per_cu = per_cu->cu->read_in_chain;
16225 }
16226 }
16227
16228 /* Trivial hash function for partial_die_info: the hash value of a DIE
16229 is its offset in .debug_info for this objfile. */
16230
16231 static hashval_t
16232 partial_die_hash (const void *item)
16233 {
16234 const struct partial_die_info *part_die = item;
16235
16236 return part_die->offset;
16237 }
16238
16239 /* Trivial comparison function for partial_die_info structures: two DIEs
16240 are equal if they have the same offset. */
16241
16242 static int
16243 partial_die_eq (const void *item_lhs, const void *item_rhs)
16244 {
16245 const struct partial_die_info *part_die_lhs = item_lhs;
16246 const struct partial_die_info *part_die_rhs = item_rhs;
16247
16248 return part_die_lhs->offset == part_die_rhs->offset;
16249 }
16250
16251 static struct cmd_list_element *set_dwarf2_cmdlist;
16252 static struct cmd_list_element *show_dwarf2_cmdlist;
16253
16254 static void
16255 set_dwarf2_cmd (char *args, int from_tty)
16256 {
16257 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16258 }
16259
16260 static void
16261 show_dwarf2_cmd (char *args, int from_tty)
16262 {
16263 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16264 }
16265
16266 /* If section described by INFO was mmapped, munmap it now. */
16267
16268 static void
16269 munmap_section_buffer (struct dwarf2_section_info *info)
16270 {
16271 if (info->map_addr != NULL)
16272 {
16273 #ifdef HAVE_MMAP
16274 int res;
16275
16276 res = munmap (info->map_addr, info->map_len);
16277 gdb_assert (res == 0);
16278 #else
16279 /* Without HAVE_MMAP, we should never be here to begin with. */
16280 gdb_assert_not_reached ("no mmap support");
16281 #endif
16282 }
16283 }
16284
16285 /* munmap debug sections for OBJFILE, if necessary. */
16286
16287 static void
16288 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16289 {
16290 struct dwarf2_per_objfile *data = d;
16291 int ix;
16292 struct dwarf2_section_info *section;
16293
16294 /* This is sorted according to the order they're defined in to make it easier
16295 to keep in sync. */
16296 munmap_section_buffer (&data->info);
16297 munmap_section_buffer (&data->abbrev);
16298 munmap_section_buffer (&data->line);
16299 munmap_section_buffer (&data->loc);
16300 munmap_section_buffer (&data->macinfo);
16301 munmap_section_buffer (&data->macro);
16302 munmap_section_buffer (&data->str);
16303 munmap_section_buffer (&data->ranges);
16304 munmap_section_buffer (&data->frame);
16305 munmap_section_buffer (&data->eh_frame);
16306 munmap_section_buffer (&data->gdb_index);
16307
16308 for (ix = 0;
16309 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16310 ++ix)
16311 munmap_section_buffer (section);
16312
16313 VEC_free (dwarf2_section_info_def, data->types);
16314 }
16315
16316 \f
16317 /* The "save gdb-index" command. */
16318
16319 /* The contents of the hash table we create when building the string
16320 table. */
16321 struct strtab_entry
16322 {
16323 offset_type offset;
16324 const char *str;
16325 };
16326
16327 /* Hash function for a strtab_entry.
16328
16329 Function is used only during write_hash_table so no index format backward
16330 compatibility is needed. */
16331
16332 static hashval_t
16333 hash_strtab_entry (const void *e)
16334 {
16335 const struct strtab_entry *entry = e;
16336 return mapped_index_string_hash (INT_MAX, entry->str);
16337 }
16338
16339 /* Equality function for a strtab_entry. */
16340
16341 static int
16342 eq_strtab_entry (const void *a, const void *b)
16343 {
16344 const struct strtab_entry *ea = a;
16345 const struct strtab_entry *eb = b;
16346 return !strcmp (ea->str, eb->str);
16347 }
16348
16349 /* Create a strtab_entry hash table. */
16350
16351 static htab_t
16352 create_strtab (void)
16353 {
16354 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16355 xfree, xcalloc, xfree);
16356 }
16357
16358 /* Add a string to the constant pool. Return the string's offset in
16359 host order. */
16360
16361 static offset_type
16362 add_string (htab_t table, struct obstack *cpool, const char *str)
16363 {
16364 void **slot;
16365 struct strtab_entry entry;
16366 struct strtab_entry *result;
16367
16368 entry.str = str;
16369 slot = htab_find_slot (table, &entry, INSERT);
16370 if (*slot)
16371 result = *slot;
16372 else
16373 {
16374 result = XNEW (struct strtab_entry);
16375 result->offset = obstack_object_size (cpool);
16376 result->str = str;
16377 obstack_grow_str0 (cpool, str);
16378 *slot = result;
16379 }
16380 return result->offset;
16381 }
16382
16383 /* An entry in the symbol table. */
16384 struct symtab_index_entry
16385 {
16386 /* The name of the symbol. */
16387 const char *name;
16388 /* The offset of the name in the constant pool. */
16389 offset_type index_offset;
16390 /* A sorted vector of the indices of all the CUs that hold an object
16391 of this name. */
16392 VEC (offset_type) *cu_indices;
16393 };
16394
16395 /* The symbol table. This is a power-of-2-sized hash table. */
16396 struct mapped_symtab
16397 {
16398 offset_type n_elements;
16399 offset_type size;
16400 struct symtab_index_entry **data;
16401 };
16402
16403 /* Hash function for a symtab_index_entry. */
16404
16405 static hashval_t
16406 hash_symtab_entry (const void *e)
16407 {
16408 const struct symtab_index_entry *entry = e;
16409 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16410 sizeof (offset_type) * VEC_length (offset_type,
16411 entry->cu_indices),
16412 0);
16413 }
16414
16415 /* Equality function for a symtab_index_entry. */
16416
16417 static int
16418 eq_symtab_entry (const void *a, const void *b)
16419 {
16420 const struct symtab_index_entry *ea = a;
16421 const struct symtab_index_entry *eb = b;
16422 int len = VEC_length (offset_type, ea->cu_indices);
16423 if (len != VEC_length (offset_type, eb->cu_indices))
16424 return 0;
16425 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16426 VEC_address (offset_type, eb->cu_indices),
16427 sizeof (offset_type) * len);
16428 }
16429
16430 /* Destroy a symtab_index_entry. */
16431
16432 static void
16433 delete_symtab_entry (void *p)
16434 {
16435 struct symtab_index_entry *entry = p;
16436 VEC_free (offset_type, entry->cu_indices);
16437 xfree (entry);
16438 }
16439
16440 /* Create a hash table holding symtab_index_entry objects. */
16441
16442 static htab_t
16443 create_symbol_hash_table (void)
16444 {
16445 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16446 delete_symtab_entry, xcalloc, xfree);
16447 }
16448
16449 /* Create a new mapped symtab object. */
16450
16451 static struct mapped_symtab *
16452 create_mapped_symtab (void)
16453 {
16454 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16455 symtab->n_elements = 0;
16456 symtab->size = 1024;
16457 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16458 return symtab;
16459 }
16460
16461 /* Destroy a mapped_symtab. */
16462
16463 static void
16464 cleanup_mapped_symtab (void *p)
16465 {
16466 struct mapped_symtab *symtab = p;
16467 /* The contents of the array are freed when the other hash table is
16468 destroyed. */
16469 xfree (symtab->data);
16470 xfree (symtab);
16471 }
16472
16473 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16474 the slot.
16475
16476 Function is used only during write_hash_table so no index format backward
16477 compatibility is needed. */
16478
16479 static struct symtab_index_entry **
16480 find_slot (struct mapped_symtab *symtab, const char *name)
16481 {
16482 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16483
16484 index = hash & (symtab->size - 1);
16485 step = ((hash * 17) & (symtab->size - 1)) | 1;
16486
16487 for (;;)
16488 {
16489 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16490 return &symtab->data[index];
16491 index = (index + step) & (symtab->size - 1);
16492 }
16493 }
16494
16495 /* Expand SYMTAB's hash table. */
16496
16497 static void
16498 hash_expand (struct mapped_symtab *symtab)
16499 {
16500 offset_type old_size = symtab->size;
16501 offset_type i;
16502 struct symtab_index_entry **old_entries = symtab->data;
16503
16504 symtab->size *= 2;
16505 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16506
16507 for (i = 0; i < old_size; ++i)
16508 {
16509 if (old_entries[i])
16510 {
16511 struct symtab_index_entry **slot = find_slot (symtab,
16512 old_entries[i]->name);
16513 *slot = old_entries[i];
16514 }
16515 }
16516
16517 xfree (old_entries);
16518 }
16519
16520 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16521 is the index of the CU in which the symbol appears. */
16522
16523 static void
16524 add_index_entry (struct mapped_symtab *symtab, const char *name,
16525 offset_type cu_index)
16526 {
16527 struct symtab_index_entry **slot;
16528
16529 ++symtab->n_elements;
16530 if (4 * symtab->n_elements / 3 >= symtab->size)
16531 hash_expand (symtab);
16532
16533 slot = find_slot (symtab, name);
16534 if (!*slot)
16535 {
16536 *slot = XNEW (struct symtab_index_entry);
16537 (*slot)->name = name;
16538 (*slot)->cu_indices = NULL;
16539 }
16540 /* Don't push an index twice. Due to how we add entries we only
16541 have to check the last one. */
16542 if (VEC_empty (offset_type, (*slot)->cu_indices)
16543 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16544 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16545 }
16546
16547 /* Add a vector of indices to the constant pool. */
16548
16549 static offset_type
16550 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16551 struct symtab_index_entry *entry)
16552 {
16553 void **slot;
16554
16555 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16556 if (!*slot)
16557 {
16558 offset_type len = VEC_length (offset_type, entry->cu_indices);
16559 offset_type val = MAYBE_SWAP (len);
16560 offset_type iter;
16561 int i;
16562
16563 *slot = entry;
16564 entry->index_offset = obstack_object_size (cpool);
16565
16566 obstack_grow (cpool, &val, sizeof (val));
16567 for (i = 0;
16568 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16569 ++i)
16570 {
16571 val = MAYBE_SWAP (iter);
16572 obstack_grow (cpool, &val, sizeof (val));
16573 }
16574 }
16575 else
16576 {
16577 struct symtab_index_entry *old_entry = *slot;
16578 entry->index_offset = old_entry->index_offset;
16579 entry = old_entry;
16580 }
16581 return entry->index_offset;
16582 }
16583
16584 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16585 constant pool entries going into the obstack CPOOL. */
16586
16587 static void
16588 write_hash_table (struct mapped_symtab *symtab,
16589 struct obstack *output, struct obstack *cpool)
16590 {
16591 offset_type i;
16592 htab_t symbol_hash_table;
16593 htab_t str_table;
16594
16595 symbol_hash_table = create_symbol_hash_table ();
16596 str_table = create_strtab ();
16597
16598 /* We add all the index vectors to the constant pool first, to
16599 ensure alignment is ok. */
16600 for (i = 0; i < symtab->size; ++i)
16601 {
16602 if (symtab->data[i])
16603 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16604 }
16605
16606 /* Now write out the hash table. */
16607 for (i = 0; i < symtab->size; ++i)
16608 {
16609 offset_type str_off, vec_off;
16610
16611 if (symtab->data[i])
16612 {
16613 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16614 vec_off = symtab->data[i]->index_offset;
16615 }
16616 else
16617 {
16618 /* While 0 is a valid constant pool index, it is not valid
16619 to have 0 for both offsets. */
16620 str_off = 0;
16621 vec_off = 0;
16622 }
16623
16624 str_off = MAYBE_SWAP (str_off);
16625 vec_off = MAYBE_SWAP (vec_off);
16626
16627 obstack_grow (output, &str_off, sizeof (str_off));
16628 obstack_grow (output, &vec_off, sizeof (vec_off));
16629 }
16630
16631 htab_delete (str_table);
16632 htab_delete (symbol_hash_table);
16633 }
16634
16635 /* Struct to map psymtab to CU index in the index file. */
16636 struct psymtab_cu_index_map
16637 {
16638 struct partial_symtab *psymtab;
16639 unsigned int cu_index;
16640 };
16641
16642 static hashval_t
16643 hash_psymtab_cu_index (const void *item)
16644 {
16645 const struct psymtab_cu_index_map *map = item;
16646
16647 return htab_hash_pointer (map->psymtab);
16648 }
16649
16650 static int
16651 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16652 {
16653 const struct psymtab_cu_index_map *lhs = item_lhs;
16654 const struct psymtab_cu_index_map *rhs = item_rhs;
16655
16656 return lhs->psymtab == rhs->psymtab;
16657 }
16658
16659 /* Helper struct for building the address table. */
16660 struct addrmap_index_data
16661 {
16662 struct objfile *objfile;
16663 struct obstack *addr_obstack;
16664 htab_t cu_index_htab;
16665
16666 /* Non-zero if the previous_* fields are valid.
16667 We can't write an entry until we see the next entry (since it is only then
16668 that we know the end of the entry). */
16669 int previous_valid;
16670 /* Index of the CU in the table of all CUs in the index file. */
16671 unsigned int previous_cu_index;
16672 /* Start address of the CU. */
16673 CORE_ADDR previous_cu_start;
16674 };
16675
16676 /* Write an address entry to OBSTACK. */
16677
16678 static void
16679 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16680 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16681 {
16682 offset_type cu_index_to_write;
16683 char addr[8];
16684 CORE_ADDR baseaddr;
16685
16686 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16687
16688 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16689 obstack_grow (obstack, addr, 8);
16690 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16691 obstack_grow (obstack, addr, 8);
16692 cu_index_to_write = MAYBE_SWAP (cu_index);
16693 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16694 }
16695
16696 /* Worker function for traversing an addrmap to build the address table. */
16697
16698 static int
16699 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16700 {
16701 struct addrmap_index_data *data = datap;
16702 struct partial_symtab *pst = obj;
16703 offset_type cu_index;
16704 void **slot;
16705
16706 if (data->previous_valid)
16707 add_address_entry (data->objfile, data->addr_obstack,
16708 data->previous_cu_start, start_addr,
16709 data->previous_cu_index);
16710
16711 data->previous_cu_start = start_addr;
16712 if (pst != NULL)
16713 {
16714 struct psymtab_cu_index_map find_map, *map;
16715 find_map.psymtab = pst;
16716 map = htab_find (data->cu_index_htab, &find_map);
16717 gdb_assert (map != NULL);
16718 data->previous_cu_index = map->cu_index;
16719 data->previous_valid = 1;
16720 }
16721 else
16722 data->previous_valid = 0;
16723
16724 return 0;
16725 }
16726
16727 /* Write OBJFILE's address map to OBSTACK.
16728 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16729 in the index file. */
16730
16731 static void
16732 write_address_map (struct objfile *objfile, struct obstack *obstack,
16733 htab_t cu_index_htab)
16734 {
16735 struct addrmap_index_data addrmap_index_data;
16736
16737 /* When writing the address table, we have to cope with the fact that
16738 the addrmap iterator only provides the start of a region; we have to
16739 wait until the next invocation to get the start of the next region. */
16740
16741 addrmap_index_data.objfile = objfile;
16742 addrmap_index_data.addr_obstack = obstack;
16743 addrmap_index_data.cu_index_htab = cu_index_htab;
16744 addrmap_index_data.previous_valid = 0;
16745
16746 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16747 &addrmap_index_data);
16748
16749 /* It's highly unlikely the last entry (end address = 0xff...ff)
16750 is valid, but we should still handle it.
16751 The end address is recorded as the start of the next region, but that
16752 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16753 anyway. */
16754 if (addrmap_index_data.previous_valid)
16755 add_address_entry (objfile, obstack,
16756 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16757 addrmap_index_data.previous_cu_index);
16758 }
16759
16760 /* Add a list of partial symbols to SYMTAB. */
16761
16762 static void
16763 write_psymbols (struct mapped_symtab *symtab,
16764 htab_t psyms_seen,
16765 struct partial_symbol **psymp,
16766 int count,
16767 offset_type cu_index,
16768 int is_static)
16769 {
16770 for (; count-- > 0; ++psymp)
16771 {
16772 void **slot, *lookup;
16773
16774 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16775 error (_("Ada is not currently supported by the index"));
16776
16777 /* We only want to add a given psymbol once. However, we also
16778 want to account for whether it is global or static. So, we
16779 may add it twice, using slightly different values. */
16780 if (is_static)
16781 {
16782 uintptr_t val = 1 | (uintptr_t) *psymp;
16783
16784 lookup = (void *) val;
16785 }
16786 else
16787 lookup = *psymp;
16788
16789 /* Only add a given psymbol once. */
16790 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16791 if (!*slot)
16792 {
16793 *slot = lookup;
16794 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
16795 }
16796 }
16797 }
16798
16799 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16800 exception if there is an error. */
16801
16802 static void
16803 write_obstack (FILE *file, struct obstack *obstack)
16804 {
16805 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16806 file)
16807 != obstack_object_size (obstack))
16808 error (_("couldn't data write to file"));
16809 }
16810
16811 /* Unlink a file if the argument is not NULL. */
16812
16813 static void
16814 unlink_if_set (void *p)
16815 {
16816 char **filename = p;
16817 if (*filename)
16818 unlink (*filename);
16819 }
16820
16821 /* A helper struct used when iterating over debug_types. */
16822 struct signatured_type_index_data
16823 {
16824 struct objfile *objfile;
16825 struct mapped_symtab *symtab;
16826 struct obstack *types_list;
16827 htab_t psyms_seen;
16828 int cu_index;
16829 };
16830
16831 /* A helper function that writes a single signatured_type to an
16832 obstack. */
16833
16834 static int
16835 write_one_signatured_type (void **slot, void *d)
16836 {
16837 struct signatured_type_index_data *info = d;
16838 struct signatured_type *entry = (struct signatured_type *) *slot;
16839 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16840 struct partial_symtab *psymtab = per_cu->v.psymtab;
16841 gdb_byte val[8];
16842
16843 write_psymbols (info->symtab,
16844 info->psyms_seen,
16845 info->objfile->global_psymbols.list
16846 + psymtab->globals_offset,
16847 psymtab->n_global_syms, info->cu_index,
16848 0);
16849 write_psymbols (info->symtab,
16850 info->psyms_seen,
16851 info->objfile->static_psymbols.list
16852 + psymtab->statics_offset,
16853 psymtab->n_static_syms, info->cu_index,
16854 1);
16855
16856 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16857 obstack_grow (info->types_list, val, 8);
16858 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16859 obstack_grow (info->types_list, val, 8);
16860 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16861 obstack_grow (info->types_list, val, 8);
16862
16863 ++info->cu_index;
16864
16865 return 1;
16866 }
16867
16868 /* Create an index file for OBJFILE in the directory DIR. */
16869
16870 static void
16871 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16872 {
16873 struct cleanup *cleanup;
16874 char *filename, *cleanup_filename;
16875 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16876 struct obstack cu_list, types_cu_list;
16877 int i;
16878 FILE *out_file;
16879 struct mapped_symtab *symtab;
16880 offset_type val, size_of_contents, total_len;
16881 struct stat st;
16882 char buf[8];
16883 htab_t psyms_seen;
16884 htab_t cu_index_htab;
16885 struct psymtab_cu_index_map *psymtab_cu_index_map;
16886
16887 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16888 return;
16889
16890 if (dwarf2_per_objfile->using_index)
16891 error (_("Cannot use an index to create the index"));
16892
16893 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16894 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16895
16896 if (stat (objfile->name, &st) < 0)
16897 perror_with_name (objfile->name);
16898
16899 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16900 INDEX_SUFFIX, (char *) NULL);
16901 cleanup = make_cleanup (xfree, filename);
16902
16903 out_file = fopen (filename, "wb");
16904 if (!out_file)
16905 error (_("Can't open `%s' for writing"), filename);
16906
16907 cleanup_filename = filename;
16908 make_cleanup (unlink_if_set, &cleanup_filename);
16909
16910 symtab = create_mapped_symtab ();
16911 make_cleanup (cleanup_mapped_symtab, symtab);
16912
16913 obstack_init (&addr_obstack);
16914 make_cleanup_obstack_free (&addr_obstack);
16915
16916 obstack_init (&cu_list);
16917 make_cleanup_obstack_free (&cu_list);
16918
16919 obstack_init (&types_cu_list);
16920 make_cleanup_obstack_free (&types_cu_list);
16921
16922 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16923 NULL, xcalloc, xfree);
16924 make_cleanup_htab_delete (psyms_seen);
16925
16926 /* While we're scanning CU's create a table that maps a psymtab pointer
16927 (which is what addrmap records) to its index (which is what is recorded
16928 in the index file). This will later be needed to write the address
16929 table. */
16930 cu_index_htab = htab_create_alloc (100,
16931 hash_psymtab_cu_index,
16932 eq_psymtab_cu_index,
16933 NULL, xcalloc, xfree);
16934 make_cleanup_htab_delete (cu_index_htab);
16935 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16936 xmalloc (sizeof (struct psymtab_cu_index_map)
16937 * dwarf2_per_objfile->n_comp_units);
16938 make_cleanup (xfree, psymtab_cu_index_map);
16939
16940 /* The CU list is already sorted, so we don't need to do additional
16941 work here. Also, the debug_types entries do not appear in
16942 all_comp_units, but only in their own hash table. */
16943 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16944 {
16945 struct dwarf2_per_cu_data *per_cu
16946 = dwarf2_per_objfile->all_comp_units[i];
16947 struct partial_symtab *psymtab = per_cu->v.psymtab;
16948 gdb_byte val[8];
16949 struct psymtab_cu_index_map *map;
16950 void **slot;
16951
16952 write_psymbols (symtab,
16953 psyms_seen,
16954 objfile->global_psymbols.list + psymtab->globals_offset,
16955 psymtab->n_global_syms, i,
16956 0);
16957 write_psymbols (symtab,
16958 psyms_seen,
16959 objfile->static_psymbols.list + psymtab->statics_offset,
16960 psymtab->n_static_syms, i,
16961 1);
16962
16963 map = &psymtab_cu_index_map[i];
16964 map->psymtab = psymtab;
16965 map->cu_index = i;
16966 slot = htab_find_slot (cu_index_htab, map, INSERT);
16967 gdb_assert (slot != NULL);
16968 gdb_assert (*slot == NULL);
16969 *slot = map;
16970
16971 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
16972 obstack_grow (&cu_list, val, 8);
16973 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
16974 obstack_grow (&cu_list, val, 8);
16975 }
16976
16977 /* Dump the address map. */
16978 write_address_map (objfile, &addr_obstack, cu_index_htab);
16979
16980 /* Write out the .debug_type entries, if any. */
16981 if (dwarf2_per_objfile->signatured_types)
16982 {
16983 struct signatured_type_index_data sig_data;
16984
16985 sig_data.objfile = objfile;
16986 sig_data.symtab = symtab;
16987 sig_data.types_list = &types_cu_list;
16988 sig_data.psyms_seen = psyms_seen;
16989 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
16990 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
16991 write_one_signatured_type, &sig_data);
16992 }
16993
16994 obstack_init (&constant_pool);
16995 make_cleanup_obstack_free (&constant_pool);
16996 obstack_init (&symtab_obstack);
16997 make_cleanup_obstack_free (&symtab_obstack);
16998 write_hash_table (symtab, &symtab_obstack, &constant_pool);
16999
17000 obstack_init (&contents);
17001 make_cleanup_obstack_free (&contents);
17002 size_of_contents = 6 * sizeof (offset_type);
17003 total_len = size_of_contents;
17004
17005 /* The version number. */
17006 val = MAYBE_SWAP (5);
17007 obstack_grow (&contents, &val, sizeof (val));
17008
17009 /* The offset of the CU list from the start of the file. */
17010 val = MAYBE_SWAP (total_len);
17011 obstack_grow (&contents, &val, sizeof (val));
17012 total_len += obstack_object_size (&cu_list);
17013
17014 /* The offset of the types CU list from the start of the file. */
17015 val = MAYBE_SWAP (total_len);
17016 obstack_grow (&contents, &val, sizeof (val));
17017 total_len += obstack_object_size (&types_cu_list);
17018
17019 /* The offset of the address table from the start of the file. */
17020 val = MAYBE_SWAP (total_len);
17021 obstack_grow (&contents, &val, sizeof (val));
17022 total_len += obstack_object_size (&addr_obstack);
17023
17024 /* The offset of the symbol table from the start of the file. */
17025 val = MAYBE_SWAP (total_len);
17026 obstack_grow (&contents, &val, sizeof (val));
17027 total_len += obstack_object_size (&symtab_obstack);
17028
17029 /* The offset of the constant pool from the start of the file. */
17030 val = MAYBE_SWAP (total_len);
17031 obstack_grow (&contents, &val, sizeof (val));
17032 total_len += obstack_object_size (&constant_pool);
17033
17034 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17035
17036 write_obstack (out_file, &contents);
17037 write_obstack (out_file, &cu_list);
17038 write_obstack (out_file, &types_cu_list);
17039 write_obstack (out_file, &addr_obstack);
17040 write_obstack (out_file, &symtab_obstack);
17041 write_obstack (out_file, &constant_pool);
17042
17043 fclose (out_file);
17044
17045 /* We want to keep the file, so we set cleanup_filename to NULL
17046 here. See unlink_if_set. */
17047 cleanup_filename = NULL;
17048
17049 do_cleanups (cleanup);
17050 }
17051
17052 /* Implementation of the `save gdb-index' command.
17053
17054 Note that the file format used by this command is documented in the
17055 GDB manual. Any changes here must be documented there. */
17056
17057 static void
17058 save_gdb_index_command (char *arg, int from_tty)
17059 {
17060 struct objfile *objfile;
17061
17062 if (!arg || !*arg)
17063 error (_("usage: save gdb-index DIRECTORY"));
17064
17065 ALL_OBJFILES (objfile)
17066 {
17067 struct stat st;
17068
17069 /* If the objfile does not correspond to an actual file, skip it. */
17070 if (stat (objfile->name, &st) < 0)
17071 continue;
17072
17073 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17074 if (dwarf2_per_objfile)
17075 {
17076 volatile struct gdb_exception except;
17077
17078 TRY_CATCH (except, RETURN_MASK_ERROR)
17079 {
17080 write_psymtabs_to_index (objfile, arg);
17081 }
17082 if (except.reason < 0)
17083 exception_fprintf (gdb_stderr, except,
17084 _("Error while writing index for `%s': "),
17085 objfile->name);
17086 }
17087 }
17088 }
17089
17090 \f
17091
17092 int dwarf2_always_disassemble;
17093
17094 static void
17095 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17096 struct cmd_list_element *c, const char *value)
17097 {
17098 fprintf_filtered (file,
17099 _("Whether to always disassemble "
17100 "DWARF expressions is %s.\n"),
17101 value);
17102 }
17103
17104 static void
17105 show_check_physname (struct ui_file *file, int from_tty,
17106 struct cmd_list_element *c, const char *value)
17107 {
17108 fprintf_filtered (file,
17109 _("Whether to check \"physname\" is %s.\n"),
17110 value);
17111 }
17112
17113 void _initialize_dwarf2_read (void);
17114
17115 void
17116 _initialize_dwarf2_read (void)
17117 {
17118 struct cmd_list_element *c;
17119
17120 dwarf2_objfile_data_key
17121 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17122
17123 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17124 Set DWARF 2 specific variables.\n\
17125 Configure DWARF 2 variables such as the cache size"),
17126 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17127 0/*allow-unknown*/, &maintenance_set_cmdlist);
17128
17129 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17130 Show DWARF 2 specific variables\n\
17131 Show DWARF 2 variables such as the cache size"),
17132 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17133 0/*allow-unknown*/, &maintenance_show_cmdlist);
17134
17135 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17136 &dwarf2_max_cache_age, _("\
17137 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17138 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17139 A higher limit means that cached compilation units will be stored\n\
17140 in memory longer, and more total memory will be used. Zero disables\n\
17141 caching, which can slow down startup."),
17142 NULL,
17143 show_dwarf2_max_cache_age,
17144 &set_dwarf2_cmdlist,
17145 &show_dwarf2_cmdlist);
17146
17147 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17148 &dwarf2_always_disassemble, _("\
17149 Set whether `info address' always disassembles DWARF expressions."), _("\
17150 Show whether `info address' always disassembles DWARF expressions."), _("\
17151 When enabled, DWARF expressions are always printed in an assembly-like\n\
17152 syntax. When disabled, expressions will be printed in a more\n\
17153 conversational style, when possible."),
17154 NULL,
17155 show_dwarf2_always_disassemble,
17156 &set_dwarf2_cmdlist,
17157 &show_dwarf2_cmdlist);
17158
17159 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17160 Set debugging of the dwarf2 DIE reader."), _("\
17161 Show debugging of the dwarf2 DIE reader."), _("\
17162 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17163 The value is the maximum depth to print."),
17164 NULL,
17165 NULL,
17166 &setdebuglist, &showdebuglist);
17167
17168 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17169 Set cross-checking of \"physname\" code against demangler."), _("\
17170 Show cross-checking of \"physname\" code against demangler."), _("\
17171 When enabled, GDB's internal \"physname\" code is checked against\n\
17172 the demangler."),
17173 NULL, show_check_physname,
17174 &setdebuglist, &showdebuglist);
17175
17176 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17177 _("\
17178 Save a gdb-index file.\n\
17179 Usage: save gdb-index DIRECTORY"),
17180 &save_cmdlist);
17181 set_cmd_completer (c, filename_completer);
17182 }
This page took 0.41541 seconds and 4 git commands to generate.